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Abstract

Data-driven modeling is essential to understanding complex cellular processes. In
this thesis, we present a series of studies of analyzing morphological dynamics and
intracellular transport of organelles using techniques of mathematical modeling, image
processing and machine learning. We first characterized the morphology of organelles,
focusing specifically on mitochondria. We developed a morphological data processing
pipeline. Using this pipeline, we discovered a bi-modal distribution of mitochondrial
sizes, with a stable mean value in each mode. We then developed a data-driven model
to investigate how fusion/fission of mitochondria modulates their sizes. For further
analysis of morphology of mitochondria as well as other cellular components, we
developed a general purpose machine learning algorithm, which we refer to as shape
component analysis (SCA). We used it for dimension reduction and classification of
mitochondrial morphology and protein geometry.

In addition to studying the morphological dynamics of cellular organelles using
data-driven modeling, we investigated the intracellular transport of organelles. We
first proposed a probabilistic model for studying the relation between mitochondrial
size and the velocity of their active transport. The proposed model not only ex-
plained the relation between mitochondrial size and velocity observed in experiments
under normal conditions but also suggested a novel relation under changed condi-
tions. Further analysis of the proposed model also suggested a way to evaluate the
binding/unbinding rates of motors carrying the mitochondria. We further studied the
global organization of organelle transport. We proposed an image processing frame-
work to characterize the spatiotemporal dynamics of intracellular transport in terms
of the spatial localization of stationary organelles and the spatiotemporal patterns
of organelle movement, respectively. We used this framework to analyze time-lapse
images of Lamp1 transport and found different global transport patterns. Overall,
our studies produced both computational modeling methods and specific biological
results for quantitative and systems-level understanding the complex behavior of in-
tracellular organelles.
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Chapter 1

Overview

1.1 Thesis statement

Biology depends critically on using experimental methods to study complex cellular

processes. Given the complexity of such processes, a commonly used strategy is to

perturb them in a well-controlled manner and qualitatively describe how they respond.

Complementary to this strategy, quantitative analysis and mathematical modeling

are increasingly used to study biological processes. Still, many challenges remain in

resolving the complexity of biological processes even with quantitative approaches.

This thesis research aims to overcome some of these challenges.

This thesis is centered around quantitative analysis of organelle dynamics. Or-

ganelles are specialized and membrane-enclosed units within a cell that serve diverse

cellular functions and exhibit diverse dynamic behavior. Taking mitochondria as an

example, they are known to show diverse behaviors in terms of their localization, mor-

phology and biogenesis. We believe that organelles are excellent subject of study for

quantitative approaches because 1) they are relatively simple in constitution and can

be considered as individual physical units and 2) they demonstrate diverse biological
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functions. In this regard, this thesis aims to achieve the following two goals

1. To characterize dynamic behaviors of organelles using imaging-based methods.

2. To decipher the governing principles of organelle dynamics using mathematical

modeling.

1.2 Outline of the thesis

In this thesis, we present a series of work on characterizing and analyzing the mor-

phological dynamics and active transport of organelles. Using mitochondria as an

example, the intracellular dynamics of mitochondria is summarized as in Figure 1.1.

Mitochondria are known to shown diverse dynamics. As an example, the morphology

of mitochondria is constantly remodeled by the fusion and fission machinery. The

localization of mitochondria is also changing over time by active transport of motor

proteins. Furthermore, the distribution of mitochondria over the whole cell might

be regulated by the cellular status. Maintenance of these mitochondrial dynamics

are critical to the survival of cells while defects in either mitochondrial morphology

or localization are related to neurodegenerative diseases. In this thesis, we aim to

address the following questions:

1. How is the fission/fusion of mitochondria related to their morphology?

2. How is the mitochondrial morphology related to their motility?

3. Is the distribution of these organelles regulated at the whole cell scale?

To address these questions, we developed computational methods for studying or-

ganelle dynamics. The main results of this thesis are summarized as follows.
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Figure 1.1: Dynamic behavior of mitochondria in the axon. Mitochondria are
known to change their morphology through fusion/fission as well as their distribution
through transport. Dynamics of mitochondria is critical to maintain their distribution
at the whole cell scale.
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1. In Chapter 2, we investigated the dynamics of mitochondrial morphology. We

developed a data processing pipeline for quantifying mitochondrial morphology

and motility. Using this pipeline, we developed a data-driven model to account

for the fission/fusion mediated mitochondrial size distribution. The proposed

model demonstrated can predict the relative occurrence of fission and fusion

from the distribution of mitochondrial size.

2. In Chapter 3, we investigated the size-velocity relation of mitochondria within

the axon. We first proposed a hierarchical model to account for the relation

between mitochondrial size and velocity. The proposed model explains the size-

velocity relation observed in in experiments and suggests a novel size-velocity

relation given different spatial distribution of axonal microtubules. Further-

more, we demonstrate that it is possible to infer the binding behavior of motors

carrying the mitochondria from the distribution of mitochondrial velocity.

3. In Chapter 4, we studies the global organization of Lamp1 transport. While

organelles are individual units in cells, we wonder if they are regulated globally

to meet an optimal distribution. Although to fully address this question is

beyond the scope of this thesis, we, for the first time, designed a method to

investigate the global dynamics of lysosomal transport. In chapter 4, we present

an image processing framework to represent Lamp1 transport at the whole cell

scale.

4. In Chapter 5, we developed methods for studying biological shapes such as mi-

tochondrial morphology and protein geometry. We developed a technique for

nonlinear dimension reduction of 2D and 3D biological shape representations

on their Riemannian spaces. A key feature of this technique is that it approxi-

mately preserves distances between different shapes under reduced dimensions.
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We demonstrated an application of this technique by combining it with nonlin-

ear mean-shift clustering on the Riemannian spaces for unsupervised clustering

of shapes of cellular organelles and proteins.

1.3 Summary of research contributions of the the-

sis

The research contributions of this thesis are summarized as follows:

1. In Chapter 2, we provided insights on how sizes of mitochondria are related to

their fusion/fission dynamics. We modeled the fission/fusion dynamics based

on queuing theory and conducted a rigorous analysis that revealed the depen-

dency between mitochondrial fusion and fission. Based on our analysis, we also

developed a way to predict the relative occurrence rate of mitochondrial fission

and fusion. The developed model is general and can be adapted to investigate

biological regulation on mitochondrial fission and fusion.

2. In chapter 3, we provided insights on how mitochondrial sizes are related to their

transport velocities. We developed a model and conducted corresponding analy-

sis. Our model and analysis revealed two kinds of size-dependent mitochondrial

transport. Among these two types of dependency, one has been observed in the

experimental data while the other remains to be tested in experiments.

3. In Chapter 4, we designed an image-based method for studying the organelle

transport at the whole cell scale. Our method supports direct visualization of

whole-cell scale organelle transport and is robust to image noise. Our method

also revealed different transport patterns, which is crucial to understanding the
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global control on organelle transport at the whole cell scale.

4. In Chapter 5, we developed a dimension reduction technique for analyzing bio-

logical morphology. One critical challenge of analyzing morphological data is in

handling its intrinsic nonlinear structure originated from registration between

objects. Our method is designed to preserve this nonlinear structure while

reducing dimensionality. We demonstrated the superior performance of the

proposed method in comparison to other existing methods and its application

to analyzing biological morphology.
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Chapter 2

Data-driven modeling of

mitochondrial morphology

2.1 Introduction

Mitochondria are critical organelles in eukaryotic cells. Contrary to the traditional

thinking of mitochondria as static powerhouses providing energy for cells, recent stud-

ies have revealed rich and dynamic behaviors of mitochondria, including their frequent

movement and morphological changes [1]. Transported by molecular motors, mito-

chondria change their localization to meet changing energy needs within the cell.

Also, mitochondrial morphology is remodeled constantly by fusion and fission pro-

cesses.

The biological implication of fusion/fission process is center to the control on

mitochondrial morphology and quality. Despite their fundamental roles, researches

are still limited to either quantifying static mitochondrial morphology [2] or building

models purely from theoretical perspective [3]. In this work, we first integrated par-
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ticle tracking and image segmentation to retrieve the mitochondrial dynamics from

image sequences. Based on exploratory analysis on collected data, we proposed a

probabilistic model to see how fusion/fission is shaping mitochondrial morphology.

In this chapter, we quantitatively characterized mitochondrial morphology. The

goal is twofold. First we aim to determine the major factors of mitochondrial mor-

phology in the axon to facilitate further analysis and modeling on mitochondrial

dynamics in the next chapter. For the other, we want to study how the fission/fusion

mechanism is shaping the distribution of mitochondrial morphology.

The rest of this chapter is organized as follows: data collection, processing pro-

cedures and subsequent statistical analysis are first summarized in Section 2.2. An

exploratory analysis on mitochondrial morphology is presented in Section 2.3. In Sec-

tion 2.4, we proposed a probabilistic model of the fission/fusion process to investigate

how the mitochondrial size is regulated by fission/fusion process. We concluded with

a summary and a short discussion.

2.2 Methods

In this section, the overall workflow to retrieve morphological dynamics from images

is presented. This approach consists of three steps, including 1) image collection and

image segmentation, 2) mitochondrion tracking; and 3) morphology representation.

The pipeline of data pre-processing is shown in Figure 2.1.
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Figure 2.1: Work flow of data processing. Image sequences are processed by
active-mask segmentation and particle tracking algorithms separately. Afterward,
the processed results are combined to recover the morphology as well as motility
dynamics of mitochondria.

2.2.1 Image collection and segmentation

Mitochondrial dynamics in segmental nerves of dissected Drosophila 3rd instar larvae

is visualized by fluorescence live imaging. The imaging is performed on a Nikon

Eclipse Ti-E inverted microscope with 5-frames-per-second sampling rate and 100x

magnification. Sample drift is corrected by imageJ plug-in software. The effective

pixel size is 64.5nm. Active-mask algorithm is used to segment mitochondria from

background [4]. An example of collected image and segmented mask are shown in

Figure 2.2.
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(a) (b) (c)

Figure 2.2: Landmark representation of a mitochondrion. (a) Raw image. (b)
Segmented image. (c) Landmark representation. Only 20 landmarks are plotted for
demonstration.

2.2.2 Tracking mitochondria

Following image segmentation, trajectory of each mitochondrion are reconstructed

using software published in [5]. This software outputs trajectories of mitochondria as

well as their motility measurements, such as types of motion (anterograde, retrograde,

reversing and stationary) and velocity. Henceforth, a point in a trajectory is referred

to as a track point.

2.2.3 Integration of mitochondrial localization and morpho-

logical dynamics

The outputs from image segmentation algorithm and tracking software are two sets

of independent measurement about mitochondria morphology and their movements.

Here we describe our method to recover the morphological dynamics by combining

results from particle tracking software and the segmentation algorithm. One of the

major challenge is analysis artifacts caused mainly by overlapped mitochondria (See

Figure. 2.3). We propose a two-stage processing to minimize this artifact. The track

points in tracking trajectories and connected components in segmented images are

first identified. In the first stage, the number of track points within one connected
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components is checked. If there is only one track point, this connected component will

be identified as a member of the corresponding trajectory. If there is more than one

track point, this region will be discarded to avoid artifacts in subsequent analysis. In

the second stage, the average size of each mitochondrion is computed as the average

size of bounding boxes of segmented regions. Then each connected components are

discarded if their average bounding boxes are overlapped with others. An average

bounding box for each trajectory is calculated as the third quartile among bounding

boxes of all its corresponding non-overlapped regions from first stage. This is to

avoid a problem of active-mask algorithm, which may split an overlapped region into

two separate regions and lead to confusion in subsequent processing. Subsequently,

morphological features, particularly area and aspect ratio of the best fitted ellipse,

can be calculated from these connect components.

Figure 2.3: Analysis artifacts due to overlapping mitochondria. Upper panel
shows the cropped image of three overlapping mitochondria. Lower panel shows the
segmentation result having only two connected components.

2.2.4 Representing mitochondrial morphology by morpho-

logical features

Based on segmented binary regions, 9 commonly used features are computed to de-

scribe the mitochondrial morphology. These features are all invariant of rotations and

can be classified into three categories: 2 of them are area-based features, another 4
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features are related to length and the other 3 are ratios of chosen features and hence

invariant of scaling. Table 2.1 summarized these morphological features.

morphological features
area related length related scale free

area perimeter compactness
convex hull area major length aspect ratio

minor length skeleton-area ratio
skeleton length

Table 2.1: Descriptors for mitochondrial morphology

2.2.5 Landmark representation of mitochondrial morphology

To provide a comprehensive analysis of mitochondrial morphology, we use both mor-

phological features and landmark representation to describe mitochondrial morphol-

ogy. While morphological features, such as segmented area, are straightforward to

analyze and interpret, the design of features requires prior knowledge on which fea-

ture should be chosen and hence may lead to biased description. To resolve this issue,

we also adapt landmark representation to provide a compensatory description of the

mitochondrial morphology. The morphology of a segmented connected region is rep-

resented by a set of control points positioned along its contour. This representation

is called landmark representation. To be precise, supposed that a planar shape is

represented by D control points along its contour (Fig. 2.2). This ordered sequence

of control points is referred to as a configuration. A planar shape configuration is

represented by a D-dimensional complex vector Y, with Yj = S1,j + iS2,j, where Sk,j

records k-th coordinate of the j-th control point [6].

To compute the landmark representation, the contour is first extracted from the

connected component and then fitted by a periodic cubic spline [7]. Then 200 equally

spaced points are sampled from this cubic spline. The number of landmarks is chosen
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empirically to ensure adequate descriptions of most contours. Since mitochondrial

morphology may fluctuate over time, we calculated the mean shape among each

trajectory for noise removal. Details of computing the mean shape are provided in

the Chapter 5.

2.2.6 Nonlinear dimension reduction and mean-shift cluster-

ing

Dimension reduction is an essential tool for analyzing and understanding high dimen-

sional data. A wide range of dimension reduction techniques have been developed

[8]. However, for effective dimension reduction of biological shape representations,

it is crucial to take into account their specific structures and properties. To give

an example, biological shapes are often represented by points on high-dimensional

Riemannian spaces [6]. Indeed, nonlinear Riemannian geometry of shape spaces is

proposed as a tool of choice to depict geometric differences between shapes [9].

We developed a nonlinear dimension reduction technique on the shape spaces

[10, 11]. We also applied our dimension reduction approach and nonlinear mean-

shift clustering for unsupervised clustering of shapes of mitochondria and proteins.

Experimental results confirmed that the proposed dimension reduction technique,

when combined with mean-shift clustering, provided generally equivalent clustering

performance but at significantly reduced processing time. This dimension reduction

technique and unsupervised clustering are presented in Chapter 5 due to its high

demanding in mathematics.
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2.3 Investigating mitochondrial morphology

After processing, each mitochondrion is described by 1) a trajectory and correspond-

ing motility measurements, 2) a vector consists of morphological features and 3) its

mean shape represented by landmarks. These descriptors will be used in subsequent

data analysis.

2.3.1 Size and aspect ratio describe mitochondrial morphol-

ogy in the axon

To determine the major factors in mitochondria morphology, we collected morphol-

ogy features from 980 wild-type mitochondria, and performed principal component

analysis on these features. 9 morphology features are selected as described in previous

section. Results of principal component analysis showed that 2 principal components

(PCs) [12] are enough to explain 93% of the data. The biplot and the loading vectors

of each descriptor are shown in Figure 2.4. It can be seen the major and minor length

are most representative features among all designed features. However, the major

feature lM and minor length lm are constrained by the inequality lM ≥ lm. To get a

parametrization of mitochondrial morphology without any constraints, we proposed

to use their product (lM ⋅ lm) and ratio (lm/lM) to equivalently describe the mitochon-

drial morphology. In fact, this two features represent the area and aspect ratio of the

best fit ellipse of mitochondrial shape.

2.3.2 Big and round mitochondria generally do not move

The relation between morphology and motility is analyzed. Figure 2.5 shows the scat-

ter plot of mitochondrial size versus aspect ratio. While the upper right half of the
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Figure 2.4: Visualization of morphological descriptors. Left: Morphological
features visualized by principal component analysis. Right: Morphological features
visualized by nonnegative matrix factorization. In both panels, data scattering is
visualized in the subspace spanned by the first two optimal basis. Lines projecting
from the origin show the loading vectors of the original morphological features.

graph is occupied by stationary mitochondria (blue dots), the moving (red triangles)

and stationary mitochondria share the lower left of the graph. This suggests a gen-

eral relation between morphology and motility, namely big and round mitochondria

usually do not move. While the size-velocity relation among moving mitochondria is

more intriguing upon closer examination, we will focus on stationary mitochondrial in

this chapter. Analysis of moving mitochondria will be presented in the next chapter.

