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Personal Introduction

I started physics research when I performed experimental studies of granular
materials with Brian Utter at James Madison University. I thoroughly en-
joyed learning analysis techniques to discover what data may tell us about
the physical laws governing a system. To study granular materials, I applied
image analysis to experiments to find qualitative and quantitative descrip-
tions of a stochastic process [95].

At Carnegie Mellon University, I worked in Steve Garoff’s lab for about
one year, developing measurement equipment which would provide more de-
tail about the surface tension experiments we were studying. I was motivated
at the prospect, since it would provide more quantitative data to analyze. To
me data analysis is the most exciting part of the scientific process. I enjoy
making new statements by synthesizing information.

At the beginning of 2014, Snezhana Abarzhi talked to me about her re-
search. Study of Rayleigh-Taylor instability is in active development and
provides lots of opportunity for analysis of data from experiments and sim-
ulations. In this field data analysis has additional challenges because exper-
iments and simulations are difficult to perform and it is difficult to analyze
without observer effects. Rayleigh-Taylor flows present challenges to theo-
retical analysis, experimental design, and simulations because of the nature
of the instability. Though I was less interested in mathematical task of solv-
ing boundary value problems, Snezhana provided an opportunity for me to
perform data analysis on Rayleigh-Taylor experiments and simulations.

I am grateful for my years of training in experimental physics and data
analysis with Brian and Steve, and I thank Snezhana for introducing me to
this exciting field and giving me the opportunity to study with her.
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Abstract

Rayleigh-Taylor and Richtmyer-Meshkov instabilities (RTI and RMI) oc-
cur when a fluid interface between fluids of different densities is acceler-
ated against the density gradient. RTI/RMI plays an important role in the
dynamics of fluids and plasmas on microscopic scales, such as inertial con-
finement fusion, through astronomical scales, such as supernova explosions.
These problems have been studied for decades, yet it remains a challenge to
observe, model, and describe RTI/RMI mathematically. Without the tools
used to analyze stable equilibrium, we must find more robust analyses. This
work uses robust data analysis techniques to systematically study RT unsta-
ble flows.

We report a thorough analysis of experimental data in supernova experi-
ments conducted at high powered laser facilities, evaluating what information
experiments and simulations may tell us about the fundamentals of RTI and
RT mixing in high energy density plasmas by comparing the data with rig-
orous theoretical approaches.

We investigate the statistically unsteadiness of RT mixing by numerically
modeling the set of stochastic nonlinear differential equations which govern
the rate of change of momentum in a packet of fluid undergoing RT instability.
By analyzing the modeled solutions, we measure the influence of fluctuations
on measurable quantities, find new characteristic values which may be used
as to diagnose the regime of an experiment or simulation, and measure the
spectra of fluctuations as they propagate throughout the system.

We study the effect of the initial perturbation amplitude on the RMI
interfacial dynamics using Single Particle Hydrodynamics simulations. The
compound motion of the interface and bulk fluid flow is measured, an em-
pirical model is found to describe data, and we find an upper bound for the
amount of energy deposited to the interface.

There exists a plethora of data that may still be analyzed systematically,
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as exemplified in this thesis. Future work may improve the fits of experi-
mental data by exploring well designed parameter spaces, model additional
stochastic effects, and measure small scale features of flow quantities in sim-
ulations.
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Chapter 1

Introduction

Portions of this chapter are published in [94]
This thesis presents an integrated study of Rayleigh-Taylor and Richtmyer
-Meshkov instabilities to demonstrate the power of comparing experimental
results, simulations, and theoretical analysis. We contribute much needed
analysis with special attention to systems related to high energy density
regimes.

Rayleigh-Taylor instability (RTI) is an important phenomenon occurring
in both natural and artificial phenomena. Rayleigh-Taylor (RT) instability
occurs whenever fluids are accelerated against their density gradient. A small
perturbation at a fluid interface quickly grows, transitions to a nonlinear
stage where large-scale coherent structures and small-scale irregularities oc-
cur, then develops into turbulent mixing. In the limit when the acceleration is
provided by a shock wave, it is called Richtmyer-Meshkov instability (RMI).
RT mixing is an important process seen in stellar phenomenon, inertial con-
finement fusion, and everyday life. It occurs in mundane situations such as
water spilling from a cup, as well as exotic situations like supernova explo-
sions. RTI plays a crucial role in inertial confinement fusion [47, 28, 43, 61].
Radial compression of imploding Z-pinches, interaction of plasma liner with
targets in magneto-inertial fusion, and material transformation under impact
are all influenced by RTI dynamics [91, 36, 79, 25, 104, 83]. Additionally, it
may be a mechanism that influences the creation of heavy elements in su-
pernova explosions [18, 63, 17]. Anytime an accelerated fluid has a density
gradient, RTI may greatly influence the dynamics. RTI is not limited to
normal matter, but also occurs in high energy density fluids and plasmas.
By studying RTI and RMI, we will better understand processes important to
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developing inertial confinement fusion and supernova explosions. RTI/RMI
presents a challenging problem because it is a nonlinear, anisotropic (differ-
ent characteristics in different directions), multi-scale (important processes
happen at different spatial scales), and statistically unsteady process (fluctu-
ations occur around evolving mean values) [4, 2]. Currently, rich sources of
data exist, both from high energy laser laboratories and multiphysics simu-
lations spanning large ranges of scales. The systematic analysis of these data
is in high demand.

1.1 Analysis of Data

It is not enough to read out what our experimental instruments and simu-
lations tell us. It is important to perform synergistic analysis on multiple
experiments, simulations, and theories. In order to do this we must un-
derstand the relevant characteristic and invariant values, the effect of noise
on measurables, how to appropriately fit data, and the nature of informa-
tion available from experiments, simulations, and theory. While these data
analysis ideas are applicable generally, they are particularly important when
studying RTI/RMI. Physicists have been analyzing systems in stable equi-
librium for a long time; there are many well-developed tools for analyzing
stable problems. However, systems exhibiting RTI/RMI are manifestly un-
stable. This simple difference introduces many complications. To name a
few: perturbation methods must be applied carefully and are only applicable
for very short times; experiments are very sensitive to initial conditions; and
discretizing the system for simulations may alter the behavior at small scales.

Understanding the role of experiments, simulations, and theory

Scientific knowledge is advanced by the interplay between experiment and
theory. Especially for RTI/RMI in high energy density regimes, experimen-
tal design and development of simulations is given careful effort and many
resources [56, 57, 37, 82, 81]. Analysis of the data produced by these tech-
nological achievements is in demand. This thesis utilizes data sources from
experiments and simulations as well as theoretical tools to systematically
analyze RTI unstable flows. Such a synergistic study is required to advance
our understanding of RTI/RMI. In order to perform multifaceted analysis,
we must understand the relationships between experiments, simulations, and
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theory.
Experiments and simulations are both observations of a controlled sys-

tem, though each has unique advantages and disadvantages. In particular,
experiments have high fidelity but do not provide complete information while
simulations provide complete information but are not constrained by physi-
cal reality. Experimental results are physically true (although not necessarily
analyzed appropriately!), but simulations are only as accurate as the theories
used in the code.

Experimental results require appropriate interpretation. RTI/RMI ex-
periments may exhibit large variations in measurable quantities because of
inherent stochastic processes and the strong influence of initial conditions,
making it difficult to determine precise values. When analyzing simulated
data, one must ensure a lack of computational errors before evaluating the ac-
curacy of the equations and parameters used in the simulation. In RTI/RMI
simulations, numerical viscosity and surface tension may play important roles
at the interface between the two fluids and must not interfere with the natural
development of the instability.

Cautious synergistic analysis of experiments and simulations helps us un-
derstand the physical behavior of experiments with an expanded set of pa-
rameters because all the known quantities of simulations may be varied until
agreement with experimental measures is found. With the help of experi-
mental benchmarks, simulations help us infer immeasurable parameters or
results in immeasurable parameter ranges. Since RTI/RMI presents unique
challenges to theoretical, experimental, and numerical techniques, we must
be particularly cautious in our analysis. Using multiple approaches may act
as checks and balances to ensure our results are accurate. Due to the sensi-
tivity on initial conditions and the stochastic nature of late stage RTI/RMI
evolution, single experiments and simulations have less meaning than ag-
gregate results. This thesis analyzes data from multiple sources in order to
achieve a robust analysis (Chapters 3 through 5).

The use of characteristic and invariant values

It is important to look for invariant quantities in physical systems in order to
learn about the symmetries and underlying processes involved in the problem
[4, 2, 58, 26]. Invariant quantities determined by combinations of measurable
parameters can provide insight into the physical significance of the behavior
of a system. While individual measurements tell you about that particular
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physical quantity, invariant values tell you about the fundamental physics
behind the behavior. In RTI/RMI systems, it can be challenging to find
invariant quantities because most measurables are time dependent and sta-
tistically unsteady. Invariant quantities are identified and used to diagnose
the regime of a RTI system in Chapter 4.

When analyzing experimental data, it is important to obtain measure-
ments that are consistent with each other and that are comparable with
other studies in order to gain all of the individual advantages of experiments,
simulations, and theory as described above. This is particularly important in
data analysis of the RTI/RMI experiments, which occur over widely varying
parameter regimes and often have limited measurable quantities and/or lim-
ited resolution of data [Section 2.1]. In order to draw consistent conclusions
when comparing different data sets, measurements from separate sources
must be scaled by a single characteristic value. A good characteristic scaling
value should be robust, should depend on experimental parameters that are
easily controlled and accurately measurable, and should provide reasonable
values [58, 26]. Characteristic values are developed in Chapters 3 and 4 and
are used throughout this thesis.

A robust characteristic value works for a wide variety of situations. The
quantities that determine the characteristic value may vary between exper-
iments, however the characteristic value itself should remain similar across
the entire parameter regime. Ensuring robustness of the characteristic value
will allow us to make consistent statements about all of the data, without
exceptions. This is important to RTI/RMI analysis because the phenomenon
occurs on microscopic scales up to astronomical scales and in low and high
energy density regimes.

A characteristic value must be determined by parameters that are pre-
cisely controllable or accurately measurable. Ideally, a characteristic value
will not vary much for the same system with varying initial conditions. In
order to characterize the system, the values used must be well-known and
determined. For example, ionization in high energy density experiments of
RTI cannot be used in a characteristic value because it is not measurable
with current diagnostic technology. The wavelength of a laser is well known
and varies little between experiments, and thus would make a well controlled
characteristic value. In Chapter 3 we use the precision-machined target mass
and the well-controlled laser irradiance to determine a characteristic time
value.

Finally, a good characteristic scaling will provide reasonable values. This
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means that after your data is scaled, the values should be on the order of
unity. In the systems we analyze, a sinusoidal initial perturbation is used to
induce RTI/RMI in a controlled manner. We scale the perturbation ampli-
tude with the perturbation wavelength, using values from 0 to 1 wavelengths
rather than ∼ 10−6m. The characteristic value should be close to the same
order of magnitude as the values we are analyzing. Hence it characterizes
the scale of the values by being the same typical size and dimensions of the
values.

Understanding the effect of measurables

There are many sources of noise. Intrinsic stochastic quantities and experi-
mental precision can both contribute to noise in data. In addition, unstable
equilibrium problems like RTI/RMI are extra sensitive to initial conditions,
making measurables vary significantly unless the experimental set up is per-
fectly controlled. Since any infinitesimal perturbation will grow, a slightly
different perturbation may grow significantly differently. In this thesis we fo-
cus on intrinsically sensitive and stochastic quantities and leave the problem
of experimental precision in RTI/RMI to other studies.

Accounting for intrinsic stochastic quantities and sensitivity to initial
conditions is not a trivial task. Sometimes we may use previous knowledge
of the system to limit the stochasticity to one particular quantity, or we may
know information about the stochasticity such as the distribution or size of
the typical fluctuations. It is important to understand potential sources of
fluctuations when analyzing data in order to determine how big the tolerance
for discrepancies must be. Sensitivity to initial conditions is observed even in
state of the art experiments conducted at high powered laser facilities with
micro-machined targets. In order to understand RTI/RMI better, we must
look at a large quantity of data to improve the statistics and measure mean
values. In Chapter 3 we find new results by increasing the previously studied
data set by four or five times.

It can be difficult to distinguish different sources of noise experimentally,
especially if only one measurement or type of measurement is available. Here
simulations can be of service because they provide complete information of
the system. In this thesis we simulate multiplicative noise within a model de-
scribing RTI growth. Since all the quantities of the model are known (inputs
and solutions), we are able to make statements about which quantities are
affected by the stochasticity and we are able to characterize the fluctuations
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expected in measurable quantities (Chapter 4).

Fitting

Computers are capable of fitting almost any function to a dataset, however
computers are not always capable of making smart fitting decisions. There
are two important fitting practices relevant to this thesis: using appropriate
numbers of adjustable parameters and understanding the behavior of func-
tions with respect to the behavior of physical quantities. The number of
adjustable parameters should be small. With too many adjustable parame-
ters, one can fit any data set with precision without learning anything about
the data. For example, polynomials can approximate any function on a finite
interval with any chosen degree of accuracy if enough terms are used. Simpler
fits are generally better and one should not have more adjustable parameters
than well known (either controllable or precisely measurable) parameters. In
the RTI/RMI field, a commonly used model called the drag model has 7+
adjustable parameters [55, 34, 33]. While such a model may describe the
data, it does not provide fundamental information about the system.

By putting forethought into the functions used to fit, physically significant
fits are easier to obtain. For example, we often expect physical quantities to
have certain qualities like self-similarity, monotonic dependence, symmetry,
or to approach some particular value in a limit. By choosing a compatible
function with the same qualities, we can build these characteristics into the
fit. In this thesis many power law functions are used. This choice occurs
because many RTI/RMI flow quantities are known to be self-similar. One
must also be aware of the constraints that certain functions place on data
fits. For example, determining the exponent of a power law requires several
decades of data and/or data with a very fine resolution [58, 26]. This limits
the strength of statements we can make by fitting smaller, lower resolution
data sets. Significant analysis is made possible by careful, thoughtful fits in
Chapters 3 and 5.

1.2 Overview of this thesis

RTI/RMI presents a challenging area of study, despite being studied for
decades. In order to gain new insight we thoroughly analyze data and theory.
First, descriptions of the experimental (Section 2.1), theoretical (Section 2.2),
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and numerical (Section 2.2.2) methods are given, then the results from three
integrated analyses each using multiple methods are described (Chapters 3
through 5).

Experimentally we perform careful image analysis of laboratory supernova
experiments and discover what experiments may tell us about RT flow by
analyzing relevant theories and simulations (Chapter 3).

One simplified, yet robust theoretical model uses symmetries and the
conservation of momentum to describe Rayleigh-Taylor (RT) flow (Section
2.2.4). We extend this model by evaluating asymptotic solutions in new
regimes (Section 2.2.4), introducing stochasticity to the equations (Section
2.2.5), and we apply the model by fitting to data from laboratory supernova
experiments (Section 3.3).

Numerically, we employ a stochastic differential equation solver (Section
2.2.5) as well as a Lagrangian simulator called single particle hydrodynamics
(SPH) code (Section 2.2.2). The stochastic differential equation solver mod-
els thousands of trajectories over several decades using a momentum-based
model with multiplicative noise. SPH code simulates a shock wave interact-
ing with a fluid interface, modeling Richtmyer Meshkov Instability. A broad
parameter regime is investigated in both cases and results are compared with
experimental results and theoretical analysis (Chapters 4 and 5).

In Chapter 3 experimental results are compared with the momentum
model as well as some simulations commonly used in the field. Results from
the stochastic numerical code are analyzed with respect to the momentum
model in Chapter 4 with notes relating to the general status of experiments
in the field. Finally, a broad parameter regime is studied with SPH code and
compared with both linear theory and experimental results in Chapter 5.
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Chapter 2

Methods

2.1 Experimental Methods

2.1.1 Overview

While RTI occurs in everyday life, well controlled experiments can be chal-
lenging. Here we discuss what experiments have been attained by others in
the field with special attention for the experiments analyzed in this thesis.

RTI requires three “ingredients” to occur. This unstable equilibrium oc-
curs when there is an interface between two fluids, those fluids have different
densities, and an acceleration is applied to the system. The equilibrium po-
sition is a perfectly flat interface and any deviation away from equilibrium
will grow. The simplest example of RTI occurs when water spills out of an
overturned cup. Water and air are the two fluids of different densities and the
acceleration is applied by gravity. The instability grows due to perturbations
at the surface, which cause the interface to deviate from an ideally planar
surface. If paper is placed over the cup, then the interface remains flat and
the system remains in equilibrium.

In hydrodynamic RTI/RMI experiments, many challenges arise due to
the nature of the instability. Initial interfaces must be extremely well con-
trolled in order to study RTI/RMI seeded with a single mode initial pertur-
bation. Dynamics are strongly dependent on initial conditions- small changes
in the initial perturbation may lead to large differences in the dynamics. Ex-
perimentally, it is a challenge to achieve a sharp, well-controlled interface
[50, 100, 69].

Since RTI/RMI dynamics include compound motion of the bulk velocity
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plus the interface growth, experiments must be able to image the interface
as it is moving in order to study the interfacial dynamics. The bulk of-
ten moves quickly, requiring precision timing, especially in the high energy
density regime that requires nanosecond timing between images.

The primary use of experimental data in this thesis occurs in the high
energy density regime in Chapter 3. These experiments are described in
detail in the following section.

2.1.2 Experiments in the high energy density regime

Portions of this section are published in [94]
Experimentally measuring flow parameters of RTI/RMI in hydrodynamic
systems is a challenge because of the fast background motion of the system
and sensitivity to initial conditions. Experiments of RTI/RMI in high en-
ergy density plasmas (HEDP) is even more challenging. It is important to
study these systems in order to better understand supernova explosions and
implosions in inertial confinement fusion. Laboratory supernova experiments
have been conducted at high powered laser facilities by appropriately scaling
parameters contributing to the energy density [37, 82, 56, 57, 17]. In chap-
ter 3 we analyze data from these impressive experiments and compare with
simulations and theory. Here we describe the experimental methods.

Supernova experiments are designed to mimic the evolution of supernova
SN1987A at high powered laser facilities such as the Omega Laser Facility and
the National Ignition Facility in order to study the astronomical system in
a controlled environment [79]. SN1987A is a type II core-collapse supernova
and its progenitor star has a layered structure. During the star’s explosion, a
blast wave propagates from the center of the star outwards through the layers
of material with progressively decreasing density [102, 17]. The gradients of
the fields of pressure and density point in opposite directions in the star’s in-
terior, leading to RTI. The outer and inner stellar layers experience extensive
interfacial mixing and it is believed that during the supernova explosion, RT
mixing may provide special conditions for the generation of elements with
heavy atomic mass and thus may explain the abundance of these elements
in the universe [17].

A core-collapse supernova is characterized by high energy density [104].
The values of energy density are somewhat similar in the laser experiments
[79, 84, 22]. In addition, both supernova and laboratory hydrodynamics can
be regarded as self-similar and Eulerian at continuous scales because the
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effects of dissipation and diffusion are usually small, and so are the char-
acteristic scales on which dissipation and diffusion occur [4, 20, 51]. This
suggests that if the parameters are properly scaled, astrophysical processes
can be mimicked and studied in a well-controlled laboratory experiment at
high powered laser facilities [84]. Requirements for the systems to achieve
such hydrodynamic similarity include the need for collisional thermodynam-
ics accompanied by negligible heat conduction and radiation flux as well
as insignificant viscous dissipation. With these conditions in mind, exper-
iments are designed to investigate the interaction of a blast wave with a
helium-hydrogen interface in supernova SN1987A [37, 82, 81]. While in real-
istic laboratory environments the characteristic scales are small (∼ µm and
∼ ns), one may achieve the astrophysical values of energy density by varying
the power and time duration of the laser beam and the properties of the
target [36, 84, 79, 22].

For example, in supernova SN1987A at time ∼ 2000 s, the characteristic
values are estimated as ∼ 9 × 108 m for length, ∼ 2 × 105 m/s for velocity,
∼ 7.5 kg/m3 for density, and ∼ 3.5× 1012 Pa for pressure. In the first HEDP
laboratory experiments in Cu plasma at time ∼ 20 ns the corresponding
values are ∼ 5.3×10−5 m, ∼ 1.3×103 m/s, ∼ 4.2×103 kg/m3, and ∼ 6×1010 Pa
[79, 84]. According to the Braginski model, one can further evaluate the
Reynolds and Peclet numbers in supernova SN1987A to be Re ∼ 2.6× 1010

and Pe ∼ 2.6× 105 while in HEDP laboratory experiments, Re ∼ 1.9× 106

and Pe ∼ 1.8× 103 [84, 23]. These numbers are all large, implying that the
role of dissipation effects is small and occurs on small scales. Remarkably,
the Euler number is ∼ 0.29 in supernova SN1987A and ∼ 0.34 in laboratory
experiments. The Euler number is defined as the product of the velocity
and the square root of the ratio of the density and pressure. This suggests
that the Euler number (or the energy density) is the proper dimensionless
scaling parameter for imitating and studying the astrophysical phenomena in
laboratory experiments [79, 84]. High powered laser facilities are necessary
to achieve experiments with such parameters. Scrupulous analysis of the
invaluable experimental data is in demand.

