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...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but

convexity and nonconvexity.
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Chapter 1

Introduction

We consider a two-phase flow equation in a porous medium with capillarity. Our

approach is novel because it is the first to take advantage of the convex structure of

the capillary pressure. This formulation allows us to take advantage of the extremely

well studied field of convex optimization in order to get fast numerical schemes.

Convex optimization is a highly developed area of numerical analysis, and due to

its importance in machine learning and "big data" is an active area of research [1, 2,

3, 4, 5]. Moreover, this formulation can be used to simplify the theory of multiphase

flow [6, 7]

The field of convex optimization has been growing rapidly in recent years in or-

der to provide applications for "big data" analysis and so there are many powerful

theoretical and software tools available. One example is Nesterov’s Accelerated gra-

dient descent algorithm which we use in the numerical example below.

Another benefit of the convex approach is that we can prove existence and unique-

ness of a general class of two-phase flow equations which exhibit very degenerate

properties. Moreover, we can numerically approximate the solutions by minimiz-

ing an unconstrained convex function on Rn. By a more general class of problems

we mean that we allow the relative permeability curves to vanish even while the

respective fluid content is positive. Physically, this represents the situation when the

oil content of a pore becomes small enough so that the water no longer displaces
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it. Due to the properties of the reservoir, the oil will stick to the rocks and become

immobile once the relative volume of oil becomes small enough.

It is often assumed in the literature, see the example in [8], that the initial con-

ditions for the oil and water fraction are above the immobile levels. The extremely

degenerate situation which occures when the initial fluid content relative volumes

can take on a range of values below the immobile level is not considered in the

literature. However, our convex formulation can handle this problem under some

natural conditions. We provide a proof of existence of uniqueness of minimizers to

the convex functional which is topological in nature.

Perhaps the most well known numerical method to study these equations is the

Implicit Pressure Explicit Saturation (IMPES) method [9]. This is a time-stepping

scheme which first computes the saturation for the next step explicitly and then

solves for one of the pressure by typically using a Newton scheme. This method is

simpler and more efficient that other methods such as the SS method [10]. How-

ever, in order for the IMPES method to be stable it requires very small time steps for

the saturation. This can be prohibitive for long time integration problems [9]. Our

method eliminates this problem because we do not need any time stepping schemes

for the saturation. Additionally, this eliminates the need for a Kirchoff transforma-

tion [11]. Instead, by locating a minimum of a convex functional, we solve for both

the oil and water pressure at the same time. The saturation is then computed as a

function of the pressure difference.

On the numerical side, much work has been done on this problem using finite

elements methods. In particular, Riviere and Yotov have studied discontinuous

Galerkin schemes and mixed finite element methods in this direction, respectively

[12, 13]. Mary Wheeler, Dick Ewing, and Todd Arbogast have also made many con-

tributions to this area [14, 15]. On the theoretical side, we have existence, uniqueness

and regularity results by Chen [16, 17]. Another existence result has been shown by

Alt and DiBennedetto [18]. Ralph Showalter has applied Monotone Operators to the
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theory of two-phase flow [19].

1.1 Fluid Description

We consider a porous medium to be the closure of an open and bounded set ⌦ ✓ Rn.

Each point x 2 ⌦ represents an average of the porous medium in a small region

around x. In other words, a point x is not meant to represent a very tiny part of the

medium (e.g. perhaps one water molecule), rather x is a large enough region in the

medium so that we may talk about how much water and/or oil there is at x at a

particular time.

We will consider the pressures pi for i = 1, 2 of both the water and the oil. Due to

the microscopic properties of water and oil molecules (e.g. cohesion) the pressures

in the fluids do not tend to distribute evenly as in the case of a single pressure with a

single fluid. Therefore, we must consider the pressure of each fluid separately. The

functions si(x), i = 1, 2 represent the volume fraction of each fluid at the point x.

Further details about these equations can be found in the book by Bear [20].

The functions ki(si(x), x) represent the permeability curves of the fluids. These

curves model how easily each fluid flows through the reservoir and depend on both

the location of the reservoir and also the volume distribution of the fluids. They

depend on the reservoir location because this is how we model the geometric prop-

erties of the pores. They depend on the fluid volume distribution because, for exam-

ple, it is much more difficult for a small amount of water to flow through a region

which is dominated by oil than through a region which is dominated by water. In

fact, if the water volume content reaches a critically low level it will not flow at all

and in that case we have k1(s1) = 0, if s1 represents water. The same is true for

the oil. These curves are determined experimentally and are approximately equal to

ki(si) = (s � sc)2 when si > sc and 0 otherwise, where sc is the critical level which
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is often around .2, depending of the type of reservoir which is being modeled. The

terms qi are the wells terms which model the pumping of water into the reservoir or

the pumping of oil out of the reservoir. The term 1 � s0(x) represents the porosity

of the medium, or how much empty volume space there is in the rock at the point x.

This is needed because the size of the holes and cracks which hold the fluids varies

throughout the medium. We assume that 1 � s0(x) � c > 0. It is also assumed that

s

1+ s

2 = 1� s0. This means that the fluid always fills the pores, i.e. there is no space

left over.

1.2 Equations

The flow of water and oil through a porous medium is described by

@ts
i � div(ki(rp

i + g)) = q

i
, i = 1, 2

ki = ki(s
i(x), x)

s

1(x) + s

2(x) = 1� s0(x)

pc(s
1) = p

1 � p

2

The meaning of the last equation is that the pressure difference is a monotone

decreasing function of s1. It is important to note here that this means that actually

the terms si are functions of the pressure difference p

1 � p

2.

Remark : Since the s

i are actually functions of p1 � p

2 it is very helpful to con-

sider these equations only in the variable p = (p1, p2) and consider the equations

with s as just constraints on p

1
, p

2.

We will mainly be concerned with the discretized version of these equations,

which we write below. For simplicity, we ignore the gravity term and note that this
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can easily be put back in later. Also note that we have frozen the s

i term from the

previous timestep.

(s1tn+1
� s

1
tn)� ⌧ div(k1(s

1
tn)rp

1
tn+1

) = q1

(s2tn+1
� s

2
tn)� ⌧ div(k2(s

2
tn)rp

2
tn+1

) = q2

s

1
tn+1

+ s

2
tn+1

= 1� s0

pc(s
1
tn+1

) = p

1
tn+1

� p

2
tn+1

where ⌧ = tn+1 � tn.

For simplicity, we will write sn instead of stn from now on.

1.3 Example

In order to illustrate the degeneracy of the equations, in this section we will give an

example of a solution in one dimension.

Let x, t � 0, and let pc be such that pc(1) = �c and pc(0) = c

For x < t,

Let p1(x, t) = x

p

2(x, t) = x+ c

s

1(x, t) = 1

s

2(x, t) = 0

k

1(x, s1) = 1
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k

2(x, s2) = 0

For x � t,

Let p1(x, t) = x+ c

p

2(x, t) = x

s

1(x, t) = 0

s

2(x, t) = 1

k

1(x, s1) = 0

k

2(x, s2) = 1

One can compute directly that this example is a solution to the equations in the

sense of distributions.

1.4 Outline of Main Results

The main focus of this work is to develop a general convex analysis framework with

which we can prove existence and uniqueness results about two-phase flow. This

framework can be used to solve a wider class of problems than the previous the-

ory was able to solve. In particular, the wider class of problems includes equations

where the permeability curves ki are more degenerate than before.

In chapter 3 we we will show how the solution of the equations above can seen

as the minimum of a convex functional. Chapter 4 will discuss our chosen method

of discretization. In chapter 5 we will prove uniqueness of minimizers of the func-

tional when the permeability curves are only partially degenerate. We do this case

separately because there are some additional results for the partially degenerate case

which do not hold for the fully degenerate case. These terms will be defined later.

In chapter 6 we will build the tools necessary to handle the fully degenerate case
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and the remaining two chapters will prove existence and uniqueness in the fully

degenerate case.
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Chapter 2

Convex Analysis of Equations

In this chapter we will show how to set up a convex functional whose minimum

is the solution of the equation above. First we will derive the convex term which

controls the capillary pressure. The motivation for the function below comes from

the constraint s1 + s

2 = 1 � s0, where 1 � s0(x) is the porosity of the medium. The

next two sections are mostly for motivational purposes and to see how to go about

finding the right convex functional. The desired convex functional is given in section

2.3 and we show how it’s minimum solves the discretized equations. See Rockafellar

[21] for details about convex conjugates.