15



0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

segmented area (µm
2
)

a
s
p

e
c
t 

ra
ti
o

 (
N

.D
.)

 

 

stationary mitochondria

moving mitochondria

Figure 2.5: Morphological difference in moving and stationary mitochon-
dria. x and y axes indicate mitochondrial size and aspect ratio respectively. Moving
mitochondria are labeled in blue while stationary mitochondria are labeled in red.

2.3.3 Size of stationary mitochondria follows a bi-modal dis-

tribution

We also examined the changes in mitochondrial size distribution over space. Figure 2.6

shows histograms of stationary mitochondria’s size. We observed that mitochondrial

sizes follow a bi-modal distribution with changing portion in each mode over space.

This observation is confirmed by fitting a Gaussian mixture model to mitochondrial

size distribution. Figure 2.7 shows the mean and portion of each mode in fitted

Gaussian mixture models. While the value of each modes remains stable, portions

are changing over space. Larger mitochondria appear more frequently toward the

synapse. On the contrary, the size of moving mitochondria still follows a bi-modal

distribution with dominant numbers in the group of smaller size. This suggests the
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mitochondrial size is regulated differently according to whether a mitochondrion is

moving or not.

Figure 2.6: Evolving mitochondrial size over space. Size distribution of moving
and stationary mitochondria are shown in the lower and upper panels respectively.
Curves in each histogram depict the fitted Gaussian mixture model.

2.4 Inferring fission/fusion dynamics from mito-

chondrial size distribution

Mitochondrial size are known to be regulated by fission/fusion mechanism. A re-

cent study observed that fission and fusion in the axon are mostly involved with

stationary mitochondria [13]. Given this observation, we hypothesize that stationary

mitochondria of larger size are end products of repetitive fission and fusion. Fol-

lowing we present a probabilistic model of mitochondrial fission and fusion to see

if the observed distribution of mitochondrial size is solely shaped by fission/fussion
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Figure 2.7: Statistics of fitted Gaussian mixture models. x-axis shows the
labels of body segments, from proximal end (A3) to distal end (A6). y-axis represents
mean (left panel) and portion (right panel) of each mode. Error bars show the 95%
confidence intervals

mechanism.

2.4.1 Modeling mitochondrial size modulated by fission and

fusion independently

Motivated by the data analysis in Section 2.3, we made the following assumption on

mitochondrial fission/fusion process:

1. We assume a stationary mitochondrion is fixed in space with a time-varying

mass S(t).

2. We assume fusion to S(t) occurs at rate λfu. At each fusion event, a mass M

(followed the size distribution of moving mitochondria) is added to S(t).

3. We assume fission of S(t) occurs at rate λfi. We assume that, at each fission
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event, the mass S(t) is changed to pS(t) for a constant p ∈ (0,1).

Before proceeding further, we summarized notations that will be used in the following.

We use Xn and Yn to denote the time span between n-th and n+1-th fusion and fission

events respectively. The cumulative waiting time up to n events is denoted by Tfu(n)

and Tfi(n). i.e., Tfu(n) = ∑n
i=1Xi. We also define Nfu(∆t) and Nfi(∆t) the counting

processes of the occurrence of fusion (to S(t)) and fission (of S(t)) within any time

span ∆t. These two counting processes are defined by

Nfi(∆t) = max{n ∶
n

∑
i=1

Xi ≤ ∆t}, Nfu(∆t) = max{n ∶
n

∑
i=1

Yi ≤ ∆t}.

Note that assumptions (2) and (3) are equivalently defined by either 1) Xi and Yi fol-

low exponential distribution with mean 1/λfu and 1/λfi or 2) Nfu(∆t) and Nfi(∆t)

are Poisson counting processes with rates λfu and λfi respectively.

Overall, we propose to model the fusion/fission modulated mitochondrial size S(t)

by

1. Initially S(0) = S0.

2. Given cumulative waiting time Tfu(n) and Tfi(n) of fusion and fission, S(t) is

changed according to the rules

• if t = Tfu(n), the mass changes from S(t) to S(t) +Mn. Mn are random

variables with a common distribution fM .

• if t = Tfi(n), the mass changes from S(t) to p ⋅ S(t) with a fixed constant

p.
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To analyze how the mitochondrial size evolves over time, we first define the imbed-

ded Markov chain Qn [14]. The imbedded Markov chain Qn describes the mitochon-

drial size right after n-th fission event, i.e.,

Qn = S(Tfi(n)+).

Given the independent arrivals of fusion events, the mass change from Qn to Qn+1 is

given by

Qn+1 = Qn +∑
Nfu(Yn+1)
i=1 Mi,

while ∑Nfu(Yn+1)
i=1 Mi is the overall mass added due to Nfu(Yn+1) fusions happening

within the time span Yn+1. The mitochondrial size S(t) can therefore be formulated

by

S(t) = QNfi(t) +∑
Nfu(C(t))
i=1 Mi

where C(t) is the current lifetime of fission events up to time t defined by

C(t) = t − Tfi(Nfi(t)).

In the following we will drop the subscripts for random variables Yn and Mi for

notational simplicity since they are all independently and identically distributed.

2.4.2 Independent fission/fusion leads to oversized mitochon-

dria

Independent fission/fusion with constant rates is typically assumed in modeling mi-

tochondrial dynamics [3]. Using the model presented in section 2.4.1, the mean and
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variance of mitochondrial size after repeating fusion and fission is computed as follows:

ES∞ = limt→∞ES(t) = 1
1−p

λfu
λfi
EM

varS∞ = limt→∞ varS(t) = 1
1−p2 ⋅ ((EM)2 ⋅ (λfuλfi

)2 + ((EM)2 + var(Mi)) ⋅
λfu
λfi

)

Detailed calculation can be found in the Appendix. These two equations can be

solved for estimating the ratio of fusion rate to fission rate in terms of the mean and

variance of size of stationary and moving mitochondria, i.e.,

λfu
λfi

=
2 varS∞
EMES∞ −(1+ var(M)(EM)2 )

1+ varS∞
(ES∞)2

p = ES∞
ηEM+ES∞

However, As shown in table 2.2, an negative value of estimated
λfu
λfi

is obtained when

plugging in statistics estimated by Gaussian mixture model. In table 2.3, we reported

the mean and variance of the first mode in moving mitochondria and of the second

mode in stationary mitochondria. The predicted fission/fusion ratio are computed

by plugging these quantities in to equations above. The negative predicted value

suggests this simple model is incompatible with the collected data. A simulated size

distribution is shown in Figure 2.8. It can be seen that the simulated distribution

has a heavy tail compared to the observed distribution. This suggests independent

fission/fusion process might lead to oversized mitochondria.

2.4.3 A general model for fission-regulated fusion

We hypothesize that the heavy tail observed in the previous model is due to the

unlimited occurrence of fusion between two fission events. In practice, contradict to

the independent fusion/fusion in the previous model, fission/fusion might be regulated

to prevent unlimited occurrence of fusion. To address this issue, we propose a fission-
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regulated fusion model to account for the regulation between fission and fusion. We

reformulate the process S(t) as

Qn+1 = Qn +∑
f(Nfu(Y ))
i=1 Mi

S(t) = QNfi(t) +∑
f(Nfu(C(t)))
i=1 Mi.

Here, the counting process Nfu(Y ) is interpreted as the number of possible fusion

within a time span Y , while f(n) is the number of realized fusion on top of n possible

fusions. The form of f is designed to model the regulation on mitochondrial fusion.

Two examples of f are given in the following:

1. f(n) = n. This simply gives the model with independent fission/fusion in the

section 2.4.1.

2. f(n) = min(n, 1). This models the case that at most one fusion can occur

between two fission events.

A subtle issue is that the definition of fusion rate in this model requires clarification.

The rate λfu only represents the occurrence of possible fusion events, but not realized

fusion events. Therefore, we define the fusion-to-fission ratio by

η = Ef(Nfu(Y )).

This quantity describes the average number of fusions occurring between two fission

events. Note that in the case of f(n) = n, this ratio is exactly the ratio of fusion and

fission rates λfu/λfi.
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2.4.4 Regulated fusion model predicts the fusion-to-fission

ratio

We analyzed the case that there is at most one fusion can occur between two fission

events. The mean and variance of the stationary mitochondria’s size are computed

as

ES∞ = limt→∞ES(t) = 1
1−pη ⋅EMi

varS∞ = limn→∞ varS(t) = 1
1−p2 ⋅ ((EMi)2 ⋅ η(1 − η) + var(Mi) ⋅ η) .

Given the statistics of stationary and moving mitochondria, we can inversely solve

the fusion-to-fission ratio as

η =
1+ var(M)(EM)2 −2 varS∞

EMES∞
1− varS∞
(ES∞)2

p = 1 − η EM
ES∞ .

The predicted ratio is computed by plugging in the estimated statistics of mitochon-

drial size from fitted Gaussian mixture models (table 2.2). This gives a value of 0.48,

which is fairly close to the value (0.57) reported in the literature [13]. The simulated

distribution of mitochondrial size using this ratio is shown in and figure 2.8.

Table 2.2: predicted fusion-to-fusion ratio

fusion-to-fusion ration
model of

independent
fusion/fision

model of
fission regulated

fusion
reported value

-0.3280 0.4284 0.5745

Table 2.3: Statistics of mitochondrial size

moving mitochondria stationary mitochondria
mean variance mean variance
0.2775 0.0116 0.8150 0.0881
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Figure 2.8: Comparison of empirical and simulated distributions of mito-
chondrial size. Blue bars: histogram of mitochondrial size. Red curve: the second
mode fitted from Gaussian Mixture model. Blue and green curves: the mitochondrial
size distributions simulated with independent fission/fusion and fission-regulated fu-
sion respectively.

2.5 Conclusions

In this chapter we presented an in-depth analysis on mitochondrial morphology and

its biological implication. We found that the mitochondrial morphology in the axon

is relatively simple and can be summarized by their size and aspect ratio. We also

proposed a probabilistic model to explain the bi-modal distribution of mitochondrial

size. Combining these two, we demonstrated a way to infer the fission-to-fusion ratio

based on observed mitochondrial size distribution. The estimated value is close to
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the reported value in the literature.

Contradict to the commonly assumed independent fission/fusion process, our anal-

ysis suggests the independent fission/fusion leads to oversized mitochondria and can-

not explain the data observed. The proposed model of fission-regulated fusion fixed

this issue and provides a better prediction to the ratio of fission-to-fusion rate. How-

ever, whether other control mechanism can lead to the same prediction is still an

open question. In this regard, our modeling approach can still be adapted to analyz-

ing other possible control mechanism.

2.6 Appendix: Analysis of fission-regulated fusion

model

Here we present mathematical details of analyzing the fission-regulated fusion model

defined in the Section 2.4. The system is described by

Qn+1 = Qn +∑
f(Nfu(Y ))
i=1 Mi

S(t) = QNfi(t) +∑
f(Nfu(Ct))
i=1 Mi,

where Mi are i.i.d. to some distribution with known mean EM and variance var(M).

Y is the waiting time between two fission events and has exponential distribution with

parameter 1/λfi. Nfu(t) and Nfi(t) are Poisson counting processes with rate λfu and

λfi respectively. f(n) is a deterministic function mapping from nonnegative integers

to nonnegative integers. Ct is the current life time.

We start with computing the mean and variance of the imbedded Markov chain, which

defined as the mitochondrial mass right after a fission event.
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Theorem 1.

EQn = (S0 − p
1−pEMEf(Nfu(Y ))) ⋅ pn + p

1−pEMEf(Nfu(Y ))

varQn = (1 − p2n) p2

1−p2 ((EMi)2 ⋅ varf(Nfu(Y )) + var(Mi) ⋅ENfu(Y ))

Proof.

EQn+1 = p ⋅EQn + p ⋅EMEf(Nfu(Y ))

varQn+1 = p2 ⋅ varQn + p2 ⋅ var(∑Nfu(Yn+1)
i=1 Mi)

Solving these linear difference equation and use the initial condition that EQ0 = S0

and varQ0 = 0, we got the results.

Next we calculate the mean and variance of the imbedded Markov chain at an

arbitrary time point.

Theorem 2.

EQNfi(t) = (S0 − p
1−pEMEf(Nfu(Y ))) ⋅ e−(1−p)λfit + p

1−pEMEf(Nfu(Y ))

varQNfi(t) = (S0 − p
1−pEMEf(Nfu(Ct))) ⋅ e−(1−p)λfit

Proof. A direct calculation shows that

EpNfi(t) =
∞
∑
i=0

pn
λnfit

n

n!
e−λfit = e−(1−p)λfit.

Hence

EQNfi(t) = (S0 − p
1−pEMEf(Nfi(t)))EpNfi(t) + p

1−pEMEf(Nfi(t))

= (S0 − p
1−pEMEf(Nfu(Y ))) ⋅ e−(1−p)λfit + p

1−pEMEf(Nfu(Y )).
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Similarly,

varQNfi(t) = E(var(QNfi(t)∣Nfi(t))) + var(E(QNfi(t)∣Nfi(t)))

= (1 − e(1−p2)t/λfi)varQ∞ + (S0 − p
1−pEMEf(Nfu(Ct))) ⋅ e−(1−p)t/λfi

We will need the following auxiliary theorems to compute the mean and vari-

ance of S(t). The next theorem gives the distribution of the current life time of a

mitochondrion.

Theorem 3. Given Y follows exponential distribution with mean 1/λ, then the cur-

rent life Ct follows the distribution

P(Ct ≤ x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − e−λx if x ≤ t

1 otherwise

Furthermore, Ct → Y in distribution as t→∞ and for any function g(x) ≥ 0 with

Eg2(Y ) <∞,

lim
t→∞

Eg(Ct) = Eg(Y ) and lim
t→∞

varg(Ct) = varg(Y )

Proof. The distribution of Ct can be found in ([15], p.174). To compute the mean

value,

Eg(Ct) = ∫
t

0
g(x)λe−λxdx + g(t)e−λt → ∫

∞

0
g(x)λe−λxdx = Eg(Y )

by dominated convergence theorem. Similarly we can show that

lim
t→∞

varg(Ct) = varg(Y ).
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Next we compute the joint distribution the number of fission events and the current

life time of a mitochondrion.

Theorem 4. Given Y follows exponential distribution with mean 1/λ, the joint den-

sity of Ct and Nfi(t) is given by

fN(t),Ct(n,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λntn

n! e
−λt n

t (
t−x
t )n−1 for n ≥ 1 and x < t

e−λt for n = 0 and x = t

0 otherwise

Proof. We first compute the case for n ≥ 1 and x < t.

P(N(t) = n, Ct ≤ x) = P(t − x < Tn < t, Tn + Yn+1 > t)

= ∫
t

t−x ∫
∞
t−t2 fY (t1)fTn(t2)dt1dt2

= ∫
t

t−x ∫
∞
t−t2 λe

−λt1 λ
ntn−12

(n−1)! e
−λt2dt1dt2

= λntn

n! e
−λt(1 − ( t−xt )n).

The density is obtained by taking derivative with respect to x.

Theorem 5 shows that the mitochondrial mass right after a fission event is uncor-

related with the mass fused after the last fission event.

