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ABSTRACT

In this thesis, we present a number of results in set theory, particularly in
the areas of forcing, large cardinals, and combinatorial set theory.

Chapter 2 concerns covering matrices, combinatorial structures intro-
duced by Viale in his proof that the Singular Cardinals Hypothesis follows
from the Proper Forcing Axiom. In the course of this proof and subsequent
work with Sharon, Viale isolated two reflection principles, CP and S, which
can hold of covering matrices. We investigate covering matrices for which
CP and S fail and prove some results about the connections between such
covering matrices and various square principles.

In Chapter 3, motivated by the results of Chapter 2, we introduce a
number of square principles intermediate between the classical �κ and
�(κ+). We provide a detailed picture of the implications and independence
results which exist between these principles when κ is regular.

In Chapter 4, we address three questions raised by Cummings and
Foreman regarding a model of Gitik and Sharon. We first analyze the
PCF-theoretic structure of the Gitik-Sharon model, determining the ex-
tent of good and bad scales. We then classify the bad points of the bad
scales existing in both the Gitik-Sharon model and various other models
containing bad scales. Finally, we investigate the ideal of subsets of singu-
lar cardinals of countable cofinality carrying good scales.

In Chapter 5, we prove that, assuming large cardinals, it is consistent
that there are many singular cardinals µ such that every stationary subset
of µ+ reflects but there are stationary subsets of µ+ that do not reflect at
ordinals of arbitrarily high cofinality. This answers a question raised by
Todd Eisworth and is joint work with James Cummings.

In Chapter 6, we extend a result of Gitik, Kanovei, and Koepke re-
garding intermediate models of Prikry-generic forcing extensions to Radin-
generic forcing extensions. Specifically, we characterize intermediate mod-
els of forcing extensions by Radin forcing at a large cardinal κ using mea-
sure sequences of length less than κ.

In the final brief chapter, we prove some results about iterations of ω1-
Cohen forcing with ω1-support, answering a question of Justin Moore.
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CHAPTER 1

INTRODUCTION

In this thesis, we present a number of results in set theory. Many of the re-
sults are directly motivated by the fundamental tension that exists in set
theory between reflection phenomena and large cardinals on one hand and
combinatorial principles (e.g. various square principles) witnessing incom-
pactness on the other. Reflection and large cardinals place limits on the
type of combinatorial structures which can exist, and vice versa, and the
interaction between these opposing phenomena is a fertile area of mathe-
matical study. In Chapters 4 and 5, we will be particularly interested in
questions of this sort regarding successors of singular cardinals. Combina-
torial problems at successors of singular cardinals are inextricably bound
up with questions about canonical inner models and large cardinals and
often have significant implications for cardinal arithmetic.

In this introduction, we will introduce some of the basic objects of study
and present some of the major previous results.

1.1 Notation

Our notation is for the most part standard. Unless otherwise specified, the
reference for all notation and definitions is [19]. If A is a set of ordinals,
then A′ denotes the set of limit ordinals of A, i.e. the set of α such that
A ∩ α is unbounded in α, and otp(A) denotes the order type of A. If λ is
a regular cardinal, then cof(λ) denotes the class of ordinals of cofinality
λ. If λ < κ, then Sκλ denotes κ ∩ cof(λ). If A is a set of cardinals, then∏
A is the set of functions f such that dom(f) = A and, for every λ ∈ A,

f(λ) ∈ λ. If A = {κi | i < η}, we will often write
∏
i<η κi instead of

∏
A

and will write f(i) instead of f(κi). If A is cofinal in κ and f, g ∈
∏
A, then

we write f <∗ g to mean that there is γ < κ such that, for every λ ∈ A \ γ,
f(λ) < g(λ). If f is a function and X ⊂ dom(f), then f [X] and f“X both
denote the image of X under f .

1



2 CHAPTER 1. INTRODUCTION

1.2 Combinatorial principles

Squares

One of the most important set-theoretic combinatorial principle is Jensen’s
square.

Definition. Let κ be an infinite cardinal. ~C = 〈Cα | α < κ+〉 is a �κ-
sequence if, for all limit ordinals α < β < κ+,

1. Cβ is a club in β.

2. otp(Cβ) ≤ κ.

3. If α ∈ C ′β , then Cβ ∩ α = Cα.

�κ is the assertion that there is a �κ-sequence.

A �κ-sequence can be seen as a canonical way of witnessing that the
ordinals between κ and κ+ are singular. The following spectrum of weak-
enings of Jensen’s square principle was introduced by Schimmerling [25].

Definition. Let κ and λ be cardinals, with κ infinite. ~C = 〈Cα | α < κ+〉 is
a �κ,λ-sequence if, for all limit ordinals α < β < κ+, Cβ 6= ∅, |Cβ | ≤ λ, and,
for all C ∈ Cβ ,

1. C is a club in β.

2. otp(C) ≤ κ.

3. If α ∈ C ′, then C ∩ α ∈ Cα.

�κ,λ is the assertion that there is a �κ,λ-sequence. �κ,<λ is defined in the
same way, requiring that |Cβ | < λ for all limit β < κ+.

Remark �κ,κ is often denoted �∗κ and is referred to as weak square. �κ,κ+

is sometimes referred to as silly square. It is a theorem of ZFC that �κ,κ+

holds for every infinite cardinal κ.

Theorem 1.1. (Jensen [20]) If V = L, then �κ holds for every infinite
cardinal κ.

Theorem 1.2. (Burke, Kanamori (see [25])) If κ is a strongly compact car-
dinal, then �λ,<cf(λ) fails for every λ ≥ κ.
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Approachability

The notion of approachability was introduced by Shelah and has played a
very important role in modern combinatorial set theory.

Definition. Let λ be a regular cardinal.

1. Let ~a = 〈aα | α < λ〉 be a sequence of bounded subsets of λ. A limit or-
dinal β < λ is approachable with respect to ~a if there is an unbounded
A ⊆ β of order type cf(β) such that, for every γ < β, there is α < β

such that A ∩ γ = aα.

2. Let S ⊆ λ. S ∈ I[λ] if there is a sequence ~a = 〈aα | α < λ〉 of bounded
subsets of λ and a club C ⊆ λ such that every β ∈ C∩S is approachable
with respect to ~a.

3. If λ = µ+ for some cardinal µ, we say that the approachability prop-
erty holds at µ if λ ∈ I[λ]. The approachability property at µ is de-
noted by APµ.

I[λ] turns out to be a normal ideal on λ, and so APµ is the same as the
statement that I[λ] is an improper ideal. If λ<λ = λ then, letting ~a and ~b
be two enumerations of the bounded subsets of λ in order type λ, the set
{β | {aα | α < β} = {bα | α < β}} is easily seen to be a club in λ. Thus,
the set of ordinals approachable with respect to ~a is equal, modulo clubs,
to the set of ordinals approachable with respect to ~b. In this case, if we fix
an enumeration ~a of the bounded subsets of λ in order type λ, then the set
S of ordinals approachable with respect to ~a is a maximal set in I[λ] in the
sense that that if T ⊆ λ, then T ∈ I[λ] if and only if T \ S is nonstationary.
If such a maximal set exists, it is referred to as the set of approachable
points of λ. See [11] for proofs of these facts and other information on I[λ].

Fact 1.3. If µ < κ are regular cardinals, then Sκ
+

µ ∈ I[κ+].

If µ is an infinite cardinal, then APµ can be seen as a kind of weak
square principle. In fact, �∗µ ⇒ APµ.

Scales

PCF theory, the study of reduced products of sets of regular cardinals, was
introduced by Shelah and has found a wide array of applications in various
fields of mathematics. One of the central PCF-theoretic notions is that of
a scale.
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Definition. Suppose κ is a singular cardinal and A is a cofinal subet of κ
consisting of regular cardinals. ~f = 〈fα | α < µ〉 is a scale of length µ in∏
A if the following hold:

1. For all α < µ, fα ∈
∏
A.

2. For all α < β < µ, fα <∗ fβ .

3. For all h ∈
∏
A, there is α < µ such that h <∗ fα.

In other words, ~f is increasing and cofinal in (
∏
A,<∗). We say that A

carries a scale of length µ if there is a scale of length µ in
∏
A.

We note that we will typically consider scales in
∏
A when otp(A) =

cf(κ), but this need not necessarily be the case. A simple diagonalization
argument shows that, if 2κ = κ+, then every cofinal A ⊂ κ consisting
of regular cardinals carries a scale of length κ+. One of the fundamental
results of PCF theory is a theorem of Shelah stating that for every singular
cardinal κ, there is an A ⊆ κ that carries a scale of length κ+ [28].

Definition. Let κ be a singular cardinal, A ⊂ κ a cofinal set of regular
cardinals, and ~f = 〈fα | α < µ〉 a scale in

∏
A.

1. α < µ is a good point for ~f (very good point for ~f ) if cf(κ) < cf(α) < κ

and there are an unbounded (club) C ⊆ α and η < κ such that, for all
γ < γ′, both in C, fγ � (A \ η) < fγ′ � (A \ η).

2. α < µ is a bad point for ~f if cf(κ) < cf(α) < κ and α is not a good
point for ~f .

3. ~f is a good scale (very good scale) if µ = κ+ and there is a club C ⊆ κ+

such that every α ∈ C ∩ cof(> cf(κ)) is a good point (very good point)
for ~f .

4. ~f is a bad scale if µ = κ+ and ~f is not a good scale.

An intricate web of implications connects the existence of good and very
good scales with various other combinatorial principles, including squares,
approachability, and stationary reflection, at successors of singular cardi-
nals. We record some of the relevant facts here. Let κ be a singular cardi-
nal.

• If A ⊆ κ carries a good scale, then every scale in
∏
A is good [13].
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• If �κ,λ holds for some λ < κ, then every A ⊆ κ which carries a scale
of length κ+ carries a very good scale [6].

• If APκ holds, then every A ⊆ κ which carries a scale of length κ+

carries a good scale [13].

The interested reader is referred to [6] and [13] for more details.

1.3 Forcing

We assume familiarity with forcing. For a complete exposition of the basic
facts about forcing, we refer the reader to [23] and [19]. For a treatment of
iterated forcing, see [3].

Remark We observe the convention that, if P is a forcing poset and p, q ∈
P, then q ≤ p means that q is stronger, or carries more information, than p.

We now review some definitions and results that will be used later.

Definition. Let P be a partial order, and let X ⊆ P. A lower bound for
X is a condition q ∈ P such that, for all p ∈ X, q ≤ p. If there is a unique
condition r ∈ P such that r is a lower bound for X and, if q is a lower bound
for X, then q ≤ r, then this condition r is denoted by inf(X). If there is no
such condition, then inf(X) is undefined.

Definition. Let P be a partial order and let β be an ordinal.

1. The two-player game Gβ(P) is defined as follows: Players I and II
alternately play entries in 〈pα | α < β〉, a decreasing sequence of con-
ditions in P with p0 = 1P. Player I plays at odd stages, and Player
II plays at even stages (including all limit stages). If there is an even
stage α < β at which Player II can not play, then Player I wins. Oth-
erwise, Player II wins.

2. G∗β(P) is defined just as Gβ(P) except Player II no longer plays at limit
stages. Instead, if α < β is a limit ordinal, then pα = inf({pγ | γ < α})
if such a condition exists. If, for some limit α < β, such a condition
does not exist, then Player I wins. Otherwise, Player II wins.

3. P is β-strategically closed if Player II has a winning strategy for the
game Gβ(P). P is said to be strongly β-strategically closed if Player
II has a winning strategy for the game G∗β(P).< β-strategically closed
and strongly < β-strategically closed are defined in the obvious way.
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Fact 1.4. Let P be a partial order and let κ be a cardinal. If P is (κ + 1)-
strategically closed, then forcing with P does not add any new κ-sequences
of ordinals.

Fact 1.5. [24] Let κ be a regular cardinal, and let κ < λ < µ. Suppose
that, in V Coll(κ,<λ), P is a separative, strongly κ-strategically closed partial
order and |P| < µ. Let i be the natural complete embedding of Coll(κ,< λ)

into Coll(κ,< µ) (namely, the identity embedding). Then i can be extended
to a complete embedding j of Coll(κ,< λ) ∗ P into Coll(κ,< µ) so that the
quotient forcing Coll(κ,< µ)/j[Coll(κ,< λ) ∗ P] is κ-closed.

Fact 1.6. Let κ be a regular cardinal and let 〈Pi, Q̇j | j < α, i ≤ α〉 be a
forcing iteration in which inverse limits are taken at all limit stages of cofi-
nality < κ and such that, for all i < α, Pi “Q̇i is (strongly) κ-strategically
closed”. Then Pα is (strongly) κ-strategically closed.

One of the most important applications of approachability is its im-
plication that the stationarity of certain sets is preserved by sufficiently
closed forcing.

Fact 1.7. Let µ and κ be cardinals. Suppose that S is a stationary subset of
Sκ

+

<µ, S ∈ I[κ+], and P is a µ-closed forcing poset. Then S remains stationary
in V P.



CHAPTER 2

COVERING MATRICES

Definition. Let θ < λ be regular cardinals. D = {D(i, β) | i < θ, β < λ} is
a θ-covering matrix for λ if:

1. For all β < λ, β =
⋃
i<θD(i, β).

2. For all β < λ and all i < j < θ, D(i, β) ⊆ D(j, β).

3. For all β < γ < λ and all i < θ, there is j < θ such that D(i, β) ⊆
D(j, γ).

βD is the least β such that for all γ < λ and all i < θ, otp(D(i, γ)) < β.
D is normal if βD < λ.
D is transitive if, for all α < β < λ and all i < θ, if α ∈ D(i, β), then

D(i, α) ⊆ D(i, β).
D is uniform if, for all β < λ, there is i < θ such that D(j, β) contains

a club in β for all j ≥ i. (Note that this is equivalent to the statement that
there is i < θ such that D(i, β) contains a club in β.)
D is closed if, for all β < λ, all i < θ, and all X ∈ [D(i, β)]≤θ, supX ∈

D(i, β).

Much of this chapter will be concerned with constructing covering ma-
trices for which the following two reflection properties fail.

Definition. Let θ < λ be regular cardinals, and let D be a θ-covering ma-
trix for λ.

1. CP(D) holds if there is an unbounded T ⊆ λ such that, for every X ∈
[T ]θ, there are i < θ and β < λ such that X ⊆ D(i, β) (in this case, we
say that D covers [T ]θ).

2. S(D) holds if there is a stationary S ⊆ λ such that, for every family
{Sj | j < θ} of stationary subsets of S, there are i < θ and β < λ such
that, for every j < θ, Sj ∩D(i, β) 6= ∅.

Definition. Let θ < λ be regular cardinals. R(λ, θ) is the statement that
there is a stationary S ⊆ λ such that for every family {Sj | j < θ} of station-
ary subsets of S, there is α < λ of uncountable cofinality such that, for all
j < θ, Sj reflects at α.

7



8 CHAPTER 2. COVERING MATRICES

If D is a nice enough covering matrix, then CP(D) and S(D) are equiv-
alent and R(λ, θ) implies both. The following is proved in [26]:

Lemma 2.1. Let θ < λ be regular cardinals, and let D be a θ-covering
matrix for λ.

1. If D is transitive, then S(D) implies CP(D).

2. If D is closed, then CP(D) implies S(D).

3. If D is uniform, then R(λ, θ) implies S(D).

We note briefly that scales give natural examples of covering matrices
for which CP and S hold.

Proposition 2.2. Let µ be a singular cardinal with cf(µ) = θ. Let λ = µ+,
let 〈µi | i < θ〉 be an increasing sequence of regular cardinals cofinal in µ

such that θ < µ0. Suppose ~f = 〈fα | α < λ〉 is a scale in∏
i<θ

µi.

Then, letting D = {D(i, β) | i < θ, β < λ} be defined by D(i, β) = {α < β |
for all j ≥ i, fα(j) < fβ(j)}, we have that D is a transitive covering matrix,
and CP(D) and S(D) hold.

Proof. The fact that D is a transitive covering matrix follows easily from
the fact that ~f is a scale. We now show that, for every X ∈ [λ]θ, there are
i < θ and β < λ such that X ⊆ D(i, β). This will immediately imply that
CP(D) and S(D) both hold. To this end, fix X ∈ [λ]θ. Define

g ∈
∏
i<θ

µi

by g(i) = sup({fα(i) | α ∈ X}). Find β < λ such that g <∗ fβ , and let i < θ

be such that g(j) < fβ(j) for all j ≥ i. Then X ⊆ D(i, β).

However, the following proposition shows that, under certain cardinal
arithmetic assumptions (for example, if θ = ω or if µ is strong limit), the
covering matrix D defined in the preceding proposition cannot be normal.

Proposition 2.3. Assume the same hypotheses as in Proposition 2.2 hold,
and let D be the covering matrix defined in the statement of that proposi-
tion. Assume moreover that, for all i < θ, µ|i|i ≤ µ. Then D is not normal.
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Proof. Suppose for sake of contradiction that βD < λ. For each j < θ, use
the fact that µ|j|j ≤ µ to find an unbounded Bj ⊆ λ and

f j ∈
∏
i≤j

µi

such that, for every α ∈ Bj and every i ≤ j, fα(i) = f j(i). Find {B∗j | j < θ}
such that, for every j < θ, B∗j ⊆ Bj and |Bj | = µj , and, letting

B∗ =
⋃
j<θ

Bj ,

we have otp(B∗) > βD. Now, for each j < θ, define

gj ∈
∏
i<θ

µi

by letting gj(i) = f j(i) + 1 for i ≤ j and gj(i) = sup({fα(i) + 1 | α ∈ B∗j }) for
i > j. Define

g ∈
∏
i<θ

µi

by letting g(i) = sup({gj(i) | j < θ}) for all i < θ. Finally, find β < λ and
i < θ such that g(j) < fβ(j) for all j ≥ i. It follows that B∗ ⊆ D(i, β),
contradicting the fact that otp(B∗) > βD.

The following lemma is a key component of Viale’s proof that SCH fol-
lows from PFA.

Lemma 2.4. Let λ > ℵ2 be a regular cardinal. PFA implies that CP(D)
holds for every ω-covering matrix D for λ.

Let κ be an uncountable regular cardinal. We first consider the ques-
tion of what types of κ covering matrices for κ+ can exist. In particular, we
will be interested in the existence of a covering matrix that is transitive,
normal, and uniform. It turns out that one can always ask for any two of
these three properties.

Proposition 2.5. There is a uniform, transitive κ-covering matrix for κ+.

Proof. Simply let D(i, β) = β for every i < κ and β < κ+.

Proposition 2.6. There is a transitive, normal κ-covering matrix for κ+.
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Proof. For each α < κ+, let φα : κ → α be a surjection. For i < κ and
β < κ+, recursively define

D(i, β) = φβ [i] ∪
⋃

α∈φβ [i]

D(i, α).

Let D = {D(i, β) | i < κ, β < κ+}.
It is clear that D is a covering matrix and, inductively, |D(i, β)| < κ for

every i and β. Thus, βD ≤ κ, so D is normal. For each i < κ, we show by
induction on β < κ+ that if α ∈ D(i, β), then D(i, α) ⊆ D(i, β). Indeed, if
α ∈ φβ [i], then the conclusion holds by definition, while if α ∈ D(i, γ) for
some γ ∈ φβ [i], then by induction D(i, α) ⊆ D(i, γ) ⊆ D(i, β). Thus, D is
transitive.

The following lemma on ordinal arithmetic will be quite useful in our
construction of covering matrices.

Lemma 2.7. Let θ be a regular cardinal, µ < θ, and m < ω. Suppose
that for each i < µ, Xi is a set of ordinals such that otp(Xi) < θm. Let
X =

⋃
i<µXi. Then otp(X) < θm.

Proof. By induction on m. The conclusion is immediate for m = 0 and
m = 1. Let m ≥ 2 and suppose for sake of contradiction that otp(X) ≥ θm.
Fix A ⊆ X of order type exactly θm. Enumerate A in increasing order as
A = {aα | α < θm}. For each β < θ, let Aβ = {aθm−1·β+γ | γ < θm−1}.
Then otp(Aβ) = θm−1, so by the induction hypothesis, there is iβ < µ such
that otp(Xiβ ∩ Aβ) = θm−1. Thus, there is an i∗ < µ such that iβ = i∗ for
unboundedly many β < θ. But then otp(Xi∗) ≥ θm. Contradiction.

Proposition 2.8. There is a uniform, normal κ-covering matrix for κ+.

Proof. For each α < κ+, let Cα be a club in α such that otp(Cα) ≤ κ, and
let φα : κ → α be a surjection. We define D = {D(i, β) | i < κ, β < κ+}
by recursion on β and, for fixed β, by recursion on i. For each β < κ+, let
D(0, β) = Cβ . If i < κ is a limit ordinal, let

D(i, β) =
⋃
j<i

D(j, β).

Finally, let

D(i+ 1, β) = D(i, β) ∪ φβ [i] ∪
⋃

α∈φβ [i]

D(i+ 1, α).
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It is easily verified that D is a κ-covering matrix for κ+ and, by con-
struction, D(0, β) contains a club in β for each β < κ+. It remains to show
that D is normal. We in fact prove by induction on β < κ+ and, for fixed β,
by induction on i < κ, that otp(D(i, β)) < κ2 for all i and β. Fix i < κ and
β < κ+. By the inductive hypothesis, D(i, β) is a union of fewer than κ-
many sets, all of which have order type less than κ2. Then, by the previous
lemma, otp(D(i, β)) < κ2. Thus, βD ≤ κ2 < κ+, so D is normal.

However, we can not always get all three properties, since CP(D) and
S(D) necessarily fail for a transitive, normal, uniform κ-covering matrix
for κ+.

Lemma 2.9. If D is a normal κ-covering matrix for κ+, then CP(D) fails.

Proof. Let T be an unbounded subset of κ+. Then any X ∈ [T ]κ whose
order type is greater than βD can not be contained in any D(i, β).

Since S(D) implies CP(D) whenever D is transitive, S(D) fails for every
transitive, normal κ-covering matrix for κ+.

Proposition 2.10. If R(κ+, κ) holds, then there are no transitive, normal,
uniform κ-covering matrices for κ+.

Proof. R(κ+, κ) implies that every uniform κ-covering matrix D for κ+ sat-
isfies S(D). But we saw above that S(D) fails for every transitive, normal
κ-covering matrix for κ+.

As a corollary, we see that the forcing axiom Martin’s Maximum, in-
troduced in [14], places limitations on the existence of certain ω1-covering
matrices for ω2.

Corollary 2.11. If Martin’s Maximum holds, then there are no transitive,
normal, uniform ω1-covering matrices for ω2.

Proof. Martin’s Maximum implies (see [14] for details) that R(ℵn,ℵ1) holds
for every 1 < n < ω as witnessed by Sℵnℵ0 .

The existence of a transitive, normal, uniform covering matrix does
follow, however, from sufficiently strong square principles.

Proposition 2.12. Suppose κ is a regular cardinal and �κ,<κ holds. Then
there is a transitive, normal, uniform κ-covering matrix for κ+.
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Proof. Let 〈Cα | α < κ〉 be a �κ,<κ-sequence. We construct a transitive,
normal, uniform κ-covering matrix for κ+, D = {D(i, β) : i < κ, β < κ+},
by recursion on β as follows:

• D(i, β + 1) = D(i, β) ∪ {β}

• If β is a limit ordinal and cf(β) < κ, fix E, a club in β of order type
less than κ, and let

D(i, β) =

∅ if supC∈Cβ otp(C) ≥ ω · i

E ∪
⋃
α∈E D(i, α) if supC∈Cβ otp(C) < ω · i

• If cf(β) = κ, fix C ∈ Cβ , and let

D(i, β) = C ′ ∪
⋃
α∈C′

D(i, α)

It is routine to check that D is a uniform κ-covering matrix for κ+, and an
easy induction shows that it is transitive. We claim that D is normal. We
prove that otp(D(i, β)) < κ2 for every i < κ and β < κ+ by induction on
β. If β is a successor ordinal or a limit ordinal of cofinality less than κ,
then D(i, β) is the union of fewer than κ-many sets, each, by the induction
hypothesis, of order type less than κ2. Thus, otp(D(i, β)) < κ2. Suppose
cf(β) = κ. Let C ∈ Cβ be the club used in the construction of D(i, β).
Enumerate C ′ in increasing order as {αγ | γ < κ}. For each γ < κ, C ∩αγ ∈
Cαγ , so for γ ≥ i, D(i, αγ) = ∅. Thus, D(i, β) is itself a union of fewer than
κ-many sets, each of order type less than κ2, so otp(D(i, β)) < κ2.

We now show that �κ,<κ is the optimal hypothesis in the previous
proposition by producing, via a standard argument due originally to Baum-
gartner [2], a model in which �∗κ and R(κ+, κ) both hold. Recall that, if
κ<κ = κ, then �∗κ holds.

Proposition 2.13. Let κ < λ, with κ regular and λ measurable. Let P =

Coll(κ,< λ), and let G be P-generic over V . Then, in V [G], κ<κ = κ and
R(λ, κ) hold.

Proof. First note that, since P is κ-closed, it doesn’t add any new bounded
subsets of κ, so, since λ is measurable in V , κ<κ = κ in V [G], so �∗κ holds
in V [G].

We now show that R(λ, κ) holds in V [G] as witnessed by Sλ<κ. Let j :

V → M be an elementary embedding with M transitive and crit(j) = λ,
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and let H be Coll(κ,< j(λ))-generic over V such that G ⊂ H. We can
then lift the embedding to j : V [G] → M [H]. Let {Sα | α < κ} be a
family of stationary subsets of Sλ<κ. Note that j({Sα | α < κ}) = {j(Sα) |
α < κ} and, for each α < κ, j(Sα) ∩ λ = Sα. Since Coll(κ, [λ, j(λ)) is κ-
closed, Facts 1.3 and 1.7 imply that each Sα remains stationary in V [H]

and therefore also in M [H]. Thus, in M [H], the sets {j(Sα) | α < κ} reflect
simultaneously to a point of uncountable cofinality below j(λ), namely λ,
so, by elementarity, in V [G], the sets {Sα | α < κ} reflect simultaneously to
a point of uncountable cofinality below λ. Thus, in V [G], R(λ, κ) = R(κ+, κ)

holds.

Thus, �∗κ does not imply the existence of a transitive, normal, uniform
κ-covering matrix for κ+.

We now prove that the converse of Proposition 2.12 does not hold in
general by showing that, if κ is regular and not strongly inaccessible, one
can force to add a transitive, normal, uniform κ-covering matrix D for κ+

without adding a �κ,<κ-sequence. The argument is similar to that intro-
duced by Jensen to distinguish between various weak square principles
(see [20]). We first introduce a forcing poset, which we will denote here by
Q, which will add a transitive, normal, uniform κ-covering matrix for κ+.
Elements of Q will be of the form q = {Dq(i, β) | i < κ, β ≤ βq} and will
satisfy the following:

• βq < κ+.

• For all β ≤ βq, β =
⋃
i<κD

q(i, β).

• For all β ≤ βq and all i < j < κ, Dq(i, β) ⊆ Dq(j, β).

• For all α < β ≤ βq and all i < κ, if α ∈ Dq(i, β), then Dq(i, α) ⊆
Dq(i, β).

• For all i < κ and all β ≤ βq, otp(Dq(i, β)) < κ2.

• For all β ≤ βq, Dq(i, β) contains a club in β for sufficiently large i < κ.

For p, q ∈ Q, p ≤ q if and only if p end-extends q, i.e. βp ≥ βq and Dp(i, β) =

Dq(i, β) for every i < κ and β ≤ βq.

Proposition 2.14. Q is κ-closed.



14 CHAPTER 2. COVERING MATRICES

Proof. Suppose µ < κ and 〈qα | α < µ〉 is a descending sequence of con-
ditions from Q. We will define q ∈ Q such that for all α < µ, q ≤ qα.
Let βq = sup({βqα | α < µ}). We may assume without loss of general-
ity that the βqα were strictly increasing, so, for all α < µ, βqα < βq. For
all β < βq and i < κ, let Dq(i, β) = Dqα(i, β) for some α < µ such that
β ≤ βqα . It remains to define Dq(i, βq) for i < κ. To this end, fix a club
C ⊆ βq whose order type is cf(βq). Note that |C| < κ. For i < κ, let
Dq(i, βq) = C ∪

⋃
β∈C D

q(i, β). Since Dq(i, βq) is the union of fewer than
κ-many sets of order type less than κ2, the order type of Dq(i, βq) is also
less than κ2. It easily follows that q ∈ Q and, for all α < µ, q ≤ qα.

Proposition 2.15. Q is (κ+ 1)-strategically closed.

Proof. We need to exhibit a winning strategy for Player II in the game
Gκ+1(Q). Suppose γ ≤ κ is an even ordinal and that 〈qα | α < γ〉 has
been played. We specify Player II’s next move, qγ . Let Cγ = {βqα | α <

γ is an even or limit ordinal} (Cγ is thus the set of the top points of the
conditions played by Player II thus far). We assume the following induc-
tion hypotheses are satisfied:

1. Cγ is closed beneath its supremum.

2. If α < α′ < γ and α, α′ are even ordinals, then βqα < βqα′ .

3. For all even ordinals α < γ and all i < α, Dqα(i, βqα) = ∅.

There are three cases.
Case 1: γ is a successor ordinal: Suppose γ = γ′ + 1. Let βqγ =

βqγ′ + 1. For i < κ and β ≤ βqγ′ , let Dqγ (i, β) = Dqγ′ (i, β). For i < κ, let

Dqγ (i, βqγ ) =

∅ if i < γ

{βqγ′} ∪Dqγ′ (i, βqγ′ ) if i ≥ γ
.

Case 2: γ < κ is a limit ordinal: Let βqγ = sup(Cγ) (so Cγ is club in
βqγ ). For i < κ and β < βqγ , let Dqγ (i, β) = Dqα(i, β) for some α < γ such
that β ≤ βqα . For i < κ, let

Dqγ (i, βqγ ) =

∅ if i < γ

Cγ ∪
⋃
β∈Cγ D

qγ (i, β) if i ≥ γ
.

For all i < κ, Dqγ (i, βqγ ) is the union of fewer than κ-many sets of order
type less than κ2 and thus has order type less than κ2.
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Case 3: γ = κ: Let βqγ = sup(Cγ). For i < κ and β < βqγ , let Dqγ (i, β) =

Dqα(i, β) for some α < γ such that β ≤ βqα . For i < κ, let

Dqγ (i, βqγ ) = Cγ ∪
⋃
β∈Cγ

Dqγ (i, β).

Since, for each i < κ, Dqγ (i, β) = ∅ for all β ∈ Cγ \ βqi , each Dqγ (i, βqγ ) is
the union of fewer than κ-many sets of order type less than κ2 and thus
has order type less than κ2.

It is easy to check that in each case the inductive hypotheses are pre-
served and that this provides a winning strategy for Player II in Gκ+1(Q).
Thus, Q is (κ+ 1)-strategically closed.

Proposition 2.16. If 2κ = κ+, then Q is a cardinal-preserving forcing poset
that adds a transitive, normal, uniform κ-covering matrix for κ+.

Proof. Since Q is (κ + 1)-strategically closed, forcing with Q does not add
any new κ-sequences of ordinals, so all cardinals≤ κ+ are preserved. Since
2κ = κ+, |Q| = κ+, so Q has the κ++-chain condition and hence preserves
all cardinals ≥ κ++. Finally, a proof similar to that of the previous proposi-
tion yields the fact that for all α < κ+, the set Eα = {q | βq ≥ α} is dense in
Q. Thus, if G is Q-generic over V , then

⋃
G is a transitive, normal, uniform

κ-covering matrix for κ+.

Given a κ-covering matrixD for κ+, we define a forcing notion TD whose
purpose is to add a club in κ+ of order type κ which interacts nicely with
D. It plays a similar role in our argument as the forcing to thread a square
sequence plays in [6] and [20]. Elements of TD are sets t such that:

1. t is a closed, bounded subset of κ+.

2. |t| < κ.

3. If t is enumerated in increasing order as 〈τα | α ≤ γt < κ〉, then for
all α ≤ γt and all i < α, D(i, τα) = ∅.

If t, t′ ∈ TD, then t′ ≤ t if and only if t′ end-extends t, i.e. γt′ ≥ γt and,
for all α ≤ γt, τ ′α = τα.

In general, TD may be very poorly behaved. For example, the set it
adds may not be cofinal in κ+ and, even if it is, its order type might be less
than κ. However, if D has been added by Q immediately prior to forcing
with TD, then it has some nice properties.
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Proposition 2.17. Let G be Q-generic over V , and let D =
⋃
G. Then, in

V [G], for all α < κ+, Eα = {t | α ≤ τγt} is dense in TD.

Proof. This follows from the fact that, in V , for every α < κ+ and every
j < κ, the set Ej,α = {q | α ≤ βq and for every i < j,D(i, βq) = ∅} is easily
seen to be dense in Q.

Proposition 2.18. If D is the covering matrix added by Q, then Q∗ ṪD has
a κ-closed dense subset.

Proof. Let S = {(q, ṫ) | q decides the value of ṫ and q  “τ̇γt = βq”}. We
first show that S is dense in Q ∗ ṪD. To this end, let (q0, ṫ0) ∈ Q ∗ ṪD. Find
q1 ≤ q0 such that q1 decides the value of ṫ to be some 〈τα | α ≤ γt < κ〉 (this
is possible, since Q is (κ+1)-strategically closed and hence doesn’t add any
new κ-sequences of ordinals). Without loss of generality, βq1 > τγt . Now
form q2 ≤ q1 by setting βq2 = βq1 + 1 and

Dq2(i, βq2) =

∅ if i ≤ γt
{βq1} ∪Dq1(i, βq1) if i > γt

.

Finally, let ṫ1 be such that q2  ṫ1 = ṫ0 ∪ {βq2}. Then (q2, ṫ1) ≤ (q0, ṫ0) and
(q2, ṫ1) ∈ S.

Next, we show that S is κ-closed. Let 〈(qα, ṫα) | α < ν〉 be a decreasing
sequence of conditions from S with ν < κ a limit ordinal. We will find a
lower bound (q, ṫ) ∈ S. Let βq = sup({βqα | α < ν}) and let X = {β |
for some α < ν, qα  “β ∈ ṫα”}. Note that by our definition of S, X is club
in βq. Let γ = otp(X). Define q as a lower bound to the qα’s by letting

Dq(i, βq) =

∅ if i ≤ γ

X ∪
⋃
β∈X D

q(i, β) if i > γ
.

Let ṫ be a name forced by q to be equal to X ∪ {βq}. Then (q, ṫ) ∈ S and, for
all α < ν, (q, ṫ) ≤ (qα, ṫα).

Thus, if D has been added by Q, then TD does in fact add a club in κ+

and, since Q ∗ ṪD has a κ-closed dense subset and therefore doesn’t add
any new sets of ordinals of order type less than κ, the club added by TD
has order type κ.

