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ABSTRACT

Data-Driven Geometric Scene Understanding
Scott Satkin

In this thesis, we describe a data-driven approach to leverage repositories of 3D models for
scene understanding. Our ability to relate what we see in an image to a large collection of 3D
models allows us to transfer information from these models, creating a rich understanding
of the scene. We develop a framework for auto-calibrating a camera, rendering 3D models
from the viewpoint an image was taken, and computing a similarity measure between each
3D model and an input image. We demonstrate this data-driven approach in the context of
geometry estimation and show the ability to find the identities, poses and styles of objects
in a scene.

We begin by presenting a proof-of-concept algorithm for matching 3D models with in-
put images. Next, we present a series of extensions to this baseline approach. Our goals
here are three-fold. First, we aim to produce more accurate reconstructions of a scene by
determining both the exact style and size of objects as well as precisely localizing their po-
sitions. In addition, we aim to increase the robustness of our scene-matching approach by
incorporating new features and expanding our search space to include many viewpoint hy-
potheses. Lastly, we address the computational challenges of our approach by presenting
algorithms for more efficiently exploring the space of 3D scene hypotheses, without sacri-
ficing the quality of results.

We conclude by presenting various applications of our geometric scene understanding
approach. We start by demonstrating the effectiveness of our algorithm for traditional ap-
plications such as object detection and segmentation. In addition, we present two novel
applications incorporating our geometry estimates: affordance estimation and geometry-
aware object insertion for photorealistic rendering.





ACKNOWLEDGEMENTS

“If I have seen further it is by standing on the shoulders of giants.” –Isaac Newton (1676)

is thesis would not have been possible without the contributions of many, some via
their direct scientific collaboration, others indirectly by their positive influence on me over
the years. First and foremost, I would like to thank my advisor Martial Hebert for his
unparalleled dedication to his students, for granting me the freedom to work on interesting
problems, sheltering me from our funding sources, and keeping me focused year after year.
And to Robert Pless, who introduced me to the field of Computer Vision, and inspired me
to pursue a Ph.D.

To my thesis committee members: Derek Hoiem, whose pioneering work on spatial
reasoning paved the way for the research in this thesis. Abhinav Gupta, who opened the
doors to geometry estimation for me with our affordances work. And to Alyosha Efros, for
our many late-night research arguments – your passion has made a profound impact on me.

To Kevin Karsch, for performing all the photorealistic renderings seen in Chapter VI. To
Jason Lin, for his contributions to our initial scene matching prototype. To Maheen Rashid,
for her contributions to refinement via object swapping. And to Varsha Hedau, David Lee,
Daniel Muñoz and David Fouhey for sharing their code and features.

To Ryan Johns, who’s ninja-like engineering helped me recover from a catastrophic data
loss. And to all my friends in San Francisco, for helping me keep my eye on the prize, and
for providing a couch to crash on. And to my housemates, for putting up with me for all
these years.

To the entirety of e Robotics Institute, especially the vision group, for fostering an en-
vironment which encourages creativity and demands excellence. To my labmates, especially
Edward Hsiao, Daniel Muñoz, Ekaterina Taralova, Yuandong Tian, Stéphane Ross, Carl
Doersch, David Fouhey, Santosh Divvala and Tomasz Malisiewicz for the years of interest-
ing discussions, much needed group dinners, and endless encouragement/commiseration.



And to Suzanne Lyons Muth, for ensuring the wellbeing of every student in the Robotics
Instute.

To everyone I have had the privilege of working with at Bell Labs and Google, especially
Wim Sweldens, Rajeev Rastogi, Chuck Rosenberg and Jean-Yves Bouguet. And to Chris
Quackenbush, for bravely moving with me to India to seek employment.

And of course, my family. Whether nature or nurture, you are responsible. ank you
for your unconditional support, trust and encouragement.

vi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Data-Driven Approaches in Computer Vision . . . . . . . . . . 1
1.2 Single-View Geometry Estimation . . . . . . . . . . . . . . . . 4

II. Scene Understanding via 3D Model Matching . . . . . . . . . . . . . . 9

2.1 Autocalibration and Room Layout Estimation . . . . . . . . . . 10
2.2 Similarity Features . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Hypothesis Ranking . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Library of 3D Models . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Experimental Dataset and Ground-truth Annotation . . . . . . . 17
2.6 Proof-of-Concept Scene Matching Results . . . . . . . . . . . . 18

2.6.1 Surface Normal Accuracy . . . . . . . . . . . . . . . 21
2.6.2 Free Space Estimation . . . . . . . . . . . . . . . . . 22

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

III. 3DNN: Robust 3D Model Matching . . . . . . . . . . . . . . . . . . . 29

3.1 Similarity Features . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Incorporation of New Similarity Features . . . . . . . . . . . . . 34
3.3 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Viewpoint Selection . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Geometry Refinement . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Object Location Refinement . . . . . . . . . . . . . 43
3.5.2 Object Swapping . . . . . . . . . . . . . . . . . . . 44

vii



3.5.3 Refinement Evaluation . . . . . . . . . . . . . . . . 48
3.6 Efficiency Issues . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 Sequence Optimization . . . . . . . . . . . . . . . . 51
3.6.2 Hypothesis Factorization and Score Prediction . . . . 52

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 2D vs. 3D Nearest Neighbor . . . . . . . . . . . . . . . . . . . 59

3.8.1 Sources of 2D/3D Data . . . . . . . . . . . . . . . . 59
3.8.2 Geometry Estimation . . . . . . . . . . . . . . . . . 61
3.8.3 Dataset Size . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV. Application: Object Recognition . . . . . . . . . . . . . . . . . . . . . 65

4.1 Object Detection and Segmentation . . . . . . . . . . . . . . . 65
4.2 Integrating Discriminative Object Detections . . . . . . . . . . 67
4.3 Scene Matching as a Prior for Object Locations . . . . . . . . . 72

V. Application: Affordance Estimation . . . . . . . . . . . . . . . . . . . 73

5.1 Algorithmic Overview . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . 77

VI. Application: Geometry-Aware Object Insertion . . . . . . . . . . . . . 79

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Application: Augmented Reality Product Catalog . . . . . . . . 81

CLOSING THOUGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A. System Applicability . . . . . . . . . . . . . . . . . . . . . . . 89
B. Object Co-occurrences . . . . . . . . . . . . . . . . . . . . . . 93
C. Monocular Autocalibration Error Analysis . . . . . . . . . . . . 99
D. 3D Model Library Size Analysis . . . . . . . . . . . . . . . . . 103

WORKS CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



CHAPTER I

Introduction

is thesis explores the intersection of geometric reasoning and machine learning for
scene understanding. Our objective is to produce a rich representation of the world from
a single image by relating what we see in the image with vast repositories of 3D models.
By matching and aligning an image with 3D data, we can produce detail reconstructions
of an environment and transfer rich information from the models to answer a wide variety
of question about the world. Our work builds upon recent advances in data-driven scene
matching and single-view geometry estimation, which we now summarize.

1.1 Data-Driven Approaches in Computer Vision

Over the past decade, researchers have demonstrated the effectiveness of data-driven ap-
proaches for complex computer vision tasks. Large datasets such as [Torralba et al., 2008]’s
80 Million Tiny Images and [Deng et al., 2009]’s ImageNet have proven to be invaluable
sources of information for tasks like scene recognition and object classification. Simple
nearest-neighbor approaches for matching an input image (or patches of an image) with
a large corpus of annotated images enables the “transfer” of information from one image
to another. ese non-parametric approaches have been shown to achieve amazing per-
formance for a wide variety of complex computer vision and graphics tasks ranging from
semantic labelling (e.g., [Tighe and Lazebnik, 2010], [Sing and Košecká, 2013]) and scene
categorization [Oliva and Torralba, 2001], to motion synthesis [Liu et al., 2008] and even
image localization [Hays and Efros, 2008].
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(a) Input image (b) Predicted surface normals

(c) Predicted depth map (d) Predicted object labels

Figure 1.1: From a single image, we estimate detailed scene geometry and object labels.

Recently, large online repositories of 3D data such as 3D Warehouse [Trimble Inc.,
2012] (formerly Google 3D Warehouse) have emerged. ese resources, as well as the advent
of low-cost depth cameras such as the Kinect [Microsoft Corporation, 2010], have sparked
interest in geometric data-driven algorithms. At the same time, researchers have (re-)started
investigating the feasibility of recovering geometric information, for example, the layout of
a scene [Hoiem et al., 2007a, Saxena et al., 2009, Bao et al., 2010]. e success of data-
driven techniques for tasks based on appearance features, for example, interpreting an input
image by retrieving similar scenes [Torralba et al., 2008, Liu et al., 2008, Hays and Efros,
2007], suggests that similar techniques based on geometric data could be equally effective
for 3D scene interpretation tasks. In fact, the motivation for data-driven techniques is the
same for 3D models as for images: Real-world environments are not random; the sizes,
shapes, orientations, locations and co-location of objects are constrained in complicated
ways that can be represented given enough data. In principle, estimating 3D scene structure
from data would help constrain bottom-up vision processes. For example, in Figure 1.1,
one nightstand is fully visible; however, the second nightstand is almost fully occluded.
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Although a bottom-up detector would likely fail to identify the second nightstand since
only a few pixels are visible, our method of finding the best matching 3D model is able
to detect these types of occluded objects. is is not a trivial extension of the image-based
techniques. Generalizing data-driven ideas raises new fundamental technical questions never
addressed before in this context: What features should be used to compare input images and
3D models? Given these features, what mechanism should be used to rank the most similar
3D models to the input scene? Even assuming that this ranking is correct, how can we
transfer information from the 3D models to the input image?

To address these questions, we develop a set of features that can be used to compare
an input image with a 3D model and design a mechanism for finding the best matching
3D scene using support vector ranking. We show the feasibility of these techniques for
transferring the geometry of objects in indoor scenes from 3D models to an input image.

e graphics community has begun harvesting data from online repositories such as
Google 3D Warehouse in an effort to better understand and model how objects are typically
arranged in homes [Fisher and Hanrahan, 2010, Fisher et al., 2011]. Additionally, the vision
community has begun utilizing 3D Warehouse data to learn about the sizes, shapes and
affordances of objects [Grabner et al., 2011, Zhao and Zhu, 2013]. ere has also been
work using this data for 3D to 3D matching with laser scans to aid in classification [Lai
and Fox, 2009]. However, our work is one of the first to combine this geometric prior with
image features in a framework capable of producing detailed 3D models from an image.
Of course, this is not entirely new, the idea of relating 3D models to 2D projections was a
foundation of earlier vision approaches [Lowe, 1987, Brooks, 1981, Grimson et al., 1990].
e major difference here is our use of vast repositories of 3D data, which require novel
vision and learning approaches.

is work is an important first step towards 3D data-driven techniques, which will con-
tribute to addressing two major problems in image understanding. First, as most geometric
scene understanding systems rely implicitly on sifting through a collection of hypotheses (it-
erative refinement [Hoiem et al., 2008], sampling [Pero et al., 2011], explicit search [Gupta
et al., 2010], structured prediction [Lee et al., 2010, Hedau et al., 2009]), matching and
ranking mechanisms such as the ones we propose provide a data-driven way to generate mul-
tiple hypotheses which can be used as seeds for further processing. Second, 3D data offers
potentially richer information for transfer. In this thesis, we show that using 3D informa-
tion for scene understanding enables us predict not only object type and location, but also
viewpoint and even occlusions from other objects.
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1.2 Single-View Geometry Estimation

For decades, vision researchers have strived to create high-quality 3D models of indoor
scenes. Traditional approaches rely on having images taken from multiple viewpoints in or-
der to recover the depth of each pixel using triangulation [Longuet-Higgins, 1981]. How-
ever, in recent years, the vision community has begun to focus on recovering the geometry
of a scene from a single image [Hoiem et al., 2007a, Saxena et al., 2009, Lee et al., 2009].

is is an inherently ill-posed problem – there exists an infinite number of 3D models
which project to the same image. Despite the inherent mathematical ambiguity, humans
excel at this task. When shown an image of an environment, we are not overwhelmed with
an infinite number possible 3D models. On the contrary, we can quickly associate objects
in images with objects we have seen before, to reason about the structure of the scene.

We are capable of this type of reasoning because the environments we live in are not
completely random. e sizes, shapes, orientations, locations and co-location of objects are
all dictated by the activities which the environment was designed to afford. For example,
there are manufacturing standards for sizes of beds, couches, tables, etc. Moreover, when
we place these objects in our homes, we tend to place them in specific locations relative to
each other (e.g., nightstands adjacent to beds, coffee tables ∼2ft in front of couches). When
confronted with the ill-posed problem of recovering the geometry of scene from a single
image, we must exploit this statistical prior and only consider 3D models which contain
reasonable objects, in reasonable arrangements.

e traditional paradigm of training on one set of monocular images, and evaluating
our accuracy on another, does not allow us to capture and model the spatial distribution of
objects in 3D. erefore, in this work, we leverage a massive online repository of 3D models
to capture the distributions of object sizes, positions, orientations and locations.

Recently, tremendous progress has been made towards the task of estimating the geom-
etry of a scene from a single image. e groundbreaking work of [Hoiem et al., 2007a] and
[Saxena et al., 2009], showed that machine learning can be be used to tackle this tremen-
dously challenging task. e authors of these papers demonstrate that classifiers can be
trained to predict the orientation and identity of image patches from outdoor scenes, which
can be used to infer the 3D structure of the environment.

For indoor imagery, [Yu et al., 2008] and [Lee et al., 2009] showed that imposing a
Manhattan-world constraint enables the robust detection of vanishing points allowing cam-
eras to be autocalibrated from a single image. e authors use their model to detect planes
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(a) Input image

Couch 

Table 

Couch 

(b) 2D bounding boxes

(c) 3D bounding cuboids (d) Detailed 3D geometry

Figure 1.2: Comparison of scene representations. In order of increasing geometric detail:
traditional 2D bounding boxes (b), 3D bounding cuboids (c), our detailed 3D scene geom-
etry (d).

and infer depth ordering to estimate the locations of the wall, floors and ceilings.

A fundamental problem when estimating the locations of walls in an indoor environment
is clutter. Quite frequently, furniture or other objects will occlude the boundary between
walls and where the walls meet the floor. [Hedau et al., 2009] train a classifier to predict
which pixels are the result of clutter, and which pixels correspond to the walls and floor
of a room. [Wang et al., 2010] also predict which pixels correspond to occluding objects;
however, their technique uses latent variables and avoids the need for labeled training data.
Both of these approaches show that by identifying the locations of clutter in a scene, the
room layout can be more accurately estimated.

More recently, researchers have begun analyzing the detected clutter in a scene and try-
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ing to model it with 3D bounding cuboids. is representation, depicted in Figure 1.2c
offers more information than traditional 2D bounding boxes (Figure 1.2b), which only lo-
calize objects in the image plane. Cuboids can be used to reason about a scene in ways
which cannot be inferred from 2D bounding boxes, such as estimating the freespace of an
environment or analyzing where the supporting surfaces of objects are. [Lee et al., 2010]
combine the geometric context used in [Hedau et al., 2009] with an orientation map to fit
a parametric model to objects in a room with the goal of improving the estimates of wall
locations. [Pero et al., 2011] use 3D bounding cuboids fit to objects as part of a Markov
Chain Monte Carlo framework to optimize over both the locations of the walls as well as
camera pitch, roll and focal length. Both of these works show that modeling the clutter
in a room improves the accuracy of room layout estimation; however, the authors do not
evaluate how well their cuboids match the geometry of the objects in the scene.

In [Hedau et al., 2010], the authors build upon their previous work by incorporating a
cuboid detector capable of accurately detecting beds. eir algorithm searches for gradients
in images which have been rectified to estimated Manhattan-world axes, and tries to align
cuboids of fixed sizes (corresponding to common beds). Unlike previous work which aims
only to recover the locations of walls and floors in images, this work strives to detect and
align objects in scenes and evaluates their results using typical object detection metrics.

Rather than representing objects and freespace with coarsely voxelized occupancy grids
or bounding cuboids, we aim to produce high-quality detailed polygonal meshes of objects,
as shown in Figure 1.2d. We build upon and use the room layout estimates of [Hedau et al.,
2009], and mine through a database of 3D models to discover the identity, locations and
orientations of objects from a single image. New work such as [Hedau et al., 2012, Pero et al.,
2012, Zhao and Zhu, 2013] also aims to recover free space by localizing cuboids representing
object categories and sizes using parametric models as their prior. In contrast, we recover
more detailed object geometries and we use non-parametric priors that can capture complex
interactions between objects.