2.1 Computing the Conjugate

Let � : R ! R [ {1} be convex. Consider  (s) := �((s1 � s2 � 1 � s0)/2) +

I{s1+s2=1�s0}(s), where

I{s1+s2=1�s0}(s) =

8
>><

>>:

1 if s1 + s2 6= 1� s0

0 if s1 + s2 = 1� s0
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Then we have  (s) < 1 if and only if s = (⇠, 1� s0 � ⇠) for some ⇠ 2 R so,

 ⇤(p) = sup
s
{p · s� (s)}

= sup
⇠2R

{p1⇠ + p2(1� ⇠)� �(⇠)}

= p2 + sup
⇠2R

{(p1 � p2)⇠ � �(⇠)}

= p2 + �

⇤(p1 � p2).

By the chain rule, we have

@ ⇤(p) = ( 01 ) + @�

⇤(p1 � p2)
�

1
�1

�
.

Example: If �(⇠) = 1�
p
⇠+I[0,1�s0](⇠) then the domain of @ � is D(@�) = (0, 1�s0]

and

@�(⇠) =

8
>><

>>:

� 1/(2
p
⇠) if ⇠ 2 (0, 1� s0)

[�1/2
p
1� s0,1) if ⇠ = 1� s0

Then @�

⇤ is the inverse of @�, so

@�

⇤(⌘) =

8
>><

>>:

1/(4⌘2) if ⌘  �1/(2
p
1� s0)

1� s0 if ⌘ � �1/(2
p
1� s0)

To compute the anti-derivative, note that �(⇠) � 0 = �(1) implies that �⇤(0) = 0,

so

�

⇤(⌘) =

8
>><

>>:

�
p
s0 � 1/(4⌘) if ⌘  �1/(2

p
1� s0)

⌘ if ⌘ � �1/(2
p
1� s0)
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2.2 Relationship with Capillary Pressure

A typical capillary pressure used is the Brooks-Corey Capillary Pressure [12] which

is

pc(s1) = pds
�✓
1 = p2 � p1

Here ✓ is often taken to be ✓ = 1
2 and pd is the capillary pressure needed to

displace the fluid from the largest pore. In general, �⇤ is related to pc in the sense

that it will be the term in our convex functional that enforces the capillary pressures

given by pc. For example, taking pc(s1) =
1
2s

� 1
2

1 = p2 � p1 and using the example for

@�

⇤ above, we have

�

⇤0(p1 � p2) =

8
>><

>>:

1

4(p1 � p2)2
if p1 � p2  �1/2

1 if p1 � p2 � �1/2

But now from the capillary pressure,

pc(s1) = 1/2
p
s1 = p2 � p1

1/4s1 = (p2 � p1)
2

4s1 = 1/(p1 � p2)
2

s1 = 1/4(p1 � p2)
2
.

and so we may define

s

1 := �

⇤0(p1 � p2)

and define

s

2 := 1� s0 � s

1
.

This will become more clear after viewing the convex functional and its derivatives

below.



12 Chapter 2. Convex Analysis of Equations

2.3 Convex Functional

Continuing with the example from above, we consider the following convex func-

tional:

 ⇤(p) =

Z

⌦
�

⇤(p1 � p2)� s

1
n(p1 � p2) +

⌧

2
k1(s

1
n)|rp1|2 +

⌧

2
k2(s

2
n)|rp2|2.

Observe that if we take the functional derivative of  ⇤(p) with respect to p

1 and

set it equal to 0 we have

0 = @p1 
⇤(p)[v] =

Z

⌦
�

⇤0(p1 � p2)v � s

1
nv + k1(s

1
n)rp

1 ·rv

Integrating by parts, varying over all smooth functions v, and using the relation

�

⇤0(p1 � p2) =
1

4(p1 � p2)2
= s1

yields

�

⇤0(p1 � p2)� s

1
n = div(k1(s

1
n)rp

1)

s

1 � s

1
n = div(k1(s

1
n)rp

1).
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Doing the same for p2 we have

��

⇤0(p1 � p2) + s

1
n = div(k2(s

2
n)rp

2)

�s1 + s

1
n = div(k2(s

2
n)rp

2)

�(1� s2) + (1� s

2
n) = div(k2(s

2
n)rp

2)

s2 � s

2
n = div(k2(s

2
n)rp

2)

Therefore the minimum of the functional above satisfies our first two equations:

s

1 � s

1
n = div(k1(s

1
n)rp

1)

s

2 � s

2
n = div(k2(s

2
n)rp

2)

The last two equations:

p1 � p2 = pc(s1)

s

1 + s

2 = 1� s0

are satisfied by definition.

We now give an example of some reasonable permeability curves:

ki(s
i) =

8
><

>:

(si � ci)2 s

i � ci

0 s

i  ci

We have shown that the Euler-Lagrange equations (see [22]) of the convex func-

tional above are the equations for our PDE. For the rest of this thesis we will work

with the fully discretized version of the PDE. Namely, we will discretize in time and

space and do the discrete analog of the above. In the next chapter we will describe

our discretization method.
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Chapter 3

Discretization

In this chapter we describe a fully discrete approximation for the PDE in section 1.3

which we reproduce here. Additionally, we write the flux term q

i on the right hand

side explcitly. This term models two types of wells, one which pumps water into

the domain and another which allows both liquids to exit the domain. Here pbh is a

constant which is sometimes referred to as the bottom hole pressure of the well.

@ts
⇡ � div(k⇡(s

⇡)(rp

⇡ + g)) = (p⇡ � p

⇡
bh)�E⇡

, ⇡ = 1, 2

k⇡ = k⇡(s
⇡(x), x)

s

1(x) + s

2(x) = 1� s0(x)

pc(s
1) = p

1 � p

2

Here � is the standard characteristic function and E

1 and E

2 are the subsets of ⌦

which represent the wells or holes in the porous rock. A typical example might be

that ⇡ = 1 represents water, ⇡ = 2 represents oil, ⌦ = [0, 1] ⇥ [0, 1], E1 is the union

of two small balls one centered at (0, 0) another centered at (1, 1), E2 is a small ball

centered at (1, 1), and p

1
bh > p

2
bh. The idea is that water is being pumped into a small

hole near (0, 0) and both oil and water (hopefully mostly oil), is coming out at (1, 1).

Next we define the notion of a Voronoi diagram.
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3.1 Voronoi Diagrams

Definition 3.1.1. Let N be a set of n points in ⌦ ⇢ Rm (also will be called nodes or Voronoi

generators).

Definition 3.1.2. A Voronoi diagram of ⌦ with respect to N = {x1, ..., xn} is a partition

of ⌦ into a collection of n Voronoi cells {Ci}i21,...,n such that for each x 2 Ck we have that

d(x, xk)  d(x, xj) for all j 2 {1, ..., n}, where d denotes the Euclidean distance function.

Definition 3.1.3. Let hi,j denote the pairwise distances between the points xi, xj in N . Let

Ai,j denote the length of the (unique) edge (or face when d = 3) between two adjacent cells.

If two Voronoi cells are not adjacent then we define Ai,j = 0. Let |Vi| denote the volume of

the ith Voronoi cell.

3.2 Approximation Process

Given a Voronoi diagram of ⌦with respect to N , we integrate the PDE by parts over

each Voronoi cell and then approximate each of the integral terms using the approx-

imation from [23]. We assume that there exists a classical solution. Ignoring the

gravity term g and letting ei,j denote the edge between cells i and j, we approximate

the first integral term
Z

ei,j

k⇡(s
⇡
n)rp

⇡ · n

by
k⇡(s⇡(tn, xi) + k⇡(s⇡(tn, xj)

2
(p⇡(tn+1, xi)� p

⇡(tn+1, xj))
Ai,j

hi,j
,

and we approximate the second integral term

Z

Ci

(@ts
⇡)

on each cell Ci by

|Ci|
s

⇡(tn+1, xi)� s

⇡(tn, xi)

⌧

.
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Here s

⇡(tn, xj) represents the value of s⇡tn at the j

th node in ⌦.

We approximate
Z

Ci

p

⇡ � p

⇡
bh

by

|Ci|(p⇡i � p

⇡
bh).

