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Abstract
Improving robotic manipulation is critical for robots to be actively useful in real-

world factories and homes. While some success has been shown in simulation and
controlled environments, robots are slow, clumsy, and not general or robust enough
when interacting with their environment. By contrast, humans effortlessly manip-
ulate objects. One possible reason for this discrepancy is that, starting from birth,
humans have years of experience to collect data and develop good internal models of
what happens when they manipulate objects. If robots could also learn models from
a large amount of real data, perhaps they, too, could become more capable manip-
ulators. In this thesis, we propose to improve robotic manipulation by solving two
problems. First, we look at how robots can collect a large amount of manipulation
data without human intervention. Second, we study how to build statistical models
of robotic manipulation from the collected data. These data-driven models can then
be used for planning more robust manipulation actions.

To solve the first problem of enabling large data collection, we perform several
different robotic manipulation experiments and use these as case studies. We study
bin-picking, post-grasp manipulation, pushing, tray tilting, planar grasping, and re-
grasping. These case studies allow us to gain insights on how robots can collect a
large amount of accurate data with minimal human intervention.

To solve the second problem of statistically modeling manipulation actions, we
propose models for different parts of various manipulation actions. First, we look at
how to model post-grasp manipulation actions by modeling the probability distribu-
tion of where an object ends up in a robot’s hand, and how this affects its success
rate at various tasks such as placing or insertion. Second, we model how robots can
change the pose of an object in their hand with regrasp actions. Third, we improve
on the place and pick regrasp action by modeling each separately with more data.
These learned data-driven models can then be used for planning more robust and
accurate manipulation actions.



vi



Acknowledgments

First of all, I’d like to thank Matt Mason for all of the fun and helpful discussions
over the years. I learned to think more carefully about how things move, and am now
doomed to pay attention to interesting manipulation phenomena for the rest of my
life. Thanks for giving me the freedom and support to explore what I was interested
in. Matt is a great advisor and an even better person, and for anyone reading this,
I highly recommend working with him. Special thanks to Nancy Pollard, Geoff
Gordon, and Paul Backes for all of the comments, questions, and discussions which
improved this thesis.

I met so many wonderful people at the Robotics Institute who helped me along
the way. Thanks to everyone I’ve interacted and collaborated with over the years in
the MLab including Annie Holladay, Jiaji Zhou, Ankit Bhatia, Zhenzhong Jia, Zhi-
wei Zhang, Aaron Johnson, Reuben Aronson, Yifan Hou, Pragna Mannam, Joseph
Gu, and Ariana Keeling. I enjoyed the collaborations, the lunches, and hard work.
Thanks to Jean Harpley for working tirelessly to save the lab from bankruptcy, and
for always having a solution to any and all of my administrative problems. Starting
out a PhD can be tricky, and I want to thank Sidd Srinivasa for his invaluable guid-
ance and collaboration early on. It was an honor and a privilege to work alongside
Alberto Rodriguez in the MLab. Alberto was my first example of how a graduate
student should act, and turned out to be a pretty good example to follow. I enjoyed
all of our collaborations, including when I accidentally fused the robot’s hand joints
with Loctite the day before a deadline, as well as all of the fun conversations unre-
lated to work. Thanks to Breelyn Kane, Humphrey Hu, and other “old guard” RI
graduate students who helped me realize there was light at the end of the tunnel.

There is life outside of grad school, so I’d like to acknowledge my friends outside
of the RI as well. Thanks to Akshay Krishnamurthy for attempting to teach me
theoretical machine learning including deriving convergence rates for kernel density
estimation, for being an example of an ideal graduate student for me to strive to
be, and for being a great friend since high school.Thanks to Hassan Khan for being
my partner in crime at home and helping me feel ok about enjoying things aside
from working towards my PhD every day. Watching sports, planning our survivor
strategy, and playing Super Smash Bros. with you are some of my favorite memories
from my time in graduate school. Thanks to the entire Ultimate Frisbee community
in Pittsburgh for the years of fun exercise and friendship. Shout out to all of my
teammates on CMU Mr. Yuk, Muff ’N Men, and Alloy. It was/is great playing
with all of you. Thanks to my friends from high school and college including Annie
Hong, Long Nguyen, Eythan Familier, Tom Gwinn, Derek Macklin, Ryan Tang, and
Sue Pearring for your support and fun times over the years that made graduate school
that much better. Thanks to Rachel Bowers for your encouragement as I stressfully
navigated my PhD and making sure I got enough food and sleep along the way. From
watching Star Wars at 6am, riding as many roller coasters as possible at Cedar Point,
or taking walks through Frick park, youve been at my side and I wouldnt trade it for
anything. Your constant support throughout this process is something I’m not sure



I’ll be able to repay.
I am lucky to have so many family members close to Pittsburgh. Thanks to my

grandmother Nancy for her wonderful home cooked meals, my grandfather Robert
for his expert advice on hand design among other things, and my entire extended
family near Pittsburgh who gave me a home away from home, and much needed
breaks from graduate school. Thanks to my sister Cathryn for dealing with me for
all of these years, and for teaching me how to be a kinder, more helpful person.
Thanks to my dad Steve for all of the fun conversations and advice, unsolicited or
not, and for continuing to be the person I look up to the most in this world. Finally,
thanks to my mother Julie for somehow surviving the challenge of raising me to
adulthood, and for her unconditional love and support. I would not be where I am
today without you.

viii



Contents

1 Introduction 1

2 Related Work 5
2.1 Modeling Uncertainty in Manipulation Actions . . . . . . . . . . . . . . . . . . 5
2.2 Post-Grasp Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Regrasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Data Collection for Robotic Manipulation . . . . . . . . . . . . . . . . . . . . . 7

3 Collecting Robotic Manipulation Data 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Case Study 1: Bin Picking and Post-Grasp Manipulation with Highlighter Markers 10

3.2.1 Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Case Study 2: Pushing an Object on a Table to Identify Properties . . . . . . . . 13
3.4 Case Study 3: Planar Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Case Study 4: Tray Tilting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Case Study 5: Place and Pick Regrasp of a Wooden Cube . . . . . . . . . . . . . 18
3.7 Case Study 6: Improved Place and Pick Regrasping . . . . . . . . . . . . . . . . 20

3.7.1 Depth-Based Multi-Camera Vision System . . . . . . . . . . . . . . . . 21
3.7.2 Reset Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7.3 State Machine for Manipulation Experiments . . . . . . . . . . . . . . . 37
3.7.4 Collected Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.5 Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Common Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8.1 Accurate Sensing and Actuation . . . . . . . . . . . . . . . . . . . . . . 42
3.8.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8.3 Not Losing the Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8.4 Hardware / Software Robustness . . . . . . . . . . . . . . . . . . . . . . 45

4 Data-Driven Statistical Models of Manipulation 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Statistical Framework for Post-Grasp Manipulation . . . . . . . . . . . . . . . . 48

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Statistical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



4.2.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Data-Driven Statistical Modeling of a Cube Regrasp . . . . . . . . . . . . . . . . 72
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Improved Place and Pick Models . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Accurately Predicting Class Probabilities . . . . . . . . . . . . . . . . . 85
4.4.3 Accurately Predicting the Resulting Object Pose . . . . . . . . . . . . . 88
4.4.4 Forward Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Planning 95
5.1 Planning Sequences of Manipulation Actions . . . . . . . . . . . . . . . . . . . 95
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Summary and Future Work 99
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Factory Robot Learning to Manipulate a New Object . . . . . . . . . . . 99
6.2.2 Anomaly Detection in Factories . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3 Improving Personal Robotics via the Cloud . . . . . . . . . . . . . . . . 100

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.1 Generalizing Across Objects . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 Combining Physics and Simulators with Data . . . . . . . . . . . . . . . 101
6.3.3 Improving Data Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.4 Closing the Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 103

x



List of Figures

3.1 Bin Picking and Post-Grasp Manipulation Setup . . . . . . . . . . . . . . . . . . 10
3.2 In-Hand Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Planar Sliding Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Varying the Support Pressure of the Sliding Object . . . . . . . . . . . . . . . . 14
3.5 Planar Grasping Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Tray Tilting Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Place and Pick Regrasp Data Collection Setup . . . . . . . . . . . . . . . . . . . 18
3.8 Vision System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Instrumented Manipulation Playpen . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Object Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 Vision System Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 Reset Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.13 Reset Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.14 Reset Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.15 Reset System Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.16 Place and Pick Data Collection State Machine . . . . . . . . . . . . . . . . . . . 38
3.17 Successful and Unsuccessful Grasps of an Object off of a Platform . . . . . . . . 40
3.18 Successful and Unsuccessful In-Hand Poses for Placing . . . . . . . . . . . . . . 41
3.19 Object Poses After Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20 Final Grasp Poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.21 Hardware Changing Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Example Post-Grasp Manipulation Tasks . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Choosing the Optimal Action to Accomplish a Post-Grasp Manipulation Task . . 50
4.3 Post-Grasp Manipulation Toy Example . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Sensing Capabilities for Toy Example . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Task Requirements for Toy Example . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Probability of Successful Execution of Toy Task . . . . . . . . . . . . . . . . . . 53
4.7 Object and Hand for Post-Grasp Manipulation Experiments . . . . . . . . . . . . 54
4.8 Placing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9 Dropping Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.10 Insertion Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.11 State Space for Post-Grasp Manipulaton . . . . . . . . . . . . . . . . . . . . . . 57
4.12 Example Estimated Belief Spaces of Highlighter Marker Grasps . . . . . . . . . 59
4.13 Three Most Stable Grasp Configurations . . . . . . . . . . . . . . . . . . . . . . 61

xi



4.14 Prior Distribution for Grasped Object Pose . . . . . . . . . . . . . . . . . . . . . 61
4.15 Example Grasp with Corresponding Likelihood and Posterior Distribution . . . . 63
4.16 Task Requirements for Dropping, Placing, and Insertion . . . . . . . . . . . . . . 65
4.17 Complete Process to Compute the Probability of Success at Placing a Marker . . 66
4.18 Experimental validation for Predicting the Post-Grasp Success . . . . . . . . . . 68
4.19 Place and Pick Regrasp Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.20 Place and Pick Regrasp Data Collection Setup . . . . . . . . . . . . . . . . . . . 73
4.21 State Space for Place and Pick Regrasp . . . . . . . . . . . . . . . . . . . . . . 74
4.22 Simulation Environment for Comparison . . . . . . . . . . . . . . . . . . . . . . 77
4.23 Comparison Between Experimental and Predicted Probability of Grasping an

Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.24 Precision-Recall Curve for Grasping Prediction . . . . . . . . . . . . . . . . . . 79
4.25 Histogram of Prediction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.26 Cumulative Histogram of Prediction Errors . . . . . . . . . . . . . . . . . . . . 80
4.27 Predicted Probability Distribution of a Final Pose After a Regrasp . . . . . . . . 81
4.28 Data Collection Procedure for Place and Pick Actions . . . . . . . . . . . . . . . 82
4.29 State Space for In-Hand and Platform Pose of a Rectangular Prism . . . . . . . . 83
4.30 Pick Action and Place Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.31 Initial Grasping Reliability Curve . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.32 Probability of Grasping an Object from Random Initial Poses . . . . . . . . . . . 86
4.33 Placing Reliability Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.34 Platform Class Reliability Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.35 Transition Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.36 Example Transition Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.37 Importance of Bandwidth Selection for KCDE . . . . . . . . . . . . . . . . . . . 91

5.1 Executed Plan for Platform Translation . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Executed Plan for Platform Rotation . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Executed Plan for Handling Uncertainty . . . . . . . . . . . . . . . . . . . . . . 97

xii



Chapter 1

Introduction

Humans are experts at manipulation. They can grasp and use unknown objects in their environ-
ment with ease and precision. One reason for this is that they have years of experience manip-
ulating different objects and collecting data on how they can affect the world with their actions.
With this experience, before manipulating an object, a human already has an expectation for
what is going to happen. This expectation is normally correct, leading to smooth and efficient
motions. By contrast, a robot’s expectation of how the world will change when it interacts with
it is often incorrect, leading to unreliable and failed manipulation. This is because its models of
manipulation are often quite wrong. In this thesis, we improve robotic manipulation performance
by building accurate manipulation models.

Models of robotic manipulation are often inaccurate because the real world is a complex
place. Simple physics models can only take us so far, and even high-fidelity simulations have
a difficult time modeling multiple contacts, non-Coulomb friction, stiction, deformation, and
changing contact modes. Moreover, even if simulators had the capability to model the world
perfectly, they might still produce incorrect models because of not using the correct parameters
to match what’s actually happening in the real world. The amount of dust settling on one side of
the object, the amount of oil on a surface, a slight difference in weight distribution of an object,
and inconsistent friction inside of a robot gripper are examples of things that would be difficult
to match within a simulator. Indeed, a deterministic model of any sort seems impossible to use
for modeling robotic manipulation.

Instead, in this thesis, we choose to model robotic manipulation using data-driven statistical
models. By recording data from the real-world, we can measure and encapsulate any uncertainty.
If dust is settling on the side of an object and causing it to slip sometimes, or if sensing inaccuracy
is causing the object to tilt in different directions when grasped, we would like the robot to have
a probabilistic model to account for this. By using a large amount of real robotic manipulation
data, we can improve the accuracy of our models, because they are based on what the robot is
actually seeing with its own sensors.

To enable data-driven statistical models we must solve two problems, both of which will be
the main contributions of this thesis. First, how can we get robots to collect enough manipulation
data to build useful models? Second, how can we build statistical models from this data that
accurately represent the world?

Collecting a large amount of robotic manipulation data is challenging, and is often avoided by
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researchers. However, if we hope to achieve accurate models of manipulation actions, the robot
needs to be able to collect data on its own. In this thesis, we present several different robotic
manipulation experiments where data was collected, and attempt to find insights into what made
the data collection successful and unsuccessful.

Once the robot has the data in hand, it can now learn statistical models with this data. Unfor-
tunately this is also challenging, as manipulation is the iconic non-Gaussian problem. Flipping a
coin, grasping an object with multiple crevices, or rotating an object through the robots hand all
have multiple modalities, each with different distributions. We present solutions for statistically
modeling different aspects of manipulation actions. First, we show how to predict the probability
distribution of the pose of a grasped object from sensor readings. Next, we show how to predict
the probability of successfully executing a post-grasp action such as placing or insertion given
a certain amount of error in the predicted in-hand pose. By combining these probability func-
tions together, we can estimate the probability of succeeding at a task given sensor readings. In
cases where this probability is too low, it may be advantageous to adjust the pose of an object
in the robot’s hand. Thus, we also show how to model these regrasp actions by predicting the
probability that the robot will maintain its grasp after an action, and also predicting the prob-
ability distribution of the resulting in-hand object pose. We also break this regrasp down into
placing and picking actions to enable the robot to position the object not just in its hand, but
in the world as well. All of our models are non-parametric, and improve their accuracy with
more data. Armed with data-driven statistical models, robots should be able to plan and execute
manipulation actions more effectively.

The rest of this thesis is organized as follows. In Chapter 2 we present the related work to this
thesis. In Chapter 3 we present several robotic manipulation experiments where a large amount
of data was collected. In Chapter 4 we detail the machine learning used to statistically model
manipulation actions. In Chapter 5 we briefly show how our models can be used for planning. In
Chapter 6 we conclude and discuss future work.

Here we summarize the contributions of this thesis:
1. Data Collection of Robotic Manipulation - We look at several case studies on how to

collect a large amount of robot manipulation data. We then use these case studies to cre-
ate a list of insights on how robots can collect manipulation data with minimal human
intervention.

2. Data-Driven Statistical Models for Robotic Manipulation - We present methods for
modeling manipulation statistically using collected data sets. We present the following
statistical models:
• Sensing capabilities of a robot hand
• Task requirements of post-grasp manipulation actions
• Combining the above models to predict the probability of succeeding at a task given

sensor readings
• Probability of maintaining a grasp of an object after a regrasp, place, or pick action
• Predicting the probability distribution of where we expect the object to end up after

a regrasp, place, or pick action

Finally, we validate our data-driven models by having the robot create and execute end to

2



end plans for a series of actions to position an object in a robot’s hand, or in the environ-
ment.
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Chapter 2

Related Work

Our proposed work looks at how to statistically model robotic manipulation actions from col-
lected data. First, we discuss how to model uncertainty in manipulation actions, and then we
cover selected other topics relevant to this thesis including post-grasp manipulation, regrasping,
and pushing. Finally we look at examples of researchers collecting data from robotic manipula-
tion experiments.

2.1 Modeling Uncertainty in Manipulation Actions

Much of this section is published in our previous work [90, 91]. The importance of uncertainty in
manipulation has long been recognized. Incorporating stochastic models into modeling, percep-
tion and control was attempted even in the 1970’s, for example using Kalman filters in industrial
assembly [112, 118]. For more recent work using either Kalman filters or particle filters see [42].

Numerous early experiments illustrated the necessity of modeling uncertainty. Most notable
was Inoue’s peg insertion work [58] which inspired the pre-image backchaining approach [33,
70]. Preimage-backchaining adopted a possibilistic approach, representing the robot’s belief
state by a set of possible configurations. Later work extended the approach to probabilistic
models [66].

The 1980’s and early 1990’s saw several projects exploring grasping and manipulation under
uncertainty, using both possibilistic and probabilistic models. [14, 15, 16, 21, 22, 23, 34, 43,
44, 80, 94, 117] Among these, the closest to the present work are probably [16, 23, 44], which
develop Bayesian decision-theoretic techniques, applied to planar grasping problems and the
problem of an object sliding in a tilting tray. Dogar and Srinivasa [30] applied similar ideas to
clutter and uncertainty in the context of push-grasping. Kang and Goldberg [60] used a random
sequence of parallel-jaw grasps to classify grasped objects using a Bayesian process.

Goldfeder and Allen [45] approached the problem of grasp planning from a data-driven per-
spective. Given partial shape information of a novel object, they use a grasp data base to choose
a grasp for the novel object.

There is a substantial literature on statistical frameworks to model uncertainty. POMDPs [17]
(Partially Observable Markov Decision Processes) are a general framework that describes the
current problem well. Hsiao et al. [57] used a POMDP framework to track the belief of the pose
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of an object and tactile exploration to localize it by planning among grasping and information-
gathering trajectories. PSRs [10, 119] (Predictive State Representation) are also introduced as a
general framework to learn compact models directly from sequences of action-observation pairs
without the need for a hand-selected state representation. Lavalle and Hutchinson [66] advo-
cate information-spaces to formalize the process of propagating uncertainty along motion strate-
gies. [48] explored the application of optimal control policies in information space, derived from
changes in observable modes of interaction. Platt has worked on Markov Decision Process plan-
ning, with actions expressed relative to contact locations, and on compliant hand motion [98].
Petrovskaya and others have worked on belief state estimation for uncertain manipulation task
geometry [95].

Mahler et al. [73] used Gaussian Process implicit surfaces to model grasping uncertainty.
Schaal and Atkeson [108] used locally weighted regression and a shifting setpoint exploration
algorithm to learn a dynamic model for Devil Sticking. Christopoulous et al. [25] explicitly
model object pose and shape uncertainty from vision to select more robust parallel grasps. They
specify shape uncertainty using affine transforms of spline models. Mahler et al. learn grasping
models in simulation with DexNet 1.0 [74] and 2.0 [75]. In DexNet 1.0, they estimate the prob-
ability of force closure by assessing similarity to previous objects in a database for which grasp
qualities have been computed. In DexNet 2.0, they synthetically generate point clouds, grasps,
and compute grasp metrics, and use this dataset to train a convolutional neural network to predict
grasp quality for real grasps using an ABB Yumi. Stulp et al. [115] learned motion primitives to
optimize the chance of grasping an object with Gaussian uncertainty on its location. Cayla [18]
suspended a sphere from a string to determine grasping probabilities in a grid of positions with
respect to a hand.

