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Abstract

This dissertation contains essays on government outsourcing and identification of dynamic bi-
nary choice models. The first essay, titled “Mixed-Delivery of a Public Good: An Empirical Case
Study of the Dredging Industry,” provides a descriptive analysis of the United States dredging
industry. The industry has several features that make it an interesting area to study delivery of
public goods; most notably, provision of dredging services in the US are split between in-house
provision by the US Army Corps of Engineers and contracting out to private sector dredging
companies. Patterns of in-house government project selection suggest that government prefers
to complete smaller projects and also indicates the presence of complementarities across projects
arising from travel distance between project sites.

In the second essay, “Semi-parametric Identification of Dynamic Binary Choice Models,” I
give conditions underwhich both the per-period payoffs for each state and the distribution of the
random, unobserved component of agent utility are identified. Most previous work in dynamic
discrete choice models has used the assumption that the distribution of choice-specific utility
shocks are known. I show that two conditions suffice to identify this distribution: first, that
there is a period in which there is no future value component for agents. This can arise due
to either non-stationary state transitions or a finite time horizon. Second, I assume that there
is a state variable that enters into the utility for one of the choices through a known function.
This allows for identification of the distribution of the unobserved utility component through
variation in this state variable in the static periods.

Finally the last essay, titled “Cost and Efficiency in Government Outsourcing,” builds a dy-
namic binary-choice model of government outsourcing decisions and applies the model to the
dredging industry described in the first essay. I investigate the effect of government outsourcing
on total expenditures and efficiency by considering how outsourcing decisions are determined
along two dimensions: (i) cost differences between private firms and government suppliers of
public goods and (ii) dynamics arising from cost complementarities and capacity constraints.
Identification of the model uses the identification results from the second chapter, and allows
for identification of the full distribution of government project costs. Model estimates indicate
substantial cost savings due to outsourcing but also that government presence in the market is
important for cost reduction. A counterfactual policy experiment featuring direct competition
between government and private sector firms finds a total expenditure reduction of 17.1%.
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Chapter 1

Mixed-Delivery of a Public Good: An

Empirical Case Study of the Dredging

Industry

1.1 Introduction

When government decides how a public good or service will be delivered, it often considers a di-

chotomous choice between keeping all provision in-house or privatization of the entire industry

or service. However, in many cases the government has the option to split provision between in-

house resources and contracting out to private sector firms. This type of “mixed delivery” setting

offers the government the opportunity to identify specific projects or tasks that lend themselves

well to in-house completion, or would prove costly to outsource to private sector firms due to

factors such as monitoring costs, as well as use the benefits of competition for other projects in

order to bring the total cost of service provision down.
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In this paper I examine mixed-delivery of public infrastructure projects in the United States

dredging market. Dredging involved the excavation of underwater material, and its chief pur-

pose is to keep waterways navigable for the passage of commercial vessels. Projects are com-

pleted by large vessels called dredges, which have all physical capital resources required for

dredging projects built into the vessel itself. A US government agency, the United States Army

Corps of Engineers, is responsible for maintaining all navigable waterways in the US and over-

sees all dredging projects that occur in these waters. A notable feature of this industry is that the

Corps of Engineers splits completion of these projects across its own dredging vessels as well

as outsourcing to private sector firms. The Corps of Engineers maintains a fleet of 12 dredges

that complete projects at the Corps’ behest, and any projects not assigned to Corps of Engineers

dredges are contracted out to private sector firms through the use of procurement auctions.

The dredging industry features a small number of firms in each market, high entry costs due

to the large cost associated with purchasing new dredging equipment, and geographic separa-

tion of markets in which firms largely compete only in local markets. These factors combine to

keep the number of bidders in each auction low, and so the presence of the government in the

market adds noticeably to the overall level of competition in the market.

I examine data on dredging projects occurring over a 15 year period from 1999-2013. The

Corps of Engineers oversees the completion of several hundred dredging projects per year, with

approximately half of these being completed in-house by Corps owned-and-operated dredges.

The remainder of the projects are contracted out to private sector dredging companies using a

first-price sealed-bid auction. The total awards from the auctions range between $700 million

and $1.1 billion annually.

Using data on project allocation decisions and project characteristics, I document patterns in
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the US Army Corps of Engineers outsourcing decisions. I find evidence that smaller projects, as

measured by the volume of material to be dredged as well as the number of working days re-

quired for project completion, are more likely to be kept in-house while larger projects are more

likely to be contracted out. Additionally, projects that are farther away from the government’s

closest available vessel are more likely to be contracted out, suggesting that travel distance is

costly for the Corps of Engineers. This suggests the following two features may be important in

thismarket: variation in project completion cost betweenCorps of Engineers dredges andprivate

sector companies, with government having a relative cost advantage for smaller projects and the

opposite for larger projects, and dynamic effects arising from the travel distance to project loca-

tions. This second point is reinforced by regression results that indicate government decisions

are sensitive to how current allocation decisions will affect future travel distances.

1.2 Dredging Projects in the US

Dredging is the act of excavating underwater material and moving it elsewhere. The primary

purpose of these projects is tomaintain navigablewaterways for the passage of vessels. Dredging

projects are completed by vessels called dredges, which are large ships which typically have

all equipment and capital resources required for dredging built into the vessel itself. Figure

(1.1) shows the operations of a mechanical dredge; there are many other types of dredges, with

possibly the most common being the trailing suction dredge in which material is excavated by

means of a pipe that trails behind the vessel and uses suction combined with a drill to break

up and pull to the surface underwater material. Many types of dredges are in use, both across

private sector firms as well as within government operations.

In addition to different types of dredges, there are many different types of dredging projects.
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Figure 1.1: Diagram of a Mechanical Dredge

Note: Diagram displaying a dredging project being completed by a mechanical
dredge. Material is excavated from the waterway floor by the dredge and is then
loaded onto barges to be transported to a designated dumping site. Other types of
dredges contain a container on board to hold dredged material for later transport.

As stated earlier, the most important function of dredging is to clear waterways for the passage

of vessels; however, even this function can take many forms. The specifics of each project will

depend on the type of waterway (river, harbor, open water, etc.), depth and gradient of the un-

derwatermaterial to be dredged, material type, andmany other factors. In addition to this, there

are other types of dredging projects, including projects aimed at maintaining levees, nourishing

beaches, and dredging completely new waterways and passages.

In most cases a dredging project will require, in addition to the dredge used, a barge that

contains quarters for the dredge crew, surveying equipment/barges, and a vessel to transport

dredged material to a designated disposal site if this task is not completed by the dredge itself.

The set-up for each project necessitates a “mobilization” period in which the crew, materials,

and dredges and additional vessels required for the project are transported to the work site and

constructed. Consequently, there is also a demobilization period in which the work site is dis-

mantled and gear and equipment are moved from the site. Themobilization and demobilization

phases of each project are often extremely costly, sometimes over one third of the total project
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costs.

The main costs of dredging operations, in addition to the costs associated with mobilization

and demobilization, come from labor costs and fuel for the operation of the dredging equipment.

The number of crewmembers on a dredge typically numbers between 15 and 35, although some

vessels have as many as 50. In the case of private sector dredging companies, most workers

are hired on a part-time, as-needed basis and the number of hours they work will often vary

over the course of a project. In the case of projects completed by the Corps of Engineers, works

are full-time Corps employees and all workers assigned to the dredge remain on the project

site throughout the course of the project. The dredges themselves are require substantial fuel

resources to run; dredge equipment often exceeds 10,000 hp, and operation of this equipment

consumes large quantities of fuel.

1.2.1 Importance of dredging projects

Dredging is an important service for many sectors of the economy. Chiefly among these is the

movement of goods and commodities along the nation’s waterways, both for domestic as well

as international trade. Other uses of dredging include beach nourishment/replenishment, levee

repair and flood control, and for issues of national security. These important uses lead the Corps

of Engineers to spend around $1.5 billion each year on dredging projects in the United States.

Waterway maintenance comprises the bulk of projects supervised by the Army Corps of En-

gineers. Previously dredged channels will accumulate silt, sand, and other sediment in regions

that would impede the passage of commercial vessels if not removed. The purpose of these

maintenance projects is to remove the build-up of material on the waterway floor to keep these

passages clear. The waterways serve a vital role to the US economy, especially for exports of

12



coal, petroleum, andwheat. Over 22% of all coal and petroleum shipped in theUnited States and

over 60% of grain transported in the US are moved along these waterways. Much of this grain

is moved down the Mississippi River to ports in New Orleans for export. Overall, water-borne

transportation accounts for themajority of all US international trade byweight1, and nearly all of

this occurs using waterways and ports maintained by the Corps of Engineers. Waterway main-

tenance is important for domestic trade as well; the Corps of Engineers estimates that 22% of all

commodities moved domestically are done using waterway transportation.

In addition to maintaining waterways, dredging serves other important functions. Among

these are beach nourishment and national defense. Many of the nation’s beaches rely on dredged

material in order to maintain the appearance and gradient of the beach. Beaches can be shaped

either usingmaterial from nearby the beach area or from suitablematerial dredged from another

project. As an example, dredging operations were vital to the recovery efforts along the New

Jersey coast after hurricane Sandy decimated much of the oceanfront property, including many

of the state’s beaches. Finally, national defense also serves as an important function of dredging

operations. The Corps of Engineers is a military organization and, while many of its projects

fall under the “Civil Works” category of operations, it has important strategic goals to consider.

One of these strategic considerations is howmilitary operations may disrupt waterways in ways

that make it difficult for US naval vessels to move freely, and to alleviate any impediments to

these movements. As such, the Corps of Engineers keeps bases near all active combat zones, as

well as many other active US military bases abroad.

1In 2001, waterborne trade accounted for 78.7% of all trade by weight. Source: US International Trade and
Freight Transportation Trends, BTS 2003.
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1.3 The United State Dredging Industry

The dredging industry in theUnited States is noteworthy in that it features a government agency,

the US Army Corps of Engineers, which oversees projects and allocates projects between in-

house completion byCorps-owned-and-operateddredges andoutsourcing to private sector dredg-

ing companies. The private market is characterized by low levels of competition, high entry

costs, and firms that compete in local geographic markets. The Corps of Engineers oversees and

monitors all projects and maintains its own dredging fleet that complete projects at the Corps’

behest. The vessels often cover larger geographic areas than would be typical of private sector

firms. The Corps of Engineers typically completes approximately the same number of projects

as those outsourced to private sector firms, but these projects tend to be much smaller in terms

of both volume of dredgedmaterial as well as number of working days required to complete the

project.

1.3.1 History of Dredging in the United States

The US Army Corps of Engineers has long performed dredging operations in the United States.

Under the Rivers andHarbors act –whichwas introduced in 1824 and expanded through various

pieces of legislation throughout the 19th and early 20th centuries– the Corps of Engineers was

tasked by Congress with maintaining all navigable waterways in the US, including all rivers,

harbors, and ports. The Corps of Engineers kept a fleet of dredging vessels to complete these

tasks, and until the late 20th century was the only party to engage in dredging operations in

federal waters.

In 1972 Congress passed theMinimumFleet Act (Public Law 95-269), which tasked the Corps
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of Engineers with reducing the federal dredging fleet to theminimum level so long as the private

sector demonstrated “the capability to do such work and it can be done at reasonable prices and

in a timely manner.” This effectively gave the Corps of Engineers the dual directive to outsource

as much work as possible while insuring that prices stayed within “reasonable” levels. At this

time, the Corps of Engineers began selling many of its dredges to private sector dredging com-

panies and actively soliciting these companies to bid in procurement auctions held for dredging

projects. The next decade saw a substantial reduction in the volume of dredgingwork completed

by the Corps of Engineers and a corresponding increase in the amount of work completed by

private sector firms. The Corps eventually settled for a permanent fleet of 12 dredges and has

operated at approximately the same capacity for several decades.

Over this time period, the private sector dredging industry stabilized, with the level of com-

petition staying approximately constant over the last 15 years. Figure (1.2) shows threemeasures

of the level of competition in the national dredging market from 1999-2013. The graphs suggest

that the number of firms active in themarket for dredging is relatively stable over time, especially

after controlling for the number of projects outsourced to the private sector. This indicates that,

after a period of growth following the Minimum Fleet Act in 1978, the private sector dredging

industry leveled off and remained fairly flat thereafter. This is in large part due to the substantial

fixed costs associated with starting a dredging company, as new dredges can cost manymillions

of dollars.2

The convergence of both the Army Corps of Engineers dredging fleet to a constant level and

the industry to a stable level of competition have led to a balance in the work completed by

the Corps of Engineers and that outsourced to private firms. Approximately half of all projects

2As an example, a new dredge purchased by the Army Corps of Engineers in 2011 to replace an aging dredge
had a total price tag of nearly $25 million.
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are completed in-house by the Corps, and the rest are outsourced to private sector firms using

first-price sealed-bid auctions.
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Figure 1.2: Dredging Procurement Competition Over Time

Note: These three figures display indicators of the level of competition in the dredg-
ing industry over 1999-2013. The top figure shows the average number of bidders in
auctions for dredging contracts. The second figure displays the number of firms that
won a contract within a given fiscal year. The bottom figure displays the number of
winning firms per project in each year.
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1.4 Empirical Setting and Data

Thedata analyzed in this paper come fromdredging projects overseen by theUnited StatesArmy

Corps of Engineers (USACE). Dredging consists of excavation and transportation of underwater

material. Dredging projects are carried out by large vessels known as dredges; a typical dredge

has built-in machinery that excavates material from beneath the water as well as a storage con-

tainer that will hold the dredged material until a disposal area is reached. The primary purpose

of most dredging projects is the maintenance of shipping lanes and harbors to insure the safe

passage of commercial vessels. Proper care of these passages is crucial to the United States econ-

omy as much of US international trade involves transport of goods along these waterways, and

each year the USACE receives over $2 billion dollars fromCongress to carry out these navigation

projects. Each dredging project occurs in one of 34 USACE districts, which are located along the

coasts and inland waterways of the United States.

The dredging industry is ideal for assessing project level dynamic government outsourcing

for several reasons. First, the USACEmaintains its own fleet of 12 dredges that complete dredg-

ing projects at the Corps’ behest. In addition, many dredging projects are contracted out by the

USACE to private sector dredging companies via first price sealed bid auctions. This allows

for a direct comparison of which projects are kept in-house versus contracted out, and the pro-

curement auction results give a direct indication of firm revenues and competition for projects.

Another key feature of the market is that the Corps publishes activity for each of its dredges, in-

cluding location and dredging activity, for every day of the fiscal year. This allows for tracking

distance traveled and project availability for each vessel in the USACE fleet.

The market operates as follows. Prior to the start of each fiscal year the Corps publishes the

18



schedule of projects to be completed over the next fiscal year. This schedule includes all projects

across all districts. The schedule of projects is made on a yearly basis because (i) the sites that

will require dredging work are typically not known years in advance and (ii) the navigation

budget issued to the Corps is decided each year by Congress, and so the total budget available

for dredging projects is not known until several months before the start of the fiscal year.3 The

district overseeing each project holds a first price sealed bid auction to contract out the project to

a private firm or arranges for the Corps dredge chargedwith overseeing that district to complete

it. Auctions occur on a rolling basis, with the bid opening date typically falling about twomonths

prior to the start of the project while the contract is awarded about three to four weeks prior to

the scheduled start date for the project. When a project is allocated to a government dredge, the

vessel moves to the district in which the project is located and completes the project.

