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Abstract

This dissertation primarily proposes data-driven methods to handle uncer-
tainty in problems related to Enterprise-wide Optimization (EWO). Data-
driven methods are characterized by the direct use of data (historical and/or
forecast) in the construction of models for the uncertain parameters that nat-
urally arise from real-world applications. Such uncertainty models are then
incorporated into the optimization model describing the operations of an en-
terprise. Before addressing uncertainty in EWO problems, Chapter 2 deals
with the integration of deterministic planning and scheduling operations of a
network of batch plants. The main contributions of this chapter include the
modeling of sequence-dependent changeovers across time periods for a unit-
specific general precedence scheduling formulation, the hybrid decomposition
scheme using Bilevel and Temporal Lagrangean Decomposition approaches,
and the solution of subproblems in parallel. Chapters 3 to 6 propose differ-
ent data analytics techniques to account for stochasticity in EWO problems.
Chapter 3 deals with scenario generation via statistical property matching in
the context of stochastic programming. A distribution matching problem is
proposed that addresses the under-specification shortcoming of the originally
proposed moment matching method. Chapter 4 deals with data-driven in-
dividual and joint chance constraints with right-hand side uncertainty. The
distributions are estimated with kernel smoothing and are considered to be in
a confidence set, which is also considered to contain the true, unknown distri-
butions. The chapter proposes the calculation of the size of the confidence set
based on the standard errors estimated from the smoothing process. Chap-
ter 5 proposes the use of quantile regression to model production variability in
the context of Sales & Operations Planning. The approach relies on available
historical data of actual vs. planned production rates from which the deviation
from plan is defined and considered a random variable. Chapter 6 addresses
the combined optimal procurement contract selection and pricing problems.
Different price-response models, linear and nonlinear, are considered in the
latter problem. Results show that setting selling prices in the presence of
uncertainty leads to the use of different purchasing contracts.
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Chapter 1

Introduction

This thesis primarily proposes data analytics methods for handling uncer-
tainty in problems related to Enterprise-wide Optimization (EWO) (Gross-
mann, 2005) with applications based on chemical process networks. Data ana-
lytics methods are data-driven in the sense that they operate directly on avail-
able historical and/or forecast data to extract useful information and model
variability or uncertainty. The constructed data models or uncertainty mod-
els are then incorporated into mathematical optimization models for EWO
problems.

An additional contribution of this thesis, even though not directly related
to data analytics methods, is decomposition approaches for the integration
of deterministic planning and scheduling models of an integrated chemical
site. In addition to developing significant enhancements of a previously pro-
posed continuous-time scheduling formulation, we apply a hybrid decomposi-
tion scheme to solve a large-scale industrial problem and make use of parallel
computing to achieve good solutions in practical computing time.

The objectives of this thesis are as follows:

1. Develop enhancements of a continuous-time scheduling formulation (Unit-
Specific General Precedence or USGP) to account for the batching prob-
lem and sequence-dependent changeovers across time periods;

2. Effectively solve in parallel a hybrid decomposition scheme based on
Bilevel Decomposition and Temporal Lagrangean Decomposition to solve
large-scale deterministic integrated planning and scheduling problems.

3. Generate scenarios using a robust data-driven method via statistical-
property matching of historical and forecast data in the context of stochas-
tic programming;

4. Reformulate data-driven individual and joint chance constraints with
right-hand side uncertainty using kernel smoothing;

5. Develop a data-driven method to incorporate production variability in
the operations planning stage of the Sales & Operations Planning process
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of a manufacturer;

6. Integrate optimal procurement contract selection and selling price op-
timization with general price-response models in a unified optimization
model under uncertainty.

The remainder of this chapter contains a review of the basic concepts that
are dealt with in the rest of the thesis. In particular, Section 1.1 provides
a brief review of the research efforts in EWO by focusing on planning and
scheduling formulations of chemical processes as well as decomposition strate-
gies to tackle large-scale instances. Section 1.2 gives an overview of fundamen-
tal concepts and applications of Probability and Statistics that are relevant
for optimization under uncertainty and data-driven methods. It is intended to
be a first-read for non-mathematicians specialized in either areas. Section 1.3
defines mathematical optimization under uncertainty in general terms. Two
special cases of the general formulation (Stochastic and Chance-Constrained
Programming) are briefly discussed. This introductory chapter ends with a
brief overview of the chapters of the thesis in Section 1.4.

1.1 Enterprise-wide Optimization: Planning,
Scheduling, and Decomposition Strategies

The Process Systems Engineering (PSE) and Operations Research (OR) com-
munities have contributed to the development of models and solution strategies
to tackle the decision-making on three different time scales in Enterprise-Wide
Optimization (EWO) problems. The long-term decisions (years) belong to
the strategic level and are usually related to investments, plant capacity ex-
pansion and retrofit; the medium-term decisions (months, years) pertain to
planning and commonly refer to production planning and inventory control;
the short-term decisions (days, weeks) represent the scheduling of operations,
i.e., determining the detailed timing and sequencing of operations. Therefore,
the integration of different time scales within a mathematical optimization
framework becomes valuable for the decision-making process in an enterprise.
In order to make this integration efficient for solving real-world problems,
special-purpose models and decomposition algorithms need to be investigated.
Reviews by Grossmann (2005) and Varma et al. (2007) provide more details on
the relevance of EWO activities in academic research and industrial practice.

Production planning and scheduling problems in the chemical, petrochem-
ical, and pharmaceutical industries are reviewed in the works by Sung & Mar-
avelias (2007) and Verderame et al. (2010). Planning formulations tend to be
Linear Programming (LP), or sometimes Mixed-Integer Linear Programming
(MILP), models. Constraints mainly include material and inventory balances
that account for raw material purchases, production amounts, and sales. De-
cision variables typically include production rates, inventory levels, and raw
material, intermediate, and finished product flows. The objective function is
usually a financial performance indicator, such as profit or total costs, which
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include revenue from sales, and operating, transportation, and inventory costs
Kallrath (2002). For scheduling, the objective function may correspond to
minimizing makespan or tardiness. Note that, in general, the planning model
is not concerned with the sequencing of operations in each plant or reactor.

However, when applied to multi-product plants, the lack of a rigorous treat-
ment of the production sequencing may underestimate the total costs and
yield a plan that is not feasible. Without adding considerable complexity to
the planning model, Erdirik-Dogan & Grossmann (2007) proposed a Detailed
Planning (DP) model that utilizes Traveling Salesman Problem (TSP) con-
straints to generate a cyclic schedule, which is broken in one link to yield an
optimal sequence with minimum changeover times. The formulation allows
sequence-dependent changeovers across time periods. The planning model
used in this work is based on the DP model. Liu, Pinto, & Papageorgiou
(2008) have also investigated the estimation of the sequencing using TSP con-
straints.

At the scheduling level, a number of models that use either discrete- or
continuous-time representation of events have been proposed. A review of
both representations including their mathematical formulations can be found
in Floudas & Lin (2004). We will focus on continuous-time representation
models in this work. For sequential batch/continuous processes, two event rep-
resentations have received a great deal of attention: time slots and precedence-
based.

The main idea in the use of time slots is that each product can be assigned
to a specific slot that has variable length. In some cases, especially in continu-
ous processes, the number of time slots to be allocated for each reactor is known
a priori. However, in batch processes that may not be true and additional time
slots have to be allocated, thus increasing the size of the problem (Erdirik-
Dogan & Grossmann, 2008). Likewise in the aforementioned DP formulation,
the works by Lima, Grossmann, & Jiao (2011) and Kopanos, Puigjaner, &Mar-
avelias (2011) have the desirable feature of sequence-dependent changeovers
across adjacent time periods, which even though adds more complexity to the
model due to the larger number of binary and continuous variables, renders
more realistic plans by not imposing a “hard” barrier for changeovers across
time periods.

Unlike time slot models, precedence-based scheduling models effectively
model changeovers by means of Big-M constraints. The two types of prece-
dence relationships are local (immediate) and global (general) that are used
to track the relative position of products in the production sequence. Four
types of precedence-based models have been proposed: Unit-Specific Imme-
diate Precedence (USIP) (Cerdá, Henning, & Grossmann, 1997), Immediate
Precedence (IP) (Méndez, Henning, & Cerdá, 2000), General Precedence (GP)
(Méndez, Henning, & Cerdá, 2001), and Unit-Specific General Precedence
(USGP) (Kopanos, Laínez, & Puigjaner, 2009). Briefly, IP and USIP differ
in that the latter only takes into account the immediate precedence of prod-
ucts that are assigned to the same processing unit, whereas the former does
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not. The GP model generalizes the concept of precedence by accounting for
all precedence relations (immediate or not) and requires fewer binary variables
than the immediate precedence models, but cannot account for changeovers
costs. To overcome that limitation, the USGP model was proposed.

When attempting to solve large-scale industrial problems, some authors
have identified the need to decompose the problem into subproblems (Conejo et
al., 2006). Decomposition approaches take advantage of specific structures of
the optimization problems. Two such cases arise in practice: the complicating
constraint and the complicating variable structures, as shown in Figure 1.1.
Note that complicating constraints involve variables from different blocks, and
complicating variables link constraints pertaining to different blocks.

Figure 1.1: Schematic of the set of constraints of a decomposable optimization
problem with complicating (a) constraints and (b) variables.

Different decomposition approaches have been proposed depending on the
nature of the optimization problem (e.g., linear vs. nonlinear, purely contin-
uous vs. mixed-integer). For LP and MILP problems with complicating con-
straints, the Dantzig-Wolfe and Branch-and-Price have been applied. When
complicating variables are present, Benders decomposition is typically used
although it is restricted to having only integer variables in the first-stage de-
cisions for stochastic programming. It should be noted that problems with
complicating variables can always be converted to problems with complicating
constraints, which are then solved by Lagrangean Decomposition (a particular
case of Lagrangean Relaxation (Guignard, 2003)). The main idea of such ap-
proach is to create copies of a subset of the variables (called copy variables) and
add equality constraints that equate the original and the copy variables. This
yields a problem with complicating constraints, which are dualized to allow
decomposition. Another decomposition approach is the Bilevel Decomposition
proposed by Iyer & Grossmann (1998). It involves solving an aggregate for-
mulation in the upper level and a detailed formulation in the lower level with
some decisions fixed by the upper level. A review of methods and decompo-
sition approaches for the integration of planning and scheduling can be found
in the work by Maravelias & Sung (2009).
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1.2 Probability and Statistics: An Overview
In this section, we provide a basic overview of concepts in Probability and
Statistics that are inherent in modeling optimization problems under uncer-
tainty. These concepts are even more extensively used when applying data
analytics or data-driven methods to construct uncertainty models, which in
turn are incorporated in EWO models (e.g., planning and scheduling). We do
not attempt to provide a thorough account of probability and measure theories.
Several standard references are available, including textbooks (e.g., Papoulis
(1991); Bauer (2001); Forbes et al. (2011); Hogg, McKean, & Craig (2012))
and lecture notes (e.g., http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/).

1.2.1 Basics
1.2.1.1 Random Variables

We start this overview by defining random variables. A random variable
(r.v.) can take on values that are subject to variations. More formally, a
r.v. X : Ω → E is a measurable function from the set of possible outcomes
Ω to some set E. If the image of X is countably infinite (i.e., it has the
same cardinality or number of elements as a subset of the set of natural or
integer numbers), then it is called a discrete random variable. Otherwise, if E
is uncountably infinite, then X is a continuous random variable (also, usually,
Ω = R, which we assume throughout this overview).
Remark 1. It is important to note that a r.v. is in fact a real-valued point
function. Without delving into details of probability spaces (see references
in the beginning of this section), a r.v. X(ω) assigns a real scalar value to
each point (outcome) ω ∈ Ω, denoted as X(ω) = x. For all problems dealt
with in this thesis (and typically in EWO applications), Ω = Rn with ω being
any point (vector) in Rn; therefore, a convenient mapping is X(ω) = ω. An
implication of this choice of mapping is that one can use the terms outcomes
(domain) and expressions (image) of a r.v. interchangeably.
1.2.1.2 Mass, Density, and Distribution Functions

The distribution of a discrete r.v. can be described by a probability mass
function (PMF), whereas the distribution of an absolutely continuous r.v. can
be described by a probability density function (PDF). All r.vs. can be described
by their cumulative distribution function (CDF), which expresses the probabil-
ity that the r.v. will be less than or equal to a certain value. We note that the
terms “density” and “distribution” are typically used in the literature to de-
note PDF and CDF, respectively. The commonly used notation for PMF and
PDF is fX(x), and for CDF is FX(x). From its definition, FX(x) = P(X ≤ x),
where P(·) is a probability measure and reads “probability that”. A summary
of mathematical definitions is given in Table 1.1.
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Table 1.1: Definitions of probability mass (PMF), density (PDF), and cumu-
lative distribution (CDF) functions of random variables.

Discrete Continuous

PMF PDF
fX(x) = P(X = x) = pX(x) P(a ≤ X ≤ b) =

∫ b
a fX(x)dx

also, fX(x) = dFX(x)
dx

CDF CDF

FX(x) =
∑
xi≤x

pX(xi) FX(x) =
∫ x

−∞
fX(u)du

Examples of discrete distributions include Poisson, Bernoulli, and multi-
nomial. Examples of continuous distributions include normal (Gaussian), uni-
form, and Pearson. These are also called parametric population probability
distributions. When dealing with data samples, the sample or empirical ver-
sion of the distribution (ECDF) is given by

ECDF (t) = 1
n

N∑
i=1

1{xi≤t}(t) (1.1)

where n is the sample size and 1{A}(·) is the indicator function of event A,
that takes the value of one if event A is true, or zero otherwise. Therefore,
given a value t, the ECDF returns the ratio between the number of elements
in the sample that are less than or equal to t and the sample size.
1.2.1.3 Moments

The distribution of a r.v. can be characterized by scalar quantities that
have practical interpretations. One example of such quantitative measures are
moments. The first moment is called the mean, average, or expected value of
a r.v. and is usually denoted by µX = E[X], where E[·] is the expectation
operator. For a discrete r.v., µX = ∑

x∈Ω xpX(x), and for a continuous r.v.,
µX =

∫∞
−∞ xfX(x)dx. We distinguish central from raw moments. Central

moments are defined relative to the first moment. The r-th central moment,
µr = E[(X − µX)r], is defined by

Discrete: µr =
∑
x∈Ω

(x− µX)rpX(x) (1.2)

Continuous: µr =
∫ ∞
−∞

(x− µX)rfX(x)dx (1.3)
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whereas the r-th raw moment, µ′r = E[Xr], is given by

Discrete: µ′r =
∑
x∈Ω

xrpX(x) (1.4)

Continuous: µ′r =
∫ ∞
−∞

xrfX(x)dx (1.5)

Some central moments receive special names: µ2 is the variance (also com-
monly denoted by σ2), which is a measure of the spread of a distribution, µ3
is the skewness, which is a measure of the asymmetry of a distribution, and
µ4 is the kurtosis, which is a measure of the “peakedness” or the “weight” of
the tails of a distribution.

Sample versions of moments and their estimates can also be calculated
(Klemens, 2009). For instance, for N data points, the unbiased sample esti-
mate of the mean and variance are given by:

x̄ = 1
N

N∑
i=1

xi (1.6)

σ̂2 = 1
N − 1

N∑
i=1

(xi − x̄)2 (1.7)

Remark 2. The concept of expectation includes that of probability as a
special case. Let 1A be the indicator r.v. (or function) of event (or set of
outcomes, subset of sample space) A. Therefore, in a discrete probability
space, we have that E[1A] = 1 × P(A) + 0 × P(Ac) = P(A), where Ac is the
complement of A. The same result can be obtained in a continuous probability
space.
1.2.1.4 Quantiles

The interpretation and mathematical definition of quantiles varies accord-
ing to the nature of the r.v. and when dealing with data samples (Parzen,
2004). For continuous random variables (r.vs.), quantiles are values taken at
regular intervals from the inverse of the distribution. The quantile function for
a continuous r.v. X, F−1

X (·), returns a threshold value x below which random
draws from the given distribution would fall p percent of the time. It is defined
as follows,

F−1
X (p) = inf

x∈R
{p ≤ FX(x)} (1.8)

where p ∈ [0, 1] is a probability value. Different expressions are given for the
discrete and sample versions.

The case of data samples is particularly relevant when employing data-
driven methods. Given a data sample, a quantile is the value that divides a
data set into two subsets. The 50th 100-quantile (also called 50th percentile
or median) separates the higher half of a data set from the lower half. In
other words, there is at most 50% probability that a random variable will be
less than the median. The 4-quantiles are called quartiles, the 5-quantiles are
called quintiles and so on.
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1.2.1.5 Multivariate Distributions and Independence
Similarly for a vector of real numbers and multivariate real functions, a

vector of r.vs. (i.e., random vector) with n elements can be used to construct a
multivariate distribution, which can be denoted by FX1,X2,...,Xn(x1, x2, . . . , xn).
The concept of independence of r.vs. is connected to the one for events in
elementary probability theory: two events A1 and A2 are independent if and
only if their joint probability (i.e., the probability of their intersection) equals
the product of their individual (or marginal) probabilities. Mathematically,
P(A1 ∩ A2) = P(A1)P(A2). Now consider two independent r.vs., X1 and
X2, and the two events {X1 ≤ x1} and {X2 ≤ x2}; thus, we have that
FX1,X2(x1, x2) = FX1(x1)FX2(x2). The same relationship applies to densities
and can be extended to n dimensions.

The notion of moments for single r.vs. can be expanded to more vari-
ables, and they are called co-moments. The case of two r.vs. is particu-
larly important, specially for the second co-moment, also called covariance,
σXY = E[(X − µX)(Y − µY )], which is defined as follows:

Discrete: σXY =
∑
x∈ΩX

∑
y∈ΩY

(x− µX)(y − µY )pX,Y (x, y) (1.9)

Continuous: σXY =
∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )fX,Y (x, y)dxdy (1.10)

The sample version of the covariance is given by:

σ̂2
XY = 1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (1.11)

where N is the sample size, and x̄ = N−1∑N
i=1 xi and ȳ = N−1∑N

i=1 yi are
sample means.
1.2.1.6 Marginal and Conditional Distributions and Moments

As previously mentioned, marginal distributions can be obtained from the
joint distribution. For instance, given a bivariate density fX1,X2(x1, x2), the
marginal density with respect to X1 is calculated by

fX1(x1) =
∫ ∞
−∞

fX1,X2(x1, x2)dx2 (1.12)

From the marginal density, one can obtain its associated marginal moments
using the formulas aforementioned. Conditional distributions are defined when
certain r.vs. of the random vector take on specific values. For example, consider
the joint distribution FX1,X2(x1, x2) where both r.vs. are continuous. The
conditional distribution of X1 given X2 = x2 is denoted by FX1|X2(x1|x2). The
following relationship follows:

FX1|X2(x1|x2) = FX1,X2(x1, x2)
FX2(x2) (1.13)
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Similarly to marginal moments, conditional moments can be obtained from
conditional distributions. One frequently used conditional moment is the con-
ditional expected value, or regression function, which will be discussed in the
next subsection.
Remark 3. As an extension of the property of the expectation discussed
in Remark 2, we have that the conditional probability of an event A given
r.v. X is a special case of the conditional expected value. Mathematically,
E[1A|X] = P(A|X).

1.2.2 Applications
In this subsection, we provide a brief discussion on some applications of Prob-
ability and Statistics that form the basis of the data-driven methods proposed
in this thesis. In particular, the scenario generation framework proposed in
Chapter 3 is aided by time series analysis, which is based on regression analy-
sis. In Chapter 4, data-driven chance constraints are reformulated to algebraic
constraints via a nonparametric technique called kernel smoothing. Produc-
tion variability in Chapter 5 is modeled using quantile regression. Lastly, in
Chapter 6, the relationship between selling price and demand can be modeled
via price-response models, which are usually classical regression models.
1.2.2.1 Classical and Quantile Regression

Let X and Y denote the predictor (or covariate or input) and the response
(or output) r.vs. whose values are denoted by x and y, respectively. We restrict
the discussion to continuous random variables only.

In regression analysis, the regression model is generally written as,

Y = f(X) + ε (1.14)

where f(·) is a mathematical formula that expresses the relationship between
X and Y , and ε is the random error term assumed to have mean zero, ho-
moskedastic (i.e., its variance is constant over the range of X values), and
uncorrelated with X (Montgomery & Runger, 2003). In linear (classical) re-
gression, for example, f(X) = β0 + β1X, where β0 and β1 are parameters to
be estimated. Nonlinear parametric and nonparametric functions can also be
used to model the relationship between X and Y (see overview on “Kernel
Smoothing” below).

We want to predict Y values for given X values. In classical regression, we
write,

Ŷ = E[Y |X = x] (1.15)
where Ŷ denotes the predicted response variable and E[·] is the expectation
operator. In other words, Ŷ is the mean of Y values conditional on X = x.
Therefore, for a distribution of X, the result of a classical regression analysis
is a single point (the mean) of the distribution of Y .

A more general approach to regression analysis is quantile regression (Koenker,
2005). A quantile is the value that divides a data set in two subsets. The 50th
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100-quantile (also called 50th percentile or median) separates the higher half
of a data set from the lower half. In other words, there is at most 50% proba-
bility that a random variable will be less than the median. The 4-quantiles are
called quartiles, the 5-quantiles are called quintiles and so on. In this thesis,
we will use quantile and 100-quantile interchangeably.

In quantile regression, the predicted Y values correspond to quantiles of
the distribution of Y conditional on X = x. Mathematically,

Ŷ = Qα[Y |X = x] (1.16)

where Qα[·] denotes the 100α-th quantile and α ∈ [0, 1] is the probability
level. Similarly to classical regression, quantile regression can be performed
parametrically (linear and nonlinear models such as smoothing splines) as well
as nonparametrically (e.g., kernel smoothing (Li & Racine, 2007)).

Figure 1.2 illustrates regression analysis in the general case. In the general
case of regression analysis, the objective is to model the relationship between
the distribution of X and the distribution of Y , i.e., to predict FY (y) from
FX(x), where FY (·) and FX(·) are the cumulative distribution functions of Y
and X, respectively. Classical regression provides the mean whereas quantile
regression provides any quantile of the distribution of Y conditional on X = x.

Figure 1.2: General case of regression analysis. Classical regression only pro-
vides mean output, whereas quantile regression provides any point of the out-
put distribution.

1.2.2.2 Time Series Analysis
Building good time series models is a very complex task. Much effort goes

into identifying exogenous or external drivers (what economic or other factors
affect the output variables?) as well as seasonal, trend, and cyclical factors in
the data in order to obtain good forecasts. In addition, the “big data” problem
is also a reality for time-stamped data recorded at a particular frequency due
to the availability of numerous databases, such as Global Insight, Chemical
Markets Associates Inc. (CMAI), government sources, and more. Therefore,
data mining techniques applied to time series data have demonstrated signifi-
cant value regarding inventory cost reduction as well as a revenue optimization
(Rey, Kordon, & Wells, 2012). The literature on time series analysis is vast;
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there are standard reference books and dedicated journals. Excellent and in-
fluential books are: Box, Jenkins, & Reinsel (2008); Brockwell & Davis (2002);
Fan & Yao (2002a); Tong (1993). We provide a very brief introduction to time
series analysis, which comprises theoretical and applied concepts in modeling
and forecasting.

We begin with some definitions. A stochastic process represents the evolu-
tion of a system over time and constitutes of a collection of random variables.
A particular case of stochastic process when discrete time is considered is time
series. A time series is a set of observations, each one being recorded at a
specific time t. Differently from static data types, time series data can be
related to themselves over time, i.e., they are serially correlated in time. In
other words, it means that there is a dependency between a observations at
time periods t and t + h, where h is a time lag. However, this dependency
typically decays as h→∞.

A fundamental concept in time series analysis is stationarity. More de-
tailed definitions of the types of stationarity are given in the aforementioned
references, but for the purposes of this brief overview a time series is stationary
if its statistical properties do not change over time. This is an important char-
acteristic of modeling time series since in order to make predictions something
should not vary with time.

Time series models can be linear or nonlinear, parametric or nonpara-
metric, and the process of fitting a model to historical data is a parameter
estimation problem. Some advantages of using linear models are: (1) linear
difference equations are simple and a complete theory is available; (2) it is
generally computationally tractable to obtain parsimonious linear models; (3)
much experience has been accumulated in their application. However, some of
the shortcomings of linear models are: (1) they are not ideally suited for data
exhibiting strong asymmetry (these models are often stationary Gaussian, thus
having symmetric joint distributions); (2) alternative preferable models exist
for data exhibiting sudden bursts of large amplitude at irregular times; (3)
they may fail to represent time irreversible stochastic processes.

Two popular models are presented as follows. An extensive treatment of
the many models that have been proposed is beyond the scope of this overview,
but can be found in the references aforementioned.
Linear Models. A general linear model is the Autoregressive Integrated
Moving Average, ARIMA(p,d,q), model. The model parameters p, d, and q
correspond to the autoregressive order or how far back in time values of the
output variable influence its current value, the number of differences necessary
to render the time series stationary (de-trend the series), and the number of
lagged errors, respectively. The mathematical expression for an ARIMA model
is as follows: (

1−
p∑
i=1

φiB
i

)
(1−B)dYt =

(
1−

q∑
i=1

θiB
i

)
εt (1.17)
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where Yt is the output variable representing the stochastic process, B is the
backshift or lag operator (BhYt = Yt−h), εt are the error terms and also called
residuals or innovations, and φi and θi are parameters to be estimated. When
the innovations are assumed to follow a Normal distribution, this is generally
called a linear Gaussian model.

If external driver variables, also known as covariates, are considered, then
we have an ARIMAX model. For example, if product demand is the output
variable, then a possible external driver variable may be an economic indica-
tor such as the Gross Domestic Product (GDP). Thus, it may be relevant to
include time series data of GDP in order to improve the accuracy of demand
forecasts for the product of interest. When multiple output variables are con-
sidered simultaneously, then the model name is prefixed by the word “Vector”
and we have VARMA and VARMAX models (assuming that the series has
been previously differenced so the ’I’ is dropped).

A key result of time series forecasting is that the predictor or optimal
point forecast is the mean conditional on past observations. Mathematically,
the estimated forecast value h time steps ahead the current time t is given by:
Ŷt+h = E[Yt+h|Yt]. In other words, the conditional mean of an ARIMA model
is readily available via forecasting. The variance is assumed to be constant
over time.
Nonlinear Models. Many nonlinear time series models have been proposed
in the literature. Some are used in conjunction with linear ARIMA mod-
els, such as the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model that considers a time-varying (heteroskedastic) conditional
variance. There are several variations of the GARCH model; for instance, the
Exponential GARCH (EGARCH) model was used by Deniz & Luxhøj (2011)
to generate a multi-stage scenario tree for a portfolio management problem.

We focus on a nonparametric model called Nonlinear Additive Autore-
gressive (NAAR or sometimes simply AAR). A NAAR model of order p, or
NAAR(p), is given by:

Yt =
p∑
i=1

fi(Yt−i) + εt (1.18)

where fi(·) are univariate functions and can be estimated. Typically, cubic
splines are used, thus adding considerable flexibility to the model. Note that
an AR(p) model is a special case of a NAAR(p) model.

Likewise for linear models, predicting a value h steps ahead, or Ŷt+h, is
a regression problem and the outcome is the conditional expectation. Het-
eroskedastic conditional variance can also be modeled with, for example, a
Generalized Additive Model (GAM) fitted to the residuals of the NAAR(p)
model. Moreover, exogenous variables may be included in the model yielding
a NAAR model with eXogeneous variables (NAARX) (Chen & Tsay, 1993).

In addition to the models mentioned in this section, several other nonlin-
ear, parametric and nonparametric, models have been proposed and adapted
to time series modeling, to name a few: Artificial Neural Networks (ANN),
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Threshold Autoregressive (TAR), and Kernel Density Estimation (KDE).
Simulation of Time Series. Once a time series model, parametric or non-
parametric, has been chosen, it can be simulated to generate different paths
with specified number of observations. From the simulated paths, one can esti-
mate statistics of the distribution of the generated data. Examples of statistics
include quantiles and (empirical) cumulative distribution function.

Parametric models, such as the linear ARIMA models discussed in para-
graph 1.2.2.2, can be simulated by randomly generating residuals or innova-
tions, εt, according to some probability distribution model (usually Normal),
and then computing the values of the dependent variable using the regressed
model.

A simulation approach that does not rely on assuming the distribution of
the innovations is based on the bootstrap method originally proposed by Efron
(1979). Bootstrapping falls in the class of resampling methods and consists
of estimating properties of an estimator by measuring those properties when
sampling from an approximating distribution, such as the empirical distribu-
tion. Additional care must be taken when using bootstrap methods with time
series data – they contain dependent observations in time – in order to preserve
the time-series effects.

Two basic approaches for resampling in the time domain are (Davison &
Hinkley, 1997): model-based and block resampling. The idea in model-based
resampling is to fit a suitable model to the data, to construct residuals from the
fitted model, and then to generate new series by incorporating random samples
from the residuals into the fitted model. Block resampling, on the other hand,
operates on blocks of consecutive observations instead of innovations. The
data set is divided into blocks with specified length, which can be fixed or
geometrically-distributed with given mean, and they comprise the bootstrap
samples. The idea underlying this approach is that if the blocks are long
enough, then enough of the original dependence will be preserved.
Software. Statistical procedures, many of the popular models discussed in
the literature as well as forecasting capabilities, are available in program-
ming languages and software packages. A few examples are: R program-
ming language (R Core Team, 2015), MATLAB R© (The MathWorks Inc.,
2015), SAS R© software (SAS Institute, 2015), Stata (StataCorp LP, 2015),
and EViews (IHS Inc., 2013).
1.2.2.3 Kernel Smoothing

Kernel smoothing falls into the category of nonparametric statistical meth-
ods, i.e., they do not require the user to specify functional forms for random
variables being estimated. Examples of kernel smoothing techniques include
Kernel Density/Distribution Estimation (KDE) and Kernel Regression (KR).
The literature on kernel smoothing is extensive, such as Silverman (1986);
Scott (1992); Pagan & Ullah (1999); Koenker (2005); Li & Racine (2007) to
name a few. Most of the material presented in this overview is taken from
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Racine (2008), which is an excellent short introductory book on kernel meth-
ods.

The notation used in this section is as follows. Let X be a continuous ran-
dom variable (r.v.) whose unknown true probability density function (PDF
or simply density) and cumulative distribution function (CDF or simply dis-
tribution) are denoted by f(x) and F (x), respectively. Here, x is a possible
realization of the r.v. X. Given a series of n independent and identically
distributed (i.i.d.) data sample (this assumption is weakened when dealing
with autocorrelated data, see paragraph 1.2.2.3), the main goal of KDE is
to obtain an estimate f̂(x) of the unknown true density. It does so without
resorting to simple parametric reductions of the problem, and this makes it a
nonparametric method.
Univariate KDE. As an illustration, suppose X is governed by a data
generating process (DGP) characterized by a mixture of Gaussian models
(N(30, 4/9) and N(32, 4/9) with weights 0.6 and 0.4, respectively). Note that,
in reality, we may not know the true DGP. Figure 1.3 shows the histogram
and the density estimated with KDE for a sample size of n = 500. Note that
the estimated density captures the bimodal behavior of the data as well as
tail effects (extreme realizations). The main components of a kernel density
estimator—weights and bandwidth—are also illustrated. Briefly, the kernel
(weighting) function assigns more weight to data points that are close to a
given x, i.e., within a window or bandwidth.

Figure 1.3: Illustration of Kernel Density Estimation for an assumed data
generating process consisting of a mixture of Gaussian models.

In mathematical terms, the kernel density estimator is given by

f̂(x) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
(1.19)

whereXi is an observation (data point) ofX, h is the bandwidth (scaling factor
that controls the smoothness or roughness of a density estimate), and K(·) is
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the kernel or weighting function. Several kernel functions have been proposed
and used. Table 1.2 shows a few examples of kernel functions of which the
Gaussian kernel is the only one that does not have a compact support.

Table 1.2: Some kernel functions commonly used in kernel density estimation.

Name Formula†, K(u) Illustration

Gaussian 1√
2π
e−

1
2u

2

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

u

K
(u

)

Gaussian Epanechnikov Tri-cube

Epanechnikov 3
4(1− u2)1{|u|≤1}(u)

Tri-cube (1− |u|3)31{|u|≤1}(u)

† 1A(·) is the indicator function, which equals to 1 if A is true, and 0 otherwise.

It can be shown that the choice of the bandwidth, rather than the kernel, is
crucial to obtain accurate results with KDE. Four methods have been proposed
to select the optimal bandwidth: rule-of-thumb, plug-in, least squares cross-
validation, and likelihood cross-validation. The cross-validation-based meth-
ods are fully automatic or “data-driven” in the sense that they are tailored
to the sample data under consideration. Cross-validation is a powerful model
validation statistical technique for assessing how the results of a statistical
analysis will generalize to an independent data set. When cross-validation is
applied to the selection of the optimal bandwidth in the least squares method,
for example, the objective function to be minimized can be written as follows
(see Li & Racine (2007) for details):

CV (h) = 1
n2h

n∑
i=1

n∑
j=1

K̄
(
Xi −Xj

h

)
− 2
n(n− 1)h

n∑
i=1

n∑
j=1
j 6=i

K
(
Xi −Xj

h

)
(1.20)

where K̄(v) =
∫
K(u)K(v − u)du is the two-fold convolution kernel derived

from K(·).
Distribution functions, F (x), can also be estimated using kernel functions

and selecting optimal bandwidths. The expression of the kernel estimator for
a distribution function is given by:

F̂ (x) = 1
n

n∑
i=1
K
(
x−Xi

h

)
(1.21)

15



where K(u) =
∫
K(u)du is the integrated kernel function. For instance, the

integrated kernel function of the Gaussian kernel φ(·) is the standard normal
or Gaussian distribution function Φ(·):

KGaussian(u) = Φ(u) =
∫ u

−∞

1√
2π
e−

1
2 t

2dt =
∫ u

−∞
φ(t)dt = 1

2

[
1 + erf

(
u√
2

)]
(1.22)

where erf(u) = 1√
π

∫ u
−u e

−t2/2dt is the error function.
Multivariate KDE. When considering multiple r.vs., a standard, but not
the only approach, is to use product kernels. A product kernel consists of
the product of univariate kernels, each one for each random variable under
consideration. Each univariate kernel has its associated bandwidth. Suppose
we are interested in estimating the joint PDF and joint CDF of m r.vs. The
kernel joint density and distribution can the be written as follows:

f̂(x1, . . . , xm) = 1
n

n∑
i=1

m∏
j=1

1
hj
Kj

(
xj −Xj,i

hj

)
(1.23)

F̂ (x1, . . . , xm) = 1
n

n∑
i=1

m∏
j=1
Kj
(
xj −Xj,i

hj

)
(1.24)

Cross-validation techniques can also be used to estimate each hj, j = 1, . . . , m,
for a given choice of univariate kernels Kj(·) and Kj(·).

Conditional densities and distributions can also be estimated via KDE.
For example, suppose X1 and X2 are two continuous r.vs. for which we want
to estimate the conditional density of X2 given X1, i.e., f̂X2|X1(x2|x1). By
definition, we have,

f̂X2|X1(x2|x1) = f̂X1,X2(x1, x2)
f̂X1(x1)

(1.25)

where f̂X1,X2(x1, x2) is the estimated joint PDF of X1 and X2 and f̂X1(x1) is
the estimated marginal density of X1. Once again, cross-validation methods
can be used to estimate conditional densities and distributions, and have the
property of detecting which components of the random variables are irrelevant
for the conditional dependency relationship among them. By extension, con-
ditional quantiles can also be estimated, which is useful when applying Kernel
Regression (KR) to stochastic processes as discussed next.
Conditional Quantiles of Autocorrelated Data. When the uncertain
parameter is a stochastic process, i.e., the collection of r.vs. that represent the
evolution of a system over time, then the autocorrelation between observations
in different time points may not be ignored. In other words, we cannot treat
the observations as i.i.d. data. Typical examples of stochastic processes are
product demand and selling price, which can be modeled and forecast using
(non)parametric time series models. It is beyond the scope of this article to
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review time series analysis, and standard references are available (Brockwell
& Davis, 2002; Fan & Yao, 2002a).

To be more specific, we consider the case of weakly dependent data (see
Chapter 18 in Li & Racine (2007)). That is, we assume that the dependence of
an observation at time period/point t goes to zero for observations sufficiently
far in the past, say prior to t−d. Consider the following simple autoregressive
model:

Yt = g(Yt−1, . . . , Yt−d) + ut, t = 1, . . . , T (1.26)
where Yt is a r.v. of interest (e.g., product demand), g(·) is the regression
function, and ut is the model error term, which is assumed to be uncorrelated
with Yt, i.e., E(ut|Y1, . . . YT ) = 0.

For a linear regression function, e.g., g(Yt−1, . . . , Yt−d) = c0 + ∑t
τ=t−d cτYτ

where c0 and cτ , τ = t − d, . . . , t, are the model parameters, classical lin-
ear regression is used to obtain the mean of the output/response variable (Yt)
conditional on the input variables or covariates (Yt−1, . . . , Yt−d) by estimating
the model parameters (denoted by ĉ0 and ĉτ , τ = t − d, . . . , t). Nonlinear
parametric models as well as nonparametric techniques can also be used in
classical regression. Quantile regression (Koenker, 2005), on the other hand,
gives a more detailed description of the underlying distribution, since the out-
put of the regression is a specified conditional quantile (e.g., median). Non-
parametric conditional quantile regression is an optimization-based approach
to estimate quantiles of a regression model where the regression function is
conditionally estimated using a kernel function. Figure 1.4 illustrates kernel
regression applied to conditional quantile estimation of a stochastic process.
For more details, see Chapter 6 in Li & Racine (2007), Li, Liu, & Zhu (2007).

Figure 1.4: Illustration of Kernel Regression for conditional quantile estimation
of a stochastic process.

Available Software. Several software packages and programming languages
offer kernel smoothing features, functions, and routines. Different computer
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codes take different approaches for the calculation of optimal bandwidths
(plug-in vs. cross-validation methods) and estimation of quantiles (PDF-based
vs. CDF-based). Some examples include R programming language (R Core
Team, 2015) (packages np, ks, KernSmooth), MATLAB R© (The MathWorks
Inc., 2015) (function ksdensity), SAS R© software (SAS Institute, 2015) (pro-
cedure KDE), Stata (StataCorp LP, 2015) (command kdensity).

1.3 Optimization Under Uncertainty
In this section, we first give a general formulation for mathematical optimiza-
tion under uncertainty (Georghiou, Wiesemann, & Kuhn, 2011), then address
two special cases: Stochastic Programming and Chance-Constrained Program-
ming. The former is used to model problems in Chapters 3, 5 and 6, whereas
the latter is the topic of Chapter 4.

In optimization under uncertainty, the nature of the decisions is related
to the knowledge of the realization of the uncertainty at a given stage in
the decision-making process. Decisions are classified as here-and-now, when
they are taken before the realization of the uncertainty, and wait-and-see,
when taken after the values of the uncertain parameters (random variables)
are revealed (i.e., recourse actions). This two-stage decision-making process
can be generalized to account for multiple stages. In multi-period problems,
usually, even though not necessarily, a stage corresponds to a single time period
or a cluster of time periods.

Before presenting the general formulation, we describe its structure and
notation. A decision maker first observes a vector of uncertain parameters
ξ̃1 ∈ Rk1 and then takes decisions x1(ξ̃1) ∈ Rn1 . Subsequently, the value of
a second vector of uncertain parameters ξ̃2 ∈ Rk2 is revealed, and the re-
course actions taken by the decision maker are denoted by x2(ξ̃1, ξ̃2) ∈ Rn2 .
This process is repeated for T stages, where at any stage t = 1, . . . , T the
decision maker observes a vector of uncertain parameters ξ̃t and takes deci-
sions xt(ξ̃1, . . . , ξ̃t). It is important to note that decisions taken at stage t
depend on the whole history of past observations of ξ̃1, . . . , ξ̃t, but they may
not depend on future observations of ξ̃t+1, . . . , ξ̃T . This feature is the so-called
non-anticipativity condition (NAC), which ensures causality of events. To sim-
plify notation, we define the random variables of the history of observations
up to time t as ξ̃t =

(
ξ̃1, . . . , ξ̃t

)
∈ Rkt , where kt = ∑t

s=1 ks. Moreover, let
x =

[
x1(ξ̃1), . . . , xT (ξ̃T )

]
∈ Rn and ξ̃ =

[
ξ̃1, . . . , ξ̃T

]
∈ Rk denote the vector

concatenations of all decision variables and uncertain parameters, respectively,
where n = ∑T

t=1 nt and k = kT .
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The general formulation is given as follows:

min
x

Eξ̃

[
T∑
t=1

ct(ξ̃t)>xt(ξ̃t)
]

s.t.
Eξ̃

[
T∑
s=1

At,sxs(ξ̃s) | ξ̃t
]
≥ bt(ξ̃t)

xt(ξ̃t) ≥ 0

 ∀ ξ̃ ∈ Ξ, t = 1, . . . , T
(1.27)

it is assumed that the vector of cost coefficients in the objective function
depends linearly on the observation history, i.e., ct(ξ̃t) = Ctξ̃

t, where Ct ∈
Rnt×kt is some matrix. The expectation operator Eξ̃ [·] is applied to the random
vector ξ̃, Ξ is the set of all expressions of the uncertain parameters (recall
from Section 1.2 that a random variable is a measurable function; thus, in
general, Ξ corresponds to the Cartesian product of the images of each element
of the random vector). The constraints contain the deterministic matrix At,s ∈
Rmt×ns and the uncertain right-hand side vector bt(ξ̃t) ∈ Rmt , which is assumed
to be of the form bt(ξ̃t) = Btξ̃

t for some matrix Bt ∈ Rmt×kt . The conditional
expectation Eξ̃

[
· | ξ̃t

]
treats the individual values of ξ̃1, . . . , ξ̃t as realized and

performs the expectation operation only with respect to future observations
of ξ̃t+1, . . . , ξ̃T .

1.3.1 Stochastic Programming
The general formulation in equation (1.27) can be specialized to a linear, multi-
stage stochastic programming (MSSP) problem with recourse (Birge & Lou-
veaux, 2011). In order to satisfy the NAC, we must set At,s = 0 for all t < s,
which has the effect that the term inside the conditional expectation of the
t-th stage constraint becomes independent of ξ̃t+1, . . . , ξ̃T . Thus, the condi-
tional expectation becomes redundant as the term that is conditioned on, ξ̃,
is treated as a constant. The MSSP problem formulation is given by,

min
x

Eξ̃

[
T∑
t=1

ct(ξ̃t)>xt(ξ̃t)
]

s.t.

T∑
s=1

At,sxs(ξ̃s) ≥ bt(ξ̃t)

xt(ξ̃t) ≥ 0

∀ ξ̃ ∈ Ξ, t = 1, . . . , T
(1.28)

1.3.2 Chance-Constrained Programming
Chance-constrained programming (CCP) was originally proposed by Charnes
& Cooper (1959) and its theory is expanded in Prékopa (1995). Let Pξ̃ be the
(joint) distribution of ξ̃. The multi-stage generalization of CCP problems can
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be expressed as follows:

min
x

Eξ̃

[
T∑
t=1

ct(ξ̃t)>xt(ξ̃t)
]

s.t. Pξ̃

(
T∑
t=1

ai,txt(ξ̃t) ≥ bi(ξ̃)
)
≥ 1− αi ∀ i = 1, . . . , I

xt(ξ̃t) ≥ 0 ∀ ξ̃ ∈ Ξ, t = 1, . . . , T

(1.29)

where ai,t ∈ Rnt , bi(ξ̃) ∈ R, and αi ∈ (0, 1]. The probabilistic or chance con-
straint requires that the argument of Pξ̃(·) should be satisfied with probability
at least 1−αi, which is called the confidence level. αi is called the risk level. It
can be shown that the formulation in equation (1.29) has a tight conservative
approximation to the general formulation in equation (1.27).

1.4 Overview of the Thesis
Figure 1.5 shows a graphic overview of the topics in Chapters 2 to 6. The appli-
cation discussed in Chapter 4 motivated the novel work proposed in Chapter 5.
The following subsections provide an abstract of all the chapters.

Figure 1.5: Overview of the thesis.

1.4.1 Chapter 2
Motivated by a real-world industrial problem, Chapter 2 deals with the in-
tegration of planning and scheduling in the operation of a network of batch
plants. The network consists of single-stage, multiproduct batch plants located
in different sites, which can exchange intermediate products in order to blend
them to obtain finished products. The time horizon is given and divided into
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multiple time periods, at the end of which the customer demands have to be
exactly satisfied. The planning model is a simplified and aggregate formulation
derived from the detailed precedence-based scheduling formulation. Traveling
Salesman Problem (TSP) constraints are incorporated at the planning level in
order to predict the sequence-dependent changeovers between groups of prod-
ucts, within and across time periods, without requiring the detailed timing of
operations, which is performed at the scheduling level. In an effort to avoid
solving the full-space, rigorous scheduling model, especially for large problem
sizes, two decomposition strategies are investigated: Bilevel and Temporal La-
grangean. We demonstrate that Bilevel Decomposition is efficient for small
to medium problem instances and that further decomposition of the planning
problem, yielding a hybrid decomposition scheme, is advantageous for tackling
a large-scale industrial test case.

1.4.2 Chapter 3
In this chapter, we bring systematic methods for scenario tree generation to
the attention of the Process Systems Engineering community. We focus on a
general, data-driven optimization-based method for generating scenario trees
that does not require strict assumptions on the probability distributions of
the uncertain parameters. Using as a basis the Moment Matching Problem
(MMP) originally proposed by Høyland & Wallace (2001), we propose match-
ing marginal (Empirical) Cumulative Distribution Function information of the
uncertain parameters in order to cope with potentially under-specified MMP
formulations. The new method gives rise to a Distribution Matching Problem
(DMP) that is aided by predictive analytics. We present two approaches for
generating multi-stage scenario trees by considering time series modeling and
forecasting. The aforementioned techniques are illustrated with a production
planning problem with uncertainty in production yield and correlated product
demands.

1.4.3 Chapter 4
We propose a data-driven, nonparametric approach to reformulate (condi-
tional) individual and joint chance constraints with right-hand side uncertainty
into algebraic constraints. The approach consists of using kernel smoothing to
approximate unknown true continuous probability density/distribution func-
tions. Given historical data for continuous univariate or multivariate random
variables (uncertain parameters in an optimization model), the inverse cu-
mulative distribution function (quantile function) and the joint cumulative
distribution function are estimated for the univariate and multivariate cases,
respectively. The approach relies on the construction of a confidence set that
contains the unknown true distribution. The distance between the true dis-
tribution and its estimate is modeled via φ-divergences. We propose a new
way of specifying the size of the confidence set (i.e., the φ-divergence tolerance)
based on point-wise standard errors of the smoothing estimates. The approach
is illustrated with a motivating and an industrial production planning problem
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with uncertain plant production rates.

1.4.4 Chapter 5
We propose two data-driven, optimization-based frameworks (simulation-
optimization and bi-objective optimization) to account for production vari-
ability in the operations planning stage of the Sales and Operations Planning
(S&OP) of an enterprise. Production variability is measured as the deviation
between historical planned (target) and actual (achieved) production rates.
A statistical technique, namely, quantile regression is used to model the dis-
tribution of deviation values given planned production rates. Scenarios are
constructed by sampling from the distribution of deviation values and used as
inputs to the proposed optimization-based frameworks. Advantages and dis-
advantages of the two proposed frameworks are discussed. The applicability of
the proposed methodology is illustrated with a detailed analysis of the results
of a motivating example and a real-world production planning problem from
a chemical company.

1.4.5 Chapter 6
In this chapter, we propose extending the production planning decisions of a
chemical process network to include optimal contract selection under uncer-
tainty with suppliers and product selling price optimization. We use three
quantity-based contract models: discount after a certain purchased amount,
bulk discount, and fixed duration contracts. With regards to pricing models,
we argue that general regression models can be used to describe the rela-
tionship between selling price, demand, and possibly other predictors, such
as economic indicators. For illustration purposes, we consider three demand-
response models (i.e., selling price as a function of demand) that are typically
encountered in the literature: linear, constant-elasticity, and logit. Uncertainty
is considered and modeled in both supply (e.g., raw material spot market price)
and demand (random nature of the residuals of the regression models). The
proposed method is illustrated with two numerical examples of chemical pro-
cess networks.

1.4.6 Chapter 7
Chapter 7 provides a critical review of the work in this thesis, along with a
summary of its contributions and suggestions for future work. This thesis has
led to the following papers:

• Calfa, B. A., Agarwal, A., Grossmann, I. E. & Wassick, J. M. (2013)
Hybrid Bilevel-Lagrangean Decomposition Scheme for the Integration of
Planning and Scheduling of a Network of Batch Plants. Industrial &
Engineering Chemistry Research. 52(5): 2152-2167.

• Calfa, B. A. (2014) A Memory-Efficient Implementation of Multi-Period
Two- and Multi-Stage Stochastic Programming Models. Carnegie Mellon
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University. Technical Report. Available at: http://repository.cmu.
edu/cheme/246/.

• Calfa, B. A., Agarwal, A., Grossmann, I. E., & Wassick, J. M. (2014)
Data-Driven Multi-Stage Scenario Tree Generation via Statistical Prop-
erty and Distribution Matching. Computers & Chemical Engineer-
ing. 68(1): 7-23.

• Calfa, B. A., Grossmann, I. E., Agarwal, A., & Wassick, J. M. (2015)
Data-Driven Individual and Joint Chance-Constrained Optimization via
Kernel Smoothing. Computers & Chemical Engineering.
Submitted for publication.

• Calfa, B. A., Agarwal, A., Wassick, J. M. & Grossmann, I. E. (2015)
Data-Driven Simulation and Optimization Approaches to Incorporate
Production Variability in Sales and Operations Planning. Industrial
& Engineering Chemistry Research.
Submitted for publication.