Some work has been done on analyzing the grasp outcome as well. Morales et al. [82] used
real grasps on a collection of objects to predict the reliability of the grasp process. Balasubrama-
nian et al. [5] noted that different tasks lead humans to different initial grasps, and Faria et al. [35]
were able to estimate the best part of an object to grasp based on the task using human trials. To
model manipulation actions, researchers often use simulation[45][61], imitation learning[115],
or models learned with collected robot data [82][90, 91]

The most similar work to ours comes from Kopicki et. al. [65]. They use regression to learn
the resulting motions of real robotic push actions. They also fit multi-modal probability distri-
butions to their data and show improvement over regression. Our work focuses on learning both
the probability of maintaining a grasp after a regrasp and the resulting probability distributions
of robotic regrasp actions, along with paying closer attention on how to collect a large amount of
robot manipulation data.

2.2 Post-Grasp Manipulation

In the context of post-grasp manipulation, Jiang et al. [59] looked at scenes to determine good
locations to place objects. However, they did not study how robust the final process of actually
placing an object is, which is the subject of our work. Fu et al. [40] addressed the problem of
batting an object to a goal in the presence of uncertainty. They first maximized information gain
in an observation step, and then chose the action most likely to succeed. Holladay et al. [53] used
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inverse motion planning to determine the optimal placement of a robot’s other hand to increase
the probability of successfully placing objects.

2.3 Regrasping
Regrasping has been studied for a long time, starting with Paul [93], Tournassoud et al. [116],
Fearing [37], and Brock [13]. Early regrasping work assumed a known world model with
deterministic actions. Most regrasping work falls under three categories: pick and place [51, 113,
116], closed-loop dynamic regrasping [26][109][41], or what is generally referred to as dexterous
manipulation or finger gaiting [37, 107][55][110][36][20][106]. Chavan Dafle et al. [19] present
work on “extrinsic dexterity”, which uses gravity, inertia, and external contacts to vary the pose
of the object within the hand.

2.4 Pushing
Mason [79, 80] first developed the theory of quasi-static pushing. Later, Lynch and Mason [72]
further developed the theory to include controllability and planning. Akella and Mason [3] used
this theory to orient polygonal objects in a plane. The limit surface, a compact way to represent
planar sliding was introduced by Goyal et al. [46] . Howe and Cutkosky [56] introduce an
ellipsoid approximation to this limit surface. The Goyal’s limit surface was then used by Zhou
et al. [125] as a backbone for learning with data to fit an accurate sliding model with a minimal
amount of data. Kopicki [65] tried to predict pushing motions by collecting data on the pose
of relevant elements. Omcren [88] and [38] present other data-driven approaches to modeling
pushing, generally using visual data with random push trials and standard machine learning
approaches.

2.5 Data Collection for Robotic Manipulation
Some examples of data collection for robotic manipulation are presented in [8, 9, 12, 32]. Detry
has shown success with data-driven affordance learning [27, 28, 29]. Pastor et al. [92] adapts the
movement of a robot to succeed more often at a task through a series of trials. Stulp et al.[115]
adapt the movement of a robot to handle additional uncertainty through learning. Yu et al. [123]
collect a large pushing data set. Google has recently collected large RGB-D data sets of grasping
and pushing [67][38]. Brost [16] collected thousands of trials of grasping a gear automatically in
order to learn a success model for grasping. Agrawal et al [2] poked objects in a bin with sloped
walls over 100K times for over 400 hours. Pinto and Gupta [96] grasped objects on a table over
50K times for over 700 hours, and used this to predict the best SE(2) grasp location for each
object.
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Chapter 3

Collecting Robotic Manipulation Data

3.1 Introduction

Humans are experts at manipulation in part because of their wealth of manipulation experience.
Babies play with toys, first struggling to even pick up objects, but after hours and hours of trial
and error, become more and more capable, graduating to building block towers, and perhaps even
frisbee players. The intricacy of the real world necessitates a large number of trials for humans
to become capable manipulators. In order for robots to manipulate objects successfully, they too
must perform a large number of trials.

While it is tempting to use a simulation to give the robot the experience it needs to be suc-
cessful, this has not yet been shown to be successful. There are many phenomena in the real
world that are difficult to model in simulation. Non-Coulomb friction, deformation, stiction,
dirt, moisture, inaccuracies in object shape or density, and sensing inaccuracies are some exam-
ples of difficult phenomena that cause simulators and the real world to diverge. Even if robots
work well at manipulating objects in a simulator, this generally does not translate to success
in the real world. Some researchers have tried to take results from simulation and use transfer
learning to reduce the number of trials needed for robots in the real world. However, this has
only been shown to work in very constrained or contrived cases, and often does not significantly
reduce the number of experiments needed.

Thus, we are left with the task of trying to collect a large amount of real manipulation data
with robots. Unfortunately, collecting real robot manipulation data is full of challenges, which is
why many researchers expend a lot of effort avoiding it. When interacting with the real world, the
robot can crash, it can drop objects, its hardware can break, and it can operate with an incorrect
estimate of the current state of the world leading to an infinite loop or fatal error, to name a few.

For the rest of this chapter, we will look at different case studies of manipulation data col-
lection. First, we look at picking highlighter markers out of a bin and trying to place, drop or
insert them. Second, we look at pushing an object around on a table. Third, we look at modeling
planar grasping. Next, we look at tilting an object in a tray to try to localize it. Then, we look
at placing and picking a cube to regrasp it, and also look at an improved data collection setup of
that. Finally, we conclude with some common themes for successfully conducting manipulation
experiments.
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3.2 Case Study 1: Bin Picking and Post-Grasp Manipulation
with Highlighter Markers

Figure 3.1: Data collection setup for bin-picking highlighter markers and placing them on a
platform. The robot would reach into the bin and squeeze while twisting to grasp a marker.
Then, it would attempt to balance the marker vertically on a small platform. If unsuccessful,
the marker would fall and roll down the ramp back into the bin. If successful, the robot would
purposely knock the marker over so it would also roll back into the bin.

In this experiment, the object was to grasp a highlighter marker from a bin and place it on a
platform, drop it into a hole, or insert it into a smaller hole. Figure 3.1 shows our experimental
setup for bin-picking and placing.

We used an ABB IRB 140 industrial robot arm with an MLab Simple Hand. The MLab
simple hand has a single actuator which moves 3 compliantly linked fingers to close around the
object. The rotation of each finger is captured by a 12-bit absolute encoder, giving us a sensing
accuracy of 0.1 degrees for each finger.

Designing a robust system to collect all the necessary data was both important and challeng-
ing. The amount of data required to learn probability functions forced us to carefully design
experimental setups requiring minimal human intervention. For the three post-grasp manipu-
lation tasks we had to focus on three different aspects: object acquisition, task execution, and
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post-task reset. Having a human in the loop to hand objects to the robot was not an option, since
we needed to execute thousands of experiments and it would also possibly introduce bias in the
process.

We solved the object acquisition problem by having a large bin of objects and training an
open-loop grasping strategy that singulates a marker out of the bin approximately 40% of the
time. For task execution, it was important to make sure that the hand did not collide with the
environment, regardless of the pose of the marker or action chosen by the robot.

Finally, for resetting the system after task execution, different strategies were used depending
on the task. For placing, the object was placed at the top of a ramp and knocked back into the bin.
For dropping, after some constraining moves, the object was grasped out of the hole and dropped
back into the bin. For insertion, the object was held the entire time and then dropped back in.
It is important to note that a fair amount of time was spent in designing robust experiments, and
this should not be overlooked when trying to collect data in a real setting.

3.2.1 Vision System

We needed two separate vision systems for this experiment. One to find the whether the hand
was holding a single highlighter marker, along with the in-hand pose of that highlighter marker,
and one to determine whether the post-grasp manipulation task was successful. We discuss both
of these vision systems here.

3.2.1.1 In-Hand Pose Estimation

We use a single RGB camera, with the pipeline shown in Figure 3.2. The most important factors
here were robustness and accuracy. We needed to be sure that the hand was holding exactly one
marker, and if so, for our models to be accurate, we needed to know as accurately as possible
where the marker was in the hand. By making a specialized vision system for these specific
highlighter markers, we were able to accomplish both of our goals.

The vision system works as follows:
1. The hand is moved in front of the camera and a background image is saved. Now, when the

hand has grasped in the bin and moves in front of the camera, the images can be subtracted
to eliminate random colors present in other parts of the image.

2. There are five marker colors. Using color thresholds in HSV space on the background-
subtracted image, we can get five binary images that show us where each marker color
might be in the image.

3. By counting the number of pixels in each binary image, we can quickly determine whether
the hand is holding 0, 1, or more than 1 marker. If none of the images have enough pixels,
then the hand is holding no markers. If more than 1 binary image has enough pixels, or if 1
binary image has too many pixels, then the hand is holding more than 1 object. Otherwise,
the hand is holding exactly one object.

4. Next, by fitting a 2D Gaussian to the relevant binary image, an initial guess for the position
and orientation of the marker in the hand can be computed.
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Figure 3.2: Vision pipeline for calculating the pose of a highlighter marker. First, a new image
and previously taken background image are converted into the HSV color space and subtracted.
Then, colors thresholds for each of the five marker colors were used to get binary images for each
color. At this point, by counting pixels, one can very robustly decide if there is 0, 1, or more than
1 marker. If there is exactly 1 marker, then a 2D gaussian is fit to the data to get an initial guess
for a position and orientation. Then template matching is used to find a final marker position that
is robust to occlusion.

5. Because of occlusion by the hand’s fingers, this estimate is generally off, and so by using
a rectangular template for the highlighter marker and sliding it around the image, we can
perfectly match the pose.

This system gave us sub-millimeter accuracy of marker pose. Also, because it was mostly done
with binary images, the computation time was minimized. No vision system failures were ob-
served in the 10,000 grasps performed by the robot.

3.2.1.2 Task Success Prediction

To determine whether or not the task succeeded, we used another RGB camera and a similar
vision system to the one above. For a task to be successful, there will be a highlighter marker
present either above the placing platform, above the dropping hole, or inside of the insertion hole.
After doing background subtracting and color thresholding, if there is more than a certain number
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of pixels in the relevant regions, we declare task success. Again, no vision system failures were
observed in the 10,000 grasps performed by the robot. This is again an example of a highly
specialized but very robust and accurate system.

3.3 Case Study 2: Pushing an Object on a Table to Identify
Properties

Figure 3.3: Data collection setup for determining planar sliding properties of an object. The
robot was equipped with a pusher connected to a force-torque sensor, and the object was tracked
using a motion capture system. The robot would pick a random contact point and random push
direction, and then push the object and record data so a model could be fit. If the object got too
close to the edge of the robot’s workspace, the robot would drag the object back to the center.

The purpose of this next experiment was to identify planar sliding properties of an object.
The results of this work are discussed in Zhou et al. [125], and our experimental setup is shown
in Figure 3.3. Here, we were interested in predicting how an object would move when it was
gently pushed. By recording the contact location and direction of a straight push, the resulting
motion of the object, and the forces felt by the pusher while the object was moving, we could fit
a model of how the object would move. The experimental setup would be varied by switching
the contact pressure distribution between the object and table along with the frictional properties
of the table.

While the subject of our work was to identify this model in as few pushes as possible, we
still wished to have a system that could perform a large number of pushes for future experiments.
First, to vary the pressure distribution, we drilled and tapped a number of holes on the underside
of the object (Figure 3.4). By adjusting the position of the screws, we could experiment with
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different pressure distributions. The block was machined to sub-millimeter precision, so the
pressure distribution relative to the edge of the object was known to high accuracy. Second, to
vary the frictional properties of the table, different materials were simply fastened to the table.

Figure 3.4: The support points of the object could be changed by adjusting the position of the
screws.

To collect accurate data for our models, our sensing and actuation needed to be accurate
as well. By using an ABB IRB 140 industrial robot, our actuation accuracy was 0.03mm in
positional repeatability. We used an ATI Mini-40 force-torque sensor with an SI-20-1 calibration,
meaning the measurable force resolution in the planar direction was 1/200 Newtons. Moreover,
by increasing the mass of the block to 1.5 kg, we were able to proportionally increase the forces
felt by the force-torque sensor, effectively increasing the resolution further. Finally to sense the
position of the block, we used 6 OptiTrack Flex:V100 motion capture cameras. By placing a
number of IR markers on the block, we could sense both the position and orientation of the block
relative to the robot.

For our vision system to attain high accuracy, several careful calibration steps were needed.
First, the cameras had to be calibrated with respect to each other, which was done with an off-the
shelf OptiTrack procedure which involved waving a wand with known marker positions around
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the work space. Second, the cameras needed to be calibrated with respect to the robot, which
was done by having the robot grasp an IR marker and move around in the workspace. The
transform between the robot’s base frame and camera frame, and the mounted position of the
marker relative to the tool flange of the robot were simultaneously calculated, with the latter
being discarded. Finally, the transform between the IR markers on the object and the actual
object frame was computed by measuring the position of some markers by hand relative to some
fixed frame, and then placing the object on that fixed frame. By looking at the position of the
fixed IR markers relative to the object’s IR markers, a transform could be computed. After all
of these calibrations, our effective sensing accuracy was 6mm in practice. This error combines
errors in each calibration step with the motion capture system error.

While sensing and actuation accuracy are critical for model accuracy, the amount of data
collected is also critical. To improve this, we needed to solve two problems. First, the robot’s
hardware robustness had to be high enough to not break down during the experiment. The relia-
bility of the industrial arm and force torque sensor was high, however special attention was paid
to the cables connected to the force-torque sensor. The robot rotates its end effector around, and
it was critical for the cables to not interfere with the object in any way, as this would corrupt our
data. This was accomplished by wrapping the cable around the force-torque sensor, creating a
path for the cable to slide along the robot arm, and attaching some tension to the end of the cable
to pull any excess cable out of the way of the work area. This took time to get right, and had
to be fixed several times after running the robot for some time revealed other flaws in the cable
routing.

The second problem to solve was the object reset problem. The robot selected a random
contact point and random push direction, so it was possible that the robot could push the object
out of its workspace. To prevent this, if the object got close to the edge of the workspace, the
robot would turn its pusher sideways and drag the object back towards the center. This was a
simple way to increase the number of experiments performed without human intervention.

3.4 Case Study 3: Planar Grasping

In this experiment, we wanted to understand how an object moves as it is being grasped on a
plane. Not only were we interested in whether the object would be successfully grasped, but we
were interested in where the object would end up after the robot hand interacted with it. More
motivation can be read in Zhou et al. [126].

The experimental setup is shown in Figure 3.5. An ABB IRB 120 robot with a Robotiq C-85
parallel jaw gripper attempts to grasp objects on a transparent acrylic table. A wide-angle upward
facing webcam tracks the pose of an AprilTag [87] attached to the underneath side of the object.
The frame is made of one inch 80/20, which also form raised walls that prevent the object from
falling off of the table.

The camera’s intrinsics are calibrated using the standard ROS camera calibration tool, and
the camera’s frame is calibrated to the robot by having the robot move a larger AprilTag around.
Then, a further calibration is done by having the robot grasp the object and move it around on
the surface of the table. This allows us to obtain a 0.3mm object pose estimation accuracy near
the center of the table, and a 1.5mm accuracy near the edge of the table.
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Figure 3.5: Planar grasping experimental setup. An object with an AprilTag on the underneath
side is grasped on a transparent acrylic table top. The camera underneath tracks the object’s pose,
while the robot interacts with the object above. The walls are raised on the sides to prevent the
object from falling off the table.

If the object or robot during a grasp would be too close to the edge of the table, the robot
performs a reset action by dragging the object back to the center before starting its next grasp.
To collect data, a random initial object pose relative to the hand is chosen, and then a grasp is
performed, with the initial and resulting hand and object poses recorded. The robot is able to
autonomously collect grasping trials overnight, and collects data on approximately 300 grasp
trials an hour.

A few problems that were encountered during data collection were the hand losing calibra-
tion, vision system instability, and unexpected object motion. Over many experiments, the hand
would start closing to a different width, so this was solved by recalibrating the hand every so of-
ten. For the vision system, we noticed that sometimes there would be multiple or zero AprilTag
detections. Multiple detections were solved by querying the vision system again, and zero de-
tections were solved by using larger AprilTags and eliminating light reflecting off of the bottom
of the acrylic. Sometimes, when grasping the object, a dynamic motion would occur because of
squeezing. Every so often, the object would flip up into the air, and land on its side rather than
on the AprilTag. This would cause the experiment to stop, and we would reset it ourselves. As
the data requirement was not that high, this was not a huge issue, but something to consider in
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the future.

3.5 Case Study 4: Tray Tilting

In this experiment, we were interested in expanding on Erdmann and Mason’s sensorless manip-
ulation work [34]. In their work, they showed that regardless of the initial position of an allen
key in a tray, by tilting the tray in a specific sequence of directions, the allen key would always
end up in the same final pose. Instead of explicitly planning a sequence of tilts, we randomly
select a long sequence of tilts, and see if the phenomenon still holds.

Our experimental setup is shown in Figure 3.6. We use an ABB IRB 120 robot with an
aluminum box attached to it. An AprilTag [87] is attached to an allen key, and a downward
facing camera finds the pose of the object. There is an acrylic top to the box which prevents the
object from flipping over or falling out of the box.

Figure 3.6: Tray tilting experimental setup. The robot tilts the aluminum tray in various direc-
tions, and the camera records the resulting pose of the object inside.

We performed over 500 trials of 50 tilts, which is over 25000 total tilts. For each trial, the
robot performed an initial randomization move, where the robot quickly shook the box along
several directions. The object would bounce off of the walls and arrive at a pseudo random pose
for the next trial.

Several issues were encountered over the course of the experiments. First, sometimes there
would be multiple or zero AprilTag detections, because of light reflections on the acrylic or other
things in the camera’s field of view. This problem was mitigated by simply checking that there
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was exactly one detection before proceeding. Second, we noticed stiction effects between the
allen key and the smooth aluminum bottom of the box. We fixed this by putting a piece of paper
on the bottom. The biggest problem however was that the sides of the box wore down with the
allen key sliding along the sides. This led to high friction and completely changed the physics of
the box over the course of the trials. This was mitigated by replacing the sides of the box as they
wore down, but this remained the largest obstacle for long term experiments.

3.6 Case Study 5: Place and Pick Regrasp of a Wooden Cube

Figure 3.7: Place and pick regrasp data collection setup. We use an industrial arm with a parallel
jaw gripper and place an pick objects. A three dimensional vision system based on point clouds
is used to record the object position before and after a regrasp. In the event of a failure, the robot
either picks up the dropped block from on top of the platform or retrieves a new block from a
stack of fresh blocks. With this setup, the robot performed over 3000 regrasp experiments. We
use this data to fit models for predicting the probability of success, and estimating the final pose
of the block after a regrasp.

The purpose of this experiment was to model a place and pick regrasp of a cube. We wished
to learn two probability functions: 1) Given the in-hand pose of an object, what is the probability
that the object is still in the robot’s hand after a regrasp, and 2) Given the in-hand pose of an
object, what is the probability distribution of the resulting in-hand pose of the object after a
regrasp? We needed to collect a large amount of accurate data to learn these models.