The evolution of core-collapse SN1987A is believed to be driven by a blast
wave [102, 17]. Blast waves are induced by a large energy release in a small
volume over a short time [97, 86, 41]. With time, their length scale increases
and velocity scale decreases. In the case of a uniform compressible fluid, the
dynamics of blast waves are described by self-similar solutions [87, 19]. If a
blast wave is driven solely by energy transport, the solution belongs to so-
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called first-kind self-similarity [97, 86]. If a blast wave is driven by energy and
momentum transport (e.g. by an impact), then the solution belongs to the
so-called second-kind self-similarity [92, 41]. In the former case the scaling
law is set by the problem dimensionality according to whether the energy is
released by a point source, a line source, or a planar source. In the latter
case, the scaling law depends also on the load history and mass transport
at the times of the explosions [87]. The analysis of blast wave propagation
in a fluid with exponentially decaying density can be found in [87]. The
interaction of blast waves with non-uniform density fields and with density
discontinuities is a fundamental and, in many regards, an open problem.

Generation of shocks and blast waves with prescribed properties is an
experimental challenge in high powered laser facilities [79, 82, 81]. A common
approach is to use laser beams to concentrate a large amount of energy on a
small target in a short time [56, 57, 37]. As laser light starts to irradiate the
target surface, the outer part of the target material is ablated, and plasma is
created. The ablation pressure of this newly created plasma drives a shock
wave into the material. The shock strength is extremely high causing the
material to behave as a fluid, i.e. unionized and/or partially ionized plasma
[16]. Depending on the laser pulse duration as well as the material properties
and load history, two regimes are usually relized in experiments: a quasi-
steady shock wave for a ∼ 1 ns pulse and an ultra-short shock wave for
less than 10 ps laser pulse duration [32]. In supernova experiments, the first
regime is realized.

For studying RT mixing in supernova experiments, the target is composed
of a pair of two initially solid materials, such that the shock propagates from
the denser to the lighter fluid. At the fluid interface, the shock splits into a
transmitted shock and a centered reflected rarefaction wave thus accelerating
the flow [66, 64]. When the temporally uniform ∼ 1ns laser pulse ends,
the pressure supporting the initial shock ceases. At the same time, the
ablated plasma continues to expand creating a rarefaction wave [56, 57].
This rarefaction wave moves into the material in the same direction as the
initial shock and overtakes the shock reducing the flow velocity [37, 82, 81].
It is believed that the resulting dynamics of the fluid flow is similar to that
driven by a blast wave [56, 57].

In supernova experiments, due to complex processes induced by the laser
radiation, the acceleration is directed from the denser to the lighter fluid,
causing the development of RTI [56, 57]. In RT mixing flow, the velocities
are large and the Reynolds number is high [82]. While at such conditions
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Figure 2.1: Schematic of the laboratory supernova experiment. This illus-
tration shows a side view of the cylindrical experiment tube. The blast wave
moves from left to right.

canonical homogeneous turbulence is expected to occur, RT mixing exhibits
a significant degree of order [15, 3, 4, 89, 20, 51]. Particularly, it has been
observed that at late times when the initial perturbation amplitude increases
by ∼ 70 times its initial value, the structure of bubbles and spikes remains
coherent and its wavelength is set by the initial conditions [56, 57, 37, 82, 81].

Experimental setup

The schematic of supernova experiments is shown in Figure 2.1. The experi-
mental set up is described in detail in [56, 57, 37, 82, 81]. In the experiments
a strong laser beam irradiates an initially solid target with two layers of
different densities– dense plastic and light foam. The plastic and foam com-
ponents are encased in 915 µm polyimide tube that has 25 µm thick walls.
The foam piece is 2 − 4 mm of carbonized resorcinol formaldehyde (CRF)
foam with a density of 50 mg/cm3, and the plastic component is a 150 µm
polyimide (C22H10O5N2) with density of 1.41 g/cm3. In the center of the
plastic disk there is a strip of doped plastic that acts as a tracer because
it is highly opaque to the diagnostic x-rays. The purpose of the strip is to
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observe the dynamics at the center of the target free from a potential bias
that might be caused by interactions of the laser beam with the target edges.
The tracer strip directly abuts the foam layer. At the interface between the
materials, a three-dimensional seed perturbation is micro-machined into the
plastic piece. The perturbation is periodic in the plane and consists of either
a single wave or a superposition of two waves. The single mode perturbation
has a 71 µm wavelength and 5 µm peak-to-valley amplitude. The two-mode
patterns consist of waves with either 212 µm or 424µm wavelength mode
superimposed on the 71 µm wavelength pattern which are called small-two-
mode and large-two-mode respectively. Additionally, some experiments are
performed with a planar interface [56, 57].

The experiments are conducted at the Omega Laser Facility using mul-
tiple shots. In each shot, ten Omega laser beams irradiate the plastic layer
of the target. The energy of the 351 nm laser beam is ∼ 4.5 kJ , and the
variation in the laser energy is within 5% over multiple shots. Each laser
beam passes through a distributed phase plate to give the beam a smooth
super Gaussian profile with a full width half maximum diameter 820 µm
[56, 57, 37, 82, 81].

Experimental diagnostics

The main diagnostic of the experiment is x-ray radiography that uses point-
projection pinhole backlighting and images the experiment perpendicular to
the shock propagation, laser irradiance, and instability growth. An example
of an x-ray radiograph is shown in Figure 2.2. In this image, the shock is
moving from left to right and it can be seen as the dark curved area on the
right. The bright region to the right of the shock is un-shocked foam. The
region of alternating light and dark areas is the interface showing the mixing
of the plastic and foam materials. The plastic appears dark because it is
denser and doped with a material opaque to x-rays. This doped material
acts as linear tracers of the flow in space and time. The rarified plastic
material is to the left of the tracer strip edge. The dark portion on the
far left is dianostic shielding. For this specific experiment, the target has a
single-mode initial pertubation and is observed 21ns after the initial laser
pulse [56, 57, 37].

It is important to note that each experiment produces a single image.
Images are taken at different times to create a “collage” of the system, as
opposed to a “movie” of a single event. It has been assumed that these

22



Figure 2.2: Typical x-ray radiograph of an experiment with a single mode
interface; image is taken at 21ns. This image shows the experiment in the
same orientation as Figure 2.1.
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(a) An example of an image with clear
features.

(b) An example of a noisy, low contrast
image.

Figure 2.3: Two example radiograph images illustrating measurements and
image quality. The shock, bubbles, and spikes all propagate from left to right
and the dark grid used for pixel to meter conversion can be seen on the side
of the experiment tube. Small crosses mark position measurements analyzed
in Chapter 3.

separate snapshots taken of different experiments at different times may be
regarded as the time evolution of the same system. We presented quantitative
support for this assumption in reference [94] and Chapter 3.

Image processing

We analyze the experimental images by using the Interactive Data Language
(IDL) and ImageJ software package for image processing and analysis in
Java. As some images show features more clearly than others, we devise a
1-10 ranking system based on the feature clarity, giving better quality images
higher scores. Figure 2.3a shows an image with quality rank 9 and Figure
2.3b shows an image with quality rank 3. We confidently analyze 32 out of
the 67 available images, discarding images where features are not identifiable.

Two types of measurements are obtained from images: the radii of curva-
ture of the interface and the shock front, and the amplitude of the interface.
In all images, the shock front and the interface appear curved. We mea-
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sure this curvature by fitting a circle to 10 position measurements along
the feature. The radius of curvature of the interface is measured from the
spike envelope, or the positions of the edges of the spikes. The amplitude
of the interface is an important measurement in RTI/RMI. We measure it
by finding the length of the spikes. The amplitude of the interface is de-
termined by measuring the distance between the base and tip of the spikes.
We are able to measure spikes from images with high feature visibility. 83
spikes were measured from 11 images: 4 images from single mode targets,
3 from small-two-mode targets, and 5 from large-two-mode targets. All the
images analyzed for interface amplitude or spike length can be found in the
Appendix.

We apply two measurement techniques to observe the amplitude of the
interface: a computerized intensity profile method and visual inspection. Al-
though “visual inspection” may sound non-technical in comparison with the
computerized intensity profile method, we show that both measurement tech-
niques identify the same quantity. For high quality images, both methods
quantitatively measure the same feature. In low quality images the com-
puterized method is affected by noise while the human eye is an impressive
instrument that can still identify features of the interface. If an image is
very low quality and neither method reliably identifies the amplitude of the
interface, then it is eliminated from the data set.

The computerized intensity method measures the pixel intensities in the
x-ray image. The intensity profile along a spike is not clear enough to detect
features by itself so the pixel intensity along a spike is plotted with the
pixel intensity along the neighboring bubble, as in Figures 2.4a and 2.4b.
When comparing the bubble and spike intensity profiles, one can discern the
positions of the base and tip of the spike.

We measure the amplitude of the interface via visual inspection by using
the software ImageJ. Measurable images clearly show the spikes and bubbles,
whereas features in the flow bulk cannot be easily determined. To measure
the spike amplitudes, first the spike tip and base are identified. Then a
line is drawn along the length of the spike. This line acts as a guide so
that the measurement stays in the middle of the spike. To measure the tip
position, the cursor is placed over the line in the direction normal to shock
propagation (across the spike) and the tip of the spike in the direction of the
shock propagation (along the spike). The coordinates corresponding to the
cursor position from the ImageJ toolbar are recorded. To measure the base
position, coordinates are found for the intersection of the middle line of the
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(a) For a high quality image, the lines
representing intensity along a spike and
a neighboring bubble deviate∼ 150 pix-
els at the base of the spike. They com-
bine at ∼ 280 pixels at the tip of the
spike. The spike length is ∼ 130 pixels.

(b) Fluctuations are large and the bub-
ble and spike intensities do not deviate
noticeably for low quality images. In
this image, the spike is detectable by
visual inspection.

Figure 2.4: Examples of the pixel intensity method performed on high (a)
and low (b) quality images.

spike and the line connecting the tips of the two neighboring bubbles. These
measurements are analyzed in detail in Chapter 3.

Both the intensity profile method and the visual inspection method is
used on five spikes in the image from Figure 2.3a and the measurements
are compared. The average difference between the spike amplitude measure-
ments is only 6.4% of the spike amplitude. This small error confirms that
both methods are measuring the same feature. Either method appears to
be equally accurate for the highest quality images however the computerized
intensity profile method is more affected by noisy or grainy images. Figure
2.4a shows the small difference between the spikes and bubbles in one of the
clearest images while Figure 2.4b shows the same intensity measurements for
low contrast images. On the lower quality image it is not possible to discern
the spike and bubble by their pixel intensities. As many images have high
noise and low contrast, we chose to use the visual inspection method in order
to avoid additional errors from the noisy intensity profile method.

Each experiment includes a wire grid with cell spacing of 6.35× 10−5 m
placed next to the tube [55, 37, 82]. Measuring the grid spacing for each
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image allows the use physical units of m instead of pixels. For the images
used in calculations of the curvature and spike amplitude, the average grid
spacing is 55.8 pixels yielding an average conversion factor of 1.13× 10−6 m
per pixel. The standard deviation of the conversion factors is 3.90 pixels.
Although the spread of conversion factors is small, we calibrate each image
individually to avoid this variation.
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Figure 2.5: Schematic of the interface separating fluids of different densities
undergoing RT flow evolution [2]. The spikes of heavy fluid propagating
downwards correspond to the dark regions in Figure 2.3 while the bubbles of
light fluid propagating upwards correspond to light regions near the interface
in Figure 2.3.

2.2 Theoretical Methods

Portions of this section are published in [94]
In this chapter, we survey the theoretical and numerical approaches rel-

evant to Rayleigh-Taylor and Richtmyer Meshkov instabilities. An overview
of the field will be briefly discussed followed by a more in depth description
of the momentum model and the new regimes studied in this thesis. Detailed
description of theoretical methods used to study RTI and RMI can be found
in references [1, 2, 4, 5, 6, 7, 8, 9, 10, 3, 15].

2.2.1 Overview

As the RT/RM instability develops, bubbles of light fluid penetrate the heavy
fluid and spikes of heavy fluid penetrate the light fluid as demonstrated in
Figure 2.5 [4]. RT mixing is a mathematically challenging and intellectually
rich theoretical problem. One must account for many demanding require-
ments because the problem is mutli-scale, nonlinear, non-local, and statisti-
cally unsteady[1, 2, 4, 5, 6, 7, 8, 9, 10, 3, 15].

RTI dynamics may be described by the nonlinear, compressible Navier
Stokes or Euler equations with initial conditions and boundary equations

28



in the continuous matter approximation [58]. The equations describing the
conservation of mass and momentum are

ρ̇+∇ · ρv = 0, ρ(v̇ + (v · ∇)v − g) +∇p+ ... = 0 (2.1)

where ρ, v, and p are the density, velocity and pressure of the fluid, and
the dot indicates a partial time derivative. The unexpressed terms (“...”)
include surface tension, viscous stress and other effects which will not be
discussed here. Equation 2.1 is supplemented by the initial conditions and
boundary conditions for each individual system, as well as the equation for
energy transport and the equation of state for compressible fluids. Equations
of concentration transport must also be included for miscible fluids [58]. For
incompressible, immiscible fluids, the fluid interface is a discontinuity and
may be described by the use of the Heaviside step function, H:

ρ = ρhH(−θ) + ρlH(θ), v = vhH(−θ) + vlH(θ) (2.2)

where θ is a scalar function on the coordinates and time with θ = 0 corre-
sponding to the interface, ρh and vh are the density and velocity of the heavy
fluid in the region, θ < 0 and ρl and vl are the density and velocity of the
light fluid in the region, 0 < θ [2, 58]. If no mass flows across the interface,
then the pressure and the normal component of velocity are continuous at
the interface:

ph|θ=0 = pl|θ=0, vl · n|θ=0 = vh · n|θ=0 = −θ̇/|∇θ| (2.3)

where n = ∇θ/|∇θ|, the unit vector normal to the interface. For spatially
extended fluid systems the flow has no mass sources and can be periodic in
the plane normal (x, y) to the direction of gravity (z),

vh|z→+∞ = vl|z→−∞ = 0 (2.4)

The governing set of equations is closed with the addition of initial conditions
at the interface and boundaries of the domain [77, 30].

In RTI/RMI the system of equations is challenging to solve due to the
sharp density gradients, multiple physical processes, nonlinearity, multiple
scales, and the ill-posedness of the problem [4]. RT flow is characterized
by multiscale structures as well as extensive transports of mass, momentum,
and energy across scales [4, 78, 62, 85, 29, 99, 101, 53, 52, 76, 66, 75, 60, 44].
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The large scale dynamics of bubbles and spikes is characterized by two
length scales: the amplitude of the mixing zone or interface, h in the direction
of the acceleration (g) and the spatial period λ along the plane of the interface
[2]. λ, the horizontal scale is introduced by the initial perturbation and/or the
mode of fastest growth with wavelength ∼ (ν2/g)1/3, where ν is the kinematic
viscosity and g = |g|. The vertical scale is expected to have self-similar
growth in the mixing regime with h ∼ gt2, and it can be regarded as an
integral scale representing cumulative contributions of small-scale structures
produced by shear at the interface [4, 5, 8]. If the flow is two-dimensional
and the initial perturbation is broad-band and incoherent, then the horizontal
scale λ may grow with time [13].

Typically the governing equations are studied in three regimes: linear
growth, nonlinear growth, and mixing. For initial perturbations described by
a sine wave, the growth rate of the perturbation at small times can be calcu-
lated from linear theory. There are several approaches to solve the boundary
value problem in the case of nonzero viscosity and surface tension [54]. How-
ever, open problems still exist in the linear regime, for example RTI with time
dependent acceleration, broad band initial perturbation, and miscible fluids
[2]. Standard weakly nonlinear approaches, such as the Ginzburg-Landau
equations, do not apply to RTI/RMI. Overall, the core result of linear theo-
ries is the presence of a characteristic scale, which is determined by stabilizing
effects and can be determined by dimensional analysis [4, 2].

At large times, bubbles and spikes form coherent structures on large
scales. In this nonlinear regime, there are rigorous approaches for solving
the boundary value problem which account for symmetries and singularities
of the dynamics. These approaches originated in references [38, 48, 12] and
are reviewed in [2]. In the nonlinear theories, the core result is the multi-scale
character, in which both the horizontal and vertical scales contribute to the
dynamics.

At late times RT mixing insues due shear between the two fluids of dif-
ferent densities. Shear occurs on the sides of bubbles and spikes flowing past
each other and causes vortical structures on small scales. This regime has an
extensive history of study that includes interpolation models and turbulence
models. Neither method satisfactorily explains the complete set of data from
experiments and simulations. The momentum model was developed for the
constant acceleration case by accurately incorporating the results of and con-
necting to nonlinear theory [2], solving the governing equations of the fluid
motion. This phenomenological model accounts for fundamental properties
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of the governing equations such as symmetries and scale invariance. This mo-
mentum model also identified a new invariant value of the flow and showed
departure of RT mixing flow properties from canonical Kolmogorov turbu-
lence [51]. Success has been acheived by the momentum model in explaining
existing experimental and simulation results and reconciles the earlier inter-
polation and turbulence models, recreating their results for particular cases
[2].

2.2.2 Numerical Methods

Continuous Methods

Simulations of RTI/RMI provide valuable insight into experiments because
they are often able to consider multiple physics phenomenon and keep track
of many parameters and flow quantities. Simulations may provide valuable
insight into parameters that may be difficult to measure experimentally (Sec-
tion 1.1). Numerical methods used in the field are summarized and the two
methods used in this thesis, stochastic and SPH code, are described. Details
of the stochastic differential equation solver used can be found in references
[5, 6] and the details of the SPH code can be found in references [91, 90, 93].
In this chapter, we briefly describe simulations whose results are used in this
thesis, ranging from a simple numerical differential equation solver modeling
a noisy drag coefficient to a Lagrangian simulation of a shock wave interacting
with a fluid interface.

It is a challenge to model Rayleigh-Taylor and Richtmyer-Meshkov in-
stability because the phenomenon involves multiple scales, sharply changing
flow quantities, and is highly sensitive to initial conditions. It is an additional
challenge to model Richtmyer-Meshkov instability (RMI) in regimes relevant
to high energy density (HED) applications such as supernovae and inertial
confinement fusion. One may simplify the problem by neglecting multi-
physics effects, however the numerical simulation must still model shocks,
accurately account for dissipation processes, and track interfaces [91, 90, 31].
Additionally, since RM dynamics are described by power laws, the flow pa-
rameters must be diagnosed with high precision and accuracy in both space
and time and must span substantial dynamic range in order to identify the
power law exponent [15].

Despite the challenge, using RMI simulation data can be used to analyze
experimental results. To date, due to limitations of experimental diagnostics
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in supernova experiments, one cannot directly measure the parameters of
acceleration driven RTI and RT mixing. Numerical approaches are usually
applied to evaluate the acceleration time-dependence and provide bench-
marks for experiments [56, 57]. There are two continuous approaches typi-
cally used for modeling RTI/RMI. One possible approach is one dimensional
hydrodynamic simulations that describe the flow dynamics in the case of an
ideally planar interface with account for realistic properties of the fluids. The
other approach is a multi-dimensional hydrodynamic simulation describing
dynamics of ideal fluids separated by a realistic perturbed interface. Contin-
uous methods are usually applied in selected parameter regimes and require
extensive validation and verification. Small scales are not usually resolved in
continuous methods; they are better suited to simulating large scale dynam-
ics.

To model the flow dynamics in the case of realistic fluids separated by an
ideal unperturbed interface, one-dimensional radiation hydrodynamics code
Hyades can be applied [56, 57, 59]. This is a Lagrangian code that models
dynamics of a uniform three-temperature fluid. It has a multi-group flux-
limited diffusion radiation transport model and approximates the electron
heat transport by flux-limited diffusion. The multi-group radiation model
allows one to assign energy ranges to multiple photon groups. For each of
the photon groups, the opacity is calculated by using an average atomic
model. To relate the state variables, the so-called SESAME equations and
the state tables are employed. To model supernova experiments, the sim-
ulations are set up with the main target components, and the laser energy
deposition package is utilized. In the simulations, the nominal value of the
laser energy is reduced by ∼ 1/2 in order to account for the reduction in laser
energy absorption for the angled laser beams and the absence of lateral heat
transport. The laser energy is then calibrated using the experimental values
of the shock and the interface velocity [56, 57].