• Calfa, B. A., & Grossmann, I. E. (2015) Optimal Procurement Contract
Selection with Price Optimization under Uncertainty for Process Net-
works. Computers & Chemical Engineering.
Submitted for publication.
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Chapter 2

Hybrid Bilevel-Lagrangean
Decomposition Scheme for the
Integration of Planning and
Scheduling of a Network of
Batch Plants

Notation

Indices

g, g′ Products groups
i, i′ Products (finished, intermediate, and blended products)
l, l′ Locations (plants and customers)
r Raw materials
t Time periods
u Processing units

Sets

Gul Set of groups that can be processed in unit u of plant l
Ig Set of products that belong to group g
Iul Set of products that can be processed in unit u of plant l
IBi Set of blended products i
IFPi Set of finished products i
IIi Set of finished and intermediate products i
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IILil Set of products i processed in plant l
IPMi Set of intermediate products i
LCIli Set of customers l that demand product i
LPl Set of plants
R Set of raw materials r
T Set of time periods
Ugl Set of units of plant l that can process group g
Uil Set of units of plant l that can process product i
Ul Set of blended units of plant l

Parameters

BINVCilt Blending inventory cost of product i in plant l at time period
t

BINVUilt Upper bound for blending inventory for product i in plant l at
time period t

BPHiul Batches per hour of product i in unit u in plant l
BRii′l Blending ratio between individual products i and i′ in plant l
BSiul Batch size of product i in unit u in plant l
CCgg′ul Changeover cost between group g and group g′ in unit u in

plant l
CRPii′l Conversion ratio from intermediate product i to finished prod-

uct i′ in plant l
CRRril Conversion ratio from raw material r to product i in plant l
CTgg′ul Changeover time between group g and group g′ in unit u in

plant l
DLilt Demand of product i for customer l at the end of time period

t
Ht Duration of time period t
INVCilt Dedicated inventory cost of product i in plant l at time period

t
INVUilt Upper bound for dedicated inventory for product i in plant l

at time period t
IRPCrl Inbound transportation cost of raw material r to plant l
MPPAi Maximum number of plants that can produce product i
OPCult Operating cost of unit u in plant l at time period t
OTPCill′t Outbound transportation cost of product i from plant l to

customer l′
PALBil Minimum production capacity of product i in plant l
PAUBil Maximum production capacity of product i in plant l
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PCAPlt Maximum production capacity of plant l at time period t
SUCiul Penalty cost for introducing a new product i in unit u of plant

l that does not normally process product i
SUUBl Upper bound on the number of scale-up decisions in plant l
SUUBT Upper bound on the number of scale-up decisions for all plants
TCBPll′ Transportation cost from plant l to another plant l′

Common Variables

BAilt Production amount of blended product i in plant l at time
period t

BINVilt Inventory levels of blended product i in plant l at time t for
blending storage vessels

INVilt Inventory levels of product i in plant l at time t for dedicated
storage vessels

INV slkilt Slack variable for maximum storage violation of product i in
plant l at time period t

ISTill′t Inter-site transported amounts of product i between plants l
and l′ at time period t

NBiult Number of batches of product i in unit u in plant l at time
period t

PAiult Production amount of product i produced in unit u in plant l
at time period t

PRMilt Production amount of product i that is also a raw material
produced in unit u in plant l at time period t

PRMIilt Intermediate product i that is used as a raw material produced
in plant l at time period t

PRMOilt Intermediate product i that is used as a raw material used in
plant l at time period t

RMrlt Amount of raw material r needed in plant l at time period t
SLill′t Sales of product i from plant l to customer l′ at time t
STRilt Amount stored of product i in plant l at time period t
TAii′lt Amount of product i transferred to blending inventory that

makes up blend i′ in plant l at time period t
TAIii′lt Amount of intermediate product i transferred to blending in-

ventory that makes up blend i′ in plant l at time period t
TAOii′lt Amount of intermediate product i transferred to blending in-

ventory that makes up blend i′ used in plant l at time period
t
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ypsciult 0-1 variable to denote the assignment of product i at time
period t to unit u of plant l that does not normally produce it
(associated with scale-up costs)

yslill′t 0-1 variable to force only one plant l to ship product i to cus-
tomer l′ at time period t

Planning Model Variables

yggult 0-1 variable to denote the assignment of group g to unit u of
plant l at time period t

ygfgult 0-1 variable to denote the first group g assigned to unit u of
plant l at time period t

yglgult 0-1 variable to denote the last group g assigned to unit u of
plant l at time period t

zggg′ult 0-1 variable to denote if group g is followed by group g′ in unit
u of plant l within time period t

zzggg′ult 0-1 variable to denote if link between group g and group g′ in
unit u of plant l within time period t is broken

zzzggg′ult 0-1 variable to denote a changeover between group g and group
g′ in unit u of plant l across time period t

Unit-Specific General Precedence Model Variables

Teiult End time of product i in unit u of plant l at time period t
Tsiult Start time of product i in unit u of plant l at time period t
wpii′ult 0-1 variable to denote changeover between product i and prod-

uct i′ in unit u of plant l across time period t
xpii′ult 0-1 variable to denote local precedence between product i and

product i′ in unit u of plant l within time period t
ypiult 0-1 variable to denote the assignment of product i to unit u of

plant l at time period t
ypfiult 0-1 variable to denote the first product i assigned to unit u of

plant l at time period t
ypliult 0-1 variable to denote the last product i assigned to unit u of

plant l at time period t
zpii′ult 0-1 variable to denote global precedence between product i and

product i′ in unit u of plant l within time period t

2.1 Introduction
The focus of this work is on integrated planning and scheduling for batch
processes. Excellent reviews on each of these levels are available in the lit-
erature, for instance Méndez et al. (2006), Kallrath (2002), and Maravelias
(2012). Planning models are usually posed as Linear Programming (LP) or
Mixed-Integer Linear Programming (MILP) problems. For instance, Pochet
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& Wolsey (2006) present several MIP formulations of the lot-sizing production
planning problem. The main characteristics of such models are captured in
constraints related to production targets, production and inventory costs, and
material/inventory balances. Usually, those considerations are satisfactory at
a planning level, which may span a time horizon of months to years.

In this work, we deal with the integration of planning and scheduling of
a network of batch plants motivated by a real-world industrial problem. The
network consists of single-stage, multiproduct batch plants located in differ-
ent sites, which can exchange intermediate products in order to blend them
to obtain final products. Sequence-dependent changeover data are given in
terms of groups or families of products, which are applied at the planning
level. At the scheduling level a detailed model to obtain the timing and se-
quencing of batches of individual products is applied. It should be noted that
at the scheduling level there can also be sequence-dependent changeovers be-
tween products belonging to the same group that are accounted for but these
are of smaller magnitude than changeovers among different products. Hence,
changeovers among products belonging to the same group are not considered
at the planning level. The time horizon is given and divided into multiple time
periods, at the end of which the customer demands have to be satisfied. We
show that Bilevel Decomposition, Lagrangean Decomposition and a hybrid of
those methods can be efficient when solving large-scale problems.

The remainder of the chapter is organized as follows. In Section 2.2, we
define the manufacturing problem. In Section 2.3, we present the complete
planning and scheduling formulations and outline the major assumptions in our
models. In Section 2.4, we discuss how the Bilevel Decomposition, Lagrangean
Decomposition and a hybrid of those schemes are integrated. Section 2.5
contains computational results of three problem instances of increasing size.
Section 2.6 summarizes the main conclusions of the chapter.

2.2 Problem Definition
The problem addressed in this work concerns the planning and scheduling of
a network of multi-product, single-stage batch plants as shown in Figure 2.1.
The problem statement is as follows: a set of raw materials is purchased and
transported to each plant, which transforms them into products to fulfill spec-
ified customer demands. Shipments of intermediate products between plants
are allowed, hence the network structure depicted in Figure 2.1. Products
are classified into groups or families, and we identify a product i belonging to
group g through the subset Ig. Sequence-dependent changeover data are given
between groups of products, which are considered at the planning level. For
the scheduling level, changeover times and costs associated with the transition
from one product to another of the same group are also given. As indicated
above, the sequence-dependent changeovers between different groups of prod-
ucts are significantly higher than the ones from one product to another in the
same group. Additionally, the assignment of a product to a plant that does
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not normally produce it incurs a scale-up cost, which for example can be as-
sociated with the testing of new batches of the product in order to meet the
quality standards set by the customer. The goal is to minimize total costs
over a time horizon given by time periods of months in which the demands are
specified at the end of each period.

Figure 2.1: Supply-chain schematic of the problem.

Figure 2.2 shows the configuration of each plant. Each plant contains a
number of reactors (processing units) operating in parallel that can process a
subset of the raw materials and transform them into finished and intermediate
products. After a batch is completed, the product is transferred to dedicated
storage vessels and becomes a part of the inventory of the plant. In addition, a
subset of blended products are formed by transferring finished products from
their individual inventories to blend inventories. Finally, finished and blended
products are shipped to customers.

Figure 2.2: Detailed components of the plant.

Given batch sizes and fixed processing times, sequence-dependent changeover
times and costs, transportation and inventory costs, and demand forecasts over
a time horizon consisting of several time periods, the objectives are to deter-
mine:
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(a) The amounts of products to be produced in the plant in each time period;

(b) The allocation of products to batch units in each time period;

(c) The detailed timing of operations and sequencing of products in each
unit, taking into consideration sequence-dependent changeover times and
costs.

The goal is to minimize total cost – including operating, transportation, in-
ventory, changeover costs – in order to meet customer demands at the end of
each time period.

In the next section, we present the planning and scheduling models. The
planning formulation not only contains material and inventory balances for
products (production planning), but also estimates the sequencing of different
groups of products through the use of TSP constraints. The scheduling formu-
lation contains equivalent material and inventory balances for products and
obtains the detailed production schedule of products, including the timing of
operations and accounting for all possible changeovers. The two formulations
are integrated through decomposition schemes (Bilevel and Lagrangean) in
Section 2.4.

2.3 Problem Formulation
The plants’ topology is sequential, i.e., single-staged plant with parallel units.
The following assumptions are made:

i. Inventories are stored in dedicated vessels with finite capacity;

ii. Times for material transfer throughout the plant are considered to be
negligible compared to processing and changeover times;

iii. Batch sizes are fixed and given;

iv. Batch processing times are given and unit-dependent;

v. Demands that must be exactly satisfied are specified at the end of each
period;

vi. Sequence-dependent changeovers are group- and unit-dependent;

vii. All data are deterministic.

The kernel of the planning formulation is based on the Detailed Plan-
ning model proposed by Erdirik-Dogan & Grossmann (2007), which involves
the classical Traveling Salesman Problem (TSP) sequencing constraints. The
scheduling model is based on a modification of the Unit-Specific General Prece-
dence (USGP) model proposed by Kopanos, Laínez, & Puigjaner (2009). Also,
sequence-dependent changeovers between products families or groups have
been included at the planning level (Kopanos, Puigjaner, & Maravelias, 2011).
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2.3.1 Planning Model
2.3.1.1 Assignment and Sequencing within Time Periods

The assignments of group g to unit u in plant l in time period t are given
by binary variables yggult defined as:

yggult =

1, if group g is assigned to unit u in plant l in time period t
0, otherwise

Likewise for products, the assignments of product i to unit u in plant l in time
period t are denoted by binary variables ypiult defined as:

ypiult =

1, if product i is assigned to unit u in plant l in time period t
0, otherwise

Therefore, constraints (2.1) state that if product i is assigned to unit u at
time period t, then the group to which it belongs is also assigned to the same
unit and time period for plant l. In addition, according to constraints (2.2),
yggult is forced to zero if no product i of group g is assigned to any unit u at
time period t in plant l.

yggult ≥ ypiult ∀i ∈ Ig, g ∈ Gul, u ∈ Uil, l ∈ LPl, t ∈ T (2.1)
yggult ≤

∑
i∈Ig
i∈Iul

ypiult ∀g ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.2)

Constraints (2.3) activate the binary variables responsible for identifying
the products that have been assigned to unit u of plant l that does not normally
produce it. When this happens, it will incur scale-up costs that for example
can be related to the testing phase of new batches of the product in order
ensure its quality.

ypsciult ≥ ypiult ∀i ∈ IIi, i /∈ IILil, u ∈ Uil, l ∈ LPl, t ∈ T (2.3)

The main idea for the sequencing of products groups is to generate a cyclic
schedule for each time period that minimizes changeover times among the
assigned groups, and then to determine the optimal sequence of groups by
breaking one of the links in the cycle as illustrated in Figure 2.3.
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Plant l G1

G2

G3G4

G5 zgG1G2ult = 1

zgG2G3ult = 1

...

zzgG3G4ult = 1

Figure 2.3: Example of cyclic schedule and breaking of one of the links to
determine optimal sequence.

The 0-1 variables zggg′ult represent the changeovers between groups g and
g′ in unit u in plant l in time period t. The cyclic schedules are generated with
constraints (2.4) and (2.5), the assignment constraints of the TSP constraints,
which state that for each plant l, group g is assigned to unit u during period
t if and only if there is exactly one transition from group g to product g′ in
unit u in time period t, and group g′ is assigned to unit u in period t if and
only if there is exactly one transition from any group g to group g′ in unit u
in time period t, respectively.

yggult =
∑

g′∈Gul

zggg′ult ∀g ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.4)

ygg′ult =
∑
g∈Gul

zggg′ult ∀g′ ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.5)

Only one link within a cyclic schedule is allowed to be broken (zzggg′ult = 1)
and that is represented by constraints in (2.6). However, a link can only
be broken if the corresponding pair is selected in the cycle as according to
constraints (2.7).∑

g∈Gul

∑
g′∈Gul

zzggg′ult = 1 ∀u ∈ Ul, l ∈ LPl, t ∈ T (2.6)

zzggg′ult ≤ zggg′ult ∀g ∈ Gul, g
′ ∈ Gul u ∈ Ul, l ∈ LPl, t ∈ T (2.7)

In equations (2.4) and (2.5) the groups g and g′ can refer to the same
group. In order to properly allow self changeovers constraints (2.8) – (2.10)
have to be considered. These constraints state that for each plant l, if group
g is assigned to unit u in time period t, and none of the groups g′ different
from g are assigned to the same unit in the same time period, then batches
belonging to group g can be followed by another set of batches also belonging
to the same group. Also, if batches of group g are followed by other batches
of the same group in unit u in period t, then only group g is assigned to unit
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u for period t and none of the groups g′ other than g are assigned to the same
unit in the same time period.

yggult ≥ zgggult ∀g ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.8)
zgggult + ygg′ult ≤ 1 ∀g ∈ Gul, g

′ ∈ Gul, g 6= g′, u ∈ Ul, l ∈ LPl, t ∈ T
(2.9)

zgggult ≥ yggult −
∑

g′∈Gul
g′ 6=g

ygg′ult ∀g ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.10)

2.3.1.2 Sequencing of Groups across Time Periods
In order to model sequence-dependent changeovers across time periods, it

is necessary to identify the first and last products groups in each sequence.
Therefore, two binary variables are introduced: ygfgult and yglgult (see Fig-
ure 2.4).

Plant l G1

G2

G3G4

G5

zzgG3G4ult = 1

Head Tail

G4 G5 G1 G2 G3

ygfG4ult = 1 yglG3ult = 1

Figure 2.4: Breaking the cyclic schedule to determine the first and last groups
of the sequence.

If at least one of the links between groups g and g′ is broken, then group g′
becomes the first group in the optimal sequence for unit u during time period
t as stated in constraints (2.11). Similarly, constraints (2.12) imply that if at
least one of the links between group g to any group g′ is broken, then group g
becomes the last group in the optimal sequence for unit u during time period
t.

ygfg′ult ≥
∑
g∈Gul

zzggg′ult ∀g′ ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.11)

yglgult ≥
∑

g′∈Gul

zzggg′ult ∀g ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T (2.12)

Moreover, exactly one group can be the first and the last group to be
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processed in each unit as represented in equations (2.13) and (2.14).∑
g∈Gul

ygfgult = 1 ∀u ∈ Ul, l ∈ LPl, t ∈ T (2.13)
∑
g∈Gul

yglgult = 1 ∀u ∈ Ul, l ∈ LPl, t ∈ T (2.14)

Sequence-dependent changeovers across time periods are modeled as fol-
lows. For each plant l, equations (2.15) state that exactly one changeover
occurs from group g to group g′ at the end of time period t in unit u if and
only if group g is produced last in time period t. Similarly, according to equa-
tions (2.16), exactly one changeover from group g to group g′ occurs at the
beginning of time period t+1 in unit u if and only if group g′ is produced first
in unit u in time period t+ 1.

yglgult =
∑

g′∈Gul

zzzggg′ult ∀g ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T \ {t̄} (2.15)

ygfg′ul(t+1) =
∑
g∈Gul

zzzggg′ult ∀g′ ∈ Gul, u ∈ Ul, l ∈ LPl, t ∈ T \ {t̄} (2.16)

where t̄ is the last time period.
2.3.1.3 Time Balances

The time balance constraints (2.17) enforce that the total allocation of
production times plus the total changeover times do not exceed the length of
each time period. The usage time of each unit u in plant l in time period t
is then calculated by adding the batch time to the changeover times, which
in turn comprise the changeovers within and across time periods minus the
changeover time of the broken link in the cyclic schedule.

∑
i∈Iul

NBiult

BPHiul

+
∑
g∈Gul

∑
g′∈Gul

CTgg′ul(zggg′ult−zzggg′ult + zzzggg′ult) ≤ Ht

∀u ∈ Ul, l ∈ LPl, t ∈ T (2.17)

2.3.2 Material and Inventory Balances
Upper and lower bounds on the production amounts for each product are
enforced in constraints (2.18) and (2.19).

PAiult ≥ BSiulypiult ∀i ∈ IIi, u ∈ Uil, l ∈ LPl, t ∈ T (2.18)
PAiult ≤ PAUBilypiult ∀i ∈ IIi, u ∈ Uil, l ∈ LPl, t ∈ T (2.19)

Figure 2.5 shows the schematic for the material and inventory balances.
Inventory levels are monitored at the end of each time period.
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Figure 2.5: Material and inventory balances schematic.

The production amounts of finished, intermediate, and blended products
and the amounts of raw materials needed are computed in constraints (2.20)
– (2.24). If an intermediate product i is not to be blended with other in-
termediate products to form blend i′, then its blending ratio is set to zero,
i.e., BRii′ = 0, which in the implementation is represented with a subset with
which the corresponding constraint is eliminated from the model.

PAiult = NBiultBSiul ∀i ∈ Iul, u, l ∈ LPl, t ∈ T (2.20)
BRii′lBAi′lt = TAii′lt ∀i ∈ IIi, i′ ∈ IBi′ , l ∈ LPl, t ∈ T

(2.21)
PRMilt = PRMIilt + PRMOilt ∀i ∈ IPMi, l ∈ LPl, t ∈ T (2.22)
PRMilt =

∑
i′∈IFPi′

∑
u∈Ui′l

CRPii′lPAi′ult ∀i ∈ IPMi, l ∈ LPl, t ∈ T (2.23)

RMrlt =
∑
i′∈IIi′

∑
u∈Ui′l

CRRri′lPAi′ult ∀r ∈ R, l ∈ LPl, t ∈ T (2.24)

The material balances on the three nodes in Figure 2.5 for finished and
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intermediate products are expressed in constraints (2.25) – (2.27).∑
u∈Uil

PAiult =
∑

l′∈LPl′
l′ 6=l

ISTill′t +
∑

l′∈LCIl′i

SLill′t+

∑
i′∈IBi′

TAIii′lt + PRMIilt + STRilt ∀i ∈ III , l ∈ LPl, t ∈ T

(2.25)∑
l′∈LPl′
l′ 6=l

ISTill′t = PRMOilt +
∑

i′∈IBi′
TAOii′lt ∀i ∈ IIi, l ∈ LPl, t ∈ T

(2.26)
TAii′lt = TAIii′lt + TAOii′lt ∀i ∈ IIi, i′ ∈ IBi′ , l ∈ LPl, t ∈ T

(2.27)
The inventory balances for all products are performed and their capacities

are enforced in constraints (2.28) – (2.31).
INVilt = INVil(t−1) + STRilt ∀i ∈ IIi, l ∈ LPl, t ∈ T

(2.28)
INVilt ≤ INVUilt + INV slkilt ∀i ∈ IIi, l ∈ LPl, t ∈ T

(2.29)
BINVilt = BINVil(t−1) +BAilt −

∑
l′∈LCIl′i

SLill′t ∀i ∈ IBi, l ∈ LPl, t ∈ T

(2.30)
BINVilt ≤ BINVUilt + INV slkilt ∀i ∈ IBi, l ∈ LPl, t ∈ T

(2.31)

2.3.3 Capacities
Each plant has capacity limitations for individual products for the entire time
horizon as stated in constraints (2.32).∑

u∈Ul

∑
i∈Iul

PAiult ≤ PCAPlt ∀l ∈ LPl, t ∈ T (2.32)

Upper bounds on the number of scale-up decisions per each plant and for
all plants are imposed by constraints (2.33) and (2.34).∑

t∈T

∑
i∈IIi
i/∈IILil

∑
u∈Uil

ypsciult ≤ SUUBl ∀l ∈ LPl (2.33)

∑
t∈T

∑
l∈LPl

∑
i∈IIi
i/∈IILil

∑
u∈Uil

ypsciult ≤ SUUBT (2.34)

The number of assignments of products to plants is limited based on oper-
ational constraints through constraints (2.35).∑

l∈LPl

∑
u∈Uiul

ypiult ≤ MPPAi ∀i ∈ IIi, t ∈ T (2.35)
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2.3.4 Demand Satisfaction
The demands of each customer l are met according to constraints (2.36) –
(2.38), which enforce that exactly one plant can sell a certain product to a
customer.∑
l∈LPl

SLill′t = DLilt ∀i ∈ IIi ∪ IBi, l
′ ∈ LCIl′i, t ∈ T (2.36)

SLill′t ≤ yslill′tDLilt ∀i ∈ IIi ∪ IBi, l ∈ LPl, l′ ∈ LCIl′i, t ∈ T (2.37)∑
l∈LPl

yslill′t = 1 ∀i ∈ IIi ∪ IBi, l
′ ∈ LCIl′i, t ∈ T (2.38)

2.3.4.1 Objective Function
The objective is to minimize the total cost, which includes the following

terms:

i. Operating Costs, given the unit costs, OPCult, for each time period;

OPCosts =
∑
t∈T

∑
l∈LPl

∑
i∈IIi

∑
u∈Uil

OPCultPAiult

ii. Inbound Transportation Costs, given the costs, ITPCil;

ITCosts =
∑
t∈T

∑
l∈LPl

∑
r∈R

ITPCrlRMrlt

iii. Outbound Transportation Costs, given the costs, OTPCill′ ;

OTCosts =
∑
t∈T

∑
l∈LPl

∑
i∈IIi

∑
l′∈LCIl′i

OTPCill′SLill′t

iv. Shipments Between Plants, given the transportation costs, TCBPll′ ;

PPCosts =
∑
t∈T

∑
l∈LPl

∑
i∈IIi

∑
l′∈LPl′

TCBPll′ISTill′t

v. Individual Inventory Costs, given the costs to store individual prod-
ucts, INVCilt;

INVCosts =
∑
t∈T

∑
l∈LPl

∑
i∈IIi

INVCiltINVilt

vi. Blending Inventory Costs, given the costs to store blended products,
BINVCilt;

BINVCosts =
∑
t∈T

∑
l∈LPl

∑
i∈IBi

BINVCiltBINVilt
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vii. Changeover Costs, given the sequence-dependent changeover costs be-
tween groups, CCgg′ul, and which are calculated using the same argument
as in the changeover times, i.e., costs of changeovers within and across
time periods minus the cost of the changeover represented by the broken
link in the cyclic schedule;

CCosts =
∑
t∈T

∑
l∈LPl

∑
u∈Ul

∑
g∈Gul

∑
g′∈Gul

CCgg′ul(zggg′ult−zzggg′ult + zzzggg′ult)

viii. Scale-Up Costs, given for example the penalty costs of having to in-
troduce new products in a plant that does not normally produce them,
SUCiul;

SUCosts =
∑
t∈T

∑
l∈LPl

∑
i∈IIi
i/∈IILil

∑
u∈Uil

SUCiulypsciult

ix. Penalty for Maximum Storage Violation, given the parameter PENINV
that penalizes the maximum storage capacity;

PenInv =
∑
t∈T

∑
l∈LPl

∑
i/∈IRi

PENINV · INV slkilt

Therefore, the objective function is given by:

PlanCost =OPCosts + ITCosts + OTCosts + PPCosts + INVCosts+
BINVCosts + CCosts + SUCosts + PenInv (2.39)

2.3.5 Modified USGP Scheduling Model
We present two main enhancements to the Unit-Specific General Precedence
(USGP) model proposed by Kopanos, Laínez, & Puigjaner (2009): the treat-
ment of the number of batches as variable and the introduction of binary vari-
ables that model sequence-dependent changeovers across time periods. As op-
posed to the planning model, the scheduling model provides more detailed in-
formation concerning the timing and sequencing of individual products batches
by accounting for all possible changeovers.
2.3.5.1 Assignment Constraints

Constraints (2.40) imply that every unit in a given plant and time period
must process at least one product.∑

i∈Iul
ypiult ≥ 1 ∀u ∈ Ul, l ∈ LPl, t ∈ T (2.40)
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2.3.5.2 Sequence-Dependent Changeovers Constraints
The planning model is an aggregate formulation based on the rigorous

scheduling model and is only concerned with sequence-dependent changeovers
between groups of products within and across adjacent periods. At the schedul-
ing level, we compute the sequence of products rigorously. Therefore, the
product-by-product changeover times, CTpii′ul, and costs, CCpii′ul, are com-
puted based on the corresponding group-by-group parameters, CTgg′ul and
CCgg′ul. The original USGPmodel defines two sets of 0-1 variables for sequence-
dependent changeovers within time periods: zpii′ult (global or general prece-
dence) and xpii′ult (local or immediate precedence). In this work, we intro-
duce the 0-1 variables for sequence-dependent changeovers across time periods,
wpii′ult.
Sequence-Dependent Changeovers within Time Periods The big-M
constraints (2.41) ensure that the start time of a product is at least the end
time of another product plus the changeover time between them.

Teiult + xpii′ultCTpii′ul ≤ Tsi′ult + Ht(1− zpii′ult)
∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T (2.41)

Sequence-Dependent Changeovers across Time Periods In order to
model changeovers across time periods, we introduce two sets of 0-1 variables
that identify the first, ypfiult, and last, ypliult, products assigned to a given
unit in a plant. Constraints (2.42) and (2.43) guarantee that a product can be
the first or last of a unit if it is assigned to the same unit. Moreover, there can
be exactly one first product and exactly one last product assigned to a given
unit of a plant as represented in equations (2.44) and (2.45), respectively.

ypfiult ≤ ypiult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.42)
ypliult ≤ ypiult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.43)∑

i∈Iul
ypfiult = 1 ∀u ∈ Ul, l ∈ LPl, t ∈ T (2.44)

∑
i∈Iul

ypliult = 1 ∀u ∈ Ul, l ∈ LPl, t ∈ T (2.45)

With respect to timing of operations, the main idea is to obtain the start
and end times of each unit in each plant, TsUult and TeUult respectively, and
ensure that the changeover time from the last product in a time period and
the first product in the subsequent time period is taken into consideration (see
Figure 2.6).
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Figure 2.6: Changeovers (dashed cylinder) across time periods for modified
USGP.

Constraints (2.46) ensure that the start time of product i′ in time period
t + 1 is at least the end time in the previous time period t plus a changeover
time in unit u. Similarly, constraints (2.47) guarantee that the start time in
unit u in time period t+ 1 is at least the end time of product i in time period
t plus a changeover time.

TeUult + wpii′ultCTpii′ul ≤ Tsi′ul(t+1) + Ht+1(1− ypfi′ul(t+1))
∀(i, i′) ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T \ {t̄} (2.46)

TsUul(t+1) ≥ Teiult + wpii′ultCTpii′ul − Ht(1− ypliult)
∀(i, i′) ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T \ {t̄} (2.47)

2.3.5.3 Sequencing-Allocation Constraints
The global sequencing variables, zpii′ult, are activated by the following con-

straints. The logic proposition (2.48) states that product i precedes product
i′ in unit u of plant l and time period t or product i′ precedes product i in the
same unit, plant, and period if and only if both products are assigned to the
same unit.

ZPii′ult ∨ ZPi′iult ⇐⇒ Y Piult ∧ Y Pi′ult
∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T (2.48)

The constraints correspondent to the above proposition are as follows:

zpii′ult ≤ ypiult ∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T
(2.49)

zpii′ult ≤ ypi′ult ∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T
(2.50)

zpi′iult ≤ ypiult ∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T
(2.51)

zpi′iult ≤ ypi′ult ∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T
(2.52)

zpii′ult + zpi′iult ≥ ypiult + ypi′ult − 1 ∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T
(2.53)

The local sequencing variables, xpii′ult, are activated through the Big-M
constraints (2.54) and (2.55), which state that two products i and i′ are con-
secutive only in the case that the binary variable zpii′ult = 1 and when there
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is no other product i′′ between products i and i′, and vice versa. The idea is
to count how many products i′′, where i′′ 6= i 6= i′, are in between products i
and i′ and, thus, track the relative position of products that are assigned to a
unit.

posii′ult =
∑
i′′∈Iul
i′′ 6=(i, i′)

(zpii′′ult − zpi′i′′ult) +M(1− zpii′ult)

∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T (2.54)
posii′ult + xpii′ult ≥ 1 ∀(i, i′) ∈ Iul, i 6= i′, u ∈ Ul, l ∈ LPl, t ∈ T (2.55)

where posii′ult is an nonnegative continuous auxiliary “position” variable and
M is a Big-M value, which could be the total number of products assigned to
the respective unit, plant, and time period. Therefore, if posii′ult = 0, that is
there are no products between products i and i′, then we force xpii′ult = 1 to
ensure that product i immediately precedes product i′.

Lastly, the assignment variables relative to the first and last product for
each time period are related to the sequencing variables for the changeovers
across time periods as follows:

ypfi′ul(t+1) =
∑
i∈Iul

wpii′ult ∀i′ ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T \ {t̄} (2.56)

ypliult =
∑
i′∈Iul

wpii′ult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T \ {t̄} (2.57)

2.3.5.4 Time Balance Constraints
Equations (2.58) state that the end time of product i in unit u of plant l

in time period t is the sum of its start time and processing time.

Teiult = Tsiult + PTiult ∀i ∈ Iul u ∈ Ul, l ∈ LPl, t ∈ T (2.58)

where PTiult can be modeled as the following set of disjunctions:[
Y Piult

PTiult = NBiult/BPHiul

]
∨
[
¬Y Piult
PTiult = 0

]
∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T

(2.59)

Given that there is a one-to-one correspondence between Y Piult (logical vari-
ables) and ypiult (binary variables), the convex hull (Balas, 1985) reformulation
yields the following linear constraints:

NBiult = NB1iult +NB2iult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.60)
PTiult = NB1iult/BPHiul ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.61)
NB1iult ≤ ypiultNBULPiult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.62)
NB2iult ≤ (1− ypiult)NBULPiult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.63)
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where NB1iult and NB2iult are disaggregated variables and NBULPiult repre-
sents the number of batches of products obtained in the Upper Level Planning
problem.

In addition, constraints (2.64) – (2.67) force the start and end times of a
given unit in a time period to coincide with the start and end times of the first
and last products, respectively.

TsUult ≤ Tsiult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.64)
TsUult ≥ Tsiult − Ht(1− ypfiult) ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.65)
TeUult ≥ Teiult ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.66)
TeUult ≤ Teiult + Ht(1− ypliult) ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.67)

Finally, constraints (2.68) and (2.69) ensure that the start and end times
lie within the current time period length.

Tsiult ≥ HTt−1 ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T \ {1} (2.68)
Teiult ≤ HTt ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.69)

2.3.5.5 Changeover Costs within Time Periods
Given the changeover costs for each unit, the costs associated with the

changeovers within time periods are given by:

CC1 =
∑
t∈T

∑
l∈LPl

∑
u∈Ul

∑
i∈Iul

∑
i′∈Iul

xpii′ultCCpii′ul (2.70)

2.3.5.6 Changeover Costs across Adjacent Time Periods
Similarly, the changeover costs across adjacent time periods are calculated

as follows:

CC2 =
∑
t∈T

∑
l∈LPl

∑
u∈Ul

∑
i∈Iul

∑
i′∈Iul

wpii′ultCCpii′ul (2.71)

2.3.5.7 Material Balances
The constraints for material and inventory balances are equivalent for the

planning model, equations (2.20) and (2.25) – (2.38), with the only difference
being the variable number of batches, i.e., equation (2.20) becomes:

PAiult = NB1iultBSiul ∀i ∈ Iul, u ∈ Ul, l ∈ LPl, t ∈ T (2.72)

2.3.5.8 Objective Function
The objective function considers the same terms as in the ULP model

except for the changeover costs and it can be written as follows (see Subsub-
section 2.3.4.1 for definitions of other terms):

SchedCost =OPCosts + ITCosts + OTCosts + PPCosts + INVCosts+
BINVCosts + CC1 + CC2 + SUCosts + PenSales (2.73)
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2.4 Decomposition Strategies
2.4.1 Bilevel Decomposition
In order to solve both the planning and scheduling problems simultaneously for
medium-to-large problem instances in practical time, a decomposition scheme
can be employed. One approach for decomposing this problem is the Bilevel
Decomposition (BD) consisting of an Upper Level Planning (ULP) and a Lower
Level Scheduling (LLS) problems that yield lower and upper bounds on the
total cost, respectively (Erdirik-Dogan & Grossmann, 2008). The problems
are solved iteratively until the relative difference between the lower and upper
bounds is less than a pre-specified tolerance. Integer inequalities or cuts are
added to the upper level problem to ensure the generation of new schedules,
and/or to avoid infeasible ones at the lower level problem. A schematic of this
strategy is shown in Figure 2.7.

Upper Level Planning (ULP)
Determine lower bound (LB) on cost.

Solve for entire network.

Outputs: assignments (fixed for LLS)
and number of batches of each product

Lower Level Scheduling (LLS)
Determine upper bound (UB) on cost.

Solve for entire network.

Add cuts

∣∣∣∣UB − LBUB

∣∣∣∣ < tolerance? Stop
Solution = UB

no yes

Figure 2.7: Bilevel Decomposition scheme for integrated planning and schedul-
ing.

The main motivation behind the BD is that the ULP problem is less com-
plex and, thus, easier to solve than the LLS problem. Therefore, by solving
the aggregate and simplified planning problem and iteratively attempting to
match its solution with the one obtained with a rigorous and detailed schedul-
ing model, we strive to arrive at a feasible production plan without the burden
of solving the full-space scheduling model.

In addition to computing a lower bound on the total cost, the ULP problem
determines which products may be processed in a given unit and also the
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number of batches of each product on every unit and time period, which will
be inputs to the LLS problem. Hence, the scheduling problem at the lower
level is solved only for the product assignments predicted by the upper level,
which may significantly reduce the number of constraints and variables in the
LLS problem.

It may be advantageous to add different integer cuts to the ULP problem
after each iteration, such as superset and subset cuts (You, Grossmann, &
Wassick, 2011) and symmetry-breaking cuts (Erdirik-Dogan & Grossmann,
2008). However, from our experience gained from solving the present problem,
at most two iterations were required to converge the ULP and LLS problems
to less then 1% relative error even for large problems. Hence, the integer cuts
to exclude the assignments at the previous BD iteration take the form:∑

(i,u,l,t)∈Bk
iult

ypiult−
∑

(i,u,l,t)∈Nk
iult

ypiult ≤ |Bk
iult| − 1 k ∈ BDk (2.74)

where k is the index of BD iterations that are contained in set BDk (max-
imum of 10 iterations were used in all computational experiments), Bk

iult =
{(i, u, l, t) ∈ Iiul × Ul × LPl × T : ypiult = 1 at iteration k − 1} and Nk

iult =
{(i, u, l, t) ∈ Iiul × Ul × LPl × T : ypiult = 0 at iteration k − 1}.

2.4.2 Lagrangean Decomposition
Problems with multiperiod formulations or with variables associated with spa-
tially distributed entities, such as plants and customers, are candidates that
can undergo Lagrangean Decomposition (LD), which is a special case of La-
grangean Relaxation (LR) where the original problem can be decomposed into
subproblems with common variables by splitting them first, and then dualizing
the copy constraints. In this work, since the ULP can become the bottleneck
as it has to be solved for the entire network, unlike the LLS that can be
solved for each plant, we decompose the ULP problem using LD inside the
BD loop discussed in the previous section. This proved to be computationally
advantageous when solving the large-scale industrial problem.

Two types of LD have been explored in the planning and scheduling liter-
ature: Temporal Lagrangean Decomposition (TLD) and Spatial Lagrangean
Decomposition (SLD). As the names imply, the former is characterized by de-
composing the original problem into subproblems corresponding to each time
period, whereas the latter is decomposed by the spatially distributed sites. Due
to the presence of binary variables in MILP problems, i.e., a source of non-
convexity, there is a duality gap between the solution of the Lagrangean dual
problem and the primal problem. Moreover, it has been shown by Terrazas-
Moreno, Trotter, & Grossmann (2011) that the temporal dual bound is at
least as tight as the spatial dual bound. Therefore, in this work we focus on
the TLD only.

Figure 2.8 shows a schematic of TLD. Each time period corresponds to an
independent subproblem that can be solved in parallel with the other subprob-
lems. The variables zt in this figure represent inventory variables, INVilt and
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BINVilt, and the assignment variables ygfgult in the ULP formulation because
they appear in terms in time period t and t+ 1, that is they link consecutive
time periods. Since we need to separate time periods into unique subproblems,
we introduce the copy variables INV ilt = INVilt, BINV ilt = BINVilt, and
ygf gult = ygfgult. The next step is to dualize these equations by multiplying
each of them by the respective Lagrange multipliers λINVilt, λBINVilt and
λygfgult, respectively, and adding the terms to the objective function.

Figure 2.8: Schematic of Temporal Lagrangean Decomposition (TLD).

The objective function of the planning problem is augmented as follows
(see equation (2.39) for the other individual terms in the objective function):

PlanCostTLD(λ) =
∑
t∈T

PlanCostt +
∑
i∈IIi

∑
l∈LPl

∑
t∈T

λINVilt · INVilt+∑
i∈IBi

∑
l∈LPl

∑
t∈T

λBINVilt ·BINVilt+∑
l∈LPl

∑
u∈Ul

∑
g∈Gul

∑
t∈T

λygfilt · ygfgult (2.75)

For fixed multipliers, the planning model is separable into time periods and
can be written as follows:

min PlanCostTLDt (λ) = PlanCostt+∑
i∈IIi

∑
l∈LPl

[
λINVilt · INVilt + λINVil(t−1) · INV il(t−1)

]
∑
i∈IBi

∑
l∈LPl

[
λBINVilt ·BINVilt − λBINVil(t−1) ·BINV il(t−1)

]
+

∑
l∈LPl

∑
u∈Ul

∑
g∈Gul

[
λygfgul(t+1) · ygf gul(t+1) − λygfgult · ygfgult

]
(2.76)

and subject to constraints (2.1) – (2.15), (2.17) – (2.27), (2.29), (2.31) – (2.35),
and the following constraints, which are rewritten by including the copy vari-
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ables:

ygf g′ul(t+1) =
∑
g∈Gul

zzzggg′ult ∀g′ ∈ Gul, u ∈ Ul, l ∈ LPl,

t ∈ T \ {t̄} (2.77)
INVilt = INV il(t−1) + STRilt ∀i ∈ IIi, l ∈ LPl, t ∈ T

(2.78)
BINVilt = BINV il(t−1) +BAilt −

∑
l′∈LCIl′i

SLill′t ∀i ∈ IBi, l ∈ LPl, t ∈ T

(2.79)

At the end of a TLD iteration, the multipliers must be updated for the
next iteration. Different strategies have been proposed, such as cutting plane
(Kelly, 1960), subgradient (Held, Wolfe, & Crowder, 1974), boxstep (Marsten,
Hogan, & Blankenship, 1975), bundle (Lemaréchal, 1974), analytic center cut-
ting plane methods (Goffin, Haurie, & Vial, 1992), and volume algorithm
(Barahona & Anbil, 2000). In this work, we use the subgradient method in
which the update formula for a multiplier λXp at iteration p ∈ TLDp of the
TLD and associated with the equality constraint of generic variable X is given
by:

λXp+1 = λXp + εp
(UBTLD − LBTLD)

denp
(Xp −Xp) (2.80)

where εp is the step size that can be modified at each iteration according
to some criterion and usually lies in the interval (0, 2], UBTLD is the best
upper bound in the TLD scheme up to iteration p obtained from solving the
original planning problem in the reduced space (i.e., by fixing variables from
the solution of the Lagrangean subproblems), LBTLD is the best lower bound
in the TLD scheme up to iteration p obtained from summing all the optimal
objective function values of the Lagrangean subproblems, and denp is the sum
of squared of the differences between the original variable Xp and its copy Xp

and for the planning formulation is defined as follows:

denp =
∑
t∈T

∑
i∈IIi

∑
l∈LPl

(INV p
ilt − INV

p

ilt)2 +
∑
i∈IBi

∑
l∈LPl

(BINV p
ilt −BINV

p

ilt)2+

∑
l∈LPl

∑
u∈Ul

∑
g∈Gul

(ygfpgult − ygf
p

gult)2

 ∀p ∈ TLDp

Lastly, the multipliers may be initialized prior to the first TLD iteration
to zero or to other values, for example the marginal values of the respective
equations from the relaxed TLD model (integrality conditions are relaxed).
From our experience, the best choice of initial values may vary among different
problems. The next section contains the full description of the algorithm
implemented when TLD is applied to the ULP problem within the BD loop.
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2.4.3 Hybrid BD-TLD Scheme
The two decomposition methods, BD and TLD, are combined in an effort to
solve large-scale industrial problems. Figure 2.9 shows the schematic of the
hybrid approach.

The main steps of the hybrid decomposition scheme is given in Figure 2.10.
We underscore the advantage of creating smaller and independent subproblems
through TLD, because they can be solved in shorter time as compared to
the full problem and also in parallel. Particularly in this work, since each
subproblem corresponds to a time period, it means that it is possible to solve all
subproblems at the same time in a multi-core computer instead of solving each
subproblem one at a time. To our knowledge, parallel “solve statements” have
become supported by two of the major modeling platforms, GAMS (Brooke,
Kendrick, & Meeraus, 2015) and AIMMS (Roelofs & Bisschop, 2015). We used
GAMS to implement our models and algorithms. For more information on how
to solve problems in parallel in GAMS, see the website: http://interfaces.
gams-software.com/doku.php?id=the_gams_grid_computing_facility.
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TLD of ULP (LDTLD)
Fix assignments to origi-
nal ULP in reduced space

Original ULP in Reduced Space (UBTLD)
Determine lower bound on cost

Update multipliers

∣∣∣∣∣UBTLD − LBTLD

UBTLD

∣∣∣∣∣ < TLDTLD?

LBBD ← UBTLD

Fix assignments and upper bound on
number of batches of each product

Lower Level Scheduling (LLS)
Determine upper bound (UBBD) on cost.

Solve for entire network.

Add cuts

∣∣∣∣∣UBBD − LBBD

UBBD

∣∣∣∣∣ < BDtol?

Stop
Solution = UBBD

no

yes

no

yes

Figure 2.9: Hybrid Bilevel-Temporal Lagrangean Decomposition scheme for
integrated planning and scheduling.

48



Figure 2.10: Algorithm for the hybrid Bilevel-Temporal Lagrangean Decom-
position scheme.

2.5 Computational Results
Three example problems of increasing size and complexity were solved to
demonstrate the efficiency of the decomposition approaches discussed in the
previous section. Example 1 is a small-scale problem for which we provide
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all data as well as present the optimal Gantt chart obtained. Example 2 is a
medium-scale problem and Example 3 is a large-scale industrial problem. All
examples were solved using BD and the full-space scheduling model. We used
the hybrid BD-TLD algorithm only to solve Example 3.

All models were implemented in GAMS 23.8.2 and solved with Gurobi
4.6.1. All computational experiments were performed in a Dell PowerEdge
T410 server with 6 Intel R© Xeon R© 2.67 GHz CPUs (total 12 threads), 16 GB
of RAM, and running Ubuntu Server 12.04 LTS. The Gurobi’s option threads
0 was enabled for all computational runs, which means that all threads were
used for parallel processing. The maximum allowed wall time for all problems
was 24 hours.

2.5.1 Example 1
Example 1 considers a small-scale problem, and it allows us to analyze not
only the computational benefit of Bilevel Decomposition (BD), but also to
gain insight on the optimal schedule represented by a Gantt chart. All the
data are given in Appendix A.1 and the characteristics of Example 1 are as
follows:

• 2 plants

– Plant P1: Units U11 and U12
– Plant P2: Unit U21

• 9 products (4 blended)

• 3 raw materials

• 3 customers

• Time horizon: 4 weeks

• Time period: weekly

• All models were solved to optimality

Figure 2.11 shows the optimal schedule represented by a Gantt chart for the
first time period (week) only, where the letters inside the colored blocks rep-
resent the products and the numbers within parentheses denote their number
of batches. The same result was obtained after solving both the LLS and the
full-space scheduling problems. In both units U12 and U21, the last sequence-
dependent changeovers occur across the first time period. We emphasize that
the number of batches (integer variables) were optimized simultaneously with
the planning and scheduling decisions in each model.
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Figure 2.11: Optimal schedule in Example 1. The blocks with a black-and-
white downward diagonal pattern represent sequence-dependent changeovers.

Table 2.1 shows the objective function breakdown for all models. Notice
that the ULP problem predicted lower changeover costs than the scheduling
models due to the aggregation of products into groups of products in the former
model so that changeovers between products belonging to the same group are
neglected. Moreover, the solution obtained for the LLS model was numerically
the same as the one obtained for the full-space scheduling model denoted as
“FS”, which may be expected for small and “well-posed” problems. The BD
gap between the LLS and the ULP solutions was 0.071% and only one BD
iteration was needed to achieve convergence.

Table 2.1: Cost breakdown for Example 1.

Costs BD FSULP LLS
Total 833,828.23 834,416.23 834,416.23

Operating 38,003.57 38,003.57 38,003.57
Inbound 409,179.52 409,179.52 409,179.52
Outbound 100,022.50 100,022.50 100,022.50

Plant-to-Plant 12,809.52 12,809.52 12,809.52
Inventory 9,347.11 9,347.11 9,347.11

Changeovers 1,966.00 2,554.00 2,554.00
Scale-Up 262,500.00 262,500.00 262,500.00

The problems sizes as well as computational statistics are shown in Ta-
ble 2.2. The row “Nodes” indicates how many tree nodes in the branch-and-
cut method were explored by the solver. Using BD, the total wall time was
1.17 seconds as opposed to solving the full-space (FS) scheduling model, which
took 44.98 seconds. Notice that the LLS problem contains fewer variables and
constraints than the FS problem, which facilitated its solution yielding only
29 nodes explored in the reduced space as opposed to nearly 95,000 nodes in
the full space.
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Table 2.2: Problems sizes for Example 1.

BD FSULP LLS
Discrete Variables 528 507 936

Continuous Variables 925 1,039 1,201
Constraints 1,412 1,726 2,924

Non-Zero Elements 4,537 5,049 9,113
Nodes 5,015 29 94,929

Wall Time [s] 0.99 0.18 44.98

2.5.2 Example 2
Example 2 is a medium-scale problem. We compared the effectiveness of ap-
plying only the BD with solving the FS problem. The computational benefit of
using BD becomes more evident as the problem grows in size and complexity
as will be shown in the results below. The characteristics of Example 2 are as
follows:

• 3 plants

– Plant P1: 2 units
– Plant P2: 1 unit
– Plant P3: 3 units

• 66 products (16 blended)

• 20 raw materials

• 99 customers

• Time horizon: 6 months

• Time period: monthly

• All models were solved to 0.5% optimality gap

Table 2.3 shows the objective function breakdown for all models. Notice
that the final solution of the BD, i.e., the solution to the LLS problem yields
a lower total cost than the one obtained solving the FS problem. Also, no
shipments between plants were observed in any of the problems. The BD gap
between the LLS and the ULP solutions was 0.2% and only one BD iteration
was needed to achieve such convergence.
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Table 2.3: Cost breakdown for Example 2.

Costs BD FSULP LLS
Total 5,202,979.79 5,212,454.79 5,222,056.24

Operating 233,495.60 233,495.60 234,284.40
Inbound 3,736,349.69 3,736,349.69 3,744,609.18
Outbound 507,477.50 507,477.50 505,980.67

Plant-to-Plant – – –
Inventory 41,782.00 41,782.00 41,782.00

Changeovers 8,875.00 18,350.00 20,400.00
Scale-Up 675,000.00 675,000.00 675,000.00

The problems sizes as well as computational statistics are shown in Ta-
ble 2.4. Using BD, the total wall time was 3.96 seconds for a gap of 0.2%
as opposed to solving the full-space (FS) scheduling model, which took ap-
proximately 3 hours and 25 minutes for 0.5% optimality gap. The difference
in terms of number of variables and constraints between performing the BD
and not decomposing the problem becomes considerably more expensive as the
problem instance increases. That is directly translated into 0 nodes necessary
to solve the LLS problem compared to nearly 60,000 nodes explored in the
solution of the FS problem.

Table 2.4: Problems sizes for Example 2.

BD FSULP LLS
Discrete Variables 6,328 4,412 128,400

Continuous Variables 52,783 53,047 95,563
Constraints 43,169 45,378 437,649

Non-Zero Elements 145,009 145,831 3,998,885
Nodes 57 0 57,536

Wall Time [s] 2.34 1.62 12,228.94

2.5.3 Example 3
Example 3 is a large-scale industrial problem. We identified the need to de-
compose the ULP problem and use the hybrid BD-TLD algorithm in order to
get a solution in practical time. The following characteristics provide an idea
of the problem size of Example 3. Exact characteristics are not provided due
to confidentiality reasons:

• More than 5 plants

• More than 10 reactor units with more multiple reactor units in each plant

• More than 200 products and raw materials
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• Hundreds of customers

• Time horizon: 12 months

• Time period: monthly

• All models were solved to 2% optimality gap

Table 2.5 shows the objective function breakdown for all models except the
FS problem, which could not be solved due to the excessive RAM required. A
maximum of 30 TLD iterations were enforced. The BD gap between the LLS
and the ULP solutions was 0.13% and only one BD iteration was needed to
achieve such convergence.

Table 2.5: Cost breakdown for Example 3.

Costs BD-TLD
ULP LLS

Total 9,532,583.65 9,545,149.23
Operating 1,696,826.08 1,691,107.90
Inbound 5,658,562.23 5,656,563.11
Outbound 840,872.58 844,039.17

Plant-to-Plant 24,345.55 24,520.93
Inventory 191,110.56 185,084.79

Changeovers 12,533.33 31,333.33
Scale-Up 1,108,333.33 1,112,500.00

The problems sizes as well as computational statistics are shown in Ta-
ble 2.6. Using hybrid BD-TLD, the total wall time was around 1 hour and 15
minutes. Using only the BD, the wall times were 6 hours and 12 minutes to
solve the ULP problem and 1 hour and 26 minutes to solve the LLS problem
(7 hours and 38 minutes total). It can be noted that the decomposition in the
ULP problem allowed us to obtain a solution with significantly less compu-
tation time. We show the size of the FS problem even though we could not
solve it. It is clear that decomposition approaches enable tackling real-world
problems.
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Table 2.6: Problems sizes for Example 3.

BD-TLD FSULP∗ LLS
Discrete Variables 119,397 228,701 6,726,779

Continuous Variables 834,195 898,119 3,138,985
Constraints 590,810 1,140,007 22,895,121

Non-Zero Elements 2,206,546 6,836,510 648,785,966
Nodes 0 0 N/A

Wall Time [s] 4,070.48∗∗ 452.53 N/A
∗ Last ULP problem solved in the TLD loop
∗∗ Total time for the TLD loop (30 iterations)

Figure 2.12 shows the evolution of the upper and lower bounds on the
objective function value obtained when applying TLD to the ULP problem.
The best lower and upper bounds after 30 iterations were $9, 363, 323.00 and
$9, 440, 580.00, which represent a final TLD gap of 0.82%.

Figure 2.12: Lower bound (LB), best upper bound (Best UB) and heuristic
upper bound (Heuristic UB) on the objective function value using Temporal
Lagrangean Decomposition in the Upper Level Planning problem in Example
3. The Heuristic UB is obtained by fixing the assignment variables, ypiult,
calculated by each Lagrangean subproblem in the full-space planning model.

2.6 Conclusions
In this work, we developed a model for the integration of planning and schedul-
ing in the operation of a network of multiproduct batch plants. Each plant
contains single-stage processing units in parallel and the products are classified
into groups or families. The planning model not only incorporates production
and capacity constraints, but also estimates the sequencing of groups of prod-
ucts through Traveling Salesman Problem (TSP) constraints. The schedul-
ing formulation employs continuous time representation in a precedence-based
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framework. It solves the batching and the scheduling problem simultaneously,
i.e., the number of batches is a decision variable in the model, and allows
sequence-dependent changeovers across time periods. Both models are multi-
period Mixed-Integer Linear Programs (MILPs).

The integration of planning and scheduling was performed via two decom-
position methods: Bilevel and Lagrangean. For small to medium problems,
it was observed that Bilevel Decomposition (BD) represents an attractive and
rigorous decomposition strategy to solve them in practical computational time.
However, when attempting to solve a real-world problem, the planning level
became computationally expensive and, thus, became amenable to further de-
composition. We performed Temporal Lagrangean Decomposition (TLD) in
the planning level in an inner loop of a BD framework to obtain a solution in
a reasonable time.

The computational results of the examples have shown that detailed model
formulations applied to large problems can be tackled through efficient mod-
eling decomposition strategies and advances in computing, such as in opti-
mization solvers capabilities, multi-core computer architecture and parallel
computing.
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Chapter 3

Data-Driven Multi-Stage
Scenario Tree Generation via
Statistical Property and
Distribution Matching

3.1 Introduction
The importance of accounting for uncertainty in mathematical optimization
was recognized in its early days in the seminal and influential paper by George
B. Dantzig (Dantzig, 1955). Two of the current popular optimization frame-
works that incorporate uncertainty in the modeling stage are Robust Opti-
mization (Ben-Tal, Ghaoui, & Nemirovski, 2009) and Stochastic Programming
(Birge & Louveaux, 2011). In this chapter, we focus on Stochastic Program-
ming (SP) and address the issue of scenario generation.