Our data collection setup is shown in Figure 3.7. For our experiments, we use an ABB IRB
140 industrial robot arm and a Robotiq C-85 2-fingered gripper that place and pick an object
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Figure 3.8: An overview of the object pose estimation method. First, we collect point clouds from
multiple views of the object to get as much coverage as possible. We can collect point clouds
from each of the solid-box cameras, or collect multiple views of the object from the dotted-box
camera using the robot. We then filter the points by removing known obstacles such as the robot’s
hand. We then fuse the point clouds together using well calibrated camera extrinsics. Next, we
use a user-selected function for the specific object to initialize our pose estimate. We then use
Iterative Closest Point to refine our estimate. Finally, we take into account object symmetries to
return consistent pose estimates which are useful when building models for robotic manipulation.

from a metal platform. We use a 50 mm wooden cube as our object. Initially, the block is resting
on the platform and the robot locates it and picks it up. The vision system records the initial state
s. Then, the robot places the cube and picks it up again using an action a. The a parameters
[d, z, α] (see Section 4.3) are sampled uniformly at random and cover the entire range of actions
we wish to model for this regrasp. The vision system first checks whether or not the cube is in
the robot’s hand and then records the final state s′. If the object is grasped, it repeats the process
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with a new action a. If the object is not grasped, it enters a recovery procedure and then runs a
new regrasp experiment. In this way, we collect a series of D = (s,a, grasped, s′) data points.
We collected 3304 data points with our experiments. The robot successfully maintained its grasp
of the object after a regrasp 2642 times and failed 662 times.

Figure 3.8 shows an overview of our vision system. The first step is to acquire and fuse
point clouds together. Second, we use a simple two-stage filtering process by first only keeping
points inside of a boundary box, followed by ignoring any points inside of “ignore regions”. All
boundary boxes and ignore regions are rectangular prisms translated and rotated in 3 dimensional
space. After these first two steps, almost all of the remaining points are assumed to belong to the
object in question. Our third step is to run these points through a “guess” function specific to the
object in question. Fourth, we use our initial guess as a seed to Iterative Closest Point (ICP) [7]
to get our final pose estimate, and then check to make sure the solution is correct by looking
at the percentage of matched points. Finally, if our object is symmetric in some way, we use a
symmetry handler to find the closest homogeneous transform to some desired object orientation.
The average positioning error of this system is 5 mm.

The recovery procedure reduces the need for human intervention during data collection, and
is split into 2 parts. If the object is not in the robot’s hand, it is either resting on the platform,
or has fallen off the platform. If it is resting on the platform, we command the robot to pick up
the object and continue with the next experiment. If the object has fallen off of the platform, we
consider the object lost, and grasp a new block from a queue of identical blocks resting on the
table. The queue is 11 blocks long, and the robot takes approximately 150 trials to exhaust the
entire queue and require human intervention.

3.7 Case Study 6: Improved Place and Pick Regrasping

There were two main issues with the previous regrasping experiment. First, the 5mm accuracy
of the vision system put a limit on how accurate our models could be. Second, once the robot
ran out of extra blocks to grasp, a human would have to intervene for the experiment to continue.
This limited the total amount of data we could collect.

In order to improve the quality, quantity, and richness of the data set, we designed another
data collection setup to model both placing and picking actions of a rectangular prism. This
experiment shares a lot of its design with the previous experiment, but makes key improvements
to the vision system, adds a reset mechanism to allow the robot to automatically recover from
failure, and adds a state machine to improve software robustness. We discuss each of these
elements in detail in the sections below.

Our instrumented manipulation playpen is shown in Figure 3.9 and consists of the following
components:
• An ABB IRB 140 6 degree of freedom robot with 0.03mm repeatability.
• A C-85 2-Fingered Robotiq parallel jaw gripper.
• An ATI SR-48 collision sensor, which acts as an automatically resettable breakaway wrist
• 4 Intel SR300 depth cameras mounted surrounding the workspace to accurately estimate

object pose (Section 3.7.1)
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Figure 3.9: The instrumented manipulation playpen. This setup can be used to collect a large
amount of accurate robotic manipulation data with minimal human intervention. For actuation,
there is an industrial robot arm, collision sensor, and parallel jaw gripper. Multiple depth cameras
that are accurately calibrated give us robust and accurate pose estimation. Below the experiment
area lies a reset mechanism, which enables the robot to recover from failures. This setup was
used to collect over 10000 pick and place operations.

• A reset mechanism below the workspace designed to retrieve an object if the robot drops
it (Section 3.7.2)

• Finite state machine logic to control the experiment, enabling the system to recover from
unexpected events without human intervention (Section 3.7.3)

We collect over 10000 object picks and placements, and visualize the data in Section 3.7.4

3.7.1 Depth-Based Multi-Camera Vision System
We need a vision system that can accurately estimate the pose of an object that is being manip-
ulated. The object may be occluded, and not necessarily textured. It is also critical that when
recognizing the object, our false positive rate is as low as possible. That is, when we think
there is an object, there definitely is one. In practice, one of the main reasons that robots fail to
manipulate objects is because they think an object is at a certain pose when it is not.

Luckily for us, there is plenty of prior work on finding the pose of objects in scenes [31] [4].
We will leverage this work, but also leverage the nature of our setup to improve the robustness and
accuracy. Prior work is often more interested in recognizing many objects at once. Accuracies
are often reported in pixels. As we will be manipulating objects, we need to know how accurate
our vision system is in mm and degrees.

Our main insight is that the more sides of the object can be seen, the higher the the accuracy
and robustness of the system. If only one plane of the object can be seen, errors of the object
sliding along the plane are hard to control. However, if more than one side of the object can be
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seen, the pose of the object becomes ”locked” in place, and much higher accuracy and robustness
can be obtained.

Our second insight is that the calibration of the cameras, both intrinsic and extrinsic, have a
large effect on the overall accuracy of the system. Regardless of how advanced or precise of a
vision algorithm is used, the algorithm is at the mercy of the camera calibration.

We choose to not use color as an input signal. In our experience, especially in manipulation,
shadows from the robot hand or changing object poses often negatively affect the performance
of vision systems that use color. In addition, often objects robots are trying to manipulate are
untextured, which means using visual features other than the color of the object itself becomes
quite unhelpful. Finally, because our environment is well known, as we will see it is quite
straightforward to find the pixels that relate to the object in question, which is often what color
is used for.

We will use multiple consumer-grade depth cameras that allow maximum coverage of the
scene to generate a point cloud of the scene, and then find how a point cloud model of the object
fits within that.

3.7.1.1 Depth Camera Calibration

The accuracy of our vision system depends almost entirely on the accuracy of our camera cali-
bration. The point cloud generated by each camera must be as close to reality as possible, and the
pose with respect to the world of each of the cameras generating these point clouds must also be
as close to reality as possible. We detail our calibration methods for both intrinsic and extrinsic
calibration below.

Intrinsic Calibration As shown by Basso et al [6], consumer-grade depth cameras have a
fundamentally different error profile than color cameras, and must be calibrated accordingly.
Generally, absolute depth camera error is quadratic as a function of distance, and their RMS
error is also quadratic as a function of distance. Basso developed a non-parametric calibration
method to correct for both of these errors, and we use their method to calibrate each of our
cameras. We briefly describe their method here.

The method takes as input depth images from the camera of a plane from various poses. For
an accurate calibration, the pose of the depth camera with respect to the plane must be known. In
Basso’s paper, the pose of the camera with respect to the plane is calculated by placing a known
checkerboard on the plane. By using a calibrated color camera, the transform between the color
camera and depth camera is jointly estimated with the pose of the depth camera with respect to
each plane.

There are two parts to Basso’s method. First, the depth images are undistorted using a local
undistortion map, which adjusts the depth map so that planes seen in the image that previously
were distorted look flat. Second, the depth images are globally modified so that the distances of
the planes seen in the image represent reality.

Extrinsic Calibration Now that each of our depth cameras have metrically correct point clouds,
we must calculate the pose of each depth camera with respect to the world. Previous methods
have used a color camera at a known transform from the depth camera looking at a pattern of
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some kind to estimate the depth camera pose [84] or the IR image of the depth camera. However,
using a color camera or the IR image introduces an extra step of error into the calibration, as
there will be some error in the transform. We choose instead to directly use the point cloud from
the cameras to calibrate them, as these point clouds will be what are used when estimating the
object pose.

Ideally, we’d like a target that we can move around in the work space and calibrate all of
the cameras at the same time. To do this, we attach a sphere on a stick to the robot, and move
it around. As we do not know exactly where the sphere is relative to the robot’s tool flange,
and we don’t know where each camera is, we’ll have to solve a hand-eye calibration problem.
We follow Wu et al’s algorithm [120], which first computes a closed-form approximate solution
using Kronecker Product, and then iteratively computes a more accurate solution using Gauss-
Newton and so(3) Lie-Algebra for rotation. We will refer to this algorithm as Wu2017.

After collecting a large number of samples, we run the following algorithm:
• For each camera, remove the background by finding which voxels don’t change occupancy

across most of the clouds
• Use RANSAC to find the position of a sphere of radius r in each point cloud
• Use RANSAC together with Wu2017 with a low acceptance rate to find the pose of each

camera and sphere position
• For each point cloud, only keep points where the sphere should be, according to our previ-

ous calibration
• For each stripped down point cloud, use RANSAC to find the position of the sphere
• Use RANSAC with Wu2017 with a high acceptance rate to find the pose of each camera
• Use a slightly modified version of Wu2017 to find the pose of all cameras and one sphere

position.

3.7.1.2 Finding the Object in the Point Cloud

With our calibration complete, we can combine the point clouds from all of the cameras into one
point cloud in the world frame. Our task now is to figure out whether an object exists in that
point cloud, and if so, where. We will do this in four steps: preprocessing, global matching, local
optimization, and verification. We explain each below:

Preprocessing Often, much of the environment will be known to the user ahead of time when
doing controlled experiments. The vision system’s robustness and speed can be improved by
removing points that are for sure not the object. To do this, the user can set a region of interest,
and ignore regions. All regions are specified as rectangular prisms transformed to an arbitrary
SE(3) pose. Checking if a point is inside or outside a rectangular prism amounts to checking
its distance from 3 planes, which is fast. In our case, when finding the pose of an object on a
platform, we set a region of interest in the vertical space above the platform. When finding the
in-hand pose of an object, we set the region of interest to be a region in the grasp area of the
hand, and each of the fingers and base of the hand as ignore regions. In practice, this reduces the
number of points from 1000000 to 10000.
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Global Matching and Local Optimization We use the surface matching package from
OpenCV, which is an implementation of Drost et al. [31]. This algorithm downsamples the point
cloud and creates global model descriptors using orientated point pair features, and matches
them locally using a voting scheme. It finds good pose estimates, which are then refined using a
pyramidal Iterative Closest Point approach.

3.7.1.3 Verification

Once final pose estimates from each candidate have been computed, we then check how many
model points have a neighbor within some distance ε. Whichever candidate has the highest
proportion p of matches is our selection. If that proportion is lower than some threshold δ, we
determine that there is no object in the image, otherwise we return the object pose, along with p
as a confidence value. The more of the object seen by the cameras, the more certain we are that
the object has been found.

3.7.1.4 Symmetry Handler

The final step of our algorithm is to handle any symmetries. Robots often handle symmetric ob-
jects. Bottles, boxes, and balls are all examples of objects that have some form of 3-dimensional
symmetry, meaning they are indistinguishable for a finite or infinite set of possible transforma-
tions. If we are to model a manipulation action, we need to return consistent results of where the
object is in the robot’s hand to get consistent performance. In addition, the robot needs to know
when 2 object poses are indistinguishable, so if it encounters a pose it has never seen before, it
knows how to relate it to past poses. Thus our two goals are: 1) Determine how close two object
poses are to each other taking into account symmetry, and 2) Given an object pose, return the
closest pose to some desired pose.

Figure 3.10: Many objects are symmetric, which can make it difficult for vision systems to report
consistent pose estimates. The top row of objects each have order symmetries. The triangular
prism has 2 possible configurations, the rectangular prism has 4, and the cube has 24. In the
second row, the cylinder has an infinite symmetry about its axis, along with an order symmetry
(flipping it 180 degrees). The sphere can take on an arbitrary orientation.
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We define the closeness of 2 poses to be the magnitude of the difference quaternion ||q − p||
where q and p are the quaternion representing the orientation of each pose. Thus, given an object
orientation p, the closest pose would be one whose orientation q minimizes the expression ||q−p||
where q is in the set of symmetric orientations.

Below, we briefly outline how we handle different types of object symmetries to answer the
above 2 questions. For a full discussion of handling symmetry in 3 dimensions, please see the
technical report [89].

Order Symmetry The top row of Figure 3.10 shows different order symmetries that can occur.
An order symmetry occurs when an object can be rotated a fractional amount around an axis and
look the same. Objects can have multiple order symmetries. An isosceles triangular prism has 1
order symmetry, a rectangular prism has 2 order symmetries, and a cube has 3 order symmetries.
As the number of symmetries is finite, we can list all of the possible poses an object can take on,
and pick the symmetry that minimizes ||q − p||.

Cylindrical Symmetry In the case of cylindrical symmetry, such as the object shown in Fig-
ure 3.10, there are an infinite number of possible orientations the object can take on and still be
indistinguishable, so it is impossible to list them out. Instead, it is possible to show that after
transforming into the symmetry frame where the axis of symmetry is the z-axis, if our desired
orientation is p = [p0, px, py, pz], then the closest orientation to that attainable via cylindrical
symmetry is q = [p0/

√
p20 + p2z, 0, 0, pz/

√
p20 + p2z].

Note that sometimes, an object can exhibit both cylindrical and order symmetry (for instance,
a cylinder or hour glass). In this case, we perform the above minimization twice, one for each
side of the cylinder.

Spherical Symmetry A final option is for an object to have spherical symmetry, namely the
object is a sphere. In this case, its orientation can be anything, and thus we have the condition
||q − p|| = 0. If our 2 spheres have identical centers, then they are indistinguishable from one
another.

3.7.1.5 Evaluation

The accuracy of our manipulation models directly depend on the accuracy of our vision system.
The SE(3) pose of the object must be accurately estimated both in the world, and with respect
to the robot’s hand. Assuming equal coverage by cameras, the pose estimate of the object with
respect to the robot’s hand will be strictly worse than in the world. This is because the error
in robot motion will be compounded onto the object pose error. Thus, we evaluate the in-hand
object pose as it represents a worse case analysis of the accuracy of our vision system. Also note
that rather than using reprojection error or pixel wise error which is standard in many computer
vision papers, we specifically care about the pose estimation error, and so this is what we will
evaluate.

To evaluate the accuracy, we have the robot grasp a rectangular prism of known size at a
known pose. Then, we move the object around to various places in the work space, and query the
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vision system about the object’s pose. Because the pose of the robot is known, we can calculate
the pose of the object with respect to the robot’s hand at each of these positions. In the ideal case,
all of the calculate in-hand object poses will be identical. This will of course not be the case, and
we can use the deviation in object poses to estimate our accuracy.

The results of the experiment are shown in Figure 3.11. The object was moved around to 500
different poses in the work space. The error in position and orientation from the ground truth
pose are shown in the two histograms. The position error is computed simply as the distance
between object origins. The orientation error is computed by finding the rotation matrix that
rotates one frame to another, and then computing the magnitude of the angle when the rotation
matrix is formulated as rotating about an axis. Our average position error is 0.6mm and our
average orientation error is 0.5 degrees. The standard deviation is 0.4mm and 0.5 degrees. Note
that if the ground truth pose we used was slightly off, these errors could possibly be even lower.

This evaluation proves to us that even with off the shelf hardware, with careful calibration,
the accuracy of our vision system can be quite high.

(a) (b)

Figure 3.11: Vision system accuracy evaluation. A block held in the hand in a known pose
is moved around the workspace, and a histogram of errors with respect to the SE(3) position
and orientation of the block are shown. Our average accuracy is 0.6mm and 0.5 degrees, with
standard deviations of 0.4mm and 0.5 degrees.

3.7.2 Reset Mechanism
While in other avenues of robotics, such as computer vision or self-driving cars, it is relatively
easy to collect a large amount of data, it is more difficult in robotic manipulation because of
two fundamental problems. First, generally when robots interact with the world, the end of the
robot’s task looks different than the beginning. If the robot is picking up an object from a table
and placing it on a shelf, the object is now on the shelf instead of the table. If the robot wanted
to repeat this experiment, it would first need to grab the object from the shelf and put it back
on the table before proceeding. A second problem is that when robots fail while performing an
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Figure 3.12: Our reset solution. In the event of a failure, the object falls somewhere onto the
conveyor belt, which then moves the object into a clear area. The vision system then localizes
the object, and the robot reacquires the object into its hand. See Figure 3.13 and Figure 3.14 for
more details.

experiment, it may be impossible to recover. For instance, in the table to shelf example, if the
robot accidentally drops the object off of the table, it may not have long enough arms to reach
the object that has fallen on the floor. Or even if it could reach it, perhaps the object is stuck
underneath the table in such a way that it couldn’t grasp it with its current gripper. To enable
robots to collect a large amount of manipulation data on their own, we must solve both of these
“reset” problems to proceed.

Many researchers have overcome reset problems and collected datasets of robotic manipula-
tion data. The standard approach is simply to use human intervention and collect as much data
as possible. Yahya et al [122] get a robot to learn how to open a door after numerous experi-
ments, with humans closing any doors the robots manage to open. Mülling et al [83] teach a
robot to play ping pong, and use humans to help with imitation learning and reloading the ball
machine. Another approach is to construct the robot experiment such that all states are viable.
Christiansen et al [24] experimented with tray-tilting, where every position of an allen key or
rectangular block inside of a tray was a valid state. The object could not escape the tray, so
the robot could perform the experiment without the need for human intervention. Liarokapis et
al [68] used a string to suspend an object in the air while learning how to dextrously manipulate
them. If the object ever slipped out of the robot’s hand, it could simply try again without any need
for human intervention. Another approach is to use disposable objects. Paolini and Mason [90]
studied place and pick regrasping on a platform. Any time the object fell off a platform, the robot
would simply grasp a new, identical object from a queue. A human could reload the queue every
so often, thus requiring minimal intervention. Another related field is parts feeding, which is
often used in factories to present humans or robots with a known part oriented in a specific way.
While most parts feeding solutions such as bowl feeders [111] are designed for a specific part,
there has been some work with conveyor belts [71], and vibration [69].

For planar manipulations such as two-dimensional grasping [16, 126] or pushing [123], the
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object is kept on a table and is dragged back to the center when it gets close to the edge of the
workspace. Dragging an object back to the center allows the object to be grasped or pushed
from any direction. This enables the robot to collect thousands of experiments without the need
for human intervention. Another data collection technique is one of placing numerous objects
on a table, and having a robot attempt to pick up and set down these objects over and over
again [28, 62, 76, 86, 96, 114]. If the table and robot’s workspace are large, this experiment
can continue for some time until human intervention is necessary to pick up any fallen objects
and recenter them. Some researchers have used bins as a catch-all for failures. Levine et al [67]
have robots repeatedly grasp objects from a sloped bin and drop them back into the bin after
any successes. Paolini et al [91] place markers on top of a platform and then knock them back
into a bin via a ramp after each experiment. At the Carnegie Science Center in Pittsburgh, PA,
the basketball shooting robot ”Hoops” uses a slightly slanted floor, a sweeping motion, and a
depression in the floor to recollect the basketball after it shoots to try again [1].

The paragraphs above highlight several solutions for enabling long-term robot manipulation
experiments. As long as dragging or tilting a tray to move the object back to the center is
an option, uncluttered planar manipulation problems are largely solved. For more complicated
two and three-dimensional manipulation problems, the solution is less clear. While the setups
mentioned above allowed researchers to collect the data they needed, the experiments were set
up in a very specific way in order to collect the data. If researchers had to design new reset
procedures every time they designed a new experiment, it would greatly increase the setup time
for robotic manipulation experiments, and slow the growth of the field. In this section, we look
at a more general way to solve this reset problem, such that minimal effort is needed to run a
different experiment.