For each object in a scene, we aim to not only recover its exact location, orientation and
dimensions in 3D (which can be modeled with cuboids), but also a detailed polygonal model
of the object. In addition, we aim to recover the intrinsic (focal length and principal point)
and extrinsic (position and rotation relative to corner of the room) parameters of the camera
which captured the image. In this thesis, we show that recovering the detailed geometry
of a scene and the corresponding camera parameters offers a complete representation of the
world, which can be used to answer a wide variety of questions. For example, using the



1.2 – S-V G E 7

estimated camera parameteres, we can project the polygons of each object onto the image
plane to produce a segmentation mask (Figure 1.1c). We can compute the distance from
the camera to each object to produce depth maps and reason about occlusions and depth
ordering (Figure 1.1d).

Although there exist many sensors which are designed to capture 2.5D representations
of the world, such as laser scanners and RGBD cameras, these modalities capture only what
is visible from a single viewpoint. On the contrary, because we have a full 3D representation
of the scene, we can reason about portions of the environment which are not visible to
the camera. For example, in the bedroom scene in Figure 1.1, only a small portion of the
nightstand in the corner of the room is visible, and the strip of floor between the bed and
the wall is fully occluded. A 2.5D sensor will have no knowledge of these portions of the
environment; however, our full 3D representation of the scene includes the geometry of
these regions. is information cannot be measured directly, and must be inferred using
prior knowledge of the world.

is brief summary of previous work shows how vibrant this research area is and how
much progress has been made in a short time. e data-driven techniques that we propose
here should not be viewed as a substitute to any of the above approaches. Perhaps the
most exciting aspect of our approach is that it can be used to augment any of these scene
interpretation approaches: upstream, by providing a data-driven way to generate hypotheses;
and downstream by providing richer mechanisms for information transfer. We show this by
building upon the work of [Hedau et al., 2009] and by demonstrating how prior 3D models
can be integrated with this existing approach for room layout estimation to help discover
the identity, locations and orientations of objects from a single image.
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Scene Understanding via 3D Model Matching
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Figure 2.1: Overview of our approach for matching a 3D model with a monocular image.

We now describe our framework for comparing 3D models to monocular images. Our
ability to relate what we see in an image to a large collection of 3D models allows us to
transfer the information from these models, creating a rich understanding of the scene.
Naturally, we cannot compare 3D models directly to a 2D image. us, we first estimate
the intrinsic and extrinsic parameters of the camera and use this information to render each
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of the 3D models from the same view as the image was taken from. We then compute
similarity features between the models and the input image. Lastly, each of the 3D models
is ranked based on how similar its rendering is to the input image using a learned feature
weighting. See Figure 2.1 for an overview of this process. is proof-of-concept scene
matching approach was presented at the 2012 British Machine Vision Conference [Satkin
et al., 2012b].

2.1 Autocalibration and Room Layout Estimation

Our algorithm for recovering the geometry of a scene is an analysis via synthesis approach.
We render 3D models from the viewpoint an image was captured and compare these ren-
derings to the input image. is requires we first recover the parameters of the camera used
to capture the image via auto-calibration and room layout estimation.

We begin auto-calibrating the camera by estimating vanishing points using the approach
of [Lee et al., 2009]. e vanishing points are also used to estimate the orientation of the
camera with respect to the three Manhattan-world axes in our scene (see Appendix C for
details of this process and an error analysis). Next, we run the pre-trained room layout
estimation algorithm of [Hedau et al., 2009] to determine the locations of the walls and the
floor in the image, and use priors on camera height and room size to solve for the position
of the camera. We render hypothesized 3D models of scenes using OpenGL. We align the
walls of the models with the estimated wall locations relative to the camera, and incorporate
our calibrated camera parameters (focal length and principal point) with a viewing frustum
to create renderings which align with our input image.

ere are three components to our projection matrix, summarized in Equation 2.1,
which maps points in 3D world coordinates to homogeneous 3D normalized device coordi-
nates for rendering. First we apply an extrinsic calibration matrix to transform points from
world coordinates to camera coordinates. Next, we apply an intrinsic calibration matrix
which unwarps the perspective effects due to the camera’s optics. Lastly, we apply an ortho-
graphic projection matrix which maps points in the viewing frustum to points in normalized
coordinates which can be clipped and rendered. We now derive this projection matrix.

xclip

yclip

zclip

wclip

 = Porthographic · Pintrinsic · Pextrinsic ·


Xworld

Yworld

Zworld

1

 (2.1)
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e orthographic projection matrix maps a viewing frustum defined by the left, right,
top, bottom, near, and far clipping planes to the unit cube with coordinates in the range
[−1, 1]. is matrix is composed by first translating and then scaling each coordinate to
arrive at Portho in Equation 2.3:

Portho =


2

right−left 0 0 0

0 2
top−bottom 0 0

0 0 −2
far−near 0

0 0 0 1




1 0 0 − right+left
2

0 1 0 − top+bottom
2

0 0 1 − far+near
2

0 0 0 1

 (2.2)

=


2

right−left 0 0 right+left
left−right

0 2
top−bottom 0 top+bottom

bottom−top

0 0 −2
far−near

far+near
near−far

0 0 0 1

 . (2.3)

To unwarp the perspective effects due to camera optics, we begin with the intrinsic cal-
ibration matrix K, which is computed from three vanishing points using an orthogonality
constraint (see Appendix C). To convert from the left-handed coordinate system used by
most vision researchers to the right-handed coordinate system used by the graphics commu-
nity, we negate the z dimension of our intrinsic calibration matrix. In addition, to maintain
the depth information required for rendering, we add a row and column to the projection
matrix which preserves the Z-coordinate of points (after normalizing by wclip). Note that
our calibration matrix assumes zero pixel skew (s = 0) and unit aspect ratio (fx = fy).

K =

 f 0 u0

0 f v0

0 0 1

 =⇒ Pintrinsic =


f 0 −u0 0

0 f −v0 0

0 0 near+far near·far

0 0 −1 0

 (2.4)

Lastly, to convert points from world coordinates to camera coordinates, we apply an
extrinsic calibration matrix which is composed of a rotation and translation. e columns
of the rotation matrix R are computed from the estimated vanishing points, and represent
unit vectors along each of the Manhattan-world axes, in the camera’s coordinate frame. e
translation vector t indicates the position of the camera relative to the origin of world’s
coordinate system, which we define to be a visible corner of the room. is camera position
is computed using [Hedau et al., 2009]’s room layout estimation algorithm, which predicts
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the locations of the walls and floor in an image. To resolve the scale ambiguity, we first fix
the height of the camera to 5ft, and solve for the distance from the camera to the visible
corners of the room. If the computed room size is too large or small (e.g., height ≥ 12ft or
height ≤ 8ft), we raise or lower the height of the camera in 0.5ft increments and re-solve
for the room size until the scale is within range. e rotation and translation are integrated
into the extrinsic camera matrix Pextrinsic:

Pextrinsic =

(
R R · t
0⊤ 1

)
. (2.5)

Each of these transformations is chained together to produce our final projection and
rendering matrix:

P =


2f

width 0 −2u0

width + 1 0

0 2f
height

2v0
height − 1 0

0 0 far+near
near−far

2 far·near
near−far

0 0 −1 0


 —– R —– R · t

0 0 0 1

 . (2.6)

is setup allows us project objects from our 3D model library into the image plane in a
manner which is consistent with the estimated camera parameters. We use this renderer as
a fundamental tool in computing similarity features from each 3D model. e following
section details this process.
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2.2 Similarity Features

(a) p(object) (b) object mask (c) estimated
normals

(d) rendered
normals

(e) gPb (f ) rendered edges

Figure 2.2: Descriptors extracted from an input image (a,c,e), and their corresponding ren-
dered descriptors from the top-ranked 3D model (b,d,f ).

An important question we address in this thesis is, “What features are useful for matching
3D scenes with monocular images?” is issue is fundamentally complicated by the fact that
we need to compare two objects of a completely different nature: an array of intensity/color
pixels on the one hand, and a set of surfaces with little or no appearance information on the
other hand.

To overcome this challenge, we introduce the concept of similarity features. Unlike tradi-
tional features which are extracted from a single image, similarity features involve comparing
an image with a 3D model to describe how similar the model is to the input image. Our goal
here is to rank each 3D model j, with respect to image i using similarity features denoted
by xi

j . xi
j is a vector in which each entry corresponds to a different measure of similarity

between the image i and the 3D model j. We use our renderer to produce synthetic image
descriptors for each 3D model, and compare these to traditional image-based descriptors to
compute each similarity feature. Figure 2.2 includes example image descriptors and their
rendered counterparts used to compute each similarity feature. Note that these are not pho-
torealistic renderings, we are simply rendering descriptors of each 3D model. is section
introduces our preliminary set of similarity features for relating 2D images with 3D models.

Object masks: We use the pre-trained Indoor Geometric Context model of [Hedau
et al., 2009, Hoiem et al., 2007a] to estimate the likelihood that each of the pixels in an
image contains an object (see Figure 2.2a). For each 3D model, we render a simple object
mask (i.e., each polygon in the model is rendered black on a white background) as shown
in Figure 2.2b. After scaling each of these masks to be in the range [−1, 1], the dot product
between the predicted object locations and the rendered object masks indicate how well the
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model matches our image. is similarity measure is the first feature we use to compare 3D
models to an input image.

Surface normals: We use the plane-sweeping algorithm of [Lee et al., 2009] to predict
the surface normal of each pixel in an input image. For each 3D model, we render a surface
normal image, by simply setting the red, green and blue color components of each polygon
to the x, y and z components of the polygon’s surface normal. See Figures 2.2c and 2.2d
for examples of predicted surface normals, and rendered surface normals. e normalized
dot product of these two descriptors quantifies their similarity. We use this value as a feature
when scoring each 3D model.

Masked surface normals: We also combine our object masks and surface normal de-
scriptors to create a highly-informative hybrid feature. For this feature, we multiply the
object mask agreement score with the surface normal agreement score for each pixel (both
scaled to be in the range [0, 1]). is combined score aims to count how many pixels in the
image satisfy two constraints: Firstly, objects in the renderings should appear only where
they are predicted to be. Secondly, the surface normals of the 3D models at these locations
should also agree with the predicted surface normals.

Edges: We extract edges from an input image using the globalPb algorithm [Arbelaez
et al., 2011] (thresholded at p(boundary) > 0.5). ese edges are compared to Canny
edges which are extracted from rendered surface-normal images of each scene hypothesis
(Figures 2.2e and 2.2f). Pairs of edge images (extracted from the input image and each
rendering) are compared using a modified symmetric Chamfer distance (a ∈ A indicates a
is an edge pixel in image A):

∆edge(A,B) =
1

|a|
∑
a∈A

min
(

min
b∈B
∥a− b∥, τ

)
+

1

|b|
∑
b∈B

min
(

min
a∈A
∥b− a∥, τ

)
. (2.7)

To avoid the effect of outlier edges which do not match well, we truncate individual
edge distance penalties (τ ∈ {10, 25, 50,∞}). Intuitively, distances computed with smaller
values of τ encourage fine-grain matching of edges, while distances computed with larger
thresholds aim to penalize large errors. Each of the distances computed with a different
value of τ is treated as a separate feature, for a total of four features.

Additional features: Our 3D model matching framework is quite flexible and can easily
be extended to incorporate additional similarity features. In Chapter 3.1, we will present
an additional set of similarity features designed for more robust and precise scene matching,
and analyze the performance of each of our proposed features.
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2.3 Hypothesis Ranking

For a given input image, we render all of the 3D models in our scene library and compute
similarity features from the renderings, as described above. We concatenate the object mask,
surface normal, masked surface normal, and edge features into a 7-dimensional feature vec-
tor. A linear weighting of these similarity features is computed to determine a matching
score indicating how similar each 3D model is to the given image.

We learn this weight vector by using a max-margin learning framework. Using an-
notated training data, we can rank how well each 3D model in our library matches each
training image. We use a modified version of the masked surface normal score presented in
Section 2.2 to compute a similarity score for each pair of images and 3D models. For this
scoring, we do not use the predicted surface normals and object masks, we use renderings
of hand-annotated scene geometries which are treated as ground-truth.

Our goal is to find a weight vector w which can correctly rank pairs of 3D scenes (i.e.:
w⊤xi

j > w⊤xi
k if scene j matches image i better than scene k). We use the difference in

masked surface normal scores as the hinge loss margin δijk. is optimization takes the form
of support vector ranking [Herbrich et al., 1999]:

min
w,ξ

λ

2
∥w∥2 +

∑
ξijk s.t. : w⊤xi

j ≥ w⊤xi
k + δijk − ξijk, ξ

i
jk ≥ 0. (2.8)

We optimize Equation 2.8 using stochastic gradient descent. In each iteration, we select
a training image i and a pair of 3D models (j, k). If the current weight vector causes the
pair of 3D models to be incorrectly ranked, or if their difference in scores is less the margin
δijk, we compute a subgradient and update the weight vector. is process is repeated until
convergence.
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Figure 2.3: An example query, and resulting “bedroom” models from 3D Warehouse.

2.4 Library of 3D Models

We acquired our 3D indoor scenes through the public search engine of 3D Warehouse [Trim-
ble Inc., 2012]. We perform queries for common indoor scenes such as “bedroom” and
“living room,” and download top ranking models. Due to the nature of data harvested
from the web, a large number of scenes are irrelevant for our task. For example, a query for
“bedroom” may return a 3D model for a “4 Bedroom House,” which contains only an archi-
tectural model of the building exterior. Using simple heuristics, we discard models which
are too large or small. Although over 8000 3D models matched our queries, the majority
of them were rejected based on these criterion, leaving approximately 2000 models in our
database. To increase the size of our model database, we include 8 rotated and reflected
versions of each scene. Each of these 3D models is then processed to segment individual
components, save their polygonal faces, and identify object categories.

Each component has an associated label, such as “Couch,” “Brown Leather Sofa,” or
“Love Seat.” We automatically cluster the objects into groups by comparing their geometries
with a simple 3D voxelized overlap score. is approach will discover that “Brown Leather
Sofa” and “Love Seat” are synonyms of “Couch.” To ensure accurate labeling of objects, we
created a user-interface for quickly verifying or adjusting the label of each component.

Although our library contains only 2000 3D models, we experimentally found that this
was not a major factor limiting our system’s performance. See Appendix D for a detailed
analysis of this issue. Moreover, we are agnostic to the source of our 3D data, and can
incorporate additional models from other repositories or datasets to enable matching a wider
variety of scenes. In Chapter 3.8, we demonstrate this ability to leverage additional sources of
3D data through experiments which utilize a dataset of 2D images and their corresponding
3D models for scene matching.
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Figure 2.4: Example images and hand-crafted 3D models from our dataset.

2.5 Experimental Dataset and Ground-truth Annotation

Since the problem of monocular geometry estimation is relatively new, there does not yet
exist an established dataset of images with detailed ground-truth object geometry and sur-
face normals. us, we have created a new dataset with annotated scene geometry building
upon the SUN database [Xiao et al., 2010]. Our dataset consists of over 500 images from
the categories “bedroom” and “living room.” For each image, a detailed 3D model was
constructed using SketchUp [Google Inc., 2000]. is software allows users to label van-
ishing points for camera auto-calibration and insert existing 3D models of objects from the
Internet to generate detailed models from an image.

We use these hand-crafted 3D models as ground-truth for training our scene ranker, as
well as for evaluating the performance of our geometry estimation algorithm. Figure 2.4 in-
cludes example 3D models from our dataset. is dataset has been made publically available
as the CMU 3D-Annotated Scene Database and is now being used by vision researchers at
multiple universities [Satkin et al., 2012a].
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2.6 Proof-of-Concept Scene Matching Results

In this section, we present a series of qualitative and quantitative results to demonstrate
the capabilities of our scene matching technique. We partition our dataset into five folds
(80% train, 20% test) and learn similarity feature weights for each fold independently to
report performance on the entire dataset. Figure 2.5 shows example results of our algorithm.
Displayed from left to right are the input images, estimated surface normals from the top-
ranking matched 3D model, color-coded object overlays, and depth estimates.