To illustrate the many possible sources of uncertainty in Process Systems
Engineering (PSE), consider as an example a production planning problem for
a network of chemical plants. Planning decisions usually span multiple time
periods and generally involve, but are not limited to determining the amount
of raw materials to be purchased by each plant, the production and inventory
levels at each plant, the transportation of intermediate and finished products
between different locations, and meeting the forecast demand. It is clear that
all those decisions may be subject to some kind of uncertainty. For instance,
the availability of a key raw material may be uncertain, and/or the demands
of the products. Another example is the possibility of mechanical failure of
pieces of equipment in a plant or its complete unplanned shutdown, which
affects the entire network. A review on optimization methods with exogenous
uncertainties can be found in Sahinidis (2004).

A central aspect of Stochastic Programming is the definition of scenar-
ios, which describe possible values that the uncertain parameters or stochastic
processes may take. Applications in PSE that make explicit use of scenarios
expand multiple areas and time scales. Some representative examples are: dy-
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namic optimization (Abel & Marquardt, 2000), scheduling (Guillén, Espuña,
& Puigjaner, 2006; Colvin & Maravelias, 2009; Pinto-Varela, Barbosa-Povoa,
& Novais, 2009), planning (Sundaramoorthy, Evans, & Barton, 2012; Li &
Ierapetritou, 2011; You, Wassick, & Grossmann, 2009; Gupta & Grossmann,
2012), and synthesis and design (Kim, Realff, & Lee, 2011; Chen, Adams II, &
Barton, 2011). The most common assumption made in the works listed before
is that the scenario tree is given (probabilities and values of uncertain param-
eters at every node are known). That is, the “true” probability distributions
are known, and the uncertainty typically is characterized by arbitrary devia-
tions from some average value based on minimum and maximum values (for
instance: low, medium, and high values with probabilities arbitrarily chosen).

Researchers have also developed decomposition algorithms to tackle large-
scale and real-world instances that originate from explicitly considering sce-
narios in optimization problems. We argue that it is equally important to
generate scenario trees that satisfactorily capture the uncertainty in a given
problem, as the quality of the solution to the SP problem is directly influenced
by the accuracy of the scenarios. Therefore, it is important to apply system-
atic scenario generation methods instead of making assumptions that may be
questionable. King & Wallace (2012) wrote an excellent book on the chal-
lenges of optimization modeling under uncertainty. The authors also discuss
the importance of generating meaningful scenarios (see Chapter 4), as model-
ing with SP results in a framework with practical and robust decision-making
capability.

These data-driven approaches to optimization problems have become com-
mon in the Operations Research and Management Science communities, and
are an example of what is called Business Analytics (BA) (Bartlett, 2013).
After the data collection and management phase, BA leverages data analysis
to make analytics-based decisions that can be divided into three general lay-
ers: descriptive (querying and reporting, databases), predictive (forecasting
and simulation), and prescriptive (deterministic and stochastic optimization)
(Davenport & Harris, 2007). The data-driven scenario generation method de-
scribed in this chapter can be linked with the descriptive and predictive layers,
and then used for decision making in the prescriptive layer.

It is worth noting that, even though not usually regarded as a scenario
generation method, the Sample Average Approximation (SAA) method (Kley-
wegt, Shapiro, & Homem-de-Mello, 2001; Shapiro, 2006) can be used to ap-
proximate the continuous probability distribution assumed for the uncertain
parameters. Specifically, the distributions are sampled, for instance via Monte
Carlo sampling, and the expected value function is approximated by the cor-
responding sample average function, which is repeatedly solved until some
convergence criterion is met. The size of the sample must be such that a de-
gree of confidence on the final objective function value is satisfied. In addition,
the sampling step becomes more complicated in Multi-Stage SP (MSSP), as
conditional sampling is required for the SAA method to produce consistent es-
timators. Conditioning on previous events also plays a key role in the moment

58



matching method as discussed later in the chapter.
The main contribution of this chapter is the consideration of the (empiri-

cal) cumulative distribution function as additional information to be matched
when generating scenario trees. This mitigates the typical under-specification
shortcoming of the Moment Matching Problem (MMP) that has been proposed
(Høyland & Wallace, 2001). We call this extended formulation the Distribu-
tion Matching Problem (DMP). We first present the L2-, L1-, and L∞-norm
MMP formulations, and then describe their extended versions and how to use
them for the generation of two- and multi-stage scenario trees with the aid of
time series forecasting.

This chapter is organized as follows. Section 3.2 introduces the moment
matching method as a systematic method to generate two-stage scenario trees.
In Section 3.3, we propose extensions to each MMP formulation by consid-
ering (empirical) cumulative distribution function data in order to mitigate
the under-specification shortcoming of MMP models. The new formulations
(DMP) and methodology are illustrated with a numerical example for the op-
timal production planning of a network of chemical plants. Section 3.4 extends
the methodology to the multi-stage case; the role of modeling stochastic pro-
cesses is emphasized and two approaches are described based on nonlinear and
linear programming (NLP and LP) statistical property matching formulations
for generating multi-stage scenario trees. The approaches are illustrated with
a numerical example, and conclusions are drawn in Section 3.5.

3.2 Two-Stage Scenario Tree Generation
Scenario trees are an approximate discretized representation of the uncertainty
in the data (Kaut, 2003). They are based on discretized probability distribu-
tions to model the stochastic processes. The scenario trees are approximate
because they contain a restricted number of outcomes in order to avoid the
integration of continuous distribution functions. However, the size of the sce-
nario trees directly impacts the computational complexity of SP models.

The concerns raised in the above paragraph have motivated the search for
methodologies that can be used to systematically generate two-stage scenario
trees. Two main classes of methods can be identified: scenario generation and
scenario reduction. In this section, we focus on scenario generation methods,
in particular, the moment matching method, which was originally pro-
posed by Høyland & Wallace (2001) and is described as follows. Given an
initial structure of the tree, i.e., number of nodes per stage, it determines at
each node the values for the random variables and their probabilities by solv-
ing a nonlinear programming (NLP) problem. The NLP problem minimizes
the weighted squared error between statistical properties calculated from the
outcomes or nodes, and the same properties calculated directly from the data.
Thus, it is based on an L2-norm formulation. If the absolute deviations from
the target properties are minimized as proposed by Ji et al. (2005), then an
L1-norm formulation can be employed, which has the advantage that it can
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be cast as a Linear Programming (LP) problem. A new formulation of the
MMP based on the L∞-norm. can also be developed Examples of statistical
properties are the first four moments (expected value, variance, skewness, and
kurtosis), covariance or correlation matrix, quantiles, etc.

It is important to note that the scenario tree generated by the moment
matching method is used as an “input” to the SP model. Therefore, the
uncertain parameters as well as the probabilities of the outcomes (or scenarios)
in the SP model become decision variables in the scenario generation problem.

In this section, we review MMP formulations for two-stage problems.

3.2.1 L2 Moment Matching Problem
In the Moment Matching Problem (MMP), the uncertain parameters of the SP
model and the probabilities of the outcomes become variables in a nonlinear
optimization formulation. The purpose of the MMP is to find the optimal
values for the random variables xj and probabilities pj (see Figure 3.1) of a
pre-specified structure for the scenario tree that minimize the error between the
statistical properties calculated from the tree and the ones calculated directly
from the data.

x1

p1

x2

p2

. . .
xj

pj

. . .
xN−1

pN−1

xN

pN

Figure 3.1: Two-stage scenario tree for one uncertain parameter.

In the L2 formulation, the squared error is employed in the objective func-
tion. Hence, the NLP formulation can be generically written as follows:

min
x, p

∑
s∈S

ws · (fs(x, p)− Svals)2

s.t.
N∑
j=1

pj = 1

pj ∈ [0, 1] ∀ j = 1, . . . , N

(3.1)

where x is a vector of random variables (uncertain parameters of the SP
model), p is a vector of probabilities of outcomes, s ∈ S is a statistical property
to be matched (target), ws is the weight for statistical property s, fs(·, ·) is
the mathematical expression of statistical property s calculated from the tree,
Svals is the value of statistical property s (target value) that characterizes the
distribution of the data.

Any statistical property that somehow describes the data can be used to
measure how well the scenario tree represents them. Descriptive statistics
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provides measures that can be used to summarize and inform us about the
probability distribution of the data. Four of these measures, called moments,
(Papoulis, 1991), are the following: mean or expectation, and the central
moments variance, skewness, and kurtosis. The mean or expectation tells us
about the average value in a data set, the variance is a measure of the spread
of the data about the mean, the skewness is a measure of the asymmetry of the
data, and the kurtosis is a measure of the thickness of the tails of the shape
of the distribution of the data.

A more detailed definition of the L2 MMP is as follows. The uncertain
data are indexed by i ∈ I, which denotes the entity of an uncertain parameter
(for example, a product). N denotes the number of outcomes per node at
the second stage, j ∈ J = {1, 2, . . . , N} denotes the branches (outcomes)
from the root node, and k ∈ K = {1, 2, 3, 4} is the index of the first four
moments. The decision variables are the uncertain parameters of the stochastic
programming problem, xi,j, with corresponding probabilities of outcomes, pj.
The moments calculated from the tree are denoted by variables mi,k and the
ones calculated from the data are denoted by parameters Mi,k. Finally, the
second co-moment, i.e., covariance, calculated between entity i and i′ from the
tree and the data are denoted by ci,i′ and Ci,i′ , respectively. The L2 MMP
formulation is given as follows (see Gülpınar, Rustem, & Settergren (2004)).
The goal is to generate a tree in which we determine the values of xi,j and pj
whose properties match those calculated from the data (Mi,k and, if applicable,
Ci,i′).

(L2 MMP):

min
x, p

zL
2

MMP =
∑
i∈I

∑
k∈K

wi,k(mi,k −Mi,k)2 +
∑

(i, i′)∈I
i<i′

wi,i′(ci,i′ − Ci,i′)2 (3.2a)

s.t.
N∑
j=1

pj = 1 (3.2b)

mi,1 =
N∑
j=1

xi,jpj ∀ i ∈ I (3.2c)

mi,k =
N∑
j=1

(xi,j −mi,1)kpj ∀ i ∈ I, k > 1 (3.2d)

ci,i′ =
N∑
j=1

(xi,j −mi,1)(xi′,j −mi′,1)pj ∀ (i, i′) ∈ I, i < i′ (3.2e)

xi,j ∈ [xLBi,j , xUBi,j ] ∀ i ∈ I, j = 1, . . . , N (3.2f)
pj ∈ [0, 1] ∀ j = 1, . . . , N (3.2g)

where the weighted squared error between the statistical properties calculated
from the tree and inferred from the data is minimized in (3.2a). Constraints
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(3.2b) ensure that the probabilities of outcomes add up to 1, (3.2c) represent
the calculation of the first moment (mean), constraints (3.2d) represent the
calculation of higher-order central moments, constraints (3.2e) are the expres-
sions for the covariance, and wi,k = w′i,k/M2

i,k and wi,i′ = w′i,i′/C2
i,i′ , where

w′i,k and w′i,i′ are weights, which can be chosen arbitrarily. The bounds on
the decision variables x and p are represented in constraints (3.2f) and (3.2g),
respectively.

Remark 1. Skewness, Skew, and kurtosis, Kurt, are by definition nor-
malized properties:

Skewi =

N∑
j=1

(xi,j −mi,1)3pj

σ3
i

∀ i ∈ I

Kurti =

N∑
j=1

(xi,j −mi,1)4pj

σ4
i

∀ i ∈ I

where σ2
i = mi,2 is the variance as defined in equation (3.2d) for k = 2.

Therefore, in order to use constraints (3.2d) for k > 2 in the L2 MMP, the
statistical properties calculated from the data have to be denormalized.

Remark 2. Before solving the L2 MMP, the number of branches or out-
comes from the root node, N, is pre-specified. Høyland & Wallace (2001)
suggest the rule (|I|+1)N−1 ∼ number of statistical specifications, where |I|
is the number of random variables. The authors also discuss potential over-
and under-specification that may arise from choosing a value for N. The other
inputs or parameters to the L2 MMP are the values of the statistical properties
to be matched. They directly affect the quality of the tree obtained. Hence,
care should be exercised to obtain those properties in a meaningful way, so
that the scenario tree effectively captures the uncertainty in the data.

Remark 3. The use of covariance or correlation information enables one to
capture the linear dependence between multiple sources of uncertainty. More
sophisticated and rigorous ways, such as copulas, to model dependency of
distributions in a multivariate structure have been employed in a few papers,
for instance, Sutiene & Pranevicius (2007); Kaut (2013).

The NLP problem in equation (3.2) is nonconvex and its degree of nonlin-
earity and nonconvexity increases when attempting to match higher moments.
As expected, initialization plays an important role in such optimization prob-
lems. Therefore, local NLP solvers may encounter numerical difficulties and
get trapped in poor local solutions. Systematic multi-start methods can be
used with local NLP solvers to help overcome the problems aforementioned by
sampling multiple starting points in the feasible region and solving the NLP
problem using each different starting point; however, it must be recognized
that multi-start methods are not a panacea and there is no guarantee of sys-
tematically obtaining a global (or near global) solution to the MMP. Finally,
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deterministic global optimization solvers, such as BARON (Tawarmalani &
Sahinidis, 2005), SCIP (Achterberg, 2009), and COUENNE (Belotti et al.,
2009), can also be used although at considerable computational expense if the
NLP is not small in size.

3.2.2 L1 and L∞ Moment Matching Problems
If the absolute value of the deviations from the target moments and co-
moments are minimized, then the MMP becomes an L1-norm model as pro-
posed by Ji et al. (2005). A well-known reformulation of the nondifferentiable
absolute value function in the definition of the objective function consists in
splitting the variable in its argument into two non-negative variables, which
correspond to the positive and negative values of the original variable.

The L1 formulation of the MMP is then as follows. Partition the moment
and covariance variables, mi,k and ci,i′ , respectively, into their positive and
negative parts m+

i,k, m−i,k, c+
i,i′ , and c−i,i′ . Thus, the L1 MMP is given by:
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(L1 MMP):

min
x, p

zL
1

MMP =
∑
i∈I

∑
k∈K

wi,k(m+
i,k +m−i,k) +

∑
(i, i′)∈I
i<i′

wi,i′(c+
i,i′ + c−i,i′) (3.3a)

s.t.
N∑
j=1

pj = 1

(3.3b)
N∑
j=1

xi,jpj +m+
i,1 −m−i,1 = Mi,1 ∀ i ∈ I

(3.3c)
N∑
j=1

(xi,j −
N∑
j′=1

xi,j′pj′)kpj +m+
i,k −m−i,k = Mi,k ∀ i ∈ I, k > 1

(3.3d)
N∑
j=1

(xi,j −
N∑
j′=1

xi,j′pj′)(xi′,j −
N∑
j′=1

xi′,j′pj′)pj + c+
i,i′ − c−i,i′ = Ci,i′ ∀ (i, i′) ∈ I,

i < i′

(3.3e)
m+
i,k, m

−
i,k ≥ 0 ∀ i ∈ I, k ∈ K

(3.3f)
c+
i,i′ , c

−
i,i′ ≥ 0 ∀ (i, i′) ∈ I,

i < i′

(3.3g)
xi,j ∈ [xLBi,j , xUBi,j ] ∀ i ∈ I,

j = 1, . . . , N
(3.3h)

pj ∈ [0, 1] ∀ j = 1, . . . , N
(3.3i)

where the weighted absolute deviations between the statistical properties cal-
culated from the tree and inferred from the data are minimized in (3.3a). Con-
straints (3.3b) ensure that the probabilities of outcomes add up to 1, (3.3c)
attempts to match the first moment (mean), constraints (3.3d) represent the
matching of higher-order central moments, constraints (3.3e) attempt to match
the covariance, and wi,k = |w′i,k/Mi,k| and wi,i′ = |w′i,i′/Ci,i′|, where w′i,k and
w′i,i′ are weights that can be arbitrarily chosen. The bounds on the variables
x, p, m+, m−, c+, and c− are represented by constraints (3.3f) – (3.3i).

Another way of formulating the MMP is through the minimization of the
L∞-norm of the deviations with respect to the targets.
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(L∞ MMP):

min
x, p

zL
∞

MMP = µ+ γ (3.4a)

s.t.

Constraints (3.3b) – (3.3i)
µ ≥ wi,km

+
i,k ∀ i ∈ I, k ∈ K (3.4b)

µ ≥ wi,km
−
i,k ∀ i ∈ I, k ∈ K (3.4c)

γ ≥ wi,i′c
+
i,i′ ∀ (i, i′) ∈ I, i < i′ (3.4d)

γ ≥ wi,i′c
−
i,i′ ∀ (i, i′) ∈ I, i < i′ (3.4e)

where µ and γ are scalar variables that account for the maximum deviations
in the moments and covariances, respectively.
3.2.2.1 Linear Programming L1 and L∞ MMPs

The L2, L1, and L∞ MMPs shown in equations (3.2) to (3.4), respectively,
are nonlinear and nonconvex due to the mathematical expressions for the mo-
ments since both probabilities and node values are decision variables. Ji et al.
(2005) used ideas from Linear Goal Programming and proposed an LP formu-
lation for the L1 MMP in which only probabilities are decision variables. In
this LP formulation, the node values are generally obtained via some simu-
lation approach. For time-dependent data, such as asset returns in financial
portfolio management applications, a time-series model is used to forecast fu-
ture expected values and possibly higher moments. Multiple values above and
below the forecast expected value can be used as the node values or outcomes
in the L1 and L∞ LP MMP formulations and the probabilities of each outcome
are left as the decision variables. In PSE applications, uncertain parameters
that typically have a time component are product demand and market price.

Let xi,j be a parameter with the value of the uncertain parameter that
can be arbitrarily chosen or calculated from some simulation procedure, for
example simulation of time-series forecasting models. As long as there are at
least two values, for example xi,j and xi,j′ , that are symmetric with respect to
the mean, then the expected value can always be matched (see Proposition 1
in Ji et al. (2005)) and the L1 LP MMP is given as follows:
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(L1 LP MMP):

min
p

zL
1

LP MMP =
∑
i∈I

∑
k∈K\{1}

wi,k(m+
i,k +m−i,k) +

∑
(i, i′)∈I
i<i′

wi,i′(c+
i,i′ + c−i,i′)

(3.5a)
s.t.
N∑
j=1

pj = 1 (3.5b)

N∑
j=1

xi,jpj = Mi,1 ∀ i ∈ I (3.5c)

N∑
j=1

(xi,j −Mi,1)kpj +m+
i,k −m−i,k = Mi,k ∀ i ∈ I, k > 1

(3.5d)
N∑
j=1

(xi,j −Mi,1)(xi′,j −Mi′,1)pj + c+
i,i′ − c−i,i′ = Ci,i′ ∀ (i, i′) ∈ I, i < i′

(3.5e)
m+
i,k, m

−
i,k ≥ 0 ∀ i ∈ I, k ∈ K

(3.5f)
c+
i,i′ , c

−
i,i′ ≥ 0 ∀ (i, i′) ∈ I, i < i′

(3.5g)
pj ∈ [0, 1] ∀ j = 1, . . . , N

(3.5h)

Likewise, the L∞ LP MMP can be formulated as follows:

(L∞ LP MMP):

min
p

zL
∞

LP MMP = µ+ γ (3.6a)

s.t.

Constraints (3.5b) – (3.5h)
µ ≥ wi,km

+
i,k ∀ i ∈ I, k ∈ K (3.6b)

µ ≥ wi,km
−
i,k ∀ i ∈ I, k ∈ K (3.6c)

γ ≥ wi,i′c
+
i,i′ ∀ (i, i′) ∈ I, i < i′ (3.6d)

γ ≥ wi,i′c
−
i,i′ ∀ (i, i′) ∈ I, i < i′ (3.6e)

We note that the LP formulations do not necessarily yield the same solu-
tion as the NLP formulations. The NLP formulations have more degrees of
freedom (both vectors x and p are simultaneously optimized), whereas the LP
formulations are used to calculate the vector of probabilities for fixed values
of outcomes.
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Obviously, it may be more advantageous to solve an LP problem instead
of a nonconvex NLP problem. For multi-stage stochastic problems with time-
dependent uncertain parameters, the solution strategy is much more complex
when applying the NLP model instead of the LP formulation. Sections 3.4.1
and 3.4.2 contain details of multi-stage scenario tree generation using the afore-
mentioned NLP and LP formulations, respectively.

3.2.3 Remarks on the MMP Formulations
Regardless of the L2, L1, and L∞ MMP formulations, it has been our experi-
ence that it is common to have under-specified NLP and LP problems when
only moments are matched. This is due to the fact that not enough information
to be matched (statistical properties) is provided to achieve non-degenerate so-
lutions. The consequences are that multiple choices for the node values and/or
probabilities yield the same objective function value. In other words, multiple
trees with the same number of nodes and having very different node values
and (sometimes zero) probabilities satisfy the specifications. In addition, we
observed that the Lagrange multipliers associated with all constraints in the
models are zero or very small at the optimal solution obtained by local and
global solvers. Moreover, the distribution obtained from solving the MMPs
does not exhibit a similar shape as the distribution of the data even when up
to four moments were matched.

More formally, we can perform an analysis on the well-posedness of the
MMP formulations for which both node values (xi,j) and probabilities (pj)
are variables. The number of variables is |I| · N + N − 1 = N(|I| + 1) − 1.
The number of data points (|K| moments and covariances, or conditions to be
matched) is |I| · |K|+ |I|(|I|−1)

2 . The MMP is well-posed if the number of data
points is at least the number of variables, i.e.,

|I| · |K|+ |I|(|I| − 1)
2 ≥ N(|I|+ 1)− 1 (3.7)

For example, for one uncertain parameter (|I| = 1) and four moments (|K| =
4), we have that N ≤ 2.5, meaning we can only have a tree with two scenarios
for a well-posed MMP formulation. If we increased N to 3 or more, then this
would result in an under-specified MMP model.

To mitigate the under-specification of MMP formulations, we propose in-
cluding additional statistical properties to be matched in order to avoid solving
an under-specified MMP formulation, and to ensure that the shape of the dis-
tribution of the data is captured in the solution. This is also motivated by
the fact that in certain applications it may not be practical to obtain accurate
estimates of higher moments as a large amount of data is needed. Conse-
quently, fewer moments may be matched based on their availability, while still
capturing the shape of distribution of data with the scenario tree. Lastly, our
numerical experiments demonstrate that the same solution vector is achieved
by local and global solvers. That is, only one tree satisfies the specifications,
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although theoretically there is no guarantee that this property holds true due
to nonconvexity in the NLP models.

3.3 Distribution Matching Problem
A new formulation—Distribution Matching Problem (DMP)—based on the
MMP is proposed that not only attempts to match marginal moments, but
also the marginal Empirical Cumulative Distribution Function (ECDF) of the
data as explained in this section. Specifically, we propose to extend the L2,
L1, L∞ MMPs, and the L1 and L∞ LP MMPs in order to also match an
approximation to the Empirical Cumulative Distribution Function (ECDF) of
the data. Before describing the steps of the algorithm to incorporate the ECDF
information into the optimization models, some definitions are presented.

For a given random variable (r.v.) Z, the probability of Z to take on a
value, say z, less than or equal to some value t is given by the Cumulative Dis-
tribution Function (CDF), or mathematically CDF (t). A CDF is associated
with a specific Probability Density Function (PDF), for continuous random
variables (r.vs.), or Probability Mass Function (PMF), for discrete r.vs. In
order to avoid making assumptions about the distribution model, an estima-
tor of the CDF can be used, the Empirical CDF (ECDF), which is defined as
follows (van der Vaart, 1998):

ECDF (t) = 1
n

N∑
i=1

1{zi ≤ t} (3.8)

where n is the sample size and 1{A} is the indicator function of event A, that
takes the value of one if event A is true, or zero otherwise. Therefore, given
a value t, the ECDF returns the ratio between the number of elements in the
sample that are less than or equal to t and the sample size.

Every CDF has the following properties:

• It is monotonically non-decreasing;

• It is right-continuous;

• lim
x→−∞

CDF (x) = 0; and

• lim
x→+∞

CDF (x) = 1.

We note that most CDFs are sigmoidal. Therefore, the ECDF, as an estimator
of the CDF, is also “S-shaped” in most cases. Hence, in order to incorporate
the ECDF data in the optimization models in a smooth way, we propose fit-
ting the Generalized Logistic Function (GLF) (Richards, 1959), also known as
Richards’ Curve, or a simplified version (for instance, the Logistic Function is
a special case of the GLF). The GLF is defined as follows:

GLF (x) = β0 + β1 − β0

(1 + β2e−β3x)1/β4
(3.9)
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where β0, β1, β2, β3, and β4 are parameters to be estimated. When fitting
the GLF to ECDF data, the GLF can be simplified by setting β0 = 0 and
β1 = 1 as these parameters correspond to the lower and upper asymptotes,
respectively. Analytical expressions for the partial derivatives of GLF (x) with
respect to its parameters can be derived and used to form the Jacobian matrix
for least-squares fitting purposes.

The algorithm for generating a two-stage scenario tree, where the uncertain
parameters have no time-series effect, by matching moments and ECDF is
described as follows:

Step 1: Collect data for the (independent) uncertain parameters and obtain
individual ECDF curves for each data set.

Step 2: Approximate each ECDF curve obtained by fitting the Generalized
Logistic Function (GLF) or a simplified version.

Step 3: Solve a Distribution Matching Problem (DMP) defined in equations
(3.10), (3.11), or (3.12).

Remark. We note that if a particular probability distribution family is as-
sumed, i.e., a parametric approach is taken, then CDF information rather than
ECDF data can be used in the DMP. This avoids the extra step of fitting a
smooth curve to the ECDF data. However, very few distribution families have
closed-form expressions for the CDF. Thus, approximate formulas have to be
used in order to avoid evaluating integrals in the DMP.

Extended versions of the three MMP formulations for Step 3 are presented
as follows. Note that since ECDF information is taken into account, we add
|I| ·N conditions that reduce the problem of under-specification. Furthermore,
we note that we must ensure that the values of the nodes in the tree are ordered,
i.e., order statistics (Hogg, McKean, & Craig, 2012). The convention adopted
is the following: xi,1 ≤ xi,2 ≤ . . . ≤ xi,N, which is ensured via additional
inequalities in each extended NLP model. Because the node values are ordered,
the summation ∑j

j′=1 pj′ represents the cumulative probability of the node
value xi,j.

(L2 DMP):

min
x, p

zL
2

DMP = zL
2

MMP +
∑
i∈I

N∑
j=1

ωi,jδ
2
i,j (3.10a)

s.t.

Constraints (3.2b) – (3.2g)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δi,j ∀ i ∈ I, j = 1, . . . , N (3.10b)

xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N− 1 (3.10c)
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where the variables δi,j represent the deviations with respect to the ECDF
data, which in turn are approximated by, for example, the GLF and is repre-
sented by the expression ÊCDF (xi,j). In addition to minimizing the weighted
square errors from matching (co-)moments, the sum of squares of the devia-
tions δi,j is also minimized with given weights ωi,j that can be chosen relative
to the weights for the term involving the moments. Thus, the weights rep-
resent a trade-off between matching sample (co-)moment data and a smooth
representation of the (E)CDF.

(L1 DMP):

min
x, p

zL
1

DMP = zL
1

MMP +
∑
i∈I

N∑
j=1

ωi,j(δ+
i,j + δ−i,j) (3.11a)

s.t.

Constraints (3.3b) – (3.3i)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N (3.11b)

xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N− 1 (3.11c)

where the variables δ+
i,j and δ−i,j represent the positive and negative deviations

with respect to the ECDF data, respectively. The expression ÊCDF (xi,j)
represents the approximation to the ECDF data obtained by, for example,
fitting the GLF. The weights to the deviations are given by ωi,j.

(L1 LP DMP):

min
p

zL
1

LP DMP = zL
1

LP MMP +
∑
i∈I

N∑
j=1

ωi,j(δ+
i,j + δ−i,j) (3.12a)

s.t.

Constraints (3.5b) – (3.5h)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N (3.12b)

The constant expression ÊCDF (xi,j) represents the approximation to the
ECDF data obtained by, for example, fitting the GLF. Note that it is re-
quired that the vector of node values is ordered, that is, xi,j ≤ xi,j+1 for
j = 1, . . . , N− 1.
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(L∞ DMP):

min
x, p

zL
∞

DMP = zL
∞

MMP + ξ (3.13a)

s.t.

Constraints (3.3b) – (3.3i) and (3.4b) – (3.4e)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N

(3.13b)
ξ ≥ ωi,jδ

+
i,j ∀ i ∈ I, j = 1, . . . , N

(3.13c)
ξ ≥ ωi,jδ

−
i,j ∀ i ∈ I, j = 1, . . . , N

(3.13d)
xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N− 1

(3.13e)

(L∞ LP DMP):

min
p

zL
∞

LP DMP = zL
∞

LP MMP + ξ (3.14a)

s.t.

Constraints (3.5b) – (3.5h) and (3.6b) – (3.6e)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N

(3.14b)
ξ ≥ ωi,jδ

+
i,j ∀ i ∈ I, j = 1, . . . , N

(3.14c)
ξ ≥ ωi,jδ

−
i,j ∀ i ∈ I, j = 1, . . . , N

(3.14d)

where ξ is a scalar variable that accounts for the maximum deviations in the
ECDF information.

If a parametric approach to the distribution family is taken, then the term
ÊCDF (·) can be substituted by an exact closed-form expression, represented
by CDF (·), or an approximate formula, denoted by C̃DF (·), and no curve
fitting is needed.

Remark. We compare the well-posedness of the DMP formulations in this
section to the expression derived in equation (3.7) for the MMP formulations
in Section 3.2. The number of variables is the same, N(|I| + 1) − 1, but the
number of data points (conditions to be matched) is increased by |I| · N to
|I| · |K|+ |I|(|I|−1)

2 + |I| ·N. Thus, for the case where both the node values and
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probabilities are variables, the DMP formulations are well-posed when

|I| · |K|+ |I|(|I| − 1)
2 ≥ N− 1 (3.15)

In other words, the right-hand side of equation (3.7) for MMP formulations
is reduced by |I| · N, meaning that the number of outcomes N (or scenarios)
can be increased. For example, for one uncertain parameter (|I| = 1) and
four moments (|K| = 4), we have that N ≤ 5 instead of N ≤ 2.5 for MMP
formulations. Thus, the additional information matched by the DMP model
eliminates the under-specification present in the MMP formulations. Conse-
quently, the proposed extension allows the modeler to specify more outcomes
without leading to under-specified or ill-posed problems.

The distribution matching method is illustrated in the following example in
which the objective is to determine the optimal production plan of a network
of chemical facilities or plants. For simplicity, the only uncertain parameter
considered is the production yield of one facility in the network. The example
demonstrates the impact that selecting a scenario tree has on the quality of
the solution of the stochastic model.

3.3.1 Example 1: Uncertain Plant Yield
Figure 3.2 shows the network of the example used throughout the chapter. It
consists of a raw material A, an intermediate product B, finished products C
and D (only product D can be stored), and facilities (plants) P1, P2, and P3.
Product C can also be purchased from a supplier, or in the case of multiple
sites, it could be transferred from another site that also produces it.

Supply A P1 B

P2

P3

C

D

Purchase

Sales

Sales

Storage

xpurchA,t yrateP1,t wrate
P1,t

yrateP2,t

yrateP3,t

wrate
P2,t

wrate
P3,t

xpurchC,t

xsalesC,t

xsalesD,t

winv
D,t

Figure 3.2: Network structure for the motivating Example 1.

The production planning Linear Programming (LP) model has the fol-
lowing main elements: variables corresponding to the inlet/outlet flow rates
to/from facility f in time period t, yratef,t and wrate

f,t respectively; production
yields for each facility, θf ; and demands for each finished product m ∈ FP in
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time period t, ξm,t. The deterministic multiperiod optimization model is given
as follows:

max wprofit (3.16a)
s.t. wrate

f,t = θfy
rate
f,t ∀ f ∈ F, t ∈ T (3.16b)

xsalesC,t = wrate
P2,t + xpurchC,t ∀ t ∈ T (3.16c)

winv
D,t = winv

D,t−1 + wrate
P3,t − xsalesD,t ∀ t ∈ T (3.16d)

wrate
P1,t = yrateP2,t + yrateP3,t ∀ t ∈ T (3.16e)

xpurchA,t = yrateP1,t ∀ t ∈ T (3.16f)
xsalesm,t + slacksalesm,t = ξm,t ∀ m ∈ FP, t ∈ T (3.16g)
wrate
f,t ≤ wrate,max

f,t + slackmax,cap
f,t ∀ f ∈ F, t ∈ T (3.16h)

wrate
f,t ≥ wrate,min

f,t − slackmin,cap
f,t ∀ f ∈ F, t ∈ T (3.16i)

winv
D,t ≤ winv,max

D,t ∀ t ∈ T (3.16j)
xpurchA,t ≤ xpurch,max

A,t ∀ t ∈ T (3.16k)

where constraints (3.16b) relate the output flows with the input flows through
the yield of each facility f , constraints (3.16c) – (3.16f) represent material and
inventory balances, equations (3.16g) represent the demand satisfaction and
slack variables are employed to account for possible unmet demand, constraints
(3.16h) – (3.16k) are limitations in the flows, storage, raw material availability,
and capacity violations, respectively, and the profit is calculated as follows:

wprofit =
∑
t∈T

 ∑
m∈FP

SPm,txsalesm,t −
∑
f∈F

OPCf,tw
rate
f,t −∑

m∈M :MPUR=1
PCm,tx

purch
m,t −

∑
m∈M :MINV=1

ICm,tw
inv
m,t −

∑
m∈FP

PENm,tslack
sales
m,t

−
∑
f∈F

PENf,t(slackmax,cap
f,t + slackmin,cap

f,t )


where SPm,t is the selling price of material m in period t, OPCf,t is the oper-
ating cost of facility f in period t, PCm,t is the purchase cost of material m
in period t, ICm,t is the inventory cost of material m in period t, and PENm,t

denotes the penalty associated with unmet demand.
Consider the historical data showing the variability of the production yield

of facility P1, θP1, with 120 data points, which represent monthly records of
θP1 for a period of ten years. The distribution of θP1 is depicted in a histogram
as shown in Figure 3.3. Only the first two moments and ECDF data were es-
timated from the randomly generated production yield values. The simplified
GLF (β0 = 0 and β1 = 1) fit to ECDF data and the estimated parameters
are shown in Figure 3.4. Details of the procedure for generating the historical
data for θP1, fitting the simplified GLF, and the remaining parameters for the
production planning model are given in Appendix B.1.

73



Figure 3.3: Distribution of the historical data for the production yield of
facility P1.

Figure 3.4: ECDF data of the production yield of facility P1 fitted by a
simplified GLF.

To simplify the analysis, we model this multiperiod production planning
problem as a Two-Stage Stochastic Programming (TSSP) problem. There are
four time periods that correspond to a quarterly production plan problem over
the course of one year time horizon. The first stage, or here-and-now variables,
are all the variables in the model at the first time period, t = 1, whereas the
second stage, or wait-and-see variables, are all the variables at the remaining
time periods, t > 1. All the DMPs and the deterministic equivalent of the
TSSP models are implemented in AIMMS 3.13 (Roelofs & Bisschop, 2015).
The DMPs were solved with IPOPT 3.10.1 using the Multi-Start Module in
AIMMS and the TSSP model was solved with Gurobi 5.1. The model sizes
are small; therefore, CPU times are not reported. In the DMPs, the yield
variables were bounded below by the minimum data point, and above by the
maximum data point.

Assuming we match for the DMP the first four moments (i.e., |K| = 4)
and ECDF data, then it follows from inequality (3.15) that N ≤ 5. Therefore,
five scenarios are selected for the two-stage scenario tree. Two approaches are
compared: heuristic and DMP, which includes the optimization models de-
scribed in Section 3.3. The heuristic approach represents an arbitrary way to
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construct a scenario tree that does not consider the distribution of the histor-
ical data. From minimum and maximum data values (e.g., production yield
that can vary between 0 and 1), their arithmetic mean is calculated (center
node) and the values of the other nodes are calculated by fixed deviations of
±20% and ±40% from the mean node. Therefore, the tree in this example has
five nodes in the second stage. Also, the probabilities are arbitrarily chosen.
Notice that by not visualizing the distribution of the uncertain parameter,
choice of outcomes and their probabilities may not satisfactorily characterize
the shape of the distribution of the actual data. In other words, the heuristic
scenario tree does not represent the actual problem data and the production
plan obtained may not be very meaningful. The DMP approach calculates the
probabilities (both LP and NLP formulations) and values of the nodes (only
NLP formulations) in order to match statistical properties that describe the
distribution of the yield data.

Figure 3.5 shows the probabilities and yield values obtained for the five-
scenario tree in each approach.

Figure 3.5: Probability profiles for the heuristic and optimization-based
(DMP) approaches in Example 1. For reference, a histogram of the uncer-
tain data is depicted in Figure 3.3.

The yield distribution as shown in Figure 3.3 is skewed to the right, which
results in higher probabilities assigned to node values that are slightly higher
than the mean yield (0.7301). Such characteristic is not captured in the heuris-
tic approach, which does not satisfactorily represent the actual data. It was
observed that the probabilities obtained with the L1 LP DMP and L∞ LP
DMP formulations are strongly dependent on the node values chosen and this
fact affects the remaining results shown below. The objective function value
of the three DMP formulations are shown in Table 3.1. Note that the extra
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number of variables associated with considering the node values as variables
(NLP formulations) results in smaller deviations in the matching procedure
for the choices of weights (see Appendix B.1).

Table 3.1: Objective function values of the DMP formulations in Example 1.
The values represent the error of matching the statistical properties.

Model Objective Function
L2 DMP 0.0030
L1 DMP 0.0403

L1 LP DMP 0.4739
L∞ DMP 0.0129

L∞ LP DMP 0.2112

Table 3.2 shows the optimal expected profit of the stochastic production
planing model in equation (3.16). The relatively low expected profit by using
the heuristic approach can be explained due to high probabilities placed on
production yields below the mean of the actual yield data. In other words,
the scenario tree in the heuristic approach is pessimistic for the values chosen
for the production yield of facility P1. Ultimately, the tree in the heuristic
approach is an inaccurate representation of the yield data. However, note that
the magnitude of the expected profit of the TSSP problem is not an assessment
of the quality of each solution with respect to the “true” solution that would
be obtained if the true distributions were known and were not approximated
by finite discrete outcomes. The LP deterministic equivalent of the two-stage
stochastic program has 273 constraints, 305 variables, 832 nonzeros, and was
solved in not more than 0.02 seconds for all approaches.

Table 3.2: Expected profit of the production planning model in Example 1
using the scenario trees from two approaches.

Approach Expected Profit [$]
Heuristic 65.43
L2 DMP 76.13
L1 DMP 74.40

L1 LP DMP 76.38
L∞ DMP 73.82

L∞ LP DMP 76.42

Figures 3.6 and 3.7 show the different production plans obtained for each
approach. Specifically, the solution obtained with the heuristic approach pre-
dicted higher inventory levels of product D for the first time period (here-and-
now decisions). Moreover, using the tree obtained with the heuristic approach
incurred higher purchase amounts of product C for the first period.
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Figure 3.6: Optimal inventory levels of product D from using the scenarios
obtained from heuristic and DMP approaches.

Figure 3.7: Optimal purchase amounts of product C from using the scenarios
obtained from heuristic and DMP approaches.

Finally, the quality of the stochastic solutions was assessed using a simulation-
based Monte Carlo sampling scheme that provides statistical bounds on the
optimality gap (Bayraksan & Morton, 2006). The optimality gap is defined
as the difference between an approximation of the “true” stochastic solution
(very large tree to approximate the continuous distribution of the yield) and
the candidate stochastic solution. In this context, a candidate stochastic so-
lution refers to the first-stage decisions of the TSSP when using the scenario
trees from either heuristic or DMP approaches. The Multiple Replications
Procedure (MRP) was used with twenty replications, and each replication
contains one hundred independent scenarios. In each replication, the gap be-
tween the approximate true solution and the candidate solution is calculated
(see Subsubsection B.4.1 in Appendix B.4). Table 3.3 shows the average gap
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of all replications plus one-sided confidence intervals for 95% confidence. The
results suggest that the stochastic production planning solutions obtained by
using the trees generated by the L2 DMP and L1 DMP approaches are closer
to the true solution as seen from the small optimality gap. Note that since the
historical data were artificially generated, i.e., the data-generating mechanism
(distribution) is known (see Appendix B.1), a Monte Carlo sampling strategy
can be used.

Table 3.3: Average value and upper bound of the optimality gap of the stochas-
tic production planning model in Example 1.

Approach Avg Gap [$] Upper Bound [$]
Heuristic 0.21 0.29
L2 DMP 0.04 0.10
L1 DMP 0.14 0.19

L1 LP DMP 0.70 0.91
L∞ DMP 0.04 0.10

L∞ LP DMP 0.70 0.91

The results in Table 3.3 clearly show that selecting the scenario tree as an
input to the stochastic optimization model is crucial to obtain a meaningful
solution of an SP formulation. The distribution matching method is a scenario
generation method that allows creating scenario trees that satisfactorily repre-
sent the distribution of the data, so that the decisions made with the stochastic
optimization model are supported by factual probabilistic information.

3.4 Multi-Stage Scenario Tree Generation
The MMPs in equations (3.2) – (3.6) and DMPs in equations (3.10) – (3.14)
can be applied to both two-stage and multi-stage cases, with the former more
limited with issues of under-specification. When generating multi-stage sce-
nario trees, a statistical property matching problem is solved at every node of
the tree except at the leaf or terminal nodes. Multi-stage scenario trees can be
viewed as a group of two-stage subtrees that are formed by branching out from
every node except the leaf nodes. The complication in generating multi-stage
scenario trees with interstage dependency lies in the fact that the moments cal-
culated for each path into future stages are dependent on the previous states
or nodes present in each path. Therefore, prediction of future events (time
series forecasting) must be combined with property matching optimization as
will be described below.

For stochastic processes, such as time-series data of product demands, sta-
tistical properties can be estimated through forecasting models that take into
account information that is conditional on past events. Appendix B.3 contains
more details of using time series forecasting models to estimate the statistical
properties.
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Time series forecasting models play an essential role in generating scenario
trees when there is a time-series effect in the uncertain parameters. Briefly,
mathematical models are fit to the historical data and their predictive capabil-
ities provide conditional (co-)moments of the uncertain parameters at future
stages. The moments are conditional on past events. That is, they take into
account the serial dependency of the observed values of the uncertain param-
eters. Hence, the statistical moments are supplied to the property matching
optimization models at each non-leaf node and the scenario tree is consistently
generated. Moreover, simulation of the time series models can be used to gen-
erate data of which an ECDF can be constructed and approximated with a
smooth function, such as the GLF or a simplified version (see Section 3.3).

In the next two sections, we present two sequential solution strategies for
generating a multi-stage scenario tree: NLP Approach and LP Approach. We
focus on the DMP formulations, where L2 DMP, L1 DMP and L∞ DMP are
nonlinear (both node values and probabilities are variables), whereas L1 LP
DMP and L∞ LP DMP are linear (only probabilities are variables). Each
approach comprises two main steps, forecasting and optimization, which
are summarized below:
Forecasting Step: After successfully fitting a time series model to the data,

forecast future values.

• Input: observed data represented by the nodes
• Output: conditional moments and ECDF information to be matched

in the optimization step

Optimization Step: Solve a DMP at a given node in the tree.

• Input: conditional moments estimated by the forecasting step
• Output: probabilities of outcomes, and if using the NLP approach,

values of the nodes

Remark 1. Conditional (co-)moments are readily available via forecasting.
ECDF information can be obtained through simulation of time series models,
and a brief overview is given in paragraph 1.2.2.2 in Appendix B.3. If a
particular family of distribution is assumed for the forecast data, then the CDF
or an approximate expression can be used instead as illustrated in Example 2
(Subsection 3.4.3).

Remark 2. Instead of a forecasting step, some authors have used a simu-
lation step to generate the targets (conditional moments) to the optimization
step and/or the values of the nodes in the scenario tree. For example, Høyland,
Kaut, &Wallace (2003) proposed a heuristic method to produce a discrete joint
distribution of the stochastic process that is consistent with specified values of
the first four marginal moments and correlations. In addition, due to the in-
dependence of the optimization problems to be solved at each node of a given
stage, there is an opportunity for parallel algorithms to speed up the solution
process (Beraldi, De Simone, & Violi, 2010).
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3.4.1 NLP Approach
A general solution strategy for generating a multi-stage scenario tree using
the NLP formulations of the DMP consists of alternating the two main steps
described above in a shrinking-horizon fashion, i.e., marching forward in time,
node-by-node and stage-by-stage until the end of the time horizon. Figure 3.8
depicts the sequence of steps in the approach. The black squares (past region)
in each subfigure correspond to historical data of the uncertain parameter un-
der consideration, the blue line across the markers represents the time series
model used to make predictions of the stochastic process, the red circles (future
region) are the possible future states that the stochastic process will visit, and
the grey shaded area surrounding the red circles denotes the estimated predic-
tion confidence limits for a given significance level of α, i.e., α = 0.05 indicates
95% confidence. Note that by connecting parent nodes to their descendants
(from left to right), a scenario tree is obtained.

The algorithm can be stated as follows.

Step 0: Start at the root (“present”) node whose value is known. Set it as
the current node.

Step 1: If not the last stage in the time horizon, then perform a one-step-
ahead forecast from the current node to estimate conditional mo-
ments.

Step 2: Simulate the time series model including observations up to the cur-
rent node, construct the ECDF curve, and approximate it by a
smooth function, such as the GLF or a simplified version.

Step 3: Solve a nonlinear DMP to determine the node values and their prob-
abilities for the next stage.

Step 4: For each node determined, set it as the current node and go to Step
1.

In Figure 3.8, the blue line across the markers represents the time series
model, the black squares represent past or historical data, the green circle
on the vertical line is the current or present state, and the red circles are
the future states. For demonstration purposes, Figure 3.8(c) only shows the
forecasting step for the bottom node generated in the first optimization step.
Note that some nodes may lie outside the confidence interval predicted by
the forecasting step; this allows more extreme events to be captured in the
scenario tree, which in turn subject the stochastic programming problem to
riskier scenarios and may lead to more “robust” solutions.
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(a) First one-step-ahead forecasting step to predict the most likely value of the
stochastic process in the next stage as well as possible higher moments and distri-
bution information from simulation.

(b) Optimization step to calculate probabilities and nodes for the next stage. Op-
tionally, the node corresponding to the conditional mean may be fixed in the DMP.

(c) One-step-ahead forecasting step from a given node obtained in the optimization
step before. Repeat these steps for every node generated in every stage until the
end of the time horizon considered.

Figure 3.8: Alternating forecasting and optimization steps in generating multi-
stage scenario trees using the NLP Approach. CI denotes the confidence in-
terval estimated at each forecast and ECDF means Empirical Cumulative Dis-
tribution Function.

The complexity in implementing this approach in practice is the commu-
nication between the forecasting and the optimization steps at every non-leaf
node in the tree. On the other hand, the approach using the LP formulations of
the property matching problems only alternates between the forecasting and
optimization steps once. The next section contains our proposed approach,
and we note that there are variants in the literature that for instance use clus-
tering algorithms (Gülpınar, Rustem, & Settergren, 2004; Xu, Chen, & Yang,
2012; Feng & Ryan, 2013).

3.4.2 LP Approach
The only decision variables in the LP formulation in equation (3.12) are the
probabilities of the outcomes. Therefore, if the node values are known in
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advance, then a single optimization problem can be solved for the entire tree
to compute their probabilities. Thus, the approach has only two steps: (1)
the forecasting step generates the nodes plus the statistical properties to be
matched, and (2) an LP DMP is solved for all non-leaf nodes simultaneously.
The optimization step is a straightforward solution of an LP problem, whereas
the forecasting step contains elements that are particular to a specific strategy.

The strategy for the forecasting step proposed in this chapter is shown
in Figure 3.9. As shown in Figure 3.9(a), after performing a one-step-ahead
forecast from the present node to the base or most likely node in the second
stage, additional nodes are created by adding and subtracting multiples of the
standard error of the forecast to the base node. The number of additional
nodes above and below the base node is chosen a priori. In practice, near-
future stages may be more finely discretized than far-future stages, since the
prediction is less accurate the further into the future it is made. For ease of
exposition, Figure 3.9(b) shows the forecast from the second to the third stage
of one of the nodes created in the second stage. The process is repeated for
every node in every stage, except the last one of the time horizon considered.

(a) First one-step-ahead forecasting step to predict the most likely value of the
stochastic process in the next stage. Create new nodes by adding and subtracting
multiples of the standard error, σe, of the forecast to the base node.

(b) For each node created, perform a one-step-ahead forecast and create new nodes.
Repeat the process until the end of the time horizon considered.

Figure 3.9: Proposed forecasting step in generating multi-stage scenario trees
using the LP Approach. σe, CI, and ECDF denote the standard error, confi-
dence interval estimated at each forecast, and the Empirical Cumulative Dis-
tribution Function, respectively.

In summary, the main difference between the NLP Approach and the LP
Approach is that in the latter, the forecasting and optimization steps alternate
only once as all the nodes or outcomes of the tree are created in the forecasting
step, and then the optimization step is executed to compute the probabilities.
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We remark that the nonlinear DMP formulations can also be used in the LP
Approach by fixing the node values and only optimizing the probabilities. In
this case, the forecasting step is followed by the solution of a single nonlinear
optimization problem for all non-leaf nodes.

The next example demonstrates how the two approaches can be used to
generate a multi-stage scenario tree when product demand is uncertain.

3.4.3 Example 2: Uncertain Product Demands
Consider the same network depicted in Figure 3.2 and the deterministic mul-
tiperiod production planning model defined in equation (3.16). In this case,
the product demands of C and D are the uncertain parameters. The planning
horizon is one year, which is divided into time periods of quarters. Quarterly
historical demand data are given from the years of 2008 to 2012. Thus, the
frequency (number of observations per year) of the time series is four. The
production planning model is used to obtain the optimal quarterly production
plan for the network in the year of 2013. As in Example 1, all optimization
models were implemented in AIMMS 3.13. The NLP problems were solved
with IPOPT 3.10.1 using the multi-start module in AIMMS with 30 sample
points and 10 selected points in each iteration. All LP models were solved
with CPLEX 12.5. In the DMPs, the demand variables were bounded below
by half the minimum and above by double the maximum historical demand
data points.

A common approach for deciding the structure of multi-stage trees is to
select more outcomes per node in earlier stages than in later stages, since the
uncertainty in the forecasts is much higher in the latter. Thus, it is reason-
able to select a finer discretization in earlier stages. Assuming the properties
matched are the first two moments (i.e., |K| = 2), covariance, and CDF in-
formation, it follows from inequality (3.15) that N ≤ 6. It is then decided
that the multi-stage scenario tree has the following structure: 1-5-3-1, which
means that the second quarter has five outcomes, the third quarter has tree
outcomes for each outcome in the second quarter, and the fourth quarter has
only one outcome for each outcome of the third quarter, thus, the scenario
tree has 15 scenarios as seen in Figure 3.10. As in Example 1, a heuristic
approach is compared with the optimization-based DMPs to obtain scenario
trees. We consider uncertainty in the demand of both products C and D. The
tree for each individual product demand is obtained as follows. The center or
base node at a given quarter is the arithmetic average of the corresponding
quarter of previous years, and the remaining nodes above and below the base
node are obtained by fixed deviations. Therefore, the node values ignore the
serial dependence and time-series effects in the data. The individual heuristic
trees for products C and D were combined into a single tree with the same
structure (1-5-3-1) by overlapping the outcomes for each stage as shown in Fig-
ure 3.10. Probabilities of outcomes were arbitrarily chosen and are symmetric
with respect to each base node.
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Figure 3.10: Heuristic scenario tree for the demand of products C and D.
The percentage deviations are computed based on each base node. The values
above and below the arcs are arbitrarily chosen probabilities.

Figure 3.11 shows the time series demand data for products C and D. The
time series model that best fits the data (see Appendix B.2 for details) is fixed
in subsequent forecasts. That is, when executing an approach no refitting is
performed prior to forecasting. The root node of the tree, which is the node
value at the first quarter in 2013 or “Q12013”, is forecast and assumed to have
probability of one. The constant variance for the demand of products C and
D are estimated to be 1.65 t2 and 1.14 t2, respectively.

