
Contextual Recurrent Level Set Networks
and Recurrent Residual Networks

for Semantic Labeling

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in the

Department of Electrical and Computer Engineering

Ngan Thi Hoang Le

B.S., Computer Science, National Science University, Vietnam
M.S., Computer Science, National Science University, Vietnam

M.S., Electrical and Computer Engineering, Carnegie Mellon University, USA

Carnegie Mellon University
Pittsburgh, PA

May, 2018

© Ngan Thi Hoang Le, 2018
All rights reserved

Acknowledgments

This thesis is the completion of my journey of Ph.D which was just like

climbing a high peak step by step accompanied with encouragement, support-

ing, hardship, and frustration. When I found myself at top experiencing the

feeling of fulfillment, I realized though only my name appears on the cover of

this dissertation, a great many people including my family members, my friends,

colleagues have contributed to accomplish this huge task. I would like to take

this opportunity to thank all the people who have unconditionally supported

and encouraged me throughout the years of my PhD program.

At this moment of accomplishment I am greatly indebted to my research

guide, my advisor, Prof. Marios Savvides, for taking me as a PhD student

and for all his support and guidance through the years. This work would

not have been possible without his guidance and involvement, his support and

encouragement

I am very grateful to Prof. Vijayakumar Bhagavatula, Prof. Arun Ross, and

Dr. Saad Bedros, for taking the time to be members of my doctoral committee.

Their feedback, along with that of Prof. Savvides, was of great value and helped

me understand what I needed to focus on.

I greatly appreciate and acknowledge the support, friendships and collabo-

ration received from my collaborators in the CyLab Biometrics Center: Khoa

Luu, Chi Nhan Duong, Kha Gia Quach, Utsav Prabhu, Chandrasekhar Bha-

gavatula, Keshav Seshadri, Chenchen Zhu, Yutong Zheng, Ligong Han, Karan-

haar Singh. I learned much from each of them through our work together and

numerous inspiring conversations. They have taught me many lessons about

not only work but also life.

In addition, I would like to thank my friends, my lab members Shreyas

iii

Venugopalan, Ramzi Abiantun, Dipand Pal, Juefei Xu, Sasikanth Bendapudi,

Raied Jadaany, Jingu Heo for their friendship through the years. Specially, I

feel so much lucky to have Faten Mhiri to be one of the most supportive friend

who have continuously encouraged, loved and cared me through the years.

I acknowledge the people who mean a lot to me, my parents Khoi Van Le

and Hoan Thi Kim Hoang to whom I owe more than a PhD degree. I grant

them for the selfless love, care and sacrifice they have done to shape my life and

my family. Although they hardly understood what my research is, they were

willing to support any decision I made. I would never be able to pay back the

love and affection showered upon by my parents. My heart felt regard goes to

my parents in law, specially my mother in law Hai Thi Pham for her love and

moral support through the time of finishing the thesis.

I owe thanks to a very special person, my husband, Khoa Luu for his con-

tinued and unfailing love, support, sympathy and understanding during my

pursuit of Ph.D degree that made the completion of thesis possible. He was

always around when things became hard and I couldnt move in, he helped me

to keep things in perspective. I greatly value his contribution and deeply ap-

preciate his belief in me. I appreciate my babies, my little girl Sophia Le Luu

and little boy Andrew Le Luu for abiding my ignorance and the patience they

showed during my thesis writing. Words would never say how grateful I am to

all of you. I consider myself the luckiest woman in the world to have such a

lovely and caring family, standing beside me with their love and unconditional

support.

This work has been partly funded by Carnegie Mellon University CyLab,

National Institute of Justice grant no. 2013-IJ-CX-K005, US Naval Air Sys-

tems Command (NAVAIR) grant no. N68335-16-C-0177, NAVMAR Applied

Sciences Corporation grant no. NASC-0040-CMU, and Carnegie Mellon Uni-

iv

versity Software Engineering Institute CERT grant no. 6-599B2.

v

Abstract

Semantic labeling is becoming more and more popular among researchers

in computer vision and machine learning. Many applications, such as au-

tonomous driving, tracking, indoor navigation, augmented reality systems, se-

mantic searching, medical imaging are on the rise, requiring more accurate and

efficient segmentation mechanisms. In recent years, deep learning approaches

based on Convolutional Neural Networks (CNNs) and Recurrent Neural Net-

works (RNNs) have dramatically emerged as the dominant paradigm for solving

many problems in computer vision and machine learning. The main focus of

this thesis is to investigate robust approaches that can tackle the challenging

semantic labeling tasks including semantic instance segmentation and scene

understanding.

In the first approach, we convert the classic variational Level Set method

to a learnable deep framework by proposing a novel definition of contour evolu-

tion named Recurrent Level Set (RLS). The proposed RLS employs Gated

Recurrent Units to solve the energy minimization of a variational Level Set

functional. The curve deformation processes in RLS is formulated as a hidden

state evolution procedure and is updated by minimizing an energy functional

composed of fitting forces and contour length. We show that by sharing the

convolutional features in a fully end-to-end trainable framework, RLS is able

to be extended to Contextual Recurrent Level Set (CRLS) Networks to

address semantic segmentation in the wild problem. The experimental results

have shown that our proposed RLS improves both computational time and

segmentation accuracy against the classic variational Level Set-based methods

whereas the fully end-to-end system CRLS achieves competitive performance

compared to the state-of-the-art semantic segmentation approaches on PAS-

vi

CAL VOC 2012 and MS COCO 2014 databases.

The second proposed approach, Contextual Recurrent Residual Net-

works (CRRN), inherits all the merits of sequence learning information and

residual learning in order to simultaneously model long-range contextual infor-

mation and learn powerful visual representation within a single deep network.

Our proposed CRRN deep network consists of three parts corresponding to

sequential input data, sequential output data and hidden state as in a recur-

rent network. Each unit in hidden state is designed as a combination of two

components: a context-based component via sequence learning and a visual-

based component via residual learning. That means, each hidden unit in our

proposed CRRN simultaneously (1) learns long-range contextual dependencies

via a context-based component. The relationship between the current unit and

the previous units is performed as sequential information under an undirected

cyclic graph (UCG) and (2) provides powerful encoded visual representation via

residual component which contains blocks of convolution and/or batch normal-

ization layers equipped with an identity skip connection. Furthermore, unlike

previous scene labeling approaches [1, 2, 3], our method is not only able to

exploit the long-range context and visual representation but also formed under

a fully-end-to-end trainable system that effectively leads to the optimal model.

In contrast to other existing deep learning networks which are based on pre-

trained models, our fully-end-to-end CRRN is completely trained from scratch.

The experiments are conducted on four challenging scene labeling datasets, i.e.

SiftFlow, CamVid, Stanford background, and SUN datasets, and compared

against various state-of-the-art scene labeling methods.

vii

Index Terms

Pixel-level labeling, Semantic Instance Segmentation, Scene Labeling, Scene Parsing, Im-

age Understanding, Level Set, Active Contour, Convolutional Neural Networks, Recurrent

Neural Networks, Gated Recurrent Unit, Residual Network

viii

Contents

1 Introduction 2

1.1 Thesis Objective . 5

1.2 Thesis Contributions . 7

1.3 Thesis Outline . 10

2 Background 13

2.1 Multi-Layer Neural Network . 13

2.1.1 Neuron . 13

2.1.2 Neural Networks . 15

2.1.3 Forward propagation . 16

2.1.4 Backpropagation . 18

2.2 Convolutional Neural Networks . 19

2.2.1 Convolutional Layer . 21

2.2.2 Activation Layer . 22

2.2.3 Pooling layer . 24

2.2.4 Loss function . 25

2.2.5 Regularization . 27

2.2.6 Optimization . 28

2.2.7 Fully connected layer . 29

2.2.8 Applications . 29

ix

2.2.9 Forward Propagation . 32

2.2.10 Backward Propagation . 32

2.3 Recurrent Neural Networks . 34

2.3.1 Vanilla Recurrent Neural Networks: 34

2.3.2 Long Short Time Memory . 36

2.3.3 Gated Recurrent Unit . 38

2.3.4 Backpropagation Through Time (BPTT) 40

2.3.5 Training Recurrent Neural Networks(RNNs) 41

2.3.6 Exploding and Vanishing Gradients in Training RNN 43

2.4 Active Contour . 45

2.4.1 Classic Snakes . 45

2.4.2 Level Set Method . 47

2.4.3 Edge-based Active Contours . 49

2.4.4 Region-based Active Contours (Chan-Vese) 50

2.4.5 State-of-the-art Level Set Methods and Their Limitations 54

2.5 Common Deep Network Architectures . 56

2.5.1 LeNet . 57

2.5.2 AlexNet . 57

2.5.3 ZFNet . 58

2.5.4 VGG-16 . 59

2.5.5 GoogLeNet/Inception . 60

2.5.6 ResNet . 62

2.5.7 DenseNet . 64

2.6 Region-based Convolutional Neural Networks 65

2.6.1 R-CNN . 65

2.6.2 Fast R-CNN . 67

2.6.3 Faster R-CNN . 69

x

2.6.4 Mask R-CNN . 70

2.6.5 YOLO . 72

3 Related Work 74

3.1 Naive Image Segmentation . 77

3.1.1 Thresholding Technique . 77

3.1.2 Edge-based Technique . 78

3.1.3 Region-based Technique . 79

3.1.4 Watershed Technique . 80

3.1.5 Normalized -Cut Technique . 81

3.1.6 Active Contour based Technique . 82

3.2 Semantic Image Segmentation . 84

3.2.1 Graphical model approaches . 85

3.2.2 CNN-based approaches . 86

3.2.3 RNN-based approaches . 91

3.3 Common datasets . 97

3.3.1 Generic datasets . 97

3.3.2 Urban - driving . 100

3.3.3 Outdoor Scene Datasets . 102

4 Contextual Recurrent Level Set (CRLS) Networks 104

4.1 Introduction . 104

4.2 Recurrent Level Set (RLS) . 105

4.2.1 Relationship between RNNs/GRUs and CLS 105

4.2.2 Proposed Recurrent Level Set (RLS) 107

4.2.3 RLS Learning . 110

4.3 Contextual Recurrent Level Sets (CRLS) 112

4.3.1 Model constructing . 113

xi

4.4 Inference . 120

4.5 Implementation Details . 122

5 Contextual Recurrent Residual Networks (CRRN) 125

5.1 Introduction . 125

5.2 The Proposed CRRN . 128

5.2.1 Contextual information embedding 131

5.2.2 Visual representation learning . 132

5.2.3 Model learning . 133

5.3 Inference . 134

5.4 Implementation Details . 135

6 Experimental Results 137

6.1 Experimental Results of CRLS . 137

6.1.1 Datasets . 137

6.1.2 Metrics . 138

6.1.3 Experiment 1 - Object Segmentation by RLS 139

6.1.4 Experiment 2 - Semantic Instance Segmentation by CRLS 141

6.1.5 Experiment 3 - Multi-instace object segmentation by proposed CRLS 145

6.2 Experimental results of CRRN . 152

6.2.1 Datasets . 152

6.2.2 Metrics . 153

6.2.3 Experiment - Scene Labeling by CRRN 153

6.2.4 Analysis on false cases . 161

7 Concluding Remarks and Future Work 165

7.1 Concluding Remarks . 165

7.2 Future Work . 167

xii

Appendix A Appendix 173

A.1 Derivation of Level Set . 174

A.2 Derivatives of Recurrent Level Sets (RLS) forward/backward 177

A.2.1 Forward Pass Procedure . 177

A.2.2 Backward Pass Procedure . 178

xiii

List of Tables

2.1 Mathematically equations of different activation functions 24

2.2 Mathematically equations of different loss functions 26

2.3 summary on regularization . 27

3.1 Summary of highlight CNN-based semantic segmentation methods 93

3.2 Summary of highlight RNN-based semantic segmentation methods 96

3.3 Summary of the most popular large-scale datasets used for evaluating the

performance of semantic segmentation . 103

4.1 Comparison between CLS, GRUs and our proposed RLS 107

6.1 Comparison on average F-measure (FM) and testing time 140

6.2 Quantitative results and comparisons against existing methods on the PAS-

CAL VOC 2012 . 144

6.3 Quantitative results and comparisons against existing methods on the MS

COCO 2014 . 144

6.4 Quantitative results and comparisons against existing methods on Siftflow

dataset . 159

6.5 Quantitative results and comparisons against existing methods on CamVid

dataset . 159

xiv

6.6 Quantitative results and comparisons against existing methods on Stanford-

background dataset . 160

6.7 Quantitative results and comparisons against existing methods on SUN dataset160

6.8 Quantitative results and comparisons against existing methods on Siftflow

dataset . 160

xv

List of Figures

1.1 The four subproblems of image understanding 3

1.2 Examples of pixel-level labeling results on single object 9

1.3 Examples of pixel-level labeling results on multiple objects 9

1.4 Examples of scene labeling results . 10

2.1 An example of one neuron . 14

2.2 Visualization of active functions . 15

2.3 An example of multi-layer perceptron network (MLP) 16

2.4 Architecture of a typical convolutional network for image classification . . 20

2.5 Comparison between different convolutions 22

2.6 Comparison between different activation functions 24

2.7 Comparison between different regularization techniques 28

2.8 Summary on the works related to CNNs 31

2.9 An illustration of RNN . 34

2.10 various architectures of RNNs . 35

2.11 RNNs architecture for sentiment analysis 36

2.12 RNNs architecture for machine translation 36

2.13 An illustration of LSTM . 37

2.14 An illustration of GRU . 39

2.15 Unrolling RNNs in time . 42

xvi

2.16 An example of classic snakes . 46

2.17 Level set evolution . 47

2.18 Topology of level set function changes . 48

2.19 Example of active contour evolution for image segmentation 49

2.20 An illustration of energy inside/outside the contour 52

2.21 Architecture of LeNet . 57

2.22 Architecture of AlexNet . 58

2.23 Architecture of ZFNet . 59

2.24 Architecture of VGG . 59

2.25 Simple visualization of 16 layers in VGG 60

2.26 Architecture of GoogLeNet . 61

2.27 An explaination of inception module . 61

2.28 Architecture of ResNet-50 . 62

2.29 Explaination of a residual block . 62

2.30 Comparison between Resnet and VGG and plain networks 63

2.31 An example of DenseNet with 2 blocks for image classificaiton 65

2.32 Architecture of DenseNet on ImageNet for image classication 65

2.33 Flowchart of R-CNN . 67

2.34 Flowchart of Fast-RCNN . 68

2.35 Flowchart of Faster-RCNN and Region Proposal Networks (RPNs) 70

2.36 Flowchart of Mask R-CNN . 71

2.37 Summary of models in the R-CNN family 71

2.38 Flowchart of YOLO model . 72

3.1 An example of image segmentation . 75

3.2 Difficulties in texture segmentation . 76

3.3 Difficulties in scene segmentation . 76

xvii

4.1 The unfolding in time of RNNs and CLS 106

4.2 The visualization of generating sequence input data 108

4.3 The proposed RLS network for curve updating process 111

4.4 The unfolding of the proposed RLS network for curve updating process

under recurrent fashion . 111

4.5 The flowchart of our proposed CRLS for semantic instance segmentation . 114

4.6 The network for extracting share features 115

4.7 Architecture of Region Proposal Network (RPN) 115

4.8 An illustration of Stage 3 for object classification 120

4.9 Architecture of the proposed CRLS for semantic instance segmentation . . 121

4.10 The architecture of the pre-trained model VGG-16 used in the proposed CRLS123

5.1 The architecture of the proposed CRRN 128

5.2 Decomposition of UCG into four DAGs . 129

5.3 The forward procedure of CRRN at a vertex 129

5.4 The relationship between a vertex and its predecessors 130

5.5 An illustration of our proposed CRRN architecture at one direction 131

5.6 The backward procedure of CRRN at a vertex 134

6.1 Object segmentation on medical, synthetic images and from Weizmann

database . 141

6.2 Some examples of semantic segmentation on PASCAL VOC 2012 database 142

6.3 Some examples of semantic segmentation on MS COCO database on vali-

dation set . 143

6.4 Some examples of overlapping objects segmentation 146

6.5 Some examples of single-instance objects segmentation 147

6.6 Some examples of multiple-instance objects segmentation 148

6.7 Some examples of multiple-instance objects segmentation 149

xviii

6.8 Mean Average Precision (mAP) (%) per each class on PASCAL VOC . . . 151

6.9 Average precision and Average recall (%) on MS COCO 151

6.10 Comparison between our CRRN and CNN-65-DAG-RNN 154

6.11 Examples of labeling results on SiftFlow dataset 155

6.12 Examples of labeling results on CamVid dataset 156

6.13 Examples of labeling results on Stanford dataset 157

6.14 Examples of labeling results on SUN dataset 158

6.15 Examples of false positive where the ground truth is mistakenly labeled as

unlabeled . 162

6.16 Examples of context confusing . 164

7.1 An improved version of CRLS . 167

7.2 An improved version of CRRN . 168

7.3 The first example of segmentating results on unseen objects 169

7.4 The second example of segmentating results on unseens objects 170

7.5 The first example of cross databases problem 171

7.6 The second example of cross databases problem 172

xix

List of Abbreviations

AC Active Contour

AP Average Precision

AR Average Recall

AUC Area Under Curve

BPTT Backpropagation Through Time

CLS Classic Level Set

CV Chan-Vese

CNNs Convolutional Neural Networks

CRF Conditional Random Fields

CRLS Context Recurrent Level Set

CRRN Contextual Recurrent Residual Networks

FCNs Fully Convolutional Networks

GAC Geodesic Active Contours

GRU Gated Recurrent Unit

IoU Intersection over Union

LS Level Set

LSTM Long Short Time Memory

MCG Multiscale Combinatorial Grouping

MLP Multilayer Perceptron

MRF Markov Random Fields

R-CNNs Region-based Convolutional Neural Networks

ReLU Rectified Linear Unit

ResNet Residual Networks

RLS Recurrent Level Set

RNNs Recurrent Neural Networks

1

RoI Region of Interest

RPNs Region Proposal Networks

SGD Stochastic Gradient Descent

UCG Undirected Cyclic Graph

1

Chapter 1

Introduction

One o the central goals of computer vision is object recognition and scene understanding.

Humans are able to (1) possess a remarkable ability to parse an image simply by looking

at them. (2) analyze an image and separate all the components present in it (3) recognize

a new object that has never seen before based on observing a set of objects. The Holy

Grail of a computer vision system is to able to perform as same tasks as humans are

with the ability of across huge variations in pose, appearance, viewpoint, illumination,

occlusion, etc. Obviously, this is a very difficult computational problem and involves in

eventually making intelligent machines. An image understanding system can be roughly

defined in four different subproblems i.e. image classification, object detection, semantic

segmentation, semantic instance segmentation as shown in Fig. 1.1, according to its level

of complexity.

1. Image classification: assign a label to an image. In this subproblem, all the objects

presenting in a scene are given one label, independent of its location.

2. Object detection: predict the bounding box around an object as well as the class

of each object. This subproblem is also known as object localization.

2

(d) Instance segmentation(c) Semantic segmentation(b) Object detection(a) Image Classification

person

Figure 1.1: The four subproblems of image understanding (a) Image Classification, (b) Object
Detection, (c) Semantic Segmentation, (d) Semantic Instance Segmentation

3. Semantic segmentation: predict the semantic class of the individual pixels in an

image. However this subproblem unable to distinguish different instances of the same

class.

4. Instance segmentation: label as well as provide pixel-level segmentation to each

object instance in the image. This subproblem is the higher level of semantic segmen-

tation. It can be considered as a combination of the second subproblem and third

problem.

In general, object detection does not provide accurate pixel-level object segmentation

and semantic segmentation ignores to distinguish different instances in the same class

whereas instance segmentation labels all the pixels that belong to objects and assign each

pixel to a given object instance. Clearly, the later problem is more challenging and consid-

ered to be the most challenging problem in object recognition and seen as a generalization

3

of the previous subproblem.

In the early days (1970s), computer vision could be broken up into three categories: (i)

low-level vision, related to image processing such Laplacian, Laplacian of a Gaussian, Sobel

edge detector, Canny edge detector [4], (ii) mid-level vision, leading to representations of

surfaces utilizing such concepts as global motion, grouping, surfaces, and regions and (iii)

high-level vision, corresponding to object understanding. Later, this category was almost

replaced by feature-based learning approaches. Features evolved from edges and corners

to linear filters such as Gaussian, Gabor and Haar wavelets. After that, histogram-based

features were successfully developed and became an important feature-based learning with

Scale-Invariant Feature Transformation (SIFT) [5] Histogram of Oriented Gradients (HOG)

[6] and Speeded-Up Robust Features (SURF)[7]. Instead of using hand-crafted discrimi-

native features, Le-Cun et al.[8, 9] introduced an important class of visual representation

learning methods, called deep learning which is known as Convolutional Neural Networks

(CNNs). This approach consists of a multiple level of representations which was obtained

by convolving an input with receptive field. At the early days of 1990s, CNNs were not con-

sidered as important as feature-based learning in object recognition. In the last few years,

however, this scenario drastically changed, mainly due to increasing amounts of available

data, more powerful computing machines and some new algorithmic developments. One of

the notable mention is the work done by Krizhevsky, et al. [10] which achieved impressive

classification results on the challenging ImageNet dataset [11]. After that, CNN-based

deep learning approaches became popular and have been pursued dramatacally in com-

puter vision and machine learning. Image labeling and understanding including semantic

instance segmentation and scene labeling is one of the key tasks which has played an

important role in various areas of computer vision and machine learning.

Among numerous segmentation methods developed in last few decades, Active Con-

tour (AC), or Deformable Models, based on variational models and partial differential

equations (PDEs), can be considered as one of the most widely used approaches in med-

4

ical image segmentation. Among many AC-based approaches in the last few decades for

image segmentation, variational LS methods [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]

have obtained promising performance under some constraints, e.g. resolution, illumina-

tion, shape, noise, occlusions, etc. However, the segmentation accuracy in the LS methods

dramatically drops when dealing with images collected in the wild, e.g. the PASCAL Vi-

sual Object Classes (VOC) Challenge [24], the Microsoft Common Objects in Context (MS

COCO) [25] database, etc. Meanwhile, the recent advanced deep learning based segmenta-

tion approaches [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]

have achieved the state-of-the-art performance on dealing with both multi-instance object

segmentation and scene understanding on these databases.

The second problem in the family of semantic segmentation is known as scene labeling

or scene parsing which refers to associating each pixel with one semantic class in a scene

image. This task is very challenging as it implies solving jointly detection, segmentation

and multi-label recognition problems. To address this issue, a large body of research has

recently proposed different approaches mainly focusing on utilizing contextual information

via graphical model [46, 47, 48, 49, 50, 51] or recurrent neural networks [1, 2, 3, 32, 49,

49, 52, 53, 54, 55, 56, 57, 58] or enriching visual representations via convolutional neural

networks [31, 38, 53, 59, 60, 61].

1.1 Thesis Objective

The focus of this thesis is to develop different robust algorithms to tackle the pixel-level

labeling problem, including semantic instance segmentation and scene labeling.

The first algorithm we introduce is aimed to bridge the two disconnected areas, i.e.

connect the classic variational Level Set (LS) in image processing area to deep learning.

The first proposed method is to answer the following challenging.

• LS is a well-known segmentation approach in image processing research. It is, how-

5

ever, limited when performing on images in the wild. How to make LS method work

well on images in the wild?

• LS is a pure image segmentation process and there is no learning from available data

while large-scale databases together machine learning (deep network approaches)

have big advantages nowadays. How to incorporate LS into deep learning to inherit

the merits of both LS and deep learning?

• Most deep learning-based semantic image segmentation methods perform the seg-

menting task using the softmax function. Is it possible to replace softmax function

by LS to get better outcome? If replacing softmax by LS, how can we reformulate LS

to perform forward and backward pass in the deep learning framework?

The second algorithm is to exploring all the merits of sequence learning information

and residual learning in order to simultaneously model long-range contextual information

and learn powerful visual representation within a single deep network to deal with scene

labeling. The scene labeling approach is based on the observation that scene labeling

problem in the real world needs both information of the context dependencies and visual

representation. For example, powerful visual representation is capable to discriminate a

road from a beach or sea from the sky; but it may not effective enough to tell a patch of

sand belongs to the side of a road or to a beach and it is almost impossible to distinguish

a pixel belonging to the sky from a pixel belonging to sea by only looking at a small patch

around them. In such circumstance, pixels can not be labeled based only on short-range

context i.e. a small region around them. Clearly, the context presented in the whole

scene can show its advantage to describe them. Indeed, the roles of contextual information

i.e. short-range and long-range context and powerful descriptive visual representation are

equally important in the scene labeling problem.

6

1.2 Thesis Contributions

This thesis contains different contributions for pixel-level object understanding/labeling

tasks, namely semantic instance segmentation and scene parsing. Semantic instance seg-

mentation problem is presented by the first proposed approach, Contextual Recurrent

Level Set Networks for Instance Segmentation whereas the scene labeling problem is

introduced via the second proposed approach: Deep Contextual Recurrent Residual

Networks for Scene Labeling:

1. Contextual Recurrent Level Set Networks for Instance Segmentation: To

address the aforementioned questions in Section 1.1, this thesis first presents a novel

look of LS methods under the viewpoint of deep learning approaches, i.e. Recur-

rent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). The

classic LS (CLS) segmentation formulation is now redefined as a recurrent learning

framework, named Recurrent Level Set (RLS) Networks, due to its evolution

properties, i.e. stability and the growth of oscillations in the models. In compare

to CLS method [62], RLS is more robust and productive when dealing with images

in the wild, due to the learning ability as shown in Fig. 1.2. The proposed RLS is

designed as a trainable system thus it is easily extended to a fully end-to-end system,

which we named Contextual RLS (CRLS) Networks to efficiently incorporate

with other deep learning frameworks for handling the semantic segmentation in the

wild. Compared to other ConvNet-based segmentation methods [26, 29, 30, 31], our

proposed fully end-to-end trainable deep networks CRLS inherits all the merits of

the LS model to enrich the object curvatures and the ConvNet model to encode pow-

erful visual representation. Indeed, the proposed CRLS is able to learn both object

contours via the LS energy minimization and visual representation via the sharing

deep features as shown in some examples in Fig. 1.3.

7

2. Deep Contextual Recurrent Residual Networks for Scene Labeling: To ef-

fectively address the scene labeling problem, we propose a novel deep network named

Contextual Recurrent Residual Networks (CRRN) that inherits all the mer-

its of sequence learning information and residual learning in order to simultaneously

model long-range contextual information and learn powerful visual representation

within a single deep network. Our proposed CRRN deep network consists of three

parts corresponding to sequential input data, sequential output data and hidden

state. Each unit in hidden state is designed as a combination of two components:

a context-based component via sequence learning and a visual-based component via

residual learning. That means, each hidden unit in our proposed CRRN simultane-

ously (1) learns long-range contextual dependencies via context-based component.

The relationship between the current unit and the previous units is performed as se-

quential information under an undirected cyclic graph (UCG) and (2) provides pow-

erful encoded visual representation via residual component which contains blocks of

convolution and/or batch normalization layers equipped with an identity skip con-

nection. Furthermore, unlike previous scene labeling approaches [1, 2, 3], our method

is not only able to exploit the long-range context and visual representation but is

also formulated under a fully-end-to-end trainable system that effectively leads to

the optimal model. In contrast to other existing deep learning network which are

based on pre-trained models, our fully-end-to-end CRRN is completely trained from

scratch.

8

Figure 1.2: Examples of pixel-level labeling results on single object From left to right: the 1st

column is the input images, the 2nd column is segmentation results from CLS [62], the 3rd column
is segmentation results from MNC [29] and the 4th column is segmentation results from our RLS

Figure 1.3: Examples of pixel-level labeling results on multiple objects From left to right: the
1st column is the input images, the 2nd column is segmentation results from MNC [29], the 3rd

column is segmentation results from our CRLS a nd 4th column is ground truth images

9

Figure 1.4: Examples of scene labeling results. From top to bottom: the input images, the
segmentation results from [56], our CRRN segmentation results, and the ground truth

1.3 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2: Background: In this chapter, we start with introducing the multi

layer perceptron model and then present the basics of convolution neural networks

(CNNs), recurrent neural networks (RNNs) and active contour (AC). The forward

and backward propagations of the networks are formulated in this chapter. We pro-

vide a board survey of the recent advances in CNNs including he improvement of

CNNs on different aspects such as convolutional layer, pooling layer, active func-

tion, loss function, regularization, optimization and application. Recurrent neural

networks (RNNs) together the recent developments Gated Recurrent Units (GRUs)

and Long short Time Memory (LSTM) are also introduced in this chapter. The

10

common problems in RNNs such as Backpropagation Through Time (BPTT) and

vanishing problem are given later. AC with their variations are given in details after

the introduction of CNNs and RNNs. The most remarkable network architectures

including LeNet, AlexNet, ZFNet, VGG-16, GoogleNet, ResNet and DenseNet are

summarized in this chapter. Since our proposed CRLS network for semantic instance

segmentation makes use of region-based networks, we review the Region-based Con-

volutional Neural Network (R-CNN) family including Fast R-CNN, Faster R-CNN,

Mask R-CNN and YOLO in the end of this chapter.

• Chapter 3: Related Work: In this chapter, we provide a brief review on dif-

ferent image segmentation techniques including both naive ”pure image processing”

approaches and learnable approaches. The chapter starts with various naive im-

age segmentation approaches consisting of thresholding, edge-based, region-based,

watershed, normalized-cut, and finally, active contour. In the next part of this chap-

ter, we focus on deep-learning based semantic segmentation methods which have

been applied to both semantic instance segmentation and scene labeling. Differ-

ent approaches are introduced under three groups, i.e. graphical model approaches,

CNNs-based approaches, and RNNs-based approaches. In the end of this chapter,

we introduce the most common large-scale datasets that have been used to evaluate

the performance of different semantic segmentation approaches.

• Chapter 4: Contextual Recurrent Level Set (CRLS) Networks to Semantic

Instance Segmentation: In this chapter, we detail the proposed deep framework

CRLS to solve the semantic instance segmentation problem. The chapter starts with

analyzing the coherency between LS and RNNs and then we detail the proposed

Recurrent Level Set (RLS) which inherits the merits of both LS and RNNs. The

proposed RLS is designed under learnable framework to partition an image into

foreground and background segments.We then explain how to extend the proposed

11

RLS to CRLS to solve the semantic instance segmentation. The chapter ends with

CRLS inference and implementation details.

• Chapter 5: Deep Contextual Recurrent Residual Networks (CRRN) for

Scene Labeling: In this chapter, we detail the proposed deep framework CRRN to

solve the scene labeling problem. After we introduce the scene labeling problem and

motivations, the proposed CRRN is detailed with model learning and inference and

implement details.

• Chapter 6: Experimental Results. In this section, we describe the datasets,

metrics that are used to evaluate the performance of each proposed approach. The

comparison against the state-of-the-art on both semantic instance segmentation and

scene labeling are reported in this chapter.

• Chapter 7: Conclusions. This section summarizes methodologies, contributions,

and results and discusses for the future work.

12

Chapter 2

Background

This section starts with a basic description of the most common Artificial Neural Networks

(ANNs) model, the Multilayer Neural Networks. We then introduce the Convolutional

Neural Networks (CNNs) models, and Recurrent Neural Networks (RNNs), specialized

ANN architecture particularly useful for computer vision problems. Then, we introduce

Active Contour (AC) and a classic variational Level Set (LS) mechanism which have been

used in image segmentation.

2.1 Multi-Layer Neural Network

2.1.1 Neuron

Let us consider the simplest possible neural network which is called ”neuron” as illustrated

in Fig. 2.1. A computational model of a single neuron is called a perceptron which consists

of one or more inputs, a processor, and a single output.

In this example, the neuron is a computational unit that takes x = [x1, x2, x3] as input,

the intercept term +1 as bias b, and the output o. The gold of this simple network is to

learn a function f : RN → RM where N is the number of dimensions for input x and M is

13

o

x0

x1

x2

+1

Figure 2.1: An example of one neuron which takes input x = [x1, x2, x3], the intercept term +1
as bias, and the output o.

the number of dimensions for output which is computed as o = f(W,x). Mathematically,

the output o of a one output neuron is defined as:

o = f(x, θ) = σ

(
N∑

i=1

wixi + b

)
= σ(WTx + b) (2.1)

In this equation, σ is the point-wise non-linear activation function. The common non-

linear activation function for hidden units are chosen as a hyperbolic tangent (Tanh) or

logistic sigmoid as shown in Eq. 2.4. A different activation function, the rectified linear

(ReLU) function, has been proved to be better in practice for deep neural networks. This

activation function is different from Sigmoid and (Tanh) because it is not bounded or con-

tinuously differentiable. Furthermore, when the network goes very deep, ReLU activations

are popular as they reduce the likelihood of the gradient to vanish. The rectified linear

activation (ReLU) function is given by Eq. 2.4. These functions are used because they

are mathematically convenient and are close to linear near origin while saturating rather

quickly when getting away from the origin. This allows neural networks to model well

both strongly and mildly nonlinear mappings. Fig. 2.2 is the plot of Sigmoid, Tanh and

rectified linear (ReLU) functions.

14

Sigmoid(x) =
1

1 + exp−x
(2.2)

Tanh(x) =
exp2x−1

exp2x+1
(2.3)

ReLU(x) = max(0, x) (2.4)

Figure 2.2: Plot of different active functions, i.e. Sigmoid, Tanh and rectified linear (ReLU)
functions

Notably, the system becomes linear with matrix multiplications if removing the activa-

tion function. The Tanh activation function is actually a rescaled version of the sigmoid,

and its output range is [1,1] instead of [0,1]. The rectified linear function is piece-wise

linear and saturates at exactly 0 whenever the input is less than 0.

2.1.2 Neural Networks

A neural network is composed of many simple neurons, so that the output of a neuron can

be the input to another. An special case of a neural networks is also called multi-layer

perceptron network (MLP) and illustrated in Fig. 2.3.

15

o

x2

x1

+1

x0

+1

Layer l0 Layer l1 Layer l2

Figure 2.3: An example of multi-layer perceptron network (MLP)

A typical neural network is composed of one input layer, one output layer and many

hidden layers. Each layer may contains many units. In this network, x is the input layer,

o is the output layer. The middle layer is called hidden layer. In the Fig. 2.3, the neural

network contains 3 units of input layers, 3 units of hidden layer, and 1 unit of output layer.

In general, we consider a neural network with L hidden layers of units, one layer of

input units and one layer of output units. The number of input units is N , output units

M , and units in hidden layer l is N l. The weight of the jth unit in layer l and the ith

unit in layer l + 1 is denoted by wlij. The activation of the ith unit in layer l is hli. The

input and output of the network are denoted as x(n), o(n), respectively, where n denotes

training instance, not time. The forward propagation and backpropagation procedures are

given as follows:

2.1.3 Forward propagation

Let us consider a neural network with L+ 2 layers, where the first layer is the input layer,

the next 1, .., L layers are the corresponding hidden layers followed by the L + 1 layer as

the output layer.

The activation h is initialized by the input x. Generally, the forward propagation is

16

expressed in the following Eq. 2.6.

h0 = x (2.5)

hl+1 = σl(W
lhl + bl),∀l ∈ 0, 1, ...L− 1

o = hL+1

where Wl,bl are trainable parameters corresponding to weight parameters and bias

parameters for layer l, x is the input vector and corresponding to a vectorized image

whereas o is the output of the network and it can be interpreted in different ways depending

on the task.

In the example above in Fig. 2.3, we define W0 ∈ R3×3 and W1 ∈ R1×3. The input

vector is considered as the initial hidden layer, i.e. h0 = x.

h0
0 = x0

h0
1 = x1

h0
2 = x2

(2.6)

The activation hli of the unit i in layer l is computed as hl = f(Wl−1hl−1).

h1
0 = f(w0

00h
0
0 + w0

01h
0
1 + w0

02h
0
2)

h1
1 = f(w0

10h
0
0 + w0

11h
0
1 + w0

12h
0
2)

h1
2 = f(w0

20h
0
0 + w0

21h
0
1 + w0

22h
0
2)

(2.7)

The output layer is the last hidden layer and computed as:

17

o = h1 = f(w1
00h

1
0 + w1

01h
1
1 + w1

02h
1
2) (2.8)

Stochastic gradient descent (SGD) is a classical and one of the more popular optimiza-

tion methods for training neural networks. It differs from the vanilla gradient descent,

aka batch gradient descent, which computes the gradient of the cost function w.r.t. to the

parameters θ for the entire training dataset, SGD performs a parameter update for each

training example. Thus, SGD avoids redundant computations for large datasets and is

much faster compared to the vanilla algorithm. It therefore can also be used to perform

online learning. In SGD, the output of the network is compared to the expected output

and an error is calculated. This error is then propagated back through the network, one

layer at a time. The weights are updated according to the amount that they contributed

to the error. This process is called backpropagation. The errors can be saved up across all

of the training examples and the network can be updated at the end of this batch. This

is called batch learning. Updating the network for the entire training dataset is called an

epoch. A network may be trained for many epochs. When updating the network, some

additional parameters terms such as momentum and learning rate decay can be defined

and implemented that can improve weight updating to avoid getting stuck in local minima.