To model the flow dynamics in the case of ideal fluids separated by a real-
istic perturbed interface, the multi-dimensional hydrodynamic code FLASH
may be applied [56, 57]. This Eulerian finite-difference code is developed to
model multi-physics processes in astrophysical applications. The code nu-
merically solves the Euler equations for ideal fluids and applies a variety of
modules to capture various physical effects. The code has numerical dissi-
pation and diffusion and does not track the interface. The code employs an
adaptive mesh for accurate modeling and efficient computation. To model
supernova experiments by FLASH code, simulations are conducted of a two-
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dimensional Cartesian flow for the case of two ideal compressible fluids with
adiabatic index 1.4. Experimental parameters are used to scale the simula-
tions [56, 57]. Results from Hyades and FLASH codes are used to analyze
data from laboratory supernova experiments in Chapter 3.

Particle Methods

Particle methods have different strengths and weaknesses than continuous
methods. Particle methods excel at modeling small scales, although modeling
longer periods of time is computationally expensive. One successful technique
for numerically modeling strong-shock-driven RMI is a Lagragian approach
implemented in the Smooth Partical Hydrodynamics (SPH) code, and its
detailed description is found in references [91, 90, 93, 31]. Here we provide a
quick overview in this section and use the code in Chapter 5.

SPH represents a fluid via particles in a mesh-free numerical code. SPH
particles, which represent the continuous media, consist of mathematical
basis functions or kernels that move along the fluid flow. The kernels are
cubic B-spline functions resembling Gaussian wave packets. To make up
the fluid, the kernels overlap at a diameter equal to the Gaussian width.
The equations mathematically describing the SPH particles can be found
in reference [91]. These particles can be easily identified in space and time
and the contribution of the particle to the flow parameters can be properly
weighted. Thus, flow quantities can be summed over all particles in order to
compute the conservation of mass, momentum, and energy.

SPH code models fluid flow quantities of each particle including tem-
perature, density, pressure, position, and velocity. Additionally it tracks a
quantity called region, which marks particles of different species and tracks
material particles. Typically we define the heavy fluid, the bulk of the light
fluid, and the light fluid at the interface as three different regions. Examples
of these simulated quantities are shown in Figure 2.6. The particle den-
sity changes in the region plot in Figure 2.6, demonstrating the adaptive
particle size used to capture accurate dynamics while saving computational
resources. More, smaller particles are used at the interface where gradients
may be stronger and this is seen as darker colors on region plots.

SPH code has limitations, as does any numerical method. For example,
one must use artificial viscosity in order to prevent neighboring particles
from penetrating one another. Extreme parameter regimes, such as high
Mach number or large compressibility are impressively handled without issue,
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Figure 2.6: Four example plots generated from SPH code simulations of RMI
in a two-dimensional domain. In order from left to right, they show region,
temperature, density gradient and velocity curl.

although they require larger number of particles and long computational
times. In this work, the SPH code appropriately handles numerical problems
[93].

2.2.3 Modeling RTI with time dependent accelerations

RTI driven by blast waves and shock waves

In many cases, RTI may be driven by blast waves and shock waves. Theo-
retical description of these processes requires special consideration outside of
the scope of this thesis. Here we give a brief overview of important qualities.
More detailed description is found in references [97, 86, 87, 41, 19, 92, 64, 80,
4, 2, 15, 49, 34, 91, 45, 66].

Blast waves are induced by a large energy release in a small volume over
a short time [97, 86, 41]. With time the initial burst of energy spreads out;
the length scale increases and the velocity decreases. Generally these blast
and shock waves are unsteady and the associated acceleration experienced
by the fluid is time dependent. In the case of a uniform compressible fluid,
the dynamics of blast waves are described by self similar solutions [87, 19].
If a blast wave is driven solely by energy transport, the solution is classified
as self-similarity of the first kind [97, 86]. If a blast wave is driven by energy
and momentum transport (e.g. by an impact), then the solution has self
similarity of the second kind [92, 41]. In the former case, the scaling law is
set by the problem dimensionality according to whether the energy is released
by a point source, a line source, or a plane source. In the latter case, the
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scaling law depends on more complicated processes such as the load history
and mass transport at the times of the explosion [87].

The self-similar nature of flow parameters in blast wave driven-RTI mo-
tivates our use of power law accelerations in Sections 2.2.4, 3, and 4. The
interaction of blast waves with non-uniform density fields and with density
discontinuities is a fundamental and, in many regards, open problem that is
not addressed in this work.

Richtmyer-Meshkov Instability

Richtmyer-Meshkov instability develops when a steady shock wave is re-
fracted at the interface between fluids of different acoustic impedance (which
is proportional to density) [64, 80]. If the shock propagates through an ide-
ally planar interface from the light fluid to the heavy fluid, it splits into a
transmitted shock traveling through the heavy fluid and a reflected shock
traveling back through the light fluid [103]. For a planar interface, the bulk
of the fluids and the fluid interface move together with velocity v∞ after the
shock passage [91, 45, 66]. For initially perturbed interfaces then the inter-
face perturbation grows at a rate v0 on top of the background velocity, v∞
due to the impulsive acceleration from the shock (illustrated in Figure 5.1)
[64, 80]. The interface evolves into a coherent structure of bubbles and spikes
on large scales with the light fluid penetrating the heavy fluid in bubbles and
the heavy fluid penetrating the light fluid in spikes [4, 2]. Eventually the
bubbles and spikes decelerate after the linear and nonlinear growth. The
sides of bubbles and spikes experience shear, producing Kelvin-Helmholtz
instabilities on small scales leading to RM mixing. Hetergeneous anisotropic
RM mixing is a noisy process with properties distinct from those of canonical
turbulence [15, 49, 34].

In RM dynamics, the background motion velocity or velocity of the bulk,
v∞ is an important parameter (Sections 5.2 and 5.4.1). It can be calculated
precisely with zero-order theory by using the conservation of mass, momen-
tum, and energy, and the fluids’ equations of state [80]. For ideal gases,
the background motion is a function of the Mach number M of the shock,
the adiabatic indicies γ of the fluids, and the Atwood number A describing
the density contrast between the two fluids (A = (ρh−ρl)/(ρh+ρl)) where ρh is
the density of the heavy fluid and ρl is the density of the light fluid) [80].
Depending on the shock Mach number, the background motion may be sub-
sonic or supersonic. In terms of the speed of sound in the light fluid, cl, v∞
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is subsonic for weak shocks with M ∼ 1, v∞/cl ∼ 1 for moderate shocks with
M ∼ 3, and v∞ is supersonic for strong shocks with M � 1 [90, 91, 45].

RMI flow consists of this background motion v∞ in addition to the growth
of the interface, v0. This compound motion makes it challenging to reliably
diagnose the growth of the interface in experiments, since measurements must
be taken of a quickly moving region [69, 39]. Simulations however, are not
limited by the laboratory rest frame and may use a Galilean transformation
to study the interface without considering v∞ [49, 34, 24]. While this ability
to study RMI in a moving frame of reference makes it easy for us to study the
interface, it is still important to compare the simulated results to experiments
(Section 1.1).

The initial growth rate v0 is an important measure of RMI because it tells
us how the shock interacts and exchanges energy with the interface between
the two fluids. For ideal gases, the interface growth (v0) is a function of
M , γ, and A similar to v∞, and it also depends on the initial perturbation
wavelength, λ and amplitude, a0 when the initial interface can be described
by a single-mode sinusoidal pattern z∗ = a0 sin(kx) where the wavevector
k = 2π/λ, z is the coordinate of the interface in the direction along the shock
propagation, and x is the coordinate of the interface in the direction normal
to the shock [103].

The initial growth rate can be calculated precisely by linear theory when
the initial amplitude is very small (ka0 � 1). In this case, the initial growth
rate is a linear function of the initial amplitude, as v0 ∼ Mcl(ka0) [74, 103,
80]. When the initial amplitude is moderately small, but not very small
ka0 � 1, then v0(ka0) becomes nonlinear with v0 increasing with (ka0) slower
than linear. A correction factor to the linear initial growth rate has been
calculated [98, 74]. For values of (ka0) greater than 1, v0 may be even smaller
than the predictions of linear and weakly nonlinear theory [91, 39, 46].

At late times of RMI development (tv0/λ � 1), the incompressible ap-
proximation within group theory considerations theoretically describes the
dynamics of large scale coherent structures [2, 1, 9]. In the background
motion’s frame of reference (moving at v∞), there is no significant fluid mo-
tion away far from the interface at late times. The flow at and around the
interface is multi-scale, governed by the wavelength and amplitude of the
interface, and in the nonlinear stage the RMI bubbles flatten as they decel-
erate [90, 91, 45]. RM mixing develops at even later stages of RMI evolution
(tv0/λ→∞). Understanding all the features and dynamics of RM mixing are
in many regards, an open problem [15, 49, 66].
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In Chapter 5 we compare our empirical model fits of simulation results to
results of this theoretical framework. We are interested in understanding the
dependence of the initial velocity of the interface on initial conditions such as
amplitude of the initial perturbation and initial Mach and Atwood numbers.
By using the momentum model and particle simulations, we achieve new
results that substantially contribute to research in this field.

2.2.4 Momentum Model

Throughout this thesis we focus on the methods best suited to studying
the mixing regime in the case of unsteady accelerations. We analyze data,
obtaining as much information as possible from experimental data. We apply
the momentum model because of its success describing the RT mixing regime.
This phenomenological method analyzes symmetries and scaling properties
and is connected to nonlinear analysis based on the group theory approach
[15, 4, 2]. It employs novel theoretical concepts, such as invariance of the
rate of momentum loss, and successfully describes experimental results.

The analysis finds that an imbalance in the momentum is necessary for RT
mixing to accelerate, strong accelerations may lead to flow laminarization, RT
mixing can exhibit order, and RT mixing has a set of invariant measures [15,
4, 2]. This model identifies new fundamental properties of RT mixing that
can lead to better understanding and control of RT dynamics. In limiting
cases the momentum model reproduces the results of other interpolation and
turbulence models [11, 73, 34, 35, 40, 72, 21]. Here we expand the analysis
by investigating two regimes with distinct asymptotic solutions. Only brief
overview of the momentum model as it pertains to its use in this thesis is
provided. More detailed information is discussed in references [1, 2, 4, 5, 6,
7, 8, 9, 10, 3, 15]

RT mixing in supernova explosions and inertial confinement fusion is
driven by a blast wave [102, 17]. The hydrodynamics of blast waves in in-
compressible fluids is described by self-similar solutions [87, 19]. The scaling
law can depend on the load history and mass transport or the problem di-
mensionality, depending on how the energy is deposited [97, 86, 92, 41].
Considering these two important applications of RT mixing and wanting the
solutions to remain generally applicable, we use accelerations in the form of
power laws.
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Overview

Unlike Kolmogorov turbulence, RT mixing does not have an invariant energy
dissipation rate; energy may not characterize the flow in RT mixing as well
as momentum [4]. In RT flows, the transport of momentum can be found
from the spatial distribution of the velocity and density fields [2]. We apply
theoretical analysis considering symmetries and momentum transport in RT
flow to analyze the dynamics in the case of time-dependent acceleration [4,
3, 2, 10, 8]. We describe RT flows by balancing the rates of gain and loss of
specific momentum. The dynamics of a small parcel of fluid undergoing RT
mixing is governed by the rate of momentum gain per unit mass, µ̃ balanced
with the rate of momentum loss per unit mass, µ. The basic governing
equations are

ḣ = v, v̇ = µ̃− µ (2.5)

where h is the vertical length scale (i.e. amplitude, the vertical size of
the right side of Figure 2.5), v is the corresponding velocity, µ̃ and µ are the
magnitudes of the momentum loss and gain in the vertical direction (along
the acceleration g), and dot indicates a partial time derivative. On the basis
of dimensional analysis, the rates of specific momentum gain and loss can be
rewritten in terms of the rates of gain and loss of specific energy, ε̃ and ε as
µ̃ = ε̃/v and µ = ε/v [4, 3, 2, 10, 8]. Equation 2.5 is a simplified, dimensional
model of the system of equations 2.1-2.4 which represents the conservation of
mass and momentum [2]. Further consideration of symmetries and invariants
of RT dynamics is discussed in references [15, 4, 8].

One can find asymptotic solutions for Equation 2.5 and investigate the
properties of RT mixing by considering µ̃ = gf (where factor f depends on
the density ratio and g = ‖g‖ is rescaled hereafter as gf → g), and by using
ε = Cv3/L for the drag term, where L is the characteristic length scale for
energy dissipation and C is a finite constant representing the drag coeffi-
cient. Equation 2.5 is analogous to Equation 2.1, where ḣ = v is an analog
of the conservation of mass and v̇ = µ̃−µ is an analog of the conservation of
momentum. This becomes apparent when ∇ is considered as ∼ 1/length. Eval-
uation of order and scaling in RT mixing flow is made possible by considering
invariants and symmetries in the problem [15, 3]. Throughout this thesis, we
analyze dimensionless asymptotic solutions for t/t0 � 1 and h/h0 � 1 where
t0 is the characteristic time scale and h0 is some initial value with an initial
velocity v0 ∼ h0/t0.
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Generally the acceleration, g, can be constant or time dependent. The
case of constant acceleration has been studied previously both with and with-
out accounting for turbulent diffusion [8]. In this work, we focus on the time
dependent case. In particular we consider g(t) as a power law in time in
order for our results to be applicable to experiments relating to inertial con-
finement fusion and supernova explosions which are driven by blast waves
and therefore have accelerations with power law time dependence.

We analyze asymptotic solutions for acceleration with power law time
dependence, g = g(t) = Ata, where parameter A is a positive constant and
its dimensions are [A] = m/s(2+a). The characteristic length scale for energy
dissipation can be vertical (L ∼ h, the amplitude), horizontal (L ∼ λ, the
wavelength), or a combinations of these two scales. If the characteristic scale
for energy dissipation is a combination of scales, (L ∼ tβ, where 0 < β < b),
or if the characteristic length scale for energy dissipation is horizontal (L ∼ λ,
λ = constant) then a dominant asymptotic solution with power-law time
dependence can be found for certain ranges of the acceleration exponent, a.
We look at asymptotic solutions of the form h = Btb. For physical relevance,
we impose the conditions B > 0 and b > 0 to ensure that the interface
amplitude and the growth of the interface are positive.

Analysis of the asymptotic solutions for Equation 2.5 allows one to con-
sider possible mechanisms of transition from nonlinear to mixing regime in
RT flows by comparing the cases of L ∼ λ and L ∼ h [Tables 2.2 and 2.3].
In the case of time dependent acceleration with g(t) = Ata, a transition
may occur (similar to the case of constant acceleration) from the nonlinear
to the mixing regime with the horizontal scale increasing with time [4, 8].
This phenomenon, sometimes called bubble merger, is considered by some to
be necessary for the development of RT mixing and growth of the interface.
However, the growth of the horizontal scale, while possible, is not a necessary
condition for RT mixing to develop. Similar to the case of constant accelera-
tion, RT mixing develops due to an imbalance of the rates of gain and loss of
specific momentum in the case of time dependent acceleration and a vertical
scale being the characteristic scale for energy dissipation [15, 4, 8].

In Equation 2.5, if the characteristic scale for energy dissipation is a
combination of scales, and it is a power law function of time with L ∼ tβ,
where 0 < β < b, then dominant asymptotic solution with power law time
dependence, h = Btb has exponent b = a + 2 for 0 < β < (a+2)/2, and
b = β + (a+2)/2 for β > (a+2)/2 and a > −2. The asymptotic solutions for the
combination case are summarized in Table 2.1.
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Figure 2.7: Diagram of mixing regime. The dissipation dominated mixing
regime (red) is analogous to RM-type mixing while the acceleration domi-
nated mixing regime (blue) is analogous to RT-type mixing

If the characteristic length scale for energy dissipation in Equation 2.5 is
horizontal, L ∼ λ, and λ is a constant, then for the acceleration exponent, a >
−2 the asymptotic solution has the form h = Btb with exponent b = (a+2)/2

and prefactor B =
√

Aλ
C((a+2))/2)2

. When the exponent a = −2 the asymptotic

solution is logarithmic in time, h ∼ λ ln(t/t0). For the acceleration exponent
below -2, no power law asymptotic solutions h = Btb exist with B, b > 0.
We call the regime when L ∼ λ the nonlinear regime, by analogy with RTI
with constant and impulsive accelerations. The asymptotic solutions for the
nonlinear regime are summarized in Table 2.2.

In this work we focus our discussion on the mixing regime. We summarize
and expand upon previous studies of the L = h case, analyzing larger ranges
of the acceleration exponent and describing two different regimes.

Asymptotic solutions of the form h = Btb can be obtained when the char-
acteristic length scale for energy dissipation is L ∼ h, the amplitude. The
exponent b and the prefactor B are identified from Equation 2.5 and have
dimensions [b] = 1 and [B] = m/sb. Depending on the value of the acceler-
ation exponent different solutions exist. A critical value of the acceleration
exponent divides the solutions into two regimes as illustrated in Figure 2.7.
By analogy with the constant acceleration case, the regime corresponding to
the range of a values above the critical value is called acceleration dominated
mixing. In acceleration dominated mixing, the acceleration, g is significant
and contributes to the dynamics. The regime corresponding to a values below
the critical value is called dissipation dominated mixing as the dissipation
or drag term plays a more significant role. If the acceleration exponent a is
in the range a < −2, then no power-law asymptotic solutions h = Btb with
B > 0 and b > 0 exist. The various asymptotic solutions for each regime are
summarized in Table 2.3.
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Range of a Range of β Solution for h
−2 < a 0 < β < (a+2)/2 h = Btb with b = a+ 2
−2 < a β > (a+2)/2 h = Btb with b = β + (a+2)/2

Table 2.1: Asymptotic solutions of the momentum model for the combination
case, L ∼ tβ.

Range of a Solution for h

−2 < a h = Btb with b = 1 + a/2 and B =
√

Aλ
C(1+a/2)2

a = −2 h ∼ λln(t/τ)

Table 2.2: Asymptotic solutions of the momentum model for the nonlinear
regime, L = λ.

Range of a Solution for b Solution for B Sign of v̇
−1 < a b = a+ 2 B = A/(a+2)((a+1)+C(a+2)) v̇ > 0

acritical < a < −1 b = a+ 2 B = A/(a+2)((a+1)+C(a+2)) v̇ < 0
−2 < a < acritical b = (1 + C)−1 B > 0 v̇ < 0

Table 2.3: Asymptotic solutions of the momentum model for the mixing
regime, L = h. Note that acritical = −2 + (1 + C)−1.
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Acceleration dominated mixing

If the acceleration g(t) = Ata has the exponent a > −2 + (1 + C)−1, then
the dominant asymptotic solution has exponent b = a+ 2 and prefactor B =
A/[(a+2)((a+1)+C(a+2))]. It is important to note that depending on the value of
a within this range, the effective acceleration of the interface can be positive
(v̇ > 0 for a > −1) or negative (v̇ < 0 for −2 + (1 + C)−1 < a < −1). Also
note that while the prefactor has some dependence on the drag coefficient,
the exponent only depends on the acceleration exponent. According to the
theory, the exponent of the power law describing the interface should be a
constant.

This subregime also contains the special case of a steady state solution.
When a = −1, the time derivative of the interface amplitude is a constant
and v̇ = 0. This steady state case is analogous to the L ∼ λ, constant
acceleration case, in which nonlinear RTI grows as h ∼ t

√
gλ with constant

velocity [4, 97]. The rates of momentum gain and loss is necessarily balanced
in order for v̇ = 0. In Section 4.2.6 we use the steady state solution in
the mixing regime to study stochastic effects with minimal time dependent
dynamics.

Dissipation dominated mixing

If the acceleration exponent a is in the interval −2 < a < −2 + (1 + C)−1,
then the dominant asymptotic solution has exponent b = (1 + C)−1 and
the prefactor is a positive free parameter. We call this regime dissipation
dominated mixing. The acceleration of the interface is negative for all the
acceleration exponents in the dissipation dominated mixing regime (v̇ < 0
for −2 < a < −2 + (1 +C)−1). It is important to note that the exponent de-
pends on C and is independent of a unlike the acceleration dominated mixing
regime. Note that the prefactor is only determined by initial conditions and
we are unable to control it or compare it with flow quantities.

2.2.5 Stochastic Model

Detailed discussion about stochasticity in RTI and RT mixing can be found in
references [2, 5, 6]. RT mixing is a turbulent phenomenon whose dissipation
process has a random character [5, 6]. To study stochastic effects in RT
mixing in Chapter 4, the momentum model is extended by modeling the drag
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coefficient as a stochastic quantity. In particular, the drag coefficient, C is a
stochastic quantity, leading to a fluctuating rate of momentum loss. To model
this, we must use a stochastic differential equation in addition to Equation
2.5 and the equations must be expressed in differential form. Equation 2.5
is rewritten in differential form and appended by a third equation describing
the evolution of the drag coefficient. The set of equations governing RT
mixing with a stochastic dissipation process is

dh = vdt, dv = gdt − Cv2

h
dt,

dC = −C ln

(
C

〈C〉
− σ2

2

)
dt

τC
+ σC

√
2

τC
dW (2.6)

where 〈C〉 is the average value of C, σ is the standard deviation of C, τC is the
characteristic time scale of dissipation, and dW is the standard Wiener pro-
cess. C is a stochastic process that is, in general, time dependent. The drag
coefficient is described with a log normal distribution plus a standard Wiener
process. A log normal distribution was chosen because RT mixing fluctua-
tions are known to have long-tail distributions [5, 6]. We use a log normal

distribution which is asymmetric: 〈C〉 6= Cmax with values 〈C〉 = C0e
−σ2/2

and Cmax = C0e
−σ2

. A characteristic time scale τC describes how quickly the
distribution of C approaches a stationary probability density function (the
Wiener process). The probability density function is characterized by the
mean value, 〈C〉, the largest value, Cmax, and the standard deviation, σ. In
this study, we use σ = 0.5〈C〉 for all cases.