1.4.1 Data

Themain source of data comes from theUnited States ArmyCorps of EngineersNavigationData

Center and includes information on all projects contracted out to private dredging companies

and daily activities for all dredges operated by the USACE from 1999-2013. Data is collected at

the district level and then published on a yearly basis on the Navigation Data Center webpage.

I supplement this data set with between-port distances obtained from the National Oceanic and

Atmosphere Administration (NOAA).

The Corps splits the project level data into projects contracted out and those kept in-house.

In-house projects are assigned to one of the Corps dredges. Each dredge has a district tasked

with operation of the dredge, and each dredge completes projects in the districts surrounding

3Additionally, emergency dredging work is rare. For example, in 2014 emergency dredging accounted for less
than 1% of all dredged material.
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its “home” district. Several government dredges are replaced over the 1999-2013 time period

but the total number of operating vessels is kept constant throughout the sample period. Data

for the in-house projects consists of the identity of the vessel completing the project, project

characteristics such as volume and number of working days, and the district in which the project

is completed.

Outsourced projects are allocated by first price sealed bid auctions. Auction data consists of

thewinning bid and identity of thewinning bidder, district whereworkwas performed, number

of bidders, and project characteristics such as date, volume of material to be excavated. Data for

USACE projects consists of volume of excavated material, estimated number of working days,

and the district where the project was completed.

Table 1.1: Summary Statistics

Mean Std. Deviation Min Max
Outsourced Projects
Number of Projects/year 118.5 22.5 77 160
Cubic yds/proj (thousands) 1,177 1,575 0.500 11,300
Working Days 125.8 136.0 1 1887
Cost/project (millions) 4.03 3.83 0.0153 19.8
Number of Bidders 2.46 1.32 1 11
In-house Projects
Number of Projects/year 123.2 28.2 57 172
Cubic yds/proj (thousands) 273.7 939.5 .150 14,721
Working Days 17.9 38.7 1 365
Average Distance (miles) 136.7 314.6 0 4007
Firm Statistics
Projects 10.4 29.1 1 218
Districts 2.06 2.41 1 19
Mean Bid (millions) 2.59 2.34 0.062 15.77

Therewere 2178 projects awarded to private firms and 1940 projects taken byUSACEdredges

over the 15 year period in the data. After removing observations forwhich key datawasmissing,
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Figure 1.3: Project Attributes and Make-or-buy Decision

Note: Comparison of the project volume and number of working days required for
in-house and contracted-out projects. While in-house projects completed by the gov-
ernment appear generally to be both lower volume and shorter, there are still many
in-house projects that are comparable with the largest outsourced projects.

outlier projects, and projects from districts in which Corps dredges don’t operate, the final sam-

ple consists of 3,625 observations. Additional information on the data and sample construction

can be found in the Appendix. Table 1.1 contains summary statistics for the projects contained

in the sample. There were $477 million dollars worth of contracts issued to private firms each

year on average. Although the number of projects completed by the USACE is comparable to the

number of projects outsourced, the USACE projects tend to be much smaller; the mean USACE

project excavates less than 25% of the material excavated by the mean project completed by a

private firm.

Overall there were 177 unique firms awarded contracts. Most firms are active in a small

number of areas: the mean number of districts in which a firm is active is about two, while the

median is one. This suggests that most firms confine their dredging operations to a small geo-
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Figure 1.4: Number of Projects per Year Comparison

Note: Graph displaying the variation in the number of projects completed per year,
including the total number of projects as well as in-house and outsourced projects.

graphic area. Additionally, private sector dredging capacity far outstrips government dredging

resources, with an average of six dredging companies per district. Descriptive evidence sug-

gests that capacity is not a limiting factor in auction participation: regression results (which can

be found in the Appendix) indicate no statistically significant effect of the number of currently

ongoing projects in a district on auction participation. Competition in the auctions is low, with

a mean of 2.46 bidders per auction and a median of 3. Auctions with greater that four bidders

are rare, while single-bidder auctions are not uncommon. The level of competition varies across

districts. This can be seen graphically in Figure 1.5, which shows a histogram of the number

of bidders in an auction grouped by region. Figure 1.6 shows the distribution of winning bids

separated by the number of participating bidders. Predictably, additional bidders present in an

auction is associated with lower winning bids.

22



Figure 1.5: Histogram of Auction Participants by Region

Note: Histogram of the number of bidders in project auctions separated by region.
Districts located on the Atlantic and Gulf coasts have comparatively higher numbers
of bidders, while the Inland Waterways and Pacific regions have lower competition
overall and a greater chance of having a single bidder.

Another feature of the industry is that the expected total costs paid to contracted firms is very

similar to the initial winning bid. This is in contrast to other construction industries in which

changes to total project costs are a substantial component of overall payments and bidders can

strategically respond to expected cost adjustments.4 These cost increase could affect the govern-

ment’s decision to contract out a project or not, as it may be put in a disadvantageous negotiating

position if circumstances necessitate changes to project design while a firm has already partially

completed the project. However, for dredging contracts the winning auction bid is a very good

estimate for the final contract price.5

4Bajari, Houghton, and Tadelis (2014) study this in the context of highway procurement auctions and find that
bidders respond strategically to anticipated cost adjustments.

5Cost adjustment data is available for 78% of outsourced projects, and the average percentage change to the
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Figure 1.6: Empirical CDFs of bid distributions by number of bidders

Note: Empirical bid distributions separated by number of bidders present in the auc-
tion and normalized by the government’s estimated project cost.

1.5 Government Make-or-Buy Decisions

In order to examine the importance of project locations and distance traveled on the outsourc-

ing decision, I regress the government’s make-or-buy decision on observable project variables

and distance measures. Table 1.2 gives coefficient estimates for a linear probability model of

in-house government completion. “Project Volume” measures the amount of dredged material

for a project in cubic yards, “Working Days” gives the number of days required to complete

the project, and “Distance” gives the distance to project district in nautical miles. The variable

“t + 1 Distance Saved” gives the reduction in distance to the project in period t + 1 should the

winning bid is almost exactly zero. A graphical representation of these changes can be found in the Appendix.
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current project be taken; that is, it measures how much closer or farther the vessel will be to the

next period’s project if the current project is kept in-house. The estimates are consistent with

the summary statistics in that government dredges are less likely to take larger volume projects

and those that require more days to complete. Additionally, greater distance to a project de-

creases the chance that the project is kept in-house while additional distance saved to the next

project will increase it. Taken together, these results suggest that travel distance incurs costs

to government dredges and that the government is forward-looking with regard to total travel

distance.

Table 1.2: Government Project Selection Probability (LPM)

Variable Coefficient
Dependent variable: in-house project (Std. Err.)

(i) (ii) (iii)
log(Cubic Yds.) -0.095*** -0.095*** -0.096***

(0.006) (0.006) (0.006)

log(Working Days) -0.011*** -0.011*** -0.011***
(0.001) (0.001) (0.001)

Distance -0.015*** -0.016*** -0.016***
(0.002) (0.002) (0.002)

t+ 1 Distance Saved 0.002** 0.002* 0.002**
(0.001) (0.001) (0.001)

Constant 0.671*** 0.597*** 1.026***
(0.062) (0.065) (0.043)

District Yes Yes Yes
Season No Yes Yes
Year No No Yes
N 3625 3625 3625
* p < 0.05, ** p < 0.01, *** p < 0.001

Note: Linear probability model results for the probability that a project is kept in-
house. Larger projects and those located farther away from a government dredge’s
current location are more likely to be outsourced. However, if taking a project will
bring a government dredge closer to a subsequent project (represented by the vari-
able “t + 1 Distance Saved”), then that project is more likely to me kept in-house.
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Table 1.3: Government Project Selection Probability (Logit)

Variable Coefficient
Dependent variable: in-house project (Std. Err.)

(i) (ii) (iii)
log(Cubid Yds.) -0.266** -0.277*** -0.283***

(0.084) (0.083) (0.084)

log(Working Days) -0.521*** -0.518*** -0.522***
(0.071) (0.070) (0.071)

Distance -0.107*** -0.117*** -0.121***
(0.020) (0.021) (0.021)

t+ 1 Distance Saved 0.014* 0.013* 0.013*
(0.006) (0.006) (0.006)

Constant -0.329 -1.125 2.714
(0.884) (0.925) (12.354)

District Yes Yes Yes
Season No Yes Yes
Year No No Yes
N 3318.000 3318.000 3316.000
* p < 0.05, ** p < 0.01, *** p < 0.001

Note: Logit results for the probability that a project is kept in-house. Results are
largely similar to the linear probability model results; in particular, projects with
larger volume, larger number of working days, and farther distance are less likely to
be kept in-house.

1.6 Conclusion

The dredging industry differs from many other examples of outsourcing in that it represents

an example of mixed-delivery of a public good in which projects are completed by both gov-

ernment as well as private sector firms. This stands in contrast to other industries in which an

outsourcing decision will focus on whether or not provision of the entire good or service should

fully privatized or kept entirely in-house.

The data on dredging industry project allocation displays several attributes that make it at-

tractive for analyzing dynamic government outsourcing decisions. The government maintains a
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sizable market presence in the form of 12 dredges that perform approximately half of all dredg-

ing projects. Completing projects requires transportation of the vessel and crew to the project

location, with descriptive evidence suggesting that government vessels are averse to traveling

large distances. Because dredges are discrete capital units and projects are often lengthy, dredge

availability further drives dynamic considerations for the government The contracting process

itself is a standard first price sealed bid auction in which cost adjustments are not a major factor

in the overall expected costs. Furthermore, competition heterogeneity across districts leads to

different patterns of outsourcing depending on the expected level of competition.
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Chapter 2

Non-parametric Identification of

Non-stationary Dynamic Binary Choice

Models

2.1 Introduction

Dynamic discrete choice models have emerged as an important methodological tool in the anal-

ysis of many economic situations. These models have been used for applications in labor eco-

nomics (Miller (1984), Keane and Wolpin (1997)), industrial organization (Ryan (2012)), patents

and innovation (Pakes (1986)), and many other areas. The use of these models in empirical set-

tings allows for the econometrician to gauge the impact of counterfactual policies and thereby

pin down more precisely the effects of these policies than is typically possible using so-called

“reduced form” methods alone.

From the earliest versions of these models, starting with the seminal papers of Miller (1984),
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Wolpin (1984), Pakes (1986), and Rust (1987), and continuing to the present day, these models

have relied on the general structure and assumptions of the McFadden (1978) random utility

framework. In particular, per-period agent utility for each choice consists of a deterministic

component and a random choice-specific shock, where the shocks are typically assumed to be

iid across choices and periods. In most settings, the distribution of the random utility shocks

is assumed to be known. As shown in Rust (1994), this assumption, as well as fixing the time

discount factor, is required to identify the utilities associated with each choice and state. The

most common choice for this distribution is Type I Extreme Value, which leads to the familiar

logit structure for the conditional choice probabilities.

While this assumption leads to a tractable formulation for the estimation problem andmakes

it easy to compute estimates in practice, the restriction to a known distribution on the choice-

specific utility shocks is nevertheless quite restrictive. The goal of this paper is to explore scenar-

ios in which both the choice-specific utilites and the distribution of utility shocks can be iden-

tified. To do this I focus on settings in which non-stationarity provides additional identifying

power. In particular, when deterministic utilities do not vary across time for each state but either

(i) state transitions vary across periods or (ii) there is a finite time horizon, it is possible to identify

the distribution of choice-specific utility shocks when combined with a suitable normalization

and an exclusion restriction.
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2.1.1 Related Literature

2.2 Baseline Model

In this section I describe the basic framework for dynamic binary choice models and highlight

the under-identification in the standard stationary case. The environment consists of a set of

choices {0, 1} and states Z . Time is discrete, with horizon T ≤ ∞. Each period an agent makes a

choice j ∈ {0, 1} and receives a period t payoff of uj(zt) + εjt, where zt is the state in period t and

εjt is the choice-specific utility shock for choice j in period t. Additive separability of the uj and

choice shocks is a standard assumption in the dynamic discrete choice literature. The shocks are

i.i.d. across choices and periods, and drawn from a common distribution G.

State transitions are governed by a Markov process in which fjt(z′|z) denotes the probability

of reaching state z′ next period after choosing choice j in period t conditional on current state z.

An additional assumption is that of conditional independence: the evolution of the state variable

z depends only on choices and the current state (and on the time period in the non-stationary

case) but does not depend on the realization of the random utility shocks εt = (ε0t, ε1t). Formally,

this assumption is

fjt(z′|z, εt) = fjt(z′|z).

Finally, the agent discounts future payoffs at a rate β ∈ (0, 1).

2.2.1 The agent’s problem

Given the framework developed above, we can express the agent’s optimization problem as a

maximization of expected future utility flows. Specifically, let dj ∈ {0, 1} represent the agent’s
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choice, with djt = 1 representing that the agent has chosen choice j in period t and d0t + d1t = 1.

The agent chooses a decision rule d to maximize expected discounted utility:

d∗ = arg max
d

E

 T∑
t=1

1∑
j=0

βtdjt(ujt(zt) + εjt) | z1, ε1



The discount stream of payoffs received by the agent can also be expressed in a value function

formulation:

Vτ (zτ ) = max
d

E

 T∑
t=τ

1∑
j=0

βT −tdjt(ujt(zt) + εjt|zτ , ετ

 .
This has the following recursive formulation:

V (zt) = max
dt

1∑
j=0

djt(ujt(zt) + εjt) + βE [Vt+1(zt+1)|dt, zt] .

Since the choice-specific utility shocks εt are unobserved to the econometrician, it is useful to

define the ex-ante value function; that is, the expectation of the value function before the shocks

are revealed at the start of the period. This is given by

V t(zt) =
∫

ε
V (zt)g(εt)dεt.

Using the recursive formulation, and recalling that states evolve according to the Markov tran-

sitions fjt(zt+1|zt), the ex-ante value function can be expressed as

V t(zt) =
1∑

j=0

∫
d∗

jt(zt, εt)
[
ujt(zt) + εjt + β

∫
V t+1(zt+1)fjt(zt+1|zt)dzt+1

]
g(εt)dεt

where d∗
jt(zt, εt) = 1 represents the decision rule that chooses choice j in period t given state zt
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and choice-specific utility shocks εt.

With an expression for the ex-ante value function we can now define the conditional value

function, which will be the full value function without the choice specific utility shocks in the

current period:

vjt(zt) ≡ ujt(zt) + β
∫
V t+1(zt+1)fjt(zt+1|zt)dxt+1.

The choice-specific conditional value function vjt(xt) will be the main component to express-

ing the decision problem of the agent. Specifically, agent’s choose a decision rule d∗ that satisfies

d∗
t (xt, εt) = arg max

j
vjt(xt) + εjt.