Note that we are able to recover the labels, locations and orientations of objects, even
from obscure viewpoints. For example, the image in Figure 2.6 was captured from be-
hind a couch; however, we still correctly identify this unique layout of furniture, recovering
the position and orientation of both couches and the coffee table. Moreover, the general
style of objects is often matched (e.g., the headboard of each bed). Additionally, although
appearance-based object detectors typically fail to detect mostly-occluded objects (such as
nightstands), our holistic scene-matching approach is capable of finding these challenging
objects.

ese results highlight the benefits of using large repositories of 3D data for scene un-
derstanding. Unlike traditional approaches which represent objects with simple bounding
boxes or cuboids, our algorithm produces detailed geometric representations. is uncon-
ventional paradigm for scene understanding requires new metrics to quantify performance.
In the following sections, we will describe two families of evaluation metrics for measuring
the accuracy of our estimated scene geometries both in the image plane as well as in 3D.
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Figure 2.5: Input images, automatically-selected 3D models (surface normals displayed),
color-coded object labels (yellow=couch, red=table, green=bed) and depth estimates.
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Figure 2.6: Example result showing our ability to recover the geometry of scenes captured
from obscure viewpoints.

Figure 2.7: Failure cases of our scene matching system caused by incorrect vanishing point
estimation, incorrect room layout estimation and poor hypothesis ranking.
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2.6.1 Surface Normal Accuracy
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Figure 2.8: Surface normal scores for all pixels, and only pixels belonging to objects.

One way to quantify the quality of our 3D models is to measure how accurately we
can predict the orientation of surfaces in the scene. We score our 3D hypothesis by taking
the dot product of the ground-truth surface normals (from our annotated models) and the
orientations of pixels in our rendered hypothesis, normalized by the number of pixels. is
score represents the percentage of the pixels for which we have correctly identified the ori-
entation. Since the majority of pixels in most scenes correspond to walls or floor, which are
not informative to the quality of object geometries, we also report the surface normal score
for only those pixels which belong to objects.

A fundamental issue with our approach is our reliance on autocalibration and room
layout estimation. If this stage of the pipeline fails, we will incorrectly estimate the arrange-
ment of object in a scene. For example, in Figure 2.7, the first scene shows a catastrophic
failure due to incorrect vanishing point estimation (See Appendix C for a detailed analysis
of vanishing point error.). For the second image, the location of the wall behind the bed
is predicted to be too close to the camera. is caused our scene matching process to fit a
couch, which has less depth than a bed. e last result shows correct vanishing point and
room layout estimation, however our hypothesis ranker failed to select a good scene match.
To decouple the effects of room layout estimation from our goal of determining the arrange-
ment of objects, we report results using annotated room layouts and camera parameters as
well as fully automatic results incorporating the room layout algorithm of [Hedau et al.,
2009].
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Two annotators created 3D models for a subset of our images in our dataset. By com-
paring these different versions of the scene geometries, we can evaluate the subjectivity of
the task and annotation process. Figure 2.8 reports three sets of results. e first column
measures how consistent humans are when annotating scene geometries. e next column
reports the results of our algorithm for determining the arrangements of objects in a scene
using annotated room layouts (camera parameters and wall locations). e last column re-
ports the results of our fully-automated algorithm which uses the auto-calibration and room
layout estimation techniques of [Hedau et al., 2009].

e large gap in performace between using annotated camera parameters and our fully-
automated algorithm indicates a fundamental issue with our reliance on room layout estima-
tion. us, in Chapter 3.4, we will present a mechanism for jointly selecting a combination
of furniture and camera parameters, which together best match an image. is improve-
ment is designed to increase our robustness to incorrect room layout estimates, narrowing
the gap in performance seen in Figure 2.8.

2.6.2 Free Space Estimation

We also evaluate how accurately our algorithm can estimate the free space of a room
from a single image. Figure 2.9 shows our ability to recover an architectural floorplan of a
room. Note that we are able to identify which regions in space are occupied, estimate the
distances between objects, and even make predictions about regions that are not visible in
the input images due to occlusions.

To quantify this ability, we compare our estimated object locations to the ground-truth
object locations from annotated images. For each square inch of the floor that we predict to
be occupied, we compare to the ground-truth occupancy and report precision and recall. We
run the pre-trained geometry estimation algorithm of [Gupta et al., 2011], and report their
performance as a baseline. In addition, we use the evaluation metric proposed by [Hedau
et al., 2012]. eir metric provides a soft-measure of object overlap. Hypothesized objects
which are close to ground-truth object locations, but do not overlap, are scored based on
their distance to the closest ground-truth object.

Figure 2.10 reports our precision and recall scores as well as [Hedau et al., 2012]’s “δ-
precision” and “δ-recall” scores. Additionally, we report the F-measure (harmonic mean of
precision and recall) which aims to capture our performance with a single value. We also
compute a similar 3D free space evaluation by voxelizing our scenes and computing how
precisely we estimate which voxels are occupied. Figure 2.11 reports the results of this free
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Figure 2.9: Input images, automatically-selected 3D models, and overhead views (color
indicates height: yellow=low, red=high). Results shown use annotated camera parameters.

space evaluation.

We also run our scene matching geometry estimation algorithm on the indoor scenes
dataset from [Hedau et al., 2012]. Our algorithm performs comparably on this dataset as
on our dataset and outperforms [Hedau et al., 2012]’s algorithm using their δ-precision/δ-
recall metric for 2D floorplan occupancy and 3D voxelized accuracy. Figure 2.12 shows
our performance (indicated in blue) compared to [Hedau et al., 2012]’s accuracy before and
after their geometry refinement stage.¹

[Guo and Hoiem, 2013] recently demostrated their ability to use context as a prior for
inferring the semantic labels of hidden surfaces in a scene. Similarly, the experiments in this
section demonstrate our ability to not only recover the geometry of each visible object in a
scene, but to push the boundaries of spatial reasoning to estimate the full 3D geometry of a
scene.

For example, the bedroom scene in Figure 2.9 contains a large region to the right of the
bed which is occluded from the camera’s viewpoint. In fact, there are entire objects in the
image, such as the far nightstand which have no visible pixels. As humans, we are able to infer
the structure of these regions using prior knowledge about the locations and co-locations of
objects in different environments. Similarly, by leveraging large repositories of 3D models,

¹Results from [Hedau et al., 2012] and our evaluation were performed using different code, slight variations
in the evaluation process may effect the results. Plots from [Hedau et al., 2012] have been recreated for
comparison.
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Figure 2.10: 2D floorplan free space evaluation.
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Figure 2.11: 3D floorplan free space evaluation.
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Figure 2.12: A comparison of our accuracy and [Hedau et al., 2012]’s performance on the
indoor scenes dataset from Hedau et al. [Hedau et al., 2012]’s performance before and after
their geometry refinement stage are indicated in red and green respectively. Our performace
is indicated with the blue point on each graph.¹

our scene understanding algorithm is able to predict what is likely to appear beyond the line
of sight. Moreover, we can reason about the free space in an environment, enabling a wide
variety of applications. For example, In Chapter V, we present an affordance estimation
algorithm which uses this understanding of free space to predict what human poses and
actions are possible in an environment.

e ability to perform this type of complex spatial reasoning can be used to enhance
existing representation of a scene. For example, although laser scanners and depth cameras
can precisely capture the structure of an environment, these sensors record 2.5D represen-
tations of the world, not full 3D models. us, they do not provide sufficient information
to reason about portions of a scene which are occluded from the camera. Our approach
could be applied to these modalities to reason about the unseen and recover the structure of
objects which are not fully visible to the sensor, thus inferring what cannot be measured.
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2.7 Discussion

is chapter presented a proof-of-concept algorithm for aligning 3D models with an
image, and ranking each model based on how similar it is to the input image. e results of
this preliminary system are promising, however there remain many issues to be addressed.
We now introduce these issues, which motivate the extensions presented in the following
chapter.

e approach described in this chapter depends heavily on [Hedau et al., 2009]’s room
layout estimation algorithm. Naturally, if this preliminary step in our pipeline fails, the
scene matching stage will fail to find a correct and well-aligned furniture arrangement. Fig-
ure 2.7(middle) shows an example of a small error in room layout estimation, for which we
can still produce reasonable results; however, there are many situations when room layout
errors are substantial enough that we cannot produce a reasonable result. Figure 2.13a shows
an example of an image for which estimating the room layout is very challenging. Note that
the boundaries between the walls and the floor are almost entirely occluded. Moreover, there
are strong gradients along the front edge of the bed which can be mistaken as a wall/floor
boundary. is causes [Hedau et al., 2009]’s room layout estimation algorithm to drasti-
cally understimate the size of the room as shown in Figure 2.13b. By making hard decisions
and committing to the top-ranking room layout we are unable to recover and fit a 3D model
to the scene. is issue is precisely why there is a large gap in performance between using
annotated room layouts and our fully automatic approach. In Chapter III, we will present a
mechanism for viewpoint selection, which does not commit to a single room layout hypoth-
esis. Rather, we will explore many possible viewpoint hypotheses and automatically select
the one which enables the best 3D model matching.

Another fundamental limitation of our proof-of-concept scene matching algorithm is
that we aim to find a 3D model which has objects in the exact geometric configuration
seen in each image. Although our library of models from 3D Warehouse contains a diverse
set of object combinations and configurations, our search space is still quite limited. Fig-
ure 2.14 shows an example failure case highlighting this issue. Note that our scene matching
algorithm is able find a 3D model with two beds and a nightstand; however, the size and
position of these objects is imprecise. us, in the next chapter, we will present a geometry
refinement algorithm which uses a matched 3D model as a starting point and performs an
optimization to identify the exact position and styles of objects in the scene.

Even if the room layout estimation process succeeds, and our library of 3D models
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(a) Input image (b) Estimated room layout

Figure 2.13: Example failure case due to incorrect room layout estimation. Note the walls
are predicted to be too close to the camera, preventing us from properly aligning 3D models.

(a) Input image (b) Estimated object locations

Figure 2.14: Example failure case due to our limited search space. Note that that objects
are correctly identified; however, their locations are not accurate resulting in an imprecise
segmentation mask.

contains an excellent match for an image, our hypothesis ranker may not be able to identify
which model is best if our features fail to accurately encode how similar each model is to
the input image. e diversity of object appearances in images makes it difficult to robustly
estimate their locations and geometry. For example, upholstered furniture can be virtually
any color or texture, making it difficult to generalize. Moreover, the textures on foreground
objects can often be found in the backgrounds of indoor scenes. Figure 2.15 shows three
example scenes with unusual textures on furniture which also appear on rugs, wallpaper and
curtains. ese types of images present unique challenges which require robust similarity
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Figure 2.15: Example bedroom images from the SUNs Database showing the tremendous
diversity in object appearances. Each of these images contains furniture with textures and
colors that also appear on the rugs, wallpaper and curtains, making it difficult to estimate
the p(object) masks used in our similarity features.

features. e analysis in Appendix D shows that we are limited by our inability to properly
rank each hypothesis using our current set of similarity features. is will become more
of an issue as we begin to refine geometric hypotheses to for fine-grain alignemt. us, in
the next chapter, we will present a set of new similarity features which are engineered to
more robustly and precisely compare images with 3D models, and analyze how improved
similarity features increase the performance of our approach.



CHAPTER III

3DNN: Robust 3D Model Matching

In Chapter II we presented a proof-of-concept method for matching images with 3D
models to estimate the geometry of a scene. We experimentally showed this to be a powerful
mechanism for inferring the structure of a scene from a single image. However, because this
approach aims to match the exact configuration of objects in an image, with an identical
furniture configuration from a library of 3D models, the algorithm does not have the flexi-
bility required to precisely reconstruct the diversity of object configurations found in natural
scenes.

us, rather than limiting ourselves to a fixed set of object configurations, we extend our
approach to first begin with a 3D model which closely match an image, and then undergo a
two-stage geometry refinement algorithm. e first stage of the geometry refinement process
adjusts the locations of each object in the hypothesized geometry to produce a result which
more precisely aligns with the input image. e second stage takes each object and searches
through a library of 3D models to find objects of the same category which more closely
matches the size, shape and style of the objects in the image.

is type of fine-grained geometry refinement is challenging, and requires a set of fea-
tures which are sufficiently discriminative to identify when rendered objects are precisely
aligned in the image plane. us, we present a new set of features which improve the overall
accuracy of our scene matching algorithm, enabling this geometry refinement stage.

In addition, we introduce a viewpoint selection process which does not commit to a sin-
gle viewpoint estimate. We consider many camera pose hypotheses and use a learned cost
function to select the camera parameters which enable the best scene geometry match. As
the number of 3D hypotheses we consider grows, so does the computational complexity.
us, in Section 3.6 we present algorithms which aim to more efficiently explore the search
space, to remain tractable as we consider orders of magnitude more hypotheses.
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In this chapter, we describe each of these components as part of the 3DNN (3D Nearest-
Neighbor) algorithm, and analyze how each stage contributes to the overall system perfor-
mance. Lastly, we compare 3DNN with traditional 2D nearest-neighbor approaches, to
demonstrate the benefits of viewpoint-invariant scene matching.

3.1 Similarity Features

Many vision researchers have emphasized and demonstrated the importance of high-
quality features for various image matching tasks. For example, the SIFT descriptor of
[Lowe, 1987] and [Oliva and Torralba, 2006]’s GIST descriptor been shown to outperform
many other features for common vision tasks such as object recognition and scene catego-
rization [Douze et al., 2009, Mikolajczyk and Schmid, 2005]. For monocular geometry
estimation, there has been less attention on developing and evaluating new features. In fact,
the majority of recent algorithms addressing these problems have used the same features:
[Lee et al., 2009]’s Orientation Maps and [Hedau et al., 2009]’s Indoor Geometric Con-
text. Given the novelty of 3D scene matching approaches, there still remains substantial
room for improvement via feature engineering. erefore, we develop a series of features
which are specifically designed to achieve our goal of precisely detecting objects and delin-
eating their boundaries. We now present three new similarity features, to augment the initial
set of features proposed in Chapter 2.2.

Object Locations:

To accurately predict the locations of objects in an image, we train a probabilistic classi-
fier using the algorithm of [Munoz et al., 2010].¹ For each pixel, we estimate the likelihood
of an object being present. is p(object) descriptor is compared to hypothesized object
locations via rendering to compute a similarity feature indicating how well hypothesized
objects align with predicted object locations. is similarity feature is akin to our use of
Indoor Geometric Context [Hedau et al., 2009, Hoiem et al., 2007a] in our preliminary
scene-matching prototype; however, it is more robust to the diversity of object colors, tex-
tures and illumination conditions seen in the SUN database [Xiao et al., 2010].

Figure 3.1 shows an example of a relatively simple scene for which [Hedau et al., 2009]’s
Indoor Geometric Context is unable to accurately estimate the locations of objects; however,

¹Training was performed using 10-fold cross validation on a subset of the SUN Database [Xiao et al.,
2010], for which there exist LabelMe annotations [Torralba et al., 2010].
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(a) input image

(b) original p(object) (c) original scene match

(d) new p(object) (e) new scene match

Figure 3.1: Effects of incorrect object location estimation on scene matching. Note in (b)
that only a small region near the headboard of the bed is predicted to belong to an object
using our preliminary p(object) feature, resulting in a poor scene match (c). However, as
seen in (d), our new p(object) feature can more accurately predict the locations of objects,
enabling a good sceen match (e).

our new approach succeeds. In these p(object) visualizations, black regions indicate a high
likelihood that the pixels correspond to foreground objects, and white pixels are predicted
background (walls or floor) locations. Note that the failure to correctly identify which pixels
belong to objects (Figure 3.12q) results in a poor 3D model match (Figure 3.12r), which
is consistent with the p(object) prediction. However the classifier of [Munoz et al., 2010]
correctly identifies the object locations, enabling better scene matching (Figure 3.12t). We
incorporate this new p(object) feature into the existing set of similarity features from Chap-
ter 2.2.