Theorem 5. Assuming the function g(y) ≡ Ef(Nfu(y)) satisfies 0 ≤ g(y) < C̃1tα, for

some constant α, then

lim
t→∞

cov(QNfi(t),
f(Nfu(Ct))

∑
i=1

Mi) = 0.
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Proof. Writing

EQn −EQNfi(t) = (S0 − p
1−pEMEf(Nfu(Ct))) ⋅ (pn − e−(1−p)λfit)

≡ C̃2(pn − e−(1−p)λfit),

we have

E((QNfi(t) −EQ)∑f(Nfu(Ct))
i=1 Mi)

= EE((QNfi(t) −EQNfi(t))∑
f(Nfu(Ct))
i=1 Mi)

= C̃2EM ⋅E((pNfi(t) − e−(1−p)λfit)g(Ct)∣Nfi(t),Ct)

= C̃2EM

⋅ (∑∞
n=1 ∫

t

0 (pn − e−(1−p)λfit)g(y)
λnfit

n

n! e
−λfit n

t (1 −
y
t )n−1dy + (1 − e−(1−p)λfit)g(t)e−λfit)

= C̃2EM ⋅ (λfit∑∞
n=0 ⋅

λnfit
n

n! e
−λfit ⋅ (pn+1 − e−(1−p)λfit)

⋅ ∫
t

0
g(y)
t (1 − y

t )n−1dy + (1 − e−(1−p)λfit)g(t)e−λfit)

From the assumption we have 0 ≤ ∫
t

0
g(y)
t (1 − y

t )n−1dy ≤ C̃3tα for a constant α, and

hence

t∑∞
n=0

λnfit
n

n! e
−λfit ⋅ pn+1 ⋅ ∫

t

0 g(y)
t
n(1 −

y
t )n−1dy

≤ t∑∞
n=0

λnfit
n

n! e
−λfit ⋅ pn ⋅ C̃3tα

= C̃3tα+1e−(1−p)λfit → 0 as t→∞

and

t∑∞
n=0

λnfit
n

n! e
−λfit ⋅ e−(1−p)λfit ⋅ ∫

t

0 g(y)
t
n(1 −

y
t )n−1dy

≤ t∑∞
n=0

λnfit
n

n! e
−λfit ⋅ e−(1−p)λfit ⋅ C̃3tα

= C̃3tα+1e−(1−p)λfit → 0 as t→∞.

.

These shows

lim
t→∞

E((QNfi(t) −EQ)
f(Nfu(Ct))

∑
i=1

Mi) = 0

and hence the covariance between QNfi(t) and ∑f(Nfu(Ct))
i=1 Mi goes to 0 as time ap-
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proaching to infinity.

Theorem 6 gives the mean and variance of fission/fusion modulated mitochondrial

mass.

Theorem 6. Assuming the functions

g1(t) = E
f(Nfu(t))

∑
i=1

Mi = EM ⋅Ef(Nfu(t))

g2(t) = var
f(Nfu(t))

∑
i=1

Mi = (EM)2 ⋅ var(f(Nfu(t))) + varM ⋅Ef(Nfu(t))

satisfies 0 ≤ g1(y) < C̃1tα for some constant α, Eg2
1(Y ) <∞ and Eg2(Y ) <∞ then

limt→∞ES(t) = 1
1−pEMEf(Nfu(Y ))

limt→∞ varS(t) = 1
1−p2 ((EMi)2 ⋅ varf(Nfu(Y )) + var(Mi) ⋅ENfu(Y ))

Proof. From assumptions and theorem 2, we first compute

E

Nfu(Ct)

∑
i=1

Mi = Eg1(Ct)→ Eg1(Y ) as t→∞

var∑Nfu(Ct)
i=1 Mi = varg1(Ct) +Eg2(Ct)

→ varg1(Y ) +Eg2(Y ) as t→∞.

ES(t) is thus computed as

ES(t) = EQNfi(t) +E∑
Nfu(Ct)
i=1 Mi

= 1
1−p2 ((EMi)2 ⋅ varf(Nfu(Ct)) + var(Mi) ⋅ENfu(Ct))

→ 1
1−p2 ((EMi)2 ⋅ varf(Nfu(Y )) + var(Mi) ⋅ENfu(Y )) as t→∞
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varQNfu(t) = E(var(QNfi(t)∣Nfi(t))) + var(E(QNfi(t)∣Nfi(t)))

= (1 − e(1−p2)t/λfi)varQ∞ + (S0 − p
1−pEMEf(Nfu(Ct))) ⋅ e−(1−p)t/λfi

varS(t) = varQNfi(t) + cov(QNfi(t),∑
Nfu(Ct)
i=1 Mi) + var∑

Nfu(Ct)
i=1 Mi

→ 1
1−p2 ((EMi)2 ⋅ varf(Nfu(Y )) + var(Mi) ⋅ENfu(Y ))

Following we analyzed two concrete examples based on these general theorems.

2.6.1 Model of independent fusion/fision

Given f(n) = n, we have

Ef(Nfu(Y )) = λfu
λfi

varf(Nfu(Y )) = λfu
λfi

+ (λfuλfi
)2.

Plug these into theorem 4, we get

limt→∞ES(t) = 1
1−p

λfu
λfi

⋅EMi

limn→∞ varS(t) = 1
1−p2 ⋅ ((EMi)2 ⋅ (λfuλfi

)2 + ((EMi)2 + var(Mi)) ⋅
λfu
λfi

)

Or conversely,

η =
2
var(S)
EMES

−(1+ var(M)(EM)2 )

1+ var(S)
(E(S))2

p = 1 − η ⋅ ES
EM
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2.6.2 Model of fission-regulated fusion

Given f(x) = min(x,1), the random variable f(Nfu(Y )) is actually a bernoulli ran-

dom variable. Hence we have

Ef(Nfu(Y )) = P(Nfu(Y ) > 0) ≡ η

varf(Nfu(Y )) = η(1 − η).

Plug these into theorem 4, we get

limt→∞ES(t) = 1
1−p ⋅ η ⋅EMi

limn→∞ varS(t) = 1
1−p2 ⋅ ((EMi)2 ⋅ η(1 − η) + var(Mi) ⋅ η)

Or conversely,

η =
1+ var(M)(EM)2 −2

var(S)
EMES

1− var(S)(ES)2

p = 1 − ηEM
ES
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Chapter 3

Probabilistic modeling of the

size-velocity relation of

mitochondrial transport

3.1 Introduction

Mitochondria are essential organelles of eukaryotic cells, serving a broad range of im-

portant functions that include energy production, metabolic regulation, signal trans-

duction, and stress response [1, 2]. To fulfill changing needs at different subcellular

locations, mitochondria undergo motor protein mediated active transport to reach

their destinations [3]. In the meantime, to sustain their physiological functions, mi-

tochondria undergo fusion and fission mediated content mixing, which also results in

substantial concomitant changes to their morphology [4]. Indeed, fusion and fission

play critical roles in defining the wide variety of morphology exhibited by mitochon-

dria inside cells [4]. One of the fundamental questions regarding the dynamics of

mitochondria is whether, and if so how, differences in their morphology result in dif-
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ferences in their transport behavior. So far, this question remains largely unanswered.

Neurons provide a powerful model system to address this question because of their

polarized structure and their critical dependence on mitochondrial dynamics for sur-

vival and function [5]. The long and thin axon, in particular, provides a simplified

setting for high-resolution quantitative analysis of relations between mitochondrial

morphology and transport. In this study, we used Drosophila third instar larvae as

our model organism and tracked individual mitochondria within the axon of the lar-

val neurons using high-resolution image analysis techniques. We found that these

mitochondria exhibited a wide range of sizes and a wide range of velocities. We then

focused specifically on analyzing the relation between their size and velocity.

To understand the mechanism underlying the mitochondrial size-velocity relation

observed in our experiments, we developed a probabilistic model that takes into ac-

count the multiple variables and their interdependency in defining the mitochondrial

size-velocity relation. To give an example of such variables and their interdepen-

dency, we note that, while larger mitochondria will experience stronger viscous drag

force during transport, they can also recruit more molecular motors, which in turn

can generate stronger actuation force. Our model can successfully explain the ob-

served size-velocity relation. Furthermore, it identifies the ratio of mean velocity to

its standard deviation as a measure of the binding behavior of motor proteins to the

microtubule. Using this ratio, we gained new insights into how microtubule associ-

ated protein tau modulates cargo motility.

Many studies have been conducted to model the behavior of molecular motors [6]

and intracellular transport [7]. In this study, we have focused on modeling and under-
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Figure 3.1: Summary of the proposed model and size-velocity relations re-
vealed in our model. (A) Cargoes with various sizes are carried by motor proteins
on a microtubule. (B) A hierarchy of factors considered in the proposed model.
(C)size-dependent cargo velocity under different scenarios. Uncooperative motors
has slow decreasing average velocity whose dynamic range is shrinking with size.
Cooperative motors has also decreasing average velocity when moving on sparsely
distributed microtubules. On the other hand, larger cargoes move faster on average
when moving on densely distributed microtubules.

standing the relation between the morphology and transport of mitochondria within

the axonal cytoskeleton. Studying the mitochondrial size-velocity relation provides

new insights into how groups of motors function inside living cells. Furthermore, be-

cause of the large sizes of mitochondria, studying their size-velocity relation provide

new insights into the mechanical properties of the network of cytoskeletal filaments

within the axon.
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3.2 Methods

3.2.1 Modeling

Individual mitochondria in the axon of Drosophila third instar larval neurons were

imaged and tracked as mentioned in Chapter 2. The general configuration of transport

of mitochondria by molecular motors walking on microtubules is illustrated in Fig.

3.1A. The key variables that define the mitochondrial size-velocity relation and their

interdependency are shown in Fig. 3.1B. Anterograde and retrograde transport of

mitochondria are driven by kinesin and dynein, respectively. Because the models

developed in this section apply to both kinesin and dynein, we refer to them simply

as “motor”. The mathematical notations used in this paper are summarized in Table

1.

average velocity of a single mitochondrion

For a mitochondrion moving in a certain direction over a time span ∆t, if the total

number of steps taken by the motors pulling this mitochondrion within the time span

is S∆t, and the step size is d, the average velocity of this mitochondrion is defined by

the following equation

V = d

∆t
S∆t. (3.1)

In the following, we model two dependency relations. 1) the dependency of S∆t on

the number of working motors M and 2) the dependency of M on the mitochondrion

radius r, assuming a mitochondrion is a sphere.
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stochastic stepping of a single motor

Movement of a mitochondrion is ultimately driven by the chemo-mechanical cycles of

individual motors. We assume that, over a time span ∆t, the number of steps taken

by a single motor follows a Poisson distribution with a mean of ∆t/τ , where τ is the

average duration of the chemo-mechanical cycle. This assumption is based on the

experimental observation that the waiting time between consecutive steps of kinesin

and dynein follows an exponential distribution [8, 9].

We simplify the complicated stepping of multiple motors as a Poisson process

whose rate is depended on the number of motors m. This microscopic stepping rate

can be determined from the macroscopic average velocity. Suppose the mitochondrion

is moved by m motors at velocity vm, the assumed Poisson distribution of motor

stepping gives

vm = E( d
∆t
S∆t∣M =m) = d/τ(m). (3.2)

The explicit form of vm is derived in the following.

velocity of a mitochondrion with cooperative motors

We make the same mean field assumption as in [10] and assume that the external

load on a mitochondrion is equally shared by its working motors. Furthermore, we

assume a linear force-velocity relation for the motor [11]. Under these assumptions,

the velocity of the mitochondrion pulled by m working motors under external load is

given by the following equation

vm(f) = vmax max(1 − f

mfs
, 0), (3.3)

39



where vmax is the velocity when the external load is zero. We further assume that

the shape of the mitochondrion can be approximated by a sphere with a radius r.

Following the Stoke’s law, by balancing the viscous drag force and the pulling force

of cooperative motors, we have

f = 6πηrvm = 6πηrvmax max(1 − f

mfs
,0). (3.4)

Solving this equation, the average velocity of a mitochondrion pulled by m motors is

given by

vm = vmax(1 −
C0r

mfs +C0r
) (3.5)

with C0 = 6πηvmax. This equation defines the size-velocity relation of a mitochondrion

pulled by m cooperative motors.

velocity of a mitochondrion with non-cooperative motors

At the other extreme, for non-cooperative motors, we simply assume that the average

velocity is independent of the number of pulling motors. That is, the average velocity

is given by

vm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vmax(1 − C0r
fs+C0r

) if m > 0

0 otherwise

size-dependency of total motor copy number N

Total number of motors as a function of mitochondrial size Next we model the total

number of motors N on a mitochondrion. We assume that spatial distribution of

motors on a mitochondrion is random and follows a spatial Poisson distribution with

a rate constant λ [12]. The probability of having n motors in a region of area A on
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Parameter values used

notation unit explanation Kinesin Dynein

πa 1/s binding rate of a motor to a microtubule 5∗ 1.6∗

εd 1/s unbinding rate of a motor to a microtubule 1∗ 0.27∗

vmax µm/s velocity of a single motor without loading 0.27 0.4
fs pN stall force of a single motor 6∗ 1.1∗

η cP cytoplasmic viscosity 200 200
C1 N.D. multiplicative constant in total numbers of 3 2

working motor
α N.D. exponent in total numbers of working motor 0.3 0.3

Table 3.1: Summary of parameters used in this chapter. Values with ∗ are taken from
[10]

variables and mathematical operations

notation description

τ average length of the chemomechanical cycle
d step size of a motor protein
λ motor density on a mitochondrion
E,P, var expectation, probability, and variance of a random variable
r radius of a spherical mitochondrion
1 indicator function which take value of 1 when the statement is

true and 0 otherwise
N total number of motors that can pull a mitochondrion
M number of motors that are exerting force on a mitochondrion
∆t time span of observing a mitochondrion
V, Vc, Vn mitochondrion velocity, subscripts indicate the mitochondrion is

moved by cooperative and non-cooperative motors, respectively
C(r) contact area between a mitochondrion and microtubules

Table 3.2: Summary of variables and mathematical operations used in this Chapter.

the mitochondrion surface is given by the following equation:

P(N(A) = n) = (λA)n
n!

e−λA. (3.6)

The actual number of working motors that can exert force on the mitochondrion

depends on the contact area between the mitochondrion and microtubules. We model

this contact area as

C(r) = C ′
1r
α (3.7)
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where C ′
1 and α characterize the number and distribution of microtubules around the

mitochondrion, respectively. In the Result section, we will show by simulation that

the number of microtubules only change C(r) up to a multiplicative constant C ′
1,

while the way of how microtubules distributed impacts the exponent α. In [13], the

number of microtubules is shown to increase the mitochondrion motility. However,

we will demonstrate that the size-dependency of mitochondrion motility is critically

determined by α, suggesting the way microtubules are distributed is more critical in

regulating mitochondrion velocity.

By combining the model of the total number of molecular motors (equation (3.6))

and the model of the contact area (equation 3.7), we can compute the probability of

having n motors that exert force on a mitochondria as

P(N(C(r)) = n) = (C1rα)n
n!

e−C1r
α

, (3.8)

where C1 = λC ′
1.

size-dependency of working motor copy number M

Previous works in [10] have described the steady state behavior of M given a fixed

total number of motors N = n. With the Poisson-distributed total copy number

N , the unconditional distribution of M can be calculated. In [10], the stationary

distribution of M ∣N = n is derived as P(M = m∣N = n) = Pm = (n
m
) (πa

εd
)m / (1 + πa

εd
)n

for n ≥m and 0 otherwise under the assumption that motors function independently.

Together with the assumption of the random motor copy N , it can be shown that

P(M =m) =
∞
∑
n=0

P(M =m∣N = n)P(N = n) = z
m
r

m!
e−zr
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where zr = πa/εd
1+πa

εd

C1rα. This suggests the number of working motors M is also Poisson

distributed with mean zr.

3.2.2 Experimental methods

Drosophila handling

To image axonal mitochondria, we crossed male UAS-mito-GFP/CyO (Bloomington

Drosophila Stock Center) with female pGAL4 SG26-1. UAS-mito-GFP/+; pGAL4

SG26-1/+ was used as a control. To image APP vesicles, we first crossed male UAS

APP-YFP with female pGAL4 SG26-1. UAS APP-YFP/+; pGAL4 SG26-1/+ was

used as a control. We further crossed male UAS APP-GFP/+; pGAL4 SG26-1/+

with female tau-RNAi, htauwt and hTauR406w, to image mitochondrial dynamics in

axons harbording tau knockdown, human tau overexpression or human hTauR406w

mutation. We maintained Drosophila stocks at 25○C, and set up crossing at 29○C.The

single neuron Gal4 driver pGAL4 SG26-149 was a gift from Dr. Lawrence Goldstein

(University of California San Diego).

fly dissection and imaging

Third instar larvae were dissected in calcium free HL3 buffer (in nM; 128 NaCl, 1

ethylene glycol tetraacetic acid (EGTA), 4 MgCl2, 2 KCl, 5 HEPES, and 36 sucrose)

to expose the segmental nerve as previously described [14]. Fly were dissected and

imaged as previously described [14, 15]. Time-lapse movies were collected using a

Nikon Eclipse Ti-E inverted microscope with a CoolSNAP HQ2 camera (Photomet-

ric) and a 100×/1.40 NA oil objective lens. The effective pixel size was 0.0645 µm.