Not all robotic manipulation reset problems are going to be solved by a single mechanism
or process. We are interested in three-dimensional robotic manipulation experiments, including
both grasping and post-grasp manipulation actions such as regrasping, placing, insertion, tossing,
and tool manipulation. Within this task set, we choose to solve a specific class of reset problems
which have two large assumptions. First, we will focus on the case where there is only one object
in the workspace. This is a major assumption, as most of the world is inhabited by more than
a single object that a robot can interact with. However, there is still much to learn about how
a robot can manipulate a single object, and many researchers are still focused on solving this
problem. If researchers had thousands of real robotic manipulation trials to validate their robot
and single object interaction models, we could be more successful at interacting with multiple
objects in the world. Moreover, designing a general reset system that could reset multiple objects
to predefined poses is an intractable task.

The second major assumption is that we will only worry about resetting the experiment when
the object is no longer in the intended experiment area. We define the intended experiment area as
the part of the robot’s workspace where the object is expected to be in if the experiment is going
well. If the robot is moving an object from a platform to a shelf, the intended experiment area
is the platform and shelf. If the robot is throwing and catching a ball, the intended experiment
area is the area above the robot’s arm. It is impossible to design a reset procedure that is general
enough to reset the majority of robotic manipulation experiments, simply because they are so
different. Resetting an experiment when a robot is placing an object on a shelf requires an
entirely different procedure than resetting an experiment when a robot is flipping a pancake. The
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one thing that most robotic manipulation experiments have in common is that the robot requires
human help if the object disappears from the intended experiment area. This could be because
the robot dropped the object off of a table, it pushed the object too far away for its arm to reach,
or an object rolled underneath the experiment platform. In addition, note that the researcher can
still hand-design robot actions to purposely remove the object from the intended experiment area.
This could be done if the object is in an undesireable or unknown location in the experiment area,
and resetting the object will enable to robot to continue on with its experiment.

3.7.2.1 Design Requirements

The goal of our reset mechanism is to enable researchers to exert minimal effort when designing
a new manipulation experiment. They should be able to use different objects over a variety of ma-
nipulation tasks, without needing to redesign the way in which the robot recovers from failures.
For a reset mechanism to be useful for researchers, it must have the following characteristics:
• Versatile: It must work across a variety of experiments and a variety of objects. Ideally,

minimal or no changes should need to be made across different objects of a specific size
(in our case, larger than a 1cm box but smaller than a 10cm box). In addition, the reset
mechanism must accomodate many different experimental setups.

• Unobtrusive: It does not prevent certain experiments because of size. Ideally, the reset
mechanism could be added to a variety of robotic manipulation experiments with minimal
changes to the environment. Things to consider include robot workspace, lighting, power,
mounting points, or netting that can get caught.

• Fast: To maximize the number of experiments a robot can perform, the reset process
should be as fast as possible. Within reason, the time it takes to recognize that a reset
is needed along with the reset procedure itself should be minimized to maximize data
collection time.

• Robust: Since this design will be replacing human intervention, it should fail as infre-
quently as possible. Even if all of the above criteria are satisfied, if the reset process itself
is prone to failure, this defeats its purpose. Our designs should favor simpler mechanisms
and actions which are less likely to fail or need maintenance over time.

3.7.2.2 Possible Designs

In the sections below, we highlight six solutions out of dozens of possibilities that were all
ultimately rejected in favor of our final design. In addition to the solutions we cited above in
the introduction, it is our hope that researchers with specific needs will find this collection of
possibilities useful.

Vacuum: The vacuum solution consists of a hose vacuum suspended above the robot
workspace which could be used to recover an ungraspable object. The robot could drag the
hose around the workspace until the object is sucked up. While this solution does not obscure
the workspace, the vaccuum nozzle may need to be modified for certain objects, and depending
on the experiment, the hose may not reach all necessary locations. In addition, if the workspace
is large, it may take a long time to move the hose over the entire workspace.
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Movable Walls: A movable walls solution would involve walls which could be translated or
rotated for object recovery. This solution has the potential to be fast, versatile, and unobtrusive,
but poses some concerns about reliability when used with small or flat objects. In addition,
depending on the experimental setup, the walls might be blocked by part of the experiment,
reducing their effectiveness.

Magnets: This solution involves an elevated platform with a line of magnets around the
edge. These magnets would catch and hold a dropped object, which could then be recovered by
the robot. However, this would require a sensor in order to find the object, and limits the robot to
manipulating ferrous materials. This fails our unobtrusive and versatile requirements, as objects
would have to be modified in order to be magnetic.

Air Jets: A solution involving air jets would function in a similar manner to an air hockey
table, with air valves used to push objects away from walls and into the robots reach. The solution
will not obscure the workspace, but it limits the weight of the objects the robot can manipulate
and would require a sensor to locate the object, potentially reducing its versatility. In addition,
certain experiment setups may be prone to objects getting stuck in unrecoverable locations after
the air jets have blown.

Cloth Walls: This solution involves an elevated platform with loose cloth walls attached
on all sides. The cloth acts as a net, and by lifting the cloth the robot can return the dropped
object to the center of the cloth. This solution is fast and versatile, but poses concerns regarding
its reliability and unobtrusiveness. Depending on the experiment setup, the cloth wall could get
stuck on experiment features. Also, the cloth would obscure large amounts of the workspace,
making it cumbersome to use.

Collection Area: A collection area solution involves a raised platform mounted over a bin
with sloped walls. The bottom of the bin is a small area where the object location is relatively
known. This solution was pursued for several weeks before it was determined via prototype that
the minimum height needed for an object to slide down the walls exceeded the height above
which the robot could not access all of its workspace. Thus, while it passes the versatility, speed,
and robustness criteria, because of its size, it fails the unobtrusiveness criteria and was ultimately
rejected. A second concern was that an object falling to the bottom may end up near one of the
walls, which would make it difficult to grasp and reduce robustness.

3.7.2.3 Final Design

Overview Our reset mechanism consists of an experimental area that is mounted above a con-
veyor belt, surrounded by walls. We begin our description of the reset process when the robot
has lost track of the object in its intended experiment area. At this point, we either assume the
object has fallen from the experiment area, or the robot will perform some actions to guarantee
the object is no longer in the experiment area. These actions could include the robot dragging its
gripper along the surface of the platform to push the object off of the platform, blindly grasping
and dropping the object on the conveyor, blowing air over the experiment, etc. The difficulty
of this depends on the specific experimental setup, but all the robot has to guarantee is that the
object has fallen off of the experiment area.

Now the main portion of our reset procedure begins. First, the conveyor belt is moved forward
for a certain amount of time so the object moves to the front, and eventually to the front center

30



Figure 3.13: The reset process. First, after a failure, the object falls or is purposely knocked off
of the experiment area and onto the conveyor. Next, the conveyor moves the object towards the
front. When the object encounters the front sloped walls, it is directed towards the center. After
some time the conveyor reverses direction and leaves the object in an open area for the robot to
grasp. The vision system locates the object, and the robot moves to that location and picks up
the object, ready for its next experiment.

because of the angled walls. The conveyor belt moves for long enough to reasonably guarantee
any object will be in the front center, which in our case was 6 seconds. Second, the conveyor
belt reverses direction for a short amount of time so the object is now in a clear space. Third,
the overhead camera locates the object and chooses where to grasp. The robot then moves and
grasps the object. Any extra steps necessary such as regrasping the object in a specific way can
be performed in a reliable way in the experiment area. This completes the reset procedure, and
the next experiment can begin.

This design is versatile because most objects can be centered using the conveyor, and many
different experimental setups can be mounted above the conveyor. It is unobtrusive, because the
walls only need to be as high as the longest side length of an object being manipulated. It is fast,
and could be even faster if a faster conveyor belt was used. Finally, it is robust because there is
only one moving part, and the end result is an object in an open flat area which is easy to detect
and grasp reliably. In the sections below we discuss our design in more detail.

Mechanical Design The conveyor belt’s width and length are chosen to be slightly larger than
the robot’s workspace in the experiment area. A large movable floor underneath the robot en-
ables the user to design various experiments and still capture objects that have fallen from the
experiment area. In our case, we selected a 50cm wide, 95cm long area for the conveyor. The
height of the walls were chosen to be taller than the majority of objects the robot would interact
with, in our case 10cm. The height of the conveyor belt is 7cm, making the total height of the
reset mechanism 17cm. Thus, the reset mechanism is able to capture falling objects from the
robot’s entire workspace without being too obtrusive.
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The conveyor is connected via a timing belt to a stepper motor. The timing belt pulleys have
14 teeth and 28 teeth giving us a 2:1 gear reduction to increase the amount of torque we can apply
to the belt. The stepper motor has a current limit of 4 Amps, and we can move the conveyor at
0.8 meters / second while being able to apply reasonable force and avoid resonance/stall.

1.5 inch 80/20 channel lines the top of the reset mechanism, making it easy to mount various
experimental platforms and setups. The walls are made with 1/8 inch PVC sheets that are cut
and bent, and attached to 80/20 and the conveyor belt with 5/16” 80/20 hardware.

One issue we spent some time resolving had to do with round objects. In prototyping exper-
iments, round objects such as balls or pencils would roll around even after the conveyor belt had
stopped. This was a problem because either the object would end up in a pose that was ungras-
pable by the robot, or it would move after the vision system localized it, which would cause the
robot to miss the object when grasping. This problem was resolved by finding a conveyor belt
material with a much larger rolling resistance, and in our case we used a belt made of polyester
felt. When an object lies on this surface, it sinks in to the felt, which means in order for it to
move, it has to overcome the hole it finds itself in. Our round objects now rolled much less, and
by playing with the acceleration and decceleration of the belt, we were able to reduce rolling
even further.

Figure 3.14: The vision system used to estimate the object pose on the conveyor. First, a Gaus-
sian mixture background model is created with many empty conveyor belt images. Then, when
an object is moved into position, the background and shadows are segmented out, leaving the
foreground. An erosion and dilation step removes some noise, and then the largest connected
component is found. We then look at the mean and covariance of this connected component to
estimate the pose.

Vision System For the vision system, we use a Logitech c920 webcam pointed downwards
at the conveyor belt. Its intrinsics are calibrated using AprilCal [101], and its extrinsics are
calibrated by having the robot move an AprilTag [87] around the workspace and doing a hand-
eye calibration [120].

Our vision pipeline is shown in Figure 3.14. First, we create a Gaussian mixture background
model of the conveyor belt by moving it and taking lots of images [127]. Now, when an image
with an object is shown, we get an initial segmentation of background and foreground. We
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then do an erosion and dilation step to remove some noise, and then find the largest connected
component, and assume this is our object. We can then find the mean and dominant direction
of the object. This mean and direction can then be converted to an object pose in the robot’s
workspace by using the camera’s extrinsics and known height of the conveyor belt. Note that
if the largest connected component is small, we can assume the object is still in the experiment
area.

Many other vision pipelines could be used to trade off simplicity, generality, and accuracy,
however we chose this pipeline as a first step.

Grasping the Object Once the pose of the object is known, all that remains is for the robot
to grasp the object. There has been much research on how to pick up objects off of a surface,
and any of these methods could be implemented here. We have again chosen a very simple
approach, which is to use a parallel jaw gripper to grasp the object perpendicular to its major
axis. Objects that have a clear major axis or circular symmetry can be grasped easily, whereas
cubes or weirdly shaped objects are more challenging. Again, the user can decide how to trade
off robustness versus generality with the grasping method they choose to use.

Robustness Note that the grasping and vision systems do not need to be perfect, because if the
robot fails to grasp the object, the reset process can simply be repeated, and the robot can try
again. As long as the combination of the vision and grasping systems are accurate enough to not
require too many tries, we can satisfy our goal of having the reset process be fast. One of the
only ways this reset mechanism will require human intervention is if the object manages to fall
outside of the conveyor belt. If the conveyor belt is chosen to be large enough, and the angled
walls above the 80/20 platform are high enough, this is unlikely.

3.7.2.4 Experimental Validation

Figure 3.15: Our experimental validation setup is shown on the left. The robot drops an object
somewhere in the experiment area, and then the reset process tries to get the object back in the
robot’s hand. The objects used in our experiments are shown on the right. Successes and types
of failures are recorded, and results are shown in Table 3.1.
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To validate our design, we dropped different objects 500 times each from random locations
around our experimental area (Figure 3.15). In order to test the generality of our system, we
did not change a single line of code across all experiments. We set up the experimental area
such that when an object was dropped, its pose would be randomized because of impact with
the experiment setup itself. Note that for many experiments it is possible or even likely that the
object remains in the experiment area. The user would then have to design robot actions to help
reset the object in that case. These actions are often difficult to generalize and are generally task
specific. Please see Section 3.7.2.5 for further discussion. We are interested in whether the robot
can successfully recover when an object is dropped off of the experiment area.

Object Success Missed Grasp Vision Failure Catastrophic Failure

Highlighter 497 (99.4%) 0 (0%) 3 (0.6%) 0 (0%)
Big Clamp 469 (93.8%) 18 (3.6%) 13 (2.6%) 0 (0%)
Small Sphere 500 (100%) 0 (0%) 0 (0%) 0 (0%)
Long Block 499 (99.8%) 0 (0%) 1 (0.2%) 0 (0%)
Plastic Strawberry 478 (95.6%) 6 (1.2%) 16 (3.2%) 0 (0%)
Electrical Tape 334 (66.8%) 47 (9.4%) 119 (23.8%) 0 (0%)
Plastic Pear 498 (99.6%) 0 (0%) 2 (0.4%) 0 (0%)
Sponge 491 (98.2%) 4 (0.8%) 5 (1.0%) 0 (0%)
Green Block 498 (99.6%) 0 (0%) 2 (0.4%) 0 (0%)
Plastic Banana 500 (100%) 0 (0%) 0 (0%) 0 (0%)

Table 3.1: Success Rates for Different Objects

Table 3.1 shows results for different objects. There are four outcomes that we keep track of.
The reset is considered a success if the robot is able to grasp the object again after it has dropped
it. A catastrophic failure means the object ends up in an unrecoverable position such that human
intervention is needed. A vision failure means the vision system was unable to locate the object,
or the determined pose of the object was in an ungraspable position, such as being too close to a
wall. Finally, a missed grasp means when the robot went to grasp the object, it missed. Note that
in the case of grasp or vision failure, we simply run the reset procedure again and retry for our
next trial.

On the whole, our system performs quite well. The first thing to notice is that none of the
objects suffered any catastrophic failures. This means that at no point during our experiments
was any human intervention necessary. Since we retry after a vision or grasping failure, the
reset process may take longer, but the robot is always able to reacquire the object into its hand
eventually. Most of the objects had a very high success rate, however the big clamp, plastic
strawberry, and electrical tape were slightly less successful. There were two different reasons for
failures. In the case of the big clamp and the strawberry, the object is oddly shaped, so when it
is being directed towards the front center, it would sometimes rock or rotate instead of sliding
towards the center. This led to the object ending up too close to the edge and in an ungraspable
position. In the case of the electrical tape, as the experiments went on the tape deformed, and
the friction between the conveyor belt and object was too small in comparison with tape and side
wall. This led to the object not sliding towards the center and being too close to the edge in
an ungraspable position. Note that both of these problems could be solved by designing more
specific conveyor belt motions for these actions. See Section 3.7.2.5 for more discussion.
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Our experimental validation shows our system works well for a variety of objects, and is a
viable system for researchers to use moving forward.

3.7.2.5 Discussion

In this section, we will discuss a set of general principles and potential pitfalls when designing
reset pipelines for robotic manipulation experiments.

Generality vs Robustness One of the main issues we repeatably encountered during our de-
sign process was the tradeoff between generality and robustness. The reliability of the reset
system can be improved if it is tailored specifically towards a certain experimental platform
or specific object. One example of this is the vision system. Currently, we are simply doing
background subtraction and finding the dominant direction of the largest remaining connected
component to pick our grasping pose. We simply move to a specified height above this pose,
and close our fingers. While this method works well for many objects, objects without a clear
dominant direction like cubes, or objects which are oddly shaped and have a specific reliable
grasp pose will not be grasped as reliably using this method. If the vision system were tweaked
to have a cube detector or a detector which uses image features or deep learning to localize the
object, our grasp success rate would increase, at the cost of generality. Alternatively, the grasp-
ing strategy could be modified to improve the success rate, such as making uncertainty reducing
grasps or actions first before making a final grasp. Depending on the users application, they can
tweak the vision system or grasping strategy to give them the level of robustness required. Note
that currently, in the event of a grasp failure, we simply run the reset process again and try to
grasp again. As long as our grasp success rate is reasonably high, we dont need too many trials
for success. In this way, we are able to still maintain our generality at the cost of some efficiency.

Another example of generality vs robustness is the conveyor belt motion. For some objects,
such as the electrical tape or clamp, if we moved the conveyor belt back and forth like a Coulomb
pump [100], the object would end up in the center much more often. For other objects, this
additional movement is not necessary, and would slow down the reset procedure. Again we are
faced with a choice between making the reset procedure more specific for an object to improve
efficiency, but sacrificing generality in the process.

A third example involves different reset strategies depending on the experimental area. There
are certain motions or actions a robot can take that can knock objects off of an experimental area
and onto the conveyor belt. However, these motions are specific to the experiment being done.
While a sweeping motion may work well in the case of simple platform, if another experiment has
posts, the robot will have to avoid those posts when trying to push the object onto the conveyor
belt. If the user wishes to change no code between experiments, they can either very carefully
engineer the experiment environment so the object never gets stuck anywhere undesireable, or
accept the fact that human intervention will be necessary to continue on with the experiment.

The user will have to find the right point to hit on the generality versus robustness scale de-
pending on their application. If an experiment is going to be run for many months, it makes sense
to invest extra time in making the reset procedure more specific and robust to the experiment be-
ing performed. If instead the experiment is a quick test or only a thousand trials are needed,
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it may be more time effective to stick with a more general reset mechanism, and have humans
standing by to assist.

Expecting the Unexpected When performing thousands of robotic manipulation experiments,
low probability events will occur. We must design our reset process so that it can handle the
unexpected. While we cannot prepare for all possible events, the more robust our system is to
unexpected events, the less often human intervention will be necessary. One example of this
is objects bouncing or rolling in unpredictable ways. Since our conveyor belt is larger than
our robot’s workspace, one might expect the sloped capture walls to be unnecessary. However,
depending on the object, drop location, and experimental setup, the object could roll or bounce
along and fall out of our reset mechanism. We minimized this chance by adding sloped capture
walls. These walls do not eliminate the possibility of objects escaping, but they reduce the chance
significantly.

In one of our trials, a long wooden block fell in such a way that rather than falling all the
way to the conveyor belt, it rested up against a cross beam of the experiment platform. When the
conveyor belt moved, it wedged itself between the conveyor belt and the beam. This represents
the one failure seen for the wooden block in Table 3.1. As it turned out, because the conveyor belt
reverses direction during our reset process, the block became unwedged, and on the next reset
attempt, it was retrieved by the robot without trouble. What we can learn from this is that one
way to be robust to unexpected events is to retry the reset process again. Moreover, in the event
of multiple failures, other randomizing actions could prove to be successful, such as randomly
moving the conveyor belt back and forth, or moving the robots arm around in the free space
around the experimental area.