Oriented Edges:

In addition, we design another similarity feature that aims to find 3D models which,
when projected onto the image plane, produce edges which closely align with edges in the
input image. For each hypothesized 3D model, we first analyze its surface normals to iden-
tify edges (which we define as discontinuities greater than 20◦). We compare the projection
of these edges onto the image plane, with edges extracted from an input image using the
globalPb algorithm [Arbelaez et al., 2011]. We use an oriented chamfer distance, which
matches only edges which are within 30◦ of each other. is reduces the effects of spuri-
ous edges which are spatially close, but not properly oriented in the image. To efficiently
compute the oriented chamfer distance, we discretize edges into 12 overlapping bins of 30◦
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covering the half-circle. is is similar to the directional chamfer matching approach in-
troduced by [Liu et al., 2010], with the addition of overlapping bins to alleviate the effects
of quantization artifacts at the boundaries between buckets. We use the same edge penalty
truncation approach described in Chapter 2.2 to reduce the influence of outlier edges, re-
sulting in a four-dimensional similarity feature (corresponding to different thresholds).

Surface Normals:

Our third new similarity feature aims to correctly predict the surface normals of patches
in an input image, and find 3D models which agree with the predicted normals. We use the
Data-Driven 3D Primitive algorithm of [Fouhey et al., 2013], to predict surface normals
by detecting patches of the scene that provide information about the underlying surface
normals (e.g., corners of rooms, textures in carpets). ese patches are found via a collection
of primitives consisting of a detector to find the primitive in a new image, a canonical form
that represents the underlying surface normals of the primitive, as well as the particular
patches from which the canonical form and detector are created. At training time, the
collection of primitives is learned from images with color and surface normal information via
an iterative approach that alternates between training the detector, finding new instances of
the primitive, and updating the canonical form. At test time, the detectors of the primitives
are applied to the new image, producing likely locations of each primitive. ese detections
can yield a sparse interpretation of the scene by transferring the primitive’s canonical form to
every detection site above a threshold and averaging the results. A dense interpretation can
also be obtained by transferring not only the canonical form, but also the regions around
the primitive in the training data.

We compare the predicted surface normal orientations to rendered 3D model orienta-
tions using the same approach presented in Chapter 2.2 for our similarity feature using [Lee
et al., 2009]’s Orientation Maps. We use the dense interpretations from [Fouhey et al.,
2013]’s algorithm, as well as the sparse surface normal estimates at eight different levels of
sparsity. Each of these nine surface normal estimates are compared to 3D model surface
normal renderings to produce a nine-dimensional similarity feature. See Figure 3.2 for a
comparison of surface normals estimated using [Lee et al., 2009]’s Orientation Maps, and
[Fouhey et al., 2013]’s 3D primivives.



3.1 – S F 33

Figure 3.2: Example features. From left to right: input images, p(object) computed using
[Hedau et al., 2009]’s Indoor Geometric Context, p(object) computed using [Munoz et al.,
2010]’s classifier, surface normals computed using [Lee et al., 2009]’s Orientation Maps,
sparse and dense surface normals computed using [Fouhey et al., 2013]’s 3D Primitives.
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3.2 Incorporation of New Similarity Features

ese new similarity features are combined with our seven original features from Chap-
ter 2.2 to produce an 18-dimensional similarity feature vector. We retrain a support vector
ranker [Herbrich et al., 1999] using the approach described in Chapter 2.3 to learn weights
for the augmented set of features. Since the newly augmented feature vector now has more
than twice the dimensionality, we first perform feature selection by incorporating an ℓ1

penalty term, enforcing sparseness:

min
w,ξ

λ

2
∥w∥1 +

∑
ξijk s.t. : w⊤xi

j ≥ w⊤xi
k + δijk − ξijk, ξ

i
jk ≥ 0. (3.1)

Features with negligible weights (less than 1%) relative to the average weight are discarded,
and the selected features are re-weighted using the ℓ2 regularized SVM ranking described in
Equation 2.8 from Chapter 2.3.

3.3 Feature Analysis

We perform two experiments to analyze the importance of each feature for 3D model
matching. First, we run a standard ablative analysis to see how much each feature contributes
to the overall performance of our system. Next, we run our scene matching pipeline using
only a single feature (or type of feature), and compare the performance of each feature in-
dependently with the performance of the full feature set.

For each of these experiments, we report performance using the two “Pixelwise Surface
Normal Accuracy” metrics from Chapter 2.6.1, one measuring how accurately the surface
normals of all pixels are predicted, the second evaluating only those pixels which correspond
to objects in the ground-truth annotations. Although these metrics are informative for the
task of surface normal prediction, they are unable to capture how accurately objects in an
image are localized. For example, a horizontal surface corresponding to a bed in an image
may be scored as “correct” even if the predicted scene contains no objects. is is because
the horizontal floor has the same orientation as the bed’s surface. us, we present results
computed using a new metric, “Matched Objects Surface Normal Accuracy.” is is a strict
metric which requires two criteria to be met: For each pixel corresponding to objects in
the ground-truth annotation, we must first correctly predict that there is an object at that
location. We compute the dot product between ground-truth and predicted surface normals
only at those pixels for which we “match” an object. Unmatched object pixels receive a
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score of zero. is metric is more sensitive to correctly predicting the exact locations and
geometries of objects in a scene.

In [Hedau et al., 2012] and [Satkin et al., 2012b], the authors present various metrics
for how accurately their algorithms can predict the 3D freespace of a scene. ese metrics
require rectifying the predicted scene geometry, and are ill-posed when the estimated view-
point deviates substantially from the ground-truth camera parameters. For example, if the
estimated horizon computed from vanishing points is incorrect and intersects the ground-
truth floor polygon, the rectification homography (computed using the ground-truth camera
parameters) will produce incoherent results with points at infinity being projected to finite
locations when applied to the estimated scene geometry. us, we develop another new
metric to measure freespace prediction in the image plane: “Floorplan Overlap Score.” For
each object in the scene, we render its “footprint” by setting the height of each polygon to 0.
A simple pixel-wise overlap score (intersection/union) of the object footprints can now be
used to compare the ground-truth floorplan of a scene with our estimated scene geometry.

Figure 3.3 shows the degradation in performance resulting from the removal of each
feature (or groups of features). Note that the removal of edge features has surprisingly little
effect on the overall system performance. is is because the edge features were designed for
fine-grained matching and alignment, which is not emphasized in our evaluation metrics.
Moreover, accurate p(object) masks and orientation estimates can implicitly encode edge
information resulting from object boundaries and surface normal discontinuities, compen-
sating for the removed edge features. Interestingly, the removal of either p(object) feature
has only a small effect on system performance; howevever, removing both p(object) features
results in a dramatic drop in performance. is implies that the two features encode much
of the same information, and can compensate when the other is removed. On the contrary,
the drop in performance by ablating both surface normal features is approximately additive,
indicating that the two features are independent, offering complementary information for
scene matching.

Figure 3.4 shows the performance of each feature in isolation, for various metrics. e
baseline performance indicated on the left is included for comparison. ese graphs provide
insight into the performance of our newly engineered features. For example, the oriented
edge matching provides a significant improvement over our original non-oriented chamfer
matching approach. Interestingly, this analysis shows that there is one feature – [Munoz
et al., 2010]’s p(object) masks which perform almost as well as the full feature set (greater
than 95% relative performance). is may seem surprising at first; however, figure/ground
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perceptual grouping is at the core of Gestalt principals for object recognition [Rubin, 1915],
and numerous human psychophysical experiments [Cutzu and Tarr, 1997, Rosch et al.,
1976] have shown silhouettes to be sufficient for human vision. Moreover, the computer
vision community has demonstrated the capability of classifying objects (or groups of ob-
jects) based solely on silhouettes [Belongie et al., 2002, Latecki et al., 2000]. us, we
should expect accurate p(object) descriptors to not only be necessary, but perhaps sufficient
for the task of geometry estimation. See Section 3.7 for further analysis of the benefits of
our new set of similarity features.
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3.4 Viewpoint Selection

e problem of viewpoint estimation is very challenging. Estimating the layout of a
room, especially in situations where objects such as furniture occlude the boundaries be-
tween the walls and the floor remains unsolved. Recently, researchers such as [Hedau et al.,
2010, Lee et al., 2010, Pero et al., 2012] proposed mechanisms for adjusting the estimated
locations of walls and floors to ensure that objects (represented by cuboids) are fully con-
tained within the boundaries of the scene. Inspired by these approaches, we aim to intel-
ligently search over viewpoint hypotheses. Intuitively, if we can fit an object configuration
using a particular viewpoint hypothesis with high confidence, then that room layout is likely
correct (i.e., it allows for objects to be properly matched). By searching over possible view-
points, we aim to alleviate the brittleness of our baseline scene matching approach which
relied on hard decisions for the estimated viewpoint of an image. It should be noted that
our geometry estimation algorithm is one of many recent works which rely on accurate
viewpoint estimation [Fouhey et al., 2012, Gupta et al., 2011]. ese types of geometry
estimation algorithms are unable to recover when the room layout estimation process fails.

us, we present a framework which does not assume any individual viewpoint hy-
pothesis is correct. Rather, we use our learned cost function to re-rank a set of room layout
hypotheses by jointly selecting a combination of furniture and camera parameters, which to-
gether best match the image. We search over the top N room layout hypotheses, returned
by the algorithm of [Hedau et al., 2009]. For each individual room layout, we use the es-
timated camera parameters corresponding to that room layout to render every 3D model
from. is approach scales linearly with the number of viewpoint hypotheses explored, and
is trivially parallelizable. In all our experiments, we consider the top 20 results from [Hedau
et al., 2009]’s room layout algorithm. However, our approach is agnostic to the source of
these viewpoint hypotheses, and additional hypotheses from [Lee et al., 2009, Pero et al.,
2011, Schwing and Urtasun, 2012] or any other algorithm could easily be incorporated to
improve robustness.

Figure 3.5 illustrates the benefit of searching over various camera parameters. e top
row shows the result of 3DNN using only the top-ranking room layout from [Hedau et al.,
2009]. Note that the failure to accurately estimate the height of the camera causes inserted
objects to be incorrectly scaled. However, by not limiting ourselves to a single camera pa-
rameter hypothesis, we can automatically select a better room layout estimate, enabling a
higher-scoring geometry match to be found. Figure 3.5b uses the 10th-ranking hypothe-
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(a) Result using only the top-ranking camera parameters from [Hedau et al., 2009].

(b) Result after re-ranking the top-20 hypotheses from [Hedau et al., 2009].

Figure 3.5: Example results highlighting the benefit of searching over viewpoint hypotheses.
e top row shows the best matching scene geometry using the top-ranking room layout
hypothesis of [Hedau et al., 2009] (note the incorrect camera height estimate, causing ob-
jects to be rendered at the wrong scale). e bottom row shows the best matching scene
geometry after intelligently selecting the best room layout.

sis from [Hedau et al., 2009], and has the highest matching score using our learned cost
function.

Figures 3.6 and 3.7 show the full set of hypotheses considered for a scene during our
viewpoint selection process. Note that the beds and nightstands almost fully occlude the
wall/floor boundaries in the image, resulting in an inaccurate room layout estimate (see
Figure 3.6a). As shown in Figure 3.7a, our baseline scene matching algorithm does its best
to find a 3D model which when rendered from this inaccurate viewpoint aligns with the
input image; however, the result is incorrect. Looking through the best matching scene
geometries for each viewpoint hypothesis, we see that the more accurate a viewpoint estimate
is, the more precisely we can find a matching scene geometry which aligns with the input
image. By independently scoring and ranking each of these hypotheses, we correctly identify
Hypothesis 13 (Figures 3.6m and 3.7m) as the best viewpoint for this scene.
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(a) Hypothesis 1 (b) Hypothesis 2 (c) Hypothesis 3 (d) Hypothesis 4 (e) Hypothesis 5

(f ) Hypothesis 6 (g) Hypothesis 7 (h) Hypothesis 8 (i) Hypothesis 9 (j) Hypothesis 10

(k) Hypothesis 11 (l) Hypothesis 12 (m) Hypothesis 13 (n) Hypothesis 14 (o) Hypothesis 15

(p) Hypothesis 16 (q) Hypothesis 17 (r) Hypothesis 18 (s) Hypothesis 19 (t) Hypothesis 20

Figure 3.6: Top 20 viewpoint hypotheses from [Hedau et al., 2009] for an input image.

(a) Hypothesis 1 (b) Hypothesis 2 (c) Hypothesis 3 (d) Hypothesis 4 (e) Hypothesis 5

(f ) Hypothesis 6 (g) Hypothesis 7 (h) Hypothesis 8 (i) Hypothesis 9 (j) Hypothesis 10

(k) Hypothesis 11 (l) Hypothesis 12 (m) Hypothesis 13 (n) Hypothesis 14 (o) Hypothesis 15

(p) Hypothesis 16 (q) Hypothesis 17 (r) Hypothesis 18 (s) Hypothesis 19 (t) Hypothesis 20

Figure 3.7: Object overlays for the best matching scene geometries given each viewpoint
hypothesis.
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Figure 3.8: Distribution of improvements resulting from the viewpoint selection process.
Performance is measured using the matched object surface normal scores. Green indicates
a performance increase and examples in red resulted in a marginal performance decrease.

We quantify the benefits of viewpoint selection by comparing the accuracy of our results
with and without viewpoint selection. Figure 3.8 shows the distribution of performance
gains seen across all images in the CMU 3D-Annotated Scene Database as a result of the
viewpoint selection process. e y-axis indicates how much the matched object surface
normal score was affected via viewpoint selection. Note that for approximately two-thirds of
the images, the viewpoint selection process results in an improved scene geometry (indicated
in green). Not only does viewpoint selection result in more accurate object geometries,
it also improves the accuracy of room box estimation by re-ranking viewpoint hypotheses
based on which room layout affords for the best 3D model matching (14.0% per-pixel
error with viewpoint selection versus 16.4% error without viewpoint selection). Additional
experiments summarizing the benefits of viewpoint selection are included in Section 3.7.
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3.5 Geometry Refinement

In order to accurately segment objects in an image, and reason about their occlusions,
we must precisely estimate their positions. However, a fundamental limitation of nearest-
neighbor approaches is that their outputs are restricted to the space of object configurations
seen in training data. is is a problem which has affected both 2D and 3D non-parametric
methods. Recently, algorithms such as SIFT flow [Liu et al., 2008] have been developed to
address this issue. e SIFT flow algorithm perturbs a matched image by warping the pixels
to better align with the input image. However, because this approach warps pixels in the
image plane, there is no longer a coherent 3D interpretation of the result. us, we propose a
two-stage geometry refinement algorithm which is inherently 3D. Our method first searches
for the best location of each object in 3D, such that the projection of these objects best align
in the image plane, producing a more precise result. Next, we search through a library of 3D
models and try to replace each object in the scene with objects that more precisely match
the size and style of the objects in the image. We now describe each of these refinement
techniques and demonstrate their effectiveness (both qualitatively and quantitatively).

It should be noted, that our algorithm is not the only work to address 3D geometry
refinement. In [Hedau et al., 2012], the authors present a refinement approach which lo-
cally adjusts the position of cuboids to better match an image. Similarly, [Pero et al., 2011]
perturb the locations of cuboids as diffusion moves of a Markov Chain Monte Carlo opti-
mization, which also includes the addition and removal of cuboids to the scene. e authors
have recently extended their algorithm to refine hand-crafted parametric models of objects
[Pero et al., 2013]. Our approach differs from these works in our use of vast repositories
of non-parametric models. is data allows us to not only detect the positions and sizes of
objects, but also their precise styles. Moreover, by not allowing objects to be arbitrarily re-
sized, we ensure that they maintain real-world dimensions. For example, although beds have
many possible styles, they cannot be arbitrarily resized; they come in discrete sizes (queen,
king, etc.). Resizing household objects may violate real-world distributions, and result in
scene geometries which no longer afford for the human actions they were designed to en-
able. us, we sample over discrete object hypotheses from 3D Warehouse to refine scenes
while maintaining object functionality.
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3.5.1 Object Location Refinement

We first search for local refinements of object locations which improve the overall geo-
metric scene matching score. Algorithm 1 details this stochastic geometry refinement pro-
cess. In each iteration of the refinement, the locations of objects on the x–y plane are
perturbed (height off the ground remains fixed), by adding Gaussian noise (σ=1in) to the
current objects’ locations. If the adjusted objects’ locations match the image better than the
previous locations, the new locations are saved. is process repeats until convergence. In
practice, a few hundred iterations are required to reach a final refined scene geometry.

Figure 3.9 highlights the effects of our geometry refinement process. Note the initial
object locations in 3.9b, when projected into the image plane do not align with the actual
object boundaries. However, after refinement, in 3.9d the objects very precisely align with
the image boundaries. e projected objects produce an excellent segmentation mask, and
because the scene interpretation is inherently 3D, we can properly reason about occlusions
and depth ordering.