2.1.4 Backpropagation

Let consider a neural network with Nn training instances. The input and output of the

network for each training instance n are denoted as x(n), y(n), where x(n) ∈ RN , x(n) =

(x1(n), x2(n), ..., xN(n)) and y(n) ∈ RM is the ground truth of x(n).

At the initial layer (layer l = 0): x0(n) = (x0
1(n), x0

2(n), ..., x0
N(n)).

The activation units is computed (omitting the bias) hl+1
i (n) = σ

(∑
1≤j≤N l wlijxj(n)

)
.

In the output layer (layer l = L+ 1), we obtain o(n) = (xL+1
1 (n), xL+1

2 (n), ..., xL+1
M (n)).

The objective of training is to find a set of network weights such that the summed

18

squared output error ξ =
∑

1≤n≤Nn
||y(n)− o(n)||2 =

∑
1≤n≤Nn

ξ(n) is minimized. This is

done by incrementally changing the weights along the direction of the error gradient w.r.t.

weights:

∂ξ

∂wlij
=

∑

1≤n≤Nn

∂ξ(n)

∂wlij
(2.9)

The new weights are updated using a small learning rate γ:

wlij(new) = wlij − γ
∂ξ

∂wlij
(2.10)

This formula is used in batch learning mode, where new weights are computed after

presenting all training samples (epoch). In the beginning stage, the weights are initialized

with random numbers.

The pseudo code of backpropagation algorithm is given in Alg. 1.

Algorithm 1 Backpropagation Algorithm

Input: current weight wlij, training samples
Output: new weights
Computation steps:

Step 1 (forward): For each sample n, compute hl+1
i (n) = f

(∑
1≤j≤N l wlijxj(n)

)
.

Step 2 (backward): For each unit hli, where l = L + 1, L, ..., 1, the error propagation
term ξmi (n) is computed as:

• For the output layer: ξL+1
i (n) = (yi(n)− oi(n))∂f(u)

∂u
|u=zL+1

i

• for hidden layers: ξlj(n) =
∑

1≤i≤N l+1 ξ
l+1
i wlij

∂f(u)
∂u
|u=zlj

, where zli(n) =
∑

1≤j≤N l−1 hl−1
j (n)wl−1

ij

Step 3: Adjust the connection weights according to wlij(new) = wlij − γ ∂ξ
∂wl

ij

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [8, 9, 63, 64] are a special case of fully connected

multi-layer perceptrons that implement weight sharing for processing data that has a

19

Convolutional layer

Pooling layer

Person

Beach

Sand

Convolutional layer

Fully connected layer

Figure 2.4: Architecture of a typical convolutional network for image classification containing
three basic layers: convolution layer, pooling layer and fully connected layer

known, grid-like topology (e.g. images). CNNs use the spatial correlation of the signal to

constrain the architecture in a more sensible way. Their architecture, somewhat inspired

by the biological visual system, possesses two key properties that make them extremely

useful for image applications: spatially shared weights and spatial pooling. These kind

of networks learn features that are shift-invariant, i.e., filters that are useful across the

entire image (due to the fact that image statistics are stationary). The pooling layers are

responsible for reducing the sensitivity of the output to slight input shift and distortions.

Since 2012, one of the most notable results in Deep Learning is the use of convolutional

neural networks to obtain a remarkable improvement in object recognition for ImageNet

classification challenge.

A typical convolutional network is composed of multiple stages, as shown in Fig. 2.4.

The output of each stage is made of a set of 2D arrays called feature maps. Each feature

map is the outcome of one convolutional (and an optional pooling) filter applied over the

full image. A point-wise non-linear activation function is applied after each convolution.

In its more general form, a convolutional network can be written as:

h0 =x

hl =pooll(σl(w
lhl−1 + bl)),∀l ∈ 1, 2, ...L

o =hL = f(x, θ)

(2.11)

20

where wl,bl are trainable parameters as in MLPs at layer l. x ∈ Rc×h×w is vectorized

from an input image with c is color channels, h is the image height and w is the image

width. o ∈ Rn×h′×w′ is vectorized from an array of dimension h′ × w′ of output vector (of

dimension n). pooll is a (optional) pooling function at layer l.

The main difference between MLPs and CNNs lies in the parameter matrices wl. In

MLPs, the matrices can take any general form, while in CNNs these matrices are constraints

to be Toeplitz matrices. That is, the columns are circularly shifted versions of the signal

of various shifts for each columns in order to implement spatial correlation operation using

matrix algebra. Moreover, these matrices are very sparse since the kernel is usually much

smaller than the input image. Therefore, each hidden unit array hl can be expressed

as a discrete-time convolution between kernels from wl and the previous hidden unit hl−1

(transformed through a point-wise non-linearity and possibly pooled). There are numerous

variants of CNNs architectures in the literature. However, their basic components are

very similar which contains of convolutional layer, pooling layer, activation layer and fully

connected layer.

2.2.1 Convolutional Layer

The convolutional layer aims to learn feature representations of the inputs and it is com-

posed of several convolution kernels which are used to compute different feature maps. In a

convolutional layer, each neuron of a feature map is connected to a region of neighbouring

neurons in the previous layer. The new feature map can be obtained by first convolving

the input with a kernel and then applying an element-wise nonlinear activation function

on the convolved results. The feature maps are obtained by using a set of different kernels.

The feature value at location (i, j) of the lth layer in the kth feature map is computed as:

oli,j,k = wlkx
l
i,j + blk (2.12)

21

where xli,j is the input patch centered at location (i, j) of the lth layer. wlk and blk are

learned weight matrix and bias matrix at the lth layer in the kth.

Tiled convolution [65] is a variation of traditional convolution that tiles and multiples

feature maps to learn rotational and scale invariant features. Separate kernels are learned

within the same layer, and the complex invariances can be learned implicitly by square

root pooling over neighboring units. Recently dilated CNNs [40] have been introduced

with one more hyper-parameter to the convolutional layer. By inserting zeros between

filter elements, Dilated CNNs can increase the networks receptive field size and let the

network cover more relevant information. This is very important for tasks which need

a larger receptive field when making the prediction. Transposed convolution [66] can be

seen as the backward pass of a corresponding traditional convolution. It is also known as

deconvolution. A comparison between these different types of convolutions is given in Fig.

2.5.

Figure 2.5: Comparison between different convolutions (a) Convolution, (b) Tiled Convolution,
(c) Dilated Convolution, and (d) Transposed convolution.

2.2.2 Activation Layer

The activation function introduces nonlinearities to CNNs. This layer controls how the

signal flows from one layer to the next, emulating how neurons are fired in our brain. Let

σ(.) denote a nonlinear activation function. The activation value ali,j,k of convolutional

22

feature zli,j,k can be computed as:

ali,j,k = σ(oli,j,k) (2.13)

Clearly, a proper activation function significantly can improve the performance of a

CNN for a certain task. Going beyond the traditional ReLU, Sigmod, Tanh , there are

some recent developments on activation functions. A potential disadvantage of ReLU unit

is that it has zero gradient whenever the unit is not active. This may cause units that

do not active initially to never become active as the gradient-based optimization will not

adjust their weights. Also, it may slow down the training process due to the constant

zero gradients. To alleviate this problem, [67] introduces LReLU which has a non-zero

gradient over its entire domain, unlike the standard ReLU function. Rather than using a

predefined parameter in ReLU, LReLU, [68] proposes the Parametric Rectified Linear Unit

(PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with

nearly zero extra computational cost and little overfitting risk. Furthermore, PReLU gives

robust initialization which enables us to train extremely deep rectified models directly from

scratch and to investigate deeper or wider network architectures. Inspirited by LReLU, [69]

proposes Randomized Leaky Rectified Linear Unit (RReLU). In RReLU, the parameters of

negative parts are randomly sampled from a uniform distribution in training, and then fixed

in testing. To speed up learning of deep neural networks and achieve higher classification

accuracies, [70] proposes ELU. Like ReLU, and its variations, ELU avoids the vanishing

gradient problem by setting the positive part to identity. Different from ReLU, ELU has

a negative part which is beneficial for fast learning. A comparison between activation

functions are given in Fig. 2.6 whereas the mathematically equations are given in Table.

2.1.

23

Figure 2.6: Comparison between different activation functions (a) ReLU , (b) LReLU/PReLU,
(c)RReLU, (d)ELU

Table 2.1: Mathematically equations of different activation functions

Activation Equation Explanation

ReLU ai,j,k = max(hi,j,k, 0)
hi,j,k: input of the activation func
at (i, j) on the kthchannel

LReLU ai,j,k = max(hi,j,k, 0) + λmin(hi,j,k, 0) λ: predefined parameter in (0, 1)
PReLU ai,j,k = max(hi,j,k, 0) + λkmin(hi,j,k, 0) λk: learned parameter at kth channel.

RReLU ani,j,k = max(hni,j,k, 0) + λnkmin(hni,j,k, 0)
zni,j,k : input of activation func at
(i, j) on the kth channel of nth sample

ELU ai,j,k = max(hi,j,k, 0) +min(λ(ehi,j,k , 0)
λ: predefined parameter, it controls
the saturation for negative input

2.2.3 Pooling layer

Pooling layer is also called sampling layer to smooth the input from the convolutional layer.

The pooling layer helps to (1) reduce the sensitivity of the filters to noise and variations.

Pooling operation is usually placed between two convolutional layers. Each feature map of

a pooling layer is connected to its corresponding feature map of the preceding convolutional

layer. Let pool(.) denote the pooling function for the feature map al,,k at the lth layer, the

pooling layer can be expressed as follows:

hli,j,k = pool(ali′,j′,k)∀i′, j′ ∈ W (i, j) (2.14)

where W (i, j) denotes the neighborhood around location.

To give sufficient conditions for the design of invertible neural network layers, [71] pro-

24

poses Lppooling which is done via a summary statistic over the outputs of groups of nodes.

When p = 1, lp pooling corresponds to average pooling, and the case p = inf, it is max

pooling. To replace the deterministic pooling operations with a stochastic procedure by

randomly using the conventional max pooling and average pooling methods, [72] proposes

mixed pooling. Mixed pooling has ability to address the over-fitting problem encountered

in CNNs generation. Stochastic pooling [73] is a dropout-inspired pooling method for regu-

larizing large convolutional neural networks. Instead of picking the maximum value within

each pooling region as max pooling does, stochastic pooling randomly picks the activations

according to a multinomial distribution, which ensures that the non-maximal activations

of feature maps are also possible to be utilized. This stochastic pooling is hyper-parameter

free and can be combined with other regularization approaches, such as dropout and data

augmentation. Spectral pooling [74] performs dimensionality reduction by cropping the

representation of input in frequency domain. As it is proven, Spectral pooling preserves

considerably more information per parameter than other pooling strategies and enables

flexibility in the choice of pooling output dimensionality. Spatial pyramid pooling (SPP)

[75] is another pooling strategy to generate a fixed-length representation regardless of image

size/scale. This type of pooling is robust to object deformations.

2.2.4 Loss function

It is important to choose an appropriate loss function for a specific task. Softmax loss is

a commonly used loss function which is essentially a combination of multinomial logistic

loss and softmax. Softmax turns the predictions into non-negative values and normalizes

them to get a probability distribution over classes. Such probabilistic predictions are used

to compute the multinomial logistic loss. Recently, work to improve Softmax is proposed

by [76], called Large-Margin Softmax (L-Softmax). L-Softmax introduces an angular

margin to the angle θij between input feature vector xi and the jth column wj of weight

25

Table 2.2: Mathematically equations of different loss functions

Loss Equation Explanation

Softmax
pij = e

zij∑K
k=1 e

zi
k

L = − 1
N

[∑N
i=1

∑K
j=1 logp

i
j

]
yi=j

N: number of training samples
K: number os classes

L-Softmax

φ(θj)− (−1)kcos(mθj)− 2k
tj = |wj||ai|φ(θj)

L =
tj

tj+
∑

k 6=j tk

k ∈ [0,m− 1] is an integer,
m controls the margin among classes.
m = 1: L-Softmax reduces to softmax

Contrastive
di,l = ||h(i,l)

p − h(i,l)
q ||22

L = 1
2N

[z(d(i,L))
+(1− z)max((m− d(i,L)), 0)]

h
(i,l)
p , h

(i,l)
q are 2 output of a pair

of input x
(i)
p , x

(i)
q at layer lth

m is a margin parameter

z = 1 if x
(i)
p , x

(i)
q are matching.

Otherwise, z = 0

Triplet

dia,p = ||hia − hip||22
dia,q = ||hia − hiq||22
L = 1

N

∑N
i=1max(dia,p − dia,q +m, 0)

xia is an anchor instance of class i
xip is a positive instance
xiq is a negative instance

Coupled
Clusters

dpp = ||hip − cp||22
dqp = ||h∗q − cp||22
cp = 1

Np

∑Np

i=1 h
i
p

L = 1
2Np

∑Np

i=1max(dpp − dqp +m, 0)

Np: number of samples per set
h∗q: the feature representation of x∗q
x∗q: the nearest negative sample to cp
cp: estimated center point

matrix. Contrastive loss [77] is commonly used to train Siamese network[78], which is a

weakly-supervised scheme for learning a similarity measure from pairs of data instances

labelled as matching or non-matching. Unlike Softmax, L-Softmax and Contrastive losses,

Triplet loss [79] considers three samples per loss. Triplet loss and its variants have been

widely used in various tasks, including re-identification, verification, and image retrieval.

However, randomly selected anchor samples may judge falsely in some special cases which

is then solved by [80] Coupled Clusters (CC) loss. In the coupled clusters loss function

is defined over the positive set and the negative set instead of using the triplet units like

Triplet loss.

26

Table 2.3: summary on regularization

Loss Equation Explanation

lp-norm E = L+ λR
R : regularization term
λ: regularization strength

DropOut y = r ∗ f(Wx)

x: input to fully-connected layers
W : weight matrix
r: binary vector , drawn from a Bernoulli
ri = Bernoulli(p)
f(.): nonlinear activation function

DropConnect y = f(R ∗Wx) Rij = Bernoulli(p)

2.2.5 Regularization

Regularization aims to reduce the overfitting problem during training. lp-norm, Dropout,

and DropConnect are some common regularization techniques have been developed to

solve this. lp-norm is applied to modify the objective function by adding additional terms

that penalize the model complexity. When p = 2, the l2-norm regularization is referred

to as weight decay. When l < 1, lp regularization focuses more on sparsity effect of the

weight but conducts to non-convex function. When l >= 1, lp regularization is convex

and it makes the optimization easier. Dropout regularization[81] has been proven to be

very effective in reducing overfitting. Several methods [82, 83, 84, 85] have been proposed

to improve Dropout. [82] proposes a fast Dropout method by sampling from a Gaussian

approximation. [83] proposes an adaptive Dropout method, where the Dropout probability

for each hidden variable is computed using a binary belief network that shares parameters

with the deep network. [84] figures out that applying standard Dropout before 1×1 convo-

lutional layer generally increases training time but does not prevent overfitting. Therefore,

they propose SpatialDropout to across the entire feature map. DropConnect [85] a gener-

alization of DropOut. Instead of setting a randomly selected subset of activations to zero.

DropConnect sets a randomly selected subset of weights within the network to zero. Table

2.3 gives a summary on regularization whereas Fig. 2.7 illustrate the comparison between

different regularization techniques.

27

Figure 2.7: Comparison between different techniques (a) lp-norm, (b) DropOut, (c)DropConnect

2.2.6 Optimization

Data augmentation, weight initialization, stochastic gradient descent, batch normalization,

shortcut connections are some common optimization techniques that will be discussed.

Popular data augmentation methods are sampling [86], various photometric transforma-

tions [87], shiftting [88] and greedy strategy [89]. Crawling web to obtain more data in

fine-grained recognition tasks is suggested by [90]. Since deep networks contains a large

number of parameters and loss functions are non-convex, a proper weight initialization is

one of the most important prerequisites. [86] suggests to use zero-mean Gaussian distribu-

tion with standard deviation 0.01 and the bias (2nd, 4th, 5th, fully connected) to constant.

[91] chooses a Gaussian distribution with zero mean and a variance of 0.5(Nin + Nout),

where Nin and Nout are the number of input and output neurons. Later, [92] shows that

orthonormal matrix initialization works much better for linear networks than Gaussian

initialization. Stochastic gradient descent [93](SGD) is the most popular technique used to

update the parameter during backpropagation. In practice, SGD is updated using mini-

batch as opposed to a single example. However, mini-batch SGD methods may not result

in convergence. To solve the problem, momentum [93] is proposed to accumulate a velocity

28

vector in the relevant direction. Parallelized SGD methods [94] are proposed to improve

SGD to make it more suitable for parallel, large-scale machine learning. Batch Normal-

ization [95] is one of the most common data normalization and has many advantages such

as faster learning and higher overall accuracy compared with global data normalization.

Even it able to solve the problems of vanishing gradient and prevent deep neural networks

from overfitting, it still have difficulties in optimizing the networks, worse generalization

performance. Shortcut connections is then proposed in [96] to help gradients can be di-

rectly propagated to shallower units which help the networks (ResNet) much easier to

be optimized than the original mapping function and more efficient to train very deep

networks.

2.2.7 Fully connected layer

After several convolutional and pooling layers, there may be one or more fully connected

layers which aim to perform high-level reasoning. This is the last layer in the neural

network. The term fully connected implies that every neuron in the previous layer is

connected to every neuron on the next layer. This mimics high level reasoning where

all possible pathways from the input to output are considered (e.g. classifying the input

image into various classes based on the training dataset). The fully connected layer uses

Softmax as the activation function to ensure the sum of output probabilities from the fully

connected layer is 1. Note that fully connected layer not always necessary as it can be

replaced by a 1× 1 convolution layer.

2.2.8 Applications

Herein, we introduce some recent works that apply CNNs to achieve state-of-the-art per-

formance. Object detection has been a long-standing and important problem in computer

vision [97]. Object proposal based methods attract a lot of interests and are widely studied

29

in the literature [98, 99]. The methods are to test whether a sampled window is a potential

object or not, and further pass the output object proposals to more sophisticated detectors

to determine whether they are background or foreground. R-CNN [99]uses Selective Search

(SS) to extract around 2000 bottom-up region proposals that are likely to contain objects.

Spatial pyramid pooling network (SPP net) [75], Fast-RCNN, Faster R-CNN [100] are im-

provements of R-CNNs. CNNs have been applied in image classification for a long time

[101]. Compared to traditional methods, CNNs achieve better classification accuracy on

large scale datasets [86]. With large number of classes, proposing a hierarchy of classifiers

is a common strategy for image classification [102]. Fine-grained using object part infor-

mation is another strategy for image classification [103]. Visual tracking is an another

application that turns the CNNs model from a detector into a tracker [104]. [105] uses

pre-trained CNNs to transfer the learned representation to target object. In this work,

they use an online SVM to learn a target appearance discriminatively against background.

Instead of learning one complicated and powerful CNN model, [106] use a relatively small

number of filters in the CNNs within a framework equipped with a temporal adaptation

mechanism. As an special case of image segmentation, saliency detection is another com-

puter vision application that uses CNNs. [107] introduce a CNN-based algorithm which

sequentially exploits local context and global context. In [108], the model is pre-trained on

large-scale image classification dataset and then shared among different contextual levels

for feature extraction. In additional to the previous applications, pose estimation [109, 110]

is another interesting research that uses CNNs to estimate human-body pose. Instead of

learning local body parts, [111, 112] learn full-body human pose estimation. In addition to

still image pose estimation with CNNs, human pose estimation in videos have been studied

[113]. Action recognition in both still images and in videos are special case of recognition

and are challenging problems. [114] utilizes CNN-based representation of contextual infor-

mation in which the most representative secondary region within a large number of object

proposal regions together the contextual features are used to describe the primary region.

30

Action recognition in video sequences are reviewed in [115]. Text detection and recognition

using CNNs is the next step of optical character recognition (OCR). [116, 117] focus on

text detection which is the successor step of text recognition which is taken care by both

CNNs and RNNs [118]. For word spotting, [119, 120] apply CNNs model to perform text

detection. One of the main computer vision applications that inherit big benefit of CNNs

is semantic image parsing which is then detailed in te next chapter. Going beyond still

images and videos, speech recognition is also an important research field that have been

improved by applying CNNs. An attention model with layer-wise context expansion in

[121] archives good performance for speech recognition task. Speech synthesis [122] is an

another task that effected by the growth of CNNs. In short, CNNs have made break-

throughs in many computer vision areas i.e image, video, speech and text. The summary

on the works related to CNNs is given in Fig. 2.8.

Convolutional Neural Networks

Loss function Regularization Optimization ApplicationsConvolutional
Layer Pooling Activation

Convolution
Titled

Transposed
Dilated

Lp
Mixed

Stochastic
Spectral

Spatial Pyramid

ReLU
Sigmod
Tanh
LReLU
PReLU
RReLU
ELU

Lp norm
DropOut

DropConnect

Data Augmentation
Weight Initialization

SGD
Batch normalization
ShortcutConnection

Softmax
L‐Softmax
Contrastive
Triplet
Coupled

Object detection
Image classification
Semantic labeling
Saliency detection
Pose estimation
Action recognition
Object tracking
Text detection
Text recognition

Speech recognition

Figure 2.8: Summary on the works related to CNNs

To train a network we consider two main procedures, namely, forward propagation and

backward propagation. For each procedure, two important layers are taking into account

i.e. convolutional layer and pooling layer.

31

2.2.9 Forward Propagation

Convolutional layer

Suppose we have a image sized N ×N which is followed by a convolutional layer with

a filer w of size n × n. The neural network learns by adjusting a set of weights wlij. The

convolution can be expressed as:

olij =
n−1∑

a=0

n−1∑

b=0

wabh
l−1
i+a,j+b + bl (2.15)

where hl−1
i+a,j+b is the output of the previous (l−1)th layer and the input of the lth layer.

Activation layer

Let σ(.) denote the activation function. The activation at layer lth is computed as:

alij = σ(olij) (2.16)

Pooling layer Let us assume max pooling as the pooling approach implemented in the

pooling layer. The max-pooling layers are quite simple. For this layers, they simply take

take a k × k region as an input and output is a single value, which is the maximum value

in that region. The input layer is N ×N is divided into N
k
× N

k
blocks of size k × k, each

block is reduced to a single value via the max function.

hlij = pooll(alij) (2.17)

In order to tell how well the neural network is doing, we compute the error ξ(yL).

2.2.10 Backward Propagation

Convolutional Layer: Let assume we have some error E at the convolutional layer. By

applying the chain rule, sum the contributions of all expressions in which the variable

32

occurs.

∂E

∂wab
=

N−n∑

i=0

N−n∑

j=0

∂E

∂olij

∂olij
∂wab

=
N−n∑

i=0

N−n∑

j=0

∂E

∂olij
hl−1

(i+a)(j+b) (2.18)

In order to compute the gradient, we need to know the values ∂E
∂olij

.

∂E

∂olij
=

∂E

∂hlij

∂hlij
∂olij

=
∂E

∂hlij

∂σ(olij)

∂olij
=

∂E

∂hlij
σ′(olij) (2.19)

Since we already know the error at the current layer ∂E
∂hlij

, we can very easily compute

∂E
∂olij

at the current layer by just using the derivative of the activation function σ′(olij).

Therefore, the gradient component for each weight by applying the chain rule is.

∂E

∂wab
=

N−n∑

i=0

N−n∑

j=0

∂E

∂hlij
σ′(olij)h

l−1
(i+a)(j+b) (2.20)

After computing the weights for this convolutional layer, we need to propagate errors

back to the previous layer.

∂E

∂hl−1
ij

=
n−1∑

a=0

n−1∑

b=0

∂E

∂ol(i−a)(j−b)

∂ol(i−a)(j−b)

∂hlij
=

n−1∑

a=0

n−1∑

b=0

∂E

∂ol(i−a)(j−b)
wab (2.21)

This is similar convolution in the forward propagation. But the filter w is applied to

ol(i−a)(j−b) instead of ol(i+a)(j+b).

Pooling Layer: In forward propagation, k×k (k=2) blocks can be reduced to a single

value. Then, at the backwards propagation this single value acquires an error computed

from the previous layer. This error is then just forwarded to the neuron where it came from.

Since it only came from one neuron in the k × k block, the back-propagated errors from

max-pooling layers are rather sparse. Therefore, the max-pooling layers do not actually

do any learning themselves, they actually reduce the size.

33

2.3 Recurrent Neural Networks

2.3.1 Vanilla Recurrent Neural Networks:

The Recurrent Neural Networks (RNNs) is an extremely powerful sequence model and

was introduced in the early 1990s [123]. A typical RNNs contains three parts, namely,

sequential input data (xt), hidden state (ht) and sequential output data (ot) as shown in

Fig. 2.9.

…

Input

Hidden

Output

(a)

Update

(b)

Figure 2.9: An RNNs and the unfolding in time of the computation involved in its forward
computation.

RNNs make use of sequential information and perform the same task for every element

of a sequence where the output is dependent on the previous computations. The activation

of the hidden states at timestep t is computed as a function f of the current input symbol

xt and the previous hidden states ht−1. The output at time t is calculated as a function g

of the current hidden state ht as follows:

ht = f(Uxt + Wht−1)

ot = g(Vht)

(2.22)

where U is the input-to-hidden weight matrix, W is the state-to-state recurrent weight

matrix, V is the hidden-to-output weight matrix. f is usually a logistic sigmoid function

or a hyperbolic tangent function and g is defined as a softmax function.

34

Most work on RNNs has made use of the method of backpropagation through time

(BPTT) [124] to train the parameter set (U,V,W) and propagate error backward through

time. In classic backpropagation, the error or loss function is defined as:

E(o,y) =
∑

t

||ot − yt||2 (2.23)

where ot is prediction and yt is labeled groundtruth.

For a specific weight W, the update rule for gradient descent is defined as Wnew =

W − γ ∂E
∂W

, where γ is the learning rate. In RNNs model, the gradients of the error with

respect to our parameters U, V and W are learned using Stochastic Gradient Descent

(SGD) and chain rule of differentiation.

In practice, there are different ways to desgin a RNNs architecture. In a simple case,

RNNs accepts a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector

as output (e.g. probabilities of different classes) as given in the first model in Fig. 2.10.

More flexible, RNNs can have various architecture as shown in Fig. 2.10. An example of

RNNs architecture for sentiment analysis with an sentence as sequence input and score

as fixed-sized output is illustrated in Fig. 2.11 whereas Fig. 2.12 shows an example of

machine translation (English to slang English) using RNNs.

22Motivation Level Set DNNs RLS CRLS

Figure 2.10: From left to right: fixed-sized input to fixed-sized output (e.g. image classification);
fixed-sized input (e.g. image) and sequence output (e.g. a set of words in image captioning);
sequence input (set of words in a sentence) and sequence output (e.g machine translation); Synced
sequence input and sequence output (e.g label every frame in a video)

35

Figure 2.11: An example of RNNs architecture for sentiment analysis with an sentence as
sequence input and score as fixed-sized output

26Motivation Level Set DNNs RLS CRLS

How Are You ?
x0 x1 x2 x3

Machine Translation

h0

RNN
cell

RNN
cell

RNN
cell

RNN
cell

h1 h2 h3

Encoder

whts

whts

Up

Up Bro

h4

RNN
cell

RNN
cell

RNN
cell

Empty

Decoder

Figure 2.12: An example of RNNs architecture for machine translation with an sentence as
sequence input and sentence as sequence output

2.3.2 Long Short Time Memory

The difficulty of training an RNNs to capture long-term dependencies has been studied in

[125] and later in [126]. To address the issue of learning long-term dependencies, Hochreiter

and Schmidhuber [127] proposed Long Short-Term Memory (LSTM), which is able to

maintain a separate memory cell inside it that updates and exposes its content only when

deemed necessary. Similar to RNNs, LSTMs are defined under a chain like structure, but

36

the repeating module has a different structure. Instead of having a single neural network

layer (single tanh layer), LSTMS have four neural networks in each layer and they are

interacting in a very special way.

Element-wise product

Weighted connection/input

Forward flow

ℎ𝑡

𝐶𝑡

ℎ0

Input − x1, …, xN

Output − 𝐎

𝑥𝑡𝑥𝑡

𝑓𝑡 𝑖𝑡

𝐶𝑡−1

ℎ𝑡−1

 𝐶𝑡 𝐶𝑡

ℎ𝑡−1
𝑖𝑡

Figure 2.13: The unfolding LSTM in time of the computation involved in its forward compu-
tation

The key to LSTMs is the cell state (Ct) which has the ability to remove or add informa-

tion by optionally letting information through. Gates are composed out of a sigmoid layer

and a pointwise multiplication operation. The unfolding LSTM in time of the computation

involved in its forward computation is given in Fig. 2.13. This decision what information

is thrown away from the cell state is made by a sigmoid layer called the forget gate layer.

(ft).

ft = σ(Wf · [ht−1,xt] + bf) (2.24)

Two gates: input gate layer(it) and candidate state (C̃t) are used to decide what

information is kept in the cell state.

ft = σ(Wi · [ht−1,xt] + bi)

C̃t = tanh(WC · [ht−1,xt] + bC)

(2.25)

37

The old state cell at time t−1 (Ct−1) is update to the new state cell (Ct) by two terms:

forgetting the things we decided to forget earlier (ft ∗Ct−1) and how much we decided to

update each state value (it ∗ C̃t).

Ct = ft ∗Ct−1 + it ∗ C̃t (2.26)

Finally, a sigmoid gate is applied to decides what parts of the cell state (Ct) is used as

output.

ot = σ(Wo · [ht−1,xt] + bo) (2.27)

The output of the sigmoid gate is then multiplied by a tanh to push the values to be

between −1 and 1.

ht = ot ∗ tanh(Ct) (2.28)

2.3.3 Gated Recurrent Unit

Recently, a Gated Recurrent Unit (GRU) was proposed by [128] to make each recurrent

unit adaptively capture dependencies of different time scales. Like the LSTM unit, the

GRU has gating units that modulate the flow of information inside the unit, but without

having separate memory cells. That means the GRU fully exposes its memory content each

timestep and balances between the previous memory content and the new memory content

strictly using leaky integration, even though its adaptive time constant is controlled by the

update gate. The state updating process is illustrated as in Fig. 2.14 (right).

Each GRU thus has a reset gate rt and an update gate zt. At time timestep t, the

activation state ht of a GRU unit is a linear interpolation between the previous memory

38

Element-wise product

Weighted connection/input

Forward flow

ℎ𝑡
ℎ0

Input − x1, …, xN

Output − 𝐎 ℎ𝑡−1

𝑟𝑡

 ℎ𝑡

𝑥𝑡

𝑧𝑡

ℎ𝑡1 − 𝑧𝑡 𝑧𝑡

𝑜𝑡

Figure 2.14: The unfolding GRU in time of the computation involved in its forward computation

content ht−1 and the new candidate memory content h̃t as shown in Eq. 2.29.

ht = (1− zt)ht−1 + zth̃t (2.29)

In the above equation, the update gate zt controls how much of the previous memory

content is to be forgotten and how much of the new memory content is to be added. The

update gate zt is a linear sum between the previous hidden states ht−1 and the current

input xt as shown in Eq. 2.30.

zt = f(Uzxt + Wzht−1) (2.30)

where f is usually a logistic sigmoid function or a hyperbolic tangent function. The GRU,

however, does not have any mechanism to control the degree to which its state is exposed,

but exposes the whole state each time. The new candidate memory content h̃t is computed

similarly to that of the traditional recurrent unit as given in Eq. 2.31.

h̃t = tanh(Uhxt + Wh(ht−1 ◦ rt)) (2.31)

39

where ◦ signifies an element-wise multiplication between previous state ht−1 and the reset

gate, which is computed similarly to the update gate as in Eq. 2.32.

rt = f(Urxt + Wrht−1) (2.32)

When rt is close to 0 (off), the reset gate effectively makes the unit act as if it is reading

the first symbol of an input sequence, allowing it to forget the previously computed state.

The most notable feature shared between these units is the additive component of their

update from step (t − 1)th to step tth, which RNNs lacks. In RNNs, the activation or

content of a unit is always replaced by a new value computed from the current input and

the previous hidden state. On the other hand, GRU keeps the existing content and adds

the new content on top of it. This addition creates shortcut paths that bypass multiple

temporal steps. These shortcuts allow the error to be back-propagated easily without too

quickly vanishing as a result of passing through multiple, bounded nonlinearities, thus

reducing the difficulty due to vanishing gradients. Furthermore, the addition allows each

unit to remember the existence of a specific feature in the input stream for a long series of

steps. Any important feature, decided by GRU will not be overwritten but be maintained

as it is.

Several variants of RNNs have been later introduced and successfully applied to wide

variety of tasks, such as natural language processing [129], [130], [20], [131], speech recogni-

tion [132], [133], machine Translation [134], [128], [135], conversation modeling [136], [137],

question answering [138], object recognition: [139], [140], [141], image captioning: [142],

[143], [144].

2.3.4 Backpropagation Through Time (BPTT)

The feedforward backpropagation algorithm cannot be directly transferred to RNNs be-

cause the error backpropagation pass presupposes that the connections between units in-

40

duce a cycle-free ordering. The solution of the BPTT approach is to ”unfold” the RNNs

in time, by stacking identical copies of the RNNs, and redirecting connections within the

network to obtain connections between subsequent copies. This unrolls to a feedforward

network, which can be trained with the backpropagation algorithm.

The pseudo code of BPTT algorithm is given as in Alg.2.

Algorithm 2 BPTT Algorithm

Input: current weight wmij , training time series
Output: new weights
Computation steps:

Step 1 (forward): For each sample n, compute hm+1
i (n) = f

(∑
1≤j≤Nm wmijxj(n)

)
.

Step 2 (backward): For each time n (1 ≤ n ≤ T), unit activation hi(n) and output
oi(n), compute the error propagation ξi(n)

• For the output layer: ξj(T) = (yj(T)− oj(T))∂f(u)
∂u
|u=zTj

• For hidden layers hj(T) at time T : ξj(T) =
∑

1≤i≤L ξi(T)woutij
∂f(u)
∂u
|u=zj(n)

• For the output of earlier layers: ξj(n) =[
(yj(n)− oj(n)) +

∑
1≤i≤N ξi(n+ 1)wbackij

] ∂f(u)
∂u
|u = zj(n)

• For hidden unit hj(n) of earlier layers: ξi(n) =[∑
1≤j≤N ξj(n+ 1)wji +

∑
1≤j≤L ξj(n)woutji

]
∂f(u)
∂u
|u=zj(n) where zi(n) is the

potential of the corresponding unit.
Step 2 (update): The weight are updated as follows:

wij(new) = wij + γ
∑

1≤n≤T ξi(n)hj(n− 1)
winij (new) = winij + γ

∑
1≤n≤T ξi(n)xj(n)

For input unit: woutij (new) = woutij (new) + γ
∑

1≤n≤T ξi(n)xj(n)
For hidden unit: woutij (new) = woutij (new) + γ

∑
1≤n≤T ξi(n)hj(n)

wbackij (new) = wbackij + γ
∑

1≤n≤T ξi(n)yj(n− 1)

2.3.5 Training Recurrent Neural Networks(RNNs)

A generic RNNs, with input xt and hidden state ht for time step t, is given by:

ht = (Uxt + Wσ(ht−1)) + b (2.33)

41

where U, W are the input weight and recurrent weight matrices, respectively and b is

the bias term. h0 is provided by the user, set to zero or learned, and σ is the activation

function. A cost ξ =
∑

1≤t≤T ξt, where ξt measures the performance of the network on

some given task, where ξt = L(ht). The parameters of the model are collected in θ for the

general case.

One of the common approaches for computing the necessary gradients is backpropaga-

tion through time (BPTT), where the recurrent model is represented as a multi-layer and

backpropagation is applied on the unrolled model as shown in Fig. 2.15.