Unexpected events will occur in robotic manipulation experiments. The key for decreasing
the need for human intervention is to build in as many safe guards and random recovery options
as possible. When the need does arise, being able to recognize it and alert the user is also
important for enabling large scale data collection.

Objects Getting Stuck in the Experiment Area Regardless of reset strategy, if the object gets
stuck in the experiment area itself, this can cause large headaches for the user and robot. The
object could get wedged between posts, stuck in the back corner of a shelf, or land on cross beams
that support an experimental platform. Many of these issues can be solved with a combination
of hardware and software. On the hardware side, eliminating flat surfaces or adding roofs or
ramps to prevent objects from getting stuck in various places can be quite effective. Sometimes,
simply using the robot to knock objects out of undesireable configurations may be enough. While
many of these strategies and fixes can be thought of in advance, it is sometimes more effective
to start running experiments, and fix issues as they arise. As the experiment continues, the mean
time between human interventions should continue to increase, until the robot can run for long
stretches without needing humans present.

Friction Friction tends to get in the way when trying to reset objects. Ramps often need to
be steeper than expected, and objects can get wedged or stuck because of stiction or other non-
Coloumbic frictional effects. Care should be taken to minimize the effect that varying frictional
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properties can have on the reset procedure. One example of frictional issues was the rejected
”Collection Area” design which used ramps to funnel objects to a central holding area. If an
object was dropped with a lot of energy onto the ramps, it would easily bounce down to the
central area. However, if the object fell gently, it would experience stiction and get stuck on the
ramp underneath the experiment area. This required us to make the ramps much steeper than the
coefficient of friction would indicate, and eventually led us to reject the design because it took up
too much of the robots workspace to be useful. Another example was when we saw unexpected
frictional properties of a squished electrical tape roll. The inner cardboard roll of the tape dug
into the conveyor belt, and the high friction interaction between the tape and PVC wall was not
enough to move the tape roll towards the center. Sometimes objects roll or tumble towards the
center, and other times they slide. We currently do not fully understand all of the frictional factors
at play between objects, conveyor belt, and PVC wall, and this lack of understanding limits the
robustness of our system.

Complexity Because of the number of different outcomes of robotic manipulation experi-
ments, the more complex the reset pipeline or system is, the more prone to failure it is. Objects
can fall and get stuck in weird places that could jam machinery, lighting may be unreliable be-
cause of changing experiments or object properties, and the actual reset procedure could fail in
unexpected ways. The less moving parts and less complex the system is, the less points of failure
the system has, which increases reliability. One example of this is the moveable walls design
described in Section 3.7.2.2. This had several moving parts that interacted with each other, and
we rejected this idea in part because of the worry of objects getting wedged or stuck between
wall parts. Care should be taken to design a system that is as simple as possible, as this will
reduce the need for specialized actions or hardware modifications in the future.

3.7.3 State Machine for Manipulation Experiments
Over the course of a robotic manipulation experiment, the robot is sure to encounter numerous
unexpected situations. While sometimes these situations simply result in incorrect data being
collected, they often result in the robot being unable to continue. We have already addressed
some of these concerns with the reset mechanism in Section 3.7.2, however we have found that
often, unexpected events cause the experiment software to have undefined behavior, resulting in
a failure.

To make our software more resilient to unexpected events, we will use a finite state machine.
Finite state machines are often used in flight software for NASA missions because of their relia-
bility [52]. If we can enumerate all possible events, and can define behaviors for how the system
should react to each event while in a given state, our software will be more robust. The program-
mer is forced to think about how the robot should respond, rather than a series of if statements
doomed for failure. This makes our software more reliable, and less likely to require human
intervention.

In addition, by encapsulating the robot’s actions into individual states, our code becomes
more modular by avoiding nested if-statements that may make the code unmanageable. Debug-
ging also becomes easier, because individual states can be activated and tested separately. The
state machine’s modularity can also enable code reuse between experiments. For example, the
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Figure 3.16: State machine used for place and pick regrasp experiments

states used for recovering from a failure using the reset mechanism will be similar from one
experiment to the next.

We implemented a state machine for data collection of a place and pick regrasping action.
We’re interested in learning a data-driven statistical model of what happens when a robot places
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a block on a platform from a given initial configuration, and picks it up from the platform at a
given hand pose. The outline for the experiment is as follows: 1) acquire the object off of the
platform at a desired initial pose, 2) place the object, 3) grasp the object using a desired action,
4) record results, and set the object down on the table for the next experiment. While this is the
nominal path, many things can go wrong, such as the block falling off the platform, the robot
missing the block, or the block is unable to be grasped in the desired initial pose.

Our state machine design for this experiment is shown in Figure 3.16. Our states can respond
to the following events:
• done: Objective successfully completed
• fault: Robot collision, or another unexpected error occurred
• got object: Object found, or object was grasped
• no object: Object cannot be found, or object wasn’t grasped
• good pose: Object in good pose, either in hand or on platform
• bad pose: Object in bad pose, either in hand or on platform
Every state encapsulates what the current condition is at the beginning of that state. For

example, in the “object found on platform” state, the object has been located by the vision system.
Within this state, the goal will be to determine whether the object in its current pose can be
grasped in the desired way. The bold blue arrows in Figure 3.16 indicate the nominal path that
would be taken if everything goes as expected. The robot picks the object off the table in some
desired initial pose, places it down, moves its hand to a desired pose and closes its fingers,
confirms it has reacquired the object, and then sets it on the table to begin the next experiment.
The states highlighted in green are where the vision system is used to localize the object pose
relative to the robot.

When an unexpected event occurs, the program either transitions directly to the object being
on the table, or through one or more intermediate states before the object is returned to the table.
The part of the state machine that involves the reset mechanism is shown in red.

3.7.4 Collected Data

We collect data from 13943 experiments with 10472 successful initial grasps, 9246 successful
object placements, and 4141 successful final grasps. Figure 3.17 shows which grasps succeeded
and failed when picking the block up off of the platform. The 2 plots show the rectangular block
lying on the platform in a “vertical” or “horizontal” configuration, and the grasp attempted for
each are shown. The robot opens its fingers and slides in from the left in the figures shown. The
C-shape is the end pose of the parallel jaw gripper, and the successful grasps are shown in blue,
and the failed grasps are shown in red. Note that we have two different failure modes. First is
when the robot tries to grasp the block near the edge, and it either misses the block entirely, or
the block slips out of the robots hand. The second failure mode can be seen by the curve of red
failed grasps near the far edge of the block. This is from one of the other links from the hand
coming into to contact with the edge of the block leading to an edge contact instead of a surface
contact, which leads to the block slipping out of the robot’s hand.

Figure 3.18 shows which grasps succeeded and failed when placed. Note the visible curves

39



(a) (b)

Figure 3.17: Successful and unsuccessful grasps of an object off of a platform. The thick black
line is the block lying either in a (a) horizontal or (b) vertical position on the platform. The
C-shapes are the end of the robot’s finger tips. Red represents a failed grasp and blue represents
success. Note that we have numerous failures along the edge of the block. The curve of failures
is from one of the other links in the hand hitting the edge of the block which causes an edge
contact instead of a surface contact which leads to the block slipping out of the robot’s hand.

in the data for the successful grasps, which occur because the block is in contact with the palm
or other links on those manifolds. The failed placements occur either because of a collision
between the block-robot system and the table, or because the block falls off of the platform when
it is released from the gripper.

Figure 3.19 shows the resulting platform poses of the rectangular prism after being placed.
The two plots are for horizontal and vertical configurations of the block on the platform. Note
that they are mostly in a line, which makes sense since the blocks are always released from the
same gripper position.

Figure 3.20 shows what pick actions succeeded and failed. Again the robot moves in horizon-
tally from the left side of the figure. Note that here we do not pay attention to where the object
was when selecting our actions, so we have many unnecessary grasps, but we also have some
successful grasps at certain angles far to the right of the block. When the gripper is flat enough,
rather than having an extra link from the hand get caught on the block, that extra link pushes the
block forward, resulting in a surface contact and stable grasp. If the angle of the gripper is too
high, it simply passes right over the block and misses it.

3.7.5 Failure Modes
While we collected a lot of data with this data collection setup, there were still a few failure
modes. First, ROS nodelets that were running the cameras were crashing silently after about
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Figure 3.18: Successful and unsuccessful in-hand poses for placing. The thick black rectangle is
the pose of the fingers. (a) shows the in-hand object poses that were successfully placed, and (b)
shows the in-hand poses that failed to be placed, either because of a collision or the object falling
off of the platform.

24 hours of operation. The only way this was solved was by writing a python script that would
detect the nodelets crashing, and relaunching the vision system automatically, and having the
state machine detect the crash and wait for a restart. There were also a few minor issues with
the reset process. First, the path the robot took to knock off an object from the platform had
to change because the block was getting stuck in an unexpected place. Second, after a night of
resets, small changes in lighting caused part of the conveyor belt to be detected as the object, and
the robot gave up because this was too close to the edge. This was fixed by only paying attention
to pixels in a graspable area, and recalibrating the lighting every 500 experiments.

Another large problem was the degradation of the Robotiq hand we were using over time.
Figure 3.21 shows the position of the grasped block along the grasp axis over time. Note that
the pose of the block gradually moves about 3mm. This is because a part inside of the hand was
wearing down over time. We attempted to fix the gripper a few times, shown by the black lines,
but eventually it wore down again. While this drift will not considerably affect the models we’re
trying to learn, it highlights the need for robust hardware when doing long term manipulation
experiments.

3.8 Common Themes

In the above sections, we saw six instances of robots collecting manipulation data. While the
experiments were different, some common themes emerged. We discuss them below. While
many researchers have no doubt experienced many of these issues before, it is important to keep
these ideas in mind when designing robot manipulation experiments.
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Figure 3.19: An eagle eye view of the resulting object poses on the platform after a placement.
All of the poses when the object is in a horizontal configuration are shown in (a) and the vertical
configuration are shown in (b). The platform is shown in solid black.

3.8.1 Accurate Sensing and Actuation
To have accurate models of manipulation data, accurate sensing and actuation is necessary. The
model can only be as accurate as the sensors and actuation used. In each experiment, careful
care was taken to select actuators and sensors which were accurate enough. The industrial robot
arm and grippers used in our experiments give us sub-millimeter resolution. High resolution
cameras were used to maximize accuracy. The mass of the pushed block was increased to obtain
higher relative accuracy with the force-torque sensor. The motion capture system that we were
using during the pushing experiments only had cameras with 640x480 resolution, which limits
the overall accuracy of that system.

3.8.2 Calibration
In each experiment, a large amount of time was spent calibrating the system. There are many
factors at play:
• Given the robot arm’s joint angles, how accurately is the end effector position known? In

our case, we used an industrial robot, which is calibrated at the factory. However, it is still
critical to know the transform between the end effector and robot tool flange. In the case
of pushing, the pusher was laser-cut with known dimensions and attached to a force-torque
sensor, also with known dimensions. The hands used in the other experiments also have
known dimensions which can be used by the system.

• How well are the intrinsics of the sensors used calibrated? For the ATI force-torque sen-
sor, this is again calibrated at the factory. For the cameras, these can be calibrated using
standard camera calibration techniques.

• What is the transform between the robot and sensor? (extrinsic calibration) In the case of
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Figure 3.20: Successful and unsuccessful picking actions. The unsuccessful actions are shown
in red and successful actions are shown in blue.

the force-torque sensor, it is rigidly attached to the robot, so it’s transform is known. In
the case of cameras, some specialized method must be used. For the highlighter markers,
by rotating a grasped marker around and detecting the pose each time, the center of the
hand in the camera frame can be found. For motion capture, moving the robot around with
an IR marker allowed us to calculate the transform. For planar grasping and tray tilting,
an AprilTag attached to the robot was moved around. For regrasping, by moving depth
calibration patterns or a sphere around, we can correlate the robot’s pose with the camera
positions.

• How accurate is the object itself? If we are to precisely localize the object, its own dimen-
sions and weight play a factor. The wooden cubes in the regrasp experiment are not perfect
cubes, and have varied friction. The object being pushed had motion capture markers, but
how accurately are the marker positions known with respect to the object itself?

Sources of error in each of these calibration factors compound to make our final data noisier.
Special care must be taken to eliminate the largest sources of this calibration error for effective
data collection.
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(a) Object pose over time (b) Gripper drifting to the left

Figure 3.21: Over the course of our data collection, internal parts of the gripper wore down over
time, leading it to drift slightly to the left. This caused our data to change over time. The black
lines in the left figure represent when the gripper was repaired.

3.8.3 Not Losing the Object

Special care must be taken that the objects being used in the experiment do not leave the robot’s
effective workspace. Anytime this happens is a time a human must step in and return the object
to the robot. For the highlighter markers, the objects were in a bin, so if the robot drops an object
while grasping, the object falls back in the bin and is not lost. When trying to place, drop, or
insert the object, a ramp underneath the action area directed fallen markers back into the bin. In
the case of a successful drop, place, or insertion, the object was knocked or grasped and dropped
back into the bin. For pushing, any time the object got close to the edge of the workspace,
the robot would drag the object back to the center. For planar grasping, there were walls that
prevented the object from escaping, but the object would sometimes flip on its side and result
in it getting lost. For tray tilting, the object was confined within the box, and the acrylic top
prevented it from flipping over. For the first regrasping experiment, if the object was dropped on
the platform, the robot would just pick it up again, and if the object dropped off the platform, the
robot would grasp a new object from a queue. In our final experiment, we showcased our design
for a general reset mechanism, which enabled a much longer run of data collection between
human interventions. In all cases, special care was taken to extend the life of experiments by
enabling some amount of ”reset” capability by the robot.
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3.8.4 Hardware / Software Robustness
Both the hardware and software used during the experiment must be able to handle unexpected
events. During manipulation actions, robots can collide with their environment, a grasped ob-
ject could collide with the environment, and objects could fall onto important components. The
hardware used must be robust enough for the robot to continue experimenting even if an unex-
pected collision occurs. Alternatively, software can be used to reduce the chance of unexpected
forces. Although we attempted to use robust hardware, things still wore down. The sides of the
aluminum box wore down during tray tilting, and the Robotiq hand used in regrasping broke and
had to be repaired over time.

It sounds simple, but the number of experiment failures as a result of bad cable manage-
ment that we experienced was quite high. In all of the experiments except tray-tilting (which
didn’t have any cables), cables got in the way time and time again. For the highlighter markers,
sometimes the cable would droop down into the bin and get grasped, corrupting the data. Also,
the cable got hooked on the placing platform, leading to system failure. In the pushing experi-
ments, the cable got stuck inside of the robot’s sixth joint, causing the robot to jam. It also was
sometimes too loose and would touch the object while the robot was attempting to push it. In
the planar grasping experiment, the cable would get caught in the sixth joint because of large
rotations. In the regrasping experiment, the cable would sometimes get in the way of the vision
system, and care was taken to make sure the cables did not get hooked on cameras.

On the software side, it is also important to plan for unexpected events. In each of the experi-
ments, error recovery states were written in so that in the event that an object is lost or a collision
occurs, the robot does the safe, correct thing to continue. For example, in the regrasping experi-
ment, sometimes the vision system would not see an object the first time. Before proceeding, we
would check again, just to make sure, and then look for the object somewhere else, before finally
resorting to picking up a new block.
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Chapter 4

Data-Driven Statistical Models of
Manipulation

4.1 Introduction

For robots to be better at manipulation, they need to have accurate models of how their actions
will affect the world. In the previous chapter, we showed how robots can collect a large amount
of manipulation data. In this chapter, we look at how to use this data to learn models for manipu-
lation. We choose to use statistical models instead of deterministic models to capture the inherent
uncertainty in the real world. Even if we were to believe that the world was deterministic, we feel
it is impossible to know every parameter needed to determine the outcome of an action perfectly.
By using statistical models, we can not only model the predicted outcome of a task, but we can
also model the uncertainty. This enables the robot to take more informed actions.

For the rest of this chapter, we present statistical models that can be used at different steps
along the manipulation process. In the first section, we present results on predicting the proba-
bility distribution of where an object is in a robot’s hand after it has been grasped as a function
of its sensors. We also show how to predict the probability function of how likely a robot will
succeed at a manipulation task as a function of its error in its estimate of object pose. We show
how to combine these probability functions so a robot can compute the likelihood of succeeding
at a manipulation task given its sensor readings.

In the second section, we present statistical models for a place-and-pick regrasp action. The
robot can change the pose of an object in its hand by setting it down and picking it up again, and
we show how to model two probability functions. First, we present a model for predicting the
probability that the object will still be in the robot’s hand after the regrasp. Second, we show how
to predict the probability distribution of the resulting in-hand pose of the object after the regrasp.

In the third section we present an improved approach for statistically modeling placing and
picking an object. We enlarge the state space by using a rectangular prism instead of a cube. We
first show how to use calibrated classifiers to accurately predict the probability of picking and
placing an object. Then we show how to use a k-NN approximation of conditional kernel density
estimation to compute probabilistic transition models for both picking and placing.
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Figure 4.1: Two manipulation tasks (a) dropping and (b) balancing, with different required accu-
racy of the pose of the manipulated object.

4.2 Statistical Framework for Post-Grasp Manipulation

The work in this section was published in [91].

4.2.1 Introduction
We study the problem of post-grasp manipulation, where a robotic manipulator performs a task
with a grasped object, like setting down a mug, inserting a key into a hole, or flipping a pancake
with a spatula. In each of these examples, knowing the pose of the object in the robot’s hand,
the grasp state, is often critical. Intuitively, harder tasks demand a more accurate estimate of the
grasp state than simpler ones. For example, in Figure 4.1, balancing a pen on a table requires
more accuracy than dropping it into a container.

More generally, consider a manipulator, an object to manipulate, a task, and a parametrized
set of actions designed to accomplish the task. We build a data-driven framework to automate the
process of deciding whether the task is solvable with the available hardware and set of actions,
and find the action most likely to succeed.

The proposed statistical framework is suited to model post-grasp manipulation tasks like
the ones described above. We model these tasks by breaking them into two independent steps.
First, estimate the state of the grasp with available sensor information, and second, model the
accuracy requirements that the particular task imposes on our state estimation. This separation
yields the benefit that we can use the same model of state estimation for different tasks, and the
same model of task requirements for different manipulators. Using this framework, each sensor
reading generates a probability function in task action space, enabling us not only to find the
optimal action, but to understand just how likely that action is to succeed.

Figure 4.2 illustrates the process for the task of placing an object. First, we use sensors in
the hand to estimate the probability distribution of the pose of the grasped object, which will be
referred to as the belief state. Second, we predict the probability of succeeding at a task given the
pose uncertainty. Both of these are computed based on data-driven models. Finally, we combine
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these probability functions to predict the probability of success of each available action, and
choose the action most likely to succeed.

We test the framework with three different manipulation tasks: placing an object, dropping
it into a hole, and inserting it, all three described in Section 4.2.1.2. The experimental setup in
Figure 4.2 consists of a simple gripper [81, 102] mounted on a robotic arm that iteratively grasps
an object from a bin, estimates the distribution of the pose of the object, computes the probability
of success for all available actions, chooses the optimal one, and executes it.

4.2.1.1 Motivational Simple Example

Let us first look at the simple example in Figure 4.3. A two-fingered planar gripper holds a
rectangular object to insert it into a hole. We assume the object always makes face contact with
the palm of the gripper, so that once it is in the hand, it has only one degree of freedom, which
we call grasp state x. One of the fingers of the gripper has a noisy angle sensor z. The angle
z informs us of the position of the rectangular block. The question we study is, given a sensor
reading z, where should we move the gripper (how do we choose action a) to maximize the
probability of success of inserting the object, and how likely are we to succeed. Notice there are
two main factors that influence the probability of success:
• How accurately can we estimate the pose of the object? We will refer to this factor as the

sensing capabilities of the hand.
• What is our margin for error when inserting the object? We will refer to this factor as the

task requirements.
Both are empirically modeled with the output of tailored experiments.