We can then use this framework to describe the probability that the agent chooses choice j

in period t conditional on the state zt; this is called the Conditional Choice Probability and is

represented by

pjt(zt) =
∫
1{vjt(zt) + εjt ≥ vkt(zt) + εkt∀k}g(εt)dεt

In the binary choice framework we have developed so far, this is equivalent to the following:

p1t(zt) = Pr(v1t(zt) + ε1t ≥ v0t(zt) + ε0t).

with p0t(zt) = 1 − p1t(zt).

The primitives of themodel are the utilities associatedwith each choice and state for each time

period ujt(zt), the time discount factor β, and the distribution of choice-specific utility shocksG.

The problem of the econometrician is to identify these primitives from data on the choices made

in each period djt and states zt. In most settings, identification of the full system is impossible.
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The case most commonly seen in the literature, in which utilities and state transitions are both

stationary, is under-identified, and assumptions must be made on the distribution of shocks G,

the time discount factor β, and a normalization of utilities for one choice in each state in order for

the remaining utility terms to be identified.1 First I will demonstrate that when assumptions are

made on the discount factor β and distribution of choice shocksG that the utility parameters can

be recovered (up to a normalization). I will then show the under-identification for the general

case, and give conditions under which this under-identification issue can be resolved.

Identification in the case in which G and β are assumed known is constructed using argu-

ments from Magnac and Thesmar (2002) and Arcidiacono and Miller (2011). In particular, from

Arcidiacono andMiller (2011) we know that there exists an inversion function ψ : [0, 1] → R that

maps conditional choice probabilities into differenced conditional value functions:

ψj(pjt(zt)) = V t(zt) − vjt(zt). (2.1)

Define by κt+ρ(z|zt, δt) the distribution over states reached ρ periods ahead of the current

period, conditional on being in state xt in period t and choosing choice δt. Specifically, κ has a

recursive definition given by

κτ (zτ+1|zt, δt = j) =


fjt+1(zt+1|zt) if τ = t

1∑
k=0

∑
z∈Z

1{d′
kτ

=1}fkτ (zτ+1|zτ )κτ−1(zτ |zt, δt = j) if τ > t.

Then after normalizing u0t(zt) = 0 for all zt ∈ X , we can use the inversion theorem and defini-

tion of κ to represent u1t(zt) in terms of only the state transitions, conditional choice probabilities,

1Other settings have been explored in which the stationarity has been relaxed and the assumptions of a known
β and normalized utility values can be relaxed; see for example Bajari, Chu, Nekipelov, and Park (2013).
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inversion function ψ, and discount factor β:

u1t(zt) = ψ0(pt(zt)) − ψ1(pt(zt)) +
T∑

τ=t+1

∑
zτ ∈Z

βτ−tψ0(pτ (zτ )) [κτ−1(zτ |zt, δt = 0) − κτ−1(zτ |zt, δt = j)]

(2.2)

Identification follows due to recovery of the conditional choice probabilities for each state from

observed choices in the data and recovery of state transitions from the observed state transitions

in the data.2 Note that this gives exact identification of u1t(zt); this means that relaxing the as-

sumptions that G or β are known will lead to under-identification. To see this, consider the set

of primitives (u, f,G, β) and now replace β and Gwith β̃ and G̃. With the same observed condi-

tional choice probabilities pt(xt), we can construct a new function ψ̃j(pt(zt)) for each choice j and

hence a new value for utility ũ1t(zt) using equation (2.2). Because these two utilities u1t(zt) and

ũ1t(zt) induce the same conditional choice probabilities, they are observationally equivalent.

2.3 Identification with Non-stationary State Transitions

This section describes the identification of the model primitives, which are the government cost

distribution G, distance costs ω(δ), entry cost distribution ζ , and firm cost distribution F , from

the observables zt, dt, nt, and the winning auction bids.

Identification of the government cost primitives uses an extension of the finite dependence

methods of Arcidiacono and Miller (2011) and Arcidiacono and Miller (2016) to isolate “tem-

porarily static” periods in which all future value terms cancel. This removes the primary obsta-

cle to identification of the distribution of choice shocks in dynamic models, as the future value

2Note that this also requires the assumption of rational expectations, or that agents’ beliefs over future states are
consistent with the true probabilities of reaching those states.
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terms themselves depend on the distribution. I then combine these static periods with an ex-

clusion restriction that government costs are independent of the number of active firms within

a district. The full distribution of government costs is traced out by variation in the number of

active firms using an exclusion restriction in a similar manner to static non-parametric identifi-

cation of binary choice models (e.g. Lewbel (2000)).

Specifically, I consider a reformulation of the dynamic discrete choice problem inwhich there

exists another state variable νt taking values inRwhich affects the payoff for choice j = 0 but not

j = 1. I will assume that ν enters the payoff linearly, but the results hold for any (known) mono-

tonic function.3 Additionally, I allow for the distribution of the choice specific utility shocks

to depend on the state variable zt so that the distribution function for εjt is F (·|zt) and I define

ηt ≡ ε1 − ε0. The distribution function of νt is denoted H(·|zt). This is similar to the normaliza-

tion of utilities required for identification: since only the difference between the choice-specific

error terms appears in the agent’s optimization problem, only the difference can be identified.

Formally, after maintaining the normalization that u0t(zt) = 0 for all zt and adding the new state

variable νt, we have per-period payoffs given by

νt if j = 0 (2.3)

u1t(zt) + ηt if j = 1 (2.4)

The non-stationarity aids in the identification of the distribution of ηt by creating situations

in which all future value terms cancel. In Arcidiacono and Miller (2016) this occurs over the

course of a finite (but positive) number of periods, called finite dependence. Specifically, there

3In Chapter 3 of this dissertation I apply this method to a scenario in which this state variable enters the payoff
function non-linearly through the results of an auction process.
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exists a sequence of choices such that after a finite number of periods the distribution over state

variables is the same regardless of the choice made in the initial period. In my setting, I will

assume that this resetting property of the state variable distribution happens immediately. That

is, regardless of the choice made in the current period, the distribution of state variables next

period is unchanged. This allows for immediate cancelation of all future value components, and

the choice problem becomes static. This temporarily static feature is a property of (i) the state

transition probabilities for that period and (ii) the current state. Since these temporarily static

periods are a subset of all period-state combinations, the problem remains dynamic in nature

with isolated incidences in which the future value components drop out.

Formally, the assumption of the existence of temporarily static periods is that there exists

some set T and states zt such that for all t ∈ T , f0t(z′|zt) = f1t(z′|zt). In this situation it is

straightforward to demonstrate that all future value components cancel:

p1t(zt, νt) = Pr(v1t(zt, νt) + ηt ≥ v0t(zt, ηt))

= Pr

u1t(zt) + ηt ≥ νt + β
∑

zt+1∈Z
V t+1 [f0t(zt+1|zt) − f1t(zt+1|zt)]


= Pr(ηt ≥ νt − u1t(zt)) (2.5)

If all states in Z are represented by the set of periods T , then all primitives of the model are

identified from the above equation and use of the full dynamic problem is not necessary. When

not all zt are present in the set of periods T , a two step approach must be used, in which the first

step entails identification of the distribution of ηt using the temporarily static periods and then

in the second step this distribution is used in the dynamic problem to identify the remaining

utility parameters u1t(zt). This is formalized in the following theorem:
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Theorem 2.3.1 Assume that

1. The discount factor β is known.

2. Per-period payoffs take the form (2.3) and (2.4).

3. νt evolves exogenously and has support over R.

4. η has a symmetric distribution with E[η] = 0.

4. There exists a set of periods T such that for all t ∈ T , f1t(z′|z) = f0t(z′|z).

5. H(·) is strictly increasing and continuous.

Then H(η) and u1t(z) are identified. Furthermore, if the distribution of η is symmetric and {zτ : τ ∈

T } = Z , H and u1t(z) are identified directly from the set of periods T .

Proof. First suppose that all states zt are represented in the periods T . Then because ν takes

values in R, there exists some ν such that p1t(zt, ν) =Pr(ηt ≥ ν − u1t(zt)) = 0.5. If the distribution

of η is symmetric with zero mean, this means that u1t(zt) = ν. Since all zt are present in the set

of periods T , we can find such a ν for each z ∈ Z , and hence each u1t(z) is identified.

For the distribution of η, note that for any z once the value for u1t(z) is known then the dis-

tribution of η is traced out by variation in ν:

H(ν − u1t(z)|z) = p1t(z, ν)

and so quantiles of the distribution of η are recovered from the observed conditional choice

probabilities, keeping the state z fixed and varying ν.
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When not all states are present in the set of temporarily static periods T , the distribution of η

is recovered in the first step using the periods in T and then this distribution is used in standard

representation arguments to recover the utility parameters. Using the same argument as above,

one value of u1t(zt) is identified by some ν. Then the distribution of η is traced out as before

through variation in ν. Using this identified distribution in the dynamic problem yields that

p1t(zt, νt) = Pr(v1t(zt, νt) + η ≥ v0t(zt, νt))

= Pr(η ≥ v0t(zt, νt) − v1t(zt, νt))

= 1 −H(v0t(zt) − v1t(zt))

Then define the inversion function given by

ψ1(p1t(zt, νt)) ≡ H−1(1 − p1t(zt, νt)) = v0t(zt, νt) − v1t(zt, νt). (2.6)

This gives the expression for v0t(zt, νt) − v1t(zt, νt) required to express u1t(zt) in terms of observ-

ables for all zt ∈ Z using equation (2.2).

2.4 Identification with Finite Time Horizon

In this section I detail identification in the case that the time horizon is finite in the presence of

the same exclusion restriction used in the previous section. The result operates inmuch the same

way: in the last period, there are no future value components and so variation in the exclusion

restriction variable allows the distribution of the unobserved utility component to be traced out.

The set-up is the same as the previous section: per-period payoffs take the form given by
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(2.3) and (2.4), with ηt ≡ ε1 − ε0 having CDF H(·). The main difference is the assumption that

T < ∞, so that in the final period there are no discounted future values to consider for the agent.

Additionally, state transitions are no longer required to be non-stationary; I will assume that

state transitions are given by fj(z′|z) for all t for ease of notation, although indexing by t doesn’t

change any results.

The argument for identification then follows similarly to the previous case. In the last period,

using the wide support and symmetry assumptions allows for identification of u1(zT ) for some

zT . Then variation in νT traces out the distribution of η, and then the identified distribution

H is used to recover utilities for any states that are not represented in the final period. This is

formalized in the following theorem.

Theorem 2.4.1 Assume the following:

1. The discount factor β is known.

2. Per-period payoffs take the form (2.3) and (2.4).

3. νt evolves exogenously and has wide support.

4. η has a symmetric distribution with E[η] = 0.

5. The time horizon is finite: T < ∞.

Then H(·) is identified and u1(zt) is identified for each zt ∈ Z .

As indicated above, the proof follows the same argument as the proof for the temporarily

static case, except that the static periods arise through the finite time horizon assumption rather

that through the non-stationarity of state transitions.
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2.5 Conclusion

This chapter has provided conditions under which it is possible to relax the assumption that the

distribution of the unobserved component of agent utility in dynamic binary choice models is

known. Nearly all prior papers in the literature on identifying and estimating dynamic discrete

choice models has assumed that the distribution of the unobserved choice-specific utility shocks

is known, with the most common assumption being a Type 1 Extreme Value distribution for

tractability in estimation. In contrast, I demonstrate conditions under which it is possible to non-

parametrically identify both the deterministic utility parameters associated with agents’ choices

and the distribution of the differenced unobserved choice shock distribution in binary choice

models.

There are two main conditions that allow for this identification result. First, non-stationarity

that results in cancellation of the future value terms for a subset of periods is required. I supply

two such scenarios: one in which “temporarily static” periods arise within the course of a poten-

tially infinite dynamic decision problem due to time-dependent state transitions which do not

depend on the choice made for a subset of periods, and the finite time horizon case in which the

last period has no dynamic component for the agent. The second condition required is the pres-

ence of a state variable that enters the utility function in a known way and affects the payoff for

only one of the two choices available to the agent. Under these conditions, the distribution of the

unobserved component of agent utility is identified using the conditional choice probabilities in

the static periods by variation in this second state variable. Once this distribution is identified,

utilities associated with each state can be identified using standard representation arguments.

While this paper focuses on single-agent binary-choice dynamicmodels, it would be interest-
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ing to explore extentions of these results beyond this basic case. Additional assumptions may be

required to give the same identification result for multi-choice models. Additionally, dynamic

games already suffer from a larger degree of under-identification than single-agent dynamic

decision problems, and so the difficulties with bringing these results to bear on dynamic games

seem larger. Nonetheless, due to thewider applicability of these scenarios exploration into relax-

ing the assumptions on the distributions of unobserved utility components could be a promising

area for future research.
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Chapter 3

Cost an Efficiency in Government

Outsourcing

3.1 Introduction

When a government provides a public good, it has two methods for its delivery: outsourcing to

the private sector and in-house public sector provision. These methods are not mutually exclu-

sive and are often used in combination. Public good delivery may require a sequence of tasks or

projects to be completed, and government agencies decide which are to be contracted out and

which are to be completed in-house. Examples of this type of mixed-delivery setting include

maintenance, legal services, regulatory compliance, and construction.

Given thewidespread nature of such outsourcing, assessing its costs and benefits is important

in evaluating the functions of government. Contracting projects out to the private sector may

benefit government agencies through the awarding of projects to more efficient private sector

firms. Additionally, a multitude of projects to be allocated can lead to substantial dynamic ef-
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fects due to capacity restrictions or cost synergies.1 However, there is little empirical evidence on

the effects of mixed-delivery public good provision on expenditures and even less pertaining to

the role of dynamics in determining outsourcing outcomes. The focus of this paper is to address

these issues by providing a direct comparison of private sector and in-house government costs

of public good provision and by quantifying the impact of dynamics on outsourcing outcomes.

I then investigate how changes to the procurement mechanism that increase direct competition

between government and private firms can lead to improvements in total expenditures and ef-

ficient project allocation.

The empirical setting used to analyze these questions is the United State dredging industry,

fromwhich I use data on project-level outsourcing decisions made between 1999 and 2013. Each

year the United States Army Corps of Engineers oversees the completion of several hundred

dredging projects, which aremaritime construction projects that help keepwaterways navigable.

Approximately half of these projects are assigned to government owned and operated dredges.

The remainder are contracted out to private firms via procurement auctions whose awards total

between $700 million and $1.1 billion annually. The government faces two factors that lead to

future cost considerations for each decision. First, projects may be hundreds of miles apart,

and transporting large dredging vessels and other equipment necessary to complete the projects

is costly. Second, project dates routinely overlap and dredges themselves must remain on the

project site until the work is completed; as such, assignment of a government dredge to work

on one project may preclude keeping a future project in-house. I then specify and estimate a

dynamic binary choice model of government outsourcing decisions that accounts for both cost

differences between private firms and the government that varies with project characteristics

1For example, a municipality deciding whether to renew a contract for emergency medical services may con-
sider an upcoming contract renewal decision for fire prevention and suppression in its decision, as fixed costs of
establishing an in-house ambulatory service might be shared with that of a fire department.
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and dynamic effects arising from travel distance costs and capacity.