Mito-GFP was imaged using a FITC filter set. Mitochondrial time-lapse movie was

collected at 5 frames per second rate for 1 min for motility and morphology analysis.
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APP vesicle time-lapse movie was collected at 10 frames per second for 30 sec.

primary neuron culture and imaging

Mouse E18 Hippocampal tissue was purchased from Brainbitllc. Tissue was dissoci-

ated using 0.25% Trypsin with EDTA (Life Technology). Neurons were cultured on

#1.5 cover glass in Neurobasal media supplemented with B27 and Glutamax (Life

Technology). On 6 days in vitro (DIV), neurons were transfected with APP-YFP us-

ing lipofectamine 2000 (Life Technology). After 24∼48 hours of transfection, neurons

were used for live imaging.

trajectory analysis

Time-lapse movies of mitochondria, APP and synaptotagmin 1 vesicles were processed

and traced using in house software [15]. The trajectories were analyzed as previously

described [15].

3.2.3 Simulation

We conduct a simulation study to study how the contact area between microtubules

and a cargo changes with cargo radius r. The simulation is set up as follows:

1. A circle with radius r centered at (r,0) is used to indicates a cargo’s occupation

in the cross section of an axon.

2. The locations of microtubules at the cross section are simulated according to a

spatial Poisson process. microtubules are assumed to be projecting perpendic-

ularly into the cross section.

3. Compute the overall segment length of microtubules that can be reached from

the cargo. Given the size of a motor l0 and a microtubule located l1 away
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from the center of the cargo, the segment length that is reachable to a motor is

determined by 2
√

(r + l0)2 − l21 if l1 ≤ r+ l0 and 0 otherwise. The overall segment

length is computed as the sum of individual segment length given simulated

microtubule locations in step 2.

4. For each batch of simulations, repeat above steps 1000 times to determine the

mean and variance of the overall segment length.

For the case of bundled microtubules, we simulated the spatial Poisson process with

isotropic Gaussian density centered at the center of the axon. The bandwidth of

the Gaussian density σ depicts the tightness of the microtubule. Higher value in

σ gives wider spread of microtubles located around the center. Since microtubules

shouldn’t pass though the occluded region of the cargo, the density is set to be 0 in

this occluded region. We calibrated the integral of the occluded Gaussian density to

ensure the average number of microtubules remain unchanged under different cargo

setting. The case of randomly distributed microtubules was simulated similarly except

a uniform density is used instead of Gaussian density. Spatial Poisson processes are

all simulated by thinning [12].

3.3 Results

To investigate how morphology influence the cargo motility, we first present predic-

tions of the size-velocity dependency from the proposed model and then followed by

the empirical data validation. Mathematical details can be found in the supplement

material. Following we will use Vn and Vc to denote the size-dependent velocity of

cargoes carried by non-cooperative and cooperative motors respectively.
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3.3.1 Size-velocity relation of mitochondria with non-cooperative

motors

In the case of non-cooperative motors, mean and variance of the cargo velocity are

calculated as (Theorem 2 in the supplement)

E(Vn∣N > 0) = d
τ
P(M > 0∣N > 0)

var(Vn∣N > 0) = d2

τ∆t
P(M > 0∣N > 0) + (d

τ
)2P(M > 0∣N > 0)(1 − P(M > 0∣N > 0))

respectively, where P(M = 0∣N > 0) can be explicitly calculated as e−zr−e−f(r)
1−e−f(r) . To

further investigate the dependency between cargo size and velocity, we conducted

the asymptotic analysis to see changes in velocity when cargoes are extremely small

or large. The analysis (Theorem 3 in the supplement) shows when the mean cargo

velocity as well as the variance are eventually decreasing to zero for large cargo size.

On the other hand, the mean and variance velocity for cargoes with insignificant size

are determined by the attach/deattach rate of motor proteins. Particularly, it can be

shown that the ratio of cargo velocity’s mean and variance converges to the ratio of

attach and detach rates of a single motor, i.e.,

limr→0 E2(Vn∣N > 0)
limr→0 var(Vn∣N > 0)

= πa
εd

( 1

1 + (1+πa/εd
πa/εd )dvopt∆t

). (3.9)

3.3.2 Size-velocity relation of mitochondria with cooperative

motors

Next we investigate how morphology influence the motility of cargoes carried by

cooperative motors. Although the explicit form of the expectation E(Vc) and and
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Figure 3.2: Predicted size-velocity relations. Each curve represents a size-
velocity relation computed from the proposed model. The cases of non-cooperative
motors are shown in the left panel while the case of cooperative motors are shown
in the right panel. Parameters are reported in table 3.1 unless specified in the figure
legend.
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variance var(Vc) are not available, we conduct an asymptotic analysis (Theorem 4 and

5 in the supplement) on the behavior of these two quantities of interest. Surprisingly,

our analysis shows that the limiting behavior of E(Vc) is critically depended on zr. We

found that the mean velocity decays to zero, when the cargo size is significantly large,

if zr = O(rα) with α < 1 (Figure 3.2). However, the profile of mean velocity converges

to vopt if zr = O(rα) with α > 1 . For the case of cargoes with insignificant sizes, the

ratio of variance and square of expectation is as it is in the case of non-cooperative

cargoes

limr→0 E2(Vc∣N > 0)
limr→0 var(Vc∣N > 0)

= πa
εd

( 1

1 + (1+πa/εd
πa/εd )dvopt∆t

). (3.10)

3.3.3 In-silico study of the impact from microtubule distri-

bution

To investigate how the contact length between microtubules and a cargo changes with

cargo size, we conducted a simulation study considering the following two scenarios:

1) microtubules packed around the center of an axon and 2) microtubules scatter

randomly in an axon. For the first scenario, locations of microtubules at the cross

section of an axon is simulated by a spatial Poisson distribution with isotropic Gaus-

sian density centered at the center of an axon (Fig. 3.3, right). The bandwidth of

the Gaussian density depicts how tight microtubules are packed. The second scenario

of randomly scattered microtubules is simulated by a spatial Poisson process with a

uniform density (Fig. 3.3, left). Details can be found in Material and Method.

Our simulation results showed that the size-dependency of contact lengths has a

convex profile for randomly scattered microtubules, while a concave profile is observed

for packed microtubules (Fig. 3.3). For the case of packed microtubules, we varied
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the bandwidth of the Gaussian density form 0.05 to 0.3 (µm), while the average

number of microtubules simulated are kept to be 10. Uniform density are used to

simulated 5, 10, 20 randomly scattered microtubules. Both profiles were not changed

by the tightness of packed microtubules nor the number of randomly distributed

microtubules. In section 1, we hypothesized that the total number of motors on a

cargo is determined by the contact area between microtubules and a cargo and hence

is proportional to rα on average, where r is the cargo radius. These simulation results

not only support this assumption but also suggest the choice of α in equation 3.8.

The concave profile from packed microtubules is better approximated by setting α < 1

while α > 1 better depicts the convex profile from randomly scattered microtubules.

3.3.4 In-vivo observation of size-velocity dependency for large

cargoes

To test the proposed model, we imaged the axonal transport of mitochondria in

Drosophila. Mitochondria are chosen as the subject of study because of their vari-

ous sizes. Typical, mitochondrial size (measured as segmented area from fluorescent

images) ranges from 0.5µm2 to 2µm2. The collected images are processed by image

segmentation and particle tracking algorithms to estimate the size and velocity of a

mitochondrion. We also define the effective mitochondrial radius as the root mean

square of major and minor axes’s length computed form the best fit ellipse to the

segmented area. Figure 3.4 shows the scatter plot of mitochondrial motility to the

effective mitochondrial radius, where motility is further grouped by its direction (an-

terograde and retrograde).

On top of data scatter, we indicated the region that is less than 1 standard devi-
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Figure 3.3: The simulated size-dependency on contact length between mi-
crotubules and a cargo. Left: contact length between randomly distributed micro-
tubules and a cargo. Curves represent cases of 5, 10, 20 microtubules simulated per
unit area as illustrated in the upper panels. Right: contact length between packed
microtubules and a cargo. microtubules are simulated according to a Gaussian den-
sity whose bandwidth represents the tightness of packed microtubules. Three cases
with bandwidths of 0.05, 0.1 and 0.3 are simulated. Simulated examples are shown
on the upper panels where microtubule are shown in black and the cargo is shown in
blue.
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Figure 3.4: Predicted tendency fits empirical data. Each dot represents the
size and velocity of an mitochondrion. The average velocity given a size is computed
by kernel regression and depicted by the black dash curve. The blue solid curve is
the predicted average velocity given size. Dashed lines indicates the regions within
1-standard deviation away the predicted average velocity.

ation away from the average velocity predicted by the proposed model. Parameters

used are either obtained from literature or manually adjusted as summarized in Table

3.2. We used the model of non-cooperative and cooperative cargoes to plot the re-

gions shown in panels of anterograde and retrograde motion respectively. The average

velocity estimated by kernel smoothing is also shown in the figure 3.4. It can be seen

that there is a good agreement between average velocity either predicted theoretically

or accessed empirically.

3.3.5 Model predicts attach/detach rates of small vesicles

So far, we have shown that our model well predicts the relation of size and velocity

of axonal moving mitochondria. We further looked at the behavior of cargoes with

insignificant sizes (later called small vesicles). Our model predicted that the ratio

of square mean (E(V )2) to variance (var(V )) of small vesicles’ velocities was equal

to the ratio of attach to detach rate (πa/εd) of motor proteins (equation 1 and 2).
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To assess this prediction, we calculated the empirical ratio of average velocity to its

standard deviation (E/SD ratio) and compared it with square root of πa/εd ratio of

kinesin-1, kinesin-3 and dynein motors estimated using literature reported values [10]

(Table 3.1).

To assess these empirical values, we imaged the transport of APP and synapto-

tagmin1 in fly motor neuron or in mouse primary neurons. As previously suggested,

the anterograde transport of APP and synaptotagmin1 vesicles are mainly driven

by kinesin-1 motors and kinesin-3 motors respectively [16, 17, 18], while retrograde

transport of both APP and synaptotagmin1 vesicles are driven by dynein motors [ref].

Mean, standard deviation, and the E/SD ratio of transport velocity are reported in

table 2, in which the 99% confidence intervals of the E/SD ratios are estimated by

bootstraping [ref]. We found the literature reported (πa/εd)1/2 value of dynein mo-

tor was in the 99% confidence interval of the empirical E/SD values of retrograde

transport of fly APP vesicles and synaptotagmin1 vesicles. Also, literature reported

(πa/εd)1/2 values of kinesin-1 and kinesin-3 are close to but statistically different from

empirical E/SD values of APP and synaptotagmin1 vesicles (table 1). Overall, our

model suggested that the binding behavior of motors πa/εd can be estimated simply

by evaluating the E/SD ratio. This prediction is particularly useful since the value

of πa/εd is generally unknown and experimentally inaccessible.

3.3.6 Model predicts changes of single-motor binding behav-

iors in neurodegeneration model

Next we proceed to investigate if the changes of E/SD ratio could reflects neurodegen-

erative deficits (ND) of axonal transport . Microtubule associate protein tau has long
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Empirical values
Motor

Estimated
(πa/εd)E SD E/SD (95% C.I.)

Fly APP anterograde vesicle 0.62 0.34 1.80 (1.75, 1.86)
Kinesin-1 2.24

Mouse APP anterograde vesicle 0.44 0.27 1.63 (1.24, 1.90)

Fly APP retrograde vesicle 0.55 0.24 2.29 (2.20, 2.38)
Dynein 2.43Fly Syt1 retrograde vesicle 0.55 0.24 2.34 (2.25, 2.43)

Mouse APP retrograde vesicle 0.44 0.26 1.70 (1.17, 2.23)

Fly Syt1 anterograde vesicle 0.53 0.27 1.97 (1.86, 2.09) Kinesin-3 ??

Table 3.3: E/SD ratios of APP and Sytn1 vesicle transport. E and SD represent
the average and standard deviation of vesicle velocity respectively. C.I.: confidence
interval

been suggested to play an important role in the pathology of NDs. Previous studies

showed that tau expression and tau mutation impaired kinesin-1 [19, 20], kinesin-3

[21] and dynein [19] mediated transport. However, it is not clear that how tau protein

mechanistically affects axonal transport driven by different motor proteins. In [22],

tau is hypothesized as a “road block” for to modulate cargos’ binding on a micro-

tubule. Under this hypothesis, we expect to see 1) an increase in πa/εd ratio under

reduced tau expression and 2) a decrease in πa/εd ratio under tau overexpression.

To see how πa/εd ratio is changed in tau pathology models, we analyzed transport

velocities of APP and synaptotagmin1 vesicles in axons harboring tau overexpression,

tau mutation and tau knockdown. E/SD ratio is computed to estimate (πa/εd)1/2 ratio

and reported in Figure 3.5. We found E/SD ratios are all increased in tau knockdown

for APP and synaptotagmin1 cargoes. In the cases of tau mutation or over expres-

sion, E/SD ratios either are slightly decreased or remain unchanged for all vesicles,

with the exception of APP antegrograde vesicles.

For the vesicle motility, our data are consistent with previous studies [16, 14]. We

found that the transport velocity of kinesin-1 cargo (i.e. anterograde transport of
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APP vesicles) was the most sensitive to tau dose. Tau overexpression and mutation

retarded anterograde transport velocity of APP vesicles by 15% and 24% respectively,

while tau knockdown boosted anterograde transport velocity of APP vesicles by 30%

(Figure 3.5). We found dynein and kinesin-3 driven transport were less affected by

tau dose. Tau overexpression and mutation slightly reduced retrograde transport

velocities of APP and synaptotagmin1 vesicles by 3∼6%. Also tau knockdown, tau

overexpression and mutation reduced or increased anterograde transport velocities of

synaptotagmin1 vesicles by 6∼7%.

3.4 Discussion

We presented a hierarchical model and its analysis on the dependency between cargo

velocity and size. Our work generalized the model proposed by [10] by including

factors such as cargo sizes, single motor stepping and microtubule distribution. Al-

though we did not explore this direction, we would like to point out that the kinetics

of ATP hydrolysis can be easily incorporated with our model.

Our model suggested that the motility of large cooperative cargoes depends crit-

ically on the way of how microtubules distribute around the cargoes. When the

contact area between microtubules and cargoes grows sub-linearly with the increase

of cargo size, larger cargoes would tend to move slower. Using axonal transport of

mitochondria as an example, since the diameter of a microtubule (∼20 nm) is around

25 folds smaller than typical radius of a mitochondrion (∼500 nm), the contact area

between these two should be determined by the dimension of a microtubule and hence

grows sub-linearly with the cargo size. This sublinear dependency is also confirmed

by our simulation. The decreasing tendency in cargo velocities of large mitochondria
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observed in empirical data also supports our model prediction.

Our model also recovered the dynamics of cargoes with vanishing size. Our analy-

sis suggested a way to evaluate the ratio of attach/detach rate at single molecule level

from empirically accessible velocity measurements. The predicted value is close to the

value in literature, despite the statistically significant difference in some cases. This

model also predicted the changes of single-motor binding behaviors of APP and Synt1

cargoes under the mutation, overexpression and knockdown of microtubule-associate

protein tau.
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3.5 Appendix: Mathematical analysis of size-velocity

relation

As it is set up in the main text, we use random variables as follows

1. N the total number of motors that is potentially can exert force on a cargo. N

is a Poisson random variable with parameter C1rα.

2. M the number of motor that is exerting force on a cargo, i.e., the number of

working motors. M ∣N is a multi-nominal random variable, i.e., P(M = m∣N =

n) = Pm = (n
m
) (πa

εd
)m / (1 + πa

εd
)n for n ≥m and 0.

3. S∆t number of forward steps that motors move in ∆t, S∆t∣M = m is a Poisson

random variable with parameter ∆t/τ(m).