If there is no noise in the sensor reading z, and the geometries of both hand and object are
known, we know with zero uncertainty the state of the grasp x, i.e., the location of the object.
While not true in general, for the simple example in Figure 4.3 there is a one to one mapping
between z and x, and we can therefore recover x perfectly. However, with the addition of noise,
the estimate of object pose becomes a distribution P (x|z), rather than an isolated configuration.
Figure 4.4 shows how that distribution changes for three different sensor noise models P (z|x).
Section 4.2.2.1 details the process to derive the belief state P (x|z) from the observation model
P (z|x).

The second factor to consider is the margin of error the task allows. Notice that we can
effectively change that margin of error by varying the shape of the hole. Figure 4.5a shows three
differently shaped holes that induce three different task requirements. The larger the hole, the
less accurately we need to know the object location. In this case, the action is parameterized by
a, the gripper position we choose. Figure 4.5b shows that the probability of successful insertion
varies with the error ε in the estimate of the object pose.

We can now combine the probabilistic models for the sensing capabilities of the gripper
(Figure 4.4b) and task requirements (Figure 4.5b) to find the optimal placement a of the gripper
to maximize the probability of successful insertion. Figure 4.6 shows the result for the three
sensor noise models in Figure 4.4a and the three holes in Figure 4.5a. Note that even when
the estimation of the pose is uncertain, if the hole is wide the chance of success remains high.
Likewise, if the hole is a perfect fit for the part, even the smallest amount of noise in the sensor
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Figure 4.2: Procedure to choose the optimal action to accomplish a manipulation task. First, we
estimate the belief state of the grasp, that is, a probability distribution of grasp state from sensor
readings. Second, we learn how robust our task is to state uncertainty. Finally, we combine them
to estimate the probability of success of all available actions and choose the best one.
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Figure 4.3: Motivational simple example in Section 4.2.1.1. A two-fingered planar gripper grasps
a rectangular object with the goal of inserting it into a hole. The horizontal freedom of the part is
parametrized by x. One of the two fingers has a noisy angle sensor z, which we use to estimate
the location of the object in the hand. We note with action a the horizontal position of the gripper
that we choose to vertically insert the object in the hole. Finally, ε represents the error in a
with respect to the optimal value that would align the centers of object and hole. The goal is to
estimate the likelihood of successful insertion using action a given the sensor reading z.
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(a) Noise Model P (z|x) (b) Posterior P (x|z)

Figure 4.4: Sensor model for the gripper in the motivational example in Figure 4.3. a) The
observation or noise model P (z|x) is the distribution of possible values z we read from the
sensor, assuming the object is at x. The level of noise in the sensor determines the sharpness
of the distribution P (z|x). b) The posterior distribution P (x|z) of the pose of the object x is
obtained by inverting the observation model. If the sensor has no noise (top row), for the simple
gripper in Figure 4.3 which has no sensor aliasing, we recover the position of the object with zero
uncertainty. The higher the level of noise, the less certain we are about the location of object in
the hand.

(a) Different hole shapes. (b) P (Success|ε)

Figure 4.5: (a) Three different hole shapes. (b) Precision required in the estimation of the pose
of the object for a successful insertion, induced by the three holes. P (Success|ε) is a model of
the probability of successful insertion as a function of the error ε in that estimate. The top hole
has the exact same size as the part, which requires perfect accuracy of object position, the middle
hole is wider, and requires less accuracy. The corners of the bottom hole are chamfered, which
also allows for some deviation where, for the purpose of this example, we assume a continuous
degradation of the probability of success as the error increases.
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Figure 4.6: Probability of successful execution of the simple task in Figure 4.3 as a function
of the chosen action a. The matrix shows the probability of success over choice of action for
different combinations of noise models (rows) and hole shapes (columns). As expected, both
the sensing capabilities of the hand, and the task requirements affect the predicted probability of
success. Accurate sensors (top row) allow us to reliably execute difficult tasks, and simple tasks
(central column) allow for noisier sensors.

reading will make it impossible to insert the part in the hole.
The example is a simple model to illustrate the principles. Real scenarios are more complex

and assumptions are often violated, making it difficult to solve analyticalyl or through simulation.
We leverage analytical models to define the structure of the statistical framework, but the actual
models are learned directly from observed data. Our goal is for a robot to learn these probabilistic
models on its own so it can predict the likelihood of success for a given post-grasp manipulation
task.

4.2.1.2 Experimental Manipulation Tasks

We evaluate the proposed framework on three different real manipulation tasks: placing, drop-
ping, and inserting an object. In all three cases the object is a highlighter marker, like the one
in Figure 4.7a. The gripper used is prototype 3 of the MLab Hand [81, 102, 104], the simple
gripper in Figure 4.7b. It has three fingers all compliantly connected to a single actuator. When
the hand grasps an object, the fingers “fall where they may” around the object. Both the fingers
and the actuator have encoders, and by looking at those sensor values, we estimate the pose of
the grasped object. We use the encoders in the three fingers as the input to the learning system.

The placing task consists of picking a marker from a bin full of markers, and balancing it
vertically on top of a platform. As illustrated in Figure 4.8, we use an intermediate step where
we push the marker against the platform, to make sure that there is enough clearance to execute
the placing action.
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(a) (b)

Figure 4.7: (a) A highlighter marker used as an object in the experiments. (b) Prototype 3 of the
MLab Hand.

The second experimental task is to drop a marker inside a relatively large hole, as illustrated
in Figure 4.9. We will see that the experiments corroborate the intuition that dropping is simpler
than placing, in the sense that it can get away with a more noisy estimation of the pose of the
marker.

Finally, insertion is a horizontal version of the peg-in-hole problem, where the hand tries to
insert the grasped marker into a relatively small hole, as shown in Figure 4.10. Again, experi-
ments will corroborate that insertion is a more demanding manipulation task than either placing
or dropping.

Note that, in the three cases, the goal is to execute the task and accurately predict the proba-
bility of success using only feedback from in-hand sensors. For our experiments we assume that
the highlighter marker always lies flat against the palm of the hand.

The configuration space of a cylindrical object lying flat on the palm is four dimensional: the
two polar coordinates of the axis of the cylinder, the location of the cylinder along the axis, and
the rotation with respect to that same axis.

However, we only consider the first two dimensions, since the last two dimensions are unob-
servable to the sensors, and not relevant for the execution of the three tasks. Note that for placing
and insertion we included an intermediate pushing step to explicitly reduce the uncertainty of the
cylinder along its axis (see Figure 4.8 and Figure 4.10). This reduction has computational and
data-requirement benefits, as later discussed in Section 4.2.5.3, and is beneficial for visualization
purposes and clarity of exposition.

The chosen state representation is then, that of a symmetrical cylinder in the plane as parametrized
by the polar coordinates x = (r, θ) of its axis, as in Figure 4.11. That is x ∈ X = R× SO(2).
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Figure 4.8: Diagram of the strategy used to place a highlighter marker. 1) The hand picks a
marker out of the bin, and estimates its location. The rest of the strategy is open loop. 2)
Reorientation of the hand so that the marker is perpendicular to and centered with the placing
platform. 3) Push against the platform to center the location of the marker along its axis. 4)
Rotation of 180 degrees and re-centering with respect to the platform. 5) Push again against the
platform. 6) Release marker.
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Figure 4.9: Diagram of the strategy used to drop a highlighter marker into a hole. 1) The hand
picks a marker out of the bin, and estimates its location. The rest of the strategy is open loop. 2)
Reorientation of the hand so that the marker is centered with the hole. 3) Release marker.

4.2.2 Statistical Framework
Given a manipulation task and a sensor observation z ∈ Z of the state of the task, our goal is to
find the action a from a set of available actions A that maximizes the expected performance of
accomplishing the task. The following diagram illustrates three different strategies to approach
the problem:

P (a|z)

Z ×A
(z, a)

//

//

((

X ×A
(x, a)

// P (a|x)

Bel(X)×A
(P (x|z), a)

// P (a|P (x|z))

The first and most straightforward strategy is to model the performance of an action directly
as a function of sensor observations. The decision on what action to execute and how likely it is
to succeed is based upon the history of sensor readings. It makes the least assumptions about the
system but also uses the least knowledge about the structure of the problem. It is also the most
difficult to implement, since the complexity of the model depends strongly on the dimension of
both the sensor and action space, which might be large.

The second strategy introduces an intermediate step where sensor inputs z are first projected
into a more compact representation of state, noted here by x, and all information not captured
by that representation is assumed to be irrelevant for planning optimal actions. In this work, we
chose x to be the pose of the grasped object. The probability of success of an action is then
modeled as a function of the most likely pose of the object x rather than the sensor observations
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Figure 4.10: Diagram of the strategy used to insert a highlighter marker into a hole. 1) The hand
picks a marker out of the bin, and estimates its location. The rest of the strategy is open loop.
2) Reorientation of the hand so that the marker is perpendicular to and centered with the placing
platform. 3) Push against the platform to center the location of the marker along its axis. 4)
Alignment of the axis of the marker with the axis of the hole. 5) Insert marker.

Figure 4.11: Parametrization of the pose of the cylindrical marker in the hand. We assume the
marker is always flat against the palm, and parametrize its location by the polar coordinates (r, θ)
of its axis. We will ignore the exact location of the marker along the axis, which is unobserved
both by the parametrization and the sensors in the hand.
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z directly. The intermediate representation x potentially reduces the model complexity, since
the dimension of state space is generally smaller than that of sensor space. On the other hand,
it introduces the possibility of information loss or lack of observability. It also fails to address
uncertainty in the system induced by noisy sensors.

We implement a third approach, which encapsulates uncertainty by representing the system
by its belief state P (x|z) rather than just by its most likely value x. By explicitly considering
uncertainty in the state of the task we can make a more informed and accurate prediction on the
probability of success of a given action.

The dimension of the space of belief distributions Bel(X) is too large to model the probability
of success of an action P (a|z) directly as a function of the belief P (x|z). We can alleviate this
problem by marginalizing the probability of success of an action P (a|z) with respect to the true
state of the system x:

P (a|z) =

∫
X

P (a|z, x) · P (x|z)dx

=

∫
X

P (a|x) · P (x|z)dx (4.1)

where, in the last step, we make the assumption that the state representation x is informative
enough that the output of an action is conditionally independent of sensor observations z, given
the true state x.

This assumption enables the computation of the probability of success P (a|z). Note, how-
ever, that for some tasks the pose of an object is not always fully representative of the grasp
state. For example, in a compliantly actuated gripper, the state of the actuators also contains
information on how stiff the grasp is, which is not captured by the pose of the object and might
be relevant to determine the outcome of an action.

It is key to note that (4.1) divides the problem of modeling the performance of an action
P (a|z) into two simpler ones: modeling the distributions P (x|z) and P (a|x). Respectively,
these represent the sensing capabilities of the gripper and the task requirements for a successful
task execution. The following subsections detail the approach to model them, as well as the
process to combine them to give an accurate estimate of P (a|z).

4.2.2.1 Sensing Capabilities

The shape of the belief state P (x|z) depends on several factors, including the geometries of
the manipulator and object, the location and type of sensors, and the type of grasp. Assuming
fixed geometries for the manipulator, object, and sensors, we will see that different grasps yield
differently shaped beliefs.

We will pay special attention to the sharpness of the belief as an indicator of the confidence
we get on the pose of the object. As illustrated in Figure 4.12 the choice of grasp has an important
effect on that confidence. We will say that some grasps are more informative than others.

In this section, we describe the process to model P (x|z) from experimental data. Learning
P (x|z) directly is usually data-intensive, since it can be arbitrarily shaped and the complexity of
the model depends on the dimension of sensor space. To simplify the process, we use Bayes rule
to flip the conditioning in P (x|z) to P (z|x), the likelihood or observation model of the system.
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Figure 4.12: Three grasps of a highlighter marker, and the corresponding estimated beliefs of the
pose of the object. Note that grasps where the object is localized or constrained by geometric
features of the hand yield sharper beliefs. These tend to correspond to more stable grasps.
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P (z|x) is the distribution of sensor readings given the true state of the system. Unlike the
posterior distribution P (x|z), which can be arbitrarily complex due to possible lack of observ-
ability or sensor aliasing, the likelihood P (z|x) tends to be simpler and we assume here to follow
a Gaussian distribution P (z|x) ∼ N (z;µ(x), σ2(x)). In order to make the learning feasible, we
also assume independence between sensors. This leads us to the following equation for the pos-
terior distribution:

P (x|z) =
P (z|x)P (x)

P (z)

' N (z;µ(x), σ2(x)) · P (x)

P (z)

' P (x)

P (z)
·
L∏
k=1

N (zk;µk(x), σ2
k(x))

∼ P (x) ·
L∏
k=1

N (zk;µk(x), σ2
k(x)) (4.2)

where P (x) is the state distribution prior to any sensor observations, both µk and σk are functions
of the true state of the system x, and L is the number of sensor dimensions. Since P (z) is
independent of x, we omit it and normalize P (x|z) a posteriori. Whenever we use the expression
N (z;µ(x), σ2(x)), we will refer to the decomposition induced by the independence between
sensors assumed in (4.2).

We now detail the process of estimating the prior distribution P (x) and the observation model
P (z|x) from a collected dataset C1 = {(zi, xi)}i of pose/sensor readings pairs. Figure 4.14
shows data of the 2000 grasps collected for C1 (see the dataset in multimedia Extension 1).

Learning the Prior Distribution P (x) The prior distribution P (x) is the distribution of the
state of the system before considering sensor information. In our case, it is a reflection of the dis-
tribution of stable grasps yielded by the combined geometries of object and gripper. Figure 4.13
illustrates the three most stable configurations or grasp types for the hand and object used. The
expectation is that the prior distribution P (x) will cluster around those three grasp types.

We regress P (x) by estimating the density of the pose of the object in state space. We use
Kernel Density Estimation to model P (x) as a sum of kernels:

P (x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(4.3)

where K is a Gaussian kernel, h is the bandwidth parameter and xi are the state points in the
dataset C1. The bandwidth parameter is chosen automatically to minimize the mean integrated
squared error following the algorithm in Botev et. al [11]. Figure 4.14 illustrates the learned
prior distribution. As expected, it shows three clusters corresponding to grasp types I, II and III
in Figure 4.13.
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(a) Grasp type I

(b) Grasp type II (c) Grasp type III

Figure 4.13: The three most stable configurations of the object/gripper pair used in our experi-
ments.
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Figure 4.14: (a) Distribution of grasp states in dataset C1. Each dot corresponds to the final pose
of the marker after an experimental grasp. (b) Corresponding prior distribution P (x) estimated
with Kernel Density Estimation. The three clusters in the distributions correspond to the three
expected grasp types in Figure 4.13.
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Learning the Observation Model P (z|x) Equation (4.2) yields an approximation of the ob-
servation model and expresses it in terms of functions µk(x) and σk(x):

P (z|x) ≈
L∏
k=1

N (zk;µk(x), σ2
k(x)) (4.4)

We use Gaussian Processes (GP) [99] to regress functions µk(x) and σk(x) for each sensor. For
that we again use the dataset C1. The process is detailed in the following steps:

1. Use a GP on half of the data points in C1 to estimate the mean of the observation model
P (z|x), µk : X −→ Zk. This implies training one independent GP for every sensory input,
as a function of r and θ which computes the most likely sensor values for every possible
state of the system x. Note that we will get a better estimate of the observation model for
the regions of the state space that are most often observed, since those areas will be more
populated with the collected data.

2. Complement the other half of the dataset C1 with the sensor readings z̄i = µ(xi) predicted
by the learned observation model, and the squared error yielded by that prediction ∆2zi =
(zi − z̄i)2, C+

1 = {(zi, xi, z̄i,∆2zi)}i.
3. Use GPR on C+

1 to regress the variance of the observation model σ2
k : X −→ ∆2Zk.

Again, this implies training one independent GP for every sensor in the system.

By following these steps, we can now estimate P (z|x) as in (4.4) (see Multimedia Extension
2 for example code). Figure 4.15b and Figure 4.15c illustrate the estimated observation model
and posterior distribution P (x|z) for the example grasp in Figure 4.15a.

4.2.2.2 Task Requirements

We now model the probability of success of an action, P (a|x). This will tell us how accurate the
estimation of the state of the grasp must be for an action to successfully execute the task.

While not required in general, we choose to state parameterize the set of actions. For ex-
ample, for the task of placing a cylindrical object, we design an action a so that given the true
state of the grasp first turns the cylinder so it is upright with respect to the ground, and then sets
it down. We will note an action parameterized by state as ap, where p indicates the state of the
system for which the action was designed.

In general, the success of an action depends both on the specific action ap itself and the true
state of the grasp x. However, in order to reduce the complexity of the process, we will assume
that, if the true state of the system is x, the probability of success of action ap only depends
on (x − p), the difference between the real and assumed state of the grasp. For example, when
placing a cylinder whose estimated axis is 1 degree off from its true state, we are more likely to
succeed than if we try to place an object several degrees off.

We model the outcome of an action ap as a Bernoulli random variable of parameter φap that
depends on the true state x, so that:

P (ap = 1|x) = φap(x) = φ(x− p) (4.5)
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Figure 4.15: (a) Example grasp with its corresponding estimated (b) likelihood P (z|x) and (c)
posterior distribution P (x|z). The dot corresponds to the most likely pose of the object.

The use of state parameterized actions also allows us to introduce controlled noise in the
space of mismatches ε = (x − p). To learn φ(ε), during each task execution, if the true state of
the grasp is x, instead of choosing the action ax, we execute action ap with p = x+ ε, where ε is
a uniformly distributed error in the space of system states.

We now detail the process of estimating the task requirements model φ(ε) from a dataset
C2 = {(zi, xi, εi, yi)}i, where εi is the error in system state and yi is the success/failure output
of the trial (see dataset in Multimedia Extension 3). For each task, we uniformly sample ε from
E = [−∆rmax,∆rmax] × [−∆θmax,∆θmax]. We choose ∆rmax and ∆θmax to be large enough to
cover the range of errors we care about, and assume everything falling outside that range to be a
failure.

To learn the model, we regress the Bernoulli parameter φ from dataset C2 containing the
outcome of more than 1000 executions for three manipulation tasks: placing, dropping, and in-
sertion (see Multimedia Extension 4 for example code). The results are illustrated in Figure 4.16.
As expected, when |x − p| increases, the likelihood of task success decreases. Note that for the
dropping task the probability decreases much slower than for placing or insertion. This indicates
that dropping a marker into a hole is easier than balancing it on a platform or inserting into a
small hole. The task tolerates more error.

The task requirements for insertion resemble the shape of an X. This can be explained by
noticing that if we incorrectly try to insert the marker too high, but also tilt it downward, the
end of the marker still manages to fit in the hole. Besides enabling accurate estimates of the
probability of successful task execution, computing these task requirement distributions also
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give us insight in to what types of errors the task execution is robust against.
In general, the more data we use the more accurate the regressed distributions of task require-

ments are. The magnitude of the variance returned by the Gaussian Process Regression can be
used to define a stopping criteria. In our case, we use the average standard deviation to assess
how certain we are about the learned distribution. The bottom graphs in Figure 4.16 shows how
the average standard deviation changes with the number of experiments for each task.