Theorem 2.19. Let κ be a regular cardinal that is not strongly inaccessible,
and let λ > κ be a measurable cardinal. Let P = Coll(κ,< λ), and, in V P,
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let Q be the poset defined above. Let G be P-generic over V and, in V [G], let
H be Q-generic over V [G]. Then, in V [G ∗H], there is a transitive, normal,
uniform κ-covering matrix for κ+, but �κ,<κ fails.

Proof. We have already shown that, in V [G ∗ H], there is a transitive,
normal, uniform κ-covering matrix for κ+, D. In V [G ∗ H], let T = TD.
Fix an elementary embedding j : V → M with critical point λ. Then
j(P) = Coll(κ,< j(λ)), and j � P is the identity map. V [G] |= |Q ∗ T| = λ,
and |Q ∗T| has a κ-closed dense subset, so, by Fact 1.5, we can extend j � P
to a complete embedding of Coll(κ,< λ) ∗ Q ∗ T into Coll(κ,< j(λ)) so that
the quotient forcing is κ-closed. Then, letting I be T-generic over V [G ∗H]

and J be R = Coll(κ,< j(λ))/G ∗ H ∗ I-generic over V [G ∗ H ∗ I], we can
further extend j to an elementary embedding j : V [G]→M [G ∗H ∗ I ∗ J ].

We would now like to extend j further still to an embedding with do-
main V [G∗H]. To do this, consider the partial order j(Q). InM [G∗H∗I∗J ],
j(Q) is the partial order to add a transitive, normal, uniform κ-covering
matrix for j(λ). Let E =

⋃
I. E is a club in λ of order type κ, and, if β ∈ E

is such that otp(E ∩ β) = γ, then for every i < γ, D(i, β) = ∅. We use E to
define a “master condition” q∗ ∈ j(Q) as follows. Let βq

∗
= λ. For β < λ

and i < κ, let Dq∗(i, β) = D(i, β) and

Dq∗(i, λ) = E ∪
⋃
β∈E

D(i, β).

q∗ ∈ j(Q) and, if q ∈ H, j(q) = q ≤ q∗. Let K be j(Q)-generic over V [G ∗H ∗
I ∗ J ] such that q∗ ∈ K. Since j[H] ⊆ K, we can extend j to an elementary
embedding j : V [G ∗H]→M [G ∗H ∗ I ∗ J ∗K].

Suppose for sake of contradiction that ~C = 〈Cα | α < λ〉 is a �κ,<κ-
sequence in V [G ∗ H]. For α < λ, j(Cα) = Cα, and j(~C) = 〈Cα | α < j(λ)〉
is a �κ,<κ-sequence in M [G ∗ H ∗ I ∗ J ∗ K]. Fix F ∈ Cλ. F is a thread
through ~C (i.e., F is a club in λ and, for every α ∈ F ′, F ∩ α ∈ Cα) and
F ∈ V [G ∗H ∗ I ∗ J ∗K].

Claim 2.20. F ∈ V [G ∗H].

Proof. Suppose not. Work in V [G]. There is a Q ∗ T ∗R ∗ j(Q)-name ḟ such
that ḟH∗I∗J∗K = F and Q∗T∗R∗j(Q) ḟ 6∈ V [G ∗GQ].

Subclaim 2.21. For all (q, ṫ, ṙ, ṗ) ∈ Q ∗ T ∗ R ∗ j(Q), there are q′ ≤ q,
(ṫ0, ṙ0, ṗ0), (ṫ1, ṙ1, ṗ0), and α < κ+ such that (q′, ṫ0, ṙ0, ṗ0), (q′, ṫ1, ṙ1, ṗ1) ≤
(q, ṫ, ṙ, ṗ) and such that (q′, ṫ0, ṙ0, ṗ0) and (q′, ṫ1, ṙ1, ṗ1) decide the statement
“α̌ ∈ ḟ” in opposite ways.
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Proof. Suppose the subclaim fails for some (q, ṫ, ṙ, ṗ). Define a Q-name ḟ ′

such that for all q′ ≤ q and α < κ+, q′ Q “α̌ ∈ ḟ” if and only if there
is (ṫ′, ṙ′, ṗ′) such that (q′, ṫ′, ṙ′, ṗ′) ≤ (q′, ṫ, ṙ, ṗ) and (q′, ṫ′, ṙ′, ṗ′) Q∗T∗R∗j(Q)

“α̌ ∈ ḟ”. Then (q, ṫ, ṙ, ṗ)  “ḟ = ḟ ′”, contradicting our choice of ḟ . This
proves the subclaim.

Since κ is not strongly inaccessible, letting γ be the least cardinal such
that 2γ ≥ κ, we have γ < κ. Recall that S is the previously defined κ-closed
dense subset of Q ∗ T. We will construct 〈qi | i ≤ γ〉, 〈(ṫs, ṙs, ṗs) | s ∈ ≤γ2〉
and 〈αi | i ≤ γ〉 such that:

1. (q0, ṫ〈〉, ṙ〈〉, ṗ〈〉)  “ḟ is a thread through C”.

2. For each s ∈ ≤γ2, (q|s|, ṫs, ṙs, ṗs) ∈ S ∗ R ∗ j(Q) and βq|s| = α|s|.

3. If s, u ∈ ≤γ2 and s ⊆ u, then (q|u|, ṫu, ṙu, ṗu) ≤ (q|s|, ṫs, ṙs, ṗs).

4. If i < γ and s ∈ i2, then there is α ∈ [αi, αi+1) such that (qi+1, ṫs_〈0〉,
ṙs_〈0〉, ṗs_〈0〉) and (qi+1, ṫs_〈1〉, ṙs_〈1〉, ṗs_〈1〉) decide the statement “α̌ ∈
ḟ” in opposite ways.

5. If i < γ and s ∈ i2, then (qi+1, ṫs_〈0〉, ṙs_〈0〉, ṗs_〈0〉) and (qi+1, ṫs_〈1〉,

ṙs_〈1〉, ṗs_〈1〉) both force that ḟ ∩ [αi, αi+1) 6= ∅.

Suppose for a moment that we have successfully completed this con-
struction. Find q∗ ≤ qγ such that q∗ decides the set Cαγ (this can be done,
since Q is (κ+1)-strategically closed). Then, for each s ∈ γ2, (q∗, ṫs, ṙs, ṗs) ∈
Q ∗ T ∗ R ∗ j(Q) and (q∗, ṫs, ṙs, ṗs)  “αγ is a limit point of ḟ”. Moreover, if
s, u ∈ γ2 and s 6= u, then (q∗, ṫs, ṙs, ṗs) and (q∗, ṫu, ṙu, ṗu) force contradictory
information about ḟ ∩ αγ , which is forced to be an element of Cαγ . But
2γ ≥ κ, contradicting the fact that C is a �κ,<κ-sequence.

We now turn to the construction. Fix (q0, ṫ〈〉, ṙ〈〉, ṗ〈〉) such that (q0, ṫ〈〉, ṙ〈〉,
ṗ〈〉)  “ḟ is a thread through C”, and let α0 = βq0 . We first consider the suc-
cessor case. Fix i < γ and suppose that qi, 〈(ṫs, ṙs, ṗs) | s ∈ i2〉, and αi have
been defined. Enumerate i2 as 〈sj | j < 2i〉, noting that 2i < κ. Now, using
the κ-closure of Q, S, R, and j(Q), the density of S in Q∗T, the subclaim, and
the fact that (q0, ṫ〈〉, ṙ〈〉, ṗ〈〉)  “ḟ is unbounded in κ+”, it is straightforward
to construct 〈qij | j < 2i〉 and 〈((ṫ∗sj_〈0〉, ṙ

∗
sj_〈0〉, ṗ

∗
sj_〈0〉), (ṫ

∗
sj_〈1〉, ṙ

∗
sj_〈1〉, ṗ

∗
sj_〈1〉)) |

j < 2i〉 such that:

• 〈qij | j < 2i〉 is a decreasing sequence of conditions from Q below qi.
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• For all j < 2i, (qij , ṫ
∗
sj_〈0〉, ṙ

∗
sj_〈0〉, ṗ

∗
sj_〈0〉), (qij , ṫ

∗
sj_〈1〉, ṙ

∗
sj_〈1〉, ṗ

∗
sj_〈1〉) ≤

(qij , ṫs, ṙs, ṗs) are both in S∗R∗j(Q) and both force that ḟ∩[αi, β
qij ) 6= ∅.

• For all j < 2i, there is α ∈ [αi, β
qij ) such that (qij , ṫ

∗
sj_〈0〉, ṙ

∗
sj_〈0〉, ṗ

∗
sj_〈0〉)

and (qij , ṫ
∗
sj_〈1〉, ṙ

∗
sj_〈1〉, ṗ

∗
sj_〈1〉) decide the statement “α̌ ∈ ḟ” in oppo-

site ways.

Now let ξ = sup({δ | for some j < 2i and ` ∈ {0, 1}, qij  “otp(ṫ∗sj_〈`〉) = δ̌”}).
Since 2i < κ, we know that ξ < κ. Let αi+1 = sup({βq

i
j | j < 2i}). Let Ei+1

be a club in αi+1 of order type cf(αi+1) < κ. Define qi+1 to be a lower bound
of 〈qij | j < 2i〉 by letting βqi+1 = αi+1 and, for all k < κ,

Dqi+1(k, αi+1) =

∅ if k < ξ + 1

Ei+1 ∪
⋃
β∈Ei+1

Dqi+1(k, β) if k ≥ ξ + 1
.

Finally, for all j < 2i and ` ∈ {0, 1}, let (ṫsj_〈`〉, ṙsj_〈`〉, ṗsj_〈`〉) be such that
qi+1  “(ṫsj_〈`〉, ṙsj_〈`〉, ṗsj_〈`〉) = (ṫ∗sj_〈`〉 ∪ {αi+1}, ṙ∗sj_〈`〉, ṗ

∗
sj_〈`〉)”.

Next, suppose that i ≤ γ is a limit ordinal and that 〈qj | j < i〉,
〈(ṫs, ṙs, ṗs) | s ∈ <i2〉 and 〈αj | j < i〉 have been defined. Let ξ = sup({δ | for
some s ∈ <i2, q|s|  “otp(ṫs) = δ̌”}). Since 2<i < κ, we know that ξ < κ. Let
αi = sup({βqj | j < i}) and let Ei be a club in αi of order type cf(αi) < κ.
Define qi to be a lower bound for 〈qj | j < i〉 by letting βqi = αi and

Dqi(k, αi) =

∅ if k < ξ + 1

Ei ∪
⋃
β∈Ei D

qi(k, β) if k ≥ ξ + 1
.

Finally, for all s ∈ i2, let ṫs be such that qi  “ṫs =
⋃
j<i ṫs�j ∪ {αi}” and let

(ṙs, ṗs) be forced by (qi, ṫs) to be a lower bound for 〈(ṙs�j , ṗs�j) | j < i〉. This
is possible, since R ∗ j(Q) is κ-closed. This construction satisfies conditions
1-5 above and allows us to complete the proof of Claim 2.20.

But now we have shown that F , which threads C, is in V [G∗H], contra-
dicting the fact that C is a �κ,<κ-sequence in V [G ∗H]. Thus, �κ,<κ fails in
V [G ∗H].

Note that, if κ is supercompact and λ > κ is measurable, we can also
obtain a model in which there is a transitive, normal, uniform κ-covering
matrix for κ+ but �κ,<κ fails by first making the supercompactness of κ
indestructible under κ-directed closed forcing and then forcing with Q. We
conjecture that we can obtain such a model for all regular, uncountable κ
but do not have a proof when κ is inaccessible but not supercompact.
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We now investigate counterexamples to CP(D) and S(D) for more gen-
eral shapes of covering matrices. Recall the following definitions:

Definition. Let κ be an infinite cardinal.

1. ~C = 〈Cα | α < κ〉 is a coherent sequence if, for all α, β ∈ lim(κ),

a) Cα is a club in α.

b) If α ∈ C ′β , then Cα = Cβ ∩ α.

2. Let ~C = 〈Cα | α < κ〉 be a coherent sequence. If D is a club in κ, then
D is a thread through ~C if, for every α ∈ D′, D ∩ α = Cα.

3. ~C = 〈Cα | α < κ〉 is a �(κ)-sequence if it is a coherent sequence that
has no thread. We say that �(κ) holds if there is a �(κ)-sequence.

Let θ < λ be regular, infinite cardinals and suppose that �(λ) holds.
Fix a �(λ)-sequence ~C. Arrange so that Cα is defined for all α < λ by
letting Cα+1 = {α}. The definitions of the following functions are due to
Todorcevic [30]: First, define Λθ : [λ]2 → λ by

Λθ(α, β) = max{ξ ∈ Cβ ∩ (α+ 1) | θ divides otp(Cβ ∩ ξ)}

Next, let ρθ : [λ]2 → θ be defined recursively by

ρθ(α, β) = sup{otp(Cβ ∩ [Λθ(α, β), α)), ρθ(α,min(Cβ \ α)),

ρθ(ξ, α) | ξ ∈ Cβ ∩ [Λθ(α, β), α)}

Proofs of the following lemmas can be found in [30].

Lemma 2.22. Let α < β < γ < λ.

1. ρθ(α, γ) ≤ max{ρθ(α, β), ρθ(β, γ)}.

2. ρθ(α, β) ≤ max{ρθ(α, γ), ρθ(β, γ)}.

Lemma 2.23. Let i < θ and β < λ. {α < β | ρθ(α, β) ≤ i} is closed.

Define a covering matrixD = {D(i, β) | i < θ, β < λ} by lettingD(i, β) =

{α < β | ρθ(α, β) ≤ i}. It is clear that D satisfies conditions 1 and 2 in the
definition of a covering matrix. Part 1 of Lemma 2.22 implies that D is
transitive. In fact, together with part 2 of the same lemma, it implies a
stronger coherence property, namely that if i < θ, α < β < λ, and α ∈
D(i, β), then D(i, α) = D(i, β) ∩ α. Lemma 2.23 implies that D is closed.
We now show, however, that in general D is not uniform. First, we make
the following definition:
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Definition. 1. Let A be a set of ordinals and let µ be an infinite cardi-
nal. A[µ] = {α ∈ A | µ divides otp(A ∩ α)}.

2. Let µ < κ be infinite regular cardinals. ~C is a �µ(κ)-sequence if ~C is
a �(κ)-sequence and {α ∈ Sκµ | C

[µ]
α is bounded below α} is stationary.

�µ(κ) is the statement that a �µ(κ)-sequence exists.

Lemma 2.24. Let β < λ be such that cf(β) = θ and C
[θ]
β is bounded below

β. Then, for every i < θ, D(i, β) is bounded below β.

Proof. Let ξ = max(C
[θ]
β ). Since ξ < β and cf(β) = θ, otp(Cβ \ (ξ + 1)) = θ.

Enumerate Cβ \ (ξ + 1) in increasing order as 〈βi | i < θ〉. Now, if i < θ and
βi < α < β, then Λθ(α, β) = ξ and otp(Cβ ∩ [ξ, α)) > i, so ρθ(α, β) > i. Thus,
D(i, β) ⊆ (βi + 1).

Lemma 2.25. Suppose ~C is a �θ(λ)-sequence. Then CP(D) and S(D) both
fail.

Proof. Suppose for sake of contradiction that CP(D) holds and is witnessed
by an unbounded T ⊆ λ. Since ~C is a �θ(λ)-sequence, we can find α ∈ T ′

such that cf(α) = θ and C
[θ]
α is bounded below α. Let X ∈ [T ]θ be an

unbounded subset of α. Find i < θ and β < λ such that X ⊆ D(i, β). Since
D is closed, α ∈ D(i, β), so D(i, α) = D(i, β) ∩ α and X ⊆ D(i, α). This is a
contradiction, as the previous lemma implies that D(i, α) is bounded below
α. Thus, CP(D) fails. Since D is transitive, this means that S(D) fails as
well.

The question now naturally arises whether �θ(λ) is a strictly stronger
assumption than �(λ). This and related questions are addressed in the
following chapter.



CHAPTER 3

SQUARES

Definition. Let A ⊆ κ and let ~C be a �(κ)-sequence. ~C avoids A if, for
every α ∈ lim(κ), C ′α ∩A = ∅.

It is well known that if �κ holds and S ⊆ κ+ is stationary, then there
is a stationary T ⊆ S and a �κ-sequence that avoids T . We would like
to know to what extent similar phenomena occur in connection with �(κ).
The following proposition, whose proof we include for completeness, pro-
vides some information in this direction by showing that, if κ is regular
and S ⊆ κ is stationary, then every �(κ)-sequence must, in a certain sense,
avoid a pair of stationary subsets of S.

Proposition 3.1. Let κ > ω1 be a regular cardinal, and let ~C = 〈Cα | α <
κ〉 be a coherent sequence. Then the following are equivalent:

1. ~C is a �(κ)-sequence.

2. For every stationary T ⊆ κ, there are stationary S0, S1 ⊆ T such that
for every α ∈ lim(κ), C ′α ∩ S0 = ∅ or C ′α ∩ S1 = ∅.

Proof. First, suppose that there are stationary sets S0, S1 ⊆ κ such that,
for every α ∈ lim(κ), C ′α ∩ S0 = ∅ or C ′α ∩ S1 = ∅, and suppose for sake of
contradiction that there is a club D in κ that threads ~C. Since S0 and S1

are stationary, there are α < β < γ in D′ such that α ∈ S0 and β ∈ S1.
Since D ∩ γ = Cγ , we have α, β ∈ C ′γ , contradicting the fact that C ′γ ∩ S0 or
C ′γ ∩ S1 is empty. Thus, ~C is a �(κ)-sequence.

Next, suppose that ~C is a �(κ)-sequence and that T ⊆ κ is stationary.
There are two cases:

Case 1: There is α0 < κ such that {α ∈ T | C ′α ∩ (α0, κ) 6= ∅} is nonsta-
tionary. Let T ∗ = {α ∈ T \ (α0 + 1) | C ′α ∩ (α0, κ) = ∅} and let T ∗ = S0 ∪ S1

be any partition of T ∗ into disjoint stationary sets. Then S0 and S1 are as
desired.

Case 2: For all α0 < κ, {α ∈ T | C ′α ∩ (α0, κ) 6= ∅} is stationary. For
α ∈ lim(κ), let S0

α = {β ∈ T \ (α+ 1) | α 6∈ C ′β} and let S1
α = {β ∈ T \ (α+ 1) |

α ∈ C ′β}.

22
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Claim 3.2. There is α ∈ lim(κ) such that S0
α and S1

α are both stationary.

Proof. Suppose this is not the case. Then for every α ∈ lim(κ), either
S0
α or S1

α is non-stationary. Let A be the set of α ∈ lim(κ) such that S0
α

is nonstationary. We claim that A is unbounded in κ. To show this, fix
α0 < κ. By Fodor’s Lemma, we can fix an α ≥ α0 and a stationary T ∗ ⊆ T

such that if β ∈ T ∗, then α = min(C ′β \ α0). Then S1
α is stationary, so S0

α

is non-stationary and hence α ∈ A. Now let α < α′ be elements of A, and
let Dα and Dα′ be clubs in κ disjoint from S0

α and S0
α′ , respectively. Fix

β ∈ Dα ∩Dα′ ∩ T . Then Cα = Cβ ∩ α and Cα′ = Cβ ∩ α′, so Cα = Cα′ ∩ α.
Thus, D =

⋃
α∈A Cα is a thread through ~C, contradicting the fact that ~C is

a �(κ)-sequence.

Now let α be such that S0
α and S1

α are both stationary. Let S0 = S0
α and

S1 = S1
α. It is routine to check that S0 and S1 are as desired.

The preceding observations lead us to make the following definition.

Definition. Let κ be a regular, uncountable cardinal, and let S ⊆ κ. ~C is
a �(κ, S)-sequence if ~C is a �(κ)-sequence and ~C avoids S. �(κ, S) is the
statement that a �(κ, S)-sequence exists.

Recalling the definition of�µ(κ) from the previous chapter, we start our
investigation of these intermediate square principles with the following
simple observation.

Proposition 3.3. Let µ < κ be infinite regular cardinals. The following
are equivalent:

1. �µ(κ)

2. There is a �(κ)-sequence ~C such that {α < κ | otp(Cα) = µ} is station-
ary.

Proof. A �(κ)-sequence as in 2. is clearly a �µ(κ) sequence. For the other
direction, let ~D be a �µ(κ)-sequence, and let T = {α < κ | D[µ]

α is bounded
below α}. By definition, T ∩ Sκµ is stationary in κ. Form ~C as follows. If
α ∈ lim(κ) \ T , let Cα = D

[µ]
α . If α ∈ T , let Cα = Dα \ (max(D

[µ]
α ) + 1).

It is immediate that, for all α ∈ lim(κ), Cα is club in α. Suppose α < β

and α ∈ C ′β . Then, by our construction, α ∈ D′β , so Dβ ∩ α = Dα. Also,
α ∈ T if and only if β ∈ T , so we obtained Cα from Dα in the same way we
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obtained Cβ from Dβ , so Cβ ∩ α = Cα. We arranged so that, if α ∈ T ∩ Sκµ ,
then otp(Cα) = µ. Finally, there can be no thread E through ~C, since,
if there were, there would be α < α′ such that α, α′ ∈ E′ ∩ T ∩ Sκµ . But
then otp(E ∩ α) = µ = otp(E ∩ α′), which is a contradiction. Thus, ~C is a
�(κ)-sequence as in 2.

The remainder of this chapter investigates the implications and non-
implications that exist among the traditional square properties and those
of the form �µ(κ) and �(κ, S). A diagram illustrating the complete picture
when κ = ω2 can be found at the end of this chapter.

Proposition 3.4. Let µ < κ be infinite, regular cardinals.

1. If �µ(κ) holds, then there is a stationary S ⊆ Sκµ such that �(κ, S)

holds.

2. If there is a stationary S ⊆ Sκω such that �(κ, S) holds, then �ω(κ)

holds.

Proof. First, suppose that ~C is a �µ(κ)-sequence. Let T = {α < κ | C [µ]
α is

bounded below α}. It is easily seen that the construction from the proof of
Proposition 3.3 yields a �(κ, S)-sequence, where S = T ∩ Sκµ .

Next, suppose that S ⊆ Sκω is stationary and that ~D is a�(κ, S)-sequence.
For α < κ, define Cα as follows: If α 6∈ S, let Cα = Dα. If α ∈ S, let Cα
be any set of order type ω unbounded in α. Since ~D avoids S, this does not
interfere with the coherence of the sequence, so ~C is a �ω(κ)-sequence.

Proposition 3.5. Let µ < ν < κ be infinite, regular cardinals. If �ν(κ)

holds, then �µ(κ) holds.

Proof. Assume �ν(κ) holds, and fix a �(κ)-sequence ~C such that T0 = {α <
κ | otp(Cα) = ν} is stationary. We claim that T1 = {α ∈ Sκµ | otp(Cα) < ν} is
also stationary. To see this, let E be club in κ. Let β ∈ E′∩T0. Then E ∩Cβ
is club in β. Let α ∈ (E ∩ Cβ)′ ∩ Sκµ . Then, since Cα = Cβ ∩ α, otp(Cα) < ν,
so α ∈ E ∩ T1.

We can now apply Fodor’s Lemma to T1 \ ν to find a γ < ν and a sta-
tionary S ⊆ T1 such that α ∈ S implies otp(Cα) = γ. Let 〈γξ | ξ < µ〉
enumerate a club in γ with each γξ a limit ordinal (this will not be possible
if µ = ω and γ is not a limit of limit ordinals, but in that case ~C is already
a �µ(κ)-sequence).
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We now define a �µ(κ)-sequence ~D (in fact, ~D will also be a �(κ, S)-
sequence). First, if α ∈ S, let Dα = {β ∈ C ′α | for some ν < µ, otp(Cα∩β) =

γν}. Next, if α ∈ D′α′ for some α′ ∈ S, let Dα = Dα′ ∩ α. Note that this is
well-defined. If α ∈ C ′α′ for some α′ ∈ S but, for all β ∈ S, α 6∈ D′β , then let
Dα = Cα \max(Dα′ ∩ α). Note again that this is well-defined.

If there is α′ ∈ S such that α′ ∈ C ′α (note that such an α′ must be
unique), then let Dα = Cα \ α′. In all other cases, let Dα = Cα. It is
now easy to verify that ~D is a �(κ)-sequence and, since α ∈ S implies that
otp(Dα) = µ, that it is in fact a �µ(κ)-sequence.

The following corollary is now immediate.

Corollary 3.6. 1. Let µ < ν < κ be infinite, regular cardinals. If �ν(κ)

holds, then there is a stationary S ⊆ Sκµ such that �(κ, S) holds.

2. Let µ ≤ κ be infinite, regular cardinals, with µ regular. If �κ holds,
then �µ(κ+) holds.

We now show that the above implications are generally not reversible.
We begin by recalling the definition of the forcing poset that adds a �(κ)

sequence by specifying its initial segments.

Definition. Let κ be a regular cardinal. Q(κ) is the partial order whose
elements are of the form q = 〈Cqα | α ≤ βq〉, where

1. βq < κ.

2. For all α ≤ βq, Cqα is a club in α.

3. For all α < α′ ≤ βq, if α ∈ C ′α′ , then Cα = Cα′ ∩ α.

p ≤ q if and only if p end-extends q, i.e. βp ≥ βq and, for all α ≤ βq,
Cpα = Cqα.

Proposition 3.7. Q(κ) is κ-strategically closed.

Proof. We specify a winning strategy for Player II in Gκ(Q(κ)). First, let
q0 = ∅. Let 0 < α < κ be even and suppose that 〈qδ | δ < α〉 has al-
ready been played. We specify Player II’s next move, qα. Let Eα = {βqδ |
δ < α is even} and suppose that we have satisfied the following inductive
hypotheses:

1. Eα is closed below its supremum.
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2. For all even ordinals δ < ξ < α, βqδ < βqξ and βqδ ∈ (C
qξ
βqξ

)′.

First, suppose that α is a successor ordinal. Since it is even, it is in fact
a double successor. Let α = α′+ 1 = α′′+ 2. In this case, let βqα = βqα′ +ω.
For limit ordinals ζ < βqα , let Cqαζ = C

qα′
ζ , and let

Cqαβqα = Cqα
βqα′′

∪ {βqα′′ } ∪ {βqα′ + n | n < ω}.

Next, suppose that α is a limit ordinal. Let βqα = sup({βqδ | δ < α}).
For limit ordinals ζ < βqα , find δ < α such that ζ ≤ βqδ and let Cqαζ = Cqδζ .
Note that this is well-defined. Let

Cqαβqα =
⋃
ζ∈Eα

Cqαζ .

By our inductive hypotheses, this is a club in βqα and satisfies the coher-
ence requirements.

It is clear that this procedure produces a valid condition qα ∈ Q(κ) that
is a lower bound for 〈qδ | δ < α〉 and maintains the inductive hypotheses.
Thus, Q(κ) is κ-strategically closed.

An argument similar to the proof of the previous proposition shows
that, for every α < κ, the set {q | βq ≥ α} is dense in Q(κ).

Corollary 3.8. Forcing with Q(κ) preserves all cardinals ≤ κ and adds a
coherent sequence 〈Cα | α < κ〉. In addition, if κ<κ = κ, then all cardinals
are preserved.

Proof. Let G be Q(κ)-generic over V . Since Q(κ) is κ-strategically closed,
it doesn’t add any < κ-sequences of ordinals and hence preserves all car-
dinals ≤ κ. Since {q | βq ≥ α} is dense in Q(κ) for every α < κ, we can
define Cα = Cqα, where q ∈ G and βq ≥ α. It is clear that ~C = 〈Cα | α < κ〉
is well-defined and a coherent sequence. Finally, if κ<κ, then |Q(κ)| = κ.
Thus, Q(κ) has the κ+-c.c. and preserves all cardinals ≥ κ+.

Lemma 3.9. If µ < κ are regular cardinals and G is Q(κ)-generic over V ,
then the coherent sequence ~C added by G is a �µ(κ)-sequence.

Proof. Let S = {α < κ | otp(Cα) = µ}. It suffices to show that, in V [G], S is
stationary in κ. Note that this implies that ~C doesn’t have a thread, since
any club in κ must meet S in two points.



27

Work in V , let Ḋ be a Q(κ)-name forced by the empty condition to be a
club in κ, let Ṡ be a Q(κ)-name for S, and let q ∈ Q(κ). We will find p ≤ q

such that p  Ḋ ∩ Ṡ 6= ∅.
We construct 〈qα | α ≤ µ〉, a decreasing sequence of conditions from

Q(κ) such that for every α ≤ µ,

1. otp(Cqαβqα ) ≤ µ.

2. Eα = {βqδ | δ < α} is closed below its supremum.

3. For all δ < α, βqδ < βqα and βqδ ∈ (Cqαβqα )′.

4. If α < µ, then qα+1  Ḋ ∩ (βqα , βqα+1) 6= ∅.

To carry out this construction, we first let βq0 = βq + ω. For limit
ordinals ζ ≤ βq, let Cq0ζ = Cqζ . Let Cq0βq0 = {βq + n | n < ω}. Next, suppose
that α = α′ + 1 and that we have already constructed 〈qδ | δ ≤ α′〉. Find
q∗α ≤ qα′ and ξα > βqα′ such that q∗α  ξα ∈ Ḋ. Find q∗∗α ≤ q∗α such that
βq
∗∗
α ≥ ξα. Let βqα = βq

∗∗
α + ω. For limit ζ ≤ βq

∗∗
α , let Cqαζ = C

q∗∗α
ζ . Finally,

let Cqαβqα = Cqα
βqα′
∪ {βqα′} ∪ {βq∗∗α + n | n < ω}.

Now suppose that α < µ is a limit ordinal and we have constructed
〈qδ | δ < α〉. Let βqα = sup({βqδ | δ < α}). For limit ordinals ζ < βqα , find
δ < α such that βqδ ≥ ζ and let Cqαζ = Cqδζ . Let

Cqαβqα =
⋃
ζ∈Eα

Cqαζ .

It is clear that this construction satisfies requirements 1-4 above. Let
p = qµ. We have arranged so that cf(βp) = µ and otp(Cpβp) = µ. We have
also arranged that, for every ζ < βp, p  “Ḋ ∩ (ζ, βp) 6= ∅”. Thus, since Ḋ
is forced by the empty condition to be a club, p  βp ∈ Ḋ. Thus we have
found our desired p ≤ q such that p  “Ḋ ∩ Ṡ 6= ∅”.

We now introduce a forcing poset designed to add a thread of order type
κ through a �(κ)-sequence.

Definition. Let κ be a regular cardinal and let ~C be a �(κ)-sequence. T(~C)

is the partial order consisting of elements t such that:

1. t is a closed, bounded subset of κ.

2. For every α ∈ t′, t ∩ α = Cα.
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We denote the maximum element of a condition t by γt. s ≤ t if and only if
s end-extends t, i.e. γs ≥ γt and s ∩ (γt + 1) = t.

In analogy with the poset TD defined in the previous chapter, if ~C was
added by Q(κ), then T(~C) is quite nice.

Proposition 3.10. Let κ be a regular cardinal and let ~C be a�(κ)-sequence.
For every α < κ, the set {t | γt ≥ α} is dense in T(~C).

Proof. If t ∈ T(~C) and γt < α, then t ∪ {α} ∈ T(~C).

Proposition 3.11. Let κ be a regular cardinal. Let Q = Q(κ), ~̇C be a Q-
name for the �(κ)-sequence added by Q, and Ṫ be a Q-name for T( ~̇C). Then
Q ∗ Ṫ has a κ-closed dense subset.

Proof. Let S = {(q, ṫ) | q decides the value of ṫ and q  “βq = γt”}. We first
show that S is dense in Q ∗ Ṫ. To this end, let (q0, ṫ0) ∈ Q ∗ Ṫ. Since Q is κ-
strategically closed, ṫ0 is forced to be in the ground model. Find q ≤ q0 and
t∗ such that q  “ṫ0 = ť∗”. Without loss of generality, we may assume that
βq > max(t∗). Let ṫ be such that q  “ṫ = ṫ0 ∪ {β̌q}”. Then (q, ṫ) ≤ (q0, ṫ0)

and (q, ṫ) ∈ S.
Next, we claim that S is κ-closed. Let α < κ and let 〈(qδ, ṫδ) | δ < α〉

be a decreasing sequence of conditions from S. Without loss of generality,
we may assume that, for every δ < α, βqδ < βq. We will construct a lower
bound (q, ṫ). Let βq = sup({βqδ | δ < α}). For limit ζ < βq, let δ < α be such
that βqδ ≥ ζ and set Cqζ = Cqδζ . Let X = {ζ | for some δ < α, qδ  “ζ̌ ∈ ṫα”}.
By our definition of S, X is club in βq and for every ζ ∈ X ′, X ∩ ζ = Cqζ .
Thus, we can let Cqβq = X. Finally, let ṫ be such that q  “ṫ = X̌ ∪ {β̌q}”.
(q, ṫ) is then a lower bound of 〈(qδ, ṫδ) | δ < α〉 in S.

A key point here, which will be exploited in the proof of the next the-
orem, is that, for an uncountable cardinal κ, one can force to add and
then thread a�(κ+)-sequence with a two-step iteration which is κ+-closed,
whereas if one wants to add and thread, for example, a�κ,<κ-sequence, the
best one can do is a two-step iteration which is κ-closed.

Theorem 3.12. Suppose µ < κ are regular cardinals and λ > κ is a mea-
surable cardinal. Let G be Coll(κ,< λ)-generic over V and, in V [G], let H be
Q(κ+)-generic over V [G]. Then, in V [G ∗H], �µ(κ+) holds and �κ,<κ fails.

Note that, in V [G ∗H], κ<κ = κ, so �∗κ holds.
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Proof. We have already shown that�µ(κ+) holds in any extension by Q(κ+),
so it remains to show that �κ,<κ fails. Let Q = Q(κ+), and let ~C be the
�(κ+)-sequence added by H. In V [G ∗H], let T = T(~C).

Fix an elementary embedding j : V → M with critical point λ. j �

Coll(κ,< λ) : Coll(κ,< λ) → Coll(κ,< j(λ)) is the identity map and, in
V Coll(κ,<λ), Q∗ Ṫ has a κ+-closed dense subset which has size κ+. Thus, we
can extend j to a complete embedding of Coll(κ,< λ) ∗ Q̇ ∗ Ṫ into Coll(κ,<

j(λ)) such that the quotient forcing, R, is κ-closed. Then, letting I be T-
generic over V [G ∗H] and letting J be R-generic over V [G ∗H ∗ I], we can
further extend j to an elementary embedding j : V [G]→M [G ∗H ∗ I ∗ J ].