Figure 2.15: Unrolling RNNs in time. ht is the hidden state of the network at time t, xt is the
input of the network at time t and by ξt is the error obtained from the output at time t

In this section, we diverge from the classical BPTT equations and rewrite the gradients

in order to better highlight the exploding gradients problem.

∂ξ

∂θ
=
∑

1≤t≤T

∂ξt
∂θ

(2.34)

∂ξt
∂θ

=
∑

1≤k≤t

∂ξt
∂ht

∂ht
∂hk

∂hk
∂θ

(2.35)

Any gradient component ∂ξt
∂θ

is a sum, whose terms refer to temporal components. Each

component measures how θ at step k affects the cost at step t > k. ∂hk

∂θ
is immediate partial

derivative of the state hk with respect to θ.

42

∂ht
∂hk

=
∏

k<i≤t

∂hi
∂hi−1

=
∏

k<i≤t

WTdiag(σ′(ht−1)) (2.36)

∂ht

∂hk
transport the error ”in time” from step t back to step k. The Eq. 2.36 provides the

form of Jacobian matrix ∂hi

∂hi−1
for the specific parametrization given in Eq. 2.33. In Eq.

2.36, diag converts a vector into a diagonal matrix and and σ′ computes the derivative of

σ in an element-wise fashion. ∂ht

∂hk
takes the form of a product of t− k Jacobian matrices.

Clearly, the product of t− k real numbers (bases) can shrink to zero or explode to infinity.

That causes the exploding gradients problem which refers to the large increase in the norm

of the gradient during training or vanishing gradients problem which refers to the opposite

behavior.

2.3.6 Exploding and Vanishing Gradients in Training RNN

As defined by Bengio, et al.[125], exploding gradients problem refers to the large increase

in the norm of the gradient during training whereas vanishing gradients problem refers

to the opposite behaviour, when long term components go exponentially fast to norm 0,

making it impossible for the model to learn correlation between temporally distant events.

Set σ in Eq. 2.36 to the identity function and assume that t goes to infinity and let

l = t− k. We have:

∂ht
∂hk

= (WT)l (2.37)

Let WT have n eigenvalues with order |λ1| > |λ2| > ... > |λn| and the corresponding

eigenvectors q1, q2, .., qn which form a vector basic. We can now write the row vector ξt
ht

into this basis.

ξt
ht

=
n∑

i=1

ciq
T
i (2.38)

Furthermore, we have:

qTi (WT)l = λliq
T
i (2.39)

43

Thus,

ξt
ht

ht
hk

= cjλ
l
jq

T
j + λli

n∑

i=j+1

ci

(
λi
λj

)l
= cjλ

l
jq

T
j (2.40)

j is the index such that cj 6= 0 and c′j = 0 for any j′ ≤ j.

Due to |λi|
|λj | < 1 if(i > j), liml→∞

(
|λi|
|λj |

)l
= 0. If |λj| > 1 then ht

hk
grows exponentially

fast with l along the direction qj which cause the exploding gradient problem. In the other

hand, when |λj| < 1, the problem of vanishing gradient is leaded.

It is sufficient for the largest eigenvalue λ1 of the recurrent weight matrix to be smaller

than 1 for long term components to vanish (as t → ∞) and necessary for it to be larger

than 1 for gradients to explode.

The problem can be generalized for nonlinear function σ where the absolute values of

σ′ is bounded by a value γh and the abbsolute values of W is bounded by γW therefore,

||diag(σ′(hk))|| < γh and ||W || < γW . As given in Eq. 2.36, the Jacobian matrix ∂hk+1

∂hk
is

given by WTdiag(σ′(hk)). Thus,

||∂hk+1

∂hk
|| ≤ ||WT || ||diag(σ′(hk))|| < γWγh (2.41)

Therefore,

ht
hk

=
t∏

i=k+1

hi
hi−1

< (γWγh)
(t−k) (2.42)

The exponential term (γWγh)
t−k can easily become a very small or large number when

γWγh is much smaller or larger than 1 and t− k is sufficiently large. During the training,

once the gradient value grows extremely large, it causes an overflow (i.e. NaN) which is

easily detectable at runtime; this issue is called the exploding gradient problem. When

the gradient value goes to zero, however, it can go undetected while drastically reducing

the learning quality of the model for far-away words in the corpus; this issue is called the

vanishing gradient problem.

44

2.4 Active Contour

The key ideas behind the Active Contour (AC) for image segmentation is to start with

an initial guess boundary represented in a form of closed curves i.e. contours C. The

curve is then iteratively modified by applying shrink or expansion operations and moved

by image-driven forces to the boundaries of the desired objects. The entire process is called

contour evolution, denoted as ∂C
∂t

where C is the object boundary (contour).

There are two main approaches in active contours: snakes and level sets. Snakes

explicitly move predefined snake points based on an energy minimization scheme, while

level set approaches move contours implicitly as a particular level of a function.

2.4.1 Classic Snakes

The first model of active contour, named classic snakes or explicit active contour, was

proposed by Kass et al.[145]. In this approach, a contour parameterized by arc length s as

C(s)(x(s), y(s)) : 0 ≤ s ≤ 1. An energy function E(C) can be defined on the contour such

as:

E(C) =

∫ 1

0

Eint + Eext (2.43)

where Eint and Eext are the internal energy and external energy functions, respectively.

The internal energy function determines the regularity, i.e. smooth shape, of the contour.

Eint(C(s)) = α|C ′(s)|2 + β|C ′′(s)|2 (2.44)

Here α controls the tension of the contour, and β controls the rigidity of the contour while

C
′
s) makes the spline act like a membrane (like elasticity) and C

′′
(s) makes it act like

a thin-plate (like rigidity). The external energy term determines the criteria of contour

45

evolution depending on the image I(x, y), and can be defined as in Eq. 2.45.

Eimage = wlineEline + wedgeEedge + wtermEterm (2.45)

Eline = I(x, y) (2.46)

Eedge = −| 5 I(x, y)|2 (2.47)

Eterm =

(
φ2
xφyy − 2φxφyφxy + φ2

yφxx
)

| 5 φ|3 (2.48)

The first term is given in Eq. 2.46 and it depends on the sign of wline which guides

the snake towards the lightest or darkest nearby contour. The second term defined in Eq.

2.47 attracts the snake to large intensity gradients. The third term Eterm attracts the

snake toward termination of line segments and corners. Eterm is defined in Eq. 2.48 using

curvature of level lines. Fig. 2.16 shows an example of snake with 70 snakes points forming

a contour around the moth. Each point moves towards the optimum coordinates, where

the energy function converges to the minimum.

Figure 2.16: An example of classic snakes

46

The snake provide an accurate location of the edges only if the initial contour is given

sufficiently near the desired edges. Moreover, snake cannot detect more than one boundary

simultaneously because the snakes maintain the same topology during the evolution stage.

2.4.2 Level Set Method

Level set (LS) based or implicit active contour models have provided more flexibility and

convenience for the implementation of active contours, thus, they have been used in a

variety of image processing and computer vision tasks. The basic idea of the implicit

active contour is to represent the initial curve C implicitly within a higher dimensional

function, called the level set function φ(x, y) : Ω→ R, such as:

C = (x, y) : φ(x, y) = 0,∀(x, y) ∈ Ω (2.49)

where Ω denotes the entire image plane. Fig. 2.17 (left) shows the evolution of level set

function φ(x, y), and Fig. 2.17 (right) shows the propagation of the corresponding contours

C.

Φt=2(x, y)

Φt=12(x, y)

Φt=0(x, y)

Φ=0

Φ=0, t = 2

Φ=0, t =1

Φ=0, t = 0

Figure 2.17: Level set evolution and the corresponding contour propagation: (a) topological
view of level set φ(x, y) evolution, (b) the changes on the zero level set C = (x, y) : φ(x, y) = 0

The evolution of the contour is equivalent to the evolution of the level set function, i.e.

∂C
∂t

= ∂φ(x,y)
∂t

. One of the advantages of using the zero level set is that a contour can be

47

defined as the border between a positive area and a negative area, so the contours can be

identified by signed distance function as follows:

φ(x) =

d(x,C)) if x is inside C

0 if x is on C

−d(x,C)) if x is outside C

(2.50)

where d(x,C) denotes the distance from an arbitrary position to the curve.

The level set evolution can be written in the form as follows:

∂φ

∂t
+ F |Oφ| = 0 (2.51)

where F is a speed function. In some particular cases, F is defined as mean curvature,

F = div
(

Oφ
||Oφ||

)
.

An outstanding characteristic of level set methods is that contours can split or merge

as the topology of the level set function changes. Therefore, level set methods can detect

more than one boundary simultaneously, and multiple initial contours can be placed as

shown in Fig. 2.18.

(a) (b)

Φ=0, t = 2

Φ=0, t =1

Φ=0, t = 0

Figure 2.18: Topology of level set function changes in the evolution and the propagation of
corresponding contours: (a) the topological view of level set φ(x, y) evolution, (b) the changes on
the zero level set C : φ(x, y) = 0

The computation is performed on the same dimension as the image plane Ω, therefore,

48

the computational cost of level set methods is high and the the convergence speed is quite

slow.

The process of evolving of the curve C (contour evolution), denoted as ∂C
∂t

and illustrate

in Fig. 2.19. In this example, iterative stages of active contour evolution for the segmen-

tation of objects (cells in this case) in images is shown in red. The underlying image are

the level-set function is typically defined over the entire 2D image domain.

Figure 2.19: Example of active contour evolution for image segmentation

2.4.3 Edge-based Active Contours

Edge-based active contours are closely related to the edge-based segmentation. Most edge-

based AC models consist of two components: regularity and edge detection. The first part

determines the shape of contours whereas the second one attracts the contour towards the

edges.

Geodesic active contour (GAC) model, one of the most popular methods among the

edge-based active contour models, was proposed by Caselles et al.[146]. Given an initial

49

curve C0, the curve evolution is given as:

∂φ(x, y)

∂t
= g(I(x, y))(κ(φ(x, y)) + F)| 5 φ(x, y)| (2.52)

where g denotes a stopping function which is based on an edge indicator scalar function, i.e.

g(I(x, y)) = 1
1+|5φ(x,y)| . The curvature κ maintains the regularity of the contours whereas

the constant speed F keeps the contour evolving. In GAC model, the contours move in

the normal direction with a speed of κ(φ(x, y)) + F and therefore stops on the edges.

It is easy to see that edge-based active contour models inherit some disadvantages of

the edge-based segmentation methods, such as a reliance on the image gradient, omission

of blurry boundaries and a sensitivity to local minima and noise. Moreover, edge-based

active contour models have a few of their own disadvantages (compared to the region-

based active contour models which will be discussed in the next section) that are due to

the structure of the speed functions and the stopping functions. It is easy to see that the

edge-based active contour models evolve the contour towards only one direction, either

inside or outside because of the constant speed F . Thus, an initial contour should be

placed completely inside or outside the ROI, so some level of a prior knowledge is still

required. Later, Paragios [147] proposed Gradient vector flow fast geodesic active contour

by replacing the edge detection with a gradient vector field.

2.4.4 Region-based Active Contours (Chan-Vese)

Under the scenarios of image segmentation, we consider an image in 2D space, Ω. The

Level Set is to find the boundary C of an open set ω ∈ Ω, which is defined as: C = ∂ω. In

50

VLS framework, the boundary C can be represented by the zero level set φ as follows:

∀(x, y) ∈ Ω

C = {(x, y) : φ(x, y) = 0}

inside(C)) {(x, y) : φ(x, y) > 0}

output(C)) {(x, y) : φ(x, y) < 0}

(2.53)

For image segmentation, Ω denotes the entire domain of an image I. The zero LS

function φ divides the region Ω into two regions: region inside ω (foreground), denoted

as inside(C) and region outside ω (background) denoted as outside(C). The length of the

contour C and the area inside the contour C are defined as follows:

Length(C) =

∫

Ω

|∇H(φ(x, y))|dxdy =

∫

Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

Area(C) =

∫

Ω

H(φ(x, y))dxdy (2.54)

where, Hε(·) is a Heaviside function.

Typically, the LS-based segmentation methods start with an initial level set φ0 and an

given image I. The LS updating process is performed via gradient descent by minimizing

an energy function which defined based on the difference of image features, such as color

and texture, between foreground and background. The fitting term in LS model is defined

by the inside contour energy (E1) and outside contour energy (E2).

E = E1 + E2 =

∫

insideC

(I(x,y) − c1)2dxdy +

∫

outsideC

(I(x,y) − c2)2dxdy (2.55)

where c1 and c2 are the average intensity inside and outside the contour C, respectively.

Fig. 2.20 gives an example of all possible cases of the curve. It is easy to see that the

energy E is minimized when the contour is right on the object boundary.

Most region-based active contour models consist of two components: regularity and

energy minimization. The first part is to determine the smooth shape of contours whereas

51

(a) (b) (c) (d)

E1 = 0 E2 > 0 E1 > 0 E2 = 0 E1 > 0 E2 > 0 E1 = 0 E2 = 0

Figure 2.20: An illustration of energy inside the contour C (E1)and outside and the contour C
(E2)

the second part searches for uniformity of a desired feature within a subset.

One of the most popular region based active contour models is proposed by Chan-Vese

(CV) [62]. In this model the boundaries are not defined by gradients and the curve evolution

is based on the general Mumford-Shah (MS) [148] formulation of image segmentation as

shown in Eq. 2.56.

E =
∫

Ω
|I− u|2dxdy +

∫
Ω/C
|∇u|2dxdy + νLength(C) (2.56)

CV’s model is an alternative form of MS’s model which restricts the solution to piecewise

constant intensities and it has successfully segmented an image into two regions, each

having a distinct mean of pixel intensity by minimizing the following energy functional.

E(c1, c2, φ) = µArea(ω1) + νLength(C)

+λ1

∫

ω1

|I(x, y)− c1|2dxdy + λ2

∫

ω2

|I(x, y)− c2|2dxdy
(2.57)

where c1 and c2 are two constants. The parameters µ, ν, λ1, λ2 are positive parameters

and usually fixing λ1 = λ2 = 1 and µ = 0. Thus, we can ignore the first term in Eq. 2.57.

52

Thus the energy functional is rewritten as follows:

E(c1, c2, φ) = µ

∫

Ω

H(φ(x, y))dxdy + ν

∫

Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫

ω1

|I(x, y)− c1|2dxdy + λ2

∫

ω2

|I(x, y)− c2|2dxdy
(2.58)

For numerical approximations, the δ function needs a regularizing term for smoothing.

In most cases, the Heaviside function H and Dirac delta function δ are defined as in (2.59)

and (2.60), respectively.

Hε(x) =
1

2

(
1 +

2

π
arctan

(x
ε

))
(2.59)

δε(x) = H ′(x) =
1

π

ε

ε2 + x2
(2.60)

As ε → 0, δε → δ, and Hε → H. Using Heaviside function H, the Eq. 2.58 becomes Eq.

2.61.

E(c1, c2, φ) = µ

∫

Ω

H(φ(x, y))dxdy + ν

∫

Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫

Ω

|I(x, y)− c1|2H(φ(x, y))dxdy + λ2

∫

Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy

(2.61)

In the implementation, they choose ε = 1. For fixed c1 and c2, gradient descent equation

with respect to φ is:

∂φ(x, y)

∂t
= δε(φ(x, y)[νκ(φ(x, y)− µ− λ1((I(x, y)− c1)2 + λ2((I(x, y)− c2)2] (2.62)

where δε is a regularized form of Dirac delta function and c1, c2 are the mean of inside

the contour ωin and the mean of the outside of the contour ωout, respectively. The curvature

κ is given by:

κ(φ(x, y)) = −div
(4φ
|4φ|

)
= −φxxφ

2
y − 2φxφyφxy + φyyφ

2
x(

φ2
x + φ2

y

)1.5 (2.63)

53

where ∂xϕt, ∂yϕt and ∂xxϕt, ∂yyϕt are the first and second derivatives of ϕt with respect to

x and y directions. For fixed φ, gradient descent equation with respect to c1 and c2 are:

c1 =

∑
x,y I(x, y)H(φ(x, y))∑

x,yH(φ(x, y))

c2 =

∑
x,y I(x, y)(1−H(φ(x, y)))∑

x,y(1−H(φ(x, y)))

(2.64)

herein, we use notation ϕt to indicate ϕ at the iteration tth in order to distinguish the

ϕ at different iterations. Under this formulation, the curve evolution is shown as a time

series process which helps to give better visualization of reformulating LS. From this point,

we redefine the curve updating in a time series form for the LS function ϕt as in Eq. (2.65).

ϕt+1 = ϕt + η
∂ϕt
∂t

(2.65)

The LS at time t + 1 depends on the previous LS at time t and the curve evolution ∂ϕt

∂t

with a learning rate η.

2.4.5 State-of-the-art Level Set Methods and Their Limitations

Li et al. [149] solved the problem of segmenting images with intensity inhomogeneity

by using a local binary fitting energy. By minimizing the unbiased pixel-wise average

misclassification probability, Wu et al. [150] formulated an active contour to segment

an image without any prior information about the intensity distribution of regions. By

realizing curve evolution via simple operations between two linked lists, Shi and Karl [151]

achieved a fast level set algorithm for real-time tracking. Also, they incorporated the

smoothness regularization with the use of a Gaussian filtering process and proposed the

two-cycle fast (TCF) algorithm to speed up the level set evolution.

To overcome the limitation of CLS being binary-phase segmentation, Samson et al. [12]

associated a LS function with each image region, and evolves these functions in a coupled

54

manner. Later, Brox & Weickert [13] performed hierarchical segmentation by iteratively

splitting previously obtained regions using the CLS. To deal with reinitialization, DRLSE

[15] is proposed with a new variational level set formulation in which the regularity of the

LS function is intrinsically maintained during the LS evolution. Different from the afore-

mentioned methods that work on global, Li et al. [16] focused on intensity inhomogeneity

which often occurs in real-world images. In their approach, they derived a local intensity

clustering property and defined a local clustering criterion function in a neighborhood of

each point. Lucas [17] suggested using a single LS function to perform the LS evolution

for multi-region segmentation. It requires managing multiple auxiliary LS functions when

evolving the contour, so that no gaps/overlaps are created. Bae & Tai [14] proposed to

divide an image into multiple regions by a single, piecewise constant LS function, obtained

using either augmented Lagrangian optimization, or graph-cuts. Later, to deal with local

minima, LSE [21] uses some form of local processing to tackle intra-region inhomogeneity,

which makes such methods susceptible to local minima. Recently, Dubrovina et al. [152]

have developed a multi-region segmentation with single LS function. However, Dubrobina

et al’s approach was developed for contour detection and needs good initialization, namely,

it requires specify more initial regions than it is expected to be in the final segmentation.

Furthermore, the algorithm requires that initial contours cover the image densely, specif-

ically the initial contour has to pass through all different regions. In addition to multi

region segmentation problem, optimization [19, 23, 131], and shape prior [153] have also

been considered.

Generally, the level set model minimizes a certain energy function via gradient descent

[154], making the segmentation results prone to getting stuck in local minima. To conquer

this problem, Chan et al. [155] restated the traditional Mumford-Shah image segmenta-

tion model [148] as a convex minimization problem to obtain the global minimum . The

above methods have obtained promising performance in segmenting high quality images.

However, when attempts are made to segment images with heavy noise, this leads to poor

55

segmentation results. Existing methods assume that pixels in each region are indepen-

dent when calculating the energy function. This underlying assumption makes the contour

motion sensitive to noise. In addition, the implementation of level set methods is com-

plex and time consuming, which limits their application to large scale image databases.

To maintain numerical stability, the numerical scheme used in level set methods, such as

the upwind scheme or finite difference scheme, must satisfy the Courant-Friedrichs-Lewy

(CFL) condition [156], which limits the length of the time step in each iteration and wastes

time.

Some limitations of variational level set approaches are observed as follows:

• They are unsupervised approaches and therefore require no learning properties from

the training data. Thus, they have difficulty in dealing with noise and occlusions.

• There are many parameters which are chosen by empirical results.

• The are build off of gradient descent to implement the non-convex energy minimiza-

tion and can get stuck in undesired local minima and thereby lead to erroneous

segmentations.

• Most of the level set based approaches are not able to robustly segment images in

the wild.

• They often give unpredictable segmentation results due to unsupervised behaviors.

• The accuracy of segmenting results strongly depends on the number of iterations

which is usually set as a big number.

2.5 Common Deep Network Architectures

Many semantic segmentation approaches including semantic instance segmentation have

made use of some popular deep networks architectures, i.e. LeNet AlexNet, VGG-16,

GoogLeNet, and ResNet.

56

2.5.1 LeNet

The first successful applications of Convolutional Networks is developed by Yann LeCun

[64]. Of these, the best known is the LeNet architecture. LeNet applies several banks to

recognise hand-written numbers on checks (cheques) digitized in 32x32 pixel images. The

ability to process higher resolution images requires larger and more convolutional layers,

so this technique is constrained by the availability of computing resources. The LeNet

architecture is given in Fig. 2.21.

Figure 2.21: Architecture of LeNet

2.5.2 AlexNet

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton create a large, deep convolutional

neural network, called AlexNet [10] that is used to win the 2012 ILSVRC (ImageNet

Large-Scale Visual Recognition Challenge). In 2012, AlexNet significantly outperforms all

the prior competitors and wins the challenge by reducing the top-5 error to 15.3%. The

second place top-5 error rate, which is not a CNN variation, is around 26.2%. Since then,

CNNs became the standard direction of evolution to improve performance. The network

has a very similar architecture as LeNet but is deeper, with more filters per layer, and

with stacked convolutional layers. AlexNet is composed of 5 conv layers, max-pooling

layers, dropout layers, and 3 fully connected layers as given in Fig. 2.22. The network

they designed is used for classification with 1000 possible categories. AlexNet network

is designed with following key contributions: (a) Train the network on ImageNet data,

57

which contains over 15 million annotated images from a total of over 22,000 categories.

(b) Used ReLU for the nonlinearity functions. (c) Used data augmentation techniques

that consisted of image translations, horizontal reflections, and patch extractions. (d)

Implemented dropout layers in order to combat the problem of overfitting to the training

data. (e) Trained the model using batch stochastic gradient descent, with specific values

for momentum and weight decay. (f) Trained on two Nvidia Geforce GTX 580 GPUs for

five to six days.

256
96

3

384 384 256

4096

pooling

pooling

pooling Max pooling Convolution + ReLU

Fully connected Softmax

Figure 2.22: Architecture of AlexNet

2.5.3 ZFNet

The ILSVRC 2013 winner is a Convolutional Network from Matthew Zeiler and Rob Fergus,

which achieves a top-5 error rate of 11.2% . It is known as the ZFNet [66]. It is an

improvement of AlexNet by tweaking the hyperparameters, in particular by expanding the

size of the middle convolutional layers and making the stride and filter size on the first

layer smaller as shown in Fig. 2.23. In this work, the authors explain a lot of the intuition

behind ConvNets and show how to visualize the filters and weights correctly. ZFNet can

be summarized as follows: (a) similar architecture to AlexNet, except for a few minor

modifications. (b) AlexNet is trained on 15 million images whereas ZFNet is trained on

58

only 1.3 million images (c) Instead of using 11x11 sized filters in the first layer, ZFNet used

7x7 sized filter and a decreased stride value. (d) The number of filters used is raised when

the network grows. (e)Used ReLUs for their activation functions, cross-entropy loss for the

error function, and trained using batch stochastic gradient descent. (f) Trained on a GTX

580 GPU for twelve days. (g) Developed a visualization technique named Deconvolutional

Network.

Figure 2.23: Architecture of ZFNet

2.5.4 VGG-16

224x224x64

56x56x256

112x112x128

28x28x512

224x224x3 4096

N

14x14x512
7x7x512

Max pooling Convolution + ReLU

Fully connected Softmax

Figure 2.24: Architecture of VGG

VGG [157] model is developed by Simonyan and Zisserman in 2014 and archives 7.3%

error rate on ILSVRC 2014. VGG-16 is not a winner on ILSVRC 2014 but it quickly

59

Co
nv
1_
1

Re
lu
1_
1

Co
nv
1_
2

Re
lu
1_
2

Po
ol
in
g

Po
ol
in
g

Co
nv
3_
1

Re
lu
3_
1

Co
nv
3_
2

Re
lu
3_
2

Co
nv
3_
2

Re
lu
3_
2

Co
nv
2_
1

Re
lu
2_
1

Co
nv
2_
2

Re
lu
2_
2

Po
ol
in
g

Co
nv
4_
1

Re
lu
4_
1

Co
nv
4_
2

Re
lu
4_
2

Co
nv
4_
2

Re
lu
4_
2

Po
ol
in
g

Co
nv
5_
1

Re
lu
5_
1

Co
nv
5_
2

Re
lu
5_
2

Co
nv
5_
2

Re
lu
5_
2

Po
ol
in
g

FC
_7

Re
lu
7

FC
_6

Re
lu
6

FC
_8

Re
lu
8

So
ft
m
ax

Figure 2.25: Simple visualization of 16 layers in VGG

became common because of simplicity and depth with 16 layer CNN that strictly used 3x3

filters with stride and pad of 1, along with 2x2 maxpooling layers with stride 2 as given in

Fig. 2.24. It is currently one of the most preferred choice in the community for extracting

features from images. However, VGGNet consists of 140 million parameters, which can be

a bit challenging to handle. The simple visualization with 16 layers of VGG-16 is given

in Fig. 2.25. The main contribution of VGG-16 can be summarized as follows: (a) use

only 3x3 sized filters instead of 11x11 in AlexNet and 7x7 in ZFNet. (b) As a result of

the conv and pool layers, the spatial size of the input volumes at each layer decrease. (c)

The depth of the volumes increase due to the increased number of filters. (d) The number

of filters doubles after each maxpool layer. (e) Used ReLU layers after each conv layer

and trained with batch gradient descent.(f) Worked well on both image classification and

localization tasks. (g) Built model with the Caffe toolbox. (h) Used scale jittering as one

data augmentation technique during training. (i)Trained on 4 Nvidia Titan Black GPUs

for two to three weeks.

2.5.5 GoogLeNet/Inception

GoogLeNet [158] is a 22 layer CNN and is the winner of ILSVRC 2014 with a top 5

error rate of 6.7%. This is one of the first CNN architectures that really strayed from

the general approach of simply stacking conv and pooling layers on top of each other in a

sequential structure as shown in Fig. 2.26. The network uses a CNN inspired by LeNet

60

but implements a novel element which is dubbed an inception module. The sequence of

inception module in GoogleNet is illustrated more detailed in Fig. 2.27 which explains

the first inception module in Fig. 2.26. GoogleNet can be summarized as follows: (a) It

is a very deep networh with over 100 layer in 9 inception modules. (b) No use of fully

connected layers help to save a huge number of parameters. (c) Uses 15x fewer parameters

than AlexNet, reduced the number of parameters from 60 million (AlexNet) to 4 million.

(d) During testing, multiple crops of the same image are created, fed into the network, and

the softmax probabilities are averaged to give us the final solution. (e) Utilize R-CNN to

detect object. (f) Trained on a few high-end GPUs within a week.

Figure 2.26: Architecture of GoogLeNet

Previous layer

1x1 Conv

3x3 Conv

5x5 Conv

5x5 Conv 1x1 Conv

Concatenation
1x1 Conv

1x1 Conv

Figure 2.27: An explaination of inception module

61

7x
7
Co

nv
, 6
4,
 /2

3x
3
Co

nv
, 1
28
, /
2

3x
3
Co

nv
, 2
56
, /
2

3x
3
Co

nv
, 5
12
, /
2

22
4x
22

4

56
x5
6

3x
3
Co

nv
, 6
4

3x
3
Co

nv
, 6
4

Po
ol
, /
2

56
x5
6

3x
3
Co

nv
, 6
4

3x
3
Co

nv
, 1
28

3x
3
Co

nv
, 1
28

3x
3
Co

nv
, 1
28

3

3x
3
Co

nv
, 1
28

3x
3
Co

nv
, 2
56

3x
3
Co

nv
, 2
56

28
x2
8

28
x2
8

14
x1
4

7x
7

3x
3
Co

nv
, 5
12

3x
3
Co

nv
, 5
12

3x
3
Co

nv
, 5
12

23 5

7x
7

Fc
_1
00
0

Av
e_
po

olx

14
x1
4

Figure 2.28: Architecture of ResNet-50

Figure 2.29: Explaination of a residual block

2.5.6 ResNet

Residual Neural Networks (ResNet) [96] by Kaiming He, et al. introduced skip connections

and won ILSVRC 2015 with an notable low error rate error rate of 3.6% and beating

human-level performance on this dataset. Such skip connections are also known as gated

recurrent units and have a strong similarity to recent successful elements applied in RNNs.

An example of ResNet-50 is given in Fig. 2.28. The idea behind a residual block is that

the input still goes through conv-ReLU-conv series. The core idea of ResNet is introducing

62

VGG-19 34-layer-plain 34-layer-residual

Figure 2.30: Comparison between Resnet and VGG-19, 34-layer-plain and 34-layer residual

63

a so-called identity shortcut connection that skips one or more layers, as shown in Fig.

2.29. The comparison between Resnet, VGG-19 and 34-layer plain networks is shown in

Fig. 2.30.

2.5.7 DenseNet

Building upon the architecture of ResNet, DenseNet connects each layer to every other

layer in a feed-forward fashion. The traditional convolution networks needs L connections

for a L-layer network whereas DenseNet has L(L+1)
2

connections. DenseNet consists of

multiple dense blocks, each of which consists of multiple layers. Each layer produces k

features, where k is referred to as the growth rate of the network. Instead of drawing

representational power from extremely deep or wide architectures, DenseNet exploits the

potential of the network through feature re-use, yielding condensed models that are easy to

train and with highly efficient parameters. In contrast to ResNet which combines features

through summation before they are passed into a layer, DenseNet combines features by

concatenating. An example of DenseNet with two blocks for image classification is given in

Fig. 2.31. DenseNet layers are typically very narrow architectures e.g., 12 filters per layer,

adding only a small set of feature-maps to the collective knowledge of the network and keep

the remaining feature maps unchanged. DenseNet is composed of many components i.e.

dense connectivity, composite function, transition layers, growth rate, bottleneck layers.

Fig. 2.32 gives an illustration of DenseNet architecture on ImageNet for image classifica-

tion. The lth layer receives the feature-maps of all preceding layers, xl = Hl([x0,x,...xl−1])

as input. Hl is a composite function of three consecutive operations: BN, ReLU, 3 × 3

convolution. Transition layers used in our experiments consist of a batch normalization

layer and an 1 × 1 convolutional layer followed by a 2 × 2 average pooling layer. If k is

growth rate, Hl produces k feature maps, the input of lth layer is k0 + k × (l − 1).

64

Figure 2.31: An example of DenseNet with 2 blocks for image classificaiton

Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264
Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2
Dense Block

(1)
56 × 56

[
1× 1 conv
3× 3 conv

]
× 6

[
1× 1 conv
3× 3 conv

]
× 6

[
1× 1 conv
3× 3 conv

]
× 6

[
1× 1 conv
3× 3 conv

]
× 6

Transition Layer
(1)

56 × 56 1 × 1 conv
28 × 28 2 × 2 average pool, stride 2

Dense Block
(2)

28 × 28
[

1× 1 conv
3× 3 conv

]
× 12

[
1× 1 conv
3× 3 conv

]
× 12

[
1× 1 conv
3× 3 conv

]
× 12

[
1× 1 conv
3× 3 conv

]
× 12

Transition Layer
(2)

28 × 28 1 × 1 conv
14 × 14 2 × 2 average pool, stride 2

Dense Block
(3)

14 × 14
[

1× 1 conv
3× 3 conv

]
× 24

[
1× 1 conv
3× 3 conv

]
× 32

[
1× 1 conv
3× 3 conv

]
× 48

[
1× 1 conv
3× 3 conv

]
× 64

Transition Layer
(3)

14 × 14 1 × 1 conv
7 × 7 2 × 2 average pool, stride 2

Dense Block
(4)

7 × 7
[

1× 1 conv
3× 3 conv

]
× 16

[
1× 1 conv
3× 3 conv

]
× 32

[
1× 1 conv
3× 3 conv

]
× 32

[
1× 1 conv
3× 3 conv

]
× 48

Classification
Layer

1 × 1 7 × 7 global average pool
1000D fully-connected, softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each “conv” layer shown in the
table corresponds the sequence BN-ReLU-Conv.

obtain state-of-the-art results on the datasets that we tested
on. One explanation for this is that each layer has access
to all the preceding feature-maps in its block and, therefore,
to the network’s “collective knowledge”. One can view the
feature-maps as the global state of the network. Each layer
adds k feature-maps of its own to this state. The growth
rate regulates how much new information each layer con-
tributes to the global state. The global state, once written,
can be accessed from everywhere within the network and,
unlike in traditional network architectures, there is no need
to replicate it from layer to layer.

Bottleneck layers. Although each layer only produces k
output feature-maps, it typically has many more inputs. It
has been noted in [37, 11] that a 1×1 convolution can be in-
troduced as bottleneck layer before each 3×3 convolution
to reduce the number of input feature-maps, and thus to
improve computational efficiency. We find this design es-
pecially effective for DenseNet and we refer to our network
with such a bottleneck layer, i.e., to the BN-ReLU-Conv(1×
1)-BN-ReLU-Conv(3×3) version of H`, as DenseNet-B. In
our experiments, we let each 1×1 convolution produce 4k
feature-maps.

Compression. To further improve model compactness,
we can reduce the number of feature-maps at transition
layers. If a dense block contains m feature-maps, we let
the following transition layer generate bθmc output feature-
maps, where 0 <θ ≤1 is referred to as the compression fac-
tor. When θ=1, the number of feature-maps across transi-
tion layers remains unchanged. We refer the DenseNet with
θ<1 as DenseNet-C, and we set θ = 0.5 in our experiment.
When both the bottleneck and transition layers with θ < 1
are used, we refer to our model as DenseNet-BC.

Implementation Details. On all datasets except Ima-
geNet, the DenseNet used in our experiments has three
dense blocks that each has an equal number of layers. Be-
fore entering the first dense block, a convolution with 16 (or
twice the growth rate for DenseNet-BC) output channels is
performed on the input images. For convolutional layers
with kernel size 3×3, each side of the inputs is zero-padded
by one pixel to keep the feature-map size fixed. We use 1×1
convolution followed by 2×2 average pooling as transition
layers between two contiguous dense blocks. At the end of
the last dense block, a global average pooling is performed
and then a softmax classifier is attached. The feature-map
sizes in the three dense blocks are 32× 32, 16×16, and
8×8, respectively. We experiment with the basic DenseNet
structure with configurations {L = 40, k = 12}, {L =
100, k = 12} and {L = 100, k = 24}. For DenseNet-
BC, the networks with configurations {L = 100, k = 12},
{L=250, k=24} and {L=190, k=40} are evaluated.

In our experiments on ImageNet, we use a DenseNet-BC
structure with 4 dense blocks on 224×224 input images.
The initial convolution layer comprises 2k convolutions of
size 7×7 with stride 2; the number of feature-maps in all
other layers also follow from setting k. The exact network
configurations we used on ImageNet are shown in Table 1.

4. Experiments

We empirically demonstrate DenseNet’s effectiveness on
several benchmark datasets and compare with state-of-the-
art architectures, especially with ResNet and its variants.

Figure 2.32: Architecture of DenseNet on ImageNet for image classication

2.6 Region-based Convolutional Neural Networks

2.6.1 R-CNN

Region-based Convolutional Neural Networks (R-CNN) [30] is one of the important frame-

works for the object detection and segmentation tasks. R-CNN, the first generation of fam-

ily of region-based CNN, applies the high-capacity deep CNNs to classify given bottom-up

region proposals. Selective search is used in R-CNN to generate 2,000 different regions that

have the highest probability of containing an object. Then the CNNs are used as a feature

65

extractor and the system is further trained for object detection with Support Vector Ma-

chines (SVM). Finally, it performs bounding-box regression. The architecture of R-CNN

is given if Fig. 2.33. The method achieves high accuracy but it is very time-consuming.

R-CNN can be summarized as follows:

• The system can use the pre-trained model (AlexNet, VGG, Resnet) which is trained

on image classification task.

• Generate a set of category-independent regions of interest by selective search (∼2k

candidates per image).

• Run the bounding boxes, which are warped to have a fixed size as required by CNNs,

through a pre-trained network and finally an SVM to see what object the image in

the box is.

• Run the boxes through a linear regression model to output tighter coordinates for

the box once the object has been classified.