Figure 3.11: Time series data of the demand of products C and D.

Since the demand data are fitted to a linear Gaussian model (ARIMA), the
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forecasts are expected to follow normal distributions. Therefore, an expression
for the Cumulative Distribution Function (CDF) of a normal distribution with
mean µ and standard deviation σ can be used in the constraints involving
ÊCDF (·). In particular, the CDF of a normal distribution can be written in
terms of the error function as follows (Abramowitz & Stegun, 1965):

CDF (x)Normal := Φ
(
x− µ
σ

)
= 1

2

[
1 + erf

(
x− µ
σ
√

2

)]

where erf(·) is the error function defined as the following integral:

erf(x) = 2√
π

∫ x

0
e−t

2dt

Hence, constraints (3.10b) can be replaced with,

Φ
xi,j −Mi,1√

Mi,2

− j∑
j′=1

pj′ = δi,j ∀ i ∈ I, j = 1, . . . , N

constraints (3.11b) and (3.13b) can be substituted by,

Φ
xi,j −Mi,1√

Mi,2

− j∑
j′=1

pj′ = δ+
i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N

and finally constraints (3.12b) and (3.14b) are rewritten as,

Φ
xi,j −Mi,1√

Mi,2

− j∑
j′=1

pj′ = δ+
i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N

AIMMS offers a native, numerical approximate implementation of the error
function, which can be directly used in the implementation of the constraints
in the DMPs.

Exclusively for the LP DMPs, it was observed that additional constraints
on the probabilities were necessary in order to enforce a normal-like profile,
i.e., probabilities monotonically decrease from the center node outward. The
additional constraints are given below and are equivalent to the ones proposed
by Ji et al. (2005).

pj ≥ pj′ ∀ j =
⌈
N
2

⌉
, . . . , N, j′ > j

pj ≥ pj′ ∀ j = 1, . . . ,
⌈
N
2

⌉
, j′ < j

For illustration purposes, the scenario trees obtained with NLP and LP
approaches are shown in Figure 3.12 (L2 DMP) and Figure 3.13 (L∞ LP
DMP), respectively. For the NLP Approach, the node values in the fourth

85



time period correspond to the conditional means obtained via forecasting, i.e.,
no optimization was needed as only one outcome was considered. It should
be noted that the total time for solving the six NLPs with multi-start for the
tree in Figure 3.12 was 12.35 seconds, while the LP in Figure 3.13 took 0.02
seconds.

The optimal expected profit of the production planning model by using
the scenario tree of the proposed approach as the input, and by solving the
deterministic equivalent of the multi-stage stochastic programming model is
shown in Table 3.4. The heuristic approach underestimates the expected total
profit when compared to the NLP DMPs. Again, we note that the scenario
probabilities and the solution obtained with the LP DMPs is greatly affected
by the node values chosen. The LP deterministic equivalent of the multi-stage
stochastic program has 613 constraints, 685 variables, 1,872 nonzeros, and was
solved in less than 0.02 seconds for all approaches.

Table 3.4: Expected profit in Example 2 using the scenario trees from heuristic
and optimization-based approaches.

Approach Expected Profit [$]
Heuristic 79.95
L2 DMP 82.39
L1 DMP 82.65

L1 LP DMP 80.04
L∞ DMP 82.41

L∞ LP DMP 80.03

Figures 3.14 and 3.15 show the different production plans obtained for each
approach at each quarter. Specifically, the solution obtained with the heuristic
approach predicted higher overall inventory levels of product D for the time
horizon under consideration. Moreover, the solution using the heuristic tree
shows very different average flowrates out of plant P2 compared to the ones
obtained using the DMP formulations. In real life terms, the production quota
for a plant affects lower-level operability decisions, such as scheduling and
control.
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Figure 3.14: Optimal inventory levels of product D from using the scenarios
obtained from heuristic and DMP approaches.

Figure 3.15: Optimal flow rates out of plant P2 from using the scenarios
obtained from heuristic and DMP approaches.

Finally, similarly to Example 1, the quality of the stochastic solutions was
assessed using a simulation-based Monte Carlo sampling scheme that provides
statistical bounds on the optimality gap (Chiralaksanakul & Morton, 2004).
The optimality gap is calculated using a tree-based estimator of the lower
bound (candidate solution, maximization problem) and the approximate true
solution (upper bound estimator, maximization problem). The simulated trees
have the structure 1-10-10-10, which amounts to one thousand scenarios. All
subtrees are generated by simulating ARIMA processes (see paragraph 1.2.2.2
in Appendix B.3). Ten replications of the algorithm (see Procedure P2 in the
original paper) were performed to obtain the confidence interval on the gap
(see Subsubsection B.4.2 in Appendix B.4). Table 3.5 shows the one-sided
confidence intervals for 95% confidence. Note that by modeling the demand
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time series as ARIMA processes, the data-generating mechanism is known, and
Monte Carlo sampling can be performed by simulating the ARIMA models (see
paragraph 1.2.2.2 in Appendix B.3).

Table 3.5: Average value and upper bound of the optimality gap of the stochas-
tic production planning model in Example 2.

Approach Avg Gap [$] Upper Bound [$]
Heuristic 2.03 2.16
L2 DMP 0.92 1.00
L1 DMP 0.93 1.01

L1 LP DMP 1.12 1.35
L∞ DMP 0.93 1.01

L∞ LP DMP 1.04 1.22

Note that the confidence interval of the gaps obtained for all the DMP for-
mulations are lower than the one obtained for the heuristic approach, which
indicates that the scenario trees generated via the optimization-based proce-
dure are good approximations of the “true” distribution. In addition, they
contain correlation information between the demands of the two products,
thus improving the characterization of the uncertainty.

3.5 Conclusions
In this chapter, we have described a systematic method for scenario tree gen-
eration that can be used in optimization and simulation solution strategies
in Process Systems Engineering (PSE) problems. The distribution matching
method is based on an optimization model that can be used to calculate the
probabilities and values of outcomes in a scenario tree. This is accomplished
by matching statistical properties, such as (co-)moments and Empirical Cu-
mulative Distribution Function (ECDF) information, calculated from the tree
to the ones estimated from the data. The motivation behind this approach
is first to ensure that the scenarios considered in a stochastic programming
framework correspond to the behavior observed in historical and forecast data,
as opposed to assigning arbitrary values and probabilities to the nodes in the
scenario tree. Secondly, the motivation of the Distribution Matching Problem
(DMP) formulations is to overcome the problem of under-specification that is
experienced with the Moment Matching Problem (MMP) formulations.

For multi-stage scenario tree generation, we presented two approaches that
can be used in conjunction with time series forecasting or simulation. The
NLP Approach is composed of two alternating steps: the forecasting or simu-
lation step computes conditional (co-)moments and ECDF information to be
matched, and the optimization step determines the probabilities and values of
the outcomes in order to match those properties. The two steps are alternated
until the prescribed time horizon is completed. The LP Approach, which is
restricted to specified values of the outcomes at each node, also contains the
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same two steps, but each step is performed only once. First, the forecasting
or simulation step generates all the nodes in the tree and computes the condi-
tional (co-)moments and ECDF information, and then the optimization step
calculates the probabilities of the outcomes.

The quality of the solution of the stochastic programming problems was
assessed via simulation-based Monte Carlo sampling methods. It was shown
that the proposed scenario tree generation methods provide good-quality so-
lutions, and provide a systematic approach for handling multiple sources of
uncertainty, thus generating more compact trees with covariance or correla-
tion information.
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Chapter 4

Data-Driven Individual and
Joint Chance-Constrained
Optimization via Kernel
Smoothing

4.1 Introduction
Optimization under uncertainty is an important and challenging topic in the
Process Systems Engineering (PSE) community. Its importance stems from
the fact that the decision-making capability of optimization models is subject
to uncertainty, most commonly by the parameters used in a given model. For
instance, forecast product demand is not free of uncertainty since one cannot
exactly predict future events. Consequently, optimization models under uncer-
tainty are generally more difficult to model and solve than their deterministic
counterpart. A few frameworks to account for uncertainty in optimization have
been proposed, such as Stochastic Programming (Birge & Louveaux, 2011),
Robust Optimization (Ben-Tal, Ghaoui, & Nemirovski, 2009), Approximate
Dynamic Programming (Powell, 2011), and Chance-Constrained Optimiza-
tion, which is the focus of this article.

Chance- or probabilistic-constrained optimization was introduced in the
seminal article by Charnes & Cooper (1959). Briefly, the use of chance con-
straints (CCs) allows the modeler to specify a confidence level or reliability
level of satisfying some of the constraints in an optimization model. In other
words, the solution to the problem satisfies those constraints with at least a
given level of probability for all possible realizations of the uncertain param-
eter present in the respective constraints. The literature considers two types
of CCs: individual and joint. Let ξ̃j, j = 1, . . . , m, correspond to continuous
random variables, and gj(x) be a vector of continuous functions of the vector
of decision variables x. Equations (4.1) and (4.2) correspond to individual and
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joint chance constraints with right-hand side uncertainties, respectively,

P
{
gj(x) ≥ ξ̃j

}
≥ 1− αj, j = 1, . . . , m (4.1)

P
{
gj(x) ≥ ξ̃j, j = 1, . . . , m

}
≥ 1− α (4.2)

where P means “probability”, 1− α is the confidence level or reliability level,
and α is commonly known as the risk level or significance level. Note that
each individual CC (ICC) is assigned a confidence level 1 − αj; that is, they
must be probabilistically satisfied individually. In contrast, in the joint CC
(JCC) case, all constraints must be probabilistically satisfied simultaneously;
thus, a single confidence level 1− α is used.

Charnes & Cooper (1959) used CCs to model a multiperiod planning prob-
lem under uncertainty in which the uncertain parameter (product demand)
was time-dependent. They employed linear decision rules to approximate the
solution of the multi-stage stochastic model. This article was followed by a
few others (Charnes & Kirby, 1966, 1967; Eisner, Kaplan, & Soden, 1971; Go-
chet & Padberg, 1974) that proposed analytical approaches for reformulating
the (conditional) ICCs and approximately solving the stochastic model with
decision rules. The aforementioned articles dealt with the case of temporal
conditional ICCs, i.e., the realization of a random variable at a given time
period may be conditional on realizations at previous time periods.

In this chapter, we only consider CCs with right-hand side uncertainty as
shown in equations (4.1) and (4.2). We argue that, even though seemingly
restrictive, this represents a very common situation in optimization models in
engineering applications. Some examples include: reliable reservoir control un-
der hydrologic uncertainty (Lane, 1973; Simonovic & Srinivasan, 1993; Jairaj
& Vedula, 2003), power systems with uncertain power generation (Bienstock,
Chertkov, & Harnett, 2012; Mazadi et al., 2013), and process systems engineer-
ing with uncertain set-up and operational times, state setpoint tracking, and
environmental damage (Orçun, Altinel, & Hortaçsu, 1996; Arellano-Garcia &
Wozny, 2009; Guillén-Gosálbez & Grossmann, 2010).

Theoretical properties of CCs that guarantee convexity have been studied
(Prékopa, 1970, 1995). In particular, it has been shown that if P is log-concave
(e.g., normal or Gaussian) and each gj(·) is concave (e.g., linear), then the CC
admits a convex reformulation, i.e., the CC is reformulated as a convex alge-
braic constraint. It is beyond the scope of this article to provide an extensive
review of the theory of and solution methods for classical CCs. Further read-
ing can be found in Nemirovski & Shapiro (2006); Calafiore & Campi (2006);
Luedtke & Ahmed (2008).

A common feature of the works mentioned thus far is the strong assump-
tion of a parametric model for probability distributions. In this article, we
focus on data-driven rather than axiomatic or model-driven approaches for
reformulating CCs into algebraic constraints. The main idea behind the ap-
proach discussed by Jiang & Guan (2013) is to construct a confidence set that
contains the unknown true distribution. This confidence set is described by
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φ-divergences (Pardo, 2006), which are mathematical expressions that model
the distance between two probability distributions. The definition of the con-
fidence set is completed by specifying its size, which in this case is given by
the φ-divergence tolerance. Jiang & Guan (2013) showed that when using this
confidence set, the data-driven CCs are equivalent to classical CCs, but with
the estimated distribution and a reduced risk level. We will use this result
and provide a new way to specify the φ-divergence tolerance in our proposed
approach.

The main contributions of this work are two-fold: (1) reformulation of data-
driven ICCs and JCCs using kernel smoothing to estimate distributions, and
(2) calculation of the divergence tolerance based on point-wise standard errors
from the estimation process. Other contributions include: (i) an algorithm
for the initialization of optimization models with JCCs, and (ii) reformula-
tion of data-driven chance constraints in small sample size cases. Because
kernel smoothing is central to the proposed approach, a brief overview of this
statistical technique is given in Subsubsection 1.2.2.3.

This chapter is organized as follows. In Section 4.2, we state the problem
addressed in this chapter. Section 4.3 summarizes main results from the lit-
erature concerning data-driven CCs. In Section 4.4, we describe the proposed
approach to reformulate (conditional) data-driven CCs using kernel smooth-
ing. A new way of specifying the φ-divergence tolerance for the density-based
confidence set is presented. To cope with the difficulty of solving problems
with JCCs, we propose in Section 4.5 an initialization algorithm to decrease
the solution time of problems with classical or data-driven JCCs. The kernel-
based reformulation approach is illustrated with production planning examples
in Section 4.6, and conclusions are drawn in Section 4.7.

4.2 Problem Statement
The problem addressed in this work can be stated as follows. Given an opti-
mization model with individual and/or joint chance constraints (ICCs and/or
JCCs) with right-hand side uncertainty (e.g., equations (4.1) and (4.2)) and
historical data for the uncertain parameter(s), the goal is to convert the prob-
abilistic constraints into algebraic form by using the historical data to esti-
mate probability distributions. That is, instead of using parametric models
for PDFs, CDFs, and quantile functions, those functions are estimated from
data. A motivation section on chance-constrained optimization with illus-
trative examples is given in Appendix C.1. Before presenting the proposed
approach that uses kernel smoothing to estimate distributions, we review the
modeling of data-driven chance constraints in the next section.

4.3 Data-Driven Chance Constraints
This section summarizes the literature results concerning the modeling of data-
driven chance constraints (Ben-Tal et al., 2011; Jiang & Guan, 2013) that are
directly relevant to the reformulation approach proposed in this article.
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A central aspect of modeling data-driven chance constraints (CCs) is the
definition of a confidence set, which is assumed to contain the unknown or
ambiguous true distribution within specified tolerance. The construction of
such a confidence set is aided by using a distribution that is estimated from the
data. The accuracy of the estimated distribution can be used to calculate the
size of the confidence set; the higher the accuracy, the smaller the confidence
set.

Specifically, the density-based confidence set proposed in the literature and
illustrated in Figure 4.1 is defined as follows:

D =
{
P ∈M+ : D(f || f̂) ≤ d, f = dP/dξ̃

}
(4.3)

where P is the unknown true probability distribution function (or simply dis-
tribution),M+ represents the set of all distributions, D(· || ·) is a φ-divergence
(Pardo, 2006) that models the distance between distributions and is defined
as

D(f || f̂) =
∫
Rm

φ

(
f(ξ̃)
f̂(ξ̃)

)
f̂(ξ̃)dξ̃ (4.4)

where f(·) and f̂(·) are the true and estimated probability density functions
(or simply densities), respectively, and φ(·) is a convex function on R+ such
that φ(1) := 0, 0 · φ(0/0) := 0, and 0 · φ(p/0) := p lim

t→∞
φ(t)/t for p > 0. The φ-

divergence tolerance d represents the “size” of the confidence set. Therefore, a
complete specification of the confidence set includes the φ-divergence function
φ(·) and the divergence tolerance d. Table 4.1 contains some examples of
divergence functions.

Figure 4.1: Illustration of the density-based confidence set defined in equa-
tion (4.3). The goal is to obtain the estimated distribution P̂ whose “distance”
to the unknown true distribution P is at most d (divergence tolerance).

In a data-driven modeling approach, the CCs in equations (4.1) and (4.2)
are required to be satisfied for all distributions in a given confidence set. Using
the definition of the density-based confidence set D, the individual and joint

95



data-driven CCs can be represented as follows:

inf
P∈D

P
{
gj(x) ≥ ξ̃j

}
≥ 1− αj, j = 1, . . . , m (4.5)

inf
P∈D

P
{
gj(x) ≥ ξ̃j, j = 1, . . . , m

}
≥ 1− α (4.6)

where the inf operator implies the “worst” distribution in the confidence set D,
i.e., the distribution that has the largest “distance” from the true distribution
within a specified tolerance d.

A major result by Jiang & Guan (2013) (see Theorem 2) is as follows. The
data-driven (individual or joint) CC

inf
P∈D

P
{
A(x)ξ̃ ≤ b(x)

}
≥ 1− α (4.7)

can be reformulated as

P̂
{
A(x)ξ̃ ≤ b(x)

}
≥ 1− α′+ (4.8)

where P̂ is the estimated distribution, α′+ = max{α′, 0}, and α′ is a reduced
risk level. For CCs with RHS uncertainty, and using the notation in this
article, b(x) ≡ g(x), and A(x) ≡ 1 and A(x) ≡ Im for individual and joint
CCs, respectively, where Im is an m-dimensional identity matrix.

In other words, reformulated data-driven CCs are equivalent to classical
CCs with the ambiguous probability P replaced by its estimate P̂, and the risk
level α decreased to α′. Intuitively, by treating the true probability distribu-
tion as unknown or ambiguous, one can reduce α to make a classical chance
constraint more conservative. The calculation of α′ can be formulated as an
optimization problem (see Theorem 2 in Jiang & Guan (2013)). Its solution
depends on the choice of the φ-divergence function, since it is part of the def-
inition of the density-based confidence set in equation (4.3). Table 4.1 shows
expressions for α′ (for some divergence functions) that quantify the degree of
conservatism. Note that for the Kullback-Leibler (K-L) divergence, a closed-
form solution has not been achieved. However, Jiang & Guan (2013) showed
that the univariate optimization problem to calculate α′ can be recast as a
univariate nonlinear algebraic equation that can be solved with the bisection
method.
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Table 4.1: Some divergence functions and the reduced risk level α′ for data-
driven chance constraints (see Jiang & Guan (2013) for general expression and
proofs).

Divergence Name φ(t) α′

Kullback-Leibler (K-L) t log t− t+ 1 1− inf
x∈(0,1)

{
e−dx1−α − 1

x− 1

}

Variation Distance |t− 1| α− d

2

χ Divergence of Order 2† |t− 1|2 α−

√
d2 + 4d(α− α2)− (1− 2α)d

2d+ 2
† For α < 1

2 .

The reformulation approach proposed in this article uses the aforemen-
tioned result for the case of distributions estimated with kernel smoothing. We
provide a brief overview of this statistical technique in Subsubsection 1.2.2.3.

In summary, the reformulation of data-driven CCs consists in the following:

• Select the φ-divergence;

• Estimate the unknown true probability distribution, i.e., obtain P̂;

• Calculate or specify the divergence tolerance d;

• Calculate reduced risk level α′;

• Solve the optimization problem with the reformulated data-driven CCs.

The novelty of this work lies in the use of kernel smoothing for both the refor-
mulation of data-driven CCs and the calculation of the divergence tolerance
d; thus, fully specifying the density-based confidence level. However, it is im-
portant to note that the reformulation approach proposed in this chapter may
only be applied for chance constraints with right-hand side uncertainty. In
addition, the use of kernel smoothing to estimate distributions requires a suf-
ficiently large number of data points to achieve satisfactory approximations,
which is also true for other nonparametric statistical techniques. The accuracy
of the approximation is reflected in the estimation errors, which in turn affect
the magnitude of d.

4.4 Kernel-Based Reformulation of Chance Con-
straints

In this section, we demonstrate how to reformulate data-driven chance con-
straints (CCs) in which the true and ambiguous distributions are replaced
with their kernel estimators. Subsubsection 1.2.2.3 briefly describes kernel
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smoothing, which is a powerful, nonparametric statistical technique that can
be used to estimate univariate and multivariate (un)conditional densities, dis-
tributions, and quantiles. paragraph 1.2.2.3 and paragraph 1.2.2.3 review the
univariate and multivariate cases, which are relevant for the reformulation
of data-driven unconditional individual and joint CCs (ICCs and JCCs), re-
spectively. paragraph 1.2.2.3 reviews kernel regression for the case of weakly-
dependent autorcorrelated data, which is relevant for the reformulation of
data-driven conditional ICCs.

As reviewed in Section 4.3, the reformulation of data-driven CCs involves
reduced risk levels α′, which can be calculated as shown in Table 4.1. Note
that this calculation depends on the nominal risk level α and the value for the
divergence tolerance d. Hence, the complete implementation of data-driven
CCs requires the knowledge of both α′ and d.

We first discuss the reformulation of individual CCs (ICCs), and then the
joint case (JCC). Next, we propose a new way of selecting the φ-divergence
tolerance d for the proposed kernel-based reformulation. The case of small
sample size is discussed at the end of this section.

4.4.1 Individual Chance Constraints
First, we restate equation (4.8) as an individual data-driven CC using the
notation in this article:

P̂
{
gj(x) ≥ ξ̃j

}
≥ 1− α′j,+, j = 1, . . . , m (4.9)

Equation (4.9) can be stated in probabilistic terms as follows: “the probability
of the random variable (r.v.) ξ̃j to achieve a value less than or equal to gj(x)
must be at least 1− α′j,+, for j = 1, . . . , m”. In other words, we require that
the estimated CDF of the random variable ξ̃j evaluated at gj(x) must be at
least 1− α′j,+, for j = 1, . . . , m. Mathematically:

F̂ξ̃j (gj(x)) ≥ 1− α′j,+, j = 1, . . . , m (4.10)

or
gj(x) ≥ F̂−1

ξ̃j
(1− α′j,+), j = 1, . . . , m (4.11)

where F̂−1
ξ̃j

(·) is the estimated inverse CDF (quantile function). Note that the
same rationale used to derive equation (4.11) is applicable to the reformulation
of classical ICCs.

Remark 1. If the original constraints gj(x) ≥ ξ̃j, for j = 1, . . . , m,
are linear in the vector of decision variables x, i.e., gj(x) = a>j x, where aj
is a vector of deterministic (fixed) coefficients, then the reformulated data-
driven ICC is also linear in the vector of decision variables as can be seen from
equation (4.11).

Remark 2. Equation (4.11) can also be used to model conditional ICCs
(Charnes & Kirby, 1967; Gochet & Padberg, 1974). Let ξ̃1 and ξ̃2 be continuous

98



random variables (r.vs.) with distributions Fξ̃1
(·) and Fξ̃2|ξ̃1

(·), respectively.
Notice that ξ̃2 is conditional on ξ̃1. Therefore, the kernel-based reformulation
of the data-driven individual CCs involving the two r.vs. can be written as
follows:

g1(x) ≥ F̂−1
ξ̃1

(1− α′1,+)

g2(x) ≥ F̂−1
ξ̃2|ξ̃1

(1− α′2,+)

Note that in the case of weakly dependent r.vs (see paragraph 1.2.2.3), the
estimated conditional quantile function in the RHS is obtained with nonpara-
metric conditional quantile regression whose regressors (covariates) are lagged
observations of the r.v. under consideration. The reformulated CC can be
expressed as follows:

gt(x) ≥ F̂−1
ξ̃t|ξ̃t−1,...,ξ̃t−d

(1− α′t,+)

Remark 3. If the constraint requires the r.v. to be greater than or equal
to gj(x), that is,

P̂
{
gj(x) ≤ ξ̃j

}
≥ 1− α′j,+, j = 1, . . . , m (4.12)

then we use the fact that P{Z ≥ z} = 1− P{Z ≤ z}, where Z is a univariate
continuous r.v., to derive the reformulated data-driven ICC in equation (4.12)
as follows:

1− P̂
{
gj(x) ≥ ξ̃j

}
≥ 1− α′j,+, j = 1, . . . , m

P̂
{
gj(x) ≥ ξ̃j

}
≤ α′j,+, j = 1, . . . , m

F̂ξ̃j (gj(x)) ≤ α′j,+, j = 1, . . . , m

or
gj(x) ≤ F̂−1

ξ̃j
(α′j,+), j = 1, . . . , m (4.13)

In cases where gj(x) ≥ ξ̃j and gj′(x) ≤ ξ̃j′ , for j 6= j′, the CCs can be naturally
reformulated by using the respective expressions of the term involving the
integrated kernels in equations (4.11) and (4.13).

The effectiveness of the kernel-based reformulation approach for data-driven
ICCs relies on the accuracy of the estimated quantile function, which represents
the right-hand side of equations (4.11) and (4.13). Figure 4.2 illustrates the ac-
curacy of the estimated quantile function when compared to the true quantiles
obtained from the respective distributions. For each parametric distribution,
n = 250 samples were randomly generated, the true or exact quantiles were
computed, and the quantile function was estimated via kernel smoothing. Note
that the quantiles estimated via kernel smoothing are very accurate. In fact,
it can be verified that the accuracy increases with sample size. Consequently,
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there is a reduction in the over- and under-estimation of extreme quantiles (far
right and left in each graph).

Figure 4.2: Illustration of the accuracy of the estimated quantile function via
kernel density estimation or kernel smoothing (KS) for a sample size n = 250.
The four distributions are: normal with mean 0 and standard deviation 1,
N(0, 1); Gamma with both shape and rate parameters equal to 2, Γ(2, 2);
exponential with rate parameter equal to 1, Exp(1); Pearson with mean 0,
variance 1, skewness −1, and kurtosis 4; Pearson(0, 1,−1, 4).

4.4.2 Joint Chance Constraints
As for the reformulation of data-driven ICCs, we restate equation (4.8) as a
joint data-driven CC using the notation in this article:

P̂
{
gj(x) ≥ ξ̃j, j = 1, . . . , m

}
≥ 1− α′+ (4.14)

Equation (4.14) can be stated in probabilistic terms as follows: “the probability
of each random variable (r.v.) ξ̃j to jointly achieve values less than or equal to
gj(x), for j = 1, . . . , m, must be at least 1− α′+”. In other words, we require
that the estimated joint CDF of the random variables (r.vs.) ξ̃j evaluated at
gj(x), for j = 1, . . . , m, must be at least 1− α′+. Mathematically:

F̂ξ̃1,...,ξ̃m
(g1(x), g2(x), . . . , gm(x)) ≥ 1− α′+ (4.15)

The joint CDF F̂ξ̃1,...,ξ̃m
(·) estimated with kernel distribution estimation can be

expressed using equation (1.24). Therefore, kernel-based reformulated data-
driven JCCs can be stated as follows:

1
n

n∑
i=1

m∏
j=1
Kj
(
gj(x)−Xj,i

hj

)
≥ 1− α′+ (4.16)
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where Xj,i, for i = 1, . . . , n, are data values, and hj is the bandwidth of
the integrated kernel associated with the j-th r.v. (see paragraph 1.2.2.3 and
paragraph 1.2.2.3).

Remark 4. Even if the original constraints gj(x) ≥ ξ̃j, for j = 1, . . . , m,
are linear in the vector of decision variables x, i.e., gj(x) = a>j x, where aj is a
vector of deterministic (fixed) coefficients, the reformulated data-driven JCC
is nonlinear in the vector of decision variables. The nonlinearity arises from
the mathematical form of the integrated kernel Kj(·). A possible initialization
scheme for the resulting nonlinear optimization model is to use the solution
to the same problem but with reformulated data-driven ICCs for risk levels
smaller than the original model according to equation (4.17) (see derivation in
Appendix C.2).

αJCC ≥
m∑
j=1

αICC
j (4.17)

Remark 5. Equation (4.16) can also be used to model conditional JCCs.
Let ξ̃1 and ξ̃2 be continuous r.vs. with densities fξ̃1

(·) and fξ̃2|ξ̃1
(·), respectively.

Notice that ξ̃2 is conditional on ξ̃1. Therefore, the kernel-based reformulation
of the data-driven JCCs involving the two r.vs can be written as follows:

F̂ξ̃1,ξ̃2
(g1(x), g2(x)) ≥ 1− α′+∫ g1(x)

−∞

∫ g2(x)

−∞
f̂ξ̃1,ξ̃2

(ξ1, ξ2)dξ1dξ2 ≥ 1− α′+∫ g1(x)

−∞

∫ g2(x)

−∞
f̂ξ̃1

(ξ1)f̂ξ̃2|ξ̃1
(ξ2|ξ1)dξ1dξ2 ≥ 1− α′+∫ g1(x)

−∞
f̂ξ̃1

(ξ1)dξ1

∫ g2(x)

−∞
f̂ξ̃2|ξ̃1

(ξ2|ξ1)dξ2 ≥ 1− α′+
1
n

n∑
i=1
K1

(
g1(x)−X1,i

h1

)
K2

(
g2(x)−X2,i

h2

)
≥ 1− α′+

where K1(·) and K2(·) are the integrated kernels based on the estimated den-
sities f̂ξ̃1

(·) and f̂ξ̃2|ξ̃1
(·), respectively. However, it is generally computationally

more efficient to directly estimate the joint CDF instead of separately estimat-
ing the individual (un)conditional distributions.

Remark 6. If the constraint requires each of the r.vs. to be greater than
or equal to each gj(x), that is,

P̂
{
gj(x) ≤ ξ̃j, j = 1, . . . , m

}
≥ 1− α′+ (4.18)

then, for kernel estimation purposes, we use the fact that P{W ≥ w} =
P{−W ≤ −w}, where −W is a multivariate continuous r.v., and the data
values are negated, which is indicated by −w (note that, in general, P{W ≥
w} 6= 1−P{W ≤ w} in the multivariate case). The kernel-based reformulation
is facilitated by the use of product kernels, which are formed by the product
of univariate kernels. Therefore, for each univariate integrated kernel, we
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can use the fact that P{Z ≥ z} = 1 − P{Z ≤ z}, where Z is a univariate
continuous r.v., as described in Remark 3 for the case of data-driven ICCs.
The reformulated data-driven JCC in equation (4.18) is as follows:∫ ∞

g1(x)
· · ·

∫ ∞
gm(x)

f̂ξ̃1,...,ξ̃1
(ξ1, . . . , ξm)dξ1 · · · dξm ≥ 1− α′+∫ ∞

g1(x)
· · ·

∫ ∞
gm(x)

1
n

n∑
i=1

m∏
j=1

1
hj
Kj

(
ξj −Xj,i

hj

)
dξ1 · · · dξm ≥ 1− α′+

1
n

n∑
i=1

∫ ∞
g1(x)

1
h1
K1

(
ξ1 −X1,i

h1

)
dξ1 · · ·

∫ ∞
gm(x)

1
hm

Km

(
ξm −Xm,i

hm

)
dξm ≥ 1− α′+

1
n

n∑
i=1

[
1−K1

(
g1(x)−X1,i

h1

)]
· · ·

[
1−Km

(
gm(x)−Xm,i

hm

)]
≥ 1− α′+

or, in a more compact way,

1
n

n∑
i=1

m∏
j=1

[
1−Kj

(
gj(x)−Xj,i

hj

)]
≥ 1− α′+ (4.19)

In cases where gj(x) ≥ ξ̃j and gj′(x) ≤ ξ̃j′ , for j 6= j′, the CCs can be naturally
reformulated by using the respective expressions of the term involving the
integrated kernels in equations (4.16) and (4.19).

The effectiveness of the kernel-based reformulation approach for data-driven
JCCs relies on the accuracy of the estimated joint CDF, which represents the
left-hand side of equations (4.16) and (4.19). Figure 4.3 illustrates the accu-
racy of the estimated joint distribution function when compared to the true
values obtained from the respective distributions. For each parametric distri-
bution, n = 400 samples were randomly generated, the true or exact cumula-
tive probabilities were computed, and the joint CDF was estimated via kernel
smoothing. The bottom graphs in each subfigure show the accuracy of the
estimated cumulative probabilities when compared to the true values (straight
line).
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(a) Bivariate normal distribution with
mean vector µ = [0, 1] and covariance ma-
trix Σ = [1, 0.81; 0.81, 4].

(b) Bivariate skew-normal distribution
with location vector ξ = [0, 1], scale ma-
trix Ω = [1, 0.81; 0.81, 4], and shape vector
α = [2,−6].

Figure 4.3: Illustration of the accuracy of the estimated joint CDF via kernel
density estimation or kernel smoothing (KS) for a sample size n = 400. The
straight line corresponds to the true predictions of each bivariate distribution.

4.4.3 Calculation of φ-Divergence Tolerance
In order to use the kernel-based reformulations of data-driven CCs proposed in
this chapter, one has to specify the size of the confidence set defined in equa-
tion (4.3), that is, the φ-divergence tolerance d. The kernel density estimator
is a consistent estimator, i.e., it converges in probability to the true density as
the sample size n increases indefinitely (Wied & Weißbach, 2012). Therefore,
it is reasonable to consider d to be a function of n, that is, d := d(n). More-
over, we assume that d is nonincreasing as n increases and tends to zero as n
tends to infinity (Jiang & Guan, 2013).

We propose using point-wise confidence intervals of the predictions of the
kernel density/distribution estimator to specify a value for d. More specifically,
given that the data-driven CCs have to be satisfied with nominal confidence
level 1− α, the size of the confidence can be set to the 100(1− α)% quantile
of the squared point-wise standard errors of the kernel estimator. Mathemat-
ically:

d = SE2
1−α (4.20)

where SE2 denotes a vector of length n of squared point-wise standard errors
of the kernel estimator, and its subscript 1 − α corresponds to the quantile
probability level. Point-wise standard errors convey the notion of confidence
intervals.

The motivation for selecting d as in equation (4.20) is to guarantee that the
“distance” between the true distribution and its kernel estimator is less than
or equal to the 100(1 − α)% largest squared point-wise standard error of the
predictions. Note that the standard error is defined as SE = s√

n
, where s is the
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sample standard deviation; thus, the square of the standard error is inversely
proportional to the sample size n. This satisfies the assumption about the
dependency of d with n, i.e., d monotonically decreases as n increases.

Different approaches to estimate standard errors of kernel estimators have
been proposed (Fiorio, 2004; Hall & Horowitz, 2013). They are commonly
obtained via bootstrapping or derived formulas based on the asymptotic nor-
mality of kernel estimators, such as the following (Racine, 2008):

[SE2]f̂Y |X(y|x) = fY |X(y|x)κq
n
∏q
j=1 hjfY |X(x) +O

( 1
n

)

[SE2]F̂Y |X(y|x) = FY |X(y|x)[1− FY |X(y|x)]κq
n
∏q
j=1 hjfY |X(x) +O

( 1
n

)

where [SE2]f̂Y |X(y|x) and [SE2]F̂Y |X(y|x) are the squared point-wise standard
errors of the estimated density and distribution, respectively, κ =

∫
K2(u)du,

and q is the dimension of the random vector conditioned on (i.e., X).
Figure 4.4 illustrates point-wise confidence intervals for the estimated CDF

of the mixture of two Gaussian models presented in paragraph 1.2.2.3 (sample
size n = 500) and whose estimated PDF is shown in Figure 1.3. The φ-
divergence tolerance d corresponds to the 100(1−α)% quantile of the squared
standard errors shown in Figure 4.4(b).

(a) Estimated kernel CDF with point-
wise confidence intervals that correspond
to standard errors of the estimates.

(b) Histogram of squared point-wise stan-
dard errors from the kernel estimation
process.

Figure 4.4: Illustration of point-wise confidence intervals constructed by the
estimated standard errors from kernel smoothing.

In the next subsection, we propose a way to handle small sample size
cases, i.e., when the lower accuracy of kernel estimators may compromise the
estimated quantiles for data-driven ICCs. The proposed expression for d for
small sample sizes uses similar rationale as for the KS-based approach, i.e., we
make use of point-wise confidence intervals to specify a value for d.
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4.4.4 Addressing Small Sample Size Cases
In this subsection, we are only concerned with univariate cases since multi-
variate cases require even larger sample sizes (the more random variables, the
larger n should be for accurate smoothing). Smoothing techniques such as ker-
nel smoothing (KS) are generally not considered suitable for small sample sizes.
Even though there does not seem to be an established theoretical minimum
sample size to successfully apply KS, a general rule-of-thumb is n ≥ 100. For
smaller sample sizes, there can be over- and under-estimation of (especially
extreme) quantiles as discussed in Subsection 4.4.1. In addition, quantiles
that are over- and under-estimated via KS may violate physical bounds on the
historical data, whereas empirical quantiles always lie within the data range.
We propose a way to calculate the value of the φ-divergence tolerance d us-
ing point-wise confidence intervals obtained from the empirical CDF, F̂n(·),
instead of the quantile function estimated with KS.

Recall that the reformulation of a data-driven ICC j requires the specifi-
cation of its reduced risk level α′j (see equation (4.9)), which in turn depends
on the value of the divergence tolerance d (see Table 4.1). The main idea of
the proposed approach is to evaluate the F̂n(·) at the available data points for
the uncertain parameter, and construct point-wise confidence intervals around
the predictions.

The empirical distribution is defined by

F̂n(x) = 1
n

n∑
i=1

1{Xi≤x}(x)

where 1A(·) is the indicator function, which equals to 1 if A is true, and 0
otherwise. Note that for a fixed point x ∈ R and any sample size n, the
quantity nF̂n(x) denotes the number of data points Xi that are less than
or equal to x, i.e., the number of “successes” in a sequence of n “trials”,
and each success has the probability of F̂n(x), i.e., the ratio of number of
successes to the number of trials. This is a well known fact: the quantity
nF̂n(x) has a binomial distribution with parameters n and success probability
F̂n(x), denoted by B(n, F̂n(x)).

The Wilson score-test-based method can be used to compute point-wise
confidence intervals of binomial distributions, since it is generally preferred
among a few other methods (Agresti & Coull, 1998). The function binconf
in the R Hmisc package (Harrell et al., 2014) implements the Wilson method
and others. It computes point-wise lower and upper bounds of the confidence
interval given a risk level α (i.e., 1− α confidence level).

Denote the point-wise lower and upper bounds of a binomial confidence
interval with risk level α by BinLoα(x) and BinUpα(x), respectively. The
deviations between the upper and lower bounds of the point-wise confidence
interval and the predicted cumulative probabilities generate two distributions.
The larger the sample size n, the smaller the deviations. Similarly to the
approach proposed in Subsection 4.4.3, we may specify a value for d that is
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greater than a fraction of all the deviations, i.e., a quantile of the distribution
of deviations. Since there are two distributions of deviations (i.e., predicted
minus lower and upper minus predicted), we propose setting the φ-divergence
tolerance d as follows:

d = min
{
HD1−α

(
F̂n(x)−BinLoα(x)

)
, HD1−α

(
BinUpα(x)− F̂n(x)

)}
(4.21)

where HD(·) is the Harrell-Davis (H-D) distribution-free (empirical) quantile
function (Harrell & Davis, 1982). The argument of the HD(·) function is an
array of values. The subscript 1 − α denotes the quantile probability level.
The H-D quantile estimator has demonstrated to be superior to traditional
empirical quantile estimators (based on one or two order statistics) for small
sample sizes (e.g., n ≤ 60). Note that as n increases, the confidence intervals
become smaller; therefore, d monotonically decreases as n increases.

The expression in equation (4.21) can be interpreted as follows: d is the
minimum between the 100(1 − α)% quantile (using the H-D estimator) of
the deviations between estimated empirical CDF and the binomial lower and
upper bounds for the given confidence level. Figure 4.5 illustrates the binomial
confidence intervals for the empirical CDF of the mixture of two Gaussian
models presented in paragraph 1.2.2.3, but with sample size n = 24.

Figure 4.5: Illustration of point-wise binomial confidence intervals for an em-
pirical CDF for small sample sizes.

Since the H-D estimator is used instead of the quantile function estimated
via KS, equations (4.11) and (4.13) are rewritten as follows:

gj(x) ≥ HD1−α′j,+([Xj,1, . . . , Xj,n]), j = 1, . . . , m (4.22)
gj(x) ≤ HDα′j,+

([Xj,1, . . . , Xj,n]), j = 1, . . . , m (4.23)

where [Xj,1, . . . , Xj,n] represents an array of data values for each random vari-
able ξ̃j, for i = 1, . . . , n, and α′j,+, for j = 1, . . . , m, is obtained in the same
way as for the kernel-based reformulation approach (see Section 4.3).
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4.5 Algorithm for the Initialization of JCCMod-
els

The algorithm described here can be used in the context of both classical and
data-driven joint chance constraints. For a cleaner presentation, we use the
acronyms JCCs and ICCs to refer to either classical or data-driven approaches.

Optimization problems with JCCs can be computationally more intensive
to solve than problems with ICCs. One major contributor to that is the nonlin-
ear reformulation of the JCCs. However, the solution of nonlinear optimization
problems can be expedited by proper initialization of the values of the vari-
ables. We propose providing a starting point for a problem with JCCs by using
the solution to the same problem, but with the ICCs instead. That is, each
JCC is converted into separate ICCs whose individual risk levels satisfy the
relationship in equation (4.17) (see derivation in Appendix C.2). In case the
solution to the problems with ICCs yields one or more infeasible JCCs (espe-
cially when the confidence level 1− α approaches the value of 1), a feasibility
problem is solved first, and then its solution is used to initialize the model
with JCCs. The initialization algorithm can reduce the total solution time if
these constraints represent a relatively small part of all the constraints in the
model. Before describing the algorithm, we define the feasibility problem.

The feasibility problem can be used to find a feasible solution to the JCCs
alone. A possible objective is to minimize a distance measure between the
values of the variables present in those constraints and their respective values
from the solution to the problem with ICCs. In this way, the solution to the
feasibility problem will be as close as possible to the one from the problem
with ICCs, which is a good starting point for the problem with JCCs. Let
xICC be a constant vector initialized to the optimal solution to the problem
with ICCs. We may define the feasibility problem as follows:

min
x

||x− xICC||22
s.t. JCCs, such as equations (4.14), (4.18), or a combination of both

(4.24)
where || · ||22 in the objective function is the L2 norm squared. For models with
few JCCs relative to all other constraints, the feasibility problem is a smaller
problem that may be solved more efficiently than the original problem with
JCCs.

For ease of exposition of the algorithm, we define the original optimization
problem with JCCs and the problem with associated ICCs in equations (4.25)
and (4.26), respectively. A possible approach to select the individual risk levels
is as follows (see equation (4.17)): let αICC

j = αICC, for j = 1, . . . , m; thus,
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αICC ≤ 1
m
αJCC.

min
x

f(x)

s.t. x ∈ X
P
{
gj(x) ≥ ξ̃j, j = 1, . . . , m

}
≥ 1− αJCC

(4.25)

min
x

f(x)

s.t. x ∈ X
P
{
gj(x) ≥ ξ̃j

}
≥ 1− αICC

j , j = 1, . . . , m
(4.26)

where X is a compact set that contains constraints that are not JCCs nor
ICCs.

The initialization algorithm is shown in Figure 4.6. In step 1, the associ-
ated problem with ICCs in equation (4.26) is solved yielding xICC. In step 2,
each JCC is evaluated at the solution to the problem with ICCs in order to
determine its feasibility. If all JCCs are feasible, then the original problem in
equation (4.25) is initialized with xICC and solved; the algorithm stops. Other-
wise, the feasibility problem is solved in step 4. In step 5, the variables present
in the JCCs are fixed in the problem with ICCs, which is resolved using the
bounds on the individual risk levels as in step 1. The purpose of step 5 is to
guarantee that the solution to the corresponding problem with ICCs is feasible
for all JCCs present in the original problem, thus providing a feasible starting
point for the original problem. Finally, the solution to this problem with ICCs
is used to initialize the original problem with JCCs (step 3), thus concluding
the algorithm.
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1. Solve problem with ICCs in
equation (4.26) with risk levels according

to equation (4.17)

2. Are all JCCs
feasible?

3. Solve original problem with JCCs in
equation (4.25)

4. Solve feasibility
problem in equation (4.24)

5. Fix variables present in JCCs
and resolve problem in

equation (4.17)

xICC

no

yes xICC

Figure 4.6: Algorithm for the initialization of problems with JCCs.

4.6 Numerical Examples
This section contains two production planning examples. The first example
is a motivating example to illustrate the proposed kernel-based reformulation
approach for data-driven individual and joint CCs. The second example is
a real-world test case for a network of chemical plants that are geographi-
cally located in different sites. In the industrial test case, we illustrate how
chance-constrained optimization models can be interpreted as multi-objective
optimization models for which a Pareto efficient frontier can be obtained.

4.6.1 Motivating Example
Figure 4.7 shows the network of the motivating production planning example.
It consists of a raw material A, an intermediate product B, finished products C
and D (only product D can be stored), and facilities (plants) P1, P2, and P3.
Product C can also be purchased from a supplier, or in the case of multiple
sites, it could be transferred from another site that also produces it. Both
plants P2 and P3 have uncertain production capacity.
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Supply A P1 B

P2

P3

C

D

Purchase

Sales

Sales

Storage

xpurchA,t yrateP1,t wrate
P1,t

yrateP2,t

yrateP3,t

wrate
P2,t

wrate
P3,t

xpurchC,t

xsalesC,t

xsalesD,t

winv
D,t

Figure 4.7: Network structure for the motivating Example 1.

The Linear Programming (LP) formulation has the following main ele-
ments: variables corresponding to the inlet/outlet flow rates to/from facility f
in time period t, yratef,t and wrate

f,t respectively; production yields for each facility,
θf ; and demands for each finished product m ∈ FP in time period t, γm,t. The
deterministic multiperiod optimization model, (PPDet), is given as follows:

(PPDet)

max wprofit (4.27a)
s.t. wrate

f,t = θfy
rate
f,t ∀ f ∈ F, t ∈ T (4.27b)

xsalesC,t = wrate
P2,t + xpurchC,t ∀ t ∈ T (4.27c)

winv
D,t = winv

D,t−1 + wrate
P3,t − xsalesD,t ∀ t ∈ T (4.27d)

wrate
P1,t = yrateP2,t + yrateP3,t ∀ t ∈ T (4.27e)

xpurchA,t = yrateP1,t ∀ t ∈ T (4.27f)
xsalesm,t + slacksalesm,t = γm,t ∀ m ∈ FP, t ∈ T (4.27g)
wrate
f,t ≤ wrate,max

f + slackmax,cap
f,t ∀ f ∈ F, t ∈ T (4.27h)

wrate
f,t ≥ wrate,min

f − slackmin,cap
f,t ∀ f ∈ F, t ∈ T (4.27i)

winv
D,t ≤ winv,max

D,t ∀ t ∈ T (4.27j)
xpurchA,t ≤ xpurch,max

A,t ∀ t ∈ T (4.27k)

where constraints (4.27b) relate the output flows with the input flows through
the yield of each facility f , constraints (4.27c) – (4.27f) represent material and
inventory balances, equations (4.27g) represent the demand satisfaction and
slack variables are employed to account for possible unmet demand, constraints
(4.27h) – (4.27k) are limitations in the flows, storage, raw material availability,
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and capacity violations, respectively, and the profit is calculated as follows:

wprofit =
∑
t∈T

 ∑
m∈FP

SPm,txsalesm,t −
∑
f∈F

OPCf,tw
rate
f,t

−
∑

m∈M :MPUR=1
PCm,tx

purch
m,t −

∑
m∈M :MINV=1

ICm,tw
inv
m,t −

∑
m∈FP

PENm,tslack
sales
m,t

−
∑
f∈F

PENf,t(slackmax,cap
f,t + slackmin,cap

f,t )


where SPm,t is the selling price of material m in period t, OPCf,t is the oper-
ating cost of facility f in period t, PCm,t is the purchase cost of material m
in period t, ICm,t is the inventory cost of material m in period t, and PENm,t

denotes the penalty associated with unmet demand.
The uncertainty in this example is represented by the historical variability

of the maximum production capacities of plants P2 and P3. In other words,
the two random variables (uncertain parameters) are w̃rate,max

P2 and w̃rate,max
P3

(note that they are time-independent). All other parameters are considered
deterministic for the sake of this example, and four time periods were specified.
We assume that the data generating processes for w̃rate,max

P2 and w̃rate,max
P3 are

the Gaussian models N(27, 7) and N(28.5, 9), respectively. Note that in reality
one does not usually know the true distribution of the uncertain parameters.
The industrial example in the next subsection considers real plant data. For
illustration purposes, we will consider both individual and joint chance con-
straints (ICCs and JCCs), which will form two different models: an LP model
(ICCs) and an NLP model (JCC).

Equation (4.27h), for f = {P2, P3}, can be written as ICCs as follows:

P
{
wrate
P2,t ≤ w̃rate,max

P2

}
≥ 1− αP2 ∀ t ∈ T (4.28)

P
{
wrate
P3,t ≤ w̃rate,max

P3

}
≥ 1− αP3 ∀ t ∈ T (4.29)

Note that the associated slack variables are removed from the model. Using
equation (4.13), the kernel-based reformulation of the data-driven ICCs yields:

wrate
P2,t ≤ F̂−1

w̃rate,max
P2

(α′P2,+) ∀ t ∈ T (4.30)

wrate
P3,t ≤ F̂−1

w̃rate,max
P3

(α′P3,+) ∀ t ∈ T (4.31)

where F̂−1
w̃rate,max
P2

(·) and F̂−1
w̃rate,max
P3

(·) are quantile functions estimated via KS.
Figure 4.8 illustrates the histogram for both uncertain parameters and the
estimated quantile functions. The (linear) production planning model with
reformulated data-driven ICCs, (PPICC), is as follows:
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(PPICC)

max wprofit

s.t. Constraints in equations (4.27b) to (4.27g)
wrate
P1,t ≤ wrate,max

P1 + slackmax,cap
P1,t ∀ t ∈ T

wrate
P2,t ≤ F̂−1

w̃rate,max
P2

(α′P2,+) ∀ t ∈ T

wrate
P3,t ≤ F̂−1

w̃rate,max
P3

(α′P3,+) ∀ t ∈ T

Constraints in equations (4.27i) to (4.27k)

Figure 4.8: Top: histograms for the randomly generated historical data for
the maximum capacity of plants P2 and P3 (sample size n = 365 each) in the
motivating example. Bottom: estimated empirical and kernel-based quantiles
(EQ and KS, respectively).

In the joint case, we consider that the two Gaussian models for w̃rate,max
P2 and

w̃rate,max
P3 are independent; thus, they are uncorrelated, which yields a bivariate

normal distribution with mean vector µ = [27, 28.5] and covariance matrix
Σ = [49, 0; 0, 81]. Equation (4.27h), for f = {P2, P3}, can also be written as
a JCC as follows:

P
{
wrate
P2,t ≤ w̃rate,max

P2 , wrate
P3,t ≤ w̃rate,max

P3

}
≥ 1− α ∀ t ∈ T (4.33)

Using equation (4.19), the kernel-based reformulation of the data-driven JCC
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yields:

1
n

n∑
i=1

[
1−KP2

(
wrate
P2,t − wrate,max

P2,i

hP2

)] [
1−KP3

(
wrate
P3,t − wrate,max

P3,i

hP3

)]
≥ 1− α′+

∀ t ∈ T
(4.34)

where wrate,max
P2,i and wrate,max

P3,i are data points, and KP2(·) and KP3(·) are inte-
grated kernels with respective bandwidths hP2 and hP3. When implementing
the reformulated constraints in an optimization model, we choose the Gaussian
integrated kernel (see equation (1.22) in paragraph 1.2.2.3) since it is smooth,
i.e., it does not contain discontinuities as the other kernels, such as Epanech-
nikov and Tri-cube (see Table 1.2). Figure 4.9 illustrates the histogram for
both uncertain parameters and the estimated quantile functions. The (non-
linear) production planning model with the reformulated data-driven JCC,
(PPJCC), is as follows:

(PPJCC)

max wprofit

s.t. Constraints in equations (4.27b) to (4.27g)
wrate
P1,t ≤ wrate,max

P1 + slackmax,cap
P1,t t ∈ T

1
n

n∑
i=1

[
1−KP2

(
wrate
P2,t − wrate,max

P2,i

hP2

)]
·

[
1−KP3

(
wrate
P3,t − wrate,max

P3,i

hP3

)]
≥ 1− α′+ ∀ t ∈ T

Constraints in equations (4.27i) to (4.27k)
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Figure 4.9: Estimated joint cumulative distribution function for the maximum
capacity of plants P2 and P3 (sample size n = 365) in the motivating example.
The straight line corresponds to the true predictions of the bivariate normal
distribution.