Examples of the simulated time evolution of C are seen in Figure 2.8. To
study the system described by the momentum model with time-dependent
accelerations, we numerically solve the set of differential equations shown in
Equation 2.6 using a numerical differential equation solver with multiplica-
tive noise in C++. A power law acceleration is assumed and then information
about the time evolution of the drag coefficient, the amplitude of the inter-
face, and the velocity of the interface are obtained for various values of the
acceleration exponent. In order to accurately determine the power law so-
lutions we model 1000 trajectories over six decades of time for each set of
parameters. The modeled values of the acceleration and drag coefficient are
output as diagnostics and the solution for the amplitude of the interface and
its growth rate are output for analysis.

Detailed discussion of the model and code overviewed in this section can
be found in references [5, 6]. Using a numerical differential equation solver
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Figure 2.8: Stochastically modeled time evolution of C(t) normalized by its
average value, 〈C〉.

with multiplicative noise in C++, we numerically solve the governing equa-
tions with the acceleration modeled as a power law and the drag coefficient
modeled as a statistical process with a lognormal distribution [5, 6]. In order
to accurately determine the power law solutions we model 1000 trajectories
over six decades of time for each set of parameters. The modeled values of
the acceleration and drag coefficient are output as diagnostics and the so-
lution for the amplitude of the interface and its growth rate are output for
analysis.

The stochastic code models Equation 2.6 for nv trajectories. At each time
step, it outputs the drag coefficient C, the interface amplitude h, and its time
derivative v, each averaged over all modeled trajectories. In this work, power
law accelerations of the form g(t) = Ata are simulated.

The time range t, total number of time steps Nt, acceleration exponent
a, mean drag coefficient 〈C〉, and number of trajectories nv are adjustable
inputs. Typically in this thesis we use a time range of t = 105 or 106 seconds
and Nt = t × 103 time steps. The number of trajectories is nv = 103, with
the exception of Section 4.2.6 which analyzes the stochastic model data for
nv = 1. The acceleration exponent is varied from a = −2 to a = 0.
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Chapter 3

Data analysis of laboratory
supernova experiments

Portions of this chapter are published in [94]

3.1 Introduction

RTI plays an important role in the study of high energy density plasmas
(HEDP) in inertial confinement fusion and supernova explosions. These phe-
nomena present a challenging topic of study because material dynamics are
characterized by high energy density, sharply and rapidly changing flow fields,
and small effect of dissipation and diffusion; in these instances RTI presents
in a very fast and strong system. Here, we report a thorough analysis of ex-
perimental data in supernova experiments conducted at high powered laser
facilities [56, 57, 37, 82, 81]. We evaluate what information experiments and
simulations may tell us about the fundamentals of RTI and RT mixing in
HEDP by comparing the data with rigorous theoretical approaches.

Supernova experiments are designed to mimic the evolution of supernova
SN1987A at high powered laser facilities such as the Omega Laser Facility and
the National Ignition Facility in order to study the astronomical system in
a controlled environment [79]. SN1987A is a type II core-collapse supernova
and its progenitor star has a layered structure. During the star’s explosion,
a blast wave propagates from the center of the star outwards through layers
of material with progressively decreasing density [102, 17]. The gradients of
the pressure and density fields point in opposite directions in the star’s inte-
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rior, leading to RTI. The outer and inner stellar layers experience extensive
interfacial mixing and it is believed that during the supernova explosion, RT
mixing may provide special conditions for the generation of elements with
heavy atomic mass and thus may explain the abundance of these elements
in the universe [17].

A core-collapse supernova is characterized by high energy density [104].
The values of energy density are somewhat similar in the laser experiments
[79, 84, 22]. In addition, both supernova and laboratory hydrodynamics can
be regarded as self-similar and Eulerian at continuous scales because the
effects of dissipation and diffusion are usually small, and so are the char-
acteristic scales on which dissipation and diffusion occur [71, 20, 51]. This
suggests that if the parameters are properly scaled, astrophysical processes
can be mimicked and studied in a well-controlled laboratory experiment at
high powered laser facilities [84]. Requirements for the systems to achieve
such hydrodynamic similarity include the need for collisional thermodynam-
ics accompanied by negligible heat conduction and radiation flux as well
as insignificant viscous dissipation. With these conditions in mind, exper-
iments are designed to investigate the interaction of a blast wave with a
helium-hydrogen interface in supernova SN1987A [37, 82, 81]. While in real-
istic laboratory environments the characteristic scales are small (∼ µm and
∼ ns), one may achieve the astrophysical values of energy density by varying
the power and time duration of the laser beam and the properties of the
target [36, 84, 79, 22].

For example, in supernova SN1987A at time ∼ 2000 s, the characteristic
values are estimated as ∼ 9 × 108 m for length, ∼ 2 × 105 m/s for velocity,
∼ 7.5 kg/m3 for density, and ∼ 3.5× 1012 Pa for pressure. In the first HEDP
laboratory experiments in Cu plasma at time ∼ 20 ns the corresponding
values are ∼ 5.3×10−5 m, ∼ 1.3×103 m/s, ∼ 4.2×103 kg/m3, and ∼ 6×1010 Pa
[79, 84]. According to the Braginski model, one can further evaluate the
Reynolds and Peclet numbers in supernova SN1987A to be Re ∼ 2.6× 1010

and Pe ∼ 2.6× 105 while in HEDP laboratory experiments, Re ∼ 1.9× 106

and Pe ∼ 1.8 × 103 [84, 23]. Remarkably, the Euler number is ∼ 0.29
in supernova SN1987A and ∼ 0.34 in laboratory experiments. The Euler
number is defined as the product of the velocity and the square root of the
ratio of the density and pressure. This suggests that the Euler number (or the
energy density) is the proper dimensionless scaling parameter for imitating
and studying the astrophysical phenomena in laboratory experiments [79, 84].
High powered laser facilities are necessary to achieve experiments with such
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parameters. Scrupulous analysis of the invaluable experimental data is in
demand.

The evolution of core-collapse SN1987A is believed to be driven by a blast
wave [102, 17]. Blast waves are induced by a large energy release in a small
volume over a short time [97, 86, 41]. Blast wave solutions are self similar
and may be described by power laws. It is an experimental challenge to
generate shocks and blast wave with prescribed properties in high powered
laser facilities [79, 82, 81]. The laser beams concentrate a large amount of
energy onto a small target in a short amount of time [56, 57, 37], causeing a
large energy release in a small volume over a short time. The laser irradiation
ablates the outer part of the target and plasma is created, also creating a
blast wave due to the ablation pressure. More details of how blast waves
are created in laboratory supernova experiments is provided in Section 2.2.3.
It is believed that the resulting dynamics of the fluid flow is similar to that
driven by a blast wave [56, 57].

In supernova experiments, due to complex processes induced by the laser
radiation, the acceleration is directed from the denser to the lighter fluid,
causing the development of RTI [56, 57]. In RT mixing flow, the velocities
are large and the Reynolds number is high [82]. While at such conditions
canonical homogeneous turbulence is expected to occur, RT mixing exhibits
a significant degree of order [15, 71, 4, 89, 20, 51]. Particularly, it has been
observed that at late times when the initial perturbation amplitude increases
by ∼ 70 times its initial value, the structure of bubbles and spikes remains
coherent and its wavelength is set by the initial conditions [56, 57, 37, 82, 81].

The ordered character of RT mixing has been discovered within the frame-
work of rigorous theoretical analysis considering symmetries and momentum
transport in RT flow [71, 4, 2], Section 2.2.4. The analysis finds that RT
mixing has a new set of invariants leading to stronger correlations, steeper
spectra, and weaker fluctuations when compared to canonical turbulence
[15, 71, 4, 8]. In addition to explaining experiments in plasmas, the analysis
has also agreed with experiments in fluids suggesting that a strong accelera-
tion may laminarize the flow [88, 67, 65, 68, 70, 96].

In this work, we further investigate what experiments may tell us about
the fundamentals of RT dynamics in high energy density regime by con-
ducting scrupulous data analysis of supernova experiments. Previous data
studies in these systems involved measurements of some single selected spikes
[56, 57]. Herein, we analyze all viable structures in all available experimental
x-ray images of the flow that are taken at late stages of RT mixing evolution.
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We process the experimental images by using visual and computerized im-
ages techniques, and by measuring delicate features of the interface in order
to determine the curvature and amplitude of the interface. A new scaling
is identified for calibration of experimental data to enable accurate analysis
and comparisons. The curvature of the interface (which is observed in all
images) is shown to remain constant (within the noise level), which allows us
to expand the data set size and statistics. New theoretical solutions are re-
ported to describe asymptotic dynamics of RT mixing with time-dependent
acceleration. The data are in good quantitative agreement with the theo-
retical analysis. Our results enable the development of new approaches for
the rational design of experiments and simulations of RTI and RT mixing in
HEDP.

The experimental set up and diagnostic methods of laboratory supernova
experiments are described in Section 2.1.2. An overview of the numerical
methods discussed here is given in Section 2.2.2 and theoretical details are
shown in Section 2.2.4. The results of the Hyades and FLASH numerical
simulations are discussed in detail in [56, 57]. For the purposes of this chapter,
the simulations provide the exponents of the power-law functions of time of
the interface position and the acceleration. According to Hyades simulations,
when considering the same time interval as the experiments, the positon
of the planar interface can be described as a power law function of time
with exponent 0.6. According to FLASH simulations, the acceleration in the
hydrodynamic system can be described as a power law funtion of time with
exponent −1.1 during the time interval of the experiments [56, 57].

3.2 Experimental results

3.2.1 Scaling of experimental measurements

When analyzing experimental data, it is important to obtain measurements
that are consistent with each other and that are comparable with other stud-
ies. It is particularly important in data analysis of the supernova experi-
ments, which record a collage of images of different events as opposed to a
movie of a single event [Section 2.1.2]. In order to draw consistent conclu-
sions, measurements from these separate images must be scaled by a single
characteristic value. A good characteristic scaling must be robust, must de-
pend on experimental parameters that are easily controlled and accurately
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measurable, and must provide reasonable values, Section 1.1 [58, 26].
Supernova experiments result from the interplay of complex physical pro-

cesses at extreme conditions of high energy density. The outcome of these
experiments is represented by x-ray images whose analysis yields the linear
tracers of the flow in space and time. To analyze the data, a time-scale and
a length-scale of the hydrodynamic system should be identified.

Traditionally, data in supernova experiments are presented in SI units be-
cause the standard calibration values are time-dependent and are not directly
diagnosed. It is a challenge to find a time scaling when the measurable pa-
rameters with time units are also time-dependent. Even though no quantities
with time units are constant in supernova experiments, we obtain a charac-
teristic time scale in the hydrodynamic system by applying the well-known
initial conditions and experimental parameters with low fluctuations.

In supernova experiments, the laser energy is E0 ∼ 4.5 kJ , the diameter
of the laser spot is ∼ 8.2 × 10−4 m, and the laser shot duration time is
∼ 1×10−9 s. This produces a laser irradiance the target (the laser energy per
unit time that is deposited to the target per unit area) of I0 ∼ 8.5×1018 W/m2,
Table 3.1. This value is well known and fluctuates less than 5% across all
experiments. The other well-controlled experimental quantity is the total
mass of the plastic piece of the target. The plastic piece of the target is
a disk with density 1.41 kg/m3, a diameter of 9.05 × 10−4 m and a width
of 1.50 × 10−4 m. The volume and the density provide the total mass of
m ∼ 1.36×10−7 kg, and this value varies by 1% or less between experiments.
The combination of the total mass divided by the laser irradiance raised to
the power 1/3 provides units of seconds, as τ = (m/I0)

1/3. The characteristic
time τ given by this combination is τ = 2.74 ns. Remarkably, the overall
run time T in the experiment is usually 2.5 × 10−8 s leading to T/τ ≈ 9.2.
Therefore, the time scale τ is robust; it varies very little between experiments.
It depends on easily controlled parameters; the laser power is well known and
the targets are precision machined. It provides a reasonable value; it is the
same order of magnitude as the measurements. This new time scaling meets
the criteria for a good characteristic value [Section 1.1].

In our data analysis study, all position or distance measurements are
scaled by the perturbation wavelength λ = 71µm = 7.1 × 10−5 m. The
perturbation wavelength is a standard scaling which also fits the criteria of
being robust, controlled, and a reasonable value [Section 1.1].

To further justify the use of (λ, τ)-based scaling for data analysis, to
reveal the presence of acceleration in the fluid system, and to determine
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Quantity Expression Value
Laser energy E0 4.5 kJ
Laser irradiance I0 8.5× 1018 W/m2

Target mass m 1.36× 10−7 kg
Length λ 7.1× 10−5 m
Time τ = (m/I0)

1/3 2.73× 10−9 s
Acceleration λ/τ2 9.5× 1012 m/s2

Specific kinetic energy (λ/τ)2 6.7× 108 J/kg
Specific total energy E0/m 2.59× 1010 J/kg
Energy ratio (λ/τ)2/(E0/m) 1.36× 10−7 kg

Table 3.1: Scaling parameters and characteristic values of quantities of RT
dynamics based on τ and λ, the characteristic scales in experiments [94].

possible length scale for energy dissipation in RT mixing flow, we perform a
coarse comparison of the overall run-time of the experiments T/τ ∼ 9.15 to
the overall growth of the amplitude H/a0 ∼ 70 and H/λ ∼ 5, where H is the
“final” amplitude of the interface, and a0 = 5µm is the peak-to-valley initial
perturbation amplitude. This comparison suggests that (H/a0) ∼ (T/τ)1.9

and H/λ ∼ (T/τ)0.72 implying that in supernova experiments the (λ, τ)-based
scaling is reasonable, the RT flow may indeed accelerate, and the amplitude
may serve as a scale for energy dissipation.

Table 3.1 gives the values of the scaling parameters and the charac-
teristic values they produce. This scaling is presented for the first time,
to the author’s knowledge. In particular, this scaling allows us to eval-
uate in supernova experiments the characteristic value of acceleration as
λ/τ2 ∼ 9.5×1012 m/s2, and the specific kinetic energy as (λ/τ)2 ∼ 6.7×108 J/kg.
By combining these values with the value of the Reynolds number Re ∼ 106

[79], we evaluate the acceleration-set viscous scale of RT mixing dynamics as
∼ λRe−2/3 and λRe−2/3 ∼ 10−8 m [71, 26], which is substantially smaller than
the length scale λ.
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3.2.2 Curvature of the shock front and interface enve-
lope

In images from supernova experiments, all of the shock fronts and the inter-
face envelopes qualitatively appear to be curved [56, 57, 37, 82, 81]. The cause
of this curvature is unknown. Possible causes may include three-dimensional
departures of shocks and rarefaction waves from their ideal planar shape,
strong coupling of scales in RT mixing flow, and the imprint of the experi-
mental conditions such as the laser intensity profile.

While the curvature of shock fronts and interface envelopes is a common
phenomenon in HEDP experiments, to date, no systematic studies of the phe-
nomenon are conducted. Reliable quantification of the curvature dependence
on the parameters of HEDP experiments requires in-depth understanding of
such fundamental and challenging problems as light-material interaction at
microscopic scales, interaction of plasma flow with boundaries at meso-scales,
and interaction of shocks and rarefaction waves with non-uniform flow fields
and the effect of the finite size of the target at macroscopic scales. In this
work, as is required by the scientific method, we undertake the first step to
understand the phenomenon: we measure it.

The details of the curvature measurement are given in Section 2.1.2. We
measure the radius of curvature of the shock front as well as the interface
envelope. We further look at the effects of time and different target types
(planar, single mode, and two modes) on the radii of curvature. Experimental
images from four time steps (13, 17, 21, and 25 ns) and four target types
(planar, single mode, small-two-mode, and large-two-mode) are analyzed.
Figure 3.1a represents the overall time evolution by taking averages over
target type. Figure 3.1b represents the effect of target type by taking averages
over time. It is remarkable that while in some cases the error bar can be
substantial, the curvatures across both plots are essentially constant. This
is true for both spike and shock curvatures. The mean value of the radius
of curvature R for spikes is (R/λ) ∼ 10.3 with (R 2π/λ) ∼ 64.7 and for shocks
is (R/λ) ∼ 14.4 with (R 2π/λ) ∼ 90.5. According to the experimental data
the radius of curvature neither increases nor decreases, suggesting that the
curvature may be an imprint of the experimental conditions.

Several experimental conditions may contribute to the curvature. The
laser has a super-Gaussian intensity profile, causing slightly higher pressure
near the center of the target. This and the finite size of the target may cause
the shocks, rarefaction waves, and the interface envelopes to deviate away
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Figure 3.1: Analysis of the radius of curvature; error bars indicate standard
deviations. [94]

from a planar shape. Furthermore, some new specific modes may be induced
as an effect of the finite size of the target. Since the curvature does not
change in time, this indicates that spikes may grow in the same manner as
neighboring spikes in the same image. If the curvature is indeed imprinted
by the initial experimental conditions, then the system evolves straight along
the tube with the pre-determined geometry. This suggests that we can treat
the spikes individually and thus improve our statistics for spike length anal-
ysis. From scrupulous measurements that are described in Section 2.1.2, we
observe that in the same image the spike length varies only slightly, withing
6% − 10%, thus supporting our hypothesis on the curvature effect being an
imprint of the experimental conditions. It is worth noting also that averaging
the radius of curvature over time returns the same result as averaging over
its configuration space, in our case target type. This implies that the set of
images taken at different times can be regarded as a time evolution of a single
system. While in earlier studies this assumption was implicitly applied, by
our knowledge, we provide its first empirical confirmation of the assumption
on the basis of analysis of experimental data.

Thus, the analysis of available existing data in supernova experiments
provides the experimental confirmation of the following assertions: curvature
of the shocks and the interface envelopes may be an imprint of the experimen-
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tal conditions, the set of images taken at different times can be regarded as a
time evolution of a single system, one can treat each of the spikes individually
and thus enlarge the data set size and statistics.

3.2.3 Amplitude of the interface

In images from supernova experiments, a visible structure of bubbles and
spikes is developed for all non-planar targets due to RT growth of the initial
perturbations at the interface [37, 82]. During the run-time of the experi-
ments, the perturbation grows approximately 70 times the initial perturba-
tion peak-to-valley amplitude or approximately 5 times the initial perturba-
tion wavelength [56, 57]. The amplitude of the interface is determined by
measuring the distance between the base and tip of the spikes. We are able
to measure spikes from images with high feature visibility. 83 spikes were
measured from 12 images: 4 images from single mode targets, 3 from small-
two-mode targets, and 5 from large-two-mode targets. We focus our analysis
on the large-two-mode and single mode target types, since they provided the
biggest data sets of images with clear features. For more detail on interface
amplitude measurements, see Section 2.1.2.

For the large-two-mode case, the average interface amplitude at each
time step is shown in Figure 3.2(a). The standard deviation of each time
step is measured, and then those four standard deviations are averaged for
an overall standard deviation. In terms of λ = 71µm, the initial perturbation
wavelength, the average standard deviation is 0.21 wavelengths and, as the
final amplitude is 4.21 wavelengths, this corresponds to a 5% variation for
the large-two-mode targets.

For subsequent comparison with various models, we fit a power law to the
spike growth, describing the growth of the interface amplitude as a power-law
function of time, h = Btb. The large-two-mode targets produce spikes grow-
ing as h ∼ t1.14. Thus, according to data, the power law exponent is greater
than 1 (unity) implying that the spike does accelerate in this particular time
interval.

For the single mode case, the spike amplitudes are shown in Figure 3.2(b).
The average standard deviation is 0.42 wavelengths and, as the final ampli-
tude is 4.29 wavelengths. This corresponds to a 10% variation for the single
mode targets, which is twice as large as the deviation of two-mode-large
measurements. The additional noise is likely due to the smaller quantity and
poorer quality of the data set. The best fit power law describes the single
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Figure 3.2: Spike amplitude for (a) single mode targets with h ∼ t1.39, (b)
large-two-mode targets with h ∼ t1.14, and (c) all target types with h ∼ t1.12.
Measurements of large-two-mode targets are shown as squares, two-mode
small targets as circles, and single mode targets as diamonds.[94]
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mode spike amplitudes as h ∼ t1.39.
When spikes of all target types are included and fit with a single power

law, the spikes grow with an effective exponent of 1.12 (i.e. h ∼ t1.12), and
an average standard deviation of 0.36 wavelengths corresponding to 8.5%
variation, as the final amplitude is 4.25 wavelengths. The contributions of
the various target types can be seen in Figure 3.2(c).