4. V ≡ d
∆tS∆t defines the velocity of a cargo within a timespan ∆t

The cooperative strategy of motors is modeled by the dependency of τ(M) on M :

1. for non-cooperative motors, 1/τ(M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vopt
d (1 − C0r

fs+C0r
) if M > 0

0 otherwise

2. for cooperative motors sharing forces evenly, 1/τ(M) = vopt
d (1 − C0r

Mfs+C0r
).

The goal here is provide mathematical details of our analysis on how the velocity

changes with respect to cargo size r

3.5.1 Size-velocity relation for cargos carried by un-cooperative

motor

First we compute the mean and variance of the cargo velocity.
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Theorem 7. Define the velocity process V ≡ d
∆tS∆t, where S∆t∣M = m is a Poisson

random variable with parameter ∆t/τ(m). Then

E(V ∣N > 0) = dE(1/τ(M)∣N > 0), and

var(V ∣N > 0) = d

∆t
E(V ∣N > 0) + d2var(1/τ(M)∣N > 0)

Proof. Let τ be a function of m denoted by τ(m), we can compute

E(V ∣N > 0) = E(E(V ∣M)∣N > 0)

= E(E( d
∆tS∆t∣M)∣N > 0)

= E(d/τ(M)∣N > 0)

and

var(V ∣N > 0) = E(var(V ∣M)∣N > 0) + var(E(V ∣M)∣N > 0)

= E( d2

∆tλ(M) ∣N > 0) + var( d
τ(M) ∣N > 0)

Note that the first term in variance is dependent on the time span of observing

the motor. We shall ignore this term in the subsequent analysis since 1) we want

to analyze the intrinsic noise of the cargo velocity and 2) this term is small under

practical experimental setting. We can estimate E( d2

∆tτ(M) ∣N > 0) ≤ d
∆tvopt. Plug in

the values that d = 8nm, vopt = 0.4µm/s and ∆t = 3s, we get this term is no more than

1.06 × 10−3(µm2/s2). AS will be shown latter, for small cargoes, the second term is

roughly v2
opt, which is of the value 0.16(µm2/s2).

In the case of non-cooperative motors, the average length of mechanochemical

cycle is independent of the number of motors. With this assumption and theorem 1,

we get:
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Theorem 8. If 1/τ(m) = 1/τ for m > 0 and 0 otherwise, then

E(V ∣N > 0) = d
τ
P(M > 0∣N > 0)

var(V ∣N > 0) = d2

τ∆t
P(M > 0∣N > 0) + (d

τ
)2P(M > 0∣N > 0)(1 − P(M > 0∣N > 0))

Following theorem shows the mean and variance of cargo velocity when the cargo

size is significantly large.

Theorem 9. If 1/τ(m) = vopt
d (1 − C0r

fs+C0r
), then

limr→0 E(V ∣N > 0) = πa/εd
1+πa/εdvopt

limr→∞E(V ∣N > 0) = 0

limr→0 var(V ∣N > 0) = πa/εd
(1+πa/εd)2v

2
opt + d

∆t
πa/εd

1+πa/εdvopt.

3.5.2 Size-velocity relation for cargos carried by cooperative

motor

For cooperative motors, we first compute the mean and variance of the cargo velocity

when the cargo size is significantly small.

Theorem 10. If 1/τ(m) = vopt
d (1 − C0r

mfs+C0r
), then

limr→0 E(V ∣N > 0) = πa/εd
1+πa/εdvopt

limr→0 var(V ∣N > 0) = πa/εd
(1+πa/εd)2v

2
opt + d

∆t
πa/εd

1+πa/εdvopt.
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Proof. We shall show that
vopte−zr
1−e−f(r) ∑m≥2( mfs

mfs+C0r
)( z

m
r

m! )→ 0 as r → 0 and hence

limr→0 E(V ∣N > 0) = vopte−zr
1−e−f(r) (

fszr
fs+C0r

+∑m≥2( mfs
m+C0r

)( z
m
r

m! ))

= limr→0
vopte−zr
1−e−f(r)

fszr
fs+voptC0r

= πaÒεd
1+πaÒεdvopt.

The first limit is because

∑m≥2( mfs
mfs+C0r

)( z
m
r

m! ) = ∑m≥2( fs
mfs+C0r

)( zmr
(m−1)!)

= zr∑m≥1( fs
(m+1)fs+C0r

)( z
m
r

m! )

≤ zrfs
2fs+C0r

∑m≥1(
zmr
m! )

= zrfs
2fs+C0r

(ezr − 1)→ 0 as r → 0

Similarity, since 0 ≤ ( mfs
mfs+C0r

)2 ≤ ( mfs
mfs+C0r

), we have

v2
opte

−zr

1 − e−f(r) ∑m≥2

( mfs
mfs +C0r

)2(z
m
r

m!
)→ 0 as r → 0

and hence

lim
r→0

E(V 2∣N > 0) = lim
r→0

e−zrzr
1 − e−f(r)

(
voptfs

fs + voptC0r
)2 = πa Ò εd

1 + πa Ò εd
v2
opt

overall

limr→0 var(V ∣N > 0) = limr→0 E(V 2∣N > 0) −E(V ∣N > 0)2

= πaÒεd
1+πaÒεdv

2
opt − ( πaÒεd

1+πaÒεd )
2v2
opt

= πaÒεd
(1+πaÒεd)2v

2
opt

Now we compute the mean velocity for large cargoes carried by cooperative motors.
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Theorem 11. For cooperative motors with 1/τ(m) = vopt
d (1 − C0r

mfs+C0r
), then

lim
r→∞

E(V ∣N > 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if α < 1

vopt if α ≥ 1

Proof. First we compute the upper bound of E(V ∣N > 0).

E(V ∣N > 0) = vopt∑m(1 − C0r
mfs+C0r

)( z
m
r

m! e
−zr)

= vopt(∑m( mfs
mfs+C0r

)( z
m
r

m!
e−zr

1−e−f(r) ))

≤ vopt( zr
C0r
∑m(mfsC0r

)( z
m
r

m!
e−zr

1−e−f(r) ))

= vopt( fsC0
) zr
r(1−e−f(r))

= O(rα−1)→ 0 if α < 1 as r →∞

Next we compute the lower bound of E(V ∣N > 0).

E(V ∣N > 0) = vopt∑m(1 − C0r
mfs+C0r

)( z
m
r

m!
e−zr

1−e−f(r) )

= vopt(1 −∑m( C0r
mfs+C0r

)( z
m
r

m!
e−zr

1−e−f(r) ))

= vopt(1 − C0r
zr ∑m( 1

mfs+C0r
)( z

m+1
r

m!
e−zr

1−e−f(r) ))

= vopt(1 − C0r
zr ∑m( m+1

mfs+C0r
)( zm+1

r

(m+1)!
e−zr

1−e−f(r) ))

≥ vopt(1 − C0r
zr(1−e−f(r))fs ) for large r

→ vopt if α > 1 as r →∞

Clearly, E(V ∣N > 0) ≤ vopt.
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Chapter 4

Characterize spatiotemporal

dynamics of intracellular transport

at the whole-cell scale

4.1 Introduction

Intracellular transport is the process of distributing and collecting cargoes to meet the

changing structural and functional needs at different sites inside a cell. Because the

intracellular environment is highly dynamic and heterogeneous, a fundamental ques-

tion regarding intracellular transport is how it is controlled spatially and temporally

to deliver cargoes to the right place at the right time. So far, the molecular machin-

ery of intracellular transport has largely been identified [1]. However, the spatial and

temporal control mechanism of intracellular transport remains poorly understood,

especially at the whole-cell scale. Addressing this question requires computational

methods for quantitative characterization of whole cell-scale spatiotemporal dynam-

ics of intracellular transport. However, such methods are currently lacking.
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To address this problem, we developed image-based computational methods for

characterizing spatiotemporal dynamics of intracellular transport. As a first step, we

developed a computational method to decompose signals of stationary and moving

cargoes into separate image channels. Specifically, we chose the transport of lysosome

associated membrane protein 1 positive (Lamp1) cargoes as our model system. Be-

cause of the highly dynamic nature of Lamp1 transport, a main challenge is to infer

its steady-state localization. [2]. Our method addresses this challenge by providing

a way to partition the spatiotemporal dynamics of Lamp1 transport into two parts:

the localization of stationary cargoes in space and the pattern of cargo movement in

space and time.

4.2 Characterizing global spatiotemporal dynam-

ics of intracellular transport

Tracking movement of individual cargoes is often the first step to characterize intra-

cellular transport. Currently, the common practice is to first locate individual cargoes

through particle detection and then follow their movement using single particle track-

ing techniques. This approach, however, has several limitations. First, cargoes are

often labeled by fluorescent proteins. Due to factors such as variation of expression

level and diffusion of fluorescent proteins, the images often have strong background

and low signal-to-noise ratio. This is known to cause significant degradation of per-

formance in single particle tracking [3]. Second, when the spatial density of cargoes is

high, to resolve movement of individual particles is often not reliable. Furthermore,

complete trajectories of individual particles may not be essential for identifying global

patterns of cargo movement.
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Figure 4.1: Decomposition of an image sequence of the Lamp1 transport. (A)
The first frame of the image sequence. (B) Decomposed background fluorescence (C)
Decomposed signals from stationary Lamp1 cargoes. (D) A 2D flow map generated
from decomposed signals of moving Lamp1 cargoes.

Here we propose a signal decomposition method to characterize whole-cell scale

cargo transport without single particle tracking. The main idea is to separate signals

from background fluorescence, stationary and moving cargoes using a signal decom-

position approach. The separation of moving cargoes from stationary cargoes makes

it possible for us to characterize global organization of these two types of cargoes

separately. The signal decomposition method for separation of signal of background

fluorescence in a static image was first developed in [4] and then extended to dynamic

time-lapse images [5].
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4.2.1 Image formation

We consider the image model as follows:

It = Bt + g ∗ (St +Mt) + εt,

where It, Bt, St and Mt are m-by-n matrices representing the given image, back-

ground fluorescence signal, the foreground fluorescence signal from stationary and

moving cargoes, respectively. εt denotes a zero mean random noise. The subscript t

stands for time t and g is the point spread function of the microscope. Throughout

this paper, we use symbols (for example, I) without subscript t to refer to 3-fold

tensors representing stacks of matrices [6]. Our goal is to separate B, S, and M

into three separate channels based on their different spatiotemporal characteristics.

Typically background fluorescence is diffusive in space and slow-varying in time [4].

Thus, we assume the background fluorescence Bt is structured and thus low-rank

both in space and time. Signal from stationary cargoes is slow-varying in time and

sparsely distributed in space. Thus, we assume the foreground fluorescent signal from

stationary cargoes St is structured and thus low-rank in time and sparse in space.

Signal Mt from moving cargoes is also assumed to be sparse in space. In the following

we propose a two-stage approach to separate signals form stationary/moving cargoes

and the background fluorescence based on these characteristics. The characteristics

of each signal is summarized in Table 4.1

The main idea of the proposed approach is to successively separate signals in to a

structured part and a sparse part. In the first stage, we separate the combination of

Bt and St, called At apart from Mt. As can be seen in Table 4.1, At is stable in time

and Mt is only sparse. At the second stage, we further decompose the combination At
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Table 4.1: Characteristics of signals

Signal Source Space Time Sparsity
Bt Background fluorescence structured stable no
St Stationary cargo not structured stable yes
Mt Moving cargo not structured not stable yes

into Bt and St. And this is done similarly as in the first stage since Bt is structured

in space while Mt is only sparse in space.

4.2.2 Separation of signals of moving cargoes

To separate the signal of moving particles, we formulate it as the following optimiza-

tion:

[A∗,M∗] = argminA, M
1

2
∥I − (A + g ∗M)∥2

2 + λ1∥A(3)∥∗ + λ2∥M∥1, (4.1)

subject to M ≥ 0. (⋅)(3) ∶ Rm×n×k → Rk×(nm) is the unfolding operator along time

dimension [6], i.e., the operation to stack vectors of the intensity profile over time at

a fixed pixel into a matrix. The nuclear norm ∥(⋅)∥∗, defined by the sum of singular

values of a matrix, is a convex relaxation of matrix rank. Using this penalty, we

expect to confine A to have less complicated behaviors in time and therefore contains

only signals from background fluorescence and stationary cargoes. Also, the l1 norm

∥(⋅)∥1, defined by the sum of absolute values of elements in a matrix, is a sparsity

measurement, which would enforce signals of sparsely distributed moving cargoes

into M∗. This optimization is the relaxed optimization problem of robust principal

component analysis [7] with a modified data error term to account for the point spread

function.

We solved this optimization problem by the forward-backward algorithm [8]. The

update rules of forward-backward algorithm are derived as follows: Given initial

69



values A0 and M0, iteratively update

A+ = (S∗hλ2((A − h(A + g ∗M − I))(3)))(3),

M+ = S1+
hλ3

(M − hĝ ∗ (A + g ∗M − I)),

where (ĝ)i,j = g−i,−j and the operation (⋅)(3) ∶ Rk×(nm) → Rm×n×k is the inverse opera-

tor of the unfolding operator (⋅)(3) defined above. S∗hλ2 and S1+
hλ3

are soft thresholding

operators on the singular values and values of elements respectively as defined in the

appendix.

4.2.3 Separation of signals of stationary cargoes

In the second stage, the signals St and Bt are further decomposed from their combi-

nation At by solving the optimization problem

[B∗
t , S

∗
t ] = argminBt, St

1

2
∥A∗

t − (Bt + g ∗ St)∥2
2 + λ3∥Bt∥∗ + λ4∥St∥1, (4.2)

subject to St ≥ 0. A∗ is obtained from the previous step and symbols with subscript

t denotes tth frame in the corresponding image sequence. We would like to point out

that this algorithm can be stand-alone for removing the background fluorescence in

a single image with sparse point features [4]. A typical example is shown in (Fig.

1A). We note that this optimization problem can be solved similarly by the forward-

backward algorithm [8, 4]. The update rules of FB are as follows [4]:

B+
t = S∗hλ3(Bt − h(Bt + g ∗ St −A∗

t )),
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S+t = S1+
hλ4

(St − hĝ ∗ (Bt + g ∗ St −A∗
t )),

where (ĝ)i,j = g−i,−j. Detailed derivation of the updating rule and convergence analysis

can be found in the Appendix. Specifically, the gradient of this objective function is

2−Lipschitz continuous provided that ∑i,j gi,j = 1 and gi,j ≥ 0. In this case, we can

choose a constant step size for convenient implementation and rapid convergence. We

choose t = 1.9/2 throughout this paper.

4.2.4 Representing global structure and flow of cargoes

Fig. 1 shows an example of three separated signals in an image sequence. With

our decomposition method, a visualization of two-dimensional cargo transport is con-

veniently provided by taking maximum over the temporal dimension of the 3-order

tensor M∗ (Fig. 1D). We define the 2D-flow map as

M̂i,j = maxkM
∗
i,j,k.

The 2D flow map visualizes the spatiotemporal dynamics of a two-dimensional trans-

port process as curvilinear features of objects in an image. As illustrated in Fig.

1D, 2D flow map provide a direct representation of intracellular transport at the

whole-cell scale and is suitable for studying its global dynamics. Furthermore, repre-

senting the spatiotemporal dynamics of intracellular transport in a flow map allows

the usage of image processing techniques, such as multi-resolution analysis, to study

global organization of intracellular transport.

Similarly, the localization of stationary organelles can be visualized as an image

Ŝi,j = maxkS
∗
i,j,k.
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Overall, we propose to characterize the spatiotemporal dynamics of intracellular

transport at the whole-cell scale by characterizing the steady-state distributions of

stationary cargoes in conjunction with the dynamic patterns of cargo movement. We

refer these two fine organization as the structure and flow of intracellular transport.