All models were implemented in AIMMS 3.13 and solved on a desktop
computer with the following specifications: Dell Optiplex 990 with 4 Intel R©

CoreTM i7-2600 CPUs at 3.40 GHz (total 8 threads), 8 GB of RAM, and
running Windows 7 Enterprise. The linear and nonlinear solvers used were
GUROBI 5.6 and IPOPT 3.10.1, respectively. The R np package was used for
all kernel smoothing computations (see paragraph 1.2.2.3). The reduced risk
level α′+ was calculated using the K-L divergence formula (see Table 4.1). The
complete problem data are available in Appendix C.3.

We begin the analysis of the results with the optimal profit value (penalties
not included) for all models at different nominal confidence levels or reliability
levels 1−α. In Figure 4.10, we compare the profit values for the optimization
models with exact (known) distributions and with kernel-based reformulated
CCs, and the influence of the sample size n. Note that, for this motivating
example, the data were generated from specified Gaussian models; therefore,
exact quantiles (for ICCs) and bivariate normal cumulative probabilities (for
JCC) were used to assess the quality of the proposed kernel-based reformu-
lation. From Figure 4.10, for 90% nominal confidence level, the kernel-based
approach yields precisely the same solution as for the case where exact infor-
mation for the distribution is used. For higher values of nominal reliability
level, the difference increases, but not considerably. The more data points
are used for the estimation of the underlying distribution, the more accurate
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becomes the estimated distribution. Moreover, the reduced risk level α′+ be-
comes closer to the nominal risk level α. As expected, the larger the sample
size n, the closer the results for the kernel-based approach are to the solution
using assumed exact distributions. Note that the JCC problem exhibits lower
profits than the ICC problem, since the former is more restrictive than the
latter.

(a) Profit values for exact and kernel-
based reformulation with individual
chance constraints.

(b) Profit values for exact and kernel-
based reformulation with joint chance con-
straint.

Figure 4.10: Comparison of the objective function value of the motivating
example for different models (exact vs. kernel-based (KS) reformulations).

A similar analysis can be performed for the decision variables. For exam-
ple, in Figure 4.11, the optimal production levels of plants P2 and P3 obtained
with kernel-based approach are very similar to those obtained when exact dis-
tributions are used. Once again, the larger the sample size n, the smaller
the difference between estimating distributions and using the exact distribu-
tions. The increasing flow rates out of P2 at t = 1 for increasing nominal
confidence levels might seem counterintuitive at first, since as the confidence
levels increase the flow rates are further constrained from above. However,
the flow rate out of P2 is still free to increase in order to satisfy the demand
of product C, which is followed by a decrease in its purchased amounts from
an external source (not shown). In contrast, the flow rate out of P3 at t = 1
decrease with increasing confidence levels as expected. This is due to the fact
that the ICC for P3 is binding (i.e., the flow rate reached its upper bound,
which is the estimated quantile shown in Table C.3), whereas the ICC for P2
is non-binding.
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(a) Production levels of plant P2 for exact
and kernel-based reformulation with indi-
vidual chance constraints.

(b) Production levels of plant P2 for exact
and kernel-based reformulation with joint
chance constraint.

(c) Production levels of plant P3 for exact
and kernel-based reformulation with indi-
vidual chance constraints.

(d) Production levels of plant P3 for exact
and kernel-based reformulation with joint
chance constraint.

Figure 4.11: Comparison of the production levels of plants P2 and P3 of
the motivating example for different models (exact vs. kernel-based (KS)
reformulations).

All optimization problems were solved in less than one second each. Ta-
ble 4.2 summarizes the problem sizes. The additional 8 variables in the de-
terministic model (PPDet) correspond to the slack variables slackmax,cap

f,t , for
f = {P2, P3} and t = {1, 2, 3, 4}, which were removed when modeling con-
straints in equation (4.27h) as CCs. We note that the model (PPJCC) is a
nonconvex NLP. It has fewer constraints than the model (PPICC), because
for each JCC there are two associated ICCs. More specifically, for each time
period t, the two ICCs in equations (4.30) and (4.31) in the model (PPICC)
are “joined” to form the JCC in equation (4.34) in the model (PPJCC). In
the computational experiments, the NLP solver (IPOPT) converged to the
same solution with or without multi-start.

Table 4.2: Problem sizes for motivating example.

Model (PPDet) (PPICC) (PPJCC)
Constraints 68 68 64
Variables 76 68 68
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4.6.2 Industrial Example
The industrial test case concerns the optimal production planning of a net-
work of production sites. Each site contains several plants that are highly
integrated. The plants can also transfer products between sites. At these mul-
tiple production sites, with more than 25 production facilities, several prod-
ucts are manufactured. The time horizon of one year is divided into monthly
time periods. The objective of the optimization model is to maximize the net
present value (NPV). The LP model is similar to the model used in the mo-
tivating example (equation (4.27)) with some additional constraints. That is,
its constraints represent material and inventory balances across all chemical
sites.

In this test case, we focus on the reliability levels of three key plants in the
network that are of interest to this test case. The plants are denoted by P1, P2,
and P3. Similar to the motivating example in Subsection 4.6.1, the uncertain
parameters are the maximum production capacities of those three key plants.
The historical data comprise 610 observations for each key plant as shown in
Figure 4.12. Clearly, the real data cannot be accurately represented by typical
Gaussian distributions as is commonly assumed in the literature. For the JCC
model (NLP model), the joint CDF was estimated, whereas for the ICC model
(LP model), the individual quantile functions were estimated. The reduced
risk levels α′ were calculated based on the K-L divergence (see Table 4.1). We
used the same algebraic modeling environment and optimization solvers as in
the motivating example.

(a) (b) (c)

Figure 4.12: Histograms depicting the real data for the maximum production
capacities of three key plants in the network: (a) plant P1, (b) plant P2, and
(c) plant P3.

The JCC and ICC (when all individual risk levels have the same value)
models essentially correspond to bi-objective optimization models in which
one objective is to maximize the NPV and the other objective is to maximize
the probability of satisfying the chance constraints. By changing the confi-
dence levels of the chance constraints and resolving the optimization model
corresponds to applying the ε-constraint method for multi-objective optimiza-
tion (Haimes, Lasdon, & Wismer, 1971). The outcome is a Pareto efficiency
curve, which represents the trade-off between the two objectives, i.e., the im-
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provement of one objective leads to the worsening of the other objective. Fig-
ure 4.13 shows the normalized NPV values for different nominal confidence
levels (1− α), i.e., the Pareto efficient frontier. Note that the solution to the
ICC problem is an upper bound to the solution of the JCC problem, i.e., the
JCC model is more conservative than the ICC model for the same nominal
confidence level.

Figure 4.13: Pareto efficient frontier for the industrial test case. For the ICC
model, the same reduced risk levels α′ were used for the the three key plants.

The problem sizes are shown in Table 4.3. In this industrial test case, there
is one JCC per time period (total of 12 time periods), and each JCC has three
variables that correspond to the flow rates out of the three key plants.

Table 4.3: Problem sizes for industrial test case.

Model Deterministic ICC JCC Feasibility
Constraints 192,240 192,240 192,216 12
Variables 283,217 283,181 283,181 36

In order to speed up the solution of the NLP models, they were initialized
with the solution of ICC models for which the individual risk levels satisfy
the relationship in equation (4.17). In particular, we set αICC

P1 = αICC
P2 =

αICC
P3 = 1

3α
JCC, computed the respective individual reduced risk levels α′ with

the K-L formula (see Table 4.1), and obtained the estimated quantiles. The
effect of properly initializing the JCC models can be seen in Figure 4.14.
Speedups ranged from 2 to 6 times. For a nominal confidence level of 99% (i.e.,
1−α = 0.99), the JCCs for certain time periods were infeasible when evaluated
at the solution of the problem with ICCs. When the initialization algorithm
described in Section 4.5 was not applied, the solver IPOPT could not find a
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feasible solution and stopped after 1 hour. In contrast, by properly initializing
the JCC model using the proposed algorithm, a feasible and (local) optimal
solution was found in under 6 minutes for the 99% confidence level case. Thus,
the proposed initialization algorithm makes the solution of problems with JCCs
more robust and faster. The feasibility problem and each ICC model were each
solved in one second or less; thus, their solution times are not reported.

Figure 4.14: Solution times of the JCC model with and without initialization
from the solution of ICC models according to algorithm in Subsection 4.5.
For a nominal confidence of 99%, the solver could not find a feasible solution
without applying the initialization algorithm.

4.7 Conclusions
In this work, we have investigated a specific reformulation approach for data-
driven conditional and unconditional individual and joint chance constraints
(CCs) with right-hand side uncertainty. As opposed to classical CCs that rely
on strong assumptions regarding the parametric model for distributions, data-
driven CCs use estimated distributions based on available data, i.e., historical
or predicted observations of the uncertain parameters. One nonparametric
statistical technique to estimate probability densities and distributions as well
as to regress quantiles is known as kernel smoothing (KS).

We showed how kernel smoothing can be used to reformulate data-driven
CCs into algebraic constraints. In addition, we proposed a novel way of cal-
culating the divergence tolerance (i.e., the size of density-based confidence set
that is assumed to contain the unknown true distribution) by using squared
point-wise standard errors from the estimation process. For small sample size
cases, we proposed a reformulation approach for data-driven individual CCs
that use the Harrell-Davis empirical quantile estimator. Another contribution
of this work is the proposed algorithm for solving problems with joint CCs
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by initializing its variables from the solution of the associated problem with
individual CCs.

The proposed reformulation approach and algorithm were applied to nu-
merical examples, including an industrial test case. We showed that the so-
lution to the motivating example when KS was used to estimate distribu-
tions was very similar to the solution obtained when exact and assumed to be
known distributions were used to describe the uncertainty. For the industrial
case study, the proposed initialization procedure enabled the solution of the
joint chance-constrained problem for all selected values of the confidence level.
Among the problem instances successfully solved with and without the initial-
ization procedure, solution times were up to five times faster when applying
the initialization procedure.
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Chapter 5

Data-Driven Simulation and
Optimization Approaches to
Incorporate Production
Variability in Sales and
Operations Planning

5.1 Introduction
Sales and Operations Planning (S&OP) is a business and decision-making
process through which a company makes certain that tactical plans in every
business area balance demand and supply for products. Therefore, S&OP links
the corporate strategic plan to daily operations plans. The overall result of the
S&OP process is an operating plan to allocate company resources (Grimson
& Pyke, 2007).

Attempts in the literature to systematically survey case studies of the
S&OP process adopt the Capability Maturity Model (CMM) (Paulk, Weber,
& Chrissis, 1993). A recent review that surveys some maturity models can be
found in Thomé et al. (2012). Maturity models define stages for the S&OP pro-
cess that include activities such as meetings, demand forecasting, integration
of procurement, production, and distribution plans, and performance measure-
ments. Figure 5.1 illustrates typical stages in the S&OP process. We note that
uncertainty and variability affect decisions in both stages 1 (Sales Planning)
and 2 (Operations Planning). Forecasting demand for products takes into
account future market conditions that are not known exactly (i.e., demand
uncertainty), and the operation of plants is subject to unplanned events and
imperfect implementation (i.e., production variability).
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Figure 5.1: Typical stages in the S&OP process. Adapted from Ling & God-
dard (1988).

The Operations Research and Management Science (OR&MS) and Process
Systems Engineering (PSE) communities have contributed with optimization-
based tactical production planning models as well as solution strategies for
different industry sectors. The review paper by Mula et al. (2006) and the
book by Pinedo (2009) present an extensive literature survey about models
for tactical production planning and scheduling with uncertainty considera-
tions, and classify the literature based on the production planning area and
the modeling approach. Production planning and scheduling problems in the
chemical, petrochemical, and pharmaceutical industries are reviewed in the
works by Sung & Maravelias (2007); Verderame et al. (2010). The authors
identify typical sources of uncertainty in different applications and how they
are usually modeled in the context of optimization under uncertainty.

Some works have considered hybrid simulation and optimization to ac-
count for uncertainty in generating tactical production plans. For instance,
Li, González, & Zhu (2009) studied a dedicated remanufacturing system of
electronic products with stochastic batch arrival times. The system is mod-
eled in the discrete-event simulator Arena R© 10.0 by Rockwell Software, and
its objective is to analyze the effect of operational changes on the profit perfor-
mance of this dedicated remanufacturing system. The optimization approach
was based on Genetic Algorithms. Lim, Alpan, & Penz (2014) propose a
simulation-optimization approach for managing S&OP in a problem related
to the automotive industry. The stochastic parameter is the demand that is
assumed to be uniformly distributed. The simulation part is coded in the Java
programming language, and the optimization formulation accounts for multi-
ple criteria through ε-constraints (see Subsection 5.4.2). We note that, on the
one hand, there has been a modest effort to address the effect of uncertainty in
the activities pertaining to sales and procurement planning; on the other hand,
there is limited work on incorporating production variability in the operations
planning stage.

In this work, we focus on the operations planning stage of the S&OP process
(see Figure 5.1). More specifically, we propose two data-driven optimization-
based approaches to account for uncertainty (in this case, production variabil-
ity) when generating a tactical production plan. The production variability is
quantified as the deviation between historical planned and actual production
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rates. The statistical technique of quantile regression (Koenker, 2005) is used
to model the distribution of deviation values for a given planned rate. This
distribution is then sampled from in order to construct scenarios. The main
contributions of this work are summarized below.

• Statistical modeling via quantile regression of historical production data
to quantify production variability;

• Simulation-optimization and bi-objective optimization frameworks to ac-
count for production variability when generating a tactical production
plan in the S&OP process; and

• Generated tactical production plan with tradeoff information between
average profit and risk (i.e., Pareto efficient frontier).

This paper is organized as follows. Section 5.2 defines the problem and
presents the high-level methodology. Section 5.3 provides a brief overview
of classical and quantile regression, which are statistical techniques that can
be used to model historical production variability. Section 5.4 describes the
two proposed optimization-based solution strategies to incorporate produc-
tion variability in the operations planning stage of the S&OP process. The
proposed approach is illustrated by two numerical examples in Section 5.5:
motivating example and industrial case study. In the latter, we propose mod-
eling approaches to account for highly integrated networks. Conclusions are
drawn in Section 5.6.

5.2 Problem Statement and Methodology
The approach proposed in this work is illustrated with an application related to
the Chemical Process Industry (CPI). In particular, we deal with Enterprise-
wide Optimization (EWO) decisions of highly-integrated chemical production
sites, which produce basic chemicals and their downstream derivatives (Was-
sick, 2009). However, we note that the proposed methodology is general and
can be applied to other types of industries.

For this problem, we consider a process network of chemical plants and
focus on the effects of production variability in the operations planning stage.
We assume that the future monthly demand is given and is deterministic
over the planning horizon. Also given is the minimum/maximum installed
production capacity of each plant and its production costs. Transportation
and inventory holding costs, inventory capacity, and initial inventory are given.
Future planned maintenance outages of production plants may also be given.
Given a multi-period linear programming (LP) production planning model
for the given process network (similar to the model presented in Sahinidis et
al. (1989), excluding capacity expansion considerations), the objectives are
two-fold: (1) propose a production plan incorporating historical production
variability data, and (2) measure the performance of the proposed plan in the
form of a tradeoff between average profit and risk. Production variability is
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incorporated in a two-stage the stochastic programming production planning
formulation whose details are given in Subsection 5.4.2.

The overall strategy to generate production plans by taking into account
the variability of S&OP data is shown in Figure 5.2. From available historical
data that consist of actual and planned production rates, quantile regression
models (see Section 5.3) are built and used to characterize the production
variability, i.e., deviation between planned and actual rates. Deviation values
are then sampled from these statistical models and used in an optimization-
based framework to generate production plans with profit vs. risk tradeoff
information (see Section 5.4). We propose and discuss the advantages and
disadvantages of two different frameworks: (1) a simulation-optimization ap-
proach, and (2) a bi-objective optimization approach.

Figure 5.2: Overall strategy to account for historical production variability
when generating production plans.

5.3 Modeling Production Variability with Quan-
tile Regression

Please see Subsubsection 1.2.2.1 for an overview of classical and quantile re-
gression. In this section, we illustrate how quantile regression can be used to
model production variability.

The proposed approach for using quantile regression to model production
variability in S&OP data is as follows. From historical planned and actual pro-
duction rates, the deviation between them is calculated as ∆ = Plan−Actual.
The regression analysis consists of regressing ∆ on Plan, i.e., obtain the re-
gression function Qα[∆|Plan = planned value] for a given probability level α.
Finally, a distribution of ∆ values given a planned value can be obtained by
estimating quantiles for several probability levels (e.g., α = {0, 0.01, . . . , 1}).
Figure 5.3 shows an example of a ∆ vs. Plan plot for a given chemical plant
and the estimated quantiles conditional on two different planned values. The
top plot shows that the distribution of ∆ values (i.e., conditional quantiles)
varies depending on the planned value. This can also be seen from the bottom
plots, where the range of ∆ values is larger for the planned value of 10w.u.
(weight units, bottom left plot) than for the planned value of 1.5w.u. (bottom
right plot).
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Figure 5.3: Example of modeling production variability with quantile regres-
sion, where ∆ = Plan − Actual. Legend: (a) ∆ vs. Plan plot, (b) estimated
quantiles conditional on Plan = 10 w.u. (weight units), and (c) estimated
quantiles conditional on Plan = 1.5 w.u..

Remark. As will be discussed in the next section, it may be difficult or
impossible to employ a quantile regression model to generate samples within
an optimization formulation. One possible approximation is to disregard the
covariate in the quantile regression (i.e., the Plan values), and generate samples
from the distribution of the ∆ values alone. This is the approach taken in the
numerical examples discussed later in this paper.

5.4 Simulation and Optimization Frameworks
The objective of the proposed approach is two-fold: (1) account for histori-
cal production variability when generating an optimal Sales and Operations
Planning (S&OP) production plan, and (2) provide tradeoff information about
the generated plan in the form of average profit vs. risk. We describe two
optimization-based frameworks whose potential advantages and disadvantages
are listed in Table 5.1. The frameworks are detailed in the next two subsec-
tions.
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Table 5.1: Potential advantages (+) and disadvantages (−) of optimization-
based frameworks. Legend: Sim-Opt = Simulation-Optimization framework,
Bi-Opt = Bi-Objective Optimization framework, ∆|Plan = deviation condi-
tional on planned values in the context of quantile regression (see Section 5.3),
DFO = Derivative-Free Optimization.

Sim-Opt Bi-Opt

+ Easy to accommodate for arbi-
trary ∆|Plan;

− Expensive simulations as number
of scenarios increases;

− No explicit handling of constraint
violation;

− Decrease in efficiency if high-
dimensional DFO problem.

+ Simultaneous generation of plan
and minimization of risk;

+ Explicit handling of constraint vi-
olation;

− Difficult or impossible to accom-
modate for arbitrary ∆|Plan;

− Optimization model may be large
and nonlinear.

5.4.1 Simulation-Optimization Framework (Sim-Opt)
The Simulation-Optimization framework (Sim-Opt) consists of alternating be-
tween a simulator and a Derivative-Free Optimization (DFO) (Conn, Schein-
berg, & Vicente, 2009) solver as illustrated in Figure 5.4. The purpose of the
DFO solver is to set the production target (i.e., generate the S&OP production
plan). For a new proposed plan, ∆ values are generated using quantile regres-
sion and used to form scenarios to be evaluated by the simulator. In the simu-
lator, the production rates of the plants that are subject to variability are fixed
to the respective plan proposed by the DFO minus the respective ∆ value, i.e.,
Production Rate = Production Target − ∆. Recall that ∆ = Plan − Actual;
therefore, by subtracting the estimated ∆ value from the production target,
we estimate the actual production rate for a plant.
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Figure 5.4: Schematic of the Sim-Opt framework. The DFO solver sets the
production targets based on which the ∆ values are estimated and form scenar-
ios for the simulator. The simulator evaluates the current production target
and returns a distribution of financial performance values (profit, cost etc.).

The simulator can be a black-box S&OP software or a production planning
optimization model that acts as a simulator by fixing certain “input” variables,
such as production rates. Different scenarios containing ∆ values are passed
to the simulator, which evaluates the impact of the proposed plan on a perfor-
mance metric, such as profit or cost. Note that each scenario is independent
of the other, which makes this approach amenable to parallelization.

A recent review on DFO solvers and algorithms is given by Rios & Sahini-
dis (2013). We note that some limitations of DFO include the decrease in
efficiency for high-dimensional optimization problems and the number of nec-
essary function evaluations (i.e., calls to the simulator, which may be com-
putationally expensive due to the number of scenarios) in order to achieve
significant progress. In the type of problem addressed in this paper, if the
production rate of a plant is indexed by time periods and the planning time
horizon considered has twelve time periods, then for each plant that is subject
to variability, twelve decision variables are needed.

One of the objectives of this paper is to show how a tradeoff curve of average
profit vs. risk (Pareto efficient frontier) of the proposed production plan can
be used in the analysis of results. This tradeoff curve can be obtained by
applying a bi-criterion approach to the Sim-Opt framework as explained as
follows. For the case of a black-box simulator, in which no model is available,
multi-objective DFO algorithms can be used to construct the Pareto efficient
frontier. The literature on multi-objective DFO is generally divided into two
classes: Direct Search Methods (DSM) of directional type and Evolutionary
Multi-objective Optimization (EMO) algorithms. Reviews are given in Zhou et
al. (2011); Custódio, Emmerich, & Madeira (2012). If an optimization model
is used as the simulator, then standard multi-objective optimization techniques
can be used, such as the ε-constraint method (see Subsection 5.4.2) (Hwang
& Masud, 1979; Miettinen, 1999).
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5.4.2 Bi-Objective Optimization Framework (Bi-Opt)
The Bi-Objective Optimization framework (Bi-Opt) simultaneously proposes
a production plan and minimizes the risk of operating a such plan under pro-
duction variability consideration. This is accomplished by solving an optimiza-
tion problem, which requires the production planning optimization model to
be fully known. The proposed optimization model is a bi-objective two-stage
stochastic program (Birge & Louveaux, 2011) whose first-stage variables are
the production targets and second-stage variables are the remaining variables
of the model (e.g., flows and inventory). The two objectives are the average
profit value to be maximized and a risk measure (e.g., financial risk) to be
minimized.

A general deterministic equivalent model of the bi-objective two-stage stochas-
tic program is as follows,

min
xs,PT

Risk(xs, PT )

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)

s.t. g(xs) ≤ 0 ∀ s ∈ S
PRs = PT −∆s ∀ s ∈ S

(5.1)

where the first objective minimizes risk while the second objective maximizes
the expected profit. In equation (5.1), PT are the first-stage production target
variables, while xs is a vector of two-stage decision variables (including the
production rate variables, PRs) that is defined for each scenario s ∈ S, ps is
a constant vector of probability of scenario s, f0(·), fs(·), and g(·) are linear
functions that define the multi-period LP planning model. In this paper,
functions f0(·) and fs(·) correspond to the first- and second-stage profit terms,
respectively, whereas functions g(·) represent linear material and inventory
balances and capacities.

A major contribution of this paper is to model production variability as
shown in the last set of equality constraints of equation (5.1). This set of
constraints fixes PRs to the production target (PT ) minus the deviation value
for a given scenario s (∆s). Recall that subtracting ∆s from the production
target (i.e., production plan) results in the estimated actual production rate.
Also, note that PT is not indexed by scenarios, since it is a vector of first-stage
variables. The production target is the production plan that is sought to be
implemented in practice.

The bi-objective optimization problem in equation (5.1) can be cast as a
single-objective model using standard multi-objective optimization techniques
as mentioned in the previous section. The ε-constraint method results in two
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possible models,

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)

s.t. Risk(xs, PT ) ≤ ε

g(xs) ≤ 0 ∀ s ∈ S
PRs = PT −∆s ∀ s ∈ S

(5.2)

or,
min
xs,PT

Risk(xs, PT )

s.t. f0(PT ) +
∑
s∈S

psfs(xs) ≥ ε

g(xs) ≤ 0 ∀ s ∈ S
PRs = PT −∆s ∀ s ∈ S

(5.3)

where ε is a threshold value that represents the maximum risk (equation (5.2))
or minimum average profit (equation (5.3)) the decision maker is willing to
have. The Pareto efficient frontier can be constructed by varying the value of
ε and resolving the optimization problem.

If the objective function to be maximized in equation (5.1) is a financial
performance indicator (e.g., profit or cost, if minimization), then one possibil-
ity is to use a financial risk measure for the expression of Risk(·, ·). Different
financial risk management strategies have been proposed in the literature (see
Sarykalin, Serraino, & Uryasev (2008) for a tutorial). Some of these risk mea-
sures are presented below. Note that each measure operates on the distribution
of values of the financial performance indicator.
• Variance: It is a measure of the spread of a distribution that operates

symmetrically on all values with respect to the expected value. Mini-
mization of variance can be interpreted as the minimization of the square
of the L2-norm between the financial performance in a scenario and the
average financial performance over all scenarios.

Risk2(xs, PT ) =
∑
s∈S

ps
[
fs(xs, PT )− f̄(xs, PT )

]2
(5.4)

where f̄(xs, PT ) = ∑
s∈S psfs(xs, PT ) is the expected value of the dis-

tribution of profit values.

• Semivariance: It is a deviation measure similar to the variance, but it
operates on values above or below the expected value. It is also similar to
downside risk where the threshold is the expected value of a distribution.

Risk2+(xs, PT ) =
∑
s∈S

ps
[
fs(xs, PT )− f̄(xs, PT )

]2
+

(5.5)

Risk2−(xs, PT ) =
∑
s∈S

ps
[
f̄(xs, PT )− fs(xs, PT )

]2
+

(5.6)

where [a]+ = max{0, a}.
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• Mean Absolute Deviation (MAD): The MAD (also known as the average
absolute deviation about the mean) also measures the dispersion of a
distribution, but in an absolute sense. Analogously to the variance, its
minimization can be seen as the minimization of an L1-norm.

Risk1(xs, PT ) =
∑
s∈S

ps
∣∣∣fs(xs, PT )− f̄(xs, PT )

∣∣∣ (5.7)

• Maximum Absolute Deviation: It is analogous to the MAD, but its min-
imization is equivalent to minimizing the L∞-norm (Cai et al., 2000).

Risk∞(xs, PT ) = max
s∈S

∑
s∈S

ps
∣∣∣fs(xs, PT )− f̄(xs, PT )

∣∣∣ (5.8)

• Conditional Value-at-Risk (CVaR): It is also called expected shortfall
and is a quantile-based risk measure similarly to Value-at-Risk (VaR),
which is the quantile of a distribution for a given probability level α.
The minimization of CVaR was first proposed by Rockafellar & Uryasev
(2000).

RiskCVaRα(xs, PT ) = γ − 1
1− α

∑
s∈S

ps [−fs(xs, PT )− γ]+ (5.9)

where γ ∈ R (additional variable).

5.5 Numerical Examples
The proposed approach to deal with production variability in the operations
planning stage of the Sales & Operations Planning (S&OP) process is illus-
trated with a motivating example and an industrial case study. The two-stage
scenario tree for the stochastic models has its node values (outcomes) fixed
to the sampled ∆ values from the quantile regression analysis, and the prob-
abilities of the scenarios, ps, were calculated using the data-driven scenario
generation approach described in Calfa et al. (2014) (see L2 DMP formula-
tion).

All optimization models were implemented in AIMMS 3.13 (Roelofs &
Bisschop, 2015) and solved on a desktop computer with the following specifi-
cations: Dell Optiplex 990 with 4 Intel R© CoreTM i7-2600 CPUs at 3.40 GHz
(total 8 threads), 8 GB of RAM, and running Windows 7 Enterprise. All
linear programming (LP) and convex quadratically-constrained programming
(QCP) models were solved with Gurobi 5.6.

The Sim-Opt approach consists of a main script in MATLAB (The Math-
Works Inc., 2015) in which the DFO algorithm fminsearchbnd1 (Nelder-Mead

1The function fminsearchbnd extends MATLAB’s built-in function fminsearch by con-
sidering bounds on the decision variables. The bounds used in the computational exper-
iments were the plant minimum/maximum capacities. See http://www.mathworks.com/
matlabcentral/fileexchange/8277-fminsearchbnd--fminsearchcon for implementa-
tion (retrieved on March 22, 2015).
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simplex search algorithm) sets the production targets PT that are fixed in the
AIMMS model (the simulator). In other words, the DFO algorithm proposes
a production plan, which is evaluated by the simulator (two-stage stochastic
programming model). In order to perform a comparison between Sim-Opt
and Bi-Opot approaches, we used the same ∆ values in both, even though
the Sim-Opt can accommodate the sampling of ∆ values conditional on the
proposed production plan.

5.5.1 Motivating Example
The goal of the motivating example is to demonstrate that different alloca-
tion schemes of chemicals in a process network are obtained when production
variability is considered and some risk measure is adopted. Typically, only
the margin (sales from revenue minus operating cost) of individual products
is used as a criterion for deciding their allocation throughout the network. By
also accounting for production variability, larger amounts of a feedstock chem-
ical may be allocated to lower-margin, but potentially more reliable plants
(to be defined in the next paragraph) than to higher-margin, but less reli-
able plants that “compete” for the same raw material. Even though this may
seem counter-intuitive at first, we show through this example the trade-off
between the expected or average overall profit and the risk of choosing an
allocation scheme, i.e., less risk with allocation favoring low-margin and more
reliable plants vs. high risk with allocation favoring high-margin and less reli-
able plants. Please recall that by reliability we mean the spread of ∆ values
around zero, i.e., the deviation of actual production rates from the respective
planned values. A detailed analysis of the results is given to illustrate the
applicability of the proposed methodology.

The process network is shown in Figure 5.5. Each plant produces a single
product, which receives the same name as the plant that produces it. There-
fore, we will use plant and product interchangeably. The main objective is to
demonstrate the different allocation schemes of chemical A to the downstream
plants (B–G) between deterministic and stochastic (risk neutral and averse)
solutions by considering production variability of the downstream plants. Note
that the order of plant’s reliability is the reverse of the order of plant’s margin
(revenue from sales minus operating costs), i.e., the most reliable plant (G)
is the lowest-margin plant, whereas the less reliable plant (B) is the highest-
margin one. In this context, reliability is represented by the spread of the
deviation between historical planned and actual production rates (∆ values)
around the origin, which is along the lines of a root mean square calculation.
In other words, a more reliable plant means ∆ ≈ 0, i.e., it is more likely to
actually achieve its planned values proposed in the operations planning stage
of the S&OP process. Please note that, in this paper, we do not refer to reli-
ability in the sense of maintainability or probability of failures of a system or
component.
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Figure 5.5: Process network structure of the motivating example. Plant relia-
bility is related to the spread of the deviation between historical planned and
actual production rates around the origin. Specifically in this example, the
more reliable a plant is, the lower its margin is.

The multi-period, LP production planning model is similar to the one pre-
sented in Sahinidis et al. (1989), but excluding capacity expansion decisions.
That is, the model consists of simple input-output relationships of material
and inventory balances. Possible demand and plant capacity violations are
captured with non-negative slack variables added to the respective constraints
and penalized in the objective function. When production variability is taken
into account, the deterministic equivalent model of the two-stage stochastic
production planning model can be generically written as in equation (5.1),
where the proposed S&OP production plan or target, PT , is a vector of first-
stage variables. The model also has slack variables that capture unsatisfied
demand and capacity violations that are penalized in the objective function.
Twenty scenarios (samples from the quantile regression analysis) were consid-
ered in all stochastic models. We perform a detailed analysis of the results of
four cases defined as follows:

Case 1. Deterministic

– No production variability, i.e., ∆s = 0.
– Identifier: 1. Det

Case 2. Risk Neutral Stochastic with Fixed Production Target

– Production variability is considered, i.e., ∆s 6= 0.
– Fixed the values of production targets, PT , to the optimal produc-

tion rates obtained by solving Case 1.
– The purpose of this case is to evaluate the performance of the de-

terministic production plan in an uncertain environment.

132



– Identifier: 2. Stoch Fix

Case 3. Risk Neutral Stochastic with Variable Production Target

– Similar to Case 2, but with variable production targets, PT .
– Production targets (first-stage decisions) are optimally set while

taking into account the historical variability in production rates.
– Identifier: 3. Stoch Var

Case 4. Risk Averse Stochastic (Bi-Opt Framework)

– Similar to Case 3, but with two objective functions, one of them
measuring risk.

– Identifier: 4. Bi-Opt

We should note that Cases 1–3 give rise LP models since the underlying plan-
ning model is linear, while Case 4 gives rise to a convex QCP model, because
we use the variance of the profit as the risk measure. The QCP model is convex
because the variance is taken with respect to the profit, which is a linear func-
tion, and the scenario probabilities are non-negative; thus, the Risk(xs, PT )
function is a sum of non-negative quadratic terms. Let us first focus on the
results obtained with the Bi-Opt approach (Subsection 5.4.2), and then com-
ment on its differences with the Sim-Opt approach (Subsection 5.4.1). We
begin with Cases 1–3, and then discuss Case 4, which has Case 3 as a special
case.
5.5.1.1 Cases 1, 2, and 3

We start the analysis by comparing average overall margin and its standard
deviation for the first three cases. The overall profit (or simply profit) is the
difference between the revenue from the sale of all products and total costs
(operating and inventory). Operating costs are proportional to production
rates, and inventory costs are proportional to the amount of chemicals stored
in each period. As it can be seen in Table 5.2, adjusting the production target
(Case 3) in the face of production variability yields more profitable and less
risky (smaller standard deviation) production plans. In other words, produc-
tion targets obtained with the deterministic model (Case 1) yield lower average
profit with larger spread (higher risk) when production variability is taken into
account (Case 2). In addition, some plant capacity violations were observed in
the solution of Case 2, which is clearly undesirable. The optimization results
convey that the value of simultaneously proposing the production targets and
accounting for production variability is (320.60 − 272.84) m.u. = 47.77 m.u.
(monetary units) on average.
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Table 5.2: Average profit and its standard deviation in monetary units (m.u.)
for Cases 1–3 in the motivating example. The standard deviation of the profit
is a measure of its spread, i.e., financial risk.

Case
1. Det 2. Stoch Fix 3. Stoch Var

Average 375.15 272.84 320.60
Std Dev – 28.30 25.82

The difference in average profitability between the solution of Case 2 and
Case 3 is also explained by the average overall service level (SL) defined in
equation (5.10). The overall SL is the complement of the fraction of total
demand satisfied from sales of all products.

E[SL] = 1−
∑
s∈S psSaless

Total Demand (5.10)

The overall SL for the deterministic solution (Case 1) is 100% (i.e., all demand
is satisfied), and the average overall SL for Case 2 and Case 3 is 82.68% and
92.24%, respectively. The breakdown of unmet demand for each product is
given in Table 5.3. From Case 2 to Case 3, the demand satisfaction of high-
margin products (B, C, and D) increases relatively more than for the low-
margin products (E, F, and G). In fact, the demand satisfaction of product
G, which is produced by the most reliable and lowest-margin plant, actually
decreased in Case 3. When analyzing the results of Case 4 later on, it will be
clear that the solution of Case 3 favors more allocation of product A to the
high-margin plants, since the objective function (profit) is not constrained by
any risk measure (i.e., more risky condition).

Table 5.3: Average unmet demand in weight units (w.u.) for each product in
Case 2 and Case 3 in the motivating example.

Product Case
2. Stoch Fix 3. Stoch Var

B 64 6
C 55 10
D 41 4
E 34 10
F 18 10
G 8 34

The amounts of chemical A allocated to the six downstream plants are
shown in Table 5.4, which complements the results shown in the previous
table. As it would be expected after the analysis of unmet demand, in Case
3, relatively more amounts of A are allocated to high-margin plants than for
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low-margin ones. The negative percentage change for plant G (lowest-margin)
means that it receives less A in Case 3 than in Case 2.

Table 5.4: Average allocated amounts of A in weight units (w.u.) to each
downstream plant in Case 2 and Case 3 in the motivating example. The
percentage change column is the relative change between the two cases, i.e.,
(Case 3− Case 2)/Case 3.

Plant Case
2. Stoch Fix 3. Stoch Var Change

B 160 204 28%
C 96 143 49%
D 131 164 25%
E 147 178 21%
F 343 356 4%
G 148 111 −25%

Let us analyze the results for Case 4. The goal is to evaluate the impact
of controlling some measure of risk by including an additional constraint (ε-
constraint) on the allocation scheme of chemical A to downstream plants.
Consider two subcases of Case 4: Subcase 4.A uses an explicit financial risk
measure (variance of profit) and Subcase 4.B uses the individual expected
service level for one of the high-margin products.
5.5.1.2 Subcase 4.A: Variance of Profit

The ε-constraint in equation (5.1) takes the following form,

Risk(xs, PT ) =
∑
s∈S

ps
[
Profits(xs, PT )− Profit(xs, PT )

]2
≤ ε (5.11)

where Profits(·, ·) denotes only the profit calculation of the objective
function, i.e., excluding penalized slack variables, and Profit(xs, PT ) =∑
s∈S psProfits(xs, PT ) is the average profit. In this subcase, ε is interpreted

as the maximum allowed variance of profit and has units of (m.u.)2, where
“m.u.” stands for monetary units.

Note that Case 3 is a special case of Subcase 4.A in which ε takes a large
enough value so that the constraint is not active at the solution, i.e., the
financial risk is unconstrained and the model becomes risk neutral. Thus,
the solution to Case 3 represents the condition of maximum variance of the
profit, which is the right-most point in the Pareto efficient curve of average
profit vs. variance (or standard deviation) of profit in Figure 5.6. In addition
to the solution of Case 3, the bi-objective optimization model (convex QCP)
was solved ten times for different values of ε, ranging from 60 to 600 with a
stride of 60, and the solutions are represented by points on the Pareto efficient
frontier. Note that from left to right the spread of the profit across scenarios
increase, i.e., more risky solutions.
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Figure 5.6: Pareto efficient frontier for Subcase 4.A in the motivating exam-
ple. “m.u.” stands for monetary units. Error bars represent 95% confidence
intervals on the average values.

Figure 5.7 shows the same Pareto efficient frontier together with the average
overall service level (SL) as defined in equation (5.10). Note that there is an
increase in the average overall SL for the solutions from points P1 to P2, and
after point P2 until point P3 the average overall SL levels off. Therefore,
we classify the solutions as belonging to two regions: Region I (less risky)
and Region II (more risky). After point P2, the amount of A allocated to
all downstream plants remains practically the same with the exception of the
least and most reliable plants, B and G, respectively. As the ε value increases
(more risky condition), there is a shift of the amount of A allocated from G
to B.
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Figure 5.7: Pareto efficient frontier and average overall service level for Subcase
4.A in the motivating example. “m.u.” stands for monetary units.

Figure 5.8 shows the allocation amounts of A to the downstream plants for
each point in the Pareto efficient curve for the two plants in the extremes of
the reliability-margin scale. The same overall trend is observed for the other
plants: more A is allocated to less reliable, high-margin plants (B, C, and
D) as risk (ε value) increases; conversely, less A is allocated to more reliable,
low-margin plants (E, F, and G) from left to right in the figure.
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Figure 5.8: Allocation scheme for two downstream plants in Subcase 4.A in the
motivating example. Plant B is the less reliable and highest-margin, whereas
plant G is the most reliable and lowest-margin of the downstream plants. The
ε value denotes the variance of the profit (financial risk). “w.u.” and “m.u.”
stand for weight and monetary units, respectively.

5.5.1.3 Subcase 4.B: Average Service Level of Product C
The ε-constraint in equation (5.1) takes the following form,

Risk(xs, PT ) = 1−
∑
s∈S psSalesCs

Total Demand ≤ ε (5.12)

where SalesCs indicates that only sales for product C are considered, thus
the ε-constraint is a calculation of the complement of the average individual
service level (SL) of product C. In this subcase, ε is interpreted as the maximum
allowed fraction of unmet demand of product C and is dimensionless. It can be
expressed as a percentage, e.g., ε = 1% means that at most 1% of the demand
of product C can be unmet, or equivalently, at least 99% of the demand of C
must be satisfied.

The motivation behind this subcase is two-fold: (1) it uses a non-
conventional form of the ε-constraint for the risk (i.e., not an explicit financial
risk measure); (2) the average SL of the high-margin product C in the solution
of Case 3 is 93.85%, and it is desired to evaluate the impacts of enforcing a
higher average SL of this valuable product on the overall profitability of the
production plan.
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Figure 5.9 shows the Pareto efficient curve of the average profit vs. average
individual service level of product C. In addition to the solution of Case 3, the
bi-objective optimization model (LP) was solved four times for different values
of ε (5%, 4%, 3%, and 2%). In this motivating example, 99% (i.e., ε = 1%) or
higher average SL of product C is not feasible. Note that as the average SL of
C increases, the overall average profit decreases and its spread (represented by
the error bars) increases. Even though more demand of product C is met from
left to right, the overall production plan becomes less profitable on average.

Figure 5.9: Pareto efficient frontier for Subcase 4.B in the motivating example.
Error bars represent 95% confidence intervals on the average values. “m.u.”
stands for monetary units.

Figure 5.10 helps explain the result in the previous figure. The average
overall SL decreases as the average individual SL of product C is forced to
increase. In other words, by requiring higher SL for product C, there is a
shift of A allocated from other plants to plant C in order to ensure its desired
SL. Consequently, the individual demand satisfaction of the other products
decreases from left to right in the figure.
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Figure 5.10: Effect of increasing average service level of product C on average
overall service level in Subcase 4.B in the motivating example.

5.5.1.4 Computational Statistics
To conclude the analysis of the motivating example, Table 5.5 presents

the computational statistics of the optimization models solved in the four
cases. The time corresponds to the wall time, including loading and solving
the models. The time listed under Subcases 4.A and 4.B corresponds to the
average wall time for all points in the Pareto efficient frontier in each subcase.
Recall that Cases 1 through 3 are LP models, Subcase 4.A contains convex
QCP models, and Subcase 4.B has LP models.

Table 5.5: Computational statistics for optimization models in all cases and
subcases in the motivating example.

Case and Subcase
1. Det 2. Stoch Fix 3. Stoch Var 4.A Bi-Opt 4.B Bi-Opt

Variables 5,186 101,778 101,874 101,874 101,874
Constraints 3,602 73,482 73,482 73,483 73,483
Time [s] 2.59 4.38 5.05 5.31 5.12

5.5.1.5 Sim-Opt vs. Bi-Opt
We note that Cases 1 and 2 are the same for both Sim-Opt and Bi-Opt

frameworks, since they correspond to the deterministic problem (no production
variability) and the stochastic problem with fixed production targets (no pro-
posed production plan), respectively. The Sim-Opt framework for Case 3 took
1,000 iterations (imposed limit), 1,160 function evaluations (i.e., calls to the
simulator, which is the two-stage stochastic programming model implemented
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in AIMMS), and 10,745 seconds to achieve an expected profit of 294.43 m.u.,
while the Bi-Opt framework yielded an expected profit of 320.60 m.u. in less
than 5 seconds. In addition, the solution of the Sim-Opt framework exhibited
91.36% expected overall service level, which is lower than that obtained with
the Bi-Opt framework (94.24%).

The number of decision variables in this case is 72, since they correspond
to the monthly production targets of 6 plants for a time horizon of one year.
Moreover, every call to the simulator takes approximately 7 seconds, while
the time spent by the DFO algorithm per iteration is negligible. These two
factors make the Sim-Opt framework more computationally intensive than
the Bi-Opt approach, in spite of having more flexibility for sampling ∆ values
conditional on proposed production targets. Similar observations were made
for the solution of Case 4 with the Sim-Opt approach.

5.5.2 Industrial Case Study
The industrial test case concerns the optimal production planning of chemical
sites. Each site contains several plants that are highly integrated. The plants
can also transfer products between sites. The chemical sites contain more
than 12 production facilities and manufacture several products. The time
horizon of one year is divided into monthly time periods. The objective of
the optimization model is to maximize the total profit. Due to confidentially
reasons, we only discuss the modeling changes from the motivating example
and the computational results.

In Case 2 of the motivating example, the production targets, PT , are
fixed to the corresponding production rates obtained from the solution of the
deterministic model (Case 1). The goal is to evaluate the performance of
the production targets proposed by the deterministic model when production
variability is taken into account. In order to perform a similar study on a highly
integrated system, some modeling modifications may be necessary. If the
general deterministic equivalent form of the two-stage stochastic programming
model (see equation (5.1)) describes a highly integrated system, the equality
constraint that captures the production variability,

PRs = PT −∆s ∀ s ∈ S (5.13)

for fixed PT , may cause infeasibility. For instance, it may not be feasible to
satisfy material and inventory balances in the network by imposing such a
constraint on production rates with fixed production targets. To circumvent
this potential problem, we propose two modifications to the implementation of
Case 2 for a highly integrated system: (1) unfix the production target decision
variables, PT , and (2) penalize the deviation of the production targets set
by stochastic model from the corresponding values obtained in the solution of
the deterministic model, PTdet (a constant parameter vector). Therefore, the
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general optimization problem for Case 2 is rewritten as follows:

min
xs,PT

Risk(xs, PT )

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)− ψ · ||PT − PTdet||p

s.t. g(xs) ≤ 0 ∀ s ∈ S
PRs = PT −∆s ∀ s ∈ S

(5.14)

where ψ is a penalty factor and || · ||p is an Lp-norm. In order to preserve the
linearity of the production planning model used in this work, we employed the
L1-norm, which resulted in the following formulation:

min
xs,PT

Risk(xs, PT )

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)− ψ · (PT+ + PT−)

s.t. g(xs) ≤ 0 ∀ s ∈ S
PRs = PT −∆s ∀ s ∈ S
PT − PTdet = PT+ − PT−

PT+, PT− ≥ 0

(5.15)

where PT+ and PT− capture the positive and negative deviations.
The high degree of integration in the network also has to be considered in

the statistical modeling. If two plants are directly connected (e.g., plant A
feeds plant B), then it may not be realistic (and likely lead to infeasibilities)
to consider them independent from the point of view of production rates. In
other words, deviations from plan in an upstream plant may affect production
in a downstream plant, and vice versa.

Different approaches can be used to account for this dependence between
plants for which production variability is taken into account. If only ∆ values
are used to characterize production variability (i.e., the covariate Plan val-
ues are disregarded), then we propose the following approaches (illustrated in
Figure 5.11) for any two connected plants A and B:

• Assume a parametric classical regression model for the ∆ values between
the upstream and downstream plants, and from the generated samples of
one of the plants, calculate the corresponding (expected) sample of the
other plant. For example, if a linear regression model such as ∆Plant B =
β0 + β1 ·∆Plant A is considered, then (1) estimate the regression function
(in this case, the model parameters β0 and β1) by regressing ∆ values of
Plant B on ∆ values of Plant A, then (2) generate samples of ∆ values for
Plant A, and finally (3) calculate the corresponding ∆ values for Plant
B using the linear model.

• Similar to the previous approach, but instead assume a nonparametric
classical regression model for the ∆ values between the upstream and
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downstream plants. In other words, the regression model is generally
written as ∆Plant B = g(∆Plant A), where g(·) is the nonparametric re-
gression function (e.g., kernel regression (Li & Racine, 2007)). Follow
the same three-step procedure discussed in the previous approach.

• Estimate the joint distribution of ∆ values for both plants A and B,
i.e., obtain F̂ (∆Plant A,∆Plant B), and then sample from this estimated
multivariate distribution.

• Perform bootstrap resampling (Efron, 1979), i.e., sample with replace-
ment data points from the original data set. As in the previous approach,
the samples constitute the outcomes (i.e., scenarios) in the stochastic
programming framework.

Figure 5.11: Illustration of the three proposed approaches to account for de-
pendence of the ∆ values for directly connected plants in the network. The
relationships between the ∆ values of the upstream and downstream plants
are captured by: (a) linear regression (LR), (b) kernel regression (KR), (c)
estimated joint distribution, and (d) bootstrap resampling. “w.u.” stands for
weight units.

When the Plan values are taken into account in modeling production vari-
ability (i.e., the quantile regression approach discussed in Section 5.3), then
the problem essentially becomes modeling the relationship between condi-
tional distributions, ∆Plant B|PlanPlant B given ∆Plant A|PlanPlant A. A general
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approach would be to estimate the joint conditional distribution of all random
variables involved, F̂ (∆Plant A,∆Plant B|PlanPlant A,PlanPlant B), and then sam-
ple from this estimated multivariate distribution. This general approach may
pose computational and algorithmic challenges. An approximate approach to
generate samples of ∆Plant B|PlanPlant B given ∆Plant A|PlanPlant A is described
in the following steps:

i. Obtain the estimated distribution of ∆Plant A|PlanPlant A,
F̂A(∆Plant A|PlanPlant A), and sample from this conditional distribution.
Let the samples be denoted by SA.

ii. Repeat the previous step replacing “A” with “B”.

iii. Obtain the estimated distribution F̂S(SB|SA), and sample from this
conditional distribution. These final “approximate” samples relate
∆Plant B|PlanPlant B given ∆Plant A|PlanPlant A.

Table 5.6 presents the computational statistics of the optimization mod-
els solved in the four cases. We report both solution times (CPU times for
the solver) and wall times (includes loading and solving the models), which
become significant as the problem instance increases. Similar to the Motivat-
ing Example, Cases 1–3 and Subcase 4.B are LP models, while Subcase 4.A
contains a convex QCP model.

Table 5.6: Computational statistics for optimization models in all cases and
subcases in the industrial case study. CPU and wall times are shown in sepa-
rate rows.

Case and Subcase
1. Det 2. Stoch Fix 3. Stoch Var 4.A Bi-Opt 4.B Bi-Opt

Variables 124,116 2,447,057 2,446,913 2,446,914 2,446,913
Constraints 88,790 1,777,313 1,777,241 1,777,243 1,777,242
CPU [s] 0.45 9.17 10.22 15.61 17.43
Wall [s] 15.26 50.17 53.77 60.20 62.76

The Sim-Opt framework for Case 3 was run for 100 iterations (imposed
limit), 181 function evaluations (i.e., calls to the two-stage stochastic pro-
gramming model implemented in AIMMS), and 10,130 seconds to achieve an
expected profit of 1, 293.45 m.u., while the Bi-Opt framework yielded an ex-
pected profit of 1, 299.81 m.u. in less than 54 seconds of wall time. Moreover,
the solution of the Sim-Opt framework yielded 97.92% expected overall service
level, which is lower than that obtained with the Bi-Opt framework (98.60%).
Similar to the motivating example, the number of decision variables for the
DFO algorithm is 72 (monthly production targets for 6 plants and time horizon
of one year). Each call to the AIMMS model takes approximately 80 seconds,
which contributes significantly to the overall solution time of the Sim-Opt
framework. Similar observations were made for the solution of Case 4.
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5.6 Conclusions
In this paper, we have addressed uncertainty in the operations planning stage
of the Sales & Operations Planning (S&OP) process of a manufacturing com-
pany. The uncertainty is attributed to production variability, which is caused
by unplanned events that can result in actual production rates lower or higher
than their planned values. In order to model production variability, we de-
fined ∆ as the deviation between historical planned and actual production
rates, and used quantile regression to predict quantiles of the distribution of
∆ conditional on planned production rates. The predicted quantiles form
samples or scenarios in a two-stage bi-objective stochastic programming pro-
duction planning model, whose first-stage variables are the production plans
or targets that are sought to be implemented in practice. One objective repre-
sents the financial performance of the production plan (e.g., profit), whereas
the other is a risk measure (explicitly financial or not).

The applicability of the proposed approach was illustrated with a motivat-
ing example and an industrial case study. The motivating example consisted
of a small process network with a feedstock plant that serves six plants. The
downstream plants are sorted in reverse order of reliability and margin, i.e.,
the most reliable plant is also the lowest-margin one, and the less reliable plant
is the highest-margin one. The motivation behind this was to show that de-
pending on the maximum desired level of risk, the optimization model decides
to allocate more of the feedstock chemical to more or less reliable plants. In
other words, the optimization model considers not only the individual mar-
gin of the plants, but also their reliability in order to obtain a solution with
maximum expected profit. For the industrial case study, we proposed model-
ing approaches to address the connectivity in the network, which may create
dependence in production variability profiles.
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Chapter 6

Optimal Procurement Contract
Selection with Price
Optimization under Uncertainty
for Process Networks

6.1 Introduction
Manufacturing enterprises deal with uncertainty from both internal and ex-
ternal sources. Internally, production variability due to unplanned events may
prevent the company to achieve its demand-driven production targets. Exter-
nally, fluctuations in supply and demand as well as market economic conditions
pose challenges to efficient operation of the supply chain. One way to reduce
the level of uncertainty on both the supply and the customer sides, and that
is typically used by companies, is by making contractual agreements. In the
context of this chapter, a contract is a binding agreement in which the seller
provides the specified product and the buyer pays for it under specific terms
and conditions.