We work with averages at each time step because that is standard way for
the community. The observation times were chosen to ensure reproducibility
and consistency of extremely challenging experimental conditions. Although
taking an average produces very coarse data, it matches the coarseness in
the independent variable. We fit the data by two methods: linearizing and
bootstrapping.

We combine data from all target types and find averages at each time
step. Then, we plot the data on a log-log plot and fit the log of the data with
a line (Figure 3.3). This linearization allows us to analyze the fit, including
estimating errors. The linear fit is found by the expressions

b = slope =
(n
∑
xiyi)− (

∑
xi)(

∑
yi)

(n
∑
x2i )− (

∑
xi)2

(3.1)

B = intercept =
(
∑
x2i )(

∑
yi)− (

∑
xi)(

∑
xiyi)

(n
∑
x2i )− (

∑
xi)2

(3.2)

where xi = log(ti), yi = log(hi), and n is the total number of data points,
which is 4 in this case. With this method the error in the fit exponent is
given by

∆b = slope error = S

√
n

(n
∑
x2i )− (

∑
xi)2

(3.3)

where S =
√∑

(yi−bxi−B)2

n−2 , the sum of the residuals. By this method, the log

of the data from all target types is described by a slope of b = 1.1 with error,
∆b = 0.1.

If the data are assumed to be independent and identically distributed
points, then we may use the bootstrapping technique. Bootstrapping uses
random sampling with replacement to predict errors. To do this we fit a
random sampling of the data and store the fit parameters in a list or array, we
repeat 1000 times, and then we analyze the distribution of the fit parameters.
When performed on all 82 spike measurements, the mean fit exponent is 1.24
and the standard deviation of the fit exponents is 0.08.
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Figure 3.3: Average data (red squares) plotted with the fit from the linearized
method. The dashed lines show the fit function with +/− the error of the fit
exponent.

All data sets and fit methods suggest an exponent greater than 1. While
it may appear that the two-mode targets and single-mode targets may have
different interface growth, the difference is challenging to confidently deter-
mine due to the amount of variation in the measurements and the limited
time range of available data. The linearized method and bootstrapping pro-
vide slightly different exponents, but both methods agree that the error in
the exponents is small, 6 to 8% and the exponent is above 1.

3.3 Comparison with the momentum model

By comparing experimental data with the theoretical results, one can derive
qualitative and quantitative conclusions on properties of RT mixing with
time dependent acceleration, g(t) = Ata in supernova experiments. One such
property is the characteristic length scale L for energy dissipation. As the
overall growth of the amplitude and the overall run time of the experiments
are related as (H/a0) ∼ (T/τ)1.9 and (H/λ) ∼ (T/τ)0.72, this may imply that
in RT flow in experiments the amplitude is indeed a dominant length scale
for energy dissipation. According to the theory (Table 2.3), for L ∼ h, the
acceleration exponent is a = b − 2 in the case of b > (1 + C)−1; and it is
a ∈ (−2,−2 + (1 + C)−1) in case of b = (1 + C)−1. On the other hand, for
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(h/λ) = B(t/τ)b Data Steady state Flash Hyades Drag
b 1.1 1 0.9 0.6 0.95
B 0.36 0.44 0.53 0.96 0.48

Table 3.2: Mean values of the parameters of theoretical solutions and numer-
ical models for spike amplitude growth.

L ∼ λ, the acceleration exponent is a = 2(b − 1) with a > −2 and b > 0.
Per experimental data, in RT flow b > 1 for all target types implying that
L ∼ h and that the flow is in the mixing regime. Indeed, if one assumes that
RT flow is in a nonlinear regime with L ∼ λ, then the acceleration exponent
would be a = 2(b − 1) with a > 0 for b > 1, and the acceleration, g(t) ∼ ta

would be an increasing function of time. This behavior would contradict the
design of supernova experiments, in which the system is influenced first by
an initial shock and then by the rarefaction wave resulting in the decrease of
the flow velocity [37, 81, 82]. Thus, per experimental data, in this particular
time interval, L ∼ h and RT flow is in the mixing regime [15, 4, 8].

The other important property of RT flow is the exponents of the power
law functions of the acceleration g(t) = Ata and the amplitude h = Btb. On
the other hand, per experimental data b > 1 for all target types implying that
the acceleration exponent is a = b− 2 with a > −1, Table 2.3. This suggests
that RT flow is in the regime of acceleration dominated mixing. On the
other hand, numerical simulations indicate that the acceleration exponent
is a < −1 [56, 57]. This case requires a more careful consideration, Table
2.3. Since in RT flow the effective drag is usually large with C � 1 [11],
the critical values of b = (1 + C)−1 and a = −2 + (1 + C)−1 separating the
acceleration dominated mixing regime from the dissipation driven mixing
regime are b→ 0 and a→ −2, Table 2.3. In Hyades and FLASH simulations
the value of b is finite, 0 � b < 1, and the value of a ∼ −1 [56, 57]. Thus,
the numerical simulations indicate that RT flow is also in the acceleration
dominated mixing regime.

For comparison of data with theory, we apply the acceleration exponent
as suggested by the experiments and the simulations, Figure 3.4. Good agree-
ment is achieved with experimental data in the case of exponents provided
by the experiments (g ∼ t−0.9, h ∼ t1.1), Hyades simulations (g ∼ t−1.6, h ∼
t0.6), and FLASH simulations (g ∼ t−1.1, h ∼ t0.9). As on average in exper-
iments and simulations the amplitude exponent is b ∼ 1, we also compare
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experimental data with the steady state solution of b = 1 that is permitted
by the balance equations, Equation 2.5 for L ∼ h, a = −1, Table 2.3, Figure
3.4. For the purpose of consistency, we present as well the comparison of ex-
perimental data with traditional drag model employing L ∼ t (with h ∼ t0.95,
Table 2.3), and using multiple (7+) adjustable parameters [55, 34, 33, 13].
The values of the exponents and the prefactors are summarized in Table 3.2
in dimensionless units.

It is worth noting that while in both experiments and simulations of RT
mixing flow the amplitude increases with h ∼ tb and velocity decreases with
v ∼ tb−1, experimental data imply that b > 1 leading to h, v, v̇ > 0, whereas
simulations suggest b < 1 leading to h, v > 0 and v̇ < 0. Several reasons may
explain this observation. First, within the available dynamic range of data,
both kinds of dynamics fit the data well and are a challenge to differentiate,
Table 3.2, Figures 3.2 and 3.4. Generally, a substantial dynamic range is
required to reliably identify an exponent of a power law [89]. The current
experiments and simulations span a decade or so. Without data spanning
larger dynamic range and more sophisticated diagnostics, the power law ex-
ponent is a challenge to determine accurately [88]. In particular, as suggested
by Figure 3.4 for the amplitude growth, the various power law functions be-
gin to have some difference in value at 20τ (∼ 50ns), whereas data are only
available up to roughly 10τ (∼ 25ns). Second, in realistic laboratory envi-
ronment in supernova experiments, the influence of the shock and rarefaction
wave on the target may be stronger than it is intended and may potentially
cause the amplitude to grow quicker than linear with time. Third, as is true
for any numerical method, the numerical simulations have numerical dissi-
pation and diffusion that may potentially slow down the dynamics of RT
mixing [56, 57, 37, 82, 81].

Finally for canonical blast waves in a uniform compressible fluid, the
length scale increases as a power law with time, as ∼ tb with b < 1 [87,
19, 92, 97, 86, 41]. This is because in ideal blast waves a large amount of
energy is released in a small volume initially, and then this energy drives the
dynamics in an expanding volume. At late times, no energy is supplied to
the flow by other sources and no energy is lost due to dissipation. When
a blast wave interacts with a density discontinuity leading to development
of RTI, the flow dynamics may deviate away from this canonical scenario
due to the transports of mass, momentum, and energy induced by interfacial
RT mixing [66, 87]. Blast wave propagation in non-uniform fluids and its
interaction with density discontinuities are open problems [87]. We relegate
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consideration of these fundamental problems to the future.
Therefore, supernova experiments agree qualitatively and quantitatively

with the theoretical analysis considering symmetries and momentum trans-
port in RT flow [15, 4, 2, 8]. The available existing experimental data indicate
that in supernova experiments with time dependent acceleration, RT flow is
in the mixing regime, the amplitude is the characteristic length scale for en-
ergy dissipation (or, at least, contributes to it substantially), and the mixing
flow is acceleration driven and keeps order. RT mixing dynamics in super-
nova experiments can be better understood upon further developments of
theoretical, numerical, and experimental tools to handle matter at extremes
[6, 79].

3.4 Discussion

In this chapter, we perform scrupulous data analysis study of supernova
experiments that are designed to mimic and model astrophysical phenom-
ena in a well-controlled laboratory environment at high power laser facili-
ties [36, 79, 84, 17]. The parameters of experiments are properly scaled to
model the interaction of a blast wave with helium-hydrogen interface in core-
collapse supernova SN1987A [56, 57, 37, 82, 81]. In the experiments, strong
laser beams irradiate an initially solid target composed of dense plastic and
light foam causing the materials to behave as fluids, Figure 2.1. In the exper-
imental system, the acceleration is time-dependent and is directed from the
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denser to the light fluid leading to development of RTI and RT mixing. The
experimental diagnostics includes x-ray radiography, Figure 2.2. We care-
fully analyze all structures in all available experimental images of RT flow
in order to learn what experiments may tell us about the fundamentals of
RT mixing in high energy density plasmsas, Figures 2.3a, 2.3b,2.4a and 2.4b.
New theoretical asymptotic solutions are found to describe RT dynamics with
time dependent acceleration in the nonlinear and mixing regimes, Table 2.3.
The parameters of time dependent acceleration are evaluated on the basis of
experimental data, as well as one dimensional Hyades and two-dimensional
FLASH simulations, Figures 3.2 and 3.4. The data and the theoretical anal-
ysis are in good qualitative and quantitative agreements with one another,
Figure 3.4.

To accurately compare the experimental data with one another and with
the theory and simulations a novel scaling is found for data calibration, Ta-
ble 3.1. We show that while in supernova experiments all quantities are time
dependent, a scaling can be identified for RT evolution that is robust, re-
liable, and gives reasonable values. Our scaling employs the properties of
the laser shot and the target, specifically - laser irradiance, target mass, and
wavelength of the interface perturbation. It connects the parameters of RT
mixing flow to well controlled parameters of the experimental system, and
can be further applied for a design of future experiments on RT mixing in
HEDP, Table 3.1.

In all experimental images, the interface envelopes and the shock fronts
are curved. We measure these curvatures and thoroughly analyze the mea-
surements showing that the curvatures are constant within the noise level and
thus can be an imprint of experimental conditions, Figures 3.1a and 3.1b.
On the basis of experimental data, further empirical evidences are provided
that the set of images taken at different times can indeed be regarded as a
time evolution of a single system, and that the dynamics of each of the differ-
ent spikes can be analyzed. These results allow us to substantially increase
the data set size and statistics of the interface measurements. They can be
further applied for a design of future experiments on RTI in HEDP.

It is worth noting that it is a challenge to grasp precisely the cause of
the curvature of the interface envelopes and shock fronts in HEDP experi-
ments. The understanding of the phenomenon requires a synergy of theory,
experiments, and simulations. The latter should be an integrated numerical
approach including both Lagrangian and Eulerian modeling in order to reli-
ably quantify the interplay of complex processes of light-material interaction
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at microscopic scales (by means of molecular dynamics [32, 105], interac-
tion of plasma flow with solid material boundaries at mesoscopic scales (by
employing, e.g. smooth particle hydrodynamics simulations [91]), as well as
interaction of shocks and rarefaction waves with density discontinuities and
the influence of the finite size of the target (by using continuous dynamic
simulations [56]. We address such integrated study to the future. Our em-
pirical results on the constancy of the curvature of shock fronts and interface
envelopes and on the weak influence of the curvature on the spike ampli-
tude may serve as benchmarks for the existing and future experiments and
simulations.

We perform scrupulous measurements of the interface features and an-
alyze RT mixing for all available experimental times and all target types,
Figure 3.2. Considering the extended data set with the enlarged statistics,
we show that the corresponding variations of the spike amplitude are low
(less than and within 10%) and that it is a challenge to confidently quantify
the effect of superimposed modulations on RT evolution in different target
types. The analysis of experimental data indicates that, within the time in-
terval of experiments, the dynamics of RT spikes can be described as a power
law and that RT spikes do accelerate. These results can be accounted for in
a design of future experiments on RTI in HEDP.

By applying rigorous theoretical analysis that considers symmetries and
momentum transport in RT flow and by further extending it to the case
of acceleration with power law time dependence, we report new asymptotic
solution describing RT dynamics, Table 2.3. We show that similar to the
case of constant acceleration, in the case of time dependent acceleration the
nonlinear and mixing regimes exist in RTI. In the nonlinear regime, the
characteristic scale for energy dissipation is the horizontal wavelength and
in the mixing regime it is the vertical amplitude, Table 2.3. Similar to the
case of constant acceleration, in the case of time dependent acceleration the
growth of horizontal scales is possible and is not a necessary condition for RT
mixing to occur. RT mixing develops due to imbalance of the gain and loss
of specific momentum, with the vertical scale being the characteristic scale
for energy dissipation [15, 4, 8]. Detailed consideration of these asymptotic
solutions will be given elsewhere.

By comparing supernova experiments with the theory, we find that the
available existing data agree qualitatively and quantitatively with the the-
oretical analysis considering symmetries and momentum transport in RT
flow, Figures 2.2 and 3.4. In particular, the data indicate that, in supernova
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experiments RT flow is in the mixing regime, the amplitude significantly
contributes to the characteristic length scale for energy dissipation, and the
mixing flow is acceleration driven and keeps order.

Within the time intervals of supernova experiments, RT spikes appear to
grow somewhat quicker in the experiments than in the simulation, Figure 3.2.
Potential reasons for this observation may include relatively short dynamic
range of the observation time, possibility of a stronger influence of the shocks
and rarefaction waves on the flow in the experiments, and a potential effect
of numerical dissipation and diffusion in simulations.

In Figure 3.4 we extend the time range nearly two fold of the actual time
of supernova experiments (T/τ) in order to emphasize the necessity of a sub-
stantial dynamic range of the observation time for accurate evaluation of the
exponent of the amplitude on the basis of data, Table 3.2. In order to in-
crease the value (T/τ) and to achieve more advanced stages of RT mixing, one
can increase the time T of the experiment and/or decrease the characteristic
time scale τ . The time scale τ depends on the target mass and the laser irra-
diance (Table 3.1). For decreasing τ one may increase the laser irradiance by
increasing the laser energy and decreasing the laser pulse duration and the
target area and may also decrease the target mass. In addition, one may re-
fine time steps at which the measurements are taken. By implementing these
changes in future experimental design one may extend the observation time
(T/τ) and identify more accurately the power law exponent b of the amplitude
growth h ∼ tb in supernova experiments, Figure 3.4, Table 3.2.

Our results clearly indicate that the dynamics of RTI under conditions
of high energy density, the interaction of blast waves with density hetero-
geneities and discontinuities and the explosion of core-collapse supernova are
fundamental problems that are well open for a curious mind [6, 7, 15, 4, 56,
57, 79, 84, 17, 87]. Further developments of theoretical, numerical, and ex-
perimental tools are required to better understand RT mixing in supernova
experiments and to handle matter at the extremes.

To conclude, supernova experiments agree qualitatively and quantita-
tively with the theoretical analysis considering symmetries and momentum
transport in RT flow in HEDP and show that RT mixing keeps order.
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Chapter 4

Data analysis of multiplicative
noise in Rayleigh-Taylor mixing

4.1 Introduction

As discussed earlier, Rayleigh-Taylor Instability presents a challenging prob-
lem because it is non-linear, non-local, anisotropic, multi-scale, and sta-
tistically unsteady [2, 4]. We investigate the statistically unsteadiness of
RT mixing by numerically modeling the set of stochastic nonlinear differen-
tial equations which govern the rate of change of momentum in a packet of
fluid undergoing RT instability. We analyze characteristic values across two
regimes, measure the spectra of fluctuations, and investigate how fluctuations
inherent in RT mixing may effect measurables.

Observations of RTI have reported significant scatter in the coefficient de-
scribing the vertical scale of the interface [85, 34, 29, 76, 27]. This observed
scatter can be due to fluctuations inherent to the physical process or challeng-
ing experimental conditions such as sensitivity to initial conditions. Some of
the scatter may be caused by noisy character of RT turbulent mixing, which
is not typically quantified in the existing experiments and simulations (Sec-
tion 1.1). Fluctuations in RT flows provide a stimulating subject for study
distinct from classical Kolmogorov turbulence. In Kolmogorov turbulence,
the energy dissipation is a statistical invariant and the random character of
dissipation is caused by velocity fluctuations. In contrast, RT turbulent mix-
ing has velocity and length-scale fluctuations and the energy dissipation rate
grows with time [8], providing an additional challenge to the problem.
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As a result of the flow evolution, RTI has characteristic structures at two
scales. The large-scale bubble and spike structures may retain order and
depend on the initial conditions. The dynamics of small scale structures are
driven by shear, which is in general a noisy process. Small scale dynamics of
RT flow may be more disordered and less deterministic. We investigate the
influence of this disorder on large scale measurable parameters. The nonlinear
regime may couple small and large scales. The noisiness due to shear on small
scales may influence the overall dynamics, including some characteristics of
the large-scale motion such as the non-universal α parameter. Fluctuations
of the interfacial dynamics at small scales lead to fluctuations in density,
temperature, and velocity, which then may cause fluctuations in the energy
dissipation or the effective drag force. Drag is the source of energy dissipation
in RT dynamics and it effects large scale flow quantities such as the growth
of the interface.

The rate of growth of an interface undergoing RT instability is governed
by the balance between the rates of gain and loss of momentum as described
by the momentum model in Section 2.2.4. The rate of gain of momentum is
given by gravity or an effective gravity (acceleration) while the rate of loss
of momentum is due to energy dissipation. Hence, inherent fluctuations in
small-scale flow characteristics may influence large-scale flow characteristics.
It is important to analyze the impact these fluctuations may have on measur-
able quantities. We implement these ideas in the method of the momentum
model with stochasticity, in Section 2.2.5.

RT mixing in supernova explosions and inertial confinement fusion is
driven by a blast wave [102, 17]. The hydrodynamics of blast waves in in-
compressible fluids is described by self-similar solutions [87, 19]. The scaling
law is set can depend on the load history and mass transport or the problem
dimensionality, depending on how the energy is deposited [97, 86, 92, 41].
Considering these two important applications of RT mixing and wanting the
solutions to remain generally applicable, we use accelerations in the form of
power laws.

To study stochastic effects in RT mixing, the drag coefficient is modeled
as a stochastic quantity, extending the momentum model as described in
Section 2.2.5. The differential equations that describe RT mixing in the
momentum model must be written in differential form and must include
another equation to describe the evolution of the drag coefficient. The drag
coefficient is described with a lognormal distribution plus a standard Wiener
process. A lognormal distribution is chosen because a RT mixing fluctuations
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are known to have long-tail distributions [5, 6].
Using a numerical differential equation solver with multiplicative noise

in C++, we numerically solve the governing equations with the acceleration
modeled as a power law and the drag coefficient modeled as a statistical
process with a lognormal distribution, as described in Section 2.2.5 [5, 6].
In order to accurately determine the power law solutions we model 103 tra-
jectories over six decades of time for each set of parameters. The modeled
values of the acceleration and drag coefficient are output as diagnostics and
the solution for the amplitude of the interface and its growth rate are output
for analysis.

4.1.1 Relationship to previous studies

In previous work the numerical differential equation solver was used to model
RTI with a stochastic drag term for a large dynamic range. The cases of
constant acceleration [5] and power law accelerations with exponents ranging
between −1 and 0 [6] have been well studied. It was found that the parameter
α, the growth rate commonly used by the RTI community to characterize RT
flow, is sensitive to fluctuations of the drag coefficient and that invariants of
the flow exist despite the statistically unsteady nature of the problem.

The drag term, which determines the rate of loss of momentum in RT
mixing, depends on a characteristic length scale. RT mixing involves many
different size scales, but there are two easy-to-observe lengths: a vertical scale
in the direction of growth, h(t) and a horizontal scale normal to growth, λ.
The horizontal scale corresponds to the wavelength of the initial sine wave
perturbation. The system is in the nonlinear regime if the dominant length
scale is the horizontal, λ. The vertical scale corresponds to the amplitude of
the interface, which grows due to the instability. The system is in the mixing
regime if the dominant length scale is the vertical, h(t). These scales and the
solutions they produce are discussed in Section 2.2.4.