4.3 Validation and applications

4.3.1 Validation by simulation

syndetic image data

To test our algorithm, we generated a synthetic image with a known background

according to

Btrue
i,j,k = A × (2 − 1

2
[(Xi,j − Yi,j)2 + 1

c2
(Xi,j + Yi,j)2])

where Xi,j = −1+0.01×i and Yi,j = −1+0.01×j for 0 ≤ i, j ≤ N . N represents the width

and height of the simulation image and is chosen to be 201 in our case. The profile

of Btrue is chosen to have elliptic level sets with aspect ratio 1/c and intensity values

within [A, 2A]. Specifically, we choose A = 1000 and c = 2. The foreground F true

consists of 100 point features uniformly distributed in the first image plane with in-

tensity level 500. Among them, 50 point features are selected to perform random walk

with fixed drift while the other 50 remain stationary. 10 frames of synthetic images

are then generated as the sum of background and foreground signals plus an additive

Gaussian noise with different noise levels. The variance of the Gaussian noise ranges

from 0, 100 to 200 so that the corresponding signal ratio are ∞, 5 and 2.5, respectively.
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Figure 4.2: Reconstructed 2D flow maps from synthetic image data. Upper
row shows the maximum projection of simulated image sequences under different
noise level. Reconstructed 2D-flow maps are shown in the lower row.

validation on M

To evaluate the performance of our algorithm, we report the F1-score to see if the

reconstructed 2D-flow map contain information of trajectories in ground truth images.

Specifically, we define the F1-score of a matrix M ∈ Rm×n as

F1(M) = 2 × precision(M) × recall(M)
precision(M) + recall (M)

,

while

precision(M) = #{M > 0 ∩Mtrue > 0}
#{M > 0}

and

recall(M) = #{M > 0 ∩Mtrue > 0}
#{Mtrue > 0}

.
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Table 4.2: F1 score

SNR=∞
λ1 Ó λ2 10 20 40
1000 88.5 ± 0.6 90.1 ± 0.2 84.9 ± 0.5
2000 61.5 ± 1.3 88.3 ± 0.6 90.1 ± 0.4
3000 50.4 ± 1.2 86.1 ± 0.8 88.3 ± 0.5
5000 49.6 ± 1.2 85.4 ± 1.0 87.5 ± 0.6

SNR= 5
λ1 Ó λ2 10 20 40
1000 85.8 ± 0.7 1.3 ± 0.5 0 ± 0.0
2000 56.8 ± 1.0 85.2 ± 0.8 8.7 ± 2.5
3000 48.6 ± 0.8 88.1 ± 0.7 85.0 ± 0.8
5000 48.6 ± 0.8 48.7 ± 0.7 81.1 ± 1.3

SNR= 2.5
λ1 Ó λ2 10 20 40
1000 15.8 ± 1.6 0 ± 0.0 0 ± 0.0
2000 56.5 ± 0.6 11.1 ± 1.5 0 ± 0.0
3000 49.4 ± 0.8 79.2 ± 1.2 8.4 ± 1.7
5000 49.4 ± 0.8 49.5 ± 0.8 75.7 ± 0.7

The performance of our method is tested with various parameters λ1 and λ2. In

our simulation, we found that the optimal result determined by F1-score agrees with

visual inspection quite well. Examples of reconstructed 2D-flow maps determined

by F1-score are shown in figure 4.2. Detailed results are summarized in Table 4.2.

Due to space limitation, only cases with medium (SNR = 5) and low (SNR = 2.5)

signal-to-noise ratio are reported. Note that the signal-to-noise ratio of the last sim-

ulated example is lower than 4 [3], which is known to cause substantial performance

degradation of single particle tracking. Our algorithm can significantly enhance im-

age quality and can be used as pre-processing to enhance the performance of single

particle tracking.
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validation on background removal

To evaluate the performance of the second stage of our algorithm, we use two error

metrics for reconstructed foreground and background, respectively. For the recon-

structed foreground, we use the normalized root mean square error with respect to

the intensity level of point features. Specifically, we define the normalized root mean

square error of a matrix F ∈ Rm×n as

nRMSE(F ) =

√
∑i,j(Fi,j − F true

i,j )2

m × n × σ2
.

For the reconstructed background, we report the normalized sum-of-square error, i.e.,

E2(B) = ∥B −Btrue∥F/∥Btrue∥F .

We test our algorithm with various values of λ1 while keeping λ2 = 20. Results are

summarized in Table 4.3. In [9], a background estimation method based on filtering

spiky signals from first singular vectors of each image frame is proposed (TADN). In

comparison, our algorithm gives better results.

4.3.2 Application to real image data

background removal

We first tested the performance of our algorithm on removing the background signal

of diffusive nature from real images. Figure 4.3 (A) and (B) show results of process-

ing images with point features and diffusive background signals. These images are

single frames from image sequences of stochastic optical reconstruction microscopy

(STORM). The computation typically takes a tens of seconds to be completed on a
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Table 4.3: Reconstruction Errors

E2(B) (h)
σ Ó λ1 100 200 400 1000 TADN
0 6.1 ± .24 2.5 ± .11 4.6 ± .06 26 ± 0.10 70 ± .007
5 6.4 ± .25 2.5 ± .09 4.6 ± .05 26 ± 0.10 70 ± .007
10 7.3 ± .22 2.6 ± .08 4.8 ± .06 26 ± 0.11 70 ± .007
50 26 ± .11 13 ± .11 14 ± .21 57 ± 0.71 70 ± .012

nRMSE(F ) (h)
σ Ó λ1 100 200 400 1000 TADN
0 28 ± 8.9 19 ± .54 18 ± .57 72 ± 0.36 252 ± .02
5 29 ± 9.6 19 ± .57 19 ± .57 73 ± 0.34 253 ± .05
10 29 ± 9.0 19 ± .55 20 ± .54 74 ± 0.38 254 ± .10
50 30 ± 8.9 48 ± .54 84 ± .65 253 ± 2.9 272 ± .46
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desktop workstation (2× Intel Xeon E5503 2.00 GHz and 8G RAM). Diffusive back-

ground is often a major technical barrier in STORM that often leads to significant

performance deterioration in subsequent image processing. So far, overcoming this

barrier relies on laborious optimization of experimental protocols to reduce diffusive

fluorophores. Our algorithm provides a convenient computational solution to remove

such kind of background signals from a single image and hence may substantially

lower the experiment barrier of STORM imaging. Figure 4.3 (C) shows another pro-

cessed image of a Xenopus egg extract spindle under wide-field fluorescence speckle

microscopy.

global patterns of transport

To visualize the transport of Lamp1 cargo, BSC-1 cells were transfected with Lamp1-

green fluorescent protein (Invitrogen) and visualized by fluorescence live imaging.

Images were collected on a Nikon Ti-E inverted microscope at 5 frames per second,

under a NA of 1.41 and a 100x magnification.

Figure 4.4 shows three 2D-flow maps processed from collected images with manual

optimization of parameters. Surprisingly, these selected examples revealed different

global flow patterns of Lamp1 cargoes. For example, figure 4.4 (B) shows the cargo

flow is moving in and out of the cell center, while figure 4.4 (C) shows the cargo

flow is polarized along the cell periphery. We are currently investigating physiological

implications of these patterns.

4.4 Conclusions

In this study we developed image-based computational methods for characterizing

the spatiotemporal dynamics of intracellular transport at the whole-cell scale. Key
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Original image Reconstructed background Reconstructed foreground Reconstructed by TADN

Figure 4.3: Background removal for single-particle images. First column: original
images. Second column: separated background. Third column: images after back-
ground removal. Fourth column: background estimated by TADN. Note that original
image in panel (C) is larger than other two figures. Here, we set λ1 = 1000 and
λ2 = 20 for panels (A) and (B) and λ1 = 300 and λ2 = 5 for panel (C). Contrast has
been adjusted for each image.

Figure 4.4: Examples of different 2D flow patterns. (A) unorganized flow (B) radial
flow (C) polarized flow.
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to these methods is a signal decomposition algorithm, which allows us to separate

the background fluorescence signal, the stationary cargo signal, and the moving cargo

signal into three different channels based on their different spatiotemporal properties.

We have demonstrated our method’s applicability to recover the movement of cargoes

even when the signal-to-noise is low. Furthermore, using this method, we found dif-

ferent global patterns in intracellular transport of Lamp1 cargoes. The 2D flow map

generated can be combined with different curvilinear feature detection techniques for

further quantitative characterization of the spatiotemporal dynamics of intracellular

transport. Although the focus of this study is on intracellular transport, the sig-

nal decomposition method we developed is general and applicable to other cellular

processes that are composed of signals of different spatiotemporal properties.

4.5 Appendix

4.5.1 Forward-backward algorithms

We present an overview of the forward-backward algorithm (FB) [8] used for solving

proposed optimization problems. FB is designed to solve optimization problems whose

objective function f(x) is separable into two parts, i.e., f(x) = f1(x) + f2(x). Here,

x is an element in a Hilbert space and f1(x) can be any differentiable function and

f2(x) is a non-differentiable penalty term. Given a function f , the proximal operator

with a step size t is defined by

proxtf2(x) = argminz
1

2
∥z − x∥2 + tf2(z).

The essence of FB is the analytically derived proximal operator. Examples of the

proximal operator are
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1. f2(x) = λ∥x∥1 for x ∈ Rn. The proximal operator in this case is the soft thresh-

olding on components of the vectors x [10], i.e.,

[proxtf2(x)]i = [S1
tλ(x)]i = sgn(xi)max(∣xi∣ − tλ, 0).

2. f2(x) = λ∥x∥1 + χ+(x) for x ∈ Rn, where χ+(x) is the characteristic function of

the half space {x ≥ 0}. The proximal operator in this case is the modified soft

thresholding on components of the vectors x, i.e.,

[proxtf2(x)]i = [S1+
tλ (x)]i = max(xi − tλ, 0).

3. f2(X) = λ∥X∥∗ for X ∈ Rm×n. The proximal operator in this case is the soft

thresholding on singular values of the matrix X [11], i.e.,

proxtf2(X) = S∗tλ(X) = UΣtλV
T ,

where UΣV T is the singular value decomposition ofX and [Σtλ]i,j = max([Σ]i,j−

tλ,0), assuming that all of the singular values are chosen to be non-negative.

Iterative update in FB follows

xk+1 = proxtf2(xk − t∇f1(xk)), (4.3)

where t is a step size constant. FB is guaranteed to converge with rate O(1/k)

provided that ∇f1 is L-Lipschitz continuous and t < 2/L.
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Following we derive the updating rule of the optimization problem 4.2

minBt, St
1
2∥A∗

t − (Bt + g ∗ St)∥2
2 + λ3∥Bt∥∗ + λ4∥St∥1,

subject to St ≥ 0

and analyze the convergence of FB. The results can be adapted for the optimiza-

tion problem 4.1 with minor changes.

4.5.2 Derivation of the updating rule

To derive the updating rule of the forward-backward algorithm, we compute the

proximal operator of g(B,S) = λ3∥B∥∗+λ4∥vec(S)∥1 with S ≥ 0. First we reformulate

the problem. Let Z = [Z1 Z2] for each Zi ∈ Rm×n. The objective function can be

rewritten as

f(Z) = 1

2
∥Z1 + g ∗Z2 −A∥2

F + λ3∥Z1∥∗ + λ4∥vec(Z2)∥1 + χ+(Z2)

where χ+ is the characteristic function of the nonnegative real line. We first show

that the proximal operator of λ1∥Z1∥∗ + λ2∥vec(Z2)∥1 + χ+(Z2) is

proxt(Z) = [S∗tλ3(Z1) S1+
tλ4

(Z2)].

This is achieved by observing that the objective function is separable in Z1 and Z2,

i.e., denoting Z = [Z1 Z2] and X = [X1 X2],

1
2∥Z −X∥2

F + λ3∥Z1∥∗ + λ4∥vec(Z2)∥1 + χ+(Z2)

= [1
2∥Z1 −X1∥2

F + λ3∥Z1∥∗] + [1
2∥Z2 −X2∥2

F + λ4∥vec(Z2)∥1 + χ+(Z2)]
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Hence, proximal operator can be obtained by solving two subproblems

argminZ1∈Rm×n 1
2∥Z1 −X1∥2

F + λ3∥Z1∥∗

argminZ2∈Rm×n 1
2∥Z2 −X2∥2

F + λ4∥vec(Z2)∥1 + χ+(Z2)

whose exact solutions are (see examples 2 and 3 in Section 2.3)

[Z∗
1 Z

∗
2 ] = [S∗tλ3(X1) S1+

tλ4
(X2)].

Also note that the derivative of the smooth part is given by

∂f1
∂Z1

= Z1 + g ∗Z2 −A,
∂f1
∂Z2

= ĝ ∗ (Z1 + g ∗Z2 −A),

where (ĝ)i,j = g−i,−j. The updating rule can be immediately obtained by substituting

these results into equation (4.3).

Given our objective function, we derived the updating rules of FB as follows:

Given initial values B0 and S0, iteratively update

Bk+1 = S∗tλ3(B
k − t(Bk + g ∗ Sk −A)), (4.4)

Sk+1 = S1+
tλ4

(Sk − tĝ ∗ (Bk + g ∗ Sk −A)), (4.5)

where (ĝ)i,j = g−i,−j.

4.5.3 Lipschitz continuous gradient of f1

Here we show that the smooth part of the objective function has a Lipschitz con-

tinuous gradient with Lipschitz constant 2 provided that ∑i,j gi,j = 1 and gi,j ≥ 0.

82



Denoting Z = [Z1 Z2], Z̃ = [Z̃1 Z̃2] and ∆Zi = Zi − Z̃i, we have

∥∇f1(Z) −∇f1(Z̃)∥2
F = ∥∆Z1 + g ∗∆Z2∥2

F + ∥ĝ ∗ (∆Z1 + g ∗∆Z2)∥2
F

Using Young’s inequality and the triangle inequality of Frobenius norm, we have

∥ĝ ∗ (∆Z1 + g ∗∆Z2)∥2
F ≤ ∥∆Z1 + g ∗∆Z2∥2

F

≤ (∥∆Z1∥F + ∥∆Z2∥F )2

These conclude with

∥∇f1(Z) −∇f1(Z̃)∥2
F ≤ 2(∥∆Z1∥F + ∥∆Z2∥F )2 ≤ 4∥Z − Z̃∥2

F ,

which determines the Lipschitz constant to be smaller than 2.

4.5.4 Variants

FB can be further accelerated up to quadratic convergence [10]. We implemented the

accelerated version of our algorithm as follows: Given initial values B̃ = B0, S̃ = S0

and t1 = 1, iteratively update

Bk = S∗tλ1(B̃ − t(B̃ + g ∗ S̃k − I)),

Sk = S1+
tλ2

(S̃ − t(ĝ ∗ (B̃ + g ∗ S̃ − I))).

tk+1 =
1 +

√
1 + t2k

2
, αk =

tk − 1

tk+1

B̃ = Bk + αk(Bk −Bk−1)

S̃ = Sk + αk(Sk − Sk−1)
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Note that the proposed objective function has a Lipschitz continuous gradient and

therefore backtracking is not required when accelerating the algorithm [10].

In the special case when point spread function is not considered (i.e. g = 1), the

block coordinate descent algorithm (BCD) [12] can also be used to find the minimum

of our objective function. BCD alternatively minimizes a few disjoint sets of variables,

the matricesB and S in our case, and is guaranteed to converge to the global minimum

of a convex problem. Specifically, the BCD is stated as follows: initialize B0 and S0,

for each Bk, Sk, sequentially update

Bk+1 = S∗λ1(A − Sk),

Sk+1 = S1+
λ2

(A −Bk+1),

In practice, we observed a faster convergence in BCD than in FB (data not shown).
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Chapter 5

Shape component analysis:

structure-preserving dimension

reduction on biological shape

spaces

5.1 Introduction

Geometrical shapes are a fundamental property of biological structures. Quantitative

shape analysis is required by many biological studies across diverse scales. For exam-

ple, at the molecular scale, quantitative analysis of shapes of proteins is essential for

understanding their functions and interactions ([1]). As another example, at the cel-

lular scale, quantitative analysis of shapes of cells is essential for understanding their

morphogenesis and migration ([2]). Recently, high-throughput and systems-level bi-

ological studies have started to produce large volume of biological shape data from

structural analysis ([1, 3]) or image analysis ([4, 5, 6]). The biological shape data
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produced often have high dimensionality, which poses a significant challenge for their

analysis and understanding.

Dimension reduction is an essential tool for analyzing and understanding high di-

mensional data. A wide range of dimension reduction techniques have been developed

([7]). However, for effective dimension reduction of biological shape representations,

it is crucial to take into account their specific structures and properties. To give

an example, biological shapes are often represented by points on high-dimensional

Riemannian spaces ([8, 9]). Differences between distinct shapes are best represented

by their Riemannian distances rather than Euclidean distances, which are commonly

used in dimension reduction. This can be seen from the example in Fig. 5.1, which

shows that Riemannian distances better differentiate between shapes. Indeed, non-

linear Riemannian geometry of shape spaces is proposed as a tool of choice to depict

geometric differences between shapes ([10]).