The model features one project to be completed in each period, and periods that proceed in

two stages. The second stage is the auction stage, and is only reached conditional on the gov-

ernment choosing to outsource the project. Firms draw entry costs and enter the procurement

auction if their entry cost is lower than the expected profit from entering. Bidders then receive

independent cost draws from a shared cost distribution and bid in a first-price sealed-bid auc-

tion for the contract. In the first stage, the government observes project characteristics, learns its

cost, and makes a binary outsourcing decision. The decision is driven by comparison of their

cost with the expected winning auction bid after accounting for the possibility that future costs

are likely to be affected by the decision of whether or not to keep the project in-house. Future

costs are affected by the outsourcing decision through two channels: an in-house project in a lo-

cation far from future projects incurs additional travel costs compared with keeping the dredge

in its current location, and in-house project completion may render a dredge unavailable to be

assigned to future projects, necessitating outsourcing of those projects.

Results from the structural model indicate substantial cost differences between private firm

and government provision, with a government cost advantage for smaller projects while larger

projects favor private firms. I estimate that average private firm costs are 23% lower than gov-

ernment costs for outsourced projects. However, in-house provision remains cost-efficient for

approximately half of all projects, and government presence in the market remains an important

cost reducing force. In order to better gauge the importance of government project completion,

I perform a series counterfactual simulations in which I sequentially reduce the number of ves-

sels in the government’s dredging fleet. I find that a capacity reduction of up to one sixth would

have little impact on total expenditures, but that further reductions cause increases in costs. This
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suggests that while governmentmay be slightly over-invested in dredging capacity, large reduc-

tions to the government’s fleet would increase government cost burden for dredging projects.

The estimation results also indicate that dynamics are an important component of govern-

ment outsourcing decisions. Using the model estimates I simulate a myopic government deci-

sion maker by setting the discount factor to zero. The simulation results indicate that a gov-

ernment decision maker that is not taking dynamic effects into account would keep 7.6% fewer

projects in-house and face overall cost increases of 3.1%.

Using themodel estimates I perform a counterfactual policy experiment featuring direct com-

petition between government and private sector firms. As the decision to outsource a project is

made before the result of the procurement auction is known, projects for which outsourcing is

optimal ex-ante may be better suited for in-house provision ex-post (or vice-versa). To alleviate

this I consider the following changes to the government’s procurement mechanism: the gov-

ernment holds a procurement auction for every project and directly participates in the auction

by setting a reserve price determined by its own project costs. The reserve price is dynamically

optimal in the sense that it accounts for the impact of current outsourcing decisions on future

costs. I find that total expenditures would be reduced by 17.1% through such a policy, indicating

that there is scope for the government to further leverage its own resources in the procurement

process to improve outsourcing outcomes.

This paper makes two main contributions. First, I provide direct cost comparisons between

government and private sector project completion that enable an assessment of the effects that

outsourcing has on total government expenditures and allocative efficiency. Many reasons have

been posited as to why private firms may have cost advantages over government agencies for

certain tasks, such as use of high-powered incentives, reduction of inefficient bureaucratic poli-
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cies, andmore flexible labor practices. Conversely, a full-time staff of skilled in-house employees

may mitigate fixed costs associated with projects.2 Despite the large literature on when projects

or tasks are best suited for the public or private sector (e.g. Williamson (1999)), little empirical at-

tention has been devoted tomeasuring and quantifying differences in costs between government

and private sector production.

Secondly, this paper captures dynamic effects in government outsourcing decisions. Most of

the empirical literature on make-or-buy decisions has abstracted from these effects to focus on

a static environment. However, repeated decisions can give rise to many features that would

impact future costs, such as repeated bargaining games, relational contracting, or cost synergies

across projects or tasks. The empirical results of this paper suggest that dynamic effects are an

important consideration in outsourcing decisions for the dredging market.

Identification of the distribution of government costs is complicated by two factors: govern-

ment observations are a binary decision variable which yield no direct indication of government

project costs, and outsourcing decision outcomes themselves depend on the distribution of gov-

ernment costs through the future value terms associatedwith each choice. I use a two-step proce-

dure to overcome these hurdles to identification. In the first step, I exploit the non-stationarity of

the state transitions to identify periods in which the choice problem becomes temporarily static;

in my setting, this occurs when government is considering outsourcing for a project that (i) will

not require a change of location and (ii) will be completed before the next project is scheduled

to begin. In such cases both factors that affect future costs are not changed by the government

decision of whether or not to outsource, and so future value terms cancel for these periods. Next,

I make use of heterogeneity in competition across dredging markets that generates variation in

2Detailed knowledge of project designs in particular is an area where the USACE may have a fixed cost advan-
tage, as government engineers must familiarize themselves with construction plans and techniques whether those
plans are issued in a contract or implemented during in-house completion.
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the expected winning bid while holding other project characteristics fixed. Quantiles of the gov-

ernment cost distribution are then identified through binary choice observations for each of the

markets observed in the data. This distribution is then used in the dynamic problem, allowing

for identification of travel costs through variation in distance to project locations. The distri-

bution of private firm costs are identified by applying the results of auction theory to the cases

in which only the winning bid and number of bidders are observed. Lastly, the entry costs of

bidders are identified through variation in participation decisions across markets.

The rest of the paper is structured as follows: in the remainder of this section I discuss related

literature. In Section 2 I discuss the empirical setting and data. Section 3 describes the structural

model of government outsourcing decisions. Sections 4 and 5 discuss identification and estima-

tion, respectively. Section 6 presents the estimates of the structural model. Section 7 gives the

results of counterfactual simulations. Section 8 concludes.

3.1.1 Related Literature

This paper is related to four literatures: the theory of the firm and firm boundaries, government

scope and government outsourcing, procurement and procurement auctions, and structural es-

timation of dynamic discrete choice models.

There is a vast literature on the boundaries of the firm, starting with Coase (1937). Previ-

ous approaches to characterizing which projects are completed in-house and which are con-

tracted out include the principal-agent moral hazard model of Holmstrom and Milgrom (1994),

the transaction cost framework introduced in Williamson (1975) andWilliamson (1979), and the

property rights model of Hart andMoore (1990). Holmstrøm and Roberts (1998) provide a theo-

retical overview and Lafontaine and Slade (2007) survey empirical work on these models. While
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my model is agnostic as to the source of cost differences between government in-house work

and contracted firms, the model of varying employee incentives of Holmstrom and Milgrom

(1994) may help explain lower private sector costs for some projects. The ex-post renegotiation

and hold-up problems common to models of transaction costs do not appear significant in the

dredging industry, as the data indicate that the winning auction bid serves as a very good esti-

mate for the final costs of project completion. Additionally, asset specificity is low, as the types of

dredges are similar across the public and private sectors and dredges can be used for many dif-

ferent projects.3 Instead, my model focuses on dynamic effects and differences in costs between

the government and private sector firms.

Related to the work on firm boundaries are papers that deal specifically with the scope of

government. Tiebout (1956) first recognized the potential benefits of public provision of services

when institutional rigidities are important. Hart, Shleifer, and Vishny (1997) discuss incomplete

contracting, costs, and quality in private sector provision of public goods, and Hart (2003) sum-

marizes developments in the theoretical literature on government outsourcing. In order to focus

on productivity differences across the public and private sectors I abstract from quality differ-

ences in this paper.4 Empirical papers relating to government outsourcing include Levin and

Tadelis (2010), who examine local governments’ choices over which services to keep in-house

and which are to be contracted out using a transaction costs model, Warner and Hebdon (2001),

in which the effect of political affiliation and unionization on local government restructuring

is studied, and Bel and Rosell (2016), who estimate a cost function for bus service in a mixed-

delivery system in which both government and private firms provide bus services. The main

3Indeed, many of the dredges owned by private sector firms were once owned and operated by the USACE.
4Empirical wok on quality differences for outsourced projects is unclear, e.g. Cabral, Lazzarini, and de Azevedo

(2010) who find no difference in quality for government-supervised private sector prisons when compared to public
sector alternatives.
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contribution of this paper relative to this literature is to separately estimate and compare gov-

ernment costs against private firm costs, in contrast to the aforementioned studies which focus

on either assessing probability of government outsourcing without directly estimating costs or

assume a common production function for government and private sector provision.

This paper contributes to a large and growing literature on government procurement and

the use of auctions to contract with private firms. The most similar to this paper is Jeziorski

and Krasnokutskaya (2013); they study a highway procurement market in which firms have the

option to subcontract portions of the project out to other firms. The primary difference between

this work and theirs is that I consider the case of discrete projects in which a binary outsourcing

decision must be made for each project, while in their model projects are awarded to primary

contractors who then choose a fraction of the project to contract out. Kang and Miller (2015),

Krasnokutskaya and Seim (2011), andLi andZheng (2009) empirically study bidder participation

in procurement auctions under different government procurement practices.

This paper contributes to the literature on dynamic discrete choicemodels by identifying and

estimating a dynamic binary-choice model which doesn’t rely on distributional assumptions on

the unobserved component of agents’ utility. Norets and Tang (2013) is the only other paper

of which I am aware that considers relaxing the assumption of known distributions in the es-

timation of dynamic models. They provide methods for non-parametric inference in dynamic

binary-choice models which demonstrate that estimated parameters may be very sensitive to as-

sumptions on the distribution of error terms. Rust (1994) first noted that dynamic discrete choice

models are under-identified unless restrictions are made on the discount factor and distribution

of choice-specific utility shocks, and Magnac and Thesmar (2002) provided general conditions

under which normalized flow utilities are identified after fixing the discount rate and choice
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shock distribution. Buchholz, Shum, and Xu (2016) establish semi-parametric identification of

the random component of agent payoffs for stationary dynamic discrete choice models featur-

ing linear flow payoffs. This paper builds on the identification results relating to non-stationary

models in Arcidiacono and Miller (2011) and Arcidiacono and Miller (2016) by using a specific

application of the finite dependence procedure to eliminate future period value functions in

some periods. The identification also draws on techniques used in non-parametric estimation of

binary choice models in static settings, as in Lewbel (2000) and Matzkin (1992).

3.2 Empirical Setting and Data

The empirical setting used is the United States dredging industry, detailed in Chapter 1 of this

dissertation. The dredging industry has several features that lend it to study of government out-

sourcing decisions. Chief among these is the presence of in-house government project comple-

tion resources in the form of 12 Corps of Engineers owned-and-operated dredges. In addition,

many projects are outsourced to private sector firms through first-price sealed bid procurement

auctions.

Table (3.1) contains summary statistics. Projects completed in-house by the Corps of Engi-

neers are smaller, as measured by volume of dredged material, and shorter, in terms of working

days required, than projects outsourced to private sector firms. Additionally, distance traveled

to projects taken by Corps dredges is shorter than the unconditional distance to a project. These

two features suggest that the Corps of Engineers may have different relative cost advantages for

completing projects than private sector firms and that distance to project locations is a notable

cost consideration for the Corps.

Another notable feature of the industry is that while travel distance and restriction in dredg-
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Table 3.1: Summary Statistics

Govt Projects Outsourced
Projects per Year 123.2 118.5

(28.2) (22.5)

Cubic Yards per Project 273.7 1177.0
(939.5) (1575)

Working Days per Project 17.9 125.8
(38.7) (136.0)

Distance (in-house projects) 136.7
(314.6)

Distance (all projects) 214.5
(382.7)

Cost per project ($, millions) 4.03
(3.83)

Number of Bidders 2.46
(1.32)

Note: Table lists mean values, with standard deviations in parentheses

ing capacity due to a limited number of vessels are both factors that restrict Corps of Engineers

dredging capabilities, neither of these appear to be large factors for private dredging compa-

nies. The average number of districts in which a private firm competes is just two, suggesting

that firms do not have a traveling-salesman-like problem of minimizing distance, as is faced by

the government, as the scope of operations of the firms is limited to a fairly small geographic

area. Furthermore, firms do not appear to be capacity constrained: the appendix contains the

results of a regression that indicate that the number of bidders in an auction is not loweredwhen

the number of ongoing projects in that district is high, so that even a large amount of dredging

resources already committed within a district does not decrease the expected number of com-

petitors in a subsequent auction.

The market operates one fiscal year at a time. Near the start of each fiscal year, the Corps of
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Engineers releases the schedule of projects to be completed that year. Auctions for outsourced

projects are held on a rolling basis, with the award date typically falling three to six weeks prior

to the start date for the project.

3.3 Model

Motivated by the empirical facts presented in the previous section, in this section I consider a

model of sequential project allocation in which the government makes outsourcing decisions in

each period in order to minimize the expected cost of completing a known schedule of projects.5

When making the outsourcing decision, the government considers the expected winning bid in

the case that the project is contracted out and its own cost for the project, which it learns at the

beginning of each period. Additionally, because vessels must be moved between project sites

in order to complete projects and this travel is costly, the government considers the impact that

vessels locations will have on future travel distances. Lastly, availability of vessels to complete

projects is also factored into the government’s decision, as current project allocation decisions

may affect the ability to complete future projects in-house. If the project is contracted out, a first-

price sealed-bid auction is held in which firms make entry decisions prior to bidding and the

contract is awarded to the lowest-bidding firm.

5Other models of government preferences assume budget-maximizing objectives (e.g. Niskanen (1968), Niska-
nen (1971)), in which a “Sponsor” allocates the budget and has an inferior bargaining position relative to the bureau
due to an informational disadvantage regarding the social value of the bureau’s projects. In my setting, I assume
that the “Sponsor” can compare costs of dredging for Corps dredges and private sector dredging and prefers the
lower-cost option, even if the total number of dredging projects exceeds the social optimum.

52



3.3.1 Model Set-up

A risk-neutral government decision maker must complete a known sequence of projects over

the course of one year. There are K districts in which projects must be completed. Time is

discrete with a finite horizon T . Each period consists of one project to be either assigned to a

government dredge or outsourced via a procurement auction. The state variables are denoted

zt ≡ (δt, xt, yt, Nkt), where δt represents the distance from the government dredge to the current

project district, xt is a vector of project characteristics (e.g. project size), andNkt is the number of

firms active in district kt. The state variable yt indicates the availability of the government vessel,

with yt = 0 indicates that the vessel is currently available at the start of period t and yt = c for

c ∈ N indicating that there are c periods until the vessel is available to take another project.

The timing of the model is as follows: at the start of each period, the government learns its

cost for completing the project in that period. It then forms expectations about the winning bid

if the project were to be contracted out and makes the outsourcing decision. If the project is kept

in-house, the government vessel allocated to the projectmoves to the project’s district and begins

the project. If the project is outsourced, a first-price sealed-bid auction is held to determinewhich

firm is awarded the contract. Note that each period corresponds to the allocation of a project

while project completion times themselves may span multiple periods.