• The system requires a forward pass of the CNNs for every single region proposal for

every single image.

• The system is trained by three different models separately - the CNNs to generate

image features, the classifier that predicts the class, and the regression model to

tighten the bounding boxes.

• At testing time, the detection process takes 47s per image using VGG-16 network.

It is easy to see that training a R-CNN model is expensive because the following prob-

lems:

• Running selective search to propose 2,000 regions of interest (RoIs) candidates for

every image.

• Generating the CNN feature vector for every image region.

• The process is implemented by three models separately without much shared weights.

66

Figure 2.33: Flowchart of R-CNN

2.6.2 Fast R-CNN

[159] solves this problem by sharing the features between proposals and jointly training the

CNNs, classifier, and bounding box regressor in a single model. The network is designed

to only compute a feature map once per image in a fully convolutional style, and to

use ROI pooling to dynamically sample features from the feature map for each object

proposal. The network also adopts a multi-task loss, i.e. classification loss and bounding-

box regression loss. Based on the two improvements, the framework is trained end-to-

end. Fig. 2.34 gives an illustration of flowchart of fast R-CNN. The processing time for

each image significantly reduced to 0.3s. Fast R-CNN accelerates the detection network

using the RO I-pooling layer. In Fast-RCNN, SVM classifier is replaced by softmax layer.

It also added a linear regression layer parallel to the softmax layer to output bounding

box coordinates. However the region proposal step is designed out of the network and,

hence, still remains a bottleneck, which results in a sub-optimal solution and exhibits a

dependence on the external region proposal methods. The flowchart of Fast-RCNN, which

contains many steps similar to R-CNN, can be summarized as follows:

• The system can be pre-trained on image classification task.

• Generate a set of category-independent RoIs by selective search (∼ 2k candidates per

67

image).

• Sharing feature by replacing the last max pooling layer of the pre-trained CNNs with

a RoI pooling layer. Using RoI pooling, the input region is divided into grids and

then apply max-pooling in each grid. The RoI pooling layer outputs fixed-length

feature vectors of region proposals.

• Replace the last fully connected layer and the last softmax layer (K classes) with a

fully connected layer and softmax over K + 1 classes (same as in R-CNN, +1 is the

background class).

• The system gives two outputs: softmax layer gives K + 1 classes and regression

provide bounding boxes.

• The model is optimized for a loss combining two tasks of classification and localiza-

tion.

Figure 2.34: Flowchart of Fast-RCNN

Clearly, Fast-RCNN is much faster than R-CNN in both training and testing time.

However, the improvement is not dramatic because the region proposals are generated

separately by another model and that is very expensive.

68

2.6.3 Faster R-CNN

[100] addresses the problem of generating RoI in fast R-CNN by introducing the Region

Proposal Networks (RPNs) to replace selective search strategy. An RPNs is implemented

in a fully convolutional style to predict the object bounding boxes and the objectness

scores. In addition, the anchors, i.e. a set of predefined templates, are defined with

different scales and ratios to achieve the translation invariance. The RPNs shares the full-

image convolution features with the detection network. Fig. 2.35(a) gives an illustration

of flowchart of faster R-CNN. In Fig. 2.35(a), RPN is inside the blue box. Therefore

the whole system is able to complete both proposal generation and detection computation

within 0.2s using very deep VGG-16 model [157]. With a smaller Zeiler-Fergus (ZF) model

[66], it can reach the level of real-time processing. The flowchart of Faster R-CNN is given

as follows:

• Pre-train CNNs network on image classification tasks.

• Slide a small window over the convolution feature map of the entire image. At the

center of each sliding window, we predict multiple regions of various scales (1:1, 2:1,

1:2) and ratios (0.5, 1, 2), meaning there are 9 anchors at each sliding position.

• Fine-tune the RPNs end-to-end for the region proposal task by ignore all off-side

region and keeping positive samples which have IoU > 0.7, while negative samples

have IoU < 0.3.

• Train a Fast R-CNN object detection model using the proposals generated by the

RPNs.

• Use the Fast R-CNN network to initialize RPN training. Herein, RPNs and the

detection network have shared CNNs feature.

• Fine-tune the unique layers of Fast R-CNN.

• Similar Fast R-CNN, loss function combines the losses of classification and bounding

69

box regression.

(a) Flowchart of Faster-RCNN (b) Region Proposal Networks (RPNs)

Figure 2.35: Flowchart of Faster-RCNN and Region Proposal Networks (RPNs)

2.6.4 Mask R-CNN

Mask R-CNN [160] extends Faster R-CNN [100] to pixel-level image segmentation by

adding a branch for predicting segmentation masks on each Region of Interest (RoI), in

parallel with the existing branch for classification and bounding box regression. The mask

branch is a small FCN applied to each RoI, predicting a segmentation mask in a pixel-to

pixel manner. Fig. 2.36 gives an illustration of flowchart of Mask R-CNN. Mask R-CNN

is simple to implement and train given the Faster R-CNN framework, which facilitates

a wide range of flexible architecture designs. Additionally, the mask branch only adds a

small computational overhead, enabling a fast system and rapid experimentation. Since

pixel-level segmentation requires much more fine-grained alignment than bounding boxes,

mask R-CNN replaces the RoI pooling layer by RoIAlign layer. Therefore, RoI can be

better and more precisely mapped to the regions of the original image. RoIAlign has a

large impact: it improves mask accuracy by relative 10% to 50%, showing bigger gains

70

under stricter localization metrics. The multi-task loss function of Mask R-CNN combines

the loss of classification, localization and segmentation mask.

Figure 2.36: Flowchart of Mask R-CNN

Summary of models in the R-CNN family is illustrated in Fig. 2.37

Figure 2.37: Summary of models in the R-CNN family

71

2.6.5 YOLO

Different from the aforementioned models in the R-CNN family which learn to solve a classi-

fication task, YOLO model (You Only Look Once)[161] treat the task of object recognition

as a unified regression problem. The flowchart of YOLO model is shown in Fig. 2.38 with

following steps:

Figure 2.38: Flowchart of YOLO model

• Pre-train CNN network on image classification tasks.

• Split an image into a set of SxS cells (grids).

• Two information is extracted from each cell: (1) location of B bounding boxes and

a confidence score which is probability of containing an object. (2) probability of

object class conditioned on the existence of an object in the bounding box (the

object belongs to the class Ci— containing an object). If the cell contains an object,

it predicts a probability of this object belonging to one class Ci where i = 1, 2, · · · , K.

• Each box corresponding to 4 location predictions, 1 confidence score, and K condi-

tional probability scores for object classification.

72

• The final layer of the pre-trained CNNs is modified to output a prediction tensor of

size S × S × (5B +K).

• The YOLO is trained to minimize the sum of squared errors, with scale control

parameters: control the loss from bounding box predictions and control the loss from

confidence predictions for non-object boxes.

73

Chapter 3

Related Work

This chapter intends to provide a brief review of different image segmentation techniques.

Image segmentation plays an important role in various areas of image processing, such as

object detection and classification, action classification, scene understanding, and other vi-

sual information analysis processes. In general, image segmentation techniques are broadly

divided into two main categories, namely, unsupervised approach with naive classical image

segmentation methods and supervised approach with semantic image segmentation meth-

ods. Most of the classical approaches depend on filtering and statistical techniques such

as thresholding, edge detection, boundary based, region-based, morphological, normalised

graph cut, k-means approaches, etc. The other is learning-based approach which consists

of both traditional learning methods such as linear discriminant analysis (LDA), support

vector machine (SVM) and the recent developments on deep neural networks including

CNNs-based and RNNs-based methods. Deep neural networks (DNNs)-based approach

have become popular and productive for semantic image segmentation and image under-

standing with real-time application.

As definition, image segmentation is to separate an image into foreground and back-

ground whereas semantic segmentation does not only segment the predefined objects out

of the background but also classifies the object category as shown in Fig. 3.1. However,

74

the semantic segmentation is unable to separate instances (specially overlapping) of the

same category. Meaning that semantic segmentation cannot count the number of instances

existing in the image as given in Fig. 3.1 (b) which can not tell how many horses. Semantic

instance segmentation is to address this issue as shown in Fig. 3.1 (c).

In this chapter, we first review the unsupervised image segmentation category which

focuses more on active contour techniques. We then give a literature on supervised image

segmentation category which focuses more on DNNs-based approaches. In the end of

this chapter, we introduce the most common large-scale datasets that have been used to

evaluate the performance of different semantic segmentation approaches.

(a) (b) (c) (d)

horse horse
horse horse

Figure 3.1: An example of the segmentation result (b) from an input image (a), semantic
segmentation (c) and semantic instance segmentation (d)

.

Depend on application, i.e. texture segmentation, scene understanding, medical seg-

mentation, there are various challenges when dealing with image segmentation.

Texture images: Traditionally, the combination of texture classification and image

segmentation is used in order to segment the disjoint uniform regions based on textures. As

given in Fig. 3.2, it is affected by various external aspects such as illumination, resolution,

pose, etc. Moreover, it is difficult to generalize the system in order to find a pattern without

the knowledge of domain.

Scene images: Scene labeling is an important task in the image understanding prob-

lem. In such natural scene images, low-level features, such as color or texture, extracted

from a small window around pixels (short-range context) is not enough information to

75

Figure 3.2: Difficulties in texture segmentation

Figure 3.3: Difficulties in scene segmentation

label pixels. For example, it is almost impossible to distinguish the ”sea” from the ”sky”

or distinguish ”tree” from ”forest” using short-range context or low-level feature as given

in Fig. 3.3.

Medical Images: Analyzing biomedical images is one of the most import subjects

of study for biologists. Such images are usually low quality and contains a lot of noise.

One of the common solutions used image segmentation algorithms is Level Set. However

its effect depends on many conditions such as illumination, noise, and require knowledge

of the domain. Available medical dataset is usually small and not big enough for deep

learning approach which requires quite large number of training samples.

76

3.1 Naive Image Segmentation

Several classical unsupervised image segmentation methods have been reported in the

literature [4].

3.1.1 Thresholding Technique

Thresholding technique is one of the important techniques for image segmentation in this

category. In this technique, it is assumed that all pixel intensities of an image which are

lying within a certain range belong to the same class. This technique deals with the pixel

intensity of an image such as grayscale level, color level, texture level with the main goal

is to determine the threshold value of an image using. The pixels whose intensity values

exceed the threshold value are assigned in one segment and the remaining are assigned

in zero segment. Histogram thresholding [162, 163] is also a useful technique in image

segmentation. The histogram thresholding techniques are based on the similarity between

grey levels. Image segmentation using entropy-based thresholding [164] is also common in

this category. One of the oldest methods, the Otsus thresholding method [165] has been

utilized to analyze the maximum separability of classes. In this method, an optimal thresh-

old is selected by the discriminant criterion, namely, so as to maximize the separability of

the resultant classes in gray levels. By utilizing only the zeroth- and the first-order cu-

mulative moments of the gray-level histogram, Otsu’s thresholding is very simple but has

proven to be one of the most popular binarization approaches. Using cluster organization

from the histogram of an image, [166] proposes a gray-level thresholding algorithm. Their

method provide a new similarity measure based on inter-class variance of the clusters to

be merged and the intra-class variance of the new merged cluster. Besides grayscale level

thresholding, color thresholding by pixel classification in a hybrid colour space for color im-

age segementation is also studied [167, 168]. [168] is first based on histogram thresholding

to determine the consistent regions in the color image. Then, fuzzy c-means algorithm for

77

the betterment of the compactness of the segments. The main drawbacks of thresholding

technique are that these cannot be efficiently applied for blurred images or for multiple

image component segmentations or inhomogeneous object.

3.1.2 Edge-based Technique

Edge detection or boundary based technique is another common classical image segmenta-

tion techniques. In this technique, it is assumed that the pixel intensities change abruptly

at the edges between two regions in the image. This approach is more akin to edge

detection or boundary detection than to true image segmentation. Some common edge-

based segmentation techniques are gradient, Laplacian, Laplacian of a Gaussian, Sobel

edge detector, Canny edge detector [4]. However, most of the existing edge detectors pro-

vide discontinuous or over-detected edges while actual region boundaries should be closed

curves. Thus, post-processing such as edge tracking, gap filling, smoothing and thinning

are used in such techniques to obtain closed region boundaries. Multiscale edge detec-

tion technique is presented in [169] for segmenting natural images. This approach is quite

efficient to eliminate the need of explicit scale selection and edge tracking methods. By

combining an improved isotropic edge detector and a fast entropic thresholding technique,

an automatic color image segmentation method is proposed by [170]. In this method,

seeded region growing (SRG) is initialized by centroids between these adjacent edge re-

gions. These seeds are then replaced by the centroids of the generated homogeneous image

regions by incorporating the required additional pixels step by step. With complicated im-

ages where objects contain many edges/boundaries, the edge detection technique usually

give over-segmentating results and cannot determinate the closed boundaries.

78

3.1.3 Region-based Technique

Region-based techniques looking for uniformity within a sub-region, based on a desired

property, such as, intensity, color or texture have been widely used to solve image segmen-

tation problems. One of the simplest implementations of this approach is region growing

[171, 172] which merges pixels or small sub-regions into larger sub-regions. In region-

growing or merging techniques, the input image is first fitted into a set of homogeneous

primitive regions. Then, similar neighboring regions are merged according to a certain

decision rule following by an iterative merging process. There are two main steps in this

techniques, i.e. splitting and merging. The first step (splitting) is initialized an entire

image as one region. Then, each region is partitioned into four regions (each region is one

segment). The process is terminated when all regions of the image are homogeneous. In

the next step of merging, all the similar neighboring region are merged to unify the segmen-

tation results. Different from greedy techniques in [171, 172], [173] heuristic-based region

merging is applied to over-segmented images. In this approach, the over segmentation is

obtained by different segmentation techniques or even the same technique with different

initial conditions. The merging process is guided using only information about the behavior

of each pixel in the input segmentations. Seeded region growing (SRG) for image segmen-

tation is introduced by [174] which is based on the conventional region growing postulate

of similarity of pixels within region. SRG is controlled by a number of initial seeds without

tuning the homogeneity parameters. By itself, however, it is not a self-contained process, as

it also requires the input of a few control points in the image known as seeds. To overcome

this limitation, [175] proposes an automatic seeded region growing algorithm to segment

colour and multispectral images. In this method, histogram analysis is used to automati-

cally generate the seeds and instance-based learning is used as distance criteria. However,

selecting initial seeds is a crucial problem in region growing. Moreover, region growing or

region competition adjacent sub-regions under criteria involving the uniformity of regions

79

or sharpness of boundaries. Strong criteria tend to produce over-segmented results, while

weak criteria tend to produce poor segmentation results by over-merging the sub-regions

with blurry boundaries. Region-based approaches are generally less sensitive to noise, and

usually produce more reasonable segmentation results as they rely on global properties

rather than local properties, but their implementation complexity and computational cost

can often be quite large. Furthermore, most region-based segmentation methods do not

explicitly represent the uncertainty in the estimated parameter values and, therefore, give

incorrect segmentation when parameter estimates are poorly selected.

3.1.4 Watershed Technique

As definition, a watershed in geography is a ridge that divides areas drained by different

river systems. If a pixel intensities are considered as a topological surface in which the

pixel value at each pixel represents the height of the surface, then segmentation of the

image is defined by the resulting basins. An image has many different heights to produce

a practical segmentation, transformation of color intensity is applied in watershed. In

particular, the gradient magnitude after being smoothed by preprocessing procedures is

commonly used instead of the original image. To obtain better segmentation results,

foreground and background markers are also commonly used in watershed. [176, 177]

proposes a watershed segmentation method using gradient under marker-controlling. In

this method, the foreground marker is placed in he blobs and background markers for the

areas without blobs. The procedure contains six main steps: (a) Convert the color image

to grayscale. (b) Compute the gradient magnitude from the grayscale image. (c) Mark

the foreground objects. (d) Mark the background. (e) Modify the gradient magnitude

image so that its regional minima occur at foreground and background marker pixels. (f)

Apply the watershed transform to the modified gradient image. Steps (c) and (d) can be

automatically done by mathematical morphology with erosion for opening and dilation for

80

reconstruction.

3.1.5 Normalized -Cut Technique

Normalized graph cuts (Ncut) a special case spectral clustering has become very popular

over the years for addressing the problem of image segmentation. [178] uses normalised cut

by solving an eigensystem of equations to propose a general image segmentation approach.

This method aims at extracting the global impression of an image by treating the image

segmentation as a graph partitioning problem. (Ncut) criterion is proposed to measure both

the total dissimilarity between the different groups as well as the total similarity within

the groups. Using local spectral histograms and graph partitioning methods to separate

an image into texture and nontexture are proposed by [179]. Inherit the merits of both

watershed and (Ncut) is found in [180]. By incorporating the advantages of the mean shift

(MS) segmentation and Ncut partitioning methods, [181] proposes method requires low

computational complexity and is therefore very feasible for real-time image segmentation

processing. In this method, MS is applied as preprocessing to form segmented regions that

preserve the desirable discontinuity characteristics of the image. The segmented regions are

then represented by using the graph structures, and the Ncut method is applied to perform

globally optimized clustering. This segmentation algorithm provides superior outcome as

it is applied on the adjacent regions instead of image pixels. Based on the graph reduction

method, [182] developed a cost function, named as ratio cut to segment color images

efficiently. The cut ratio is defined as the ratio of the corresponding sums of two different

weights of edges along the cut boundary and models the mean affinity between the segments

separated by the boundary per unit boundary length. This cost function works efficiently

with both region-based segmentation and pixel-based segmentation approaches.

81

3.1.6 Active Contour based Technique

The key idea behind the Active Contour (AC) for image segmentation is to start with an

initial guess boundary represented in a form of closed curves i.e. contours C. The curve is

then iteratively modified by applying shrink or expansion operations and moved by image-

driven forces under given constraints to more accurately detect the object boundaries to

the boundaries of the desired objects. The entire process is called contour evolution,

denoted as ∂C
∂t

where C is the object boundary (contour). The existing active contour

models are generally categorized into three groups, depend on the kind of information

used: edge-based models [145, 183, 184, 185], global region-based models [62, 148, 186,

187], local region-based active contour models [149], [188], [189], [190], [191], [192], [193].

The first category, edge-based models, utilizes image gradient as an additional constraint

to stop the contours on the boundaries of the desired objects. For instance, geodesic

active contour (GAC) model [183] constructs an gradient stop function to attract the

AC to the object boundaries. Later, [184] proposes an novel AC model which is able to

eliminate the expensive re-initialization procedure by penalizing the deviation of the level

set function. In general, these kinds of models have the ability to handle only images

with well-defined edge information. However, they are sensitive to image noise and weak

boundaries. To overcome those problems, the second category, global region-based models,

uses the statistical information inside and outside AC to guide the curve evolution. Clearly,

global region-based models have several advantages over edge-based models such as less

sensitivity to image noise and a higher capability to detect weak boundaries (even without

boundaries) because they do not use the image gradient. Furthermore, global region-based

models are robust to initial contours which means the initial contour can start anywhere

in the image. One of the most successful region-based models is the piecewise constant

model [62] with the assumption that each image region is statistically homogeneous. It is,

however, limited to handle the image inhomogeneity problem which is then solved by the

82

third category using localized image information as constraints. One of the early works

is proposed by Li et al.[188] which defines a local weighted K-means model in the level

set formulation for both image segmentation and bias correction. The K-means clustering

objective function is integrated over the entire domain and incorporated into a variational

level set formulation. Later, Zhang et al.[189] presents a local image fitting (LIF) model

in the LS formulation, which minimizes the differences between the fitted image and the

original one. Wang et al.[193] proposes a local Gaussian distribution fitting (LGDF) model,

an improvement of the local binary fitting (LBF) model [188], which models the local image

intensities by Gaussian distributions with different means and variances.

Images in the wild are corrupted by large amount of problems such as strong noise, illu-

mination, various resolution, texture, and intensity inhomogeneity simultaneously. State-

of-the-art models (CV, LBF, LIF, LGDF, etc.) have failed to obtain high accurate seg-

mentation. Recently, many improved AC models have been proposed via introducing more

discriminative features [21], [194], [195]. Mukherjee and Acton [21] generalize the tradi-

tional Level Set model by representing the illumination of the regions of interest in a lower

dimensional subspace using a set of pre-specified basis functions. Using both global energy

term to characterize the fitting of global Gaussian distribution according to the intensities

inside and outside the evolving curve, as well as a local energy term to characterize the

fitting of local Gaussian distribution based on the local intensity information, Zhou et al.

[194] define a unified fitting energy framework based on Gaussian probability distributions

to obtain the maximum a posteriori probability (MAP) estimation. Lately, Ngo et al.[195]

combines deep learning and level set for the automated segmentation of the left ventricle

of the heart from cardiac cine magnetic resonance (MR) data. Multi-region segmentation

has been recently taken care. Dubrovina et al. [152] have developed a multi-region seg-

mentation with single LS function. However, Dubrobina et al’s approach is developed for

contour detection and needs good initialization, namely, it requires specify more initial

regions than it is expected to be in the final segmentation. Furthermore, the algorithm

83

requires that initial contours cover the image densely, specifically the initial contour has

to pass through all different regions. In addition to multi region segmentation problem,

optimization [19, 23, 131], and shape prior [22], have also been considered.

Most of the aforementioned classical unsupervised image segmentation approaches re-

quire some priori knowledge regarding the image data distribution or appropriate param-

eters to be operated upon.

3.2 Semantic Image Segmentation

Semantic segmentation refers to associating one of the classes to each pixel in an image.

This problem has played an important role in many research areas and has attracted

numerous studies recently when deep learning have become ubiquitous in semantic seg-

mentation with three main approaches, namely graphical model approaches, CNN-based

approaches and RNN-based approaches. Semantic instance segmentation is considered the

next step after semantic segmentation and at the same time the most challenging problem

in comparison with the rest of low-level pixel segmentation techniques. Its main purpose is

to represent objects of the same class splitted into different instances. The automation of

this process is no straight forward, thus the number of instances is initially unknown and

the evaluation of performed predictions is not pixel-wise such as in semantic segmentation.

Consequently, this problem remains partially unsolved but the interest in this field is mo-

tivated by its potential applicability. Instance labeling provides us extra information for

reasoning about occlusion situations, also counting the number of elements belonging to

the same class and for detecting a particular object for grasping in robotics tasks, among

many other applications.

84

3.2.1 Graphical model approaches

In the past, using traditional vision techniques, semantic segmentation was approached

from a undirected graphical model paradigm utilizing Markov Random Fields (MRF) and

Conditional Random Fields (CRF) [46, 48, 49, 196, 197]. Lately, He, et al. [46] proposes

contextual feature incorporated into CRF which combines the outputs of several compo-

nents i.e. image-label mapping, patterns within the label field, fine/coarse resolution pat-

terns. The context information is then continue studied under an auto-context algorithm

in [198]. The context information is learn via a discriminative probability maps which is

then applied to vision tasks and 3D Brain image segmentation. In contrast to much previ-

ous works on structured prediction, [48] directly trains a hierarchical inference procedure

inspired by the message passing mechanics of some approximate inference procedures in

graphical models. Later, [196] proposes nonparametric approach for object recognition and

scene parsing using label transfer and dense SIFT flow algorithm whereas as [197] utilized

k-nearest neighbors in a retrieval dataset to classify superpixels.

One of the first studies to utilize contextual information within the MRF framework is

proposed by [49]. Similar efforts have been made for using CRFs on unary and pairwise

image features [199]. Parametric and non-parametric techniques are also combined to

model global order dependencies to provide more information and context [1]. Higher

order dependencies are also modeled using a fully connected graph [200, 201]. One of

the recently works on graphical model is proposed by [32] which introduces a new form

of convolutional neural network that combines the strengths of CNNs and Conditional

Random Fields (CRFs)-based probabilistic graphical modelling to delineate visual objects.

This approach formulates mean-field approximate inference for the Conditional Random

Fields with Gaussian pairwise potentials as RNNs.

85

3.2.2 CNN-based approaches

In this section, we start review the CNN-based methods for semantic segmentation. Scene

labeling is a particular case of semantic segmentation. Then we comprehend the CNN-

based methods for semantic instance segmentation.

Semantic Segmentation

One of the first works on CNN-based semantic segmentation approaches is proposed by [59].

It uses a multiscale convolutional network trained from raw pixels to extract dense feature

vectors that encode regions of multiple sizes centered on each pixel. This work consists of

two components: multi-scale convolutional representation and graph-based classification.

To simultaneously detect and segment all instances of a category in an image, [202] proposes

SDS (Simultaneous Detection and Segmentation) approach which uses CNN to classify re-

gion proposals. Later, [31] proposes fully convolutional networks (FCNs) that take input of

arbitrary size and produce correspondingly-sized output with efficient inference and learn-

ing. It adapts classification networks to fully convolutional networks and transfers learned

representations to the segmentation task. It also defines a skip architecture that combines

semantic information from a deep, coarse layer with appearance information from a shal-

low, fine layer to produce accurate and detailed segmentations. Many works later that

make use of [31] are proposed later. Some works like [1, 39, 203, 204, 205, 206] archive

remarkable segmentation performance. [203] combines the responses at the final layer with

a fully connected CRF to overcome the poor localization problem of deep networks. [204]

proposes a method that achieves competitive accuracy but only requires easily obtained

bounding box annotation. The basic idea is to iterate between automatically generating

region proposals and training convolutional networks. These two steps gradually recover

segmentation masks for improving the networks, and vise versa. [205] studies the more chal-

lenging problem of learning CNNs for semantic image segmentation from either (1) weakly

86

annotated training data such as bounding boxes or image-level labels or (2) a combination

of few strongly labeled and many weakly labeled images, sourced from one or multiple

dataset. [206] introduces a purely feed-forward architecture mapping small image elements

(superpixels) to rich feature representations extracted from a sequence of nested regions of

increasing extent. These regions are obtained by zooming out from the superpixel all the

way to scene-level resolution. This approach exploits statistical structure in the image and

in the label space without setting up explicit structured prediction mechanisms, and thus

avoids complex and expensive inference. In order to mitigates the limitations of the existing

methods based on FCNs, [207] identifies detailed structures and handles objects in multiple

scales natural by integrating deep deconvolution network and proposal-wise prediction. The

deconvolution network is composed of deconvolution and unpooling layers, which identify

pixelwise class labels and predict segmentation masks. To dealing with long range context,

[1] introduce a global scene constraint to alleviate similar pixels they are indistinguishable

from local context. They estimate the global potential in a non-parametric framework.

For better global potential estimation, a large margin based CNN metric learning method

is proposed. The final pixel class prediction is performed by integrating local and global

beliefs. SegNet [39] consists of an encoder network, a corresponding decoder network fol-

lowed by a pixel-wise classification layer. The encoder network is topologically identical

to the 13 convolutional layers in the VGG16 network whereas the decoder is to map the

low resolution encoder feature maps to full input resolution feature maps for pixel-wise

classification. SegNet is developed upon the Caffe framework and evaluated on road scenes

and SUN RGB-D indoor scene segmentation tasks. Dilation Network [40] develops a new

CNNs module that is specifically designed for dense prediction. The presented module uses

dilated convolutions to systematically aggregate multiscale contextual information without

losing resolution. The architecture is based on the fact that dilated convolutions support

exponential expansion of the receptive field without loss of resolution or coverage. Also, to

solve the problem of dense prediction, DeepLab [208] uses atrous convolution to highlight

87

convolution with upsampled filters. Atrous convolution allows us to explicitly control the

resolution at which feature responses are computed within deep CNNs. Furthermore, they

propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple

scales. To improve the localization of object boundaries, they combine methods from deep

CNNs and probabilistic graphical models. Paying more attention on speed, CNN-based

network for mobile is another important research. Efficient neural network (ENet) [209]

is created specifically for tasks requiring low latency operation. ENet defines bottleneck

module as a combination of a 1 × 1 projection that reduces the dimensionality, a main

convolutional layer, and a 1× 1 expansion. Batch Normalization and PReLU [68] are used

between all convolutions. This network does not contain post-processing and bias term.

Different from other networks that use pooling indices in the last upsampling module, ENet

decoder max pooling is replaced with max unpooling, and padding is replaced with spatial

convolution without bias. ENet requires low latency operation which is up to 18× faster,

requires 75× less FLOPs, has 79× less parameters, and provides similar or better accuracy

to existing models.

Recently, [210] explores patch-patch context between image regions, and ”patch-background”

context. For learning from the patch-patch context, they formulate CRFs with CNN-

based pairwise potential functions to capture semantic correlations between neighboring

patches. Efficient piecewise training of the proposed deep structured model is then applied

to avoid repeated expensive CRF inference for back propagation. For capturing the patch-

background context, they use a network design with traditional multi-scale image input

and sliding pyramid pooling.

Semantic Instance Segmentation

Semantic instance segmentation is considered the next step after semantic segmentation

and at the same time it is the most challenging problem in comparison with the rest

of low-level pixel segmentation techniques. Its main purpose is to represent objects of

88

the same class splitted into different instances. The automation of this process is no

straight forward, thus the number of instances is initially unknown and the evaluation of

performed predictions is not pixel-wise such as in semantic segmentation. Consequently,

this problem remains partially unsolved but the interest in this field is motivated by its

potential applicability. Instance labeling provides us extra information for reasoning about

occlusion situations, also counting the number of elements belonging to the same class

and for detecting a particular object for grasping in robotics tasks, among many other

applications.

For this purpose, Hariharan et al. [26] proposed a Simultaneous Detection and Segmen-

tation (SDS) method in order to improve performance over already existing works. Their

pipeline uses, firstly, a bottom-up hierarchical image segmentation and object candidate

generation process called Multi-scale Combinatorial Grouping (MCG) [211] to obtain re-

gion proposals. For each region, features are extracted by using an adapted version of the

Region-CNN (R-CNN)[30], which is fine-tuned using bounding boxes provided by the MCG

method instead of selective search and also alongside region foreground features. Then,

each region proposal is classified by using a linear Support Vector Machine (SVM) on top

of the CNN features. Finally, and for refinement purposes, Non-Maximum Suppression

(NMS) is applied to the previous proposals. Later, Pinheiro et al. [212] present DeepMask

model, an object proposal approach based on a single convolutional network. This model

predicts a segmentation mask for an input patch and the likelihood of this patch for contain-

ing an object. The two tasks are learned jointly and computed by a single network, sharing

most of the layers except last ones which are task- specific. In their system, the discrimina-

tive convolutional network is used to generate object proposals. Given an image patch, the

training objective function includes two tasks, i.e. class-agnostic segmentation and likeli-

hood of the patch being centered on a full object. Based on the DeepMask architecture as

a starting point due to its effectiveness, the same authors presented a novel architecture

for object instance segmentation implementing a top-down refinement process [213] and

89

achieving a better performance in terms of accuracy and speed. The goal of this process

is to efficiently merge low-level features with high- level semantic information from upper

network layers. The process consisted in different refinement modules stacked together (one

module per pooling layer), with the purpose of inverting pooling effect by generating a new

upsampled object encoding. Another approach, based on Fast R-CNN as a starting point

and using DeepMask object proposals instead of Selective Search is presented by Zagoruyko

et al [214]. This combined system called MultiPath classifier, improved performance over

COCO dataset and supposed three modifications to Fast R-CNN: improving localization

with an integral loss, provide context by using foveal regions and finally skip connections

to give multi-scale features to the network. The system achieved a 66% improvement over

the baseline Fast R-CNN. One of the notable networks which is proposed by [29] presents

multi-task network cascades (MNC) model. MNC consists of three networks, respectively

differentiating instances, estimating masks, and categorizing objects. These networks form

a cascaded structure, and are designed to share their convolutional features. The model is

designed for the nontrivial end-to-end training of this causal, cascaded structure. It inherits

all the merits of FCNs for semantic segmentation [31] and instance mask proposal [29] [29]

proposes Fully Convolutional Instance Segmentation (FCIS) for instance-aware semantic

segmentation task. FCIS detects and segments the object instances jointly and simulta-

neously. By introducing the position-senstive inside/outside score maps, the underlying

convolutional representation is fully shared between the two sub-tasks, as well as between

all regions of interest. Mask R-CNN [215] is a conceptually simple, flexible, and general

framework for object instance segmentation. This approach efficiently detects objects in an

image while simultaneously generating a high-quality segmentation mask for each instance.

Mask R-CNN extends Faster R-CNN by adding a branch for predicting an object mask

in parallel with the existing branch for bounding box recognition. Recently, Hayder et al.

[216] also addresses the problem of instance-level semantic segmentation that they cannot

recover from errors in the object candidate generation process, such as too small or shifted

90

boxes. The authors introduce a novel object segment representation based on the distance

transform of the object masks. They then designed an object mask network (OMN) with

a new residual-deconvolution architecture that infers a representation and decodes it into

the final binary object mask. This allows to predict masks that go beyond the scope of the

bounding boxes and are thus robust to inaccurate object proposal boxes. However, this

work does not tackle bounding box issue directly and the model is actually required a post-

processing stage to obtain refined bounding box. By extending the pixel-level feature to

the specially designed global pyramid pooling, [44] proposes pyramid scene parsing network

(PSPNet) to improve the traditional dilated FCNs [40]. In PSPNet model, they develop

an effective optimization strategy for deep ResNet based on deeply supervised loss. Given

an input image, CNN is applied to get the feature map of the last convolutional layer then

a pyramid parsing module is applied to harvest different sub-region representation. This is

followed by upsampling and concatenation layers to form the final feature representation,

which carries both local and global context information. Finally, the representation is fed

into a convolution layer to get the final per-pixel prediction. The successful DenseNet,

which has shown excellent results on image classification tasks, is extended to semantic

segmentation by [217] by adding an upsampling path to recover the full input resolution.

This network is built from dense blocks with two main paths, i.e. downsampling path

with 2 Transitions Down (TD) and an upsampling path with 2 Transitions Up (TU). The

network can be seen as a combination of DenseNet and FCNs.

3.2.3 RNN-based approaches

RNNs have been successfully applied to wide variety of tasks, including in speech process-

ing [218], natural language processing [219] and lately in image processing [220]. [53] is one

of the first works that uses the recurrent architecture to parse the scene with a smoother

class annotation. [53] consists of a recurrent convolutional neural network which allows

91

to consider a large input context while limiting the capacity of the model. Contrary to

most standard approaches, their method does not rely on any segmentation technique nor

any task specific features. Later, [32] introduces a new form of convolutional neural net-

work that combines the strengths of CNNs and Conditional Random Fields (CRFs)-based

probabilistic graphical modelling to delineate visual objects. This approach formulates

mean-field approximate inference for the Conditional Random Fields with Gaussian pair-

wise potentials as RNNs. Investigating two dimensional (2D) LSTM networks for natural

scene images takes into account the complex spatial dependencies of label was proposed

by [3]. The networks efficiently capture local and global contextual information over raw

RGB values and adapt well for complex scene images. To learn the spatial dependencies

between image regions to enhance the discriminative power of image representation, [221]

proposes the convolutional recurrent neural network (C-RNN). The C-RNN is trained in

an end-to-end manner from raw pixel images. CNN layers are firstly processed to generate

middle level features. RNN layer is then learned to encode spatial dependencies. To exploit

the local generic features extracted by CNNs and the capacity of RNNs to retrieve dis-

tant dependencies, [52] proposes a structured prediction architecture, called ReSeg which

is based on the recently introduced ReNet [222] model for image classification. In this

network, each ReNet layer is composed of four RNNs that sweep the image horizontally

and vertically in both directions, encoding patches or activations, and providing relevant

global information. Moreover, ReNet layers are stacked on top of pre-trained convolu-

tional layers, benefiting from generic local features. Upsampling layers follow ReNet layers

to recover the original image resolution in the final predictions. To handle the issue of

exploiting the context information of an image , [2] explores multi-level contextual re-

current neural networks (ML-CRNNs) which encodes three kinds of contextual cues, i.e.,

local context, global context and image topic context in structural recurrent neural net-

works (RNNs). Applying CNNs to large images is computationally expensive because the

amount of computation scales linearly with the number of image pixels, [223] presents a

92

RNN model that is capable of extracting information from an image or video by adap-

tively selecting a sequence of regions or locations and only processing the selected regions

at high resolution Like CNNs, the proposed model has a degree of translation invariance

built-in, but the amount of computation it performs can be controlled independently of

the input image size. It is well known that contextual and multi-scale representations are

important for accurate visual recognition, [224] presents the Inside-Outside Net (ION), an

object detector that exploits information both inside and outside the region of interest.

Contextual information outside the RoI is integrated using spatial RNNs. They use skip

pooling to extract information inside the RoI at multiple scales and levels of abstraction.