We would like to extend j still further to have domain V [G ∗H]. This is
precisely the reason for introducing the threading poset. In V [G∗H ∗I ∗J ],
j(Q) is the forcing poset to add a �(j(λ))-sequence. 〈Cα | α < λ〉 would
be a condition in j(Q) if it had a top element. To arrange this, we define
q∗ ∈ j(Q) by letting βq

∗
= λ, Cq

∗

α = Cα for all α < λ, and Cq
∗

λ =
⋃
I. Since⋃

I is a thread through ~C, q∗ is a condition in j(Q). Moreover, for every
q ∈ H, j(q) = q ≤ q∗. Thus, if K is j(Q)-generic over V [G ∗ H ∗ I ∗ J ] and
q∗ ∈ K, then j[H] ⊆ K, so we can extend j to an elementary embedding
j : V [G ∗H]→M [G ∗H ∗ I ∗ J ∗K].

Now suppose for sake of contradiction that ~D = 〈Dα | α < λ〉 is a �κ,<κ-
sequence in V [G ∗H]. For each α < λ, j(Dα) = Dα. Let j( ~D) = 〈Dα | α <

j(λ)〉. j( ~D) is a �κ,<κ-sequence in M [G ∗H ∗ I ∗ J ∗K]. Choose F ∈ Dλ. F
is a thus a thread through ~D.

Claim 3.13. F ∈ V [G ∗H ∗ I ∗ J ].

Proof. F ∈ V [G ∗ H ∗ I ∗ J ∗ K]. However, K is generic for j(Q), which
is j(λ)-strategically closed in V [G ∗ H ∗ I ∗ J ] and thus does not add any
κ-sequences of ordinals. Thus, F ∈ V [G ∗H ∗ I ∗ J ].

Claim 3.14. F ∈ V [G ∗H ∗ I]

Proof. Suppose not. Work in V [G ∗H ∗ I]. Then there is an R-name Ḟ such
that F = Ḟ J and R “Ḟ is not in the ground model”.

Suppose first that κ is not strongly inaccessible. Let γ be the least
cardinal such that 2γ ≥ κ. We will construct 〈ps | s ∈ ≤γ2〉 and 〈αβ | β ≤ γ〉
satisfying:

1. p〈〉  “Ḟ is a thread through ~D”.

2. For all s, u ∈ ≤γ2 such that s ⊆ u, we have ps, pu ∈ R and pu ≤ ps.
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3. 〈αβ | β ≤ γ〉 is a strictly increasing, continuous sequence of ordinals
less than κ+.

4. For all s ∈ <γ2, there is α < α|s|+1 such that ps_〈0〉 and ps_〈1〉 decide
the statement “α̌ ∈ Ḟ” in opposite ways.

5. For all β < γ and all s ∈ β2, both ps_〈0〉 and ps_〈1〉 force that Ḟ ∩
(αβ , αβ+1) 6= ∅.

6. For all limit ordinals β ≤ γ and all s ∈ β2, ps  “αβ is a limit point of
Ḟ ” and there is Ds ∈ Dαβ such that ps  “Ḟ ∩ αβ = Ds”.

Suppose for a moment that we have successfully constructed these se-
quences. Then, for all s ∈ γ2, there is Ds ∈ Dαγ such that ps  “αγ is a
limit point of Ḟ and Ḟ ∩ αβ = Ds”. But if s, u ∈ γ2 and s 6= u, then there is
α < αγ such that ps and pu decide the statement “α ∈ Ḟ” in opposite ways,
so Ds 6= Du. But 2γ ≥ κ, so this contradicts the fact that |Dαγ | < κ.

Now we turn our attention to the construction of such sequences. Fix
p〈〉 such that p〈〉  “Ḟ is a thread through ~D”, and let α0 = 0. Fix β < γ

and suppose that 〈ps | s ∈ β2〉 and αβ have been defined. Fix s ∈ β2.
Since R “Ḟ is unbounded in κ+”, we can find α > αβ and p′s ≤ ps such
that p′s  “α̌ ∈ Ḟ”. Since R “Ḟ is not in the ground model”, we can find
αs > α and p0, p1 ≤ p′s such that p0 and p1 decide the statement “αs ∈ Ḟ”

in opposite ways. Let ps_〈0〉 = p0 and ps_〈1〉 = p1. Do this for all s ∈ β2,
and let αβ+1 = sup({αs + 1 | s ∈ β2}). 2β < κ, so αβ+1 < κ+.

If β ≤ γ is a limit ordinal and 〈ps | s ∈ <β2〉 and 〈αδ | δ < β〉 have
been constructed, let αβ = sup({αδ | δ < β}). Fix s ∈ β2. Since R is
κ-closed, there is p ∈ R such that, for every δ < β, p ≤ ps�δ. We have
arranged that for every δ < β there is α > αδ such that ps�(δ+1)  “α̌ ∈ Ḟ”.
Thus, p  “α̌β is a limit point of Ḟ”. Find p′ ≤ p and Ds ∈ Dαβ such that
p′  “Ḟ ∩ α̌β = Ďs”. Let ps = p′. Requirements 1-6 above are easily seen to
be satisfied by this construction.

Now suppose that κ is strongly inaccessible. We modify the above
construction slightly. By Fodor’s Lemma, find ν < κ and a stationary
S ⊆ Sλ<κ such that if α ∈ S, then |Dα| ≤ ν. Construct 〈ps | s ∈ ≤ν2〉
and 〈αβ | β ≤ ν〉 exactly as above. Fix a sufficiently large regular cardi-
nal θ and let M ≺ H(θ) contain all relevant information (including Ḟ , ~D, R,
〈ps | s ∈ ≤ν2〉, and 〈αβ | β ≤ ν〉) such that |M | = κ ⊆M and λM = M∩λ ∈ S.
Fix 〈λη | η < γ < κ〉 increasing and cofinal in λM . Using the κ-closure of R
and the fact that Ḟ is forced to be a club, find, for each s ∈ ν2, a decreasing
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sequence of conditions from R, 〈ps,η | η < γ〉 such that, for every η < γ,
ps,η ∈M and there is a ξη such that λη < ξη < λM and ps,η  “ξ̌η ∈ Ḟ”. Let
p∗s be a lower bound for 〈ps,η | η < γ〉. For each s ∈ ν2, p∗s  “λ̌M ∈ Ḟ ′” and,
for s 6= u ∈ ν2, p∗s and p∗u force contradictory information about Ḟ ∩ λM .
Since 2ν > ν, this contradicts the fact that |DλM | ≤ ν.

Thus, F ∈ V [G ∗H ∗ I]. However, λ = (κ+)V [G] and, in V [G], Q ∗ Ṫ has
a dense κ+-closed subset. Thus, λ = (κ+)V [G∗H∗I], contradicting the fact
that F is a club in λ of order type κ.

Next, we prove that, if µ < ν ≤ κ, �µ(κ+) does not imply that there is
a stationary T ⊆ Sκ

+

ν such that �(κ+, T ) holds. In particular, �µ(κ+) does
not imply �ν(κ+). The main idea in the argument, which comes from a
modification of the proof of Theorem 18 in [6], is that, though the forcing to
thread a �(κ+)-sequence does not necessarily preserve stationary subsets
of Sκ

+

ν , the stationarity of the sets not preserved by the threading forcing
is, in a sense, easy to destroy. Thus, by shooting clubs disjoint to these
sets, we can arrange so that the threading forcing does in fact preserve
stationary subsets of Sκ

+

ν .

Theorem 3.15. Let µ < ν ≤ κ be regular cardinals, and let λ > κ be
measurable with 2λ = λ+. Then there is a forcing extension preserving all
cardinals ≤ κ in which �µ(κ+) holds but in which, for every stationary
T ⊆ Sκ+

ν , �(κ+, T ) fails.

Proof. Let the initial model be called V0. In V0, let P = Coll(κ,< λ). Let
V = V P

0 . Work in V . Let Q = Q(κ+), and let ~̇C be a name for the �(κ+)-
sequence added by Q. In V Q, let T = T( ~̇C).

In V Q, we define a sequence of posets 〈Sα | α ≤ λ+〉 by induction on α.
We will show that each Sα is λ-distributive and thus does not change any
cofinalities ≤ λ. For each β < λ+, we will fix a Q ∗ Sβ-name Ẋβ for a subset
of Sλν such that Q∗Sβ∗T “Ẋβ is non-stationary” and a Q ∗ Sβ ∗ T-name Ėβ
for a club in λ such that Q∗Sβ∗T “Ẋβ ∩ Ėβ = ∅”. Elements of Sα are then
functions s such that:

1. dom(s) ⊆ α.

2. |s| ≤ κ.

3. For every β ∈ dom(s), s(β) is a closed, bounded subset of λ.

4. For every β ∈ dom(s), s � β  “s(β) ∩ Ẋβ = ∅”.
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For s, t ∈ Sα, t ≤ s if and only if dom(s) ⊆ dom(t) and, for every β ∈
dom(s), t(β) end-extends s(β). Sλ+ can be seen as a dense subset of an
iteration with ≤ κ-support in which the αth iterand shoots a club disjoint
to the interpretation of Ẋα. Thus, for each α < λ+, Q∗Sλ+ “Ẋα is non-
stationary”. By a standard ∆-system argument, it is easy to see that, in
V Q, Sλ+ has the λ+-chain condition. Thus, since, in V Q, 2λ = λ+, we can
choose the sequence 〈Ẋα | α < λ+〉 in such a way that, for every β < λ+ and
every Q ∗ Sβ-name Ẋ for a subset of Sλν , if there is α ≥ β such that Q∗Sα∗T

“Ẋ is non-stationary”, then there is α∗ ≥ α such that Q∗Sα∗ “Ẋα∗ = Ẋ”.
Also, again by the λ+-chain condition of Sλ+ , if Ẋ is a Q ∗ Sλ+ -name for
a subset of Sλν and Q∗Sλ+∗T “Ẋ is non-stationary”, then there is α < λ+

and a Q ∗ Sα-name Ẏ for a subset of Sλν such that Q∗Sλ+ “Ẋ = Ẏ ” and
Q∗Sα∗T “Ẏ is non-stationary”. Putting this together, we have that for
every Q∗Sλ+ -name Ẋ for a subset of Sλν , if Q∗Sλ+∗T “Ẋ is non-stationary”,
then already Q∗Sλ+ “Ẋ is non-stationary”.

Lemma 3.16. In V Q, for every α ≤ λ+, Sα is ν-closed .

Proof. Work in V Q. The proof is by induction on α ≤ λ+. Thus, assume
that, for all β < α, Sβ is ν-closed. Let 〈sγ | γ < ξ〉 be a decreasing sequence
from Sα, with ξ < ν. We will define a lower bound s ∈ Sα for the sequence.
Let dom(s) =

⋃
γ<ξ dom(sγ). Clearly, |dom(s)| ≤ κ. For β ∈ dom(s), let

δβ = sup(
⋃
γ<ξ sγ(β)), and let s(β) = {δβ} ∪

⋃
γ<ξ sγ(β). It is immediate

that, if s ∈ Sα, then it is a lower bound for 〈sγ | γ < ξ〉. Thus, it remains to
show that for all β ∈ dom(s), s � β  “s(β) ∩ Ẋβ = ∅”. But, if β ∈ dom(s),
then, by the induction hypothesis, Sβ is ν-closed. Therefore ν remains a
regular cardinal in V Q∗Sβ , so s � β Sβ “δ̌β 6∈ Ẋβ” and hence s � β 

“s(β) ∩ Ẋβ = ∅”.

By genericity, ~C, the square sequence added by Q, is a �µ(λ)-sequence
as witnessed by a stationary S ⊆ Sλµ . Also, by Lemma 1.7, S remains
stationary in V Q∗Sλ+ , so ~C remains a �µ(λ)-sequence in V Q∗Sλ+ .

Lemma 3.17. In V , for every α ≤ λ+, Q∗Sα ∗T has a dense λ-closed subset.

Proof. Work in V . For α ≤ λ+, let Uα consist of all conditions of Q ∗ Sα ∗ T
of the form (q, ṡ, ṫ) such that q decides the values of ṡ and ṫ, q  “βq = γt”,
and, for every β ∈ dom(ṡ), (q, ṡ � β, ṫ)  “ max(ṡ(β)) ∈ Ėβ”. We show by
induction on α that Uα is the desired dense λ-closed subset.

If α = 0, this is simply Proposition 3.11. Let α = β + 1. We first show
that Uα is dense. Fix (q0, ṡ0, ṫ0). Since Q is (κ + 1)-strategically closed, we
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may assume without loss of generality that q0 decides the value of ṡ0 to be
s0. Apply the induction hypothesis to get (q1, ṡ

∗
1, ṫ1) ≤ (q0, š0 � β, ṫ0) in Uβ

such that there is γ < λ such that γ > max(s0(β)) (we say max(s0(β)) = 0

if β 6∈ dom(s0)) and (q1, ṡ
∗
1, ṫ1)  “γ̌ ∈ Ėβ” (it must then be the case that

(q1, ṡ
∗
1)  “γ̌ 6∈ Ẋβ”). Let ṡ1 be such that q1  “ṡ1 = ṡ∗1 ∪ {(β, s0(β) ∪ {γ})}”.

Then (q1, ṡ1, ṫ1) extends (q0, ṡ0, ṫ0) and is in Uα.
We now show that Uα is λ-closed. Let ξ < λ, and let 〈(qη, ṡη, ṫη) | η < ξ〉

be a decreasing sequence from Uα. By the methods of the proof of Proposi-
tion 3.11, we can find (q, ṫ) such that q decides the value of ṫ, q  “βq = γt”,
and, for every η < ξ, (q, ṫ) ≤ (qη, ṫη). We now define an s so that (q, š, ṫ)

is a lower bound for our sequence. Let dom(s) = {δ | for some η < ξ, qη 

δ ∈ dom(ṡη)}. For δ ∈ dom(s), let rδ = {γ | for some η < ξ, qη  γ ∈ ṡη(δ)}
and let s(δ) = rδ ∪ sup(rδ). All that remains to be shown is that, for ev-
ery δ ∈ dom(s), (q, š � δ, ṫ)  “ max(š(δ)) ∈ Ėδ”. We show this by induc-
tion on δ. Thus, assume it holds for all ordinals less than δ in dom(s).
Then (q, š � δ, ṫ) ∈ Uδ. For every η < ξ with δ ∈ dom(sη), (q, ṡη � δ, ṫ) 

“ max(ṡη(δ)) ∈ Ėδ”. Thus, (q, š � δ, ṫ)  “Ėδ is unbounded in řδ”. Since Ėδ
is forced to be a club, (q, š � δ, ṫ)  “ sup(rδ) = max(š(δ)) ∈ Ėδ”.

Now suppose that α ≤ λ+ is a limit ordinal. To show that Uα is dense,
let (q0, ṡ0, ṫ0) ∈ Q∗Sα ∗T. Assume without loss of generality that q0 decides
the value of ṡ0 and ṫ0. If cf(α) = λ, then there is β < α such that q0 

“dom(ṡ0) ⊆ β”. Then (q0, ṡ0, ṫ0) ∈ Q∗Sβ∗T and, by the inductive hypothesis,
we can find (q1, ṡ1, ṫ1) ≤ (q0, ṡ0, ṫ0) such that (q1, ṡ1, ṫ1) ∈ Uβ ⊆ Uα.

If cf(α) < λ, fix an increasing, continuous sequence 〈αi | i < ξ〉 cofinal
in α, with ξ ≤ κ. We define a sequence 〈(qi, ṡi, ṫi) | 1 ≤ i < ξ〉 such that, for
all 1 ≤ i < j < ξ,

• (qi, ṡi, ṫi) ∈ Uαi .

• (qi, ṡi, ṫi) ≤ (q0, ṡ0 � αi, ṫ0).

• (qj , ṡj , ṫj) ≤ (qi, ṡi, ṫi).

If i = i′ + 1, define (qi, ṡi, ṫi) as follows. Let ṡ∗i be such that qi′  “ṡ∗i =

ṡi′ ∪ ṡ0 � [αi′ , αi)”. By the inductive hypothesis, find (qi, ṡi, ṫi) ∈ Uαi such
that (qi, ṡi, ṫi) ≤ (qi′ , ṡ

∗
i , ṫi′). If i is a limit ordinal, then, by the inductive

hypothesis, Uαi is λ-closed, so we can find (qi, ṡi, ṫi) ∈ Uαi that is a lower
bound for 〈(qj , ṡj , ṫj) | j < i〉.

We now define (q, ṡ, ṫ) ∈ Uα which is a lower bound for 〈(qi, ṡi, ṫi) | i < ξ〉.
First, by previous arguments, find (q, ṫ) ∈ U0 which is a lower bound for
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〈(qi, ṫi) | i < ξ〉. Next, let X = {β | for some i < ξ, qi  “β̌ ∈ dom(ṡi)”}.
If β ∈ X, let ṡ∗(β) be such that q  “ṡ∗(β) =

⋃
i<ξ ṡi(β)”. Let ṡ be such

that q  “dom(ṡ) = X and, if β ∈ X, then ṡ(β) = ṡ∗(β) ∪ {sup(ṡ∗(β)}”. It is
routine to check that (q, ṡ, ṫ) ∈ Uα and (q, ṡ, ṫ) ≤ (q0, ṡ0, ṫ0).

The proof that Uα is λ-closed is the same as in the successor case.

It follows that, for all α ≤ λ+, Sα is λ-distributive and thus preserves
all cardinals and cofinalities. It remains to show that, in V Q∗Sλ+ , �(λ, T )

fails for every stationary T ⊆ Sλν .
Fix j : V0 → M with crit(j) = λ. Let G be P-generic over V0, let H

be Q-generic over V0[G] = V , let I be Sλ+ -generic over V [H], and let J
be T-generic over V [H ∗ I]. Since, in V , Q ∗ Sλ+ ∗ T has a λ-closed dense
subset and has size λ+, by Fact 1.5 we can extend the identity map i : P→
j(P) to a complete embedding i∗ : P ∗ Q ∗ Sλ+ ∗ T → j(P) such that the
quotient forcing R = j(P)/i∗[P ∗ Q ∗ Sλ+ ∗ T] is κ-closed. Thus, letting K

be R-generic over V [H ∗ I ∗ J ], we can lift j to an elementary embedding
j : V →M [G ∗H ∗ I ∗ J ∗K].

Suppose now for sake of contradiction that, in V [H ∗ I], T ⊆ Sλν is sta-
tionary and ~D = 〈Dα | α < λ〉 is a �(λ, T )-sequence. For ξ < λ+, let
Iξ = I ∩Sξ. Each Iξ is then Sξ-generic over V [H]. Since Sλ+ has the λ+-c.c.,
we can fix ξ∗ < λ+ such that T, ~D ∈ V [H ∗ Iξ∗ ].

We would like to lift j further to have domain V [H ∗ Iξ∗ ]. To do this, we
define a master condition (q∗, š∗, ť∗) ∈ j(Q ∗ Sξ∗ ∗ T). q∗ is defined exactly
as in the proof of Theorem 3.12. Let E be the club added by J , and let
t∗ = E ∪ {λ}. Then (q∗, ť∗) ∈ j(Q ∗ T). Let s be the generic object added
by Iξ∗ . s is thus a function with domain ξ∗, where, for each α < ξ∗, s(α)

is a club in λ. Let s∗ be such that dom(s∗) = j[ξ∗] and, for each α < ξ∗,
s∗(j(α)) = s(α)∪{λ}. It is clear that, if (q∗, š∗) ∈ j(Q∗Sξ∗), then it is a lower
bound for j[H ∗ Iξ∗ ]. Thus, all that needs to be checked is that, for every
α < ξ∗, (q∗, š∗ � j(α))  “š∗(j(α)) ∩ j(Ẋα) = ∅”. We show this by induction
on α. It suffices to show that (q∗, š∗ � j(α))  “λ̌ 6∈ j(Ẋα)”. Suppose for sake
of contradiction that there is (q′, ṡ′) ≤ (q∗, š∗ � j(α)) such that (q′, ṡ′)  “λ̌ ∈
j(Ẋα)”. Recall that Ėα is a Q ∗ Sα ∗ T-name for a club in λ. (q′, ṡ′, ť∗) is a
lower bound for H ∗ I � α ∗ J , so, for every β < λ, (q′, ṡ′, ť∗)  “β̌ ∈ j(Ėα)”

if and only if β ∈ Eα. Thus, (q′, ṡ′, ť∗)  “λ is a limit point of j(Ėα)”, so
(q′, ṡ′, ť∗)  “λ 6∈ j(Ẋα)”. This is a contradiction.

Thus, (q∗, š∗) is a lower bound for j[H ∗ Iξ∗ ] in j(Q ∗ Sξ∗), so, if we let
H+∗I+

ξ∗ be j(Q∗Sξ∗)-generic over M [G∗H ∗I ∗J ∗K] with (q∗, š∗) ∈ H+∗I+
ξ∗ ,
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then we can lift j to an elementary embedding j : V [H ∗ Iξ∗ ] → M [G ∗H ∗
I ∗ J ∗K ∗H+ ∗ I+

ξ∗ ].
Now ~D and T are in the domain of j, j( ~D) = 〈Dα | α < j(λ)〉 is a

�(j(λ), j(T ))-sequence, and j(T ) ∩ λ = T . Thus, Dλ is a thread through
~D and avoids T . Since j(Q ∗ Sξ∗) is j(λ)-distributive, H+ ∗ I+

ξ∗ could not
have added Dλ, so Dλ ∈ V [H ∗ I ∗ J ∗ K]. Also, since K is generic for
κ-closed forcing, the argument from Theorem 3.12 shows that it can not
add a thread through ~D, so Dλ ∈ V [H ∗ I ∗ J ] and witnesses that T is not
stationary in V [H ∗ I ∗ J ]. But we arranged our iteration Sλ+ so that this
implies that T is already non-stationary in V [H∗I]. This is a contradiction,
so �(λ, T ) fails in V [H ∗ I].

Finally, we show that the existence of a stationary S ⊂ Sκ
+

κ such that
�(κ+, S) holds does not imply the existence of a stationary T ⊂ Sκ

+

<κ for
which �(κ+, T ) holds. In [18], Harrington and Shelah show that, after
collapsing a Mahlo cardinal to be κ+, one can iteratively force to shoot
clubs disjoint to non-reflecting subsets of Sκ

+

<κ, thus obtaining a model in
which every stationary subset of Sκ

+

<κ reflects. We will work in L and carry
out the forcing iteration used by Harrington and Shelah, arguing that our
desired conclusion holds in the final model. We use the following theorem
of Jensen about squares in L ([9], Chapter VII).

Theorem 3.18. Suppose V = L. Let λ be an inaccessible cardinal which is
not weakly compact, and let S ⊆ λ be stationary. Then there is a stationary
S′ ⊆ S such that �(λ, S′) holds.

Theorem 3.19. Suppose V = L, κ is a regular, uncountable cardinal, and
λ > κ is the least Mahlo cardinal greater than κ. Then there is a forcing
extension in which λ = κ+, there is a stationary S ⊆ Sλκ such that �(λ, S)

holds, and all stationary subsets of Sλ<κ reflect (and hence �(λ, T ) fails for
every stationary T ⊆ Sλ<κ).

Proof. By Theorem 3.18, fix a stationary S ⊆ λ consisting of inaccessible
cardinals and a �(λ, S)-sequence, ~C. Let P = Coll(κ,< λ). In V P, we define
an iteration 〈Qα | α ≤ λ+〉, which will shoot clubs disjoint to non-reflecting
sets of ordinals, by induction on α. For each α < λ+, we will fix a Qα-name
Ẋα such that Qα “Ẋα ⊆ Sλ<κ and Ẋα does not reflect at any ordinal of
uncountable cofinality”. Elements of Qα are functions q such that:

1. dom(q) ⊆ α.
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2. |q| ≤ κ.

3. For every β ∈ dom(q), q(β) is a closed, bounded subset of λ.

4. For every β ∈ dom(q), q � β  “q(β) ∩ Ẋβ = ∅”.

For p, q ∈ Qα, q ≤ p if and only if dom(p) ⊆ dom(q) and, for every β ∈
dom(p), q(β) end-extends p(β). An easy ∆-system argument shows that
Qλ+ has the λ+-c.c. Thus, with a suitable choice of the names Ẋα, we can
arrange that, in V P∗Qλ+ , every stationary subset of Sλ<κ reflects.

Back in V , fix a sufficiently large, regular cardinal θ (in particular, θ >
λ+). Let N be the set of N such that P ∈ N , N � (H(θ),∈,C) (where C is a
well-ordering of H(θ)), λN := N ∩ λ is an inaccessible cardinal, |N | = λN ,
and N<λN ⊆ N . For N ∈ N , let πN : N → N̄ be the transitive collapse. If
x ∈ N , let xN = πN (x).

Lemma 3.20. For every x ∈ H(θ), there is N ∈ N such that x ∈ N .

Proof. Fix x ∈ H(θ). We find the desired N ∈ N by building an increasing,
continuous chain 〈Nα | α < λ〉 such that, for each α < λ,

1. x, λ ∈ Nα

2. Nα ≺ H(θ).

3. |Nα| < λ.

4. P(Nα) ⊆ Nα+1.

5. sup(Nα ∩ λ) ⊆ Nα+1.

Let E be the set of α < λ such that Nα ∩ λ = α = |Nα|. E is a club in λ, so,
since λ is Mahlo, there is α∗ ∈ E such that α∗ is inaccessible. Nα∗ is then
in N .

If N ∈ N , then, since N is closed under < λN -sequences, PN = P ∩N =

Coll(κ,< λN ), so NP ≺ H(θ)P. Also, since PN has the λN -c.c., N̄PN ∼= NP is
closed under < λN -sequences from V PN .

The following Lemma, which will show that Qλ+ is λ-distributive, is
proven in [18].

Lemma 3.21. Let α < λ+.

1. For all N ∈ N such that α ∈ N , in V PN , (Qα)N has a λN -closed dense
subset.
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2. In V P, Qα is λ-distributive.

3. For all N ∈ N such that α ∈ N , in V PN∗(Qβ)N , (Xβ)N is not stationary
in λN .

By the chain condition, every < λ-sequence in V P∗Qλ+ appears in V P∗Qα

for some α < λ+, so we have that, in V P, Qλ+ is λ-distributive and thus
preserves all cardinals ≤ λ.

Lemma 3.22. In V P∗Qλ+ , there is no stationary T ⊆ Sλ<κ such that �(λ, T )

holds.

Proof. Suppose there is such a T , and let ~D be a �(λ, T )-sequence. Then,
for each α < λ of uncountable cofinality, D′α witnesses that T ∩ α is non-
stationary, so T does not reflect. However, in V P∗Qλ+ , every stationary
subset of Sλ<κ reflects. Contradiction.

In V P∗Qλ+ , ~C is clearly still a coherent sequence avoiding S and S ⊆ Sλκ .
Thus, the following lemma suffices to prove the theorem.

Lemma 3.23. S is stationary in V P∗Qλ+ .

Proof. Let E ∈ V P∗Qλ+ be a club in λ. By the chain condition, there is
α < λ+ such that E ∈ V P∗Qα . Thus, it suffices to show that S remains
stationary in V P∗Qα for every α < λ+.

To this end, fix α < λ+, (p, q̇) ∈ P ∗Qα, and Ė, a P ∗Qα-name for a club
in λ. By the argument from the proof of Lemma 3.20, we can find N ∈ N
such that {(p, q̇), Ė, α} ⊆ N and λN ∈ S. Let G be P-generic over V with
p ∈ G, and let GN be the restriction of G to Coll(κ,< λN ). Since P has the
λ-c.c., S is still stationary in V [G]. Let q be the interpretation of q̇ in V [G],
and reinterpret Ė in V [G] as a Qα-name. Also, we can extend πN to an
isomorphism of N [G] and N̄ [GN ]. Enumerate the dense open sets of (Qα)N

lying in N̄ [GN ] as 〈Dξ | ξ < λN 〉. By Lemma 3.21(1) and the fact that
N̄ [GN ] is closed under < λN -sequences, we can find a decreasing sequence
〈qξ | ξ < λN 〉 of conditions from the λN -closed dense subset of (Qα)N such
that q0 = q and, for all ξ < λN , qξ+1 ∈ Dξ ∩ N̄ [GN ]. We define q∗ to be a
lower bound for 〈π−1

N (qξ) | ξ < λN 〉 in Qα by letting dom(q∗) = N ∩ α and,
for each β ∈ dom(q∗),

q∗(β) =
⋃
ξ<λN

qξ(πN (β)) ∪ {λN}.
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cf(λN ) = κ in V P∗Qβ , so λN is forced not to be in Ẋβ and thus q∗ ∈ Qα. For
every γ < λN , there is ξ < λN and δ ∈ (γ, λN ) such that qξ (Qα)N “δ̌ ∈
π(Ė)”. Thus, π−1

N (qξ) Qα “δ̌ ∈ Ė”. so q∗ Qα “Ė is unbounded in λ̌N”.
Since Ė is a name for a club, q∗ Qα “λN ∈ Ė ∩ Š”, so S is stationary in
V P∗Qα .

We conclude with a diagram illustrating the situation at ω2, where
we now have a complete picture. Arrows correspond to implications, and
struck-out arrows to non-implications. Numbers labeling the arrows refer
to the lemmas or theorems from which they follow.

�ω1

�ω(ω2) �ω1(ω2)

∃ stationary S ⊆ Sℵ2ℵ0 (�(ω2, S)) ∃ stationary T ⊆ Sℵ2ℵ1 (�(ω2, T ))

�(ω2)

3.6
3.12 3.6

3.12

3.15

3.5

3.4 3.4 3.4 3.19

3.15

3.19

3.19
3.15

3.15



CHAPTER 4

SCALES

This chapter builds on work inspired by two questions in singular cardinal
combinatorics. Woodin asked whether the failure of the Singular Cardi-
nals Hypothesis at κ implies that �∗κ holds, and Cummings, Foreman, and
Magidor [6] asked whether the existence of a very good scale of length κ+

implies that �∗κ holds. Gitik and Sharon, in [15], answer both of these
questions by producing, starting with a supercompact cardinal, a model in
which there is a singular, strong limit cardinal κ of cofinality ω such that
2κ = κ++, APκ fails (and hence �∗κ fails), and there is an A ⊆ κ that carries
a very good scale.

Cummings and Foreman, in [5], show that, in the model of [15], there
is a B ⊆ κ that carries a bad scale, thus providing another proof of the
failure of APκ. Cummings and Foreman go on to raise a number of other
questions, three of which we address in this chapter:

1. Do there exist any other interesting scales in the model of [15]?

2. Into which case of Shelah’s Trichotomy Theorem do the bad points of
the bad scale in [5] fall?

3. When the first PCF generator exists, does it have a maximal (modulo
bounded subsets of κ) subset which carries a good scale?

Remark We assume throughout this chapter that, if A is a set of regular
cardinals and we are considering

∏
A, then A is progressive, i.e. |A| <

min(A).

4.1 Diagonal supercompact Prikry forcing

We review here some key facts from Gitik and Sharon’s construction in
[15]. At the heart of their argument is a diagonal version of supercompact
Prikry forcing.

Let κ be a supercompact cardinal, let µ = κ+ω+1, and let U be a normal,
fine ultrafilter over Pκ(µ). For n < ω, let Un be the projection of U on
Pκ(κ+n), i.e. X ∈ Un if and only if {y ∈ P(κ+ω+1) | y ∩ κ+n ∈ X} ∈ U . Note

39
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that each Un is a normal, fine ultrafilter over Pκ(κ+n) concentrating on the
set Xn = {x ∈ Pκ(κ+n) | κx := x ∩ κ is an inaccessible cardinal and, for all
i ≤ n, otp(x ∩ κ+i) = κ+i

x }.
We are now ready to define the diagonal supercompact Prikry forcing,

Q. Conditions of Q are of the form q = 〈xq0, x
q
1, . . . , x

q
n−1, A

q
n, A

q
n+1, . . .〉,

where

1. For all i < n, xqi ∈ Xi.

2. For all i ≥ n, Aqi ∈ Ui.

3. For all i < j < n, xqi ≺ x
q
i+1.

4. For all i < n, j ≥ n, and y ∈ Aqj , x
q
i ≺ y.

n is called the length of q and is denoted lh(q). 〈xq0, . . . , x
q
n−1〉 is called the

lower part of q, and 〈Aqn, A
q
n+1, . . .〉 is called the upper part of q. If s =

〈x0, . . . , xn−1〉 is a lower part and t = 〈An, An+1, . . .〉 is an upper part, then
s_t denotes the condition 〈x0, . . . , xn−1, Bn, Bn+1 . . .〉, where Bm = {y ∈
Am | xn−1 ≺ y}. If s is a lower part of length n, let s_1 denote the condition
s_〈Xn, Xn+1, . . .〉. If s = 〈x0, . . . , xn−1〉 is a lower part and q is a condition
of the form 〈B0, B1, . . .〉 such that, for every i < n, xi ∈ Bi, then s_q denotes
the condition 〈x0, . . . , xn−1, B

′
n, B

′
n+1 . . .〉, where, for i ≥ n, B′i = {y ∈ Bi |

xn−1 ≺ y}.
For p, q ∈ Q, p ≤ q if and only if

1. lh(p) ≥ lh(q).

2. For all i < lh(q), xpi = xqi .

3. For all i such that lh(q) ≤ i < lh(p), xpi ∈ A
q
i .

4. For all i ≥ lh(p), Api ⊆ A
q
i .

We say p is a direct extension of q, and write p ≤∗ q, if p ≤ q and lh(p) =

lh(q).
We now summarize some relevant facts about Q. The reader is referred

to [15] for proofs.

• (Diagonal intersection) Suppose that, for every lower part s, As is an
upper part such that s_As ∈ Q. Then there is a sequence 〈Bn | n < ω〉
such that, for every n, Bn ∈ Un and, for every lower part s of length
n, every extension of s_〈Bi | i ≥ n〉 is compatible with s_As.
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• (Prikry property) Let q ∈ Q and let φ be a statement in the forcing
language. Then there is p ≤∗ q such that p ‖ φ. In particular, Q adds
no new bounded subsets of κ.

• The generic object added by Q is an ω-sequence 〈xn | n < ω〉, where,
for all n < ω, xn ∈ Xn and xn ≺ xn+1. Letting κn = κxn , 〈κn | n < ω〉
is cofinal in κ, so cf(κ)V [G] = ω.

⋃
n<ω xn = κ+ω, so, in V [G], for all

i ≤ ω, κ+i is an ordinal of cofinality ω and size κ.

• Any two conditions with the same lower part are compatible. In
particular, since there are only κ+ω-many lower parts, Q satisfies
the κ+ω+1-c.c. Thus, κ+ω+1 = µ is preserved in the extension, and
(κ+)V [G] = µ.

• Let 〈An | n < ω〉 be such that, for each n < ω, An ∈ Un. Then there is
n∗ such that, for all n ≥ n∗, xn ∈ An.

• If A ∈ V [G] is a set of ordinals such that otp(A) = ν, where ω <

ν = cfV (ν) < κ, then there is an unbounded subset B of A such that
B ∈ V .