Algorithm 1 Stochastic geometry refinement.
function (image, initialGeometry)

G← initialGeometry
S ← (image, G)
iteration← 0
while iteration < maxIterations do

iteration← iteration + 1
G′ ← G
for each object in G′ do

object.x← object.x + N (0, σ)
object.y ← object.y + N (0, σ)

end for
if (image, G′) > S then

G← G′

S ← (image, G′)
iteration← 0

end if
end while
return G

end function
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(a) Input image (b) Preliminary object locations

(c) Final refined geometry (d) Final refined object locations

Figure 3.9: Effects of the geometry refinement process. Note that object boundaries are
well-delineated after refinement.

Figure 3.10 shows an interesting visualization of the object location refinement process
for a scene with a poor initial geometry estimate. Note the incorrect p(object) masks in
Figures 3.10b and 3.10c, resulting in the poor initial geometry match shown in Figure 3.10d.
e location refinement algorithm slides these objects around until the couch on the left
nicely aligns with the bed in the input image, and the end table is positioned where the
nightstand appears in the image. is example demonstrates the capability of our refinement
algorithm to adjust the locations of objects in 3D, such that their projections best align with
the input image.

3.5.2 Object Swapping

e sizes, shapes and styles of objects found in real-world environments is quite diverse.
Just as our initial scene matching approach is limited by the the space of object configurations
seen in training data, after location refinement, the accuracy of our results are still limited by
the set of object geometries found in each matched 3D model. For example, Figure 3.11b
shows an initial scene geometry match for which the identities and locations of objects have
been correctly predicted; however, the style of these objects are not accurately matched. e
image contains a canopy-style bed with a tall metal frame, while our matched 3D model
contains a more traditional bed with a rounded headboard and footboard.
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(a) input image (b) p(object): Hedau (c) p(object): Munoz (d) intial geometry

(e) intial overlay (f ) mid-refinement (g) mid-refinement (h) mid-refinement

(i) mid-refinement (j) mid-refinement (k) mid-refinement (l) mid-refinement

(m) mid-refinement (n) mid-refinement (o) mid-refinement (p) mid-refinement

(q) mid-refinement (r) mid-refinement (s) mid-refinement (t) mid-refinement

(u) mid-refinement (v) mid-refinement (w) final overlay (x) final geometry

Figure 3.10: Visualization of the geometry refinement process for a scene with a poor initial
geometry match. Note the incorrect p(object) masks in (b) and (c), resulting in the poor
initial geometry match (d). Given this geometry, the location refinement algorithm slides
these objects around until the couch on the left nicely aligns with the bed in the input image,
and the end table is positioned where the nightstand appears in the input image.
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(a) input image

(b) initial geometry (c) initial overlay

(d) final geometry (e) final overlay

(f ) Examples of additional beds considered for swapping.

Figure 3.11: Example effects of object swapping. Note that after swapping, the canopy style
of the bed is correctly matched. Shown below are additional examples of the hundreds of
beds considered during the swapping phase of the geometry refinement process.

e high level of diversity in object styles found in real-world scenes cannot be rep-
resented using parametric models. us, we leverage the vast collection of models in 3D
Warehouse to search for objects which more precisely match the input image. Here, we aim
to go from coarse-level object matches to instance-level matches. Our object swapping algo-
rithm is simple and intuitive. For each object in a matched 3D model, we remove it from the
scene and replace it with a new object from the same category. When replacing each object,
we rotate and position the new models such that they best align with the original objects’
positions. We use the same similarity features and learned cost function from Section 3.2 to
score each object swapping hypothesis, and select the instance which maximizes this score.
Hundreds of swapping hypotheses are considered for each object in the scene, and scored
independently.

Figure 3.11d shows the resulting scene geometry after object swapping. Note that after
object swapping, the unusual bed style is correctly matched. Figure 3.11f shows the diversity
of hypotheses considered during the swapping process. By searching through hundreds of
3D models, we automatically select the instance which most precisely aligns with the input
image. See Figure 3.12 for additional examples of object swapping. Note that after swap-
ping, the style and size of each object is more precise than in the initial geometry estimate.
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Figure 3.12: Example object swapping results. Besides each input image are the results
before (top) and after (bottom) object swapping.
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3.5.3 Refinement Evaluation

In Section 3.5.1, we presented an algorithm to refine the locations of objects in 3D, and
in Section 3.5.2, we presented an algorithm to replace individual objects from a 3D model
with objects which more closely match the input image. We now evaluate how each of these
refinement methods affects the overall performance of our scene matching algorithm.

Figure 3.13 shows the distribution of performance gains seen across all images in the
CMU 3D-Annotated Scene Database as a result of the geometry refinement process. e
dashed line shows the effects of only moving objects and the dotted line shows the effects of
only swapping objects. Quantitatively, these two refinement mechanisms perform similarly,
resulting in performance gains on approximately two-thirds of the images. However, by
combining the two refinement processes, further performance gains can be achieved, as
indicated in the green region of the paired error plot.

Figure 3.14 shows bar graphs summarizing the performance of the refinement methods.
Quantitatively, the geometry refinement stages of 3DNN result in modest improvements.
is is expected, as the refinement process is inherently local and designed to make small
modifications, not major changes which would result in dramatic effects on performance.
However, qualitatively our results after refinement are markedly better, with objects being
well-localized and their styles properly modeled. ese effects are most pronounced in the
matched object surface normal and floorplan overlap scores, for which precisely localizing
and matching the style of objects is emphasized.
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Figure 3.15: Example elements of two manually created “clusters” of 3D models. e top
row includes scenes with similar couch geometries; the bottom row includes scenes with
similar arrangements of beds and nightstands.

3.6 Efficiency Issues

Our baseline algorithm, presented in Chapter II, scales linearly with the number of scene
hypotheses explored. e viewpoint selection and geometry refinement processes further
exacerbate this issue by considerably increasing the search space. To remain tractable while
exploring orders of magnitude more hypotheses we need an approach which does not naively
explore all possible hypotheses in a brute-force manner.

e library of 3D models we downloaded from 3D Warehouse (described in Section 2.4)
follows a classic long-tailed Zipfian distribution common to many data repositories of images
and videos [Spain and Perona, 2011, Torralba et al., 2010] – there exists a tremendous
amount of self-similarity in 3D Warehouse, which we can exploit to more efficiently match
images with 3D models.

e number of unique 3D models is a fraction of the total number of models in our
database. Figure 3.15 includes example elements of two manually created clusters of 3D
models. e top row includes renderings of scenes with similar couch geometries; the bot-
tom row includes scenes with similar arrangements of beds and nightstands. If an image
were to match one of the models in a cluster, it will likely match all of the models in the
cluster. Conversely, if an image does not match one of the models in a cluster, it likely will
not match any models in the cluster. is property suggests ways to efficiently explore the
library of 3D models by first sampling models at random from each cluster, and then min-
ing through only those clusters which appear similar to the input image. In this section, we
explore two algorithms for reducing the computational complexity of our scene matching
approach by exploiting these properties.
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3.6.1 Sequence Optimization

Our first algorithm aims to identify a diverse set of 3D models which are likely to perform
well for any scene. We developed a data-driven method to mine through a set of 3D models,
to select a subset which maximizes the performance on validation data. is optimization
can be viewed as a submodular set covering problem. Here, each 3D model will perform well
on a subset of images and poorly on others. Our goal is to select a subset of the 3D models,
such that we maximize performance on all images, without redundancy. is problem is
NP-hard, and there exists no polynomial time algorithm which can guarantee optimality,
unless P = NP [Karp, 1972]. However, [Nemhauser and Wolsey, 1978], showed that a
greedy algorithm will select a subset of a given cardinaliy, which is within 1− 1/e (∼63%)
of optimal.

Our algorithm begins with an empty set, and iteratively adds the most beneficial 3D
models. In each iteration, we select the 3D model m ∈ M from our library which results
in the largest improvement in performance on validation data, when added to the current
subset S:

arg max
m∈M

f(S ∪ {m})− f(S) (3.2)

Here, f(·) represents the performance of a set of 3D models on validation data. is al-
gorithm terminates after all 3D models in our library have been ordered by their marginal
benefit. Note that this set is ordered, such that the best subset of size n is simply the first n
elements of the set. is property enables our scene matching approach to run as an “any-
time algorithm,” which can report the best solution after any number of hypotheses have
been explored.

is algorithm has O(n2) computational complexity; however, the optimization is only
performed once as a precomputation stage before all scene matching is performed. For larger
sets of hypotheses, there exists approximations such as [Dey et al., 2012]’s SeqOpt algorithm
to more efficiently optimize the sequence of hypotheses explored.

Figure 3.16 shows the performance of our algorithm as a function of the number of
hypotheses tested. e solid lines indicate the performace after n random 3D model hy-
potheses have been tested in a naive manner. e dotted lines indicate the performance
of our anytime algorithm, evaluating n 3D models selected using the sequence optimiza-
tion algorithm. Note that the performance after evaluating a fixed number of 3D models is
higher after optimizing the sequence of tested hypotheses, allowing for comparable results
to be generated in a fraction of the time.
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3.6.2 Hypothesis Factorization and Score Prediction

Another approach to efficiently exploring the set of 3D models is to find correlations
in the scores of scene hypotheses. ese correlations can be used to derive a basis for the
scores of all 3D models. Here, rather than computing the score for all hypotheses given an
image, we sparsely sample a set of hypotheses, and use these scores to determine a linear
combination of a set of given basis vectors which best reproduce the sampled hypothesis
scores. Now, given these weights, we can predict the scores for the remaining untested
hypotheses. is algorithm follows the successful “model recommendation” approach of
[Matikainen et al., 2012] for efficiently selecting a model from a library of discriminative
classifiers for action recognition. In their work, the authors perform a singular value matrix
decomposition to determine the top principal components which can be used as bases for
estimating the scores for a set of classifiers. e authors show that their method of score
prediction for classifiers is quite robust and can actually outperform the brute-force approach
of evaluating all classifiers, which is prone to overfitting.

Figure 3.17 shows the efficacy of the score prediction approach for our problem. Here,
we first randomly sample 100 scene hypotheses and use the matching scores of these models
to predict how well all remaining hypotheses will match the input image. Each additional
hypothesis is then tested in order of its predicted matching score. is is a two-stage algo-
rithm which first explores the search space with a random sampling of 3D model hypotheses,
and then exploits knowledge aquired during the first stage to test only those models which
are likely to match the input image. us, for the first 100 hypotheses tested, this algorithm
performs on par with the naive approach; however, during the second stage, the algorithm
intelligently selects hypotheses to evaluate, enabling excellent scene matches to be found
after a few hundred iterations.

is algorithm optimizes a fundamentally different objective then the sequence opti-
mization approach. e score prediction algorithm aims to find a set of 3D models which
maximize the matching score on a specific image. On the contrary, the sequence optimiza-
tion algorithm aims to find a fixed set of 3D models which a priori maximize the matching
score for a diverse set of images. us, although the sequence optimization approach is able
to find fairly good matches after a very small number of iterations, the algorithm is not de-
signed for fine-grained matching and performs on par with the naive approach after many
iterations. On the contrary, the score prediction algorithm learns which models are likely
to match an image during the first 100 iterations, and then is able to quicky find the best
matching model during the second stage of the algorithm.
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3.7 Evaluation

We now evaluate the performance of our 3DNN algorithm. e goals of these experi-
ments are two-fold. First, we analyze the added benefit of each component of the 3DNN
system: improved similarity features, geometry refinement and viewpoint selection. In the
next section, we compare 3DNN with state-of-the-art appearance-based scene matching
aproaches, to demonstrate the benefits of viewpoint invariant scene matching.

We perform all experiments using the CMU 3D-Annotated Scene Database [Satkin
et al., 2012a], containing 526 images of bedrooms and living rooms. All training was per-
formed using 5-fold cross-validation to evaluate performance on all images in the dataset.
Figure 3.18 reports the performance of our scene matching algorithm with each of the im-
provements proposed in this chapter. e blue bars indicate the baseline performance using
the preliminary scene matching algorithm described in Chapter II. e next set of bars
(green) indicate the added benefit of using the additional set of similarity features presented
in Section 3.1. Note that the additional similarity features account for a large boost in per-
formace. is effect is especially pronounced in the matched object surface normals and
floorplan overlap scores, for which accurately predicting the locations of objects is crucial.
e yellow bars show the performance by running our geometry refinement process (with
the new feature set). e red bars show the performace gains achieved via viewpoint selection
(with the new feature set). e purple bars indicate the performance achieved by running
the full 3DNN algorithm with new features, viewpoint selection and geometry refinement.
Lastly, for comparison, we report in gray the performance of our scene matching approach
if we were to use annotated viewpoints (similar to the analysis in Chapter II, Figure 2.8).
e gap in performance between the purple and gray bars represents the remaining error due
to incorrect viewpoint estimation. Comparing the yellow, purple, and gray bars shows that
our viewpoint selection mechanism accounts for a substantial performance gain; however,
there still remains considerable room for improvement. is is most pronounced in the all
pixel surface normal and floorplan overlap scores, which are sensitive to correctly estimating
the locations of the walls and floors in a scene.

ese extensions to our baseline scene matching algorithm have resulted in considerable
improvements to both the robustness and precision of our results. Figures 3.19 and 3.20
include example results of 3DNN on a wide variety of bedroom and living room scenes.
Note that we are able to produce accurate 3D models shown in the surface normal renderings
beside each input image. In addition, each object’s boundaries are well-delineated due to
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Figure 3.18: Analysis of the benefit of each component in our improved scene matching
algorithm.

our geometry refinement stage, as indicated in the overlaid object segmentation masks.

Moving forward, our analysis indicates that continuing to develop new similarity fea-
tures is likely to result in the most substantial improvements. Appendix D explores the
effects of replacing our hypothesis ranker with an oracle capable of selecting the best 3D
model for a given viewpoint of an image. ese experiments decouple the errors due to our
limited library of 3D models, incorrect viewpoint estimation, and poor hypothesis ranking,
in essence computing an upper-bound on performance as if we had perfect viewpoint selec-
tion or hypothesis ranking. Our inability to robustly rank geometric hypotheses is a result of
the challenges inherent in computing the similarity between an image and 3D models. e
similarity features used for this are at the core of the 3DNN algorithm; they are required not
only to select the 3D model which is most similar to an image, but also to rank viewpoint
hypotheses and to determine the location and style of objects during geometry refinement.
For example, although using annotated viewpoints (gray bars in Figure 3.18) improves per-
formance relative to 3DNN with viewpoint selection (purple bars), this improvement is not
because we do not consider the correct viewpoints; rather, our similarity features are unable
to consistently discriminate between each viewpoint hypothesis. is does not come as a
surprise, as room layout estimation, and the development of features for the task remain
active areas of research within the vision community (e.g., [Ramalingam et al., 2013] and
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[Hödlmoser and Micusik, 2013]).
John Lafferty puts it bluntly, “It’s the features, stupid!” [Lafferty, 2002]. If our features

cannot consistently encode our world in a discriminative manner, then no classifier, no
matter how advanced can yield good results. us, we believe further development of new
similarity features should be a priority for future research. Anything that can be estimated
from an image and computed from 3D models can be compared as a similarity feature. For
example, algorithms which detect Manhattan junctions [Sugihara, 1986], occlusion bound-
aries [Hoiem et al., 2007b] and depth gradients [Karsch et al., 2012] from single images
could be incorporated into our approach by comparing their outputs to the surface normals
and depth buffers of 3D models during rendering. Continued research and development of
these types of similarity features can improve our ability to relate images with 3D models,
pushing the boundaries of geometric scene understanding.
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Figure 3.19: Qualitative results of bedroom scenes. From left to right: input images, surface
normal renderings and overlaid object segmentation masks.
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Figure 3.20: Qualitative results of living room scenes. From left to right: input images,
surface normal renderings and overlaid object segmentation masks.
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3.8 2D vs. 3D Nearest Neighbor

Data-driven scene matching is at the forefront of the computer vision field. Researchers
have demonstrated the capability of simple nearest-neighbor based approaches to match
an input image (or patches of an image) with a corpus of annotated images, to “trans-
fer” information from one image to another. ese non-parametric approaches have been
shown to achieve amazing performance for a wide variety of complex computer vision and
graphics tasks ranging from object detection [Tighe and Lazebnik, 2010] and scene catego-
rization [Oliva and Torralba, 2006] to motion synthesis [Liu et al., 2008] and even image
localization [Hays and Efros, 2008].