4.2.2.3 Matching Task Requirements with Sensing Capabilities

Here we combine the models of P (x|z) and P (a|x) to estimate the probability of success of an
action ap. For that, we extend (4.1) as:

P (ap = 1|z) =

=

∫
X

P (ap = 1|x)P (x|z)dx

=

∫
X

φ(x− p)N (z;µ(x), σ2(x))
P (x)

P (z)
dx

'
∫
E
φ(ε)N (z;µ(p+ ε), σ2(p+ ε))

P (p+ ε)

P (z)
dε (4.6)

where we apply the change of variables ε = x− p, andN (z;µ(x), σ2(x)) represents the decom-
position in (4.2).

In the experiments we approximate the integral numerically (see Multimedia Extension 5 for
example code). We grid the space of mismatches between real and estimated states intoNr×Nθ.
Letting εij be the corresponding error, we can approximate the integral in (4.6) as:

P (ap = 1|z) '
Nr∑
i=1

Nθ∑
j=1

φ(εij)N (z;µ(p+ εij), σ
2(p+ εij))

P (p+ εij)

P (z)
∆A (4.7)

where ∆A is:

∆A =
4∆rmax∆θmax

(Nθ − 1)(Nr − 1)

Once we compute P (a|z) we find its maximum in action space to choose the optimal action
to execute. Depending on that maximum probability we can decide either to execute the task
with the optimal action or to abort the execution. Figure 4.17 shows the complete process for an
example grasp.

The presented framework decouples the learning of the sensing capabilities of the hand from
the learning of the requirements of the task. For a given hand and object, we only need to
compute its sensing capabilities once. For any given new task, we only have to compute the task
requirements, and then follow the described procedure to estimate the overall probability.

Another possible scenario where the decoupling between both models is useful is in sharing
models of task requirements between different robots. For example, an industrial robot could
learn in a room for days at a time, and a mobile manipulator could reuse those learned models.
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Figure 4.16: Learned task requirements for three manipulation tasks: dropping, placing and in-
sertion. [2nd Row] Dataset C2 of task execution with perturbed states. Dark points are successes
and light ones are failures. Notice that the range of perturbations is different for each task. [3rd
Row] Distribution of task requirements P (ap = 1|x) as a function of the error in state esti-
mation. [4th Row] Average standard deviation of the regression of the Bernoulli parameter of
P (ap = 1|x) obtained with a GP. This is used as a rough estimate of the convergence of the
algorithm and stoping criteria.
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Figure 4.17: Complete process to compute the probability of success at placing a marker. (a)
Example grasp. (b) Learned belief P (x|z) of the pose of the object. (c) Learned task require-
ments, P (a|x), for the placing task. (d) Estimated probability of success for the parametrized set
of placing actions. The white dot corresponds to the optimal action to execute.
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4.2.3 Experimental Validation
To validate the proposed framework, we use the hand and object in Figure 4.7 to complete three
different manipulation tasks. This requires one training set for the sensing capabilities of the
hand, P (x|z), and three training sets to estimate the task requirements, P (a|x), one for each of
the tasks. After learning these functions, for any new grasp, we can predict the action most likely
to successfully execute a task and its expected probability of success.

We are interested in evaluating the accuracy of the predicted probability of success. For that
we execute each task 500 times according to the action most likely to succeed as predicted by the
learned models. After each execution, we note down both the predicted probability of success
and the actual outcome of the experiment (see data in Multimedia Extension 6).

To test the validity of the predictions, we group grasps by their predicted task success prob-
ability and compare it with their correspondent experimental success rate. For example, if we
take all grasps that were predicted to succeed at an action around 60% of the time, the average
experimental success rate for those grasps should ideally be around that same 60%.

Figure 4.18 compares the experimental success ratios with the predictions by the learned
models. We see that for the three tasks, the experimental probability follows the predicted prob-
ability, supporting the validity of the framework.

Both the quality of the in-hand sensor feedback and the difficulty of the manipulation task
determine the range of values of the probability of success. From Figure 4.18, we see that
dropping is the easiest of the three tasks, followed by placing, and lastly insertion. This could
have been predicted by looking at the task requirements and noting that dropping has the widest
distribution of success in the presence of pose error. The plots in Figure 4.18 indicate that the
proposed framework successfully predicts the probability of success of actions independently of
the complexity of the task.

Predicting the probability of success of an action allows us to make an informed decision on
what action to execute and improve the overall system performance. The bottom row of Fig-
ure 4.18 shows the precision-recall curves of the three tasks. They reveal that we can effectively
increase the success rate in task execution if we decide to abort executions whose predicted prob-
ability of success are below a certain threshold. By changing that threshold, we can move along
the precision-recall curve, and achieve a desired performance. Dropping increases from 80% to
near 100% success, placing increases from 40% to 60%, and insertion increases from 50% to
60%.

4.2.4 Conclusion
We introduced a general statistical framework to model the problem of post-grasp manipulation.
The framework is composed of the following three steps:
• Off-line learning of sensing capabilities: We learn a model to estimate the belief state

of the grasp from in-hand sensor information. The training process creates two models:
first, a prior distribution of the expected final grasp states, and second, an observation
model of the hand/object pair that relates grasp states to expected sensor readings. Both
models are constructed from experimental data, and the combination allow us to estimate
the distribution of the state of the grasp P (x|z) from sensor readings.
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Figure 4.18: [Top] Comparison between the experimental and predicted probability of success.
The shaded region is a 95% confidence interval of the estimation of the Bernoulli parameter,
according to a binomial distribution. The plots show that the predictions follow the experimental
observations quite well. [Bottom] Precision-recall curves of the success in task execution formed
by only considering task executions whose predicted probabilities were above certain thresholds.
The plot shows that we can increase the success rate in task execution by rejecting low probability
grasps in the three tasks.
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• Off-line learning of task requirements: We also learn a model of the object pose accu-
racy required to execute a specific post-grasp manipulation task. The model captures how
the probability of successful task execution degrades as a function of object pose error. We
train this model by systematically introducing controlled perturbations in the state of the
grasp, and recording the relationship between the noise introduced and the success/failure
outcome.

• On-line estimation of the probability of success: During execution time, we use the off-
line learned models for the sensing capabilities of the hand and the task requirements to
make accurate predictions of the probability of success. That prediction can be used, for
example, to choose the optimal action to execute from a set of actions or to improve the
overall performance of the system by deciding to abort runs when the predicted probability
is too low.

We implemented the framework and tested it on three different post-grasp manipulation tasks:
dropping, placing, and insertion. To validate the framework, the robot performed over 8000 real
grasps, and over 1000 trials each of placing, dropping, and insertion.

4.2.5 Discussion

4.2.5.1 Insights

The proposed statistical framework is general, and is designed to be implemented on a real
system. The unpredictability of the real world, especially when contact and physical interaction
are involved, strengthens the case for a statistical framework.

The sensing capabilities of a hand/object pair help us understand which grasps are informa-
tive and which are not. This can inform both the design of hands, as well as the design of grasp
policies, by being aware of what it means to be a good grasp from the point of view of grasp ob-
servability. Different hands and strategies can then be tested to see exactly which configurations
give us the most certainty in object state, which would improve post-grasp manipulation tasks
down the road.

Learning the accuracy requirements of a task by artificially adding noise is an excellent tool
to identify weaknesses in task execution. We can discover, for example, that placing tends to
fail when the object is in a certain pose, so adding a move to avoid that pose could improve the
overall task success rate.

We can combine these two models, sensing capabilities and task requirements, to predict the
probability of successful task execution. The separation of the two models allows us to mix and
match different tasks and hands. If we reuse the same hand, for each new task, we only need to
learn its task requirements. Conversely, if we are executing the same task with different hands,
for each new hand, we only need to learn its sensing capabilities.

Estimating the probability of success is powerful, since it allows the robot to increase its
overall task success rate by not taking unnecessary risks. We can, for example, find an optimal
policy to minimize mean time to success in an abort and retry scheme, similar to [103]. In
addition, since we estimate the probability of success for the complete set of actions, we could
consider optimization with different cost functions, or in the presence of constraints.
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4.2.5.2 Assumptions

While the proposed framework is general, we make a few simplifying assumptions to implement
it on a real system. The goal of these assumptions is to reduce the total amount of data required
to learn, with minimal sacrifices to functionality. Here is a summary of those assumptions:

• We assume that the probability of success of an action is conditionally independent of
sensor readings given the true state of the system, P (a|x, z) = P (a|x). This is reasonable
when the chosen state is a good representation; however, if it is incomplete, the estimate of
P (a|x) may be suboptimal. For example, the location of the center of mass of the marker
relative to the center of the hand seemed to have an effect on the probability of success of
the dropping task. However, the state representation (r, θ) we choose does not capture it,
and consequently it is not observable. This is treated as noise in the process, and although
we are still able to give accurate predictions of the probability of dropping success, they
could be better.

• We assume that the observation model P (z|x) for an object/hand pair is unimodal and nor-
mally distributed. If the grasp is at a fixed and known state x, the distribution of readings z
that we get from the sensors in the hand is induced by the sensor noise, which we assume
here to be Gaussian. Note that the framework still holds without the Gaussian assumption.
It is however a common convenience to reduce the amount of data needed to learn the
observation model.

• We assume independence between in-hand sensors. This is generally not true. Still it is a
common simplification to reduce the complexity of the distribution to learn. It effectively
restricts the type of distributions we can learn, since instead of learning a distribution in
the joint space of all sensors, we learn a single dimensional distribution for each sensor
and multiply them.

• Finally, we assume that the set of actions designed to execute a task is state parameterized.
This is often true, but again it is a convenience that allows us to reduce the dimension of the
model of task requirements. The framework still holds for sets of actions not parametrized
by state. However, to estimate P (a|x), we would need to sample the product space of
actions and states, rather than just the space of mismatches between action and state.

4.2.5.3 Scalability

As this work is based on data, we briefly discuss the scalability of this framework for varying
dimensionality in sensor space, state space, and action space.

• Sensor Dimension: If L is the number of sensors in the hand, we learn 2L Gaussian
Processes to compute the sensing capabilities of the hand, corresponding to the mean and
variance of P (z|x) for each sensor. Note that when we add additional sensors to our hand,
while the number of GPs increases linearly, the amount of data used to train each GP is
still the same, so it does not affect the accuracy of our estimates. If for example we remove
a sensor, the belief is now much less peaked, because we would indeed know less about
the state of the object. While the overall success rate may change based on the absence or
addition of sensors, the accuracy of predictions should not change.
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• State Dimension: Increasing the dimension of the state space on the other hand can have
an effect on the accuracy. First, the sensing capabilities would now need to handle an ad-
ditional dimension when computing the mean and variance of P (z|x). It has been shown
that the number of data points required to achieve the same accuracy for a GP grows expo-
nentialy with dimension [49]. In the case of sensing capabilities we can do slightly better,
as often the state is clustered in small areas of the space, or has an underlying lower di-
mensional representation. If the state is truly uniform, then data needs grow exponentially
to maintain the same level of accuracy.
In the case of task requirements, the data requirement also grows exponentially with di-
mension, since we are uniformly sampling errors in each dimension.

• Action Dimension: If we assume actions are state parameterized, then the action dimen-
sion increases with the state dimension, and all the statements above hold true. If instead,
actions are not state parameterized, then increasing the dimension of the action space will
again cause the data required to learn our task requirements to a given accuracy to grow
exponentially. Note that increasing the action dimension will not affect sensing capabili-
ties.

• Computational Dependence on Dimension: In addition to the data requirement, another
factor that cannot be ignored is the computational complexity of calculating these prob-
ability functions. As the number of data points increases, the computation time for the
Gaussian Processes used to compute the sensing capabilities and task requirements suffer
as O(n3). Gaussian Processes are much more dependent on the number of data points
compared with the dimension of each data point, so both sensor and state dimension do
not have too much of an impact.
Conversely, when trying to combine task requirements and sensing capabilities together,
that integral is directly dependent on the state dimension. Currently, we are gridding up
the state space finely in each dimension and numerically approximating the integral. This
is exponential with dimension, and puts a large requirement on time and memory (if things
are being precomputed). Given that we are computing the integrals of probability distribu-
tions, we should be able to lessen this requirement by using particle and monte-carlo based
approaches. This will enable us to sample only in relevant regions and increase efficiency.

4.2.5.4 Future Directions

One area we would like to explore in the future is understanding the statistical significance of
the distributions the robot learns. During experiments, we had no analytical means of knowing
when we had enough data. While we were able to show that our probability estimates improved
with more data, more analysis is needed to quantify how data density affects performance.

Carrying statistical significance through all of the distributions would enable us to compute
a confidence bound on our final probability distribution in action space. This would expand the
usefulness of our framework and help us understand how collecting more data affects our esti-
mates. Another direction that we are interested in exploring is using active learning to selectively
sample so as to reduce overall data requirements.

Finally, when the robot encounters a situation where the probability of success is not accept-
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Figure 4.19: The place and pick regrasp action studied. Initially, the robot is holding a block
between its fingers. Then, it moves downwards to a specific pose above the platform, where the
block may move to conform to the new contact. It then opens its fingers and repositions itself
at a certain position and orientation with respect to the edge of the platform. It then closes its
fingers and moves upwards, completing the regrasp. There are several scenarios where the robot
will not be holding the block in step 6. In step 1, the object could slip out of the hand. In step 2,
the object-hand system could collide with the table. In step 5, the robot could miss the block and
fail to pick it up.

able, the options to increase it are to either abort and retry, design better actions, or use better
hardware. Instead we could consider a scenario where, based on the computed probability distri-
butions, the robot decides to execute extra actions aimed at improving the expected probability
of success rather than aimed directly at solving the task.

In particular, we are interested in developing robots with regrasping capabilities. Inserting a
key into a lock is nearly impossible if you are holding it by its teeth rather than its head. Being
able to regrasp objects, either to reduce state uncertainty or change configuration, would greatly
increase the capabilities of current autonomous robotic systems.

4.3 Data-Driven Statistical Modeling of a Cube Regrasp

The work in this section was published in [90].

4.3.1 Introduction
Humans are experts at reorienting objects in their hands. They use this skill to adjust their grip
of a pencil to write with it, or to change their grasp of a key from its teeth to its head to unlock a
door. By contrast, once a robot has picked up an object, it generally maintains the same grasp as
long as the object is in contact with the hand. If a robot does adjust an object grip, it is generally
a predetermined operation with deterministic results, and only applicable for a constrained set
of initial and desired final grasp poses. In contrast, humans can adapt to different objects with
arbitrary initial and desired final poses. One possible explanation of this discrepancy is that
humans have better models of how the object pose changes as a function of their actions. We
show how robots can build better models of regrasp actions.

By a regrasp action, we mean any sequence of movements that results in a change of the
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Figure 4.20: Place and pick regrasp data collection setup. We use an industrial arm with a parallel
jaw gripper and place an pick objects. A three dimensional vision system based on point clouds
is used to record the object position before and after a regrasp. In the event of a failure, the robot
either picks up the dropped block from on top of the platform or retrieves a new block from a
stack of fresh blocks. With this setup, the robot performed over 3000 regrasp experiments. We
use this data to fit models for predicting the probability of not dropping the object, and estimating
the final pose of the block after a regrasp.

object pose with respect to the hand. Often, the final pose of an object is critical to a task. If the
initial pose of an object is arbitrary, then the robot must use models to determine what regrasp
actions to take to move the object to the desired pose. Physics-based models can only take us so
far. Modeling multiple contacts along with impact, friction, and uncertainty in object size, mass,
finger shape, dirt, etc can make it difficult to compute models a priori. We encapsulate this real-
world noise and uncertainty in the model as a probability distribution. A simple Gaussian is not a
good model of the probability distribution for manipulation. Flipping a coin, or the difference in
object pose based on whether or not contact occurs cannot be represented as a unimodal Gaussian
distribution. We use kernel density estimation to estimate a multi-modal probability distribution
from collected data to model regrasps.

We study a place and pick regrasp of a cube (Figure 4.19) as a first step to understand the
challenges involved in statistical modeling of regrasp actions. We collected data from 3300 robot
regrasps, and used this data to learn two models: 1) Given an initial object pose and regrasp
action, how likely is it that the object remains grasped? and 2) Given an initial pose and action,
where do we expect the object to end up? We show that our learned model, despite not having
any prior knowledge of the task, achieves comparable accuracy to a physics simulator and a
geometric model.

4.3.2 Method

4.3.2.1 Task Description

The place-and-pick regrasp action we will learn is shown in Figure 4.19. The robot moves down
vertically to a fixed height above a platform, releases the object, and then attempts to grasp it
again at a specified position in the workspace. Note that in step 2, the object pivots and slides
in the fingertips when it comes into contact with the platform, which we expect to be difficult
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for physics-based models to capture. Our regrasp action a is parameterized by three continuous
variables, d, z, and α, which represent the pose of the hand frame with respect to the edge of the
platform. The parameters of action a are not relative to the object pose on the platform, because
this data may be unavailable to the robot while it is performing a regrasp.

Figure 4.21: The state space used. While the world is six-dimensional, because we are grasping
a cube with a parallel jaw gripper, we can reduce the state space to three dimensions. Note that
as the cube is symmetric, we restrict θ to be between −π/4 and π/4.

Our state s is represented by three continuous variables, x, y, and θ, corresponding to the
relative pose of the cube with respect to the hand, as shown in Figure 4.21. Note that this is a
planar state space; we will not consider out of plane rotations or grasps. Any grasps of this kind
will be considered “not grasped” for the purposes of this research.

In order for the robot to successfully model this regrasp action, we must learn two probability
functions:

1. The probability that the object is in the robot’s hand after a regrasp action, P (grasped|s,a)

2. The probability distribution of the final state given that the object is still grasped, P (s′|s,a, grasped)

Note that if the object is not grasped after a regrasp action, its final state s′ does not exist,
since s′ is the in-hand pose of the object. Learning these two probability distributions enables us
to solve planning problems such as: 1) what action maximizes the chance of maintaining a grasp?
or 2) what action maximizes the chance of the center of the object being at most 1 cm away from
the center of the fingers? For this work, we focus solely on learning the above distributions from
data, and leave planning with these models as future work.

4.3.2.2 Predicting the Probability of Maintaining a Grasp

To estimate the probability that the object is in the robot’s hand after a regrasp action, we use
kernel density estimation with Bayes discriminant rule [78, 105]. We estimate the probability of
retaining and not retaining the object using kernel density estimation, and then, for a query point,
determine which of the two probabilities are greater. That is, we would like to calculate:

P (πi|s,a) =
piP (s,a|πi)∑g
j pjP (s,a, πj)

where pi = P (πi) is the prior probability of a randomly selected observation being in class
πi, g is the total number of classes, and P (s,a|πi) is the conditional probability density of an
observation given that it is in class πi. In our case, we have two classes, grasped and not grasped,
so we will learn two probability densities using kernel density estimation:
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P (s,a|πi) =
1

Ni

Ni∑
j

Ks
h1

(s, sj)K
a
h2

(a,aj)

where Ni is the number of training observations belonging to class πi. Note that we set pi =
Ni/

∑g
j Nj as our prior probabilities.