4.2 Scales in the Gitik-Sharon model

In [15], Gitik and Sharon obtain their desired model by starting with a su-
percompact cardinal, κ, performing an Easton-support iteration to make
2κ = κ+ω+2 while preserving the supercompactness of κ, and, in the re-
sulting model, forcing with Q. They then show that, in the final model,
there is a very good scale in

∏
n<ω κ

+ω+1
n . We show that, with a bit more

care in preparing the ground model, we can arrange so that there are other
scales with many very good points.

Let κ be supercompact, and suppose that GCH holds. Let µ = κ+ω+1,
let U be a supercompactness measure on Pκ(µ), and let j : V → M ∼=
Ult(V,U). If λ is a regular cardinal, let A(λ) denote the full-support product
of Add(λ+n, λ+ω+2) for n < ω, where Add(λ+n, λ+ω+2) is the poset whose
conditions are functions f such that dom(f) ⊆ λ+ω+2, |dom(f)| < λ+n, and,
for every α ∈ dom(f), f(α) is a partial function from λ+n to λ+n of size less
than λ+n. If p = 〈pn | n < ω〉 is a condition in A(λ) and α < λ+ω+2, denote
by p � α the condition 〈pn � α | n < ω〉, and let A(λ) � α = {p � α | p ∈
A(λ)}. Let P denote the iteration with backward Easton support of A(λ)
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for inaccessible λ ≤ κ. For each λ, let P<λ denote the iteration below λ and
let Pλ be P<λ ∗ A(λ). Let G be P-generic over V .

Lemma 4.1. In V [G], we can extend j to j∗, a µ-supercompactness embed-
ding with domain V [G], such that for every n < ω and every β < j(κ+n),
there is gnβ : κ+n → κ+n such that j∗(gnβ )(sup(j“κ+n)) = β.

Proof. First note that, in V , for every α ≤ µ+, |j(α)| ≤ |Pκ(µ)α| ≤ µ+, and,
since µM ⊆ M , cf(j(λ)) = µ+ for every regular λ with κ ≤ λ ≤ µ+.. Thus,
the number of antichains of j(P<κ)/G in M [G] is µ+ and, since µM [G] ⊆
M [G] and j(P<κ)/G is µ+-closed, we can find H ∈ V [G] that is j(P<κ)/G-
generic over M [G]. Let Gκ = 〈fnα | n < ω, α < µ+〉 be the generic object for
A(κ) added by G. For n < ω, let 〈δnα | α < µ+〉 enumerate j(κ+n).

As before, we can find, in V [G], an I∗ which is j(A(κ)) = A(j(κ))M [G∗H]-
generic overM [G∗H]. For α < j(µ+), let I∗ � α = {p � α | p ∈ I∗}. Note that
I∗ � α is j(A(κ)) � α-generic over M [G ∗ H]. For each α < j(µ+), let I � α
be formed by minimally adjusting I∗ � α so that, for every p ∈ I, n < ω,
and η < µ+, if j(η) < α and j(η) ∈ dom(pn), then pn(j(η)) is compatible
with j“fnη and pn(j(η))(sup(j“κ+n)) = δnη . Since j“µ+ is cofinal in j(µ+),
the number of changes to each condition is at most µ, so each adjusted p is
itself in M [G ∗H] and I � α is j(A(κ)) � α-generic over M [G ∗H]. Let

I =
⋃

α<j(µ+)

I � α.

By chain condition, every maximal antichain of j(A(κ)) is a subset of
j(A(κ)) � α for some α < j(µ+), so I is j(A(κ))-generic over M [G ∗H]. Now
j“G ⊆ G∗H ∗I, so we can lift j to j∗ with domain V [G] and j(G) = G∗H ∗I.
By construction, for every n < ω and α < µ+, j∗(fnα )(sup(j“κ+n)) = δnα,
so, for β < j(κ+n), letting gnβ = fnα , where δnα = β, gives j∗ the desired
properties.

Let U∗ be the measure on Pκ(µ) derived from j∗, and, for n < ω, let
U∗n be the projection of U∗ onto Pκ(κ+n) and j∗U∗n be the embedding derived
from U∗n. Note that U∗n = {X ⊆ Pκ(κ+n) | j“κ+n ∈ j∗(X)}. Also note that,
for all n < ω, the functions 〈gnα | α < j(κ+n)〉witness that j∗n(κ+n) = j(κ+n).
Let Q be the diagonal supercompact Prikry forcing defined using the U∗n ’s.
Let H = 〈xn | n < ω〉 be Q-generic over V [G], and let κn = xn ∩ κ.
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Theorem 4.2. In V [G ∗H], there is a scale in∏
n<ω
i≤n

κ+i
n+1

of length µ+ such that every α < µ+ with ω < cf(α) < κ is very good.

Proof. For each n < ω, fix an increasing, continuous sequence of ordinals
〈αnζ | ζ < µ+〉 cofinal in j(κ+n). For all ζ < µ+, n < ω, and i ≤ n, let
fζ(n, i) = gi

αiζ
(sup(xn ∩ κ+i)).

Claim 4.3. Let ζ < µ+. There is nζ < ω such that for all n ≥ nζ and all
i ≤ n, fζ(n, i) < sup(xn+1 ∩ κ+i).

Proof. For n < ω, let An+1 = {x ∈ Pκ(κ+n+1) | for all i ≤ n and all y ∈
Pκ(κ+n) with y ≺ x, gi

αiζ
(sup(y ∩ κ+i)) < sup(x ∩ κ+i)}. Now suppose that

ȳ ∈ Pj(κ)(j(κ
+n)) is such that ȳ ≺ j“κ+n+1. Then, since j“κ+n+1 ∩ j(κ) = κ,

otp(ȳ) < κ and, since ȳ ⊆ j“κ+n+1, if y ∈ Pκ(κ+n) is the inverse image
of ȳ under j, then j∗(y) = ȳ, so, for all i ≤ n, j∗(gi

αiζ
)(sup(ȳ ∩ j(κ+i))) =

j∗(gi
αiζ

(sup(y∩κ+i))) < sup(j“κ+i) = sup(j“κ+n+1∩j(κ+i)). Thus, j“κ+n+1 ∈
j∗(An+1), so An+1 ∈ U∗n+1. By genericity, there is nζ < ω such that xn+1 ∈
An+1 for all n ≥ nζ . The claim follows.

Thus, by adjusting each fζ on only finitely many coordinates, we may
assume that, for all ζ < µ+,

fζ ∈
∏
n<ω
i≤n

sup(xn+1 ∩ κ+i).

Claim 4.4. For all ζ < ζ ′ < µ+, fζ <∗ fζ′ .

Proof. Fix ζ < ζ ′ < µ+. For all n < ω and i ≤ n, we know that αiζ =

j∗(gi
αiζ

)(sup(j“κ+n∩j(κ+i))) < j∗(gi
αi
ζ′

)(sup(j“κ+n∩j(κ+i))) = αiζ′ . Thus, the

set Bn = {x ∈ Pκ(κ+n) | for all i ≤ n, gi
αiζ

(sup(x∩κ+i)) < gi
αi
ζ′

(sup(x∩κ+i))}
is in U∗n. By genericity, xn ∈ Bn for large enough n < ω, so, for large enough
n, for all i ≤ n, fζ(n, i) < fζ′(n, i).

Lemma 4.5. In V [G ∗H], let

h ∈
∏
n<ω
i≤n

sup(xn+1 ∩ κ+i).

Then there is 〈Hn,i | n < ω, i ≤ n〉 ∈ V [G] such that Hn,i : Pκ(κ+n) → κ+i

and, for large enough n, for all i ≤ n, h(n, i) < Hn,i(xn).
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Proof. Let h be as in the statement of the lemma, and let ḣ be a Q-name
for h. We may assume that, in fact,

h ∈
∏
n<ω
i≤n

xn+1 ∩ κ+i

by considering instead h′, where h′(n, i) = min(xn+1 \ h(n, i)).
We show that, for every q ∈ Q, there is p ≤∗ q forcing the desired

conclusion. We assume for simplicity that q is the trivial condition and
that

q  “ḣ ∈
∏
n<ω
i≤n

ẋn+1 ∩ κ+i”.

A tedious but straightforward adaptation of our proof gives the general
case.

Work in V [G]. If s is a lower part of length n+2 with maximum element
xsn+1, then, for every i ≤ n, s_1  “ḣ(n, i) ∈ xsn+1”. Since |xsn+1| < κ and
(Q,≤∗) is κ-closed, repeated application of the Prikry property yields an
upper part As and ordinals 〈αs,i | i ≤ n〉 such that, for all i ≤ n, s_As 
“ḣ(n, i) = αs,i”. By taking a diagonal intersection, we obtain a condition
q′ = 〈B0, B1, . . .〉 such that for every lower part s of length n+ 2 compatible
with q′ and every i ≤ n, s_q′  “ḣ(n, i) = αs,i”.

Now suppose t is a lower part of length n + 1 compatible with q′, and
let i ≤ n. Consider the regressive function with domain Bn+1 which takes
x and returns αt_〈x〉,i. By Fodor’s lemma, this function is constant on a
measure-one set Bt,i. Let Bt =

⋂
i≤nBt,i. By taking the diagonal intersec-

tions of the Bt’s, we obtain a condition p = 〈C0, C1, . . .〉 such that for every
lower part t of length n+ 1 compatible with p and for every i ≤ n, there is
βt,i such that t_p  “ḣ(n, i) = βt,i”.

Now, for n < ω, i ≤ n, and x ∈ Pκ(κ+n), let Hn,i(x) = sup({βt,i + 1 | t is a
lower part of length n+ 1 with top element x}). Since there are fewer than
κ-many such lower parts, it is clear that Hn,i : Pκ(κ+n) → κ+i and, for all
n < ω and i ≤ n, p  “ḣ(n, i) < Hn,i(ẋn)”.

Claim 4.6. ~f = 〈fζ | ζ < µ+〉 is cofinal in∏
n<ω
i≤n

sup(xn+1 ∩ κ+i).

Proof. Let
h ∈

∏
n<ω
i≤n

sup(xn+1 ∩ κ+i).
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Find 〈Hn,i | n < ω, i ≤ n〉 ∈ V [G] as in the previous lemma. For each n

and i, [Hn,i]Un < j(κ+i). For i < ω, let αi = sup({[Hn,i]Un + 1 | n ≥ i}). For
every i < ω, αi < j(κ+i). Find ζ < µ+ such that, for all i < ω, αi < αiζ . For
all n < ω and i ≤ n, [Hn,i]Un < αiζ = j∗(gi

αiζ
)(sup(j“κ+i)). Thus, the set of

x ∈ Pκ(κ+n) such that Hn,i(x) < gi
αiζ

(sup(x ∩ κ+i)) is in Un. By genericity,

for large enough n and all i ≤ n, h(n, i) < Hn,i(xn) < gi
αiζ

(sup(xn ∩ κ+i)) =

fζ(n, i), so ~f is in fact cofinal in the desired product.

Claim 4.7. Suppose α < µ+ and ω < cf(α) < κ (in V [G ∗ H]). Then α is
very good for ~f .

Proof. Since ω < cf(α) < κ in V [G ∗ H], the same is true in V [G]. Let
C ∈ V [G] be a club in α with otp(C) = cf(α). Let n < ω, i ≤ n, and
ζ < ζ ′ with ζ, ζ ′ ∈ C. Then it is easy to see that An,i,ζ,ζ′ := {x ∈ Pκ(κ+n) |
gi
αiζ

(sup(x ∩ κ+i)) < gi
αi
ζ′

(sup(x ∩ κ+i))} is in U∗n. Since |C| < κ and U∗n is

κ-complete, we get that

An =
⋂
i≤n

ζ<ζ′∈C

An,i,ζ,ζ′ ∈ U∗n.

Thus, for large enough n, xn ∈ An, so C witnesses that α is very good.

We now have a scale with all of the desired properties, except it lives
in the wrong product. Notice, though, that for every n < ω and i ≤ n, we
have arranged that cf(sup(xn+1∩κ+i)) = κ+i

n+1. Thus, the following general
lemma allows us to collapse ~f to a scale of the same length, with the same
very good points, in ∏

n<ω
i≤n

κ+i
n+1.

Lemma 4.8. Let 〈γn | n < ω〉 be a sequence of ordinals of uncountable
cofinality. For each n < ω, let κn = cf(γn). Assume that 〈κn | n < ω〉 is an
increasing sequence, and let κ = sup({κn | n < ω}). Suppose µ is a regular
cardinal, µ > κ, and ~f is a scale of length µ in∏

n<ω

γn

such that, on a club C ⊆ µ, every α < µ with ω < cf(α) < κ is very good.
Then there is a scale ~g of length µ in∏

n<ω

κn
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such that, on the club C, every α < µ with ω < cf(α) < κ is very good.

Proof. For each n < ω, let 〈ξnη | η < κn〉 be increasing, continuous, and
cofinal in γn. Define ~g = 〈gα | α < µ〉 by gα(n) = min({η | fα(n) ≤ ξnη }).
Since ~f is <∗-increasing, it is easily seen that ~g is ≤∗-increasing and that
there is a club in µ on which ~g is <∗-increasing. By thinning out to this
club, we may assume that ~g is <∗-increasing. Also, since ~f is cofinal in(∏

n<ω

γn, <
∗

)
,

it follows that ~g is cofinal in (∏
n<ω

κn, <
∗

)
.

Thus, it remains to check that ~g has many very good points.
Let α ∈ C, and let D ⊆ α be a club in α witnessing that α is very good

for ~f . Thus, there is n∗ < ω such that, for every n∗ ≤ n < ω and every
β < β′ ∈ D, fβ(n) < fβ′(n), which implies that gβ(n) ≤ gβ′(n).

For each n ≥ n∗, we attempt to construct a club Dn ⊆ D such that
for all β < β′ ∈ Dn and all m ≥ n, gβ(m) < gβ′(m). If this construction
succeeds for any value of n, then that n and Dn will witness that α is very
good for ~g. To carry out the construction, we will recursively construct
Dn, which will be enumerated in increasing fashion as {δni | i < cf(α)}.
We let δn0 = min(D). If i < cf(α) is a limit ordinal and the construction
has succeeded so far, then δni = sup({δnj | j < i}) is easily seen to satisfy
our demands. Finally, given δni , try to find δni+1 such that, for all m ≥ n,
gδni (m) < gδni+1

(m). If such a δni+1 does not exist, then the construction halts,
and we set δn = δni . Note that, since the construction failed at stage i, there
is some mn ≥ n such that, for all δ ∈ D \ δn, we have gδ(mn) = gδn(mn).

Now suppose for sake of contradiction that this construction fails for all
n ≥ n∗. Let δ∗ = sup({δn | n < ω}). Since cf(α) > ω, we have δ∗ < α. Also,
for all δ ∈ D \ δ∗ and all n ≥ n∗, we have gδ(mn) = gδ∗(mn), contradicting
the fact that ~g is <∗-increasing.
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Theorem 4.9. Suppose σ ∈ ωω and, for all n < ω, σ(n) ≥ n. Then, in
V [G ∗H], there is a bad scale of length µ in∏

n<ω

κ+σ(n)
n .

Proof. Since, in V [G], κ is supercompact, there is a scale ~g = 〈gα | α < µ〉
in ∏

n<ω

κ+σ(n)

with stationarily many bad points of cofinality < κ (see [7] for a proof). We
have arranged with our preparatory forcing that, for every n < ω, j∗n(κ) =

j∗(κ). For each n < ω and each η < κ+σ(n), let Fnη : Pκ(κ+n) → κ be such
that [Fnη ]U∗n = η. We may assume that, for all x ∈ Pκ(κ+n), Fnη (x) < κ

+σ(n)
x .

We now define 〈fα | α < µ〉 in ∏
n<ω

κ+σ(n)
n

by letting fα(n) = Fngα(n)(xn).

Claim 4.10. If α < α′ < κ+ω+1, then fα <
∗ fα′ .

Proof. Since ~g is a scale, there is n∗ such that, for all n ≥ n∗, gα(n) < gα′(n).
Thus, for every n ≥ n∗, {x ∈ Pκ(κ+n) | Fngα(n)(x) < Fngα′ (n)(x)} ∈ U∗n, so, by
genericity, for large enough n, fα(n) < fα′(n).

Lemma 4.11. In V [G ∗H], let

h ∈
∏
n<ω

κ+σ(n)
n .

Then there is 〈Hn | n < ω〉 ∈ V [G] such that dom(Hn) = Pκ(κ+n), Hn(x) <

κ
+σ(n)
x for all x ∈ Pκ(κ+n), and, for large enough n, h(n) < Hn(xn).

Proof. Let h be as in the statement of the lemma, and let ḣ ∈ V [G] be a
Q-name for h. Let q ∈ Q. We show that there is p ≤∗ q forcing the desired
conclusion. As in the proof of Lemma 4.5, we assume that q is the trivial
condition and that

q  “ḣ ∈
∏
n<ω

κ̇+σ(n)
n ”.

Work in V [G]. If s is a lower part of length n+1 with maximum element
xsn, then s_1  “ḣ(n) < κ

+σ(n)
xsn

< κ”. Thus, by the Prikry property and the
κ-completeness of the measures, there is an upper part As and an ordinal



48 CHAPTER 4. SCALES

αs < κ
+σ(n)
xsn

such that s_As  “ḣ(n) = αs”. By taking a diagonal intersec-
tion, we obtain a condition q′ = 〈B0, B1, . . .〉 such that, for every lower part
s of length n+ 1 compatible with q′, s_q′  “ḣ(n) = αs”.

For x ∈ Pκ(κ+n), let Hn(x) = sup({αs | s is a lower part of length n + 1

with top element x}). Note that, if m < n, y ∈ Pκ(κ+m), and y ≺ x, then
y ⊆ x ∩ κ+m. Since |x ∩ κ+m| = κ+m

x , there are fewer than κ+n
x ≤ κ

+σ(n)
x -

many lower parts of length n + 1 with top element x, so Hn(x) < κ
+σ(n)
x .

Moreover, it is clear that, for every n < ω, q′  “ḣ(n) < Hn(ẋn)”.

Claim 4.12. ~f = 〈fα | α < µ〉 is cofinal in∏
n<ω

κ+σ(n)
n

Proof. Let
h ∈

∏
n<ω

κ+σ(n)
n

and let 〈Hn | n < ω〉 ∈ V [G] be as given by the previous lemma. For each
n < ω, [Hn]U∗n < κ+σ(n), so we can find α < µ and n∗ < ω such that for
all n ≥ n∗, [Hn]U∗n < gα(n). Then, for all n ≥ n∗, {x ∈ Pκ(κ+n) | Hn(x) <

Fngα(n)(x)} ∈ U∗n. Thus, by genericity, for large enough n, h(n) < Hn(xn) <

fα(n).

Claim 4.13. If α < µ is good for ~f , then it is good for ~g as well.

Proof. Let α be good for ~f . ω < cf(α) < κ, and this is true in V [G] as
well. Since every unbounded subset of α in V [G ∗ H] contains an un-
bounded subset in V [G], we can choose A ∈ V [G] unbounded in α and
n∗ < ω witnessing that α is good for ~f . Moreover, we may assume that
otp(A) = cf(A). Let q = 〈x0, x1, . . . , xn−1, An, An+1, . . .〉 force that A and n∗

witness the goodness of α. It must be the case that for every m ≥ n, n∗,
{x ∈ Pκ(κ+m) | 〈Fmgβ(m)(x) | β ∈ A〉 is strictly increasing} ∈ U∗m, since
otherwise we could find p ≤ q forcing that 〈fβ(m) | β ∈ A〉 is not strictly
increasing. Thus, for all m ≥ n, n∗ and β, γ ∈ A with β < γ, gβ(m) =

[Fmgβ(m)]U∗m < [Fmgγ(m)]U∗m = gγ(m). Thus, A witnesses that α is good for
~g.

We know that, in V [G], there is a stationary set of α < µ with ω < α < κ

such that α is bad for ~g. Since Q has the µ-c.c., this set remains stationary
in V [G ∗H]. Thus, ~f is a bad scale in V [G ∗H].
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In [15], Gitik and Sharon show that, in V [G ∗ H], there is a very good
scale in

∏
κ+ω+1
n of length µ and a scale in

∏
κ+ω+2
n of length µ+ such that

every α < µ+ with ω < cf(α) < κ is very good. We now show that, above
this, there is no essentially new behavior.

Theorem 4.14. In V [G], let σ : ω → κ be such that, for all n < ω, σ(n) ≥
ω + 1. Then, in V [G ∗ H], there is a scale of length µ+ in

∏
κ

+σ(n)+1
n such

that every α < µ+ with ω < cf(α) < κ is very good.

Proof. First note that, by genericity, for large enough n, κ+σ(n)+1
n < κn+1.

Thus, we may assume without loss of generality that this is true for all
n < ω. Work in V [G]. For n < ω, let ηn = (κ+σ(n)+1)M . ηn < j(κ) and
|j(κ)| = µ+, so, since M is closed under µ-sequences of ordinals, |ηn| =

cf(ηn) = µ+. Let 〈αnζ | ζ < µ+〉 be increasing, continuous, and cofinal in ηn.
Recall, letting n = 0 in Lemma 4.1, that for all α < j(κ) (so certainly

for all α < ηn), there is gα : κ→ κ such that j∗(gα)(κ) = α. Now, moving to
V [G ∗ H], define ~f = 〈fζ | ζ < µ+〉 by letting fζ(n) = gαnζ (κn). The proofs
of the following claims are only minor modifications of the proofs of the
analogous claims from Theorem 4.2 and are thus omitted.

Claim 4.15. For all ζ < µ+, for all large enough n < ω, fζ(n) < κ
+σ(n)+1
n .

Claim 4.16. In V [G ∗H], let

h ∈
∏
n<ω

κ+σ(n)+1
n .

Then there is 〈Hn | n < ω〉 ∈ V [G] such that dom(Hn) = Pκ(κ+n), Hn(x) <

κ
+σ(n)
x for all x ∈ Pκ(κ+n), and, for large enough n, h(n) < Hn(xn).

Claim 4.17. ~f is a scale in
∏
κ

+σ(n)+1
n .

Claim 4.18. If α < µ+ and ω < cf(α) < κ, then α is very good for ~f .

We now take a step back momentarily to survey the landscape. Things
become a bit clearer if, in V [G ∗H], we force with Coll(µ, µ+), producing a
generic object I. Since this forcing is so highly closed, all relevant scales in
V [G∗H] remain scales in V [G∗H∗I], and the goodness or badness of points
of uncountable cofinality is preserved. The only thing that is changed is
that, in V [G ∗H ∗ I], all relevant scales have length µ = κ+. Moreover, we
have a very detailed picture of which scales are good and which are bad.
Let σ ∈ V [G] with σ : ω → κ and, for all n < ω, either σ(n) = 0 or σ(n) is
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a successor ordinal, and consider a scale ~f of length µ in
∏
κ

+σ(n)
n . First

consider the case σ : ω → ω. If, for large enough n, σ(n) < n, then ~f is a
good scale, and in fact there is a very good scale in the same product. On
the other hand, if σ(n) ≥ n for infinitely many n, then ~f is bad. Thus, the
diagonal sequence 〈κ+n

n | n < ω〉 is a dividing line between goodness and
badness in the finite successors of the κn’s. If, alternatively, σ(n) > ω for
all sufficiently large n, then ~f is once again a good scale, and there is a
very good scale in the same product.

4.3 Very weak square in the Gitik-Sharon model

We take a brief moment to note that, though APκ necessarily fails in the
forcing extension by Q, the weaker Very Weak Square principle may hold.
We first recall the following definition from [13].

Definition. Let λ be a singular cardinal. A Very Weak Square sequence at
λ is a sequence 〈Cα | α < λ+〉 such that, for a club of α < λ+,

• Cα is an unbounded subset of α.

• For all bounded x ∈ [Cα]<ω1 , there is β < α such that x = Cβ .

Note that we may assume in the above definition that, for the relevant
club of α < λ+, otp(Cα) = cf(α).

The existence of a Very Weak Square sequence at λ follows from APλ,
but the converse is not true. In fact, in [13], Foreman and Magidor prove
that the existence of a Very Weak Square sequence at every singular cardi-
nal is consistent with the existence of a supercompact cardinal. Also, note
that a Very Weak Square sequence at λ is preserved by any countably-
closed forcing which also preserves λ and λ+. In particular, our prepara-
tion forcing P preserves Very Weak Square sequences. Thus, we may as-
sume that, prior to forcing with Q, there is a Very Weak Square sequence
at κ+ω.

Let V denote the model over which we will force with Q, and suppose
that ~C = 〈Cα | α < µ〉 is a Very Weak Square sequence in V , where µ =

κ+ω+1. Assume additionally that there is a club E ⊆ µ such that, for all
α ∈ E, otp(Cα) = cf(α) and, for all bounded x ∈ [Cα]<ω1 , there is β < α such
that x = Cβ . Let G be Q-generic over V . In V [G], form ~D = 〈Dα | α < µ〉 as
follows.

• If α 6∈ E or α ∈ E and cfV (α) < κ, let Dα = Cα.
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• If α ∈ E and cfV (α) ≥ κ, let Dα ⊆ Cα be an ω-sequence cofinal in α.

Now, using the fact that forcing with Q does not add any bounded sub-
sets of κ, it is easy to verify that ~D is a Very Weak Square sequence at
κ.

4.4 Classifying bad points

We now turn our attention to Cummings and Foreman’s second question
from [5]. We first recall some relevant definitions and the Trichotomy The-
orem, due to Shelah [28].

Definition. Let X be a set, let I be an ideal on X, and let f, g : X → ON .
Then f <I g if {x ∈ X | g(x) ≤ f(x)} ∈ I. ≤I , =I , >I , and ≥I are defined
analogously. If D is the dual filter to I, then <D is the same as <I .

Thus, if X is a set of ordinals and I is the ideal of bounded subsets of
X, then <I is the same as <∗.

Definition. Let I be an ideal on X, β an ordinal, and ~f = 〈fα | α < β〉 a
<I -increasing sequence of functions in XON . g ∈ XON is an exact upper
bound (or eub) for ~f if the following hold:

1. For all α < β, fα <I g.

2. For all h ∈ XON such that h <I g, there is α < β such that h <I fα.

We note that, easily, if ~f is a <I -increasing sequence of functions and
g and h are both eubs for ~f , then g =I h. The following is a standard
alternate characterization of good points in scales.

Proposition 4.19. Let κ be singular, let A ⊆ κ be a cofinal set of regular
cardinals of order type cf(κ), and let ~f = 〈fα | α < µ〉 be a scale in

∏
A. Let

β < µ be such that cf(κ) < cf(β) < κ. Then the following are equivalent:

1. β is good for ~f .

2. 〈fα | α < β〉 has an eub, g, such that, for all i ∈ A, cf(g(i)) = cf(β).

3. There is a <-increasing sequence of functions 〈hξ | ξ < cf(β)〉 that is
cofinally interleaved with ~f � β, i.e. for every α < β there is ξ < cf(β)

such that fα <∗ hξ and, for every ξ < cf(β), there is α < β such that
hξ <

∗ fα. In this case, the function i 7→ sup({hξ(i) | ξ < cf(β)}) is an
eub for ~f � β.
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Theorem 4.20. (Trichotomy) Suppose I is an ideal on X, |X|+ < λ = cf(λ),
and 〈fα | α < λ〉 is a <I -increasing sequence of functions in XON . Then
one of the following holds:

1. (Good) 〈fα | α < λ〉 has an eub, g, such that, for all x ∈ X, cf(g(x)) >

|X|.

2. (Bad) There is an ultrafilter U on X extending the dual filter to I and
a sequence 〈Sx | x ∈ X〉 such that |Sx| ≤ |X| for all x ∈ X and, for all
α < λ, there are h ∈

∏
x∈X Sx and β < λ such that fα <U h <U fβ .

3. (Ugly) There is a function h ∈ XON such that the sequence of sets
〈{x | fα(x) < h(x)} | α < λ〉 does not stabilize modulo I.

We note that the above terminology is slightly misleading. For β to
be a good point in a scale, for example, requires more than 〈fα | α < β〉
falling into the Good case of the Trichotomy Theorem. It also requires that
the eub have uniform cofinality equal to cf(β). Also, β being a bad point
in a scale does not imply that 〈fα | α < β〉 falls into the Bad case of the
Trichotomy Theorem.

We now answer Cummings and Foreman’s question asking into which
case of the Trichotomy Theorem the bad points in the Gitik-Sharon model
fall. We also answer the analogous question for some other models in
which bad scales exist, showing that, in the standard models in which bad
scales exist at relatively small cardinals, there is considerable diversity of
behavior at the bad points. We first recall the following fact from [7].

Fact 4.21. Suppose κ is a supercompact cardinal, σ ∈ ωω is a function
such that, for all n < ω, σ(n) ≥ n, and 〈fα | α < κ+ω+1〉 is a scale in∏
n<ω κ

+σ(n). Then there is an inaccessible cardinal δ < κ such that, for
stationarily many β ∈ κ+ω+1 ∩ cof(δ+ω+1), 〈fα | α < β〉 has an eub, g, such
that, for all n < ω, cf(g(n)) = δ+σ(n).

The content of the next theorem is that these eubs of non-uniform co-
finality get transferred down to the bad scales defined in extensions by
diagonal supercompact Prikry forcing. Note that the proof of the existence
of bad scales in Theorem 4.9 did not rely on our preparatory forcing P, so
we dispense with it here.

Theorem 4.22. Let κ be supercompact, let µ = κ+ω+1, and let σ ∈ ωω be
such that, for all n < ω, σ(n) ≥ n. Let Q be diagonal supercompact Prikry
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forcing at κ defined from 〈Un | n < ω〉, where Un is a measure on Pκ(κ+n).
In V Q, let ~f be the bad scale in

∏
n<ω κ

+σ(n)
n defined as in Theorem 4.9.

Then there is an inaccessible cardinal δ < κ such that, for stationarily
many β ∈ µ∩cof(δ+ω+1), 〈fα | α < β〉 has an eub, g, such that, for all n < ω,
cf(g(n)) = δ+σ(n).

Proof. Let G be Q-generic over V , and let 〈xn | x < ω〉 be the associated
generic sequence. ~f = 〈fα | α < µ〉 is the bad scale in

∏
n<ω κ

+σ(n)
n defined

as in the proof of Theorem 4.9, i.e. fα(n) = Fngα(n)(xn), where ~g = 〈gα |
α < µ〉 ∈ V is a scale in

∏
n<ω κ

+σ(n) and, for each n < ω and η < κ+σ(n),
Fnη : Pκ(κ+n)→ κ is such that [Fnη ]Un = η.

By Fact 4.21, there is an inaccessible δ < κ and a stationary S ⊆ µ ∩
cof(δ+ω+1) such that, for all β ∈ S, 〈gα | α < β〉 has an eub, g, such that, for
all n < ω, cf(g(n)) = δ+σ(n). Without loss of generality, ~g is a continuous
scale and this eub is in fact gβ .

Since Q has the µ-c.c. and preserves the inaccessibility of δ and the
regularity of δ+ω+1, S remains a stationary subset of µ ∩ cof(δ+ω+1) in
V [G]. Thus, we will be done if we show that, for all β ∈ S, 〈fα | α < β〉 has
an eub g such that, for all n < ω, cf(g(n)) = δ+σ(n). In fact, we claim that
this eub is, up to finite adjustments, fβ .

Claim 4.23. Let β ∈ S. Then, for sufficiently large n < ω, cf(fβ(n)) = δ+σ(n)

Proof. For all n, cf(gβ(n)) = δ+σ(n). Thus, since δ+σ(n) < κ and [Fng(β)]Un =

g(β), we know that, for all n < ω and almost all x ∈ Xn, cf(Fngβ(n)(x)) =

δ+σ(n). Therefore, by genericity of 〈xn | n < ω〉, cf(fβ(n)) = cf(Fngβ(n)(xn)) =

δ+σ(n) for all sufficiently large n < ω.

Claim 4.24. Let β ∈ S. Then fβ is an eub for 〈fα | α < β〉.

Proof. In V [G], fix h ∈
∏
n<ω κ

+σ(n)
n such that h < fβ . We want to find

α < β such that h <∗ fα. We first define some auxiliary functions.
In V , for each n < ω, let 〈ηnξ | ξ < δ+σ(n)〉 be an increasing sequence of

ordinals cofinal in gβ(n). In V [G], for τ ∈
∏
n<ω δ

+σ(n), define fτ by letting,
for all n < ω, fτ (n) = Fnηn

τ(n)
(xn).

Since, for all n < ω, 〈ηnξ | ξ < δ+σ(n)〉 is increasing and cofinal in gβ(n)

and since δ+σ(n) < κ, we have, by the κ-completeness of the measures,
that, for all n < ω, the set of x ∈ Xn such that 〈Fnηnξ (x) | ξ < δ+σ(n)〉
is increasing and cofinal in Fngβ(n)(x) is in Un. Thus, for sufficiently large
n < ω, 〈Fnηnξ (xn) | ξ < δ+σ(n)〉 is increasing and cofinal in Fngβ(n)(xn) = fβ(n).
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Thus, we can find τ ∈
∏
n<ω δ

+σ(n) such that, for large enough n < ω,
h(n) < Fnηn

τ(n)
(xn), i.e. h <∗ fτ .

Since Q does not add any bounded subsets of κ, we actually have τ ∈ V .
For all n < ω, ηnτ(n) < gβ(n), so, since gβ is an eub for 〈gα | α < β〉, there is
α < β such that, for large enough n < ω, ηnτ(n) < gα(n). Thus, we know by
genericity that, again for sufficiently large n < ω, Fnηn

τ(n)
(xn) < Fngα(n)(xn),

i.e. fτ <∗ fα. So h <∗ fτ <∗ fα, and we have have shown that fβ is in fact
an eub for 〈fα | α < β〉 and hence proven the theorem.

Thus, the bad scales in the Gitik-Sharon model have stationarily many
points which lie in the Good case of the Trichotomy Theorem but are
nonetheless bad, since the eubs at these points have non-uniform cofinal-
ity.

We now turn our attention to a bad scale isolated by Cummings, Fore-
man, and Magidor in [7]. Let κ be a supercompact cardinal and let ~f =

〈fα | α < κ+ω+1〉 be a continuous scale in
∏
n<ω κ

+n. Let δ be as given in
Fact 4.21 and let G0×G1 be Coll(ω, δ+ω)×Coll(δ+ω+2, < κ)-generic over V .
Cummings, Foreman, and Magidor show that, in V [G0 × G1], ~f remains a
scale, now living in

∏
n<ω ℵn+3, and that the stationary set S of bad points

in V of cofinality δ+ω+1 is a stationary set of bad points in V [G0 × G1] of
cofinality ω1. The Trichotomy Theorem does not apply to points of cofinal-
ity ω1 in increasing sequences of countable reduced products (see [22] for
a counterexample), but we show that the points in S nonetheless fall into
the Ugly case of the Trichotomy Theorem.