Therefore, we define our approximation as the solution of the following system

of equations, for i = 1, ..., n. Note that there is one equation for each Voronoi cell.

Here j 2 N(i) means that cell Cj is a neighbor of cell Ci. Here � is the Lebesgue

measure.

|Ci|(s1(tm+1, xi)�s

1(tm, xi))�⌧

X

j2N(i)

k1(s1(tm, xi)) + k1(s1(tm, xj))

2
(p1i,tm+1

�p

1
j,tm+1

)
Ai,j

hi,j

= �(E1 \ Ci)(p
1
i � p

1
bh).

|Ci|(s2(tm+1, xi)�s

2(tm, xi))�⌧

X

j2N(i)

k2(s2(tm, xi)) + k2(s2(tm, xj))

2
(p2i,tm+1

�p

2
j,tm+1

)
Ai,j

hi,j

= �(E2 \ Ci)(p
2
i � p

2
bh).

We now make the analogy between this discrete setting and the previous chap-

ter. We observe that the system of equations above are simply the Euler-Lagrange

equations of the following convex function on R2n. Here we will write si in place of

si,tn and similarly for p.
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 ⇤(p) =
nX

i=1

|Ci|[�(p1i � p

2
i )� s

1
i (p

1
i � p

2
i )] (*)

+
⌧

4

X

1i<jn

�
k1(s

1
i ) + k1(s

1
j )
�
(p1i � p

1
j )

2Ai,j

hi,j

+
⌧

4

X

1i<jn

�
k2(s

2
i ) + k2(s

2
j )
�
(p2i � p

2
j )

2Ai,j

hi,j

+ ⌧

nX

i=1

�(E1 \ Ci)
�1
2
(p1i )

2 � p

1
bhp

1
i

�

+ ⌧

nX

i=1

�(E2 \ Ci)
�1
2
(p2i )

2 � p

2
bhp

2
i

�

One can see that this convex function does indeed produce the above equations

at its minimum by consulting the similar non-discrete proof in the previous section

and taking the analogous derivative.
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Chapter 4

Graph Description of

Non-Degenerate Components

In this chapter we build some tools to prove uniqueness of minimizers in the fully

degenerate setting. Let⌦ be some polygonal domain and let T be some triangulation

of ⌦h ⇢ ⌦, where ⌦h is discrete. The points from ⌦h will be called nodes. We will

analyze the topology of the triangulation T when certain sets of "degenerate" nodes

are removed from it. Recall that the ki are the relative permeability curves discussed

in the introductory chapter. We will always assume that k1(s1n)+ k2(s2n) > 0 for each

node n 2 ⌦h.

We consider the set of nodes n for which ki(sin) = 0 and for each neighbor m of

n, ki(sim) = 0, i = 1, 2 to be degenerate. We call this degenerate set Di. We will

consider the connected components of the ⌦ � Di. We will see that the fact that

having k1(s1)+k2(s2) > 0 will give us a form of connectedness that is strong enough

to get some form of uniqueness.

Definition 4.0.1.

• Let T be some Delaunay triangulation on ⌦h ⇢ ⌦ where ⌦h is discrete. The triangu-

lation will sometimes be referred to as the mesh.

• For nodes n,m 2 ⌦h, define d(n,m) to be the number of edges traversed along the

shortest path from n to m.
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• A subset A ✓ ⌦h is called connected if it is connected as a subset of the triangulation.

• Let A ✓ ⌦h. We define Int(A) = {n 2 A : d(n,Ac) > 1}.

• Define Di = Int(ki(si) = 0), i = 1, 2. We refer to these as the "degenerate regions."

Remark: We will be using the notation Int mainly for A = {ki(si) = 0}. There-

fore, in this case, Int(A) is the set of nodes n such that ki(sn) = 0 and each neighbor

m of n satisfies ki(sm) = 0.

4.1 Graph Notation and Connectedness

We now define a notion of connectedness of the nodes from⌦h which is natural with

respect to the discrete gradient.

Definition 4.1.1. A maximally connected component in the ki gradient-connected sense is

a maximal set S of nodes such that there is at least one node n 2 S such that ki(sin) > 0

and for each pair of nodes n,m in S there is a path in the mesh from n to m which does not

contain two consecutive nodes j, j + 1 such that ki(sij) = 0 and ki(sij+1) = 0.

Definition 4.1.2. Elements of ⌦h are called nodes and elements of the graph G which

we now define will be called vertices. Let Vi be the vertex set such that each vertex is

identified with a maximally connected component in the ki gradient-connected sense of

⌦h � Int(ki(si) = 0), i = 1, 2. Let G = V1 [ V2 and add edges to G in the following

way: the vertices v1 from V1 and v2 from V2 share an edge (v1, v2) if and only if v1 \ v2 6= ;,

where the intersection is defined to be the node set intersection.

Note that for a fixed i no two vertices from Vi share an edge, i = 1, 2. This is

because by definition two vertices from V1 have disjoint node sets.

By abuse of notation, we will refer to v 2 G as the element of the graph G and

also as the identified set of nodes in ⌦h. We begin with a lemma in order to show the

connectedness of G. We assume from now on that the sets V1, V2 are both nonempty.
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4.2 Connectedness

Lemma 4.2.1. Let v1 2 V1, let n 2 v1 and suppose that N(n) is some neighbor of n such

that N(n) /2 v1. Then there exists v2 2 V2 such that n 2 v2, and N(n) 2 v2.

Proof. We first claim that k1(s1N(n)) = 0. This follows by definition of gradient con-

nected and the fact that the components are maximal. Since k1(s1n) + k2(s2n) > 0,

we have k2(s1N(n)) > 0. By definition of gradient-connected again we have the re-

sult.

Theorem 4.2.1. Let G be the graph given in the previous definition. Then G is connected.

Proof. Let v1 2 V1 and v2 2 V2. We show there is a path in G from v1 to v2. Select

a node n1 from v1 and a node n2 from v2. The mesh is connected so there is a path

from n1 to n2 in the mesh. Each node in the mesh is in some vertex from G. We want

to show that if a node along the path is in some vertex v 2 G and the next node on

the path is in a different vertex w 2 G then there is an edge between v and w (i.e.

v \ w 6= ;). This follows directly from the lemma above.

4.3 Tree Property

Our next goal is to show that the graph G is actually a tree. For the rest of this sec-

tion, we will assume that ⌦ = Rn and the triangulation T covers all of Rn. This

simplifies the proof of the next lemma and will be removed later.

To show that G is a tree we will suppose there are cycles and produce a con-

tradiction. We begin by referring the reader to the following well known fact from

algebraic topology.

Lemma 4.3.1. Let A ⇢ Rn be open and connected. Assume also that Ac is connected. Then

@A is connected.
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Our goal now is to "fill in" the triangulation so that we can apply the previous

lemma. The construction in the next lemma consists of taking the set of nodes con-

tained in a vertex vi 2 G and enlarging this set as a subset of Rn (the number of

nodes remains the same) by taking its union with all of the faces and edges from the

triangulation which are adjacent to at least one of these nodes from vi. This will be

defined precisely below.

Lemma 4.3.2. Assume that the underlying triangulation consists of simplices. That is,

triangles in 2 dimensions or tetrahedrons in 3 dimensions. If A is a connected set of nodes

and A

c, the set of remaining nodes from the triangulation, is connected, then the set d1(A) =

{n 2 ⌦h : d(n,A) = 1} is connected.

Proof. We prove the case of 2 dimensions, the proof in 3 dimensions is almost iden-

tical. Let E be the edge set and F the face set of the mesh. We consider an operation

on the node set A which "fills in" some of the edges and faces of the triangulation to

form a new subset A0 of Rn. That is, let

A

0 = A [ {f 2 F : f̄ contains a node from A, where f̄ is the closure off}

[ {e 2 E : ē contains a node from A}.

Then A

0 is connected and open. It is clear that A

0 is open. To see that A

0 is

connected, observe that A0 still contains A which is connected. Now A is only a set

of nodes (no edges) and is connected in the triangulation sense (not as a subset of

Rn). However, by construction of A0, A0 contains e(A), the nodes A together with all

of their induced edges. Since the node set A is connected in the triangulation sense,

e(A) is connected as a subset of Rn. We observe that A0 has the following form

A

0 = (
[

↵2I
A↵) [ e(A)
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where for each ↵ 2 I , A↵\e(A) 6= ;. The fact that a set of this form is connected is

an exercise from Munkres [24]. We define the sets A↵ as follows: for each edge/face

in A

0 together with the node(s) from A which induced the edge/face, form a set A↵.