Although these 2D nearest-neighbor approaches are powerful, a fundamental limitation
of these techniques is the need for vast amounts of data. For a traditional image matching
approach to succeed, there must be an image in the recall corpus which is very similar to
the input image (i.e., captured from a similar viewpoint, lighting conditions, etc.). is has
propelled the growth of datasets, which now measure in the millions of images [Hays and
Efros, 2007, Torralba et al., 2008]. Moreover, despite these massive datasets, 2D nearest-
neighbor approaches cannot generalize to never-before-scene viewpoints.

Consider the pair of scenes in Figure 3.21. Note the images were captured from dras-
tically different viewpoints. A traditional appearance-based image matching approach such
as [Liu et al., 2008, Oliva and Torralba, 2006] would fail to generalize across such extreme
viewpoint differences. Although the scenes appear quite different from the viewpoints they
were captured, they have a lot in common: both scenes contain a couch facing a fireplace
at approximately the same distance from each other. In this section, we show that we are
able to automatically match these images by comparing the appearance of one image with
the geometry of another. By decoupling the viewpoint and the geometry of an image, we
develop a scene matching approach which is truly 100% viewpoint invariant.

3.8.1 Sources of 2D/3D Data

In Chapter II, we demonstrated our ability to match images with 3D models from large
online repositories. In this section, we utilize models from the CMU 3D-Annotated Scene
Database for matching. is new source of data has an image associated with each 3D model,
enabling us to relate pairs of images via their underying geometry. Moreover, because each
3D model has an associated image (unlike data from 3D Warehouse), we are able to transfer
any metadata from the source image when parsing an input image, as shown in Figure 3.21.
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(a) Input image (b) Matched scene

Saturday, April 6, 13

(c) Automatically transferred object labels

Figure 3.21: Extreme viewpoint differences. Traditional appearance based image match-
ing approaches fail to generalize across such extreme viewpoint differences; however, our
approach is able to match the geometry of these two scenes, and transfer object labels.

At the core of our approach is the utilization of datasets of images with corresponding
3D descriptions. is immediately raises natural questions as to where this data is coming
from, and whether or not there exists sufficient quantities of images with corresponding 3D
models. In fact, the development of such 3D content is exploding, in large part due to the
availability of low-cost RGBD cameras, which has been a catalyst for the rapid increase in
2.5D data. Researchers are now working on automated methods for inferring the full 3D
geometry of a scene given a 2.5D projection [Shao et al., 2012, Silberman et al., 2012].
As these approaches become more effective, there will be massive amounts of images with
associated 3D models, allowing for the first time the exciting possibilities afforded by using
the full power of geometric information in conjunction with conventional appearance-based
techniques. Our work shows how these emerging new sources of data can be used by quan-
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tifying their effectiveness in terms of matching efficiency (dataset size), generalization to
unseen viewpoints, geometry estimation, and object segmentation.

3.8.2 Geometry Estimation

We now quantify the performance of 3DNN with a variety of baseline scene match-
ing approaches, including state-of-the-art 2D nearest-neighbor approaches. We compare
3DNN with our baseline scene matching approach from Chapter II as well as two popu-
lar 2D nearest-neighbor approaches: GIST [Oliva and Torralba, 2006] and HoG [Dalal
and Triggs, 2005] matching.² Figure 3.22, reports the results for 3DNN compared to each
baseline, for the task of geometry estimation. Note that our baseline 3D scene matching
algorithm (indicated in yellow) does not offer substantial improvement with the 2D nearest-
neighbor approaches on the more challenging metrics (matched object surface normals and
floorplan overlap score); however, 3DNN exhibits dramatic improvement on each of these
metrics.

²GIST: 4 × 4 blocks, 8 orientations (code from [Oliva and Torralba, 2006]). HoG: 20 × 20 blocks, 8
orientations (code from [Vondrick et al., 2013]).
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Figure 3.22: Comparison of 3DNN with state-of-the-art 2D nearest-neighbor approaches
and the geometry matching algorithm of [Satkin et al., 2012b].
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Figure 3.23: Accuracy as a function of dataset size. Solid lines indicate “matched objects
surface normal score,” dotted lines indicate “floorplan overlap score.” Note the logarithmic
x-axis.

3.8.3 Dataset Size

It is well known that for appearance-based image matching to be effective, there must be
a large recall corpus of images to match with [Hays and Efros, 2007, Torralba et al., 2008].
is is because the data set needs to include recall images captured from a similar viewpoint
as the query image. On the contrary for 3DNN, the viewpoint and the geometry of the
recall images are decoupled. us, each scene provides an exemplar which can be matched
to images from any viewpoint.

We evaluate this by experimenting with the size of the recall corpus. Figure 3.23 shows
how the performance of 3DNN increases as a function of dataset size, compared to GIST
and HoG matching. We report results using two of the more challenging metrics: “matched
object surface normal scores” (solid lines) and “floorplan overlap scores” (dashed lines). In
these experiments, we consider recall dataset sizes between 1 and 500 images. For each
dataset size, we select random subsets of images from the the full recall set, and report the
performance of each algorithm on the smaller datasets. Due to the high variance in per-
formance using small recall sets, we average performance across 1000 random subsets of
each size. For fair comparison, we do not use our sequence optimization or hypothesis score
prediction during these experiments.

ere are two important properties of 3DNN we can identify from this graph. Firstly,
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note that the red plots for 3DNN start out with a higher accuracy (even for a dataset size of
one image). is is because our algorithm starts by estimating the room layout of each image,
identifying the locations of floors and walls. On the contrary, GIST and HoG matching do
not incorporate this knowledge directly, and must infer the viewpoint of the scene by finding
a similar image from the recall corpus.

Secondly, note that the curves for 3DNN are steeper than for the appearance-based
approaches. is is because on average, each additional training image provides more in-
formation in its geometric form, than the raw pixels used in GIST or HoG matching. is
indicates that performance is increasing more quickly as a function of the dataset size, and
that fewer training examples are required to achieve the same level of performance using
3DNN compared to a traditional appearance-based 2D nearest-neighbor scene matching
approach. Remarkably, 3DNN is able to achieve a noticeable performance boost using a
recall set size of only 10 images or fewer, due to the algorithm’s ability to generalize across
never-before-seen viewpoints.

3.9 Conclusion

In this chapter, we presented the 3DNN algorithm which incorporated a series of im-
provements to our baseline scene matching approach. We described our robust mechanism
for simultaneously searching over camera parameters and scene geometries. In addition,
we presented an algorithm for refining the locations and styles of objects in 3D to produce
more precise results, and the features necessary to achieve this level of fine-grained alignment.
Lastly, we showed that 3DNNs can be efficiently computed by intelligently optimizing the
order in which geometric hypotheses are evaluated.

We demonstrated the effects of each of the components of the 3DNN algorithm, and
compared our approach to traditional 2D nearest-neighbor methods. Because our approach
is inherently 3D, we can properly reason about depth ordering and occlusions to produce
accurate segmentations of detected objects. In the following chapters, we will demonstrate
this ability and explore a series of applications of the 3DNN algorithm.





CHAPTER IV

Application: Object Recognition

(a) Object labels transferred from the top-ranking 3D
model using our scene matching approach.

(b) Object detections using Felzenszwalb et al.’s dis-
criminatively trained deformable part model.

Figure 4.1: Comparison of object detection results.

We now explore how our approach to recover the geometry of a scene can be applied to
one of the most common computer vision tasks – object recognition. We can transfer the
identities of objects by projecting them onto the image plain to produce per-pixel object
labels as shown in Figure 4.1a. Additionally, we can intelligently integrate the output of
other object detectors to create a more robust result. is approach raises some fundamental
questions, which we address in this chapter.

4.1 Object Detection and Segmentation

Our mechanism for inferring the structure of a scene in 3D provides us with rich in-
formation about the depth ordering and the occlusions of objects when projected onto the



66 C IV – A: O R

.....
0.5

..
0.6

..
0.7

..
0.8

..
0.9

..
1.0

. 0.0.

0.2

.

0.4

.

0.6

.

0.8

.

1.0

.

Pixelwise Overlap Score reshold

.

D
et

ec
tio

n
R

at
e

.

. ..GIST Matching

. ..HoG Matching

. ..3DNN (w/o Geometry Refinement)

. ..GIST + SIFT Flow

. ..HoG + SIFT Flow

. ..3DNN

Figure 4.2: Object detection rate as a function of overlap score strictness for the “bed”
category.

image plane. us, we should be able to not only detect the locations of objects, but also
segment their spatial support in the image by precisely identifying their boundaries. To ver-
ify that using 3D cues is an attractive alternative for pixel-based object segmentation, we
evaluate the per-pixel overlap score of the ground-truth and the object labels estimated by
3DNN.

Figures 4.2 and 4.3 analyze the detection rate of 3DNN, compared to various appearance-
based image matching baselines. We measure performance for the “bed” and “couch” cate-
gories, two of the most prominent objects in the CMU 3D-Annotated Scene Database. We
vary the pixelwise overlap score threshold, and compute what percentage of objects are de-
tected at each threshold. Note that at a stricter threshold of overlap score≥ .75, the baseline
appearance-based approaches detect very few objects; however, 3DNN still performs well.

Naturally, 3DNN’s ability to precisely segment objects is due in part to the geometry
refinement stage. To analyze the benefits of this process, we measure the performance of
3DNN with and without the refinement stage. As anticipated, by refining the predicted
locations of objects, we achieve a significant (on the order of 5%) boost in detection rate.
For fair comparison, we run the SIFT flow algorithm (the state-of-the-art 2D refinement
process) as a baseline. e SIFT flow algorithm of [Liu et al., 2008] has been shown to be a
robust technique for aligning matched images. By warping each matched scene, SIFT flow
refines the location of objects in the image plane, akin to our geometry refinement process.
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Figure 4.3: Object detection rate as a function of overlap score strictness for the “couch”
category.

We apply the SIFT flow algorithm using code provided by [Liu et al., 2008]; this process
takes the top-10 scene matches (using either GIST or HoG), warps each matched image, and
computes the energy of each warping. We then re-rank the top-10 scene matches according
to their SIFT flow energy, and score the top-ranking warped recall image. Although the
SIFT flow process yields a significant boost in performance, the algorithm is still not as
effective in accurately identifying and segmenting objects compared to 3DNN. Moreover,
a key distinction between our geometry refinement process and the SIFT flow algorithm,
is that our approach is inherently 3D and produces physically meaningful results. On the
contrary, because SIFT flow warps pixels in the image plane, the result no longer has a
coherent 3D interpretation as shown in Figure 4.4.

4.2 Integrating Discriminative Object Detections

In recent years, the PASCAL Visual Object Classes Challenge [Everingham et al., 2010]
has sparked tremendous progress in object recognition. Bottom-up appearance-based object
detectors such as the discriminative deformable parts model of [Felzenszwalb et al., 2008]
have been at the forefront of the object recognition field. As a baseline for comparison, we
train [Felzenszwalb et al., 2010b]’s part-based detector using code provided by [Girshick
et al., 2012]. It is important to note that object detectors are in a fundamentally different
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(a) input image

(b) 2DNN (c) 2DNN normals

(d) SIFT flow (e) SIFT flow normals

Figure 4.4: Visualization of the SIFT flow algorithm [Liu et al., 2008]. Note the incoherent
output which no longer has a plausible geometric interpretation.

class of algorithms than our approach. Most discriminative object detectors have a tunable
parameter which can be adjusted to achieve arbitrarily high recall by predicting the object
at all locations and scales in the scene (at the cost of reducing precision). However, our
approach produces a single 3D model for each image, and uses physical constraints which
do not allow objects to by hypothesized at arbitrary locations. us, our output represents
a single point on the precision recall curves.

Many researchers have successfully demonstrated the ability to integrate the output of
multiple object recognition systems to create a more robust detector. For example, in [Hedau
et al., 2010], the authors combine the scores from their “boxy object detector” with [Felzen-
szwalb et al., 2010a]’s discriminatively trained deformable part model to produce a state-of-
the-art bed detector. Hedau et al. showed that while each of the two approaches perform
well on their own, the integration of the two algorithms results in a significant performance
boost. eir approach assumes the outputs of each algorithm are statistically independent
and multiplies the scores from their boxy object detector with the scores from the deformable
parts model.

Following the paradigm of [Hedau et al., 2010], we integrate our object detections with
the bounding-box detections from [Girshick et al., 2012], as a post-processing step. For
each object detection, we boost the DPM detector’s confidence if our result is in agreement.
Specifically, we compare each of the bounding boxes from our results with those from the
DPM. If their overlap score is greater than a set threshold, we increase the DPM’s confidence
by a fixed amount. To determine the best values for this threshold and the amount by which



4.2 – I D O D 69

.....
0.0
.

0.2
.

0.4
.

0.6
.

0.8
.

1.0
.0.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1.0

.

recall

.

pr
ec

isi
on

.

50% overlap

.....
0.0
.

0.1
.

0.2
.

0.3
.

0.4
.

0.5
.0.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1.0

.

recall

.

75% overlap

.

. ..DPM

. ..DPM+3DNN

Figure 4.5: Object detection precision recall curves for the “bed” category. Our approach
provides complementary information to DPM; thus, integrating both results improves per-
formance.

to boost the DPM’s confidence, we perform a grid search after partitioning the dataset into
5 folds (80% train, 20% test).

Figures 4.5 and 4.6 show the performance of [Felzenszwalb et al., 2010b]’s deformable
parts model (DPM) with pairs of precision recall curves for the bed and couch categories, re-
spectively. e plots on the left use the traditional 50% overlap score measure. On the right,
we measure performance using a 75% overlap score threshold; this is a stricter metric, which
requires objects to be more precisely localized. e purple plots report the performance of
the DPM detector and the red plots show the performance of integrating the DPM’s de-
tections with our object predictions. Note that the combined detection results provide a
modest improvement (∼10% relative increase in average precision) over the baseline DPM
accuracy. is indicates that our approaches to object classification and geometry estimation
provide complementary information. Experimentally, we achieved similar results to [Hedau
et al., 2010]. In isolation, the authors’ cuboid detector does not perform as well as [Felzen-
szwalb et al., 2010a]’s DPM; however, by intelligently integrating the results of their cuboid
detector and the DPM’s results, they achieve state-of-the-art performance.

Quantitatively, the DPM out-performs our approach when measured using a liberal 50%
overlap score detection threshold. However, as the overlap score threshold is increased, our
approach shows a modest improvement over DPM. is result is not surprising – the features
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Figure 4.6: Object detection precision recall curves for the “couch” category. Our approach
provides complementary information to DPM; thus, integrating both results improves per-
formance.

and model used in [Felzenszwalb et al., 2010b]’s detector are discriminative in nature and
explicitly aim to classify each object in the scene. On the contrary, our approach uses features
which intentionally ambiguate between object categories. For example, the p(object) feature
simply predicts whether or not an object is present, not the identity of the object. is
suggests a new family of features which could be integrated into the 3DNN algorithm.

