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Abstract 

Vehicles are an integral part of today’s society and there is a large dependence on 
them for both business and pleasure. With the increasing concerns in vehicle congestion, air 
pollution, costly crashes, and highway funding sources, technological advances in data 
collection and analysis are now necessary in the transportation sector and must be taken to 
the next level. 

This thesis focuses on various analyses that can be performed pertaining to light-
duty vehicles by primarily using one, low-cost data source from the annual vehicle safety 
inspection records in Pennsylvania. It also exemplifies how adding additional, low-cost, 
data sources can add even more depth and breadth to data-driven transportation analyses. 
By using these combined data resources, various research and policy questions can be 
answered through data-driven analyses. Data analyses in transportation studies do not 
always take into account factors such as urbanity and vehicle age, yet as shown in this 
thesis, these factors are necessary to make effective policy recommendations. 

Chapter II of this dissertation assesses various vehicle safety inspection failure rates 
using the VSIR data by using the data fields resulting from the safety inspections. This 
information provides both technical measurements and general pass/fail metrics in order to 
determine if any maintenance was necessary during the inspection. The data show clearly 
that vehicles require more maintenance for each of the following: the higher the odometer 
reading, the older the vehicle, and the more rural the registration zip code. Additionally, 
the claimed 2% failure rate only applied to vehicles within their first year. Failure rates 
were found to be much higher for all other vehicles with the average found to be around 
12%-18%. 

Chapter III examines whether the vehicles safety inspection program saves lives. It 
can be concluded safety inspections are statistically effective in reducing fatality rates by 
approximately 1-2 fatal crashes per billion VMT in a given year. Additionally, urbanity was 
always found to be significant, which confirms the need for robust VMT estimates. Results 
show there are approximately 1,540 fatalities avoided in current safety states. On the other 
hand, in states with no safety program about 2,600 fatalities could be avoided if a program 
similar to PA were implemented. 

Chapter IV increases the breadth of analysis with this inspection data by using it to 
analyze travel patterns for individual vehicles and households with multiple vehicles. The 
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primary contribution of this chapter is to provide data-driven insight to annual travel 
patterns based on age, urbanity, and time, in order to eventually be able to make informed 
policy decisions in order to distribute funding most efficiently. While average VMT data is 
publically available as averages for each urban and rural area by state, it is not available 
on a zip code level nor does it contain ranges or other characteristics of vehicles, such as 
age. Results from this thesis show that while VMT is generally decreasing in recent years, 
when observing average VMT by vehicle age, VMT is increasing in recent years. This leads 
to the conclusion that owners are keeping their older vehicles longer and driving them more 
than the average. Differences in travel and vehicle ownership at a home zip code level are 
observed and therefore variations within counties and overall urbanity in the state are also 
seen. Additionally, we observe that while average annual VMT over time is relatively 
consistent over many of the years observed and much higher in rural areas, vehicle ages 
consistently increase each year and are approximately the same in comparing urban versus 
rural areas. Finally, calculations are made in order to assign vehicles to households. This 
limited the analyses largely due to low sample sizes and the inability to check for 
representativeness, but loose conclusions could be drawn between households based on 
vehicle counts and align with a similar study using NHTS data. 

Chapter V provides the summary, policy implications of the research, and final 
conclusions. The vehicle safety inspection program has long been debated within states over 
the past ten years. This state-driven policy must be analyzed, using a data-driven 
approach, on a zip code or county level, for the entire U.S. There are questions as to 
whether this program is effective in keeping roads safe and worth the money being spent. It 
is calculated that for states without a current safety program, the cost effectiveness 
(defined in terms of $/life saved) of implementing a safety inspection program similar to PA 
is about $6.8M ($1.9M - $180M), which falls entirely around the U.S. DOT’s value of a 
statistical life of $5.2 million to $13 million. It is noted that this calculated cost per life 
saved is likely an upper bound since the estimate does not include benefits of non-fatal 
crashes avoided and assumes that every vehicle has some repair performed (versus paying 
only the inspection cost or a zero repair cost). A bigger question is if these state-mandated 
vehicle policies make sense, especially in areas where there is a lot of cross-border 
traveling. The cost-effectiveness in this sense may not be accurate. 
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Chapter I: Introduction 

I. Research Motivation 

Vehicles are an integral part of today’s society and there is a large dependence on them for 
both business and pleasure. Today, in 2015, there are 250 million vehicles registered in the 
U.S. and a total of 3 trillion miles are driven annually. [1] If we were to consider vehicles an 
investment, assuming an average vehicle costs about $15,000, the U.S. society invests in 
$3.75 trillion worth of vehicles on the road. In addition to the dependence and investment, 
vehicle travel impacts health, energy, and the environment. We see health effects due to air 
pollution, such as smog, and transportation accounts for about one-third of energy use in 
the U.S. Another motivator and one key aspect of this thesis is safety. In 2013, 45,000 
vehicles were involved in 30,000 vehicle crashes, which were the cause of 32,000 deaths. [2] 
Finally, research on vehicle use among households has little literature and this 
understanding may be important for setting policy standards in the future based on vehicle 
travel by considering multi-vehicle households differently. With the increasing concerns in 
vehicle congestion, air pollution, costly crashes, and highway funding sources, technological 
advances in data collection and analysis are now necessary in the transportation sector and 
must be taken to the next level.  
 Robust databases are vital for analyzing current systems and suggesting effective 
changes for the future. To date, available transportation data has largely been collected via 
survey collection systems or self-reported by users. Unfortunately, there are many 
limitations to using these types of databases, mainly the reporting of inaccurate 
information and the use of representative population samples. Data from sensors and GPS 
are becoming more prevalent in transportation applications; however, there are common 
concerns of privacy, which limits the analyses using this data. As listed as one of critical 
issues in transportation in the Transportation Research Board’s 2013 publication [3], 
funding has been a top concern for policy makers as the Highway Trust Fund runs out of 
funds, with only temporary funding extensions being applied. A long-term solution is a 
priority, which could be primarily solved with data-driven solutions.  
 In the state of Pennsylvania, efforts have been made to digitize the required, 
statewide, annual, vehicle safety inspection records (VSIR) in order to examine 
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performance standards and increase the safety of vehicles, specifically pertaining to vehicle 
maintenance. These inspections are specifically required for light-duty vehicles. A broad 
range of analyses can be performed with this one database and, more importantly, without 
interfering with privacy concerns and costs that sensor and GPS data produce. First and 
foremost, this data can be used to identify safety concerns in vehicles and can identify 
problems prior to deaths and crashes occurring by monitoring trends more closely. 
Furthermore, this data can help identify who uses the roads most in a given year, by 
utilizing odometer readings from each year, allowing for the monitoring of vehicle miles 
traveled (VMT). VMT can accurately be expressed as a function of vehicle age, vehicle 
make, vehicle location (e.g., county or zip code), owner age, owner income, etc. These results 
can all be used in order to strategically create policies that reward drivers for maintaining 
their vehicle or limiting their VMT. Those who travel more (e.g., use the road commodity 
more) or who do not maintain their vehicles properly (e.g., endangering themselves and 
other drivers around them) could provide a funding source to the quickly deteriorating 
Highway Trust Fund. 
 This thesis focuses on various analyses that can be performed pertaining to light-
duty vehicles with this one, low-cost data source from the annual VSIR in Pennsylvania. It 
also exemplifies how adding further available, low-cost, data sources can add even more 
depth and breadth to data-driven transportation analyses. By using this low-cost, easily 
accessible data, various research and policy questions can be answered through data-driven 
analyses. Data analyses in transportation studies do not always take into account factors 
such as urbanity and vehicle age, yet as shown in following sections, these factors are 
necessary to make effective policy recommendations. 

II. Research Topics 

The aforementioned concerns in the transportation sector can be mitigated through data-
driven analyses and informed policy recommendations, which is addressed in this 
dissertation. Each section provides a different analysis that can be performed with the 
available data, including any data verification and manipulation that may be necessary. 
 Pennsylvania VSIR provides anonymized, vehicle-specific information (e.g., make, 
model, year, odometer, etc.) each year for any vehicles inspected in inspection stations 
participating in electronic record keeping (this is optional currently). The vehicle safety 
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inspection system, initially implemented in all states sometimes multiple times per year, is 
now implemented in only 13 states annually and another 10 states infrequently. The 
remaining states have no vehicle safety inspection requirements. The initial argument in 
many states and the current argument in Pennsylvania, that the vehicle safety inspection 
program is expensive and ineffective, must be thoroughly clarified. A more important 
question must be addressed prior to the elimination of the safety inspection system—where 
is the available data to support this statement of program ineffectiveness? 
 Chapter II of this dissertation assesses various vehicle safety inspection failure rates 
using the VSIR data by using the data fields resulting from the safety inspections. This 
information provides both technical measurements and general pass/fail metrics in order to 
determine if any maintenance was necessary during the inspection. Failure rates are 
calculated based on the definition of vehicles that passed as a result of some maintenance 
that was performed during the inspection. Because this data is typically paper-based and is 
not electronically recorded in all stations throughout the state, results must be scaled in 
order to represent the actual Pennsylvania vehicle fleet. In order to do this, VSIR is 
supplemented with the Pennsylvania vehicle registration database. Statistical methods are 
used to test the representativeness of the inspection sample databases to the registration 
database to ensure representative results. This analysis, if implemented more frequently, 
can help clearly present strengths and weaknesses of the program in an effort to minimize 
cost and maximize safety. 
 Chapter III examines whether the vehicles safety inspection program saves lives. As 
of 2013, accidents were in the top five for the leading cause of death over all age groups and 
motor vehicle crashes were the leading cause of death for those between the ages 1 to 44 [4].  
This statistic is alongside deaths resulting from heart disease, cancer, and chronic lower 
respiratory disease. The safety inspection failure rate analysis is taken one step further by 
incorporating fatal crash records, publically provided by the National Highway Traffic 
Safety Administration (NHTSA) in order to analyze the nationwide effectiveness of the 
safety inspection program. This data is used to compare states based on the intensity and 
frequency of vehicle safety inspections using the metric of fatal crashes per vehicle mile 
traveled. Statistical significance is determined by implementing ordinary least squares 
regressions and two-proportion hypothesis tests. These tests are repeated on a number of 
different models and parameters to guarantee a robust analysis. 
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 Limitations to these NHTSA databases include the accuracy of the reported 
information. Most commonly, an officer on site reports the information and these officers 
are not necessarily trained to define how a crash occurred. For example, there may have 
been obviously bad weather, but perhaps the brake pads were below the threshold 
measurement, which added to the bad weather environment, but were the main reason for 
the crash. Looking at the situation, an officer may just report the crash as a result of the 
bad weather, not able to measure the brake pad at the crash site. While this information 
may not always be as accurate as necessary, it is the most robust database available with 
vehicle crash information. 
 Chapter IV increases the breadth of analysis with this inspection data by using it to 
analyze travel patterns for individual vehicles and households with multiple vehicles. The 
primary contribution of this chapter is to provide data-driven insight to annual travel 
patterns based on age, urbanity, and time, in order to eventually be able to make informed 
policy decisions in order to distribute funding most efficiently. In addition, this analysis 
may help in determining how households drive each of their vehicles in comparison to their 
other vehicles, other similar households, and households with a different number of 
vehicles per household. VMT can accurately be expressed as a function of vehicle age, 
vehicle make, vehicle location (e.g., county or zip code), urbanity, etc. In order to do this, a 
unique, anonymized, insurance policy value is also provided in order to approximate 
vehicles within a household and each of their travel patterns as well as for the household as 
a whole. The Pennsylvania vehicle inspection records contain odometer readings for 
specific, anonymized vehicles over about a 6-year timeframe that can be used to calculate 
the associated VMT values, which would be the first step in this analysis. In addition to 
odometer readings, vehicle-specific data and user-specific data are provided for each vehicle 
entry. With the detailed, current data provided for Pennsylvania vehicles, models can be 
created and combined to offer a unique tool for data-driven policies and decision-making. 
 Chapter V provides the summary, policy implications of the research, and final 
conclusions. With constant changes in technology and travel patterns, there is a need for a 
more analytical decision-making model in the transportation sector. The vehicle safety 
inspection program has long been debated within states over the past ten years. This state-
driven policy must be analyzed, using a data-driven approach, on a zip code or county level, 
for the entire U.S. There are questions as to whether this program is effective in keeping 
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roads safe and worth the money being spent. A bigger question is if state vehicle policies 
make sense, especially in areas where there is a lot of cross-border traveling.  
 Often there are incentives presented to invest in some alternative transportation 
options the question of when or where these transportation options are used is not 
commonly answered with support from data, yet it would be useful and beneficial to create 
VMT models and apply data analytics to make informed policy decisions. This would 
efficiently help decision-makers and policy analysts plan where funding should be spent, 
rebates offered, or where new projects should be pushed (e.g., updating public 
transportation or offering rebates for buying a hybrid vehicle). Gasoline, electric, and 
hybrid passenger vehicles, car-share programs, and public transportation are all prominent 
options for transportation means currently in the U.S, but they are not all the best option, 
depending on location and driving habits. Finally, robust databases and active data 
collection systems of transportation data, real-time monitoring of driving patterns can be 
analyzed and tracked, creating a safer, more effective transportation network. 

III. Research Background 

Due to an unfortunately high rate of traffic fatalities in the mid-1900s, the Highway Safety 
Act of 1966 was enacted [5]. Until 1973, the states were federally required to have safety 
inspection programs in order to qualify for federal highway funds with the notion that these 
inspections, along with a roadway revamp (hence the federal highway fund), would reduce 
traffic fatalities. The handful of previous studies have been high level analyses of whether 
states without safety inspection programs have higher crash or fatality rates which 
provides at best indirect measures of effectiveness. In recent publications, there have been 
numerous approaches to improve vehicle safety on the road.  
 Several recent publications model safety-related driving behavior, the effectiveness 
of safety-based incentives, crash analysis, and road safety forecasting. In 2005, Bonsall, et 
al. identified key parameters of traffic simulation models to project real, unsafe behavior of 
drivers instead of ideal, safe behavior of drivers to help improve the safety of driving 
conditions. [6] Noland and Quddus examined whether time periods with congestion versus 
without congestion influenced factors affecting number of the fatalities resulting from 
vehicle crashes. [7] Abdel-Aty et al., in 2013, investigated whether it is informative and 
worthwhile to use macro-level modeling of vehicle crashes, by using Geographic 
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Information System (GIS), to help inform policy and decision makers of safety investments. 
[8] In 2013, Weijermars and Wesemann used road safety forecasting and ex-ante evaluation 
in policy making in the Netherlands to achieve road safety targets and reduce fatalities and 
serious road injuries. [9] However, vehicle safety inspections haven’t been studied as a tool 
extensively and may help in reducing fatal crashes and keeping roads safe by requiring 
vehicle owners to maintain the condition of vehicle components effectively. 
 In 1980, Crain compared death and accident rates, through an economic analysis, in 
states with and without inspection programs, using 1974 cross-sectional data [10]. In states 
with inspection programs, a benefit-cost analysis concluded that random safety inspections 
were as effective as the periodic inspections in preventing crashes and deaths; and, the 
periodic inspection program thus should be either reevaluated or terminated, as they are 
more costly than periodic inspections, yet have the same effect as the periodic inspections. 
In 1984, Loeb et al. published a time-series analysis of the efficacy of the inspection 
program in reducing fatalities, injuries, and crashes using data from the state of New 
Jersey. A benefit cost-analysis proved the inspection program to be cost-effective and 
significantly reduced the number of highway fatalities [11]. Even just looking at these two 
studies, it can be seen that a state-specific analysis yields different results from the high-
level countrywide analysis comparing states with and without inspection programs. The 
safety inspection program is in need of a state-focused analysis rather than a general 
nation-wide analysis.  
 Around 1985, Loeb created an econometric model for efficacy of inspection in 
reducing fatalities and injuries using cross-sectional data from 1979. He used his previous 
work from New Jersey as a reference state to compare to the other states across the 
country. Loeb concluded that there was significant evidence of the efficacy of motor vehicle 
safety inspections in reducing motor vehicle related crashes and mortalities [12]. Garbacz 
and Kelly (1987) implemented a national time-series analysis to analyze mandated vehicle 
safety inspections impact on fatalities. An ordinary least squares regression was presented, 
using fatalities from the National Safety Council (1952-1982) and then adjusted for traffic 
fatalities. The results showed no evidence that safety inspection reduced fatalities. A 
benefit-cost analysis was performed and found that the vehicle safety inspections had no 
benefits, and were not cost-effective [13], [14]. In light of these conflicting results, the safety 
inspection program is in need of a state-focused analysis rather than a general nation-wide 
analysis. 
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 In 1994, Leigh found that vehicle safety inspection laws were not found to 
significantly reduce fatalities per capita. Leigh compared the quantity of inspections 
required and the effects of those inspections on fatalities per capita [15], [16]. Merrell et al. 
(1999) also found no evidence that inspections significantly reduce fatality or injury rates. 
The state-level model in this analysis was based on the frequency of inspections; the 
resulting variables were used in an econometric equation along with both fatal and non-
fatal estimated models [5], [17]. Rather than comparing fatal and non-fatal models, a more 
concrete analysis would be to first distinguish a base case of fatalities and how these 
fatality counts change due to the inspection frequency changes. In 2002, Poitras and Sutter 
analyzed inspection effectiveness by observing the presence of older vehicles on the road 
and the impact on the repair industry. Their results indicated that inspections had no 
significant impact on old cars or the repair industry [10], [18]. This study did not identify 
how or if the inspection program with older vehicles was compared to the program for the 
entire vehicle fleet. Additionally, Sutter and Poitras (2002) examined political motives for 
inspections and produced a model between the incidence of inspection across states and 
inspection fees. They concluded the inspection program existed primarily due to political 
transaction costs [11], [19]. 
 Ages of vehicles and urbanity of where the vehicle is driven are not widely 
considered in any of the noted previous literature, yet likely have importance in designing 
an appropriate policy or tax for inspection programs. Previous studies show older vehicles 
being driven less and the U.S. vehicle miles traveled trend decreasing since 2007 after its 
plateau in 2004, which possibly affects inspection results [5], [12], [20]. While this trend of 
decreasing VMT with increasing age is clear, age is not widely included in VMT analyses or 
reported along with VMT in the commonly used NHTS datasets. Due to the distribution of 
vehicle ages within a given location, a resulting distribution of VMT would be most 
appropriate rather than single average estimates that are currently published. In addition 
to VMT distributions according to age, VMT should also account for the urbanity of the area 
where the vehicle is driven. 

 
Figure 1 shows that urban and rural VMT trends differ, with a bigger gap in 2008 

than in 1991. [20] Results in a report published by NHTSA show fatal vehicle crashes are 
higher in rural areas than in suburban areas as displayed in Figure 2. [21]  
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Figure 1. Urban versus Rural VMT [20] 

 
Figure 2. Motor Vehicle Traffic Fatalities by Year and Location, 1998-2008 [21] 

 
These results are important when analyzing safety fatalities as well as VMT patterns since 
there is lower rural total VMT (an artifact of fewer vehicles) than that of urban yet more 
rural fatal crashes than that of urban. This results in higher rural fatality rates; thus, 
NHTSA highly recommends that urban and rural fatality rates be calculated separately, 
rather than calculating an overall state average fatality rate. Calculating an overall state 
fatality rate may lead to a state with a higher percentage of urban VMT (urban state) 
appearing to have a lower fatality rate than a state with a higher percentage of rural VMT 
(rural state), even if each urban and rural fatality rates are each separately greater when 
comparing them between the urban state than the rural state. 
 Two state-level studies exist for the states of Pennsylvania and North Carolina. In 
2007, the Pennsylvania DOT hired Cambridge Systematics to study it’s safety inspection 
program [10], [22]. Pennsylvania is considered to be one of the most rigorous safety 
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inspection programs implemented in the country. In their analysis, four years of data on 
fatalities were examined at both the state and county-level to assess the effectiveness of the 
vehicle safety program. They used various national databases (e.g., NHTSA's Fatality 
Analysis Reporting System, U.S. Census, National Oceanic and Atmospheric 
Administration, etc.) to account for weather, demographics, and socioeconomic variables. 
The Cambridge Systematics study estimated 1-2 fewer fatalities per billion vehicle miles 
traveled (VMT) for any state with a safety program and concluded that the vehicle safety 
inspection program was effective. The Cambridge Systematics study specifically 
recommended development and use of the electronic state safety inspection (“e-SAFETY”) 
program. A contradicting 2008 study, sponsored by North Carolina legislators, found that 
“no evidence exists showing the safety program is effective” and “program oversight by 
DMV is inadequate”. The study used crash data from Nebraska’s Division of Motor Vehicles 
comparing the three-year crash average before and after the discontinuation of their safety 
inspection program. While they do not find the inspection to effectively reduce vehicle 
component fatal crashes, they state a limitation to the analysis is that “because law 
enforcement personnel are not mechanics and receive a minimal amount of training in 
compiling and reporting accident data, it is unlikely a true assessment of how many 
accidents result from mechanical defects is possible” [11], [23]. Additionally, they use a 
safety inspection dataset consisting of about six million records over only one year (2007) 
and the study is not in-depth enough to be extrapolated to the entire country. Furthermore, 
those certified by the DMV to oversee the inspection stations and audit them yearly were 
reported to have spent less than three percent of their time on this activity. The report 
admitted that the quality and uniformity of inspections is difficult to enforce, especially in a 
decentralized inspection program such as North Carolina’s. 
 Historically, both cross-sectional and time-series analyses of vehicle safety 
inspections were performed over a 10-year period. It is important to note that vehicle 
technologies have rapidly changed, and analyses from 30 years ago are not comparable to 
today’s vehicle travel and inspection analyses. However, methods can be observed and 
applied on the present vehicle data, with current travel patterns and vehicle inspection 
results. Overall, these past studies have varying conclusions as to whether or not the 
vehicle safety inspection program is effective. 
 This overview of previous literature shows that the majority of vehicle safety 
inspection publications are relatively old and showed mixed conclusions on whether or not 
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safety inspection programs were effective. Furthermore, these analyses were mostly high-
level, comparing overall state inspection program effectiveness and generally not using 
detailed, county-level, inspection record datasets. It is important to do a more detailed 
analysis due to the varying implementation of the safety inspections from state to state and 
varying driving patterns from vehicle to vehicle. This may show that a state with stronger 
oversight and rigorousness may prove to be a more effective program overall. As shown in 
the following discussion, within the state of Pennsylvania, vehicle ages, locations, and total 
miles traveled vary and the need for state-specific analyses is necessary. Additionally, no 
paper was found to explicitly analyze actual safety inspection pass or fail rates, which may 
greatly aid an effectiveness study on the inspection level rather than fatal crash level. The 
remainder of this paper assesses the vehicle safety inspection program in the state of 
Pennsylvania on a detailed level addressing failure rates by urban/rural county types, 
vehicle age, and overall vehicle odometer reading. 
 A much larger selection of papers examines the effects of driving by using different 
tools. Small and Van Dender estimated the rebound effect for passenger-vehicle use across 
the U.S. states and over time. [24] They showed that higher income drivers are less 
sensitive to fuel costs as it consists of a smaller percentage of their income. So, over time 
the rebound effect diminishes with income as a result of rising incomes and falling real fuel 
costs. In 2010, Gillingham used vehicle registration data and vehicle smog check data from 
2001 to 2008 in California. He found that gasoline demand is relatively inelastic and there 
is some heterogeneity in driving behavior, which he shows from the high variance 
calculated in the VMT estimation. “Results suggest that consumers are responsive to 
gasoline prices in both vehicle choice and driving decisions…these responses vary by 
income, geographic, and demographic groups.” [25], [26] Unfortunately, there is no 
extrapolation of his conclusions in his papers that generalizes to the rest of the country. 
This may be difficult to do since California has different standards, such as smog control, 
and are more sensitive to environmental regulations. Clark et al. evaluated the effect of 
population density on the rates of motor vehicle mortality in rural and urban areas, while 
controlling for VMT. [27] This analysis uses data from both FARS and FHWA and finds 
that mortality rates are much higher in rural areas than urban areas. This is important to 
note when analyzing fatalities in an entire state as they should be weighted according to 
the states’ urban-rural compositions. This is similar to the report referenced previously, 
published by NHTSA summarizing urban and rural fatality trends. 
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 Many papers present analyses relating VMT to other variables, such as variations in 
gasoline prices, spatial economics, or the built environment and land use patterns. For 
example, in general studies have found that gasoline price changes have a relatively 
inelastic effect on high-income household and a more elastic effect on low-income 
households, as fuel makes up a larger portion of their percentage of income. External 
factors may include higher income households owning a second, more fuel-efficient vehicle, 
which they switch to using as gas prices fluctuate. [26] Prior to these analyses, it is 
important that a baseline understanding of driving patterns is understood. It is true that 
external factors such as gasoline prices and economics play a role in driving patterns, but it 
is first import to see how VMT changes based on geography or driver characteristics, for 
example. Rural, suburban, and urban counties or zip codes may change due to a change in 
gasoline prices; however, these counties may exhibit internal relationships primarily, aside 
from any external factors changing. Factors such as availability and convenience play a role 
in locations where public transportation is unavailable or sparse. Regulations may be more 
beneficial if applied on smaller levels such as the zip code or county level instead of state or 
country levels. 
 A robust dataset is also necessary in performing the above baseline analyses. 
Current VMT estimates stem from survey results and traffic counts and are reported as two 
average values in each state – one for urban locations and one for rural locations. However, 
the accuracy and reliability of this data is questioned. For example, the National Household 
Transportation Survey records vehicle information based on phone surveying, which 
depends on the accuracy of the respondent reported results and asks the respondent to 
report the number of miles traveled on every vehicle in the household over the past year. 
This survey also only accounts for 0.1% of the total households in the U.S. More detail 
about this database can be found in Chapter IV. The same question is asked regarding the 
reliability of the vehicle count data reported and maintained by the Federal Highway 
Administration’s Office of Highway Policy Information. The VMT estimates reported here 
are based on hourly traffic count data reported by the States from approximately 4,000 
continuous traffic counting locations nationwide. [28] If data is unavailable for a given 
state, average values from surrounding states are used and if that is unavailable, the 
national average is used. Chapter IV investigates if a new method of estimating VMT can 
be used and compares it to these estimates. 
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Chapter II: Vehicle Safety Inspection Failure Rates1 