In this study, we described 2D shapes using their landmark representations ([8, 9]).

3D shapes are described using spherical harmonic representation ([11]) in case of the

lack of well-defined landmarks. We developed a technique for nonlinear dimension re-

duction of these two shape representations on their Riemannian spaces. A key feature

of our technique is that the nonlinear distances between shapes are preserved under

reduced dimensionality. We demonstrated an application of our dimension reduc-

tion approach by combining in with nonlinear mean-shift clustering on Riemannian

spaces ([12])) for unsupervised clustering of shapes of mitochondria and proteins. Ex-

perimental results confirmed that the proposed dimension reduction technique, when

combined with mean-shift clustering, provided generally equivalent clustering perfor-

mance but at reduced processing time. The proposed dimension reduction approach

is general and can also be combined with other shape analysis techniques.

The paper is structured as follows. We first outline the theory of shape space
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and then describe our dimension reduction technique and its integration with unsu-

pervised mean-shift clustering on shape spaces. The overall shape analysis work flow

is summarized in Fig. 5.2. We present experimental results on a variety of shape

datasets, first on a 2D generic shape dataset, then on a 2D mitochondrial shape

dataset and a 3D protein shape dataset.

Figure 5.1: Pairwise distances between different shape clusters. Five groups
of shapes were taken from the MPEG-7 dataset ([13]). An example of each shape
cluster is shown on the top and left of the distance map. (a) Riemannian distance of
shape manifold; (b) Euclidean distance with elliptic Fourier descriptors ([14]). Color
codes represent the normalized value of each distance as shown in the color bar. Note
that the difference in performance is not resulted from which the descriptor in use
since the Euclidean distance of the elliptic Fourier descriptors is equivalent to the
Euclidean distance between two landmark shapes after matching their orientations.
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5.2 Methods

5.2.1 Representation of 2D biological shapes

In this study we describe 2D biological shapes using their landmark representation

([9]). It should be pointed out that landmark representation can also be used to

describe higher dimensional shapes as long as landmark points are specified.

A N dimensional shape is usually represented by a sequence of its D control points.

In the case of a planar object, its 2D shape can be represented by landmarks along

its contour. This ordered sequence of control points is referred to as a configuration.

A configuration can be mathematically represented by a N -by-D real matrix Y,

where Yk,j records k-th coordinate of the j-th control point ([9]). A pre-shape Z

is the configuration that is independent of translation and scaling. Typically it is

determined by setting Y to be zero-mean in centroid and unit length in size. The

space of pre-shape can be defined as

{Z ∈ RN×D ∶
D

∑
j=1

Zk,j = 0 ∀k, ∥Z∥2
F = 1}

where the Frobenius norm ∥(⋅)∥F is the square root of the sum of the absolute squares

of elements in a matrix. This space is a high-dimensional hyper-sphere in the Eu-

clidean space. Note that the dimension of a configuration (N ⋅D-2) are different from

the dimension of the physical world (N).

5.2.2 Riemannian geometry of the shape space

A shape is an invariance of a given configuration under translation, rotation, and scal-

ing. Within this context, a N -dimensional shape space ΣD
N is defined as the collection

of equivalent configurations under translation, scaling, and rotation. Accordingly, the
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Figure 5.2: Overall work flow of the proposed dimension reduction method,
with application in mean-shift clustering. Both 2D and 3D shapes are repre-
sented as ordered arrays of coefficients to be analyzed by Shape component analysis
and nonlinear mean-shift clustering.

Riemannian geometry of the N -dimensional shape space can be explicitly formulated.

Here we list several related properties that will be used in the rest of the paper. For

ease of implementation, we represent the shape space as a submanifold embedded in

RN×D with a lifted tangent space.

To define the Riemannian geometry of the shape space, we need to specify: 1) a

mathematically defined set containing all possible shapes and 2) the pairwise distance

between two shapes. In the theory of landmark representation, a shape is defined as

the equivalent class of a pre-shape Z up to rotations ([9]). Mathematically, this

equivalent class can be represented by

[Z] = {OZ ∶ O ∈ SO(N)}, (5.1)
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where SO(N) is the group of N -dimension rotation matrices. The N dimensional

shape space ΣD
N is a Riemannian manifold containing all possible shapes [Z] and

equipped with a distance ρ(⋅, ⋅). This Riemannian distance is given by

ρ([Z0], [Z1]) = cos−1( max
O∈SO(N)

⟨OZ0, Z1⟩). (5.2)

Note that this distance is equivalent to the l2 distance ρF after two shapes are rota-

tionally aligned, that is,

ρF ([Z0], [Z1]) = min
O∈SO(N)

∥OZ0 −Z1∥F . (5.3)

From the computational perspective, the structure of the tangent space is crucial

for developing efficient algorithms. Here we introduce three concepts: the tangent

space of a shape space, the Exponential map and its inverse Log map. Roughly speak-

ing, the tangent space contains information of a function’s gradient on a Riemannian

manifold, while the Exponential and Log maps are used to exploit the direction of

a gradient for searching extrema of the function. The lifted tangent space at [Z] is

represented by

HZ(ΣD
N) = {X ∈ RN×D∣⟨Z, X⟩ = 0,XZT = ZXT}. (5.4)

Given an equivalent class [Z] and a tangent vector v ∈HZ(ΣD
N), the exponential map

on the shape space is given by

Exp[Z](v) = [Z cos(∥v∥F ) +
v

∥v∥F
sin(∥v∥F )]. (5.5)

Conversely, when two pre-shapes Z0 and Z1 and a rotation R ∈ SO(N) satisfy RZ1ZT
0
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being symmetric and positive definite, we obtain the (horizontally lifted) inverse ex-

ponential map, which is

LogZ0
(Z1) =

s0

sin(s0)
(RTZ1 −Z0 cos(s0)), (5.6)

where s0 = ρ(Z0, Z1).

Lastly, we note that the Riemannian distance ρ(⋅, ⋅) and the Log map can be

computed using polar decomposition ([15, 10]) as follows:

1. Given two preshapes Z0 and Z1, compute the singular value decomposition of

their covariance matrix

Z0Z
T
1 = USVT .

Here, S is a diagonal matrix formed by singular values and U and V are two

orthonormal matrices.

2. Compute the distance ρ(Z0,Z1) as the arc-cosine of sum of absolute value of

singular values, i.e., s = cos−1∑i(∣Sii∣).

3. Compute the Log map as

LogZ0
(Z1) =

s

sin(s)
(RZ1 −Z0 cos(s))

where R = det(VUT )VUT .

For 2D shapes, explicit formulas for computing distance and Log map have been

derived by representing a 2 ×N matrix as a 1 ×N complex vector ([9]). This allows

a fast implementation without calculating the singular value decomposition.
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5.2.3 Dimension reduction on the shape space

In this section we define a mapping that projects a high-dimension shape space into

another low-dimension shape space while the pairwise distance is preserved when

restricted in the subset defined by Eq. 5.11. This allows us to adapt, for example,

the mean-shift algorithm on the shape space with substantially lower dimensionality.

Low dimensional shape space and projection error

The essence of principal component analysis is to find the low-dimensional subspace

that minimizes projection error in the original Euclidean space. Analogous to this

concept, we first define embedded low-dimensional shape spaces and their correspond-

ing projection errors. Given a D-by-r matrix R satisfying RTR = ID, we define the

embedded r-dimensional shape space induced by R as

{[MRT ] ∶ M ∈ RN×r, ∥M∥F = 1} (5.7)

which is the image of a continuous function

fR ∶ Σr
N → ΣD

N , fR([M]) = [MRT ]. (5.8)

For every shape [Z] ∈ ΣD
N , we propose to use the cosine of the Riemannian distance

as the similarity measurement to assess the performance of representing [Z] in the

embedded shape space. That is, we define the similarity measurement as

E([Z], [R]) ≡ maxM∈Rn×r, ∥M∥F =1 cos(ρ([Z], [MRT ]))

= maxM∈Rn×r, ∥M∥F =1, O∈SO(N)⟨OZ, MRT ⟩

= ∥ZR∥F .

(5.9)
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This similarity measurement is continuous in [Z] and invariant under left multipli-

cation of SO(N) and hence its well-definiteness is guaranteed by universal property

of the quotient ([16]). Note that this similarity measure also reflects the extent of

information of a data point that is preserved under the projection. And the set of

zero similarity scores is an analogy to the set that is perpendicular to a Euclidean

subspace space. Thus, an embedded submanifold’s accuracy to represent a given data

set can be easily checked by the similarity scores of each data point.

Structure-preserving dimension reduction

Next we describe the desired mapping. To provide a strong link to the implementa-

tion, we consider the shape space ΣD
N and its tangent space embedded in RN×D as

described in section 2.2. The following statement is the cornerstone of our proposed

method.

Theorem 12. Given a D-by-r matrix R satisfying RTR = ID, the mapping

Tr ∶ ΣD
N ⋂{E(⋅, R) > 0}↦ Σr

N

Tr([Z]) = [ZR/∥ZR∥F ]
(5.10)

is well-defined. Furthermore, distance is preserved under Tr in the set

{[MRT ] ∶ M ∈ RN×r, ∥M∥F = 1}. (5.11)

Proof. The well-definiteness is followed by verifying that the mapping is continu-

ous and satisfies the universal property of the quotient. The preserving of pairwise

distance is ensured since the inner product is preserved in this subset, i.e.,

⟨M1R
T , M2R

T ⟩ = tr(M1R
TRMT

2 ) = ⟨M1, M2⟩. (5.12)
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Next we address the question of determining the optimal basis matrix from a given

data set.

Determining the optimal basis matrix

Given pre-shapes Xi, we propose to determine the optimal basis matrix R by solving

the following optimization problem:

max
RTR=Ik

∑
i

E(Xi,R)2 = max
RTR=Ik

∑
i

∥XiR∥2
F . (5.13)

Note that the optimal solution is the first k eigenvectors of the covariance matrix

∑iX
T
i Xi. The solution to this optimization formulation is similar to the one of two-

dimensional principal component analysis ([17]), though we derived this optimization

problem from a different perspective. We henceforth refer to this method as shape

component analysis (SCA). The overall procedure is summarized in Algorithm 1.

Algorithm 1 shape component analysis

1: Given pre-shapes zj, j = 1, . . . , n
2: specify the reduced dimension r
3: C = ∑i z

T
i zi

4: Compute the first r eigenvectors of C
5: List the first r eigenvectors in columns of a matrix R
6: z̃j ← zjR/∥zjR∥F
7: Output z̃j for mean-shift clustering
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5.2.4 Spherical harmonic representation of 3-dimensional bi-

ological shapes

To use landmark representation to describe shapes, ordered sequences of control points

are required to compare different shapes. However, 3-dimensional surfaces are often

recorded as unstructured point clouds and hence may not have well-defined landmark

points. To solve this problem, we adapted spherical harmonics representation (SHR)

to transform point clouds of 3-dimensional surfaces into ordered sequence of coeffi-

cients in the frequency domain. This approach allows a systematic treatment of SHR

similar to the landmark representation.

Spherical harmonics {Y l
m(θ, φ)} is an orthonormal system of complex functions

for decomposing square-integrable functions into a series of coefficients indexed by

integers l and m. Given a closed surface x(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T param-

eterized in polar coordinate, x(θ, φ) can be represented as the linear combination of

spherical harmonics

x(θ, φ) =
∞
∑
l=0

l

∑
m=−l

clmY
l
m(θ, φ), (5.14)

where clm = (cxm,l, c
y
m,l, c

z
m,l)T . Each coefficient is calculated by the integration with a

specific spherical harmonics, for example,

cxm,l = ∫
S2
x(θ, φ)Y l∗

m (θ, φ)dΩ. (5.15)

In practice, the infinite series is truncated by limiting l to 0 ≤ l ≤ L. Detailed expla-

nation of SHR can be found in [11], [18] and references therein.

Next we would like to point out that the landmark representation and spherical

harmonics representation share the same Riemannian geometry. As mentioned in

Section 2.2, a Riemannian geometry is specified by the set containing all elements and
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the pairwise distance between any two elements. We shall define the SHR “shapes”

and show that they 1) form a structurally equivalent set and 2) have the pairwise

distance as landmark shapes do. As in the landmark representation, a truncated series

of spherical harmonic coefficients can be arranged in an ordered array of coefficients.

Such an ordered array is represented as a 3-by-2L2 matrix whose elements record

the real and imaginary parts of spherical harmonics coefficients. To define the SHR

“pre-shape”, we propose to

1. Set the coefficient c0
0 to be zero to make SHR invariant of translation. This

operation will set a closed surface to be centered at the origin since

c0
0 = (∫

S2
x(θ, φ)dΩ, ∫

S2
y(θ, φ)dΩ, ∫

S2
z(θ, φ)dΩ)T

is the centroid of the surface.

2. Normalize C̃ to unit norm to make SHR invariant of scaling.

We denoted this calibrated matrix as C̃ to represent SHR pre-shape. Clearly, SHR

pre-shapes reside on a high-dimensional hyper-sphere as the landmark pre-shapes.

Furthermore, The SHR shape can be defined as the equivalent set of a SHR pre-

shape up to rotations, i.e.,

[C̃] = {OC̃, O ∈ SO(3)}. (5.16)

Note that this set is also the equivalent set of a closed surface since rotating the

surface is equivalent to applying a rotation matrix to its coefficients array. This can

be seen from

Ox(θ, φ) =
∞
∑
l=0

l

∑
m=−l

(Oclm)Y l
m(θ, φ). (5.17)
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So far we have shown that the space of SHR shape can be represented as the collection

of equivalent sets in hyper-sphere.

The pairwise distance of SHR shapes can be defined as the metric between land-

mark shapes. The key idea behind the Riemannian distance is to capture the mini-

mum L2 distance between two rotationally aligned objects. For example, given two

closed surfaces, we would compute minO∈SO(3) ∫S2 ∥Ox1 − x2∥FdΩ for comparing how

different these two surfaces are. Because of the orthnormality of the spherical har-

monics, this quantity can be written in terms of SHR coefficient matrices, i.e.,

min
O∈SO(3)∫S2

∥Ox1 − x2∥FdΩ = min
O∈SO(3)

∥OC1 −C2∥F . (5.18)

Note that this is the same distance used in landmark representation in equation (5.3).

The direct implication here is that the SHR shapes and landmark shapes share the

same pairwise distance.

Overall, we have shown that the SHR shape and landmark shapes share the same

defining set and pairwise distance and hence the same Riemannian geometry. Since

our dimensional reduction technique in the previous section and clustering algorithm

presented in next section are designed according to the Riemannian geometry of shape

spaces, SHR coefficient arrays can be used as inputs to our algorithm once they are

transformed properly. The overall procedure of transforming SHR coefficient arrays

to their shape representations is summarized in Algorithm 2.

Algorithm 2 transforming SHR into SHR Shape

1: Given SHR C
2: C0

0 ← 0
3: C̃← [real(C) imag(C)]
4: C̃← C̃/∥C̃∥F
5: Output C̃ as a preshape for other analysis
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5.2.5 Mean-shift clustering on a Riemannian manifold

The mean-shift clustering algorithm is a peak-finding algorithm that searches for

representatives supported by the majority of data ([19]). A mean-shift clustering

algorithm defines modes as local maxima of the underlying probability density dis-

tribution estimated by a kernel density estimation and iteratively searches for local

maximums using a gradient-based update rule. In [12], mean-shift clustering is gen-

eralized on a Riemannian manifold by replacing the L2 norm in the kernel estimation

with the Riemannian distance. The update rules are described as follows: given x0

as a data point, iteratively update

mh(xk) = ∑i g(d2(xk,zi)/h)Logzi
(xk)

∑i g(d2(xk,zi)/h)

xk+1 = Expxk
(mh (xk))

, (5.19)

where zi are pre-shapes given, h is the bandwidth of the kernel function g(x) = e−x/2.

Convergence of this algorithm is guaranteed. We implemented mean-shift clustering

on the shape space following the procedure shown in Algorithm 3. We note that

with the proposed SCA, mean-shift clustering can be performed on the shape space

of substantially lower dimensionality without any changes in procedure.