Depending on the value of the acceleration exponent within the mixing
regime, there are two different asymptotic solutions. The critical value of
the acceleration exponent that divides the two regimes is beyond the pre-
viously studied regime. When the acceleration exponent is larger than the
critical value, the dynamics are in the acceleration dominated mixing regime.
A sub-range of the acceleration dominated mixing regime has been studied
with a stochastic model before [5, 6]. Below the critical acceleration expo-
nent, the dynamics are significantly influenced by the drag term and are
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in the dissipation dominated mixing regime. We analyze the dynamics for
both mixing regimes and demonstrate how certain values behave during the
transition across the critical acceleration exponent. The dissipation domi-
nated mixing regime may be relevant to supernova explosions and inertial
confinement fusion because blast wave and shock wave drive RTI have accel-
erations matching the range of this regime. This work studies the dissipation
dominated mixing regime for the first time, providing valuable insights for
comparing models with experimental data.

We use the momentum model with a stochastic drag term to study how
fluctuations influence RT mixing. In this work we thoroughly analyze two
mixing regimes and the transition between them. Analysis of the nonlinear
regime is left to future studies. The theoretical analysis of asymptotic solu-
tions for the momentum model indicates that there is a critical value of the
acceleration exponent. By looking at values near and on either side of the
critical value, we determine that exponents are less sensitive to noise than
coefficients in all cases and each range has its own invariants and dominant
asymptotic solutions. We study the power spectrum density to better un-
derstand how multiplicative noise influences the solution. Additionally, we
look at how these new invariants are affected by different values of the drag
coefficient and averaging over different numbers of trajectories.

4.2 Results

4.2.1 Exponent and coefficient sensitivity

Comparing models to experimental data is a serious challenge for RTI. Due to
the stochasticity, nonlinearity, and non-local behavior it is difficult to obtain
precise experimental measurements over large enough dynamic ranges. For
example, one must measure a value over multiple decades to accurately fit a
power law, which is the functionality suggested by asymptotic solutions to
the momentum model for RT mixing. However it is challenging to perform
experiments that provide more than one measurable decade.

In recent studies, many have found fits to experimental data in order
to determine the coefficient of the growth of the interface, sometimes called
α. The vertical length of RTI flow is described as h ∼ αf(A)gt2 where α
is a constant, Section 2.2.1. This measurement has yielded a large spread
in values, producing confusion and competition between experiments and
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simulations. The amplitude of the interface can be described by a power law.
We show that the coefficient is more sensitive to noise than the exponent.
Thus the exponent is a better diagnostic measurement than the coefficient.

As discussed earlier, we treat the drag coefficient C as a stochastic quan-
tity and then numerically solve Equation 2.6. The interface motion is depen-
dent on C and can possibly inherit the fluctuations. For power law acceler-
ations, g = Ata, the analytic asymptotic solutions describe the interface as
a power law, h = Btb. The power law solution’s coefficient is more sensitive
to fluctuations than the exponent. In the asymptotic solutions in the accel-
eration dominated mixing regime, the coefficient is explicitly dependent on
C, a fluctuating quantity, while the exponent only depends on the constant
acceleration exponent, a [Table 2.3]. In the dissipation dominated mixing
regime, the coefficient is not defined by known flow quantities because it is
a free parameter. Therefore in both regimes, the exponent provides a more
reasonable diagnostic than the coefficient. This can be seen in Figure 4.1.

We model thousands of trajectories of the stochastic differential equa-
tions [Equation 2.6], measuring h and v over six decades. To determine the
modeled exponent, we use the power law solution and its derivatives to find
b = vt/h. To determine the modeled coefficient, we multiply the solution (Btb)
by t to the −b power, using the modeled value of b to find B = htvt/h. The
modeled coefficient and exponent are plotted in Figure 4.1a, each normalized
by their analytic values (Table 2.3). The modeled coefficient has a larger
difference from its analytic value, larger fluctuations, and takes more time
to converge to its analytic value. The exponent, while not perfect, fluctu-
ates significantly less and quickly converges to the analytic value. In Figure
4.1b, the modeled exponent in the dissipation dominated mixing regime is
normalized by the analytic values of both regimes. The coefficient is not plot-
ted because in this regime it is a free parameter. When normalized by the
proper analytic value, the modeled exponent in the dissipation dominated
regime approaches ∼ 1. This implies that when comparing experiments to
models, one should focus on the exponent, as it is less susceptible to both
experimental and intrinsic fluctuations.

4.2.2 Critical value of the acceleration exponent

Previous work modeling the same system of equations focused on values of the
acceleration exponent between −1 and 0 [6]. For exponents between −1 and
0, v̇ is always positive and the dynamics are dominated by the acceleration.
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(a) The modeled solution’s coefficient
and exponent, each normalized by their
analytic value in the acceleration dom-
inated mixing regime (a = −0.75).

(b) The modeled exponent normalized
by the analytic values in the dissipation
dominated regime and the acceleration
dominated regime (a = −1.95).

Figure 4.1: The modeled solutions normalized by analytic values.

We have identified a critical value of the acceleration exponent beyond the
previously studied range, acritical = −2 + 1/(1+C). In the regime above the
critical value, the acceleration term plays a dominant role in the dynamics
and the regime is called the acceleration dominated mixing regime. The
solution’s second derivative has nearly the same slope as the acceleration, g,
as seen in Figure 4.2a. Since v̇ and g have approximately the same slope, the
dissipation effect is therefore small and does not have a strong influence on
the dynamics when a is above acritical.

The asymptotic solution to the momentum model [Equation 2.5] changes
below acritical indicating a new regime. Below the critical value the dissipa-
tion term has a significant influence on the dynamics and the acceleration
becomes negligible, especially at large times. One can see the influence of
the dissipation term in Figure 4.2b. The slope of v̇ in the figure is no longer
the same as g because the solution is modified by the dissipation term. The
regime corresponding to values of the acceleration exponent below the critical
value is called dissipation dominated mixing. These two regimes also have
different invariants, as discussed in detail in Section 4.2.4.
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(a) The acceleration dominated mixing
regime (a = −0.75).

(b) The dissipation dominated mixing
regime (a = −1.95).

Figure 4.2: The external acceleration g (black), the solution h (red) and the
solutions first and second derivative (blue and green) plotted on a log-log
plot to demonstrate the power law dependence for both sub-regimes of the
mixing regime.

4.2.3 Asymptotic solutions

We model Equation 2.6 with C = 3.6 and a ∈ {−1,−1.5,−1.65,−1.75,−1.85,
−1.95} to add to the range of the previously studied regime, verify the value
of acritical = −2+(1+C)−1 ∼ 1.78, and study the transition between regimes.
The dynamics of each value of a were modeled over six decades (t ranging
from 100 through 106) and the time evolution of certain quantities are plotted
with their asymptotic analytic solutions.

To determine if the modeled solution matched the analytic solution, the
modeled values of the coefficient and exponent were normalized by their an-
alytic values and plotted in Figure 4.1a and 4.1b. We use the expression
vt/h to determine the modeled values of the exponent and the expression
ht−vt/h to determine the modeled values of the coefficient. In the acceleration
dominated mixing regime, the modeled exponent is divided by its analytic
value, b = a+ 2, and the modeled coefficient is divided by its analytic value,
B = A/[(a+2)((a+1)+〈C〉(a+2))]. In these plots, 1 represents an exact match be-
tween the numerically modeled value and the analytic value. Figure 4.1a
shows an example of a data set in the acceleration dominated mixing regime.
Both values inherit fluctuations from C but still clearly approach the analytic
values.
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Figure 4.1b shows the normalized exponent values for a data set in the
dissipation dominated mixing regime. In this case, according to the analytic
solution, the coefficient is a free parameter and is omitted from the plots. The
exponent was plotted with its appropriate analytic solution, b = (1 + C)−1

(the “dissipation exponent”) in green as well as the solution for the accel-
eration dominated mixing regime (the “acceleration exponent”) in red. Un-
surprisingly, the dissipation exponent is more accurate than the acceleration
exponent. The modeled solutions agree with the analytic solutions, especially
at late times. This indicates that our code works as expected.

4.2.4 Invariant quantities

It is important to look for invariant quantities in physical systems in order
to better learn about the symmetries and underlying processes involved in
the problem (Section 1.1). Previous studies have shown that there is an
invariant quantity of RT mixing, despite the statistical unsteadiness and
time dependent dynamics [6, 5]. This invariant, Π, is the ratio of the rates
of gain and loss of momentum, Π = µ/µ̃ = ε/ε̃. All previous work has shown
that Π ≈ 1. In the acceleration dominated mixing regime, the current work
supports the same result as seen in Figure 4.3a. This can also be seen in
the analytic solutions for Π = µ/µ̃ = Cv2

gh
. Using power laws for g and h, and

taking the time derivative of h to find v, this becomes Π = CBb
A
t−a−2+b. At

first glance, this seems to be time dependent, however in this regime b = a+2,
meaning Π is proportional to t0. Both analytically and according to the
numerical results, Π is constant approximately equal to 1 in the acceleration
dominated mixing regime.

However, the exponent in the dissipation dominated mixing regime does
not have the same dependence on a. The expression Π = Cv2

gh
is proportional

to t−a−2+1/(1+C) in the dissipation dominated mixing regime. This is only
time independent when a = acritical. This time dependence is illustrated for
C = 3.6 in the insert in Figure 4.3b. While Π is constant with an average
value of 1 for a > −1 (acceleration dominated regime), it is a smaller value
and decreases for a = −1.95, a value below acritical (dissipation dominated
regime). This regime requires a different characteristic value.

As discussed in Section 2.2.4, the asymptotic solution for the amplitude of
the interface in the accelerated mixing regime is a power law with exponent
b = a + 2 and coefficient B = A/[(a+2)((a+1)+C(a+2))]. In this regime, when
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(a) The characteristic values modeled
in the acceleration dominated mixing
regime.

(b) The characteristic values modeled
in the dissipation dominated mixing
regime.

Figure 4.3: The appropriate (main figures) and inappropriate (inserts)
characteristic values in the acceleration (a) and dissipation (b) dominated
regimes.

the acceleration g(t) = Ata has the exponent a > −2 + (1 + C)−1, one can
rearrange the governing equations [Equation 2.5] to find a constant expression

dh

dt
= v,

v̇

g
+
Cv2

gh
= 1 (4.1)

where g 6= 0. The two terms on the left hand side of the second equation must
always add to a constant. Above the value a = −1, both terms are positive
and less than 1. Below the value a = −1, the first term ( v̇

g
) is negative and

the second term (Cv
2

gh
) is greater than 1, still their sum is always 1. Because

this expression should always equal 1, we use it to check that our model is
sound and the code works as expected. As demonstrated in Figure 4.3a, this
expression’s mean value is indeed 1 even though it inherits fluctuations from
the stochastic C value. As the acceleration exponent decreases, the dynamics
approach the other regime and the two terms diverge more (but always sum
to 1). This behavior is demonstrated by plotting the time evolution of the
two terms and their sum. The two terms significantly diverge for the smaller
values of a, but they grow symmetrically in either direction, maintaining a
constant sum. In Figure 4.4a, we plot these three terms for three successive
values of a, approaching acritical from above.
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(a) Approaching acritical from above.
The terms of the invariant and their
sum is plotted for various values of a
within the acceleration dominated mix-
ing regime.

(b) Approaching acritical from below.
The terms of the invariant and their
sum is plotted for various values of a
within the dissipation dominated mix-
ing regime.

Figure 4.4: The invariant value plotted as a approaches acritical in each
regime. As the colors get lighter, a gets closer to acritical.

As the acceleration exponent decreases, the value of the acceleration, g
approaches zero more quickly. This is problematic for the invariant because g
is in the denominator of both terms. This is the cause of the diverging terms
in Figure 4.4a. In the dissipation dominated mixing regime we cannot use the
same characteristic expression that was used in the acceleration dominated
mixing regime. Instead of dividing the equation by g and rearranging to
isolate 1, we perform a similar procedure with v̇. Dividing Equation 2.5 by
v̇ and rearranging terms yields,

dh

dt
= v,

g

v̇
− Cv2

v̇h
= 1 (4.2)

As a decreases, asymptotically g also decreases and the first term becomes
negligible. Thus in the appropriate regime, the term −Cv2

v̇h
is a constant

approximately equal to 1. We can verify its lack of time dependence by
plugging in h, v, and v̇, and we find that the expression is proportional to
t2b−2−b+2−b = t0. The characteristic value for dynamics with acceleration
exponents below acritical is shown in Figure 4.3b.

The two regimes can be demonstrated by plotting the averages of the
characteristic values, −Cv

2

v̇h
and Cv2

gh
for various acceleration exponents as in
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Figure 4.5: Two characteristic values measured across the entire range of
tested acceleration exponents. In their respective regimes above and below
acritical they are nearly flat, but diverge as they cross the critical value.

Figure 4.5. The characteristic value in the acceleration regime value is nearly
flat in the acceleration regime and asymptotes below the critical value of the
acceleration exponent. The characteristic value in the dissipation regime
value is nearly flat in the dissipation regime and asymptotes above acritical.
Thus, the dynamics of the two regimes are distinct in quantity as well as
quality; one must treat each regime separately when analyzing characteristic
or invariant values. These characteristic values can provide a diagnostic; by
calculating their numerical value for an experiment or simulation, one could
determine the regime of the dynamics.

4.2.5 The effect of 〈C〉
In the above sections, we have thoroughly explored how the dynamics can be
described for different values of the acceleration exponent, a. Next we study
how the drag coefficient changes the behavior of these two regimes. Several
different values of the drag coefficient are investigated for particular a values
in both regimes. For small values of the acceleration exponent, the dynamics
are securely in the acceleration dominated mixing regime and changing the
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value of 〈C〉 has a subtle effect on the dynamics. Larger fluctuations show
up in the modeled quantities when 〈C〉 is smaller. When 〈C〉 is larger,
the dynamics are slightly smoother, despite having the same σ to 〈C〉 ratio
because the large drag coefficient acts as a fluctuation moderator. Figure 4.6
shows the invariant quantities for both regimes, comparing various values of
the drag coefficient. The value of 〈C〉 was limited by computational abilities
and we studied 〈C〉 = {1.0, 3.6, 5.0}. In all of the cases the normalized values
are have a constant average value close to 1 as expected. In the acceleration
dominated mixing regime, the characteristic value is not sensitive to 〈C〉,
as seen in Figure 4.6a. However, the characteristic value in the dissipation
dominated mixing regime is sensitive to the value of 〈C〉 as seen in Figure
4.6b.

The value of acritical depends on the value of 〈C〉. If we compare the
results of different 〈C〉 for a value of the acceleration exponent near acritical,
for example, a = −1.95 in the dissipation dominated mixing regime, then
there are larger changes in the behavior because changing the value of 〈C〉
may change the regime of the dynamics or cause the dynamics to approach
the critical value. While changing 〈C〉 may change the value of acritical and
therefor the regime of a particular a value, the dissipation dominated mixing
regime’s small range makes it more susceptible to changes in the value of
acritical. If studying the acceleration dominated mixing regime, we can stay
far away from the regime boundary and not be affected by changing 〈C〉.
This is why the dissipation regime’s invariant is more influenced by 〈C〉 than
the acceleration regime’s invariant.

4.2.6 Number of trajectories

The code that numerically solves the stochastic differential equation typically
averages over many trajectories. We now investigate how the number of
trajectories influences the solution by averaging the numerical data over 1,
10, and 100 as well as the default value of 103 trajectories. The steady state
solution in the acceleration dominated mixing regime is used in order to
isolate the statistical effects and minimize complexity. When a = −1.0 in
the mixing regime, the solution’s derivative, v is a constant and v̇ is zero.
By using the steady state solution [Section 2.2.4], we minimize the time
dependent dynamics and can investigate the stochastic behavior more closely.

Fewer trajectories lead to more noise in measured values and the same
general trends persist throughout all the measured quantities. The drag
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(a) The invariant in the acceleration
dominated regime for 〈C〉 = {1, 3.6, 5}.
As 〈C〉 increases, −Cv

2

gh remains ∼ 1.

(b) The invariant in the dissipation
dominated regime for 〈C〉 = {1, 3.6, 5}.
As 〈C〉 increases, −Cv

2

v̇h diverges from 1.

Figure 4.6: The invariant values plotted for various values of 〈C〉.

coefficient, the solution, and the characteristic value all have less spread
when more trajectories are averaged as illustrated for the drag coefficient in
Figure 4.7. The equations are simulated over long time spans (106 t/τ) in
order to see the behavior at different stages in the evolution. During the first
couple decades, the dynamics are still influenced by initial conditions and it
is difficult to measure statistics. We may evaluate the mean past the third
decade, and more sophisticated statistical measures (moments) may be made
beyond this.

The characteristic value in the acceleration regime, Cv2

gh
, maintains its

mean value of 1, indicating that we are in the expected sub-regime and the
code is functioning properly. As with the drag coefficient and the solution,
the standard deviation of the characteristic value increases when the number
of trajectories is decreased.

For most accelerations, RT dynamics are statistically unsteady. That is,
there are statistical fluctuations around time dependent variables. We want
to observe the fluctuations around the mean separately from the mean dy-
namics. Again, the steady state case is used in order to isolate properties
of these fluctuations. The power spectral densities (PSD) of the drag coeffi-
cient, the solution, and its derivative are measured for the case when a single
trajectory is used and no averaging occurs. The PSD is found by squaring
the discrete Fourier transform of a signal. For example, the PSD of C is
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Figure 4.7: The time evolution of C(t) plotted for various numbers of tra-
jectories. As the value is averaged over more trajectories, the fluctuations
become narrower.

computed as

PSD(ω) =
(∆t)2

T

∣∣∣∣∣
N∑
n=1

Cne
−iωn

∣∣∣∣∣
2

(4.3)

where ∆t is the time step size, T = N∆t is the total time and Cn is the nth

value of C.
The drag coefficient, C has a power spectrum with two regions, each with

characteristic power laws. On a log-log plot, C’s spectrum has a slope of
−0.258 between frequencies 10−4 and 10−2 and a slope of −1.66 between
frequencies 101 and 2× 102 as seen in Figure 4.8. The PSD of C is smooth,
even when evaluating one trajectory.

The PSDs of h and v have more noise and a different slope than C.
Because of the noisiness, averages of 20 points around each endpoint were
used to find an accurate slope. The PSD of h is described by one line between
frequencies 2× 10−4 and 101 with a slope of −1.64 (Figure 4.9a). The PSD
of v is close to constant, but has significant noise due to using only one
trajectory. The PSD of v is described by a line between frequencies 10−4

and 102 with a slope of −0.320 (Figure 4.9). Compared with the spectra of
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Figure 4.8: PSD of C.

Kolmogorov turbulence, this model is has a significantly different fluctuations
in v. In Kolmogorov turbulence, energy (or v2) scales with k−5/3, Section
2.2. The stochastic momentum model used in this study has PSD scaling
approximately as k−1/3 which is much less steep than canonical Kolmogorov
turbulence.

4.3 Discussion

We present results from a comprehensive study of a stochastic version of the
momentum model for Rayleigh-Taylor instability with time dependent accel-
eration and vertical characteristic length. An established numerical method
is expanded to model previously unstudied regimes [91]. This new regime is
of great importance to the study of RTI in supernova explosions and inertial
confinement fusion. The accelerations corresponding to the new regime are
similar to those describing blast wave accelerations. By exploring our model
below the critical acceleration exponent, we describe a regime that may cor-
respond to blast wave driven RTI and Richtmyer-Meshkov instability. We
contribute diagnostic values that may be used to compare the state of the
art experiments with theoretical models, furthering our understanding and
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(a) PSD of h. (b) PSD of v.

Figure 4.9: Power-spectrum-density.

potential control of RTI in processes such as inertial confinement fusion.
Both sub-regimes of the mixing regime are fully described and explored; a

critical value of the acceleration exponent divides the acceleration dominated
regime from the dissipation dominated regime. Solutions and invariants for
each regime are discussed and the critical turning points are investigated.
The numerical model converges to the asymptotic analytic solutions. As
previous studies have shown, the exponent is less influenced by fluctuations
than the coefficient (Figure 4.1). Averaging over different numbers of tra-
jectories allows for additional statistical analysis (Section 4.2.6). We find
new characteristic values that may be used as a diagnostic measurement of
the regime (Figure 4.5). The power spectrum density of the drag coefficient
(4.8), solution(4.9a), and derivative of the solution (4.9) are calculated and
analyzed for the steady state case using only one trajectory. We find that
our code behaves as expected and can describe the amplitude of the interface
of two fluids undergoing Rayleigh-Taylor mixing. By studying the numer-
ically modeled stochasticity, we contribute to the statistical knowledge of
Rayleigh-Taylor Instability.

Despite having different behavior, the dynamics of each regime can be de-
scribed by the same governing equations. In this work, both sub-regimes have
been thoroughly studied and explored. RT mixing dynamics are modeled for
various power law accelerations and the numerical model converges to the
analytic solution for all tested values of the acceleration exponent. To avoid
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overly demanding computational resources, an averaging system is utilized
in which the stochastic differential equation is solved for many trajectories,
and then the trajectories are averaged. This averaging process behaves as
expected, with more trajectories decreasing the size of noisy deviations for
all measured quantities. This is demonstrated with the drag coefficient in
Figure 4.7. The averaging did not affect the qualitative properties of the
solutions and it made macro-quantities easier to reliably diagnose.