I. INTRODUCTION 

In the United States, mass transportation vehicles such as public transit, commercial flight, 
and passenger rail are federally mandated to undergo safety and maintenance inspections. 
However, the federal government does not require inspections of personal vehicles even 
though it is the most pervasive travel mode according to passenger-miles traveled [30]. 
Without a federal mandate, states determine the extent and frequency of light duty vehicle 
(LDV) safety inspections. As of January 2014, thirteen states require annual safety 
inspections (some of which also require emission inspections), a handful of states require 
safety inspections at change of vehicle ownership, about half of states require only 
emissions inspections, and ten states require neither [13]. 
 Safety programs call for specified inspections to be performed on automobiles and 
light trucks with varying frequencies (e.g., annually) and on various subsets of the fleet 
(e.g., exempting new cars). These state safety inspection requirements change over time, 
largely due to the general perception that such programs are costly to consumers and 
provide little or no benefits to society. Behind these perceptions are perceptions that cars 
have never been safer. States are also considering eliminating safety inspections entirely as 
government reports indicate the vast majority of vehicles successfully pass the inspection 
requirements. Pennsylvania is one of those states.  
 Legislators in Pennsylvania have claimed (without literature attribution) that 98% 
of inspected vehicles pass inspection [15], implying a 2% failure rate. Stakeholders in other 
states have made similar statements, thus implying that the failure rate is so low that it 
presents an unnecessary burden on drivers or that there is no evidence it is an effective 
program.2, 3 With lack of substantial evidence, these other states have recently discontinued 
their safety inspection programs. However, during the inspection process, vehicles may 

                                                
1 D. Peck, H. S. Matthews, P. Fischbeck, and C. T. Hendrickson, “Failure rates and data driven 
policies for vehicle safety inspections in Pennsylvania ,” Transportation Research Part A, vol. 78, no. 
2 According to a Washington Post article, “D.C. officials said that only about 20 states have 
inspection programs and that there is no evidence that routine inspections make District vehicles 
less accident-prone.” [31] 
3 According to New Jersey news, “the [safety] inspections resulted in a rejection rate of less than 6 
percent for "serious" defects — such as those related to brakes, steering or suspension, state officials 
said.” [32] 
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provisionally fail, receive repairs, and then be classified as “pass.” The intermediate repairs 
or adjustments, which are likely lost amongst the data from where the low failure rates are 
drawn, should have been classified as failures under the current inspection regime. 
Determining failure rates before and after maintenance is essential to assessing and 
improving safety inspection programs. To account for this, in this study vehicles recorded as 
“work performed to pass” are considered to have failed. This modification will yield an 
improved failure rate estimate. More importantly, this updated failure rate assesses the 
direct effect of the program by identifying vehicle owners who rely on vehicle safety 
inspections to identify safety problems and maintain their vehicle. For instance, drivers 
who proactively maintain their vehicle(s) are assumed to fix problems as they occur and 
therefore would not be represented in this improved failure rate estimate methodology. 
Using this assumption, it is possible this fail rate estimate may be an underestimate of 
actual vehicle fail rates. However, conclusions cannot be drawn here because these analyses 
can only be performed by observing multi-point data inspections or by comparing the 
condition of vehicles in non-inspection states; however, there is no available data to reflect 
this. 
 This study uses two unique datasets containing anonymized vehicle safety 
inspection records for the state of Pennsylvania to examine the actual failure rate of 
inspected vehicles, and projected failure rates of various data-driven inspection scenarios. 
In addition to overall failure rates, we examine failure rates by vehicle mileage, vehicle age, 
urbanity, and failure rate trends over time. In addition, the question of whether accurate 
inspection data is available and correctly analyzed is addressed. Finally, conclusions are 
drawn on the changes in vehicle safety, the importance of continued vehicle maintenance, 
various policy perspectives on the implementation of the current program, and whether the 
current safety inspection program seems to be worthwhile to continue in the future at this 
point. 

II. VEHICLE SAFETY HISTORY AND LITERATURE REVIEW 

Due to an unfortunately high rate of traffic fatalities in the mid-1900s, the Highway Safety 
Act of 1966 was enacted [5]. Until 1973, the states were federally required to have safety 
inspection programs in order to qualify for federal highway funds with the notion that these 
inspections, along with roadway improvements (hence the federal highway fund), would 
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reduce traffic fatalities. Previous studies of safety inspection programs have been high-level 
analyses of whether states without safety inspection programs have higher crash or fatality 
rates, which provides at best, indirect measures of effectiveness. In recent publications, 
there have been numerous approaches to improve vehicle safety on the road.  
 These recent publications include, but are not limited to modeling safety-related 
driving behavior, the effectiveness of safety-based incentives, crash analysis, and road 
safety forecasting. In 2005, Bonsall, et al. identified key parameters of traffic simulation 
models to project real, unsafe behavior of drivers instead of ideal, safe behavior of drivers to 
help improve the safety of driving conditions. [6] Noland and Quddus examined whether 
time periods with congestion versus without congestion influenced factors affecting number 
of fatalities resulting from vehicle crashes. [7] Abdel-Aty et al., in 2013, investigated 
whether it is informative and worthwhile to use macro-level modeling of vehicle crashes, by 
using Geographic Information System (GIS), to help inform policy and decision makers of 
safety investments. [8] In 2013, Weijermars and Wesemann used road safety forecasting 
and ex-ante evaluation in policy making in the Netherlands to achieve road safety targets 
and reduce fatalities and serious road injuries. [9] Vehicle safety inspections, however, 
haven’t been studied extensively as a tool even though they may help in both reducing fatal 
crashes and keeping roads safe, by requiring vehicle owners to actively maintain the 
condition of vehicle components. 
 Historically, both cross-sectional and time-series analyses of vehicle safety 
inspections have been performed; yet, the majority are now outdated. Vehicle technologies 
have rapidly changed, and analyses from 30 years ago are not comparable to today’s vehicle 
travel and inspection analyses. However, methods can be observed and applied on the 
present vehicle data, with current travel patterns and vehicle inspection results. Overall, 
these past studies have varying conclusions as to whether or not vehicle safety inspection 
programs are effective. 
 In 1980, Crain compared death and crash rates, through an economic analysis, in 
states with and without inspection programs, using 1974 cross-sectional data [10]. In states 
with inspection programs, a benefit-cost analysis concluded that random safety inspections 
were as effective as the periodic inspections in preventing crashes and deaths; and, the 
periodic inspection program thus should be either reevaluated or terminated, as they are 
more costly than periodic inspections, yet have the same effect as the periodic inspections. 
In 1984, Loeb et al. published a time-series analysis of the efficacy of the inspection 
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program in reducing fatalities, injuries, and crashes using data from the state of New 
Jersey. A benefit cost-analysis proved the inspection program to be cost-effective and 
significantly reduced the number of highway fatalities [11]. Even just looking at these two 
studies, it can be seen that a state-specific analysis yields different results from the high-
level countrywide analysis comparing states with and without inspection programs. The 
safety inspection program is in need of a state-focused analysis rather than a general 
nation-wide analysis.  
 Loeb created an econometric model for efficacy of inspection in reducing fatalities 
and injuries using cross-sectional data from 1979. He used his previous work from New 
Jersey as a reference state to compare to the other states across the country. Loeb 
concluded that there was significant evidence of the efficacy of motor vehicle safety 
inspections in reducing motor vehicle related crashes and mortalities [12]. Garbacz and 
Kelly (1987) implemented a national time-series analysis to analyze mandated vehicle 
safety inspections impact on fatalities. An ordinary least squares regression was presented, 
using fatalities from the National Safety Council (1952-1982) and then adjusted for traffic 
fatalities. The results showed no evidence that safety inspection reduced fatalities. A 
benefit-cost analysis was performed and found that the vehicle safety inspections had no 
benefits, and were not cost-effective. [14] In light of these conflicting results, the safety 
inspection program is in need of a state-focused analysis rather than a general nation-wide 
analysis. 
 In 1994, Leigh found that vehicle safety inspection laws were not found to 
significantly reduce fatalities per capita. Leigh compared the quantity of inspections 
required and the effects of those inspections on fatalities per capita. [16] Merrell et al. 
(1999) also found no evidence that inspections significantly reduce fatality or injury rates. 
The state-level model in this analysis was based on the frequency of inspections; the 
resulting variables were used in an econometric equation along with both fatal and non-
fatal estimated models. [17] Rather than comparing fatal and non-fatal models, a more 
concrete analysis would be to first distinguish a base case of fatalities and how these 
fatality counts change due to the inspection frequency changes. In 2002, Poitras and Sutter 
analyzed inspection effectiveness by observing the presence of older vehicles on the road 
and the impact on the repair industry. Their results indicated that inspections had no 
significant impact on old cars or the repair industry. [18] This study did not identify how or 
if the inspection program with older vehicles was compared to the program for the entire 
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vehicle fleet. Additionally, Sutter and Poitras (2002) examined political motives for 
inspections and produced a model between the incidence of inspection across states and 
inspection fees. They concluded the inspection program existed primarily due to political 
transaction costs. [19] 
 Ages of vehicles are not widely considered in any of the noted previous literature, yet 
likely have importance in designing an appropriate policy or tax for inspection programs. 
Two travel trends may have effects on safety inspection results. First, previous studies 
show older vehicles being driven less and second, the total vehicle miles traveled has been 
flat or decreasing since 2004 according to the Federal Highway Administration [33].  
 Two state-level studies exist for the states of Pennsylvania and North Carolina. In 
2007, the Pennsylvania Department of Transportation (PennDOT) hired Cambridge 
Systematics to study its safety inspection program [22]. Pennsylvania is considered to be 
one of the most rigorous safety inspection programs implemented in the country. In their 
analysis, four years of data on fatalities were examined at both the state and county-level to 
assess the effectiveness of the vehicle safety program. They used various national databases 
(e.g., NHTSA's Fatality Analysis Reporting System, U.S. Census, National Oceanic and 
Atmospheric Administration, etc.) to account for weather, demographics, and socioeconomic 
variables. The Cambridge study estimated 1 to 2 fewer fatalities per billion vehicle miles 
traveled (VMT) for any state with a safety program and concluded that the vehicle safety 
inspection program was effective. The Cambridge study specifically recommended 
development and use of the electronic state safety inspection (“e-SAFETY”) program. A 
contradicting 2008 study, sponsored by North Carolina legislators, found that “no evidence 
exists showing the safety program is effective” and “program oversight by DMV is 
inadequate”. The study referenced the use of crash data from Nebraska’s Division of Motor 
Vehicles comparing the three-year crash average before and after the discontinuation of 
Nebraska’s vehicle safety inspection program. While they do not find the inspection to 
effectively reduce vehicle component fatal crashes, they state a limitation to the analysis is 
that “because law enforcement personnel are not mechanics and receive a minimal amount 
of training in compiling and reporting accident data, it is unlikely a true assessment of how 
many accidents result from mechanical defects is possible”. [23] Additionally, they use a 
safety inspection dataset consisting of about six million records over only one year (2007) 
and claim the study is not in-depth enough to be extrapolated to the entire country. 
Furthermore, those certified by the DMV to oversee the inspection stations and audit them 
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yearly were reported to have spent less than three percent of their time on this activity. The 
report admitted that the quality and uniformity of inspections is difficult to enforce, 
especially in a decentralized inspection program such as North Carolina’s. 
 This overview of previous literature shows that the majority of vehicle safety 
inspection publications are relatively old and showed mixed conclusions on whether or not 
safety inspection programs were effective. Furthermore, these analyses were mostly high-
level, comparing overall state inspection program effectiveness and generally not using 
detailed, county-level, inspection record datasets. It is valuable to do a more detailed 
analysis due to the varying implementation of the safety inspections from state to state and 
varying driving patterns from vehicle to vehicle. This may show that a state with stronger 
oversight and rigorousness may prove to be a more effective program overall. As shown in 
the following discussion, within the state of Pennsylvania, vehicle ages, locations, and total 
miles traveled vary and the need for state-specific analyses is necessary. Additionally, no 
paper was found to explicitly analyze actual safety inspection pass or fail rates, which may 
greatly aid an effectiveness study on the inspection level rather than fatal crash level. The 
remainder of this paper assesses the vehicle safety inspection program in the state of 
Pennsylvania on a detailed level addressing failure rates by urban/rural county types, 
vehicle age, and overall vehicle odometer reading. 

III. THE PA STATE VEHICLE INSPECTION PROGRAM, 
PROCESS, AND DATA RECORDS  

In Pennsylvania, safety inspections of LDVs are administered annually in every county and 
for all vehicles. Inspection stations in Pennsylvania are an open market; if an individual or 
business decides to perform inspections in Pennsylvania, they apply to PennDOT. Upon 
verification that they meet the requirements and have cleared screening at PennDOT they 
are appointed as a certified safety inspection station. The number of safety inspection 
stations depends on the number of stations that have been certified. In order for individuals 
to perform safety inspections, they must be trained and certified by PennDOT. Inspectors 
are compensated by the business for which they work, as per the business’ individual 
practices. Both the inspection stations and inspectors receive periodic oversight audits and 
are monitored by the State Police Vehicle Fraud Unit. Any violations, such as lost stickers, 
improper use of license, or affixing stickers incorrectly, are subject to possible suspension 
and fines. The cost of a vehicle inspection is market-set, where each inspection station 
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chooses how much it will charge. In most cases, vehicle owners are charged an inspection 
fee in addition to any maintenance performed; however, some businesses may choose to 
offer annual inspections free of charge. PennDOT charges inspection stations or inspectors 
approximately two dollars per inspection sticker (which is used to distinguish a vehicle has 
been inspected). A vehicle with an expired inspection sticker in the state of Pennsylvania is 
subject to various fines. Additional detailed information on the Pennsylvania vehicle 
inspection program can be found in The Pennsylvania Code 67 Pa. Code § 175. [34] 
 Vehicle safety inspection regulations and processes are uniform across Pennsylvania 
yet vary between states. For example, one state may check brakes via a “skid” test, 
measuring the distance to stop from a given speed and pressing the brakes. Another state 
may physically measure the thickness of the brake pads. This could create an inconsistency 
in inspection results state to state since the different inspection methods are not correlated 
against each other, and thus are likely to give different safety outcomes. Some 
Pennsylvania counties (25 of 67) also require emissions inspections, generally around 
urbanized areas whose air quality does not meet federal standards as stated in the Clean 
Air Act (1990). This paper focuses solely on safety inspections as pertaining to LDV’s in 
Pennsylvania. 
 Initially, certified inspection stations in Pennsylvania were required by the state to 
document all inspection results using a paper MV-431 form (refer to the Supplemental 
Material). Historically, these detailed but typically hand-written inspection records were 
subject to periodic station audits to assure proper recordkeeping. This form of decentralized 
record keeping prevents data analytics from being performed and is most likely why there 
have been so few studies on this topic. 
 Vehicle safety inspections in Pennsylvania include checking vehicle components 
such as: steering/suspension, exhaust, fuel, body/doors/latches, glazing/mirrors, brake 
system, lighting, tires, and other. The “other” category includes all or some of the following 
categories: wipers, bumper, defrosters, battery hold-down, brake warning lights, odometer, 
speedometer, etc. To pass the safety inspection, the state of the vehicle after inspection, 
with or without maintenance, must be within the applicable, allowable thresholds. For 
example, the minimum threshold for tire tread depth is 2/32 inch. The result of each 
required component check is coded as a pass, fail, new, repair, or adjust. Figure 3 explains 
the various paths that can be taken during the safety inspection process, starting with the 
initial inspection that identifies potential component problems. 
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Figure 3. Representation of Inspection Process 

 
Table 1 presents examples of component inspection problems identified with a 
corresponding maintenance solution, along with the reason for the type of failure, or the 
“work performed” at the inspection station.  
 
Table 1. Definition of Action Categories with Example Solutions 

Action Scenario “Work Performed” 

New A vehicle’s tire tread is measured as 
less than threshold tired depth 

Tire is replaced, a new 
tire is installed 

Repair The hood latch is broken or is not 
keeping the hood locked down 

The latch is repaired so it 
functions properly 

Adjust Headlights are mis-aimed Headlights are re-aimed, 
or adjusted 

 
If all tested components are initially within the allowable threshold, then the final 
inspection status is considered a pass; and no maintenance was required to receive the 
inspection sticker. The pass with maintenance designation represents a vehicle with one or 
more components identified during the initial inspection as requiring maintenance because 
they were not within the allowable threshold. Once all suggested maintenance is performed 
and all components are within the allowable threshold, the vehicle passes and receives an 
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inspection sticker. The fail designation represents a vehicle with one or more components 
identified during the initial inspection as requiring maintenance because they are outside 
of the allowable threshold, yet not all required repairs were performed. This vehicle will not 
leave the inspection with a new safety inspection sticker. For example, the vehicle owner 
may be told work is necessary for the vehicle to pass; however, the suggested work may not 
always be performed at that time and the owner may return at a later date. Identifying 
failure rates based only on results of final inspection status ignores the fact that 
maintenance is often required, and may lead to false perceptions of failure. 
 The fail, new, repair, and adjust categories, combined, all represent ways in which a 
vehicle would have failed an inspection if maintenance was not performed and reflect a 
vehicle’s initial state when entering the inspection station, regardless of the final status. 
This is important to consider when estimating the safety effects in a regime without an 
inspection program, as these adjustments or replacements may have never otherwise 
happened without the required safety inspection program. Since vehicles must have valid 
safety inspection permits to be driven, owners request the inspection facility to make the 
necessary repairs and adjustments to the vehicle so that all components eventually receive 
a new safety inspection sticker. Thus, the majority of vehicles are considered to have 
successfully passed inspection. Examining the underlying information about maintenance 
during an inspection is thus necessary.  
 In Pennsylvania, inspection data is recorded and held in databases owned by 
PennDOT as well as by privately owned IT contractors and inspection companies.  Full 
inspection data records are considered proprietary, and are not generally used for program 
performance assessment. 
 Five years ago, PennDOT launched the “e-SAFETY” program, an electronic data 
archive of safety inspection results, where safety inspection stations voluntarily report 
results of vehicle inspections. The impetus of this program was to ensure collection of data 
to distinguish “trends for future safety improvements by identifying potential vehicle safety 
hazards and safety patterns”. [35] When the e-SAFETY program was introduced, part of 
the incentive to participate was that the MV-431 paper forms were no longer necessary for 
record documentation. Some stations still may choose to keep them as the primary 
inspection record. 
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Prior to the commencement of the e-SAFETY program, a private company, 
CompuSpections, LLC (CompuSpections), released commercial software to manage and 
monitor vehicle safety inspections on behalf of stations, such as those required by states 
like Pennsylvania. Rather than inspections being voluntarily submitted, the private 
company is able to collect all of the data entered into the software system. The initial 
incentive for this private electronic system was to be used for a managerial device and was 
not necessarily intended to use to report these safety inspection results. The 
CompuSpections database offers the option to print MV-431 forms from the entered 
information. 
 Both the CompuSpections and e-SAFETY datasets have comparable data, but differ 
by the details for variables they contain (see Methodology section). Both the e-SAFETY and 
CompuSpections databases allow inspection stations to have quick and detailed access to 
previous records when necessary. This may be important in order to back-check any repairs 
made to a vehicle involved in a crash or to monitor reported failures to be sure they are not 
over-reported. Additionally, this program allowed vehicles to be tracked according to any 
type of changes made for a “failing” vehicle in order to prevent or look for similar failures in 
same model-year vehicles. The key difference between the two datasets lies in composition 
of types of inspection stations. The majority of the e-SAFETY data records are comprised 
from independent inspection stations, while records in the CompuSpections database are 
mainly from dealership inspection locations. Additionally, e-SAFETY records have higher 
odometer readings, on average, given a specific vehicle age. By combining these inspection 
datasets, these data samples are assumed to be representative of safety inspection failure 
rates in the entire state.  
 By combining inspection details from both datasets and comparing various 
distributions with state registration data distributions, we can examine how many vehicles 
have safety issues and are repaired as a result of the current annual safety inspection 
program. With this information, various analyses can be performed based on vehicle 
inspection failure rates or number of vehicles that “would have failed” with respect to the 
characteristics such as urban/rural county types, vehicle age, and overall vehicle odometer 
reading. 
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IV. METHODOLOGY FOR FILTERING, VALIDATING, AND 
ANALYZING STATE VEHICLE RECORDS TO CALCULATE 
INSPECTION FAILURE RATES 

In calculating vehicle safety inspection failure rates, this study focuses on three main 
parameters by which failure rate is analyzed. These parameters consist of vehicle failure 
rate by urban/rural county classification, age, and odometer reading. Age is an essential 
variable by which to calculate failure rates because driving patterns differ as a result of 
vehicle age, with VMT decreasing about three percent per year, on average. Furthermore, 
there are fewer older (more than ten years old) vehicles being driven [36]. This however 
does not mean the old vehicles should be ignored from analyses since they still contribute to 
fatal crashes. An additional reason to consider fail rate by age is because PA state 
legislators have proposed to exempt safety inspections based on a vehicle’s age (e.g., exempt 
first two years of safety inspections). A county-scheme distribution allows for conclusions to 
be drawn based on the population density of a given location, allowing for assertions to be 
made depending on varying driving patterns due to driving location (e.g., rural county 
vehicles are driven more yet represent less of the state). Finally, failure rates are examined 
based on odometer readings, which perhaps reflect both vehicle age and driving location, as 
younger vehicles tend to be driven more than older vehicles and vehicles in rural counties 
tend to be driven more than those in urban counties. The following sections present the 
data available for this analysis, validation and regression of the data, as well as each of the 
previously stated failure rate distribution scenarios. 