In describing themodel I work backwards from the auction stage, first obtaining the expected

winning bid in the auction conditional on a project being outsourced and then writing the gov-

ernment’s payoffs and value function given expectations over the expectedwinning bids derived

in the first section.
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3.3.2 Auction Stage

When the government has made the decision to outsource the project a first price auction is held

to determine to whom the contract is awarded. Firms active in the district in which the project

is located then have the opportunity to bid for the project’s contract. I assume that firm bidding

behavior is myopic: given that many firms are active in only one or two districts and that the

number of ongoing projects does not affect bidder participation, the main two factors driving

dynamics in the government decision (i.e. distance to project sites and availability of dredges)

are unlikely to be a strong factor in firm bidding decisions. As such, participating firms compete

in a standard first-price sealed bid auction for the contract. Once a procurement auction is held,

the government cannot renege and assign the project to a government dredge instead.6

Auction Entry

In this section I detail a model of bidder entry into auctions. The setup is the following: prior

to learning their private costs for completing the project, bidders receive independent entry cost

draws e from a common distribution ζ with support [e, e]. Each potential bidder is aware of

his/her own entry costs but not the entry costs of other potential bidders. Additionally, entry

costs are independent of project completion costs. After learning their entry costs, bidders make

entry decisions based on the expected payoff from entering the auction. Bidders that choose to

enter the auction then receive their private cost draw from the cost distribution and learn the

number of other bidders competing in the auction.

6Evidence suggests that the government chooses to keep a project in-house after holding an auction very rarely:
in a report to Congress, the US Army Corps of Engineers cites only one instance of this occurring over the two
year period discussed in the report. Additionally, government proximity to and availability for projects has no
detectable impact on bid levels, suggesting that firms do not reduce their bids to ensure that government does not
decide to keep the project in-house ex-post.
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Formally, suppose there areN potential bidders. Let ei indicate the private entry cost drawn

from ζ for bidder i,and let e−i represent the entry costs of the other potential bidders. A pure

strategy for player i is defined as a function σ : [e, e] → {0, 1} that maps each entry cost to an

entry decision. Let E[ui|N ] represent the expected profit for bidder i upon entering an auction

with N total bidders. Then there exists a threshold cost level e∗ given by

e∗ =
N∑

n=1
Pr(N = n | e∗)E[ui|N = n]

where any ei < e∗ leads to entry and ei > e∗ means that bidder i does not enter the auction. This

can be re-expressed using the distribution of entry costs as

e∗ =
N∑

n=1

(
N

n

)
ζ(e∗)n(1 − ζ(e∗))N−nE[ui|N = n] (3.1)

Since the left side of (3.1) is increasing in e∗ and the right side is decreasing in e∗, as higher entry

costs leads to lower entry probabilities, the equilibrium cutoff point e∗ exists and is unique.

Bidding

After bidders have made their entry decisions they draw costs and submit bids in a first-price

sealed bid auction. I make the following set of assumptions regarding the auction model for

auctions that have at least two bidders:

1. The number of bidders in the auction n is known.

2. Each bidder i receives an i.i.d. project cost draw cfi froma common conditional distribution

with cdf F (cf |x) with positive support on [cf , cf ].
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3. There is no binding reserve price.7

4. Bidders play a symmetric Bayesian Nash equilibriumwith bids that are increasing in costs.

For ease of notation, I suppress the conditioning on project characteristics x and the time

subscript in what follows. Given the above assumptions the bid function can be written as

b∗(ci) = max
b

Pr(b ≤ bj ∀j 6= i) × (b− ci).

This has first order condition given by the differential equation

b′(c) = (b(c) − c)(n− 1) f(c)
1 − F (c)

which has a closed-form expression given by

b(cfi) = cfi +
∫ ∞

cfi

(1 − F (u))n−1

(1 − F (cfi))n−1du. (3.2)

For auctions that feature only one bidder, I follow Li and Zheng (2009) and assume that such

bidders compete against the government in the auction. In such cases the government draws a

bid from a distributionΦ : [cf , cf ] → [0, 1]; bids that fall below the government’s bid are accepted

and those above are rejected.

The expected lowest bid is themain auction characteristic determining government outsourc-

ing decisions. For a given number of bidders N ≥ 2, define m(cfi) to be the expected payment

received by bidder i. Then E[m(cfi)|N = n] is the ex-ante expected payment received by each

7While the USACE issues an estimate for project costs and states that no bidmay exceed 125% of the government
estimate, this rule is frequently violated in the data. As such, I follow the existing literature on procurement auctions
and assume no reserve price.

56



bidder when there are n bidders in the auction.

Because N is unknown to the government at the time the outsourcing decision is made the

government takes the expectation ofE[m(cfi)|N = n] over the number of bidderswhen assessing

the expected winning bid. Each district k has Nk potential bidders. The probability distribution

over the number of bidders is given by ηk, with ηkn the probability that there are n bidders in the

auction. Defining R to be the expected ex-ante winning bid, we have

R =
Nk∑
n=1

ηkn · nE[m(cf )|N = n].

3.3.3 Outsourcing Decision

At the beginning of each period the government learns its cost for completing the project, which

is drawn from a distribution that has conditional cdf G(cg|xt). The distance cost associated with

traveling to the project district is given by ω(δt) and is assumed to be additively separable from

the project completion cost. Define dt ∈ {0, 1} to be the decision variable in period t, where

dt = 0 represents that the project has been kept in-house and dt = 1 indicates that the project

has been contracted out. Letting πj(zt) denote the per-period payoff for state zt when dt = j, the

per-period payoffs have a simple expression of the form

π0(zt) = −ω(δt) − cgt (3.3)

π1(zt) = −R(xt, Nkt) (3.4)

where R(zt) is the expected winning auction bid. It is important to note here that the only ran-

dom component of the government’s payoffs enters through the government’s cost draw cgt;
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hence, this cost should be interpreted as the cost of completing the project relative to the cost of

contracting the project out.8

The schedule of projects is known for each year, meaning that the project characteristics xt

and district-level competition Nkt are known in advance for each project. Distance to future

projects is determined by the current location of the government’s work crews; when the gov-

ernment sends a vessel to a project location the distance to the subsequent project will be know

with certainty. Hence, all state transitions are deterministic, with transitions for two of the states

(project characteristics and district characteristics) determined exogenouslywhile the transitions

for distance and vessel availability are determined by the government’s outsourcing decision

and the schedule of projects. Note that while state transitions are deterministic, they are non-

stationary as they are determined by the schedule of projects to be completed in subsequent

periods. Define qjt(zt+1|zt) to be the state transitions after making choice j in period t and let

Qjt be the associated degenerate distribution. If we consider the schedule of projects to be a list,

ordered by project start date and containing all the information relevant to each project, the state

transitions can be thought of as crossing one project off of the list and moving to the next one,

updating the locations and availabilities of the government vessels each period.

Current choices affect future states through the dependence of the state variables yt, δt on the

current period choice. A project that is far away from the remaining projects on the schedule for

the fiscal year and has a long completion time will affect future payoffs by both (i) increasing the

distance necessary to complete future projects and (ii) potentially rendering the vessel unavail-

able for the subsequent projects, taking away the potential for the government to save costs by

keeping the project in-house.

8As any pair of choice specific utility shocks that lead to the same differenced distribution are observationally
equivalent, normalizing one of the utility shocks to zero is necessary for identification.
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With these factors in mind, the value function for choice j in period t can be written

Vjt(zt) = πj(zt) +
T∑

τ=t+1
βτ−tE[πj∗

τ
(zτ )], (3.5)

where j∗
τ is the optimal choice in period j∗

τ . The ex-ante value function is given by

V (zt) = p0t(zt)E[V0t(zt)] + p1t(zt)E[V1t(zt)] (3.6)

with p0t(zt) = Pr(V0t(zt) > V1t(zt)). Now define vjt(zt) to be the value functions conditional on

choice j without the random cost cgt; note that removal of this term affects only the in-house

payoff. These conditional value functions can be expressed

v0t(zt) = −ω(δt) + β
∑
z∈Z

V t+1q0t(z|zt) (3.7)

v1t(zt) = −R(xt, Nkt) + β
∑
z∈Z

V t+1(z)q1t(z|zt). (3.8)

This allows for expression of the conditional choice probability of in-house provision as

p0t(zt) = Pr(cgt < v1t(zt) − v0t(zt)). (3.9)

Note that capacity affects payoffs through the elimination of the in-house decision option

when no dredges are available. In particular, this means that the value function is

Vt(zt) =


max

j∈{0,1}
πj(zt) + β

Z∑
zt+1=1

V t+1(zt+1)qjt(zt+1|zt) if yt = 0,

π1(zt) + β
Z∑

zt+1=1
V t+1(zt+1)q1t(zt+1|zt) otherwise.
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For a more concrete illustration of this, consider the following alternate representation. Let

{d′
τ }T

τ=t+1 be a sequence of decisions that startswith dt and let κτ (zτ+1|zt, dt) be the state reached in

period t+1 conditional on choice dt and state zt in period t following the decision rule {d′
τ }T

τ=t+1.

Formally, κ is defined as

κτ (zτ+1|zt, dt) =


qdtt+1(zt+1|zt) if τ = t

1∑
j=0

∑
z∈Z

1{d′
jτ =1}qjτ (zτ+1|zτ )κτ−1(zτ |zt, dt) if τ > t.

Consider a project that will render a government dredge unavailable for the next t periods. Then

the conditional value function of keeping the project in house is

V0t(zt) = π0t(zt) +
t∑

τ=t+1
βτπ1(zτ ) + βt+1

Z∑
zt+1=1

V t+1(zt+1)κt(zt+1|zt, dt)

while the conditional value function of outsourcing is unchanged:

V0t = π0(zt) + β
∑

zt+1∈Z
V t+1(zt+1)q0t(zt+1|zt).

Hence, the government must trade off potential gains from keeping the project in-house in the

current period with the expected losses that would be incurred through the inability to keep

projects in-house for the next t periods.

3.4 Identification

Identification of private sector firm costs uses results from the auction literature for auctionswith

only winning bids known, for example in Athey and Haile (2002). Firm costs are then used to
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identify the expected bidder profit conditional on the number of bidders. Combining this with

the empirical distribution over the number of bidders in the auction gives the expected auction

profit conditional on entry. This generates an equilibrium cutoff condition for each number

of potential bidders N . Hence, quantiles of the entry cost distribution are identified through

variation in the number of potential bidders.

3.4.1 Government Cost Distribution G and Distance Costs ω(δ)

Identification ofG is established in two steps. The first step is to eliminate the future value com-

ponent of government choices, as this is the main barrier to identification of the unobserved

component of payoffs. This is done by extending the finite-dependence methods in Arcidiacono

and Miller (2011) and Arcidiacono and Miller (2016). They demonstrate that in cases in which

the distribution over state variables is the same after a finite number of periods, the future value

components cancel for all remaining periods. Inmy setting I identify periods inwhich the equiv-

alence of future state distributions is immediate; that is, the following period’s state variables are

unaffected by the current period decision. For these periods, the future value components cancel

immediately, leading to a “temporarily static” period in which the agent makes choices that will

have no impact on future value components.

In this setting, such a situation arises when an available dredge is located in the same location

as the period t project and the project will conclude before the period t+ 1 project is set to begin.

Then regardless of the choice to take the project or not the two factors affecting the future value

function, distance to project and availability, are unaffected: the vessel remains in the original

district and is available in both cases. As an example, consider a project in period t located in

district k. There is also an available government vessel located in district k at the start of period
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t; further, suppose that the period t project will conclude prior to the start of the project in period

t+ 1. Then the state is zt ≡ (δt, xt, Nkt , yt) = (0, xt, Nkt , 0) and the current decision will not affect

availability for the next period project. The project characteristics x and market competition N

have exogenous transitions that are due to the schedule of projects and hence are unaffected by

the choice of the government. The distance to the next project δt+1 will remain fixed regardless

of the outsourcing decision, as the vessel has not changed districts. Then the state variables at

the start of period t + 1 are (δt+1, xt+1, N t+1, 0) whether the previous period’s project was kept

in-house or not.

It is straightforward to demonstrate that these circumstances result in static decisions:

v1t(zt) − v0t(zt) = π1(zt) − π0(zt) + β
∑
z∈Z

(
V t+1(z)q1t(z|zt) − V t+1(z)q0t(z|zt)

)
= π1(zt) − π0(zt),

since q1t(z|zt) = q0t(z|zt). Hence, when the state transitions are the same for both choices, the

ex-ante value function terms for the next period cancel and the differenced conditional value

function can be expressed solely in terms of the current period flow utilities.

After obtaining a set of temporarily static observations using the method above, the distri-

bution of G is identified using an exclusion restriction. Specifically, I assume that N affects the

expected winning bid, and hence the probability of the outcome variable d, but is independent

of Cg after conditioning on characteristics x. This allows variation inN to change the probability

that dt = 1 in a way that traces out the distribution of Cg.

To demonstrate the intuition, consider the following special case. Hold project characteristics

x fixed across multiple projects; this yields the same distribution of government project costs for
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all projects. In this setting, the government’s conditional choice probability of taking the project

corresponds exactly to the probability that government costs are below the expected contract

cost. As the distribution of firm costs is the same across all projects (due to x being fixed), vari-

ation in expected price is due only to variation in the market competition N . This means that

each value of N maps an expected winning bid into the probability that the government takes

a project, generating a quantile of the government cost distribution for each value of N . This is

represented graphically in Figure 3.1.

Figure 3.1: Identification of Government Cost Distribution

Pr

Govt CostR(xt , N3) R(xt , N2) R(xt , N1)

p0t(xt , N1)

p0t(xt , N2)

p0t(xt , N3)

Note: Holding the contract characteristics xt fixed, the distribution function of gov-
ernment costs evaluated at the expected contract price for each level of competition
n maps exactly to the conditional choice probability for that state.

After identification ofG is complete, identifying ω(δ) follows from the representation results

of Arcidiacono and Miller (2011) after a normalization of ω(δ) for one value of the state δ. These

results are formalized in the proposition below.

Proposition 3.4.1 Suppose the following assumptions hold:
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1. G(c|x,N) = G(c|x) for all x ∈ X .

2. There exists a set of periods T such that for each τ ∈ T there exists a subset Zτ ⊂ Z for which

the state transitions do not depend on the government’s choice: q1,τ (zτ+1|zτ ) = q0,τ (zτ+1|zτ ) for all

τ ∈ T and zτ ∈ Zτ .

3. G(c|x) is strictly increasing for all x ∈ X .

4. R−1(x, c) : X × [c, c] → H exists.

5. ω(δ0) = 0 for some δ0 ∈ ∆ and the discount factor β is known.

Then G(c | x) and ω(δ) are identified for all x ∈ X and δ ∈ ∆.

Assumption 1 is the exclusion restriction which allows for variation in N to trace out quan-

tiles of the government cost distribution. Assumption 2 is the assumption that ensures a set of

periods and states for which all future value terms cancel. Assumption 3 is required to apply the

inversion theorem of Hotz and Miller (1993). Assumption 4 guarantees a one-to-one mapping

between pairs (x,N) and expected winning bids. Finally, Assumption 5 is a normalization that

enables identification of ω(δ) for all δ 6= δ0.

3.4.2 Auction Game

Firm costs

Identification for the distribution of firm costs follows the arguments of Guerre, Perrigne, and

Vuong (2000) andAthey andHaile (2002) applied to auctions inwhich bidders have independent

private costs and only the winning bid is observed. The number of bidders n is known. LetH(·)
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and W (·) denote the distribution of all bids and winning bids, respectively. In a symmetric

Bayesian Nash equilibrium, the bidding function solves

b∗(cf ) = max
b

[1 −H(b)]n−1 × (b− cf )

which has solution that can be written as

cf = b− [1 −H(b)]n−1

(n− 1)[1 −H(b)]n−2h(b) ,

where h(·) is the density associated with the distribution function H . After applying an order

statistic transformation we have

cf = b− n[1 −W (b)]
(n− 1)w(b) ,

where again w(·) is the density associated with the distribution W (·). This gives the distribu-

tion of winning costs FW (cf ), and using the transformation 1 − FW (cf ) = [1 − F (cf )]n the full

distribution of firm costs can be recovered.