The sub-regime is determined by the acceleration exponent, with a criti-
cal value of the exponent dividing the regimes. The two sub-regimes can also
be diagnosed with a characteristic value. The combination Cv2

gh
is approx-

imately 1 in the acceleration dominated mixing regime (Figure 4.3a) while
−Cv2
v̇h

is approximately 1 in the dissipation dominated mixing regime (Figure
4.3b). If these same characteristic values can be measured for experimen-
tal or simulation data, then the particular regime of the experiment may
be determined. Whichever value of the two is close to one determines the
subregime of the system (Figure 4.5). This characteristic value provides a
valuable metric for comparing experiments, simulations, and theory.

Special attention was given to the steady state solution, when the ac-
celeration exponent is −1.0. In the steady state case, the time dependent
dynamics are minimized because the solution’s time derivative is zero. It is
easier to measure fluctuations around the mean values in the steady state
case because the mean values themselves are linear or constant rather than
time dependent power laws. Since the dynamics did not overwhelm the sig-
nal, we were able to perform rigorous statistical analysis on the fluctuations.
We measured the power spectrum density for the drag coefficient and the
solution and compared the results with each other and Kolmogorov turbu-
lence. Both the drag coefficient and the solution have non-trivial spectra and
may be fit in segments with two different power laws. Data plotted in Figure
4.8 suggest that the drag coefficient’s spectra can be described by −0.258
between frequencies 10−4 and 10−2 and −1.66 between frequences 101 and
2 × 102. In frequencies above 102, the data breaks the trend, likely due to
small sample size at large frequencies. The solution’s power spectrum density
is more linear than the drag coefficient and it expresses a more noisy signal
(Figure 4.9a). The power spectrum density of the velocity is significantly
different than canonical Kolmogorov turbulence (Figure 4.9), adding to the
evidence that RT mixing is a turbulent process distinct from Kolmogorov
turbulence [4, 2].
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The coefficient of the function describing the interface amplitude has often
been used as a diagnostic measure for RTI observations. By introducing a
stochastic process in the governing equations, we find that the coefficient is
sensitive to fluctuations inherent in disordered RT mixing and experimental
conditions. On the other hand, the exponent provides a diagnostic that is
robust to noisiness and helps determine the regime of the problem (Figure
4.1a). Since multiple decades are needed to accurately fit a power law, it
may be challenging for experimentalists to measure exponents. However,
future experiments and simulations should give more attention to measuring
and fitting the exponent of the interface growth in order to evaluate the
theoretical models of RT mixing and further understand the fundamental
science behind these systems.

In the future, this type of study may be extended in several different
ways. With small changes to the code, future studies may look at the dif-
ferent distributions of fluctuations on the drag coefficient, different types of
noise (additive vs multiplicative), or different accelerations. Currently our
group is working on spatially varying accelerations to extend the method be-
yond time dependent accelerations such as in this work. There are ongoing
opportunities to model multiplicative noise in differential equations.

Our results demonstrate how the stochastic model and similar numerical
models can be used to reliably study the effect of multiplicative noise on ob-
servational quantities. In the case of RT mixing, we may better understand
the role that microscopic fluctuations have on the macroscopic dynamics.
With knowledge about the statistical behavior of RTI, we may better under-
stand how to interpret the experimental data by determining which measures
are more or less susceptible to inheriting fluctuations, and anticipating nois-
iness in aggregate data. Studying the measurable effects of fluctuations also
helps us understand the character of the fluctuations and what physical sig-
nificance they might have.
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Chapter 5

Data analysis of simulated
Richtmyer-Meshkov interfacial
growth

5.1 Introduction

The dynamics of Rayleigh-Taylor instability (RTI) and Richtmyer-Meshkov
instability (RMI) in high energy density plasmas (HEDP) are complex pro-
cesses involving multiple simultaneous physical phenomena [15, 6, 42, 61].
Plasma considerations characterize the dynamics by a strong influence of ra-
diation transport, charge-field interactions, complex material properties, and
other effects on top of challenging hydrodynamic properties such as strong
shocks, highly contrasted fluid densities, and large perturbations [42, 15, 6].
In the past 10 to 15 years, the RTI/RMI community has made successful
headways in the understanding of HEDP hydrodynamics, including experi-
ments at high powered laser facilities [36, 82], large scale simulations with
both Eulerian and Lagrangian methods [90, 91, 28, 49, 34], and rigorous the-
oretical analyses [15, 4, 2, 74, 103]. It is known that RMI evolution depends
on the amplitude of the initial perturbation, and the small scale dynamics at
late times are non-uniform, with structures such as hot spots and cumulative
jets [91].

One still poorly understood aspect of RMI evolution is the partitioning of
energy between the interface and the bulk of the fluid flow. Understanding
this fundamental physical process will further our understanding of RMI and
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its applications in experiments and technology. After a shock wave interacts
with a fluid interface separating fluids of different acoustic impedance, two
types of motion occur in the fluid flow. The bulk of both fluids moves in the
same direction as the shock with background velocity, v∞, and an initially
perturbed interface will expand with an interface growth rate v0. This evo-
lution is illustrated in Figure 5.1. By looking at the background velocity and
the interface growth rate we may compare the amount of energy deposited to
the interface with the energy of the bulk flow [90, 45, 66]. When the initial
interface has a single mode sinusoidal perturbation, the amount of energy
deposited to the interface can be quantified by the growth rate, v0, which
depends on the shock strength, fluid properties, initial perturbation ampli-
tude, and wavelength [91, 74, 46]. The amount of energy deposited to the
fluid bulk is quantified by the background velocity v∞ and it depends on the
shock strength and fluid properties [91, 80]. Generally, only a fraction of the
shock energy is transferred to the interface. The ratio of velocities v0/v∞ is
relatively small across a broad parameter regime, ranging from v0/v∞ = 0 to
v0/v∞ ∼ 0.5 [91].

We study the effect of the initial perturbation amplitude on the RMI inter-
facial dynamics using SPH simulations described in Section 2.2.2. In order to
study the evolution of RMI in a well controlled environment, especially avoid-
ing radiation transport, charge-field interactions, and non-canonical material
properties, we use a hydrodynamic approximation. The results are compared
with existing theories, simulations, and experiments and achieve good agree-
ment. The background motion is shown to agree with linear theory [103].
We measure the initial interface growth rate and compare with linear and
weakly nonlinear theory. The dependence of the initial growth rate on the
initial perturbation amplitude is studied by fitting simulation results to an
empirical model.

SPH code was used to model Richtmyer-Meshkov instability (RMI) in a
broad range of parameters. We investigate an intermediate to high range of
Mach numbers 3, 5, and 10 and high fluid density contrasts, Atwood number
0.6, 0.8, and 0.95. The initial perturbation amplitude was varied from 0% to
100% of the initial perturbation wavelength, λ. The preliminary results of
the simulations have been presented, finding a non-monotonic dependence of
the initial growth rate on the initial perturbation amplitude, a0 [31].

In this synergistic study, the values of (v0, a0) are described with an em-
pirical model, compared to rigorous theoretical results, and the relationship
of the results with other simulations and experiments is discussed. We find
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Figure 5.1: Simulation results showing the compound motion induced by the
shock. The shock passes through the interface between fluids of different
acoustic impedance (from left to right). After the shock passage, the fluid
moves as a whole with speed v∞ < vshock to the right and the interface grows
due to the instability with growth rate v0 < v∞[31]. The colors represent
region, a property that corresponds to the initial positions. The light fluid
is shown in red and green and the heavy fluid is shown in blue.
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that the background motion agrees with linear theory within 1% [31, 103],
the initial growth of the interface has a nonmonotonic dependence on the
perturbation amplitude, and may be described by an empirical model. By
studying the relationship between initial perturbation amplitude and the ini-
tial growth of the interface, we may study the energy partitioning between
the bulk motion and the interface growth. We present an upper bound to
the energy deposited to the interface.

5.2 Simulation setup

The data analyzed in this chapter were obtained from [31] with a compu-
tational setup similar to [91]. Continuing to study along similar computa-
tional parameters allow us to expand, confirm, and strengthen the previ-
ous results. In this study, SPH code simulates a regime with strong shocks
(M ∈ {3, 5, 10}), high density contrast (A ∈ {0.6, 0.8, 0.95}) and a large
range of initial amplitudes (0 < (a0/λ) < 1). Approximately 2× 105 particles
are simulated for each set of parameters. In order to keep the computation
accurate near the interface while maintaining computational efficiency, the
spacing of particles varies across the domain, depending on the flow fields.

The dynamics of ideal mono-atomic gases are modeled with adiabatic
index γ = 5/3, initial temperature T0 = 300K, and initial pressure P0 =
2.494 × 106 Pa. The gas constants are Rl = 8.314 J/mol·K and Rh =
{2.079, 9.238×10−1, 2.132×10−1 J/mol·K} depending on Atwood number. The
densities are ρl = 1×10−3 kg/m3 and ρh = {4×10−3, 9×10−3, 3.2×10−2 kg/m3}
depending on the Atwood number. These gases are rarefied and rather stiff.
The energy per proton initially ranges from 1.92 eV to 1.03 MeV and reaches
1.1 keV to 2.8 MeV after the shock passes through the interface.

Compared to realistic gases, the simulated gases are scaled by a few or-
ders of magnitude. For example, helium has density ρHe = 1.64× 10−1 kg/m3

under initial temperature 3 × 102 K and pressure 105 Pa. Under the same
conditions, nitrogen’s density is ρN2 = 8.08 × 10−1 kg/m3. Because of these
differences as well as the existance of numerical viscosity and surface ten-
sion in the SPH code, a sequence of simulations are conducted to ensure key
measurables are not affected. In the control simulations the initial temper-
ature, pressure, and densities correspond to the realistic gas values. Good
agreement is found between SPH simulations and experiments [90, 69]. This
indicates that the dynamics of the flow are scale-invariant and the numerical
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viscosity and surface tension have a negligible effect on the results. We may
use the rarefied and stiff gases to effectively model realistic gases.

In our case, the SPH code simulates RMI in a two-dimensional domain
with size 1 × 10−2 m by 3 × 10−2 m. The shock propagates from the light
fluid to the heavy fluid with its Mach number defined relative to the speed of
sound in the light fluid (cl = 2.039×103 m/s). The fluid interface is normal to
the shock propagation and initially positioned in the middle of the domain
with approximately equal areas of light and heavy fluid.

As discussed, using characteristic scaling values when analyzing simu-
lated and experimental data is important [Section 1.1]. We scale amplitudes,
velocities, and time by the following values. The wavelength of the initial
perturbation, λ is the characteristic length scale and v∞ is the characteristic
velocity [91, 45, 31]. Both of these choices are common. These two values
can combine to provide a characteristic time, τ = λ/v∞. The scaling values
are presented in Table 5.1

The time duration of each simulation is 3τ , which provides enough time
to study the initial growth rate of RMI. This value ranges depending on the
Mach number: from τ = 9.5×10−7 s for M = 10, A = 0.6 to τ = 8.3×10−6 s
for M = 3, A = 0.95. In all cases, the reflected shock has time to reach the
end of the computational domain and in some cases the flow has time to
proceed into the highly nonlinear regime before the simulation ends [31].

5.3 Diagnostics

The complete structure and evolution of the RM flow is contained in the
SPH simulation data. Scalar and vector flow fields are completely known,
including region, density, temperature, pressure, and velocity across the en-
tire domain. Both qualitative and quantitative analysis may be performed
on SPH simulation data. Qualitative analysis can be performed on images
of these flow fields. Many important features have been identified by qual-
itative analysis of the flow fields, such as cumulative jets, hot spots, and
the shape of the bubble tip [91, 90]. For quantitative analyses, data from
regular time intervals is stored for post processing. Additionally, moving
probes (i.e. designated particles that act as markers) may be used to quan-
tify interface dynamics [91]. Moving probes allow real-time data capture,
but the probe signal may be noisy because of small scale structures such as
vortices on the sides of spikes [91]. Here, we analyze measurements of the
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Mach Atwood v∞ × 103 m/s τ × 10−6 s
0.6 2.7586 1.1963

3 0.8 2.1059 1.5670
0.95 1.2016 2.7464
0.6 5.0035 0.6596

5 0.8 3.8488 0.8574
0.95 2.2229 1.4845
0.6 10.384 0.3178

10 0.8 8.0141 0.4118
0.95 4.6475 0.7101

Table 5.1: Scaling values v∞ and τ . The fluids are monoatomic gases with
adiabatic index γ = 5/3. The velocity values are rather large due to the use
of artificial gasses in order to improve computational efficiency. When the
computations are scaled to realistic values, excellent agreement is achieved
with experiments. [31]

time evolution of the velocity and the shape of the large scale flow features
(RM bubbles and spikes).

Through a “snapshot” technique [91], where qualitative features of the
dynamics are observed at instances throughout the evolution, the flattening
of the bubble front, a checkerboard velocity field in the fluid bulk, reverse
cumulative jets, and local hot spots have been observed [91, 31]. In [31] a
new way to determine the initial RMI growth of the interface was developed.
This method uses the difference in the positions of spikes and bubble fronts
to measure the amplitude of the interface as illustrated in Figure 5.2.

Typically the simulation evolves as follows: the initial sinusoidal pertur-
bation is set by the amplitude a0 and wavelength λ, the shock propagates
from the light fluid to the heavy fluid, first compressing the interface decreas-
ing the perturbation amplitude until the shock passes the entire interface, af-
ter which RMI develops and interfacial growth begins. If the simulation runs
long enough, the shock will reflect off of the far domain wall and travel back
towards the interface. After the reflected shock meets the interface again,
the amplitude of the interface decreases [31]. We focus our analysis on the
initial growth rate, truncating most analysis before the shock is reflected.

The initial growth rate is calculated by taking the time derivative of the
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Figure 5.2: Illustration of the technique used to measure the amplitude of
the interface. Black lines mark the spike and bubble positions and their
difference provides the measure of the interface amplitude [31].

Figure 5.3: The time evolution of difference between the spike position and
bubble position. The first 6 time steps after t = 0 are used to calculate the
initial growth rate, v0 [31].
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interface amplitude over the first 6 time steps after the shock passes through
the interface. The average of v0 = h(t)/t is calculated with t = 0 corresponding
to the smallest value of the amplitude of the interface and h(t) describing the
time evolution of the amplitude of the interface. Figure 5.3 shows the time
evolution of h. The slope is measured immediately after the time step with
the smallest amplitude, before the behavior becomes nonlinear in time. The
time interval over which this calculation occurs is small with each time step
(1/20)τ = (1/20)(λ/v∞) for a total time interval of 0.3τ . It should be noted that
the initial growth rate is found by taking the time derivative of the difference
in the bubble and spike positions [91, 31]. This definition is used because
the shape of the interface does not remain sinusoidal in RMI evolution in
the case of strong shocks and high contrast fluid densities, notably causing
asymmetry in size and shape of the buble and spikes [91].

In order to use the background velocity v∞ as a characteristic scaling
value for velocity, it must first be measured. The value of v∞ is different
for different Mach and Atwood numbers and must be calculated for each
combination of these parameters. To calculate the background motion, a
planar initial interface is simulated and the time derivative of the interface
amplitude is measured within the interval between the shock passing through
the interface and the reflected shock hitting the interface. The background
velocity provides a good characteristic scaling value because it is a relevant
to the flow, it is easy to measure precisely (it agrees within 1% of zero-order
theory, and 6% of previous simulations, Table 5.2), and it provides reasonable
velocity values (on the order of ∼ 100) [Section 1.1].

5.4 Results

5.4.1 Velocity of the background motion

The fluid bulk and interface move together with velocity v∞ after the shock
passes through the surface. In reference [31], the value of v∞ is calculated in
SPH simulations for planar interfaces with a broad parameter regime of Mach
and Atwood numbers. This value is crucial for the analysis of the interface
motion, v0 because we use it as a scaling parameter. By comparing these
two velocities, we may measure how the shock’s initial energy is partitioned
between the bulk flow and the interface instability.

The bulk velocity v∞ is expected to depend on Mach number, Atwood
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Mach Atwood Simulated v∞/cl Theoretical v∞/cl Percent Error
0.6 1.3529 1.3609 0.5878

3 0.8 1.0328 1.0391 0.6063
0.95 0.5893 0.5924 0.5233
0.6 2.4539 2.4710 0.6920

5 0.8 1.8876 1.8998 0.6422
0.95 1.0902 1.0961 0.5383
0.6 5.0927 5.1202 0.5371

10 0.8 3.9512 3.9512 0.5264
0.95 2.2793 2.2938 0.6321

Table 5.2: Simulated [31] and theoretical [103] values of the background
velocity normalized by the speed of sound in the light fluid. The results
agree within 1% for all simulated Mach and Atwood values.

number, and the adiabatic index of the fluids [80]. It can be calculated from
zero-order theory, although v∞ has a complicated dependence on M and A
for strong, finite shocks and high, finite density contrast [80, 103]. Previous
studies have shown that v∞ is supersonic for strong shocks (v∞/cl > 1 for
M >∼ 2.5) and the bulk velocity is slower than the shock velocity (v∞/cl <
M) by approximately one order of magnitude [91]. Compared to the post
shock velocity in a standard shock problem, up, the bulk velocity is smaller
(v∞/cl < up/cl = M(1− 1/ρ21) where ρ21 = (γ+12M )/[(γ+12M )+2] [91, 14].

As shown in Table 5.2, the SPH simulated values of v∞ agree quantita-
tively within 6% of previous SPH studies [91] and within 1% of zero-order
theory [103, 80]. [31] found that for fixed Atwood number, increasing Mach
number increases v∞ and for fixed Mach number, increasing Atwood num-
ber decreases v∞. The values of v∞ in the parameter range 3 ≤ M ≤ 10,
0.6 ≤ A ≤ 0.95, and γ = 5/3 scale with M and A(1 − A). The v∞ values
can be empirically modeled as (v∞−up)/cl ≈ M(κ1(A(1 − A)) + κ0) with fit
parameters κ1 = 1.53 and κ0 = −0.61) [31].

5.4.2 Growth of the interface amplitude

RMI growth begins after the shock passes all the way through an initially per-
turbed interface. At early times, the amplitude of single-mode sinusoidally
perturbed interface will grow linearly with time. At small but finite times,
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the growth slows as it enters the nonlinear regime. We are primarily inter-
ested in measuring the growth rate in the linear stage, v0. The value of v0
depends on Mach number, Atwood number, the speed of sound in the light
fluid, the adiabatic index, and the initial perturbation amplitude, a0 [103].

The measured values of v0 are scaled by the characteristic velocity v∞
[Table 5.1]. It is important to note that v0/v∞ is a relative measurement
of the interface and bulk velocities, not an absolute measurement of the
interface growth. This relative measurement gives us insight into the energy
partitioning between the interface and bulk, providing more meaning than
the absolute measure of v0 alone.

Dependence on the initial perturbation amplitude

Linear theory can be used when the initial perturbation amplitude is small
because the growth rate of the interface v0 depends linearly on a0 for small
values of the initial perturbation amplitude (when ka0 � 1) [98, 74, 46].
Linear theory provides the initial growth rate as a function of Mach number,
Atwood number, adiabatic index, speed of sound, and the initial perturbation
wavelength [103]:

[v0]linear = C0cl(ka0), C0 = C0(M,A, γ) (5.1)

SPH simulations of RMI agree with the linear growth rate for small values
of the initial perturbation amplitude ((ka0) ∼ O(10−2), O(10−1)), indicating
the simulation results are accurate and valid [91, 31].

For (ka0) < 1 (but not (ka0)� 1), the interfacial dynamics are no longer
linear and incompressible weakly nonlinear theory can be applied [98, 74,
46]. Weakly nonlinear theory suggests that for small but finite values of a0,
the initial growth of the interface can be described by correcting the linear
theory (Equation 5.1) by a factor F as [v0]W.N.L = F [v0]linear [74, 103]. The
correction factor, F can be calculated and is a power law function of the
initial amplitude a0 and the Atwood number A. As per weakly nonlinear
theory, the initial growth rate is an increasing function of a0 that grows
slower than linear; [v0]W.N.L is expected to be a monotonic function [98, 46].

The SPH simulation results agree with the weakly nonlinear theory within
10% for small values of the initial amplitude (a0/λ ≤ 0.1) and all values of
Atwood number (A = {0.6, 0.8, 0.95}) [98, 46, 31]. However, for values of
a0 above ∼ 0.3, the simulated v0 is smaller than [v0]W.N.L [31, 91, 46]. The
discrepancy between simulations and experiment may be due to complex
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Figure 5.4: The initial RMI growth rate as a function of initial perturbation
amplitude from simulation results (squares), linear theory (line), and weakly
nonlinear theory (dashed line) [31].

physical processes such as secondary shocks and geometric factors which are
not accounted for in weakly nonlinear theory. To our knowledge, no existing
theory is capable of rigorously describing these effects.