V. Raw Data 

Raw data provided for this study includes anonymized Pennsylvania vehicle safety 
inspections ranging from 2008–2012 from two different data sources, in addition to 
anonymized Pennsylvania vehicle registration records as of March 2012 and November 
2013. The two datasets are composed of varying volumes of records, vehicle characteristics, 
and inspection information. No information pertaining to the vehicle owner or drivers of the 
vehicle was identified or released. Table 2 summarizes the main similarities and differences 
pertinent to the study. 
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Table 2. Pennsylvania Data Used 

 e-SAFETY  CompuSpections  Registration  

Record Count 980k (total) 3.3 million (total) 10.4 million (each) 

Frequency 5 years 
(2008-2012) 

5 years 
(2008-2012) 

2 snapshots 
(March ‘12 & November ‘13) 

Percent of Registered 
Vehicles per Year ~3% ~10%  

VIN X X X 

Odometer X X X* 

Date X X X* 
Location 
(zip code) X X X* 

Vehicle make and/or 
model X X  

Inspection Type  
(e.g. annual) X X  

Inspection Action 
(e.g. pass, new, etc.) X X  

*At time of registration for current owner in PA 
 
Custom code written in the Python programming language was used to filter, analyze and 
compare each initial, raw dataset to remove entries with invalid or incomplete information. 
Filters used on each dataset included, but were not limited to, the following primary issues: 

1) Invalid VIN (length, digits, verified) 
2) Duplicate Entries 
3) Invalid Date (format issue – not a date, no entry) 
4) Invalid Odometer Entry (alpha-numeric entry, no entry) 
5) Heavy-duty trucks (>10,000 lbs and ≥ Ford F-350) 
6) Permanently registered vehicles (police cars and ambulances) 
7) Low category counts (<1,000 vehicles in a given category i.e., age 25 vehicles)  

 
The Supplemental Material (Section 2.2 Raw Data Filtering Results) contains detailed 
filtering and methodology information. About 10% of the registration data, about 2% of the 
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CompuSpections data, and about 8% of the e-SAFETY data were removed from the initial 
datasets leaving sufficient, complete, and valid entries to complete the analyses.  

Registration data reported in the data sets was used to assess the 
representativeness of the vehicles in each data set since one of the mandatory steps in the 
inspection process is to verify registration. Thus the registration data is considered to be a 
valid baseline of vehicle representation for the analysis. Representativeness was examined 
between each registration dataset as well as between registration and inspection datasets. 
While chi-squared analyses suggest that the distributions compared are statistically 
different (see Section 3 in the Supplemental Material), the distributions do appear to follow 
the same trends and overall distribution appearance. However, there are specific reasons as 
to why only certain years were included in the data analysis, specifically pertaining to the 
quantity of records in each inspection dataset contributing to the overall, combined 
inspection dataset. 
 A limitation to the two inspection databases is that they are not randomly selected 
records of vehicles overall in the state or of types of stations (e.g. independent or 
dealership). And, while the inspection datasets provide an ample amount of inspection data 
points, it is concluded the statistical difference merely indicates the vehicle fleet is rapidly 
changing with many new cars moving onto the market, old cars off of the market, and cars 
moving into and out of the state.  Another problem in checking for statistically similar data 
distributions may stem from vehicles being registered in Pennsylvania and getting 
inspected in a station that does not partake in the electronic state inspection program, but 
rather in a station that still uses the paper MV-431. Finally, it is concluded that the total 
number of data points (refer to Table 2) is enough to be able to draw reasonable conclusions 
about the vehicle fleet, even if it is not statistically proven. 

VI. Data Validation and Regression Analysis 

In order to determine if any independent variables of vehicle characteristics are 
statistically significant in predicting the dependent variable of vehicle safety inspection 
outcome (whether a vehicle will pass or fail inspection), a logistic regression is performed 
using the statistical software package R. The outcome in this equation is treated as a 
Bernoulli trial and the following logistic function is used: 
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𝑝 𝑥 =
1

1 + 𝑒!! !  

 

• where p(x) is the probability of the outcome x (i.e., p(failing inspection)); 

• and 𝜂(𝑥) is a linear combination of explanatory variables: 
 

𝜂 𝑥 = 𝛽! + 𝛽! ∗ 𝑎𝑔𝑒 + 𝛽! ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑑𝑜𝑚𝑒𝑡𝑒𝑟 + 𝛽! ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝛽! ∗ 𝑓𝑢𝑒𝑙𝐸𝑐𝑜𝑛𝑜𝑚𝑦 + 
𝛽! ∗ 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝐷𝑎𝑡𝑒 + 𝛽! ∗ 𝑢𝑟𝑏𝑎𝑛𝑖𝑡𝑦 + 𝛽! ∗ 𝑏𝑜𝑑𝑦 + 𝛽! ∗𝑚𝑎𝑘𝑒 + 𝛽! ∗ 𝑓𝑢𝑒𝑙𝑇𝑦𝑝𝑒 

 

• where age, currentOdometer, weight, fuelEconomy, InspectDate, urbanity (of 
registration location), are continuous variables; 

• and body, make, fuel are binary variables; 
 
To test for multicollinearity, we have calculated and provided a correlation matrix showing 
variable relationships. Note that the regression model incorporates urbanity index as a 
categorical variable, but for the sake of looking at the correlation between variables, the 
urbanity level was assumed to be continuous based on the urbanity scale explained in the 
following section of the paper. The correlation matrix of the independent, continuous 
variables are shown in Table 3. 
 

Table 3. Correlation Matrix of Independent, Continuous Variables Included in the Logistic 
Regression 

 
Vehicle 

Age 
Current 

Odometer 
Vehicle 
Weight 

Fuel 
Economy 

Urbanity 
Level 

Inspection 
Date 

Vehicle Age 1 0.79 -0.13 -0.05 0.08 0.19 
Current 
Odometer  1 -0.06 -0.05 0.11 0.16 

Vehicle Weight   1 -0.78 0.03 0.04 
Fuel Economy    1 -0.04 -0.03 
Urbanity Level     1 0 
Inspection Date      1 
 
These correlation results show that, as would be expected, odometer and age are correlated 
at about 0.8, as well as fuel economy and weight, which are correlated at about -0.8. 
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 After observing two pairs of variables in the logistic regression with high correlation 
values, we are careful to observe the standard error values of the coefficients in the logistic 
regression results. These results are summarized in Table 4. 
 
Table 4. Summary of Continuous Variable Estimates from Logistic Regression 

Variables Coefficient Standard Error z value Pr(>|z|) 
(Intercept) -31 1.9 -1.7E+01 < 2e-16 *** 
Vehicle Age 5.7 E-02 4.9 E-04 1.2E+02 < 2e-16 *** 
Current Odometer 1.2 E-05 4.4 E-08 2.6E+02 < 2e-16 *** 
Vehicle Weight 9.4 E-05 4.1 E-06 2.3E+01 < 2e-16 *** 
Fuel Economy 2.1 E-02 6.5 E-04 3.2E+01 < 2e-16 *** 
Inspection Date 1.3 E-06 9.2 E-08 1.4E+01 < 2e-16 *** 
***  highly significant 
 
According to Menard (2001), high multicollinearity increases standard errors, yet 
coefficients remain unbiased. As observed in Table 4, standard errors are small enough that 
we can conclude multicollinearity is not a concern and that it does not affect our coefficient 
estimates, since they are significant even when including all variables [37]. All coefficients 
in the regression were found to be highly significant, as shown by the very small 
probabilities in Table 4. In effect, the dataset is sufficiently large and varied to allow good 
estimation of effects such as age versus odometer reading. In order to further prove that 
multicollinearity should not be a concern, model checking and fit measures of models 
excluding the various combinations of correlated variables, in addition to the base case 
including all variables shown above, is presented in the Supplemental Material (Section 3.1 
Logistic Regression). 
 After noting that all variables in the regression are significant, any of them can be 
used to make policy decisions for the vehicle safety inspection program. As a result, in 
following section, various failure rate scenarios are considered based on those that would be 
easiest to implement policy-wise. 

VII. Vehicle Failure Rate Definition and Analysis 

We calculate failure rates for the different fail categories and then an overall failure rate 
for the state. As described in Section 3, the possible results of an initial inspection include: 
pass, fail, new, repair, and adjust. The final failure rate, considering only fail final 
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inspection status, is calculated to be less than 0.1 percent. This rate is an order of 
magnitude lower than the implied 2% fail rate as stated by opponents of safety inspections. 
It must be noted that while this < 0.1% failure rate is very low, it may be an underestimate 
of the actual “fail” designation. This underestimate may result from lack of thorough 
recordkeeping. Vehicles that fail inspection may leave and return for maintenance at a 
later date, but because recordkeeping is only done once results are final (typically when a 
sticker is issued), this initial failed inspection may not be recorded. As previously explained, 
the vehicle owner may be told work is necessary for the vehicle to pass; however, the work 
may not always be performed at the time of the inspection. It is possible, since no sticker 
was issued, that there was no concern to record and/or report this inspection, solely for 
recordkeeping. This final failure rate alone, however, would not be indicative of the percent 
of unsafe cars on the road if the safety inspection program did not exist nor is it 
representative of the lack of compliance to the inspection law. A failure in this context 
should include the pass with maintenance final inspection status, which considers entries 
with any fail, new, repair, or adjust designations recorded in both the e-SAFETY and 
CompuSpections datasets. In this data model, a pass or fail (including pass with 
maintenance) was recorded as a ‘0’ or ‘1’, respectively. Multiple entries in a year may occur 
if a vehicle gets an inspection, fails, and no work is performed immediately. This inspection 
is recorded as a fail. Soon after, the vehicle may return to get re-inspected and pass 
inspection and thus a pass is recorded for the same vehicle. In this case, the first entry for 
the VIN is used as this is considered the initial safety inspection result. On the other hand, 
if this initial failed inspection is not recorded, as it would only be for record-keeping, and 
there is only record of the vehicle passing after it returns, this may result in an 
overestimate (underestimate) of the pass rate (failure rate). While this is important to note 
as an observation in the data, it was concluded that these entries were minimal compared 
to the quantity of data in total (see Supplemental Material Table 2), and therefore was not 
assumed to have an effect on the overall failure rate estimates.  
 The first analysis was to consider the "overall" LDV fail rate for the state as a whole 
by including pass with maintenance results. After filtering the registration database for the 
Pennsylvania state fleet, we are able to analyze about nine million LDVs of the 10.4 million 
registered vehicles. There were two methods used for calculating the overall state failure 
rate. First, the registration and inspection data was disaggregated by age, since this was 
the most detailed, common variable between datasets. Due to varying composition 
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breakdowns by age between the inspection and registration data sets, we evaluate overall 
state failure rate by two different methods (see Supplemental Material Figure 4). Initially, 
using the failure rate by age combined with the vehicle distribution in the registration 
dataset, the overall state failure rate range was calculated to be about 18%. Then similarly 
using the failure rate by age, but instead using the inspection vehicle distribution, the 
overall state failure rate was calculated to be about 12%. These two values are both used in 
describing the failure rate for the state as being a range from 12% to 18%. Using the 
average overall vehicle failure rate range and the registration total of about 10.4 million 
LDVs, equates approximately 1.3 to 1.9 million vehicles that would have failed inspection, 
in a given year. This metric clarifies the number of vehicles that would have otherwise 
failed inspections, without corrective action taken across the various state-mandated safety 
tests, which are currently implemented. Comparing this 12% to 18% failure rate back to the 
initial statement of the failure rate being only 2%, equates to a difference in vehicles that 
would have failed inspection in a given year totaling between one and two million. This 
calculated failure rate range is one to two orders of magnitude higher than the failure rate 
claimed by state legislators. This large difference must not be ignored and creates a concern 
since there is suggestion to modify or eliminate the vehicle safety inspection program in the 
near future. These overall state failure rates of 12 - 18% can be defined on a finer level by 
examining the vehicle failure rates by age, odometer reading, and county classification. In 
addition to these three listed characteristics, safety inspection failure rates by vehicle body 
can be found in the Supplemental Material (see Supplemental Material Figure 7).  
 Figure 4 displays the average vehicle inspection failure rate with respect to vehicle 
age, as well as the overall state failure rate for comparison. 
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Figure 4. Failure Rates by Vehicle Age (error bars represent min-max failure rate range 
from 2008-2012).  Age notation is calculated based on the model year and the more recent 
inspection year of the vehicles, so that the lowest age results in ‘-1’ (e.g., a 2008 model-year 
vehicle could be purchased and inspected in 2007). Shaded range is the overall average 
failure rate for all vehicles during this time period. 

 
Figure 4 shows a very low (but not zero) failure rate for new vehicles; vehicles aged -1 and 0 
have average failure rates of 0.2% and 0.5%, respectively and a failure rate of 3.2% 
beginning at age one. Even with one year of driving, the failure rate is already above the 
promoted 2% failure rate. Unlike the decreasing age distribution across the registered 
vehicles, the failure rate across the state increases with age and remains significant with 
older vehicles. Vehicles over eight years old consistently show a failure rate at or above 
20%, with the maximum failure rate of about 23% for vehicles around age 16. Careful 
consideration must be taken into account when describing the overall state vehicle fleet 
since there is a large frequency of young vehicles with lower failure rates, compared to the 
older vehicles with much higher failure rates (see Supplemental Material Figure 4). It is 
also interesting to note that older cars fail less often than mid-range cars, perhaps due to 
less frequent driving trends in older vehicles, as mentioned previously. Furthermore, it is 
assumed people driving older cars are generally better at maintaining them or proactively 
making repairs themselves and therefore cause this decreased failure rate.  
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A more comprehensive presentation of the data would be to calculate how many vehicles 
“would have failed” without the current program. According to this standpoint, by 
eliminating the safety program, in 2012 on the order of 1.4 to 1.7 million failed vehicles 
would have been on the road in that year. Figure 5 combines the calculated failure rates 
from each inspection database with the number of vehicles from the registration database 
in order to represent the estimated number of vehicles that “would have failed” in the state 
in a given year.  

 

  

Figure 5. Estimated number of vehicles that would have failed in 2012, by vehicle age (bars 
represent range between 2008-2012 

 
The mid-aged vehicles generate the majority of "would have failed" vehicles. Estimates of 
the number of vehicles that would have failed by county can be found in the Supplemental 
Material Figure 5. 
 Next, the fail rate was examined by odometer reading and is displayed in Figure 6. 
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Figure 6. Average failure Rates by Vehicle Odometer Value (error bars represent min-max 
failure rate range from 2008-2012) 

 
This trend suggests that there is an increased failure rate with increased odometer values. 
The failure rate peaks in the 125,000 – 150,000 mileage bin, reflecting a failure rate of 
24.5%. The age and mileage characteristics are not mutually exclusive – older vehicles tend 
to have higher odometer readings. For example, in the combined inspection database, a 
three-year-old vehicle has about a 25,000 to 35,000 mile odometer reading and a ten-year-
old vehicle has about a 120,000 to 130,000 mile odometer reading. For a more detailed 
comparison refer to the Supplemental Material – Vehicle Miles Traveled. It is additionally 
noted that the failure rates are not zero for new vehicles, which are found in the two lowest 
odometer bins. Vehicles in odometer bins 0-5,000 miles and 5,000-10,000 miles have failure 
rates of 0.2% and 1.1%, respectively and the bin for 10,000-20,000 miles driven, which 
equates to about a one-year-old vehicle, on average, has a failure rate of 3.3%, which is 
above the stated 2% fleet average. 
 Finally, we examine failure rates by county types, which may reflect varying driving 
patterns and/or inspection results. The Center for Disease Control’s National Center for 
Health Statistics (NCHS) Urban-Rural classification scheme is used to distinguish between 
urban and rural areas (see Figure 7). A total of six county categories were used with Type 1 
denoted as most urban, Type 2 – Type 4 as less urban, Type 5 as rural and Type 6 as the 
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most rural. We then used 2010 Census data [38] to assign the NCHS classification to 
Pennsylvania’s 67 counties.  
 

 
Figure 7. 2006 NCHS Urban-Rural Classification Scheme for Counties [39] 

 
Table 5 shows the 2012 Pennsylvania county breakdown and vehicle registration 

representation within the urban-rural classification scheme in the state. 
 

Table 5. 2012 Registration Data Summary of Light-Duty Passenger Vehicles by Urban-
Rural County Classification 

County 
Classification # Counties Total Vehicles in 

Classification (1,000) 
% of Vehicles 

in State Average Age 

1 2 1,400 16% 8.7 
2 11 2,700 31% 8.5 
3 14 2,700 31% 9.4 
4 5 490 6% 9.4 
5 22 1200 14% 9.7 
6 13 310 4% 9.7 

 
The number of counties that are designated as being rural (35) is about equal to those 
designated as urban (32); however, there are far more vehicles located in urban areas. 
While the vehicle distribution between county types is different, the inspection fail rates 
between the urban and rural county types are relatively consistent, ranging from 11% to 
15% (see Figure 8). The calculated failure rates in each urban-rural classification are 
underestimates of the actual failure rates in the overall state and by urbanity classification. 
This underestimate is due to the difference in composition of vehicles in the inspection 
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databases in comparison to the registration database, which represent a larger, overall 
percentage of younger vehicles with lower failure rates. Refer to the Supplemental Material 
(Data Representation, Supplemental Material Table 4) for a detailed disaggregation of each 
database by urbanity classification with averages and ranges of vehicle ages within each 
and further explanation of this data discrepancy. 
 

   
Figure 8. Average failure Rates by County Classification with error bars that represent 
min-max failure rate range from 2008-2012. 

 
While these failure rate estimates are lower overall, general conclusions can still be made 
on the differences between urban and rural counties. The vehicle safety inspection failure 
rate across the state is calculated to be about 11.6%, according to the metric described 
previously, which analyzes vehicles that need maintenance in order to pass inspection by 
urbanity. Using the county classification designation, the failure rate is seen to be 
consistent across the state, yet slightly higher in the more rural areas. Urban counties, 
classified as Type 1 – Type 4 according to NCHS, have a failure rate of about 11.5%, similar 
to the calculated overall state failure rate, as these are where just over 80% of vehicles in 
PA are represented. The rural failure rate, counties classified as Type 5 and Type 6, was 
about 12.4% and represents just under 20% of the vehicle fleet in the state (Type 5 counties 
represent about 80% of the vehicles registered in the rural category and Type 6 only 20% of 
the rural vehicles registered). As noted previously, since the inspection database has a 

0%	  

2%	  

4%	  

6%	  

8%	  

10%	  

12%	  

14%	  

16%	  

18%	  

1	  
(Urban)	  

2	   3	   4	   5	   6	  
(Rural)	  

Ve
hi
cl
e	  
In
sp
ec
ti
on
	  F
ai
lu
re
	  R
at
e	  

Urban	  -‐	  Rural	  County	  ClassiCication	  



 34 

much higher percentage of younger vehicles than registered in the state, the urban and 
rural failure rates, in addition to the overall state failure rate, is likely underestimated. 
This conclusion is proven further by referring to the failure rate distribution by age (Figure 
4) alongside the age distribution by county classification (Supplemental Material Table 4). 
 On a more detailed level, the difference in failure rate between the most urban and 
most rural county classification ranged from 11% in the most urban category to 15% in the 
most rural category (equating a four percentage point difference). Looking more in depth at 
the vehicle fleet between the most urban and most rural county classifications, a calculated 
one year difference in vehicle age as well as a 20,000 mile difference in odometer reading is 
observed (refer to Table 5). From these results, it can be concluded that on average, vehicle 
odometer readings and ages are higher in more rural settings than in urban settings, 
resulting in higher failure rates in rural categories.  
 Using the failure rate by age distribution along with the average vehicle age in the 
most urban (8.7 years) versus the most rural (9.7 years) counties that was calculated 
previously, it is observed that this age difference is associated with a failure rate difference 
of about 1.5 percentage points (refer to Figure 4). This observed rate is less than the 2 
percentage point average difference between most urban and most rural counties and 
higher than the 1 percentage point difference when comparing the average urban (11.5%) 
and average rural failure rates (12.4%). As a result, this high rural failure rate can 
partially be attributed to rural counties having slightly older vehicles on average. 
 Using this failure rate by odometer distribution along with the average vehicle 
mileage in the most urban (40,000 miles) versus the most rural (59,000) counties that was 
calculated previously, it is observed that this 20,000 mile odometer difference, in this 
odometer bin range, is associated with a failure rate difference of about 4 percentage points 
(see Figure 6), more than the failure rate difference calculated in the vehicle age urban-
rural difference. This observed rate is equal to the four percentage point difference between 
the most urban and most rural counties, calculated previously, and higher than the 1 
percentage point difference when comparing the average urban (11.5%) and average rural 
failure rates (12.4%). As a result, this high rural failure rate is concluded to be a result of 
the larger observed odometer readings in rural counties with even stronger evidence than 
seen when analyzing the differences in ages. Observing that vehicle safety inspection 
failure rates are consistent across counties and failure rate differences are primarily due to 
age and odometer differences, a safety inspection program implemented by county 
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classification, similar to the current emission inspection program, is not ideal from a policy 
perspective.   
 Vehicle age and mileage can be used similarly in describing a vehicle and classifying 
appropriate inspection failure trends; however, these characteristics were shown separately 
in response to the recent legislature proposals to exempt vehicles by specific ages or 
mileages. The noticeable difference between these two distributions in Figure 4 and Figure 
6 is the size of the range bars on the average estimates; they are much smaller when 
looking at the odometer distribution graph. This means mileage may be a better predictor 
of failure rates rather than age of vehicles. Additional analysis was executed in order to 
find the average ages of vehicles within these odometer bins (see the Supplemental 
Material Table 11). The findings align with the average vehicle driving about 10,000-12,000 
miles per year. 

VIII. LONG-TERM FAILURE RATE TRENDS 

One of the initial sentiments that prompted the study was that vehicles have “never been 
safer” according to recent studies by the National Highway Traffic Safety Administration 
(NHTSA) and state legislators’ beliefs that modifications to the current vehicle safety 
inspection program are in order. Typically this phrase that vehicles have “never been safer” 
corresponds to protecting users from crashes and loss of life, by improving the anti-lock 
brake systems or vehicle frame technology to resist crashes (or at least mitigate harmful 
crashes); the focus here is improved personal safety technology. In this respect, vehicle 
safety has improved each year (as vehicle technology also improves each year); in fact, 
NHTSA found that “fatal crashes decreased by 2.2 percent from 2009 to 2010, and the 
fatality rate dropped to 1.11 fatalities per 100 million vehicle miles of travel in 2010” 
compared to 1.73 fatalities per 100 million vehicle miles traveled in 1994. [40] In the case of 
this study, we focus specifically on observing the safety of vehicle components because, as 
with any item that incurs stress or wear, maintenance is necessary for proper functioning. 
We identify vehicle safety in terms of vehicle maintenance by analyzing failure rate trends 
over time. This is reflected in Figure 9, where failure rates are followed for a given model 
year vehicle as it ages. 
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Figure 9. Time-series analysis comparing vehicle model year failure rates as the vehicle 
ages. 

 
Looking at each newer model year, the same failure rate trend is still observed in an 
increasing trend as vehicles age. Additionally, comparing each model year by its age, a 
consistent failure rate is observed, resulting in the conclusion that even as technology 
improves, therefore improving vehicle safety ratings, failure rate trends do not appear to 
decrease with newer model years (Figure 9). Finally, as stated previously, brand new 
vehicles are not averaging a zero fail rate and any vehicle greater than one year old has a 
higher failure rate than the 2% failure rate referred to by policymakers. 

Over four model year vehicle fleets, a consistent failure rate trend is observed as a 
vehicle ages. There is not enough data for model year 2011 vehicles to draw any conclusions 
other than that the failure rates are non-zero and mostly above the 2% promoted failure 
rate at age 0 and age 1, respectively. Comparing model years 2008 through 2010 from 
oldest to newest, a slight decrease in failure rates is observed. This is illustrated more 
clearly in Figure 10. 
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Figure 10. Inspection Failure Rate Time Series, Comparing Vehicle Age 

 
Some vehicles generally do have higher safety ratings in newer car models; however, this 
must be kept isolated from the maintenance and upkeep of the vehicles. While technology 
has vastly improved over the past 10-20 years, and newer vehicles have higher safety 
ratings, yearly maintenance is still crucial to keep vehicles functioning as safe as the 
newest vehicles on the road; thus the importance of vehicle safety inspections. 

The decreasing failure rate trend seen above in the same-aged vehicle failure rate 
over time, could be due to improvements in vehicle safety, but also due to factors such as 
the overall decrease in per capita VMT (e.g., less wear on vehicle). [41] Since people are 
driving less in recent years, there is less wear on the vehicle, and as a result there is a 
slight decrease in the observed failure rates. 

IX. CONCLUSIONS 

State policymakers periodically question the effectiveness of the passenger vehicle safety 
inspection programs. By considering how the inspection process works and analyzing the 
state of the vehicle upon entering the inspection rather than leaving, a more comprehensive 
examination of the current inspection program and its effectiveness can be provided. These 
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compelling findings put into question why safety inspections are not federally mandated 
along with emission inspections, as safety inspection failure rates remain high. 