Entry Costs

Identification of the entry cost distribution follows a similar argument to that of the identification

of the government cost distribution. For a fixed vector of project characteristics x in market k

with the number of potential bidders denoted Nk, the entry cutoff e∗ can be obtained by using

the observed participation decisions for the probability distribution over the number of bidders

in (3.1):

e∗
k(x) =

Nk∑
j=1

ηjk(x)E[ui|n = j, x] (3.10)
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where ηjk(x) is the observed probability of j bidders in an auctionwith characteristics x inmarket

k. Variation in the number of potential bidders across districts generates different values for

e∗(x)9. This means that

Nk∑
j=1

ζ(e∗
k(x))j(1 − ζ(e∗

k(x))Nk−jE[ui | n = j, x] = e∗
k(x) (3.11)

holds for each market k ∈ K. Then the quantiles of the distribution ζ associated with each value

of e∗
k(x) are identified from (3.11).

3.5 Estimation

Estimation of the model primitives proceeds in three stages. In the first stage, non-parametric

estimators for the number of potential bidders in each district and the expected auction price are

obtained. These are then used to estimate the government cost distribution and distance costs.

Finally, the observed distribution over the number of bidders is usedwith the estimated number

of potential bidders to estimate the entry cost distribution, and firm costs are estimated from

the auction data. While the identification results from the previous section are non-parametric,

in practice the number of state variables and realized states make non-parametric estimation

impractical. Hence, I make the following parametric assumptions in estimation:

- Government costs: cgt ∼ Weibull(αt, ρt),

αt = α0 + α1x1t + α2x2t, ρt = ρ0 + ρ1x1t + ρ2x2t.

- Distance costs: ω(δt) = θδt.

9Specifically, a lower number of potential bidders increases the expected profit and raises the equilibrium entry
cutoff, while a higher number of potential bidders has the opposite effect.
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- Entry costs: et ∼ Exponential(λt)

log(λt) = λ0 + λ1x1t + λ2x2t.

- Winning bids: bt ∼ Log-normal(µt, γt)

log(µt) = µ0 + µ1x1t + µ2x2t + µ3nt, log(γt) = γ0 + γ1x1t + γ2x2t + γ3nt.

Additionally, I fix the yearly discount factor β = 0.94.

In the data, several districts have multiple dredges that perform projects in the district. This

complicates dynamic considerations, as the availability of both dredges must be accounted for

when considering the future value component. For these regions, I consider all dredges that are

linked by the overlapping district(s) simultaneously; this results in a state variable consisting of

distances and locations for each of the dredges in that set of districts. In such cases I assume

that an in-house decision to send the closest available dredge to the project. This assumption is

empirically motivated: for over 97% of in-house projects the closest available dredge is selected

to complete it.10 This result of this grouping is a set of five non-overlapping regions I1, ..., I5,

in which no vessel operating in any one of the regions takes projects in any of the others, that

operate in parallel. There are also fifteen fiscal years Y spanning 1999-2013. Hence, the value

function is generated via backwards induction for each region-year pair, and estimates are ob-

tained by maximizing the likelihood across all such region-year pairs. For notational simplicity

I drop the dependence on the regions I and fiscal year Y in much of what follows.

10This can be understood by thinking of the network of districts as approximately linear, with most regions
consisting of locations along the coast orwithin the inlandwaterway system. For these networks there is no distance
reduction from sending any vessel that isn’t already the closest to the project.

67



3.5.1 Expected Contract Price

Expected winning bids are estimated directly from the data non-parametrically. First, the distri-

bution over the number of bidders is estimated. This is done non-parametrically by counting the

number of observations with each number of bidders after smoothing over contract characteris-

tics. The maximum number of bidders in each district k is Nk. This is estimated by taking the

maximum number of bidders observed in the market over the sample period. Let ηkn(xt) be the

probability that n bidders are observed in an auction with project characteristics xt. Next the ex-

pected winning bid conditional on the number of bidders is with a Nadaraya-Watson estimator.

Let An denote the set of auctions in which there are n bidders. Then the expected winning bid

for an auctionwith characteristics x in market k is given by averaging over the expectedwinning

bid for each number of bidders:

R̂(x, N̂kt) =
N̂kt∑
n=1

η̂kn(xt)
∑t∈An

K
(

x−xt

hx

)
bt∑

t∈An
K
(

(x−xt)
hx

)
 .

The kernel function K is a multiplicative normal kernel, and the bandwidth parameter hx is

obtained using Silverman’s rule of thumb.

3.5.2 Government Cost Distribution

Estimation of the parameters in (α, ρ) takes place by linking the observed choices for the static pe-

riods to the conditional distribution function of government costs. The each government choice

observation is a draw from a Bernoulli distribution with probability parameter given by the dis-

tribution of government costs evaluated at the expected contract price. Recalling that G denotes
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the cdf of Cgt, we have that

Pr(dt = 0|zt) = G(R(xt, Nkt)).

Weobtain the estimator for (α, ρ) by gathering all static observations andmaximizing the joint

two-step likelihood after plugging in the first-stage estimates for R(zt) obtained in the previous

section. More formally, let T represent the set of periods in which the future value components

of utility cancel. Then the estimator is

(α̂, ρ̂) = arg max
α,ρ

∏
τ∈T

G(R̂(xt, N̂kt);α, ρ)1−dt × [1 −G(R̂(xt, N̂kt);α, ρ)]dt (3.12)

With the estimate for the government cost distribution we can proceed to the estimation of

the dynamic model and recover the distance cost parameter.

3.5.3 Distance Parameter θ

The last step in the estimation of themodel primitives relating to government cost is to use the re-

sults of the first two stages towrite an expression for the value function that allows for estimation

of the distance cost parameter θ. Specifically, the estimator for θ will be a two-stage maximum

likelihood estimator in which the first-stage estimates are plugged into the likelihood function

for government decisions. The per-period discount factor is β1/TIY where TIY is the number of

projects in region I for fiscal year Y . Construction of the value function is done through back-

wards induction; beginning in the last period T we have that the probability that the project is
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kept in-house p0T (zt) is

p0T (zT ) = 1{yT =0}Pr(CgT + θδT < R(xT , NkT
))

= 1{yT =0}G(R(xT , NkT
) − θδT | xT )

and p1T (zT ) = 1 − p0T (zT ). Then the ex-ante value function in period T and state zT is

V T (zT ) = p0T (zT )E[π0(zT )|dT = 0] + p1T (zT )π1(zT )

which can be expressed as

V T (zT ) = p0T (zT )
θδT +

∫ R(xT ,Nkt
)−θδT

0 uĝ(u)du
Ĝ(R(xT , NkT

) − θδT )

+ p1T (zT )R(xT , NkT
).

For t = 1, ..., T − 1 we have that

p1t(zt) = 1{yt=0}Pr

Cgt + θδt + β
∑

zt+1∈Z
V t+1(zt+1)q0t(zt+1|zt) < R(xt, Nkt) + β

∑
zt+1∈Z

V t+1(zt+1)q1t(zt+1|zt)
 .

Recalling that

v0t(zt) = θδt + β
∑

zt+1∈Z
V t+1(zt+1)q0t(zt+1|zt),

v1t(zt) = R(xt, Nkt) + β
∑

zt+1∈Z
V t+1(zt+1)q1t(zt+1|zt).

then the ex-ante value function in period t and state zt is

V t(zt) = p0t(zt)
v0t(zt) +

∫ v0t(zt)−v1t(zt)
0 uĝ(u)du
Ĝ(v0t(zt) − v1t(zt))

+ p1t(zt)v1t(zt).
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Then we can express the conditional choice probability of keeping a project in-house as

p̂0t(zt) = Ĝ(v0t(zt) − v1t(zt)).

Recalling that there are five non-overlapping regions I and fifteen fiscal years Y , this gives the

estimator for θ as

θ̂ = arg max
θ

5∏
I=1

15∏
Y =1

∏
t∈TIY

(p̂1t)dt × (1 − p̂1t)1−dt . (3.13)

where TIY is the set of projects in region I during fiscal year Y . Since the estimates from the first

stage are consistent estimates for the estimated winning bid and the distribution of government

costs, (3.13) yields a consistent estimate for θ.

3.5.4 Entry Cost Distribution

Estimation of the entry cost parameters proceeds in two steps. First estimates for the equilibrium

entry cutoff values ê∗
k(x) are generated from equation (3.10) using the empirical distributions

over the number of bidders η̂kn. Then for each λ, ζ(ê∗
k(x)) gives the probability for an individ-

ual bidder’s entry into an auction in market k with project characteristics x. The estimate λ̂ is

generated by maximizing the likelihood of the observed number of bidders in each auction.

3.5.5 Firm Cost Distribution

The winning bid distribution is estimated parametrically, with the parameterization given by

bit ∼ Log-normal(µt, γt),
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where

log(µt) = µ0t + µ1tx1t + µ2tx2t + µ3Nt, log(γt) = γ0 + γ1x1t + γ2x2t + γ3Nt.

Once estimates of the winning bid distribution parameters have been obtained, firm costs

can be expressed as

ĉ = b− N [1 − Ŵ (b)]
(N − 1)ŵ(b) . (3.14)

where b is a submitted bid. Hence for any bid, the associated cost can be found by applying

(3.14) using the estimated winning bid distribution. To generate the cost distributions, bids

are randomly sampled from the bid distribution obtained via the order statistic transformation

Ĥ(b) = 1 − [1 − Ŵ (b)]1/N and these sampled bid values are used to generate firm costs ĉ.

3.6 Results

In this section I present the results of the structural estimation, assess the fit of the model, and

explore the implications of the model estimates on costs, the effect of competition, and efficient

project allocation.

3.6.1 Estimates

The estimates for the government cost distribution and the distance cost are contained in Table

(3.2). As expected, larger projects and projects that take longer to complete increase expected

cost, while also increasing the expected winning bid in the auction market. Results from the

dynamic model demonstrate that distance costs are substantial, with each additional 100 miles
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adding $23,400 to total costs. The average contribution of travel costs for projects taken by the

government is 3% for all projects and 7% for projects that involve changing districts. Confidence

intervals listed are generated via subsampling.

Table 3.2: Estimates

Estimate 95% C.I.
Government Costs
α
Constant 0.8189 [0.6878, 1.2892]
Project Size 0.0019 [-0.006, 0.0023]
Working Days 0.4665 [0.4532, 0.7376]

ρ
Constant 3.3371 [2.9715, 5.0990]
Project Size 0.0001 [-0.003,0.0002]
Working Days -0.0320 [-0.0907, -0.0278]

θ
Distance (100’s of miles) 0.0234 [0.0102, 0.0535]

Entry Costs
λ
Constant -3.9215 [-4.9163, -2.8764]
Project Volume 0.3386 [0.2680, 0.4297]
Working Days -0.1009 [-0.2762, 0.0388]

Winning Bid Distribution
µ
Constant 2.3525 [2.3259,2.3777]
Project Size 0.0267 [0.0250,0.0285]
Working Days 0.0009 [0.0006,0.0012]
Number of Bidders -0.0035 [-0.0054,-0.0016]

γ
Constant 0.7364 [0.4465,1.0197]
Project Size -0.0870 [-0.1077,-0.0667]
Working Days 0.0018 [-0.0009,0.0057]
Number of Bidders 0.0122 [-0.0145,0.0411]
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3.6.2 Model Fit

Simulated results using the model estimates are listed in Table 3.3. To obtain the model pre-

dictions the model was simulated 500 times using the estimated values. The model matches

the percentage of government projects outsourced and the total contract costs from outsourcing

well. Total accumulated distance by government vessels is slightly overestimated by the model.

Average project characteristics for both in-house projects and outsourced projects also fit model

predictions well. Figure 3.2 plots winning bids against the predicted values on a log scale for

auctions that had at least two bidders.

Table 3.3: Model Fit
Data Predicted

In-house projects (pct.) 50.98 49.46
Annual Contract Costs (millions) $472.7 $492.0
Govt. distance traveled per project 136.6 132.4
Govt. cu. yds. per project (thousands) 273.7 274.7
Firm cu. yds. per project (thousands 1,177 1,166
Working days per project (govt.) 17.95 15.28
Working days per project (firms) 125.8 125.4

3.6.3 Comparing Government and Firm Costs

Using the estimated from the structural model it is possible to analyze the relative effects that

competition and costs have on project allocation. Figure 3.3 displays the cost distribution for

the government plotted against the winning bid distribution for auctions with three bidders and

the distribution of firm costs for three levels of project size quantiles. The quantiles are for both

project volume and length: the 0.25 quantile corresponds to a project with the 0.25 percentile for

cubic yards of material dredged and the 0.25 percentile for working days. As can be seen from

74



Figure 3.2: Predicted vs. Actual Winning Auction Bids

Estimated Winning Bid (in millions, Log scale)
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the top three tables, the mean government cost of project completion is lower than the expected

winning bid for the 0.25 project size quantile, while being approximately even at the median

project size and substantially greater than the winning bid at the 0.75 quantile. The relationship

between firm costs and government costs is similar, although as is to be expected the firm cost

distribution has both a highermean and variance than thewinning bid distribution. This leads to

a government cost advantage on average for median-sized projects, while the expected winning

bid is almost exactly equal to government costs. It is worth noting that the high variance in firm

costs and the two-stage nature of the outsourcing process can lead to inefficient allocation of

projects; I will quantify the extent to which this occurs in the following section.

These results suggest that the role of government in thismarket varieswith the type of project

being considered. For smaller projects that require less time and use of capital resources, gov-
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ernment vessels act as the main source for project completion. Indeed, most of the projects that

are smaller in scope are kept in-house. In contrast, for larger projects the government acts es-

sentially as a fringe competitor: given the large difference in average costs for projects above the

75th percentile, a cost draw that would lead the government to forgo contracting the project out

to a private firm would be a comparatively rare event.

It should also be noted that distance costs comprise a larger percentage of total costs for

smaller projects; for this reason it may be cost-reducing for the government to contract out

smaller projects in which it has a (static) cost advantage due to the costs associated with travel to

the project site or dynamic considerations related to travel to future projects. For larger projects

the effect of distance on the outsourcing decision is mitigated by the comparatively larger cost

difference between private firms and the government.
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Figure 3.3: Distributions of Government Costs, Winning Bids, and Firm Costs

Note: This figure compares the distribution of government costs with winning bid
and firm cost distributions for the 0.25, 0.50, and 0.75 quantiles of project size. The
three graphs in the top panel display government costs distributions plotted wth the
winning bid distributions for auctions with 3 bidders, while the bottom three graphs
shows firm cost distributions. Means associatedwith each distribution are displayed
as vertical lines.
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3.6.4 Allocative Efficiency

Using the structural estimates, the efficiency of themechanism (as definedby allocation of projects

to the lowest-cost producer) used by the government can be assessed. Specifically, I estimate the

extent to which the government chooses to outsource a project with the ex-ante expectation of

reducing costs but the ex-post realization of competition and cost draws leads to a firm with a

higher cost than the government being awarded the project. The two-stage nature of the mecha-

nism used by the government to allocate projects leaves open this possibility due to firms private

costs of completion being unknown to the government when the outsourcing decision is made:

a project contracted out may draw few bidders in the auction, each of whom may have costs

higher than the government’s cost threshold for outsourcing.