Theorem 4.25. In V [G0 × G1], if β ∈ S, then there is h < fβ such that
the sequence of sets 〈{n | fα(n) < h(n)} | α < β〉 does not stabilize modulo
bounded sets.

Proof. Let β ∈ S. We must produce an h such that, for every α < β, there
is α′ < β such that {n | fα(n) < h(n) < fα′(n)} is infinite. We will actually
show that such an h exists in V [G0]. First, for concreteness, we remark
that we are thinking of conditions in Coll(ω, δ+ω) as finite partial functions
from ω into δ+ω. Let g be the generic surjection from ω onto δ+ω added by
G0. In V , we know that, for every n < ω, cf(fβ(n)) = δ+n. For each n < ω,
let 〈ηnξ | ξ < δ+n〉 be increasing and cofinal in fβ(n). In V [G0], define h as
follows: if n is such that g(n) < δ+n, then let h(n) = ηng(n). If g(n) > δ+n, let
h(n) = 0.

Clearly, h < fβ . Let α < β. In V , there is τ ∈
∏
δ+n such that, for

sufficiently large n, fα(n) < ηnτ(n). Also, since fβ is an eub, there is α′ < β
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such that, again, for sufficiently large n, ηnτ(n) < fα′(n). An easy density
argument shows that, for infinitely many n < ω, g(n) = τ(n) and thus
h(n) = ηnτ(n). Therefore, for infinitely many n < ω, fα(n) < h(n) < fα′(n).

We end this section by briefly remarking on two other models in which
bad scales exist. A result of Magidor [8] shows that, if Martin’s Maxi-
mum holds, then any scale of length ℵω+1 in

∏
A ℵn, where A ⊆ ω, is bad.

Foreman and Magidor, in [13], show that the same conclusion follows from
the Chang’s Conjecture (ℵω+1,ℵω) � (ℵ1,ℵ0). The proofs of these results
immediately yield that, in both cases, such a scale has stationarily many
points of cofinality ω1 that fall into the Bad case of the Trichotomy Theo-
rem.

4.5 Down to ℵω2

In [15], Gitik and Sharon show how to modify their diagonal supercompact
Prikry forcing to arrange that κ, which is supercompact in V , becomes ℵω2

in the forcing extension, SCH and approachability both fail at ℵω2 , and
there is A ⊆ ℵω2 that carries a very good scale. We start this section by
reviewing their construction, being slightly more careful with our prepa-
ration of the ground model so that our results from Section 4.2 carry down.

In V , let j : V → M be the elementary embedding derived from U , a
supercompactness measure on Pκ(κ+ω+1). Let P be the backward Easton-
support iteration from Section 4.2, and let j∗ : V [G]→M [G∗H ∗I] be as in
Lemma 4.1. Let U∗ be the measure on Pκ(κ+ω+1) derived from j∗ and, for
n < ω, let U∗n be the projection of U∗ onto Pκ(κ+n). Let i∗n : V [G] → Nn be
the elementary embedding derived from the ultrapower of V [G] by U∗n and
let kn : Nn →M [G∗H∗I] be the factor map. The functions {gnβ | β < j(κ+n)}
witness that i∗n(κ+n) = j(κ+n), so crit(kn) > j(κ+n).

As before, we can find, in V [G], anH∗ that is Coll(κ+ω+2, < j(κ))M [G∗H∗I]-
generic overM [G∗H∗I]. For all n < ω, since crit(kn) > j(κ) and Coll(κ+ω+2, <

i∗n(κ))Nn has the i∗n(κ)-c.c., the filter generated by k−1
n [H∗], which we will

call Hn, is Coll(κ+ω+2, < i∗n(κ))Nn -generic over Nn.
In V [G], let δ < κ be an inaccessible cardinal such that, for every σ ∈ ωω

such that σ(n) ≥ n for all n < ω, there is a scale ~f in
∏
n<ω κ

+σ(n) of
length κ+ω+1 such that there are stationarily many β < κ+ω+1 of cofinality
δ+ω+1 such that ~f � β has an eub, g, such that, for all n < ω, cf(g(n)) =

δ+σ(n). Such a δ exists by the proof of Fact 4.21, which can be found in [7].
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We now define a version of the diagonal supercompact Prikry forcing with
interleaved collapses. Conditions in this poset, which we again call Q, are
of the form

q = 〈cq, xq0, f
q
0 , x

q
1, f

q
1 , . . . , x

q
n−1, f

q
n−1, A

q
n, F

q
n , A

q
n+1, F

q
n+1, . . .〉

such that the following conditions hold:

1. 〈xq0, x
q
1, . . . , x

q
n−1, A

q
n, A

q
n+1 . . .〉 is a condition in the diagonal super-

compact Prikry forcing defined using the U∗n ’s.

2. If n = 0, cq ∈ Coll(ω,< δ)× Coll(δ+ω+2, < κ).

3. If n ≥ 1, cq ∈ Coll(ω,< δ)× Coll(δ+ω+2, < κxq0).

4. For all i < n− 1, fqi ∈ Coll(κ+ω+2
xqi

, < κxqi+1
).

5. fqn−1 ∈ Coll(κ+ω+2
xqn−1

, < κ).

6. For all ` ≥ n, F q` is a function with domain Aq` such that F q` (x) ∈
Coll(κ+ω+2

x , < κ) for all x ∈ Aq` and i∗` (F
q
` )(i`“κ

+`) ∈ H`.

As before, n is the length of q, denoted lh(q). If p, q ∈ Q, where lh(p) = n

and lh(q) = m, then p ≤ q if and only if:

1. n ≥ m and 〈xp0, . . . , x
p
n−1, A

p
n, . . .〉 ≤ 〈x

q
0, . . . , x

q
m−1, A

q
m, . . .〉 in the stan-

dard supercompact diagonal Prikry poset.

2. cp ≤ cq.

3. For all i ≤ m− 1, fpi ≤ f
q
i .

4. For all i such that m ≤ i ≤ n− 1, fpi ≤ F
q
i (xpi ).

5. For all i ≥ n and all x ∈ Api , F
p
i (x) ≤ F qi (x).

If J is Q-generic over V [G] and 〈xn | n < ω〉 is the associated Prikry se-
quence, then, for each n < ω, letting κn = κxn , we have κn = (ℵω·(n+1)+3)V [G∗J],
κ = (ℵω2)V [G∗H], and (κ+ω+1)V [G] = (ℵω2+1)V [G∗J].

The results about scales transfer down in a straightforward manner.
Namely, in V [G ∗ J ], we have the following situation:

•
∏
n<ω ℵω·n+1 carries a very good scale of length ℵω2+1.

•
∏
n<ω ℵω·n+2 carries a scale of length ℵω2+2 such that, for every β <
ℵω2+2 such that ω1 ≤ cf(β) < ℵω2 , β is very good for the scale.
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• If σ ∈ ωω is such that, for every n < ω, σ(n) < n, then
∏
n<ω ℵω·(n+1)+σ(n)+3

carries a scale of length ℵω2+2 such that, as in the previous item, all
relevant points are very good.

• If σ ∈ ωω is such that, for all n < ω, σ(n) ≥ n, then
∏
n<ω ℵω·(n+1)+σ(n)+3

carries a bad scale of length ℵω2+1.

Also, just as in Section 5, the bad scales in
∏
n<ω ℵω·(n+1)+σ(n)+2 in V [G∗

J ] have stationarily many points of cofinality ℵω+1 where there are eubs g
such that, for all n < ω, cf(g(n)) = ℵσ(n)+1. Finally, as before, if we force
over V [G ∗ J ] with Coll(ℵω2+1,ℵω2+2), then all scales in V [G ∗ J ] remain
scales (now all of length ℵω2+1) in the further extension. The bad scales
remain bad, the very good scales remain good, and all scales which were
of length ℵω2+2 in V [G ∗ J ] are also very good in the further extension.

4.6 The good ideal

We now turn to the third question raised by Cummings and Foreman in
[5]. We first give some background.

Let κ be a singular cardinal, and let A be a progressive set of regular
cardinals cofinal in κ. Let I be the collection of B ⊆ A such that either B
is bounded or

∏
B carries a scale of length κ+. I is easily seen to be an

ideal, and one of the seminal results of PCF Theory is the fact [28] that I
is singly generated, i.e. there is B∗ ⊆ A such that, for all B ∈ I, B ⊆∗ B∗,
where ⊆∗ denotes inclusion modulo bounded sets. Thus, if κ is a singular
cardinal that is not a cardinal fixed point, then there is a largest subset of
the regular cardinals below κ, modulo bounded sets, which carries a scale
of length κ+. Such a set is called the first PCF generator.

Cummings and Foreman asked whether, when the first PCF genera-
tor exists, there is also a maximal set, again modulo bounded sets, which
carries a good scale. This is the case in the models obtained above by diag-
onal supercompact Prikry forcing, which were also the first known models
in which this set is nontrivial and different from the first PCF generator
itself, i.e. in which certain sets carry good scales and others carry bad
scales. For example, in our final model in Section 6, after forcing with
Coll(ℵω2+1,ℵω2+2), the largest subset of regular cardinals below ℵω2 that
carries a good scale is, modulo bounded subsets, {ℵω·n+m | n ≤ ω,m <

n + 2}. Does such a set always exist? In this section, we will only be con-
cerned with singular cardinals of countable cofinality and with scales in
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∏
A, where otp(A) = ω. With this in mind, we make the following defini-

tion.

Definition. Suppose κ is a singular cardinal of countable cofinality. Then
Igd[κ] is the collection of A ⊆ κ such that A is a set of regular cardinals and
either A is finite or otp(A) = ω and

∏
A carries a good scale of length κ+.

It is easily seen that Igd[κ] is an ideal. A question related to that of
Cummings and Foreman is whether or not Igd[κ] is a P-ideal, i.e. whether
or not, given 〈An | n < ω〉 such that, for all n < ω, An ∈ Igd[κ], there exists
A ∈ Igd[κ] such that, for all n < ω, An ⊆∗ A. We do not answer this ques-
tion, but we provide some partial results. In the first part of this section,
we analyze individual good and bad points in scales, proving that there
are consistently local obstacles to proving that Igd[κ] is a P-ideal (though
we do not know whether this pathological behavior can consistently occur
simultaneously at enough points to provide an actual counterexample to
Igd[κ] being a P-ideal). In the second part of the section, we show that,
after forcing with a finite-support iteration of Hechler forcing of length ω1,
Igd[κ] is necessarily a P-ideal.

Let 〈An | n < ω〉 be a sequence of elements of Igd[κ] and suppose, with-
out loss of generality, that each An is infinite. Then, by results of Shelah,
there is A ⊆ κ of order type ω such that

∏
A carries a scale of length κ+

and, for all n < ω, An ⊆∗ A. Again without loss of generality, by adjusting
the An’s if necessary, we may assume that A =

⋃
An and, for all n < ω,

An ⊆ An+1.
Let ~f = 〈fα | α < κ+〉 be a scale in

∏
A. For B ⊆ A, let ~fB denote

〈fα � B | α < κ+〉. If B is infinite, then ~fB is a scale in
∏
B. Also, since,

for each n < ω,
∏
An carries a good scale, we know that ~fAn is itself a

good scale. Thus, for each n < ω, there is a club Cn ⊆ κ+ such that for
every β ∈ Cn of uncountable cofinality, β is good for ~fAn . Intersecting the
clubs, there is a club C ⊆ κ+ such that, for every n < ω and every β ∈ C of
uncountable cofinality, β is good for ~fAn .

We want to know if there is B ⊆ A such that
∏
B carries a good scale

and, for all n < ω, An ⊆∗ B. We first take a local view and focus on
individual good points. Suppose that β ∈ C has uncountable cofinality.
For n < ω, let gn ∈

∏
An be an eub for ~fAn � β such that, for all i ∈ An,

cf(gn(i)) = cf(β). By uniqueness of eubs, if m < n, then gn � Am =∗ gm.
Define g ∈ AOn by letting g � A0 = g0 and, for all n < ω, g � (An+1 \ An) =

gn+1 � (An+1 \An). Then we have that g � An =∗ gn for all n < ω.
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By uniqueness of eubs, if B∗ ⊆ A, An ⊆∗ B∗ for all n < ω, and g∗ is an
eub for ~fB

∗
� β, then, for all n < ω, g∗ � (An ∩B∗) =∗ gn � (An ∩B∗). Thus,

if there is such a B∗ and g∗, then there is a B ⊆ A such that An ⊆∗ B for
all n < ω and g � B is an eub for ~fB � β. We now turn to the question of
when such a B exists.

We note that a subset of A that almost contains all of the An’s can
be specified by an element of ωω. Namely, if each An is enumerated in
increasing order as 〈ink | k < ω〉 and σ ∈ ωω, let

Bσ =
⋃
n<ω

An \ inσ(n).

Each Bσ is a subset of A that almost contains all of the An’s, and each
subset of A that almost contains all of the the An’s contains a set of the
form Bσ.

With this in mind, it is not surprising that cardinal characteristics of
the continuum have an impact on the situation. Recall that b, or the
bounding number, is the size of the smallest family of functions that is
unbounded in (ωω,<∗). d, or the dominating number, is the size of the
smallest family of functions that is cofinal in (ωω,<∗).

For simplicity, when considering questions about the local behavior of
scales, we will without loss of generality think of the An’s as being subsets
of ω and consider increasing sequences of functions in AOn.

Lemma 4.26. Let λ be a regular, uncountable cardinal. Let 〈An | n < ω〉
be such that each An is an infinite subset of ω and, for all m < n, Am ⊆ An.
Let A =

⋃
n<ω An. Let ~f = 〈fα | α < λ〉 be a <∗-increasing sequence of

functions in AOn such that, for every n < ω, ~fAn = 〈fα � An | α < λ〉 has
an eub of uniform cofinality λ. If either λ < b or λ > d, then there is B ⊆ A

such that, for all n, An ⊆∗ B and ~fB has an eub of uniform cofinality λ.

Proof. For n < ω, let gn be an eub of uniform cofinality λ for ~fAn . Define
g ∈ AOn as before so that, for all i ∈ A, cf(g(i)) = λ and, for all n < ω,
g � An =∗ gn.

For each i ∈ A, let 〈γiξ | ξ < λ〉 be increasing and cofinal in g(i) and, for
ξ < λ, define hξ ∈ AOn by hξ(i) = γiξ.

We first consider the case λ < b. For each α < λ and each n < ω, there
is ξ < λ such that fα � An <∗ hξ � An. Thus, there is ξα < λ such that, for
all n < ω, fα � An <∗ hξα � An. Define σα ∈ ωω by letting σα(n) be the least
i such that fα � (An \ i) < hξα � (An \ i).
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Similarly, for each ξ < λ and each n < ω, there is α < λ such that
hξ � An <∗ fα � An, so there is αξ < λ such that, for all n < ω, hξ �
An <∗ fαξ � An. Define τξ ∈ ωω by letting τξ(n) be the least i such that
hξ � (An \ i) < fαξ � (An \ i).

Since λ < b, we can find σ ∈ ωω such that for all α, ξ < λ, we have
σα, τξ <

∗ σ. Let B = Bσ. We claim that this B is as desired. To see this,
let α < λ. fα � Bσα < hξα � Bσα . But, since σα <∗ σ, we know that
B ⊆∗ Bσα , so fα � B <∗ hξα � B. By the same argument, for each ξ < λ,
hξ � B <∗ fαξ � B. Thus, 〈hξ � B | ξ < λ〉 is cofinally interleaved with ~fB ,
so, by Proposition 4.19, g � B is an eub for ~fB .

Now suppose that λ > d. Let F be a family of functions cofinal in ωω

such that |F| = d. As above, for each α < λ, we can find ξα < λ and σα ∈ ωω

such that fα � Bσα <∗ hξα � Bσα , but we now also require that σα ∈ F .
This is possible because F is cofinal in ωω. Since λ > d, there is σ∗ ∈ F
such that σα = σ∗ for cofinally many α < λ. But, since ~f is <∗-increasing,
it is actually the case that, for every α < λ, there is ξ∗α < λ such that
fα � Bσ∗ <∗ hξ∗α � Bσ∗ .

Similarly, we can find τ∗ ∈ F such that, for every ξ < λ, there is α∗ξ < λ

such that hξ � Bτ∗ <∗ fα∗ξ � Bτ∗ . Let σ > σ∗, τ∗, and let B = Bσ. It is
easily seen as before that 〈hξ � B | ξ < λ〉 is cofinally interleaved with ~fB ,
so g � B is an eub for ~fB .

Now suppose that b ≤ λ ≤ d. Let 〈An | n < ω〉 be a ⊆-increasing
sequence of infinite subsets of ω, let A =

⋃
An, and let ~f = 〈fα | α < λ〉 be

a<∗-increasing sequence of functions in AOn such that, for each n < ω, ~fAn

has an eub, gn, of uniform cofinality λ. Let g ∈ AOn be of uniform cofinality
λ such that, for all n < ω, g � An =∗ gn. We would like to understand how
g can fail to be an eub.

For each i ∈ A, let 〈γiξ | ξ < λ〉 be increasing and cofinal in g(i) and, for
ξ < λ, let hξ ∈ AOn be defined by hξ(i) = γiξ. For σ ∈ ωω, the statement that
g � Bσ is an eub for ~fBσ is equivalent to the statement that 〈hξ � Bσ | ξ < λ〉
is cofinally interleaved in ~fBσ . There are two ways in which this could fail
to happen:

1. There is α < λ such that, for every ξ < λ, fα � Bσ 6<∗ hξ � Bσ.

2. There is ξ < λ such that, for every α < λ, hξ � Bσ 6<∗ fα � Bσ.
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Thus, if g � Bσ fails to be an eub for ~fBσ for all σ ∈ ωω, one of the above
two situations must occur for a <∗-cofinal set of ωω, so in fact one of them
must occur for all σ ∈ ωω.

We first concentrate on case 1.

Lemma 4.27. Let σ ∈ ωω. Suppose α < λ is such that, for every ξ < λ,
fα � Bσ 6<∗ hξ � Bσ. Then fα � Bσ 6<∗ g � Bσ.

Proof. Suppose for sake of contradiction that fα � Bσ <∗ g � Bσ. Let k < ω

be such that fα(i) < g(i) for all i ∈ Bσ \ k. For i ∈ Bσ \ k, let ξi < λ be such
that fα(i) < hξi(i). Let ξ = supi∈Bσ\k ξi. Then fα(i) < hξ(i) for all i ∈ Bσ \k,
so fα � Bσ <∗ hξ � Bσ.

Thus, we are in case 1 if and only if g � Bσ is not in fact an upper bound
for ~fBσ . We now show that, if λ = b = ω1, this can hold simultaneously
for all σ ∈ ωω. Without loss of generality, in what follows we assume that
A = ω.

Lemma 4.28. Suppose b = ω1. Let 〈An | n < ω〉 be such that, for each n,
An ⊆ An+1, An+1 \ An is infinite, and

⋃
n<ω An = ω. There is a sequence

of functions ~f = 〈fα | α < ω1〉, <∗-increasing in ωOn, such that, for every
n < ω, ~fAn has an eub, gn, of uniform cofinality ω1 but, letting g be such
that g � An =∗ gn for every n < ω, for every σ ∈ ωω, g � Bσ is not an upper
bound for ~fBσ .

Proof. Fix a <∗-increasing, unbounded sequence 〈σα | α < ω1〉 in ωω. We
first construct a useful sequence of subsets of ω.

Claim 4.29. There is a sequence 〈Xα | α < ω1〉 such that, for every α < β <

ω1,

1. Xα ⊆ ω and Xα ⊆∗ Xβ .

2. For all n < ω, Xα ∩An is finite.

3. For all n < ω Xα+1 ∩ (An+1 \ (An ∪ σα(n+ 1))) is nonempty.

Proof. We construct 〈Xα | α < ω1〉 by recursion on α. Let X0 = ∅. Given
Xα, letXα+1 = Xα∪{min(An+1\(An∪σα(n+1))) | n < ω}. Requirement 1 is
clearly satisfied. For each n < ω, |Xα+1∩An| ≤ |Xα∩An|+n, so requirement
2 is satisfied as well. Finally, since, for all n, An+1 \ An is infinite, Xα+1

contains an element of An+1\(An∪σα(n+1)), so requirement 3 is satisfied.
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If β < ω1 is a limit ordinal, then we just needXβ to satisfy requirements
1 and 2. Fix a bijection τβ : ω → β, and let

Xβ =
⋃
n<ω

(Xτβ(n) \
⋃
k<n

Ak).

For α < β, if α = τβ(n), then, since Xα ∩ Ak is finite for all k, Xα ⊆∗

Xα \ (
⋃
k<nAk) ⊆ Xβ , so Xα ⊆∗ Xβ . Also, for all n < ω,

Xβ ∩An ⊆ (
⋃
k≤n

Xτβ(k)) ∩An,

which is finite. Thus, Xβ satisfies 1 and 2 as desired, completing the con-
struction.

We now use the sequence 〈Xα | α < ω1〉 to construct the desired se-
quence of functions ~f . For α < ω1 and k < ω, let

fα(k) =

α if k 6∈ Xα

ω1 + α if k ∈ Xα

Claim 4.30. ~f is <∗-increasing.

Proof. Let α < β < ω1. Then fβ(k) ≤ fα(k) if and only if k ∈ Xα \ Xβ .
But Xα ⊆∗ Xβ , so this only happens for finitely many values of k. Thus,
fα <

∗ fβ .

For an ordinal γ, let cγ denote the constant function with domain ω

taking value γ everywhere.

Claim 4.31. For every n < ω, cω1 � An is an eub for ~fAn .

Proof. For every α < ω1, Xα ∩ An is finite, so fα � An =∗ cα � An. Since
cω1 � An is an eub for 〈cα � An | α < ω1〉, it is also an eub for ~fAn .

Claim 4.32. For every σ ∈ ωω, cω1
� Bσ is not an upper bound for ~fBσ .

Proof. Fix σ ∈ ωω, and find α < ω1 such that σα 6<∗ σ. Then Y = {n |
σ(n + 1) ≤ σα(n + 1)} is infinite and, for every n ∈ Y , Xα+1 contains an
element of An+1 \ (An ∪ σα(n + 1)). Thus, Xα+1 ∩ Bσ is infinite. Since, for
all k ∈ Xα+1, fα+1(k) > ω1, we have fα+1 � Bσ 6<∗ cω1

� Bσ, so cω1
� Bσ is

not an upper bound for ~fBσ .

Thus, for all σ ∈ ωω, ~fBσ has no eub.
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We now turn our attention to case 2 and show that it too is consistently
possible.

Lemma 4.33. Suppose d = ω1. Let 〈An | n < ω〉 be such that, for each n,
An ⊆ An+1, An+1 \ An is infinite, and

⋃
n<ω An = ω. There is a sequence

of functions ~f = 〈fα | α < ω1〉, <∗-increasing in ωOn such that, for every
n < ω, ~fAn has an eub but, defining g and 〈hξ | ξ < ω1〉 as above, for every
σ ∈ ωω, there is ξσ < ω1 such that, for every α < ω1, hξσ � Bσ 6<∗ fα � Bσ.

Proof. Fix a<∗-increasing sequence 〈σα | α < ω1〉 cofinal in ωω. For α < ω1,
let Bα denote Bσα .

Claim 4.34. There are subsets of ω, 〈Xβ
α | α < β < ω1〉, such that, letting

Xβ =
⋃
α<β X

β
α ,

1. For all β < ω1 and all n < ω, Xβ ∩An is finite.

2. For all β < ω1 and all α < α′ < β, Xβ
α ⊆ X

β
α′ .

3. For all β < ω1 and all α < β, Xβ
α ∩Bα is infinite.

4. For all β < β′ < ω1,
⋃
α<β(Xβ

α \Xβ′

α ) is finite.

Proof. We construct 〈Xβ
α | α < β < ω1〉 by recursion on β. First, let X1

0 =

{min(An+1 \ (An ∪ σ0(n+ 1))) | n < ω}.
Next, suppose β′ < ω1 and we have constructed 〈Xβ

α | α < β ≤ β′〉
satisfying requirements 1-4 above. For α < β′, let Xβ′+1

α = Xβ′

α , and let
Xβ′+1
β′ = Xβ′ ∪ {min(An+1 \ (An ∪ σβ′(n + 1))) | n < ω}. It is immediate by

the inductive hypothesis that this still satisfies the requirements.
Finally, suppose β′ < ω1 is a limit ordinal and that we have constructed

〈Xβ
α | α < β < β′〉. Fix a bijection τ : ω → β′. For α < β′, denote τ−1(α)

as iα. Note that, for a fixed α, 〈Xβ
α | α < β < β′〉 is ⊆∗-decreasing, and

each Xβ
α has an infinite intersection with Bα, so any finite subsequence

has an infinite intersection with Bα. For all α < β′, we will first define
Yα = {yαm | m < ω} by recursion on m. We will also define an increasing
sequence of natural numbers, 〈nαm | m < ω〉.

Fix α < β′. Let nα0 be the least n such that⋂
j≤iα
τ(j)>α

Xτ(j)
α ∩ (An \ σα(n))
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is nonempty, and let yα0 be an element of this intersection. Given yαm and
nαm, let nαm+1 be the least n > nαm such that⋂

j≤iα+m
τ(j)>α

Xτ(j)
α ∩ (An \ (σα(n) ∪ (yαm + 1)))

is nonempty, and let yαm+1 be an element of this intersection. Note that we
can always find such an nαm+1, since⋂

j≤iα+m
τ(j)>α

Xτ(j)
α ∩Bα

is infinite.
If α < β < β′ and iβ ≤ iα+m, yαk ∈ Xβ

α for all k > m, so Yα ⊆∗ Xβ
α and, if

iβ < iα, we actually have Yα ⊆ Xβ
α . From this, it follows that, for all n < ω,

Yα ∩An is finite. Also, by construction, Yα ∩Bα is infinite. Now let

Y ∗α = Yα \
⋃
n<iα

An.

Note that Y ∗α has all of the properties of Yα mentioned above. Finally, let

Xβ′

α =
⋃
γ≤α

Y ∗γ .

We claim that this construction has succeeded. To see that requirement
1 is satisfied, note that for all n < ω, {α < β′ | Y ∗α ∩ An 6= ∅} ⊆ τ“(n + 1),
which is finite, and, for each α < β′, Y ∗α ∩ An is finite, so Xβ′ ∩ An is the
finite union of finite sets and hence finite.

Requirements 2 and 3 are obviously satisfied by the construction. To
see 4, fix β < β′. If α < β is such that iα > iβ , then Y ∗α ⊆ Xβ

α , so⋃
α<β

(Xβ
α \Xβ′

α ) ⊆
⋃
α<β

ıα<iβ

(Y ∗α \Xβ
α),

which is finite.

We are now ready to define ~f = 〈fβ | β < ω1〉. First, if β < ω1 and
k ∈ Xβ , let αβk be the least α < β such that k ∈ Xβ

α . For β < ω1 and k < ω,
let

fβ(k) =

ω1 · β if k 6∈ Xβ

ω1 · αβk + β if k ∈ Xβ
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Claim 4.35. ~f is <∗-increasing.

Proof. Let β < β′ < ω1. If k < ω, the only way we can have fβ′(k) ≤ fβ(k)

is if there is α < β such that k ∈ Xβ
α \Xβ′

α . By construction, there are only
finitely many such values of k.

Claim 4.36. For every n < ω, cω2
1
� An is an eub for ~fAn .

Proof. For each β < ω1 and n < ω,Xβ∩An is finite, so fβ � An =∗ cω1·β � An.
Since cω2

1
� An is an eub for 〈cω1·β � An | β < ω1〉, it is also an eub for

~fAn .

Claim 4.37. For all α, β < ω1, cω1·(α+1) � Bα 6<∗ fβ � Bα.

Proof. If β ≤ α, then fβ(k) < ω1 · (α+ 1) for all k < ω1, so fβ < cω1·(α+1). If
β > α, then Xβ

α ∩ Bσα is infinite and, for all k ∈ Xβ
α , fβ(k) < ω1 · (α + 1).

Thus, cω1·(α+1) � Bσα 6<∗ fβ � Bα.

By the above claims, we can let g = cω2
1

and, for ξ < ω1, hξ = cω1·ξ. Let
σ ∈ ωω. Since 〈σα | α < ω1〉 is dominating, we can find α < ω1 such that
σ <∗ σα. Then Bσ ⊆∗ Bα, so, by the last claim, for all β < ω1, hα+1 � Bσ 6<∗

fβ � Bσ.

Thus, at individual points of scales we can have a situation in which
β is good for ~fAn for every n < ω but fails to be good for ~fBσ for every
σ ∈ ωω. It remains open whether this can happen simultaneously at sta-
tionarily many points, thus providing a counterexample to Igd[κ] being a
P-ideal. In fact, only something slightly weaker needs to happen to provide
a counterexample, namely, for every σ ∈ ωω, there are stationarily many
β ∈ κ+ ∩ cof(≥ ω1) such that β is good for every ~fAn but fails to be good for
~fBσ .

We now show that, starting in any ground model, a very mild forcing,
namely a finite support iteration of Hechler forcing, forces Igd[κ] to be a
P-ideal for every singular κ of countable cofinality. This further suggests
that the question under consideration perhaps has more to do with the
structure of ωω than with PCF-theoretic behavior at higher cardinals.

We first recall the Hechler forcing notion. Conditions in the forcing
poset are of the form p = (sp, fp), where sp ∈ npω for some np < ω and
fp ∈ ωω. q ≤ p if and only if

1. nq ≥ np
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2. sq � np = sp

3. For every k ∈ [np, nq), sq(k) > fp(k).

4. fq > fp.

Hechler forcing adds a dominating real, i.e. a σ∗ ∈ ωω such that, for every
σ ∈ (ωω)V , σ <∗ σ∗.

We will need the following fact from [1].

Fact 4.38. Let X be a set, let I be an ideal on X, and let ~f = 〈fα | α < ζ〉 be
a <I -increasing sequence of functions in XOn. Suppose that λ is such that
|X| < λ = cf(λ) < cf(ζ). Then the following are equivalent.

1. There are stationarily many β ∈ ζ ∩ cof(λ) such that ~f � β has an eub
of uniform cofinality λ.

2. ~f has an eub, g, such that, for all x ∈ X, cf(g(x)) ≥ λ.

Lemma 4.39. Let κ be a singular cardinal of countable cofinality. For each
n < ω, let An be an increasing ω-sequence of regular cardinals, cofinal in κ,
such that

∏
An carries a good scale. Let P be Hechler forcing. Then, in V P,

there is an ω-sequence B ⊂ κ such that, for all n < ω, An ⊆∗ B and
∏
B

carries a good scale.

Proof. In V , let B0 be an ω-sequence, cofinal in κ, such that An ⊆∗ B0 for
all n < ω and

∏
B0 carries a scale. Without loss of generality, we may

assume that B0 =
⋃
n<ω An and that all elements of B0 are uncountable.

Also, for each n < ω, enumerate An in increasing order by 〈ink | k < ω〉. Let
~f = 〈fα | α < κ+〉 be a scale in

∏
B0. Then, for each n < ω, ~fAn is a scale in∏

An and, since each
∏
An carries a good scale, each ~fAn is good. Let Cn

be club in κ+ such that, if β ∈ Cn ∩ cof(≥ ω1), then β is good for ~fAn , and
let C =

⋂
n<ω Cn.

Let β ∈ C ∩ cof(≥ ω1) and, for each n < ω, let gβn ∈
∏
An be an eub for

~fAn � β such that cf(gβn(i)) = cf(β) for all i ∈ An. Let gβ ∈
∏
B0 be such

that, for all i ∈ B0, cf(gβ(i)) = cf(β) and, for all n < ω, gβ � An =∗ gβn.
For each i ∈ B0, let 〈βiξ | ξ < cf(β)〉 be increasing and cofinal in gβ(i).

For ξ < cf(β), let hβξ ∈
∏
B0 be defined by hβξ (i) = βiξ. For ξ < ξ′ < cf(β), we

have hβξ < hβξ′ < gβ .
For ξ < cf(β) and n < ω, let αnξ < β be such that hβξ � An <

∗ fαnξ � An.
Such an ordinal exists, because hξ < gβ and gβ � An is an eub for 〈fα � An |
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α < β〉. Let aξ = sup({anξ | n < ω}). Define a function σβξ ∈ ωω by letting
σβξ (n) be the least j such that hβξ (ink ) < fαξ(i

n
k ) for all k ≥ j.

For α < β and n < ω, fα � An <∗ gβ � An, so, since cf(β) > ω, there
is ξnα < cf(β) such that fα � An <∗ hβξnα � An. Let ξα = sup({ξnα | n < ω}).
Define a function τβα ∈ ωω by letting τβα (n) be the least j such that fα(ink ) <

hβξα(ink ) for all k ≥ j.
Now let G be P-generic over V . Since P has the c.c.c., all cardinalities

and cofinalities are preserved by P.

Claim 4.40. In V [G], ~f is still a scale in
∏
B0.

Proof. ~f is clearly still <∗ increasing, so it remains to check that it is co-
final in

∏
B0. To this end, let ḣ be a P name for a member of

∏
B0. For

i ∈ B0, let Xi = {δ | for some p ∈ P, p  “ḣ(̌i) = δ̌”}. By the c.c.c., each Xi is
countable, so we may define a function h∗ ∈

∏
B0 in V by h∗(i) = sup(Xi).

Then there is α < κ+ such that h∗ <∗ fα, so  “ḣ <∗ f̌α”.

In V [G], let σ ∈ ωω be the real added by G. In particular, σ dominates
all reals in V . Let B =

⋃
n<ω(An\inσ(n)). Clearly, B is an ω-sequence cofinal

in κ such that, for all n < ω, An ⊆∗ B.

Claim 4.41. For all β ∈ C ∩ cof(≥ ω1), β is good for ~fB .

Proof. Fix β ∈ C ∩ cof(≥ ω1). It suffices to show that 〈hβξ � B | ξ < cf(β)〉
is cofinally interleaved with 〈fα � B | α < β〉. Fix α < β, and let ξ be the
ξα used above in the definition of τβα . τβα <∗ σ, so there is m < ω such that
τβα (n) < σ(n) for all n ≥ m. Thus, by the definition of τβα , we know that for
all n ≥ m, fα �

⋃
n≥m(An \ inσ(n)) < hβξ �

⋃
n≥m(An \ inσ(n)). Also, for each

n < m, fα � An <∗ hβξ � An. Putting this together, we get fα � B <∗ hβξ � B.
An identical argument shows that, for all ξ < cf(β), there is α < β such
that hβξ � B <∗ fα � B.

Thus, ~fB is a good scale in
∏
B, and the proof is complete.

Theorem 4.42. Let 〈Pγ | γ ≤ ω1〉 be a finite-support iteration of Hechler
forcing. Then, in V Pω1 , for every singular cardinal κ of countable cofinality,
Igd[κ] is a P-ideal.