A different approach to managing uncertainty is pricing analytics, also
known as price optimization. In formulating such a problem, selling prices
become decision variables, and the demand of a product is modeled as a func-
tion of its price. Nonetheless, this still typically does not completely eliminate
uncertainty, since stochastic environmental, economic, and market conditions
remain uncontrollable by the manufacturing company.

In this chapter, we combine the aforementioned uncertainty management
strategies in a two-stage stochastic optimization model for multi-period, multi-
site tactical production planning. Uncertain parameters include raw ma-
terial and finished product price and availability/demand. We propose a
manufacturer-centric approach in which the purchase contract structures are
set by suppliers, and it is the manufacturer’s decision to select which contract,
if any, to sign. In addition, the manufacturer sets the selling price of its main
products that may be used to design sales contracts with its customers. How-
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ever, it is the customer’s decision to select the sales contracts, if any, designed
by the manufacturer. The contract design problem is not addressed in this
chapter, but is discussed as a future work. We demonstrate how different
pricing models, linear and nonlinear, can be used within the proposed opti-
mization framework. Throughout this chapter, we refer to price as unit price
(e.g., $/kg, $/t etc.).

The chapter is organized as follows. Section 6.2 provides a literature review
of contract modeling and selection and price optimization. Section 6.3 defines
the problem under investigation and states the model assumptions. Section 6.4
describes the deterministic production planning model, the contract selection
and price optimization elements of the planning model, and the stochastic
optimization model. Two numerical examples are discussed in Section 6.5
followed by a discussion on reformulations. Finally, conclusions and suggested
extensions of the proposed approach are presented in Section 6.6.

6.2 Literature Review
6.2.1 Contract Modeling and Selection
Tsay, Nahmias, & Agrawal (1999) provide a literature review on contracts
from a modeling perspective. The authors classify the literature on contracts
in the context of Supply Chain Management (SCM) by eight contract clauses:
(a) specification of decision rights, (b) pricing, (c) minimum purchase commit-
ments, (d) quantity flexibility, (e) buyback or returns policies, (f) allocation
rules, (g) lead time, and (h) quality. Moreover, Höhn (2010) discusses some
model extensions and other contract types based on finance theories, such as
auction and real options.

Even though the modeling of contracts has been addressed by different com-
munities, including operations research and management science, economics,
and finance, the optimal selection of contracts has received relatively less at-
tention in the literature. The contract selection problem can be defined as
follows: given the structure (price and quantity or volume) of the different
contract types, the multi-period optimization model has to select which con-
tracts to use. We present some specific examples of this problem that are
relevant to the Process Systems Engineering (PSE) community.

Park et al. (2006) used disjunctive programming to model three types of
quantity-based contracts that a company may sign with suppliers and cus-
tomers. The production planning and capacity expansion decisions are aug-
mented by the selection of contracts. The disjunctions are reformulated result-
ing in a tight Mixed-Integer Linear Programming (MILP) formulation. Bansal,
Karimi, & Srinivasan (2007) modeled quantity- and price-based contracts
and coupled their selection with a multi-period optimization model for the
minimization of total procurement costs of a multinational company (buyer).
Khalilpour & Karimi (2011) developed a multi-period optimization model to
minimize total procurement cost applied to liquefied natural gas (LNG) value
chain. The model selects LNG contracts that are modeled with price for-
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mulations, flexibility, duration, quality, quantity, commitment, discount, and
other terms and conditions. We note that the aforementioned works have only
considered deterministic formulations.

Some authors, however, have considered uncertainty in the contract se-
lection problem. For instance, Rodríguez & Vecchietti (2009) addressed the
delivery and purchase optimization in a supply chain under provision uncer-
tainty. Quantity-based contracts were modeled with disjunctions and logic
restrictions, and the uncertain amount delivered by the suppliers is modeled
with a decision tree approach that represents supplier failure discrete probabil-
ity distributions. Rodríguez & Vecchietti (2012) proposed a mid-term planning
model with sales contracts. Piece-wise linear price-response models were used
to model demand as a function of selling price. If no sales contract is signed,
then safety stock is considered to deal with demand uncertainty. Feng & Ryan
(2013) developed a two-stage stochastic programming model with fixed re-
course to coordinate contract selection and capacity allocation in a three-tier
manufacturing supply chain in the oriented strand board industry. The un-
certain parameters include price and quantity (availability and demand) of
materials.

6.2.2 Pricing Analytics
Pricing decisions have been discussed in the revenue management literature
and constitute one set of demand-management decisions that can be made by
a firm (Talluri & van Ryzin, 2005). Some examples of pricing decisions include
setting posted prices, individual-offer prices, and reserve prices (in auctions),
pricing across product categories, pricing over time, and discounting over the
product lifetime.

By treating selling price as an additional degree of freedom, a company
can adjust its prices in order to maximize its overall profitability. The typical
modeling approach reported in the literature is the use of a price-response
model d(p), which specifies demand d for the product of a single seller as a
function of the price p offered by that seller (Phillips, 2005; Bodea & Ferguson,
2014). More details on pricing models are given in Subsection 6.4.3.

Several papers address pricing problems whose optimization model only
contains continuous decision variables, and is sometimes unconstrained (e.g.,
maximization of profit). For such problems, analytical expressions for the op-
timal pricing scheme can be derived (Chong & Cheng, 1975; Pasche, 1998;
Lobo & Boyd, 2003; Thiele, 2005). Some counterexamples include the fol-
lowing works. Kaplan et al. (2011) used a constant price elasticity model in
a multi-period, multi-echelon supply chain optimization model. Such pricing
model results in a nonlinear, but concave, objective function, and the authors
proposed a reformulation to account for unbounded derivatives. Lin & Wu
(2014) formulated a two-stage stochastic programming model and used a lin-
ear pricing model. The authors observed that as the variance of the demand
distribution increases, the manufacturer will increase its inventory to levels
that are greater than the anticipated demand to prevent the potential loss of
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sales and will simultaneously raise product prices to obtain a greater profit.
Gjerdrum, Shah, & Papageorgiou (2001) developed a mixed-integer nonlin-
ear programming (MINLP) model to for the optimal calculation of transfer
prices for the supply chain optimization involving multiple enterprises. The
authors used game theoretical Nash-type models to obtain a fair, optimized
profit distribution between members of multienterprise supply chains.

6.3 Problem Statement
The supply chain structure considered in this chapter is shown in Figure 6.1.
The manufacturer owns one or multiple production sites that may be situ-
ated at different geographic locations. The key decisions of the manufacturing
company include: (1) selection of procurement contracts, and (2) set selling
product prices. The manufacturer-centric approach taken in this work means
that the contract structure (prices and quantity thresholds) are specified, and
it is ultimately the manufacturer’s decision to sign or not a particular type
of contract for a raw material. Moreover, the manufacturer can use price- or
demand-response models to set the price of its finished products.

Figure 6.1: Supply chain structure considered in this work.

The following assumptions are considered:

• The contract structure is given and fixed (see Subsection 6.4.2), i.e., no
negotiation between supplier and manufacturer is allowed;

• Operating, inventory, and inter-site transfer costs are given and deter-
ministic;

• A price- or demand-response model (see Subsection 6.4.3) is given for
pricing decisions.
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6.4 Production Planning Model
6.4.1 Deterministic Model
We begin by describing the deterministic multi-period, multi-site production
planning model is described as follows. It extends the short-term planning
model described in Park et al. (2006) by accounting for multiple sites. The
procurement contract and pricing models are described in Subsection 6.4.2
and Subsection 6.4.3. Lastly, the stochastic programming model is discussed
is Subsection 6.4.4.

Nomenclature

Indices

i Process of chemical plants
j Chemical
s Site
t Time period

Sets

I Set of process of chemical plants
Ij Set of processes that consume chemical j
ISs Set of processes that belong to site s
Ji Set of chemicals involved in process i
JMi Set of main products of process i
JP Set of products
JR Set of raw materials
Oj Set of processes that produce chemical j
S Set of sites
T Set of time periods

Parameters

aLj,s,t, aUj,s,t Lower and upper bounds on availability of raw material j to
site s at time period t

αspot
j,s,t Spot market price of raw material j to site s at time period t
δi,s,t Operating cost of process i in site s at time period t
ηj,s,s′,t Inter-site transfer cost of chemical j from site s to site s′ at

time period t
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FU
j,s,s′,t Upper bound on inter-site transfer of chemical j from site s to

site s′ at time period t
µi,j,s Mass factor of product j in process i in site s
Qi,s,t Production capacity of process i in site s at time period t
V U
j,s,t Upper bound on inventory of chemical j in site s at time period

t
ξj,s,t Inventory cost of chemical j in site s at time period t

Variables

Fj,s,s′,t Inter-site transfer amount of product j from site s to site s′ at
time t

Pj,s,t Purchase amount of raw material j by site s at time period t
Sj,t Aggregated sales amount of product j for all sites at time t
SSj,s,t Sales amount of product j from site s at time t
Vj,s,t Inventory level of chemical j in site s at time t
Wi,j,s,t Amount of chemical j consumed or produced in process i in

site s at time t

The objective function to be maximized is the profit of the overall produc-
tion planning decisions as given in equation (6.1). The first term is the revenue
obtained from sales for all products j and time periods t. The second term is
the overall purchase costs from the spot market and/or contracts. These two
terms will be defined later. The third term accounts for the operating costs of
plant i in each site s. The fourth term is the total inventory cost. The final
term accounts for the inter-site transfer costs.

PROFIT =
∑
j∈JP

∑
t∈T

SALESj,t −
∑
j∈JR

∑
t∈T

COSTj,t −
∑
s∈S

∑
i∈ISs

∑
j∈JMi

∑
t∈T

δi,s,tWi,j,s,t

−
∑
j∈J

∑
s∈S

∑
t∈T

ξj,s,tVj,s,t −
∑
s∈S

∑
s′∈S
s′ 6=s

∑
j∈J

∑
t∈T

ηj,s,s′,tFj,s,s′,t (6.1)

A simple input-output relationship is used to model the chemical processes
as shown in equation (6.2). The mass factor µi,j,s (positive for inputs, negative
for outputs) is defined for the main products j of process i. The process
capacity is enforced in equation (6.3).

Wi,j,s,t = |µi,j,s|Wi,j′,s,t ∀ s ∈ S, i ∈ ISs, j ∈ Ji, j′ ∈ JMi, t ∈ T (6.2)
Wi,j,s,t ≤ Qi,s,t ∀ s ∈ S, i ∈ ISs, j ∈ JMi, t ∈ T (6.3)

Raw material availability is represented by equation (6.4).

aLj,s,t ≤ Pj,s,t ≤ aUj,s,t ∀ s ∈ S, j ∈ JR, t ∈ T (6.4)

A material balance for each chemical j in every site s at time period t is
given by equation (6.5). The sales amount for each site, SSj,s,t, is aggregated
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to all sites in equation (6.6).

Vj,s,t−1 +
∑
i∈Oj

Wi,j,s,t + Pj,s,t = Vj,s,t +
∑
i∈Ij

Wi,j,s,t +
∑
s′∈S
s′ 6=s

Fj,s,s′,t + SSj,s,t

∀ s ∈ S, j ∈ J, t ∈ T (6.5)
Sj,t =

∑
s∈S

SSj,s,t

∀ j ∈ J, t ∈ T (6.6)

Upper bounds on inventory levels and inter-site transfers are represented
by equations (6.7) and (6.8).

Vj,s,t ≤ V U
j,s,t ∀ s ∈ S, j ∈ J, t ∈ T (6.7)

Fj,s,s′,t ≤ FU
j,s,s′,t ∀ (s, s′) ∈ S, s 6= s′, j ∈ J, t ∈ T (6.8)

The purchase cost term in the objective function, COSTj,t, is defined in
the next subsection.

6.4.2 Procurement Contract Models
We use the same three contract types described in Park et al. (2006): dis-
count after a certain purchased amount, bulk discount, and fixed duration
contracts. These contract types are modeled with disjunctions and reformu-
lated as mixed-integer linear programming (MILP) constraints. In this work,
we employ the same reformulated constraints presented in the original paper
with the only difference being that all variables have an additional index s
for sites (see Appendix D.1). Figure 6.2 illustrates the three contract types
considered in this work.

Figure 6.2: Schematic of contract types. Discount: pay higher price for
quantity up to threshold value σ, and pay discounted price for any amount
beyond σ. Bulk Discount: if purchased amount exceeds threshold value σ,
then pay discounted price; otherwise, pay higher price. Fixed Duration: pay
discounted price according to contract term duration.

Let c ∈ C denote a contract type. The total purchased amount and total
procurement cost have two components, market (spot) and contract with sup-
plier. The former is subject to uncertainty as will be discussed later. Equations
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(6.9) and (6.10) are used to calculate these two quantities, respectively.

Pj,s,t = P spot
j,s,t +

∑
c∈C

P c
j,s,t ∀ s ∈ S, j ∈ JR, t ∈ T (6.9)

COSTj,t =
∑
s∈S

[
αspot
j,s,tP

spot
j,s,t +

∑
c∈C

COSTc
j,s,t

]
∀ j ∈ JR, t ∈ T (6.10)

where COSTc
j,s,t is the procurement cost of contract type c for raw material j

in site s at time period t. Expressions for COSTc
j,s,t for each contract type c

are given in Park et al. (2006) and can be found in Appendix D.1.

6.4.3 Price Optimization Models
As mentioned in the literature review (Subsection 6.2.2), the main goal in
price optimization is for a company to set and adjust its prices to maximize
profitability. Pricing decisions rely on price-response models (PRMs) usually
denoted by d(p), where p is the price of a product and d is the expected demand
for that product and its given price. As commonly treated in the literature,
we use demand and sales interchangeably as we assume that the manufacturer
has enough capacity to meet its customer demand. Three PRMs typically
encountered in the literature are given in Table 6.1.

Table 6.1: Typical price-response models (PRMs).

Model Equation

Linear d(p) = β0 − β1p

Constant-Elasticity d(p) = β2p
−Ed

Logit d(p) = β3e
−(β4+β5p)

1 + e−(β4+β5p)

The different βs are estimated parameters (e.g., from a regression analysis),
and Ed is the price elasticity of demand, which is a measure used in economics
to show the responsiveness, or elasticity, of the quantity demanded of a good
or service to a change in its price.

We note that for typical production planning models, the sales flow deci-
sion variable appears in both constraints and objective function. Therefore,
the choice of a nonlinear PRM results in nonlinear terms in both constraints
(e.g., equation (6.5)) and objective function (in the form of selling price ×
sales). In order to restrict nonlinear terms to the objective function, it may be
advantageous to use demand-response models (DRMs), i.e., p(d). The PRMs
described in Table 6.1 can be inverted to DRMs as shown in Table 6.2.
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Table 6.2: Typical demand-response models (DRMs).

Model Equation

Linear p(d) = β′0 − β′1d

Constant-Elasticity p(d) = β′2d
−1/Ed

Logit p(d) = 1
β5

[
ln
(
β3 − d
d

)
− β4

]

The following relationships hold: β′0 = β0
β1
, β′1 = 1

β1
, and β′2 = β

1/Ed
2 .

Therefore, the sales term (selling price × sales flow, i.e., p(d) × d) in the
objective function in equation (6.1) for each DRM is given as follows:

SALESj,t = β′0Sj,t − β′1S2
j,t ∀ j ∈ JP, t ∈ T (6.11)

SALESj,t = β′2S
1−1/Ej
j,t ∀ j ∈ JP, t ∈ T (6.12)

SALESj,t = 1
β5

[
ln
(
β3 − Sj,t
Sj,t

)
− β4

]
Sj,t ∀ j ∈ JP, t ∈ T (6.13)

We note that the linear DRM yields a concave quadratic term in the objective
function, the constant-elasticity DRM results in a nonlinear, but concave term
for Ej > 1 (elastic products) and nonlinear, nonconvex term for 0 < Ej < 1
(inelastic products), and the logit DRM yields, in principle, a general nonlin-
ear, nonconvex term. We show in Appendix D.2 that the logit DRM results
in a concave term for specific conditions on its parameters.

Remark. Even though the PRMs (DRMs) listed in Table 6.1 (Table 6.2)
are typically used in the literature, we argue that general, and likely more
complex regression models can be employed to model the relationship between
selling price, demand, and possibly additional predictors. For instance, a more
general, multiple linear PRM is given in equation (6.14),

d(X) = β0 +
m∑
i=1

βiXi (6.14)

where the βs are parameters to be estimated, and Xi, i = 1, . . . m, are pre-
dictors (or regressors). Examples of predictors in addition to the selling price
p may include raw material prices, economic indicators (e.g., gross domestic
product), crude oil and other product prices as well as their time-lagged val-
ues. Note that the multiple linear PRM can also be inverted to a multiple
linear DRM generally denoted by p(X).

Nonlinear PRMs or DRMs may capture more accurately the relationship
between predictors and the response variable at the expense of yielding a
(mixed-integer) nonlinear production planning model. General parametric,
semi-parametric, or nonparametric nonlinear models can be employed. An
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alternative to pre-specifying regression models is Symbolic Regression (also
known as Genetic Programming) (Koza, 1992), which is a technique to gen-
erate general regression models from data via evolutionary programming con-
cepts.

6.4.4 Stochastic Programming Model
The previous two subsections presented ways to anticipate the uncertainty in
the production planning decision-making process. However, the uncertainty in
the market remains regardless if the manufacturer signs contracts with suppli-
ers (and/or customers). Moreover, the predictive accuracy of demand-response
models (DRMs) is not guaranteed to be perfect. In this subsection, we extend
the deterministic optimization model presented in Subsection 6.4.1 by includ-
ing sources of uncertainty in both supply and demand sides.

We propose a scenario-based two-stage stochastic programming framework
(Birge & Louveaux, 2011) to explicitly account for uncertainty in spot market
prices of raw materials and the predictability of DRMs. More specifically,
we describe a multi-period, two-stage stochastic programming model whose
first-stage decisions are the selection of contracts (discrete decisions) and the
selling prices (which determine sales flows), and second-stage decisions include
the remaining flows and inventory levels in the network.

Let k ∈ K represent the index and discrete set of scenarios used to approx-
imate the possible realizations of the uncertain parameters. From equations
(6.9) and (6.10), the total purchase amount and cost may have two contribu-
tions: spot market and signed contracts. Contractual agreements are consid-
ered deterministic and fixed, and must be honored if selected. The volatility
in the market is then represented by raw material prices and, possibly, avail-
ability. Therefore, the corresponding scenario-based constraints are given by

Pj,s,t,k = P spot
j,s,t,k +

∑
c∈C

P c
j,s,t ∀ s ∈ S, j ∈ JR, t ∈ T, k ∈ K

(6.15)

COSTj,t,k =
∑
s∈S

[
αspot
j,s,t,kP

spot
j,s,t,k +

∑
c∈C

COSTc
j,s,t

]
∀ j ∈ JR, t ∈ T, k ∈ K

(6.16)

Spot market prices of raw material are typically predicted using time series
models. The literature on time series analysis is extensive and includes linear,
nonlinear, parametric, semi-parametric, and nonparametric models (Brockwell
& Davis, 2002; Fan & Yao, 2002b; Box, Jenkins, & Reinsel, 2008). Figure 6.3
illustrates the simulation of time series models that can be used to generate
scenarios.
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Figure 6.3: Time series model simulation for scenario generation.

For the demand side, the uncertainty in demand or selling price can be
quantified by the distribution of residuals of the regression models as illus-
trated in Figure 6.4. By construction, the residuals must be independent and
identically distributed (i.i.d.), have zero mean and constant variance, and be
uncorrelated with each other. Additional assumptions are typically used, e.g.,
the residuals follow a normal distribution with zero mean and known variance
σ2.

Figure 6.4: Deterministic and stochastic components of a regression-based
demand-response model (DRM). The region delimited by the dashed lines on
the left plot represents possible realizations of price values according to the
probabilistic nature of the residuals, ε. The distribution of the residuals can
be sampled to generate scenarios.

A scenario-based version of a general DRM can be written for a particular
realization of the residuals (scenario k) as follows:

p(d) = f(d) + εk

Therefore, the scenario-based version of the sales term in the objective function
(equation (6.1)) of each DRM listed in Table 6.2 is given as follows:

• Linear:

SALESj,t,k = (β′0 − β′1Sj,t + εk)Sj,t = β′0Sj,t − β′1S2
j,t + Sj,tεk (6.17)
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• Constant-Elasticity:

SALESj,t,k = (β′2S
−1/Ej
j,t + εk)Sj,t = β′2S

1−1/Ej
j,t + Sj,tεk (6.18)

• Logit:

SALESj,t,k =
{

1
β5

[
ln
(
β3 − Sj,t
Sj,t

)
− β4

]
+ εk

}
Sj,t

= 1
β5

[
ln
(
β3 − Sj,t
Sj,t

)
− β4

]
Sj,t + Sj,tεk (6.19)

As mentioned in the remark at the end of the previous subsection, when using
a general (and possibly nonlinear) DRM denoted by p(X), where X is a vector
of predictors including Sj,t and potentially others, the sales term can be written
similarly as for the three special cases considered in this chapter. That is, a
sample of the residual distribution, εk, is added to the deterministic part of
the model p(X) and the result is multiplied by Sj,t.

Both deterministic and stochastic models are mixed-integer programming
(MIP) problems. For linear DRMs, they are concave MIQP models, and for
constant-elasticity and logit DRMs, they are concave and separable MINLP
models depending on the values of the parameters in the DRMs. The complete
deterministic equivalent model for the stochastic formulation is given by the
following general MINLP model:

max E [PROFIT] =
∑
k∈K

πk

∑
j∈JP

∑
t∈T

SALESj,t,k −
∑
j∈JR

∑
t∈T

COSTj,t,k

−
∑
s∈S

∑
i∈ISs

∑
j∈JMi

∑
t∈T

δi,s,tWi,j,s,t,k −
∑
j∈J

∑
s∈S

∑
t∈T

ξj,s,tVj,s,t,k

−
∑
s∈S

∑
s′∈S
s′ 6=s

∑
j∈J

∑
t∈T

ηj,s,s′,tFj,s,s′,t,k

 (6.20)

subject to

Wi,j,s,t,k = |µi,j,s|Wi,j′,s,t,k ∀ s ∈ S, i ∈ ISs, j ∈ Ji, j′ ∈ JMi, t ∈ T, k ∈ K
(6.21)

Wi,j,s,t,k ≤ Qi,s,t ∀ s ∈ S, i ∈ ISs, j ∈ JMi, t ∈ T, k ∈ K (6.22)

aLj,s,t ≤ Pj,s,t,k ≤ aUj,s,t ∀ s ∈ S, j ∈ JR, t ∈ T, k ∈ K (6.23)

Vj,s,t−1,k +
∑
i∈Oj

Wi,j,s,t,k + Pj,s,t,k = Vj,s,t,k +
∑
i∈Ij

Wi,j,s,t,k +
∑
s′∈S
s′ 6=s

Fj,s,s′,t,k + SSj,s,t

∀ s ∈ S, j ∈ J, t ∈ T, k ∈ K (6.24)
(6.25)
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Pj,s,t,k = P spot
j,s,t,k +

∑
c∈C

P c
j,s,t ∀ s ∈ S, j ∈ JR, t ∈ T, k ∈ K (6.26)

COSTj,t,k =
∑
s∈S

[
αspot
j,s,t,kP

spot
j,s,t,k +

∑
c∈C

COSTc
j,s,t

]
∀ j ∈ JR, t ∈ T, k ∈ K

(6.27)

Sj,t =
∑
s∈S

SSj,s,t ∀ j ∈ J, t ∈ T (6.28)

Vj,s,t,k ≤ V U
j,s,t ∀ s ∈ S, j ∈ J, t ∈ T, k ∈ K (6.29)

Fj,s,s′,t,k ≤ FU
j,s,s′,t ∀ (s, s′) ∈ S, s 6= s′, j ∈ J, t ∈ T, k ∈ K (6.30)

Contract selection constraints: Equations (D.1) to (D.18) (Appendix D.1)

Wi,j,s,t,k, Vj,s,t,k, Fj,s,s′,t,k, Pj,s,t,k, Sj,t, SSj,s,t ≥ 0
ycj,s,t = {0, 1}

where πk is the probability of scenario k, SALESj,t,km which involves nonlinear
terms, is given by equation (6.17), (6.18), or (6.19), and ycj,s,t represent the
binary variables for the selection of contracts (Appendix D.1). For illustration
purposes, we will assume in the numerical examples that all scenarios have
the same probability. Data-based scenario tree generation techniques can be
used to calculate not only the probabilities of scenarios, but also the values of
the outcomes in order to match statistical properties of historical and forecast
data (Calfa et al., 2014).

6.5 Numerical Examples
To illustrate our proposed approach, we consider the two following examples.
The first example involves a single site with three chemical plants, one raw
material, one intermediate product, and two finished products. The same
demand-response model (DRM) is used for both finished products. The second
example considers a larger process network with 38 processes and 28 chemicals.
In Subsection 6.5.3, we present a reformulation of the mixed-integer nonlinear
programming (MINLP) models that decreases the solution times.

All optimization models were implemented in AIMMS 4.3 (Roelofs & Biss-
chop, 2015) and solved on a desktop computer with the following specifications:
Dell Optiplex 990 with 4 Intel R© CoreTM i7-2600 CPUs at 3.40 GHz (total 8
threads), 8 GB of RAM, and running Windows 7 Enterprise. The mixed-
integer quadratic (MIQP) solver used was GUROBI 6.0. The mixed-integer
nonlinear programming (MINLP) models were solved using the convex AOA
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algorithm implemented in AIMMS. AOA stands for AIMMS Outer Approxi-
mation, which implements an outer approximation algorithm that alternates
between the solution of a master problem (MILP) and a subproblem (NLP)
(Duran & Grossmann, 1986). The MILP and NLP solvers used were GUROBI
6.0 and CONOPT 3.14V, respectively. The convex AOA algorithm is based on
the work by Quesada & Grossmann (1992) and is described in Hunting (2012).
The lower bound for the total sales variables, Sj,t, was set to 0.1. Time series
analysis was performed in the R programming language (R Core Team, 2015)
with the forecast package (Hyndman et al., 2014). We conclude this section
by proposing a reformulation of the MINLP models that considerably reduces
the solution times.

6.5.1 Example 1: Small Process Network
The process network for Example 1 is shown in Figure 6.5. It consists of
raw material A, an intermediate product B, finished products C and D (only
product D can be stored), and processes (plants) P1, P2, and P3. A time
horizon consisting of 6 time periods (months) is considered. All data for this
example can be found in Appendix D.3.

Supply A P1 B

P2

P3

C

D

Sales

Sales

Storage

Figure 6.5: Process network for Example 1.

The stochastic programming model has ten scenarios and was solved using
its deterministic equivalent formulation. The values of the spot market prices,
αspot
j,s,t,k, for raw material A were generated from a simulation of a seasonal

autoregressive integrated moving average (ARIMA) time series model, which
is shown in Figure 6.6. Only three scenarios (red dotted lines in the shaded
region) are displayed in order to illustrate the simulation results.
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Figure 6.6: Simulated scenarios (red dotted lines in the shaded region) for the
spot market prices of raw material A. Mean forecast is represented by blue
solid line in the shaded region.

Three demand-response models (DRMs) were considered: linear, constant-
elasticity, and logit. The parameters for each DRM are shown in Table 6.3,
and the three DRMs are illustrated in Figure 6.7. The stochastic part of the
DRMs for products C and D is assumed to be normally distributed, N(0, 1)
and N(0, 2), respectively.

Table 6.3: Parameter values for the DRMs in Example 1.

DRM Product
C D

Linear β′0 = 4.00 $/t β′0 = 4.33 $/t
β′1 = 0.07 $/t2 β′1 = 0.06 $/t2

Constant- β′2 = 10.00 $/t0.5 β′2 = 21.00 $/t0.33

Elasticity EC = 2 ED = 1.5

Logit
β3 = 40.00 t β3 = 50.00 t
β4 = −2.00 β4 = −3.00
β5 = 0.70 t/$ β5 = 1.00 t/$

160



(a) (b)

Figure 6.7: Illustration of DRMs for products C (a) and D (b).

A total of six different optimization problems were solved: (i) determinis-
tic with linear DRM, (ii) stochastic with linear DRM, (iii) deterministic with
constant-elasticity DRM, (iv) stochastic with constant-elasticity, (v) determin-
istic with logit DRM, and (vi) stochastic with logit DRM. Problems (i) and
(ii) are concave MIQPs, whereas problems (iii) – (vi) are concave MINLPs
(maximization). Table 6.4 shows the computational results for all problems.
All deterministic (stochastic) problems contain 60 (60) binary variables, 184
(725) continuous variables, and 264 (750) constraints.

Table 6.4: Computational results for Example 1. C-E stands for Constant-
Elasticity.

Deterministic Stochastic
Linear C-E Logit Linear C-E Logit

MIQP/MILP Nodes 658 528 3,801 140 1,181 3,868
NLP Solves – 34 114 – 55 224
Wall Time [s] 0.27 0.56 1.33 0.48 1.33 7.29

We restrict our analysis to the results of problems (i) and (ii) (i.e., with
linear DRMs). In other words, we assess the impact of considering uncer-
tainty in both raw material prices and the relationship between selling price
and demand captured by linear DRMs. The profit of the deterministic prob-
lem is $94.03, and the expected profit of the stochastic problem is $259.69.
The difference in profit values between the solutions is mainly attributed to
the predominantly lower selling prices suggested by the stochastic model in
comparison to the deterministic solution. Consequently, the lower prices ob-
tained in the stochastic solution are correlated with more sales as shown in
Figure 6.8, and higher overall profit.
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(a) (b)

Figure 6.8: Selling price and sales for products C (a) and D (b) in Example
1. “Det” and “Stoch” stand for deterministic and stochastic model solutions,
respectively.

The amount of sales quantified by the DRM translates into the required
purchase amounts. Figure 6.9 shows these purchases that include both con-
tracts and spot market (average). According to the solution to the determinis-
tic model, the manufacturer not only purchases raw material A from contracts
with the supplier, but also from the spot market at certain time periods. The
total average purchase amounts from the spot market represent 29% of total
raw material purchases. However, the total purchase amount in the determin-
istic solution (155 t) is lower than what is required by the stochastic model
(270 t). From the stochastic solution, the manufacturer does not use the spot
market as a source of raw material. The reasons are two-fold: unfavorable
market price variability and the need to increase the purchase amounts due to
the increase in sales. Thus, the manufacturer opts for signing more contracts
as a more cost-effective and less uncertain strategy. We note that similar
trends occur in the other problems with the other two DRMs.
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Figure 6.9: Purchase amounts from contracts and spot market (average) for
the deterministic and stochastic problems in Example 1.

Even though the expected profit of the stochastic model is higher than the
profit of the deterministic model, it is not appropriate to directly compare the
objective function values of stochastic and deterministic solutions, since the
latter only typically accounts for the average values of the uncertain parame-
ters, and not the different possible outcomes considered by the former. A more
meaningful comparison is performed through the calculation of the Value of
the Stochastic Solution (VSS) as described in Birge & Louveaux (2011). The
VSS is a metric to evaluate the performance of a deterministic solution in
a stochastic environment. This is accomplished by solving the determinis-
tic model with average values for the uncertain parameters, and then fixing
the first-stage variables in the stochastic programming model to the values of
the corresponding variables in the solution of the deterministic model. For a
maximization problem, the VSS is calculated as follows:

V SS = RP − EV (6.31)

where RP is the objective function value of the recourse problem (original
stochastic model) and EV is the expected value solution (stochastic model with
fixed first-stage decisions from deterministic model with average values for the
uncertain parameters). In this motivating example, we have that V SS =
$259.69 − $190.47 = $69.22, which represents the additional expected profit
from implementing the stochastic solution over the deterministic one, both
with purchase contracts and pricing models. The VSS is approximately 27%
of the solution obtained with the proposed method.

The calculation of the VSS can be modified to compare the solution of
the proposed method with a deterministic base case model, which is typically
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used as a first approach in practical applications. The deterministic base case
does not account for contract selection, and the demand and selling prices
are fixed parameters. We call this modified metric a restricted VSS or RVSS.
The formula is the same as in equation (6.31) with the difference being the
meaning of the term EV , which now corresponds to the objective function
value of the stochastic model with first-stage variables fixed to the solution of
the deterministic base case. In this example, RV SS = $259.69 − $134.10 =
$125.59, i.e., the proposed method results in approximately 48% additional
expected profits relative to the deterministic base case with no contracts and
fixed demand and selling prices.

6.5.2 Example 2: Large Process Network
Example 2 is based on the process network shown in Figure 6.10 and discussed
in Iyer & Grossmann (1998) (see the third example). The process network
can be considered an integrated petrochemical site in which chemicals are
produced in separate, dedicated production plants that are situated at the
same geographic location due to economies of scale related to utility operations
and supply chain cost advantages (Wassick, 2009). We do not include explicit
data for this problem because of its size; however, this information is available
from the authors upon request.

The process network has 38 processes (plants) and 28 chemicals, in which
17 are products and 11 are raw materials and intermediates. The time horizon
is divided into 4 time periods that represent quarters in a year. Purchasing
contracts are considered for all raw materials, and the three DRMs considered
in this chapter are used for all finished products. Similarly as in Example
1, 10 scenarios are considered. Each scenario contains spot market prices
and samples of residuals of the DRMs. The spot market prices for the raw
materials in each scenario were generated via simulation of ARIMA models,
and for illustration purposes, the regression residuals of the DRMs are assumed
to be normally distributed with given means and standard deviations.

Similarly as in Example 1, six different optimization problems were solved.
They are the same models solved in Example 1, but with different data. Ta-
ble 6.5 shows the computational results for all problems. All deterministic
(stochastic) problems contain 400 (400) binary variables, 1,349 (6,777) contin-
uous variables, and 2,383 (6,055) constraints. Note that, as the problem size
increases relative to the previous example, the convex outer-approximation al-
gorithm requires significantly more time, nodes in the solution of master MILP
problems, and calls to the NLP subproblem. This is an indication that as the
model size increases decomposition strategies should be required to reduce the
computing time.
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Figure 6.10: Process network in Example 2 (Iyer & Grossmann, 1998).

Table 6.5: Computational results for Example 2. C-E stands for Constant-
Elasticity.

Deterministic Stochastic
Linear C-E Logit Linear C-E Logit

MIQP/MILP Nodes 129 31,611 1,177,918 72 350 62,840
NLP Solves – 220 1,571 – 31 366
Wall Time [s] 1.36 57.25 15,341 2.12 233.86 2,708

We restrict the analysis of the results to the deterministic and stochas-
tic models with linear DRMs. The profit of the deterministic solution is
$33,783.48, and the expected profit of the stochastic solution is $37,722.05.
A key difference between the deterministic and stochastic solutions is the dif-
ferent types of contracts and the respective contracted amounts for certain
products at each time period. The total sales influence the production rates,
which in turn are connected to the total amount of purchases. Finally, the
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combined effect of these decisions and inventory considerations impact the
overall profitability of the production plan under uncertain market conditions.

Proceeding as in the previous example, the calculated Value of the Stochas-
tic Solution is V SS = $37, 722.05− $34, 076.98 = $3, 645.07, which represents
10% of the solution obtained with the proposed method. However, when com-
pared to the deterministic base case (i.e., no contracts and fixed demand and
selling prices), the restricted VSS is RV SS = $37, 722.05 − $19, 677.10 =
$18, 044.95, which amounts to 48% of the solution obtained with the proposed
method. A summary of results for the two solutions with respect to total
average purchase amounts, total average inventory levels, and individual sce-
nario profit is shown in Figure 6.11. Note that the solution obtained with
the proposed method (represented by the label RP) displays lower total av-
erage amounts for purchased raw materials and inventory than the expected
value solution in all time periods. In fact, a slack variable had to be added to
the right-hand side of the material and inventory balance constraint (equation
(6.24)) and penalized in the objective function (equation (6.20)) in order to
obtain a feasible solution. This indicates that the solution from the deter-
ministic base case fails to balance inventory, production rates, and sales when
subject to uncertainty in both supply and demand for certain chemicals. Note
also that the profit of each scenario in the RP solution is always higher than
in the EV solution.
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Figure 6.11: Summary of results in Example 2 (linear DRMs). RP and EV
stand for recourse problem (proposed method) and expected value problem
(stochastic model with first-stage decisions fixed to the solution of the deter-
ministic base case).

The differences between the two solutions may be attributed to the total
sales and selling prices. Figure 6.12 shows the optimal values for sales and
selling prices for two products, 13 and 23 (acetone and ethylene dichloride,
respectively, in the problem discussed in the original paper). Recall that the
solution to the EV problem has fixed demand and selling prices. Note that,
in RP solution, the sales of product 13 are always larger than in the EV
solution, whereas the opposite is true for product 23. In the model used
in this chapter, the non-negative sales variables have no upper bounds, but
different bounds can be used depending on the application. In addition, simple
contract information with suppliers that imposes ranges of the demand can
also be used. The design of customer contracts; however, is a more challenging
problem, and some suggestions of extensions to the proposed method are given
in the conclusion section. Notice that the results shown in the top subfigures
of Figure 6.11 are total expected amounts, whereas Figure 6.12 shows results
for two out of the twenty-eight chemicals.
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(a) (b)

Figure 6.12: Selling price and sales for products 13 (a) and 23 (b) in Example
2 (linear DRMs). RP and EV stand for recourse problem and expected value
problem solutions, respectively.

6.5.3 Reformulation of MINLP Models
When using constant-elasticity or logit DRMs, the objective function contains
nonlinear terms, which are concave (maximization) under certain conditions.
We propose transferring the nonlinear terms in the objective function to the
set of constraints by introducing non-negative auxiliary variables, SALESauxj,t .
Specifically, for the two nonlinear DRMs considered in this work, the sales
term of the objective function of the deterministic model in equation (6.1),
SALESj,t, is simply rewritten as SALESauxj,t , and equivalently in equation (6.20)
of the stochastic model, the sales term SALESj,t,k becomes SALESauxj,t +Sj,tεk.
The additional set of constraints is given as follows:

• Constant-Elasticity:

SALESauxj,t ≤ β′2S
1−1/Ej
j,t ∀ j ∈ J, t ∈ T (6.32)

• Logit:

SALESauxj,t ≤
1
β5

[
ln
(
β3 − Sj,t
Sj,t

)
− β4

]
Sj,t ∀ j ∈ J, t ∈ T (6.33)

The advantage of the reformulated model is that more cuts or inequalities (lin-
earizations) are generated and added to the master MILP problem in an outer-
approximation algorithm, since |J | × |T | cuts are generated (corresponding to
the nonlinear constraints) as opposed to a single cut per NLP solve generated
by restricting the nonlinear terms to the objective function. One potential
disadvantage is the need to solve larger MILP models. However, the increased
number of cuts generated in the reformulated model may provide tighter and
more accurate outer-approximation of the feasible region, thus decreasing the
solution time.
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In Table 6.6, the computational results of the proposed reformulation are
compared with the results of the original models (nonlinear terms in the ob-
jective function only) shown in Tables 6.4 and 6.5. Considerable speed-ups,
and decrease in the number of MILP nodes and NLP solves were observed
with the reformulated model. Even though the proposed reformulation signifi-
cantly reduced solution times, decomposition approaches may be necessary as
the problem instance increases in size and more general nonlinear DRMs are
used.

6.6 Conclusions
In this chapter, we have formulated a multi-period, multi-site stochastic pro-
gramming production planning model that combines optimal procurement
contract selection with selling price optimization under supply and demand
uncertainty. The proposed approach is manufacturer-centric in the sense that
it is the manufacturer’s decision to sign or not contracts with suppliers in order
to hedge against spot market supply uncertainty, and the manufacturer can
set selling prices for its customers. The possible selection of sales contracts is
considered to be the customer’s decision, and was not addressed in this work.
With regards to price optimization, the formulation of three price-response
models that are typically encountered in the literature was discussed, even
though we argued that general regression models can be used. The demand
uncertainty is represented by samples from the distribution of regression resid-
uals. We showed that it may be more advantageous to use demand-response
models (DRMs), i.e., price as a function of demand, and we provided condi-
tions on the parameters of the logit model that yield a concave revenue term
in the objective function.

The proposed approach was illustrated with two numerical examples. In
the first example (small process network), the stochastic model set the sell-
ing prices predominantly lower than the deterministic model, and had larger
sales, and thereby an overall higher expected profit. The larger volume of
sales in the stochastic solution relative to the deterministic solution translated
into larger purchase amounts in the former, all of which was obtained through
contracts (i.e., no purchases from the uncertain spot market). The compu-
tational results showed that the optimization models with logit DRMs were
more computationally intensive than the models with linear and constant-
elasticity DRMs due to the increase in complexity of the MINLP. Similar
conclusions were drawn from the second example (large process network), in
which the economic advantage of the stochastic solution over the deterministic
one was measured by calculating the Value of the Stochastic Solution. The
solution time increased considerably in the second example when using the
original models. However, transferring the nonlinear terms from the objective
function to the set of constraints demonstrated to significantly reduce solu-
tion times. Moreover, in both examples, the Value of the Stochastic Solution
(VSS) showed a modest improvement of the proposed stochastic method over
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its deterministic solution; however, by comparing the proposed method with a
deterministic base case (no contracts and fixed demand and selling price), the
calculated restricted VSS showed that the proposed method exhibited signifi-
cant improvement with regards to expected profitability when uncertainty in
both supply and demand is considered.

Possible extensions of the proposed approach include: (1) design of sales
contracts with customers, where the decision to sign or not these contracts
are made by each customer in a bilevel programming framework (Shimizu,
Ishizuka, & Bard, 1997; Bard, 1998); (2) approximate decomposition ap-
proaches when dealing with nonlinear DRMs, for example, via piece-wise linear
functions (Taha, 2010).
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Chapter 7

Conclusions

This thesis has proposed data-driven methods to handle uncertainty in prob-
lems related to Enterprise-wide Optimization (EWO). It also addresses, in
Chapter 2, the integration of deterministic planning and scheduling decisions
across multiple spatial and temporal scales of a network of batch plants, which
is motivated by a real-world industrial problem. Chapter 3 deals with scenario
generation via statistical property matching in the context of stochastic pro-
gramming. A distribution matching problem is proposed that addresses the
under-specification shortcoming of the originally proposed moment matching
method. Chapter 4 deals with data-driven individual and joint chance con-
straints with right-hand side uncertainty. Kernel smoothing is used to estimate
the true and unknown distributions. Chapter 5 proposes the use of quantile
regression to model production variability in the context of Sales & Operations
Planning. Chapter 6 addresses the combined optimal procurement contract
selection and pricing problems. Different price-response models, linear and
nonlinear, are considered.

7.1 Hybrid Bilevel-Lagrangean Decomposi-
tion Scheme for the Integration of Plan-
ning and Scheduling of a Network of Batch
Plants

In Chapter 2, we developed a framework for the integration of planning and
scheduling in the operation of a network of multiproduct batch plants. Each
plant contains single-stage processing units in parallel and the products are
classified into groups or families. The parameters of the deterministic opti-
mization models comprise batch sizes and fixed processing times, sequence-
dependent changeover times and costs, transportation and inventory costs,
and demand forecasts over a time horizon consisting of several time periods.
The main goals include determining production amounts in each plant, as well
as the allocation and sequencing of batches in each reactor.

The planning model not only incorporates production and capacity con-

172



straints, but also estimates the sequencing of groups of products through Trav-
eling Salesman Problem (TSP) constraints. The unit-specific general prece-
dence (USGP) scheduling formulation employs continuous time representation.
Both models are mixed-integer linear programs (MILPs).

We proposed two important enhancements to the USGP formulation that
make it more flexible and realistic, but at the expense of additional constraints
and discrete variables. The first extension is treating the number of batches
as a decision variable. In batch scheduling terminology, the calculation of the
number of batches required to fulfill the orders is called the batching prob-
lem. Typical scheduling formulations separate the batching problem from the
scheduling/sequencing problem, which may result in suboptimal solutions or
even infeasible in reality. Simultaneously solving the batching and scheduling
problems gives rise to a product of integer and binary variables, which was lin-
earized using disjunctive programming techniques as shown in equations (2.59)
– (2.63). The second enhancement to the original USGP formulation is the
modeling of sequence-dependent changeovers across time periods (see Subsec-
tion 2.3.5). In order to allow changeovers between batches of two products to
occur across the boundary separating two time periods, binary variables were
added to detect the first and last products produced in consecutive periods.

The integration of planning and scheduling was performed via two decom-
position methods: Bilevel and Lagrangean. For small to medium problems
(with up to 95,000 continuous variables, 128,000 discrete variables, and 437,000
constraints), it was observed that Bilevel Decomposition (BD) represents an
attractive and rigorous decomposition strategy that allowed the integration
of planning and scheduling of Examples 1 and 2 within 5 seconds. How-
ever, when attempting to solve Example 3, a real-world problem (with nearly
10,000,000 variables, two thirds are discrete, and 23,000,000 constraints), the
planning level became computationally expensive largely due to the presence
of the TSP constraints. We employed Lagrangean Decomposition (LD) at the
planning level by decomposing it in subproblems for each time period. The
Lagrange multipliers were updated via the Subgradient Method (SM). This
problem was solved in around 4,000 seconds (wall time).

The SM is a nonsmooth optimization approach that is computationally
inexpensive (the multipliers are updated via a single formula). From an im-
plementation point of view, this method presents two major issues: (1) the
step size in the updating formula may significantly affect the convergence rate
or even the success of the method (as has been our experience), and (2) an
upper bounding problem (if minimizing) must be derived. The first point
is usually dealt with by trial-and-error, and the second point is typically a
“heuristic” approach (e.g., solving the original problem in a reduced space by
fixing certain variables).

However, one positive characteristic of LD is that its subproblems are in-
dependent of each other and can be solved in parallel. We effectively explored
that in Example 3 by using the grid computing features of the modeling plat-
form (GAMS). The 12 subproblems (one per time period) were solved in par-
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allel on a server with twelve cores.

7.2 Data-Driven Multi-Stage Scenario Tree
Generation via Statistical Property and
Distribution Matching

In Chapter 3, we proposed important enhancements to the previously reported
moment matching method for scenario generation. We called it the distribu-
tion matching method, which is an optimization-based model that can be
used to calculate the probabilities and values of outcomes in a scenario tree,
whether two- or multi-stage. In addition to matching statistical properties,
such as (co-)moments, it also matches marginal (empirical) cumulative distri-
bution function ((E)CDF) information.

The main novelty of the work is two-fold: (1) quantitative recognition of
the conditions for well-posedness of the Moment Matching Problem (MMP)
(see equation (3.7)), and (2) addition of easy-to-compute target information
to be matched in the proposed Distribution Matching Problem (DMP). With
regards to the first point, we demonstrated that for one uncertain parameter
and four moments (targets), we have that the number of scenarios has to be
at most equal to 2.5 to yield a well-posed MMP vs. 5 for the DMP (equation
(3.15)). The additional information matched by the DMP model mitigates the
under-specification present in the MMP formulations and, consequently, allows
the modeler to specify more outcomes without leading to under-specified or
ill-posed problems. For the second point, the additional targets come from
points of the marginal distribution of each uncertain parameter. The pro-
posed framework is general in that it allows for either assumed models for the
marginal distributions (e.g., normal), or completely data-driven as long as they
are smooth estimators (e.g., generalized logistic function or kernel smoothing).
We note that by increasing the order of moments matched (e.g, higher than
fourth-order) in the MMP could potentially and numerically reduce the under-
specification issue; however, this would be at the cost of increasing the nonlin-
earity and nonconvexity of the NLP model, and the need for a vast amount of
data to be available in order to obtain meaningful estimates of the high-order
moments.

However, the disadvantage of matching marginal distributions is that any
dependency structure among the uncertain parameters is not captured. In
order to overcome to some extent that limitation, the covariance between
two uncertain parameters is matched. Covariance is a measure of the linear
dependence of two random variables. A more general framework to model
dependence between distributions is through copulas as discussed in Kaut
(2013), but it comes at additional costs, such as obtaining target copulas from
data (empirical vs. parametric given the availability of data) and MIP-based
heuristic to generate scenarios.

In Section 3.4, we described two approaches for the generation of multi-
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stage scenario tree generation: NLP Approach and LP Approach, the latter
being more restrictive since the outcomes are fixed. Both show a powerful syn-
ergy between the optimization-based DMP and time series forecasting/simu-
lation. The former approach is more challenging to be implemented than the
latter, but on the other hand it offers more flexibility since both node values
and branch probabilities are decision variables. The difficulty in implementing
the NLP Approach is due to the alternating sequence of steps between fore-
casting and solving the DMP for each non-leaf node of the tree. In Example
2 (Subsection 3.4.3), this approach was carried out without automating the
alternating steps. Complete automation of NLP Approach may be facilitated
if the software used performs both functions, such as Enterprise Guide and
Forecast Studio/Server components in the SAS R© suite (SAS Institute, 2015).
An alternative, but not necessarily easy way to fully automate the genera-
tion of the multi-stage tree, would be to communicate between a forecasting
software and an optimization modeling system/solver.

Even if the automation of the NLP Approach is successfully accomplished,
and despite its flexibility, this approach also has one potential shortcoming.
The calculation of node values and branch probabilities is performed sequen-
tially (i.e., node by node) instead of simultaneously for all non-leaf nodes of
the tree. In contrast, in the LP Approach, all node values are generated via
time series simulation, thus any potential dependence across multiple stages
is preserved, and then all probabilities are calculated simultaneously. The ad-
vantage of a sequential approach is that the NLP problems are smaller, thus
there is a trade-off between optimization complexity and preserving overall
dependence in the tree.

The examples solved involved trees with up to 30 nodes from a production
planning problem. The CPU times required were quite small.

7.3 Data-Driven Individual and Joint Chance-
Constrained Optimization via Kernel
Smoothing

In Chapter 4, we proposed the use of a nonparametric statistical technique,
namely kernel smoothing (KS), to reformulate individual and joint data-driven
chance constraints (CCs) into their respective algebraic forms. KS is used
to estimate the true, but unknown distributions given data for the uncertain
parameters. The modeling of data-driven CCs relies on a confidence set, which
is constructed so that it contains both the true distribution and its estimate.
We proposed using standard errors of the smoothing process in the calculation
of the size of the confidence set.

As with any nonparametric technique, the accuracy of the kernel smoother
depends on the availability of a significant amount of data. A general rule-
of-thumb for estimating univariate (marginal) distributions is that the sample
size should be at least around 100. This number can grow much bigger if
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estimating joint (multivariate) distributions. The effect of the sample size on
approximating the true distributions is illustrated in the motivating example
(Subsection 4.6.1), where the solution (objective function value and decision
variables) of the optimization models with reformulated data-driven CCs ap-
proaches the solution to the respective problems with exact distributions as
shown in Figures 4.10 and 4.11. Moreover, we showed that even if the origi-
nal CCs are linear, a joint chance-constrained reformulation yields nonlinear
models, which can be significantly more challenging to be solved. In order to
overcome this additional complexity, we developed an algorithm that uses the
solution of the corresponding individual chance-constrained model to initial-
ize the original problem with joint CCs. The proposed algorithm was used
to solve a production planning problem with more than 25 production facili-
ties and several products, which gives rise to a large-scale nonlinear program-
ming problem (around 192,000 constraints and 283,000 variables) and achieved
speedups ranging from 2 to 6 times depending on the confidence level. For in-
stance, at 60% confidence level, applying the proposed initialization approach
to the original nonlinear problem with JCC reduced the solution time from
4,000 to 750 seconds.

Even though a formal proof was not provided, it is intuitive that the pro-
posed kernel-based reformulation methodology results in an inner approxima-
tion of the feasible region that would result from using the true distributions
(which are usually unknown in practice). In the limit as n → ∞ (i.e., infi-
nite number of data points), the kernel estimator asymptotically converges to
the true density/distribution function, provided that the bandwidth is appro-
priately chosen. The kernel-based reformulation contains a finite number of
points (smaller feasible region), which is an approximation of the true contin-
uous function (infinite number of points).