The average initial vehicle inspection failure rate range between all databases is 
about 12% to 18%, at least an order of magnitude higher than the assumed rate of 2%.  
After inspection and repairs, the failure rate of vehicles with fail as the final inspection 
status is much lower, with only 0.1% of vehicles ultimately failing. Additionally, this 
estimated 12% to 18% rate, combined with the Pennsylvania vehicle fleet size of about 10.4 
million, equates to on the order of 1.2 to 1.9 million vehicles that would have failed the 
safety inspection in a given year—the number of vehicles that would have failed without 
the current program. Furthermore, when analyzing the data in more detail, many groups of 
vehicles are well above this average fail rate, especially vehicles more than three years old 
or with more than about 30,000 cumulative miles. Vehicles less than one year of age still do 
not average a zero failure rate and most one-year-old vehicles are at or above the believed 
2% failure rate. Policy makers must use this information as the basis for policy change, 
rather than the pass or fail rate with the current inspection program in place (i.e., as a 
vehicle leaves the inspection station). 
 While estimates of the safety inspection program's effect on highway crashes or 
fatalities in Pennsylvania are outside the scope of this paper, Cambridge Systematics, Inc. 
(2009), previously summarized in the literature review of this paper, estimated 1 to 2 fewer 
safety related fatalities per billion VMT in a state with versus without a safety inspection 
program. Based on this paper’s model results, they find Pennsylvania benefits from 
between 127 and 187 fewer fatalities each year, as a result of the vehicle safety inspection 
program. Applying the value of a statistical life to these fatality avoidances, this benefit of 
lives saved is then compared to user costs of the inspection program. The authors of the 
Cambridge paper conclude that in every case, the benefits outweigh the calculated program 
costs by at least $100M, making the program worthwhile to continue to implement. Future 
work should include an in depth analysis of current inspection program costs, including 
costs to both the user and the state, versus the program’s benefits in reducing fatalities. 

Broader collection of accurate inspection data is needed as well as a more randomly 
selected fleet of vehicles. If electronic inspection databases were the norm, real-time data 
analysis would be invaluable in showing the most realistic failure rates. While the e-
SAFETY and CompuSpections databases provide varying samples of the population, they 
are the only databases available with this information. Both are similar in information that 
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is collected; however, the CompuSpections database seemed to have a larger sample size 
and more accurate information (e.g., fewer data entries needed to be filtered out). 
Eventually, fully electronic record collection would be ideal in order to monitor failure rates 
of specific stations and even specific inspectors, so as to eliminate any incorrect 
assessments as they happen or soon after. 
 A larger and more comprehensive data collection system is key to a more effective 
inspection program and will allow for stronger oversight and improved management. 
Initially the vehicle safety inspection program was periodically audited by state police 
officers two times per year per station. These audits have decreased significantly and now 
vary between attainment and non-attainment emission counties. The paper-based 
inspection program requires significant program oversight, traveling, and training. A 
system similar to the CompuSpections and e-SAFETY programs, with electronic data 
collection as well as error checking, would provide more efficient recording of data, as well 
as data analysis in order to provide on-demand reports of how the program is performing. 
This study is limited to the available data. Currently, there are few states with vehicle 
safety inspection programs and even fewer with electronic safety inspection records. 
Without this information, these results are limited to the state of Pennsylvania. Data from 
other states would allow this study to be extrapolated to the national level and in return, 
this would validate the results in Pennsylvania.  
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Chapter III: Vehicle Safety Inspection Effectiveness4 

I. INTRODUCTION 

Today, technology plays a large role in society and is becoming extremely prominent in the 
transportation sector. Unfortunately, even with great improvements in technology, fatal 
vehicle crashes still occur. It is possible that vehicles safety inspections could help reduce 
these fatal crashes further; however, there are many limitations with the currently 
available data. Researchers in the health sector are currently able to access electronic 
records to do analyses that may lead to life-saving results. It is likely if better attention to 
data technology in transportation, similar to the health sector, fatal crashes can be further 
reduced. This chapter focuses on analyses related to fatal crashes in light-duty vehicle 
transportation, and more specifically, the effectiveness of personal vehicle maintenance.  

 Motivation I.1.
In recent years, states have been questioning the effectiveness of vehicle safety inspections. 
Common perceptions include that such programs are a waste of time and money, and 
inspectors identify false problems in hope to make more money. In 2009, Washington D.C. 
eliminated their safety inspection program due to claiming there was no evidence that the 
program resulted in fewer accidents. [42], [43] Similarly, in 2010, New Jersey no longer 
required safety inspections due to “lack of conclusive data” and the inability to justify the 
expense. [32] For the same reasons, Oklahoma discontinued their program back in 2001. 
[44] The common sentiment of many states that there is lack of data providing evidence 
that vehicle safety inspections aren’t worth the time and money; yet, it cannot be inferred 
safety inspections do not reduce fatalities. More analyses are necessary before this 
statement can be confirmed and conclusions drawn. These questions may help lead toward 
a helpful conclusion on this topic of vehicle safety inspection programs.  
These analyses are necessary especially with the increasing prominence of “big data”. In 
order for performance of programs, such as vehicle safety inspection programs, to be 
assessed, the data must be reliable. In the near future, as more automation is introduced in 
vehicles, collection of quality vehicle data will be a likely benefit. Personal vehicle safety 

                                                
4 Peck et. al., “The Effect Of Vehicle Safety Inspections On Urban/Rural Fatality Rates”. 
Transportation Research Record. Submitted August 1, 2015 
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inspection programs today vary widely across their execution and oversight, making the 
program challenging to analyze and identify any benefits or disadvantages. This paper aims 
to classify current safety inspection programs in various models by their frequencies and 
rigorousness to find if there is any advantage in supporting these programs. In parallel, the 
quality of data used in this study is evaluated. 

II. LITERATURE REVIEW 

According to the Center for Disease Control (CDC), motor vehicle crashes remain a major 
source of morbidity and mortality in the US for many years now. As of 2013, accidents were 
in the top five for the leading cause of death over all age groups and motor vehicle crashes 
were the leading cause of death for those between the ages 1 to 44. [4] This statistic is 
alongside deaths resulting from heart disease, cancer, and chronic lower respiratory 
disease. “The National Highway Traffic Safety Administration estimates that highway 
crashes alone have an annual price tag of around $871 billion in economic loss and social 
harm.” [45], [46] Motor vehicle crashes are rightfully a large concern for the US population, 
yet there are few immediate solutions that will help reduce these high fatality rates.  
Prior to data analysis and policy recommendations, it is important to understand how 
fatalities vary by region. Puentes and Tomer (2008) showed that urban and rural VMT 
trends differ, with a bigger gap in recent years. [20] Since vehicle fatalities are higher in 
rural areas than in urban areas [21], [27], [47]-[50], NHTSA suggests that motor vehicle 
fatalities be reported in terms of fatalities per VMT and separated by urban and rural 
regions. This results in higher rural fatality rates than urban fatality rates. [51] 
 There are multiple reasons attributed to higher rural fatality rates, some of which 
include higher speeds and VMT. [47] NHTSA reported that 2010 fatality rates were 2.5 
times higher in rural areas than in urban areas; as a result, “states are encouraged to 
present both rural and urban VMT rates along with their overall VMT rate.” [50] 
Furthermore, Kmet and Macarthur (2006) concluded that rural regions, both hospitality 
and death rates, among youth, were significantly higher. [52] 
One goal of this paper is to compare safety caused crashes in states with versus states 
without a safety inspection program; however, this may be limited by the quality of data in 
FARS. Castle et. al. (2014) compared death certificates from motor vehicle crashes to FARS 
data and found FARS data to show “considerable variation in the magnitude of 
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underreporting”. Furthermore, they suspect similar underreporting in other types of injury 
deaths. This phenomenon is suggestively similar for underreporting vehicle component 
caused crashes and may hurt the understanding of the safety inspection policy issue. [53] A 
similar study showed that reported crashes from where police were absent had much higher 
percentages of missing data for the contributing factors of the crash. As a result, without 
knowing the source of data from which crashes were obtained, conclusions on crash causes 
may not be as strong. [54] 

Previous studies on vehicle safety inspections were not always supportive of the 
programs, yet the methods used in those studies were vague, high-level analyses, which do 
not represent the actual effectiveness of the state-specific programs. A commonly referred 
to study by Cambridge Systematics, evaluated the effectiveness of Pennsylvania’s vehicle 
safety inspection program. While conclusions aligned with findings in this paper, 
Cambridge Systematics did not account for urbanity differences in their model, the review 
of the state safety inspection programs was vague, and only one average time period was 
used. Since safety inspection states have a more urban composure than non-safety 
inspection states, it is possible results could be confounded. [22] Another paper evaluated 
the Pennsylvania safety inspection program vehicle failure rates. The authors show that 
without the current vehicles safety inspection program in Pennsylvania, about 1-2 million 
vehicles would be in unsafe conditions to drive. Furthermore, older vehicles have a 
consistently higher failure rate along with high mileage vehicles. [29] 

III. DATA 

This analysis combines multiple data sources, including vehicle travel data from the U.S. 
Department of Transportation (USDOT), population data from the Census Bureau, and 
vehicle crash data from the National Highway Traffic Safety Administration (NHTSA). 

 Office of Highway Policy Information: Highway Statistics Series III.1.
The USDOT Federal Highway Administration’s Office of Highway Policy Information 
(OHPI) Highway Statistics Series reports urban and rural vehicle miles traveled (VMT) for 
each U.S. state and the District of Columbia. This specific VMT breakdown is available 
from 1997 through 2011. Prior to 1997 overall U.S. urban and rural statistics are reported 
as country averages and are not state-by-state specific averages. As a result, this limits the 
analysis to beginning in 1997. [55] 
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 United States Census Bureau: Population III.2.
The Census Bureau’s Population Estimates Program releases data annually that estimates 
population based on current data containing births, deaths and migration. Both national 
estimates as well as more aggregate levels of population estimates, such as by state and 
county, are estimated. As a result, population estimates are used by state and by urbanity 
level. [38] 

 Fatality Analysis Reporting System III.3.
NHTSA publishes a national database “detailing factors behind traffic fatalities on the 
road”, known as the Fatality Analysis Reporting System (FARS). [40] This database 
contains fatal crash statistics, beginning in 1975, resulting from numerous variables, 
including the vehicle related factors that are inspected in states requiring vehicle safety 
inspections; for example, brake, tire, or steering failures. The FARS database includes 
records of all crashes involving at least a motorized vehicle traveling on a public road and a 
resulting death within 30 days of the crash.  Entries are recorded by police officers on duty 
and at the crash site location. Depending on state officer training and the available crash 
evidence, the cause of crash may not be determined correctly and may lead to inaccurate or 
unrepresentative results. While the database contains certain limitations that should be 
kept in mind, it is the best available national data and widely used to analyze fatal crashes. 

 National Automotive Sampling System - General Estimates System (NASS GES) III.4.
This sampled data, provided by NHTSA, is from various police jurisdictions around the U.S. 
This data system, which collects police-reported crashes ranging from minor to fatal, began 
in 1988 to identify traffic safety problem areas. According to NHTSA, “in order for a crash 
to be eligible for the GES sample a police accident report (PAR) must be completed, it must 
involve at least one motor vehicle traveling on a traffic way, and the result must be 
property damage, injury, or death”. [56] While this data is the best available for analyzing 
non-fatal vehicle crashes, there remain numerous challenges and concerns by including this 
dataset. 
 First, the data does not contain a “state” definition field; therefore, the driver zip 
code attribute was decoded and matched to a state. For consistency, the same method was 
used on the FARS data. Next, a representative test was performed to compare fatal crashes 
in GES with those in FARS. The two-sided t-test resulted in a p-value of 0.028; therefore 
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the null hypothesis that the GES fatalities are equivalent to the FARS fatalities must be 
rejected. Since GES data is a sample, it may not be sampled from all 50 states and this was 
evident when comparing the fatal crashes between the two databases. As a result of these 
large variations in fatality samples, GES crash data was not able to be used in this 
analysis. 

 Vehicle Safety Inspection Programs III.5.
The National Traffic and Motor Vehicle Safety Act of 1966 was initiated due to the 
increasing concern over the rising number of motor vehicle traffic fatalities. Safety 
inspection programs were federally mandated until 1973 for states to qualify for federal 
highway funds. [5] In addition to this Act, the automobile industry was pressed to focus on 
safety rather than aesthetics when designing new vehicles, which has had an impact on 
decreasing death rates. [57] After 1973, the vehicle safety inspection program became state 
mandated. Today, states may either require a strict safety inspection program, no program, 
or something in between. Since the federal government does not regulate vehicle safety 
inspections, each state manages the rigorousness of its own program (e.g., removing brake 
pads and measuring the thickness, measuring tire tread depth, testing aim of headlights 
and functionality of blinkers), and may decide to modify and/or discontinue its own state 
program at any time. 
 For the purpose of this analysis, states are separated into two categories: annual 
inspections (annual) and no safety inspections (none). This information can be found on the 
AAA website which contains a digest of motor laws, specifying safety inspections in each 
state, if they exist at all. [13] Additionally, each state’s website information is then 
compared to the AAA website information. For this analysis, as of July 2015, a total of 14 
states are classified as annual, 30 states are classified as none, and 7 states are classified 
as periodic. This information is presented in Table 6. 
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Table 6. Vehicle Safety Inspection Classification by State, as of June 2015 

Annual (14*) None (30) Periodic (7) 
District of Columbia* Alabama Maryland+ Delaware 
Hawaii Alaska Michigan Missouri 
Louisiana* Arizona Minnesota New Jersey* 
Maine Arkansas Montana Nevada 
Massachusetts California+ Nebraska Oklahoma 
Mississippi Colorado New Mexico Rhode Island 
New Hampshire Connecticut+ North Dakota Utah 
New York Florida Ohio  
North Carolina Georgia Oregon  Pennsylvania Idaho South Carolina  Texas Illinois South Dakota  Vermont Indiana Tennessee  Virginia Iowa Washington  West Virginia Kansas Wisconsin   Kentucky Wyoming  

* Program has recently been modified 
+ Safety inspection required only at first registration of vehicle into the state 
 
Note here that a state requiring vehicle safety inspections only at first registration is listed 
here under the “None” category and denoted with a “+”. In the least stringent model 
analyzed, these states are modeled as safety states, but as soon as the models become more 
stringent in defining safety programs, they are modeled as non-safety. A limitation to any 
such classification in a historical analysis is that states can modify their program over time.  
Washington, D.C. and New Jersey have discontinued their safety programs within the past 
few years and Louisiana just made annual inspections an alternative to the now required 
biennial inspections. To simplify this complexity, fatality rates are analyzed until 2009, 
prior to program modifications, except Oklahoma is defined as periodic since its regulations 
changed in 2001, over the analysis period. In addition to states modifying their programs at 
any time, states also vary in the depth and breadth of the inspection. 
A typical vehicle safety inspection in the U.S. (though they do vary slightly state to state) 
includes checking components such as brakes, tires, lighting, etc. These safety components 
are checked either against an allowable minimum threshold or if the component is 
functioning appropriately. For example, tire tread depth must be greater than the legally 
defined minimum depth. Furthermore, each station within each state may vary in the 
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intensity of the inspection and this is assessed based on rough estimates of how long an 
inspection takes in a given state. 
 In order to make a comparison of whether vehicle safety inspections reduce fatality 
rates, the analysis compares fatality rates in states denoted as annual to fatality rates in 
states denoted as none, The hypothesis for this analysis is that both urban and rural 
fatality rates are lower in states with an annual safety inspection program than in those 
with no safety inspection program. It is even more important to separate urban and rural 
rates since safety states seem to have much more urban composition than non-safety states, 
with much more rural composition, as shown in Figure 11. 
 

 
Figure 11. Percentage of rural VMT comparison between defined safety states and non-
safety states with each state plotted and average values shown in red 

 
Figure 11 shows the comparison of rural composition between types of states. A t-test was 
performed to test the null hypothesis whether the percentage of rural VMT is equal 
between types of safety states. This test results in a p-value of 0.02, below the significance 
level (0.05). Therefore, we reject the null hypothesis that the rural composition is equal 
between the two types of states; we cannot accept that these percentages are the same. 
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 Metrics Used III.6.
In order to compare crashes between states (and years), the crash statistics must be 
normalized because locations and years vary in driving patterns. NHTSA has developed 
performance measures to be used in performing research analyses. They define the fatality 
rate per mile of travel (fatalities/VMT) to be used to track safety trends. According to their 
report on performance measures, reporting fatalities alone will not accurately represent 
smaller states with fewer possible fatalities and that traffic fatalities are “most obviously 
affected by the amount of travel” [50]; therefore, the metric of fatalities (or fatal crashes) 
per VMT is used in this analysis. From here forward, both fatality rates and fatal crash 
rates are calculated yet will only be referred to as fatality rates; both rates are reported in 
the results. 
 Fatalities in FARS are organized by state and separated into categories of urban and 
rural within each state for each year of analysis, from 2000 through 2009. Using the VMT 
data provided by OHPI, fatality rates are then calculated, along with each state’s urban-
rural VMT values, as this varies within each state. All of these estimates are necessary 
because each state’s overall fatality rate will vary depending on the type of area analyzed; 
this is where accounting for Simpson’s Paradox is critical. Table 7 shows an example of this 
(values are taken from NHTSA’s report as an example). 
 
Table 7. Simpson’s Paradox of State Fatality Rates [50] 

 

Urban 
fatality 

rate 
%Urban 

VMT 
Rural 

fatality 
rate 

%Rural 
VMT 

State 
Average 

Urban/Rural 
Weighted State 

Average 
State A 0.92 80% 2.68 20% 1.8 1.27 
State B 0.87 23% 2.49 77% 1.68 2.12 

 
State B has lower fatality rates for each of the urban and rural locations when compared to 
State A’s equivalent. However, State B’s rural composition is greater than State A, so as a 
result State B’s weighted average rate will appear much higher overall than that of State 
A’s. Using this information, overall state average fatality rates can be equivalently 
calculated both by weighted VMT (Equation 1a) and as an overall average (Equation 1b). 
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𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑦  𝑟𝑎𝑡𝑒! = %  𝑢𝑟𝑏𝑎𝑛 ∗ !"#"$%#%&'!
!"!!, !"#$%

+ %  𝑟𝑢𝑟𝑎𝑙 ∗ !"#"$%#%&'!
!""  !"##"$%  !!!!, !"!#$

;     

𝑤ℎ𝑒𝑟𝑒                    𝑖 = 𝑠𝑡𝑎𝑡𝑒          Eq. 1a 
 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑦  𝑟𝑎𝑡𝑒! =
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠𝑖

100  𝑚𝑖𝑙𝑙𝑖𝑜𝑛  𝑉𝑀𝑇𝑖,
;     

𝑤ℎ𝑒𝑟𝑒                𝑖 = 𝑠𝑡𝑎𝑡𝑒          Eq. 1b 
 
Equation 1a and Equation 1b are equivalent when percent urbanity is calculated using 
VMT proportions. This shows that fatality rates must be analyzed by urbanity since these 
percentages have an impact in calculating overall fatality rates. To observe the true 
effectiveness of a program based on VMT, urban and rural rates must be analyzed 
separately due to Simpson’s Paradox, or urbanity of a state must be accounted for in any 
statistical tests on fatality rates. 
 Equation 2 denotes the formula, as specified in NHTSA’s performance measures, for 
calculating fatality rates in a given state for a given area (urban or rural), which is 
calculated for each year and averages across years, between 2000 through 2009.  
 

𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑦  𝑟𝑎𝑡𝑒!,! =
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠𝑖,𝑗

𝑉𝑒ℎ𝑖𝑐𝑙𝑒  𝑀𝑖𝑙𝑒𝑠  𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑖,𝑗
;         Eq. 2 

  𝑤ℎ𝑒𝑟𝑒, 𝑖 = 𝑠𝑡𝑎𝑡𝑒   
                   𝑗 = 𝑢𝑟𝑏𝑎𝑛  𝑜𝑟  𝑟𝑢𝑟𝑎𝑙   
 
Due to Simpson’s Paradox, and as specified by NHTSA, state fatality rates must be 
analyzed separately for urban and rural areas. As a result, states are broken down into the 
following four categories for the purpose of this analysis: urban-safety, urban-non-safety, 
rural-safety, and rural-non-safety. This accounts for fatalities and driving patterns differing 
between urban and rural areas, in addition to differences in rural composition between 
states. 

IV. METHODS 

It is hypothesized that safety inspection states have lower fatality rates than those without 
safety inspections. To test this hypothesis, states are first defined either as a safety state or 
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not (refer to Table 6) then separated into urban and rural categories, where fatality rates 
are calculated. 

 Definition of Safety States IV.1.
States are defined by two methods: binary (safety or not) and continuous (based on 
percentage of vehicles inspected and intensity of inspection). Various binary combinations 
were created depending on how stringent states are defined. For example, the least 
stringent model assigns the safety designation to states with any partial inspection 
program. Another more stringent model, would assign the most minimal inspection 
programs as not safety and the rest as safety. The most stringent model, the continuous 
model, uses the percentage of vehicles inspected as a proxy for estimating the fraction of the 
safety program implemented from 0 to 1. Binary inspections are assigned a safety value of 
0.5 in this case, since vehicles are inspected every 2 years (approximately half of the fleet 
every year). Additionally, after researching the state programs, it was found that each 
program may be implemented in varying intensities, defined based on approximated times 
of an inspection in that state versus another similarly defined state. These assumptions 
must be made since the safety programs are only state mandated rather than nationally 
mandated. 

 Defining the Crash Data IV.2.
Fatalities from FARS are used to analyze whether safety inspections are statistically 
significant in reducing fatality rates. Limitations to the data recorded in FARS include but 
are not limited to the reason attributed with the crash (safety cause or otherwise), the 
vehicle that caused the crash in multivehicle crashes, and crashes occurring in different 
states from where the vehicle is registered. Inconsistency in the reason attributed with the 
crash cause may be due to either laziness in recording the crash, misclassification of the 
crash cause, or another contributing reason being more apparent or obvious than the 
recorded reason. For example, a vehicle may have been speeding, yet had underlying bare 
tires or worn brake pads. Additionally, in states where safety inspections are not executed, 
unsafe vehicle components may not be an obvious reason for a crash, whereas the opposite 
may occur in a state that requires safety inspections – these safety states are more aware of 
safety issues. 
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 In a multivehicle crash there is no variable to distinguish which vehicle caused the 
crash; thus, it may be difficult to assign a registration state or reason to the crash. 
Furthermore, wrong designations to a crash may occur if one vehicle is from a safety state 
and the other from a non-safety state. Because this analysis is based on a policy that 
originates in a vehicle’s registration state, it is important to either test to see how often the 
crash state and registration state matches or filter crashes to only those that occur in the 
same state where the car was registered. A two-sided t-test for the null hypothesis that 
crashes assigned to the registration state were equal to crashes assigned to the crash state 
resulted in a p-value of 0.246. This led to the conclusion that the null hypothesis cannot be 
rejected; therefore, filtering of the unmatched registration and crash locations in crashes 
was not implemented.  

The registration state is assigned to a crash since this is where the vehicle would 
have been inspected. Aside from checking the vehicle’s registration state against the crash 
state, checks were also made between vehicles in multivehicle crashes. Crashes were only 
included if all vehicles’ registration states matched since the fault in the crash is unknown 
and may lead to inconsistency in choosing one vehicle’s (varying) attributes over another. 
This filter still allowed for 92% of the total crashes to be included in the analysis. 
Finally, the crashes are identified as either urban or rural based on the location of the 
crash, as crashes are more prominent in rural areas than urban areas and are less affected 
by the registration urbanity. The following sections go into detail on the analyses performed 
to calculate whether safety inspections are effective in reducing fatality rates. Additionally, 
it is examined whether safety-component caused fatalities are lower than other crash 
causes in states with safety inspection programs. However, the crash cause variable is a 
known weakness in the data and must be cautiously analyzed due to inconsistent reporting 
between states. 