This completes the proof that A0 is connected.

We claim that (A0)c is connected, where the complement is taken in Rn. Observe

that (A0)c contains the node set Ac, which is connected in the triangulation sense by

assumption. Also, (A0)c contains e((A0)c) since none of these edges are in A

0.

Observe that each edge or face in ⌦ is adjacent to at least one node. If the

face/edge is adjacent to a node from A then that face/edge is in A

0 and therefore

not in (A0)c. If it is not adjacent to a node from A then it is adjacent to a node from

A

c. Therefore (A0)c has the similar form

A

0 = (
[

↵2I
A↵) [ e((A0)c)

where we the define the A↵ in a similar way.

We have constructed two sets A

0 and (A0)c which satisfy the hypothesis of the

previous theorem and this implies that @A0 is connected where @A

0 is the boundary

of A0 in the topology of Rn. We will next discuss the relationship between the set

d1(A) and @A

0.

We define n(S) to be the set of nodes from the triangulation which are contained

in the set S.

Claim :

n(@A0) = d1(A).
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Proof of Claim:

First direction: n(@A0) ✓ d1(A).

Let n 2 @A

0. We first show d(n,A) > 0. If d(n,A) = 0, then n 2 A by definition.

However, if n 2 A then n 2 A

0 by construction. Since A

0 is open, n /2 @A

0. This

shows d(n,A) > 0.

Before we show d(n,A) < 2, we consider the following fact about our triangula-

tion:

Since the triangulation consists of simplices we know that if F is a face of the

triangulation, then each node n which is adjacent to F is distance 1 from every other

node which is adjacent to F . The same holds true for edges and this is true in all

dimensions.

We show d(n,A) < 2. If d(n,A) � 2 then A

0 contains a face or an edge which

is adjacent to a node which is a distance of at least 2 from any node from A. By

construction, the only edges and faces which A

0 contains are those adjacent to nodes

from A. By the paragraph above, this is a contradiction. Therefore, we have shown

n(@A0) ✓ d1(A).

Now consider the reverse direction d1(A) ✓ n(@A0). Let n be such that d(n,A) =

1. Then by construction of A0, n 2 @A

0. This completes the proof that n(@A0) = d1(A).

Now since @A

0 consists only of nodes and edges, it follows that n(@A0) is con-

nected in the mesh. Therefore, the previous equality implies that d1(A) is con-

nected.

Theorem 4.3.1. The graph G is a tree.
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Proof. Suppose that G has a cycle containing the vertices v1, v2 2 V1. Consider the

components of vc1, which we list as c1, ..., cn. Note that these components ci are NOT

components(vertices) from the graph G(i.e. non degenerate sets). They are just max-

imally k1 graph connected components of vc1 where the complement is taken with

respect to the set of nodes in T . Since v2 is a connected component of T � D1 � v1

and each ci is a connected component of T � v1, we have that v2 ✓ ci for some ci. We

assume that v2 ✓ c1.

To apply the previous theorem we need that c1 and c

c
1 are both connected. Note

that c1 is connected by construction. We will now show that cc1 = x1 [ ([n
i=2ci) is

connected.

Let n1, n2 be nodes in c

c
1. We show there is a path from n1 to n2 which does not

leave c

c
1 = v1 [ ([n

i=2ci). If either n1, n2 are both in v1 or n1, n2 are both in ci for some

ci, i = 2, ..., n then since each of these is connected by definition, we are done. There-

fore, assume that n1 2 v1 and n2 2 c2 (the proof for the case that n1 2 c2 and n2 2 c3

is similar and of course there is no loss of generality from changing the subscripts

of the ci.). Since T is connected, there is a path p from n1 to n2 in T . We will now

reconstruct p so that it remains in c

c
1.

Claim: The last component that the path p was in before it hit c2 was v1.

Suppose for a contradiction that this is not the case. Say that the last component that

p was in before c2 was some cj . We consider a subpath of p which has some nodes in

cj and some in c2. That is, some subpath p

0 with p

0 ⇢ c2 [ cj and p

0 6⇢ c2 and p

0 6⇢ cj .

This means that by definition of the graph G, the vertices c2 and cj are connected and

thus they are not distinct maximally connected components of xc1. In other words,

c2 and cj are the same component and we have a contradiction. This proves the "last

component of the path" claim.
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Therefore, using the above claim, suppose that na is the last node of p from v1

and define the following path p

0:

n1 � ...� na � na+1 � ...� n2.

This path p

0 begins at n1 and ends at n2. We define p

0 so that it remains in v1 from n1

to na and remains in c2 from na+1 to n2. This is enough to show that cc1 is connected.

Therefore, by the previous lemma, d1(cc1) is connected.

Claim: We have d1(cc1) ⇢ d1(v1).

Suppose for a contradiction that there exists a node n where n 2 d1(cc1) but

n /2 d1(v1). Then we have d(n, cc1) = 1 and d(n, v1) 6= 1. The equality yields the

following:

First, that n 2 c1, for otherwise we have d(n, cc1) = 0

Second, that there is a neighbor N(n) of n where N(n) 2 c

c
1.

The inequality means that this N(n) cannot be in v1. Note carefully that we rule

out the possibility that d(n, v1) = 0 since, indeed, n 2 c1.

Therefore N(n) must be in some cj , j 6= 1. But this contradicts that the cj are

maximally connected components. This completes the claim.

Recall that we assumed that G has a cycle containing v1 and v2 ✓ c1. We will

now produce a contradiction. By definition of a cycle, there are two paths p1, p2

from v1 to v2 in G such that the only common vertices on the paths are v1 and v2.

Moreover, p1 and p2 must each contain some vertex v, v

0, respectively, from V2 which

contains a node from the connected set d1(cc1) ✓ d1(v1), by definition of the distance
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function. Since d1(cc1) ✓ d1(v1), we have that k1(s1n) = 0 and therefore k2(s2n) > 0 for

each n 2 d1(cc1). By the previous theorem, d1(cc1) is connected and this together with

the previous sentence, implies that d1(cc1) is actually k2 graph connected. Therefore,

d1(cc1) is covered by a single element from V2. Therefore, v = v

0 and so there cannot

be a cycle.

Theorem 4.3.2. Assume that the hypothesis of the previous lemma except that we remove

the restriction that the triangulation covers Rn and assume that ⌦ is any polygonal domain.

Then G is a tree.

Proof. Extend T to be a triangulation T

0 of Rn and extend s

1
, s

2 to be functions on

the extended triangulation. Consider the tree G1 which is furnished by the previous

theorem with respect to the extended triangulation T

0 and compare it to the graph

G2 which is given by the original triangulation T . By definition, G2 is a subgraph of

G1 and therefore G2 is a forest. However, the connectedness proof above still applies

to G2 and therefore G2 is a tree.

4.4 Inter-Component Properties

In this section we prove a lemma about the relationship between the function s

1 and

the overlapping regions between vertices from V1 and V2. Of course, no two vertices

from the same Vi may overlap since their node sets are disjoint. However, if the

node set from some v1 2 V1 and some v2 2 V2 overlap then there must be a node n

on this overlapping region where s

1
n 2 (0, 1). This crucial property is what causes

our convex function to diverge if the pressure values get too far apart on different

components. Therefore, this fact will be needed to prove coercivity and hence exis-

tence results later on. The results from the previous section about trees will not be

used in this section.
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In the following we assume that ki(si) = 0 if and only if si  ci.

Definition 4.4.1. For v 2 G define @v = v \ d1(d1(v)).

Lemma 4.4.1. Let v1 2 V1. For each n 2 @v1, we have k1(s1n) = 0.

Proof. By definition of the k1 graph-connected sense, for each n 2 d1(v1), k1(s1n) = 0,

otherwise we contradict the maximality of the component. Because of this, each

n 2 v \ d1(d1(v)) is distance 1 from some m 2 d1(v1) such that k1(s1m) = 0. Therefore

k1(s1n) = 0 or otherwise, by definition of k1 graph connected, we actually have that

n 2 v1 which is a contradiction.