Combining local generic features extracted by CNNs and the capacity of RNNs to retrieve

distant dependencies is proposed in ReSeg [225]. ReSeg modifies and extends the image

classification ReNet to perform the more challenging task of semantic segmentation. Each

ReSeg layer is composed of four RNNs that sweep the image horizontally and vertically in

both directions, encoding patches or activations, and providing relevant global information.

Moreover, ReSeg layers are stacked on top of pre-trained convolutional layers, benefiting

from generic local features. Upsampling layers follow ReSeg layers to recover the original

image resolution in the final predictions.

Summary of CNN-based semantic segmentation methods is given in Table .3.1 whereas

the summary of RNN-based semantic segmentation is given in Table. 3.2.

Table 3.1: Summary of highlight CNN-based semantic segmentation methods

Method Network Summary

SDS [202] R-CNN

Simmultaneous detection and segmentation

7 point boost (16% relative) over baseline

5 point boost (10% relative) over state-of-the art

93

FCNs [31] VGG-16

Fully convolutional networks

First end-to-end network recover the resolution

PASCAL VOC: 62.2% mean IoU

NYUDv2: 34% meanIoU

SiFT Flow: 39.5% mean IoU

SegNet [39] VGG-16

Encoder-Decoder

Encoder is identical to VGG16

Decoder uses pooling indices

to perform non-linear upsampling

CamVid11: 60.1 meanIoU

SUNRGB-D: 31.84% meanIoU

DilationNet [40] VGG-16

Use dilated convolutions

Aggregate multi-scale information

without losing resolution

PASCAL VOC 2012: 67.6% meanIoU

Bayesian SegNet [41] VGG-16

Monte Carlo sampling with dropout

to generate a posterior distribution

Dropout is to form a probabilistic

encoder-decode architecture

CamVid11: 63.1% meanIoU

SUN RGB-D: 30.7% meanIoU

NYUv2: 32.4% meanIoU

94

DeepLab [42]
VGG-16

ResNet-101

Atrous convolution control the resolution

ASPP to segment object at multiple scales

Combine DCNN & probabilistic graphical model

to improve localization

PASCAL VOC2012: 79.9 % meanIoU

Pascal Context (VGG-16) 37.6%-39.6%meanIoU

Pascal Context (ResNet-101): 39.6%-45.7%meanIoU

Pascal-Person (ResNEt-101): 58.9%-62.76% meanIoU

Cityscapes: 70.4%meanIoU

DeepMask [43] VGG-A

Generate proposals for segmentation

MS-COCO: 0.126 AR@10

PASCAL 2007: 0.337 AR@10

UNet [226] FCN

Reply on the strong use of data augmentation

Particular designed for medical images

Won cell tracking challenging 2015

Implemented on Caffe

ENet [209] ENet bottleneck

Propose bottlenet model for efficiency

Real time application

NVIDIA TX1: 14.6 fps(640x360)

NVIDIA Titan X: 135.4 fps(640x360)

Cityscapes: 58.3% Class IoU,

CamVid: 51.3% Class IoU

SunRGB-D: 19.7% meanIoU

95

PSP [44]
FCN

Resnet

Use Resnet50 as baseline

ImageNet scene 2016: 57.2% (meanIOU, Pixel Acc)

PASCAL VOC 2012: 82.6% accuracy

Cityscapes: 78.4/80.2% Class meanIoU

FCIS [45]
FCN

Resnet

Inherit the merits of FCNs

for semantic instance segmentation

Introduce position-senstive inside/outside

PASCAL VOC 2012: 65.7% mAP r@0.5

MS-COCO: 49.5mAP r@0.5

Table 3.2: Summary of highlight RNN-based semantic segmentation methods

Method Network Summary

RCNN [227]
CNNs

RNN

End-to-end trainable on raw pixel

Low computational compplectity

Run on CPU

CNNs & RNN are trained separately

Stanford Background:79.8 %/ 69.3% (Pixel/Class Acc)

SiftFlow: 77.7%/29.8% (Pixel/Class Acc)

2D-LSTM [32] LSTM

4 LSTM blocks scanning all directions of an image

Low computational complexity (155K parameters)

no pre- or post-processing is applied

Stanford Background: 78.56%/68.79% (Pixel/Class Acc)

SiftFlow: 70.11%/20.9%(Pixel/Class Acc)

96

ReSeg [52]

ReNet

FCN

GRU

Built on top of ReNet CNNs

Vertical RNNs is applied first and then Horizontal RNNs

CNNs & RNN are trained separately

Weizmann Horses:91.6% meanIoU

Oxford Flowers: 93.7% meanIoU

CamVid: 58.8% meanIoU

DAG-RNN [56]
VGG-16

RNN

UCG is used to model the interactions

Deconvolution is trained separated

CamVid: 91.6%/78.1%(Global/Class Acc)

Barcelona: 74.6%/24.6%(Global/Class Acc)

SiftFlow: 85.3%/55.7%(Global/Class Acc)

3.3 Common datasets

In this section, we describe the most popular large-scale datasets currently in use for

elvaluating the semantic segmentation systems. Table 3.3 shows a summarized view,

gathering all their properties including number of classes, type, resolution and train-

ing/validation/testing splits. Based on the purpose, the datasets are divided into three

categories corresponding to generic, outdoor and urban-driving.

3.3.1 Generic datasets

Semantic Boundaries Dataset (SBD)

SBD [228] is an extended version of the PASCAL VOC 2011. This dataset provides seman-

tic segmentation ground truth for those images that are not labelled in VOC. It contains

97

annotations for 11,355 images from PASCAL VOC 2011. In additional to boundary, the

dataset also provides ground truth for both category-level and instance-level. Since the

images are obtained from the whole PASCAL VOC challenge, the training and validation

splits diverge. In fact, SBD provides its own 11,355 images which splits into 8,498 images

for training and 2,857 images for validation. Due to its increased amount of training data,

this dataset is often used as a substitute for PASCAL VOC for deep learning.

PASCAL Visual Object Classes (VOC)

PASCAL VOC [24] consists of a ground-truth annotated dataset of images drawn from

different versions, namely, PASCAL VOC 2005, PASCAL VOC 2006, PASCAL VOC 2007,

PASCAL VOC 2008, PASCAL VOC 2009, PASCAL VOC 2010, PASCAL VOC 2011,

PASCAL VOC 2012 for various purposes: classification, detection, segmentation, action

classification, and person layout. In the scope of this thesis, PASCAL VOC 2012 is used

for evaluating and named PASCAL VOC for short. There are 20 classes (+1 background)

categorized into vehicles, household, animals, and other: aeroplane, bicycle, boat, bus, car,

motorbike, train, bottle, chair, dining table, potted plant, sofa, TV/monitor, bird, cat, cow,

dog, horse, sheep, and person. Background is also considered if the pixel does not belong to

any of those classes. The 2012 dataset contains images from 2008-2011 for which additional

segmentations have been prepared. As in previous years, the assignment to training/test

sets has been maintained. Between 2008 and 2012 the total number of images (objects) in

the main dataset more than doubled from 4,332 images (12,684 objects) to 11,540 images

(31,561 objects). The total number of images with segmentation has been increased from

2011. The dataset is divided into two subsets: training and validation with 1,464 images

for training and 1,449 images for validation respectively. The test set is private for the

challenge. This dataset is arguably the most popular for semantic segmentation so almost

every remarkable method in the literature is being submitted to its performance evaluation

server to validate against their private test set. Methods can be trained either using only

98

the dataset or either using additional information.

PASCAL Context

PASCAL Context [229] is an extension of the PASCAL VOC 2010 dataset for detection

challenge. It goes beyond the original PASCAL semantic segmentation task by providing

annotations for the whole scene. This dataset contains 10,103 images with pixel-wise labels

for training and 9,637 images for testing with a total of 540 classes including the original 20

classes plus background from PASCAL VOC segmentation divided into three categories

(objects, stuff, and hybrids). Since the dataset follows a power law distribution, there are

many sparse classes. In practical, only the 59 most frequent are remarkable and is usually

selected to conduct studies on this dataset, relabeling the rest of them as background.

PASCAL Part

PASCAL Part [230] is an extension of the PASCAL VOC 2010 dataset for detection chal-

lenge. This dataset goes beyond the original PASCAL VOC object detection task by

providing segmentation masks for each body part of the object. For categories that do

not have a consistent set of parts (e.g., boat), it provides the silhouette annotation. The

original classes of PASCAL VOC are kept, but their parts are introduced, e.g., bicycle

is now decomposed into back wheel, chain wheel, front wheel, handlebar, headlight, and

saddle. It contains labels for all 10,103 images for training and validation images from

PASCAL VOC as well as for the 9,637 testing images.

Microsoft Common Objects in Context (COCO)

MS COCO [25] is another image recognition, segmentation, and captioning large-scale

dataset. It features various challenges, being the detection one the most relevant for this

field since one of its parts is focused on segmentation. MS COCO is splitted into two equal

parts: the first half of the dataset was released in 2014, the second half will be released

99

in 2015. The MS COCO 2014 contains 82,783 training, 40,504 validation, and 40,775

testing images. The 2014 dataset is annotated with 80 classes (+1 background). There

are nearly 270k segmented people and a total of 886k segmented object instances in the

MS COCO 2014 train+val data alone. The cumulative 2015 release will contain a total

of 165,482 train, 81,208 val, and 81,434 test images. In particular, the test set is divided

into four different subsets or splits: test-dev (20,000 images) for additional validation,

debugging, test-standard (20,000 images) is the default test data for the competition and

the one used to compare state-of-the-art methods, test challenge (20,000 images) is the split

used for the challenge when submitting to the evaluation server, and test-reserve (20,000

images) is a split used to protect against possible overfitting in the challenge (if a method

is suspected to have made too many submissions or trained on the test data, its results will

be compared with the reserve split). Its popularity and importance has ramped up since

its appearance thanks to its large scale. The new release MS COCO 2017 contains pixel-

level segmentation of object belonging to 80 categories, keypoint annotations for person

instances, stuff segmentations for 91 categories, and five image captions per image. The

challenges in this dataset are (1) object detection with bounding boxes and segmentation

masks, (2) joint detection and person keypoint estimation, and (3) stuff segmentation.

3.3.2 Urban - driving

Cityscape

Cityscape [231] is a large-scale database which focuses on semantic understanding of urban

street scenes. It provides semantic, instance-wise, and dense pixel annotations for 30

classes grouped into 8 categories, i.e. flat surfaces (road, sidewalk, parking, rail track) ,

humans (person, rider), vehicles (car, truck, bus, on rails, motorcycle, bicycle, caravan,

trailer), constructions (building, wall, fence, guard rail, bridge, tunnel), objects (pole, pole

group, traffic sign, traffic light) , nature (vegetation, terrain), sky (sky), and void (ground,

100

dynamic, static). The dataset consist of around 5,000 fine annotated images and 20,000

coarse annotated ones. Data was captured in 50 cities during several months, daytimes, and

good weather conditions. It was originally recorded as video so the frames were manually

selected to have the following features: large number of dynamic objects, varying scene

layout, and varying background.

CamVid

Camvid dataset [232] is a road/driving scene understanding database which was originally

captured as five video sequences with a 960 × 720 resolution camera mounted on the

dashboard of a car. Those sequences are sampled (four of them at 1 fps and one at 15

fps) adding up to 701 frames. This dataset has been originally designed for the problem

of automated driving vehicle. This sequence depicts a moving driving scene in the city

of Cambridge filmed from a moving car. It is a challenging dataset since, in addition

to the car ego-motion, other cars, bicycles and pedestrians have their own motion and

they often occlude one another. This data is manually annotated with 32 classes: void,

building, wall, tree, vegetation, fence, sidewalk, parking block, column/pole, traffic cone,

bridge, sign, miscellaneous text, traffic light, sky, tunnel, archway, road, road shoulder, lane

markings (driving), lane markings (non-driving), animal, pedestrian, child, cart luggage,

bicyclist, motorcycle, car, SUV/pickup/truck, truck/bus, train, and other moving object.

In most of the research work, 11 common classes are used, i.e. building, tree, sky, car, sign,

road, pedestrian, fence, pole, sidewalk, and bicyclist.

KITTI

KITTI dataset [233] is one of the most popular datasets for use in mobile robotics and

autonomous driving. The tasks of interest are tereo, optical flow, visual odometry, 3D

object detection and 3D tracking. It consists of hours of traffic scenarios recorded with a

variety of sensor modalities, including high resolution RGB, grayscale stereo cameras, and

101

a 3D laser scanner. Despite its popularity, the dataset itself does not contain ground truth

for semantic segmentation. However, various researchers have manually annotated parts of

the dataset to fit their necessities. Up to 15 cars and 30 pedestrians are visible per image

which is captured by driving around the mid-size city of Karlsruhe, in rural areas and on

highways. Ros et al. [234] labeled 170 training images and 46 testing images (from the

visual odometry challenge) with 11 classes: building, tree, sky, car, sign, road, pedestrian,

fence, pole, sidewalk, and bicyclist.

3.3.3 Outdoor Scene Datasets

Stanford background

Stanford dataset [235] contains outdoor scene images imported from existing public datasets:

LabelMe, MSRC, PASCAL VOC and Geometric Context. The dataset contains 715 im-

ages (size of 320 × 240 pixels) with at least one foreground object and having the horizon

position within the image. The dataset is pixel-wise annotated (horizon location, pixel se-

mantic class, pixel geometric class and image region) for evaluating methods for semantic

scene understanding.

SiftFlow

Siftlow dataset [236] contains 2,688 fully annotated images which are a subset of the La-

belMe database. Most of the images are based on 8 different outdoor scenes including

streets, mountains, fields, beaches and buildings. Images are 256 × 256 belonging to one

of the 33 semantic classes. Unlabeled pixels, or pixels labeled as a different semantic class

are treated as unlabeled.

102

Table 3.3: Summary of the most popular large-scale datasets used for evaluating the performance
of semantic segmentation

Datasets Year Classes Type Resolution Training Validation Testing

SBD [228] 2011 21 Generic Variable 8,498 2,857 N/A
PASCAL VOC 2012 [24] 2012 21 Generic Variable 1,464 1,449 N/A
PASCAL-Context [229] 2014 540 Generic Variable 10,103 N/A 9,637
PASCAL-Part [237] 2014 20 Generic Variable 10,103 N/A 9,637
MS COCO [25] 2014 81 Generic Variable 82,783 40,504 81,434
Cityscapes-FINE [231] 2015 30 Urban 2048x1024 2,975 500 1,525
Cityscapes-COARSE [231] 2015 30 Urban 2048x1024 22,973 500 N/A
Camvid [232] 2009 32 Urban 960x720 701 N/A N/A
Camvid - Sturgess [238] 2009 11 Urban 960x720 367 100 233
KITTI-LAYOUT [233] 2012 3 Urban Variable 323 N/A N/A
KITTI-ROSS [234] 2015 11 Urban Variable 170 N/A 46
Standford [235] 2009 8 Scene 320x240 725 N/A N/A
Siftflow [236] 2011 33 Scene 256x256 2,688 N/A N/A

103

Chapter 4

Contextual Recurrent Level Set

(CRLS) Networks

4.1 Introduction

Variational Level Set (LS) has been a widely used method in medical segmentation. How-

ever, it is limited when dealing with multi-instance objects in the real world. In addition,

its segmentation results are quite sensitive to initial settings and highly depend on the

number of iterations. To address these issues and boost the classic variational LS methods

to a new level of the learnable deep learning approaches, we propose a novel definition

of contour evolution named Recurrent Level Set (RLS) to employ Gated Recurrent Units

under the energy minimization of a variational LS functional. The curve deformation pro-

cess in RLS is formed as a hidden state evolution procedure and updated by minimizing

an energy functional composed of fitting forces and contour length. By sharing the convo-

lutional features in a fully end-to-end trainable framework, we extend RLS to Contextual

RLS (CRLS) to address semantic segmentation in the wild. The experimental results

have shown that our proposed RLS improves both computational time and segmentation

accuracy against the classic variational LS-based method whereas the fully end-to-end sys-

104

tem CRLS achieves competitive performance compared to the state-of-the-art semantic

segmentation approaches.

To the best of our knowledge, this is the first study on formulating LS-based method

under a learnable framework. The main contributions of our work can be summarized as

follows:

• Bridging the gaps between two unconnected areas: the pure image processing varia-

tional LS methods and learnable deep neural networks approaches.

• Proposing a new formulation of curve evolution under an end-to-end deep learning

framework by reforming the optimization process of CLS as a current network, named

RLS.

• The proposed RLS framework is formed as a building block which is easily incorpo-

rated with other existing deep modules to provide a robust deep semantic segmenta-

tion, named CRLS.

In this chapter, we first introduce the proposed RLS which partitions an image into fore-

ground and background segments. Before detailing the RLS learning and inference, we

study the coherency between CLS and RNNs/GRU. We then describe how to extend RLS

to CLRLS to solve the problem of semantic instance segmentation.

4.2 Recurrent Level Set (RLS)

4.2.1 Relationship between RNNs/GRUs and CLS

In order to reformulate CLS into a deep learning framework, we first study how CLS

communicates with a RNNs/GRUs framework. For convenience, we first use the simple

form of RNNs to study the correlation between deep learning and CLS. The unfolding in

time of the computation involved in its forwards procedure of both RNNs (upper) and CLS

(lower) is given in Fig. 4.1. It is easy to see that they both are time sequence process.

105

Δ𝜙𝑛 =
𝜕𝜙𝑛

𝜕𝑡

𝜙𝑛 + 1 =
𝜙𝑛 + 𝜂Δ 𝜙𝑛

𝜙0
Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡

…
𝜙0 𝜙1

𝜙𝑛𝜙2

CLS

ℎ0

𝑊 𝑊 𝑊

…

𝑈

𝑉

𝑈

𝑉

𝑈

𝑉

𝑊

𝑊

𝑥

𝑈

𝑉

𝑜
RNN

ℎ0
ℎ1 ℎ2 ℎ𝑛 + 1

𝑥0

𝑜0 𝑜1 𝑜𝑛

𝑥1 𝑥𝑛

𝐼

Figure 4.1: The unfolding in time of the computation involved in its forwards procedure of
RNNs (upper) and CLS (lower)

However, the updating rule, input and output of each model are different.

To reformulate Level Set under a RNNs/GRUs deep framework, we need to solve the

following problems:

• Input: How to generate a sequential data xt from a single image I if we treat φt in

CLS as hidden state ht in RNNs with the same updating manner?

• Output: In the segmentation problem by CLS, the binary mask corresponding to

foreground and background is computed by one forward process with many iterations

whereas the RNNs is computed by forward procedure and learnt by backward proce-

dure. How to compute the error and perform backward procedure in CLS framework?

• Update Rule: Does the update rule in CLS work in the same fashion as the forward

procedure in RNNs/GRUs deep framework?

The aforementioned questions will be answered in our proposed RLS which is detailed

in the following subsection.

106

Table 4.1: Comparison between CLS, GRUs and our proposed RLS

Input Update Output

CLS
Image I
Initial LS function φ0

φt+1 = φt + η ∂φt
∂t

∂φt
∂t

= δε(φt[νκ(φt − µ
λ1(I− c1)2 + λ2(I− c2)2])

φN

GRUs
Sequence x1, x2, ...xN
Initial hidden state h0

zt = f(Uzxt + Wzht−1)
rt = f(Urxt + Wrht−1)

h̃t = h(Uhxt + Wh(ht−1 ◦ rt))

ht = (1− zt)ht−1 + zth̃t
h: Tanh
f : Sigmoid or Tanh

G(VhN)
G: softmax

RLS
Image I
Initial LS function φ0

xt = κ(φt−1 −Ug(I− c1)2 + Wg(I− c2)2)
zt = σ(Uzxt + Wzφt−1 + bz)
rt = σ(Urxt + Wrφt−1 + br)

h̃t = h(Uyxt + Wy (φt−1 ◦ rt) + by)

φt = (1− zt)φt−1 + zth̃t
h: Tanh
σ: Sigmoid

G(VφN + bV)
G: softmax

4.2.2 Proposed Recurrent Level Set (RLS)

In this section, we take the classical variational LS (CLS) evolution introduced by [62] as

an instance to demonstrate the idea of how to reformulate LS as an end-to-end trainable

recurrent framework, named RLS. However, the proposed RLS can be applied to reform any

LS approach once it successfully reforms CLS model because they share similar properties

of curves moving over time. In our proposed RLS approach, the recurrent units work in

the same fashion as GRUs.

As shown in Table 4.1, the first difficult part of reformulating CLS as recurrent network

is data configuration. RNNs work on sequential data while both the input and the output

of the CLS approach are single images. The critical question is how to generate sequence

data from a single image. Notably, there are two inputs used in CLS, i.e. an input image

I and an initial LS function φ0, which is updated by Eq. (2.65). In our proposed RLS, we

need to generate a sequence data xt (t = 1, · · · , N) from single image I. In order to achieve

this goal, we define a function g(I, φt−1) as in Eq. (4.1).

107

xt = g(I, φt−1) = φt−1 + η
[
κ(φt−1)−Ug(I− c1)2 + Wg(I− c2)2

]
(4.1)

In Eq. (4.1), c1 and c2 are average values of inside and outside of the contour presented

by the LS function φt−1 and defined in Eq. (2.64). κ denotes the curvature and defined in

Eq. (2.63). Ug and Wg are two matrices that control the force inside and outside of the

contour.

Clearly, during the curve evolution, the input at iteration tth, xt, is updated based on

the input image I and the previous LS function φt−1 which is in the same fashion as in

LS and defined by Eq. (2.62). In our proposed RLS, xt is considered to be input sequence

whereas LS function φt is treated as hidden state. Notably, the initial LS function plays

the role as initial hidden state. The relationship between I, xt, and φt are given in Fig.

4.2.

…

Input I

𝜙1 𝜙𝑛

x0 x1
xn𝑔𝑔 𝑔

𝜙0 𝜙2
𝜙𝑛

+
1

Figure 4.2: The visualization of generating sequence input data xt and hidden state φt from
the input image I and the initial LS function φ0

So far, we have answered the question of generating input sequence from the single

image I. That means we use the same input as defined in LS problem, namely, the input

image I and the initial φ0. From the input, we are able to generate sequential data xt.

The next important task is generating the hidden state φt from the input data xt and

the previous hidden state φt−1. Under the same intuition of proposing GRUs [128], the

procedure of generating hidden state φt is based on the updated gate zt, the candidate

108

memory content h̃t and the previous activation unit φt−1 as the rule given in Eq. (4.2).

φt = zth̃t + (1− zt)φt−1 (4.2)

The update gate zt, which controls how much of the previous memory content is to be

forgotten and how much of the new memory content is to be added is defined as in Eq. (4.3).

zt = σ(Uzxt + Wzφt−1 + bz) (4.3)

where σ is a sigmoid function and bz is the update bias. The RLS, however, does not have

any mechanism to control the degree to which its state is exposed, but exposes the whole

state each time. The new candidate memory content yt is computed. as in Eq. (4.4).

h̃t = tanh(Uh̃xt + Wh̃(φt−1 � rt) + bh̃) (4.4)

where � denotes an element-wise multiplication, bh̃ is the hidden bias. The reset gate rt

is computed similarly to the update gate as in Eq. (4.5).

rt = σ(Urxt + Wrφt−1 + br) (4.5)

where br is the reset bias. When rt is close to 0 (off), the reset gate effectively makes the

unit act as if it is reading the first symbol of an input sequence, allowing it to forget the

previously computed state. The output o is computed from the current hidden states φt

and then a softmax function is applied to obtain foreground/background segmentation ŷ

given the input image as follows:

109

ŷ =softmax(o)

o =Vφt + bV

(4.6)

where V is weighted matrix between hidden state and output. The proposed RLS model

is trained in an end-to-end framework and its learning processes of the forward pass and

the backward propagation are described as follows.

The proposed RLS in folded mode is given in Fig. 4.3 (left) where the input of the

network is defined as the same as the CLS model, namely, an input image I and an initial

LS function φ0. The LS function is initialized in a similar fashion as in [62] via checkerboard

function . In our proposed RLS, the curve evolution from φt−1 at time t−1 to the next step

φt at time t is designed in the same fashion as the hidden state in GRUs and is illustrated

in Fig. 4.3 (right) where φt depends on both φt−1 and the input xt. We have summarized

CLS, GRUs and our proposed RLS in Table 4.1. It is easy to see that RLS shares the same

input as CLS while updating procedure and output in the proposed RLS follows similar

fashion as in GRUs. With such design, the next parts show how to train the proposed

RLS.

4.2.3 RLS Learning

The Back Propagation Through Time (BPTT) method is used to train the parameter set

θ = { Ug, Wg, Uz, Wz, Ur, Wr, Uh̃, Wh̃,V } and propagate error backward through

time1. We apply RMS-prop [239] with momentum ρm = 0.9. This optimizer minimizes the

following cross entropy loss function.

L1(ŷ,y, θ) = −
N∑

n=1

K∑

k=1

ynklog(ŷnk) (4.7)

1The derivatives of all parameters are detailed in Appendix

110

Element-wise product

Weighted connection/input

Forward flow

𝜙𝑡
𝜙0

Input − 𝐈

Output − 𝐎 𝜙𝑡−1

Input − 𝐈

𝑔

𝑟𝑡

 ℎ𝑡

𝑥𝑡 𝑧𝑡

𝜙𝑡

1 − 𝑧𝑡 𝑧𝑡

Figure 4.3: The proposed RLS network for curve updating process under the sequential evolution
and its forward computation of curve evolution from time t− 1 to time t.

Level Set

GRU

...

...

𝜙0

𝜙1

𝜙0 𝜙1

𝜙𝑛

𝐱0 𝐱1 𝐱𝑛−1

𝐈

GRU
GRU

Figure 4.4: The unfolding of the proposed RLS network for curve updating process under
recurrent fashion.

where N is the number of pixels, K is the number of classes (K = 2), since we only segment

foreground/background. ŷnk is our predictions, and ynk is the ground truth. The gradients

111

Algorithm 3 The proposed building block RLS

Input: Given an image I, an initial level set function φ0, time step N , learning rate η,
initial parameters θ = (Uz, Wz, bz, Ur, Wr, br Uh̃, Wh̃, bh̃, V, bV)
for each epoch do

Set φ = φ0

for t = 1 : T do
Generate RLS input xt: xt ← g(I, φt−1)
Compute update gate zt, reset gate rt and intermediate hidden unit h̃t:
zt ← σ(Uzxt + Wzφt−1 + bz)
rt ← σ(Urxt + Wrφt−1 + br)
h̃t ← tanh(Uh̃xt + Wh̃ (φt−1 ◦ rt) + bh̃)

Update the zero LS φt: φt ← (1− zt)h̃t + ztφt−1

end for
Compute the loss function L: L← −∑n ynlogŷn
Compute the derivate w.r.t. θ: ∇θ ← ∂L

∂θ

Update θ: θ ← θ + η∇θ
end for

of the error with respect to our parameters are learned using Stochastic Gradient Descent

(SGD) and the chain rule of differentiation. Normalized and smoothed gradients of similar

size for all weights are used such that even weights with small gradients get updated. This

also helps to deal with vanishing gradients. We train our model using a decaying learning

rate starting from η = 10−3 and dividing by half every 200 epochs asymptotically toward

η = 105 for 5000 epochs in total.

We summarize the proposed building block RLS in Algorithm 3. Unfolding in time of

RLS under recurrent fashion is given in Fig. 4.4 where the output from GRUs component

plays as the input of LS component and the output from LS component is the input of

GRUs component.

4.3 Contextual Recurrent Level Sets (CRLS)

The proposed RLS described in the previous section performs the image segmentation task,

i.e. dividing an image into two parts corresponding foreground and background segments.

112

Given a real-world image, RLS however performs neither the instance segmentation nor

image understanding which are significant tasks in many computer vision application. In

order solve this requirement, we introduce Contextual Recurrent Level Sets (CRLS) for

semantic object segmentation which is an extension of our proposed RLS model to address

the multi-instance object segmentation in the wild. The proposed CRLS is able to (1)

localize objects existing in the given image; (2) segment the objects out of the background;

(3) classify the objects in the image. The output of our CRLS is multiple values (each value

is corresponding to one object class) instead of two values (foreground and background)

as in RLS. The entire proposed CRLS modle is first introduced in Sec.4.3.1. Inference and

training process are then described in Sec.4.4.

4.3.1 Model constructing

Our proposed CRLS inherits the merits of RLS and Faster-RCNN [100] for semantic seg-

mentation which simultaneously performs three tasks which are addressed by three stages,

i.e. detection, segmentation and classification in a fully end-to-end trainable framework as

shown in Fig. 4.5. In our CRLS, the network takes an image of arbitrary size as the input,

and outputs instance-aware semantic segmentation results. The network contains three

components corresponding three stages of a semantic instance segmentation: object detec-

tion for proposing box-level, object segmentation is for mask-level and object classification

is for catergorizing each instance . These three stages are designed to share convolutional

features. Each stage involves a loss term and the loss of later stage relies on the output

of an predecessor stage, so the three loss terms are not independent. We train the entire

network end-to-end with a unified loss function.

113

For each ROI

Object classificationObject segmentationObject detection

RPN

Conv + Pooling layers

Conv1
Conv2

Conv3

Conv4

Conv5

Co

person
person

dog

Conv

FC

Shared features

Warping ROI

…

Figure 4.5: The flowchart of our proposed CRLS for semantic instance segmentation with three
tasks which are addressed by three stages , i.e. object detection by Faster R-CNN [100], object
segmentation by RLS and classification

Stage 1: Object detection

One of the most important approaches to the object detection and classification problems

is the generations of Region-based Convolutional Neural Networks (R-CNN) family [30,

100, 159]. Aiming to design a fully end-to-end trainable framework, we adapt the Region

Proposal Network (RPN) introduced in Faster R-CNN [100] to predict the object bounding

boxes and the objectness scores. By sharing the convolutional features of a deep VGG-

16 network [157], the whole system is able to perform both detection and segmentation

computation efficiently.

As for the share convolutional features, we utilize a VGG-16 networks with 13 convolu-

tion layers where each convolution layer is followed by a ReLU layer but only four pooling

layers are placed right after the convolution layer to reduce the spatial dimension. As

shown in Fig. 4.6, the feature visualization is divided into 5 main components, i.e. conv1,

conv2, conv3, conv4 and conv5, by those pooling layers. Each component consists of 2 or

3 convolution layers.

In this stage, object detection, the network proposes object instances in the form of

bounding boxes which are predicted with an objectness score. The network structure and

loss function of this stage follow the work of Region Proposal Networks (RPNs) [100]. RPNs

114

C
o
n
v1
_
1

R
e
lu
1
_
1

C
o
n
v1
_
2

R
e
lu
1
_
2

Po
o
lin
g

Po
o
lin
g

C
o
n
v3
_
1

R
el
u
3
_1

C
o
n
v3
_
2

R
el
u
3
_2

C
o
n
v3
_
2

R
el
u
3
_2

C
o
n
v2
_1

R
el
u
2
_1

C
o
n
v2
_
2

R
el
u
2
_2

Po
o
lin
g

C
o
n
v4
_1

R
el
u
4
_1

C
o
n
v4
_2

R
el
u
4
_2

C
o
n
v4
_2

R
el
u
4
_2

Po
o
lin
g

C
o
n
v5
_1

R
el
u
5
_1

C
o
n
v5
_2

R
el
u
5
_2

C
o
n
v5
_2

R
el
u
5
_2

Figure 4.6: The VGG-16 based network for extracting share features

take an image of any size as the input and predicts bounding box locations and objectness

scores in a fully-convolutional form. A 3×3 convolutional layer for reducing the dimension

is applied on top of share convolutional features. The lower dimension features are fed into

two sibling 1× 1 convolutional layers: one is for a box-regression layer and the other is for

box-classification layer. An illustration of RPNs is given in Fig. 4.7.

CNNs

Anchors

Region Proposal
Layer

Regions

Bounding boxes
Ground-truth

Boxes Regression
Layer

Box classification
layer

Figure 4.7: Architecture of Region Proposal Network (RPN)

From the share feature maps and at each sliding-window location, multiple region

proposals are generated. Denote k is the maximum possible proposals for each location.

Each box is presented by four values corresponding to locations (x, y w, h) and two scores

corresponding the probability of object or not object. An anchor is centered at the sliding

window and is associated with a scale and aspect ratio. We use three scales and three

aspect ratios, yielding k = 9 anchors at each sliding position. For the share feature maps

115

of size W×H, there are k×W×H anchors. For the purpose of object detection, there are

only two anchors considered:

• Positive anchor : an anchor with the highest Intersection-over-Union (IoU) overlap

with a ground-truth box, or an anchor that has an IoU overlap higher than 0.7 with

any ground-truth box.

• Negative anchor : an anchor with IoU ratio is lower than 0.3 for all ground-truth

boxes.

• Anchors that are neither positive nor negative do not contribute to the training

objective.

There are two sibling output layers: probability of classification and bounding box

regression in the end of RPNs, therefore, the RPNs loss is based on two losses: boxes

regression loss and object classification loss.

LRPN(pi, bi) =
1

Ncls

∑

i

Lcls(p
i, pi∗) + λ

1

Nreg

∑

i

pi∗Lreg(b
i, bi∗) (4.8)

In this equation:

• i is the index of an anchor in a mini-batch.

• pi is the predicted probability of anchor i being an object and pi is computed by a

softmax over the K outputs of a fully connected layer (K categories).

• Ncls and Nreg are the two normalization terms.

• λ is a balancing parameter.

• pi∗ is groundtruth and it sets as 1 if the anchor is positive, and 0 if the anchor is

negative.

• bi = (bix, b
i
y, b

i
w, b

i
h) is a vector representing the four parameterized coordinates of the

predicted bounding box.

• bi∗ = (bi∗x , b
i∗
y , b

i∗
w , b

i∗
h) is groundtruth bounding of positive box and is a vector repre-

116

senting the four parameterized coordinates. Let denote (xi∗, yi∗, wi∗, hi∗), (xi, yi, wi, hi),

(xa, ya, wa, ha) are four coordinations (box center, width, and height) of groundtruth

box, predicted box and anchor box, the parameterization of the four coordinates are

as follows:

bi∗x = (xi∗ − xa)/wa bix = (xi − xa)/wa (4.9)

bi∗y = (yi∗ − ya)/ha biy = (yi − ya)/ha

bi∗w = log(wi∗/wa) biw = log(wi/wa)

bi∗h = log(hi∗/ha) bih = log(hi/ha)

• The bounding boxes regression is defined by smoothl1 as follows:

Lreg =
∑

u∈x,y,w,h

smoothl1(b
i
u − bi∗u) (4.10)

smoothl1(x) =

1
2
x2 if |x| < 1

|x| − 0.5 otherwise
(4.11)

The classification loss (Lcls) is log loss over two classes (object vs. not object). The

RPNs loss is defined as in Eq.4.12 where i is the ground truth class.

Lcls(p
i, pi∗) = −log(pi). (4.12)

To easy to follow, we denote the loss of this stage as:

LRPN = LRPN(B(Θ)) (4.13)

117

where Θ represents all network parameters to be optimized. B is the network output of

this stage, representing a list of bounding boxes B = {b}i. Each bounding box is presented

by four coordinations (box center, width, and height) and predicted objectness probability

bi = (bx, by, bw, bh, pi)i.

Stage 2: Object segmentation

The second stage takes the share features and the results from the first stage (predicted

box) as inputs. The output of this stage is binary segmentation which contains foreground

(obje ct) and background.

For each predicted box, we first extract a fixed-size (m×m) from the deep feature map

(conv5) via RoI warping layer which crops and warps a region on the feature map into

the target fixed size by interpolation. For this stage, we set m = 21. RoI warping layer is

actually a max pooling to convert features inside any valid region of interest into a small

feature map. Each RoI is defined by a four-tuple (r, c, h, w) that specifies its top-left corner

(r, c) and its height and width (h,w). RoI max pooling first partitions the feature map

sized h×w into m×m grid of sub-windows of approximate size h
m
× w

m
. The max pooling

is then applied into each sub-window. As a result, RoI warping layer outputs a grid cell.

The fixed size extracted features are passed through the proposed RLS together with

a randomly initial φ0 to generate a sequence input data xt based on Eq. (4.1). The curve

evolution procedure is performed via LS updating process given in Eqs. (2.62) and (2.65).

This task outputs a binary mask as given in Eq. (4.6) sized m×m and parameterized by

an m2 dimensional vector.