 Ordinary Least Squares (OLS) Regression  IV.3.
In order to identify program effectiveness, OLS regressions are implemented, for each 
model accounting for the varying state definitions. Fatality rates in the US are compared in 
safety states vs. non-safety states. The dependent variable used in these regressions is the 
fatalities per 100 million VMT, as defined in Eq. 1a and Eq. 1b. The independent variables 
initially chosen for the regression included: safety (binary, continuous); state census region 
(categorical); state census division (categorical); and rural or urban (categorical). Years 
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included in the analysis ranged from 2000 through 2009. The general regression equations 
used are displayed in Equation 3(a-c).  
 
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦  𝑟𝑎𝑡𝑒  ~  𝛽! + 𝛽! ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 + 𝛽! ∗ 𝑈𝑟𝑏𝑎𝑛𝑖𝑡𝑦      Eq. 3a 
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦  𝑟𝑎𝑡𝑒  ~  𝛽! + 𝛽! ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 + 𝛽! ∗ 𝑈𝑟𝑏𝑎𝑛𝑖𝑡𝑦 + 𝛽! ∗ 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛    Eq. 3b 
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦  𝑟𝑎𝑡𝑒  ~  𝛽! + 𝛽! ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 + 𝛽! ∗ 𝑈𝑟𝑏𝑎𝑛𝑖𝑡𝑦 + 𝛽! ∗ 𝑅𝑒𝑔𝑖𝑜𝑛    Eq. 3c 
 
Various regressions were evaluated, with all combinations of independent variables, years 
of analysis, and safety state designations to observe the safety variable coefficient and 
significance. Significance of the regression formula in determining the effectiveness of the 
safety program in reducing fatality rates was determined by whether the safety variable’s 
p-value was less than the critical p-value of 0.05 and whether the coefficient was negative, 
indicating a lower rate for safety states when compared to non-safety states. Regression 
analyses were repeated and adjusted various times. In the first few adjustments, the years 
analyzed were varied between 2000-2009 as well as how the years were averaged (1-10 
years) in calculating fatality rates. In the following adjustments, DC was excluded in the 
regressions due to its unique composition and minimal fatalities in comparison to other 
states. 

 Hypothesis Test IV.4.
A two-proportion z-test is used to test whether the proportions of fatalities associated with 
a safety cause differs between safety states and non-safety states. First, the null hypothesis 
(H0) is defined: the percentage of safety-attributed fatalities in safety states is equal to the 
percentage of safety-attributed fatalities in non-safety states (Equation 4), repeated for 
both urban and rural locations. Additionally, this same hypothesis is checked for non-
safety-attributed fatalities. Significance of this hypothesis is compared with an alpha value 
of 0.05. 
 
𝐻!: 𝑝!"#$%&  !"#"$!,! =   𝑝!"!!!"#$%&  !"#"$!,!   𝑎𝑛𝑑  𝐻!: 𝑝!"#$%&  !"#"$!,! ≠   𝑝!"!!!"#$%&  !"#"$!,!  Eq. 4 

where, 
𝑝 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛  𝑜𝑓  𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠, 
𝑖 = 𝑠𝑎𝑓𝑒𝑡𝑦 − 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  𝑜𝑟  𝑛𝑜𝑛 − 𝑠𝑎𝑓𝑒𝑡𝑦  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 
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It is hypothesized that the percentage of safety-attributed fatalities will be lower in safety 
states than non-safety states and that there will be no difference in percentage of non-
safety attributed fatalities in either defined state. And these results will be similar in both 
urban and rural regions. 

V. RESULTS 

While numerous iterations were performed for all of these statistical tests for the various 
model combinations that were produced, only an example selection are presented, though 
all models are summarized. Other results are available upon request from the author. 

 OLS Regression V.1.
In all the regression models, urbanity was always included due to the NHTSA specifications 
previously explained in the Data Section. Regression results never led to the conclusion 
that safety states had statistically significant more fatalities. About 95% of the regression 
models were in support of the safety inspection program, showing a negative safety 
coefficient. The 5% of the regression models that did not support the safety inspection 
programs resulted from the models where one-year averages were used. These models 
inherently use of less data in the analysis. More compellingly, statistically significant 
results in support of safety programs were found in about 7%-8% of the models. In these 
models, of the statistically significant regressions, it can be concluded safety inspections are 
statistically effective in reducing fatality rates by approximately 1 fatal crash per billion 
VMT in a given year. 
 The sample results found in Table 8 correspond to the regressions using average 
rates from 2000 through 2009. Results did vary depending on the years analyzed in the 
regression due to larger averages over years incorporating more data than a single year 
average. For each rate, model, and formula analyzed, the results shown include the 
Bayesian Information Criterion (BIC), the coefficient and p-value on the safety variable, as 
well as the number of observations in the regression. 
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Table 8. OLS Regression Results, 2000-2009 Average 

Rate Model Formula 
(Eq. 3) BIC Safety Coefficient 

(per billion VMT) 
Safety 
p-value No. Obs. 

Fa
ta

l c
ra

sh
 Binary Safety 

Variable 

a 519 -0.70 0.26 100 
b 512 -0.30 0.65 100 
c 497 -0.34 0.59 100 

Continuous 
Safety Variable 

a 518 -1.36 0.08 100 
b 512 -0.42 0.63 100 
c 497 -0.53 0.54 100  

      

Fa
ta

lit
y 

Binary Safety 
Variable 

a 543 -0.81 0.25 100 
b 535 -0.25 0.73 100 
c 520 -0.27 0.71 100 

Continuous 
Safety Variable 

a 541 -1.65 0.06 100 
b 535 -0.42 0.67 100 
c 520 -0.57 0.56 100 

 
In comparing fatality rate regression results to fatal crash rate regression results, there are 
large similarities; however, using fatal crash rates results in a model with slightly better 
predicting capabilities by comparing the BIC values. Furthermore, the model with the 
continuous versus binary safety variable has an almost unnoticeable difference, yet the 
continuous variable is slightly better when comparing Equation 3a. Finally, Equation 3c 
has the best predictive ability over Equation 3a and Equation 3b when comparing BIC 
values. Equation 3c includes the safety variable, urbanity variable and region variable. By 
incorporating region in addition to urbanity, weather and road conditions can be accounted 
for since rural roads in the north are different from rural roads in the south. Figure 12 
shows the regression results for Eq. 3a (accounting only for safety and urbanity) and 
average rates between 2000-2008. This example also shows a case when the safety variable 
is statistically significant. 
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Figure 12. Regression results for Equation 3a using years 2000-2008 
 
Figure 12 includes a continuous safety variable and categorical urbanity variable to predict 
fatalities per billion VMT. While this BIC is not quite as good as the results from Equation 
3c, the adjusted R-squared value of 0.72 reflects that this model is sufficient in its 
predictive capabilities. Finally, all independent variables are significant below an alpha 
value of 0.05. These results show that urban fatality rates are significantly lower than rural 
fatality rates and the more rigorous a vehicle safety inspection program is the more it can 
reduce fatalities rates (up to about 1.8 fatalities per billion VMT). Using the national 
average of about 3 trillion VMT, the safety program can avoid about 1,800 deaths in the US 
in a given year by implementing a well-enforced safety inspection program. Furthermore, 
the urbanity coefficient is highly significant and has a much larger coefficient of about 11 
fatalities per billion VMT between urban and rural areas (higher rural fatality rate). This 
leads to the conclusion that urbanity must be accounted for in this analysis and similar 
analyses in the future. 

 Hypothesis Test V.2.
In addition to checking for differences in fatality rates between the defined safety and non-
safety states, a two-proportion z-test was performed. The null hypothesis (H0) is defined, as 
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the percentage of safety-attributed fatalities in safety states is equal to the percentage of 
safety-attributed fatalities in non-safety states, for both urban and rural locations. A 
hypothesis was also tested to see if the percentage of non-safety-attributed fatalities in 
safety states is equal to the percentage of non-safety-attributed fatalities in non-safety 
states. 
 Both of the tests led to the opposite conclusion of what was initially hypothesized. 
First, both rural and urban areas led to the same conclusions, and these were that in all 
cases, the results were statistically significant and therefore the null hypothesis was 
rejected. However, it was found that the percentage of safety-caused crashes was different 
between safety states and non-safety states (resulting in safety states with a higher 
percentage). Furthermore, the percentage of non-safety-caused crashes was different 
between safety states and non-safety states (resulting in safety states with a lower 
percentage). These results appeared to be consistent across the ten years evaluated. 
 This test proved to be more challenging as a vehicle registered in a safety state may 
be involved in a crash in either type of state, and same scenario for a non-safety state 
registered vehicle. Some literature had discussed the large underreporting of various 
attributes in crashes, which can lead to a very thin data sample. Furthermore, there is 
common belief that safety states are more aware of safety features in a crash, whereas in 
non-safety states, they are less aware. Moreover, challenges also occur in deciding whether 
to assign the registration state or the crash state to the fatality count because if they differ 
in states, they differ in safety inspection quality and perhaps even having a program versus 
not having a program. This leads to discrepancies in how crashes are recorded in each state 
and how detail-oriented those crashes are recorded. 

 It is therefore concluded that these hypothesis tests contradict one-another and no 
insightful conclusions can be drawn on specific coded fatalities. The lack of consistency here 
is evident and more strongly suggests the need for data consistency, management, and 
oversight. Robust data is necessary for the advancement and improvements in vehicle 
safety.  

VI. FUTURE WORK 

Limited access to quality data in transportation is a problem currently and will become 
even more evident with the current push for “big data” and resulting analyses. The 
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transportation sector is changing fast with the introduction of more automated features in 
vehicles and this will require a stronger need for high quality transportation data to 
monitor resulting changes. This implies that stronger policies are needed for data gathering 
and improved data collection. Any crash that costs money, likely caused damage and would 
be recorded in an insurance claim. If there is proper oversight this data could provide 
valuable information on crashes of all costs, from property damage to vehicles that are 
totaled. This allows for the inclusion of non-fatal crashes into the analysis, in addition to 
the ability to identify which vehicle, if more than one is involved, is at fault, allowing for 
reliable multivehicle crash analyses.  
 Maintaining vehicles is a necessary step in keeping driving conditions safe. With 
higher quality vehicle inspection data, stronger predictions will be made on the exact time 
of when certain vehicle maintenance work is necessary. With increased automation in 
vehicles, it is predicted there will be a decrease in crashes due to driver error. As a result, it 
is likely other crash causes will become even more visible, such as maintenance issues, 
which are largely under- and un-reported currently. For example, a stopping algorithm in 
an automated vehicle is based on the tested stopping distance of the brakes. However, worn 
brake pads result in greater variation of this stopping distance, which will likely be larger. 
An added benefit with higher quality inspection data leads to the ability to track a vehicle 
in a crash back to the last inspection to identify any possible reason, outside driver error, 
for the crash, including the possibility that the inspector should not have passed the 
vehicle. This leads to the further need for high quality inspection data, which allows for 
monitoring of the performance of both inspectors and inspection stations to be sure honest 
and accurate evaluations of vehicles are made. 
 Vehicle safety inspections provide numerous advantages outside of safety. More 
analyses are necessary to identify the effect on local economies as a result of these required 
inspections in certain states. Inspections provide jobs and likely have a positive effect on 
local economies. Additionally, recording vehicle conditions allows for the ability to calculate 
annual mileage driven, leading to the opportunity to implement mileage fees to support the 
on-going issue of highway funding. Vehicles that use the roads more must invest in them 
more. 



 57 

VII. CONCLUSION 

While this analysis was limited to fatal crashes and limited knowledge on the intensity of 
each state’s inspection program, some models were found to strongly support the vehicle 
safety inspection program. The results showed that safety inspections were statistically 
significant in reducing the fatality rate in states by about 1.8 fatalities per billion VMT and 
also resulted in a highly significant urbanity coefficient of about 11 fatalities per billion 
VMT difference in urban versus rural locations (higher rural fatality rate). This led to the 
conclusion that urbanity must be accounted for in these analyses. 

There is no national standard for safety inspections; therefore, even states that do 
have programs may not execute them the same way. This led to limitations in accurately 
analyzing the program and resulted in numerous regression models to check any possible 
scenario. Lack of consistency of the crash attributions across crash data reported by each 
state and the difficulty in identifying the best way to assign a vehicle to a state (either 
registration or crash state) was a downfall to this section of the analysis. Improvements in 
data reporting, collection, and program oversight for both data collection and safety 
inspection programs are integral in further reducing vehicle crashes and therefore 
assessments of differences in fatality rates. 
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Chapter IV: Vehicle Travel Variations and Comparisons 

Across Vehicle Age, Zip Code Urbanity, and Time by All 

Vehicles and Households 

I. Introduction 

VMT estimation aids in observing patterns in vehicle maintenance, vehicle crashes, vehicle 
congestion, pollution, and various other travel-related questions in current research. In the 
previous two chapters, VMT was largely used as a descriptor variable used for comparing 
vehicle safety inspection failure rates and vehicle fatality rates. Currently, there are two 
common ways of estimating VMT: multiplying average daily traffic counts by length of road 
and surveys. The count method results in only a single average VMT value that is reported 
for each urban and rural type of road for each state. The survey method depends on 
accurate and truthful reporting of travel by household members. While these estimates are 
better than one overall average for the entire state, it still does not provide the distribution 
of vehicle travel within the state, which is especially important since each vehicle is driven 
differently. 
 The results of the previous two chapters found that vehicles that travel more miles 
annually, require more maintenance and have a higher probability of being involved in a 
fatal accident in a given year, due to more travel exposure. For example, the question of 
what is the distribution of VMT estimates for one-year-old vehicles is raised and if this 
distribution varies between urban and rural areas. Thus, the need for a more detailed 
analysis of vehicle miles traveled was the driving motivation for this chapter. Furthermore, 
VMT analyses aid in decision-making for policies to help reduce congestion, improve air 
quality, and distribute funding throughout the country. Any of these policy decisions 
require that VMT be measured with high certainty and at a detailed level, which leads to is 
the question posed here: Are the current methods of estimating VMT good enough? 
 The availability of the VSIR database for a sample of the Pennsylvania vehicle fleet 
allowed for detailed analyses of VMT distributions within the state of Pennsylvania. Using 
comprehensive Pennsylvania VSIR data, such as the one million vehicle safety inspection 
records (10% of the PA vehicle fleet and 100 times more than the NHTS sample which 
represents the entire county), VMT can be thoroughly analyzed, as this data is recorded by 
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vehicle mechanics—professionals in the field. However, there is still potential for error, as 
VMT is entered by hand into such databases. With this data, VMT can accurately be 
expressed as a function of vehicle-specific data and user-specific data, such as vehicle age, 
vehicle make, vehicle location (e.g., county or zip code), owner age, owner income, etc. The 
Pennsylvania vehicle inspection records contain odometer readings and associated dates at 
the time of inspection for specific vehicles over about a 6-year timeframe (2008-2014) that 
can be used to calculate the associated VMT values, which would be the first step in this 
analysis. Furthermore, knowing the expected VMT range for an entered car with certain 
characteristics will allow for more detailed error-checking and verification when new data 
is entered into the system. As a result, simple mistakes will be instantly caught allowing 
for improved confidence in the database entries. 
 An additional step is taken to approximate household travel patterns. Households 
are matched based on anonymized insurance NAIC and policy numbers for each vehicle, 
and is explained in more depth further in this chapter. 

II. Background and Current Literature 

Until now, one of the most comprehensive and widely used database to do VMT analyses 
was the National Household Travel Survey (NHTS) collected by the Department of 
Transportation Federal Highway Administration (FHWA) [58]. While this survey contains 
the necessary information to do a VMT analysis, there are limitations to the accuracy of the 
information. The NHTS sampling system is based on a phone call made to a randomly 
selected household in the U.S. with a land-line telephone (randomized via a list assisted, 
random digit dialing, computer-assisted telephone interviewing system), asking any 
household member older than 16, yet not necessarily the primary driver of the vehicle, 
about each household vehicle. Data collected primarily focuses on details pertaining to daily 
trips taken in 24-hour periods, yet one question does ask for an estimate of the total 
mileage over the previous year. This database contains approximately 300,000 vehicle 
records from about 150,000 households, for the entire U.S. population (0.1% of all U.S. 
households [59]).  

NHTS data reports two estimated VMT values: self-reported and best-estimate. The 
self-reported is a result of the survey answers from respondents. NHTS reported that about 
two-thirds of the collected data was deemed useable by their quality check of the data and it 
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is used to form a regression equation using the self-reported annual mileage and vehicle 
age in order to predict the remaining one-third of the collected data. NHTS implements six 
different approaches to estimate the ‘BESTMILE’ and can be found in detail in their report 
prepared for FHWA summarizing their methods. [60] Their estimations are largely based 
on the self-reported annual mileage values whereas the method used in this chapter 
calculates the actual difference between two odometer readings and adjusts for the 365 
day/year value, which is explained in detail in the next section. 

Finally, and most striking is that, this data is only collected every five to eight years 
(the annual publication uses the most recently collected sample); as a result, any analyses 
done today in 2015, must use data from 2009. Historically, U.S. estimates of VMT steadily 
increased; however, in 2004 VMT plateaued and then started a decreasing trend in 2007. 
These annual changes were found using the traffic count method for estimating VMT, but if 
only NHTS data were available, these trends would not be as noticeable since NHTS is only 
implemented every five to eight years. NHTS still serves as a unique inventory source of 
the nation’s daily travel and specific purposes of travel, yet more robust data is essential in 
order to make informed policy recommendations and this is possible with the large 
improvements in technology. 

Also provided by FHWA is traffic count data, which is recorded at 4,000 permanent 
locations across the country (a minimum of 6 per state for each grouping of functional 
classified roadway) and multiplied by the length of length of each road segment and 
summed for all similar road segments for each day in the year. [20], [28] This process is 
performed each month and the VMT estimates are then updated accordingly. The data is 
adjusted to eliminate effects of weekday, weekend, and holiday differences. 
 Detailed databases of state vehicle safety inspection, emission inspection, and 
registration, for the state of Pennsylvania have since been acquired, which provide more 
specific information on vehicles driving since it uses mandatory registration information as 
well as information recorded by mechanics, rather than either the vehicle owner or a 
relevant household member as in the NHTS data. Vehicle specialists record details about 
the vehicle, such as mileage, during the vehicle inspection and report these records to the 
inspection databases. On the contrary, NHTS is a phone survey and does not have an in 
depth quality check, nor do the users necessarily have the vehicle in front of them when 
reporting the information. With state specific data, such as the Pennsylvania safety vehicle 
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databases, more detailed conclusions can be drawn on vehicle travel patterns. This will 
then allow for generalizations to be made about the overall vehicle fleet in travel habits. 
 Chapters 2 and 3 discuss the importance of separating vehicle-based analyses 
according to urban and rural locations. While high-level studies have shown the results of 
higher VMT in rural areas than urban areas in a given state, the PA safety inspection data 
is unique and allows for the use of easily attainable data in the state of PA to help provide 
insight to detailed VMT patterns on the county, zip code, vehicle, and household level.  
 The majority of literature in transportation uses VMT data. As some specific 
examples, Green (2010) finds that data show a statistically significant effect of gasoline 
price on vehicle travel, yet these conclusions are based on total U.S. highway vehicle miles 
of travel by passenger cars and light trucks estimated by FHWA. The author notes that the 
FHWA’s compilation of state DOTs are the source of vehicle travel statistics; however, each 
state varies in their definition of passenger cars and light trucks. [61] Su (2009) examines 
the relationship between travel demand in terms of per-capita VMT and urban spatial 
characteristics. Annual VMT per capita used in this study is calculated by combining daily 
traffic of a roadway section and the length of section of that road for freeways and principal 
arterial streets, yet the author notes that estimates for collector/distributor roads is likely 
to be consistently underestimated. [62] Woldeamanuel and Kent (2014) uses NHTS data as 
a source of per capita VMT in California in order to separate determinants of per capita 
VMT. [63] 
 The California Smog Check Program records allow researches to calculate annual 
VMT estimates using similar methods to those suggested in this chapter, resulting in the 
ability to make confident comparisons between vehicles of similar characteristics. Sandler 
(2012) uses this data in order to evaluate the cost-effectiveness of the California Smog 
Check Program by having specific details and characteristics of vehicle driving patterns. 
[64] Cook et. al. uses this same data in VMT calculations for their study of elasticity of VMT 
and note the benefits of using this unique, vehicle-specific data. [65] To date, no 
Pennsylvania specific analyses on the variation of travel across the state have been 
published, aside from annual state reports that briefly overview the state’s trend over time 
compared to the country. In fact, a report submitted to PennDOT regarding the statistical 
evaluation of projected traffic growth in order to help direct transportation funding 
specifically states the need for a more robust estimation of state VMT in order to improve 
the model’s funding forecasts and budgets. [66]  
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 This chapter goes into detailed analyses that are possible with the unique, 
electronic, PA VSIR, which provide more precise calculations of VMT by using multiple 
odometer readings. This method of calculating VMT allows researchers to follow one 
specific vehicle across its lifetime to track very specific travel patterns, without the privacy 
concerns of sharing GPS coordinates. Furthermore, the data allow for the calculation of 
household VMT along the same lines as the single vehicle calculations. This approach of 
calculating household VMT allows researchers to investigate, more precisely than NHTS, 
how households drive according to various characteristics of each of their vehicles.  The 
next few sections use the PA VSIR to investigate a subset of potential variables that may 
influence VMT and there relationship to each other, across different portions of the state 
ranging from the zip-code level to the overall state level. Additionally, the available 
inspection data allows for the estimated grouping of household travel within the state and 
compares these results with the national household results using NHTS, published by the 
U.S. Energy Information Administration (EIA), finding that households with more vehicles 
put more miles on their most-used vehicle compared to households with fewer vehicles. [67] 
Primarily, this chapter focuses on answering the following questions: How are vehicles used 
in the state? And, does this differ depending on the number of vehicles in a household? 