Let c1
ft be the lowest cost of firms participating in a procurement auction in period t. The

project is mis-allocated if

c1
ft > cgt + θδt + β(V0t(zt+1) − V1t(zt+1))

where cgt is the realization of the government’s cost draw in period t. To determine the extent

of inefficient project allocation I simulate the model and generate the lowest cost for each out-

sourced project by first drawing from the distribution of the number of bidders for the project’s

location and then generating costs for each bidder via the procedure described in Section 3.5.5. I

find that 15.86% of outsourced projects are allocated to firmswith higher costs than government.

The welfare losses from these projects average $70 million annually. This suggests that substan-

tial welfare gains could be made by reforming the procurement method to allow for more direct

competition between private firms and government.
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3.7 Counterfactual Simulations

In this section I use the model estimate to run several counterfactual simulations to assess the

importance of dynamics, the effectiveness of the allocation mechanism, and the effect of gov-

ernment fleet reductions. The first of these counterfactuals assesses the importance of dynamics

by simulating the decisions of a myopic government decision maker by setting β = 0. Next, I

investigate the effect of reductions to the government’s dredging fleet in order to determine the

importance of government dredging on total expenditures. Lastly, I introduce and implement

an alternate procurement mechanism. In this mechanism the government directly participates

in the auction by setting a dynamically optimal reserve price that takes into account both current

and future costs of in-house completion.

3.7.1 Effect of Dynamics

In order to assess the importance of dynamics in the government’s outsourcing decisions the

discount factor β was set to zero and the resulting model was simulated 500 times. The results

of the model simulations are summarized in Table 3.4. A myopic government keeps 7.6% fewer

projects in-house, primarily as the result of increasing the average number of working days per

in-house project by 27.3%. This leads to an increase in total costs of 3.1%, which equates to an

increase of more than $225 million over the 15 year sample period. These results indicate the

importance of taking future costs into consideration when assessing firm or government make-

or-buy decisions.
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Table 3.4: Model without Dynamics

Prediction % Change from Baseline Model
Avg. Annual In-house Projects 110.7 -7.6%
Avg. Annual Total Costs (millions) $665.1 3.1%
Distance traveled per Project 133.7 0.98%
Govt. Working Days per Project 19.6 27.3%

3.7.2 Reduction in Government Capacity

In order to investigate the effect that government presence in the market has on total expendi-

tures I perform a counterfactual policy simulation in which I reduce the government’s capacity.

Lessening the ability to complete projects in-house will indicate how important direct public

sector involvement in project completion is for minimizing government expenditures. Addi-

tionally, fixed costs of maintaining dredges are high; the USACE estimates that annual costs for

keeping a dredge operational run in excess of $2 million. Retiring under-utilized dredges may

thus save costs through eliminating their associated fixed costs.

The counterfactual is run by simulating the model a sequence of times. For each iteration the

vessel that was active for the fewest working days is removed from the government’s fleet. The

simulations track the number of projects kept in-house as well as total expenditures on dredging

projects.

The results of the simulations are summarized in Figure 3.4. Small reductions in government

fleet size have little effect on expenditures: reducing the fleet size by one increases annual out-

sourcing costs by $0.32million and a reduction of 2 vessels increases annual outsourcing costs by

$ 1.38million. However, further reductions aremore impactful. When four vessels are removed,

annual government costs increase by over $9 million per year, and a four vessel reduction corre-
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sponds to a $15 million per year increase. These results suggest that while government may be

slightly over-invested in dredging capacity, government dredges nevertheless remain important

in lowering total expenditures.

3.7.3 Direct Government Competition

Motivated by the results that indicate that both full privatization and complete in-house produc-

tion result in additional costs relative to the current mixed-delivery system, I perform a counter-

factual policy experiment which features direct competition between the government and pri-

vate sector firms for each project.11 Specifically, I assume the government holds a second price

auction for every project with a reserve rate set by the government’s cost for doing the project

and the future value components. If no bids are placed below the government’s reserve rate,

the project is kept in-house. Otherwise, the project is contracted out to the lowest-bidding firm,

with the contract price determined by the second lowest cost (which may be the government’s

reserve price).

In the auction stage for a project in period t, the government has drawn a project cost cgt with

distance cost θδt and has expected future value terms V t+1(z) for each z ∈ Z . Then themaximum

bid that the government is willing to accept in order to contract the project out is

r∗
t = cgt + θδt + β

∑
z∈Z

[
V t+1(zt+1)(q1t(z|zt) − q0t(z|zt))

]
. (3.15)

Hence, the value in (3.15) gives the reserve price set by the government in each auction. The

reserve price will also affect bidder entry, as the presence of a reserve price changes the expected

11This is a similar concept to the privatization competitions used in other situations by theDepartment of Defense;
Snyder, Trost, and Trunkey (2001) empirically investigates these competitions.
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Figure 3.4: Vessel Reduction Simulation Results

Note: Summary of the results of the capacity reduction counterfactual simulation.
On the x-axis is the number of vessels subtracted from the baseline model. The y-
axis on the two figures correspond to the percentage of projects kept in-house and
the annual project costs (in millions of dollars), respectively.
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profit obtainable by potential entrants. Modifying equation (3.1) to account for a reserve price r

yields the new equilibrium cutoff condition:

e∗
r =

N∑
j=1

(
N

j

)
ζ(e∗

r)j(1 − ζ(e∗
r))N−jE[ũi|r, n = j], (3.16)

where E[ũi | r, n] is the payoff for player i in a second price auction with n total bidders and a

reserve price r. The timing of the model is as follows:

1. Government draws its cost cgt and sets reserve according to (3.15).

2. Entry costs for each firm are drawn from ζ . Firms with costs less than e∗
r enter the auction.

3. Firms learn their private costs cf and bid in a second-price auction for the project contract.

4. If no firm’s cost is lower than the government reserve, the project is kept in-house. Other-

wise, the project is awarded to the lowest bidder.

The results of the counterfactual policy experiment, obtained from 500 simulations of the

model, are contained in Table 3.5. Direct competition of government vessels against private

sector firms lowers total expenditures by 17.1%. One of the key reasons for this is that the reserve

price binds in many cases when the project would otherwise have been issued at a higher cost: a

low-cost biddermay submit a bid greater than the government’s cost of completing a project and

still win the auction if the level of competition is low. The government reserve caps the amount

awarded to the winning firm for these auctions, and in many such cases the project would have

been kept in-house under the baseline model of choosing to outsource before the auction result

was known. The “wait and see” approach of the direct competitionmodel allows the government

to opportunistically outsource projects after seeing how bidding unfolds, facilitating lower total
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expenditures.

Table 3.5: Results of Direct Government Competition Counterfactual Simulation

Prediction % Change from Baseline Model
Government Costs $101.9 -38.26%
Outsourcing Costs $442.8 -10.0 %
Total Costs $544.7 -17.1 %

Note: Results of the counterfactual policy experiment of government reserve prices.
Cost figures are average annual costs in millions of dollars.

3.8 Conclusion

This paper studies the outsourcing of dredging projects by the US Army Corps of Engineers.

A dynamic discrete choice model of binary make-or-buy decisions is formulated and estimated

using a novel identification strategy to identify the full distribution of the random component

of government flow payoffs. I supply evidence of cost differences between the government and

private firms that varies by project type, with in-house project allocation often proving optimal

for smaller projects while larger projects are more likely to be contracted out. I find substan-

tial private sector firm cost advantages for outsourced projects, averaging 23% lower costs than

government provision, and also that government in-house provision remains optimal for a large

share of projects. Additionally, future concerns about travel distance and capacity play an im-

portant role; I estimate that a myopic government decision maker would opt to keep 7.6% fewer

projects in house. These findings demonstrate the importance of accounting for dynamics when

analyzing make-or-buy decisions, as the boundaries of firms may often be determined by how

current decisions affect future costs.

Using model estimates, I performed two counterfactuals. In the first, the total capacity of the
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government is reduced in order to investigate the effect of government presence in the dredging

market. I find that a reduction of up to one sixth to government capacity would have little effect

on total expenditures, while larger reductions prove more consequential. In the second counter-

factual I feature direct bidding of private firms against the government through a dynamically

optimal reserve price determined by government costs. The result is a 17.1% decrease in total

government expenditures. Together, the results of the counterfactual experiments suggest that

while governmentmay be slightly over-invested in capacity, government presence in themarket

is important for cost reduction andmay be utilized to that endmore effectively through a change

to the procurement mechanism that introduces direct competition between the government and

private sector firms.

This paper places primary focus on government’s role in mixed-delivery markets. However,

firm activity in the these markets is also relatively unexplored. Variation in government activ-

ity may induce different investment or entry behavior among firms. As such, investigation of

the effects of mixed-delivery of public goods on industry dynamics is a potential area of future

research.
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Appendix A.1. Identification

Proof of Proposition 1. The proof proceeds in three stages. First, the identification of G from

the static observations is shown. Next, an expression for the value function that makes use of the

distribution estimated in the first stage is derived. Finally, identification of ω(δ) is established

by using techniques similar to Arcidiacono and Miller (2011).

First, take τ ∈ T . The conditional choice probability p0τ (zτ ) is

p0τ (zτ ) = Pr

(
−cgτ − ω(δ0) + β

∑
z∈Z

V τ+1(z)q0τ (z|zτ ) ≥ −R(xτ , Nkτ ) + β
∑
z∈Z

V τ+1(z)q1τ (z|zτ )
)

= Pr
(
cgτ ≤ R(xτ , Nkτ )

)
= G(R(xτ , Nkτ )|xτ ) (17)

where the second equality follows from the assumption that ω(δ0) = 0 and q0τ (z|zτ ) = q1τ (z|zτ )

for all z ∈ Z and τ ∈ T . Then all choices in the set T are effectively static and depend only on

(xτ , Nkτ ), so that p0τ (zτ ) ≡ p0τ (xτ , Nkτ ) ∀τ ∈ T . By assumption,R−1(xτ , c) : X × [c, c] → H exists.

Hence,

G(c|xτ ) = p0τ (xτ , R
−1(xτ , c)) (18)

completing identification of G.

Identification of ω(δ) proceeds by expressing the future value function in terms of observ-

ables. The first step is to use the inversion theorem of Hotz and Miller (1993) to establish the

existence of a function φ(p0t(zt)) = v0t(zt) − v1t(zt). Because G is continuous and strictly increas-

ing and p0t = Pr(−cgt + v0t(zt) ≥ v1t(zt)) it follows that φ(p0t(zt)) = G−1(p0t(zt)|xt).

Nextwe establish an expression for the expected government conditional on keeping a project
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in house:

E[cgt| − cgt + v1t(zt) ≥ v0t(zt)] = E[cgt|cgt ≤ v1t(zt) − v0t(zt)]

= E[cgt|cgt ≤ −φ(p1t(zt))]

As the distribution of cgt is known and φ is given by the inversion theorem, this expression is

known. Let ξ(p1t(zt)) denote this term. Following Arcidiacono and Miller (2011), we can write

the value function as follows:

Vt(zt) =
1∑

j=0
pjt(zt)vjt(zt) + p1t(zt)ξ(p1t(zt)).

Subtracting v1t(zt) from each side yields

Vt(zt) − v1t(zt) =
1∑

j=0
pjt(zt)vjt(zt) + p1t(zt) · ξ(p1t(zt)) − v1t(zt)

=
1∑

j=0
pjt(zt)(vjt(zt) − v1t(zt)) + p1t(zt) · ξ(p1t(zt))

= p0t · φ(p1t(zt)) + p1t(zt) · ξ(p1t(zt))

≡ ψ1(pt(zt)) (19)

Using a similar procedure, we define ψ0(pt(zt)) ≡ p1t · φ(p1t(zt)) + p1t(zt) · ξ(p1t(zt)). Note that

as p0t → 0 then ψ1 becomes the (unconditional) expected government cost, while as p0t → 1 the

term ψ0 goes to zero.

Now that expressions for the ψj terms have been derivedwe can appeal directly to the results

of Arcidiacono and Miller (2011) for the remainder of the proof. Specifically, let {d′
τ }T

τ=t+1 be

any sequence of decisions from τ until T . Using the definition of ψj(pτ (zτ )) we can write the
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conditional value function for choice dt = 0 as

v0t(zt) = π0t(zt) +
T∑

τ=t+1

∑
zτ ∈Z

βτ−t[πd′
τ τ (zτ ) + ψd′

τ
(pd′

τ τ (zτ ))]κτ−1(zτ |zt, d
′
t = 1) (20)

with a similar expression for v1t(zt). Noting that

v1t(zt) − v0t(zt) = ψ0(pt(zt)) − ψ1(pt(zt))

we can insert plug in the expressions for v1t(zt) and v0t(zt) and set d′
τ = 1 for all τ > t to obtain,

upon rearrangement

ω(δt) = R(xt, Nkt)−ψ0(pt(zt))+ψ1(pt(zt))−
T∑

τ=t+1
βτ−t

∑
zτ ∈Z

[−R(xτ , Nkτ )+ψ0(pτ (zτ ))](κτ−1(zτ |zt, 0)−κτ−1(zτ |zt, 1)).

(21)

This yields an expression for ω(δt) in terms of functions of state variables which are known

from normalizations (R(xτ , Nkτ ), the distribution of the unobserved term identified in the first

stage (ψ(pτ (zτ ))), or observed in the data (κτ−1(zτ | zτ−1, dt)), completing identification of ω(δt).

Appendix A.2. Counterfactual Simulations

A.2.1 Fleet reduction simulations

For the counterfactual in which the government dredging fleet is reduced, first I identify the

least-utilized vessel in the simulation of the model using the estimated parameters. This vessel
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is removed from the government’s fleet, and the model is re-simulated, again identifying and

subsequently removing the least utilized vessel. When removal of a vessel would leave a district

unserved by any vessel in the government fleet, a vessel who covers the closest district within

the vessel’s region has their district coverage area expanded to include the district.

A.2.2 Government reserve simulation

To perform the counterfactual policy in which government sets a reserve price for each auction,

it is necessary to re-compute the value function for each state as auction entry and bidding (and

therefore expected winning bid) are affected by the establishment of a reserve price policy. Ex-

ante value functions for each state are computed using the following sequence of steps, which is

run for each fiscal year-region pair:

1. Starting in period T , government draws cost cgT , sets r
∗(cgT ) to be

r∗(cgT ) = cgT + θδt.

2. Expected profit conditional on reserve price r∗(cgT ) and j bidders for each j ∈ {1, .., Nkt}

is calculated by simulating the auction 200 times.

3. For each n = 1, ..., Nkt , the expected profit for each bidder conditional on entry is calculated

by simulating auction outcomes 200 times for each number of bidders.