Lemma 4.4.2. For each pair (v1, v2) 2 V1 ⇥ V2 such that v1 \ v2 6= ;, there is a node

n 2 v1 \ v2 such that s1n < 1.

Proof. If v2 ✓ v1 we are done since v2 must contain the required node. The remaining

case is that the @v1 \ v2 6= ;, since v2 is connected. By the previous lemma, each

n 2 @v1 satisfies k1(s1n) = 0 (i.e. sn < 1). Thus any node from @v1 \ v2 will satisfy the

requirements of the lemma.

4.5 Restricted Functional

In this section we define a restricted version  Rof the functional  ⇤. This will be

helpful in proving existence results in the next chapter. The idea is to prove the re-

sults for the restricted functional and then show how the proof can be extended to

the original functional.

The functional R has as its domain functions which take values in R2[R1. This

is because there are some nodes from ⌦h for which the oil and water contents s

1
, s

2

are sufficiently high so that both k1(s1) and k2(s2) are positive (non-degenerate).

However, there are some nodes in ⌦h for which one of the ki(si) is degenerate. In
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this case only the pressure of the non-degenerate fluid is considered in  R.

Before looking at the definition of our restricted functional, the reader should

consult equation (⇤) at the end of chapter 3. Our restricted function here is a modifi-

cation of that functional where the modification consists of removing the terms from

the last two sums

Definition 4.5.1. Define ⌦R := Int(k1(s1) = 0)c ⇥ Int(k2(s2) = 0)c

Definition 4.5.2. We define the restricted functional  R : (R2 [ R1)⌦
R ! R by

 R(p) :=
X

i2Int(k1(s1)=0)c\Int(k2(s2)=0)c

[�⇤(p1i � p

2
i )� s

1
n(p

1
i � p

2
i )]

+
1

4

X

1i<jn
i,j2Int(k1(s1)=0)c

[k1(s
1
i ) + k1(s

1
j )](p

1
i � p

1
j )

2

+
1

4

X

1i<jn
i,j2Int(k2(s2)=0)c

[k2(s
2
i ) + k2(s

2
j )](p

2
i � p

2
j )

2

Remark : Note that we are considering function from ⌦R into R2 [ R1 because of

the following. We have Int(k1(s1) = 0)c ✓ ⌦h and Int(k2(s2) = 0)c ✓ ⌦h. Also, if

n 2 Int(k1(s1) = 0)c \ Int(k2(s2) = 0)c then we consider both p

1
n and p

2
n but if, say,

n 2 Int(k1(s1) = 0)c but n /2 Int(k2(s2) = 0)c then we only consider the value p1n but we

do not consider the value p2n.

Definition 4.5.3. Let R : (R2)⌦⇥⌦ ! (R2[R1)⌦
R denote the natural restriction mapping.

Therefore, we may talk about  R(R(p)) where p : ⌦⇥ ⌦! R2.
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Chapter 5

Partially Degenerate Setting:

Uniqueness Results

In this work we are considering two different degenerate settings which we call the

partially degenerate setting and the fully degenerate setting. In this chapter we con-

sider the partially degenerate setting. That is:

Definition 5.0.1. Partially Degenerate Setting :

k1(s1) > 0

k2(s2) = 0 if and only if s2  c2 where c2 > 0.

k1(s1n) + k2(s2n) > 0.

In a later chapter we will discuss results on the fully degenerate setting. That is:

Definition 5.0.2. Fully Degenerate Setting :

k1(s1) = 0 if and only if s1  c1 where c1 > 0 and

k2(s2) = 0 if and only if s2  c2 where c2 > 0.

k1(s1n) + k2(s2n) > 0.

The reason we do this is because we have some stronger uniqueness results in

the partially degenerate setting. We continue now with our discussion of uniqueness
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in the partially degenerate setting after first discussing some considerations about

uniqueness properties of the problem in general.

5.1 Uniqueness Considerations

The question of uniqueness of minima for  ⇤ is delicate. In the absolute sense, there

is no uniqueness. However, as we shall see, this non-uniqueness occurs in a trivial

way. If we partially quotient out some of the "degenerate regions" we do, in fact,

achieve uniqueness. The important point is that all of the minima correspond to es-

sentially the same solution of the Euler-Lagrange equations.

In order to deal with abundance of minima, we consider the following modi-

fied functional. The reader should compare this functional with the one from the

end of chapter 3. For the definition of Int, see the previous chapter. Here, I is the

indicator function and the Ci are the Voronoi cells.

 ̃⇤(p) =
nX

i=1

[�⇤(p1i � p

2
i )� s

1
n(p

1
i � p

2
i )]|Ci|

+
⌧

4

X

1i<jn
i,j2Int(k1(s1)=0)c

[k1(s
1
i ) + k1(s

1
j )](p

1
i � p

1
j )

2Ai,j

hi,j

+
⌧

4

X

1i<jn
i,j2Int(k2(s2)=0)c

[k2(s
2
i ) + k2(s

2
j )](p

2
i � p

2
j )

2Ai,j

hi,j

+
1

2

X

i2Int(k1(s1i )=0)[Int(k2(s2i )=0)

(p1i � p

2
i � ⇠̂)2+|Ci|

+ ⌧

nX

i=1

↵

h
�(E1 \ Ci)(

1

2
(p1i )

2 � p

1
bhp

1
i ) + �(E2 \ Ci)(

1

2
(p2i )

2 � p

2
bhp

2
i )
i

Take ↵ = 0 for no wells or ↵ = 1 for wells. We will work with this functional for

the time being and explain how to remove the additional term later.
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5.2 Results when s1 > 0 and k1(s1) > 0

Assume the following conditions.

�

⇤(⌘) = ⌘ for ⌘ � ⇠̂

�

⇤(⌘) ! M as ⌘ ! �1, for some constant M .

�

⇤(⌘) is strictly convex on ⌘  ⇠̂.

k1(s1) > 0

k2(s2) = 0 if and only if s2  c2

0  c2 < 1

0 < s

1
n  1.

0  s

2
n < 1.

We will now prove a uniqueness result for the case when ↵ = 0, that is, the case

when there are no well terms.

Theorem 5.2.1. Consider the functional  ̃⇤ defined above and suppose ↵ = 0. Then if  ̃⇤

has a minimizer it is unique up to shifting p

1 � p

2 by a constant.

Proof. Let p = (p1, p2) and p̃ = (p̃1, p̃2) be minimizers. We will show that if (p1, p2) 6=

(p̃1 + c, p̃

2 + c), for some constant c then we can construct ˜̃p such that  (˜̃p) <  (p).

Define ⇠ = p

1 � p

2 and ⇠̃ = p̃

1 � p̃

2.

Case 1. Assume that ⇠n 6= ⇠̃n for some n 2 Int(k2(s2) = 0). Since �

⇤ is strictly

convex on (1, ⇠̂] and linear on [⇠̂,1) and the term containing the positive part is

strictly convex on [⇠̂,1) and since the remaining terms are convex, we have that

 ̃⇤( ⇠+⇠̃
2 ) <  ̃⇤(⇠̃)+ ̃⇤(⇠̃)

2 . Threfore, we can take ˜̃
p to be the average of p and p̃.

Case 2. Assume that ⇠n 6= ⇠̃n for some fixed n /2 Int(k2(s2) = 0). Assume that

⇠n = ⇠̃n + d, where d > 0. Assume that ⇠n, ⇠̃n � ⇠̂ since otherwise we can use the fact

that �⇤ is strictly convex on (1, ⇠̂] and linear on [⇠̂,1) and take an average as before.
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Let C be the maximal k2 gradient-connected component of ⌦ � Int(k2(s2) = 0)

containing n. By the strict convexity of the terms containing the ki and the fact that

p̃ and p are minima, it follows that

p̃

1
i � p̃

1
j = p

1
i � p

1
j , for all i, j with j 2 N(i) where N(i) means neighbor of i and

p̃

2
i � p̃

2
j = p

2
i � p

2
j , for all i, j 2 C, with j 2 N(i).

This implies that for all i 2 C we have ⇠i = ⇠̃i + d. Define

˜̃
pi =

8
>><

>>:

(p1n, p
2
n + d) if i 2 C

(p1i , p
2
i ) if i /2 C

and define ˜̃
⇠ = ˜̃

p

1 � ˜̃
p

2, noting that ˜̃⇠i = ⇠̃i for i 2 C.