III. Data Filtering, Initial Methods, and Data Verification 

The Pennsylvania VSIR data provided initially included a sample of vehicles that 
underwent a vehicle safety inspection at a location using the e-SAFETY system discussed 
in Chapter 2. As a result, VSIR vehicle data may include non-light-duty vehicles such as 
heavy-duty trucks, buses, taxis, and other permanently registered vehicles. It may also 
include multiple records for the same vehicle in a given year.  Table 9 shows a breakdown of 
the raw inspection data by inspection year and its comparison to the approximately 11 
million registered vehicles in the state as of the end of 2014.5 
 

                                                
5 Registration data was not available every year, but both 2013 and 2014 were available and there 
was only an increase of 5% more vehicles in 2014 from the year before. If the rate is assumed to be 
constant each year, it is calculated that the sample percentage of inspected vehicles registered is the 
same even with the overall total registered being less. 
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Table 9. Raw Data Counts by Inspection Year 

Inspection Year Unique Counts % of Unique VIN Total in Year % of Registered 

2008  206,000  14% 3% 
2009  274,000  18% 3% 
2010  299,000  20% 3% 
2011  337,000  22% 4% 
2012  356,000  23% 4% 
2013  548,000  36% 5% 
2014  579,000  38% 5% 

Total (2008 - 2014)  1,526,000   14% 
 
There are about 1.5 million unique VINs recorded in the data over all years of data. Similar 
to Chapter 2, the following methods were used for filtering the data of invalid, non-light-
duty personal vehicles by using Python (a programming language): 
 

1. Invalid VINs 
2. Duplicate entries 
3. Invalid date (format issue – not a date, no entry) 
4. Invalid odometer entry (alpha-numeric entry, no entry) 
5. Heavy-duty trucks (> 10,000 lbs and ≥ Ford-350) 
6. Permanently registered vehicles and fleet vehicles (police cars and ambulances) 

 
Records are then sorted by VINs in order to find unique VINs with more than one entry so 
the annual mileage can be calculated. About 647,000 VINs have only one record making 
these VINs immediately unusable because two entries are necessary to calculate the annual 
365-day adjusted VMT value; therefore, these VINs are filtered because there is not enough 
data for the analysis. Initially, the assumption was made that if a VIN cannot be decoded 
using its 10th digit to find the model year, it cannot be considered a light-duty vehicle 
(because it does not follow the VIN format for light-duty vehicles); however, this filter 
resulted in too much data being filtered. It was reasoned that due to some of the data being 
manually entered, there is higher probability of data-entry error in the VIN, thus it is 
necessary to apply three checks to decode VIN based on its model year, the model year 
check, a VIN decode database check, and if the entries matched from year to year in the 
inspection record for each VIN (refer to the Supplemental Material for more details).  This 
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results in fewer data records being filtered for the analysis. After filtering for validity of 
entries and VINs with more than one entry, total data available for the analysis is about 
855,000 unique VINs over the 7 years of available data. 
 Once the initial filtering is completed, entry pairs (every two entries per VIN) are 
used to calculate annual mileage traveled for that vehicle. Main issues include odometer 
readings that have little or a lot of time in between readings (e.g., 1 month or 3 years), as 
they will not be accurate representations of annual driving patterns. The VMT is calculated 
and assigned to the more recent date entry. Dates that are a lot more than one year apart 
are still included in these results in order to have more data points for the analysis. With 
more available data in the future, this filter will be added to remove VMT estimates with 
dates more than 18 months apart (1 year and 6 months). Dates that are very close together 
are removed if they are less than nine months apart. This threshold is created to capture 
vehicles that are brought in early for inspection, which is allowed as early as three months 
prior to their actual inspection month. This allows filtering of very close dates, which may 
have created large over- or under-estimates of VMT, yet still captures vehicles that may be 
earlier than one year. In order to normalize annual VMT values, differences are calculated 
between odometer readings and dates and then scaled to a standard 365-day VMT 
calculated value, which as stated previously, is not done in the NHTS annual VMT 
calculation. (Equation IV-1). 
 

adjusted  annual  VMT = !"#$%&%'(%)"*+,!!!"#$%&%'(%)"*+,!
!"#$!,!"#$!!"#$!,!"#$

∗ 365  days Eq. IV-1 

 
Another filtering requirement includes matching zip code and county urbanity when 
calculating annual VMT. A VMT estimate is only kept and considered valid if both zip code 
values are equivalent, but the single odometer readings are all kept in case there are 
additional data points that do match. Without this filter, two odometer readings may be a 
year apart yet may have “lived” in two very different locations in terms of the level of 
urbanity. This leads to issues of with which zip code or county to associate the VMT and if 
travel patterns changed due to the urbanity change. As seen in previous literature review, 
urban and rural travel patterns are very different. Unfortunately, it is unknown when the 
urbanity change took place thus entries for a specific vehicle do not have matching zip code 
or county urbanity levels, then those entries will not be used. 
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Final filters are applied as follows: 

1) Date differences that are equal to zero (9,000 filtered entry pairs) 
2) Negative or zero calculated VMT values (10,500 filtered entry pairs)  
3) Odometer Reading is more than 6 digits (730) 
4) Vehicle age is invalid, refer to the Supplemental Material for details (500 filtered 

entry pairs) 
5) Entry pairs less than 9 months apart, with the assumption these vehicles would not 

be coming in for the annual inspection and any 365 day adjustment may cause an 
under- or over-estimate of the annual VMT calculation (23,000 filtered entry pairs) 

 
Most of these filtered values are considered as an incorrectly typed entry in the data due to 
the inconsistencies involved in manual data entry whereas others are chosen not included, 
such as the filter for days between inspection records. Table 10 presents an overview of the 
data count progression as filters are applied, starting from the total unique VIN count 
presented in Table 9. 
 
Table 10. High-level Summary of Data Counts 

 Total Unique VIN Records % Unique Valid 
Total, pre-filtering 1,526,000 -- 
Total, >1 entry per VIN 855,000 56% 
Total Valid, post-filtering 752,000 50% 
 
The majority of unusable entries stemmed from data with only one inspection entry per 
VIN, rather than the applied filters, and accounted for filtering roughly half of the unique 
VIN data.  In other words, about half of vehicles only appeared once in the VSIR dataset 
and therefore an annual VMT value could not be calculated.6  This is again an artifact of 
PA's voluntary e-safety program. These counts can be compared to those in the most recent 
NHTS data from 2009, which consists of a sample of 1,600 vehicles (800 households) in PA 
and 300,000 vehicles (150,000 households) in the entire U.S. For a closer comparison, PA 
data is broken down by year and displayed in Table 11. 
                                                
6 By incorporating data from additional data sources such as those used in Chapter II, the 
percentage of single VIN entries will likely decrease 
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Table 11. Unique VIN records by inspection year 

Year Unique VIN Count 
2008 50,000 
2009 83,000 
2010 101,000 
2011 112,000 
2012 120,000 
2013 154,000 
2014 132,000 
Total 752,000 

 
In 2009, the PA safety inspection data consists of 50 times the number of records as there 
are in the NHTS data. Additionally, there are even more records each year after 2009 which 
aren’t even available from NHTS data. 

IV. Overall State Distributions 

After all filtering scenarios, a total of about 750,000 valid, unique VINs with more than one 
entry remain for this analysis. In order to clearly understand the range of VMT, the 95.5 
percentile value of the data is found to be about 40,000 miles (both overall and for each 
inspection year) and the maximum overall was about 1,065,000 miles. Because the top 0.5% 
of the data (about 3,750 VINs) was found to have such a large range (1,025,000 miles), it 
was necessary to identify whether the high VMT estimates should be considered as either 
outliers or incorrectly entered. There is no documented maximum VMT value to use in this 
type of analysis published by the DOT or any similar studies, thus a maximum VMT 
heuristic was estimated. In 2006, Midas, Inc. (an automotive service company) awarded 
“America’s Longest Commute” to a person who drove about 370 miles round-trip to work 
each day, which equates to just under 100,000 miles per year of driving for just commuting 
purposes. As a result, 100,000 miles is taken as a maximum threshold for annual VMT. 
This resulted in the assumption that any VMT value greater than 100,000 miles would be 
considered an incorrectly entered odometer reading. Additionally, due to the manual entry 
of odometer readings, there may be some uncertainty around the accuracy of all the 
remaining calculated VMT values. 
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Thus, the upper 0.1% of the data (965 entry pairs) with calculated annual VMT 
values greater than 100,000 miles are filtered out for this overall state analysis, resulting 
in a tighter distribution of VMT. This leads to the calculated mean (µ) VMT decreasing by 
about 340 miles from 9,770 to 9,430 and significantly reduces the calculated standard 
deviation (σ) from 14,000 to 6,860 miles. This progression is shown in Figure 13. 
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Figure 13. Distribution of Adjusted Annual VMT, 2008-2014 (a) overall, (b) the top 0.1%, 
and (c) the remaining 99.9% after filtering the top 0.1% 

 



 69 

Due to the small effect on the mean annual VMT and much tighter distribution (smaller 
standard deviation), the filtering out of VMT estimates greater than 100,000 annual miles 
was assumed to be appropriate. The change in average mean and standard deviation of 
VMT over time is also observed (Figure 14). 
 

 
Figure 14. VMT Standard Deviation versus Mean by Inspection Year 

 
The mean VMT from 2008 through 2009 increased, and then from 2009 through 2014 the 
mean VMT decreased, similar to recent trends published by FHWA on the current 
decreasing VMT pattern for the overall U.S. vehicle fleet. [33] The standard deviation (or 
range of VMT over the vehicle fleet) stayed between 6,600 miles to 7,000 miles. In addition, 
we can visualize how the VMT distribution changes over these inspection years (Figure 15). 
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Figure 15. VMT Distribution of the PA Sample Fleet by Inspection Year 

 
Figure 15 displays a slight shift to the left (lower VMT values) as the inspection year 
increases from 2008 to 2014; however there are no stark differences between inspection 
years as was shown in Figure 14. In order to understand this decreasing trend more closely, 
other fleet trends are identified later in the chapter, such as changes in average vehicle age 
and any urbanity trends. 
 The final step prior to further data analysis was the verification of the sample data 
in relationship to the population fleet. In order to do this, the vehicle registration data for 
2013 was obtained and registration zip codes were used to approximate number of VINs 
registered per urbanity location. Due to limited availability to years of previous registration 
data, the assumption was made that the proportions of vehicles registered in each urbanity 
type remained constant. This breakdown was also calculated for the inspection databases, 
by inspection year and then the average over the inspection years was compared to the 
registration breakdown to check for representativeness. This is presented in Table 12. 
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Table 12. Inspection Data Summary by Inspection Year 

Urbanity Inspection Year Counts % Breakdown Average Vehicle Age Average VMT 

Rural 

2008  28,000  8% 7.0  10,000  
2009  45,000  12% 7.4  10,200  
2010  51,000  14% 8.0  10,200  
2011  53,000  15% 8.2  10,200  
2012  56,000  16% 8.6  10,100  
2013  71,000  20% 9.0  9,900  
2014  60,000  16% 9.9  9,700  

Suburban 

2008  13,000  6% 6.8  9,000  
2009  23,000  10% 7.1  9,100  
2010  30,000  13% 7.5  9,200  
2011  35,000  15% 7.8  9,200  
2012  38,000  17% 8.2  9,200  
2013  47,000  21% 8.6  9,100  
2014  41,000  18% 9.4  8,900  

Urban 

2008  6,000  6% 7.1  8,200  
2009  11,000  11% 7.5  8,200  
2010  16,000  15% 7.8  8,100  
2011  20,000  19% 8.1  8,200  
2012  22,000  20% 8.5  8,200  
2013  29,000  27% 8.9  8,100  
2014  3,000  2% 9.8  8,000  

 
Only one year of registration data was available to test inspection data representation; 
therefore, the inspection data was averaged over the six years of inspection data to compare 
against the registration data. This comparison can be found in Table 13. 
 

Table 13. Average Inspection Data Representation in Comparison with 2013 Registration 
Data 

Dataset Urbanity Counts % Breakdown Average Vehicle Age 

Registration Data 
2013 

Rural 5,050,000 55% 8.7 
Suburban 2,430,000 26% 8.5 

Urban 1,650,000 18% 9.0 

Inspection Data 
(2008-2014) 

Rural  364,000  52% 8.5  
Suburban  226,000  32% 8.1  

Urban  109,000  16% 8.3 
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It is concluded that the composition of e-SAFETY inspection data by urbanity is 
fairly representative of the registration data and therefore can be used as a sample of the 
PA vehicle fleet; however, adjustments are made for the small differences in composition 
when average VMT is calculated. There is a difference seen is the calculated average 
vehicle age in each urban location when comparing the two datasets. In the registration 
data, urban vehicles are oldest on average, whereas rural vehicles are the oldest on average 
in the inspection data. Overall, however, they are all very close in comparison. Additionally, 
the sample data count is very small for 2014 urban locations, yet the averages still follow 
general trends of the data for average ages and VMT in the different urbanity groups.  
 After filtering the VMT values greater than 100,000, no changes in the mean or 
standard deviation of vehicle model year (or age) were observed, contrary from the large 
decrease in standard deviation there was for VMT. Since multiple inspection years are 
included in the overall distribution and in order to easily compare the vehicle age fleet over 
time, the vehicle age distribution is presented rather than the model year distribution, 
which normalizes the model year by the inspection year from which the data comes (Figure 
16). 
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Figure 16. Distribution of Vehicle Age in PA Inspection Data, 2008-2014 

 
Figure 16 shows that the average age of vehicles in the state sample over the 2008-2014 
inspection years was about 8 years with a standard deviation of about 6 years. This 
distribution shows that the majority of vehicles (over the six inspection years) are less than 
ten years old, which aligns with literature findings. Figure 17 breaks down the mean age 
and standard deviation estimates by inspection year in order to observe any time series 
trends.  
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Figure 17. Vehicle Age Standard Deviation versus Mean by Inspection Year 

 
The trend seen in Figure 17 shows that the average age of vehicles has become older each 
year from 2008 to 2014 and the standard deviation of the ages has remained relatively the 
same between 5.6 to 6.0 years. We can also visualize the change in the distribution of 
vehicle age over this time period (Figure 18). 
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Figure 18. Age Distribution of the PA Sample Fleet by Inspection Year 

 
From Figure 18 we can observe that the vehicle fleet has been aging together over the past 
five years, or fewer vehicles are being retired and/or replaced with newer ones. It is likely 
this trend is linked to the recent recession; however, no definite conclusion can be drawn 
due to limited data prior to the start of the recession. 
 Once the high mileage filter was verified to have little effect on the mean and tighter 
distribution of VMT and had no effect on vehicle age, with only 0.1% of the data removed, 
more in depth relationships were calculated, such as the relationship between annual VMT 
and age. This result is shown in Figure 19. 
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Figure 19. (a) Mean Annual Adjusted VMT versus Vehicle Age overall from 2008-2014; (b) 
Calculated delta VMT by Vehicle Age overall from 2008 – 2014 

 
The trend of mean VMT per age of vehicle is monotonically decreasing until age 25 and 
then fluctuates from year to year, since the sample sizes become so small for the very old 
vehicles, as seen in the data counts listed. The estimation confirms that as a vehicle ages, it 
is driven fewer miles, as is the trend seen in literature [68]. This trend is of importance in 
vehicle emission and congestion calculations, safety investigations of vehicles, and looking 
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at the effect of vehicle age on travel in different locations (e.g., urban versus rural zip codes 
or counties). Using the inspection data it is estimated that a brand new vehicle (age -1 to 0) 
is driven about 12,500 miles annually and as it ages each year, the vehicle is driven about 
300 fewer miles, until age 25, where there is then no clear trend. This lack of trend after 
age 25 is attributed to the low sample sizes in the older vehicle data. In 2014, Oak Ridge 
National Laboratory (ORNL) published the Transportation Data Book using the most 
recent NHTS data, which was from 2009. Their data showed a similar decreasing trend, on 
average -400 miles per year [1], but not as consistent as shown in the data from the PA 
sample. 

More interestingly, it appeared according to the ORNL trends that vehicles follow 
the overall decreasing VMT trend over time; however, older vehicles were driven more in 
the more recent years. This trend was investigated and similar results were found in the 
PA sample data (Figure 20). 
 

 
Figure 20. Average Annual Adjusted VMT versus Vehicle Age by Inspection Year 
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Figure 20 shows that over time, younger vehicles are driven approximately the same, on 
average, yet the older vehicles are driven more than in previous years. The overall 
decreasing VMT trend over time results primarily from the aging vehicle fleet as seen in 
Figure 18, which consistently follows the decreasing VMT trend as a vehicle ages. So, this 
decrease in overall VMT is not solely due to all vehicles driving less than the previous 
year’s average at a given age. This leads to the conclusion that even though we see a 
decreasing trend of VMT as a vehicle ages, according to our sample of PA data, vehicle 
owners are either not purchasing new vehicles as frequently, or they are retaining their old 
vehicles longer as seen in the previous distributions of VMT and vehicle age over time. 
These trends over time are much clearer than the results seen from the NHTS data due to 
the increased frequency of sampling and larger data sample. 

The data is investigated further by looking at these relationships by urbanity 
characteristics for each urbanity classification and it is hypothesized that VMT patterns 
and vehicle ages, vary additionally by urbanity of the vehicle’s registration location. 

 Overall State Distributions by Urbanity IV.1.
In Chapter 2 and Chapter 3, analyses are done separately for urban and rural areas, as 
suggested by NHTSA. As a result, in this section, the data is observed by level of urbanity. 
In Chapter 2 the county classification scale published by NCHS is used, defining urbanity 
on a county basis, ranging from 1-most urban to 6-most rural. In this chapter, home zip 
code is used to find the associated population density and is assigned an urban, suburban, 
or rural value, as defined by the US Department of Defense TRICARE definition (Table 14). 
The county urbanity classification does not exactly match the zip code urbanity 
classification because the county classification takes into consideration if there is an urban 
center. In the case of Allegheny County, on the county classification scale, it is considered 
urban; however, when looking at the population density of the entire county, it would be 
considered Suburban, although this is the overall population density across very different 
zip codes. 
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Table 14. Zip code urbanity classification 

Population Density (population per square mile) Urbanity 
≥ 3,000 Urban 

≥ 1,000 & < 3,000 Suburban 
< 1,000 Rural 

 
It is important to compare the urbanity definitions on the county level versus zip code level. 
The range of urbanity within each county can be seen in Figure 21. 
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Figure 21. Population Density by County, grouped by county urbanity with min-max range 
values 
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While many counties are considered strictly rural, donated by the average bolder bars in 
Figure 21, they have a very wide range of population densities by zip code as seen with the 
lighter bar. For example, Allegheny County contains Pittsburgh with only accounts for less 
than 10% of the land area in Allegheny County, yet results in the county being classified as 
urban. However, when observing the population density of zip codes within the county, only 
zip codes around Pittsburgh are considered urban. Figure 22 displays this breakdown of 
urban, suburban, and rural zip codes within Allegheny County. 

 
Figure 22. Zip code urbanity using population density in Allegheny County 

 
As seen in these results, population density varies greatly even within one county, such as 
Allegheny where within the city limits of Pittsburgh is considered urban and as you move 
farther away it is more suburban and rural, yet this range is all within Allegheny County 
which is classified overall as urban. The VMT distribution is also examined for Allegheny 
County (Figure 23). 
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Figure 23. Average Annual Vehicle Miles Traveled by zip code in Allegheny County 

 
Figure 23 shows that driving patterns vary even within one county and does not necessarily 
match the population density breakdown as displayed in Figure 22. As a result, this 
chapter uses the zip code urbanity classification rather than the county urbanity 
classification. This analysis is not possible with currently published VMT data by state, 
which only provides averages (without ranges) for each urban and rural area within that 
state. 
 Similar to the previous section, the data is broken down by inspection year to 
observe any differences between the inspection years of available data. Figure 24 compares 
urban averages against rural averages for both VMT and vehicle age, using the zip code 
urbanity classifications. 
 

Average Annual VMT 
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Figure 24. Urbanity Comparison of Average (a) Average VMT and (b) Average Vehicle Age, 
by inspection year 
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Figure 24 shows a consistent increasing trend in vehicle age, while there is no clear trend 
for change in VMT from 2008 through 2012, and then a clearer decreasing trend for both 
urban and rural locations from 2012 through 2014. It must be noted here that VMT is 
always greater in rural areas and falls below the y=x line which is not visible in the graph. 
While, it is clearly evident that there is always greater VMT in rural areas than in urban 
areas over the timespan observed, average vehicle age between the two is approximately 
equivalent over this same timespan. In Chapter 2, it was observed that both vehicle travel 
and age were similar predictors of inspection failure rate, yet here it is clear the trends over 
time are very different. As a result, VMT may in fact be a more appropriate variable to 
define potential maintenance issues because while vehicle ages are approximately equal 
between urban and rural, VMT is quite different. The relationship between VMT and age is 
compared separately for each urbanity classification over time in Figure 25. 
 

  
Figure 25. Average Annual Adjusted VMT versus Average Vehicle Age observed over time 
and separately for each urbanity location 
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As seen previously, vehicles are driven more in rural counties compared to those in urban 
counties, as they age. Additionally, variation in each mean estimate is shown in Figure 26. 
 

 
Figure 26. Standard Deviation versus Mean by Inspection Year for (a) Average Vehicle Age 
and (b) Annual VMT 

 
When comparing the distribution of each mean by observing the associated standard 
deviation, rural always has the largest standard deviation and urban the smallest, this is 
especially noticeable for the VMT averages. Looking at mean vehicle age, suburban vehicles 
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are youngest on average in any given year and rural oldest except in 2008. However, this 
could be an artifact of not having as much data in 2008. There is no overlap in mean VMT 
between urbanity locations, though the ranges are very large, leading to the conclusion that 
there are some vehicles that travel in urban areas similar to those in rural areas and vice 
versa, but looking only at the means, these VMT patterns differ by about 1,000 miles 
between urbanity locations. 
 While we see very different driving patterns in each urbanity location, we still 
observe that as the fleet ages, vehicles are driven less, which is consistent with the trend 
seen in previously in Figure 19 and is shown separately for each urbanity classification in 
Figure 27. 
 

 
Figure 27. VMT Distribution as vehicles age by zip code urbanity 

 
While the trends are very similar between zip code urbanity classifications for annual VMT 
by vehicle age, there is still a noticeable difference between urban and rural driving. It is 
seen in Figure 27 that a one-year-old vehicle in an urban area is driven, on average, 

Similarly driven vehicles, differ 
in age depending on urbanity 
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similarly to a five-year-old vehicle in a suburban area and a seven-year-old vehicle in rural 
areas. These distinctions between urbanity locations become less noticeable as average 
vehicle age surpasses ten years old. These clear differences in how vehicles driven as they 
age in different urbanity locations could help guide policy makers in the future when 
designing policies based on vehicle age, the simplest to implement without requiring the 
collection of odometer readings or vehicle owners to report odometer readings. 
 While a zip code level of urbanity classification distinctly classifies home zip codes 
accordingly, it is argued here that in doing travel analyses, in many cases, a vehicle will not 
only be driven in the home zip code and possibly even outside of the home county. As a 
result, it is not necessarily preferred to analyze travel using zip code urbanity designations, 
but instead would depend on the type of analysis being performed. 
 The following section proposes a method to assign these vehicles to households based 
on insurance policy values and observes any differences in travel based on households 
rather than single vehicles. 

V. Household Data 

Currently, available household travel data primarily comes from surveys conducted under 
the supervision of the U.S. DOT FHWA. These surveys take a lot of time as they are 
conducted over an entire year and require phone calls to be made and vehicle owners to be 
willing to participate. The NHTS data is comprised of about 150,000 households across the 
U.S., which accounts for approximately 0.1% of all households, as noted previously. In 
comparison, the PA safety inspection data allows the same calculations for the sample size 
of about 580,000 households (8% [59]) over 6 years (about 100,000 per year in the more 
recent years), after filtering, for only the state of PA, which provides more data with less 
time, effort, and cooperation. Additionally, this data is available yearly, whereas NHTS 
data is only published every five to eight years. This section uses the same PA VSIR data to 
define households in order to compare travel patterns by household similar to the vehicle 
travel patterns in the previous sections of this chapter. Finally, a study published by 
NHTSA using NHTS data is replicated using the PA data. 
 Households in PA are approximated by grouping vehicles together based on their 
associated insurance policy values, with the assumption that vehicles in a given household 
are all insured under the same insurance policy. This required combining the insurance 
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NAIC value, which identifies the company, with the insurance policy number, which 
identifies the policy under which vehicles are listed. This method allowed for the formation 
of households to be made, and by sorting vehicles into unique households, household size 
values based on the number of vehicles under a given insurance value were assigned to 
each vehicle. The resulting household data is summarized by inspection year and household 
size and presented in Table 15. 
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Table 15. Summary of Household Travel by Inspection Year and Household Size 

Inspection 
Year 

Vehicles 
per 

Household 

Number of 
Households 

Number 
of 

Vehicles 

Annual 
VMT Total 

(million 
miles) 

Annual 
VMT per 

Household 
(miles) 

Annual VMT 
per Household 

Vehicle 
(miles) 

2008 

1  35,000   34,000   327   9,480  9,480 
2  3,700   7,400   69.3   18,700  9,370 
3  410   1,200   10.7   26,100  8,690 
4  56   220   2.06   36,800  9,210 

2009 

1  56,000   55,000   535   9,610  9,610 
2  6,900   14,000   128   18,800  9,380 
3  970   2,900   26.8   27,700  9,220 
4  140   550   4.79   34,700  8,680 

2010 

1  68,000   68,000   651   9,580  9,580 
2  8,800   18,000   166   18,700  9,370 
3  1,300   3,800   35.3   27,600  9,210 
4  170   700   6.19   35,600  8,900 

2011 

1  76,000   76,000   725   9,540  9,540 
2  9,800   20,000   182   18,600  9,300 
3  1,400   4,100   37.1   27,200  9,050 
4  230   930   8.54   36,500  9,120 

2012 

1  83,000   83,000   792   9,490  9,490 
2  10,000   20,000   188   18,600  9,310 
3  1,400   4,300   38.9   27,100  9,040 
4  210   860   8.00   37,400  9,350 

2013 

1  100,000   100,000   964   9,340  9,340 
2  12,000   25,000   226   18,300  9,130 
3  1,800   5,400   47.5   26,400  8,810 
4  290   1,200   11.4   39,400  9,850 

2014 

1  88,000   87,000   806   9,200  9,200 
2  10,000   20,000   180   17,700  8,860 
3  1,300   4,000   34.6   26,000  8,680 
4  180   720   6.03   33,500  8,370 

Average 
(2008-2014) 

1  73,000   72,000   741   9,440   9,440  
2  8,800   18,000   176   18,400   9,220  
3  1,200   3,700   36.5   26,900   8,970  
4  180   730   7.75   36,600   9,140  
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The majority of household data were classified as single-vehicle households (88%), followed 
by two-vehicle households (10%). It is noted that this data is a sample and because 
reporting of data is under the discretion of the inspection stations, it may not contain every 
vehicle in a given household. Additionally, the method of assigning households depends on 
a household insuring all of their vehicles under the same policy in addition to all of the 
vehicles actually being housed at the registration zip code location. It is possible a 
household has separate vehicle insurance policies. Also, it is possible vehicles are registered 
at a given zip code, yet the majority of the time are housed and driven elsewhere. Finally, 
due to manual entry of inspection data, there may be incorrectly recorded policy values and 
as a result, vehicles cannot be assigned to the appropriate household. For example, in the 
sample data, a 3-vehicle household may be classified as a 1-vehicle household if only one of 
these vehicles is recorded in the sample data. Due to these limitations, we expect greater 
uncertainty and standard deviations in these household estimates than the previous 
analysis when observing each vehicle equally. 
 As a result of small sample sizes for each defined household, analyses are performed 
as an average over the available inspection years and no urbanity analysis is performed. 
With more data, these analyses would be possible. The most data is calculated for 2013, 
likely due to the most inspection matches being able to be made between years prior to and 
after 2013, capturing the most pairs. Over the six years of data and the average of the six 
years, single-vehicle households have the highest annual VMT per household vehicle 
(Figure 28). 
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Figure 28. Average annual VMT and standard deviation by household vehicle count, 
average 2008-2014 

 
The average household per-vehicle annual VMT over all the data was found to be 
approximately 9,000 miles and the mean VMT between each type of household only varied 
by 500 miles. On the other hand, large standard deviations are observed for all households 
(between 6,600 to 7,300 miles). It is possible these very high standard deviations are due to 
not accounting for urbanity in the household analysis. As we saw previously, urbanity is an 
important predictor in VMT. 