Here, we propose a mechanism for incorporating the outputs of an object detector into
a similarity feature to leverage the performance of these successful discriminative approaches
in a manner similar to [Li et al., 2010]’s Object Bank features. Figure 4.7 shows an input
image, and heatmaps indicating the probability of a specific object category appearing in the
image, computed using the deformable parts model of [Felzenszwalb et al., 2008]. Because
the bounding-box detections are not well-suited for localizing and segmenting objects, we
place ellipses at each object detection location, with values proportional to the detection con-
fidence. To convert the raw heatmaps output from [Felzenszwalb et al., 2008]’s algorithm
to features which represent the likelihood of each object appearing at specific locations, we
perform a nonlinear scaling of the result using a sigmoid function. e parameters of the
sigmoid are learned using a logistic regressor trained on validation data. A similarity fea-
ture can be computed for each object category, by calculating the normalized dot product
between the each p(object) calibrated heatmap (scaled to be in the range [−1, 1]) and the
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(a) input image (b) p(bed) (c) p(couch) (d) p(table) (e) p(chair)

(f ) example object category renderings

Figure 4.7: An input image (a), and heatmaps (a)-(e) indicating the probability of a specific
object category appearing at each pixel in the image, computed using the deformable parts
model object detection algorithm of [Felzenszwalb et al., 2010a]. Example object category
renderings of 3D models (f ), aligned to the input image. Each color represents a different
object category (e.g., couch=yellow, table=red, orange=chair).

corresponding object label rendering (as shown in Figure 4.7f) for that object class.
Our initial experimentation with this similarity feature shows that this method can suc-

cessfully constrain our search to select models which are in agreement with the output of
the low-level object detections. However, if too much weight is put on these features, the
resulting 3D models we select will have the same errors as the object detectors. Our current
max-margin training routine aims to optimize the geometry and locations of objects in each
scene. is yields excellent performance for tasks like freespace and affordance estimation;
however, optimizing classification accuracy is a fundamentally different objective, which is
beyond the scope of this thesis. Future work could address, “What is the correct way to bal-
ance the tradeoffs between object class discrimination and 3D reconstruction when ranking
scene hypotheses?”
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4.3 Scene Matching as a Prior for Object Locations

Not only can we use the labels of components in each 3D model to predict the identity of
objects in a scene, this information can also serve as a geometric prior to aid in the detection
of unidentified objects. For example, we can ask, “Where would we be likely to find a cup,
pillow or lamp in this image?” Given the location of tables, beds or nightstands, and known
co-location priors for these object categories, we could potentially identify locations in an
image where we would expect these objects to appear. is type of co-occurrence prior
has been studied in many contexts. For example, [Desai et al., 2009] model the spatial co-
occurrence of objects in the image plane to improve non-maxima suppression. Additionally,
[Fisher et al., 2011] characterize structural relationships in scenes directly from 3D data. e
ideas from each of these works can be integrated with our scene matching approach to model
where objects are likely to appear using 3D co-occurrence statistics. See Chapter VI for
an example application which uses object detections and co-occurrence statistics to predict
realistic locations for objects to be added to a scene.



CHAPTER V

Application: Affordance Estimation

(a) Input image (b) Geometry estimation (c) Our human-centric representa-
tion

Figure 5.1: (a) An input image, (b) a geometry estimated using the approach presented in
Chapter II, (c) our human-centric representation.

Given a detailed geometric representation of a scene, there are many possible higher-level
interpretations that we can generate. In this chapter, we summarize our work in affordance
estimation [Gupta et al., 2011]. is work leverages the availability of motion capture data
and derives a novel human-scene interaction model capable of predicting the locations of
possible human poses from a single image. Our affordance estimation process utilizes an
intermediate geometric representation of a scene. We show the importance of high-quality
geometry estimates for this problem, and incorporate our data-driven geometry estimation
algorithm to improve upon baseline approaches.

5.1 Algorithmic Overview

is work is an attempt to marry 3D scene understanding with human action modeling.
We present a novel qualitative scene representation that combines 3D scene geometry with
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(a) Sitting Reclined (b) Sitting Upright (c) Reaching

Figure 5.2: Qualitative Representation of Human Poses: Each pose is represented by the oc-
cupied blocks in discretized 3D space (shown in red) and the required surfaces of interaction
(shown in green).

a set of possible human actions, to create a joint space of human-scene interactions. A key
insight is to note that there are only two constraints on a 3D human pose that are relevant
for embedding it within a given geometry: 1) the 3D space (volume) the pose occupies, and
2) the surfaces it is in contact with. We divide the space around the human actor into blocks
(Figure 5.2) and associate each block with a 0 or 1 based on whether the block is occupied
or not. In addition, each block may require an external support in a particular direction.
For example, in the sitting pose (with back support), we need a horizontal surface below the
pelvic joint to support the body and a vertical surface to rest the spine (Figure 5.2b). In a
similar manner, for the “reaching” action (Figure 5.2c) a horizontal support is required at
the feet and a vertical surface of interaction is required to represent the point of contact of
the hands.

By discretizing the scene geometries and human poses into an occupancy matrix, we can
efficiently search for locations and poses which satisfy the free space and support constraints.
We slide the discretized human blocks around the scene occupancy matrix using a binary
correlation operation. Intuitively, we are searching for locations for which the human pose
does not intersect any objects. Additionally, the locations must have the appropriate sup-
porting surfaces to afford each pose. Both of these constraints can be satisfied using simple
correlation operations. Too account for the deformation of furniture and the human body,
we perform an erosion and dilation process on a scenes’s occupancy matrix before perform-
ing the correlation operations. See [Gupta et al., 2011] for a detailed description of this
algorithm.

We demonstrate the capabilities of our human-centric representation by running our
human-scene interaction model on a few synthetic 3D indoor scenes downloaded from the
Google 3D Warehouse. Figure 5.3 shows the locations where a human can sit for two
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Figure 5.3: Human-centric representation on a synthetic 3D scene: given an example “sit-
ting” pose, we visualize where a human can sit in the environment (blue mask shows all
possible pelvis locations). Note how rearranging a few objects within the scene can have a
big influence on the estimated human workspace.

possible furniture configurations. It can be seen how our representation captures the spatial
arrangements of objects and how affordances change for the same objects under varying
configurations. While in Figure 5.3(left) a person can sit on the left couch, the same couch
is no longer accessible for sitting in Figure 5.3(right) because the table is moved too close to
it. Similarly, the side table becomes accessible in the bottom figure, once an obstruction is
removed.

5.2 Qualitative Results

We now evaluate the utility of our 3D geometry estimation algorithm for determining
the affordances of a scene. Figure 5.4 shows the results of this approach. To visualize the
whole range of possible poses, we overlay colored masks indicating the locations of pertinent
joints for a given pose. For example, we show in blue the locations where the pelvic joint
makes contact with a valid surface of support for the “sitting reclined” task. We also indicate
in cyan the locations where the back makes contact with a vertical support. Example human
stick figures (extracted from the mocap data) show representative valid poses in each scene.
As is evident from the stick figures, our approach predicts affordances that cannot be repre-
sented by basic object categories. For example, on the “sitting reclined” pose, our approach
combines the vertical surface of the bed with the horizontal surface of the ground to predict
human poses. Similarly, for “sitting upright” our approach finds valid pose locations that
cannot be predicted by object-level categories such as chairs or couches. For example, as
shown in Figure 5.5, we can predict unusual sitting poses (on the back of the chair and atop
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Figure 5.4: Qualitative performance of our affordance estimation approach. e images
in the first row are the input to our algorithm. e second row shows our estimated 3D
scene geometry. e third row shows the possible pelvic joint and back support locations in
blue and cyan respectively for the “sitting reclined” pose. e fourth row shows the possible
pelvic joint locations in blue for the “sitting upright” pose. e fifth row shows the locations
where a human’s back can rest when “laying down.” e last row shows the vertical surfaces
a person’s hand can touch from a standing position for the “reaching” pose, color coded to
indicate the corresponding pose. Each scene also includes a representative stick figure for
each pose.
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Figure 5.5: Examples of unusual, yet physically valid poses computed using our geometry
and affordance estimation approach.

the television), which despite being unlikely, are physically valid.

5.3 Quantitative Evaluation

To quantify the performance of our affordance estimation algorithm, we measure how
accurately we can predict the possible locations of human poses in each scene. We evalu-
ate our affordance estimation algorithm using the data-driven scene matching approach for
geometry estimation presented in this thesis, as well as the geometry estimation approach
from [Gupta et al., 2011]. e approach of [Gupta et al., 2011] is a precursor to our geom-
etry estimation algorithm, which uses a simplified geometry estimation process to find a set
of cuboids which model the arrangement of furniture in a scene. is approach begins with
the same autocalibration technique discussed in Section 2.1; however, it considers a limited
number of geometry hypotheses, commits to a single viewpoint estimate, and uses only the
original p(object) similarity feature for scoring each hypothesis.

We also compare our algorithm with a standard appearance-based baseline; training a
separate classifier for each task. ese methods have shown good performance for different
pixel labeling tasks, such as object categorization and qualitative geometry estimation. Each
pose classifier uses appearance features computed from an image to label the pixels where
a relevant body joint can appear for that human pose. For example, the “sitting upright”
classifier predicts where a person can sit by indicating where the pelvic joint could rest in
an image when the person is sitting. Specifically, we use the image features and multiple
segmentations classifier of [Hoiem et al., 2007a], and 50 training images for each classifier.
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Figure 5.6: Quantitative comparison of our affordance estimation algorithm with two base-
lines.

We manually labeled 50 test images for four poses:
(a) Locations a pelvic joint can rest while sitting upright,
(b) Locations a pelvic joint can rest while sitting reclined,
(c) Locations a human’s back can rest when laying down,
(d) Locations a hand can reach on a vertical surface.

Using these annotations, we compute the pixelwise overlap score between each algorithm’s
predicted pose locations and the ground-truth. Figure 5.6 shows the performance of our
approach compared to the baseline appearance classifier using geometric context, and affor-
dances computed using the coarse geometry estimates from [Gupta et al., 2011] on each of
the four classes.

Note that our approach outperforms the two baselines for all poses. While the baseline
approaches do a decent job in prediction valid locations for “reaching” and “laying down,”
their performance is markedly lower for the “sitting upright” and “sitting reclined” poses¹.
Intuitively, this is because detecting locations for reaching and laying simply requires iden-
tifying the locations of walls and floors in an image, which spatial priors can easily encode.
is is akin to easier categories such as ground and sky in pixel classification literature. How-
ever, accurately detecting possible sitting poses requires precise estimates of scene geometry
and cannot be captured via appearance-based approaches.

¹ Note: In [Gupta et al., 2011], their approach outperformed the appearance baseline. is is due to
the selection bias in creating the dataset for that paper, such that only images with accurate autocalibration
estimates from [Hedau et al., 2009] were used. However, for these experiments an unbiased sample of images
were selected.



CHAPTER VI

Application: Geometry-Aware Object Insertion

Many graphics applications involve the insertion of new objects into existing images or
videos. In order to achieve photorealistic results, the geometry and lighting of a scene must
be known (or estimated). Without accurate models of a scene it is impossible to properly
reason about how objects should be positioned and oriented, which portions of these ob-
jects are visible or occluded, and how complex lighting interactions such as reflections and
shadows should be properly rendered.

In this section, we explore existing algorithms for synthetic object insertion and demon-
strate how our ability to automatically estimate the detailed geometry of a scene enables
photorealistic object insertion.¹

6.1 Background

[Lalonde et al., 2007]’s “Photo Clip Art” begins to address this problem. In their work,
the authors present a system which reasons about camera pose and lighting to allow the
realistic insertion of objects into an image. eir approach begins by first estimating the
viewpoint of the scene (camera height and horizon position) using the algorithm of [Hoiem
et al., 2006]. is allows their system to properly reason about perspective, select objects
which are correctly oriented, and automatically place them on the ground plane at the right
scale, based on their distance from the camera. e authors also present “illumination con-
text,” a set of color histogram based features which allows them to automatically select ob-
jects for insertion which appear to be captured from similar lighting conditions as the input
image (alleviating the need for relighting). Lastly, the authors present a context-sensitive

¹Note: e object insertion renderings included in this chapter were created by Kevin Karsch at the Uni-
versity of Illinois at Urbana Champaign during a collaboration with the author.
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blending algorithm for realistically compositing the new objects into the image and trans-
ferring their shadows. e authors integrate each of these algorithms into their “Photo Clip
Art” application which enables users to quickly insert objects (such as people and cars) into a
scene and produce photo-realistic results without worrying about matching the illumination
conditions.

In [Karsch et al., 2011], the authors show that better geometric models of scenes allow
for more precise estimation of illumination, enabling photorealistic insertion of synthetic
objects into legacy photographs. e authors presented a framework which allows a user to
quickly annotate the geometry of a scene, and roughly specify the locations of directed light
sources. eir system then automatically generates a physical model of the scene including
the position, shape and intensity of light sources. Given an estimated scene geometry (via
user annotation), the authors present an algorithm to recover the material properties and
illumination conditions in the scene. eir method uses intrinsic image decomposition to
determine the albedo, direct illumination and indirect illumination of a scene by building
upon [Grosse et al., 2009]’s Color Retinex algorithm and [Guo et al., 2011]’s shadow de-
tection and removal algorithm. After estimating the geometry, lighting and material prop-
erties of the scene, [Karsch et al., 2011] allow users to position new 3D objects into the
scene which are photorealistically rendered using the additive differential rendering method
of [Debevec, 1998] and the spectral matting algorithm of [Levin et al., 2008]. e rendered
results of their approach are high-fidelity. In fact, the results are often photorealistic enough
that humans often cannot differentiate between objects which were originally in the image
and objects which were inserted.

6.2 Approach

A fundamental limitation of [Karsch et al., 2011]’s approach is their reliance on geom-
etry. is currently requires users to manually annotate each scene’s geometry, a process
which is both painstaking and imprecise (geometry is usually approximated with cuboids).
However, by integrating our geometry estimation algorithm, we can overcome the need for
human geometry annotation. Specifically, we can incorporate our automatically estimated
camera parameters, surface normals, occlusion masks and depth orderings rather than using
human annotations.

Figure 6.1 shows an example scene with three synthetically inserted objects: a dresser
behind the bed, a lamp on one nightstand, and a small kinetic sculpture on the other night-
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(a) Input image. (b) Synthetically inserted objects.

Figure 6.1: Examples of synthetically inserted objects. Note the accurate occlusion and
depth ordering of the dresser, and the realistic reflections.

stand. By using our estimated camera parameters, the added objects are automatically scaled
and oriented correctly, and the perspective effects of these objects are in correspondence with
the scene’s vanishing points. e estimated scene geometry enables objects to be automat-
ically positioned to lay upon horizontal surfaces. Moreover, our precise scene geometry
enables automatic occlusion reasoning (as seen with the dresser behind the bed). Not only
is the scene geometry useful for positioning each object, the estimated surface normals and
depths are critical for ensuring proper lighting effects. For example, the reflection of the bed
is visible in the inserted mirror, and the light emitted from the lamp is realistically scattered
off the edge of the bed.

Our estimated object categories and orientations can also be used to automatically po-
sition new objects in a scene at realistic locations using co-occurrence priors. For example,
if we know the position and orientation of a couch in a scene, we can infer the most likely
location of a coffee table relative to the couch’s position. See Appendix B for a description
of our data-driven approach for computing object co-occurrence priors.

6.3 Application: Augmented Reality Product Catalog

We now demonstrate a proof-of-concept application which incorporates our autocali-
bration and geometry estimation approach with [Karsch et al., 2011]’s synthetic rendering
algorithm to create an augmented reality product catalog. e goal of this application is to
allow users to see how furniture would look in their home. We run our geometry estimation
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(a) IKEA Granås (b) IKEA Hol

(c) IKEA Lack (d) IKEA Liatorp

(e) IKEA Hemnes (f ) IKEA Strind

(g) IKEA Vejmon (h) IKEA Lack

Figure 6.2: Photorealistic synthetic furniture insertions from the IKEA catalog.
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(a) IKEA Bankas (b) IKEA Klubbo

(c) IKEA Lack (d) IKEA Liatorp

(e) IKEA Hemnes (f ) IKEA Strind

(g) IKEA Vejmon (h) IKEA Lack

Figure 6.3: Photorealistic synthetic furniture insertions from the IKEA catalog.
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LACK  Coffee table
$49.99

STOCKHOLM  Coffee table
$199.00

VITTSJÖ  Coffee table
$49.99

VEJMON  Coffee table
$179.00

KLUBBO  Coffee table
$69.99

LACK  Coffee table
$29.99

HEMNES  Coffee table
$99.99

Material: Select grain

HEMNES  Coffee table
$99.00

Solid wood has a natural feel.  
Separate shelf for magazines 
to help keep organized.

Product dimensions:

Length: 46 1/2"
Width: 46 1/2"
Height: 22 1/4"

Figure 6.4: Mockup of an augmented reality product catalog iPad application.

pipeline on images and identify the positions and categories of each object present in the
scene. en, using our known co-occurrence priors, we recommend objects which have a
high likelihood of co-occurring with objects currently in the scene. Not only can we rec-
ommend what object could be added to a scene, we automatically position and orient the
objects relative to other objects in the scene. For example, a coffee table should be centered
in front of a couch with approximately 1.5ft in between the objects.