5.3 Results

We tested our dimension reduction algorithm on three different shape datasets. All

computation was performed on a desktop workstation (2×Intel Xeon E5503 2.00GHz

and 8G RAM).
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Algorithm 3 mean-shift clustering on the shape space

1: Given pre-shapes zi, i = 1, . . . , n
2: for i = 1, . . . , n do
3: x← zi
4: while ∥mh(x)∥ < ε do
5: for j = 1, . . . , n do
6: [Uj, Sj, Vj] = svd(zjxT )
7: Rj = det(VjUT

j )VjUT
j

8: ρj = cos−1(tr(Sj))
9: Tj = s0

sin(s0)(Rzj − x cos(s0))
10: end for
11: mh(x)← ∑i g(d2(x,zi)/h)Ti

∑i g(d2(x,zi)/h)
12: s← ∥mh(x)∥
13: x← sin(s)

s mh(x) + cos(s)x
14: end while
15: Retain x as a local mode
16: end for
17: Return distinct local modes
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5.3.1 Application I: 2D generic shapes

Data preparation

We first tested our dimension reduction algorithm on a generic 2D shape dataset.

Specifically, we selected 5 categories of shapes from the MPEG-7 dataset ([13]), with

20 examples in each category. The first example of each category is shown in Fig.

5.3. The boundary of each example was fitted by a cubic spline. Then a total of 200

semi-landmark points was sampled from the fitted spline. In this way, each shape is

represented by a 2 × 200 matrix.

Results: geometric approximation

We tested whether our dimension reduction technique can reliably preserve distances

between different shapes under reduced dimensions. We first calculated the pairwise

Riemmanian distances between different shapes and used them as the ground truth.

We then calculated Riemannian distance between shapes under different levels of di-

mension reduction (Fig. 5.3) and the normalized mean square error. For comparison,

we also calculated the pairwise Euclidean distance on the tangent space of the mean

shape. This allowed us to compare our dimension reduction technique to the principal

geodesic analysis (PGA) technique ([20]), which is based on Euclidean distance on

the tangent space.

The level of distortion under reduced dimension was calculated as the normalized

error of the distance matrix M compared to the ground truth distance matrix Mtruth,

i.e.,

Distortion(M,Mtruth) =
∥M −Mtruth∥F

∥Mtruth∥F
,

where ∥ ⋅ ∥F is the Frobenius norm. In addition, we reported the reconstruction

accuracy of the proposed algorithm, which is calculated by the normalized root mean
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square error (nRMSE) of each reconstructed shape compared to the original shape.

The results were summarized in Table 5.1.

It can be seen that there was a non-vanishing distortion in pairwise distances when

PGA and the Euclidean distance were used. In contrast, SCA consistently reduced

the approximation error when increasing dimension of projection submanifold. In

terms of reconstruction errors, SCA is comparable with PGA under larger reduced

dimensions.

Figure 5.3: Reconstructed shapes with various reduced dimension. Dimen-
sion reduction is done with SCA. Examples from different shape classes are shown in
rows. Reconstructed shapes with different reduced dimension are shown in columns.
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PGA SCA

dimension 10 20 40 10 20 40
nRMSE 5.9 3.0 1.2 11.1 5.3 2.3
distortion (%) 2.3 2.1 2.2 5.3 1.5 0.4

Table 5.1: Reconstruction errors of 2D generic shapes by PGA and SCA.

Results: shape clustering

We further examined the performance of integrated dimension reduction and mean-

shift clustering. We compared clustering results of five different methods:

1. Riemannian mean shift clustering (RMS).

2. RMS with shape componenet analysis (RMSSCA).

3. Mean shift clustering on the tangent space, using Euclidean distance (tMS). By

testing this method, we examined the difference between using Riemannian and

Euclidean distance in shape clustering.

4. Mean shift clustering with elliptic Fourier descriptors (MSFD) ([14]) as inputs.

This method was chosen to show the performance of using rotation-invariant

descriptors in shape clustering.

5. Mean shift clustering with features obtained from Laplacian eigenmap ([21])

(MSLAP). This method was chosen to show the performance of a common strat-

egy of “flattening the nonlinear manifold.” We implemented Laplacian eigenmap

with 5-nearest neighbors to project the Riemanniam manifold into a 10 dimen-

sional Euclidean space, where the mean-shift clustering was performed to find

clusters.
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2D shapes

RMS RMSSCA tMS MSFD MSLAP
# clusters 7 7 7 8 8
Purity 0.8 0.8 0.68 0.64 0.54
NMI 0.73 0.73 0.62 0.53 0.48
AR 0.64 0.64 0.47 0.37 0.26
RunTime(s) 2.1 0.6 0.3 0.1 0.06

Table 5.2: Performance of different algorithms on 2D shape clustering. 20 examples
from each 5 shape clusters were used for testing in the 2D case.
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For all algorithms, clusters were first identified and then used to classify each

data point using one-nearest-neighbor classification. The final clustering results were

evaluated by 3 performance metrics ([22]), including

1. Purity = 1
N ∑k maxj nj,k.

2. Normalized information

NMI = −2
∑j∑k

nj,k
N log( nj,k

ajbk/N )

(∑j
aj
N log(ai/N) +∑k

bk
N log(bk/N))

.

3. Adjusted Rand index (AR)

AR =
∑j,k (nj,k2

) −∑j (aj2 )∑k (bk2 )
1
2(∑j (aj2 ) −∑k (bk2 )) − (∑j (aj2 )∑k (bk2 ))/(

n
2
)
.

Here, aj = #{gj}, bk = #{ck}, nk,j = #{ck ∩ gj}, and cj and gj are the j-th set of

members form clustering and ground truth labeling, respectively.

In some cases, these performance metrics could be biased by the number of clus-

ters. To avoid this problem, we adjusted parameters so that each algorithm generated

7-8 clusters. Performance metrics are summarized in the left half of Table 5.2. The re-

sults showed that algorithms using Riemannian distance such as RMS and RMSSCA

performed better than algorithms using Euclidean distance such as tMS and MSFD.

MSLAP performed the worst among all the algorithms. This confirmed the merit of

using nonlinear similarity in clustering. Although RMSSCA provided similar clus-

tering performance as RMS, its computational time was significantly reduced, by a

factor of 3∼6.
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5.3.2 Application II: 2D mitochondrial shapes

We further tested our SCA algorithm on a mitochondrial shape dataset. Mitochondria

within segmental nerves of dissected Drosophila 3rd instar larvae were visualized by

fluorescence live imaging. Images were collected on a Nikon Ti-E inverted microscope

at 5 frames per second, under a NA of 1.41 and a 100× magnification. Because of

the constraint imposed by the axon geometry, shapes of axonal mitochondria can

be represented in 2D rather than in 3D. An adaptive active-mask algorithm was

used to segment mitochondria ([23]). Individual mitochondria were tracked as in

[24]. The boundary of each segmented mitochondrion was fitted by a cubic spline.

Then a configuration of 200 points was sampled from the fitted spline. A total of

4000 configurations were collected from 800 mitochondria with 5 repeats sampled

at different time points. The shape classes identified by the proposed algorithm

are shown in Fig. 5.4. The original mean-shift algorithm detected 8 diverse shape

clusters. Mean shift with dimension reduction provided similar clustering results, but

the run time was significantly reduced. While the original mean-shift algorithm took

20756 seconds to finish the computation, mean-shift with dimension reduction took

only 1390 seconds in total (480 seconds in dimensional reduction and 910 seconds in

mean-shift clustering), a reduction of the computing time by a factor of ∼15.

5.3.3 Application III: 3D protein surfaces

Experiment design

We also tested our algorithm on 3-dimensional protein shape dataset. We selected

three series of protein structures from Data base of Macromolecular Movements

(http://www.molmovdb.org/), including insulin, S100-Ca2+ sensor and small G-protein

Arf6. These three proteins were selected for their distinct geometry (See Fig. 5.5).
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Figure 5.4: Clustering of mitochondrial shapes. Red: examples of mitochon-
drial shapes (selected randomly from 4000 shapes). Black and blue: shape clusters
identified by RMS and adaptive RMSSCA, respectively.

Insulin tends to have an ellipsoidal shape, Arf6 is more spherical overall, whereas

Ca2+ sensor is of Y -shaped with a blunt end. Snapshots of the motion sequences of

these three proteins were used as examples of each protein class. Overall, 20 examples

were collected used from each protein class.

Data preprocessing

Surfaces of the selected proteins were generated using Gaussian kernel functions as in

([25, 26]). A multi-level summation of Gaussian kernel functions was employed to gen-

erate implicit models from atomic resolution data of the selected proteins. An unique
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(a) (b)

Figure 5.5: Dimension reduction and clustering of protein shapes. (a) Recon-
structed protein surfaces with different reduced dimensions. (b) Clusters of molecule
surfaces determined by RMSSCA with different reduced dimensions.
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SCA

reduced dimension 40 80 160
Surface area distortion 2.43 ± 0.9 0.48 ± 0.3 0.02 ± 0.02
nRMSE in SH coefficients 5.04 ± 0.68 2.7 ± 0.26 0.54 ± 0.26
nRMSE in coordinates 3.98 ± 0.63 1.59 ± 0.19 0.19 ± 0.09

Table 5.3: Reconstruction errors of 3D protein surfaces. Normalized Errors in surface
area, normalized RMSE in spherical coefficients and normalized RMSE in coordinates
of control points on the molecule surface are reported. All numbers are reported in
percentage.

strength of this method is that it allows local resolution control on protein surfaces.

Parameters were chosen manually to ensure a genus-zero surface. After the control

points on the molecule surfaces were generated, spherical harmonics parametrization

were computed using SPHARM-MAT software ([27]). We computed spherical har-

monics up to order 31 to ensure a 0.2Å accuracy in approximating original molecule

surfaces. In this way, each molecular surface was represented by a matrix of dimension

3 × 2048.

Results: dimension reduction

First we tested the performance of our algorithm in approximating protein surfaces

with low dimensionality. SCA was performed on the set of 60 protein molecule surfaces

and approximations of 20, 40, 80 and 160 dimensions were generated. To evaluate

the level of surface distortion, we calculated three metrics: normalized RMSE in

spherical harmonic coefficients and in coordinates of control points, and normalized

error of surface area. Results are summarized in Table 5.3. In this case, SCA was

able to approximate original surfaces with 99% accuracy using 3 × 160 real matrices.

Compared to the original 3 × 2048 coefficient arrays, dimension was reduced by a

factor of ∼12.
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3D shapes

RMS RMSSCA MSSH MSSH+PCA MSLAP
# clusters 5 5 5 4 6
Purity 0.73 0.75 0.70 0.70 0.57
NMI 0.489 0.494 0.39 0.39 0.24
AR 0.426 0.421 0.34 0.34 0.06
RunTime(s) 33.1 5.6 0.08 0.06 0.13

Table 5.4: Performance of different algorithms on 3D shape clustering. 20 examples
from each 3 shape clusters were used for testing in the 3D case.

Results: shape clustering

Next we tested performance of the proposed algorithm in clustering molecule surfaces.

For comparison, we also implemented clustering methods including:

1. Riemannian mean shift clustering without dimension reduction with (RMSSCA)

and without dimension reduction (RMS).

2. Mean shift clustering with 31 rotation invariant spherical harmonic features

([11]) as inputs (MSSH). Principal component analysis was used to select a

6-dimensional subspace that account for 99% variance of data for mean-shift

clustering (MSSH + PCA).

3. Mean shift clustering with features obtained from Laplacian eigenmap ([21])

(MSLAP). Laplacian eigenmap was implemented as in the case of 2D shape

clustering for examining the performance of a common strategy of “flattening

the nonlinear manifold.”

As in Section 3.1, metrics such as purity, mutual information and adjusted Rand index

were used to evaluate clustering results. The results are summarized in Table 5.4.

Overall, Riemannian mean shift clustering provided the best performance. RMSSCA

provided similar performance with as RMS, but RMSSCA’s computational time was
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reduced by a factor of 5 compared to RMS. We note that among these algorithms, only

RMS and RMSSCA provide backward projection to the original space and thus their

clustering results can be visualized. In Figure 5.5, clustering results via RMSSCA

with various reduced dimension are shown. The three basic structures (ellipsoidal,

spherical and Y-shape) were detected via RMSSCA with dimensionality of 10, while

different levels of details of the molecule surface were captured by RMSSCA with

higher dimensions.

5.4 Conclusions

In this study, we proposed a technique for dimension reduction on the Riemannian

manifold of 2D and 3D biological shapes. A key advantage of this technique is that it

preserves the distances between different shapes over the manifold. We showed that

although spherical harmonic representation of 3D shapes differs from the landmark

representation of 2D shapes, they share the same Riemannian geometry and thus can

be processed through the same dimension reduction technique. We verified the pro-

posed algorithm on datasets of 2D and 3D shapes. In particular, we demonstrated an

application of the algorithm by combining it with nonlinear mean-shift clustering for

unsupervised classification of biological shapes. The proposed dimension reduction

approach is general and provides a tool for analyzing and understanding large sets

of high-dimensional shape data. It can be integrated with shape analysis techniques

other than mean-shift clustering.

SCA is closely related to principal geodesic analysis which performs principal

component analysis on the tangent plan of the mean shape. We have demonstrated

two merits of our approach, that is, SCA better preserves pairwise distance and retains
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the Riemannian geometry of the reduced space. However, our current approach can

only handle genus-zero surfaces and not yet allow adaptive control on local features.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis we characterized, analyzed, and modeled the morphology and active

transport of mitochondria. Our conclusions are summarized as follows:

1. Mitochondrial fusion and fission are not independent. The proposed

model in Chapter 2 shows that independent fusion/fission would lead to over-

sized mitochondria, which contradicts experimental observation. The proposed

fission regulated fusion model resolves this issue and gives a realistic estimation

on the relative occurrence of fission/fusion events.

2. The mitochondrial size and velocity are dependent. The proposed model

in Chapter 3 reveals the subtle dependency between mitochondrial size and

velocity. The model suggests that larger organelles tend to move slower given

that the microtubules are tightly packed. The proposed model also shows that

the size-velocity relation is critically dependent on the spatial distribution of

microtubules around the organelle.
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We also developed a suite of general tools to computationally characterize and model

the organelle dynamics, including

1. A computational tool for representing the spatiotemporal dynamics

of organelle transport at the whole-cell scale. We presented an image

based method to separate signals of stationary organelles and moving organelles.

Based on this method, we further define image representations of localization

of stationary organelles and flow of moving organelles. Our results show that

the lysosomal transport might be regulated at the whole-cell scale.

2. A dimension reduction technique that can be deployed for large scale

analysis of biological morphology. We proposed a dimension reduction

technique that preserves the nonlinear structure of shape manifold and demon-

strate its compatibility with nonlinear mean-shift clustering to speed up the

unsupervised clustering on biological morphology.

Overall, we hope the proposed approaches would lay the foundation for a computa-

tional framework for automated systems-level analysis of organelle dynamics.

6.2 Future work

6.2.1 Using organelles as sensors for probing cellular envi-

ronment

Probing the changing cellular environment is fundamental to understanding how cells

are functioning. In Chapters 2 and 3, we demonstrated that it is possible to esti-

mate parameters of cellular processes by measuring physical properties of organelles.

To achieve this, one needs to first mathematically formulate the governing rules on
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organelle dynamics, and subsequently uses these mathematical rules and measured

organelle’s properties to estimate the target parameters. We believe this idea would

provide a good direction to achieve a non-invasive estimation on cellular environments.

6.2.2 Analyzing and modeling the logistics of intracellular

transport at the whole cellular scale

In Chapter 4, we proposed an image representation on the global structure and flow

of organelle transport. However, subsequent analysis is still required to extract its

biological implication. We would expect further analysis to answer questions such as:

1. Are there any transport paths with high traffic volume?

2. How many global transport patterns can be observed?

In Chapter 3, we proposed a model describing the individual behavior of organelle

transport. A natural extension is to consider a new model that takes account of the

intracellular transport at the whole cell scale.

1. How could cells direct materials to multiple destinations?

2. How do cells achieve this goal in an energy-economical way?

We believe these questions are fundamental to advancing our understanding of intra-

cellular transport.
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