These results do not match results from NHTS data, which shows that 2-vehicle 
households on average drive more per vehicle. Additionally, since the number of registered 
vehicles in each household is not available for the state on this detail, the 
representativeness of this sample data cannot be checked. As a result, while this shows an 
estimated result, it is still possible some households are classified incorrectly due to lack of 
data or misclassified households. 
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Vehicle age is observed by household vehicle size and it is found that households 
with more vehicles tend to have an older average overall age (Figure 29). 

 
Figure 29. Average household vehicle age versus standard deviation by household vehicle 
count, average 2008-2014 

 
Based on the previous VMT results by household vehicle count, this is opposite what is 
expected; in the previous section it was observed that younger vehicles drive more and VMT 
decreases with age. Here, it is observed that while 1-vehicle households drive most on 
average per vehicle, 4-vehicle households have the youngest average vehicle age (though 
they drive least). Due to this phenomenon, average annual VMT by vehicle age is observed 
for each household. The summary result over the six inspection years is presented in Figure 
30. 
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Figure 30. Average Household Adjusted Annual VMT versus Vehicle Age by Household 
Vehicle Count, average 2008-2014 

 
Each household, no matter the number of vehicles, follows approximately the same 
relationship trend between the household adjusted annual VMT and the average vehicle 
age in the household. These results are also consistent with the analysis on a single vehicle 
basis, prior to assigning the vehicles to households. Since there are no obvious differences 
in VMT between households for vehicles of the same age, further analysis is necessary to 
determine any reasoning behind the larger households having the youngest average age yet 
driving the least and vice versa. Additionally, it is investigated why NHTS results show 2-
vehicle households having the highest average per-vehicle VMT while the PA sample 
results show 1-vehicle households having the highest. Again, it would be best to know the 
distribution of number of registered vehicles per household in the state in order to find the 
representativeness of the sample data. 
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 Vehicle rankings: Most-driven vehicles in households V.1.
In April of 2015, the US Energy and Information Administration released an article on 
household vehicle travel, using data from NHTS, concluding that households with more 
vehicles put more miles on their most-used vehicles compared to households with fewer 
vehicles. Their findings are summarized in Figure 31. 

 
Figure 31. Average annual vehicle miles of travel per household using NHTS data [69] 

 
The data used in this analysis comes from the NHTS latest 2009 household survey data 
(refer to the background section of this chapter). With the PA data, Figure 32 was created 
in order to compare findings. 
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Figure 32. Average annual vehicle miles of travel per household using PA safety inspection 
data, average 2008-2014 

 
While the total miles per year is slightly higher using the NHTS data compared to the 
results using the PA data, the overall findings of VMT per vehicle rank are very similar. 
First, this may be due to the difference in the annual VMT between PA, of 99 billion miles, 
and the overall U.S. state VMT weighted average of 124 billion miles. [28] So, the PA data 
should in fact have smaller VMT values. Households with more vehicles drive their most-
driven vehicle more and this trend continues for each additional vehicle in multivehicle 
households. Likely, the reason behind these results is that households invest in more 
vehicles because their main vehicle is unavailable (due to high usage) and there are 
multiple drivers. Even though households with more vehicles put more miles, annually, on 
their most-driven vehicle, the annual VMT averages of each sized household were all still 
approximately the same, calculated previously (refer to Table 15 and Figure 28). These 
findings based on the most-used vehicle in a household are presented graphically in Figure 
33. 
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Figure 33. Mean and standard deviation of annual VMT for the most-driven vehicle by 
household vehicle count, 2008-2014 

 
These results are opposite of the overall household averages. Here, 4-vehicle households 
drive most and decrease according to the number of vehicles. In comparing standard 
deviations, 4-vehicle households consistently result in the highest standard deviation, likely 
due to the smaller sample sizes than the other households. The age distribution for the 
most-driven vehicles by household vehicle count was also calculated and is presented in 
Figure 34. 
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Figure 34. Mean and standard deviation of vehicle age for the most-driven vehicles by 
household vehicle count, 2008-2014 

 
The results here show that on average, the most driven vehicle in 1-vehicle households are 
the oldest, followed by the most-driven vehicle in 4-vehicle households, and the most driven 
vehicles in 2-vehicle and 3-vehicles households on average are approximately the same age 
and also the youngest. However, they are all very close in age resulting in only a one year 
difference between the youngest and oldest most-driven average household vehicle. 
Furthermore, these same pairs of households have very similar standard deviations. 
Looking back to the averages for the overall households, 1-vehicle households had the 
youngest vehicles, yet had the highest annual VMT.  
 Finally, the relationship between average annual VMT and vehicle age is calculated 
for the most-driven vehicle in each household (Figure 35). 
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Figure 35. Household Annual VMT versus Vehicle Age for the most-driven vehicle by 
vehicle-sized households, 2008-2014 

 
All households follow the same trend of decreasing annual VMT as the vehicle ages and all 
have approximately the same slope of decreasing annual VMT by vehicle age. As seen in 
the annual VMT distributions for the different households, the most driven vehicle in the 
larger vehicle-sized households have larger intercepts, again showing that in larger vehicle-
sized households, the most-driven vehicle is driven more. This is consistent at any vehicle 
age. To further understand these comparisons of households, the same calculations were 
performed for the youngest vehicle in each household type. 

 Vehicle rankings: youngest vehicles in households V.2.
When observing the most-used vehicle in a household, the EIA did not try to distinguish the 
age distribution of those vehicles using the NHTSA data, nor did they rank households by 
the youngest or oldest vehicle. The following analyses are similar to the previous section, 
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yet vehicles ranked by age rather than VMT and the youngest vehicles in each household 
are now considered (Figure 36 and Figure 37). 
 

 
Figure 36. Mean and standard deviation of annual VMT for the youngest vehicle in each 
vehicle-sized household, 2008-2014 
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Figure 37. Mean and standard deviation of average vehicle age for the youngest vehicle in 
each vehicle-sized households, 2008-2014 

 
Observing VMT and average ages of the youngest vehicles in the different households based 
on vehicle count, on average, the youngest vehicle in the households with more vehicles are 
driven more than those in households with fewer vehicles, as seen in Figure 36, which 
aligns with findings from the most-driven vehicles. However, this is opposite the VMT 
results seen in the overall average for the entire household (Figure 28). Figure 37 shows 
that 1-vehicle households are oldest in comparing the youngest vehicles per household and 
have the largest standard deviation. The youngest vehicles in 2-, 3-, and 4-vehicle 
households are all similar in mean and standard deviation of vehicle age. In comparing 
annual VMT to average age for the youngest vehicles in households, those with more 
vehicles drive the newest vehicle more than those with fewer vehicles. In addition, these 
vehicles are also younger, on average, compared to single-vehicle households. This result 
aligns with the phenomenon that younger vehicles are driven more than older vehicles. 
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Finally, comparisons of annual VMT as vehicles age are made between households in 
Figure 38. 
 

 
Figure 38. Household Annual VMT versus Vehicle Age for the youngest vehicle by vehicle-
sized households, 2008-2014 

 
The same trend of decreasing VMT as vehicles age is observed for the youngest vehicle in 
households. These results, for the youngest vehicle, show much more similar driving 
patterns for overall households than in the results seen for the most-driven vehicle in 
households, where there was more distinction between average VMT as vehicles aged. The 
averages are more scattered in the oldest vehicle ages due to low sample size. 
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Chapter V: Conclusions, Policy Implications, and Future 

Work 

In the next decade, changes in transportation will become immense and prominent in daily 
life. Furthermore, with exponential advances in technology, specifically the increase in 
autonomy in vehicles, there will be strong, uncertain influences on modes, choices, and 
trade-offs in transportation, especially when it comes to vehicle safety and travel patterns. 
This thesis delves into the vehicle-specific data, provided at large by the state of 
Pennsylvania in order to perform various data-driven recommendations to policy questions 
pertaining to vehicle safety and vehicle travel both at the vehicle and household levels. 
Finally, funding sources for the transportation sector is nearly depleted with no clear long-
term solution of how to supplement the current mode of monetary contributions by the gas 
tax and while there are a myriad of options that have been discussed, no moves have been 
made aside from short-term extensions. [70] 

I. Summary and Recommendations 

As discussed in Chapter II, legislators in Pennsylvania have been currently discussing and 
debating the necessity of the annual vehicle safety inspection program. Since there are no 
recent studies providing the necessary analysis proving the effectiveness of the safety 
inspection program, many states have recently discontinued their programs, prompting 
Pennsylvania to ask the same question. At large, Chapter 2 answers the question of 
whether safety inspections in Pennsylvania keep vehicles safe, strictly from a maintenance 
perspective.  Pennsylvania is unique in the sense that it records a sample of these 
inspections electronically, allowing for initial data-driven analyses of the program’s 
performance. The data show clearly that vehicles require more maintenance for each of the 
following: the higher the odometer reading, the older the vehicle, and the more rural the 
registration zip code. Additionally, the claimed 2% failure rate only applied to vehicles 
within their first year. Failure rates were found to be much higher for all other vehicles 
with the average found to be around 12%-18%. 
 In order to make this program more effective, it is recommended that oversight of 
the safety inspection program be increased drastically. With new technologies, data can be 
recorded and analyzed instantly for both inspection stations and each inspector to be sure 
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they perform similarly to other inspection stations and inspectors evaluating similar 
vehicles. 
 Chapter III incorporates fatal crash data for the entire U.S. in order to observe 
whether states with more stringent vehicles safety inspections have lower fatality and fatal 
crash rates. This analysis accounted for the urbanity of each state as well as the 
geographical location of the state and any changes over time. Due to the difficulty in 
defining the stringency of each state’s program, a number of models were created in order 
to account for the variability in defining states. Ordinary least squares regressions were 
implemented for each model. The findings showed that in 95% of the models implemented, 
the more stringent programs had lower vehicle fatality rates. The remaining 5% of the 
regression models that did not support safety programs resulted from only using one-year 
averages of fatalities. More compellingly, statistically significant results (at an alpha level 
of 0.05), in support of safety programs, were found in about 7%-8% of the models. In these 
models it can be concluded safety inspections are statistically effective in reducing fatality 
rates by approximately 1-2 fatal crashes per billion VMT in a given year. Additionally, 
urbanity was always found to be significant, which confirms the need for robust VMT 
estimates. Hypothesis tests were also performed in order to evaluate whether safety 
attributed fatalities were different between safety states and non-safety states. This test 
proved to be more challenging as a vehicle registered in a safety state may be involved in a 
crash in either type of state, and same scenario for a non-safety state registered vehicle. 
Also, due to potential underreporting of crash reasons, the sample size was extremely small 
for this analysis. It is therefore concluded that these hypothesis tests contradict one-
another and no insightful conclusions can be drawn on specific coded fatalities. The lack of 
consistency here is evident and more strongly suggests the need for data consistency, 
management, and oversight. Robust data is necessary for the advancement and 
improvements in vehicle safety. 
 Chapter IV used the same PA vehicle safety inspection data from Chapter II in order 
to analyze travel patterns both from a vehicle and household perspective. While average 
VMT data is publically available as averages for each urban and rural area by state, it is 
not available on a zip code level nor does it contain ranges or other characteristics of 
vehicles, such as age. With the sample of vehicle data from the state of PA, we are able to 
observe differences between travel and vehicle ownership in general at a home zip code 
level and therefore variations within counties and overall urbanity in the state. 
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Additionally, we are able to see these specific comparisons and how they vary over time. We 
observe that while average annual VMT over time is relatively consistent over many of the 
years observed and much higher in rural areas, vehicle ages consistently increase each year 
and are approximately the same in comparing urban versus rural areas. Finally, 
calculations are made in order to assign vehicles to households. This limited the analyses 
largely due to low sample sizes and the inability to check for representativeness, but loose 
conclusions could be drawn between households based on vehicle counts and align with a 
similar study using NHTS data. 

II. Policy Implications 

The data-driven analyses in this thesis investigate the role of safety inspections and their 
relationship to vehicle maintenance in the state of Pennsylvania, the role of safety 
inspections across the U.S. and their effect on fatal vehicle crash rates. The question of 
whether Pennsylvania should continue their highly stringent vehicle safety inspection 
program is of great interest to legislators in the state. In addition, it may help distinguish 
where implementation of this program would be most beneficial, in other states. 
 It is estimated that the economic costs of motor vehicle crashes in 2010 was about 
$242 billion. [46] Fewer fatal vehicle crashes will lead to lower associated costs when 
considering vehicle repairs, hospital bills, and lost time. As a result, this section calculates 
the estimated dollar per life saved in a given year due to the vehicle safety inspection 
program, largely using the results from Chapter III.  This is performed for two different 
scenarios. Scenario 1 assumes all states with no safety inspection program now implement 
an inspection program similar to PA, resulting in the cost per life saved due to 
implementing the program in those states. Scenario 2 assumes that all states with an 
annual inspection program eliminate them, resulting in the additional costs that are now 
incurred in those states. It was concluded from the regression results in Chapter III that a 
safety inspection program may reduce fatalities by 0.1-3.5 per billion VMT. In a small state 
without an inspection program, such as Connecticut, 2.0 million vehicles registered traveled 
approximately 31.2 billion miles in 2013. A larger state such as Florida that also does not 
have a safety inspection program totaled about 192 billion miles over the 7.2 million 
vehicles registered. [55] Additionally, we can examine the most stringent program currently 
implemented, in PA, which charges approximately $40 ± $10 per inspected registered 
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vehicle and an average cost for a safety repair of $255 ± $128, calculated from the sample 
data.  

This results in a total reduction in fatalities of about 56 (3-109) in Connecticut, 
which had a total of 276 deaths in 2013 [2], at a cost of $582 million ($310 million to $855 
million). If Connecticut were to implement a safety inspection program similar to 
Pennsylvania’s, they would see costs around $10.4 million per life saved ($2.8 - $274 million 
per life saved). In comparison, a similar calculation is performed for Florida, which resulted 
in an approximate cost of about $6.1 million per life saved ($1.7 - $162 million per life 
saved). The Department of Transportation recommends that a minimum and maximum 
value of a statistical life (VSL) be used, rather than an average, in analyses ranging from 
$5.2 million to $13 million. [71] It is concluded from these results that the value of the 
safety inspection program, one similar to that of Pennsylvania’s is worthwhile depending on 
where the cost per life saved falls within the calculated range. Additional calculations are 
made for all states under these same scenarios, cost assumptions, and fatality reductions, 
and the results are presented in Table 16. 
 
Table 16. Overall U.S. Estimated Cost per Life Saved by Scenario 

 

Vehicle Miles 
Traveled 
(billions) 

Vehicles 
Registered 
(millions) 

Delta 
Fatalities 

Average Cost per 
Life Saved 

(5th-95th Percentiles) 
States with No 
Inspection Program, 
now implemented 

1,430 60 2,600 
(140 – 5,000) 

$6.8M 
($1.9M - $180M) 

States with Annual 
Inspection Program, 
now eliminated 

860 40 1,500 
(86 – 3,000) 

$7.1M 
($1.9M -$190M) 

 
These costs assume that any vehicle inspected will incur some sort of repair cost, which 
results in an upper bound cost range. Additionally, the benefits from the safety inspection 
program only consider the reduction of fatalities, excluding any benefits due to decreased 
non-fatal crashes. This creates a lower bound for the estimated benefit from the program. 
As a result, the average and range values shown in Table 16 are likely higher bounds of 
actual results, leading to the conclusion that states highly consider and carefully calculate 
the resulting benefits from the vehicle safety inspection program. 
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It is therefore recommended that Pennsylvania continue to implement their program and 
furthermore, other states should look into also implementing the program if they do not 
currently have one. 
 Another policy implication that stems from this thesis research, involves using the 
estimated VMT values from Chapter IV. Over the past year, numerous discussions have 
been held by Congress, discussing the current state of the Highway Trust Fund, the main 
source of funding for roads and transit in the U.S. The current source of money for this 
account is from gasoline tax, which first, has not been increased since 1993 (20 cents per 
gallon), but second and more importantly, does not provide as large of a source of monetary 
value as it used to as vehicles have been come more fuel efficient. In fact, electric vehicles 
are completely excluded from this tax. In 2009, Zhang et al. proposed a vehicle mileage fee 
be placed based on income and spatial equity, based on households. This is accomplished by 
employing vehicle ownership and type-choice models and regression-based vehicle-use 
models. More specifically, distributional effects of the VMT fee (based on residential 
urbanity and income levels) are not found to be significant; they need not be a factor in a 
future implementation of a VMT fee. [72] In December of 2012, GAO similarly 
recommended that Congress further explore mileage fees and consider implementing a pilot 
program. [73] In order to tax on VMT, a robust source of VMT data is necessary in order to 
find the most effective policy to implement. An additional benefit to a finer level availability 
of VMT data may help lead to more precise analyses in a variety of situations where 
transportation investments should be made. 
 In the near future, with the introduction of increased autonomy in vehicles, vehicle 
owners who had less desire or ability to drive may now be more willing to drive with the 
autonomous capabilities vehicles will have to offer. It is possible this advantage of increased 
safety (by reduction of distracted driving) due to autonomous feature in vehicles, may also 
lead to a disadvantage of increased travel that a VMT fee would mitigate. However, there is 
also the potential effect of fully autonomous vehicle ride-share, which may help with 
congestion, but a fully automatic vehicle may not be allowed on the roads for quite a while.  
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III. Future Work 

After completing the work in this thesis, additional questions have become evident and are 
detailed in this section. First, we saw in chapters II and III depended greatly on VMT 
estimates and at a more detailed level than just estimating state averages. In chapter IV 
when VMT was analyzed by urbanity, it was evident that vehicle age and vehicle miles 
traveled did not follow the similar trends over time. Rural VMT is much higher than urban, 
yet vehicle age was observed to be equivalent between urban and rural zip codes. The 
question arises if this is the same trend that would be found in all states? Moreover, 
circling back to the initial safety inspection program motivation, the question of how VMT 
and vehicle age in safety versus non-safety rural areas vary. Data for the entire U.S., 
similar to that of PA is necessary for this analysis. 
 Similarly, future work and more data would include household analyses separated 
by urbanity, as this is an important variable in determining VMT patterns as seen earlier 
in the chapter. Unfortunately, the analysis and data presented in this thesis did not consist 
of a large enough sample size to breakdown household travel by urbanity. It would also be 
beneficial to obtain counts of number of licensed drivers per household in order to note 
differences in travel patterns based on more than the number of vehicles per household. 
Additionally, comparisons between households with the same number of vehicles could be 
made.  

Along these same lines of needing additional data to increase sample sizes, future 
work will include adding in all the CompuSpections inspection data from Chapter II to the 
analyses in Chapter IV, which uses only e-SAFETY data, for the VMT analysis for vehicles 
in the state of PA in addition to the households. These two datasets are composed of 
different VINs of vehicles in the state and therefore would only add to the sample size. 

Additionally, another analysis would compare the differently ranked vehicles 
between households to see if there are any similarities. For example, based on the results 
found previously, it may be concluded that the 2nd or 3rd ranked vehicles in the households 
with more vehicles are driven similarly to the vehicle driven in the single-vehicle 
household. This means households with one-vehicle may still drive less annually than the 
lower ranked vehicles in the households with more vehicles. At this point, it is necessary to 
look at number of licensed drivers per household as households with more licensed drivers 
may require more vehicles as each driver is similar to a single-vehicle household and 
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therefore no confident conclusions can be drawn on households by vehicle count from this 
household-level analysis, though they can still be compared to one another. In addition to 
number of licensed drivers per vehicle, income distributions would be a helpful variable in 
classifying how households vary from one another. 
 This thesis work was based solely on the safety and travel patterns of light-duty 
vehicles, yet the data is comprised of fleet and heavy-duty vehicles as well. This leads to the 
recommendation that heavy-duty vehicles be analyzed. Class 8 (heavy-duty/combination) 
trucks, which are least fuel-efficient and also contribute to 30% of annual VMT on average 
in the U.S. Furthermore, when comparing travel between urban and rural areas, there is 
less of a difference than for that of light-duty vehicles seen in the previous chapter. [74] 
 Last, obtaining registration data for the U.S. would allow us to compare fleets in 
different states based on whether there is a currently implemented safety inspection 
program. It is hypothesized that states with more stringent safety programs are younger on 
average than those with less stringent programs, as the program assists in removing the 
older, more dangerous cars from the road. This may lead to substantial benefits separate 
from safety-related effects, such as improved fuel economy resulting in lower emissions, 
increased new vehicle purchasing resulting in increased spending and economic benefits, 
and finally increased job opportunities such as increased work opportunities for mechanics. 
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Supplemental Material 

I. Vehicle Safety Inspection Recording System 

Previously, vehicle safety inspections were recorded with this MV-431 form in paper form 
(Supplemental Material Figure 1). Now, stations may use the electronic version of this via 
the e-SAFETY program or through a private IT company such as CompuSpections. 

 

 
Supplemental Material Figure 1: Example MV-431 paper form, PA state vehicle safety 
inspection recording system. 

 

II. Data Complications 

Data validation is an important step prior to analysis. In this specific case, technicians in 
the inspection stations record data entries during or after they finish a vehicle inspection. 
Mistakes are inevitable when Vehicle Identification Numbers (VINs), dates, and odometers 
are entered by hand as they contain multiple numeric or combination alphanumeric 
sequences. As a result, data filtering on all three datasets was vital prior to analyzing any 
data.  
 A simple finger-slip can result in an invalid entry by entering an extra digit or 
typing the wrong key. If VINs are entered incorrectly, they cannot be decoded to correctly 
identify that vehicle’s characteristics, and may not match other records. It is also important 
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that other data, such as dates and odometers, are entered correctly because an extra digit 
in an odometer means it is an order of magnitude more than what it should read. 

 Detailed VIN Filtering II.1.
Prior to 1981, there was no standard in recording VIN data. Depending on the 
manufacturer, a VIN could be a variable length and contain any digit/character 
combination. As of 1981, a standard was put in place for VINs to be: 

1. 17 digits in length,  
2. Contain no ‘I’s, ‘O’s, or ‘Q’s (as these letters get confused with ‘1’s [ones] and ‘0’s 

[zeros] in hand written and human read forms, and  
3. The 9th digit is used as the “check” digit and should match the result of an algorithm 

on the remaining digits.  
 
To decode a VIN, these standards must be checked and met. Without this check, 
characteristics such as model year, vehicle make/model, etc. cannot be verified, as these are 
built into the VIN composition. Initially, the VIN was checked to see if it meets those three 
requirements of length, composition, and check-digit value. The digit check value is 
calculated by the first translating any letters in the VIN to numbers according to the 
designation in Supplemental Material Figure 2. 
 