To illustrate the extent of agreement with theory, an example of simulated
(v0, a0) data [31] is shown with linear theory and weakly nonlinear theory
[103] in Figure 5.4.

5.4.3 Empirical model of the interface growth

RTI growth has traditionally thought to increase as the initial perturbation
amplitude increases, as per linear and weakly nonlinear theory. To the au-
thor’s knowledge,[31] was the first presentation of non-monotonic dependence
of v0 on the initial perturbation amplitude. As published in [31], the inter-
face growth rate has a non-monotonic dependence on the initial perturbation
amplitude, a0. As seen in Figure 5.5, v0 increases as a0 increases up to a0
between 0.2 and 0.4% λ. After the peak v0 value, the trend decreases at a
decreasing rate (it is decreasing and “concave up”).

To quantitatively investigate the behavior of the interface growth, we fit
an empirical model to the simulated data using the function:

v0/v∞ = C1
a0
λ
e−C2

a0
λ (5.2)

where C1 and C2 are adjustable parameters and A is the Atwood number.
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Mach Atwood C1 (fit) C2 (fit)
0.6 3.11 2.94

3 0.8 4.17 3.06
0.95 4.59 2.85
0.6 2.69 2.60

5 0.8 3.95 2.92
0.95 4.64 2.81
0.6 2.49 2.41

10 0.8 3.77 2.69
0.95 4.65 2.74

Table 5.3: Fitted coefficient values from the empirical model (Equation 5.2)
for all simulated values of Mach and Atwood number.

This function was chosen because it recreates the linear theory in the limit
of small initial perturbation amplitude and has the same concavity for large
initial perturbation amplitude [Section 1.1 ]. Table 5.3 shows the fit param-
eters for all simulated Mach and Atwood numbers. Unlike the analysis for
v∞ we do not present comparison with linear theory because the theory is
inaccurate for larger values of the initial perturbation amplitude. Linear the-
ory is only expected to be accurate over ∼ 10% of the range of a0/λ values
analyzed.

Figure 5.5a shows the simulated data from all Mach and Atwood numbers
together as a scatter plot. The average value of C1 is 3.78 with a standard
deviation of 0.839 leading to a deviation of ∼ 22%. C1 is expected to show
significant dependence on Mach and Atwood number. The fit coefficient C1 is
related to the coefficient in linear theory and weakly nonlinear theory. In the
theoretical models, the coefficient depends on Mach and Atwood number,
thus we expect C1 to depend on M and A. Since a wide range of Mach
and Atwood values are simulated, we expect a large range in C1 values.
The scatter collapses if the initial growth rate is normalized by the Atwood
number, as seen in Figure 5.5b. This is expected from linear theory, where
the coefficient depends on A. We divide Equation 5.2 by A and then analyze
the fit parameter C1/A. The average value of C1/A is 4.81 with a standard
deviation of 0.332 corresponding to a deviation of ∼ 7%. Dividing by Atwood
number significantly collapses the data quantitatively as well as qualitatively.
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(a) Simulated values of the initial
growth rate normalized by the bulk mo-
tion v∞.

(b) Simulated values of the initial
growth rate normalized by Av∞.

Figure 5.5: The initial growth rate of the interface (v0/v∞) versus the initial
perturbation amplitude (a0/λ). In (b) the data collapses when divided by
Atwood number, A.

In other words, there is a constant parameter in the empirical model that
varies less than 10% across all simulated Mach and Atwood numbers.

Remarkably, the fit parameter C2 has little variation with respect to Mach
and Atwood number. The average value of C2 is 2.78 with a standard devi-
ation of 0.196 leading to a deviation of ∼ 7%. The simulated density ratio
changes from ρh/ρl ∼ 4 to ∼ 40 and the Mach number ranges from 3 to 10.
The exponent of the fit varies within 7% over all simulated M and A values.
The same C2 value is be applicable across a broad parameter range. This
universal factor may be an important quantification of RM flow dynamics.

Figure 5.6 shows an example of a single run of SPH data plotted with its
fit. While all individual data sets show similar trends, we choose a param-
eter combination in the middle of the tested range to illustrate the general
behavior, using Mach number 5 and Atwood number 0.6. In Figure 5.6b
we present the residual values for this particular case. The residuals are all
less than 0.08 (dimensionless units ∼ v0/Av∞), while the data’s mean is 0.36.
The fit may provide insight into the behavior of the initial growth at larger
initial perturbation amplitudes. Future studies may improve its agreement
with data by adding more points to the fit or extending the range.
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(a) Simulated values of the initial
growth rate normalized by the bulk mo-
tion v∞ and the fit line (Equation 5.2)
for M = 5, A = 0.6.

(b) Residuals between the data and fit
from Figure 5.6a.

Figure 5.6: One example of details of the fit. (a) shows the v0/v∞ data (dots)
and the fit line (dashed line) while (b) plots the difference between the two
(the residuals).

5.5 Energy partitioning

The nonmonotonic dependence of v0 on a0 indicates that there may be a
maximum amount of energy deposited at the interface (the rest going into
bulk fluid flow). Since the energy deposited at the interface is proportional
to v20, the peak value of v0 corresponds to the peak value of the interface
energy. The peak value of v0/v∞ occurs between a0/λ is 0.35 and 0.40. After
this peak value it decreases with a decreasing rate [Figure 5.5].

We use E0 to denote the energy deposited at the interface and E∞ to
denote the energy of the bulk motion in analogy with v0 and v∞. Quan-
titatively, the energy ratio can be calculated as E0/E∞ ∼ v20/v2∞ ∼ (v0/v∞)2.
The the maximum of v0/Av∞ for each simulation is found and the average
of these maximums is 〈[v0/Av∞]max〉 = 0.709. By rearranging and squaring,
we produce the following statement: according to SPH simulations [31], the
maximum fraction of energy deposited to the interface in RMI is proportional
to A2 scaled by coefficient 0.7092 = 0.503. In other words, the maximum of
E0/E∞ is roughly half of the Atwood number squared.

An alternate value of the ratio of energies can be found by finding the
zero of the derivative of Equation 5.2. The maximum of Equation 5.2 occurs
when a0/λ = 1/C2. By plugging the location of the maximum back into the

94



original equation, we obtain a peak value of 〈[v0/Av∞]max〉 = 0.64 leading to
energy ratio E0/E∞ ∼ 0.4A2. In either method of calculation, this result is
the upper bound of the ratio of energy partitioning. In the limit of A → 1,
the energy ratio approaches 0.4 or 0.5, implying that the absolute maximum
of energy deposited at the interface is half of the energy of the bulk motion.

We find both the peak value and the position of the peak value of v0/Av∞.
In order to determine the position of the peak, we look at the empirical
model’s derivative. The derivative of the empirical model is zero when
(a0/λ)peak = 1/C2. The average value of 1/C2 is 0.361 with an standard deviation
of 0.0266 corresponding to a 7% deviation. This means that the maximum
amount of energy is deposited to the interface when the initial perturbation
amplitude is roughly one third of the perturbation wavelength. For applica-
tions such as inertial confinement, where the development of RMI interfacial
growth hinders combustion, experiment designers may want to insure the
interface has no perturbations of amplitude near one third the wavelength.
This result provides a possible method of controlling RMI growth.

5.6 Discussion

SPH simulations may provide more complete information about the system
than experiments and the simulated parameters are more controllable than
experiments. As discussed in Section 1.1, a synergistic analysis provides more
knowledge than the presentation of data alone. The initial interfacial growth
rate of RMI is known to depend on the initial perturbation amplitude. A
recent study has shown a surprising non-monotonic dependence [31] that we
describe quantitatively and analyze in regards to fundamental physical values
such as the energy deposited to the interface.

Using measurements of the background velocity and the interface’s initial
growth rate obtained in [31] we compare results with theory, describe the data
with an empirical model, and investigate what data may tell us about the
energy partitioning between the bulk motion and the growth of the interface.

We compared simulated values of v∞, the background motion with theory
[103] and achieve excellent agreement. The simulated and theoretical values
differ by less than 1% in all cases (Table 5.2). This agreement validates the
use of SPH code in this extreme parameter regime.

The simulated values of the initial interfacial growth rate v0 are also ana-
lyzed and compared with theory. For small values of the initial perturbation
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amplitude, a0, the simulations agree with linear theory and weakly nonlinear
theory. However the simulated initial growth rate is significantly smaller than
weakly nonlinear theory for large initial perturbation amplitudes as seen in
Figure 5.4. The existing theory is unable to adequately describe the data for
large initial perturbation amplitudes. This opens the door for new descrip-
tions of RMI evolution in the case of large initial perturbation amplitude
and may have consequences in the design of inertial confinement fusion ex-
periments. The existing theory states that the growth rate has a monotonic
dependence on a0, indicating that to minimize growth, one should use the
smallest initial perturbation amplitude possible. However, the simulation re-
sults suggest the interface growth rate has a maximum around a0 ∼ 1/3λ and
may be small at large initial perturbation amplitudes.

To describe the initial growth rate data, we use an empirical model of the
form C1

a0
λ
e−C2

a0
λ . When fit to the simulated data, this model reproduces the

theoretical results at small initial perturbation amplitude (a0/λ ∼< 0.1) while
also describing the data at large initial perturbation amplitude. An example
of the data shown with the fit is seen in Figure 5.6a. The fit parameter C1

is related to the linear and weakly nonlinear theories and varies with Mach
and Atwood number. The fit parameter C2 is remarkably constant over the
simulated parameter range. C2 variation is 7% while Mach number ranges
from 3 to 10 and the density ratio changes by an order of magnitude (Table
5.3). The exponent may provide insight into the RM interface growth for
large initial perturbation amplitudes.

We measure the peak value of the initial growth rate as well as the po-
sition of the peak. For all simulated values of Mach and Atwood number,
the peak value of the initial growth rate occurs between a0/λ = 0.35 and 0.4
(Figure 5.5a). The position of the peak seems to be the same for different
combinations of parameters. It is constant with respect to the parameters
varied in this study, Mach and Atwood number. This study does not address
the behavior with respect to other important parameters such as the adia-
batic index (γ), and further simulations and analysis are needed to verify the
universality of the perturbation amplitude corresponding to the peak growth
rate.

Since both bulk motion, v∞ and the interface growth, v0 are measured,
we analyze their ratio in order to study the partitioning of energy between
the bulk and the interface. The maximum value of the velocity ratio can
provide an upper limit to the maximum fraction of energy deposited to the
interface during RMI. We find that the maximum energy ratio is ∼ 0.5A2,

96



indicating that the upper limit on the relative growth rate of the interface is
approximately half of the Atwood number squared. In reality, this quantity
may be even smaller due to losses. At late times of RMI evolution, the
energy of the interface may be even smaller due to the appearance of small
scale structures and interfacial mixing.

SPH simulations provide valuable data for understanding early RMI evo-
lution in the case of strong shocks and high density contrast. The simulated
data achieves very good agreement with theory. We are able to discover new
trends and place limits on fundamental physical quantities. Further studies
are needed in experimental, numerical, and theoretical avenues in order to
verify and expand on the results.
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Chapter 6

Conclusion

This work provides an example of the much needed analysis of RTI/RMI ex-
periments and simulations. The field will benefit from more comprehensive
analyses of data, rather than publishing experimental results alone. There
exists a plethora of data that may still be analyzed systematically, as ex-
emplified in this thesis. Future work may improve the fits of experimental
data by exploring well designed parameter spaces, modeling a wider range of
stochastic effects, and measuring delicate, small scale flow features in simu-
lations. We present three sets of systematic data analysis of Rayleigh-Taylor
unstable flows.

Data analysis of laboratory supernova experiments

We conduct a thorough analysis of experimental data in supernova exper-
iments conducted at high powered laser facilities. We discover more infor-
mation from experimental images than previous studies, evaluating what
information experiments and simulations may tell us about the fundamen-
tals of RTI and RT mixing in HEDP by comparing the data with rigorous
theoretical approaches. The radius of curvature of the interface, as seen in
all available images, is analyzed and determined to be an imprint of initial
conditions.

Although the specific experimental condition causing the curvature is
unable to be determined from the experimental images and available sim-
ulations, it is a topic of future study. Investigating how the curvature is
imprinted on to the system would involve simulations of multiple simulta-
neous physical phenomenon including laser-material interactions, boundary
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effects, and ionization effects as well as experiments carefully designed to
isolate physical processes of laser ablation creating a blast wave in a finite
domain.

The confirmation of a non-evolving (constant) curvature allows us to ana-
lyze more than a single spike per image to determine the interface amplitude.
More measurements improve the analysis shown here and may be used in fu-
ture analysis of laboratory supernova experiments.

The growth of the amplitude in laboratory supernova experiments was
measured and found to grow as a power law with exponent >∼ 1, indicating
that the interface does accelerate. The experimental data were compared
with theoretical models and simulation results. All are within good agree-
ment and a larger dynamic range of data or data with higher resolution
are needed to differentiate the different models. Future studies using greater
quantity or higher quality of experimental data may be able to make stronger
statements about the growth of the interface in Rayleigh-Taylor flows in the
high energy density regime.

With a greater quantity of data, future studies could also perform statis-
tical analysis on the spread of coefficient values. As demonstrated in Chapter
4, the fluctuations of the coefficient may be related to fluctuations inherent
in Rayleigh-Taylor mixing. An integrated study comparing stochastic mod-
eling and experimental data may provide valuable insight to the fundamental
processes occurring on small scales in RTI.

Data analysis of a stochastic model of RT mixing

We study the statistically unsteadiness of RT mixing by numerically mod-
eling the set of stochastic nonlinear differential equations which govern the
rate of change of momentum in a packet of fluid undergoing RT instability.
We model multiplicative noise in the acceleration dominated mixing regime
and the dissipation dominated mixing regime. By analyzing the modeled
solutions, we measure the influence of fluctuations on measurable quantities
like the power law describing the growth of the interface. New characteristic
values are found which may be used as a diagnostic. The numerical differen-
tial equation solver, which typically averages over thousands of trajectories,
is also run for a single trajectory in the steady state case and the spectra of
fluctuations is measured.

We find that the power law solution’s exponent is less sensitive to fluctu-
ations than the coefficient and therefore may be a better diagnostic measure-
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ment. Although determining the exponent of power laws requires measure-
ments over long dynamic ranges, this would more reliably characterize the
system. Another diagnostic that may be used in experiments and simula-
tions are the two characteristic values in the mixing regime. The subregime
(acceleration dominated or dissipation dominated mixing regime) of the sys-
tem can be determined by looking at the characteristic values described in
Section 4.

A similar model has been used to study the constant acceleration case
and time dependent power law accelerations with exponents > −1. Here
we analyze time dependent power law accelerations with exponents between
-2 and 0. Future studies using the same infrastructure may study spatially
varying accelerations rather than accelerations as a function of time. Ac-
celerations with power law dependence on position are expected to have
subregimes analogous, but not equivalent to the subregimes in the mixing
regime (acceleration and dissipation dominated mixing).

Data analysis of simulated RMI interfacial growth

We investigate the effect of the initial perturbation amplitude on the RMI
interfacial dynamics using Single Particle Hydrodynamics simulations. The
compound motion of the interface and bulk fluid flow is measured, an em-
pirical model is found to describe data, and we find an upper bound for the
amount of energy deposited to the interface.

The velocities describing large scale RMI evolution are measured. We use
the measured background velocity as a characteristic velocity. The initial
growth rate of the velocity is measured and its behavior with respect to the
initial perturbation amplitude is investigated. A non-monotonic dependence,
as seen in [31] is described by an empirical model. We measure the maximum
and the initial perturbation amplitude corresponding to the maximum. By
relating the velocity ratios to the energy ratios, we find an upper bound for
the amount of energy deposited to the interface in RMI.

We present several important results from SPH data, yet the data ana-
lyzed in this thesis have not been analyzed to their full extent. It is easy
to find new measurements to make on existing data, especially from sim-
ulations which contain vast amounts of information. In particular, future
studies should include quantitative analysis of scalar and velocity fields and
the effect of the adiabatic indicies of the two fluids.

Experimentally, it would be useful to verify the result that the initial
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growth rate has a non-monotonic dependence of the initial perturbation am-
plitude. By conducting series of experiments with varying initial amplitudes
in both hydrodynamic systems and high energy density plasmas, we may
better understand this important result leading to control of RTI/RMI in
applications such as inertial confinement fusion. Additionally, there exists
experimental data that may be simulated using SPH code and analyzed in a
similar manner as this thesis.

In order to determine the role that hot spots and cumulative jets play
in RT/RM dynamics [66, 67], the pressure and temperature gradients across
the interface should be measured. It is evident from qualitative analysis of
simulation results that the pressure varies along the length of a spike. Future
investigations can study the relationship between this pressure gradient and
the growth of the interface. Does the pressure gradient relate directly to the
growth of the interface or do they have a more complicated relationship?

RT mixing is known to have physical characteristics distinct from canon-
ical Kolmogorov turbulence [71, 2]. A quantitative statistical analysis of the
velocity field at late times can be compared with Kolmogorov turbulence
may be achieved with SPH simulations.

The adiabatic index, γ of the fluids is an indication of the compressibil-
ity of the fluid. When studying systems with strong pressure fluctuations
(inherent in RMI), the compressibility may have a significant effect on the
dynamics. Future studies will investigate the γ effect on the non-monotonic
dependence of the initial interfacial growth rate on the initial perturbation
amplitude. Such a study would enhance the empirical model and better
describe RMI for large initial perturbations.

Data analysis of Rayleigh-Taylor unstable flows

Overall we present a systematic analysis of RT unstable flows, acquiring
new findings from multiple sources of data. Due to funding for inertial con-
finement fusion research and the large simulations capable today, Rayleigh-
Taylor and Richtmyer-Meshkov flows provide immense sources of unanalyzed
data. These problems, while ubiquitous in nature and applications, are
still challenging: analysis must account for statistical unsteadiness, multiple
scales, nonlinearity, nonlocalness, and especially in the case of high energy
density, multiple physical effects. In the future, we hope more analyses in
the same style as this thesis may be carried out to better understand the
challenging topic of Rayleigh-Taylor unstable flows.
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Contributions

This thesis builds upon data and research of others. In this section we spell
out exactly what steps were done by the author and what steps are provided
by others.

Data analysis of laboratory supernova experiments

The experiment was conceived and conducted by researchers at Lawrence Liv-
ermore National Laboratory, University of Michigan, and the Omega Laser
Facility. Several are listed as co-authors in reference [94] and related work
can be found in [37, 57, 55, 56, 79, 81]. Carolyn Kuranz provided experimen-
tal images and corresponding experimental quantities (e.g. target specifica-
tions). We performed analysis of those images and published the results in
[94]. This publication is the basis of Chapter 3.

Specifically, Figures 2.1 and 2.2 were provided by our collaborators and
Figures 3.1 through 3.4, Tables 3.1-3.2, and corresponding discussion are
original work from the author.

Data analysis of a stochastic model of RT mixing

The numerical differential equation solver used in Chapter 4 was previously
used in [5, 6]. In previous studies, the acceleration exponent varied from 0
to −1. In this thesis we present similar analyses of acceleration exponents
between −1 and −2 in addition to new types of analysis.

We applied the numerical differential equation solver to a new regime
(extending beyond previously studied parameter ranges) and are responsible
for all of the figures in Chapter 4.

Data analysis of simulated RMI interfacial growth

Chapter 5 builds upon the work in [31]. Zachary Dell, a student who studied
with Snezhana Abarzhi, ran simulations using code from Stellingwerf Con-
sulting [93] and measured the values of background motion (v∞) and interface
growth (v0) and provided Figures 5.1 through 5.4. Zachary’s data is used in
Figures 5.5 and 5.6 although the actual figures and related discussion is work
from the author.
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We analyzed the velocities, including the development and implementa-
tion of the empirical model (Section 5.4.3), the study of energy partitioning
(Section 5.5) and are responsible for Figures 5.5 through 5.6.
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Appendix

Experimental Images

Here we present all 12 images from which spike amplitude measurements
were made. They are grouped according to target type. In addition, images
of planar target types are shown. In planar experiments, bubbles and spikes
do not develop but they were used for measurements of shock curvature. In
all cases the shock propagates from left to right and the small crosses indicate
position measurements.
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(a) Taken at 17 ns (b) Taken at 17 ns

(c) Taken at 21 ns (d) Taken at 25 ns

Figure 6.1: Experimental images from single mode target types.
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(a) Taken at 17 ns (b) Taken at 17 ns

(c) Taken at 21 ns

Figure 6.2: Experimental images from small-two-mode target types.
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(a) Taken at 13 ns (b) Taken at 17 ns

(c) Taken at 17 ns (d) Taken at 21 ns

(e) Taken at 25 ns

Figure 6.3: Experimental images from large-two-mode target types.
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(a) Taken at 13 ns (b) Taken at 17 ns

(c) Taken at 21 ns (d) Taken at 25 ns

Figure 6.4: Experimental images from planar target types.
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