We claim that  ̃⇤(˜̃p) <  ̃⇤(p). Consider the first two terms of  ̃⇤. Observe that

for i 2 C, we have

X

i2C
�

⇤( ˜̃⇠i)� s

1
i
˜̃
⇠i =

X

i2C
�

⇤(⇠̃i)� s

1
i ⇠̃i

=
X

i2C
(1� s

1
i )⇠̃i

<

X

i2C
(1� s

1
i )⇠i

=
X

i2C
�

⇤(⇠i)� s

1
i ⇠i

The first equality holds since ˜̃
⇠ = ⇠̃. The second equality holds since ⇠i, ⇠̃i � ⇠̂ for

each i 2 C since otherwise we can use the strict convexity of �⇤ to take an average

as in case 1 and �

⇤(⌘) = ⌘ for ⌘ � ⇠̂. The third equality holds since s

1
m < 1 for some

m in C (otherwise s

2
m = 0 for all m 2 C and then C is not a k2 component) and

⇠i = ⇠̃i + d, d > 0 for each i.
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We claim that the remaining terms from (˜̃p) are identical to those from (p̃). To

see this for the terms containing the ki, observe that if i 2 C and j 2 N(i) with j /2 C

then we have k2(s2j ) = 0 and k2(s2i ) = 0, by definition of k2 gradient-connectedness.

To see that the term containing the positive part is the same for both  ̃⇤(˜p̃) and

 ̃⇤(p) observe that ˜̃p only differs from p on C and the term in question vanishes on

C.

Theorem 5.2.2. Consider the functional  ̃⇤ defined above and suppose that ↵ = 1. If  ̃⇤

has a minimum then that minimum is unique.

Proof. Since 1
2(p

1
n1
)2, 1

2(p
1
n2
)2 are strictly convex and all the terms of  ̃⇤ are at least

non-strictly convex, the values of p

1
n1

, p1n2
are unique over all minimizers. Since

k1 > 0, and by the strict convexity of the terms containing k1, it follows that the p

1
n

are unique for each n 2 ⌦h. Also, the gradients of p2 are unique on each component

and since the value p

2
n2

is fixed, p2 is fixed on the component containing n2. We now

adapt the two cases in the proof above for when the wells are present.

Suppose we are in Case 1. There is a node n such that ⇠n = ⇠̃n + d. If n = n2

then by the paragraph above we actually must have ⇠n = ⇠̃n and so this case cannot

happen. If n = n1 or n is some other node we may proceed as in the theorem above.

Suppose we are in Case 2. There is a component C with n 2 C and ⇠n = ⇠̃n + d.

If n2 2 C then first paragraph of this proof gives a contradiction. If n2 /2 C, we may

proceed as in the theorem above.
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Chapter 6

Existence Results

In this chapter we prove that  ̃⇤ is coercive in both the partially degenerate and fully

degenerate settings. We will use the graph notation and the restricted functional

notation described in the chapter on graph description. In particular, we will begin

with showing the the restricted functional  R is coercive. We will then see how to

extend this result to get the coercivity of  ̃⇤. We begin with some definitions and

will then show that if |p| ! 1 then  R(p) ! 1. Note that the domains of  ̃⇤ and

 R are finite dimensional.

6.1 Coercivity of Restricted Functional

We reproduce the definition of the restricted functional R here for convenience and

then give some definitions which will be helpful for the existence proof.

 R(p) :=
X

i2Int(k1(s1)=0)c\Int(k2(s2)=0)c

[�⇤(p1i � p

2
i )� s

1
n(p

1
i � p

2
i )]

+
1

4

X

1i<jn
i,j2Int(k1(s1)=0)c

[k1(s
1
i ) + k1(s

1
j )](p

1
i � p

1
j )

2Ai,j

hi,j

+
1

4

X

1i<jn
i,j2Int(k2(s2)=0)c

[k2(s
2
i ) + k2(s

2
j )](p

2
i � p

2
j )

2Ai,j

hi,j

Definition 6.1.1.
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In the following definitions we consider a sequence of functions on the set of nodespk,

k = 1, 2, .... We use the notation p

1
n ! +1 to mean that for the underlying sequence pk we

have that the value of pk at the node n or pkn is tending to 1. We drop the index k from now

on and assume that the arrows below refer to convergence as k ! 1.

• For v 2 G we will write p1v ! +1 if for at least one node n 2 v we have p1n ! +1

and for the remaining nodes either p1n ! +1 or |p1n|  M .

• For v 2 G we will write p1v ! �1 if for at least one node n 2 v we have p1n ! �1

and for the remaining nodes either p1n ! �1 or |p1n|  M .

• We write p1 ! +1 if for at least one v 2 G we have p1v ! +1 and for the remaining

v 2 G, either p1v ! +1 or |p1v|  M .

• We write p1 ! �1 if for at least one v 2 G we have p1v ! �1 and for the remaining

v 2 G, either p1v ! �1 or |p1v|  M .

The same definitions hold when 1 is replaced with 2.

We now prove a lemma which shows that if for some n we have p

i
n ! 1, for

either i = 1 or i = 2, then the same must be true for all nodes in the same ki graph-

connected component as n (or  R will diverge)

Lemma 6.1.1. Let v 2 G and suppose there exists n 2 v such that p1(n) ! +1. Then if

the following statement in quotes is not true:

"for all n0 2 v, p1n0 ! +1,"

we have that  R blows up.

The same is true if we replace 1 with �1
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Proof. Suppose v 2 V1. Then if the statement in quotes is not true, the term from  R

containing k1 blows up. The same is true if v 2 V2.

Observe that  R only depends on the differences p

1 � p

2 and the gradients of

p

1, p2. Therefore, if we consider the translation p̂

1 := p

1 + c and p̂

2 := p

2 + c then

 R(p̂) =  R(p). Therefore, we shall prove that there exists a minimum over the

constrained set
R
V1

p

1 = 0, where the integral is taken over the nodes n 2 V1. See the

definition above for the notation used in the proof of the following theorem.

Theorem 6.1.1. Let  R be the restricted functional defined in previous chapter. If V1 is

nonempty, then  R is coercive on
R
V1

p

1 = 0. If V1 is empty,  R is coercive on
R
V2

p

2 = 0.

Proof.

We first assume that V1 is nonempty. Since the domain of  R is finite dimensional,

and since all norms on a finite dimensional vector space are equivalent, we do not

write any norms here. Since  R is bounded below, we only need to show that one

term from  R blows up in order to show  R ! 1.

Case 1: Suppose p

1 ! +1 or p

1 ! �1 (see definition above). This violates
R
V1

p

1 = 0. Therefore, we consider the other ways in which |p| ! 1 on
R
V1

p

1 = 0.

Case 2: Suppose that for some v+, v� 2 V1, p1v+ ! +1 and p

1
v� ! �1 (see

definition above). We proceed by induction. For the base case, assume there is a

vertex v2 2 V2 such that v+ � v2 � v� is a path of length 3. By lemma 4.4.2 there is

n+ 2 v+ \ v2 with s

1
n+

2 (0, 1) and n� 2 v� \ v2 with s

1
n� 2 (0, 1).

Claim 1:

If |p1n+
� p

2
n+

|  M does not hold for some M , then the term

�

⇤(p1n+
� p

2
n+

)� s

1
n+(p

1
n+

� p

2
n+

)
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blows up.

Similarly, if |p1n� � p

2
n� |  M does not hold for some M , then

�

⇤(p1n� � p

2
n�)� s

1
n�(p

1
n� � p

2
n�)

blows up.

Suppose that |p1n+
� p

2
n+

| ! 1. If (p1n+
� p

2
n+

) ! 1 then since �

⇤(⌘)� s

1
n+

(⌘) =

(1�s

1
n+

)·⌘ for ⌘ � ⇠̂, we have �⇤(p1n+
�p

2
n+

)�s

1
n+(p

1
n+

�p

2
n+

) ! 1. On the other hand,

if (p1n+
� p

2
n+

) ! �1, then since �

⇤(⌘)� s

1
n+

(⌘) > ✏ · ⌘ for large negative values of ⌘

(since s1n+
> 0 and �

⇤(⌘) ! L as ⌘ ! �1), we have �⇤(p1n+
�p

2
n+

)�s

1
n+(p

1
n+

�p

2
n+

) !