 
Supplemental Material Figure 2: Alphanumeric Encoding Table 

 
Once the VIN forms a 17-digit number, each of the digits is multiplied by an associated 
weight, which is presented in Supplemental Material Figure 3. 
 



116 
 

 
Supplemental Material Figure 3: Position Multiplier 

Then, these weighted digit values are summed and divided by 11. The remainder of this 
division is the check digit result and the value that should be in the 9th position of the VIN. 
[75] 

II.1.a Python Code To Validate Check Digit 
def vinCheckDigit(vin): #check that vin is valid 
product = []  
checkDigit = vin[8] 
value = {'A':1, 'B':2, 'C':3,'D':4, 'E':5, 'F':6, 'G':7, 'H':8, 

'J':1, 'K':2, 'L':3, 'M':4, 'N':5, 'P':7, 'R':9, 
'S':2, 'T':3, 'U':4, 'V':5, 'W':6, 'X':7, 'Y':8, 'Z':9} 

weight = [8, 7, 6, 5, 4, 3, 2, 10, 0, 9, 8, 7, 6, 5, 4, 3, 2] 
for i in xrange(len(vin)): 

if vin[i].isdigit(): 
vinValue = int(vin[i]) 
else: 
vinValue = int(value.get(vin[i], 100)) 
product.append(vinValue*weight[i]) 

check = str(sum(product) % 11) 
if check == "10":  

check = "X" 
if check == checkDigit: 

return True 
else: 

return False 
 

 Raw Data Filtering Results II.2.
While CompuSpections provided data from 2005 and 2006, similar years of data were not 
supplied from e-SAFETY. In order for inspection failure rate estimates from those years not 
to be biased toward one particular dataset, inspection data from 2005 and 2006 was omitted 
from the analysis. Finally, after comparing the two inspection dataset quantities, only 
inspection years 2008 through 2012 were used since there was significantly more data from 
one dataset versus the other in years prior to 2008. 
 The CompuSpections data in general had fewer errors as expected. After filtering, a 
database was compiled for VINs by year of inspection. Additional data filtering 
considerations were made; however, records were not discarded at this time. A post-
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filtering breakdown of available data, by inspection year, is presented in Supplemental 
Material Table 1. These data counts vary from the total counts of registered LDVs in the 
state, which was on the order of about nine million vehicles (post-filtering) as of March 
2012. 
 
 
Supplemental Material Table 1: Data record count by year, after filtering 

Data Source 2008 2009 2010 2011 2012 Total 
e-SAFETY Inspection 150k 200k 220k 240k 240k 980k 
CompuSpections 
Inspection 900k 850k 840k 550k 230k 3.3M 

Combined Inspection 1.1k 1.1k 1.1k 790k 470k 4.3M 
 

 Detailed Data Filtering II.3.
Some data contain invalid consecutive odometer values; for example, a VIN may contain 
two years of data, which show the odometer decreasing. Not all VINs have records every 
year and some have no consecutive year entries. As a result, annual mileage calculations 
cannot always be made for these VIN entries. And, as a result, odometer readings were not 
filtered according to this method of comparing odometer readings year to year. 
Supplemental Material Table 2 shows the number of vehicles in the inspection database 
with multiple records, how far apart they are, and what percentage they are out of the total 
number of inspection records (5.3 million) and total unique VIN entries (2.8 million). 
 

Supplemental Material Table 2: Inspection dates X days apart for a given VIN with 
multiple entries 

X Days Difference (Months) Vehicle Count % of Total Inspection % of Total VIN 
< 30 (< 1 month) 19,000 0.4% 0.7% 
> 30 & < 120 (1 - 3 months) 32,000 0.6% 1.2% 
> 120 & < 270 (3 - 9 months) 72,000 1.4% 2.6% 
> 270 & < 365 (9 - 12 months) 620,000 12% 23% 
> 365 & < 450 (12 - 15 
months) 660,000 12% 24% 

> 450 (> 15 months) 1,100,000 21% 40% 
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The category of vehicles with consecutive inspections less than 9 months apart represented 
about 2% of the inspection entries and just less than 5% of the total VIN entries. Of the 
vehicles with entries approximately one year apart, approximately 1% have records within 
the same inspection year entry because they are a little early (i.e., January 2009 and 
December 2009) and about 1% have records two years apart because they are a little late 
(i.e., December 2008 and January 2010). Due to the small amount of data containing VINs 
with consecutive entries that are not appropriately spaced, these data entries are still 
included in this analysis and assumed to have no effect on the results.  
 Another data issue shows odometer values that are too large for an appropriately 
aged vehicle, for example, vehicle records were filtered if odometer readings were larger 
than 500,000 miles (which would equate to about a 50 year old vehicle driving 10,000 miles 
in a given year), which is an unrealistic situation. This may be the result of an odometer 
being entered incorrectly with an extra digit due to a “finger slip” or simply entering the 
number incorrectly. All of these entries, with significantly large odometer values were 
considered invalid, and discarded from this analysis. 
 Another possible discrepancy in the data may be that the entries for a given VIN do 
not align. For example, two entries for a VIN’s model and year should match. Some entries 
have two different model years for the same VIN, which is not possible. If the vehicle model 
years do not match, they can be corrected by using the 10th digit in the VIN, which 
corresponds to the model year of the vehicle. Supplemental Material Table 3 below shows 
the year designations. 
 
Supplemental Material Table 3: VIN model year encoding [76] 
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In 2008, the National Highway Traffic Safety Administration (NHTSA) wrote an 
amendment to 49 CFR Part 565, Vehicle Identification Number Requirements to address a 
concern that the supply of unique VINs may run out. The document states the new rule 
ensures a sufficient number of unique VINs for the following 30 years. [77] This VIN rule 
applies to passenger vehicles, multipurpose vehicles, and trucks with gross vehicle weight 
rating less than or equal to 10,000 pounds. This creates a crude filter for larger trucks and 
other vehicles as this rule is not applied to them and will result in an invalid VIN. 
According to this rule, the 7th digit, in addition to the 10th digit was used to distinguish 
between vehicle model years 1980 – 2009 and 2010 – 2019, due to the repeating digit 
designation. Prior to 2010, the 7th digit was a number and it is a letter for model years after 
and including 2010. For consistency, VIN decoding was always applied to find a vehicle 
model year, rather than using the information from the original data entry. 
 Another filter was applied to remove permanently registered vehicles, such as police 
cars and ambulances. The registration file contained a column entry with this designation, 
which was used to keep track of those VINs. Those VINs were then used to check against 
the other data files and were filtered out, as these permanently registered vehicles are 
assumed to have uncharacteristic driving patterns. 
 In addition to the minimal truck filter by doing the VIN check (which cannot be 
applied to most heavy-duty trucks), a second truck filter was applied for Ford trucks. Ford 
uses a specific designation for different truck models, as a result, the larger trucks (Ford F-
350 and larger) typically used as construction vehicles were removed from the database. 
 If counties do not align entry to entry, it is assumed the vehicle moved and was 
correctly recorded. For this study, these scenarios are ignored even though these vehicles 
that have moved to a different county may have changed their driving habits within that 
year; however, further analysis is necessary in this case. 
 The March 2012 PA registration data lists 10.4 million vehicles of which 98,000 were 
permanently registered (i.e., police fleets), 85,000 large Ford trucks, and about 76,000 had 
invalid VINs. Prior to this filtering, only “passenger” and “truck” designated entries were 
filtered in order to primarily filter trailers, motorcycles and buses. 
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III. Data Representation 

Preliminary representativeness tests were performed in order to justify whether the 
inspection data used in the analysis represented the state as a whole.  The registration data 
consists of significantly more vehicles than the two inspection files; therefore, in order to 
calculate an appropriate number of vehicles in each category (i.e., by county-type, age, and 
odometer reading), the percentage of each category was calculated from the inspection files 
and multiplied by the registration total. Since the year 2012 was the only common year 
between all three datasets, the year 2012 is compared. This resulted in the e-SAFETY data 
appearing to be similar to the registration data, while the CompuSpections data contained 
a different vehicle composition with many more new and younger vehicles and many less 
older vehicles (after about age 8). Ages 6-7 have relatively the same number of vehicles in 
all datasets. These distributions are shown in Supplemental Material Figure 4. 
 

 
Supplemental Material Figure 4: Dataset representation comparisons, 2012 

 
These data similarities may be due to the state inspection and vehicle registration records 
coming from the same source. While the CompuSpections data may not seem representative 
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as a whole, the data itself must not be disregarded, especially when looking at the data by 
category.  
 In order to quantitatively compare the various dataset distributions, a series of chi-
square analyses were implemented. Each dataset permutation, consisting of the e-SAFETY 
inspection, CompuSpections inspection, and state registration data, was observed based on 
age, county, and odometer category designations. Odometer values in the registration data 
were recorded at the time of registration, whereas the inspection odometer values were 
recorded at the time of inspection. As a result, an odometer representation is not used to 
compare representativeness between the inspection and registration datasets. The 
following chi-squared formula is used, and evaluated by using observed (Oi) and expected 
(Ei) values. 

𝜒! =
𝑂! − 𝐸! !

𝐸!

!

!!!
 

 
The observed values were simply taken as the values from the actual datasets. The 
expected values were calculated based on the calculated joint value distribution between 
the two datasets being compared by: (1) adding the values of each dataset in each category; 
(2) calculating the percentage of that category of the total joint sum; and (3) finally 
multiplying the joint percentage of each category by the total of each initial dataset to get 
the expected values. These values were used in the formula and summed to get the total 
chi-square value. 
 The hypothesis here is the registration data over time (between the two available 
registration files) are representative of each other and that these distributions are not 
significantly different. Additionally, it is hypothesized that the distributions of data in each 
the e-SAFETY and CompuSpections inspection data files (at least for the registration file 
year of 2012), are representative of all vehicles.  
 The results of the chi-squared analyses revealed, with any data comparison, the data 
distributions were all significantly different. This means it cannot be stated that these 
datasets are representative of one another. This includes the representative test between 
the two registration files, which are a snapshot of the Pennsylvania state vehicle 
composition about 1.5 years apart. Aside from a rapidly changing vehicle fleet, another 
problem may stem from vehicles being registered in Pennsylvania and getting inspected in 
a station that partakes in neither the e-SAFETY nor CompuSpections inspection programs. 
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 Further breakdown of these datasets can be observed by the differences in ages. 
Supplemental Material Table 4 displays the dataset breakdowns in the overall state in 
addition to a primary breakdown by the urbanity. 
 

Supplemental Material Table 4: Comparison of age distributions between datasets, by the 
overall state and urbanity breakdown 

Urbanity 
Index Dataset Comparison 5th 

Percentile 
50th 

Percentile Average 95th 
Percentile 

Overall 

Registration 5 8 9.0 12 
Inspection (Combined) 1 3 4.3 7 
Inspection (CompuSpections) 1 3 3.7 6 
Inspection (e-SAFETY) 3 6 6.5 9 

1 

Registration 1 8 8.7 18 
Inspection (Combined) -1 3 3.9 12 
Inspection (CompuSpections) -1 3 3.5 11 
Inspection (e-SAFETY) 0 5 5.7 15 

2 

Registration 1 8 8.5 18 
Inspection (Combined) -1 3 4.1 12 
Inspection (CompuSpections) -1 3 3.4 10 
Inspection (e-SAFETY) 1 6 7.0 15 

3 

Registration 1 9 9.4 20 
Inspection (Combined) -1 4 4.5 13 
Inspection (CompuSpections) -1 3 3.9 12 
Inspection (e-SAFETY) 0 6 6.6 15 

4 

Registration 1 9 9.4 20 
Inspection (Combined) 0 4 5.2 14 
Inspection (CompuSpections) 0 4 4.3 12 
Inspection (e-SAFETY) 1 7 7.5 16 

5 

Registration 1 9 9.7 21 
Inspection (Combined) 0 4 4.9 14 
Inspection (CompuSpections) 0 3 4.4 12 
Inspection (e-SAFETY) 0 5 5.9 15 

6 

Registration 1 9 9.7 21 
Inspection (Combined) 0 4 5.0 13 
Inspection (CompuSpections) 0 3 3.9 11 
Inspection (e-SAFETY) 0 5 5.7 14 

 
The Supplemental Material Table 4 breakdown shows that there are many more young 
vehicles than old vehicles in the inspection dataset, resulting in a smaller overall average 
state failure rate when calculating failure rates by urbanity. Due to this higher 
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representation of younger vehicles in each county type, it is noted that the failure rates by 
county classification are likely underestimates of the actual failure rate of the fleet in that 
county type. A more accurate estimate of failure rates would be to use the age distribution 
from the registration database (rather than from the inspection databases) along with the 
failure rates by age in order to calculate a more representative failure rate in each county 
type. However, the calculated failure rates by county classification are still well above the 
stated 2% failure rate reported by state legislators. 

IV. Logistic Regression 

This regression analysis is executed using the R Project for Statistical Computing Software 
by performing a stepwise regression, using the following code: 

# From the stats package, glm is used to fit generalized linear models 
null <- glm(overallInspectResult ~ 1, data = df, family = binomial(link = "logit")) 
 
# Omitted dummy variables: fuelGas, makeHonda, body=Sedan) 
full <- glm(overallInspectResult ~ age + currentOdom + weightVal + mpgVal + 
              factor(body) + factor(make) + factor(fuel) + factor(INSPECTDATE),  
            data = df, family = binomial(link = "logit")) 
 
#stepwise regression 
step(null, scope = list(upper = full), direction = "both") 

 
The results from this stepwise regression led to the inclusion of all variables in the 
regression model. Since two pairs of variables are correlated and show multicollinearity is 
not a concern, we produce eight models, in addition to the base case Model 0 including all 
variables, with each variable combination variation. The combinations are shown in 
Supplemental Material Table 5, providing which variables are excluded in the regression, 
and the variable coefficient estimates and standard errors are shown in Supplemental 
Material Table 6. 
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Supplemental Material Table 5: Model Definitions 

Model Excluded Variables 
0 None 
1 Age 
2 Odometer 
3 Weight 
4 Fuel Economy 
5 Age, Fuel Economy 
6 Odometer, Fuel Economy 
7 Age, Weight 
8 Odometer, Weight 
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After executing all regression model variations, we find standard error values of the 
continuous variables to be between 10-4 and 10-6. In our case, since our standard error 
values are so small, we can still confidently say that our model is accurate and does not 
have unstable variable estimates; thus, multicollinearity is not a concern. We also see this 
by comparing the variable estimate coefficients, which do not change much from model to 
model. 
 The regression results, from the base model and the models excluding one of each of 
the correlated variables (Model 5 to Model 8), were tested for goodness of fit and validated 
using a few different metrics in order to provide the most accurate model. McFadden’s r-
squared value is similar to the r-squared value obtained from a linear regression model, yet 
falls within a smaller range. For instance, 0.2 is considered strong, so our value of 0.1 is 
considered to be a reasonably good fit. The log likelihood and r-squared values are better 
when larger. The largest values are found for Model 0, the full model including all 
variables. The Bayesian Information Criterion (BIC) measures the efficiency of the 
parameterized model in terms of predicting data, penalizes a model for including more 
independent variables and takes into account the size of the dataset. These previously 
stated goodness-of-fit metrics are calculated and shown below in Supplemental Material 
Table 7. 
 
Supplemental Material Table 7: Additional Goodness-of-Fit Measures 

Model 
Log-likelihood 
from the Fitted 

Model 

Max likelihood 
pseudo 

r-squared 

McFadden’s 
pseudo 

r-squared 

Cragg and 
Uhler's pseudo 

r-squared 

Bayesian 
Informatio
n Criterion 

0 -1784547 0.07424 0.09991 0.1380 3569929 
5 -1791043 0.07190 0.09663 0.1336 3582890 
6 -1820197 0.06130 0.08193 0.1139 3641197 
7 -1791094 0.07188 0.09661 0.1336 3582992 
8 -1820068 0.06135 0.08200 0.1140 3640939 

 
All goodness-of-fit metrics result in the same conclusion of choosing Model 0. While Model 0 
is shown to be the best overall model, after observing the various goodness-of-fit measures 
in the other models excluding variables, estimates, standard errors, and fit metrics are not 
very different.  
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 We also used 5-fold cross validation to look at the error in model predictability. This 
relies on splitting the data five ways, using 80% of the dataset as “training” data to create 
the initial model, and then the remaining 20% of the dataset as the “testing” data to check 
the model. This process is repeated with the five random samples and averaged error rates 
are calculated. When comparing the different models, again we see the most predictive 
model is that which includes all variables, Model 0, as it results in the smallest prediction 
error (Supplemental Material Table 8).  
 
Supplemental Material Table 8: Model comparison by prediction error, resulting from cross-
validation 

Model Variables Excluded	   Raw cross-validation estimate 
of prediction error 

Adjusted cross-
validation estimate 

0 None	   0.1052 0.1052 
5 Age, Fuel Economy	   0.1054 0.1054 
6 Odometer, Fuel Economy	   0.1068 0.1068 
7 Age, Weight	   0.1054 0.1054 
8 Odometer, Weight	   0.1067 0.1067 
 
If a policy maker considered which of these highly correlated variables were better 
predictors than the others they could compare the prediction errors above the various 
goodness-of-fit measures. Therefore, with only certain information available about a 
vehicle, predicting safety inspection failure rates will still result in sufficient conclusions 
compared to the Model 0 scenario results. Thus, for a more accurate prediction of safety 
inspection failure rates, using age would be more direct and reliable than using odometer 
reading. And, looking that these same results, there is not an obvious advantage to using 
fuel economy versus weight.  

V. Number of vehicles that would have failed estimates, by NCHS 
County Classification 

Here, comparisons are made between failure rates and counts for both county classification 
and age. Failure counts are shown beside the failure rate graph in order to make easy 
comparison and look at both trends together. While the overall fail rate is constant across 
the counties, there are significantly more vehicles in the urban counties causing there to be 
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many more failed vehicles. This can be compared between Supplemental Material Figure 5 
and Supplemental Material Figure 6. 
 

 
Supplemental Material Figure 5: Number of vehicles that would have failed in 2012, by 
county classification 

 

 
Supplemental Material Figure 6: Average failure rates by county classification with error 
bars that represent min-max failure rate range from 2008-2012 
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Supplemental Material Table 9 provides a breakdown of specific characteristics of each 
county class. These characteristics include the average failure rate, the 2012 registered 
vehicle count, average vehicle age, and average vehicle odometer reading. 
 
Supplemental Material Table 9: Detailed information by county class, inspection database 

County 
Classification 

Vehicle 
Inspection 

Failure Rate 
2012 Inspection 

Database Vehicle Count 
Average 

Age 
Average Odometer 

Reading 

1 - Urban 10.8% 850,000 3.9 40,000 
2 10.9% 1,500,000 4.1 46,000 
3 12.4% 1,500,000 4.5 50,000 
4 12.9% 140,000 5.2 56,000 
5 12.2% 290,000 4.9 56,000 

6 - Rural 14.9% 26,000 5.0 59,000 
 
As stated in the main body of the paper as well as the previous supplemental material 
section, it was found that the ages of inspected vehicles by county are much lower than 
those calculated in the registration database. As a result, it is likely these failure rate 
estimates by county classification are underestimates. More adjustments must be made to 
these failure rate estimates by county classification by applying failure rates associated 
with the average ages using the registration database, in those counties, which are on the 
order of 8 to 10 years old, corresponding with failure rates on the order of 20%.  

VI. Vehicle Safety Inspection Failure Rate by Vehicle Body Type 

Failure rates by vehicle body type show that, on average, there are not large differences 
between failure rates by the body type (Supplemental Material Figure 7). While this is a 
noteworthy breakdown of failure rate, it is not considered when evaluating the vehicle 
safety inspection program. This is due to the policy aspect of this research, where creating 
varying safety inspection schedules for the different body types will not be easy to 
implement or necessarily effective. 
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Supplemental Material Figure 7: Average failure rate by vehicle body type and failure rates 
ranging from lowest to highest (error bars represent min-max failure rate range from 2008-
2012 

 
A closer look at the vehicle driving patterns and ages of these vehicle body types is 
displayed in Supplemental Material Figure 8. These figures are both arranged in order 
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Supplemental Material Figure 8: Average vehicle age and odometer reading by vehicle body 
type, from lowest to highest failure rates 

 
While this breakdown presents valuable information by vehicle type, it is not appropriate to 
create a policy to perform safety inspections based on vehicle body types. If executed, this 
type of policy would have many subsequent effects on types of vehicles being purchased and 
driven. As a result, these current conclusions would likely change. This data is broken down 
in Supplemental Material Table 10, and is then ordered by inspection year and increasing 
failure rate. It can be observed that convertibles consistently have the lowest failure rate, 
followed by SUVs, likely due to the associated travel patterns (presented here as odometer 
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Supplemental Material Table 10: Vehicle characteristics by body type and inspection year 

Vehicle 
Body Type 

Inspection 
Year 

Average 
Age 

Average Odometer 
Reading Failure Rate Count 

Convertible overall 5.8  38,000  10%  78,000  
SUV overall 3.5  44,000  11%  1,200,000  
Sedan overall 4.4  46,000  11%  2,200,000  
Pickup overall 5.3  53,000  14%  390,000  
Wagon overall 5.1  54,000  14%  100,000  
Van overall 4.7  58,000  16%  300,000  
Convertible 2008 4.4  31,000  9%  18,000  
SUV 2008 2.8  37,000  10%  280,000  
Sedan 2008 3.6  40,000  10%  540,000  
Pickup 2008 4.5  47,000  13%  92,000  
Van 2008 3.8  49,000  15%  74,000  
Wagon 2008 4.8  54,000  15%  24,000  
Convertible 2009 5.2  35,000  10%  19,000  
SUV 2009 3.3  42,000  11%  290,000  
Sedan 2009 4.0  43,000  11%  540,000  
Pickup 2009 5.1  52,000  14%  92,000  
Wagon 2009 4.9  52,000  15%  24,000  
Van 2009 4.4  56,000  16%  71,000  
Convertible 2010 5.7  38,000  9%  19,000  
SUV 2010 3.3  43,000  10%  300,000  
Sedan 2010 4.3  45,000  10%  530,000  
Wagon 2010 4.7  51,000  13%  26,000  
Pickup 2010 5.2  53,000  13%  91,000  
Van 2010 4.7  59,000  15%  68,000  
Convertible 2011 6.8  43,000  9%  14,000  
SUV 2011 3.9  48,000  11%  240,000  
Sedan 2011 5.1  52,000  12%  380,000  
Wagon 2011 5.2  54,000  12%  21,000  
Pickup 2011 5.7  56,000  14%  72,000  
Van 2011 5.3  64,000  16%  51,000  
Convertible 2012 8.2  52,000  11%  8,000  
SUV 2012 5.1  59,000  13%  130,000  
Sedan 2012 6.4  62,000  14%  220,000  
Pickup 2012 6.9  66,000  15%  47,000  
Wagon 2012 6.8  68,000  16%  13,000  
Van 2012 6.5  75,000  18%  31,000  
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VII. Age versus Vehicle Miles Traveled Trend 

Mileage bins and associated average age for each database. It can generally be concluded 
from the following table that the age of the vehicle increases as the odometer mileage 
increases. These values can be used to equate age exemption scenarios with mileage bins. 
The relationship between average ages from each database and general mileage ranges is 
presented in Supplemental Material Figure 9 and corresponding data in Supplemental 
Material Table 11. 
 

 
Supplemental Material Figure 9: Average vehicle age versus odometer reading bin 

 
This linear estimation results in an r-squared value very close to one, which means it is a 
good approximation of the relationship between the two variables. 
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Supplemental Material Table 11: Average vehicle age by mileage bin 

Mileage Range Overall Inspection 
Database 

< 5,000 -0.2 
5,000-10,000 1.2 

10,000-20,000 1.9 
20,000-30,000 2.9 
30,000-40,000 3.7 
40,000-50,000 4.6 
50,000-60,000 5.5 
60,000-70,000 6.2 
70,000-80,000 6.9 
80,000-90,000 7.6 

90,000-100,000 8.2 
100,000-125,000 9.3 
125,000-150,000 10.5 

> 150,000 11.6 
 
 
 


	Blank Page
	Blank Page