A limitation of the approach is that it requires CCs with right-hand side
(RHS) uncertainty only. Even though they are very common in different appli-
cations ranging from engineering to finance, there are some typical situations
where the random variables are involved in nonlinear terms with the decision
variables of the model. For instance, the linear CC

P
{
ã>x ≤ c

}
≥ 1− α

where ã is a random vector, x is a vector of decision variables, c is a determin-
istic parameter, and α is the risk level, cannot be directly reformulated to a
respective algebraic form using the proposed methodology due to the product
of uncertain parameters and decision variables.

176



7.4 Data-Driven Simulation and Optimiza-
tion Approaches to Incorporate Produc-
tion Variability in Sales and Operations
Planning

In Chapter 5, we proposed a data-driven method to model production vari-
ability in the operations planning stage of the Sales & Operations Planning
(S&OP) process of a manufacturing company. The method uses quantile re-
gression to generate samples of the historical deviation (∆) between planned
and actual production rates conditional on a given plan. The samples cor-
respond to scenarios that quantify uncertainty in two proposed optimization-
based frameworks: Simulation-Optimization (Sim-Opt) and Bi-Objective Op-
timization (Bi-Opt).

Both Sim-Opt and Bi-Opt frameworks have advantages and disadvantages.
Perhaps the major advantage of the Sim-Opt approach is the fact that it
can easily accommodate any statistical relationship between ∆ conditional on
planned values. The reason for this is that the generation of samples based on
given production targets (plans) is performed after the new targets are pro-
posed by the derivative-free optimizer, but before the execution of the “simu-
lator” (which can be a production planning model as discussed in the chapter).
Conversely, the Sim-Opt framework may become computationally intensive as
the number of scenarios and decision variables (production targets) increase.
The Bi-Opt approach offers interesting advantages, such as simultaneous cal-
culation of production plans and minimization of risk, and explicit treatment
of possible constraint violations. However, its main shortcoming is that it may
be difficult (or even impossible) to explicitly define a functional relationship
for ∆ conditional on production targets within the optimization model.

The proposed modeling framework only considers the operations planning
stage of the S&OP process as shown in Figure 5.1. However, the sales planning
stage is also affected by uncertainty, for example, from demand forecasting. A
more comprehensive model would account for both stages, and also feature a
practical metric for performance evaluation at the end of the S&OP process
cycle.

The applicability of the proposed approach was illustrated with a motivat-
ing example and an industrial case study. The motivating example consisted
of a small process network with a feedstock plant that serves 6 downstream
plants. The downstream plants are sorted in reverse order of reliability and
margin, i.e., the most reliable plant is also the lowest-margin one, and the less
reliable plant is the highest-margin one. The motivation behind this was to
show that depending on the maximum desired level of risk, the optimization
model decides to allocate more of the feedstock chemical to more or less re-
liable plants. In other words, the optimization model considers not only the
individual margin of the plants, but also their reliability in order to obtain a
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solution with maximum expected profit. The industrial case study consisted
of a chemical site with more than 12 highly interconnected plants and sev-
eral products. We proposed four approaches to account for a possible strong
dependence in the historical data of production variability of plants that are
directly connected: parametric regression, nonparametric regression, sampling
from estimated joint distribution, and bootstrap sampling.

The computational results show that the solution times were not severely
affected by the problem size (around 5 seconds for the motivating example and
less than 20 seconds for the industrial case study). However, the wall time was
more significantly affected (up to 5 times the solution time), which was largely
due to the time spent loading the optimization problems into memory.

7.5 Optimal Procurement Contract Selection
with Price Optimization under Uncer-
tainty for Process Networks

In Chapter 6, we proposed a stochastic optimization modeling framework that
includes both optimal procurement contract selection and selling price opti-
mization for process networks. The contract selection, which considers three
types of contracts (discount, bulk discount, and fixed duration), is modeled
via disjunctive programming techniques (and reformulated as mixed-integer
linear constraints), and the pricing is quantified with regression models. The
proposed approach is manufacturer-centric in the sense that it is the manu-
facturer’s decision to sign or not contracts with suppliers in order to hedge
against spot market supply uncertainty, and the manufacturer can set selling
prices for its customers. The possible selection of sales contracts is considered
to be the customer’s decision, and was not addressed in this work.

The supply uncertainty is given by the spot market price of raw materials,
even though raw material availability could also be considered as an uncertain
parameter. Scenarios of spot market prices are generated by simulating au-
toregressive time series models, which are assumed to quantify the evolution
of raw material prices with time. With regards to price optimization, the for-
mulation of three price-response models (linear, constant-elasticity, and logit)
that are typically encountered in the literature was discussed, even though we
argued that general regression models can be used. The demand uncertainty
is represented by samples from the distribution of regression residuals. We
showed that it may be more advantageous to use demand-response models
(DRMs), i.e., price as a function of demand, and we provided conditions on
the parameters of the logit model that yield a concave revenue term in the
objective function (in maximization problems).

The two-stage stochastic programming model has the following structure:
the binary variables for contract selection and the sales variable are first-stage
variables, and the remaining variables (production rates, inter-site transfers,
and inventory levels) are second-stage variables. Production planning models
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are typically multi-period in nature, and a multi-stage stochastic programming
formulation may be more realistic. For example, in a three-stage formulation,
the first-stage variables may be the same as the ones used in the proposed
approach, the second-stage variables may include all remaining variables for
the first-period (or a cluster of the first periods), and the third-stage variables
may include all remaining variables for the remaining periods (or cluster of
final periods). This modeling approach could be extended to more than three
stages.

From both numerical examples, it was clear that more complex DRMs
yielded more computationally intensive MINLP models. In particular, in Ex-
ample 2 that dealt with the production planning of an integrated petrochem-
ical site with 38 plants and 28 chemicals (Subsection 6.5.2), it took around 4
hours for the outer approximation-based solver to converge for the determin-
istic model using the logit demand-response model with 400 binary variables,
1,349 continuous variables, and 2,383 constraints. However, the proposed re-
formulation, which transfers the nonlinear terms in the objective function to
the set of constraints, proved to significantly decrease the solution time. This
was primarily due to being able to provide a tighter approximation with sev-
eral terms of the objective function in the form of several constraints. In
addition, different amounts of sales (assumed to be equal to the demand) were
observed between deterministic and stochastic solutions and when using dif-
ferent DRMs. In order to ensure that customer demand is satisfied, bounds on
sales or contract information setting ranges on demand could be considered in
future work.

7.6 Contributions of the Thesis
The main contributions of this thesis are the following:

1. A continuous-time, unit-specific general precedence (USGP) scheduling
formulation that considers the batching problem (i.e., it simultaneously
calculates the number of batches with the scheduling decisions) and al-
lows for sequence-dependent changeovers within and across time periods.
These two additional features yield a more realistic and general schedul-
ing model without significantly compromising the solution time.

2. A systematic, data-driven scenario generation method (Distribution
Matching Problem or DMP) via statistical property matching, which
remedies the under-specification characteristics of a previously proposed
method. In additional to marginal (co-)moments, the DMP also includes
information from marginal (empirical) cumulative distribution function,
thus improving the balance between number of variables and data points
(targets).

3. Two methods for the generation of multi-stage scenario trees that com-
bine time series forecasting with the solution of the proposed distribution
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matching method. The NLP Approach sequentially computes the node
values and branch probabilities for each non-leaf node. The LP Approach
computes all branch probabilities simultaneously for a a tree with fixed
node values obtained from time series simulation.

4. A method using kernel smoothing to model data-driven individual and
joint chance constraints with right-hand side uncertainty. The approach
is based on the construction of a confidence set that contains the esti-
mated distributions and is considered to also contain the true, but un-
known distributions. In addition, the approach uses the standard errors
estimated in the smoothing process to calculate the size of the confidence
set, which is necessary to complete the reformulation of the probabilistic
constraints into their respective algebraic ones.

5. A framework to model production variability and incorporate it in the
operations planning stage of the Sales & Operations Planning (S&OP)
process of a manufacturing company. The method consists of defining ∆
as the deviation between historical planned and actual production rates,
and using quantile regression to obtain the quantiles of the distribution
of ∆ conditional on planned values. The model of uncertainty can be
used in simulation- and optimization-based approaches, along with risk
measures to control the degree of conservatism of the solution.

6. A mixed-integer programming formulation that combines optimal
procurement contract selection and selling price optimization in a
manufacturer-centric approach. The proposed framework allows for gen-
eral regression models as demand-response functions. The approach is
illustrated with three different contract types previously reported in the
literature, and three typical demand-response models (linear, constant-
elasticity, and logit). Conditions for the concavity of the logit model
(generally regarded as the most realistic of the three models) are de-
rived.

7.7 Recommendations for Future Work
1. In the hybrid decomposition scheme implemented in Chapter 2, the Subgra-

dient Method (SM) was used to update the Lagrange multipliers within the
Lagrangean Decomposition (LD) framework. As mentioned in Section 7.1,
obtaining convergence with the SM proved to be significantly challenging
due to its two major issues: choice of step size and erratic behavior of upper
bound solution (in minimization problems). Other methods for updating
multipliers require additional optimization problems to be solved, which
may be prohibitive for large-scale problems. An alternative to LD is based
on the method of multipliers and it is called Augmented Lagrangean De-
composition (ALD) (Rosa & Ruszczyński, 1996; Ruszczyński, 1997). ALD
is also an iterative, dual decomposition method (i.e., on the space of the
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dual variables), which does not suffer from the same aforementioned issues
as LD with SM and still yield independent subproblems that can be solved
in parallel. In addition to updating the multipliers, the ALD method also
updates the decision variables at each iteration. The main difference be-
tween the two approaches is that with ALD one optimization problem is
solved instead of two as in LD (lower- and upper-bounding problems). The
additional cost of ALD is the presence of quadratic terms in the objective
function, which turns a (MI)LP model into a (MI)QP problem. However,
MIP solvers, such as Gurobi and CPLEX, are becoming very efficient at
solving (MI)QP problems.

2. The Distribution Matching Problem (DMP) proposed in Chapter 3 is an
optimization-based approach for generating scenario trees by matching
marginal statistical information, such as moments and cumulative distri-
bution function (CDF). Any dependence between random variables (r.vs.)
is simply captured by covariance information. However, as mentioned in
Section 7.2, the DMP does not account for more general dependence among
r.vs. There are some research areas in statistics, machine learning, and dig-
ital signal processing that could offer different approaches for the same
problem, and that directly use the joint distribution (estimated or not),
which contains the complete dependence (or lack thereof) structure among
r.vs. Scenario trees are a form of discretized or quantized representation of
distributions, i.e., they approximate (usually continuous) distributions by
considering a finite number of outcomes (scenarios) with given probabilities
(dimensionality reduction).

• Quantization and Information Theory. In general terms, quantization
is the process of mapping a large set of input values (e.g., contin-
uous distribution) to a countable (discrete) smaller set. A typical
application includes data compression in communication. If the ob-
ject (input) to be quantized is a univariate function, then the method
is called Scalar Quantization (SQ), and if the input is a multivariate
function, it is named Vector Quantization (VQ). Briefly, the problem is
to find the optimal set of countable values (called reproduction points
or code points) that represents the original input. The formulation
involves concepts of Rate-Distortion Theory (Cover & Thomas, 2006),
in which a distortion function is used to measure the cost of represent-
ing the original input in a reduced and discrete space. The modeling
of the theory uses the mutual information, which is a measure of the
mutual dependence between two r.vs. Colin et al. (2013) propose an
optimal quantization method of the support of a multivariate distribu-
tion using φ-mutual information (based on the notion of φ-divergence,
which is discussed in Chapter 4).
• Sampling and Clustering. Another idea related to quantization is the

use of cluster analysis (Everitt et al., 2011) in data mining. Among
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other methods and algorithms, k-means clustering is a method of VQ
that aims to partition n observations into k clusters. The observations
in this case could be samples generated from the (estimated) joint
distribution. The center of each cluster would represent an outcome
of the scenario tree, and the collection of centers of clusters would
provide a discrete approximation to the continuous joint distribution.
An initial algorithm that can be applied to both cases of univariate or
multivariate joint distributions is as follows:
(i) Generate n samples from the (estimated) joint distribution,

x1, . . . , xj, . . . , xn;
(ii) Calculate the density for each sample using the (estimated) con-

tinuous joint distribution, p(x1), . . . , p(xj), . . . , p(xn);
(iii) Cluster the samples into k groups or clusters;
(iv) Set the probability of cluster i, for i = 1, . . . , k, to be proportional

to the sum of p(xj), for every sample j put in cluster i. For
example,

Probability of scenario (cluster) i =

∑
j:j in cluster i

p(xj)∑
j

p(xj)

3. The kernel-based reformulation methodology proposed in Chapter 4 re-
quires chance constraints (CCs) with right-hand side uncertainty only. It is
likely that an extension of the approach that accounts for more general CCs
will be mathematically challenging. In addition, it will likely not preserve
linearity of the constraints as is the case of the reformulation of individual
CCs. One research direction could be based on the use of transformations of
r.vs., i.e, theMethod of Transformations (Casella & Berger, 2002). Consider
the following scalar example. Let the original CC be Pã {ãx ≤ c} ≥ 1− α,
where ã is a continuous r.v., x is a continuous decision variable (usually,
non-negative), c is a deterministic parameter, and α is the risk level. Sup-
pose that ã has PDF f(a) and CDF F (a). In this case, we can apply a
linear transformation by treating x as a “coefficient” of the r.v. ã. Introduce
the r.v. b̃ = ãx with PDF g(b) and CDF G(b). Therefore, the CC becomes
Pb̃
{
b̃ ≤ c

}
≥ 1−α, which seems more tractable than the original CC, since

the new r.v. is not involved in nonlinear terms with the decision variable.
To reformulate this new CC, we need to ultimately invoke the CDF of b̃. It
can be shown that

G(b) = 1
|x|
xF

(
a

x

)
The term xF (b/x) corresponds to the perspective of the CDF of the origi-
nal r.v., ã. When dealing with data-driven CCs, all true distributions are
replaced with their estimates, i.e., f(·) and F (·) are replaced with f̂(·) and
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F̂ (·), respectively. Even though the original CC is linear, the reformulation
in this case will not be linear. More details are given in Appendix E.

4. One of the major disadvantages of the Bi-Optimization approach (Bi-Opt)
proposed in Chapter 5 is the difficulty (or impossibility) of expressing the
deviation from plan conditional on production targets (∆s for scenario s).
In the numerical examples, ∆s was constant regardless of the production
targets proposed by the optimization model. This may not be a reason-
able approximation, since the distribution and range of ∆s values can be
very different depending on planned production rates. In order to make the
formulation more flexible, the following modeling strategy could be inves-
tigated. For each plant with production variability data, do the following
steps:

(i) Obtain Plan vs. Actual historical production rate data, and calculate
∆ = Plan− Actual;

(ii) Discretize the range of Plan values into n = 1, . . . , N intervals, and
select one value in each interval (e.g., median) to be the representation
point of each interval;

(iii) For each interval, perform quantile regression for ∆ conditional on
Plan being equal to the interval’s representation point (i.e., generate
the samples or scenarios), and store the output in a parameter ∆n,s;

(iv) We need to ensure that if the production targets fall into the interval of
Plan values, then the correct deviation values are used. The following
disjunction can be used to model this condition.

∨

 Yn
PTL

n ≤ PT ≤ PTU
n

PRs = PT −∆n,s

 ∀ n = 1, . . . , N, s ∈ S

where Yn is a Boolean variable that is True if PT belongs to the
interval [PTL

n ,PTU
n ], and False otherwise.

However, the increased flexibility suggested above comes at some possible
computational expense due to additional binary variables needed to refor-
mulate the disjunctions as mixed-integer linear constraints.

5. In the proposed approach in Chapter 6, the decision to sign or not sales
contracts lies with customers, not with the manufacturer. An extension to
design sales contracts with customers could be as follows. The manufacturer
sets selling prices by incorporating demand-response models (DRMs) in the
production planning model; those prices can be used to create the structure
of sales contracts (e.g., discount quantity thresholds and price levels); an
optimization problem for each customer is formulated that decides which
contracts, if any, to sign in order to maximize/minimize an objective (e.g.,
minimize total costs for the customer from purchasing finished products
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from the manufacturer). This will lead to a bilevel programming formulation
(Shimizu, Ishizuka, & Bard, 1997; Bard, 1998; Labbé & Violin, 2013) in
which the upper level problem (ULP) is the model proposed in this work,
and the lower level problem (LLP) consists of optimization models for each
customer. The objectives of the ULP are to select procurement contracts
to sign or not, and to set design sales contracts (by setting selling prices),
whereas the objective of the LLP is to select or not sales contracts. A
further extension would even consider a separate optimization problem for
the suppliers that would design procurement contracts to be selected or not
by the manufacturer, thus resulting in a trilevel programming formulation.

6. The use of nonlinear (even if concave) DRMs may considerably increase
the solution time as shown in the numerical examples in Chapter 6. If the
nonlinear DRM is a univariate function (i.e., if there is only one regressor,
thus the model’s objective is a separable function), then an approximate
solution approach could be based on piece-wise linear approximations of
the nonlinear DRMs (Taha, 2010). This would require the introduction
of additional constraints and variables (Special Ordered Sets of type 2 or
SOS2), but the complexity would be expected to decrease since the concave
MINLP model would be approximated by an MILP model. In case more
general, multivariate nonlinear DRMs are used, then we suggest a decom-
position approach that alternates between a master problem (MIQP) and
a restricted slave problem (NLP). The master problem uses a linear DRM
(with one or more regressors) as an approximation to the nonlinear DRM,
and the slave problem is the original optimization model with the nonlin-
ear DRM, but with all discrete variables fixed to the solution of the master
problem. At the start of a new iteration, sales variables from the solution
to the slave problem are fixed in master problem. A convergence criterion
could be a small relative error between the objective function value of the
slave problem at the current and previous iterations. Again, it would be
expected that solving MIQP and NLP problems would be computationally
less intensive than directly solving an MINLP problem.

The data-driven approaches to Enterprise-Wide Optimization proposed in
this thesis fit with the recent trend towards Business Analytics (Davenport
& Harris, 2007; Stubbs, 2011). The decision-making model (e.g., production
planning) is enhanced by a model of uncertainty and variability, which is sys-
tematically obtained using advanced data analytics techniques. In other words,
the majority of the contributions of this thesis combine predictive analytics
(regression, forecasting, and simulation) with prescriptive decision making (de-
terministic and stochastic optimization). Moreover, the proposed data-driven
approaches were developed to support the use of nonparametric statistical
techniques for both continuous and categorical (discrete) data. This makes
the proposed approaches statistically more robust and widely applicable to
different problems, since they do not require strong assumptions about the
probability distributions of the data generating process.

184



Bibliography

Abel, O., and Marquardt, W. 2000. Scenario-Integrated Modeling and Opti-
mization of Dynamic Systems. AIChE Journal. 46(4):803–823.

Abramowitz, M., and Stegun, I. A. 1965. Handbook of Mathematical Functions:
with Formulas, Graphs, and Mathematical Tables. Dover Publications.

Achterberg, T. 2009. SCIP: Solving Constraint Integer Programs. Mathemat-
ical Programming Computation 1(1):1–41.

Agresti, A., and Coull, B. A. 1998. Approximate Is Better than “Exact” for
Interval Estimation of Binomial Proportions. The American Statistician.
52(2):119–126.

Arellano-Garcia, H., and Wozny, G. 2009. Chance Constrained Optimization
of Process Systems Under Uncertainty: I. Strict Monotonicity. Computers
& Chemical Engineering. 33(10):1568–1583.

Balas, E. 1985. Disjunctive Programming and a Hierarchy of Relaxations
for Discrete Optimization Problems. SIAM Journal on Algebraic Discrete
Methods. 6(3):466–486.

Bansal, M.; Karimi, I. A.; and Srinivasan, R. 2007. Optimal Contract Selection
for the Global Supply and Distribution of Raw Materials. Industrial &
Engineering Chemistry Research. 46(20):642–660.

Barahona, F., and Anbil, R. 2000. The Volume Algorithm: Producing Pri-
mal Solutions with a Subgradient Method. Mathematical Programming.
87(3):385–399.

Bard, J. F. 1998. Practical Bilevel Optimization: Algorithms and Applica-
tions, volume 30 of Nonconvex Optimization and Its Applications. Kluwer
Academic Publishers. Dordrecht, The Netherlands.

Bartlett, R. 2013. A Practitioner’s Guide to Business Analytics: Using Data
Analysis Tools to Improve Your Organization’s Decision Making and Strat-
egy. The McGraw-Hill Companies.

Bauer, H. 2001. Measure and Integration Theory, volume 26 of Studies in
Mathematics. Walter de Gruyter GmbH & Co. Berlin, Germany.

185



Bayraksan, G., and Morton, D. P. 2006. Assessing Solution Quality in Stochas-
tic Programs. Mathematical Programming. 108(2-3):495–514.

Becker, M., and Klößner, S. 2013. PearsonDS: Pearson Distribution System.
R package version 0.95.

Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; and Wächter, A. 2009. Branching
and Bounds Tightening Techniques for Non-convex MINLP. Optimization
Methods and Software 24(4-5):597–634.

Ben-Tal, A.; den Hertog, D.; De Waegenaere, A.; Melenberg, B.; and Ren-
nen, G. 2011. Robust Solutions of Optimization Problems Affected by
Uncertain Probabilities. Optimization Online. Retrieved from http://www.
optimization-online.org/DB_FILE/2011/06/3076.pdf on Feb 24, 2014.

Ben-Tal, A.; Ghaoui, L. E.; and Nemirovski, A. 2009. Robust Optimization.
Princeton Series in Applied Mathematics. Pricenton, NJ. USA.

Beraldi, P.; De Simone, F.; and Violi, A. 2010. Generating Scenario Trees: A
Parallel Integrated Simulation-Optimization Approach. Journal of Compu-
tational and Applied Mathematics. 233(9):2322–2331.

Bienstock, D.; Chertkov, M.; and Harnett, S. 2012. Chance Constrained
Optimal Power Flow: Risk-Aware Network Control under Uncertainty.
Computing Research Repository (CoRR) abs/1209.5779. Retrieved from
http://arxiv.org/abs/1209.5779 on Feb 24, 2014.

Birge, J. R., and Louveaux, F. 2011. Introduction to Stochastic Programming.
Springer Science+Business Media, LLC., second edition. New York, NY.
USA.

Bodea, T., and Ferguson, M. 2014. Segmentation, Revenue Management and
Pricing Analytics. Routledge – Taylor & Francis. New York, NY. USA.

Bonferroni, C. E. 1936. Teoria Statistica Delle Classi e Calcolo Delle Proba-
bilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Com-
merciali di Firenze. 8:1–62.

Box, G. E. P.; Jenkins, G. M.; and Reinsel, G. C. 2008. Time Series Analysis:
Forecasting and Control. Holden-Day, Inc., fourth edition. Hoboken, NJ.
USA.

Brockwell, P. J., and Davis, R. A. 2002. Introduction to Time Series and
Forecasting. Springer-Verlag New York, Inc., second edition. New York,
NY. USA.

Brooke, A.; Kendrick, D.; and Meeraus, A. 2015. General Algebraic Modeling
System (GAMS). http://www.gams.com/.

186

http://www.optimization-online.org/DB_FILE/2011/06/3076.pdf
http://www.optimization-online.org/DB_FILE/2011/06/3076.pdf
http://arxiv.org/abs/1209.5779
http://www.gams.com/


Cai, X.; Teo, K.-L.; Yang, X.; and Zhou, X. Y. 2000. Portfolio Optimization
Under a Minimax Rule. Management Science. 46(7):957–972.

Calafiore, G. C., and Campi, M. C. 2006. The Scenario Approach to Robust
Control Design. IEEE Transactions on Automatic Control. 51(5):742–753.

Calfa, B. A.; Agarwal, A.; Grossmann, I. E.; and Wassick, J. M. 2014. Data-
Driven Multi-Stage Scenario Tree Generation via Statistical Property and
Distribution Matching. Computers & Chemical Engineering. 68(1):7–23.

Casella, G., and Berger, R. L. 2002. Statistical Inference. Duxbury. The
Wadsworth Group. Thomson Learning, Inc., second edition. Pacific Grove,
CA. USA.

Cerdá, J.; Henning, G. P.; and Grossmann, I. E. 1997. A Mixed-Integer Linear
Programming Model for Short-Term Scheduling of Single-Stage Multiprod-
uct Batch Plants with Parallel Lines. Industrial & Engineering Chemistry
Research. 36(5):1695–1707.

Charnes, A., and Cooper, W. W. 1959. Chance-Constrained Programming.
Management Science. 6(1):73–79.

Charnes, A., and Kirby, M. 1966. Optimal Decision Rules for the E-
Model of Chance-Constrained Programming. Cahiers du Centre d’Études
de Recherche Opérationelle. 8:5–44.

Charnes, A., and Kirby, M. J. L. 1967. Some Special P-Models in Chance-
Constrained Programming. Management Science. 14(3):183–195.

Chen, R., and Tsay, R. S. 1993. Nonlinear Additive ARX Models. Journal of
the American Statistical Association. 88(423):955–967.

Chen, Y.; Adams II, T. A.; and Barton, P. I. 2011. Optimal Design and Oper-
ation of Flexible Energy Polygeneration Systems. Industrial & Engineering
Chemistry Research. 50(8):4553–4566.

Chiralaksanakul, A., and Morton, D. P. 2004. Assessing Policy Quality
in Multi-stage Stochastic Programming. Stochastic Programming E-Print
Series. (12):1–36. Retrieved from http://edoc.hu-berlin.de/docviews/
abstract.php?id=26770.

Chong, C.-Y., and Cheng, D. C. 1975. Multistage Pricing under Uncertain
Demand. Annals of Economic and Social Measurement. 4(2):311–323.

Colin, B.; Dubeau, F.; Khreibani, H.; and de Tibeiro, J. 2013. Optimal Quan-
tization of the Support of a Continuous Multivariate Distribution based on
Mutual Information. Journal of Classification. 30(3):453–473.

187

http://edoc.hu-berlin.de/docviews/abstract.php?id=26770
http://edoc.hu-berlin.de/docviews/abstract.php?id=26770


Colvin, M., and Maravelias, C. T. 2009. Scheduling of Testing Tasks and
Resource Planning in New Product Development using Stochastic Program-
ming. Computers & Chemical Engineering. 33(5):964–976.

Conejo, A. J.; Castillo, E.; Mínguez, R.; and García-Bertrand, R. 2006. De-
composition Techniques in Mathematical Programming: Engineering and
Science Applications. Springer Science+Business Media. New York, NY.
USA.

Conn, A. R.; Scheinberg, K.; and Vicente, L. N. 2009. Introduction to
Derivative-Free Optimization. Society for Industrial and Applied Mathemat-
ics (SIAM) and the Mathematical Programming Society (MPS). Philadel-
phia, PA. USA.

Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; and Knuth, D. 1996. On the
Lambert W Function. Advances in Computational Mathematics. 5(1):329–
359.

Cover, T. M., and Thomas, J. A. 2006. Elements of Information Theory. John
Wiley & Sons, Inc., second edition. Hoboken, NJ. USA.

Custódio, A.; Emmerich, M.; and Madeira, J. F. A. 2012. Recent Develop-
ments in Derivative-Free Multiobjective Optimisation. Computational Tech-
nology Reviews. 5(1):1–30.

Dantzig, G. B. 1955. Linear Programming under Uncertainty. Management
Science. 1(3-4):197–206.

Davenport, T. H., and Harris, J. G. 2007. Competing on Analytics: The New
Science of Winning. Harvard Business School Press. Boston, MA. USA.

Davison, A. C., and Hinkley, D. V. 1997. Bootstrap Methods and Their
Application. Cambridge Series on Statistical and Probabilistic Mathematics.
Cambridge University Press. Cambridge, UK.

Deniz, E., and Luxhøj, J. T. 2011. A Scenario Generation Method with
Heteroskedasticity and Moment Matching. The Engineering Economist.
56(3):231–253.

Duran, M. A., and Grossmann, I. E. 1986. An Outer-Approximation Al-
gorithm for a Class of Mixed-Integer Nonlinear Programs. Mathematical
Programming. 36(3):307–339.

Efron, B. 1979. Bootstrap Mmethods: Another Look at the Jackknife. The
Annals of Statistics. 7(1):1–26.

Eisner, M. J.; Kaplan, R. S.; and Soden, J. V. 1971. Admissible Decision
Rules for the E-Model of Chance-Constrained Programming. Management
Science. 17(5):337–353.

188



Erdirik-Dogan, M., and Grossmann, I. E. 2007. Planning Models for Parallel
Batch Reactors with Sequence-Dependent Changeovers. AIChE Journal.
53(9):2284–2300.

Erdirik-Dogan, M., and Grossmann, I. E. 2008. Slot-Based Formulation for
the Short-Term Scheduling of Multistage, Multiproduct Batch Plants with
Sequence-Dependent Changeovers. Industrial & Engineering Chemistry Re-
search. 47(4):1159–1183.

Evans, M.; Hastings, N.; and Peacock, B. 2000. Statistical Distributions. Wiley
Series in Probability and Statistics. John Wiley & Sons, Inc., third edition.
New York, NY. USA.

Everitt, B. S.; Landau, S.; Leese, M.; and Stahl, D. 2011. Cluster Analysis.
Probability and Statistics. John Wiley & Sons, Inc., fifth edition. West
Sussex, UK.

Fan, J., and Yao, Q. 2002a. Nonlinear Time Series: Nonparametric and
Parametric Methods. Springer Series in Statistics. New York, NY. USA.

Fan, J., and Yao, Q. 2002b. Nonlinear Time Series: Nonparametric and
Parametric Methods. Springer Series in Statistics.

Feng, Y., and Ryan, S. M. 2013. Scenario Construction and Reduction Ap-
plied to Stochastic Power Generation Expansion Planning. Computers &
Operations Research 40(1):9–23.

Fiorio, C. V. 2004. Confidence Intervals for Kernel Density Estimation. The
Stata Journal. 4(2):168–179.

Floudas, C. A., and Lin, X. 2004. Continuous-Time versus Discrete-Time
Approaches for Scheduling of Chemical Processes: A Review. Computers &
Chemical Engineering. 28(11):2109–2129.

Forbes, C.; Evans, M.; Hastings, N.; and Peacock, B. 2011. Statistical Distri-
butions. John Wiley & Sons, Inc., fourth edition. Hoboken, NJ. USA.

Georghiou, A.; Wiesemann, W.; and Kuhn, D. 2011. The Decision Rule Ap-
proach to Optimisation under Uncertainty: Methodology and Applications
in Operations Management. Optimization Online. Retrieved from http://
www.optimization-online.org/DB_FILE/2011/12/3290.pdf on Jan 17,
2015.

Gjerdrum, J.; Shah, N.; and Papageorgiou, L. G. 2001. Transfer Prices for Mul-
tienterprise Supply Chain Optimization. Industrial & Engineering Chem-
istry Research. 40(7):1650–1660.

189

http://www.optimization-online.org/DB_FILE/2011/12/3290.pdf
http://www.optimization-online.org/DB_FILE/2011/12/3290.pdf


Gochet, W. F., and Padberg, M. W. 1974. The Triangular E-Model of Chance-
Constrained Programming with Stochastic A-Matrix. Management Science.
20(9):1284–1291.

Goffin, J. L.; Haurie, A.; and Vial, J. P. 1992. Decomposition and Nondiffer-
entiable Optimization with the Projective Algorithm. Management Science.
38(2):284–302.

Goodstein, R. L. 2007. Boolean Algebra. Dover Books on Mathematics. Dover
Publications, Inc. New York, NY. USA.

Grimson, J. A., and Pyke, D. F. 2007. Sales and Operations Planning: An
Exploratory Study and Framework. The International Journal of Logistics
Management. 18(3):322–346.

Grossmann, I. 2005. Enterprise-wide Optimization: A New Frontier in Process
Systems Engineering. AIChE Journal. 51(7):1846–1857.

Guignard, M. 2003. Lagrangean Relaxation. Top. 11(2):151–228.

Guillén, G.; Espuña, A.; and Puigjaner, L. 2006. Addressing the Scheduling
of Chemical Supply Chains under Demand Uncertainty. AIChE Journal.
52(11):3864–3881.

Guillén-Gosálbez, G., and Grossmann, I. 2010. A Global Optimization Strat-
egy for the Environmentally Conscious Design of Chemical Supply Chains
Under Uncertainty in the Damage Assessment Model. Computers & Chem-
ical Engineering. 34(1):42–58.

Gülpınar, N.; Rustem, B.; and Settergren, R. 2004. Simulation and Opti-
mization Approaches to Scenario Tree Generation. Journal of Economic
Dynamics and Control. 28(7):1291–1315.

Gupta, V., and Grossmann, I. E. 2012. Modeling and Computational Strate-
gies for Optimal Development Planning of Offshore Oilfields under Complex
Fiscal Rules. Industrial & Engineering Chemistry Research. 51(44):14438–
14460.

Haimes, Y. Y.; Lasdon, L. S.; and Wismer, D. A. 1971. On a Bicriterion
Formulation of the Problems of Integrated System Identification and Sys-
tem Optimization. IEEE Transactions on Systems, Man, and Cybernetics.
1(3):296–297.

Hall, P., and Horowitz, J. 2013. A Simple Bootstrap Method for Constructing
Nonparametric Confidence Bands for Functions. The Annals of Statistics.
41(4):1693–2262.

Harrell, F. E., and Davis, C. E. 1982. A New Distribution-Free Quantile
Estimator. Biometrika. 69(3):635–640.

190



Harrell, Jr, F. E.; with contributions from; Dupont, C.; and many others.
2014. Hmisc: Harrell Miscellaneous. R package version 3.14-3.

Hayfield, T., and Racine, J. S. 2008. Nonparametric Econometrics: The np
Package. Journal of Statistical Software 27(5).

Held, M.; Wolfe, P.; and Crowder, H. P. 1974. Validation of Subgradient
Optimization. Mathematical Programming. 6(1):62–88.

Hogg, R. V.; McKean, J.; and Craig, A. T. 2012. Introduction to Mathematical
Statistics. Pearson, seventh edition. London, UK.

Höhn, M. I. 2010. Relational Supply Contracts: Optimal Concessions in Re-
turn Policies for Continuous Quality Improvements, volume 629 of Lecture
Notes in Economics and Mathematical Systems. Springer Berlin Heidelberg.
chapter 2. Literature Review on Supply Chain Contracts, 19–34.

Høyland, K., and Wallace, S. W. 2001. Generating Scenario Trees for Multi-
stage Decision Problems. Management Science. 46(2):295–307.

Høyland, K.; Kaut, M.; and Wallace, S. W. 2003. A Heuristic for Moment-
Matching Scenario Generation. Computational Optimization and Applica-
tions. 24(2-3):169–185.

Hunting, M. 2012. Solving convex MINLP problems with AIMMS. An
AIMMS White Paper. Technical report, Paragon Decision Technology
BV. URL: http://images.aimms.com/aimms/download/white-papers/
coa-aimms-whitepaper-2012.pdf. Accessed on February 11, 2015.

Hwang, C.-L., and Masud, A. S. M. 1979. Multiple Objective Decision Making,
Methods and Applications: A State-of-the-Art Survey, volume 164 of Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag. New York,
NY. USA.

Hyndman, R. J.; with contributions from; Athanasopoulos, G.; Razbash, S.;
Schmidt, D.; Zhou, Z.; Khan, Y.; Bergmeir, C.; and Wang, E. 2014. forecast:
Forecasting functions for time series and linear models. R package version
5.6.

IHS Inc. 2013. EViews 8.0. IHS Inc., Irvine, California, United States. http:
//www.eviews.com/.

Iyer, R. R., and Grossmann, I. E. 1998. A Bilevel Decomposition Algorithm
for Long-Range Planning of Process Networks. Industrial & Engineering
Chemistry Research. 37(2):474–481.

Jairaj, P. G., and Vedula, S. 2003. Modeling Reservoir Irrigation in Uncertain
Hydrologic Environment. Journal of Irrigation and Drainage Engineering.
129(3):164–172.

191

http://images.aimms.com/aimms/download/white-papers/coa-aimms-whitepaper-2012.pdf
http://images.aimms.com/aimms/download/white-papers/coa-aimms-whitepaper-2012.pdf
http://www.eviews.com/
http://www.eviews.com/


Ji, X.; Zhu, S.; Wang, S.; and Zhang, S. 2005. A Stochastic Linear Goal Pro-
gramming Approach to Multistage Portfolio Management Based on Scenario
Generation via Linear Programming. IIE Transactions. 37(10):957–969.

Jiang, R., and Guan, Y. 2013. Data-driven Chance Constrained
Stochastic Program. Optimization Online. Retrieved from http://www.
optimization-online.org/DB_FILE/2013/09/4044.pdf on Feb 24, 2014.

Kallrath, J. 2002. Planning and Scheduling in the Process Industry. OR
Spectrum. 24(3):219–250.

Kaplan, U.; Türkay, M.; Karasözen, B.; and Biegler, L. T. 2011. Optimiza-
tion of Supply Chain Systems with Price Elasticity of Demand. INFORMS
Journal on Computing. 23(4):557–568.

Kaut, M. 2003. Scenario Tree Generation for Stochastic Programming: Cases
from Finance. Ph.D. Dissertation, Department of Mathematical Sciences.
Norwegian University of Science and Technology.

Kaut, M. 2013. A Copula-Based Heuristic for Scenario Generation. Compu-
tational Management Science. 25. DOI: 10.1007/s10287-013-0184-4.

Kelly, J. E. 1960. The Cutting-Plane Method for Solving Convex Programs.
Journal of the Society for Industrial and Applied Mathematics. 8(4):703–712.

Khalilpour, R., and Karimi, I. A. 2011. Modeling of Purchase and Sales Con-
tracts in Supply Chain Optimization. Industrial & Engineering Chemistry
Research. 50(17):10298–10312.

Kim, J.; Realff, M. J.; and Lee, J. H. 2011. Optimal Design and Global
Sensitivity Analysis of Biomass Supply Chain Networks for Biofuels under
Uncertainty. Computers & Chemical Engineering. 35(9):1738–1751.

King, A. J., and Wallace, S. W. 2012. Modeling with Stochastic Programming.
Springer Series in Operations Research and Financial Engineering. Springer
Science+Business Media New York. New York, NY. USA.

Klemens, B. 2009. Modeling with Data: Tools and Techniques for Scientific
Computing. Princeton University Press. Online Appendix M, pages 8-9.
Princeton, NJ. USA.

Kleywegt, A. J.; Shapiro, A.; and Homem-de-Mello, T. 2001. The Sample
Average Approximation Method for Stochastic Discrete Optimization. SIAM
Journal of Optimization. 12(2):479–502.

Koenker, R. 2005. Quantile Regression. Cambridge University Press. New
York, NY. USA.

192

http://www.optimization-online.org/DB_FILE/2013/09/4044.pdf
http://www.optimization-online.org/DB_FILE/2013/09/4044.pdf


Kopanos, G. M.; Laínez, M. J.; and Puigjaner, L. 2009. An Efficient
Mixed-Integer Linear Programming Scheduling Framework for Addressing
Sequence-Dependent Setup Issues in Batch Plants. Industrial & Engineering
Chemistry Research. 48(13):6346–6357.

Kopanos, G. M.; Puigjaner, L.; and Maravelias, C. T. 2011. Production
Planning and Scheduling of Parallel Continuous Processes with Product
Families. Industrial & Engineering Chemistry Research. 50(3):1369–1378.

Koza, J. R. 1992. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Computer Science Science and Intelligent
System. A Bradford Book – The MIT Press. Cambridge, MA. USA.

Labbé, M., and Violin, A. 2013. Bilevel Programming and Price Setting
Problems. 4OR. 11(1):1–30.

Lane, M. 1973. Conditional Chance-Constrained Model for Reservoir Control.
Water Resources Research. 9(4):937–948.

Lemaréchal, C. 1974. An Algorithm for Minimizing Convex Functions. In
Proceedings IFIP ’74 Congress, 552–556.

Li, Z., and Ierapetritou, M. G. 2011. Capacity Expansion Planning Through
Augmented Lagrangian Optimization and Scenario Decomposition. AIChE
Journal. 58(3):871–883.

Li, Q., and Racine, J. S. 2007. Nonparametric Econometrics: Theory and
Practice. Themes in Modern Econometrics. Princeton University Press.
Princeton, NJ. USA.

Li, J.; González, M.; and Zhu, Y. 2009. A Hybrid Simulation Optimization
Method for Production Planning of Dedicated Remanufacturing. Interna-
tional Journal of Production Economics. 117(2):286–301.

Li, Y.; Liu, Y.; and Zhu, J. 2007. Quantile Regression in Reproducing
Kernel Hilbert Spaces. Journal of the American Statistical Association.
102(477):255–268.

Lim, L. L.; Alpan, G.; and Penz, B. 2014. A Simulation-Optimization Ap-
proach for Managing the Sales and Operations Planning in the Automotive
Industry. Technical Report 212, Laboratoire G-SCOP. ISSN: 1298-020X.

Lima, R. M.; Grossmann, I. E.; and Jiao, Y. 2011. Long-Term Scheduling
of a Single-Unit Multi-Product Continuous Process to Manufacture High
Performance Glass. Computers & Chemical Engineering 35(3):554–574.

Lin, C.-C., and Wu, Y.-C. 2014. Combined Pricing and Supply Chain Op-
erations under Price-Dependent Stochastic Demand. Applied Mathematical
Modelling. 38(5-6):1823–1837.

193



Ling, R. C., and Goddard, W. E. 1988. Orchestrating Success: Improve
Control of the Business with Sales & Operations Planning. John Willey &
Sons, Inc. New York, NY. USA.

Liu, S.; Pinto, J. M.; and Papageorgiou, L. G. 2008. A TSP-based MILP
Model for Medium-Term Planning of Single-Stage Continuous Multiproduct
Plants. Industrial & Engineering Chemistry Research. 47(20):7733–7743.

Lobo, M. S., and Boyd, S. 2003. Pricing and Learning with Uncertain Demand.
Technical report, Duke University and Stanford University. URL: https:
//web.stanford.edu/~boyd/papers/pdf/pric_learn_unc_dem.pdf. Ac-
cessed on October 19, 2014.

Luedtke, J., and Ahmed, S. 2008. A Sample Approximation Approach for Op-
timization with Probabilistic Constraints. SIAM Journal on Optimization.
19(2):674–699.

Maplesoft. 2014. Maple 18.01. Maplesoft, a division of Waterloo Maple Inc.,
Waterloo, Ontario. http://www.maplesoft.com/index.aspx.

Maravelias, C. T., and Sung, C. 2009. Integration of Production Planning
and Scheduling: Overview, Challenges and Opportunities. Computers &
Chemical Engineering 33(12):1919–1930.

Maravelias, C. T. 2012. General Framework and Modeling Approach Classi-
fication for Chemical Production Scheduling. AIChE Journal 58(6):1812–
1828.

Marsten, R. E.; Hogan, W. W.; and Blankenship, J. W. 1975. The Boxstep
Method for Large-Scale Optimization. Operations Research 23(3):389–405.

Mazadi, M.; Rosehart, W. D.; Zareipour, H.; Malik, O. P.; and Oloomi,
M. 2013. Impact of Wind Integration on Electricity Markets: A Chance-
Constrained Nash Cournot Model. International Transactions on Electrical
Energy Systems. 23(1):83–96.

Méndez, C. A.; Cerdá, J.; Grossmann, I. E.; Harjunkoski, I.; and Fahl, M.
2006. State-of-the-Art Review of Optimization Methods for Short-Term
Scheduling of Batch Processes. Computers & Chemical Engineering. 30(6-
7):913–946.

Méndez, C. A.; Henning, G. P.; and Cerdá, J. 2000. Optimal Scheduling of
Batch Plants Satisfying Multiple Product Orders with Different Due-Dates.
Computers & Chemical Engineering 24(9-10):2223–2245.

Méndez, C. A.; Henning, G. P.; and Cerdá, J. 2001. An MILP Continuous-
Time Approach to Short-Term Scheduling of Resource-Constrained Multi-
stage Flowshop Batch Facilities. Computers & Chemical Engineering. 25(4-
6):701–711.

194

https://web.stanford.edu/~boyd/papers/pdf/pric_learn_unc_dem.pdf
https://web.stanford.edu/~boyd/papers/pdf/pric_learn_unc_dem.pdf
http://www.maplesoft.com/index.aspx


Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; and Leisch, F. 2012.
e1071: Misc Functions of the Department of Statistics (e1071), TU Wien.
R package version 1.6-1.

Miettinen, K. 1999. Multiple Objective Decision Making, Methods and Ap-
plications: A State-of-the-Art Survey, volume 12 of International Series in
Operations Research & Management Science. Kluwer Academic Publishers.
Boston, MA. USA.

Montgomery, D. C., and Runger, G. C. 2003. Applied Statistics and Probability
for Engineers. John Wiley & Sons, Inc., third edition. New York, NY. USA.

Mula, J.; Poler, R.; García-Sabater, J. P.; and Lario, F. C. 2006. Models
for Production Planning under Uncertainty: A Review. The International
Journal of Production Economics. 103(1):271–285.

Nemirovski, A., and Shapiro, A. 2006. Convex Approximations of Chance
Constrained Programs. SIAM Journal on Optimization. 17(4):969–996.

Orçun, S.; Altinel, I. K.; and Hortaçsu, O. 1996. Scheduling of Batch Pro-
cesses with Operational Uncertainties. Computers & Chemical Engineering.
20(2):S1191–S1196.

Pagan, A., and Ullah, A. 1999. Nonparametric Econometrics. Themes in
Modern Econometrics. Cambridge University Press. Cambridge, UK.

Papoulis, A. 1991. Probability, Random Variables and Stochastic Processes.
McGraw-Hill, Inc., third edition. New York, NY. USA.

Pardo, L. 2006. Statistical Inference Based on Divergence Measures. Statis-
tics: A Series of Textbooks and Monographs. Chapman & Hall/CRC. Boca
Raton, FL. USA.

Park, M.; Park, S.; Mele, F. D.; and Grossmann, I. E. 2006. Modeling of
Purchase and Sales Contracts in Supply Chain Optimization. Industrial &
Engineering Chemistry Research. 45(14):5013–5026.

Parzen, E. 2004. Quantile Probability and Statistical Data Modeling. Statis-
tical Science. 19(4):652–662.

Pasche, M. 1998. Markup Pricing and Demand Uncertainty. Technical report,
Friedrich-Schiller-Universität Jena, Wirtschaftswissenschaftliche Fakultïät.
URL: http://EconPapers.repec.org/RePEc:jen:jenavo:1997-08. Ac-
cessed on October 19, 2014.

Paulk, M. C.; Weber, C. V.; and Chrissis, M. B. 1993. The Capability Maturity
Model for Software, Version 1.1. Software Engineering Institute. Carnegie
Mellon University. Pittsburgh, PA. USA.

195

http://EconPapers.repec.org/RePEc:jen:jenavo:1997-08


Phillips, R. L. 2005. Pricing and Revenue Optimization. Stanford Business
Books – Stanford University Press. Palo Alto, CA. USA.

Pinedo, M. L. 2009. Planning and Scheduling in Manufacturing and Services.
Springer Science+Business Media, LLC., second edition. New York, NY.
USA.

Pinto-Varela, T.; Barbosa-Povoa, A. P. F. D.; and Novais, A. Q. 2009. Design
and Scheduling of Periodic Multipurpose Batch Plants under Uncertainty.
Industrial & Engineering Chemistry Research. 48(21):9655–9670.

Pochet, Y., and Wolsey, L. A. 2006. Production Planning by Mixed Integer
Programming. Springer Science+Business Media, LLC. New ork, NY. USA.

Powell, W. B. 2011. Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley Series in Probability and Statistics. John Wiley
& Sons, Inc., second edition. Hoboken, NJ. USA.

Prékopa, A. 1970. On Probabilistic Constrained Programming. Proceedings
of the Princeton Symposium on Mathematical Programming. Princeton Uni-
versity Press, Princeton, NJ. 113–138.

Prékopa, A. 1995. Stochastic Programming. Mathematics and Its Applications.
Kluwer Academic Publishers. Dordrecht, The Netherlands.

Quesada, I., and Grossmann, I. E. 1992. An LP/NLP Based Branch and
Bound Algorithm for Convex MINLP Optimization Problems. Computers
& Chemical Engineering. 16(10-11):937–947.

R Core Team. 2015. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. http:
//www.R-project.org/.

Racine, J. S. 2008. Nonparametric Econometrics: A Primer, volume 3(1).
Foundations and Trends R© in Econometrics. Hoboken, NJ. USA.

Rey, T.; Kordon, A.; and Wells, C. 2012. Applied Data Mining for Forecasting
Using SAS R©. SAS Institute, Inc. Cary, NC. USA.

Richards, F. J. 1959. A Flexible Growth Function for Empirical Use. Journal
of Experimental Botany. 10(2):290–301.

Rios, L. M., and Sahinidis, N. V. 2013. Derivative-Free Optimization: A Re-
view of Algorithms and Comparison of Software Implementations. Journal
of Global Optimization. 56(3):1247–1293.

Rockafellar, R. T., and Uryasev, S. 2000. Optimization of Conditional Value-
at-Risk. Journal of Risk. 2:21–41.

196

http://www.R-project.org/
http://www.R-project.org/


Rodríguez, M. A., and Vecchietti, A. 2009. Logical and Generalized Dis-
junctive Programming for Supplier and Contract Selection under Provision
Uncertainty. Industrial & Engineering Chemistry Research. 48(11):5506–
5521.

Rodríguez, M. A., and Vecchietti, A. 2012. Mid-Term Planning Optimiza-
tion Model with Sales Contracts under Demand Uncertainty. Computers &
Chemical Engineering. 47(1):227–236.

Roelofs, M., and Bisschop, J. 2015. Advanced Interactive Multidimensional
Modeling System (AIMMS). http://www.aimms.com/.

Rosa, C. H., and Ruszczyński, A. 1996. On Augmented Lagrangian Decompo-
sition Methods for Multistage Stochastic Programs. Annals of Operations
Research. 64(1):289–309.

Ruszczyński, A. 1997. On Augmented Lagrangian Decomposition Methods for
Multistage Stochastic Programs. Mathematical Programming. 79(1-3):333–
353.

Sahinidis, N. V.; Grossmann, I. E.; Fornari, R. E.; and Chathrathi, M. 1989.
Optimization Model for Long Range Planning in the Chemical Industry.
Computers & Chemical Engineering. 13(9):1049–1063.

Sahinidis, N. V. 2004. Optimization Under Uncertainty: State-of-the-Art and
Opportunities. Computers & Chemical Engineering. 28(6-7):971–983.

Sarykalin, S.; Serraino, G.; and Uryasev, S. 2008. Value-at-Risk vs. Con-
ditional Value-at-Risk in Risk Management and Optimization. In Chen,
Z.-L., and Raghavan, S., eds., Tutorials in Operations Research. INFORMS.
270–294.

SAS Institute, I. 2015. SAS R© 9.3. SAS Institute, Inc., Cary, North Carolina,
United States. http://www.sas.com/.

Sawaya, N. 2006. Reformulations, Relaxations and Cutting Planes for Gener-
alized Disjunctive Programming. Ph.D. Dissertation, Carnegie Mellon Uni-
versity.

Scott, D. W. 1992. Multivariate Density Estimation: Theory, Practice, and
Visualization. Probability and Statistics. John Wiley & Sons, Inc. New
York, NY. USA.

Shapiro, A. 2006. On Complexity of Multistage Stochastic Programs. Opera-
tions Research Letters. 34(1):1–8.

Shimizu, K.; Ishizuka, Y.; and Bard, J. F. 1997. Nondifferentiable and Two-
Level Mathematical Programming. Kluwer Academic Publishers. Dordrecht,
The Netherlands.

197

http://www.aimms.com/
http://www.sas.com/


Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis.
Monographs on Statistics & Applied Probability. Chapman & Hall/CRC.
London, UK.

Simonovic, S. P., and Srinivasan, R. 1993. Explicit Stochastic Approach for
Planning the Operation of Reservoirs for Hydropower Production. In Ex-
treme Hydrological Events: Precipitation, Floods and Droughts (Proceedings
of the Yokohama Symposium), number 213, 349–359. Yokohama, Japan:
International Association of Hydrological Sciences (IAHS).