1. This completes the proof of the Claim 1.

We continue with the base case. As shown above, if one of the terms |p1n+
� p

2
n+

|

or |p1n� � p

2
n� | blows up, then  R blows up so we are done. Assume, therefore,

that both |p1n+
� p

2
n+

|  M and |p1n� � p

2
n� |  M . Since we are still in Case 2,

p

1
v+ ! +1 and p

1
v� ! �1. By lemma 6.1.1 applied to both v+ and v�, if we do not

have both p

2
n+ ! +1 and p

2
n� ! �1, then  R blows up. Thus we assume that

both p

2
n+ ! +1 and p

2
n� ! �1. Then by lemma 6.1.1 applied to v2, recalling that

n+ 2 v2 and n� 2 v2, we have that  R blows up.

We proceed with the induction step of Case 2. As before, suppose that for some

v+, v� 2 V1, p1v+ ! +1 and p

1
v� ! �1. This time, however, we have a path be-

tween v+ and v� with length larger than 3. Let v+ ! w+ ! ... ! w� ! v� be a path

from v+ to v�.

Claim 2:

Suppose that  R does not blow up, then both p

2
w+

! +1 and p

2
w� ! �1.
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By lemma 4.4.2, there exists n+ 2 v+ \ w+ such that sn+ 2 (0, 1).

Similarly, there exists n� 2 v� \ w� such that sn� 2 (0, 1).

By still being in Case 2, we have p

1
v+ ! +1 and p

1
v� ! �1.

By lemma 6.1.1, p1n+
! +1 and p

1
n� ! �1.

By Claim 1, p2n+
! +1 and p

2
n� ! �1.

By lemma 6.1.1 again, p1w+
! +1 and p

1
w� ! �1.

This completes the proof of Claim 2 and also completes the induction step which

finishes Case 2.

Case 3: Assume that |p2v+ | ! 1 for some v 2 V2. Then by similar arguments

from Case 2, we can see that we are actually again in the situation of Case 2.

The above cases complete the proof for when V1 6= ;. We now assume that

V1 = ;. Then V2 = {⌦h}. In this case  R is reduced to

1

4

X

i<j

[k2(s
2
i ) + k2(s

2
j )](p

2
i � p

2
j )

2
.

To complete the proof we must show that if |p2| ! 1 while
R
⌦h

p

2 = 0 then

the above term diverges. Since V1 = ;, it follows that k1(s1n) = 0 for each n 2 ⌦h.

Therefore, since k1(s1n) + k2(s2n) > 0 for each n, we have k2(s2n) > 0 for each n. The

divergence of the above now follows easily.
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6.2 Extension of Coercivity to Original Functional

See the chapter on graph description for the definition of the restriction function R.

Theorem 6.2.1. The functional  ̃⇤ is coercive.

Proof. We have shown in the previous theorem that if |R(p)| ! 1, then  R ! 1.

Since  ̃⇤ �  R it also follows that if |R(p)| ! 1, then  ̃⇤ ! 1. Thus we take let

|p| ! 1, while keeping |R(p)| bounded, and show that still  ̃⇤ ! 1, this will be

enough to show coercivity of  ̃⇤.

Therefore assume that |R(p)| is bounded and that |p| ! 1. First we recall some

key terms from  ̃⇤ for convenience and then we split up the remainder of the proof

into cases.

X

n2⌦h

[�⇤(p1n � p

2
n)� s

1
n(p

1
n � p

2
n)] (6.1)

X

n2⌦h

(p1n � p

2
n � ⇠̂)2+I(Int({k1(s1n) = 0}) [ I(Int({k2(s2n) = 0})) (6.2)

In each of the following cases when we write, say, for some n 2 Int({k1(s1) = 0})

that p1n ! 1, it is always assumed that p2n is bounded. This is because we have

assumed that |R(p)| is bounded and p

2
n is in this case in the domain of  R since

D1 \D2 6= ;. The analogous statement is assumed for the indices 1 and 2 swapped.

CASE 1: p1n ! +1 for some n 2 Int({k1(s1) = 0}). The second term above blows

up in this case.

CASE 2: p1n ! �1 for some n 2 Int({k1(s1) = 0}). Recall that s1n > 0 is a global

assumption. This together with the fact that �⇤(⌘) ! L as ⌘ ! �1 forces the first

term to blow up.
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Case 3: p

2
n ! +1 for some n 2 Int({k2(s2) = 0}). Apply the same argument

from Case 2.

Case 4: p

2
n ! �1 for some n 2 Int({k2(s2) = 0}). Apply the same argument

from Case 1.

This completes the proof that  ̃⇤ is coercive.
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Chapter 7

Fully Degenerate Setting:

Uniqueness Results

In this chapter we deal with the question of uniqueness for the case when

k1(s1) = 0 for s1  c1

k2(s2) = 0 for s2  c2,

where c1 + c2 < 1 and c1, c2 > 0.

In addition to assuming that �⇤ has the properties listed at the beginning of sec-

tion 5.2, we also assume that

�

⇤00(⌘) > 0 on {⌘ : �⇤
0
(⌘) < 1}

�

⇤00 � 0

�

⇤0(⌘) ! 0 as ⌘ ! �1

�

⇤0 is continuous.

All of these properties are satisfied by our example case which is

�

⇤0(⌘) =

8
><

>:

1
4⌘2 ⌘  �1

2

1 ⌘ � �1
2
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and

�

⇤00(⌘) =

8
><

>:

� 1
2⌘3 ⌘  �1

2

0 ⌘ � �1
2

and so �

⇤00(⌘) � 0.

In the language of connected components, the difference between the fully de-

generate setting (FDS) and the partially degenerate setting (PDS) is that in PDS the

domain of p1 has only one component and the domain of p2 may have multiple com-

ponents. In the FDS, both domains will have multiple components.

Because  ̃⇤ is not strictly convex, for the proof of uniqueness in PDS we needed

to resort to a shifting argument where we shifted p

2 on one of its components in

order to produce a strictly smaller minimum. For the FDS a similar idea works

but the implementation is more delicate. We will need the fact that the graph G is

actually a tree.

7.1 Uniqueness of  R

We will first directly show uniqueness for R and then use the relationship between

 ̃⇤ and  R to get uniqueness for  ̃⇤. First we need a lemma.

Lemma 7.1.1. Let v1 2 V1, v2 2 V2 such that v1 \ v2 6= ;. Then the function

gv1,v2(c) :=
X

n2v1\v2
[�⇤(p1n � p

2
n + c)� s

1
n(p

1
n � p

2
n + c)],

has a unique minimum at some c⇤ 2 R.

Proof. We will write g in place of gv1,v2 for convenience. First observe that

g

0(c) =
X

n2v1\v2
�

⇤0(p1n � p

2
n + c)� s

1
n.
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By lemma 4.4.2 there exists n̂ 2 v1 \ v2 for which s

1
n̂ 2 (0, 1). We claim there is at

most one value of c for which g

0(c) = 0. We proceed by contradiction. First observe

that g0 is increasing (at least non-strictly) since each of the summands is (non-strictly)

increasing.

We assume there is a c such that g0(c) = 0 and claim that g0(c+✏) > 0 for any ✏ > 0.

By assumption �

⇤0(⌘) is strictly increasing on the set {⌘ : �⇤
0
(⌘) < 1}. Therefore, if

for some n in the sum we have �

⇤0(p1n � p

2
n + c) < 1, we are done since

�

⇤0(p1n � p

2
n + (c+ �)) > �

⇤0(p1n � p

2
n + (c+ �))

and since this is a summand of g0(c) and all of its summands are increasing, g(c+�) >

g(c).

Incidentally, this must be the case. If not, then �

⇤0(p1n�p

2
n+ c) = 1 for each n. But

then g

0(c) = (1� s

1
n̂) + (1� s

1
n1
) + ...+ (1� s

1
nm

) > 0 since s

1
n̂ < 1, as shown earlier,

and since s

1
nk

 1 for each k. But g0(c) = 0 so this is a contradiction.

This shows that there is at most one critical point of g. We now show that g0(c)

has at least one critical point. For convenience we rewrite g

0(c),

g

0(c) =
X

n2v1\v2
�

⇤0(p1n � p

2
n + c)� s

1
n.