Given a set of predicted bounding box from the first stage, the loss term LSEG of the

second stage for foreground segmentation is given by:

LSEG = LSEG(S(Θ)|B(Θ)) (4.14)

118

Here, S is the network designed by RLS and is presenting a list of segmentations

S = {S}i. Each segmentation Si is an m×m mask.

Stage 3: Object classification via fully-connected network

The third stage takes the share feature, bounding box from the first stage, object segmen-

tation from the second stage as inputs. The output of this stage is class score for each

object instance.

For each predicted bounding box from the first stage, we first extract the feature by

ROI pooling (fROI). The feature is then go through the proposed RLS and presented by

a binary mask (fSEG(Θ)) from the second stage. The input of this stage (fMSK) is the

masked feature which depends on the segmentation results (fSEG(Θ)) and ROI feature

(fROI) and computed by element-wise product of those, fMSK(Θ) = fROI(Θ)∗fSEG(Θ. To

predict the category of a region, we first apply two fully-connected layers to masked feature

fMSK . As a result, we receive mask-based feature vector which is then concatenated with

another box-based feature vector to build a joined feature vector. Notably, the box-based

feature vector is computed by applying two fully-connected layers to ROI feature fROI .

Finally, two fully-connected layers are attached to the joined feature and each gives class

scores and refined bounding boxes using softmax classification of (K+1) classes (including

background). The entire procedure of Stage 3 is illustrated in Fig. 4.8.

Let C is the network output of this stage and representing a list of category predictions

for all instances: C = {C}i. The loss term LCLS of the third stage is expressed in Eq.

4.15.

LCLS = LCLS(C(Θ)|B(Θ), S(Θ)) (4.15)

119

person

FC

FC
K classes + background

FC Softmax

Step 1

Step 2

Figure 4.8: An illustration of Stage 3 for object classification using fROI(Θ)∗fSEG(Θ) as inputs

The loss of entire proposed CRLS network is defined as in Eq. 4.17.

L(Θ) = LRPN + LSEG + LCLS (4.16)

= LRPN(B(Θ)) + LSEG(S(Θ)|B(Θ)) + LCLS(C(Θ)|B(Θ), S(Θ))

4.4 Inference

Given an image, the top-scored 300 ROIs are first chosen by RPNs proposed boxes. Non-

maximum suppression (NMS) with an intersection-over-union (IoU) threshold 0.7 is used

to filter out highly overlapping and redundant candidates. Then, for each ROIs, we apply

our proposed RLS on top to get its foreground mask. From the ROIs and segmenting

mask, the category score of each object instance is predicted via two fully-connected layers

followed by a soft-max layer.

Besides softmax loss, which is to optimize when classifying a region is object or non-

object in the first stage, there are three ”dependent” losses in which the later loss depends

on the predecessor loss. Three losses are asigned for each ROI, i.e. (1) smooth l1 loss -

120

Shared feature
Conv_5

C
o

n
v1

_1
R

el
u

1
_1

C
o

n
v1

_
2

R
el

u
1

_2

Po
o

lin
g

Po
o

lin
g

C
o

n
v3

_
1

R
el

u
3

_1

C
o

n
v3

_
2

R
el

u
3

_2

C
o

n
v3

_
2

R
el

u
3

_2

C
o

n
v2

_1
R

el
u

2
_1

C
o

n
v2

_2
R

el
u

2
_2

Po
o

lin
g

C
o

n
v4

_1
R

el
u

4
_1

C
o

n
v4

_2
R

el
u

4
_2

C
o

n
v4

_2
R

el
u

4
_2

Po
o

lin
g

C
o

n
v5

_1
R

el
u

5
_1

C
o

n
v5

_2
R

el
u

5
_2

C
o

n
v5

_2
R

el
u

5
_2

VGG

C
N

N
s

R
eg

io
n

 P
ro

p
o

sa
l

La
ye

r R
eg

re
ss

io
n

 L
ay

er
C

la
ss

if
ic

at
io

n
 la

ye
r

RPN

Object scorefSEG

LS
_L

ay
er

_1
G

R
U

_L
ay

er
_1

LS
_L

ay
er

_2
G

R
U

_L
ay

er
_2

LS
_L

ay
er

_3
G

R
U

_L
ay

er
_3

LS
_L

ay
er

_4
G

R
U

_L
ay

er
_4

LS
_L

ay
er

_5
G

R
U

_L
ay

er
_5

RLS

Region fROI

fMSK

FC
_6

FC
_7

Concatination Softmax

Classification

R
elu

_6

R
elu

_7

FC
_6

FC
_7

R
elu

_6

R
elu

_7

Sm
o

o
th

 l1
So

ft
m

ax

C
ro

ss
En

tr
o

p
y

Figure 4.9: Architecture of the proposed CRLS for semantic instance segmentation with 3 stages
corresponding to object detection (RPNs), object segmentation (RLS) and object classification

bounding box regression loss in the first state, (2) cross entropy loss - foreground segmen-

tation loss in the second stage (3) softmax loss - instance classification loss in the third

stage. The network architecture with the losses is given in Fig. 4.9. Among all the losses,

computing the gradient w.r.t. predicted box positions and address the dependency on the

bounding box B(Θ) is the most difficulty. Given a full size feature map H(Θ), we crop a

bounding box region (predicted box) bi(Θ) = (bx, by, bw, bh) and warp it to a fixed size by

interpolation. The wrapped region ROI is presented as:

FROI(Θ) = I(bi(Θ))F(Θ) (4.17)

121

where I is cropping and warping operations. As for dimension, F(Θ) ∈ RN is a vector

reshaped from the image, N = W ×H. The cropping and warping matrix I ∈ RM × RN .

FROI(Θ) is a target region sized w × h and M = w × h. I(bi(Θ)) presents transforming

a that box bi(Θ) from size of bw × bh into the size of w × h. Let (x′, y′) and (x, y) are

two points on target feature map FROI(Θ) size of w × h and original map F(Θ) size of

(W ×H), respectively. Using interpolation with (G) is the bilinear interpolation function,

I(bi(Θ)) is computed as follows:

I(bi(Θ)) = (G)(bx +
x′

w
− x)(g)(by +

y′

h
− y) (4.18)

g(z) = max(0, 1− |z|)

4.5 Implementation Details

The proposed RLS approach is implemented using the Tensorflow system [240] whereas

the extended CRLS semantic segmentation is implemented using Caffe environment [241].

Three functional sub-networks corresponding to three tasks, i.e. detection, segmentation

and classification (shown in Fig. 4.5), are connected together to construct an end-to-end

network. The first and the third sub-networks, i.e. object detection and object classi-

fication, are adopted from Faster R-CNN framework [100]. In the second sub-network,

we re-implement the defined layers from RLS-Tensorflow to RLS-Caffe for both forward

and backward operations2 in Python. Since TensorFlow supports automatic differentia-

tion capabilities, RLS-Tensorflow is therefore easier to implement than the new layers in

RLS-Caffe.

During the training, the share features are obtained by 13 convolution layers initialized

using the pre-trained VGG-16 model. Each convolution layer is always followed by a ReLU

2see the appendix for the derivatives in details

122

224x224x64

56x56x256

112x112x128

28x28x512

224x224x3

14x14x512

7x7x512

Figure 4.10: The architecture of the pre-trained model VGG-16 used in the proposed CRLS

layer but only 4 pooling layers are placed right after the convolution layer to reduce the

spatial dimension. As shown in Fig. 4.10, the first section of CRLS is divided into 5 main

components, i.e. conv1, conv2, conv3, conv4 and conv5, by those pooling layers. Each

component consists of from 2 to 3 convolution layers.

In the first task, i.e. object detection, a 3 × 3 convolutional layer reduces feature

dimensions and then two consecutive 1× 1 convolutional layers predicts object’s locations

and object’s presenting scores. The location regression is with reference to a series of pre-

defined boxes, or anchors, at each location. Furthermore, we choose the two normalization

terms (Ncls, Nreg) are chosen as Ncls = 256 and Nreg = 2, 400. The balancing parameter

λ is set as λ = 10. As for non-maximum suppression (NMS), which is used to reduce the

number of boxes generated from the first stage (∼ 104 regressed boxes are produced from

the first stage), the threshold of the Intersection-over-Union (IoU) ratio is chosen as 0.7.

As a result, the top-ranked 300 boxes are kept for the second stage.

In the second task, i.e. object segmentation by the proposed RLS, we first extract a

fixed-size (21 × 21) deep feature from an arbitrary box predicted using the object detec-

tion task. The proposed RLS takes the extracted feature as the input together with the

123

randomly initial φ0 to generate a sequence input data xt based on Eq. (4.1). The curve

evolution procedure is performed via LS updating process given in Eq. (2.62). This task

outputs a binary mask as given in Eq. (4.6) sized m × m and parameterized by an m2

dimensional vector.

For each region candidate in the final task, i.e. object classification, a feature repre-

sentation is firstly extracted by RoI-pooling from the shared convolutional features inside

the bounding box region. Then it is masked by the segmenting mask prediction, which

pays more attention on the foreground feature. Then the masked feature goes through two

fully-connected layers, resulting a mask-based feature vector for classification.

The proposed CRLS semantic segmentation is implemented using Caffe environment

[241]. Training images are resized to rescale their shorter side to 600 and use SGD opti-

mization. On PASCAL VOC [24], we perform 32k and 8k iterations at learning rates of

0.001 and 0.0001, respectively. On the MSCOCO [25], we perform 180k and 20k iterations

at learning rates of 0.001 and 0.0001, respectively.

124

Chapter 5

Contextual Recurrent Residual

Networks (CRRN)

5.1 Introduction

Scene labeling is another case of pixel-level labeling and this problem has played an impor-

tant role in many applications that are difficult, even for humans, given limited context.

For example, whether a patch of dirt belongs to the side of a road or to a beach would

be unclear until one looks at more of the image, thereby gaining context. Some studies

aim to explicitly encode different kinds of context in order to facilitate labeling. However,

most of the existing state-of-the-art methods mainly focus on either exploiting short-range

contextual information [1, 2, 49, 199] or enriching visual representations [31, 53, 59, 60].

Thus, it is prone to misclassify visually similar pixels actually belonging to different classes.

Indeed, the roles of contextual information and powerful descriptive visual representation

are equally important in the scene labeling problem. To effectively address the scene la-

beling problem, the model has to be capable of learning the visual representation as well

as modeling the contextual information.

Residual networks are able to learn effective visual representations but unable to model

125

context explicitly. Recently, deep residual networks (ResNets) [242] have emerged as a

family of extremely deep architectures showing compelling accuracy and desirable con-

vergence behaviors. They consist of blocks of convolutional and/or batch normalization

layers equipped with an identity skip connection. The identity connection helps to address

the vanishing gradient problem and allows the ResNets to robustly train using standard

stochastic gradient descent despite very high model complexity. This enables ResNets to

extract very rich representations of images that perform exceedingly well in image recog-

nition and object detection challenges [215]. The extremely deep architectures in ResNets

show compelling accuracy and robust convergence behaviors and achieve state-of-the-art

performance on many challenging computer vision tasks on ImageNet [11], PASCAL VOC

Challenge [243] and MS COCO [25] competitions. Nonetheless, they are feed forward mod-

els that do not explicitly encode contextual information and typically cannot be applied

to sequence modeling problems.

On the other hand, Recurrent neural networks (RNNs) are effective in context modeling

but lack the ability to learning visual representation. RNNs, and their variants, e.g. Long-

Short Term Memories (LSTMs), Gated Recurrent Units (GRUs), etc., have become popular

in the domains where sequence modeling is a natural problem, e.g. speech recognition,

language processing, question answering, etc. Only recently, vision problems, e.g. scene

labeling [1], object segmentation [52], have been reformulated as sequence learning, thereby

allowing RNNs to be applied directly. Scene labeling, in particular, has seen the use of

RNNs coupled with Directed Acyclic Graphs (DAGs) to model an image as a sequence [1, 2,

3]. There have also been a few studies that utilize RNNs to compute visual representations

[223, 244]. However, these representations, e.g. vanilla RNNs and LSTMs, are clearly not

as powerful and informative as the ones obtained through residual convolutional learning.

This paper presents a novel deep network named Contextual Recurrent Residual Net-

works (CRRN) to effectively model contextual information with rich visual representation

within a single deep network. Our proposed CRRN deep networks consists of three parts

126

corresponding to sequential input data, sequential output data and hidden state which con-

tains a set of units and each unit is designed as a combination of recurrent residual blocks

along with vanilla RNNs components. Thus, each unit in the proposed network itself is

able to simultaneously learn powerful visual representation while modeling long-range con-

textual dependencies. Furthermore, a powerful visual representation allows the model to

have better descriptors of local image patches leading to richer contextual knowledge em-

beddings. For instance, a representation that discriminates well enough between a patch

of sand on the side of a road versus on a beach will allow the RNNs component to model

context better as compared to a representation that describes the two patches very simi-

larly. Further, unlike previous approaches [1, 2, 3], our method is not only able to exploit

the long-range context and visual representation but also formed under a fully-end-to-end

trainable system that effectively leads to the optimal model.

The contributions of our work can be summarized as follows:

• We propose a fully end-to-end deep learning framework that is able to make use the

advantages of both RNNs and ResNets in the recurrent form.

• In contrast to other existing deep learning network which are based on pre-trained

models, our fully-end-to-end CRRN is completely trained from scratch.

• Our approach utilizes a more complex internal model involving residual blocks which

allow for richer and more robust feature extraction during sequence learning.

• Each hidden unit in our proposed CRRN effectively learns contextual dependencies

via recurrent component while simultaneously providing powerful encoded visual rep-

resentation via residual component.

• Residual learning has so far been applied on raw visual data, our model instead applies

residual learning technique to learn richer representations of the visual encoding

provided by the recurrent component.

127

Input (x)

Hidden

Output (o)

Update (h)

CRRN hidden unit

Context-

based

Visual-

based

CRRN hidden unit

Context-

based

Visual-

based

Figure 5.1: The proposed CRRN and the unfolding in time of the computation involved in its
forward procedure.

5.2 The Proposed CRRN

Our proposed CRRN is designed as a composition of multiple CRRN units. Each of them

consists of input, hidden, and output units. In the core of each CRRN hidden unit, two

components, i.e. context-based and visual-based components, are employed to simultane-

ously handle two significant tasks. The former helps to handle the contextual knowledge

embedding process while the latter tries to increase the robustness of visual representation

extracted by the model. With this structure, one component can benefit from the other

and provide more robust output as a result. On one hand, the powerful visual represen-

tation from the visual-based component allows the model to have better descriptors for

each local patch and results in the better contextual knowledge embeddings. On the other

hand, with better memory contextual dependencies from context-based component, highly

discriminative descriptors can be extracted. Fig. 5.1 demonstrates the folding CRRN on

the left and unfolding CRRN in time on the right.

Moreover, unlike previous approaches that are only able to capture the short-range

context presented in small local input patches, our CRRN aims at modeling larger-range

context by utilizing a graph structure over an image. As a result, the long-range contextual

dependencies among different regions of an image can be efficiently modeled and, therefore,

increasing the capability of the entire model. In particular, given an input image, it is first

128

Figure 5.2: Decomposition of UCG into four DAGs. From left to right: southeast, southwest,
northwest and northeast, where • denotes as a vertex

Context – based Component Visual – based Component

Figure 5.3: The forward procedure of CRRN at vertex vi of one CRRN unit with two compo-
nents corresponding to context information modeling and visual representation learning

divided into N non-overlapping blocks and their interactions are represented as an undi-

rected cyclic graph (UCG). However, an UCG is unable to unroll as the forward-backward

style deep model [2, 56] due to its loopy structures. Therefore, to address this issue, we first

decompose the UCG into four directed acyclic graphs (DAGs) along southeast, southwest,

northwest and northeast directions as given in Fig. 5.2. Then the contextual dependencies

presented in each DAG are modeled by our CRRN. Finally, these information is combined

to produce the final prediction.

Formally, an input image I is first divided into N non-overlapping blocks {vi}i=1,2,..,N .

Each block is then considered as a vertex in four DAGs G1, G2, G3, G4 corresponding to

the four directions. Each DAG is formed as Gd = {V , E}|4d=1, where V = {vi}i=1,2,..,N , and

129

Figure 5.4: The relationship between a vertex and its predecessors in two scenarios: upper is
snake scan and lower is northeast DAG scan

E = {eij} is the edge set where each edge eij represents the relationship between vertices vi

and vj. For each direction Gd, let AGd(vi) and SGd(vi) be the predecessor and successor sets

of vi. Depending on the relationships between vertices in Gd, all vertices are organized into

a sequence and fed into the CRRN structure for modeling. Fig.5.4 shows the relationship

between a vertex and its predecessors in two scenarios of snake scan (upper figure) and

northeast DAG scan (lower figure). It is easily to see that the snake scan strategy produces

a network which is similar to the vanilla RNNs whereas the DAG strategy gives a more

complicated network where each node in the network receives the input from three sources

as in Fig.5.4.

As illustrated in Fig. 5.3, the i-th CRRN unit takes an input of xvi and the hidden state

of all vertices in the predecessor setAGd(vi). The input xvi can be computed as xvi = vec(vi),

where vec (·) is the vectorization operator. The following will detail the proposed CRRN

130

Figure 5.5: An illustration of our proposed CRRN architecture at one direction (southeast)

architecture with two main tasks: (1) the contextual information embedding via sequence

learning, and (2) the visual representation learning.

5.2.1 Contextual information embedding

Starting with one DAG Gd at vertex vi, the contextual relationship between the vertex

vi and its predecessor set AGd(vi) is expressed as a non-linear function over the current

input xvi and the summation of hidden layers of all its predecessors in the context-based

component as follows:

ĥ
vi

d = fCONTEXT(xvi ,AGd(vi); θ1)

= φ(Uxvi +
∑

vj∈AGd(vi)

Wh
vj
d + b)

(5.1)

where h
vj
d is the hidden state of vertex vj belonging to predecessor set AGd(vi) of vertex vi

in the DAG Gd, ĥ
vi

d is the intermediate hidden state of vertex vi and θ1 = {U,W,V,b} is

131

the parameters of context-based component representing the connection weights of input-

to-hidden, predecessor-to-hidden and hidden-to-output; and the hidden bias, respectively.

φ (·) is the activation function, i.e. ReLU function.

5.2.2 Visual representation learning

To further extract powerful visual representation as well as address the vanishing problem

during modeling, we employ the visual-based component with residual learning technique.

Given the intermediate hidden state ĥ
vi

d of the vertex vi provided by the context-based

component, the representation hvid of each vertex vi is computed as in Eqn. (5.2).

hvid = fVISUAL(ĥ
vi

d ; θ2)

= φ(F(ĥ
vi

d) +H(ĥ
vi

d))

(5.2)

where F denotes a residual function consisting of a two-layer convolutional network in

residual-network style, i.e equipped with an residual learning connection as shown in Fig.

5.3. This network is a stack of two convolutional layers, i.e. alternating convolution, batch

normalization and ReLU operations. Meanwhile, H is defined as an identity mapping,

where H(ĥ
vi

d) = ĥ
vi

d . θ2 represents the parameters of the two-layer convolutional network.

The final output from the four DAGs are then combined using the following Eqn.5.3.

ovi = f(xvi ,AG(vi); θ1, θ2)

=
4∑

d=1

Vĥd
vi

+ bo

(5.3)

where V is the hidden-to-output weight matrix, bo is output bias. The CRRN is then

optimized to minimize the negative log-likelihood over the training data as follows:

θ∗1, θ
∗
2 = arg min

θ1,θ2
L(θ1, θ1) (5.4)

132

L(θ1, θ1) = − 1

n

∑

vi∈G

∑

j

log p(lvij |xvi ; θ1, θ2)

p(lvij |xvi ; θ1, θ2) =
e
f
l
vi
j

(xvi ,AG(vi);θ1,θ2)

∑C
c=1 e

fc(xvi ,AG(vi);θ1,θ2)

(5.5)

where C is the number of classes; n is the number of images; lvij is the correct label of

j-th pixel in block vi; and flvij (xvi ,AG(vi); θ1, θ2) = ovij .

5.2.3 Model learning

The optimal parameters can be obtained with the Stochastic Gradient Descent (SGD)

algorithm given by:

θ1 ← θ1 − λ
∂L

∂θ1

; θ2 ← θ2 − λ
∂L

∂θ2

(5.6)

where λ denotes the learning rate.

The derivatives are computed in the backward pass procedure is processed in the reverse

order of forward propagation sequence as illustrated in Fig.5.6. Instead of looking at

predecessor AGd(vi) in the forward pass, we are now taking a look at successor SGd(vi).

It is clear that the backpropagation error at the intermediate hidden layer dĥ
vi

d comes

from two sources: one from output
∂o

vi
d

∂ĥ
vi
d

and the other one from hidden layer
∂h

vi
d

∂ĥ
vi
d

whereas

the backpropagation error at hidden layer dhvid comes from its successor set SGd(vi). i.e,
∑

vk∈SGd(vi)
∂o

vk
d

∂ĥ
vk
d

∂ĥ
vk
d

∂h
vi
d

.

To make it simple and general, we would like to express the parameters in a form

without subscript d. For example we will use hvi instead of hvid . The derivative with

133

… …

Figure 5.6: The backward procedure of CRRN at vertex vi

respect to the model parameters {ovi , ĥvi , hvi , V, U, W} can be computed as follows:

dovi =
∂L

∂ovi

dĥ
vi

=
∂L

∂ovi
∂ovi

∂ĥ
vi +

(
∂hvi

∂ĥ
vi

)T
dhvi = VTdovi +

(
∂hvi

∂ĥ
vi

)T
dhvi

dhvi =
∑

vk∈SGd(vi)

WT ∂L

∂ĥ
vk

∂ĥ
vk

∂hvi
◦ φ′(ĥvi) =

∑

vk∈SGd(vi)

WTdĥ
vk ◦ φ′(ĥvi)

∇V =
∂L

∂ovi
∂ovi

∂V
= dovi

(
ĥ
vi
)T

∇U =
∂L

∂ovi
∂ovi

∂ĥ
vi

∂ĥ
vi

∂U
= dĥ

vi ◦ φ′(ĥvi) (xvi)T

∇W =
∂L

∂ovi
∂ovi

∂ĥ
vi

∂ĥ
vi

∂W
=

∑

vj∈SdG(vi)

dĥ
vj ◦ φ′(ĥvj)

(
ĥ
vi
)T

(5.7)

where ◦ represents the Hadamard product.

5.3 Inference

Given a testing image I, we first divide I into N blocks vi, i = 1...N . These blocks are then

fed into four DAGs. The inference process of each pixel j in block vi can be performed by

134

finding the class label that maximizes the conditional probability given by:

lvi∗j = arg max
c
p(c|xvi ; θ1, θ2) (5.8)

Finally, the prediction maps of all vi are concatenated based on the location of block vi in

I for the final prediction map. Fig. 5.5 illustrates the inference process of CRRN at one

direction (southeast) as an example.

5.4 Implementation Details

In this section, the implementation of our proposed model is discussed in details. The

model is implemented in TensorFlow environment and runs in a machine of Core i7-6700

@3.4GHz CPU, 64.00 GB RAM and a single NVIDIA GTX Titan X GPU. In order to

train the CRRN, each image in the training data is first divided into 64 (= 8× 8) blocks.

Next, these blocks are reorganized into four sequences based on their relationships in

the four DAGs. i.e. G1, G2, G3, G4. Each block is vectorized and used as the input

for the CRRN unit. Our CRRN architecture is then employed to simultaneously model

the contextual dependencies between blocks in different directions as well as extract their

compact and rich representation. which simultaneously performs two tasks: model the

contextual dependencies between this block and its neighbor in different directions and

extract their compact and rich visual representation at this block. The dimensionality of

the hidden layer is set to 256 in the recurrent component and reshaped to 16× 16 before

going through the residual learning component. From our preliminary results, hidden layers

with smaller number of hidden units are not powerful enough to capture both contextual

information and visual representation in four DAGs while larger number may increase the

computational cost without too much performance improvement. The optimal parameter

values of the whole network are obtained via a stochastic gradient descent procedure with

135

forward and backward passes. The learning rate is initialized to be 10−3, and decays with

the rate of 0.95 after 30 epochs.

136

Chapter 6

Experimental Results

Corresponding two proposed algorithms, i.e. CRLS Networks for semantic instance seg-

mentation and CRRN for scene labeling, two experiments have been conducted and eval-

uated in this chapter. All the experiments are performed on a system of Core i7 @3.4GHz

CPU, 64.00 GB RAM with a single NVIDIA GTX Titan X GPU.

6.1 Experimental Results of CRLS

In this section, we conduct two experiments corresponding to the object segmentation by

the proposed RLS method and the semantic instance segmentation by the proposed CRLS

system on PASCAL VOC [24] and COCO [25] datasets.

6.1.1 Datasets

Synthetic dataset The synthetic and medical dataset containing 720 images are arti-

ficially created from images reported in [62, 188]. There are actually about 20 images

reported in [62, 188]. To avoid over-fitting problem, We have applied with different kinds

of degradation (i.e., add various noise, blurring) and various affine transformations(i.e.,

rotation, translation, scale, and flip) into the images to generate the dataset of 720 images.

137

The degradation is added to the image to make sure the proposed RLS is able to run on

both intensity homogeneity and inhomogeneity.

In this dataset, we use 360 images which were artificially generated from first 10 images

for training and the rest (360 images) for testing. Meanwhile, the real images are collected

from Weizmann [245] database which contains 100 natural images with 1 object in the

background. From this dataset, we generate 4,700 images augmented using different kinds

of noise and various affine operations. We used 2,350 images for training and 2,350 images

for testing.

PASCAL VOC The PASCAL VOC 2012 [24] are a commonly used database for

evaluating semantic segmentation. The PASCAL VOC 2012 training and validation set has

11,540 images containing 27,450 bounding box annotated objects and 6,929 segmentations

in 20 categories and one background category. The data is divided into 5,717 images

for training and 5,823 images for testing(val). The twenty object classes that have been

selected are: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car,

motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor.

MSCOCO [25] The MS COCO training set contains about 80,000 images for training

and 40,000 images for validation. This dataset consists of ∼ 500, 000 annotated objects of

80 classes and one background class. COCO is a more challenging dataset as it contains

objects in a wide range of scales from small (< 322) to large (> 962) objects.

6.1.2 Metrics

For the semantic segmentation task, we use a standard metric, i.e. Mean Average Precision

(mAP), which was reported in PASCAL VOC 2012 to evaluate the performance. For a

given task and class, the precision/recall curve is computed from a methods ranked output.

Recall is defined as the proportion of all positive examples ranked above a given rank.

Precision is the proportion of all examples above that rank which are from the positive

138

class. We use the Average Precision (AP) to summarize the shape of the precision/recall

curve, and is defined as the mean precision at a set of eleven equally spaced recall levels

[0, 0.1, ..., 1]:

AP =
1

11

∑

r∈0,0.1,...,1.0

pinterp(r) (6.1)

The precision at each recall level r is interpolated by taking the maximum precision mea-

sured for a method for which the corresponding recall exceeds r:

pinterp(r) = maxr̃:r̃>rp(r̃) (6.2)

where p(r̃) is the measured precision at recall r. The intention in interpolating the preci-

sion/recall curve in this way is to reduce the impact of the wiggles in the precision/recall

curve, caused by small variations in the ranking of examples. It should be noted that to

obtain a high score, a method must have precision at all levels of recall this penalises

methods which retrieve only a subset of examples with high precision (e.g. side views of

cars).

6.1.3 Experiment 1 - Object Segmentation by RLS

This section compares our object segmentation RLS against Chan-Vese’s LS [62], DRLSE

[15], Li’s method. [16], L2S [21] and a simple Neural Network with two fully-connected

layers followed by a ReLU layer in between and we name it F-ConNet. The experiments

are validated on both synthetic images, medical images and natural images collected in the

wild. The input images are resized to 64×64, thus, the number of units in fully-connected

layers and hidden cell of GRU is 4,096.

Fig. 6.1 shows some segmentation results using the baseline CLS model [62], DRLSE

[15] as for global approach, Li et al [16, 21], L2S [21] as for the inhomogeneity approach,

139

F-ConNet as a baseline deep learning approach and our proposed RLS on the synthetic,

medical and natural databases. The best results from CLS’s method, DRLSE, Li’s method

are L2S are given in the second, third, fourth, fifth rows respectively. The sixth row shows

our RLS segmentation results. The last row shows the ground truth. In each instance,

the segmentation result is given as a black/white image. The average F-measure on the

real image test set obtained by CLS, DRLSE, Li’s, L2S, F-ConNet and our proposed RLS

are reported as in Tables 6.1 with two separated groundtruth versions (GT1 and GT2)

provided by two different people on Weizmann database [245].

In terms of speed, CLS method consumes 13.5 seconds while Li et al’s and DRLSE

approaches have similar time consuming of 20.4 seconds and 23.5 seconds on average to

process one image with original size. L2S consumes less time (10.2 seconds) than the

others CLS, Li’s and DRLSE whereas the proposed RLS takes 0.008 seconds and F-ConNet

takes 0.001 seconds on average testing time to segment an object. RLS achieves the

best segmentation performance in this experiment on both groundtruth annotated by two

different people.

Table 6.1: Average F-measure (FM) and testing time obtained by CV’s model, DRLSE[15], Li
et al.[16],L2S [21], F-ConNet and our proposed RLS with two different ground truth (GT1
and GT2) across Weizmann database

Methods FM (GT1) FM (GT2) Testing Time

CV [62] 88.51 87.51 13.5(s)

DRLSE[15] 80.93 71.76 23.5 (s)

Li et al.[16] 79.65 63.87 20.4 (s)

L2S [21] 81.36 71.03 10.2 (s)

F-ConNet 93.30 93.26 0.001 (s)

RLS 99.16 99.17 0.008 (s)

140

Figure 6.1: Object segmentation on medical, synthetic images and from Weizmann database.
1st row: input images, 2nd row: segmentation by CLS [62], 3rd row: segmentation by DRLSE [15],
4th row: segmentation by Li et al.[16], 5th row: segmentation by L2S [21], 6th row: segmentation
our RLS, 7th row: groundtruth. The best results for [62], [15], [16], [21]

6.1.4 Experiment 2 - Semantic Instance Segmentation by CRLS

We demonstrate our proposed CRLS approach on PASCAL VOC 2012. We follow the

same protocols used in recent papers [26, 27, 28, 29] for evaluating semantic segmentation.

141

Figure 6.2: Some examples of semantic segmentation on PASCAL VOC 2012 database. The
input image (1st column), MNC [29] (2nd column), our semantic segmentation CRLS (3rd column)
and the ground truth (4th column). (Best viewed in color)

142

Figure 6.3: Some examples of semantic segmentation on MS COCO database on validation set.
The input image (1st column), our semantic segmentation CRLS (2nd column) and the ground
truth (3rd column). (Best viewed in color)

143

Table 6.2: Quantitative results and comparisons against existing CNN-based semantic seg-
mentation methods (SDS (AlexNet)[26], Hypercolumn [27], CFM [28], MNC [29]) on the
PASCAL VOC 2012 validation set.

Methods mAPr@.5 mAPr@.7 Time (s)

SDS (AlexNet) 49.7% 25.3% 48

Hypercolumn 60.0% 40.4% >80

CFM 60.7% 39.6% 32

MNC 63.5% 41.5% 0.36

CRLS (Ours) 66.7% 44.6% 0.54

Table 6.3: Quantitative results and comparisons against existing CNN-based semantic segmen-
tation method MNC[29] on the MS COCO 2014 database

Methods mAPr@[.5:.95] mAPr@.5

MNC 19.5% 39.7%
CRLS (Ours) 20.5% 40.1%

The models are trained on the PASCAL VOC 2012 training set, and evaluated on the

validation set. The end-to-end CRLS network is trained using the ImageNet pre-trained

VGG-16 model. Results are reported on the metrics commonly used in recent semantic

object segmentation papers [26, 27, 28, 29]. We compute the mean average precision

(mAPr) [29] to show the segmentation accuracy. It is measured by Intersection over Union

(IoU) which indicates the intersection-over-union between the predicted and ground-truth

pixels, averaged over all the classes. In PASCAL VOC, we evaluate mAPr with IoU at 0.5

and 0.7. In table 6.2, we compare our proposed CRLS with existing CNN-based semantic

segmentation methods including SDS [26], Hypercolumn [27], CFM [28] and MNC [29].

All the results of those methods are quoted from paper [29]. Using the same testing

protocol, our CRLS achieves higher mAPr at both 0.5 and 0.7 than previous methods

(about 3%). In addition to high segmentation accuracy, the experimental results also show

that our proposed CRLS gives very efficient testing time (0.54 second per image). Some

examples of multi-instance object segmentation by our proposed CRLS on PASCAL VOC

144

2012 database are shown in Fig. 6.2.

Our proposed approach is trained on the MS COCO 2014 80k training images and

evaluated on 20k images in the test set (test-dev). We measure the performance of our

method on two standard metrics which are the mean average precision (mAPr) using IoU

between 0.5 & 0.95 and mAPr using IoU at 0.5 (as PASCAL VOC metrics) as shown in

Table 6.3. Our CRLS achieves better results than the previous method (MNC) on the

COCO dataset (noted that we only compare with their VGG-16 network results).

6.1.5 Experiment 3 - Multi-instace object segmentation by pro-

posed CRLS

We have added some more semantic segmentating results on various cases i.e. overlapping

objects, single-instance object, multi-instance object from PASCAL VOC and MS COCO

databases. More illustrations for the comparison between MNC performance [29] and

ours is also showed here. In this section, we also provide in details the segmentation

performance (average precision %) on each category at IoU = 0.5 on PASCAL VOC 2012.

The performance of CRLS on MS COCO database is also showed in details with different

measures, i.e. average precision, average precision across scales, average recall, average

recall across scales.

Overlapping objects:

When dealing with overlapping object, mislabeling is a common problem in MNC [29]

as shown in the second row of Fig.6.4 while our CRLS can per2.0form very well even when

only a small portion of object is given as illustrated in the third row of Fig.6.4. As shown

in the first three images, we can see that our CRLS is able to segment and recognize a

object even there is only small portion (chair, dinning table, bottle) existed. Notably, the

partial objects are not well labeled in the groundtruth.

Single-instance object:

145

Figure 6.4: Some examples of overlapping objects segmentation by MNC [29] (2nd column) and
our CRLS (3rd column) on PASCAL VOC 2012 with the ground truth (4th column) database.
(Best viewed in color)

146

Figure 6.5: Some examples of single-instance objects segmentation by MNC [29] (2nd column)
and our CRLS (3rd column) on PASCAL VOC 2012 database with the ground truth (4th column)
database. (Best viewed in color)

147

Figure 6.6: Some examples of multiple-instance objects segmentation by MNC [29] (2nd column)
and our CRLS (3rd column) on PASCAL VOC 2012 database with the ground truth (4th column)
database. (Best viewed in color)

148

Figure 6.7: Some examples of multiple-instance objects segmentation by MNC [29] (2nd column)
and our CRLS (3rd column) on MS COCO database validation set. Each row has four images:
the input image (first column), MNC segmentation results (second column), our semantic seg-
mentation results (third column) and the ground truth (last column), respectively. (Best viewed
in color)

149

When dealing with single-instance object, finding a shape boundary is another chal-

lenging in MNC [29] beside miss-labeling problem. As we can see from the second row of

Fig. 6.5, MNC cannot segment and recognize the bird in the first image or segment and

recognize the cat twice (one is classified as a cat and one is classified as a dog) in the last

image. While our CRLS is able to segment and recognize the object with shape boundary,

determining good boundary is still a big challenging in MNC approach as given in the

second row (MNC) and third row (CRLS).

Multi-instance object: The semantic segmentation becomes more challenging when

dealing with multi-instance object. In this scenario, many instances are captured with

a small portion or covered by another instance (overlapping problem). It is easy to see

that miss-labeling and mistakenly labeling are usual problems in MNC [29] as given in

the second row of Fig. 6.6. Notably, in this example, the colors may vary and different

between segmenting results and groundtruth because the instances are ordered differently.

The performance of CRLS on PASCAL VOC 2012 validation set with mean Average

Precision (mAP) (%) per each class is given in Fig. 6.8 whereas the performance of CRLS

on MS COCO test-dev set with Average Precision and Average Recall is given in Fig. 6.9.