Proof. Let P = Pω1
. Since every pair of conditions p and q in the Hechler

poset such that sp = sq are compatible, Hechler forcing is σ-centered. Thus,
since P is a finite-support iteration of length ω1 of σ-centered forcings, P is
itself σ-centered, and hence ω1-Knaster.
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Let G be P-generic over V . For η < γ ≤ ω1, let Pγ = Pη ∗ Pηγ , and let Gη
and Gηγ be the generic filters induced by G on Pη and Pηγ , respectively.

Let κ be a singular cardinal of countable cofinality, and, in V [G], let A
be an ω-sequence cofinal in κ such that

∏
A carries a good scale. By chain

condition, there is γ < ω1 such that A ∈ V [Gγ ].

Claim 4.43.
∏
A carries a good scale in V [Gγ ].

Proof. Work in V [Gγ ]. Let ~̇f = 〈ḟα | α < κ+〉 be a Pγω1
-name such that

Pγω1
“ ~̇f is a good scale in

∏
Ǎ”. For α < κ+ and i ∈ A, let Yα,i = {ν |

for some p ∈ Pγω1
, p  “ḟα(i) = ν̌”}. Since Pγω1

has the c.c.c., each Yα,i is
countable.

Now define ~g = 〈gα | α < κ+〉 by recursion on α as follows. Let g0 be an
arbitrary function in

∏
A. Given gα, let gα+1 ∈

∏
A be such that gα+1 > gα

and, for all i ∈ A, gα+1(i) > sup(Yα,i). If α < κ+ is a limit ordinal, let
gα ∈

∏
A be such that gβ <∗ gα for all β < α. This is easily accomplished

by a standard diagonalization argument.
It is clear that ~g is <∗-increasing. To see that it is cofinal in

∏
A, let

h ∈
∏
A be given. Since ~̇f is forced to be a scale in

∏
A and by the c.c.c.,

there is α < κ+ such that Pγω1
“ȟ <∗ ḟα”. But Pγω1

“ḟα < ǧα+1”, so
h <∗ gα+1. Thus, ~g is a scale in

∏
A and, by previous arguments, it remains

a scale in V [G]. Since
∏
A carries a good scale in V [G], ~g must be good in

V [G].

Subclaim 4.44. If β ∈ κ+ ∩ cof(≥ ω1) is good for ~g in V [G], then it is good
in V [Gγ ].

Proof. We proceed by induction on β and split into two cases depending on
the cofinality of β. First, suppose cf(β) = ω1. In V [G], there is i ∈ A and
〈βξ | ξ < ω1〉 witnessing that β is good, i.e.

• 〈βξ | ξ < ω1〉 is increasing and cofinal in β.

• For all ξ < ξ′ < ω1 and all j ∈ A \ i, gξ(j) < gξ′(j).

In V [Gγ ], find p ∈ Pγω1 such that p forces β to be good for ~g, and let i̇ and
〈β̇ξ | ξ < ω1〉 be names forced by p to witness that β is good. First, find
p∗ ≤ p and i∗ ∈ A such that p∗  “i̇ = i∗”. For ξ < ω1, find pξ ≤ p∗ and β∗ξ
such that pξ“  β̇ξ = β∗ξ”. Since Pγω1

is ω1-Knaster, there is an unbounded
X ⊆ ω1 such that if ξ, ξ′ ∈ X, then pξ and pξ′ are compatible. Then i∗ and
〈β∗ξ | ξ ∈ X〉 witness that β is good for ~g in V [Gγ ].
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Now suppose cf(β) > ω1. In V [G], there is a club C in β of order type
cf(β) such that if α ∈ C∩cof(≥ ω1), then α is good for ~g. By chain condition,
there is a club D ⊆ C such that D ∈ V [Gγ ], and, by induction, every
α ∈ D ∩ cof(≥ ω1) is good for ~g in V [Gγ ]. Thus, by Fact 4.38, in V [Gγ ],
〈gα | α < β〉 has an eub, h, such that, for all i ∈ A, cf(h(i)) > ω. But
then, by chain condition, h remains an eub in V [G], where β is good for ~g.
Thus, cf(h(i)) = cf(β) for all but finitely many i ∈ A, so β is good for ~g in
V [Gγ ].

Since ~g is a good scale in V [G], there is a club E ⊆ κ+ such that for
all β ∈ E ∩ cof(≥ ω1), β is good for ~g. By chain condition, there is a club
E′ ⊆ E such that E′ ∈ V [Gγ ]. The previous subclaim implies that for all
β ∈ E′ ∩ cof(≥ ω1), β is good for ~g in V [Gγ ]. Thus, ~g is a good scale in
V [Gγ ].

We finally show that Igd[κ] is a P-ideal in V [G]. So, in V [G], let 〈An | n <
ω〉 be such that, for all n < ω, An ∈ Igd[κ]. We can assume that none of the
An’s is finite. By the previous claim, there is γ < ω1 such that, for all n < ω,
An ∈ V [Gγ ] and

∏
An carries a good scale in V [Gγ ]. Then, by Lemma 4.39,

in V [Gγ+1] there is B ∈ Igd[µ] such that, for all n < ω, An ⊆∗ B. Arguments
as before show the good scale in

∏
B in V [Gγ ] remains a good scale in V [G],

so B ∈ Igd[κ] in V [G] as well. Thus, Igd[κ] is a P-ideal in V [G].



CHAPTER 5

BOUNDED STATIONARY REFLECTION

5.1 Preliminaries on stationary reflection

Definition. Let κ be a regular cardinal, and let S ⊆ κ be stationary. If
α < κ, then S reflects at α if cf(α) > ω and S ∩ α is stationary in α. S

reflects if there is α < κ such that S reflects at α. Refl(κ) is the statement
that every stationary subset of κ reflects.

The extent of stationary reflection is a topic of considerable interest
in set theory, particularly regarding the investigation of the tension exist-
ing between incompactness phenomena and canonical inner models on one
hand and large cardinals and reflection principles on the other. Quoting
two basic results in this vein, it is an easy consequence of Π1

1-indescribability
that, if κ is weakly compact, then Refl(κ) holds, while Jensen [20] showed
that, if V = L and κ is a regular, uncountable cardinal, then Refl(κ) holds if
and only if κ is weakly compact. Also note that, if κ = λ+ and λ is a regular
cardinal, then Refl(κ) cannot hold, since Sκλ is a non-reflecting stationary
subset of κ.

We will be concerned with stationary reflection at successors of singular
cardinals. The following fundamental result, due to Solovay [29] serves as
a template for many of the proofs in this area.

Proposition 5.1. Suppose 〈κi | i < ω〉 is an increasing sequence of super-
compact cardinals, and let κω = sup({κi | i < ω}). Then Refl(κ+

ω ) holds.

Proof. Let S ⊂ κ+
ω be stationary. By shrinking S if necessary, we may

assume that there is λ < κω such that S ⊆ S
κ+
ω

λ . Let i∗ < ω be such that
λ < κi∗ , and let j : V → M be an elementary embedding witnessing that
κi∗ is κ+

ω -supercompact. In M , j(S) is a stationary subset of Sj(κ
+
ω )

λ . Let
η = sup(j“κ+

ω ). η < j(κ+
ω ), and we claim that, in M , j(S) ∩ η is stationary

in η.
Suppose this is not the case, and let C ∈ M be a club in η such that

C ∩ j(S) = ∅. Since j“κ+
ω is a < κi∗ -closed, unbounded subset of η, C ∩ j“κ+

ω

is a < κi∗ -closed, unbounded subset of η that is disjoint from j(S). Let
D = j−1“(C ∩ j“κ+

ω ). D is a < κi∗ -closed, unbounded subset of κ+
ω that is

70
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disjoint from S. But this is a contradiction, since S is a stationary subset
of Sκ

+
ω

λ and λ < κi∗ .
Thus, M |= “j(S) reflects at η”, so, by elementarity, there is β < κ+

ω

such that V |= “S reflects at β”.

Magidor, in [24], brings this result down to smaller cardinals by show-
ing that, assuming the existence of ω-many supercompact cardinals, it is
consistent that Refl(ℵω+1) holds. In [28], Shelah produces, starting from
a proper class of supercompact cardinals, a model in which, among other
things, Refl(µ+) holds for every singular cardinal µ. In fact, he shows that,
under more stringent large cardinal assumptions, such a model can con-
tain a cardinal κ which is κ+n-supercompact for every n < ω. On the other
hand, he proves in the same paper that if there is a cardinal κ that is
κ+ω+1-supercompact, then there is a singular cardinal µ such that Refl(µ+)

fails. In [4], Chayut presents a simpler argument that one can force sta-
tionary reflection at the successor of every singular cardinal.

In this chapter, we investigate questions about the cofinality of ordinals
at which stationary sets reflect. These questions are of interest in, for
example, the study of square bracket partition relations, where Eisworth
has shown [12] that, if µ is a singular cardinal and µ+ → [µ+]2µ+ , then, for

every stationary set S ⊆ µ+ and every regular λ < µ, there is β ∈ Sµ
+

>λ

such that S reflects at β. Eisworth [10] raised the natural question as
to whether this is always the case assuming Refl(µ+) holds. With this in
mind, we make the following definition.

Definition. Let µ be a singular cardinal. Bounded stationary reflection
holds at µ+ if Refl(µ+) holds but there is a stationary S ⊆ µ+ and a λ < µ

such that S does not reflect at any ordinal in Sµ
+

≥λ.

An easy argument shows that bounded stationary reflection cannot
hold at ℵω+1.

Proposition 5.2. Suppose Refl(ℵω+1) holds. Then, for every n < ω, every
stationary subset of ℵω+1 reflects to an ordinal β such that cf(β) ≥ ℵn.

Proof. For a stationary T ⊆ ℵω+1, let T ′ = {β < ℵω+1 | T reflects at β}. It
is immediate that, for every stationary T ⊆ ℵω+1, T ′ is stationary. For, if
not, let C be club in ℵω+1 such that C ∩ T ′ = ∅. Then C ∩ T is a stationary
subset of ℵω+1 that does not reflect, contradicting our hypotheses.
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Now let S ⊆ ℵω+1 be stationary and let n < ω. We will show that
S reflects at an ordinal of cofinality at least ℵn. Define sequences 〈Sk |
k < ω〉 and 〈ik | k < ω〉 as follows. Find i0 < ω such that S ∩ cof(ℵi0) is
stationary, and let S0 = S ∩ cof(ℵi0). Given Sk and ik, find ik+1 < ω such
that S′k ∩ cof(ℵik+1

) is stationary, and let Sk+1 = S′k ∩ cof(ℵik+1
). Each Sk is

a stationary subset of ℵω+1 ∩ cof(ℵik) and, since such a set can only reflect
at ordinals of cofinality greater than ℵik , it follows that 〈ik | k < ω〉 is a
strictly increasing sequence.

Claim 5.3. For every k < ω and β < ℵω+1, if Sk reflects at β, then S reflects
at β.

Proof. We proceed by induction on k. k = 0 is trivial, since S0 ⊆ S. Now
suppose we have proven the claim for k and that Sk+1 reflects at β. Let C
be club in β, and let α ∈ C ′ ∩ Sk+1. Then Sk reflects at α, so, since C ∩ α is
club in α, C ∩ Sk 6= ∅. Thus, Sk reflects at β and, by induction, S does as
well.

Now find i < ω such that ik ≥ n. Then Sk reflects at an ordinal β, and,
by our choice of k, cf(β) ≥ ℵn. By the claim, S also reflects at β, and we are
done.

In this chapter, we show that the situation is different at larger cardi-
nals. Starting from sufficiently many supercompact cardinals, we produce
a model in which bounded stationary reflection holds at the successors of
many singular cardinals.

5.2 Forcing constructions

In this section, we introduce some forcing posets which will be used in the
proof of our theorem.

We first define a forcing notion to shoot a club through the set of ap-
proachable points of the successor of a singular cardinal. This forcing
poset is a key component of Chayut’s proof of the consistency of station-
ary reflection in [4], and we will use it in a similar way here. Suppose µ is
singular, λ = µ+, and λ<λ = λ. Let ~a be an enumeration of the bounded
subsets of λ in order type λ, and let S be the set of ordinals that are ap-
proachable with respect to ~a. Define Q~a to the be the poset consisting of
closed, bounded subsets of S, where, if p, q ∈ Q~a, then p ≤ q if and only if p
is an end-extension of q.
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Lemma 5.4. Q~a is strongly < λ-strategically closed.

Proof. Let β < λ. We describe a winning strategy for Player II in G∗β(Q~a).
Fix a large, regular cardinal θ. In the course of the game, as the plays 〈qα |
α < β〉 are made, we will be defining a continuous, internally-approachable
chain 〈Mα | α < β〉 of elementary submodels of H(θ) subject to the follow-
ing conditions:

• Q~a ∈ M0, β ⊂ M0, and, for every limit α < β, there is a club Cα ⊆ α

of order type cf(α) such that Cα ∈M0.

• For all α < β, |Mα| < λ and Mα ∩ λ ∈ λ.

• For all α < β, 〈qγ | γ ≤ α〉 ∈Mα+1.

If α is an even successor ordinal and 〈qγ | γ < α〉 has been played, then
Player II plays qα such that

• qα ∈Mα.

• qα ≤ qα−1.

• max(qα) > Mα−1 ∩ λ.

This is possible, since S is stationary in λ and Mα contains all relevant
information needed to find such a qα.

Now suppose that α < β is a limit ordinal and that 〈qγ | γ < α〉 has
been played. We show that

⋃
γ<α qγ ∪ {(Mα ∩ λ)} is a valid condition, thus

completing the proof. It suffices to show that Mα ∩ λ is approachable with
respect to ~a. To this end, consider D = {Mγ ∩ λ | γ ∈ Cα}. D is a club
in Mα ∩ λ of order type cf(α) = cf(Mα ∩ λ). Also, every initial segment of
D is in Mα, since every initial segment can be calculated from Cα and a
sufficient initial segment of 〈Mγ | γ < α〉, which are in Mα. But Mα |=
“~a is an enumeration of the bounded subsets of λ”, so, for every η < Mα ∩
λ, there is ξ < Mα ∩λ such that D ∩ η = aξ. Thus, D witnesses that Mα ∩λ
is approachable with respect to ~a.

We now introduce a forcing notion to add a particular type of stationary
set to the successor of a singular cardinal. Let µ > ℵω be a singular car-
dinal, let λ = µ+, and let κ < µ be a regular uncountable cardinal. Sλ,κ is
a forcing poset whose conditions are of the form p = (sp, γp), where sp is a
bounded subset of Sλω such that, for all β ∈ Sλ≥κ, sp∩β is not stationary in β
and γp is an ordinal such that for all α ∈ sp, α < γp < λ. If p, q ∈ Sλ,κ, then
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p ≤ q if and only if sp end-extends sq and sp \ sq ⊂ [γq, λ). It is immediate
that forcing with Sλ,κ adds a stationary subset of Sλω that does not reflect
at any β ∈ Sλ≥κ and that Sλ,κ is κ-closed. We will be interested mostly in
forcings of the form Sλ,ℵω+1

, which we will denote simply as Sλ.

Lemma 5.5. Sλ,κ is < λ-strategically closed.

Proof. Let β < λ. We describe a winning strategy for Player II in Gβ(Sλ,κ).
In the course of the game, as the conditions 〈pα | α < β〉 are being played,
we define closed, bounded subsets 〈Cα | α < β is even〉 of λ, ensuring that

• For all even α < α′ < β, Cα′ end-extends Cα.

• For all even α < β and all γ ≤ α, Cα ∩ spγ = ∅.

• For all even α < β, γpα = max(Cα) + 1.

Suppose that α < β is an even successor ordinal and 〈pγ | γ < α〉 has
been played. Player II finds ηα > γpα−1 , lets Cα = Cα−2 ∪ {ηα}, and plays
pα = (spα−1 , ηα + 1). If α < β is a limit ordinal, let ηα = sup({max(Cγ) | γ <
α}). Player II lets Cα =

⋃
γ<α Cγ ∪{ηα} and plays pα =

(⋃
γ<α s

pγ , ηα + 1
)

.
pα ∈ Sλ,κ, since

⋃
γ<α Cγ witnesses that sα ∩ ηα is not stationary in ηα.

5.3 The main theorem

Theorem 5.6. Suppose there is a proper class of supercompact cardinals
and GCH holds. Then there is a forcing extension in which, for every sin-
gular cardinal µ > ℵω that is not a cardinal fixed point, every stationary
subset of µ+ reflects but there is a stationary S ⊆ Sµ

+

ω such that S does not
reflect at any ordinal β ∈ Sµ

+

≥ℵω+1
.

Proof. Let 〈κi | i ∈ On〉 be an increasing, continuous sequence of cardinals
such that

• κ0 = ω.

• If κi is singular, then κi+1 = κ+
i .

• If κi is regular, then κi+1 is supercompact.

We may assume without loss of generality that, if i is a limit ordinal, then
κi is singular, for, if this is not the case, then we may work not in V but in
Vκi∗ , where i∗ is the least limit ordinal i for which κi is regular.

We now define a class forcing 〈Pi | i ∈ On〉 such that:
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• If i is a limit ordinal, then Pi is the inverse (i.e. full support) limit of
〈Pj | j < i〉.

• If i is a successor ordinal, then Pi+1 = Pi ∗ Coll(κi, < κi+1).

• If i > ω is a limit ordinal and i < κi, then let ~̇a be a Pi-name for an
enumeration of the bounded subsets of κi+1 in order type κi+1 and let
Pi+1 = Pi ∗ Q̇~̇a ∗ Ṡκi+1

.

• If i is a limit ordinal and i = κi, then Pi+1 = Pi ∗ {1}, where {1} is
trivial forcing.

For ordinals i < k, let Ṗi,k be such that Pk = Pi∗Ṗi,k. We think of conditions
in Pi as being functions p with domain i. If ` < i is a limit ordinal, P`,`+1

is of the form Q̇~̇a ∗ Ṡκ`+1
, and p ∈ Pi, then p(`) is thought of as a pair

(p(`)0, p(`)1) in the natural way. Note that, by Lemmas 5.4 and 5.5 and
Fact 1.6, for all ordinals i < k, in V Pi we have that Ṗi,k is < κi-strategically
closed and hence does not add any new sequences of ordinals of length less
than κi. Thus, for i < k, (H(κi))

V Pk = (H(κi))
V Pi , so V P =

⋃
i∈On V

Pi is a
model of ZFC.

We now show, by induction on ordinals i, that all of the κi’s remain
cardinals in V P. It is clear that there can be no other cardinals in V P and
so, when we have shown this, it will follow that κi = (ℵi)V

P
. κ0 = ω,

so there is nothing to worry about here. We first consider cardinals κi+1,
where i is a successor ordinal or 0. In this case, since |Pi| < κi+1, κi+1

remains supercompact in V Pi . Since Pi+1 = Pi ∗ Coll(κi, < κi+1), κi+1 =

(κ+
i )Pi+1 . Finally, since for all k > i+1, Pi+1,k is < κi+1-strategically closed,

κi+1 remains a cardinal in V Pk for all k and hence in V P.
If i is a limit ordinal, then, by the previous paragraph, κi is, in V P, the

limit of cardinals and hence a cardinal. Finally, consider κi+1, where i is a
limit ordinal. Since, for all k > i+ 1, Pi+1,k is < κi+1-strategically closed, it
suffices to show that κi+1 remains a cardinal in V Pi+1 . Suppose this is not
the case. Then there is i0 < i such that (cf(κi+1))V

Pi+1
= κi0 . Since Pi0+1,i+1

is κi0 +1-strategically closed, it must be the case that (cf(κi+1))V
Pi0+1

= κi0 .
But |Pi0+1| < κi, so κi+1 remains a regular cardinal in V Pi0+1 . This is a
contradiction, so in fact κi+1 remains a cardinal in V Pi+1 .

It remains to show that, in V P, for every limit ordinal i > ω that is not
a cardinal fixed point, every stationary subset of κi+1 reflects but there is
a stationary Si ⊆ S

κi+1
ω that does not reflect at any ordinal in S

κi+1

≥ℵω+1
. We

prove the latter statement first, since it is almost immediate. Let i > ω
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be such an ordinal, and let Si be the stationary set added by Sκi+1 . By the
definition of Sκi+1 , in V Pi+1 , Si is a stationary subset of Sκi+1

ω that does not
reflect at any ordinal in S

κi+1

≥ℵω+1
. The fact that Si does not reflect at any

such ordinal is clearly preserved in any further forcing extension. Also,
since APκi holds in V Pi+1 and, for all j > i+ 1, Pi+1,j is countably closed, Si
remains stationary in every V Pj and hence in V P. Thus, Si is as desired.

The following lemma, which will be useful in proving that all stationary
subsets of κi+1 reflect, comes from [4]. We thank Menachem Magidor and
Yair Chayut for communicating it to us.

Lemma 5.7. Let i ∈ On, and let Xi be the set of limit ordinals k < i such
that ω < k < κk. Then the set Di of p ∈ Pi such that there is a function g ∈∏
k∈Xi

κk+1 such that g ∈ V and, for all k ∈ Xi, p � k Pk “ max(p(k)0) < g(k)”

and p � k_p(k)0 Pk∗Q~a “γp(k)1 < g(k)” is dense in Pi.

Proof. We proceed by induction on i. First, suppose i = k + 1. If k is a
successor ordinal or k is limit and k = κk, then the conclusion is trivial,
since k 6∈ Xi in this case. Thus, assume k is a limit ordinal and k < κk.
Let p ∈ Pi. Find p′ ≤ p � k_p(k)0 and η < κi+1 such that p′  “γp(k)1 < η”.
Find p′′ ≤ p′ � k and ξ < κi+1 such that p′′  “ max(p′(k)0) < ξ”. Finally,
by the inductive hypothesis, find p∗ ≤ p′′ such that p∗ ∈ Dk as witnessed
by h ∈

∏
`∈Xk

κ`+1. Form p̄ ∈ Pi by letting p̄ = p∗_p′(k)0
_p(k)1, and let

g ∈
∏
`∈Xi

κ`+1 by letting g(`) = h(`) for ` < k and g(k) = max({η, ξ}). Now

p̄ ≤ p, and p̄ ∈ Di, as witnessed by g.
Now suppose i is a limit ordinal, and let p ∈ Pi. Recall that κi is singular

and that cf(κi) = cf(i). Let 〈`α | α < cf(i)〉 be increasing and cofinal in i,
with `0 a successor ordinal and κ`0 > cf(i). Move to V P`0 , assuming that
p � `0 is in the generic subset of P`0 . We can apply the inductive hypothesis
to P`0,`α for α < cf(i) to get dense sets D`0,`α . For `∗ > `0, define X`0,`∗ to
be the set of limit ordinals k ∈ (`0, `

∗) such that k < κk. Note that P`0,i
is cf(i) + 1-strategically closed. We will play the first cf(i)-many moves of
the game Gcf(i)+1(P`0,i) to produce 〈pα | α < cf(i)〉. Player II will play her
winning strategy, and Player I will play p � [`0, i) on her first move and,
on her ξth move, will play q such that q � [`0, `α) ∈ D`0,`α as witnessed
by hα ∈

∏
k∈X`0,`α

κk+1. 〈pα | α < cf(i)〉 has a lower bound p∗, and moreover,
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defining h∗ ∈
∏

k∈X`0,i

κk+1 by h∗(k) = sup({hα(k) | α < cf(i)}), we can assure

that p∗ ∈ D`0,i as witnessed by h∗.
Now move back to V , and let ḣ be a P`0 -name for h∗. Since P`0 satisfies

the κ+
`0

-c.c., we can find h ∈ V such that P`0 “ḣ < h”. Thus, there is
q ≤ p � `0 such that q P`0 “p∗ ∈ D`0,i as witnessed by h”. Find q′ ≤ q

and h′ such that q′ ∈ D`0 as witnessed by h′. Finally, let p̄ = q′_p∗ and
g = h′_h. Then p̄ ≤ p and p̄ ∈ Pi, as witnessed by g.

Fix a limit ordinal i > ω such that i is not a cardinal fixed point in V P.
We will show that every stationary subset of κi+1 reflects. Since every sub-
set of κi+1 in V P appears in V Pi+2 , it suffices to prove stationary reflection
in V Pi+2 . Let G be Pi+2-generic over V . For i0 < i + 2, let Gi0 be the Pi0 -
generic filter induced by G. Let T ⊆ κi+1 be stationary in V [G]. Without
loss of generality, there is a successor ordinal k < i such that T ⊆ S

κi+1
κk .

We will show that T reflects. The proof breaks into two cases.
Case 1: k < ω.
Let k∗ < ω be such that k < k∗, and let i∗ = k∗ + 1. In V [Gk∗ ],

κi∗ is supercompact. Let j : V [Gk∗ ] → M [Gk∗ ] witness that κi∗ is κi+2-
supercompact. j(Pk∗,i∗) = Coll(κk∗ , < j(κi∗)) and Pi∗,i+2 is strongly κk∗ -
strategically closed, so, by Fact 1.5, j(Pk∗,i∗) ∼= Pk∗,i+2 ∗ R, where R is
κk∗ -closed. Thus, letting H be R-generic over V [G], we can extend j to
j : V [Gi∗ ]→M [G ∗H]

We would like to extend j further to have domain V [G]. Let Gi
∗

be
the Pi∗,i+2-generic filter over V [Gi∗ ] induced by G. We recursively build a
condition p∗ ∈ j(Pi∗,i+2) such that p∗ ≤ j(p) for all p ∈ Gi

∗
. Conditions

in Pi∗,i+2 can be seen as functions with domain [i∗, i + 2), so conditions
in j(Pi∗,i+2) can be thought of as functions with domain [i∗, j(i + 2)). We
recursively define p∗(α) for α ∈ [i∗, j(i + 2)). Suppose α is a successor
ordinal and we have defined p∗ � [i∗, α) such that p∗ � [i∗, α) ≤ j(p) � [i∗, α)

for all p ∈ G. The forcing at coordinate α in j(Pi∗,i+2) is a Levy collapse that
is j(κi∗)-directed closed, and, in M [G ∗ H], |Gi∗ | = κk∗ , so there is q̇ such
that p∗ � [i∗, α)  “q̇ ≤ j(p)(α)” for every p ∈ Gi∗ . Let p∗ � α+ 1 = p∗ � α_q̇.

Now suppose α is a limit ordinal. We would like to thank Menachem
Magidor and Yair Chayut for conveying the following argument. By Lemma
5.7, j(Pi∗ ) “ sup({j(p)(α)0 | p ∈ Gi

∗}) = sup({j(g)(α) | g ∈
∏
`≤i

κ`+1 ∩ V })”.

Let this common supremum be denoted by γ, and note that cfV (γ) ≤ κi+1.
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We would like to let p∗(α)0 be forced by p∗ � α to be equal to
⋃

p∈Gi∗
j(p)(α)0∪

{γ}. Let A = 〈~a` | ` ∈ Xi∗,i+2〉 be the sequence of names for enumerations
of bounded subsets of κ`+1 to be used in the forcings to shoot clubs through
the sets of approachable sets. We must show that γ is approachable with
respect to j(A)(α). In M [G ∗ H], κi+1 has been collapsed to have size κk∗ ,
so we can find a sequence 〈gδ | δ < κk∗〉 of elements of

∏
`≤i

κ`+1 such that:

• For all η < δ < κk∗ and i∗ < ` ≤ i, gη(`) < gδ(`).

• For all δ < κk∗ , and i∗ < ` ≤ i with ` ∈ Xi∗,i+2, the sequence 〈gη(`) |
η < δ〉 is enumerated in A(`) before gδ(`).

• For every g ∈
∏
`≤i

κ`+1, there is δ < κk∗ such that, for every i∗ < ` ≤ i,

g(`) < gδ(`).

By the closure properties of M , 〈j(gδ)(α) | δ < κk∗〉 ∈ M [G ∗ H], and this
sequence is easily seen to witness the approachability of γ with respect to
j(A)(α), so our definition of p∗(α)0 is valid. Finally, we define p∗(α)1 by
noting that the second component of coordinate α in j(Pi∗,i+2) is j(κω+1) >

κi+2-directed closed, so we can define p∗(α)1 to be a name for a lower bound
for {j(p)(α)1 | p ∈ Gi

∗}.
We now have successfully completed the construction of p∗. Let I be

j(Pi∗,i+2)-generic overM [G∗H] such that p∗ ∈ I, and extend j to j : V [G]→
M [G ∗H ∗ I].

Now suppose, for sake of contradiction, that T does not reflect in V [G].
Then, in M [G ∗ H ∗ I], j(T ) is a stationary subset of Sj(κi+1)

κk that does
not reflect. In particular, letting η = sup(j“κi+1), j(T ) does not reflect at
η. Let D be a club in η disjoint from j(T ). Since j“κi+1 is < κi∗ -closed
and unbounded in η, D ∩ j“κi+1 is < κi∗ -closed and unbounded in η and is
disjoint from j(T ). Thus, E = j−1“(D∩j“κi+1) is a< κi∗ -closed, unbounded
subset of κi+1 that is disjoint from T . E ∈ V [G ∗ H ∗ I]. However, as I is
generic for j(κi∗)-strategically closed forcing and j(κi∗) > κi+1, it must be
the case that E ∈ V [G∗H]. Thus, since κk < κi∗ and T ⊆ Sκi+1

κk , E witnesses
that T is not stationary in V [G ∗ H]. However, since T is stationary in
V [G], APκi+1

holds in V [G], and H is generic for κk∗ -closed forcing, Fact 1.7
implies that T remains stationary in V [G ∗H]. This is a contradiction, so
T does reflect in V [G].

Case 2: k > ω. Let k∗ be a successor ordinal such that k < k∗ < i and
i < κk∗ (note that we can do this because i < κi), and let i∗ = k∗ + 1. Let X
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be the set of limit ordinals ` ∈ (i∗, i] such that ` < κ`. In V [G], for ` ∈ X, let
S` be the stationary subset of Sκ`+1

ω added by Sκ`+1
. We would like to repeat

the argument for Case 1, but now the stationary sets S` are an obstacle to
lifting the relevant elementary embedding. Thus, we force to destroy the
stationarity of the sets S` for ` ∈ X. To this end, let T be the forcing poset
whose conditions are functions t such that dom(t) = X and, for all ` ∈ X,
t(`) is a closed, bounded subset of κ`+1 such that t(`) ∩ S` = ∅. If s, t ∈ T,
then s ≤ t if and only if, for every ` ∈ X, s(`) end-extends t(`). Let K be
T-generic over V [G].

Claim 5.8. In V [Gi∗ ], there is a dense subset of Pi∗,i+2 ∗ T that is strongly
κk∗ -strategically closed.

Proof. Let U be the set of (p, ṫ) ∈ Pi∗,i+2 ∗ T such that there is g ∈
∏
`∈X

κ`+1

such that, for all ` ∈ X, p � `_p(`)0 Pi∗,`∗Q~a “γp(`)1 = g(`)+1” and p Pi∗,i+2

“ max(ṫ(`)) = g(`)”.
We first show that U is dense in Pi∗,i+2 ∗ T. Given (p0, ṫ0) ∈ Pi∗,i+2 ∗ T,

find p1 ≤ p0 such that there is h0 ∈
∏
`≤i

κ`+1 such that, for every ` ∈ X,

p1 Pi∗,i+2
“ max(ṫ0(`)) < h0(`)”. Then, find p2 ≤ p1 such that, as in Lemma

5.7, p2 ∈ Di∗,i+2, as witnessed by h1 ∈
∏
`≤i

κ`+1, where h1 > h0. Now let

(p, ṫ) ≤ (p2, ṫ0) be such that, for all ` ∈ X, p � `_p(`)0 Pi∗,`∗Q~a “γp(`)1 =

h1(`) + 1” and p Pi∗,i+2
“ max(ṫ(`)) = h(`)”. Then (p, ṫ) ∈ U and (p, ṫ) ≤

(p0, ṫ0), so U is dense in Pi∗,i+1 ∗ T.
We now show that U is strongly κk∗ -strategically closed. We thus de-

scribe a winning strategy for Player II in the game G∗κk∗ (U). Suppose
that β < κk∗ is an even successor ordinal and 〈(pα, ṫα) | α < β〉 has
been played. All of the forcing iterands in Pi∗,i+2 are already known to
be strongly κk∗ -strategically closed except for those of the form S`+1 so,
on all of the other coordinates, Player II plays at stage β according to her
winning strategy. To finish, at all ` ∈ X, she simply lets pβ(`)1 = pβ−1(`)1

and lets ṫβ = ṫβ−1. This is easily seen to describe a condition in U extend-
ing (pβ−1, ṫβ−1). If β < κk∗ is a limit ordinal and 〈(pα, ṫα) | α < β〉 has
been played, we need to exhibit a greatest lower bound, (pβ , ṫβ), for this
sequence of conditions. We define pβ(`) recursively for ` ∈ [i∗, i + 2). Let
pβ(`) (or pβ(`)0, if ` ∈ X) be such that pβ � ` forces that pβ(`) is the great-
est lower bound of 〈pα(`) | α < β〉. Such a greatest lower bound exists
because Player II has been playing according to her winning strategy on
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coordinate `. For ` ∈ X, we have two cases for pβ(`)1. If 〈γpα(`)1 | α < β〉
is eventually equal to some ordinal η + 1, then let pβ(`)1 be forced by
pβ � `_pβ(`)0 to be equal to (

⋃
α<β s

pα(`)1 , η + 1). If 〈γpα(`)1 | α < β〉 is
not eventually constant, let η = sup({γpα(`)1 | α < β}) and again let pβ(`)1

be forced by pβ � `_pβ(`)0 to be equal to (
⋃
α<β s

pα(`)1 , η + 1). Finally, let
ṫβ be such that, for all ` ∈ X, letting η be as in the definition of pβ(`)1,
pβ Pi∗,i+2

“ṫβ(`) =
⋃
α<β

ṫα(`) ∪ {η}”. It is easily seen that (pβ , ṫβ) ∈ U and

is a greatest lower bound of 〈(pα, ṫα) | α < β〉.

As in Case 1, κi∗ is still supercompact in V [Gk∗ ], so let j : V [Gk∗ ] →
M [Gk∗ ] witness that κi∗ is κi+2-supercompact. Since Pi∗,i+2∗T has a dense,
strongly κk∗ -strategically closed subset, we can use Fact 1.5 to lift j to
j : V [Gi∗ ] → M [G ∗ K ∗ H], where H is generic over V [G ∗ K] for κk∗ -
closed forcing. We now define a master condition p∗ ∈ j(Pi∗,i+2) such that
p∗ ≤ j(p) for every p ∈ Gi

∗
. This is done exactly as in Case 1 except for

the following: if ` ∈ X, let η` = j“κ`+1. Then p∗(`)1 is defined so that it
is forced by p∗ � `_p∗(`)0 to be equal to (

⋃
p∈Gi∗ s

p(`)1 , η + 1). Note that it
is forced that sup(sp

∗(`)1) = η` and p∗(`)1 ∈ j(Sκ`+1
), since

⋃
t∈K j(t)(`) is

forced to be a club in η disjoint from sp
∗(`)1 . Also, since i < crit(j), elements

of j(Pi∗,i+2) can also be thought of as functions with domain [i∗, i + 2), so
this finishes the definition of p∗.