Figures 6.2 and 6.3 show example scenes for which we automatically insert coffee tables
from the IKEA catalog [IKEA, 2013], using texture mapped 3D models from [Polantis,
2010]. Note that the coffee tables are automatically sized and positioned at realistic lo-
cations in the scenes. In addition, the high-fidelity rendering approach of [Karsch et al.,
2011] produces photorealistic results with accurate lighting effects (reflections, scattering,
shadows, etc.). Figure 6.4 shows a mockup of our object insertion and photorealistic render-
ing algorithms being incorporated into an iPad application. is technology could enhance
a user’s shopping experience, by allowing them to see how products would fit and appear in
their homes, alleviating their uncertainty.



CLOSING THOUGHTS

“Where there is matter, there is geometry.” – Johannes Kepler (1602)

Recovering the 3D structure of a scene from a single 2D projection is an inherently
ill-posed problem, and remains a tremendous challenge for vision researchers. However,
we believe it is an important problem to address, as determining the geometry of an en-
vironment provides a complete representation which can be used to answer virtually any
question about our world, ranging from object categorization and localization to freespace
and affordance estimation.

To tackle this problem, we leveraged the recent growth and availability of 3D data to
integrate geometric reasoning and machine learning. e methods presented in this thesis
should not be thought of as a final algorithm, rather they represent a general framework
which can be extended and adapted for different tasks. ere are four key parts of this
framework:

1. A mechanism for aligning 3D data with images via autocalibration

2. A data-driven means for generating geometric hypotheses

3. A means for comparing each hypothesis to an input image via rendering

4. An algorithm for ranking each hypothesis using similarity features

Different environments, such as outdoor settings, would require an alternative mechanism
for alignment and similarity features which are tuned for the task; however, the overall
3DNN architecture can be directly adapted.
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APPENDIX A

System Applicability

roughout this thesis, experiments were conducted on images of bedrooms and living
rooms. ese scene categories are a small, but representative sample of [Xiao et al., 2010]’s
SUN database. A natural question to pose is, “Can this algorithm be applied to images of
any scene?”

When creating a dataset for this research, we selected living rooms and bedrooms for
three reasons. Firstly, these scenes are the two most common categories in the SUN database.
Secondly, these scenes contained large numbers of 3D models in Google Warehouse. Lastly,
bedroom and living room scenes have different levels of diversity, enabling us to explore the
performance of our approach on images with varying degrees of difficulty.

Bedrooms tend to have limited variation; the diversity of objects found in bedrooms
and their relative positions can be clustered into a few canonical configurations. On the
contrary, living rooms are less structured and contain a wider diversity of object categories,
sizes and configurations. Fundamentally, our approach (like all non-parametric matching
algorithms) requires there be a scene in our library of 3D models which is similar to the
input image. Intuitively, the more unique a scene is, the less likely we are to find a good
geometric match in our library of 3D models. We verify this hypothesis by analyzing the
accuracy of our system as a function of each input image’s uniqueness.

We compute the “uniqueness” of each scene by comparing its ground-truth geometry
to the geometry of every other scene in our dataset. Using the floorplan overlap score, we
first compute how similar a given scene is to each other scene’s geometry. If an image has
a large number of scenes with which it has a high floorplan overlap score, the scene is not
very unique. us, we quantify a scene’s uniqueness using one minus the 95% percentile
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(a) 1 (b) 25 (c) 50 (d) 75 (e) 99

Figure A.1: Images sorted by increasing uniqueness, from left to right, the 1 to 99 per-
centiles.

of floorplan overlap scores with the remaining scenes in the dataset. Figure A.1 shows ex-
amples of scenes from our dataset, sorted by increasing uniqueness. Note that the first few
examples include bedroms in canonical configurations; however, the examples towards the
right include object configurations which are less frequently seen.

Figure A.2 analyses the performance of our system for increasing levels of image unique-
ness. e accuracy of our approach is highly correlated with the uniqueness of the test
images: linear correlation ρ = −0.6033, p = 1.0654−49 [Pearson, 1896]. e more unique
the scene is, the less accurate our result will be. Note that the living room scenes (indicated
with orange marks) are significantly more unique than the bedrooms, providing us with a
challenging set of scenes for experimentation.

is analysis provides insight into the peformance of our algorithm when applied to new
scene categories. Using this regression model, we can mine through annotated scene geome-
tries for these new categories and compute each image’s uniqueness to predict the accuracy
of our approach when applied to the data. us, although we have only presented experi-
ments on two scene categories, we have explored how effective our 3DNN algorithm is on
relatively simple (bedroom) and difficult (living room) scenes. Moreover, we have provided
a data-driven mehanism capable of determining how effective our geometry estimation ap-
proach would be on any indoor scene.
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Figure A.2: Scatter plot of Scene Uniqueness vs. Accuracy (floorplan overlap score).





APPENDIX B

Object Co-occurrences

In this appendix, we summarize our data-driven approach for computing detailed ob-
ject co-occurrence priors. We leverage the vast repositories of 3D models now available to
harvest statistics regarding how often different object types appear together, and in what rel-
ative configuration they are most likely to appear. is information enables us to not only
recommend new objects to be added to a scene, but also predict exactly where the objects
are likely to appear, as demonstrated in Chapter VI.

We take a Bayesian approach to computing these co-occurrence statistics. For each pair
of object types, we mine through our library of models from 3D Warehouse [Trimble Inc.,
2012], and aggregate statistics regarding the relative positions the objects. Most types of
furniture are not functionally invariant to rotation. Beds, chairs, couches, and other com-
mon household objects have fronts and backs which dictate how they are used. Moreover,
each object pair has an archetypal configuration (or set of archetypal configurations), which
define how these objects are likely to co-occur in scenes. ese configurations cannot be
accurately modeled with simple distributions, such as the distance between the objects. For
example, not only are nightstands likely to appear very close to beds, they are typically posi-
tioned beside beds, near their headboards, such that their corners are abutting. To accurately
model these relations, we must first determine the orientation of each object.

Object orientations are identified using two methods. is process begins by manually
annotating a small subset of objects to label their front, back, left, and right faces.¹ ese
annotated templates are used as references to automatically determine the orientation of the

¹Note: e labels assigned to each face are simply a convention. Any face could be assigned any label, as
long as they are consistent within each category.
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(a) back (b) right (c) front (d) left (e) top

Figure B.1: Example face heightmaps used for determining the orientations of objects. Yel-
low indicates low depth, and red indicates higher depths.

remaining objects. Here, we aim to select the rotation θ ∈ {0◦, 90◦, 180◦, 270◦} which
will bring an object into closest alignment with the set of annotated templates. e simi-
larity between an object and a template is computed geometrically by comparing five 2D
heightmaps corresponding to the front, back, left, right, and top faces of each object pair
using normalized correlations. Figure B.1 shows an example of these heightmaps used for
computing object orientations. e intuition behind this approach is that there are certain
structural characteristics unique to different object categories which encode their orienta-
tions. For example, the backs of chairs and and sofas tend to be higher than their fronts,
resulting in a distinctive “h” shape when viewed from the left side. Similarly, the headrests
of beds tend to be higher than their feet, and pillows tend to be positioned towards the heads
of beds, as shown in Figure B.1.

is approach fails for highly symmetric boxy objects, such as tables or nightstands. Each
face of these objects is geometrically similar, making it difficult to determine the objects’ ori-
entations based solely on shape. However, the position of these objects in an environment
can disambiguate their orientations. For example, dressers and nightstands tend to be posi-
tioned such that their back side is against a wall. us, for object categories which are mostly
cuboidal (nightstand, table, dresser, etc.), we simply identify the face closest to a wall as the
back of the object.

After determining the orientation of each object in our 3D model library, we can now
compute pairwise co-occurrence statistics. Unlike previous approaches such as [Choi et al.,
2013]’s 3D Geometric Phrases, which model the distances between centroids of objects,
our priors are finer-grained and model particular spatial relations. For each pair of object
categories, we consider 12 possible relations, shown in Figure B.2. Each of the red points on
the front, back, left, and right sides of the object are used as anchors, and the distribution of
distances from each anchor point to the nearest corner or edge on the second object is aggre-
gated in two-dimensional histograms corresponding to distances in the u and v directions.
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Figure B.3: Visualization of anchor points used for computing pairwise object co-occurrence
statistics.

When mining through each object co-occurrence, we do not record distances to objects
which are on the opposite side of the anchor point. For example, if a chair is positioned to
the right of a table, we do not record its distance to the left edge anchor points on the table.

A common configuration of objects seen in home environments is a couch and coffee
table. Typically, coffee tables are centered in front of couches with around 1.5-2ft of space
in between them, leaving enough room for a person to sit comfortably. e histograms
in Figure B.4 show the distribution in distances between a couch and a coffee table when
anchored to the front center of a couch, as depicted in Figure B.3(a). Note that the distribu-
tion of u-distances measuring how centered tables are relative to the middle of a couch has
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Figure B.4: Distribution of distances between couches and coffee tables, using the front
middle of the couch as an anchor, as depicted in Figure B.3(a).

a strong mode at 0, indicting that coffee tables are most commonly aligned to the midpoint
of a couch. e v-distance has a mode at 18in, the most frequent distance between couches
and coffee tables. e negative v-distances seen in the histogram on the right occur in two
situations. First, tables are sometimes positioned besides couches, not in front of them. is
not only explains the negative v-distances, but also the large variance in u-distances, since
the side tables will be far from their couch midpoint anchors. Another situation in which
v-distances can be negative is for “L-shaped” couches. ese objects are non-convex, and
tables are typically positioned within their bounding boxes.

Although using the front midpoint of a couch as an anchor was quite informative for
modeling the relative locations of tables, this anchor point may be less informative for other
object pairs. For example, Figure B.5 shows distribution of nightstand positions relative to
the front middle anchor of a bed, as depicted in Figure B.3(b). e bimodal distribution
of u-distances indicates that unlike a couch and table configuration, nightstands are almost
never centered in front of a bed; rather, they are positioned to either side. Because beds come
in different sizes, the positions of nightstands relative to the beds’ midpoints has substan-
tial variance, making it difficult accurately predict the most likely locations of the objects
relative to each other. However, if we use the front right corner of a bed as the anchor, as
depicted in Figure B.3(c), the distribution of relative nightstand locations can be modeled
with tight Gaussians, as shown in the histograms in Figure B.6. Here, there are strong peaks
at 0 for both the u-distance and v-distance, indicating that nightstands are most frequently
positioned such that their corners abut the corners of beds. We compute the distributions of



97

.....
−100

.
−50

.
0

.
50

.
100

.

u-Distance (inches)

.

Fr
eq

ue
nc

y

.....
−40

.
−20

.
0

.
20

.
40

.

v-Distance (inches)

Figure B.5: Distribution of distances between beds and nightstands, using the front middle
of the bed as an anchor, as depicted in Figure B.3(b).
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Figure B.6: Distribution of distances between beds and nightstands, using the front right
corner of the bed as an anchor, as depicted in Figure B.3(c).

distances using all 12 anchor points for each object pair, and select the ones with the lowest
variance. is allows us to discard uninformative relationships and keep only those which
accurately model the spatial co-occurrences between objects.

ese types of co-occurrence statistics have many practical applications. For example,
researchers have demonstrated the utility of object co-occurrence statistics for a wide va-
riety of tasks ranging from context-based model search [Fisher and Hanrahan, 2010] and
automated interior design [Merrell et al., 2011] to scene parsing [Choi et al., 2013]. We
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incorporate these statistics in Chapter VI to predict what objects are most likely to appear
in a scene, as well as their most probable position and orientation relative to other objects.
Future work may incorporate these co-occurrence statistics into the geometry refinement
process, to preserve these relationships while refining the positions of objects in a scene.



APPENDIX C

Monocular Autocalibration Error Analysis

In this appendix, we analyze the various sources of error for our system. Understanding
what causes our geometry estimation system to fail allows us to identify what stages of the
pipeline need improvement. A fundamental limitation of our approach to geometry esti-
mation is the reliance on a single vanishing point estimate. is hard-decision can result in
unrecoverable errors which affect room layout estimation and each additional stage of our
pipeline which builds upon our initial vanishing point estimate.

We now analyze the accuracy of the vanishing point estimation algorithm we use. For
each annotated image in our dataset, we have hand-labeled vanishing point locations. Since
the locations of vanishing points can be close to infinity, computing the absolute error with
respect to pixel locations is not numerically stable nor does it truly reflect the error of our
overall calibration process. To compare predicted vanishing point locations to the annotated
vanishing point locations, we analyze the rotation of camera relative to the three orthogonal
axis defined by the vanishing points.

Our intrinsic camera matrix is computed using the following orthogonality constraint
on vanishing points:

V ′
1(K

−⊤K−1)V2 = 0 (C.1)

V ′
2(K

−⊤K−1)V3 = 0 (C.2)

V ′
3(K

−⊤K−1)V1 = 0. (C.3)
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e rotation matrix representing the rotation of the camera relative the principal axis of the
scene is then computed as follows:

R =

(
K−1V1

∥K−1V1∥
,

K−1V2

∥K−1V2∥
,

K−1V3

∥K−1V3∥

)
. (C.4)

To compare our estimated rotation matrix to the ground-truth rotation (from annotation),
we compute the geodesic distance on the 3D manifold of rotation matrices as follows:

Θ =
1√
2
∥ log(R⊤

1 R2)∥F . (C.5)

Figure C.1 shows the cumulative rotational error based on vanishing point estimation.
Approximately 40% of scenes had vanishing point estimates which yielded a geodesic dis-
tance less than 5◦ from the human-annotated rotations. Approximately 75% of scenes were
within 10◦ of the annotated locations. For a subset of images we had two annotators label
vanishing points. is allows us to measure the subjectivity of the annotation task. e stan-
dard deviation of the geodesic distance between the rotations from pairs of human annotated
vanishing points was 3%.

We also perform a similar error analysis on our focal length estimates. Figure C.2 shows
the results of this experiment, comparing autocalibration focal length estimates with focal
lengths from human annotations. is analysis showed that we are unable to accurately
estimate the scale of the scene (based on focal length) for a significant percentage of images.
Approximately 40% of images had focal length estimates that were 20% or more off of
the ground-truth focal lengths. is suggests that searching over possible focal lengths may
boost the performance of our system.
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Figure C.1: Analysis of rotation error based on camera autocalibration.
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APPENDIX D

3D Model Library Size Analysis

In this appendix, we explore issues with the size of our 3D model library. Vision re-
searchers such as [Torralba et al., 2008, Hays and Efros, 2007] have demonstrated the im-
portance of large datasets for data-driven approaches. e performance of our preliminary
scene matching system could potentially be limited by the relatively small number of 3D
models in our library. To estimate the effect of dataset size on the performance of our algo-
rithm, we ran experiments restricting the number of scene hypotheses considered.

Figure D.1 shows how our performance increases as the size of the 3D model library
grows. Figure D.2 illustrates the same trend; however, an oracle is used to automatically
select the best-performing geometry hypothesis. is removes the effect of poor hypothesis
ranking, and essentially computes an upper-bound on performance. Note that each of these
plots is increasing sublogarithmically, indicating that our library of 3D models is approach-
ing saturation in size – extrapolating forward indicates that it may take orders of magnitude
more data to achieve a substantial gain in performance.

is trend may be due to the fact that we incorporate 3D data into our model of a
scene, this makes our approach inherently invariant to rotations. Traditional appearance-
based recognition system are trained on 2D images and require training examples from all
unique viewpoints; however, our approach utilizes 3D models capturing all possible rota-
tions. Moreover, unlike many environments which have a high variability in object arrange-
ments, bedrooms and living rooms are very well-structured. is trend is present in both
the 3D models we collect from 3D Warehouse [Trimble Inc., 2012] (See Section 3.6) as well
as the images randomly selected from the SUN database [Xiao et al., 2010] for our dataset.
us, there are diminishing returns with each 3D model we add to our library.



104 A D – D M L S A

.....
. ..All pixels . ..Only objects . ..F1

. ..δF1
. ..3D F1

. ..3D δF1

.....
0
.

0.2
.

0.4
.

0.6
.

0.8
.

1
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

Fraction of 3D Model Library

.

Sc
or

e

.....
0
.

0.2
.

0.4
.

0.6
.

0.8
.

1
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fraction of 3D Model Library

Figure D.1: Analysis of dataset size using our learned feature weighting: (left) incorporating
ground-truth room layouts from annotation, (right) fully-automatic approach. Note: results
are computed with our preliminary scene matching approach presented in Chapter II.
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Figure D.2: Analysis of dataset size using an oracle to select the highest-scoring geometry
hypothesis: (left) incorporating ground-truth room layouts from annotation, (right) fully-
automatic approach.
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