The metrics used for COCO dataset are defined as follows. Average Precision (AP):

• mAP: AP at IoU=.50:.05:.95 (primary challenge metric)

• AP@.50 : AP at IoU=.50 (PASCAL VOC metric)

• AP@.75 : AP at IoU=.75 (strict metric)

AP Across Scales:

• APS: AP for small objects: area < 322

• APM : AP for medium objects: 322 < area < 962

• APL: AP for large objects: area > 962

Average Recall (AR):

• AR1: AR given 1 detection per image

150

0

10

20

30

40

50

60

70

80

90

100

Chart Title

mAP@.5 mAP@.7

Figure 6.8: The performance of CRLS on PASCAL VOC 2012 validation set with mean Average
Precision (mAP) (%) per each class

0

10

20

30

40

50

60

mAP AP@.5 AP@.75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Precision and Recall on MS COCO 2015

%

AR100APS APM APL AR1 AR10 ARS ARM ARLmAP AP@.5 AP@.75

Figure 6.9: The performance of CRLS on MS COCO 2015 test-dev set with Average precision
and Average recall

151

• AR10: AR given 10 detections per image

• AR100: AR given 100 detections per image

AR Across Scales:

• ARS: AR for small objects: area < 322

• ARM : AR for medium objects: 322 < area < 962

• ARL: AR for large objects: area > 962

6.2 Experimental results of CRRN

We evaluate the efficiency of our proposed CRRN on four challenging and popular scene

image labeling datasets, i.e. SiftFlow [246], CamVid [247], Stanford Background [235] and

SUN [248].

6.2.1 Datasets

SiftFlow The SiftFlow dataset [246] contains 2,688 images captured from 8 typical out-

door scenes, i.e. coast, forest, highway, inside city, mountain, open country, street, tall

building. Each image is 256× 256 and labeled with 33 semantic classes (ignore the back-

ground). To run the experiment, the dataset is separated into 2 subsets corresponding to

2,488 images for training and the rest for testing as in [56].

CamVid The Camvid dataset [247] is a road scene dataset which contains 701 high-

resolution images of 4 driving videos captured at both day and dusk modes [232]. Each

image is 960x720 and is labeled with 32 semantic classes. We follow the usual split protocol

as given in [249] with 468 images for training and the rest for testing.

Stanford Background The Stanford background dataset [235] contains 715 images

annotated with 8 semantic classes. The dataset is randomly partitioned into 80% (572

images) for training and the rest (143 images) for testing with 5-fold cross validation.

152

SUN The Sun dataset [248] contains 16,873 images annotated with 3,819 semantic

object categories. However, the numbers of images per category are highly unbalanced.

Therefore, we only choose the images that has more than 60% of their pixels are labeled

for evaluation. The chosen dataset with these categories contains 6,433 images and is

randomly partitioned into two subsets corresponding to 5,798 images for training and the

rest for testing.

6.2.2 Metrics

As for scene labeling, it has become common practice to report results using two metrics,

namely, per-pixel accuracy (PA) and average per-class accuracy (CA). The first metric, i.e.

PA is defined as the fraction of the number of pixels classified rightly over the number of

pixels to be classified in total whereas the latter metric, i.e. CA, is defined as the average

of per-pixel accuracy of all the classes existing in the dataset.

PA =
∑

i

nii/
∑

i

ti

CA =(1/C)
∑

i

(nii/ti)

(6.3)

nij is the number of pixels of class i that were predicted to be class j, C is total number

of classes and ti =
∑

j nij is the total number of pixels of class i.

6.2.3 Experiment - Scene Labeling by CRRN

In order to make a fair comparison between our proposed CRRN and other state-of-the-

art models, we divide the models into two groups: the ones trained using the benchmark

datasets only; and the ones fine-tuned from other models which are trained over the large-

scale datasets (i.e. ImageNet) or made used of deep network (i.e. VGG-verydeep-16) as

their feature extractor. Our CRRN falls into the first group where no pre-trained model is

153

!"#$%#&' ()*)+,

-#)$%

.+/** 01"&,/#&

2$/&, 3145 6/&%

6)/ 657

8+)) 9&$/:)$)%

Figure 6.10: Comparison between our CRRN and CNN-65-DAG-RNN[56] in term of contextual
dependencies learning. In each row, there are four images: input image (first column), the
prediction labeling map of [56] (second column), the contextual labeling map extracted from our
CRRN (third column) and the ground truth labels. (Best viewed in color)

used.

Comparing to the methods in the first group, the quantitative results of our approach

154

B
ir
d

C
a
r

F
ie
ld

G
ra
s
s

M
o
u
n
ta
in

R
o
a
d

S
a
n
d

S
e
a

S
id
e
w
a
lk

S
ig
n

S
k
y

T
re
e

W
in
d
o
w

D
e
s
e
rt

Figure 6.11: Examples of labeling results on SiftFlow dataset. Each column has six images:
the input image (first and fourth rows), its ground truth labels (second and fifth rows) and our
CRRN prediction labels (third and sixth rows), respectively. (Best viewed in color)

155

S
k
y

b
u
il
d
in
g

P
o
le

R
o
a
d

P
a
v
e
m
e
n
t

Tr
e
e

S
ig
n

F
e
n
ce

C
a
r

P
e
d
e
st
ri
a
n

B
ic
y
cl
is
t

U
n
la
b
e
le
d

Figure 6.12: Examples of labeling results on CamVid dataset. Each column has six images:
the input image (first and fourth rows), its ground truth labels (second and fifth rows) and our
CRRN prediction labels (third and sixth rows), respectively. (Best viewed in color)

with three benchmark datasets namely, Siftflow, Camvid, Stanford and SUN are reported

in Tables 6.4, 6.5, 6.6 and 6.7, respectively. The empirical results on three datasets show

that our performance on both PA and CA scores are higher than state-of-the-art methods

on larger dataset while giving quite competitive results on the smaller dataset. On larger

Siftflow when we have big enough data for training, our proposed CRNN outperforms all

156

Figure 6.13: Examples of labeling results on Stanford dataset. Each column has six images:
the input image (first and fourth rows), its ground truth labels (second and fifth rows) and our
CRRN prediction labels (third and sixth rows), respectively. (Best viewed in color)

157

B
ri
d
g
e

B
u
il
d
in
g

B
u
s

C
a
r

C
ro
ss
w
a
lk

F
ie
ld

G
ra
ss

M
o
u
n
ta
in

P
e
rs
o
n

R
o
a
d

S
a
n
d

S
e
a

S
id
e
w
a
lk

S
k
y

S
ta
ir
ca
se

Tr
e
e

W
in
d
o
w

U
n
la
b
e
le
d

Figure 6.14: Examples of labeling results on SUN dataset. Each column has six images: the
input image (first and fourth rows), its ground truth labels (second and fifth rows) and our CRRN
prediction labels (third and sixth rows), respectively. (Best viewed in color)

158

Table 6.4: Quantitative results and comparisons against non-fine-tuned models 2D-LSTM
[3], RCNN31/1 resolution (3) [53], Multi-scale Convnet [59], Multi-CNN - rCPN [54],
Scene Graph Structure [55], CNN-65-DAG-RNN [56],Context&Attention [49], Recur-
rent Convolutional Neural Networks (RCNN)[53], Sample&Filter + MRF, [57], Multi-
scale RCNN [58] on Siftflow dataset.

METHOD PA CA

2D-LSTM 70.1% 20.9%

RCNN31/1 resolution (3) 77.7% 29.8%

Multi-scale Convnet 78.5% 29.6%

Multi-CNN - rCPN 79.6% 33.6%

Scene Graph Structure 80.6% 45.8%

CNN-65-DAG-RNN 81.1% 48.1%

Context&Attention 79.8% 48.7%

Sample&Filter + MRF 83.1% 44.3%

Multi-scale RCNN 83.5% 35.8%

Our CRRN 84.7% 61.0%

Table 6.5: Quantitative results and comparisons against non-fine-tuned models Neural Deci-
sion Forests[250], SVM+MRF[249] on CamVid dataset.

METHOD PA CA

Neural Decision Forests 82.1% 56.1%

SVM+MRF 83.9% 62.5%

Our CRRN 84.4% 54.8%

other models in terms of both PA and CA scores. Our CA is 61.0% and PA is 84.0%

compared to the next highest CA score of 48.1% [56] and PA score of 83.5% [58] as shown

in Tables 6.4. On the small dataset, take Camvid as an instance, when we just have about

468 images for training, our PA is still about 0.5% higher than the state-of-the-art method

[249]. On larger scale dataset such as SUN, our CRRN also achieves 1.41% higher than

FCNN [31] in term of PA score.

Figure 6.10 illustrates the advantages of our CRRN in term of modeling the contextual

159

Table 6.6: Quantitative results and comparisons against non-fine-tuned models 2D-LSTM
[3], Recurrent CNN [53], Multi-scale Convnet(the best) [59], Multi-scale RCNN [58],
Associative Hierarchical Random Fields[251] Scene Graph Structure [55], Hierarchical
Random Fields [251] on Stanford-background Dataset

METHOD PA CA

2D-LSTM 78.6% 68.8%

RCNN31/1 resolution (3) 80.2% 69.9%

Multi-scale Convnet 81.4% 76.0%

Multi-scale RCNN 83.1% 74.8%

Associative Hierarchical Random Fields 80.9% 70.4%

Scene Graph Structure 84.6% 77.3%

Hierarchical Random Fields 80.9% 70.4%

Our CRRN 85.23% 75.2%

Table 6.7: Quantitative results and comparisons against non-fine-tuned models CNN-65-
DAG-RNN [56], FCNN [31] on SUN dataset.

METHOD PA CA

CNN-65-DAG-RNN 71.51% 54.57%

FCNN 77.2% 62.03%

Our CRRN 78.61% 59.9%

Table 6.8: Quantitative results and comparisons against CNN - Global Context [1], FCNN
[31], VGG-conv5-DAG-RNN [56] with fine-tuned models on Siftflow dataset.

METHOD PA CA

CNN - Global Context 80.1% 39.7%

FCNN 85.2% 51.7%

VGG-conv5-DAG-RNN 85.3% 55.7%

Our CRRN 84.7% 61.0%

dependency presented in the image. Comparing to [56], besides the local consistency

between neighborhood regions, their semantic coherence is better enhanced in our CRRN.

For example, after training, our CRRN can capture the contextual knowledge such as the

160

‘building’ is not likely to appear in the ’sea’ (i.e. the first case) or the ’desert’ is not usually

covered by the ’field’ (i.e. the second case). As a result, while [56] still has the problem

of misclassification in its predictions, smoother and better labeling maps can be produced

by our model. Our qualitative results on the datasets are further demonstrated in Figures

6.11, 6.12 , 6.13 and 6.14. As visualization, there exist many false positive cases where

pixels are classified as unlabeled while they truly belongs to labeled classes. In such cases,

our CRRN performs well to category the false positive pixels. Thank to the ability of

simultaneously learning rich visual representation and modeling the context information,

our model has better memory of contextual dependency and gives higher discriminative

descriptors for each local patch

Furthermore, we also compare our CRRN with other fine-tuned methods on SiftFlow

as shown in Table 6.8. In this group, most existing fine-tune methods [1, 31, 56] are trained

on large-scale data and make use of powerful feature extractor while our CRRN is a non

fine-tune model and trained on Siftflow only. From these results, one can see that our

CRRN model archives the best CA score (61.0%) compared to the state-of-the-art (55.7%)

[56] while giving a competitive PA score. We believe that given enough data, our CRRN

performance can be boosted and is competitive to these models. We leave this as future

work.

6.2.4 Analysis on false cases

In the following sections, we further study the scenarios where the segmenting results

receive low pixel accuracy and low class accuracy corresponding to two cases of false positive

where the groundtruth is mistakenly labeled as unlabeled and confusing where two labels

are the same meaning

161

74

Mountain

Building Building

Mountain

Plant
Sand

Figure 6.15: Examples of false positive where the ground truth is mistakenly labeled as unla-
beled. Images are from Siftflow. For each column: the input image (first row and fourth), its
ground truth labels (second row and fifth row) and our CRRN prediction labels (third row and
sixth row), respectively. (Best viewed in color)

162

False Positive

The experiments conducted on the benchmark datasets have shown a case where the ground

truth is mistakenly classified as unlabeled class. Some examples of the false positive case

are given in Fig. 6.15 where images are from SiftFlow. As demonstrated in the second

row of Fig. 6.15, many classes i.e. mountain, building, tree, sand are marked as unlabeled

class. However, our CRRN is able to segment and classify them into correct labels as given

in the third row. In this scenario of false positive, the accuracy scores are low but it does

not mean that our segmenting results are incorrect.

Ambiguous Context

In addition to false positive, we are studying another circumstance where classes are am-

biguously labeled. Take the first image in Fig. 6.16 as an instance. The “grass field” is

labeled as “field” in the ground truth whereas it is classified as “grass” by our CRRN. In

the second and the third images, “tree” and “plant” are ambiguously labeled. In such case,

it is acceptable to recognize it as either “tree” or “plant”. In the next three images, the

“mountain” and “tree” are confusing because tree are growing on the mountain. Therefore,

labeling this class as either “mountain” or “tree” is correct.

The study on ambiguous context scenario illustrates the advantage of our CRNN in

term of capturing the contextual dependency. We found that even the pixel accuracy and

class accuracy are low, the segmenting results are really feasible.

163

74

Field

Tree

Mountain
Tree

Plant

Mountain

Grass

Tree

Plant

Tree

Tree
Mountain

Tree

Mountain

Tree

Tree

Mountain
Tree

Mountain

Figure 6.16: Examples of context confusing. For each column: the input image (first row and
fourth), its ground truth labels (second row and fifth row) and our CRRN prediction labels (third
row and sixth row), respectively. (Best viewed in color)

164

Chapter 7

Concluding Remarks and Future

Work

7.1 Concluding Remarks

This thesis proposed two deep learning-based approaches for pixel-level segmentation. The

first approach, Contextual Recurrent Level Set (CRLS) Networks for semantic instance

segmentation, has built the bridge between two unconnected areas, namely, the pure image

processing based variational LS methods and the learnable deep learning approaches. A

novel contour evolution RLS approach has been proposed by employing GRUs under the

energy minimization of a variational LS functional. The learnable RLS model is designed as

a building block that enable RLS easily incorporate into other deep learning components.

Using shared convolutional features, RLS is extended to contextual RLS (CRLS) which

combines detection, segmentation and classification tasks within a unified deep learning

framework to address multi-instance object segmentation in the wild. As we have seen

that successfully reformulating the optimization process of classic LS as a recurrent neural

network is highly beneficial. In addition to solving the LS-based segmentation problem, it is

worthwhile to attempt doing the same for other iterative problems. It means our work not

165

only boosts the classic LS approaches to new level of deep learning but also provides a novel

view of point for iterative problems that not yet explored. The experimental results show

that the proposed RLS method outperforms the baseline approaches such as Chan-Vese,

DRLSE, Li’s, L2S and the F-ConNet methods on object segmentation task. Furthermore,

the experiments on PASCAL VOC and MS COCO concludes that the proposed CRLS gives

competitive performance on semantic instance segmentation in the real world images. To

the best of our knowledge, our proposed fully end-to-end RLS method and CRLS system

are the first Level Set based methods able to deal with real-world challenging databases,

i.e. PASCAL VOC and MS COCO, with highly competitive results. Our work potentially

provides a vehicle for further studies in level set and iterative problems in future.

The second approach, Contextual Recurrent Residual Networks (CRRN), is able to

simultaneously model the long-range context dependencies and learn rich visual represen-

tation. The proposed CRRN is designed as a fully end-to-end deep learning framework and

is able to make use the advantages of both sequence modeling and residual learning tech-

niques. Our CRRN contains three parts corresponding to sequential input data, sequential

output data and hidden CRRN unit. Each hidden CRRN unit has two main components:

context-based component to model the context dependencies and visual-based component

to learn the visual representation. Our proposed end-to-end CRRN is completely trained

from scratch, without using any pre-trained models in contrast to most existing methods

usually fine-tuned from the state-of-the-art pre-trained models, e.g. VGG-16, ResNet, etc.

The experiments are conducted on four challenging scene labeling datasets, i.e. SiftFlow,

CamVid, Stanford background and SUN datasets, and compared against various state-of-

the-art scene labeling methods.

166

91

Object score

Class score

x
y
w
h

Figure 7.1: An improved version of CRLS Networks

7.2 Future Work

The proposed CRLS has archived good performance on PASCAL VOC 2012 and MS COCO

2014 databases. However, CRLS has some limitations which will be improved in the future

work.

• The size of region proposal is fixed as 21 × 21 and this limitation effects to the

segmentation accuracy and the detection as well. Remove the ROI warping step is

doable to boost up the performance.

• There are two classification procedures which perform similar tasks, namely object

detection procedure in the first stage to compute the objectness score and the image

classification in the third stage to compute the class score. The object classification

167

Deconv

94
Figure 7.2: An improved version of CRRN

is basically a special case of the mage classification. Therefore, it is possible to

combine these two tasks into one step to reduce the time consuming. The simple

suggested solution is computing class score instead of objectness score. Therefore,

we can remove the third stage and combine it into the first stage.

• There is no transposed convolution used in CRLS therefore the segmentation results

on boundary is less accurate. The final feature map should be deconvolutioned by the

transposed convolution to improve the performance, specially on the object boundary.

• The entire system is implemented on Caffe framework which has some limitations

about the size and memory. Network design has a difficulty when setting the number

of iterations once being implemented in Caffe. This drawback is completely solve if

the CRLS is reimplemented in other environments like MXNET or Pytorch.

168

The improved version of CRLS for handling the above limitations is illustrated in Fig. 7.1.

Furthermore, we are also looking for the problem of segmenting the unseen objects as

shown in Fig. 7.3 and Fig. 7.4. There are two scenarios related to this problem:

• Segment an unseen object which shares similar texture with the objects in the training

dataset as shown in Fig. 7.3 where the tiger’s texture is similar to zebra’s texture

and leopard’s texture is similar to giraffe’s texture. In such scenario, the proposed

CRLS is able segment the object but it is unable to correctly classify because the

label class doesnt exist in the training.

• Segment an unseen object which does not share similar texture with any object in

the training dataset as shown in Fig. 7.4. In such case, our algorithm is able to

neither segment nor classify because it does not learn such type of texture during the

training procedure.

Figure 7.3: The first example of segmenting results on unseen objects which share similar
texture with the trained objects. The first row: original images. The second rows: segmenting
results by CRLS

While being designed as an effective approach for scene labeling, CRRN has the fol-

lowing disadvantages. An improved version of the proposed CRRNs is illustrated in Fig.

7.2.

• In the current version of CRRN, the upsampling is applied separately after CRNN. An

suggested solution is incorporating a transposed convolution in the end of each CRRN

169

Figure 7.4: The second example of segmenting results on unseen objects which do not share
similar texture with any object in the training dataset. The first row: original images. The
second rows: segmenting results by CRLS

hidden unit, namely each CRRN hidden unit contains three components (context

based, visual-based and upsampling-based) instead of two components.

• In CRRN, the input image is partitioned into non-overlapping blocks. The size of

each block as well as the size of the input image affect to network size (memory

requirement) and pixel labeling accuracy. Given an image, the smaller size of block

gives the better performance and requires bigger memory.

• According to the experiment, the scene labeling accuracy is affected by confusing

labeling where a same pixel is labeled with many synonym class names. In such

circumstance, hierarchical model may be a good solution for scene labeling problem.

In this approach, we further study the cross databases problem where the algorithm is

trained on one city and is tested on another unseen city as shown in Fig. 7.5 and Fig. 7.6.

There are two scenarios related to this problem:

170

• The unseen city contains objects that are similar with the objects in the training set

as given in Fig. 7.5. For example, the model is trained on the images from Pittsburgh

street view and is tested on the images from New Orleans. Clearly, New Orleans is

very similar to Pittsburgh in regards to city layout and they both contains similar

objects such as car, traffic light, street, tree. Thus, the proposed CRRN is able to

segment and label most of the objects in the unseen city.

• The unseen city contains objects and city layout that are different from the objects

in the training set as given in Fig. 7.6. In the training set, there is no scooter/bicycle

or there is no auto rickshaw as shown in the testing set. In such case, CRRN is able

to label the objects (like people) that exist in the training set, but it is unable to

label the scooter or bicycle. In the left image of Fig. 7.6, depend on the view, the

auto rickshaws sometimes look similar a car, thus, CRRN give the wrong label (label

it as a car).

These experimental results indicate that there is a future work to be perform in the area

of domain adaptation and network fine tuning to enable these network to generalize across

different datasets and city layout.

Figure 7.5: The first examples of cross databases problem where the model is trained on SUN
database and tested on CamVid database. First row: images from CamVid database. Second
row: Scene labeling results by our CRRN

171

Figure 7.6: The second examples of cross databases problem where the model is trained on
SUN database and tested on images from Internet. First row: images from Internet. Second row:
Scene labeling results by our CRRN

172

Appendix A

Appendix

173

Most of the works related to CLS proposed Chan Vese [62] have made use the final

equations of curve evolution but none of researches provides the detailed derivative. In

order to build CLS under a deep framework, it is necessary to know all the derivatives

in details. Therefore, we first bring the curve evolution in CLS and its derivative in A.1.

We then show the derivatives our proposed Recurrent Level Set (RLS) in Sections 4.2.2

with forward pass and backward pass procedures. We have added some more semantic

segmentating results on various cases i.e. overlapping objects, single-instance object, multi-

instance object from PASCAL VOC and MS COCO databases. More illustrations for the

comparison between MNC performance [29] and ours is also showed here.

In this section, we also provide in details the segmentation performance (average preci-

sion %) on each category at IoU = 0.5 on PASCAL VOC 2012. The performance of CRLS

on MS COCO database is also showed in details with different measures, i.e. average

precision, average precision across scales, average recall, average recall across scales.

A.1 Derivation of Level Set

The value of constants c1 and c2 can be derived by setting the derivative of E w.r.t. c1

and c2, respectively: The energy functional defined as follows:

E(c1, c2, φ) = µ

∫

Ω

H(φ(x, y))dxdy

+ ν

∫

Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫

Ω

|I(x, y)− c1|2H(φ(x, y))dxdy

+ λ2

∫

Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy

(A.1)

174

Derivative of E w.r.t. c1:

∂E

∂c1

=

∫

Ω

2λ1(I(x, y)− c1)H(φ(x, y))dxdy = 0

⇒ c1 =

∫
Ω

I(x, y)H(φ(x, y))dxdy∫
Ω
H(φ(x, y))dxdy

,

(A.2)

Derivative of E w.r.t. c2:

∂E

∂c2

=

∫

Ω

2λ2(I(x, y)− c2)(1−H(φ(x, y)))dxdy = 0

⇒ c2 =

∫
Ω

I(x, y)(1−H(φ(x, y)))dxdy∫
Ω

(1−H(φ(x, y)))dxdy
.

(A.3)

The optimal level set function φ can be computed by solving the associated Euler-

Lagrange equation. Here, keeping c1 and c2 fixed,

E =

∫

Ω

f(φ,∇φ)dxdy, (A.4)

then the Euler-Lagrange equation is given by

∂f

∂φ
−∇ · ∂f

∂∇φ = 0. (A.5)

We compute each term in the above equation as follows:

∂f

∂φ
=

∂

∂φ

(
νδ(φ)|∇φ|+ µH(φ) + λ1|I− c1|2H(φ)

+λ2|I− c2|2(1−H(φ))
)
)

= ν|∇φ|∂δ(φ)

∂φ
+ µδ(φ) + λ1|I− c1|2δ(φ)

− λ2|I− c2|2δ(φ)

(A.6)

175

in which, the first term vanishes since we care about the zero level set (φ = 0).

|∇φ| =
√
φ2
x + φ2

y

∂

∂φx
|∇φ| = 2φx

2
√
φ2
x + φ2

y

=
φx
|∇φ|

∂

∂φy
|∇φ| = 2φy

2
√
φ2
x + φ2

y

=
φy
|∇φ| ,

⇒ ∂

∂∇φ |∇φ| =
∇φ
|∇φ|

∂f

∂∇φ = νδ(φ)
∇φ
|∇φ| .

Thus,

∂f

∂φ
−∇ · ∂f

∂∇φ =

− δ(φ)

{
νdiv

(∇φ
|∇φ|

)
− µ− λ1|I− c1|2 + λ2|I− c2|2

}
= 0.

The above equation is valid when φ is the optimal solution. Parameterizing the descent

direction by an artificial time t ≥ 0, we can formulate an iterative update equation for φ:

∂φ

∂t
= δ(φ)

{
νdiv

∇φ
|∇φ| − µ− λ1|I− c1|2 + λ2|I− c2|2

}
.

Note that when the time derivative vanishes, φ will stop updating.

176

A.2 Derivatives of Recurrent Level Sets (RLS) for-

ward/backward

A.2.1 Forward Pass Procedure

The forward pass procedure of RLS is calculated by the following equations:

zt = σ(fz) = σ(Uzxt + Wzφt−1 + bz)

rt = σ(fr) = σ(Urxt + Wrφt−1 + br)

h̃t = tanh(fo) = tanh(Uφxt + Wo (φt−1 � rt) + bo)

φt = (1− zt)� h̃t + zt � φt−1

Ot = Vφt + b

ŷt = softmax(Ot)

L = −
∑

ytlogŷt

where zt, rt, h̃t, φt,Ot, ŷt, are updated gate, reset gate, candidate memory gate, updated

hidden state, intermediate output, output. σ is a sigmoid function and L is the loss

function.

177

A.2.2 Backward Pass Procedure

Derivative w.r.t. Ot : ∆y =
∂L

∂Ot

= ŷt − y

Derivative w.r.t. b :
∂L

∂b
= ∆y

Derivative w.r.t. V :
∂L

∂V
= ∆yφt

Derivative w.r.t. fo : ∇fo =
∂L

∂fo
=

∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂fo

= V T∆y(1− zt)(1− ot)ot

Derivative w.r.t. fr : ∇ fr =
∂L

∂rt
=

∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂rt

∂rt
∂fr

= V T∆y(1− zt)(1− ot)otW
T
φφt−1rt(1− rt)

Derivative w.r.t. fz : ∇fz =
∂L

∂zt
=

∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂fr

= V T∆y(φt−1 − ot)zt(1− zt)

Derivatives w.r.t. Uφ,Wφ,bφ

Derivative w.r.t. Uo :
∂L

∂Uo

=
∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂Uo

= ∇foxt

Derivative w.r.t. Wo :
∂L

∂Wo

=
∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂Wo

= ∇foφt−1 � rt

Derivative w.r.t. bo :
∂L

∂bo
=

∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂bo

= ∇fo

Derivatives w.r.t. Ur,Wr,br

Derivative w.r.t. Ur :
∂L

∂Ur

=
∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂rt

∂rt
∂Ur

= ∇frxt

Derivative w.r.t. Wr :
∂L

∂Wr

=
∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂rt

∂rt
∂Wr

= ∇frφt−1

Derivative w.r.t. br :
∂L

∂br
=

∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂rt

∂rt
∂br

= ∇fr

178

Derivatives w.r.t. Uz,Wz,bz

Derivative w.r.t. Uz :
∂L

∂Uz

=
∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂Uz

= ∇fzxt

Derivative w.r.t. Wz :
∂L

∂Wz

=
∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂Wz

= ∇fzφt−1

Derivative w.r.t. Wz :
∂L

∂Wz

=
∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂Wz

= ∇fzφt−1

Derivative w.r.t. bz :
∂L

∂bz
=

∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂bz

= ∇fz

Derivatives w.r.t. φt−1,xt

Derivative w.r.t. φt−1 :
∂L

∂φt−1

=
∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂fo

∂fo
∂φt−1

+
∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂fz

∂fz
∂φt−1

= ∇fo(Wo � rt +
∂rt
∂fr

∂fr
∂φt−1

) +∇fzWz

= ∇foWo � rt +∇frWr +∇fzWz

Derivative w.r.t. xt :
∂L

∂xt
=

∂L

∂Ot

∂Ot

∂φt

∂φt

∂h̃t

∂h̃t
∂fo

∂fo
∂xt

+
∂L

∂Ot

∂Ot

∂φt

∂φt
∂zt

∂zt
∂fz

∂fz
∂xt

= ∇foUo � rt +∇fzUz +∇frUr

179

Bibliography

[1] B. Shuai, G. Wang, Z. Zuo, B. Wang, and L. Zhao, “Integrating parametric and non-

parametric models for scene labeling,” in CVPR, 2015, pp. 4249–4258. (document),

1, 2, 3.2.1, 3.2.2, 5.1, 6.8, 6.2.3

[2] H. Fan, X. Mei, D. Prokhorov, and H. Ling, “Multi-level contextual rnns with atten-

tion model for scene labeling,” arXiv preprint arXiv:1607.02537, 2016. (document),

1, 2, 3.2.3, 5.1, 5.2

[3] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling with lstm recurrent

neural networks,” in CVPR, 2015, pp. 3547–3555. (document), 1, 2, 3.2.3, 5.1, 6.4,

6.6

[4] R. Gonzales and R.Woods, “Digital image processing,” Addison-Wesley Publishing,

1st ed, Tech. Rep., 1993. 1, 3.1, 3.1.2

[5] D. G.Lowe, “Distinctive image features from scale-invariant keypoints,” in ICCV,

2004, pp. 91–110. 1

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, vol. 1. IEEE, 2005, pp. 886–893. 1

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Gool, “Speeded-up robust features (surf),”

CVIU, vol. 110, 2008. 1

[8] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical framework for

180

back-propagation,” in Proceedings of the 1988 connectionist models summer school.

CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988, pp. 21–28. 1, 2.2

[9] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural

networks: Tricks of the trade. Springer, 1998, pp. 9–50. 1, 2.2

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105. 1, 2.5.2

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, and et al., “Imagenet: large scale visual recognition

challenge,” 2014. 1, 5.1

[12] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia, “A level set model for image

classification,” International Journal Computer Vision, vol. 40, no. 3, pp. 187–197,

2000. 1, 2.4.5

[13] T. Brox and J. Weickert, “Level set segmentation with multiple regions,” IEEE

Transactions on Image Processing, vol. 15, no. 10, p. 32133218, 2006. 1, 2.4.5

[14] E. Bae and X.-C. Tai, “Graph cut optimization for the piecewise constant level set

method applied to multiphase image segmentation,” 2009, pp. 1–13. 1, 2.4.5

[15] C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set evolution and

its application to image segmentation,” IEEE Trans. Image Process. (TIP), vol. 19,

no. 12, pp. 3243–3254, 2010. 1, 2.4.5, 6.1.3, 6.1, 6.1

[16] C. Li, R. Huang, Z. Ding, C. Gatenby, D. N. Metaxas, and J. C. Gore, “A level set

method for image segmentation in the presence of intensity inhomogene ities with

application to mri,” IEEE Transactions on Image Processing (TIP), vol. 20, no. 7,

pp. 2007–2016, 2011. 1, 2.4.5, 6.1.3, 6.1, 6.1

[17] B. Lucas, M. Kazhdan, and R. Taylor, “Multi-object spring level sets (muscle),”

181

2012, pp. 495–503. 1, 2.4.5

[18] T. H. N. Le, K. Luu, , and M. Savvides, “Sparcles: Dynamic l1 sparse classifiers with

level sets for robust beard/moustache detection and segmentation,” IEEE Trans. on

Image Processing (TIP), vol. 22, no. 8, pp. 3097–3107, 2013. 1

[19] Q. Huang, X. Bai, Y. Li, L. Jin, and X. Li, “Optimized graph-based segmentation

for ultrasound images,” Neurocomputing, vol. 129, no. Complete, pp. 216–224, 2014.

1, 2.4.5, 3.1.6

[20] J. Li, M. Luong, and D. Jurafsky, “A hierarchical neural autoencoder for paragraphs

and documents,” CoRR, vol. abs/1506.01057, 2015. 1, 2.3.3

[21] S. Mukherjee and S. Acton, “Region based segmentation in presence of intensity

inhomogeneity using legendre polynomials,” IEEE Signal Processing Letters, vol. 22,

no. 3, pp. 298–302, 2015. 1, 2.4.5, 3.1.6, 6.1.3, 6.1, 6.1

[22] T. H. N. Le, , and Savvides, “A novel shape constrained feature-based active contour

(sc-fac) model for lips/mouth segmentationin the wild,” Pattern Recognition, vol. 54,

pp. 23–33, 2016. 1, 3.1.6

[23] J. Shen, Y. Du, and X. Li, “Interactive segmentation using constrained laplacian

optimization,” IEEE Trans. Circuits Syst. Video Techn., vol. 24, no. 7, pp. 1088–

1100, 2014. 1, 2.4.5, 3.1.6

[24] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International Journal of Computer Vi-

sion, vol. 88, no. 2, pp. 303–338, Jun. 2010. 1, 3.3.1, 3.3, 4.5, 6.1, 6.1.1

[25] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in

context,” CoRR, vol. abs/1405.0312, 2014. 1, 3.3.1, 3.3, 4.5, 5.1, 6.1, 6.1.1

[26] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection and

182

segmentation,” in European Conference on Computer Vision. Springer, 2014, pp.

297–312. 1, 1, 3.2.2, 6.1.4, 6.2

[27] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, “Hyper- columns for object seg-

mentation and fine-grained localization,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. 1, 6.1.4, 6.2

[28] J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint object and stuff

segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 1, 6.1.4, 6.2

[29] ——, “Instance-fully convolutional instance-aware semantic segmentation via multi-

task network cascades.” 1, 1, 1.2, 1.3, 3.2.2, 6.1.4, 6.2, 6.2, 6.3, 6.1.5, 6.4, 6.5, 6.6,

6.7, A

[30] R. Girshick, J. Donahue, and J. M. T. Darrell, “Region-based convolutional networks

for accurate object detection and semantic segmentation,” Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 38, pp. 142–158, 2015. 1, 1, 2.6.1,

3.2.2, 4.3.1

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 1, 1, 3.2.2, 3.2.2, 3.1, 5.1, 6.2.3, 6.7, 6.8, 6.2.3

[32] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,

and P. Torr, “Conditional random fields as recurrent neural networks,” in Proceedings

of the International Conference on Computer Vision (ICCV), 2015. 1, 3.2.1, 3.2.3,

3.2

[33] T. N. Le, C. Zhu, Y. Zheng, K. Luu, and M. Savvides, “Robust hand detection

in vehicles,” in International Conference on Pattern Recognition (ICPR), 2016, pp.

573–578. 1

183

[34] T. N. Le, Y. Zheng, C. Zhu, K. Luu, and M. Savvides, “Multiple scale faster-rcnn

approach to drivers cell-phone usage and hands on steering wheel detection,” in Con-

ference on Computer Vision and Pattern Recognition Workshops (CVPRW), June

2016, pp. 46–53. 1

[35] K. Luu, C. C. Zhu, C. Bhagavatula, T. N. Le, and M. Savvide, “A deep learning

approach to joint face detection and segmentation,” Kawulok M., Celebi M., Smolka

B. (eds) Advances in Face Detection and Facial Image Analysis. Springer, Cham,

pp. 1–12, 2016. 1

[36] Y. Zheng, C. Zhu, K. Luu, C. Bhagavatula, T. N. Le, and M. Savvides, “Towards a

deep learning framework for unconstrained face detection,” in IEEE 8th Intl. Con-

ference on Biometrics: Theory, Applications and Systems (BTAS), 2016, pp. 1–8.

1

[37] T. N. Le, K. Luu, C. Zhu, and M. Savvides, “Semi self-training beard/moustache

detection and segmentation simultaneously,” Image and Vision Computing, vol. 58,

pp. 214–223, 2017. 1

[38] T. N. Le, C. Zhu, Y. Zheng, K. Luu, and M. Savvides, “Deepsafedrive: A grammar-

aware driver parsing approach to driver behavioral situational awareness (db-saw),”

Pattern Recognition, vol. 66, pp. 229–238, 2017. 1

[39] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE transactions on pat-

tern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. 1, 3.2.2,

3.1

[40] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015. 1, 2.2.1, 3.2.2, 3.2.2, 3.1

[41] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segnet: Model uncertainty

184

in deep convolutional encoder-decoder architectures for scene understanding,” arXiv

preprint arXiv:1511.02680, 2015. 1, 3.1

[42] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution, and

fully connected crfs,” IEEE transactions on pattern analysis and machine intelli-

gence, vol. 40, no. 4, pp. 834–848, 2018. 1, 3.1

[43] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object candidates,”

in NIPS, 2015. 1, 3.1

[44] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”

in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017, pp.