Thus, letting I be j(Pi∗,i+2)-generic over V [G ∗ K ∗ H] with p∗ ∈ I, we
can lift our embedding to j : V [G]→M [G ∗K ∗H ∗ I]. If T does not reflect
in V [G], then, as before, we can find a club E in κi+1 such that E ∈ V [G∗K]

and E ∩ T = ∅. Thus, we will reach a contradiction and finish the proof if
we demonstrate the following claim.

Claim 5.9. T remains stationary in V [G ∗K].

Proof. Work in V [G]. Let t0 ∈ T, and let Ḋ be a T-name for a club in κi+1.
We will find t ≤ t0 such that t T “Ḋ ∩ Ť 6= ∅”. Let θ be a sufficiently large
regular cardinal. Since APκi holds (it was forced by Pi,i+1), we can find an
internally approachable continuous chain of elementary substructures of
H(θ), 〈Mξ | ξ < κk〉 such that:

• T, {κ` | ` ≤ i+ 1}, t0, Ḋ ∈M0.

• κ+
k ⊂M0.

• For all ξ < κk, |Mξ| < κk∗ .
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• Letting M =
⋃
ξ<κk

Mξ, sup(M ∩ κi+1) ∈ T .

For all ` ∈ X, let λ` = sup(M ∩ κ`+1). For each ` ∈ X, cf(λ`) = κk and
〈sup(Mξ ∩ κ`+1) | ξ < κk〉 enumerates a club C0

` in λ`, all of whose initial
segments are in M . In fact, since κ+

k ⊂M every bounded subset of C0
` is in

M . Also, for all ` ∈ X, since k > ω, S` does not reflect at λ`, so there is a
club C1

` in λ` such that C1
` ∩ S` = ∅. For all ` ∈ X, let C` = C0

` ∩ C1
` . By the

preceding, we have that C` is a club in κ`+1 disjoint from S`, all of whose
initial segments are in M . In fact, again since κ+

k ⊂ M , any sequence
〈C ′` | ` ∈ X〉 such that each C ′` is an initial segment of C` is in M . For each
` ∈ X, let 〈η`α | α < κk〉 be an increasing enumeration of C`.

We now construct a descending sequence 〈tα | α < κk〉 of conditions in
T ∩M . In fact, any initial segment of the construction can be computed
inside M , so any initial segment of the sequence of conditions will also be
in M .

t0 has already been given. Suppose tα ∈ M is given. We will construct
tα+1. First, let t′α be the <θ-least condition in T such that t′α ≤ tα and
there is γ > ηiα such that t′α T “γ̌ ∈ Ḋ”. Then, let tα+1 be the <θ-least
condition such that tα+1 ≤ t′α and, for every ` ∈ X, there is β > α such
that max(tα+1(`)) = η`β . Note that the calculation of tα+1 only requires
sufficiently long initial segments of the clubs C`, so tα+1 ∈M .

If β < κk is a limit ordinal and 〈tα | α < β〉 has been constructed,
then, for each ` ∈ X, let δ` = sup(

⋃
α<β tα(`)) and define tβ by letting

tβ(`) =
⋃
α<β tα(`) ∪ {δ`}. tβ is a valid condition in T since, for each ` ∈ X,

δ` is in C` and hence not in S`. Also, the calculation of tβ only requires
〈tα | α < β〉, calculation of which itself only requires sufficiently long initial
segments of the C`’s, so tβ ∈M .

Finally, define t ∈ T by, for each ` ∈ X, letting t(`) =
⋃
α<κk

tα(`)∪ {λ`}.
Each λ` has cofinality κk > ω, so λ` 6∈ S` and thus t is in fact in T. Also,
t ≤ tα for all α < κk, so t T “λ̌i ∈ Ḋ”, so, in particular, t T “Ḋ∩Ť 6= ∅”.

It remains open whether we can find a model in which bounded sta-
tionary reflection holds at the successor of every singular cardinal greater
ℵω. The difficulty in dealing with successors of cardinal fixed points lies in
the fact that, if we are unable to use an elementary embedding with criti-
cal point in the interval (i, κi), then our proof of Claim 5.9 does not work.
By suitably varying the cofinalities of the points at which the stationary
sets S` are allowed to reflect, we can obtain a model in which bounded sta-
tionary reflection holds at the successors of all singular cardinals greater
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than ℵω which are not limits of cardinal fixed points, but it seems that this
approach cannot be extended to attain a truly global result.



CHAPTER 6

RADIN FORCING

Gitik, Kanovei, and Koepke, in [17], prove the following theorem, com-
pletely characterizing the intermediate models of Prikry-generic forcing
extensions:

Theorem 6.1. Suppose P is Prikry forcing. Let G be P-generic over V , let g
be the associated ω-sequence, and let X be a set of ordinals in V [G]. Then
there is some d ⊆ g such that X ≡V d.

In this chapter, we extend their analysis to analyze intermediate mod-
els of generic extensions by Radin forcing at a large cardinal κ using mea-
sure sequences of length less than κ.

6.1 The forcing

In this section we recall the basic facts about Radin forcing, beginning with
the following definition.

Definition. A coherent sequence of measures is a sequence ~U = 〈U(β, i) |
β < lh(~U), i < o

~U (β)〉 such that, for all β < lh(~U) and i < o
~U (β),

1. U(β, i) is a normal ultrafilter over β.

2. If jβi : V → Mβ
i
∼= Ult(V,U(β, i)) is the canonical embedding, then

jβi (~U) � β = ~U � (β, i), where ~U � β = 〈U(β′, i′) | β′ < β, i′ < o
~U (β′)〉

and ~U � (β, i) = 〈U(β′, i′) | β′ < β, i′ < o
~U (β′) or β′ = β, i′ < i〉.

Suppose ~U is a coherent sequence of measures, lh(~U) = κ + 1 for some
cardinal κ, and o

~U (κ) > 0. Our version of Radin forcing associated with
~U , which we denote P~U , has conditions of the form p = 〈(αk, Ak) | k ≤ m〉,
where

• m < ω.

• 〈αk | k ≤ m〉 is an increasing sequence of ordinals.

• αm = κ and Am ∈
⋂
i<o~U (κ) U(κ, i).

83
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• For k < m, if o~U (αk) = 0, then Ak = ∅, and if o~U (αk) > 0, then
Ak ∈

⋂
i<o~U (αk) U(αk, i). Moreover, if j < k ≤ m, then Ak∩(αj+1) = ∅.

• For all k ≤ m and β ∈ Ak, o~U (β) < o
~U (αk).

Remark The last requirement in the above definition is not standard. We
introduce it because it will simplify future notation and does not change
any key properties of the forcing.

If p = 〈(αk, Ak) | k ≤ m〉 is a condition, we say that m = lh(p), 〈(αk, Ak) |
k < m〉 is the lower part of p, and (κ,Am) is the upper part of p. Let
ap = {α | for some k < m, α = αk}. If n < m and o

~U (αn) > 0, then
p≤n = 〈(αk, Ak) | k ≤ n〉 and p>n = 〈(αk, Ak) | n < k ≤ m〉. Note that
p≤n ∈ P~U�(αn+1) and p>n ∈ P~U .

If p = 〈(αj , Aj) | j ≤ m〉 and q = 〈(βk, Bk) | k ≤ n〉 are in P~U , then q ≤ p

if and only if

• n ≥ m.

• For every j ≤ m, there is k ≤ n such that αj = βk and Bk ⊆ Aj .

• If k < n is such that there is no j < m with αj = βk then, letting
i ≤ m be least such that βk < αi, we have βk ∈ Ai and Bk ⊆ Ai.

We say q is a direct extension of p and write q ≤∗ p if q ≤ p and n = m.
For the rest of the chapter, we will assume for simplicity that o~U (κ) =

λ < κ and that, for all p ∈ P~U , ap ⊆ κ \ (λ + 1). We now list some of the
basic properties of the Radin forcing P~U . See [16] for proofs.

• If p and q are conditions with the same lower part, then p and q are
compatible. Thus, since there are only κ-many lower parts, P~U has
the κ+-c.c.

• P~U has the Prikry property, i.e. for every sentence φ in the forcing
language and every p ∈ P~U , there is q ≤∗ p such that p ‖ φ.

• If p = 〈(αk, Ak) | k ≤ m〉 is in P~U and n < m is such that o~U (αn) > 0,
then P~U/p ∼= P~U�(αn+1)/p

≤n × P~U/p
>n.

• Let G be P~U -generic over V , and let g = {α | for some p ∈ G, α ∈ ap}.
Then g is a club in κ and has order type ωo

~U (κ), and V [G] = V [g]. In a
slight abuse of notation, we will alternately think of this g both as a
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subset of κ and as a function, with domain ωo
~U (κ), enumerating this

subset in increasing fashion.

If V [G] is a set-generic forcing extension of V and X is a set of ordinals
in V [G], then

V [X] =
⋃
z⊆On
z∈V

L[z,X]

is the smallest inner model W of ZFC such that V ⊆ W ⊆ V [G] and
X ∈W . If X and Y are sets of ordinals in V [G], we say X ≤V Y if X ∈ V [Y ]

and X ≡V Y if X ≤V Y and Y ≤V X, i.e. V [X] = V [Y ].

6.2 Preliminaries on indiscernibles

In this section, we recast the results from [17] about sets of indiscernibles
in a form appropriate for Radin forcing.

As above, let ~U = 〈U(β, i) | β ≤ κ, i < o
~U (β)〉 be a coherent sequence of

measures. For notational simplicity, we denote o~U (β) by o(β). For β ≤ κ,
let ~Uβ = 〈U(β, i) | i < o(β)〉.

For now, let us focus on ~Uκ. Let λ = o(κ) and, for i < λ, let Ui = U(κ, i).
Recall our assumption that λ < κ. For i < λ, let A∗i = {β < κ | o(β) = i}.
Note that, for all i < λ, A∗i ∈ Ui.

Let n < ω and b ∈ λn. For a set A ⊂ κ, let [A]b denote the set of
increasing n-tuples x from A such that, for all k < n, x(k) ∈ Ub(k). We
indicate that x ∈ [κ]b by writing tp(x) = b.

Proposition 6.2. Suppose B ⊆ [κ]<ω. Then there is A ∈
⋂ ~Uκ such that,

for all b ∈ λ<ω, either

1. For all x ∈ [A]b, x ∈ B or

2. For all x ∈ [A]b, x 6∈ B.

Proof. We show, by induction on n < ω simultaneously for all B ⊆ [κ]<ω,
that for all b ∈ λn, there is Ab ∈

⋂ ~Uκ such that either for all x ∈ [Ab]
b,

x ∈ B or for all x ∈ [Ab]
b, x 6∈ B. Then A =

⋂
b∈λ<ω Ab will witness the

truth of the proposition.
First, let b ∈ λ1. Let Xb = {α | {α} ∈ B and α ∈ Ab(0)}. If Xb ∈ Ub(0),

then let Ab = Xb ∪
⋃
k∈λ\{i}Ak. If Xb 6∈ Ub(0), let Ab = (Ab(0) \ Xb) ∪⋃

k∈λ\{i}Ak. In either case, it is easily verified that Ab is as desired.
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Now suppose that b ∈ λn+1. Let a = b � n, and letBa = {x � n | x ∈ [κ]β∩
B}. Then Ba ⊆ [κ]a. By the induction hypothesis, we may find Ca ∈

⋂ ~Uκ

witnessing the desired conclusion for a and Ba. First, suppose that, for all
x ∈ [Ca]a, x 6∈ Ba. Then we also have that, for all x ∈ [Ca]b, x 6∈ B, so we
can let Ab = Ca. Now suppose that, for all x ∈ [Ca]a, x ∈ Ba. For each
x ∈ [Ca]a, let Yx = {α | x_(n, α) ∈ B}. Let B∗a = {x ∈ Ba | Yx ∈ Ub(n)}.
Applying the induction hypothesis again, we may find C∗a ⊆ Ca witnessing
the desired conclusion for a and B∗a.

First suppose that, for all x ∈ [C∗a ]a, x ∈ Bb. Let Y ∗ = {α ∈ Ab(n) |
for all x ∈ [C∗a ]a such that max(ran(x)) < α, α ∈ Yx}. Since Yx ∈ Ub(n) for
all x ∈ [C∗a ]a, we also have Y ∗ ∈ Ub(n). Now let Ab = Y ∗ ∪

⋃
k∈λ\{b(n)}(C

∗
a ∩

Ak). It is easily verified that, if x ∈ [Ab]
b, then x ∈ B.

Finally, suppose that, for all x ∈ [C∗a ]a, x 6∈ Bb. The argument is
exactly as in the previous case, letting Y ∗ = {α ∈ Ab(n) | for all x ∈
[C∗a ]a such that max(ran(x)) < α, α 6∈ Yx}.

Proposition 6.3. Suppose B ⊆ [κ]<ω. Then there is A ∈
⋂ ~Uκ such that for

every x ∈ [κ]<ω, every b ∈ λ<ω, and any y0, y1 ∈ [A\(max(x)+1)]b, x_y0 ∈ B
if and only if x_y1 ∈ B.

Proof. For x ∈ [κ]<ω, let Bx = {y ∈ [κ]<ω | max(x) < min y and x_y ∈ B}.
For each α < κ, repeatedly use Proposition 6.2 to find Aα ∈

⋂ ~Uκ such that
for every x ∈ [α + 1]<ω, every b ∈ λ<ω, and every y0, y1 ∈ [Aα]b, y0 ∈ Bx

if and only if y1 ∈ Bx. Without loss of generality, we may assume that
Aα ⊂ κ\ (α+ 1). Let A = ∆α<κAα. It is routine to verify that A ∈

⋂ ~Uκ and
that A has the desired properties.

Lemma 6.4. Suppose F is a function with domain [κ]<ω. For every n < ω,
b ∈ λn, and x ∈ [κ]<ω, there are sets Jb(x) ∈

⋂ ~Uκ and basb(x) ⊆ n such that
for all y0, y1 ∈ [Jb(x)]b with max(x) < min(y0),min(y1), we have F (x_y0) =

F (x_y1) if and only if y0 � basb(x) = y1 � basb(x).

Proof. Let θ be a sufficiently large regular cardinal, and let F0 be the col-
lection of all sets definable in H(θ) with F, ~Uκ, and ordinals less than λ

as the only parameters. Since |F0| < κ, we can repeatedly apply Proposi-
tion 6.3 to obtain a set I0 ∈ ~Uκ such that, for every B ∈ F0, b ∈ λ<ω, and
x ∈ [κ]<ω, for every y0, y1 ∈ [I0]b such that max(x) < min(y0),min(y1), we
have x_y0 ∈ B if and only if x_y1 ∈ B. Let F be the collection of all sets
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definable in H(θ) with I0 as the only parameter, and again apply Proposi-
tion 6.3 to find I ⊆ I0, a set of indiscernibles for F . The point is that for
every η < λ and every α ∈ I ∩Aη, α is a limit point of I0 ∩Aη.

We proceed by induction on n, simultaneously for all x ∈ [κ]<ω. First,
suppose n = 1 and let b ∈ λn, x ∈ [κ]<ω. Consider the set B = {z_〈α, β〉 |
z ∈ [κ]<ω, max(z) < α, β < κ, and F (z_〈α〉) = F (z_〈β〉}. B ∈ F0. Thus, by
our choice of I, F (x_〈α〉) = F (x_〈β〉) holds for a particular pair of α < β

from (I ∩ Ab(0)) \ (max(x) + 1) if and only if it holds for all such pairs. We
can thus let Jb(x) = I and, choosing α < β from (I ∩ Ab(0)) \ (max(x) + 1),
let basb(x) = ∅ if F (x_〈α〉) = F (x_〈β〉) and basb(x) = {0} if F (x_〈α〉) 6=
F (x_〈β〉).

Now suppose n = m + 1. Let b ∈ λn and x ∈ [κ]<ω. Define b′ ∈ λm

by letting b′(k) = b(k + 1). If α ∈ Ab(0) \ (max(x) + 1), then we can ap-
ply the inductive hypothesis to obtain Jb′(x

_〈α〉) and basb′(x
_〈α〉). Find

A ⊆ Ab(0) \ (max(x) + 1) and s ⊆ m such that A ∈ Ub(0) and, for all α ∈ A,
basb′(x

_〈α〉) = s. Let J = (I ∩ A ∩ ∆α∈A(Jb′(x
_〈α〉)) ∩ lim(Jb′(x

_〈α〉))) ∪⋃
η∈(λ\{b(0}) I ∩ Aη ∩∆α∈A(Jb′(x

_〈α〉) ∩ lim(Jb′(x
_〈α〉)). We claim that we

can let Jb(x) = J . We thus need to define basb(x) and show that this defini-
tion works. To this end, let α < β ∈ J ∩ Ab(0) and let y ∈ [J ]b

′
be such that

β < min(y). There are two cases.
Case 1: F (x_〈α〉_y) = F (x_〈β〉_y). In this case, let basb(x) = {1 + k |

k ∈ s}. To check that this works, let y0, y1 ∈ [J ]b. Let ξ = y0(0) and
η = y1(0). Suppose without loss of generality that ξ ≤ η. Define y′1 ∈ [J ]b

by letting y′1(0) = ξ and y′1(k) = y1(k) for all k > 0. Then, by indiscernibility
and the case assumption, we have that F (x_y1) = F (x_y′1). Moreover, by
the construction of J , F (x_y′1) = F (x_y0) if and only if y′1 � {1 + k | k ∈
s} = y0 � {1 + k | k ∈ s} if and only if y1 � basb(x) = y0 � basb(x).

Case 2: F (x_〈α〉_y) 6= F (x_〈β〉_y). In this case, let basb(x) = {0} ∪
{1 + k | k ∈ s}. Let y0, y1 ∈ [J ]b. If y0 � basb(x) = y1 � basb(x), then
it is routine to check that F (x_y0) = F (x_y1). Thus, suppose that y0 �

basb(x) 6= y1 � basb(x) but, for sake of contradiction, F (x_y0) = F (x_y1).
There are two subcases here.

Subcase 1: y0(0) 6= y1(0) and y0 � [1, n) = y1 � [1, n). Suppose with-
out loss of generality that y0(0) < y1(0). Let y′1 ∈ [J ]b be defined by let-
ting y′1(0) = y0(0) and y′1(k) = y1(k) for k > 0. By the case assumption
and indiscernibility, F (x_y′1) 6= F (x_y1). However, y′1 is equal to y0, so
F (x_y′1) = F (x_y0) = F (x_y1) by assumption. This is a contradiction.

Subcase 2: There is k∗ ∈ s such that y0(k∗ + 1) 6= y1(k∗ + 1). Let
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the order structure of y0 and y1 refer to the set of ≤-equations describing
the order relations in the set {y0(k) | k < n} ∪ {y1(k) | k < n}. Since
F (x_y0) = F (x_y1) we have that, by indiscernibility, F (x_ȳ0) = F (x_ȳ1)

for any ȳ0, ȳ1 in [I]b having the same order structure as y0 and y1. By in-
discernibility and the construction of J , we can adjust y0 on coordinate k∗

to form ȳ0 such that ȳ0(k) = y0k for all k 6= k∗, ȳ0(k∗) ∈ Jb′(x_〈y0(0)〉), and
ȳ0 and y1 have the same order structure as y0 and y1. By the definition of
Jb′(x

_〈y0(0)〉, F (x_y0) 6= F (x_ȳ0). However, by order structure consider-
ations, F (x_ȳ0) = F (x_y1) = F (x_y0). This provides a contradiction and
finishes the proof of the lemma.

6.3 Coding fresh subsets

For the rest of this chapter, we will be working to prove the following the-
orem.

Theorem 6.5. Suppose κ is a cardinal, ~U is a coherent sequence of mea-
sures, lh(~U) = κ+ 1, and 0 < o

~U (κ) < κ. Let G be P~U -generic over V , and let
g be the associated club in κ. Suppose X ∈ V [G] is a set of ordinals. Then
there is d ⊆ g such that d ≡V X.

Note that every model of ZFC, W , with V ⊆W ⊆ V [G], is equal to V [X]

for some set of ordinals X ∈ V [G]. Thus, this theorem will characterize all
intermediate models of V [G].

The proof will proceed by induction on κ. We will first prove the result
for fresh subsets of κ. Recall the following definition.

Definition. Suppose W is an outer model of V , β ∈ On, A ⊆ β, and A ∈W .
A is a fresh subset of β if, for all α < β, A ∩ α ∈ V .

Let n < ω, and let b ∈ λn. Then there is fb : n→ ωλ such that, whenever
p ∈ P~U is such that ap ∈ [κ]b, for all k < n, if ġ is the canonical name for
the generic club in κ added by P~U , p  “αk is the fb(k)th element of ġ”. If
a ∈ λm and b ∈ λn are such that ran(fa) ⊆ ran(fb), denote this by a v b and
let fa,b : m → n be the unique function such that fa = fb ◦ fa,b. If x ∈ [κ]b

and a v b, let (x � a) ∈ [κ]a be defined by (x � a)(k) = x(fa,b(k)).
Let G be P~U -generic over V , and suppose X ∈ V [G] is a fresh subset of

κ. Let g be the generic club in κ of order type ωλ defined from G. We want
to show that there is d ⊆ g such that d ≡V X. Without loss of generality,
we may assume that we are working below the top condition, 〈(κ, κ)〉, i.e.
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that there is a P~U -name Ẋ for X that is forced by the top condition to
be a fresh subset of κ and that we are trying to find a condition q such
that, for some C ⊆ ωλ q  “Ẋ ≡V ġ � Č”. To see this, suppose we are
working instead below an arbitrary condition p = 〈(αi, Ai) | i ≤ m〉. First,
if, for all i < m, we have o(αi) = 0, then the arguments below work as
stated, using 〈αi | i < m〉 as the stem x in Propositions 6.2 and 6.3 and
Lemma 6.4. If not, then let i < m be largest such that o(αi) > 0. Then
P~U ∼= P~U�αi+1/p

≤i×P~U/p
>i, and an application of the inductive hypothesis,

the arguments below, and the results of Section 6.5 yield the desired proof.
We may also assume that Ẋ is a name such that, for all α < κ, if

o(α) > 0 and p ∈ P~U is such that α ∈ ap, then there is a P~U�(α+1)-name
Ẏ such that p  “Ẋ ∩ α̌ = Ẏ ”. This follows from an application of the
Prikry property and the basic fact about Radin forcing that, if g is a Radin-
generic club, α is a limit point of g, and Y ∈ V [g] is a subset of α, then
Y ∈ V [g ∩ α].

Define a function F with domain [κ]<ω by letting F (x) = {(α, Y ) |
there is p ∈ P~U such that ap = x and p  “Ẋ ∩ α̌ = Y̌ ”}. Note that, if p
and q are such that ap = aq, then p and q are compatible, so, for every
x ∈ [κ]<ω and α < κ, there is at most one Y such that (α, Y ) ∈ F (x). If
β < κ, let F (x) � β denote {(α, Y ) ∈ F (x) | α < β}. Apply Lemma 6.4 to
F to attain sets Jb(∅) and basb(∅) for b ∈ λ<ω. Let J = ∩b∈λ<ωJb(∅), and
denote basb(∅) by basb.

Proposition 6.6. Let n < ω, a ∈ λn, and b ∈ λn+1 be such that a v b.
Suppose that i ≤ n is such that i 6∈ ran(fa,b). Suppose k ∈ basa. Then one of
the following holds:

1. fa,b(k) ∈ basb.

2. k = i and i ∈ basb.

Proof. Suppose for sake of contradiction that neither alternative holds.
Let m = fa,b(k). Let x, y ∈ [J ]a be such that x(`) = y(`) for all ` 6= k

and x(k) 6= y(k). Since k ∈ basa, F (x) 6= F (y). Let (α, Y ) ∈ F (x) \ F (y). Let
p = 〈(αi, Ai) | i ≤ n〉 and q = 〈(βi, Bi) | i ≤ n) be such that ap = x, aq = y,
p  “Ẋ ∩ α̌ = Y̌ ”, and q  “Ẋ ∩ α̌ 6= Y̌ ”. Note that we can find such a q by
the Prikry property.

We are assuming that item 2 in the statement of the proposition fails.
Let us first suppose that it fails because k 6= i. In this case, αi = βi, so we
may extend p and q to p̄ and q̄ so that x̄ = ap̄ and ȳ = aq̄ are in [J ]b and
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x̄(i) = ȳ(i). Then F (x̄) = F (ȳ) and (α, Y ) ∈ F (x̄), so there is a condition
q∗ with aq

∗
= ȳ such that q∗  “Ẋ ∩ α̌ = Y̌ ”. aq

∗
= aq̄, so q∗ and q̄ are

compatible, but q̄  “Ẋ ∩ α̌ 6= Y̌ ”. Contradiction.
Now suppose that item 2 fails because i 6∈ basb. In this case, we may

extend p and q to p̄ and q̄ with x̄ and ȳ, and we have that x̄ � basb = ȳ � basb

regardless of whether or not x̄(i) = ȳ(i). The rest of the argument is as in
the previous paragraph.

Let θ be a sufficiently large, regular cardinal, and let F be the collection
of sets definable in H(θ) using only P~U , Ẋ, J, {basb | b ∈ λ<ω}, and ordinals
less than λ as parameters. Since |F| < κ, we can find I ∈

⋂ ~Uκ that is
indiscernible for all sets in F in the sense of Proposition 6.3.

Let Z = {η < ωλ | for some b∗ ∈ λ<ω, for all b ∈ λ<ω such that b∗ v
b, we have η ∈ fb“basb}. Let Z̄ denote the closure of Z under the order
topology. Let d = g � Z and d̄ = g � Z̄. Since g is a club, d ≡V d̄. Let ḋ
denote the canonical name for d.

Theorem 6.7. 〈(κ, I)〉  “Ẋ ≡V ḋ”.

Before we prove the theorem, we need some notation.

Definition. Suppose A ∈
⋃ ~Uκ and p = 〈(αk, Ak) | k ≤ m〉 ≤ 〈(κ,A)〉.

Then ap_A = 〈(αk, Bk) | k ≤ m〉, where Bk = ∅ if o(αk) = 0 and Bk =

(
⋃
η<o(αk)A ∩A∗η) ∩ (αk−1, αk) (where α−1 = 0).

Note that ap_A is the greatest element q ≤ 〈(κ,A)〉 such that aq = ap.

Definition. If α < κ, then α† = min(I \ (α+ 1)).

Lemma 6.8. Suppose p ≤ 〈(κ, I)〉, α = max(ap), o(α) > 0, and there is Y
such that p  “Ẋ ∩ α† = Y̌ ”. Then ap_I  “Ẋ ∩ α† = Y̌ ”.

Proof. Suppose not, and let q̄ ≤ ap_I be such that, for some Ȳ 6= Y , q̄ 
“Ẋ∩α† = ˇ̄Y ”. Without loss of generality, we may assume that max(aq̄) = α.
Let q ≤ p such that the order structure of aq and ap is the same as that of
aq̄ and ap. Then, by indiscernibility and the fact that F (aq) ∩ (α† + 1) =

F (ap)∩ (α†+ 1), it must be the case that F (aq̄)∩ (α†+ 1) = F (ap)∩ (α†+ 1).
But (α†, Ȳ ) ∈ F (aq̄) ∩ (α† + 1), while (α†, Y ) ∈ F (ap) ∩ (α† + 1). This is a
contradiction.

Lemma 6.9. For every b ∈ λ<ω, there is b′ w b such that fb′“basb′ ⊆ Z̄.

Proof. If η < ωλ is such that η 6∈ Z̄, let δη = max(Z̄ ∩ η).
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Claim 6.10. Suppose η < ωλ. If η 6∈ Z̄ n < ω, b ∈ λn, and there are
` < m < n such that fb(m) = η and fb(`) ∈ (δη, η). Then m 6∈ basb.

Proof. We proceed by induction on η. Let η < ωλ be such that η 6∈ Z̄ and
suppose we have proven the claim for all η′ < η. Let n < ω and b ∈ λn

be such that there are ` < m < n with fb(m) = η and fb(`) ∈ (δη, η), and
suppose for sake of contradiction that m ∈ basb. By Proposition 6.6 and
the fact that η 6∈ Z, there is b′ w b such that fb,b′(m) 6∈ basb′ but there is k
such that fb,b′(`) < k < fb,b′(m) and k ∈ basb′ . Let ξ = fb′(k) and note that
δη < ξ < η. Thus, ξ 6∈ Z̄ and δξ = δη. But fb′(fb,b′(`)) ∈ (δξ, ξ), contradicting
the inductive hypothesis.

Now fix b ∈ λ<ω. We will find b′ w b such that fb′“basb′ ⊆ Z̄. We will
do this by recursively defining a sequence 〈bi | i < ω〉 such that if i < j,
then bi v bj and bi ∈ λni . If during the recursive construction we reach i

such that fbi“basbi ⊆ Z̄, then the process halts and we let b′ = bi. For each
i < ω such that bi is not as desired, we assign an ordinal νi, where νi is the
largest ν such that, for some m < ni, we have bi(m) = ν, fbi(m) 6∈ Z, and
there is no k < m such that fbi(k) ∈ (δfbi (m), fbi(m)).

If bi has been constructed and the process has not halted, we let bi+1 w
bi be such that, for every m < ni with bi(m) = νi, there is k < ni+1 such
that fbi+1

(k) ∈ (δfbi (m), fbi(m)). We moreover require that, for every k ∈
ni+1 \ ran(fbi,bi+1

), bi+1(k) < νi. This ensures that, if the process does not
halt at stage i + 1, then νi+1 < νi. Now suppose that the process never
stops. Then 〈νi | i < ω〉 forms a strictly decreasing sequence of ordinals,
which is a contradiction. Thus, there is i < ω such that fbi“basbi ⊆ Z̄.

Lemma 6.11. 〈(κ, I)〉  “Ẋ ≤V ˙̄d”.

Proof. Let G be P~U -generic over V with 〈(κ, I)〉 ∈ G. We will show how to
recover X given d̄. If b ∈ λ<ω and x ∈ [κ]b, we say x is compatible with
d̄ if, for every η ∈ ran(fb) ∩ Z̄, we have, letting kη = f−1

b (η), x(kη) = d̄(η).
Let [d̄]b denote the set of x ∈ [I]b such that x is compatible with d̄. Let
Xb =

⋃
x∈[d̄]b F (x), and let X ′ = {(α, Y ) | for some b∗ ∈ λ<ω, for all b ∈ λ<ω

such that b∗ v b, we have (α, Y ) ∈ Xb}. Clearly, X ′ ∈ V [d̄]. We claim that,
for all α < κ, X ∩ α = Y if and only if (α, Y ) ∈ X ′.

First, suppose thatX∩α = Y . Let p∗ ∈ G be such that p∗  “Ẋ∩α̌ = Y̌ ”.
Let b∗ = tp(ap

∗
). We claim that b∗ witnesses that (α, Y ) ∈ X ′. To see

this, let b w b∗. Let p ≤ p∗ be such that p ∈ G and tp(p) = b. Then
(α, Y ) ∈ F (ap) ⊆ Xb, so (α, Y ) ∈ X ′.
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Next, suppose that (α, Y ) ∈ X ′ and suppose for sake of contradiction
that X ∩ α = Y ′ 6= Y . Fix b∗ witnessing that (α, Y ) ∈ X ′, and let p ∈ G be
such that p  “Ẋ ∩ α̌ = Y̌ ′”. Without loss of generality, b = tp(ap) w b∗. By
Lemma 6.9, there is b′ w b such that fb′“basb′ ⊆ Z̄. (α, Y ) ∈ Xb′ , so there is
x ∈ [I]b

′
compatible with d̄ such that (α, Y ) ∈ F (x). Let q ≤ p be such that

q ∈ G and tp(aq) = b′. Then (α, Y ) 6∈ F (aq), but, since x is compatible with
d̄ and fb′“basb′ ⊆ Z̄, we have aq � basb′ = x � basb′ . This is a contradiction.
Thus, for all α < κ, X ∩ α = Y if and only if (α, Y ) ∈ X ′, so X ∈ V [d].

Lemma 6.12. 〈(κ, I)〉  “ḋ ≤V Ẋ”.

Proof. Let G be P~U -generic over V with 〈(κ, I)〉 ∈ G. We want to recover
d from X. Let W be the set of x ∈ [I]<ω such that o(max(x)) > 0 and
(max(x)†, X∩max(x)†) ∈ F (x). Clearly, W ∈ V [X]. Also note that, for every
b ∈ λ<ω, there is x ∈ W such that b v tp(x). To see this, let b ∈ λ<ω and
find p ∈ G such that b v tp(ap). Without loss of generality, o(max(ap)) > 0.
Find q ≤ p with q ∈ G such that max(aq) = max(ap) and q decides the value
of Ẋ ∩max(aq)†. Then aq is as desired.

Claim 6.13. Suppose b ∈ λ<ω, x, y ∈ [I]b, and x, y ∈W . Then F (x) = F (y).

Proof. First, suppose max(x) = max(y) = α for some α < κ. By assump-
tion, F (x) ∩ α† = F (y) ∩ α†, so, by indiscernibility, F (x) ∩ β = F (y) ∩ β for
all β ∈ I ∩A∗o(α†). Thus, F (x) = F (y).

Therefore, we may assume that max(x) < max(y). Let α = max(x) and
β = max(y), and let n < ω be such that b ∈ λn. We also may assume that
basb 6= ∅, since otherwise F (x) = F (y) would trivially be true. Note that,
since x, y ∈ W and α < β, it must be the case that F (x) ∩ α† = F (y) ∩ α†.
The proof now splits into two cases.

Case 1: n − 1 6∈ basb. Let z ∈ [I]b be such that z(n − 1) = α and, for
all other k < n, z(k) = x(k). Then z � basb = x � basb, so F (z) = F (x). Let
γ ∈ (I ∩A∗b(n−1))\ (β+ 1). Let y′ be defined by y′(n−1) = γ and y′(k) = y(k)

for all other k < n, and let z′ be similarly defined in relation to z. Then
F (x) = F (z′) and F (y) = F (y′). We also know that F (z) ∩ α† = F (y) ∩ α†,
so, by indiscernibility, F (z′)∩ β† = F (y′)∩ β†. Thus, by the first paragraph
of this proof, F (z) = F (y), so F (x) = F (y).

Case 2: n− 1 ∈ basb.
Subcase 2a: basb = {n − 1}. By suitably restricing our measure one

set, we can in fact ensure that every indiscernible is in fact a limit point
of (I ∩ A∗η) for every η < λ. Thus, by shifting around the elements of x
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and y, we can assume that α† < min(y). Now let z ∈ [I]b be such that
β† < min(z). Since F (y) ∩ α† = F (x) ∩ α†, we have, by indiscernibility,
F (z)∩β† = F (x)∩β† and F (z)∩β† = F (y)∩β†. Thus, F (x)∩β† = F (y)∩β†,
so, again by the first paragraph of this proof, F (x) = F (y).