StataCorp LP. 2015. Stata 13. StataCorp LP., College Station, Texas, United
States. http://www.stata.com/.

Stubbs, E. 2011. The Value of Business Analytics: Identifying the Path to
Profitability. Wiley and SAS Business Series. John Wiley & Sons, Inc. Hobo-
ken, NJ. USA.

Sundaramoorthy, A.; Evans, J. M. B.; and Barton, P. I. 2012. Capacity Plan-
ning under Clinical Trials Uncertainty in Continuous Pharmaceutical Manu-
facturing, 1: Mathematical Framework. Industrial & Engineering Chemistry
Research. 51(42):13692–13702.

Sung, C., and Maravelias, C. T. 2007. Production Planning in Process Sys-
tems Engineering. In Pistikopoulos, E. N.; Georgiadis, M. C.; Dua, V.;
and Papageorgiou, L. G., eds., Process Systems Engineering: Supply Chain
Optimization, volume 4. Weinheim, Germany: Wiley-VCH Verlag GmbH &
Co. KGaA. chapter 9.

Sutiene, K., and Pranevicius, H. 2007. Scenario Generation Employing Copu-
las. Proceedings of the World Congress on Engineering. Volume II. 777–784.

Taha, H. A. 2010. Operations Research: An Introduction. Pearson Education,
Inc., tenth edition. Upper Saddle River, NJ. USA.

Talluri, K. T., and van Ryzin, G. J. 2005. The Theory and Practice of Revenue
Management. Springer Science+Business Media, Inc. New York, NY. USA.

Tawarmalani, M., and Sahinidis, N. 2005. A Polyhedral Branch-and-Cut
Approach to Global Optimization. Mathematical Programming 103:225–249.

Terrazas-Moreno, S.; Trotter, P. A.; and Grossmann, I. E. 2011. Temporal
and Spatial Lagrangean Decompositions in Multi-Site, Multi-Period Produc-
tion Planning Problems with Sequence-Dependent Changeovers. Computers
& Chemical Engineering. http://dx.doi.org/10.1016/j.compchemeng.
2011.01.004.

The MathWorks Inc. 2015. MATLAB R© R2013a. The MathWorks Inc., Natick,
Massachusetts, United States. http://www.mathworks.com/.

198

http://www.stata.com/
http://dx.doi.org/10.1016/j.compchemeng.2011.01.004
http://dx.doi.org/10.1016/j.compchemeng.2011.01.004
http://www.mathworks.com/


Thiele, A. 2005. Multiperiod Pricing via Robust Optimization. Technical
Report 05T-006, Department of Industrial and Systems Engineering, Lehigh
University.

Thomé, A. M. T.; Scavarda, L. F.; Fernandez, N. S.; and Scavarda, A. J.
2012. Sales and Operations Planning: A Research Synthesis. International
Journal of Production Economics. 138(1):1–13.

Tong, H. 1993. Non-Linear Time Series: A Dynamical System Approach.
Oxford Statistical Science Series. Oxford, UK.

Tsay, A. A.; Nahmias, S.; and Agrawal, N. 1999. Modeling Supply Chain
Contracts: A Review. In Tayur, S.; Ganeshan, R.; and Magazine, M., eds.,
Quantitative Models for Supply Chain Management, volume 17 of Interna-
tional Series in Operations Research & Management Science. Springer US.
299–336.

van der Vaart, A. W. 1998. Asymptotic Statistics. Cambridge Series in Statisti-
cal and Probabilistic Mathematics. Cambridge University Press. Cambridge,
UK.

Varma, V. A.; Reklaitis, G. V.; Blau, G. E.; and Pekny, J. F. 2007. Enterprise-
wide Modeling & Optimization – An Overview of Emerging Research Chal-
lenges and Opportunities. Computers & Chemical Engineering. 31(5-6):692–
711.

Verderame, P. M.; Elia, J. A.; Li, J.; and Floudas, C. A. 2010. Planning and
Scheduling under Uncertainty: A Review Across Multiple Sectors. Industrial
& Engineering Chemistry Research. 49(9):3993–4017.

Wassick, J. M. 2009. Enterprise-wide Optimization in an Integrated Chemical
Complex. Computers & Chemical Engineering. 33(12):1950–1963.

Wied, D., and Weißbach, R. 2012. Consistency of the Kernel Density Estima-
tor: A Survey. Statistical Papers. 53(1):1–21.

Xu, D.; Chen, Z.; and Yang, L. 2012. Scenario Tree Generation Approaches
using K-means and LP Moment Matching Methods. Journal of Computa-
tional and Applied Mathematics. 236(17):4561–4579.

You, F.; Grossmann, I. E.; and Wassick, J. M. 2011. Multisite Capacity,
Production, and Distribution Planning with Reactor Modifications: MILP
Model, Bilevel Decomposition Algorithm versus Lagrangean Decomposition
Scheme. Industrial & Engineering Chemistry Research. 50(9):4831–4849.

You, F.; Wassick, J. M.; and Grossmann, I. E. 2009. Risk Management for a
Global Supply Chain Planning under Uncertainty: Models and Algorithms.
AIChE Journal. 55(4):931–946.

199



Zhou, A.; Qu, B.-Y.; Li, H.; Zhao, S.-H.; Suganthan, P. N.; and Zhang, Q.
2011. Multiobjective Evolutionary Algorithms: A Survey of the State of the
Art. Swarm and Evolutionary Computation. 1(1):32–49.

200



Appendices

Appendix A Hybrid BD-TLD
A.1 Data for Example 1
The following tables contain all the data for Example 1.

Table A.1: Product-Group mapping.

Product Group
A G1
B G1
C G2
D G2
E G2

Table A.2: Processing data where the acronyms have the following meanings:
batch size (BS), batches per hour (BPH), and scale-up cost (SUC).

Product Unit Plant BS [MT] BPH [hr−1] SUC [$] Amt. [MT]
A U11 P1 3 0.20 50,000 100,000
B U11 P1 4 0.20 50,000 -
C U11 P1 2 0.20 50,000 100,000
D U11 P1 2 0.20 50,000 100,000
E U11 P1 2 0.21 50,000 100,000
A U12 P1 2 0.20 50,000 -
B U12 P1 3 0.20 50,000 100,000
C U12 P1 3 0.20 50,000 -
D U12 P1 4 0.20 50,000 100,000
E U12 P1 3 0.20 50,000 100,000
A U21 P2 4 0.20 50,000 100,000
B U21 P2 2 0.20 - 100,000
C U21 P2 2 0.20 50,000 100,000
D U21 P2 2 0.25 50,000 -
E U21 P2 4 0.25 50,000 100,000
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Table A.3: Product demands.

Customer Product Demand [MT]
C2 A 25
C3 A 15
C1 A 20
C1 B 125
C3 B 25
C2 B 60
C2 C 25
C1 C 45
C3 C 10
C1 D 90
C2 D 65
C3 D 0
C1 E 40
C3 E 20
C2 E 75
C2 G 50
C1 G 60
C3 G 75
C2 H 10
C1 H 50
C3 H 75
C3 I 100
C2 I 75
C1 I 50
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Table A.4: Outbound transportation costs. If product-plant-customer tuple is
not listed, then the shipment is not allowed.

Product From Plant Customer Cost [$/MT]
A P2 C2 65
A P1 C3 94
A P1 C2 95
B P1 C3 60
B P2 C1 68
B P1 C2 85
B P2 C2 0
B P1 C1 78
C P1 C3 28
C P1 C2 0
C P1 C1 80
D P1 C2 0
D P1 C1 35
D P1 C3 33
E P2 C1 45
E P2 C2 170
E P2 C3 145
E P1 C1 30
E P1 C2 45
G P1 C1 0
G P1 C2 255
G P2 C2 70
G P2 C1 75
G P1 C3 210
H P1 C3 200
H P1 C2 140
H P2 C1 20
H P2 C2 65
H P2 C3 70
I P2 C3 128
I P1 C2 190
I P2 C1 0
I P1 C1 0
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Table A.5: Inbound transportation costs.

Plant Raw Material Cost [$/MT]
P1 RA 1,500
P1 RB 800
P1 RC 1,300
P2 RA 500
P2 RB 1,100
P2 RC 2,000

Table A.6: Plant-to-Plant transportation costs.

From Plant To Plant Cost [$/MT]
P1 P2 55
P2 P1 50

Table A.7: Operating costs.

Unit Plant Cost [$/MT]
U11 P1 35
U12 P1 30
U21 P2 32

Table A.8: Plants’ capacities.

Plant Max Capacity [MT]
P1 14,500
P2 8,500
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Table A.9: Bill of materials for finished products. The column Unit Ratio
represents the parameter CRRril. If plant-raw material-product-unit ratio
tuple is not listed, then the unit ratio is zero.

Plant Raw Material Product Unit Ratio
P1 RB A 0.02
P1 RC A 0.30
P2 RB A 0.01
P2 RC A 0.25
P1 RA B 0.04
P2 RA B 0.01
P2 RB B 0.19
P2 RC B 0.01
P1 RA C 0.15
P1 RB C 0.09
P1 RC C 0.01
P2 RA C 0.15
P2 RB C 0.09
P2 RC C 0.01
P1 RA D 0.19
P1 RB D 0.01
P1 RC D 0.50
P2 RA D 0.19
P2 RB D 0.01
P2 RC D 0.50
P1 RA E 0.02
P1 RB E 0.07
P1 RC E 0.30
P2 RA E 0.21
P2 RB E 0.01
P2 RC E 0.08
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Table A.10: Bill of materials for blended products. The column Unit Ratio
represents the parameter BRii′l. If plant-product-blend tuple is not listed,
then the unit ratio is zero.

Plant Raw Material Product Unit Ratio
P1 A G 0.67
P1 B G 0.33
P1 C H 0.4
P1 D H 0.6
P1 B I 0.5
P1 D I 0.5
P2 A G 0.2
P2 E G 0.8
P2 B I 0.65
P2 C I 0.25
P2 B H 0.53
P2 E H 0.47

Table A.11: Changeover times [hr] (costs [$]) between groups of products.

Unit: U11 G1 G2
G1 0.75 (75) 3 (300)
G2 2 (200) 0.75 (75)

Unit: U12 G1 G2
G1 0.75 (75) 3 (300)
G2 2 (200) 0.75 (75)

Unit: U21 G1 G2
G1 0.72 (72) 3.3 (330)
G2 2.2 (220) 0.72 (72)

The remainder of the data is as follows: the maximum number of scale-up
assignments per plant is 500, the maximum number of scale-up assignments per
product is 5, the upper bounds on finished and blended products inventories
are 10,000 MT and all inventory costs are $1,000.

Appendix B Data-Driven Scenario Genera-
tion

B.1 Data for Example 1
The production yield data were randomly generated using the R program-
ming language version 3.0.1 (R Core Team, 2015). In particular, the library
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PearsonDS (Becker & Klößner, 2013) was used to generate 120 random num-
bers sampled from a Pearson distribution with given mean, variance, skewness,
and kurtosis. The four moments of the generated data were calculated using
functions of the library e1071 (Meyer et al., 2012). The code in Listing B.1
can be used to reproduce the yield data in Example 1.
l i b r a r y (PearsonDS )
l i b r a r y ( e1071 )
moments <− c (mean=0.7 , var i ance=0.02 , skewness=−1, ku r t o s i s =4)
s e t . s e e d (1234)
v <− rpearson (10 ∗ 12 , moments=moments )
data.min <− min(v )
data.max <− max(v )
data.mean <− mean(v )
data .var <− var (v )
data.dskew <− skewness ( v ) ∗ data .var ^1 . 5 # Denormalized skewness
data .dkurt <− ( ku r t o s i s ( v ) + 3) ∗ data .var ^2 # Denormalized k u r t o s i s

Listing B.1: R code to generate production yield data and their moments for
Example 1.

Only the first two moments and the ECDF information were considered in
the DMPs. The weights for the moments were chosen such that the weight
of the mean is the same as the weight of the variance, that is wi,k = 1.0/M2

i,k

and wi,k = 1.0/|Mi,k| for L2 DMP and L1 DMP, respectively. The weights
for the deviations from the approximation to the ECDF are ωi,j = 0.1. The
ECDF data were estimated in MATLAB (The MathWorks Inc., 2015) with the
function ecdf and a simplified GLF (β0 = 0 and β1 = 1) was fit to the ECDF
data by using the function lsqcurvefit with the following options: 10,000
maximum function evaluations (MaxFunEvals), 10,000 maximum iterations
(MaxIter), 10−12 function tolerance (TolFun), exact Jacobian. Initial guesses
for the parameters β2, β3, and β4 were 100, 10, and 1, respectively.

The parameters for the production planning LP model are given in the
following tables.

Table B.1: First-stage production yield (θf at t = 1) [-]. For facilities P2 and
P3, the yields remain the same at the second stage.

Facility Group
P1 0.85
P2 0.7
P3 0.9
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Table B.2: Product demand (ξm,t) [t].

Product Time Period
1 2 3 4

C 20 10 15 17
D 15 7 12 10

Table B.3: Maximum inventory (winv,max
m,t ) [t].

Product Time Period
1 2 3 4

D 6 6 6 6

Table B.4: Maximum (minimum) capacity (wmin
f,t and wmax

f,t ) [t].

Facility Time Period
1 2 3 4

P1 20 (5) 20 (5) 20 (5) 20 (5)
P2 18 (0) 18 (0) 18 (0) 18 (0)
P3 19 (2) 19 (2) 19 (2) 19 (2)

Table B.5: Selling price (SPm,t) [$/t].

Product Time Period
1 2 3 4

C 1.75 1.75 1.71 1.71
D 1.10 1.10 1.18 1.18

Table B.6: Operating cost (OPCf,t) [$/t].

Facility Time Period
1 2 3 4

P1 0.26 0.26 0.14 0.14
P2 0.16 1.16 0.13 0.13
P3 0.32 0.32 0.32 0.32

Table B.7: Purchase cost (PCm,t) [$/t].

Product Time Period
1 2 3 4

A 0.05 0.05 0.05 0.05
C 1.00 1.00 1.00 1.00
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Table B.8: Inventory cost (ICm,t) [$/t].

Product Time Period
1 2 3 4

D 0.03 0.03 0.03 0.03

Table B.9: Raw material availability (xpurch,max
A,t ) [t].

Raw Material Time Period
1 2 3 4

A 30 25 27 23

The penalties for unmet demand (PENm,t), and maximum capacity and
minimum capacity violations (PENf,t) are 10 times the selling prices, and
proportional to the operating costs, respectively.

B.2 Data for Example 2
Time series modeling and forecasting were implemented in the R programming
language (R Core Team, 2015). For demonstration purposes, only ARIMA
models (see Appendix B.3) were fit to the time series data. The library used
for fitting ARIMA models is called forecast (Hyndman et al., 2014). In
particular, the function auto.arima was used to automatically determine the
best ARIMA model that fits the data according to the default information
criterion (Akaike Information Criterion, AIC). Seasonality effects were allowed
and no hold out sample was considered in the fitting process. The time series
demand data for both products C and D were then modeled as ARIMA(1,0,0)
processes with non-zero means. Future values were predicted with 95% level
of confidence using the predict function in the stats library, which is part
of R.

The constant variance of ARIMA models was estimated by the sigma2
attribute of the ARIMA object. For the LP Approach in Subsection 3.4.2,
the standard error of a forecast was estimated by setting the value of the
argument se.fit of the predict function to TRUE. Covariance information
was estimated through R’s builtin function ccf, which estimates the cross-
covariance function of two time series data at different lags. Since the NLP
Approach involves alternating one-step-ahead forecasting with optimization,
the estimated covariance corresponds to the lag 1 outcome of function ccf.

The parameters for the production planning LP model are the same as the
data given in tables Tables B.3 to B.9. In addition, the production yield for all
time periods are the same as those given in Table B.1. The product demand for
every stage in each scenario tree is generated as described in Subsection 3.4.3.

B.3 Time Series Analysis and Scenario Generation
An overview of time series analysis is given in Subsection 1.2.2. In this ap-
pendix, we illustrate the use of time series modeling in the context of scenario
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tree generation.
Figure B.1 shows a schematic of how time series forecasting can be used

when generating a scenario tree for a stochastic process. Figure B.1(a) shows
time series data, represented by the black squares in the “past” region, a model
fit to the data in the blue line across the markers, and point forecasts as the
red circles in the “future” region. Possibly, additional nodes above and below
the base node are added to each stage and they represent different outcomes
of the stochastic process in a real-world problem. By connecting each parent
node to its descendants, a scenario tree is obtained as shown in Figure B.1(b).
Note that nodes pertaining to the third and beyond stages can overlap, thus
resembling a mesh.

(a) Time series model fit to historical data
and used for forecasting.

(b) Scenario tree generated from forecasts.

Figure B.1: Using time series forecasting to generate a scenario tree for a
stochastic process. CI denotes the confidence interval estimated at each fore-
cast, respectively.

B.4 Assessing Solution Quality in Stochastic Program-
ming

In this section, we review two approaches based on Monte Carlo simulation
and the Sample Average Approximation (SAA) to assess the quality of the
solution in two- and multi-stage stochastic programming. These probabilistic-
and statistics-based approaches can be used to quantify the effectiveness of
the scenario generation scheme since the quality of the scenario tree affects
the quality of the solution.
B.4.1 Two-Stage Stochastic Programs

The Multiple Replications Procedure (MRP) as proposed by Bayraksan &
Morton (2006) is reviewed here.

First, we define the two-stage stochastic programming (TSSP) model as
follows:

z∗ = min
x∈X

Ef(x, ξ̃) (B.1)

where f(·, ·) is a real-valued function that determines the cost of operating with
decision x under a realization of the random vector ξ̃. X ⊆ Rd denotes the set
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of constraints that the decision vector x must obey and E is the expectation
operator. For linear and continuous SP problems with recourse, we have:

f(x, ξ̃) = cx + min
y≥0

q̃y

s.t. W̃y = r̃ − T̃ x

where X = {x : Ax = b, x ≥ 0} and ξ̃ = (W̃ , q̃, r̃, T̃ ) is a random vector.
Let ξ̃1, ξ̃2, . . . , ξ̃n be independent and identically distributed (i.i.d.) out-

comes generated from the distribution of ξ̃ or some data-generating mecha-
nism. Given a feasible, candidate solution x̂ and a sample size n, we bound
the optimal value of problem (B.1) in the following manner: the upper bound
is given by the evaluation of the candidate solution at each realization ξ̃j gen-
erated, and the lower bound is obtained by solving the SAA problem that
approximates the original SP problem, i.e., an approximate “true” solution.
The difference between the upper and lower bounds is denoted the optimality
gap, which can be written mathematically as follows:

Gn(x̂) = 1
n

n∑
j=1

f(x̂, ξ̃j)−min
x∈X

1
n

n∑
j=1

f(x, ξ̃j) (B.2)

The first and second terms on the right-hand side of equation (B.2) are
the upper and lower bound estimates on z∗, respectively. The procedure of
calculating the gap Gn(x̂) with different samples of ξ̃j is replicated ng times in
order to compute an average gap, Ḡ(ng), and its one-sided confidence interval.
This procedure, called Multiple Replications Procedure (MRP), is formalized
below and illustrated in Figure B.2.
Input: Significance level α (e.g., α = 0.05 for 95% confidence), sample size n,
number of replications ng, and a candidate solution x̂ ∈ X
Output: (1− α)-level confidence interval on µx̂

1. For i = 1, 2, . . . , ng

1.1 Sample i.i.d. observations ξ̃i1, ξ̃i2, . . . , ξ̃in from the distribution of ξ̃
1.2 Solve (SPin) using ξ̃i1, ξ̃i2, . . . , ξ̃in to obtain xi∗n
1.3 Calculate Gi

n(x̂) = 1
n

∑n
j=1

(
f(x̂, ξ̃ij)− f(xi∗n , ξ̃ij)

)
2. Calculate gap estimate and sample variance by

Ḡ(ng) = 1
ng

ng∑
i=1

Gi
n(x̂) and s2

G(ng) = 1
ng − 1

ng∑
i=1

(
Gi
n(x̂)− Ḡ(ng)

)2

3. Output one-sided CI on µx̂[
0, Ḡ(ng) + tng−1,α

sG(ng)√
ng

]
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Figure B.2: Schematic of the Multiple Replications Procedure (MRP) to assess
the quality of two-stage stochastic programming solutions.

B.4.2 Multi-Stage Stochastic Programs
The Procedure P2 as proposed in Chiralaksanakul & Morton (2004) is

reviewed here.
First, some notation for multi-stage stochastic programming (MSSP) prob-

lems. We consider a T -stage stochastic program in which a sequence of deci-
sions, {xt}Tt=1, is made with respect to a stochastic process, {ξ̃t}Tt=1, as follows:
at stage t, the decision xt ∈ Rdt is made with only the knowledge of past
decisions, x1, . . . , xt−1, and of realized random vectors, ξ̃1, . . . , ξ̃t, such
that the conditional expected value of an objective function given the history,
ξ̃1, . . . , ξ̃t, is minimized. A superscript t on an entity denotes its history
through stage t, e.g., ξ̃t = (ξ̃1, . . . , ξ̃t) and xt = (x1, . . . , xt). Decision xt is
subject to constraints that may depend on x1, . . . , xt−1 and ξ̃1, . . . , ξ̃t. The
requirement that decision xt not depend on future realizations of ξ̃t+1, . . . , ξ̃T
is known in the stochastic programming literature as nonanticipativity.

A T -stage stochastic linear program can be expressed in the following form:

min
x1

c1x1 + E
[
h1(x1, ξ̃

2)|ξ̃1
]

s.t. A1x1 = b1

x1 ≥ 0
(B.3)

where, for t = 2, . . . , T ,

ht−1(xt−1, ξ̃
t) = min

xt
c̃txt + E

[
ht(xt, ξ̃t+1)|ξ̃t

]
s.t. Ãtxt = b̃t − B̃txt−1

xt ≥ 0
(B.4)

and hT (·, ·) = 0. The random vector ξ̃t consists of the random elements from
(Ãt, B̃t, b̃t, c̃t). Relatively complete recourse is assumed to hold for problems
(B.3) and (B.4).
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For problems where the stochastic process {ξ̃t}Tt=1 is interstage dependent,
the procedure to generate a feasible policy for the MSSP is as follows. For a
given ξ̃t, we obtain x̂t(ξ̃t) by solving an approximating problem (from stage
t to T ) based on an independently-generated sample subtree, denoted Γr(ξ̃t)
(the ‘r’ subscript stands for “rolling”). Specifically, for a given ξ̃t and xt−1,
Γr(ξ̃t) is constructed via a conditional sampling procedure. Then, x̂t(ξ̃t) is
defined as an optimal solution of the approximating problem (SAA) of (B.3)
and (B.4).

The policy-generation Procedure P2 is formally described as follows.

Given sample path ξ̃T ,
Do t = 1 to T

Independently construct a sample subtree Γr(ξ̃t).
Solve approximating problem (SAA) with xt−1 equal to x̂t−1(ξ̃t−1), and

denote its optimal solution x̂t(ξ̃t).

Figure B.3 illustrates the procedure. A candidate first-stage solution is
obtained by solving the MSSP problem using a given scenario tree, for ex-
ample, from solving one of the Distribution Matching Problems proposed in
this paper. Then, these first-stage decisions are fixed into the approximating
problem (SAA) whose subtrees have been conditionally sampled (step (a)).
The SAA problem is solved and its solution is stored. In step (b), the deci-
sions and subtrees up until the second stage are fixed to the respective stored
values, the subtrees of subsequent stages are conditionally sampled, and the
SAA is resolved. In the last step to obtain a candidate solution (step (c)),
all decisions and subtrees for all stages until T − 1 are fixed, subtrees for the
last stage T are conditionally sampled, and the SAA problem is solved. This
candidate solution corresponds to an upper bound on the solution of the orig-
inal MSSP problem. The lower bound on the objective function value of the
original MSSP problem (step (d)) corresponds to the solution of the the ap-
proximating problem with the same subtrees used in step (c) and with no fixed
decisions. The difference between the two bounds is defined as the optimality
gap. By replicating this procedure ng times, an average gap and its one-sided
confidence interval can be calculated.
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Figure B.3: Schematic of the policy-generation Procedure P2 to assess the
quality of multi-stage stochastic programming solutions. In this figure, Γ(r)

t

denotes the set of subtrees conditionally sampled from stage t at step r.

Appendix C Data-Driven Chance Con-
straints

C.1 Motivation of Chance-Constrained Optimization
We use the deterministic linear optimization model in equation (C.1) to illus-
trate the classical approach to optimization with individual and joint chance
constraints (ICCs and JCCs) with right-hand side (RHS) uncertainty. The
feasible region and optimal solution are shown in Figure C.1.

max
x1,x2

z = x1 + x2 (C.1a)

s.t. 1
3x1 + x2 ≤ 4 (C.1b)
3
2x1 + x2 ≤

15
2 (C.1c)

x1, x2 ≥ 0 (C.1d)
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Figure C.1: Feasible region (grey area delimited by polytope in solid black
lines) and optimal solution (red filled circle, x∗ = (3, 3)) for the deterministic
linear optimization model in equation (C.1). Dashed blue lines are the contours
of the objective function.

Suppose the right-hand sides of constraints in equations (C.1b) and (C.1c)
are uncertain parameters. For demonstration purposes, let ξ̃1 ∼ N(4, 1) and
ξ̃2 ∼ N

(
15
2 , 2

)
be normally distributed RHS uncertain parameters, which are

centered in the previously deterministic values. For specified individual and
joint risk levels (e.g., α1, α2, and α), the corresponding ICCs are given by,

P
{1

3x1 + x2 ≤ ξ̃1

}
≥ 1− α1 (C.2)

P
{3

2x1 + x2 ≤ ξ̃2

}
≥ 1− α2 (C.3)

while the JCC can be written as,

P


1
3x1 + x2 ≤ ξ̃1

3
2x1 + x2 ≤ ξ̃2

 ≥ 1− α (C.4)

In order to reformulate the ICCs in equations (C.2) and (C.3) into algebraic
constraints, notice that they model the following situation: “the probability of
a random variable ξ̃1 (ξ̃2) to attain a value of at least the left-hand side 1

3x1+x2
(3

2x1 +x2) has to be greater than or equal to 1−α1 (1−α2)”. Mathematically,
this is equivalent to requiring that the survival function (Evans, Hastings, &
Peacock, 2000) of each random variable evaluated at the left-hand side has to
be greater than or equal to the confidence level. In the univariate case, the
survival function is the complement of the cumulative distribution function
(CDF), which is denoted by F (·). In other words, the survival function is
equivalent to 1− F (·). Thus, for the ICC in equation (C.2), we have that

1− Fξ̃1

(1
3x1 + x2

)
≥ 1− α1

Fξ̃1

(1
3x1 + x2

)
≤ α1

215



or
1
3x1 + x2 ≤ F−1

ξ̃1
(α1) (C.5)

and similarly for the ICC in equation (C.3), we have that

3
2x1 + x2 ≤ F−1

ξ̃2
(α2) (C.6)

where F−1
ξ̃1

(·) and F−1
ξ̃2

(·) are the inverse CDFs (quantile functions) of the
random variables ξ̃1 and ξ̃2, respectively. Note that the linearity of the original
constraints is preserved.

The same inversion cannot be used in the multivariate case to reformulate
JCCs into algebraic constraints. From the definition of multivariate CDFs, the
JCC in equation (C.4) can be rewritten as follows∫ ∞

1
3x1+x2

∫ ∞
3
2x1+x2

fξ̃1,ξ̃2
(ξ1, ξ2)dξ2dξ1 ≥ 1− α (C.7)

where fξ̃1,ξ̃2
(·, ·) is the joint probability density function (PDF) of ξ̃1 and ξ̃2.

Since we assumed that the random variables are Gaussian, then the joint PDF
in this case is a bivariate normal Gaussian PDF. Unlike in the case with ICCs,
the linearity of the original constraints is not preserved in the JCC formulation.

Figure C.2 shows a schematic of the results of the linear optimization model
with constraints in equations (C.1b) and (C.1c) replaced by equations (C.5)
and (C.6) for decreasing values of the individual risk levels. Note that by
decreasing them, the feasible region becomes smaller, and the solution becomes
increasingly conservative. A similar conclusion can be drawn from Figure C.3
for the JCC case by replacing constraints in equations (C.1b) and (C.1c) by
equation (C.7).

Figure C.2: Schematic of deterministic feasible region (grey area), optimal
solutions (filled circles), and the new feasible regions (polytopes delimited by
solid black lines) of the optimization model with ICCs for different values
of individual risk levels: (a) α1 = α2 = 0.1, (b) α1 = α2 = 0.05, and (c)
α1 = α2 = 0.01.
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Figure C.3: Schematic of deterministic feasible region (grey area), optimal
solutions (filled circles), and the new feasible regions (delimited by curved
solid black lines) of the optimization model with JCC for different values of
joint confidence levels: (a) 1−α = 0.9, (b) 1−α = 0.95, and (c) 1−α = 0.99.

The accuracy of the reformulated ICCs and JCCs depends on the choice
of probability distribution models. The classical approach may encounter lim-
itations in cases when parametric models do not fit well available data for the
uncertain parameters, or when distributions are more complex (e.g., multi-
modal). This motivates the use of data-driven approaches that weaken the
modeling assumptions for the uncertainty.

C.2 Derivation of Bound on ICC Risk Levels for Equiv-
alent JCC

The motivation behind deriving inequality (4.17) is to approximate a joint
chance constraint (JCC) by corresponding individual chance constraints
(ICCs). Let Aj be a Boolean expression, an event, or a set that corresponds to
a constraint in a chance-constrained formulation (e.g., Aj ≡ gj(x, ξ̃j) ≥ 0), and
Acj its complement (e.g., Acj ≡ gj(x, ξ̃j) < 0). In other words, we wish to ap-
proximate the JCC P{∩j∈JAj} ≥ 1−αJCC by ICCs P{Aj} ≥ 1−αICC

j , ∀j ∈ J .
The derivation answers the following question: given αJCC, how should one set
αICC
j in order to obtain the aforementioned approximation?
We derive equation (4.17) by showing that the joint risk level of a JCC is

a conservative upper bound on the summation of risk levels of corresponding
individual ICCs. One can then write

P {Aj} ≥ 1− αICC
j j = 1, . . . , m

P
{
Acj
}
≤ αICC

j j = 1, . . . , m

From Boole’s Inequality (a special case of Bonferroni’s Inequalities (Bonferroni,
1936)), we have that

P

⋃
j∈J

Acj

 ≤∑
j∈J

P
{
Acj
}

Note that the right-hand side of the Boole’s Inequality corresponds to the
summation of the probabilities of individual events, i.e., the summation of the
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individual risk levels (αICC
j ) of the ICCs. Next, applying one of De Morgan’s

Laws (Goodstein, 2007) to the left side of Boole’s Inequality yields

P

⋃
j∈J

Acj

 =
P

⋂
j∈J

Aj


c = 1− P

⋂
j∈J

Aj


Note that the term P {∩j∈JAj} corresponds to the probability of the intersec-
tion of events, i.e., the joint confidence level (1−αJCC) of the JCC. Combining
this result with Boole’s Inequality gives

P

⋂
j∈J

Aj

 ≥ 1−
∑
j∈J

αICC
j (C.8)

For comparison purposes, we repeat the definition of the original JCC as fol-
lows

P

⋂
j∈J

Aj

 ≥ 1− αJCC (C.9)

Note that inequalities (C.8) and (C.9) share the same left-hand side. If we
impose that (inequality (4.17))

αJCC ≥
∑
j∈J

αICC
j

then we will guarantee that the above inequality is a conservative approxima-
tion.

To illustrate, suppose αJCC = 0.1 such that P{∩j∈JAj} ≥ 0.9. Therefore,
the conservative approximation in inequality (4.17) suggests that the values of
the individual risk levels αICC

j are set such that ∑j∈J α
ICC
j ≤ 0.1.

The authors acknowledge Dr. Shabbir Ahmed (School of Industrial & Sys-
tems Engineering at Georgia Institute of Technology) for the insights in the
derivation of this conservative approximation.

C.3 Data for Motivating Example
The kernel density and distribution estimators were obtained in the R program-
ming language (R Core Team, 2015), package np (Hayfield & Racine, 2008).
The Gaussian kernel was used in all estimation computational experiments.
Tables C.1 and C.2 show the bandwidths and reduced risk levels used in the
(PPJCC) model. In order to generate the data for production rates of plants
P2 and P3, we set the seed to 1234. Table C.3 shows the estimated quantiles
used in the (PPICC) model.

Table C.1: Cross-validated bandwidths used in the (PPJCC) model.

Bandwidth n = 365 n = 730
hP2 1.6924 1.3172
hP3 2.0628 1.7151
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Table C.2: Reduced risk levels (α′) obtained with the K-L formula (Table 4.1)
and used in the (PPJCC) model.

Reduced α = 0.10 α = 0.05 α = 0.01
Risk Level n = 365 n = 730 n = 365 n = 730 n = 365 n = 730

α′ 0.0894 0.0924 0.0424 0.0445 0.0068 0.0076

Table C.3: Estimated quantiles for nominal risk levels (α) used in the
(PPICC) model.

Production α = 0.10 α = 0.05 α = 0.01
Quantile n = 365 n = 730 n = 365 n = 730 n = 365 n = 730

F̂−1
w̃rate,max
P2

(α′P2,+) 18.30 15.45 8.07 17.88 14.90 7.82
F̂−1
w̃rate,max
P3

(α′P3,+) 15.73 11.98 3.93 16.86 13.59 4.56

The parameters for the production planning LP model are given in the
following tables.

Table C.4: Production yield (θf ) [-].

Facility Group
P1 0.85
P2 0.7
P3 0.9

Table C.5: Product demand (γm,t) [t].

Product Time Period
1 2 3 4

C 20 10 15 17
D 15 7 12 10

Table C.6: Maximum inventory (winv,max
m,t ) [t].

Product Time Period
1 2 3 4

D 6 6 6 6

Table C.7: Maximum (minimum) capacity (wmin
f and wmax

f ) [t].

Facility Max (Min) Capacity
P1 20 (5)
P2 18 (0)
P3 19 (2)
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Table C.8: Selling price (SPm,t) [$/t].

Product Time Period
1 2 3 4

C 1.75 1.75 1.71 1.71
D 1.10 1.10 1.18 1.18

Table C.9: Operating cost (OPCf,t) [$/t].

Facility Time Period
1 2 3 4

P1 0.26 0.26 0.14 0.14
P2 0.16 0.16 0.13 0.13
P3 0.32 0.32 0.32 0.32

Table C.10: Purchase cost (PCm,t) [$/t].

Product Time Period
1 2 3 4

A 0.05 0.05 0.05 0.05
C 1.00 1.00 1.00 1.00

Table C.11: Inventory cost (ICm,t) [$/t].

Product Time Period
1 2 3 4

D 0.03 0.03 0.03 0.03

Table C.12: Raw material availability (xpurch,max
A,t ) [t].

Raw Material Time Period
1 2 3 4

A 30 25 27 23

The penalties for unmet demand (PENm,t), and maximum capacity and
minimum capacity violations (PENf,t) are 10 times the selling prices, and
proportional to the operating costs, respectively.
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Appendix D Procurement Contracts and
Pricing

D.1 Purchase Contract Mixed-Integer Linear Models
The models for the three contract types (discount, bulk, and fixed duration)
are proposed in Park et al. (2006). In this section, we present the mixed-
integer linear constraints obtained by reformulating the disjunctions using the
convex hull approach. At most one contract type can be selected for a given
raw material j, which is expressed as follows:∑

c∈C
ycj,s,t ≤ 1 ∀ j ∈ JR, s ∈ S, t ∈ t (D.1)

where C = {d, b, l}.
D.1.1 Discount Contract

Contract type c = d and two price schemes, d1 and d2.

COSTd
j,s,t = ϕd1

j,s,tP
d1
j,s,t + ϕd2

j,s,tP
d2
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.2)

P d
j,s,t = P d1

j,s,t + P d2
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.3)

P d1
j,s,t = P

d1,1
j,s,t + P

d1,2
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.4)

0 ≤P d1,1
j,s,t ≤ yd1

j,s,tσ
d
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.5)

P
d1,2
j,s,t = yd2

j,s,tσ
d
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.6)

0 ≤P d2
j,s,t ≤ yd2

j,s,tU
d
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.7)

yd1
j,s,t + yd2

j,s,t = ydj,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.8)

where yd1
j,s,t, y

d2
j,s,t ∈ {0, 1}, and Ud

j,s,t is a number large enough (e.g., process
capacity).
D.1.2 Bulk Discount Contract

Contract type c = b and two price schemes, b1 and b2.

COSTb
j,s,t = ϕb1

j,s,tP
b1
j,s,t + ϕb2

j,s,tP
b2
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.9)

P b
j,s,t = P b1

j,s,t + P b2
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.10)

0 ≤P b1
j,s,t ≤ yb1

j,s,tσ
b
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.11)

yb2
j,s,tσ

b
j,s,t ≤P

b2
j,s,t ≤ yb2

j,s,tU
b
j,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.12)

yb1
j,s,t + yb2

j,s,t = ybj,s,t ∀ j ∈ JR, s ∈ S, t ∈ T (D.13)

where yb1
j,s,t, y

b2
j,s,t ∈ {0, 1}, and U b

j,s,t is a number large enough (e.g., process
capacity).
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D.1.3 Fixed Duration Contract
Contract type c = l and three price-quantity schemes, lp for p ∈ LC = T1:3,

where the notation Tm:n means a subset of the ordered set T containing all its
elements in between and including the m-th and n-th elements. For example,
if T = {1, 2, 3, 4, 5, 6} ⊂ Z, then LC = T1:3 = {1, 2, 3}.

COSTl
j,s,t = ϕl1j,s,tP

l1
j,s,t,t +

∑
p∈LC2:|LC|

∑
t′∈T
t′≤t

t′≥t−lp+1

ϕ
lp
j,s,t′P

lp
j,s,t,t′ ∀ j ∈ JR, s ∈ S, t ∈ T

(D.14)
P l
j,s,t = P l1

j,s,t,t +
∑

p∈LC2:|LC|

∑
t′∈T
t′≤t

t′≥t−lp+1

P
lp
j,s,t,t′ ∀ j ∈ JR, s ∈ S, t ∈ T

(D.15)
y
lp
j,s,tσ

lp
j,s,t ≤P

lp
j,s,t,t′ ≤ y

lp
j,s,tU

l
j,s,t ∀ j ∈ JR, s ∈ S, p ∈ LC,

(t, t′) ∈ T, t′ ≤ t,

t′ ≥ t− lp + 1
(D.16)∑

p∈LC
y
lp
j,s,t = ylj,s,t ∀ j ∈ JR, s ∈ S, t ∈ T

(D.17)

y
lp
j,s,t ≤ 1− ylp′j,s,t′ ∀ j ∈ JR, s ∈ S,

(p, p′) ∈ LC, (t, t′) ∈ T,
t′ < t, t′ ≥ t− lp + 1

(D.18)

where ylpj,s,t ∈ {0, 1}, for p ∈ LC, and U l
j,s,t is a number large enough (e.g.,

process capacity).

D.2 Concavity of Sales Term when using Logit
Demand-Response Model

In this appendix, we show the following result: the function

f(d) = 1
β5

[
ln
(
β3 − d
d

)
− β4

]
d (D.19)

is concave if β3 ·β5 > 0 and β4 ∈ R. This function arises in the sales term (sell-
ing price × sales) when using the logit demand-response model (see Table 6.2).
This is a univariate function, and its concavity can be verified by analyzing
the sign of its second derivative with respect to d evaluated at critical points.
Symbolic calculations were performed with Maple 18.01 (Maplesoft, 2014).

Setting the first derivative of f(d) with respect to d to zero yields

f ′(d) = 1
β5

[
ln
(
β3 − d
d

)
− β4

]
− β3

β5(β3 − d) = 0
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Solving the equation for d gives the single stationary point

d∗ = β3
W
(
e−1−β4

)
1 +W (e−1−β4)

where W (·) is the Lambert W function (Corless et al., 1996) that satisfies the
following equation

W (x)eW (x) = x (D.20)
The second derivative of f(d) with respect to d is given by

f ′′(d) = − β2
3

β5(β3 − d)2d

which evaluated at d∗ yields

f ′′(d∗) = −

[
1 +W

(
e−1−β4

)]3
β3β5W (e−1−β4) ≤ 0 (D.21)

If the relation in equation (D.21) is true, then the stationary point d∗ is a
maximizer of f(d), i.e., f(d) is concave. Let u = e−1−β4 denote the argument
of the Lambert W function in equation (D.21). Note that u is non-negative
for β4 ∈ R. From the definition of W (·) in equation (D.20), since the right-
hand side (u) and the exponential term in the left-hand side (eW (u)) are non-
negative, the first-term in the left-hand side (W (u)) must also be non-negative.
Consequently, the numerator [1 +W (u)]3 is non-negative. Finally, the second
derivative in equation (D.21) is negative if β3 · β5 > 0.

D.3 Data for Example 1
The parameters for the stochastic production planning model (see Subsec-
tion 6.4.4) are given in the following tables. Example 1 considers only a single
site; therefore, in all tables below, s = S1. Inter-site transfer limits and costs
(FU

j,s,s′,t and ηj,s,s′,t) are zero. All scenarios are assumed to have the same
probability, i.e., πk = 0.1, k = 1, . . . , 10.

Table D.1: Deterministic spot market price (αspot
j,s,t) [$/t].

Raw Material Time Period
1 2 3 4 5 6

A 2.91 2.90 4.44 2.83 4.38 5.45

Table D.2: Operating cost (δi,s,t) [$/t].

Process Time Period
1 2 3 4 5 6

P1 0.26 0.26 0.26 0.14 0.14 0.14
P2 0.16 0.16 0.16 0.13 0.13 0.13
P3 0.32 0.32 0.32 0.32 0.32 0.32
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Table D.3: Inventory cost (ξj,s,t) [$/t].

Product Time Period
1 – 6

D 0.03

Table D.4: Mass factor (µi,j,s) [-].

Process Material
A B C D

P1 0.83 −1.00
P2 0.95 −1.00
P3 1.11 −1.00

Table D.5: Production capacity (Qi,s,t) [t].

Process Time Period
1 – 6

P1 85
P2 35
P3 65

Table D.6: Lower (Upper) raw material availability (aLj,s,t and aUj,s,t) [t].

Raw Material Time Period
1 – 6

A 0 (60)

Table D.7: Upper bound on inventory (V U
j,s,t) [t].

Product Time Period
1 – 6

D 6

Table D.8: Purchase price under discount (‘d’) contract type (ψd,csj,s,t for j = A)
[$/t].

Time Period Scheme (cs) Price
1 – 6 1 3.15
1 – 6 2 2.47
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Table D.9: Purchase threshold under discount (‘d’) contract type (σdj,s,t for
j = A) [t].

Time Period Threshold
1 – 6 20

Table D.10: Purchase price under bulk discount (‘b’) contract type (ψb,csj,s,t for
j = A) [$/t].

Time Period Scheme (cs) Price
1 – 6 1 3.06
1 – 6 2 2.38

Table D.11: Purchase threshold under bulk discount (‘b’) contract type (σbj,s,t
for j = A) [t].

Time Period Threshold
1 – 6 40

Table D.12: Purchase price under fixed duration (‘l’) contract type (ψlpj,s,t for
j = A) [$/t].

Length (p) Time Period
1 – 6

1 3.40
2 2.04
3 1.70

Table D.13: Purchase threshold under fixed duration (‘l’) contract type (σlpj,s,t
for j = A) [t].

Length (p) Time Period Threshold
1 1 – 6 5
2 1 – 6 25
3 1 – 6 30

Table D.14: Purchase spot price for the deterministic base case (αspot
j,s,t for

j = A) [$/t].

Time Period
1 2 3 4 5 6

2.90 2.91 4.44 2.83 4.38 5.45
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Table D.15: Sales spot price for the deterministic base case (ψspot
j,t ) [$/t].

Product Time Period
1 2 3 4 5 6

C 2.65 2.87 2.93 2.72 3.35 2.83
D 2.46 2.58 2.94 2.54 2.74 2.99

Table D.16: Stochastic spot market price (αspot
j,s,t,k for j = A) [$/t]. Simulated

values from an ARIMA(0,1,1)(0,1,0)12 time series model.

Time Scenario
Period 1 2 3 4 5 6 7 8 9 10

1 1.37 2.47 4.98 2.57 3.36 1.44 1.96 2.56 6.12 2.27
2 4.02 2.96 4.50 3.20 2.62 0.04 3.28 0.93 3.76 3.83
3 5.97 2.60 4.25 4.93 5.99 0.68 2.41 2.49 7.78 7.26
4 1.01 3.00 3.49 3.43 4.12 1.91 2.11 1.49 4.20 3.51
5 5.55 3.02 4.29 2.96 4.63 2.61 2.52 2.21 7.76 8.23
6 5.49 2.46 8.84 5.16 4.19 5.13 1.29 2.68 10.83 8.47

Appendix E Future Work: Data-Driven
Chance Constraints

In this appendix, we provide an initial sketch for extending the kernel-based
reformulation method for data-driven chance constraints (CCs) proposed in
Chapter 4.

We use the Method of Transformations (Casella & Berger, 2002) in order
to model CCs where the uncertain parameters may not only appear in the
right-hand side (RHS). The basic idea of the method can be summarized as
follows. Suppose that we have a random variable (r.v.) X, taking values in a
set S, and a function r from S into another set T . Then Y = r(X) is a new
r.v. taking values in T . Considering that the distribution of X is known, we
want to find the distribution of Y (see also http://www.math.uah.edu/stat/,
Exploratory Material 2 and Basic Topic 7, for a very good summary of the
topic).

E.1 Linear Chance Constraints
E.1.1 Scalar Random Variables

Let the original CC be Pã {ãx ≤ c} ≥ 1− α, where ã is a continuous r.v.,
x is a continuous decision variable (usually, non-negative), c is a deterministic
parameter, and α is the risk level. Suppose that ã has probability density
function (PDF) f(a) and cumulative distribution function (CDF) F (a). In this
case, we can apply a linear transformation by treating x as a “coefficient” of
the r.v. ã. Introduce the r.v. b̃ = ãx with PDF g(b) and CDF G(b). Therefore,
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the CC becomes Pb̃
{
b̃ ≤ c

}
≥ 1 − α, which seems more tractable than the

original CC, since the new r.v. is not involved in nonlinear terms with decision
variables. To reformulate this new CC, we need to ultimately invoke the CDF
of b̃. By applying the Change of Variables formula, it can be shown that

g(b) = 1
|x|
f

(
b

x

)
(E.1)

G(b) = x

|x|
F

(
b

x

)
= 1
|x|
xF

(
b

x

)
(E.2)

The term xF (b/x) corresponds to the perspective of the CDF of the original
r.v., ã. The reformulation of the new CC is given as follows (assuming that
the domain of all random variables (r.vs.) is the real line):

Pb̃
{
b̃ ≤ c

}
≥ 1− α∫ c

−∞
g(b)db ≥ 1− α∫ c

−∞

1
|x|
f

(
b

x

)
db ≥ 1− α

1
|x|

∫ c

−∞
f

(
b

x

)
db ≥ 1− α

1
|x|
xF

(
c

x

)
≥ 1− α

xF
(
c

x

)
≥ |x|(1− α)

The perspective of F (·) poses some challenges. In addition to its nonlin-
earity, it is nondifferentiable at the point x = 0, which can cause numerical
difficulties when solving the optimization problem. An approximation of the
perspective of F (·) that avoids this complication is given by (Sawaya, 2006):

xF
(
c

x

)
≈ [(1− ε)x+ ε]F

(
c

(1− ε)x+ ε

)
− εF (0)(1− x)

Therefore, the reformulated CC is approximated as follows:

[(1− ε)x+ ε]F
(

c

(1− ε)x+ ε

)
− εF (0)(1− x) ≥ |x|(1− α) (E.3)

Note that, in situations where the original r.v., ã, is non-negative, we have
that F (0) = 0, and the reformulation can be simplified as follows:

[(1− ε)x+ ε]F
(

c

(1− ε)x+ ε

)
≥ |x|(1− α) (E.4)
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For data-driven CCs, the true distribution is replaced by its estimate, and
the risk level is decreased as discussed in Section 4.3. Thus, the reformulated
data-driven versions of equations (E.3) and (E.4) are given by:

[(1− ε)x+ ε] F̂
(

c

(1− ε)x+ ε

)
− εF̂ (0)(1− x) ≥ |x|(1− α′+)

[(1− ε)x+ ε] F̂
(

c

(1− ε)x+ ε

)
≥ |x|(1− α′+)

If the estimated distribution is obtained with kernel smoothing, the final forms
become:

[(1− ε)x+ ε] 1
n

n∑
i=1
K
(
ψ − ai
h

)
− ε 1

n

n∑
i=1
K
(−ai
h

)
(1− x) ≥ |x|(1− α′+)

(E.5)

[(1− ε)x+ ε] 1
n

n∑
i=1
K
(
ψ − ai
h

)
≥ |x|(1− α′+) (E.6)

where n is the sample size, and ψ = c
(1−ε)x+ε . Further modeling is necessary

to avoid having the term |x| in the constraint (note: |x| =
√
x2).

E.1.2 Random Vectors
Consider the following linear CC

Pã
{
ã>x ≤ c

}
≥ 1− α (E.7)

where ã is a random vector, x is a vector of decision values, and c and α are
as defined before. Define a new random vector b̃ as

b̃ = ã>x =
m∑
j=1

ãjxj =
m∑
j=1

b̃j (E.8)

wherem is the number of elements in the respective vectors. Thus, the original
CC becomes

Pb̃
{
b̃ ≤ c

}
≥ 1− α (E.9)

The main result of the Method of Transformations for this case (sum of
r.vs. b̃j, for j = 1, . . . ,m) is that the PDF of b̃ is the convolution of the joint
PDF for all b̃j.

As an example, let us focus on the case wherem = 2. Suppose the marginal
PDF and CDF of ãj are fj(·) and Fj(·), and of b̃j are gj(·) and Gj(·), for
j = 1, 2, respectively. Consider the CC

Pã1,ã2 {ã1x1 + ã2x2 ≤ c} ≥ 1− α

which is rewritten as

Pb̃1,b̃2

{
b̃1 + b̃2 ≤ c

}
≥ 1− α
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The PDF of b̃ = b̃1 + b̃2, h(·), is given by the convolution of the joint PDF
(change of variables: b2 = b− b1),

h(b) =
∫ ∞
−∞

g1,2(b1, b− b1)db1

and its CDF is given by

H(b) =
∫ b

−∞
h(b′)db′

H(b) =
∫ b

−∞

∫ ∞
−∞

g1,2(b1, b
′ − b1)db1db′

If we assume that b̃1 and b̃2 are independent, then g1,2(b1, b2) = g1(b1)g2(b2),
and from the previous subsection (equation (E.1), since b̃j is the product of
r.v. ã and a “coefficient” x),

gj(bj) = 1
|xj|

fj

(
bj
xj

)
, j = 1, 2

Therefore, the CDF of the random vector b̃ with independent elements becomes

H(b) =
∫ b

−∞

∫ ∞
−∞

1
|x1x2|

f1

(
b1

x1

)
f2

(
b′ − b1

x2

)
db1db′ (E.10)

The reformulation of the new CC (equation (E.9) withm = 2 and assuming
independent r.vs.) is given as follows:

Pb̃
{
b̃ ≤ c

}
≥ 1− α

H(c) ≥ 1− α∫ c

−∞

∫ ∞
−∞

1
|x1x2|

f1

(
b1

x1

)
f2

(
b− b1

x2

)
db1db ≥ 1− α

1
|x1x2|

∫ ∞
−∞

f1

(
b1

x1

)[∫ c

−∞
f2

(
b− b1

x2

)
db
]

db1 ≥ 1− α

x2

|x1x2|

∫ ∞
−∞

f1

(
b1

x1

)
F2

(
c− b1

x2

)
db1 ≥ 1− α

The integral represents the convolution between the PDF of ã1 and the CDF
of ã2 with their respective arguments. For data-driven CCs, PDFs and CDFs
are replaced by their estimates. At this point, it is not clear how tractable
the final expression for the reformulated CC will be, even after including the
formulas for kernel smoothers.
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