2881–2890. 1, 3.2.2, 3.1

[45] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware se-

mantic segmentation,” in IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 2359–2367. 1, 3.1

[46] X. He, R. Zemel, and M. Carreira-Perpinan, “Multiscale conditional random fields

for image labeling,” in CVPR 2004, vol. 2, 2004, pp. II–695–II–702. 1, 3.2.1

[47] Z. Tu and X. Bai, “Auto-context and its application to high-level vision tasks and

3d brain image segmentation,” TPAMI, vol. 32, no. 10, pp. 1744–1757, 2010. 1

[48] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked hierarchical labeling,” in ECCV,

2010, pp. 57–70. 1, 3.2.1

[49] J. Yang, B. Price, S. Cohen, and M.-H. Yang, “Context driven scene parsing with

attention to rare classes,” in CVPR, 2014, pp. 3294–3301. 1, 3.2.1, 5.1, 6.4

[50] S. Bu, P. Han, Z. Liu, and JunweiHan, “Scene parsing using inference embedded

deep networks,” Pattern Recognition, vol. 56, pp. 188–198, 2016. 1

[51] Q. Zhou, B. Zheng, W. Zhu, and L. J. Latecki, “Multi-scale context for scene labeling

185

via flexible segmentation graph,” Pattern Recognition, vol. 59, pp. 312–324, 2016. 1

[52] F. Visin, K. Kastner, A. C. Courville, Y. Bengio, M. Matteucci, and K. Cho, “Reseg:

A recurrent neural network for object segmentation,” CoRR, vol. abs/1511.07053,

2015. 1, 3.2.3, 3.2, 5.1

[53] P. H. Pinheiro and R. Collobert, “Recurrent convolutional neural networks for scene

labeling,” in ICML, 2014, pp. 82–90. 1, 3.2.3, 5.1, 6.4, 6.6

[54] A. Sharma, O. Tuzel, and M. Liu, “Recursive context propagation network for se-

mantic scene labeling,” in NIPS, 2014, pp. 2447–2455. 1, 6.4

[55] N. Souly and M. Shah, “Scene labeling using sparse precision matrix,” in CVPR,

June 2016. 1, 6.4, 6.6

[56] B. Shuai, Z. Zuo, G. Wang, and B. Wang, “Dag-recurrent neural networks for scene

labeling,” in CVPR, 2016. 1, 1.4, 3.2, 5.2, 6.2.1, 6.10, 6.4, 6.2.3, 6.7, 6.8, 6.2.3

[57] M. Najafi, S. Taghavi Namin, M. Salzmann, and L. Petersson, “Sample and filter:

Nonparametric scene parsing via efficient filtering,” in CVPR, June 2016. 1, 6.4

[58] M. Liang, X. Hu, and B. Zhang, “Convolutional neural networks with intra-layer

recurrent connections for scene labeling,” in NIPS, 2015, pp. 937–945. 1, 6.4, 6.2.3,

6.6

[59] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features

for scene labeling,” TPAMI, vol. 35, no. 8, pp. 1915–1929, 2013. 1, 3.2.2, 5.1, 6.4, 6.6

[60] Z. Shuai, J. Sadeep, R.-P. Bernardino, V. Vibhav, S. Zhizhong, D. Dalong, H. Chang,

and T. P. HS, “Conditional random fields as recurrent neural networks,” in CVPR,

2015, pp. 1529–1537. 1, 5.1

[61] Y. Duan, F. Liu, L. Jiao, P. Zhao, and LuZhang, “Sar image segmentation based

on convolutional-wavelet neural network and markov random field,” Pattern Recog-

nition, vol. 64, pp. 255–267, 2017. 1

186

[62] T. F. Chan and L. A. Vese, “Active contours without edges,” TIP, vol. 10, no. 2, pp.

266–277, Feb. 2001. 1, 1.2, 2.4.4, 3.1.6, 4.2.2, 4.2.2, 6.1.1, 6.1.3, 6.1, 6.1, A

[63] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” in Proceedings of the IEEE, 1998, pp. 2278–2324. 2.2

[64] Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and

D. Henderson, “Advances in neural information processing systems 2,” 1990, ch.

Handwritten Digit Recognition with a Back-propagation Network, pp. 396–404. 2.2,

2.5.1

[65] J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng, “Tiled convolutional

neural networks,” in Advances in neural information processing systems, 2010, pp.

1279–1287. 2.2.1

[66] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

in ECCV, 2014, pp. 818–833. 2.2.1, 2.5.3, 2.6.3

[67] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3. 2.2.2

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026–1034. 2.2.2, 3.2.2

[69] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations

in convolutional network,” arXiv preprint arXiv:1505.00853, 2015. 2.2.2

[70] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

2.2.2

[71] J. Bruna, A. Szlam, and Y. LeCun, “Signal recovery from pooling representations,”

arXiv preprint arXiv:1311.4025, 2013. 2.2.3

187

[72] D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolutional neural

networks,” in International Conference on Rough Sets and Knowledge Technology.

Springer, 2014, pp. 364–375. 2.2.3

[73] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolu-

tional neural networks,” arXiv preprint arXiv:1301.3557, 2013. 2.2.3

[74] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for convolutional

neural networks,” in Advances in neural information processing systems, 2015, pp.

2449–2457. 2.2.3

[75] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional

networks for visual recognition,” IEEE transactions on pattern analysis and machine

intelligence, vol. 37, no. 9, pp. 1904–1916, 2015. 2.2.3, 2.2.8

[76] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional

neural networks.” in ICML, 2016, pp. 507–516. 2.2.4

[77] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,

with application to face verification,” in Computer Vision and Pattern Recognition,

2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.

539–546. 2.2.4

[78] G. Koch, “Siamese neural networks for one-shot image recognition,” 2015. 2.2.4

[79] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 815–823. 2.2.4

[80] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance learning:

Tell the difference between similar vehicles,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2167–2175. 2.2.4

[81] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

188

“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv

preprint arXiv:1207.0580, 2012. 2.2.5

[82] S. Wang and C. Manning, “Fast dropout training,” in international conference on

machine learning, 2013, pp. 118–126. 2.2.5

[83] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” in Advances

in Neural Information Processing Systems, 2013, pp. 3084–3092. 2.2.5

[84] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object

localization using convolutional networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015, pp. 648–656. 2.2.5

[85] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neu-

ral networks using dropconnect,” in International Conference on Machine Learning,

2013, pp. 1058–1066. 2.2.5

[86] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-

lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

2.2.6, 2.2.8

[87] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels

with a common multi-scale convolutional architecture,” in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 2650–2658. 2.2.6

[88] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmenta-

tion for environmental sound classification,” IEEE Signal Processing Letters, vol. 24,

no. 3, pp. 279–283, 2017. 2.2.6

[89] M. Paulin, J. Revaud, Z. Harchaoui, F. Perronnin, and C. Schmid, “Transforma-

tion pursuit for image classification,” in Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 3646–3653. 2.2.6

189

[90] Z. Xu, S. Huang, Y. Zhang, and D. Tao, “Augmenting strong supervision using

web data for fine-grained categorization,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 2524–2532. 2.2.6

[91] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the thirteenth international conference on

artificial intelligence and statistics, 2010, pp. 249–256. 2.2.6

[92] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dy-

namics of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120,

2013. 2.2.6

[93] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural

networks, vol. 12, no. 1, pp. 145–151, 1999. 2.2.6

[94] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gradient

descent,” in Advances in neural information processing systems, 2010, pp. 2595–2603.

2.2.6

[95] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015. 2.2.6

[96] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778. 2.2.6, 2.5.6

[97] D. T. Nguyen, W. Li, and P. O. Ogunbona, “Human detection from images and

videos: A survey,” Pattern Recognition, vol. 51, pp. 148–175, 2016. 2.2.8

[98] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective

search for object recognition,” International journal of computer vision, vol. 104,

no. 2, pp. 154–171, 2013. 2.2.8

[99] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

190

accurate object detection and semantic segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 580–587. 2.2.8

[100] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object

detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015. 2.2.8,

2.6.3, 2.6.4, 4.3.1, 4.5, 4.3.1, 4.3.1, 4.5

[101] M. Egmont-Petersen, D. de Ridder, and H. Handels, “Image processing with neural

networksa review,” Pattern recognition, vol. 35, no. 10, pp. 2279–2301, 2002. 2.2.8

[102] A.-M. Tousch, S. Herbin, and J.-Y. Audibert, “Semantic hierarchies for image anno-

tation: A survey,” Pattern Recognition, vol. 45, no. 1, pp. 333–345, 2012. 2.2.8

[103] G.-S. Xie, X.-Y. Zhang, W. Yang, M. Xu, S. Yan, and C.-L. Liu, “Lg-cnn: From

local parts to global discrimination for fine-grained recognition,” Pattern Recognition,

vol. 71, pp. 118–131, 2017. 2.2.8

[104] J. Fan, W. Xu, Y. Wu, and Y. Gong, “Human tracking using convolutional neural

networks,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1610–1623,

2010. 2.2.8

[105] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discriminative

saliency map with convolutional neural network,” in International Conference on

Machine Learning, 2015, pp. 597–606. 2.2.8

[106] H. Li, Y. Li, and F. Porikli, “Deeptrack: Learning discriminative feature represen-

tations online for robust visual tracking,” IEEE Transactions on Image Processing,

vol. 25, no. 4, pp. 1834–1848, 2016. 2.2.8

[107] L. Wang, H. Lu, X. Ruan, and M.-H. Yang, “Deep networks for saliency detection

via local estimation and global search,” in Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on. IEEE, 2015, pp. 3183–3192. 2.2.8

[108] G. Li and Y. Yu, “Visual saliency based on multiscale deep features,” arXiv preprint

191

arXiv:1503.08663, 2015. 2.2.8

[109] M. Patacchiola and A. Cangelosi, “Head pose estimation in the wild using convolu-

tional neural networks and adaptive gradient methods,” Pattern Recognition, vol. 71,

pp. 132–143, 2017. 2.2.8

[110] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural

networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 1653–1660. 2.2.8

[111] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler, “Learn-

ing human pose estimation features with convolutional networks,” arXiv preprint

arXiv:1312.7302, 2013. 2.2.8

[112] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolutional

network and a graphical model for human pose estimation,” in Advances in neural

information processing systems, 2014, pp. 1799–1807. 2.2.8

[113] A. Jain, J. Tompson, Y. LeCun, and C. Bregler, “Modeep: A deep learning framework

using motion features for human pose estimation,” in Asian conference on computer

vision. Springer, 2014, pp. 302–315. 2.2.8

[114] G. Gkioxari, R. Girshick, and J. Malik, “Contextual action recognition with r* cnn,”

in Proceedings of the IEEE international conference on computer vision, 2015, pp.

1080–1088. 2.2.8

[115] J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tang, “Rgb-d-based action

recognition datasets: A survey,” Pattern Recognition, vol. 60, pp. 86–105, 2016.

2.2.8

[116] M. Delakis and C. Garcia, “text detection with convolutional neural networks.” in

VISAPP (2), 2008, pp. 290–294. 2.2.8

[117] H. Xu and F. Su, “Robust seed localization and growing with deep convolutional

192

features for scene text detection,” in Proceedings of the 5th ACM on International

Conference on Multimedia Retrieval. ACM, 2015, pp. 387–394. 2.2.8

[118] P. He, W. Huang, Y. Qiao, C. C. Loy, and X. Tang, “Reading scene text in deep

convolutional sequences.” in AAAI, vol. 16, 2016, pp. 3501–3508. 2.2.8

[119] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition with con-

volutional neural networks,” in Pattern Recognition (ICPR), 2012 21st International

Conference on. IEEE, 2012, pp. 3304–3308. 2.2.8

[120] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Deep features for text spotting,” in

European conference on computer vision. Springer, 2014, pp. 512–528. 2.2.8

[121] D. Yu, W. Xiong, J. Droppo, A. Stolcke, G. Ye, J. Li, and G. Zweig, “Deep convo-

lutional neural networks with layer-wise context expansion and attention.” in Inter-

speech, 2016, pp. 17–21. 2.2.8

[122] L.-H. Chen, T. Raitio, C. Valentini-Botinhao, J. Yamagishi, and Z.-H. Ling, “Dnn-

based stochastic postfilter for hmm-based speech synthesis.” in INTERSPEECH,

2014, pp. 1954–1958. 2.2.8

[123] M. I. Jordan, “Artificial neural networks,” J. Diederich, Ed., 1990, ch. Attractor

Dynamics and Parallelism in a Connectionist Sequential Machine, pp. 112–127. 2.3.1

[124] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing: Foundations

of research,” J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT

Press, 1988, ch. Learning Representations by Back-propagating Errors, pp. 696–699.

2.3.1

[125] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-

dient descent is difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166,

1994. 2.3.2, 2.3.6

[126] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural

193

nets and problem solutions,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 6,

no. 2, pp. 107–116, 1998. 2.3.2

[127] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,

vol. 9, no. 8, pp. 1735–1780, 1997. 2.3.2

[128] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using RNN encoder-decoder for statistical machine

translation,” CoRR, vol. abs/1406.1078, 2014. 2.3.3, 2.3.3, 4.2.2

[129] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and S. Khudanpur, “Extensions

of recurrent neural network language model,” in ICASSP, 2011, pp. 5528–5531. 2.3.3

[130] T. Mikolov, “Statistical language models based on neural networks,” PhD thesis,

Brno University of Technology, 2012. 2.3.3

[131] K. Zhang, Q. Liu, H. Song, and X. Li, “A variational approach to simultaneous

image segmentation and bias correction.” IEEE Trans. Cybernetics, vol. 45, no. 8,

pp. 1426–1437, 2015. 2.3.3, 2.4.5, 3.1.6

[132] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep recurrent

neural networks,” CoRR, vol. abs/1303.5778, 2013. 2.3.3

[133] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based

models for speech recognition,” CoRR, vol. abs/1506.07503, 2015. 2.3.3

[134] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation models.” As-

sociation for Computational Linguistics, October 2013. 2.3.3

[135] T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and W. Zaremba, “Addressing the rare

word problem in neural machine translation,” CoRR, vol. abs/1410.8206, 2014. 2.3.3

[136] O. Vinyals and Q. V. Le, “A neural conversational model,” CoRR, vol.

abs/1506.05869, 2015. 2.3.3

[137] R. Lowe, N. Pow, I. Serban, and J. Pineau, “The ubuntu dialogue corpus: A

194

large dataset for research in unstructured multi-turn dialogue systems,” CoRR, vol.

abs/1506.08909, 2015. 2.3.3

[138] F. Hill, A. Bordes, S. Chopra, and J. Weston, “The goldilocks principle: Reading

children’s books with explicit memory representations,” CoRR, vol. abs/1511.02301,

2015. 2.3.3

[139] M. Liang and X. Hu, “Recurrent convolutional neural network for object recog-

nition,” in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015. 2.3.3

[140] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling with lstm recur-

rent neural networks,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015. 2.3.3

[141] S. Bell, C. L. Zitnick, K. Bala, and R. B. Girshick, “Inside-outside net: Detecting

objects in context with skip pooling and recurrent neural networks,” CoRR, vol.

abs/1512.04143, 2015. 2.3.3

[142] J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille, “Deep captioning with multi-

modal recurrent neural networks (m-rnn),” CoRR, vol. abs/1412.6632, 2014. 2.3.3

[143] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual

recognition and description,” CoRR, vol. abs/1411.4389, 2014. 2.3.3

[144] A. Karpathy and F. Li, “Deep visual-semantic alignments for generating image de-

scriptions,” CoRR, vol. abs/1412.2306, 2014. 2.3.3

[145] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” IJCV,

vol. 1, no. 4, pp. 321–331, 1988. 2.4.1, 3.1.6

[146] V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for active contours

in image processing,” Numerische Mathematik, vol. 66, no. 1, pp. 1–31, Dec. 1993.

195

2.4.3

[147] O. M.-G. N. Paragios and V. Ramesh, “Gradient vector flow fast geometric active

contours,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 3,

pp. 402–407, 2004. 2.4.3

[148] D. Mumford and J. Shah, “Optimal Approximation by Piecewise Smooth Functions

and Associated Variational Problems,” Communications on Pure and Applied Math-

ematics, vol. 42, no. 5, pp. 577–685, 1989. 2.4.4, 2.4.5, 3.1.6

[149] C. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary

fitting energy,” in CVPR, 2007, pp. 1–7. 2.4.5, 3.1.6

[150] H. Wu, V. V. Appia, and A. J. Yezzi, “Numerical conditioning problems and solutions

for nonparametric i.i.d. statistical active contours.” TPAMI, vol. 35, no. 6, pp. 1298–

1311, 2013. 2.4.5

[151] Y. Shi and W. C. Karl, “Real-time tracking using level sets,” vol. 2, June 2005, pp.

34–41 vol. 2. 2.4.5

[152] A. Dubrovina, G. Rosman, and R. Kimmel, “Multi-region active contours with a

single level set function,” Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), vol. 37, pp. 1585–1601, 2015. 2.4.5, 3.1.6

[153] T. H. N. Le and M. Savvides, “A novel shape constrained feature-based active contour

model for lips/mouth segmentation in the wild,” Pattern Recognition, vol. 54, pp.

23–33, 2016. 2.4.5

[154] H. Zhou, X. Li, G. Schaefer, M. E. Celebi, and P. C. Miller, Computer Vision and

Image Understanding, vol. 117, no. 9, pp. 1004–1016, 2013. 2.4.5

[155] T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for finding global minimizers

of image segmentation and denoising models,” Siam Journal on Applied Mathemat-

ics, Tech. Rep., 2006. 2.4.5

196

[156] J. Weickert, B. M. T. H. Romeny, and M. A. Viergever, “Efficient and reliable schemes

for nonlinear diffusion filtering,” TIP, vol. 7, pp. 398–410, 1998. 2.4.5

[157] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 2.5.4, 2.6.3, 4.3.1

[158] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, A. Rabinovich et al., “Going deeper with convolutions.” Cvpr, 2015. 2.5.5

[159] R. Girshick, “Fast r-cnn,” in ICCV, 2015, pp. 1440–1448. 2.6.2, 4.3.1

[160] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR, vol.

abs/1703.06870, 2017. 2.6.4

[161] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 779–788. 2.6.5

[162] A. Brink, “Minimum spatial entropy threshold selection,” IEE Proceedings-Vision,

Image and Signal Processing, vol. 142, no. 3, pp. 128–132, 1995. 3.1.1

[163] O. J. Tobias and R. Seara, “Image segmentation by histogram thresholding using

fuzzy sets,” IEEE transactions on Image Processing, vol. 11, no. 12, pp. 1457–1465,

2002. 3.1.1

[164] T. H. N. Le, T. D. Bui, and C. Y. Suen, “Ternary entropy-based binarization of

degraded document images using morphological operators,” in Document Analysis

and Recognition (ICDAR), 2011 International Conference on. IEEE, 2011, pp.

114–118. 3.1.1

[165] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transac-

tions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979. 3.1.1

[166] A. Z. Arifin and A. Asano, “Image segmentation by histogram thresholding using

hierarchical cluster analysis,” Pattern recognition letters, vol. 27, no. 13, pp. 1515–

197

1521, 2006. 3.1.1

[167] N. Vandenbroucke, L. Macaire, and J.-G. Postaire, “Color image segmentation by

pixel classification in an adapted hybrid color space. application to soccer image

analysis,” Computer Vision and Image Understanding, vol. 90, no. 2, pp. 190–216,

2003. 3.1.1

[168] K. S. Tan and N. A. M. Isa, “Color image segmentation using histogram thresholding–

fuzzy c-means hybrid approach,” Pattern Recognition, vol. 44, no. 1, pp. 1–15, 2011.

3.1.1

[169] B. Sumengen and B. Manjunath, “Multi-scale edge detection and image segmenta-

tion,” in Signal Processing Conference, 2005 13th European. IEEE, 2005, pp. 1–4.

3.1.2

[170] J. Fan, D. K. Yau, A. K. Elmagarmid, and W. G. Aref, “Automatic image seg-

mentation by integrating color-edge extraction and seeded region growing,” IEEE

transactions on image processing, vol. 10, no. 10, pp. 1454–1466, 2001. 3.1.2

[171] C. Brice and C. Fennema, “Computer method in image analysis, chapter. scene

analysis using regions,” Los Angeles: IEEE Computer Society, Tech. Rep., 1977.

3.1.3

[172] S. Hojjatoleslami and J. Kittler, “Region growing: a new approach,” IEEE Transac-

tions on Image processing, vol. 7, no. 7, pp. 1079–1084, 1998. 3.1.3

[173] J. C. Pichel, D. E. Singh, and F. F. Rivera, “Image segmentation based on merging

of sub-optimal segmentations,” Pattern recognition letters, vol. 27, no. 10, pp. 1105–

1116, 2006. 3.1.3

[174] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on pattern

analysis and machine intelligence, vol. 16, no. 6, pp. 641–647, 1994. 3.1.3

[175] O. Gómez, J. A. González, and E. F. Morales, “Image segmentation using automatic

198

seeded region growing and instance-based learning,” in Iberoamerican Congress on

Pattern Recognition. Springer, 2007, pp. 192–201. 3.1.3

[176] F. Meyer, “Topographic distance and watershed lines,” Signal processing, vol. 38,

no. 1, pp. 113–125, 1994. 3.1.4

[177] J. M. Gauch, “Image segmentation and analysis via multiscale gradient watershed

hierarchies,” IEEE transactions on image processing, vol. 8, no. 1, pp. 69–79, 1999.

3.1.4

[178] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions

on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000. 3.1.5

[179] X. Liu and D. Wang, “Image and texture segmentation using local spectral his-

tograms,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 3066–3077,

2006. 3.1.5

[180] W. Yang, L. Guo, T. Zhao, and G. Xiao, “Improving watersheds image segmentation

method with graph theory,” in Industrial Electronics and Applications, 2007. ICIEA

2007. 2nd IEEE Conference on. IEEE, 2007, pp. 2550–2553. 3.1.5

[181] W. Tao, H. Jin, and Y. Zhang, “Color image segmentation based on mean shift and

normalized cuts,” IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 37, no. 5, pp. 1382–1389, 2007. 3.1.5

[182] S. Wang and J. M. Siskind, “Image segmentation with ratio cut,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 25, no. 6, pp. 675–690, 2003. 3.1.5

[183] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International

Journal of Computer Vision (International Journal of Computer Vision (IJCV),

vol. 22, no. 1, pp. 61–79, Feb. 1997. 3.1.6

[184] C. Li, C. Xu, C. Gui, and M. Fox, “Level set evolution without re-initialization: a

new variational formulation,” in Proceedings of the IEEE Conference on Computer

199

Vision and Pattern Recognition (CVPR), 2005, pp. 430–436. 3.1.6

[185] N. Paragios and R. Deriche, “Geodesic active regions and level set methods for su-

pervised texture segmentation,” International Journal of Computer Vision (Interna-

tional Journal of Computer Vision (IJCV), vol. 46, pp. 223–247, 2002. 3.1.6

[186] J. Lie, M. Lysaker, and X. Tai, “A binary level set model and some application to

mumfordshah image segmentation,” IEEE Trans. Image Process. (TIP), pp. 1171–

1181, 2010. 3.1.6

[187] L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation

using the mumford and shah model,” IJCV, vol. 50, no. 3, Dec. 2002. 3.1.6

[188] C. Li, C. yen Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable fitting

energy for image segmentation,” TIP, 2008. 3.1.6, 6.1.1

[189] K. Zhang, H. Song, and L. Zhang, “Active contours driven by local image fitting

energy,” Pattern Recognition (PR), vol. 43, no. 4, pp. 1199–1206, 2010. 3.1.6

[190] L. Wang and C. Pan, “Robust level set image segmentation via a local correntropy-

based k-means clustering,” Pattern Recognition (PR), vol. 47, no. 5, pp. 1917–1925,

2014. 3.1.6

[191] Y. Han, W. Wang, and X. Feng, “A new fast multiphase image segmentation algo-

rithm based on non-convex regularizer,” Pattern Recognition (PR), vol. 45, no. 1,

pp. 363–372, 2012. 3.1.6

[192] S. Liu and Y. Peng, “A local region-based chan-vese model for image segmentation,”

Pattern Recognition (PR), vol. 45, no. 7, pp. 2769–2779, 2012. 3.1.6

[193] Y. Wang, S. Xiang, C. Pan, L. Wang, and G. Meng, “Level set evolution with locally

linear classification for image segmentation,” Pattern Recognition (PR), vol. 46, no. 6,

pp. 1734–1746, 2013. 3.1.6

[194] S. Zhou, J. Wang, S. Zhang, Y. Liang, and Y. Gong, “Active contour model based

200

on local and global intensity information for medical image segmentation,” Neuro-

computing, vol. 186, pp. 107–118, 2016. 3.1.6

[195] T. A. Ngo, Z. Lu, and G. Carneiro, “Combining deep learning and level set for the

automated segmentation of the left ventricle of the heart from cardiac cine magnetic

resonance,” Pattern Recognition (PR), vol. 35, pp. 159–171, 2017. 3.1.6

[196] C. Liu, J. Yuen, and A. Torralba, Nonparametric Scene Parsing via Label Transfer,

2011, vol. 33, no. 12, pp. 2368–2382. 3.2.1

[197] J. Tighe and S. Lazebnik, “Superparsing: Scalable nonparametriv image parsing with

superpixels,” in ECCV, 2010, pp. 352–365. 3.2.1

[198] Z. Tu, “Auto-context and its application to high-level vision tasks,” in CVPR, 2008,

pp. 1–8. 3.2.1

[199] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint appearance,

shape and context modeling for multi-class object recognition and segmentation,” in

ECCV, 2006, pp. 1–15. 3.2.1, 5.1

[200] Y. Zhang and T. Chen, “Efficient inference for fully-connected crfs with stationarity,”

in CVPR, 2012, pp. 582–589. 3.2.1

[201] A. Roy and S. Todorovic, “Scene labeling using beam search under mutex con-

straints,” in CVPR, 2014, pp. 1178–1185. 3.2.1

[202] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, “Simultaneous detection and

segmentation,” in ECCV, 2014, pp. 297–312. 3.2.2, 3.1

[203] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic

image segmentation with deep convolutional nets and fully connected crfs,” in ICLR,

2015, p. abc. 3.2.2

[204] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding boxes to supervise convo-

lutional networks for semantic segmentation,” in ICCV, 2015. 3.2.2

201

[205] G. Papandreou, L. C. Chen, K. Murphy, and A. L. Yuille, “Weakly- and semi-

supervised learning of a dcnn for semantic image segmentation,” in ICCV, 2015.

3.2.2

[206] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich, “Feedforward semantic seg-

mentation with zoom-out features,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015, pp. 3376–3385. 3.2.2

[207] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic seg-

mentation,” in The IEEE International Conference on Computer Vision (ICCV),

December 2015, pp. 1520–1528. 3.2.2

[208] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution, and

fully connected crfs,” IEEE transactions on pattern analysis and machine intelli-

gence, vol. 40, no. 4, pp. 834–848, 2018. 3.2.2

[209] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network

architecture for real-time semantic segmentation,” arXiv preprint arXiv:1606.02147,

2016. 3.2.2, 3.1

[210] G. Lin, C. Shen, A. van den Hengel, and I. Reid, “Efficient piecewise training of

deep structured models for semantic segmentation,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 3194–3203. 3.2.2

[211] P. A. ez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, “Multiscale combi-

natorial grouping,” in CVPR, 2014, pp. 328–335. 3.2.2

[212] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollar, “Learning to refine object

segments,” in ECCV, 2016, pp. 75–91. 3.2.2

[213] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár, “Learning to refine object

segments,” in ECCV, 2016. 3.2.2

202

[214] S. Zagoruyko, A. Lerer, T. Lin, P. H. O. Pinheiro, S. Gross, S. Chintala, and P. Dollár,

“A multipath network for object detection,” CoRR, vol. abs/1604.02135, 2016. 3.2.2

[215] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”

in ECCV, 2016. 3.2.2, 5.1

[216] Z. Hayder, X. He, and M. Salzmann, “Boundary-aware instance segmentation,” in

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July

2017. 3.2.2

[217] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The one hundred

layers tiramisu: Fully convolutional densenets for semantic segmentation,” in Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference

on. IEEE, 2017, pp. 1175–1183. 3.2.2

[218] T. Robinson, “An application of recurrent nets to phone probability estimation,”

IEEE Transactions on Neural Networks, vol. 5, pp. 298–305, 1994. 3.2.3

[219] N. Stoianov, J. Nerbonne, and H. Bouma, “Modelling the phonotactic structure of

natural language words with simple recurrent networks,” in Computational Linguis-

tics in The Netherlands, 1998, pp. 77–95. 3.2.3

[220] A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimen-

sional recurrent neural networks,” in Advances in Neural Information Processing

Systems 21, 2009, pp. 545–552. 3.2.3

[221] Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang, and Y. Chen, “Convolutional

recurrent neural networks: Learning spatial dependencies for image representation,”

in CVPRW, 2015, pp. 18–26. 3.2.3

[222] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. C. Courville, and Y. Bengio, “Renet:

A recurrent neural network based alternative to convolutional networks,” CoRR, vol.

abs/1505.00393, 2015. 3.2.3

203

[223] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual attention,” in NIPS,

2014, pp. 2204–2212. 3.2.3, 5.1

[224] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, “Inside-outside net: Detecting objects

in context with skip pooling and recurrent neural networks,” in CVPR, 2016. 3.2.3

[225] F. Visin, A. Romero, K. Cho, M. Matteucci, M. Ciccone, K. Kastner, Y. Bengio,

and A. Courville, “Reseg: A recurrent neural network-based model for semantic

segmentation,” in Computer Vision and Pattern Recognition Workshops (CVPRW),

2016 IEEE Conference on. IEEE, 2016, pp. 426–433. 3.2.3

[226] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical image com-

puting and computer-assisted intervention. Springer, 2015, pp. 234–241. 3.1

[227] P. H. O. Pinheiro and R. Collobert, “Recurrent convolutional neural networks for

scene labeling,” in ICML, 2014. 3.2

[228] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recognition in the wild with

the materials in context database (supplemental material),” in Computer Vision and

Pattern Recognition (CVPR). IEEE, 2015. 3.3.1, 3.3

[229] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and

A. Yuille, “The role of context for object detection and semantic segmentation in

the wild,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 891–898. 3.3.1, 3.3

[230] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what

you can: Detecting and representing objects using holistic models and body parts,”

in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

3.3.1

[231] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler, R. Benenson,

204

U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset,” in CVPR Workshop

on the Future of Datasets in Vision, vol. 1, no. 2, 2015, p. 3. 3.3.2, 3.3

[232] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video: A

high-definition ground truth database,” Pattern Recognition Letters, vol. 30, no. 2,

pp. 88–97, 2009. 3.3.2, 3.3, 6.2.1

[233] J. M. Alvarez, T. Gevers, Y. LeCun, and A. M. Lopez, “Road scene segmentation

from a single image,” in European Conference on Computer Vision. Springer, 2012,

pp. 376–389. 3.3.2, 3.3

[234] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez, and A. M. Lopez,

“Vision-based offline-online perception paradigm for autonomous driving,” in Ap-

plications of Computer Vision (WACV), 2015 IEEE Winter Conference on. IEEE,

2015, pp. 231–238. 3.3.2, 3.3

[235] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into geometric and se-

mantically consistent regions,” in ICCV, 2009, pp. 1–8. 3.3.3, 3.3, 6.2, 6.2.1

[236] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing: Label transfer via

dense scene alignment,” in CVPR, 2009. 3.3.3, 3.3

[237] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what

you can: Detecting and representing objects using holistic models and body parts,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2014, pp. 1971–1978. 3.3

[238] P. Sturgess, K. Alahari, L. Ladicky, and P. H. Torr, “Combining appearance and

structure from motion features for road scene understanding,” in BMVC 2012-23rd

British Machine Vision Conference. BMVA, 2009. 3.3

[239] Y. Dauphin, H. De Vries, J. Chung, and Y. Bengio, “Equilibrated adaptive learning

rates for non-convex optimization,” pp. 1504–1512, 2015. 4.2.3

205

[240] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, and etc., “TensorFlow: Large-scale

machine learning on heterogeneous systems,” 2015, software available from

tensorflow.org. [Online]. Available: http://tensorflow.org/ 4.5

[241] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in

ACM Intl. Conf. on Multimedia, 2014, pp. 675–678. 4.5, 4.5

[242] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in CVPR, 2016. 5.1

[243] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman, “The pascal visual object classes challenge: A retrospective,” ICCV,

vol. 111, no. 1, pp. 98–136, 2015. 5.1

[244] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual

recognition and description,” in CVPR, 2015. 5.1

[245] S. Alpert, M. Galun, R. Basri, and A. Brandt, “Image segmentation by probabilistic

bottom-up aggregation and cue integration,” in CVPR, June 2007. 6.1.1, 6.1.3

[246] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing: Label transfer via

dense scene alignment,” in CVPR, 2009, pp. 1972–1979. 6.2, 6.2.1

[247] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and recog-

nition using structure from motion point clouds,” in ECCV, 2008, pp. 44–57. 6.2,

6.2.1

[248] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database: Large-

scale scene recognition from abbey to zoo,” in Computer vision and pattern recogni-

tion (CVPR), 2010 IEEE conference on. IEEE, 2010, pp. 3485–3492. 6.2, 6.2.1

[249] J. Tighe and S. Lazebnik, “Finding things: Image parsing with regions and per-

206

http://tensorflow.org/

exemplar detectors,” in CVPR, 2013, pp. 3001–3008. 6.2.1, 6.5, 6.2.3

[250] S. Rota Bulo and P. Kontschieder, “Neural decision forests for semantic image la-

belling,” in CVPR, 2014, pp. 81–88. 6.5

[251] L. Ladick, C. Russell, P. Kohli, and P. H. S. Torr, “Associative hierarchical random

fields,” TPAMI, vol. 36, no. 6, pp. 1056–1077, 2014. 6.6

207

	Introduction
	Thesis Objective
	Thesis Contributions
	Thesis Outline

	Background
	Multi-Layer Neural Network
	Neuron
	Neural Networks
	Forward propagation
	Backpropagation

	Convolutional Neural Networks
	Convolutional Layer
	Activation Layer
	Pooling layer
	Loss function
	Regularization
	Optimization
	Fully connected layer
	Applications
	Forward Propagation
	Backward Propagation

	Recurrent Neural Networks
	Vanilla Recurrent Neural Networks:
	Long Short Time Memory
	Gated Recurrent Unit
	 Backpropagation Through Time (BPTT)
	Training Recurrent Neural Networks(RNNs)
	Exploding and Vanishing Gradients in Training RNN

	Active Contour
	Classic Snakes
	Level Set Method
	Edge-based Active Contours
	Region-based Active Contours (Chan-Vese)
	State-of-the-art Level Set Methods and Their Limitations

	Common Deep Network Architectures
	LeNet
	AlexNet
	ZFNet
	VGG-16
	GoogLeNet/Inception
	ResNet
	DenseNet

	Region-based Convolutional Neural Networks
	R-CNN
	Fast R-CNN
	Faster R-CNN
	Mask R-CNN
	YOLO

	Related Work
	Naive Image Segmentation
	Thresholding Technique
	Edge-based Technique
	Region-based Technique
	Watershed Technique
	Normalized -Cut Technique
	Active Contour based Technique

	Semantic Image Segmentation
	Graphical model approaches
	CNN-based approaches
	RNN-based approaches

	Common datasets
	Generic datasets
	Urban - driving
	Outdoor Scene Datasets

	Contextual Recurrent Level Set (CRLS) Networks
	Introduction
	 Recurrent Level Set (RLS)
	Relationship between RNNs/GRUs and CLS
	Proposed Recurrent Level Set (RLS)
	RLS Learning

	Contextual Recurrent Level Sets (CRLS)
	Model constructing

	Inference
	Implementation Details

	 Contextual Recurrent Residual Networks (CRRN)
	Introduction
	The Proposed CRRN
	Contextual information embedding
	Visual representation learning
	Model learning

	Inference
	Implementation Details

	Experimental Results
	Experimental Results of CRLS
	Datasets
	Metrics
	Experiment 1 - Object Segmentation by RLS
	Experiment 2 - Semantic Instance Segmentation by CRLS
	Experiment 3 - Multi-instace object segmentation by proposed CRLS

	Experimental results of CRRN
	Datasets
	Metrics
	Experiment - Scene Labeling by CRRN
	Analysis on false cases

	Concluding Remarks and Future Work
	Concluding Remarks
	Future Work

	Appendix Appendix
	Derivation of Level Set
	Derivatives of Recurrent Level Sets (RLS) forward/backward
	Forward Pass Procedure
	Backward Pass Procedure