Subcase 2b: basb contains more than one element. Let u = x � basb

and v = y � basb. There are now two sub-subcases to finish the proof of the
claim.

Sub-subcase 2bi: u � (basb \ {n − 1}) = v � (basb \ {n − 1}). Form
z as before by letting z(n − 1) = β and z(k) = x(k) for all other k < n.
Then z � basb = y � basb, so F (z) = F (y), so F (z) ∩ α† = F (x) ∩ α†. Let
w = x � (n−1). We may assume that α† < β, so, since F (w_〈n−1, α〉)∩α† =

F (w_〈n − 1, β〉) ∩ α†, so, if γ < ν are such that β < γ, γ ∈ I ∩ A∗0, and
ν ∈ I ∩ A∗b(n−1), then, by indiscernibility, F (w_〈n− 1, α〉) ∩ γ = F (w_〈n−
1, ν〉) ∩ γ = F (w_(n− 1, β〉) ∩ γ, so F (x) = F (z) and therefore F (x) = F (y).

Sub-subcase 2bii: u � (basb \ {n − 1}) 6= v � (basb \ {n − 1}). Find
γ ∈ ran(u) \ ran(v) with γ < α. Let k be such that x(k) = γ. Let δ =

min((I ∩A∗b(k)) \ (γ+ 1)). We may assume that δ < x(k+ 1), δ 6∈ ran(y), and,
if γ = y(i) for some i < n, then δ < y(i + 1). Let x′ be such that x′(k) = δ

and x′(i) = x(i) for all other i < n. If y(i) = γ for some i < n, let y′ be
such that y′(i) = δ and y′(`) = y(`) for all other ` < n. If γ 6∈ ran(y), let
y′ = y. Note that x′ � basb 6= x � basb, so F (x) 6= F (x′). In particular,
F (x) ∩ α† 6= F (x′) ∩ α†. However, y′ � basb = y � basb, so F (y) = F (y′).
Also, the order structure of x, y, and α† is the same as that of x′, y′, and
α†, so F (x) ∩ α† = F (y) ∩ α† and F (x′) ∩ α† = F (y′) ∩ α† should hold or fail
simultaneously. This is a contradiction, since the first equality holds by
assumption and the second fails. This finishes Case 2 and hence the proof
of Claim 6.13.

We now show how to recover d from W . Let η ∈ Z, and let b∗ be such
that, for all b w b∗, η ∈ fb“basb. Find x ∈ W such that tp(x) = b w b∗.
By the preceding claim and the remark immediately preceding the claim,
x(f−1

b (η)) is independent of our choice of x and is equal to d(η). This fin-
ishes the proof of the Lemma and hence of Theorem 6.7.

6.4 Subsets of larger cardinals

The proof of the following theorem is a straightforward adaptation of the
analogous theorem from [17]. We provide a sketch for completeness.
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Theorem 6.14. Suppose that G is P~U -generic over V and, for every X ∈
V [G] such that X ⊆ κ, there is d ⊆ g such that X ≡V d. Then for every set
of ordinals Y ∈ V [G], there is d ⊆ g such that Y ≡V d.

Proof. We proceed by induction on µ, where µ is the least cardinal such
that Y ⊆ µ. We are assuming the theorem holds if µ ≤ κ.

First, suppose δ = cf(µ) ≤ κ. Let 〈µξ | ξ < δ〉 be an increasing sequence
of cardinals cofinal in µ. By the inductive hypothesis, we have that, in
V [Y ], for every ξ < δ, there is Yξ ⊆ κ such that (X ∩µξ) ≡V Yξ. Thus, there
are zξ ∈ V and ordinals αξ and βξ such that Yξ is the αξ-th element in the
canonical well-ordering of L[pξ, Y ∩ µξ] and Y ∩ µξ is the βξ-th element in
the canonical well-ordering of L[pξ, Yξ]. Since P~U has the κ+-c.c. and δ ≤ κ,
there are sets A,B, and P in V , all of cardinality κ, such that, for every
ξ < δ, there are αξ, βξ, and pξ as above in A, B, and P , respectively. The
map ξ 7→ (aξ, bξ, pξ) can then be coded as a subset X of κ. It is then clear
that X ∈ V [Y ] and Y ∈ V [X].

Now suppose δ = cf(µ) > κ. By the inductive hypothesis, we have
that, in V [G], for every ξ < µ, there is dξ ⊆ g such that (Y ∩ ξ) ≡V dξ.
Without loss of generality, we may assume that each dξ is closed and that,
if ξ < ξ′ < µ, then dξ ⊆ dξ′ . Since δ > κ, there is a closed d ⊆ g such that,
for all sufficiently large ξ < λ, (Y ∩ ξ) ≡V d. Clearly, d ∈ V [Y ]. We claim
that Y ∈ V [d].

Let P~U/d be the quotient forcing. We have the following lemma. The
proof is essentially the same as that of the corresponding lemma in [17],
so we only give a sketch.

Lemma 6.15. In V [G], P~U/d has the κ+-c.c.

Proof. First suppose that d is bounded below κ. Then, for some α < κ,
P~U/d = (P~U�α/d) × (P~U/〈(κ, κ \ α)〉. Since the first poset in this product is
small and the second has the κ+-c.c., P~U/d itself has the κ+-c.c.

Now suppose d is unbounded in g. Think of g as an increasing function
from ωλ to κ, and let C ⊆ ωλ be a club such that d = g � C. Let Q be the set
of p ∈ P~U such that, letting p = 〈(αk, Ak) | k ≤ m〉 and b = tp(ap), we have:

• For all k < m such that fb(k) ∈ C, αk = g(fb(k)).

• fb(m− 1) ∈ C.

• For all k < m such that fb(k) ∈ C ′, it is the case that either k = 0 and
g ∩ αk ⊆ Ak or k > 0, fb(k − 1) ∈ C, and g ∩ (αk−1, αk) ⊆ Ak.
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• g ∩ (αm−1, κ) ⊆ Am.

• For all k < m such that fb(k) 6∈ C ′, it is the case that either k = 0 or
k > 0 and C ∩ (fb(k − 1), fb(k)) = ∅.

Intuitively, the elements of Q are the conditions p ∈ P~U for which it is
clear that there is a P~U -generic filter, H, with associated club h, such that
p ∈ H and h � C = d. It is easily verified as in [17] that Q is a dense subset
of P~U/d and that if p, q ∈ Q are such that ap = aq, then a common lower
bound in Q can be found by intersecting the measure-one sets. Thus, P~U/d
has the κ+-c.c. in V [G] (and hence in V [d] as well).

Now Y ∈ V [G] = V [d][G], and V [d][G] is an extension of V [d] by κ+-c.c.
forcing. Let Ẏ ∈ V [d] be a P~U/d-name for Y . We know that, for every
ξ < µ, Y ∩ ξ ∈ V [d]. Let Qξ be the set of all conditions q ∈ P~U/d such that
q  “Ẏ ∩ ξ̌ = y̌ξ”, where yξ = Y ∩ ξ. Each Qξ is nonempty and, if ξ < ξ′,
then Qξ′ ⊆ Qξ. First, suppose there is q ∈

⋂
ξ<µQξ. Then, for every ξ < µ,

q  “Ẏ ∩ ξ̌ = y̌ξ”, so Y ∈ V [d].
Thus, suppose that

⋂
ξ<µQξ = ∅. Then Z = {ξ < µ | Qξ \ Qξ+1 6= ∅

is unbounded in µ. For each ξ ∈ Z, let qξ ∈ Qξ \ Qξ+1. Since qξ 6 “Ẏ ∩
ξ̌ + 1 = y̌ξ+1”, we can find pξ ≤ qξ such that pξ  “Ẏ ∩ ξ̌ + 1 6= y̌ξ+1”.
Then {pξ | ξ ∈ Z} ∈ V [G] is an antichain in P~U/d. Since |Z| > κ, this is a
contradiction.

6.5 Products of Radin forcing

Let ~U0 and ~U1 be coherent sequences of measures with lh(~U0) = κ0 and
lh(~U1) = κ1, where κ0 < κ1. Suppose we have proven that, for i < 2, if Gi is
P~Ui -generic over V and gi is the associated generic club, then, for every set
of ordinals X ∈ V [Gi], there is di ⊆ gi such that X ≡V di. Let P = P~U0

and
Q = {q ∈ P~U1

| aq ⊆ κ1 \ (κ0 + 1)}.
Let G be P-generic over V . Then, for every β such that κ0 < µ ≤ κ1

and every i < o
~U1(β), define U∗1 (β, i) in V [G] to be the collection of sets

A ⊆ β such that there is B ∈ U1(β, i) such that B ⊆ A. Then U∗1 (β, i) is a
β-complete normal ultrafilter over β extending U(β, i). Let ~U∗1 = 〈U∗1 (β, i) |
κ0 < β ≤ κ1 and i < o

~U1(β)〉. Then a club h ⊆ κ1 generates a Q-generic
filter over V if and only if generates a P~U∗1 -generic filter over V [G].

Similarly, let H be Q-generic over V . Since forcing with Q does not
change P(κ0), P remains Radin forcing in V [H], and G is P-generic over V
if and only if it is P-generic over V [H].
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Now let G be P-generic over V and let H be Q-generic over V , with
g and h the respective clubs. Let X be a set of ordinals in V [g × h]. By
assumption, there is dh ⊆ h such that X ≡V [G] dh. There is then a dg ⊆ g

such that X ≡V [dh] dg. Going another step, there is d∗h ⊆ dh such that
X ≡V [dg] d

∗
h. We claim that we can in fact let d∗h = dh. Suppose not, so that

dh \ d∗h is infinite. Then, since X ∈ V [g × d∗h] and dh ∈ V [g × X], we have
dh ∈ V [g × d∗h], which contradicts the assumption that dh \ d∗h is infinite.
Thus, from any two of dg, dh, and X, we can recover the third. This shows
that X ∈ V [dg ∪ dh]. We now show that dg ∪ dh ∈ V [X].

Suppose g′ and h′ are two Radin-generic clubs such that X ∈ V [g′ × h′].
Then, as above, there are dg′ and dh′ such that any of X, dg′ , and dh′ can
be recovered from the other two. Thus, any of dg, dh, dg′ , and dh′ can be
recovered from the other three. Therefore, dg =∗ dg′ and dh =∗ dh′ , so
dg ∪ dh ∈ V [g′ × h′]. Thus, dg ∪ dh is in every (P × Q)/X-generic extension
of V [X]. Thus, by the product lemma, dg ∪ dh ∈ V [X], so we in fact have
X ≡V dg ∪ dh.

6.6 Coding arbitrary subsets of κ

Let ~U be a coherent sequence of measures with lh(~U) = κ + 1 and o(κ) =

λ < κ. Let P = P~U , let G be P-generic over V , let g be the club in κ derived
from G, and let X ∈ V [G] be a subset of κ. We would like to show that
there is d ⊆ g such that X ≡V d. We proceed by induction on λ, with the
base case, λ = 1, being covered in [17]. The proof breaks into two cases.

Case 1: There is β < κ such that, for all α < κ, X ∩ α ∈ V [g � β].
The desired conclusion in this case will follow from the results of the

previous three sections. Let γ be a limit point of g such that γ > β, and let
p = 〈(αk, Ak) | k ≤ m〉 ∈ G with γ = αk for some k ≤ m. Below p, P can be
thought of as a product P~U�(γ+1)/p

≤k × P/p>k. By the inductive hypothesis
and Theorem 6.7 respectively, there are d0 ⊆ g � γ and d1 ⊆ g � [γ, κ) such
that any of d0, d1, and X is recoverable from the other two. Then, by the
arguments regarding products of Radin forcings from the previous section,
X ≡V (d0 ∪ d1).

Case 2: For all β < κ, there is α < κ such that X ∩ α 6∈ V [g � β].
This case requires some more work. First, let us fix a P-name Ẋ for

X. We may assume that Ẋ has the property that, for every β < κ with
o(β) > 0, for every p ∈ P with β ∈ ap, there is a P~U�(β+1)-name Ẋβ,p such
that p P “Ẋβ,p = Ẋ ∩ β”.
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Let b = {γ < κ | o(γ) > 0 and γ is singular in V [X]}. It is immediate
that b ⊆ g and b ∈ V [X]. b is unbounded in κ, since, if there were δ < κ

such that b ⊆ δ, then an easy argument shows that every initial segment
of X lies in V [g � δ].

For every γ ∈ b, let dγ ⊆ g � γ be such that dγ ≡V X � γ. We may
assume that, if γ < γ′, then dγ ⊆ dγ′ and that, since P(λ)V = P(λ)V [G],
that the sequence 〈dγ | γ ∈ b〉 ∈ V [X]. Thus, letting d∗ =

⋃
γ∈b dγ , we have

that d∗ is an unbounded subset of g (and in fact the limit points of d∗ form
an unbounded subset of g), d∗ ∈ V [X], and, for every α < κ, X ∩ α ∈ V [d∗].

Let ḋ∗ be a P-name for d∗. Let c ⊆ ωλ be such that d∗ = g � c. c ∈ V , and,
by the remarks at the beginning of Section 6.3, we may assume without
loss of generality that P “ḋ∗ = ġ � č”.

For every η ∈ c′, it is forced that there is a set of ordinals z ∈ V such
that Ẋ ∩ ġ(η) ∈ L[z, ḋ∗ � (c ∩ ġ(η))]. Let χ be a sufficiently large regular
cardinal such that, for every η ∈ c′ it is forced that there is such a set z in
H(χ), and let <χ be a well-ordering of H(χ).

Define a function F with domain [κ]<ω by letting F (x) = (max(x), α, z)

if the following hold:

• If tp(x) = b ∈ λn, then fb(n− 1) ∈ c′.

• α is an ordinal.

• z ∈ V is a set of ordinals.

• There is p ∈ P such that ap = x and p  “ž is the <χ -least set of
ordinals such that Ẋ ∩max(x) ∈ L[z, ḋ∗ � (c ∩max(x))]”.

• p  “Ẋ ∩max(x) is the αth element in the canonical well-ordering of
L[z, ḋ∗ � (c ∩max(x))]”.

Let F (x) = ∅ otherwise. As before, apply Lemma 6.4 to F to attain sets
Jb(∅) and basb(∅) for b ∈ λ<ω. Let J =

⋂
b∈λ<ω Jb(∅) and, for b ∈ λ<ω, let basb

denote basb(∅). The following is proven in the same way as Proposition 6.6.

Proposition 6.16. Let n < ω, a ∈ λn, and b ∈ λn+1 be such that a v b and
fa(n− 1) = fb(n) ∈ c′. Suppose that i < n is such that i 6∈ ran(fa,b) and that
k ∈ basa. Then one of the following holds:

1. fa,b(k) ∈ basb.

2. k = i and i ∈ basb.
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Let θ be a sufficiently large regular cardinal, and let F be the collection
of sets inH(θ) definable using only P, Ẋ, J , {basb | b ∈ λ<ω}, c, and ordinals
less than λ as parameters. Apply Proposition 6.3 to find I ⊆ J such that
I ∈

⋂ ~Uκ and I is indiscernible for all sets in F .
For η ∈ c′, let Bη be the set of b ∈ λ<ω such that fb(|x| − 1) = η. Let

cη = {ξ < η |there is b∗ ∈ Bη such that, for all b ∈ Bη such that b∗ v b, we
have ξ ∈ fb“basb}. Let c∗ = c ∪

⋃
η∈c′ cη, and let d = g � c∗, and let ḋ be the

canonical name for d.

Lemma 6.17. 〈(κ, I)〉  “Ẋ ≡V ḋ”.

Proof. Let G be P-generic over V with 〈(κ, I)〉 ∈ G. We first show how to
recover X from d. We have already shown that all initial segments of X
are in V [d]. We now show how, given η ∈ c′, to recover X ∩ d(η).

For b ∈ Bη, let Xb = {F (x) | x ∈ [d]b}, and let X ′η = {(d(η), α, z) |
for some b∗ ∈ Bη, for all b ∈ Bη such that b∗ v b, we have (d(η), α, z) ∈
Xb}.

We first show that there is a (d(η), α, z) ∈ X ′η such that X ∩ d(η) is the
αth element in the canonical well-ordering of L[z, d � (c ∩ d(η))]. To this
end, let p ∈ G be such that tp(ap) ∈ Bη and such that there are α and z

such that p witnesses that (d(η), α, z) ∈ F (ap). Then X is in fact the αth

element in the canonical well-ordering of L[z, d � (c ∩ d(η))], and we claim
that tp(ap) witnesses that (d(η), α, z) ∈ X ′η. To see this, let b ∈ Bη be such
that b w tp(ap), and let q ∈ G be such that q ≤ p and tp(aq) = b. Then aq

witnesses that (d(η), α, z) ∈ Xb.
Next, suppose that (d(η), α, z) ∈ X ′ and suppose for sake of contradic-

tion that X ∩ d(η) is not the αth element in the canonical well-ordering of
L[z, d � (c ∩ d(η))]. Fix b∗ witnessing that (d(η), α, z) ∈ X ′, and let p ∈ G

force that X ∩ η is not the αth element in the canonical well-ordering of
L[z, d � (c∩ d(η))]. Without loss of generality, b = tp(ap) w b∗. As in Lemma
6.9, we can find b′ w b such that fb′“basb′ ⊆ c∗. Find x ∈ [I]b

′
such that

F (x) = (d(η), α, z). Also, let q ≤ p be such that q ∈ G and tp(aq) = b′. Then
aq � basb′ = x � basb′ , but F (aq) 6= (d(η), α, z). This is a contradiction.

Therefore, given d, we can recover X by, for each η ∈ c′, finding a
(d(η), α, z) ∈ X ′η and letting X ∩d(η) equal the αth element in the canonical
well-ordering of L[z, d � (c ∩ d(η))].

We now show how to recover d from X. Since we have already shown
that d∗ = d � c ∈ V [X], it suffices to recover d from X and d∗. For η ∈ c′,
let zη be the <χ-least set of ordinals such that X ∩ d(η) ∈ L[z, d � (c ∩
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d(η))], and let αη be such that X is the αthη element in the canonical well-
ordering of L[z, d � (c ∩ d(η))]. Let Wη = {x ∈ κ<ω | tp(x) ∈ Bη and F (x) =

(d(η), αη, zη)}.
Let p ∈ G be such that max(ap) = d(η) and p decides the values of zη

and αη. Let b′ = tp(ap). Then, for every b ∈ Bη with b w b′, by considering
q ≤ p with tp(aq) = b′, it follows that g � ran(fb) ∈ Wη. Moreover, it is
immediate from the definitions that, if x, x′ ∈ Wη and tp(x) = b = tp(x′),
then x � basb = x′ � basb. Thus, given ξ ∈ cη, we can determine d(ξ) by
finding b∗ ∈ Bη such that b∗ w b′ such that, for all b ∈ Bη with b w b∗, ξ ∈
fb“basb, finding x ∈ Wη such that tp(x) = b, and letting d(ξ) = x(f−1

b (ξ)).
This allows us to recover d from X and d∗, thus finishing the proof.

Putting all of this together, we can now obtain a complete proof of The-
orem 6.5.

Moreover, following Gitik, Kanovei, and Koepke, we can characterize
the structure of the collection of intermediate submodels of V [G]. It should
be clear that, if c, d ⊆ g are such that the closures of c and d differ by only
finitely many elements, then V [c] = V [d]. In fact, this is the only case in
which V [c] = V [d].

Theorem 6.18. Suppose that G is P~U -generic over V and g is the club in
κ derived from G. Suppose c, d ⊆ g are closed and c \ d is infinite. Then
c 6∈ V [d].

Proof. Think of g as being an increasing function from ωλ to κ. Let C,D ⊆
ωλ be such that c = g � C and d = g � D. Notice that C,D ∈ V . Sup-
pose for sake of contradiction that c ∈ V [d]. Then there an ordinal α and
a set z ∈ V such that g � C is the αth element in the canonical well-
ordering of L[z, g � D]. Let p = 〈(αk, Ak) | k ≤ m〉 ∈ G force this to
be true. Let η be the least element of C \ D not in the range of ftp(ap).
By extending p if necessary, we may assume that there is b w tp(ap)

such that |b| = |tp(ap)| + 1 = m + 1, η = fb(k
∗) for some k∗ ≤ m, and

D ∩ (fb(k
∗ − 1), η) = ∅ (where we define fb(−1) = 0). For i < 2, we

may extend p to qi = 〈(α0, A0), . . . , (αk∗−1, Ak∗−1), (βi, Bi), (α
∗
k, A

∗
k \ (βi +

1)), . . . , (αm, Am)〉 with tp(aqi) = b such that β0 6= β1. Suppose q0 ∈ G Let H
be a generic filter containing q1, and let h be the club derived from H. Let
g∗ = (g∩ [0, αk∗−1)]∪ (h∩ (αk∗−1, β1])∪ (g∩ (β1, κ)). Then g∗ generates a P~U -
generic filter G∗ such that p ∈ G∗. Also, g∗ � D = g � D, so g∗ � C = g � C,
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since the sets are defined in the same way from g � D and parameters in V .
However, β0 = g(η), β1 = g∗(η), and η ∈ C. This is a contradiction. Thus,
c 6∈ V [d].



CHAPTER 7

FORCING ITERATIONS WITH UNCOUNTABLE SUPPORT

Iterated forcing with uncountable support is much less well understood
than forcing with finite or countable support. In particular, a satisfac-
tory generalization of the notion of properness to higher cardinals has re-
mained elusive. Trying to generalize properness in the most straightfor-
ward way, we arrive at the following definitions. For concreteness, we will
work throughout this chapter at ω1. All results generalize in a straightfor-
ward way to larger uncountable regular cardinals.

Definition. Let θ be a sufficiently large, regular cardinal, and let P ∈ H(θ)

be a poset. We say N ≺ H(θ) is relevant for P if:

• |N | = ℵ1.

• ωN ⊆ N .

• N =
⋃
α<ω1

Nα, where 〈Nα | α < ω1〉 is an internally approachable
chain of countable elementary substructures of H(θ).

Definition. Let P be a poset, and let N be relevant for P. q ∈ P is (N,P)-
generic if, for all dense, open sets D of P such that D ∈ N , q  “ĠP∩D∩N 6=
∅”.

Definition. P is ω1-proper if, for all sufficiently large, regular θ, for all
N ≺ H(θ) relevant for P, and for all p ∈ P ∩N , there is q ≤ p such that q is
(N,P)-generic.

In analogy with the classical notion of properness, ω1-proper forcing
posets preserve ω2, and both ω2-c.c. and ω2-closed forcings are ω1-proper.
However, iterations of ω1-proper forcings with ω1-size supports are not in
general ω1-proper and can in fact collapse ω2 (see [27]). In this chapter, we
discuss the iterability of versions of forcings to add reals at higher cardi-
nals.

Kanamori, in [21], introduces a generalization of Sacks forcing for un-
countable cardinals and proves that, assuming ♦, the iteration of ω1-Sacks
forcing with ω1-size supports preserves ω2. We adapt his argument to show
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that, assuming CH, the iteration of ω1-Cohen forcing with ω1-sized sup-
ports is ω1-proper.

Recall that ω1-Cohen forcing, which we denote as P, has conditions that
are elements of <ω12, ordered by end-extension. We will think of condi-
tions in an iteration of length γ with ω1-support as being functions whose
domains are subsets of γ of size ≤ ω1;. We will need the following Lemma.

Lemma 7.1. Let γ be an ordinal, and let Pγ be an iteration of ω1-Cohen
forcing of length γ with ω1-support. Let p ∈ Pγ , and let F be a countable
subset of dom(p). There is q ≤ p such that, for every β ∈ F , there is αβ < ω1

and sβ : αβ → 2 such that q � β  “q(β) = sβ”.

Proof. The proof is by induction on γ. The lemma is trivially true for γ = 1.
Suppose γ = η + 1. We may assume η ∈ F . First, extend p � η to r ∈ Pη
such that, for some αη < ω1 and sη : αη → 2, r  “p(η) = sη”. Then, using
the inductive hypothesis, extend r to t such that, for all β ∈ F ∩ η, there is
αβ < ω1 and sβ : αβ → 2 such that t � β  “t(β) = sβ”. Then t_p(η) is as
desired.

Now suppose γ is a limit ordinal of countable cofinality. Let 〈γn | n < ω〉
be an increasing sequence of ordinals cofinal in γ with γ0 = 0. We build
a sequence 〈pn | n < ω〉 such that pn ∈ Pγn and 〈pn_p � [γn, γ) | n < ω〉
is decreasing in Pγ . We ensure that, for every n < ω and every β ∈ F ∩
γn, there is αβ,n < ω1 and sβ,n : αβ,n → 2 such that pn � β  “pn(β) =

sβ,n”. This is easily achieved by the inductive hypothesis. Now let q be
the greatest lower bound of the sequence 〈pn_p � [γn, γ) | n < ω〉. Letting
αβ = sup({αβ,n | n < ω}) and sβ =

⋃
n<ω sβ,n for all β ∈ F , it is easily seen

that q is as desired.
Finally, suppose γ is a limit ordinal of uncountable cofinality. Then

there is η < γ such that F ⊆ η. We can then finish by applying the induc-
tive hypothesis to p � η.

Theorem 7.2. Assume CH. Let γ be an ordinal, and let P = Pγ be an
iteration of ω1-Cohen forcing of length γ with ω1-support. Then Pγ is ω1-
proper.

Proof. Assume ♦ holds in V . (Since ♦ is added by ω1-Cohen forcing, this
is not really an additional assumption). Let Ā = 〈Aα | α < ω1〉 be a ♦-
sequence guessing subsets of ω1 × ω1, i.e., for each α < ω1, Aα ⊆ (α × α),
and for all X ⊆ (ω1 × ω1), there are stationarily many α < ω1 such that
X ∩ (α× α) = Aα.
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Definition. If p ∈ P and F is a countable subset of dom(p), we say q ≤F p

if q ≤ p and, for all β ∈ F , q(β) = p(β).

Let θ be a sufficiently large, regular cardinal, and let N ≺ H(θ) be
relevant for P. Let p ∈ P ∩ N . We will find q ≤ p such that q is (N,P)-
generic.

Let 〈Dα | α < ω1〉 enumerate all dense open subsets of P that lie in
N . We will build a decreasing sequence 〈pα | α < ω1〉 of conditions in
P ∩ N . We will also beforehand fix a bookkeeping device that will give us
a sequence of countable sets 〈Fα | α < ω1〉, functions 〈gα | α < ω1〉, and
ordinals 〈ηα | α < ω1〉 such that:

• Fα ⊆ dom(pα).

• gα : Fα → ηα is a bijection and ηα ≥ α.

• If α < β, then Fα ⊆ Fβ and gα ⊆ gβ .

• If β is a limit ordinal, then Fβ =
⋃
α<β Fα.

•
⋃
α<ω1

Fα =
⋃
α<ω1

dom(pα).

In our construction, we will ensure that, if α < β < ω1, then pβ ≤Fα pα.
This will allow us to find a lower bound for the sequence 〈pα | α < ω1〉.

Let p0 = p. If β < ω1 is a limit ordinal, let pβ be the greatest lower bound
of 〈pα | α < β〉. Now suppose pα has been defined. Assume that ηα = α.
(This happens for a club of α. If it is not the case, then let pα+1 = pα.) Now
define a function σα : Fα → α2 as follows: if β ∈ Fα and δ < α, then let

(σα(β))(δ) =

1 if (gα(β), δ) ∈ Aα
0 otherwise

Now ask whether there is r ≤ pα such that:

• r ∈
⋂
β<αDβ .

• For all β ∈ Fα, r � β  “r(β) = σα(β)”.

Let rα be such an r if it exists (if not, just let pα+1 = pα). Note that,
by elementarity, exploiting the fact that N is closed under countable se-
quences, we may assume that rα ∈ N . We now define pα+1 to resemble
rα as closely as possible while requiring that pα+1 ≤Fα pα. Namely, we let
dom(pα+1) = dom(rα). For β ∈ Fα, pα+1(β) = pα(β). If β ∈ dom(pα) \ Fα,
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then pα+1(β) is a name such that rα � β  “pα+1(β) = rα(β)” and, if
c ≤ pα � β is incompatible with rα � β, c  “pα+1(β) = pα(β)”. If β ∈
dom(rα) \ dom(pα), then pα+1(β) is a name such that rα � β  “pα+1(β) =

rα(β)” and, if c ≤ pα � β is incompatible with rα � β, c  “pα+1(β) = ∅”. It
is clear that pα+1 ≤Fα pα and, since everything needed to define pα+1 is in
N , we may assume pα+1 ∈ N .

Let g =
⋃
α<ω1

gα. Then g is a bijection from
⋃
α<ω1

Fα to ω1. Let q be a
lower bound for 〈pα | α < ω1〉. We claim that q is (N,P)-generic. To prove
this, fix t ≤ q and ξ < ω1. We show that t is compatible with an element of
N ∩Dξ. To do this, we will construct sequences 〈tα | α < ω1〉, 〈ρα | α < ω1〉
and 〈τα | α < ω1〉 such that:

• 〈tα | α < ω1〉 is a decreasing sequence of conditions from Pγ and tα is
a greatest lower bound of 〈tβ | β < α〉 if α is a limit ordinal.

• 〈ρα | α < ω1〉 is an increasing, continuous sequence of countable ordi-
nals, with ρα ≥ α.

• For α < α′ < ω1, τα : Fα → ρα2 and, for β ∈ Fα, τα(β) ⊆ τα′(β).

• For α < ω1 and β ∈ Fα, tα � β  “tα(β) = τα(β)”.

• For α < ω1, tα ∈
⋂
β<αDβ .

Let t0 = t. If α is a limit ordinal, it is clear how to proceed. Suppose
α = ζ + 1 and tζ , ρζ , and τζ have been defined. Let t∗α ≤ t be such that
t∗ ∈ Dα. Apply Lemma 7.1 to t∗α and Fα to get t′α ≤ t∗α, {ρα,β | β ∈ Fα}
and {sβ | β ∈ Fα} such that, for all β ∈ Fα, sβ : ρα,β → 2 and t′α � β 

“t′α(β) = sβ”. We can then find ρα ≥ α greater than all of the ρα,β ’s. and
arbitrarily extend all of the sβ ’s to be functions τα(β) in ρα2. We can then
define tα+1 ≤ t′α as desired.

At the end of this construction, let X = {(g(β), δ) | β ∈
⋃
α<ω1

Fα, δ <
ω1, and, for all α such that β ∈ Fα and δ < ρα, (τα(β))(δ) = 1}. X ⊆ ω1×ω1.
Note that the set of limit ordinals α < ω1 such that ηα = ρα = α is club.
Let α > ξ in this club be such that X ∩ (α × α) = Aα. Working through
the definitions, this implies that τα = σα. Thus, tα ≤ q ≤ pα, tα ∈

⋂
β<αDβ

and, for all β ∈ Fα, tα � β  “tα(β) = σα(β)”, so, in our construction
of pα+1, we answered our question positively and thus were in the non-
trivial case. Now, noting that tα ≤ pα+1, it is easily verified that, in fact,
tα ≤ rα (simply check by induction on β ∈ dom(rα) = dom(pα+1) that
tα � β  “tα(β) ≤ rα(β)”). But rα ∈ N ∩

⋂
β<αDβ , so rα ∈ N ∩ Dξ, so we
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have demonstrated that t is compatible with an element of N ∩ Dξ, thus
completing the proof.

We can also show, following [21], that, assuming some cardinal arith-
metic, sufficiently short iterations have the ω3-c.c. and thus preserve all
cardinals. Before we give the proof, we introduce the following bit of nota-
tion.

Definition. Let Pγ be an iteration of ω1-Cohen forcing of length γ with ω1-
supports. Let p ∈ Pγ , let F ⊆ dom(p) be countable, let α < ω1, and suppose
σ : F → α2. Then p|σ is a function with domain dom(p) such that, if β 6∈ F ,
then (p|σ)(β) = p(β) and, if β ∈ F , then (p|σ) � β  “p|σ(β) = σ(β)”.

Note that p|σ ∈ Pγ and p|σ ≤ p if and only if, for all β ∈ F , (p|σ) � β 

“p(β) ⊆ σ(β)”.

Lemma 7.3. Suppose ♦ holds and γ < ω3. Then Pγ has the (2ω1)+-c.c.

Proof. Let U be the set of p ∈ Pγ such that there are S, 〈Fα | α ∈ S〉, and
〈σα | α ∈ S〉 such that:

1. Sα ⊆ ω1 is stationary.

2. For all α ∈ S, |Fα| = ℵ0.

3. For all α < α′ ∈ S, Fα ⊆ Fα′ , and
⋃
α∈S Fα = dom(p).

4. For all α ∈ S, σα : Fα → α2, p|σα ∈ Pγ , and p|σα ≤ p.

5. For all q ≤ p, there are stationarily many α ∈ S such that q and p|σα
are compatible.

By the proof of Theorem 7.2, U is dense in Pγ (the condition q defined in
the proof is in U). Also, the number of choices for S, 〈Fα | α ∈ S〉, and
〈σα | α ∈ S〉 in the definition of U is 2ω1 . Thus, it will be enough to show
that, if p and q are in U as witnessed by the same S, 〈Fα | α ∈ S〉, and
〈σα | α ∈ S〉, then p and q are compatible.

Suppose not, and fix a counterexample p and q. Since p and q have the
same 〈Fα | α ∈ S〉, dom(p) = dom(q). Since p and q are incompatible, there
must be β ∈ dom(p) and r ≤ p � β, q � β such that r  “p(β) and q(β) are
incompatible”, since otherwise it would be simple to recursively construct
a common extension of p and q. Fix such a β and r, and suppose moreover
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that there are δ0, δ1 < ω1, τ0 ∈ δ02, τ1 ∈ δ12, and δ∗ < min({δ0, δ1}) such
that r  “p(β) = τ0 and q(β) = τ1” and τ0(δ∗) 6= τ1(δ∗).

Let t = r_p � (dom(p) \ β). t ≤ p, so we can find α ∈ S such that
α > max({δ0, δ1}), β ∈ Fα, and t is compatible with p|σα. Let u ≤ t, p|σα.
Then τ0 ⊆ σα(β) and u � β ≤ (q|σα) � β, so u � β  “q(β) ⊆ σα(β)”. But
u � β ≤ r and r  “q(β) = τ1 6⊆ σα(β)”. This is a contradiction.

This immediately yields the following corollary, using a standard ∆-
system argument for the case γ = ω3.

Corollary 7.4. Suppose ♦ holds and 2ω1 = ω2. Then, if γ ≤ ω3, Pγ has the
ω3-c.c.

We remark that essentially the same arguments yield the same results
about properness and chain condition for the generalization of Hechler
forcing to ω1. In future work, we would like to fit all of these examples
into a general framework that would serve as a sort of analog to Axiom A
at higher cardinals.
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