E[ũi|n, xT , r
∗(cgT )] = Pr(ci < cj ∀j 6= i) × E[b(ci) − ci | ci < cj ∀j 6= i, ci ≤ r∗(cgT )].

4. The expected profit and entry cost distribution are used to solve for the equilibrium entry

94



cutoff ẽk(xT ):

ẽk(xT ; r∗(cgT )) =
Nkt∑
j=1

(
ζ(ẽk(xT ; r∗(cgT )))j[1 − ζ(ẽk(xT ; r∗(cgT )))]Nkt

−j
)

· E[ũi | j, xT , r
∗(cgT )].

5. Using the entry cost cutoff ẽk(xT ), the distribution over the number of bidders can be ex-

pressed

Pr(n = j|xT , ẽk(xT ; r∗(cgT ))) = ζ(ẽk(xT ; r∗(cgT )))j[1 − ζ(ẽk(xT ; r∗(cgT )))]Nkt
−j.

6. Draw from the number of bidders distribution and simulate the auction outcome: if a bid-

der has a lower cost than the government reserve, they are awarded the project and pay a

bid equal to the second highest bid or the government reserve, whichever is lower. Other-

wise, the project is taken by the government.

7. Average over simulations s to obtainCCPs and conditional payoffs: p̃0T (zT ) = 1
200

∑200
s=1 1{dsT =

0}, E[Ṽ0T (zT )|dT = 0] = −
∑200

s=1 1{dsT =0}(cgsT +θδt)∑200
s=1 1{dsT =0}

, and E[Ṽ1T (zT )|dT = 1] = −
∑200

s=1 1{dsT =1}b1
s∑200

s=1 1{dsT =1}

where b1
s is the winning bid in auction s.

8. Ex-ante value function computed as

ṼT (zT ) = p̃0T (zT )E[ṼT |dT = 0] + (1 − p̃0T (zT ))E[ṼT |dT = 1].

9. Iterating backwards from t = T − 1, .., 1, draw 200 government costs cgst for each t and zt

from G(·|xt). Set reserve price r∗(cgst) = cgst + θδt + β
∑

z∈Z Ṽt+1(zt)(q0t(z|zt) − q1t(z|zt)).

10 . Repeat steps 1 through 8,withE[Ṽ0T (zT )|dT = 0] = −
∑200

s=1 1{dst=0}(cgst+θδt−β
∑

z∈Z Ṽt+1(z)q0t(z|zt))∑200
s=1 1{dst=0}

,
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and E[Ṽ1T (zT )|dT = 1] = −
∑200

s=1 1{dsT =1}b1
s−β

∑
z∈Z Ṽt+1(z)q1t(z|zt)∑200

s=1 1{dsT =1}
.

The simulation is run by beginning at the first project for each region and fiscal year, drawing

cost cgt and setting the reserve price using the simulated value functions, and simulating the en-

try process and auction outcome. If the lowest cost for private sector firms in the auction is lower

than the reserve price, the project is outsourced. Otherwise, the project is kept in-house. Then

the state variables are updated and the simulation proceeds to the next stage. The simulation is

run 500 times for each fiscal year-region pair. .

Appendix A.3. Data and Sample Construction

TheUnited StatesArmyCorps of Engineers is tasked byCongresswithmaintaining all navigable

waterways in the United States. Prior to 1972, all dredgingwork on these waterways was carried

out directly by the Corps. In 1972 Congress passed theMinimum Fleet Act which authorized the

Corps to contract out to private firms as much dredging work as possible while keeping costs

reasonable and insuring enough capacity for emergencywork. Data is available fromNavigation

Data Center, which is a division of the USACE responsible for compiling and reporting data

relating to USwaterways. Dredging project data is available for the previous 15 years. Dredging

projects are carried out at the district level with 34 districts located onwaterways throughout the

United States.

A.3.1 Sample Construction

The original sample consists of 2487 contracted-out projects and 1945 projects completed by the

Corps. Any projects that were missing bid information, project size, start date, or the number
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of working days were removed. There are three Corps districts that contract out dredging work

on the Great Lakes: Chicago, Buffalo, and Detroit. These contracts were also removed, as there

are no Corps-owned dredges that are active in the Great Lakes region. Lastly, extremely large

projects (contract price exceeding $20M)were removed, as projects of this size are never observed

to be taken by Corps dredges and they often require multiple large dredges working on the

project at once, which is not something the Corps is able to accommodate in many cases. 77

Corps projects that had overlapping dates in the same district were combined. Additionally, 29

projects involving emergency dredging after the Deepwater Horizon oil spill in the Gulf region

were removed. This leaves a final sample of 3625 observations across 31 districts.

A.3.2 Variable Definitions

Project size st: A measure of the total volume of material that is displaced by the dredging

project in cubic yards. When possible, the estimated number of cubic yards is used. When this

is not available, the actual reported number of cubic yards dredged is used instead. If neither

figure is available in the data, the project is removed from the sample.

Working days wt: The number of days required to complete the project. When available, the

estimated number of days is used. When this information ismissing, the actual reported number

of days required for project completion is used instead. If neither figure is available in the data,

the project is removed from the sample.

Competition Nk: The number of active competitors for projects in district k. There are two

projects in the Kansas City district where no auctions are held leading to an undefined number

for the average bidders. For these two observations it is assumed that the government takes the
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project with probability one.

Distance δt: The distance in miles from the nearest Corps dredge to the current project. The

distance data is obtained from the 2012 Distances Between US Ports publication, issued jointly

by the U.S. Department of Commerce, the National Oceanic and Atmospheric Administration,

and the National Ocean Service. Distances between ports are given in tables that are divided

into four regions: Gulf ports, Atlantic ports, river system ports, and Pacific ports. When distance

between two ports not listed on the same table is needed the following procedure is used. For

district m1 located in region 1 and district m2 located in region 2, first the district m∗ in region

1 that is closest to region 2 is identified (e.g. the closest district in the Atlantic region to the

Gulf region is Jacksonville) and the distance fromm1 to this district is calculated. That distance

is added to the distance from m∗ to m2 to obtain the overall distance. This is the procedure

recommended within the text of the publication, and there is at least one city overlap between

region tables that makes this calculation possible for all districts.

Winning Bids bt: The winning bid for the auction in period t.

Number of Bidders nt: Number of firms placing bids in auction t.

A.3.3 Corps Dredges Assignment

Each Corps-owned dredge complete projects within a specific geographic region; in most dis-

tricts a single Corps dredge complete all projects the Corps elects to keep in-house for that dis-

trict. Project characteristics and type of dredge account for the remaining eligibility of Corps

dredges for various projects. A recommended dredge type is given for all projects, and when a

Corps dredge doesn’t match the recommended type it is not considered eligible to complete the
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project. The main dredge type criterion that is important for government outsourcing is hop-

per dredging; hopper dredges primarily complete larger projects involving repeated transfer of

dredged material. I consider only hopper dredges to be eligible to complete dredging projects

labeled as hopper dredging projects by the Corps. Given these restrictions, a dredge is consid-

ered able to complete a project if (a) it is the only dredge that completes projects in that district

over the sample period or (b) the dredge is observed to complete projects in the same region in

the sample and the dredgemeets the dredge type criteria for the project. Whenmultiple dredges

are available to complete a project, only the closest is considered.

Table (6) provides a summary of each Corps dredge. Over the course of the sample, there are

14 Corps-operated dredges observed but only 12 are active at any given time: the dredge Goetz

replaced the Thompson in 2005 and theMurden replaced the Fry in 2011.

Table 6: Corps-owned dredges

Dredge Name Region of Operation Number of Projects Completed Dredge Type
Hurley Inland Waterways 15 Dustpan
Wheeler Gulf Coast 87 Hopper
McFarland Atlantic 111 Hopper
Essayons Pacific 203 Hopper
Yaquina Pacific 218 Hopper
Potter Inland Waterways 180 Dustpan
Thompson Inland Waterways 30 Pipeline
Jadwin Inland Waterways 214 Dustpan
Currituck Atlantic 355 Non-conventional
Fry Atlantic 215 Sidecaster
Merritt Atlantic 280 Sidecaster
Schweizer Atlantic 2 Sidecaster
Goetz Inland Waterways 27 Pipeline
Murden Atlantic 8 Non-conventional
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A.3.4 USACE Districts

TheUSACEmaintains district headquarters in 34 locations. Each Corps-owned dredge has a pri-

mary district, but dredges travel between and complete projects in other districts frequently. The

overall schedule of projects and the Corps dredging budget is determined at the national level,

and all details relating to individual projects – such as developing plans, overseeing projects,

and holding auctions when necessary– are done at the district level.
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Table 7: USACE Districts

District Total Projects Corps Projects Contracted Projects Mean Project Size (thousands) Mean Number of Bidders
Alaska 51 2 49 401 1.6122
Baltimore 112 112 73 537 2.7671
Buffalo 78 0 78 206 2.5385
Charleston 79 25 54 1,099 2.6667
Chicago 33 0 33 94 2.4545
Detroit 232 0 232 54 2.6164
Galveston 215 0 215 1,747 3.2372
Honolulu 8 2 6 94 1.3333
Huntington 31 0 31 86 1.0000
Jacksonville 189 17 172 624 2.6105
Kansas City 2 2 0 47 0
Little Rock 4 0 4 1,251 2.2500
Los Angeles 48 12 36 827 2.3889
Louisville 16 1 15 945 1.0000
Memphis 24 17 7 6,555 2.0000
Mobile 127 16 111 1,296 2.2973
New England 96 62 34 114 2.9706
New Orleans 562 235 327 1,763 2.3394
New York 138 26 112 524 2.8750
Norfolk 203 80 123 270 2.2927
Philadelphia 270 152 118 433 2.0000
Pittsburgh 14 0 14 10 1.0000
Portland 380 310 70 414 2.5143
Rock Island 18 11 7 269 2.1429
Sacramento 8 0 8 258 1.3750
San Francisco 104 67 37 454 1.9459
Savannah 43 0 43 2,798 2.5349
Seattle 72 28 44 491 2.6591
St. Louis 190 186 4 273 1.0000
St. Paul 66 46 20 312 2.3500
Tulsa 1 0 1 530 1.0000
Vicksburg 86 68 18 765 2.2778
Walla Walla 1 0 1 11 3.0000
Wilmington 654 541 113 240 2.5664
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Table 8: Projects by Year

Fiscal Year Total Projects Corps Projects Contracted Projects
1999 251 125 126
2000 232 114 118
2001 232 99 133
2002 263 141 122
2003 323 177 146
2004 275 145 130
2005 236 124 112
2006 248 156 92
2007 216 115 101
2008 218 118 100
2009 220 109 111
2010 283 132 151
2011 259 158 101
2012 251 145 106
2013 192 86 106

Appendix A.4. Estimation

A.4.1 Government Costs

The government cost distribution is estimated from periods in which the available project is lo-

cated in the same district as the assigned government dredge and the next available project in the

dredge’s region will begin after the current project has ended. There are 1086 such observations

in the data.

Estimation of the distance parameter consists of using the estimates from the first two stages

in the dynamic problem. Since the time horizon is finite, for each parameter we can use back-

wards induction to find an expression for the value function at each time period. In the final

period T there is no future value term, so the conditional valuation vjt is simply the flow utility
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associated with this choice. This can be expressed only in terms of the parameter of interest and

the state variables, which gives the ex-ante value function in period T for each state. Working

backwards for each period T −1, T −2, ..., 1, the ex-ante value function can be expressed in terms

of the parameter θ, the state in that period, the state transitions, and the next period’s ex-ante

value function.

A convenient feature of the data is that the set of possible distances for each dredge is finite:

given a set of possible districts in which to complete projects and the distance between them, the

set of possible distances is the same as the number of edges in a fully connected graph with the

number of edges given by the number of districts, with one additional state representing zero

distance. Hence, the number of possible states for a vessel that services k districts is k(k−1)/2+1.

In the data this ranges from zero (a vessel that only completes projects in one district) to 56

(theMcFarland completes projects in 11 districts over the sample period). This greatly eases the

computational burden of estimation and allows for feasible backwards induction estimation of

the distance cost parameter.

The state space is constructed by tracking vessel locations and availability for each project

during each fiscal year. The USACE districts are divided between five non-overlapping regions:

two in the Atlantic (roughly split between north Atlantic and south Atlantic regions), the Gulf

of Mexico coastal region, the inland waterway system consisting of the Mississippi River and its

tributaries, and the Pacific coastal region. The highest number of government vessels active in

a region is four (occurring in the Atlantic coastal area). Tracking location and availability status

for each vessel quickly causes the state space to grow unfeasibly large. To solve this problem, I

consider the state for each vessel to be the period in which that vessel most recently completed

a project. This gives the availability status and location for each vessel, as both of these can
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be discerned from the last completed project, and results in a smaller state space that makes

estimation practical.

A.4.2 Entry costs

To estimate the entry cost distribution the expected profit for each number of bidders is needed.

Using the firm cost estimates this can be calculated directly when n ≥ 2. When n = 1, I use the

bid distribution from the auctions with only one bidder and the distribution of firm costs to find

the bidding function and the number of bidders. Sepcifically, I fit the bid distribution of one-

bidder auctions to a Weibull distribution whose parameters depend on project characteristics.

Using this distribution, the distribution of firm costs F , and the monotonicity condition that

b(c) > b(c′) ⇐⇒ c > c′, this allows me to integrate over the profit function b(c) − c for the one

bidder case to find expected bidders’ expected profit.

Appendix A.5. Other Figures and Tables
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Figure 5: Plot of winning bids against the ex-post changes in payment to the contracted firm. There is no
readily observable pattern that suggests cost adjustments correlate more strongly with smaller or larger
projects; if anything, very large projects are more likely to have reductions made to the initial bid.

Table 9: Regressions of variables on number of bidders

Variable Coef. Std. err Coef. Std. err
log(Working Days) 0.009*** 0.002 0.008*** 0.002
log(Project Volume (cu. yds.)) -0.039 0.029 -0.079* 0.039
Ongoing Projects -0.028 0.015 -0.025 0.016
Govt. Estimate 0.079 0.048
Consant 1.656*** 0.205 0.737 0.577
District Yes Yes
N 1777.000 1777.000
* p<0.05, ** p<0.01, *** p<0.001

Note: This table contains regression results for the effect of observable characteristics
on the number of bidders. The variable “Ongoing Projects” represents the number of
projects underway in the district at the time the current project is set to begin. That
this variable has a statistically insignificant effect on the number of bidders in the
auction, suggesting that the number of currently ongoing projects does not impact
bidder participation in auctions.
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Figure 6: US Army Corps of Engineers district map. Not all districts oversee dredging opera-
tions; see the data appendix for more details

106



Figure 7: Expanded results of the capacity change counterfactual simulation to include vessel additions.
On the x-axis is the number of vessels added or subtracted from the baselinemodel. The y-axis on the three
figures correspond to the percentage of projects kept in-house, the annual outsourcing cost for projects
contracted out (in millions of dollars), and the total distance traveled by government vessels (in hundreds
of miles), respectively.
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Figure 8: Histogram of Changes to Winning Bid

Note: This figure is a histogram of ex-post changes to contract price as a percentage
of thewinning auction bid. While nearly all contracts feature changes to thewinning
bid, the mean change is almost exactly zero.
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