Since �

⇤0(⌘) ! 0 as ⌘ ! �1, and since s

1
n > 0 for each n, there exists c such that

g

0(c) < 0. On the other hand, notice that �⇤0(⌘) = 1 for ⌘ � �1
2 , that s1n  1 for each

n and that s1n̂ < 1. Therefore, since the sum is finite, there exists c such that g0(c) > 0.

Thus, since g

0(c) is continuous we have the existence of c such that g0(c) = 0. Finally,

since g

00 � 0, the critical point is a minimum and we are done.
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Theorem 7.1.1. If V1 6= ; then there is at most one minimum for R over the set
R
V1

p

1 = 0.

If V1 = ; then there is at most one minimum over the set
R
V2

p

2 = 0.

Proof. Assume that V1 6= ; and that p is a minimizer. The strict convexity of the

terms in  R containing the ki implies that the gradients rpi are unique on each

component. Therefore we need only show that the translates of the restrictions of

the p

i on each component v 2 G are unique up to shifting everything by a constant.

To show this, we consider the function

gv1,v2(c) :=
X

n2v1\v2
[�⇤(p1n � p

2
n + c)� s

1
n(p

1
n � p

2
n + c)]

with v1 2 V1 and v2 2 V2 for which v1 \ v2 6= ;. This has a unique minimum over

c 2 R by lemma 7.1.1. We write g in place of gv1,v2 for convenience. We claim that

g(0) = min
c2R

g(c).

claim itself for the end.

If g(0) = min
c2R

g(c) then the gradients of the p

i are fixed on each component and

the values p

1 � p

2 are fixed on overlapping regions v1 \ v2, where v1 2 V1, v2 2 V2.

This together with the fact that G is connected implies that p1, p2 are unique up to

shifting both by the same constant.

We prove that g(0) = min
c2R

g(c). Recall that G is a tree. Let p be a minimizer and

suppose that for some v1 \ v2 6= ; we have that g(0) 6= min
c2R

g(c). We claim that we

can find a strictly smaller minimum than p which is a contradiction.

We will construct this new minimum by shifting a large section of the values of p

on the tree G by a constant. The principle is that we will shift the values of p so that

for the new values we will have g(0) = min
c2R

g(c) but we will not disturb the other

terms from  R. We now describe this in detail.



7.2. Extension of Existence and Uniqueness of Minimum of  R to  ̃⇤ 49

Suppose that for some v1, v2, gv1,v2(0) 6= min
c2R

gv1,v2(c). Since g has a unique mini-

mum, we have g(c⇤) = min
c2R

g(c) for some c

⇤ 6= 0. Since G is a tree, deleting the edge

(v1, v2) will yield two maximally connected subgraphs G1, G2. Now on G2, replace

the values p

1
, p

2 by p

1 � c

⇤ and p

2 � c

⇤. By inspection of each of the terms of  R

this yields a strictly smaller minimum. This contradicts that p is a minimum and

therefore we indeed have g(0) = min
c2R

g(c). We have completed the proof in the case

where V1 6= ;.

Next assume that V1 = ; and p is a minimum.

In this case, V2 = {⌦}. Therefore, since the gradient of p2 is unique and ⌦h is

connected, we have that p2 is unique up to a constant. Therefore p

2 is unique when

restricted to the set
R
V2

p

2 = 0.

This concludes the uniqueness section. We now have existence and uniqueness

of a minimum for  R. The next section will extend this result and show existence

and uniqueness of a minimum for  ̃⇤.

7.2 Extension of Existence and Uniqueness of Minimum of

 R to  ̃⇤

In this section we will see how to extend the existence and uniqueness results from

 R to to  ̃⇤. We will see that this extension is somewhat trivial since the additional

variables which are in the domain of  ̃⇤ but not in R are "free" variables. Therefore,

to minimize  ̃⇤ we can split the functional and minimize the pieces separately.
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7.2.1 Splitting the Functional

We write the functional here for convenience. The first two terms below are �(p)

and the last 4 terms are  R(p).

 ̃⇤(p) = �(p) + R(p)

=
X

Int(k1(s1)=0)[Int(k2(s2)=0)

[�⇤(p1n � p

2
n)� s

1
n(p

1
n � p

2
n)]|Vi|

+
1

2

X

Int(k1(s1)=0)[Int(k2(s2)=0)

(p1n � p

2
n � ⇠̂)2+|Vi|

+
X

i2Int(k1(s1)=0)c\Int(k2(s2)=0)c

[�⇤(p1n � p

2
n)� s

1
n(p

1
n � p

2
n)]|Vi|

+
⌧

4

X

1i<jn
i,j2Int(k1(s1)=0)c

[k1(s
1
n) + k1(s

1
n+1)](p

1
n+1 � p

1
n)

2Ai,j

hi,j

+
⌧

4

X

1i<jn
i,j2Int(k2(s2)=0)c

[k2(s
2
n) + k2(s

2
n+1)](p

2
n+1 � p

2
n)

2Ai,j

hi,j

The fact that  ̃⇤(p) has a unique minimizer follows from the fact that the terms

�(p) and  R(p) may be treated separately since their domains are essentially dis-

joint in the sense that the domains overlap in at most one coordinate of (p1, p2) and

�(p) only depends on the difference p1 � p2. Both � and  R satisfy existence and

uniqueness properties for minimizers. The fact that � is coercive follows from the

same arguments from the proof that  R is coercive. The uniqueness of � follows

from its strict convexity. Of course any uniqueness claim here is understood to be

up to shifting both p1 and p2 by the same constant.
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7.3 Results for Original Functional  ⇤

We finally return to our original functional  ⇤. Recall that we modified  ⇤ to get  ̃⇤

by adding in the extra term

1

2

X
(p1n � p

2
n � ⇠̂)2+.

In fact, without this extra term we do not actually have uniqueness. To see this,

observe that if s1n = 1 then we have

�

⇤(p1n � p

2
n)� s

1
n(p

1
n � p

2
n) = �

⇤(p1n � p

2
n + c)� s

1
n(p

1
n � p

2
n + c)

if p1n � p

2
n � ⇠̂. Therefore, we can move one of the p

i around freely in the term �

above and achieve different functions p having the same minimum.

The important thing is that even though there is no uniqueness, there is enough

uniqueness in the sense to ensure that all minimizers yield the same saturation s

i

values and the same gradients rp on the regions where rp is not multiplied by a

zero term.
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Chapter 8

Numerical Example

We will now give a numerical example. First we will list the parameters of the ex-

ample and provide some contour plots. The porosity 1 � s0(x) is layered in the

following way: s0(x) = .2 ⇤ sin(2⇡(x � y)). The countour plot of s0 is shown in

figure 8.1. The relative permeability curves k1, k2 have the equations k1(s1, x) =

min(0, (s1 � .2(1� s0(x)))2) and k2(s2, x) = min(0, (s2 � .2(1� s0(x)))2). The plots

are shown in figure 8.2.

Next we consider the general permeabilty of the medium. We suppose that the

medium is very dense at the point (.3, .4). The density is uniform with permeability

value .04 in a disk of radius .2 around (.3, .4). Outside the disk, the permeability

increases linearly as a function of the distance from the disk. The contour plot is

shown in figure 8.3 and the equation, where p = (.3, .4), is

K(x) = .04 +max(0, 10 d(x, p)� 2).

Our mesh is generated using the program Triangle by Richard Shewchuk and

can be found at https://www.cs.cmu.edu/ quake/triangle.html. We use 300 grid

points on the square [0, 1] ⇥ [0, 1]. The wells are the quarter circles with radius .2

and centers (1, 0), and (0, 1). The pressures are p

1
bh = 100 and p

2
bh = 0. We as-

sume that s

1 = 0 at time t = 0. We use a time step of t = .1. The figures 8.4-

8.9 give the solutions at times t = 1, 5, 10, 15, 20, 30, respectively, and the colorbar

is in figure 8.10. At each time step we computed the minimum of the associated
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FIGURE 8.1: s0(x)

convex functional by first using a Nesterov accelerated proximal gradient method

with 100 iterations and then then finishing by using up to 100 Newton scheme iter-

ations. The code for the proximal gradient method is from Brendan O’Donoghue at

https://github.com/bodono/apg. This was enough to approximate the minimum

to within 10�8 (|r |l1 < 10�8).
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FIGURE 8.4: t = 1, 5

FIGURE 8.5: t = 10, 15

FIGURE 8.6: t = 20, t = 30
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