We define our kernel functions Ks
h1

and Ka
h2

by first expressing distances in state and action
space, and then use a Gaussian kernel over these distance functions:

Da(a1,a2) =

∥∥∥∥∥∥
 d1z1
ρα1

−
 d2z2
ρα2

∥∥∥∥∥∥
2

Ds(s1, s2) =

∥∥∥∥[x1y1
]
−
[
x1
y1

]∥∥∥∥2 + 2ρ2(1− cos(θ1 − θ2))

Ks
h1

(s, sj) =
1

ηs(ρ, h1)
exp

(
− 1

2h21
Ds(s, sj)

)
Ka
h2

(a,aj) =
1

ηa(ρ, h2)
exp

(
− 1

2h22
Da(a,aj)

)
where ρ is the radius of gyration for the object, which allows us to properly trade off distance
and angle, while ηs and ηa normalize the kernels so they represent probability distributions. Note
that for the state distance function, we use a cosine function to handle angle wrap-around for
object pose (i.e. −π = π). Both of the distance functions Da and Ds represent squared distance
in action and state space. The units for d, z, x, and y are mm, while α and θ are in radians. Thus,
our distance functions have units of mm2, and our bandwidths h1 and h2 have units of mm.

We choose the values of bandwidths h1 and h2 that minimize the cross-validated negative log
likelihood of the observed data:

NLL(h1, h2) = − 1

Ni

Ni∑
j

P̂−j(sj,aj|πi)

P̂−j(s,a|πi) =

Ni∑
k 6=j

Ks
h1

(s, sk)K
a
h2

(a,ak)

where P̂−j(s,a|πi) is the estimator of the conditional probability density with observation j
removed.

4.3.2.3 Predicting the Final Object Pose

To predict the resulting probability distribution of the cube after a regrasp action, we will use
kernel conditional density estimation. We formulate our conditional density estimate using our
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kernels from above and roughly following Hall, Racine and Li[50]:

P (s′|s,a, gra) =
P (s′, s,a|grasped)

P (s,a|grasped)

P (s′, s,a|gra) =
1

m

m∑
i

Ks
h3

(s′, s′i)K
s
h4

(s, si)K
a
h5

(a,ai)

P (s,a|gra) =
1

m

m∑
i

Ks
h4

(s, si)K
a
h5

(a,ai)

where m is the number of experiments where the object was in the robot’s hand after a regrasp.
We will choose values for h3, h4 and h5 that minimize the integrated squared error, again

using cross validation (see [50] for more details):

ISE(h3, h4, h5) =

∫ (
P̂ssa − Pssa

)2
Psads dads

′

where

Pssa = P (s′|s,a, grasped)

Psa = P (s,a|grasped)

Note that for both P (grasped|s,a) and P (s′|s,a, grasped), we could have chosen more
complex kernels or used different learning algorithms. However, for this work, we select simple
models to understand the viability of a data-driven framework for modeling regrasps. In our fu-
ture work, we plan to evaluate different non-parametric methods for estimating these probability
functions.

4.3.3 Validation
We collect a large data set D, explained in Section 3.6. We now compare our learned model with
an off-the-shelf simulator and a rudimentary geometric model using our data setD. We randomly
select a hold-out test set of 1000 data points which we use to compare all three methods. We
describe the geometric and simulation models below.

4.3.3.1 Geometric Model

The challenging part of this regrasp to model is what happens during the initial block placement
(Step 2 of Figure 4.19), as there are many possible contact modes including no contact followed
by an impact and settling, sliding or pivoting in finger tips, and sliding or rotating against the
platform. For simplicity, we assume that during this step, once an object corner contacts the
platform, the object rotates about the contact point until it lies flat on the platform. Given an
initial object pose s = [x, y, θ], if c is the distance from the center of the hand to the edge of the
platform when placing and w is the width of the block, we can calculate the distance from the
edge of the platform to the center of the block q as
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q =

{
θ ≥ 0, c+ y + w

2
(sin(θ)− cos(θ) + 1)

θ < 0, c+ y + w
2
(sin(θ) + cos(θ)− 1)

.

Now, given an action a = [d, z, α], if g is the maximum horizontal distance away from
the center of the block that the robot can still grasp the object without missing it, then we will
successfully grasp the block if |d− q| ≤ g, and that final pose will be

s′ =

x′y′
θ′

 =

(q − d) cos(α) + (z − w/2) sin(α)
(q − d) sin(α)− (z − w/2) cos(α)

γ


with γ =

{
0 ≤ α ≤ π/4, α

π/4 ≤ α ≤ π/2, (α− π/2)
.

Creating probability distributions from this kinematic model is difficult, as we do not know
the distribution of errors on our parameters. Note that even if we did, even for this rudimentary
model, the probability distributions would be multimodal and non-Gaussian.

Figure 4.22: The simulation environment used . Using VREP, we have modeled the same indus-
trial robot arm and gripper used in our physical experiments, and placed the platform in the same
relative location. We place the block in the simulated robot’s hand in the same initial pose as our
real trials, and record whether or not the object is still grasped after the regrasp in simulation. If
so, we record the final pose of the block.

4.3.3.2 VREP with ODE as a Simulation Model

Using the simulation environment VREP [39], we have modeled an ABB IRB 140 robot with
a Robotiq C-85 two-fingered gripper just as in our physical experimental setup. The simulation
environment is shown in Figure 4.22. The platform is placed in the same location, and we use
a 50 mm cube with the same density and frictional properties as our real wooden cube. We can
now place the object into the simulated robot’s hand at a given initial state s, ask the robot to
perform the regrasp action a, and then observe whether the object was grasped. If so, we record
the final state s′.
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Note that setting up the simulator was a challenge in and of itself. Even the well-tuned
ODE in VREP still cannot handle parallel grasping well, and once the block is also made to
slide against the table and in the hand, it is difficult to get stable results. The two most difficult
phenomena to model in simulation with physics are 1) how the contact patch between the parallel
jaws and the cube changes as the hand slightly loosens its grip on the object, and 2) what happens
to the cube at the onset of contact with the platform.

Like the geometric model, creating probability distributions using a simulator is difficult as
the simulation is deterministic. We could vary initial parameters slightly and fit the resulting data
using the probabilistic model described in this work. However, it is unclear which parameters
to vary and how much to perturb them by in order to get plausible results. Moreover, if the
underlying physics model is wrong, even this may not give a realistic distribution.

Table 4.1: Classification Accuracy of Predicting whether the Object Remains Grasped

Setting Geometric Simulation Data-Driven

In Hand 74.8 % 72.8 % 76.2 %
Platform 89.3 % - 90.7 %
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Figure 4.23: Comparison between the experimental and predicted probability of maintaining the
object after a regrasp. Each data point is the average experimental grasp probability for 5%-wide
bins of predicted probability.

4.3.3.3 Validation Results: Predicting if the Object Remains Grasped

Table 4.1 shows our results for predicting if the object is still grasped after a regrasp action. We
compared the classification accuracy of the three models for two separate conditions. First, we
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Figure 4.24: Precision-recall curve for predicting whether the robot is still holding the object
after a regrasp

consider the condition where we are given the pose of the object in the robot’s hand and the
parameterized regrasp action to perform. Second, we consider the condition where we know
the pose of the object on the platform and predict the probability that the robot will be able to
successfully pick it up. All three models perform comparably, even though our data-driven model
is given no prior information about the task.

In Figure 4.23, we binned our predicted probability in 5% increments, looked at the percent-
age of those points where the object was still grasped, and plotted the results. If our predictions
are good, the mean of the true grasp probability should follow the straight line. Our predicted
probabilities for the platform condition match better than the in-hand condition, which is ex-
pected.

If we can predict the probability of maintaining the object after a regrasp, this means we can
adjust the decision boundary to achieve different precision and recall values. This is plotted in
Figure 4.24. Note that the platform case gives us a much better precision-recall curve, and that
these precision-recall curves are not easily achievable without a data-driven model.

Table 4.2: Mean Pose Estimation Accuracy (mm)

Setting Geometric Simulation Data-Driven

In Hand 11.7 10.8 13.0
Platform 5.7 - 6.3
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Figure 4.25: Histogram of prediction errors. Note that most of the error is less than 10mm, and
the data-driven approach achieves comparable accuracy to the other approaches.
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Figure 4.26: Cumulative histogram of prediction errors. Over 80% of the data has an error of
less than 10mm for the platform case. The data-driven method achieves comparable accuracy to
the other approaches.

4.3.3.4 Validation Results: Final Pose Estimation

To evaluate the predictive power of our pose estimation models, we looked at the mean pose
estimation accuracy. We used the square root of our distance function Ds(s1, s2) as a measure
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Figure 4.27: Predicted probability distribution of a final pose after a regrasp. The most likely
predicted pose is the diamond and the true pose is the star. Note the multi-modal nature of the
distribution.

of accuracy. Note that if the distribution is multi-modal, this measure does not reward capturing
that multi-modality. However, since we do not have the true underlying distribution, we use the
mean pose estimation accuracy as a baseline. Our results are shown in Table 4.2, Figure 4.25
and Figure 4.26. Again, our data-driven model achieves comparable accuracy with no prior
information.

With our data-driven model, we can also calculate the entire resulting probability distribution
in pose space, which is shown in Figure 4.27. Note the multi-modal nature of the distribution.

4.3.4 Conclusions
In this work, we introduced a way to model robotic regrasping using a large amount of real data.
First, we briefly discussed how we collected the real robot manipulation data needed for our
models. We then showed how to predict the probability of maintaining the grasp of an object
given an initial position and robot regrasp action using this data. In addition, we showed how to
estimate the probability distribution of where the object will end up in the robot’s hand given an
initial pose and a robotic regrasp action. We compared our models with a simulator and a rudi-
mentary physics model and showed that our data-driven models have comparable performance
even with no prior knowledge of the task.

In the future, we are interested in extending these models to other objects, regrasp actions,
and hands. We are especially interested in extending our models to SE(3) space to handle three
dimensional rigid body transformations. We are also interested in improving the accuracy of
our vision system to improve model accuracy. Finally, we are interested in exploring other non-
parametric models to achieve higher fidelity.
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Figure 4.28: Data collection procedure for place and pick regrasp studied. A desired object pose
relative to the hand is chosen, and the rectangular prism is placed in the correct orientation on the
table. Then, the robot moves to the desired pose and attempts to grasp the object. If the object is
grasped, its pose is recorded and then the robot attempts to place the object. The object may end
up in a vertical or horizontal position on the table after the placement, or it may collide or fall
off the table. The robot then moves to a desired pose relative to the the edge of the platform and
attempts to grasp the object. If successful, the resulting object pose is recorded again. The block
is then gently placed on the table for the next experiment to begin (not shown).

4.4 Improved Place and Pick Models
We now present an improved approach to statistically modeling manipulation actions, specifi-
cally placing and picking an object on a platform. While in the previous section we attempted
to model an entire place and pick action with one model, in this section we break the model into
smaller pieces, and combine them into the full model when necessary.

We will first show how to accurately model the probability of successfully picking, placing,
and predicting what side an object will land on when being placed. We will then present a slightly
modified kernel conditional density estimation technique which improves speed and robustness
for predicting the transition model of placing and picking and object.

4.4.1 Task Description
The robot performs the set of actions shown in Figure 4.28. Before the experiment, a desired
initial object pose and picking action are chosen. The desired initial pose is specified according
to Figure 4.29. As the object is a rectangle, it has 2-fold symmetry, and we restrict θ to be in the
interval [−π/2, π/2]. The picking action is parameterized by d, z, and α, which parametrize the
pose of the hand with respect to the platform, similar to the previous section.

To begin the experiment, the object is placed on the platform either horizontally or vertically,
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(a) (b)

Figure 4.29: (a) In hand state space of rectangular prism. θ = 0 corresponds to the long side of
the block perpendicular to the fingers. (b) Platform state space of object, using an eagle eye view
of the platform. θ = 0 corresponds to the long side of the block aligned with the long side of the
platform.

so that the desired initial grasp pose sd can be achieved. The robot moves in horizontally, grasps
the object, and then moves up and to a vertical position. The in-hand pose sih is recorded. The
robot then moves down to a specified height, opens its gripper, and moves out of the way. The
object’s platform classCp (vertical or horizontal) and pose sp are recorded. The robot then moves
to the desired picking action action and attempts to grasp the object. The final in-hand pose of
the object sfh is also recorded. In the event of a failure at any placing or picking step (collision,
dropped/missed object), the experiment is aborted and the next experiment starts. We record
how much of each experiment was completed as a number S. Thus, the following data set is
collected:

Dk = [sd, s
i
h, Cp, sp,a, s

f
h, S]k

Using this data, we will learn the following models:
1. P (placed|sh), the probability of placing a block given an in hand pose

2. P (Cp|sh, placed), the probability of a platform class given a successful placement and an
in hand pose

3. P (sp|sh, placed, Cp), when placing an object, the probability distribution of an object pose
on the platform given an initial pose, the platform class, and that the placement was suc-
cessful

4. P (grasped|sp, Cp,a), the probability of grasping a block given a platform class and pose,
and a picking action

5. P (sh|sp, Cp,a, grasped), when picking a block, the probability distribution of the resulting
in-hand pose given a platform class and pose, and a picking action, and that the object was
successful

With these models, we can forward simulate the following two actions, shown in Figure 4.30,
which can then be used for planning:

1. Picking: Given an object pose on a platform and a picking action, did we grasp it, and if
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(a)

(b)

Figure 4.30: (a) The picking action we would like to model. The robot moves in from the left
to a SE(2) pose relative to the edge of the platform, closes its fingers, and moves upwards. This
action has three parameters. (b) The placing action we would like to model. The robot moves
to a set pose, opens its fingers, and retracts. Note that this action has no parameters, because the
robot always moves to the same place, regardless of where the object is.

so, where is it? P (grasped, sh|sp, Cp,a)

2. Placing: Given an in-hand object pose, do we successfully place the object, and if so,
where is it? P (placed, Cp, sp|sh)

To learn the 5 models listed above, we must be able to learn models of the following form:
1. P (1|x), classification with accurate probability estimates

2. P (y|x), conditional density estimation
Note that these models are not necessarily Gaussian or unimodal, and so we will again use a

non-parametric approach to learn both types of models.
For all of our models, we will use a Gaussian kernel. All of our models have as input some

SE(2) pose [x, y, θ]T . We scale the angle θ by the object’s radius of gyration ρ, and then divide
the entire vector by a scalar to keep the data around (−1, 1), which gives us a scaled input vector
v = (1/s)[x, y, ρθ]T . Our kernel is then simply:

Kγ(v1, v2) = (2πγ2)−3/2 exp
(
−‖v1 − v2‖2/(2γ2)

)
For in-hand pose, θ ∈ [−π/2, π/2], and so to deal with angle wrap around, we augment our

dataset with copies of any data near the angle boundary. That is, any data θi ∈ [−π/2,−π/2 + ε]
is copied with new angle θi+π, and any data θi ∈ [π/2− ε, π/2] is copied with new angle θi−π.
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ε is chosen such that Kγ can be accurately computed near either angle boundary. Although this
increases the size of our dataset, we find this is the fastest and easiest way to handle angle wrap
around correctly.

4.4.2 Accurately Predicting Class Probabilities

4.4.2.1 Theory

If we are to forward simulate manipulation models, it is imperative that we accurately predict
the probability of success. The robot can use this predicted probability in planning to accurately
predict the overall likelihood of success and adjust according to the desired amount of risk.

Classifiers generally have no guarantee on their probability predictions, and often only out-
put a decision function. Also, even if a classifier does compute a log-loss based on probability,
the accuracy of those probability estimates are still at the mercy of any assumptions made in the
model. As an example, the Naive-Bayes classifier assumes that each feature is conditionally in-
dependent of every other feature. If this is not valid in our underlying distribution, the probability
estimates from the Naive-Bayes classifier will be incorrect.

We can correct any errors in our probability estimates by calibrating our classifier [85, 97,
124]. The basic idea is to hold out some of the data, use the rest of the data to train a classifier
as usual, and then use the held out data to adjust or “calibrate” the output of the classifier so
it reflects the true probability. This can be made more data efficient by using K-fold cross
validation rather than a single hold out set.

There are two main methods for calibration: sigmoid [97] and isotonic [124]. We will use
isotonic calibration, which requires more data than the sigmoid method, but is more general.
Suppose the output of our classifier (decision function or probability estimate) for a data point vi

(a) (b)

Figure 4.31: Reliability curve for predicting whether or not we will grasp an object. Our pre-
dicted probabilities match the experimental probabilities well. This predicted probability can be
used to move along a precision-recall curve to allow the robot to trade off risk.
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is f(vi), and the true target is yi. Isotonic regression assumes:

yi = m(f(vi)) + ε

where m is a monotonically increasing function. We find the optimal function m̂ such that the
overall error is minimized:

m̂ = arg min
m

∑
(yi −m(f(vi)))

2

Note that in order to have an unbiased estimate of m̂, it is imperative that a separate set of
data that was not used to train our classifier is used during the calibration.

For all of our prediction models, we will use a Gaussian kernel support vector machine, fol-
lowed by an isotonic calibration. The bandwidth for our kernel γ and SVM soft margin parameter
C are found via 3-fold cross validation on a randomly sampled set of (γ, C). Then, using those
parameters, we split the data into 5 folds, and train 5 SVMs trained on 4 folds and the isotonic
function trained on the remaining fold. The predicted probability is the average output of each of
our SVM+isotonic classifier. The training step is implemented with the CalibratedClassifierCV
function from the python package scikit-learn.

For predicting the probability of successfully grasping a block, there are only two classes:
success or failure. For predicting the probability of placing a block however, there are three:
block lands horizontally, block lands vertically, or failure. To do this multi-class classification,
we train two classifiers in a hierarchical fashion. First, we learn P (placed|sh), which is the
probability of successfully placing the block. Then, using the data points where placing suc-
ceeded, we learn P (Cp|sh, placed), which is the platform class probabilities. Multiplying these
probability functions together enables us to predict the probability of each class.

(a) (b)

Figure 4.32: Probability of grasping an object from random initial poses according to our model.
Note the similarity between our predicted probabilities and Figure 3.17.
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4.4.2.2 Results

We will now show how well our resulting models perform with regards to probability prediction.
In Figure 4.31, we show results for predicting the probability of successfully grasping an object.
3000 grasps were held out as a validation set and the model was trained on the rest. The x-axis is
the probability of success the classifier predicts for each of the held out data points. The held out
data points are binned, and the proportion of data that succeeds is the experimental probability.
Ideally, the predicted probabilities match the experimental probability, and the data would follow
the dotted line y = x. We randomly sampled from our dataset 30 times, and show the aggregated
results in our plot. The thick blue line is the mean “reliability” of our classifier. The green lines
are one standard deviation above and below the mean and represent the uncertainty. The red
curve is the proportion of the data that falls in each of the predicted probability bins. Note that
almost all of the data is predicted to be either near 100% or 0%, which makes sense, as most
of our grasps either had full overlap between the gripper and block or no overlap. We see that
for bins well represented by the data, our probability predictions are nearly perfect, with almost
no uncertainty. Once we are able to predict the probability, by adjusting our cutoff point, we
can trade off precision and recall, shown in Figure 4.31b. Knowing this probability can give
our robots the power to make more informed decisions. If we select p = 0.5 as our threshold,
our classification accuracy for grasping is 96.8%. In Figure 4.32 we randomly sample a set of
possible grasps and visualize the probability. Note that both the edge failures and curved failures
seen in Figure 3.17 are also represented in our model, as expected.

(a) (b)

Figure 4.33: Reliability curve for predicting place success. Again our predicted probabilities
match the experimental probabilities well, and that predicted probability can be used to trade off
precision and recall.

In Figure 4.33 we show the probability of successfully placing a block on the platform with-
out any collisions or the block falling off of the platform. Setting the threshold at p = 0.5
our classification accuracy is 93.2%. Figure 4.34 shows the probability of whether the block
lands horizontally or vertically on the platform after a placement. Again, setting the threshold
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(a) (b)

Figure 4.34: Reliability curve for predicting whether the object will end up horizontally or ver-
tically. Again our predicted probabilities match the experimental probabilities well, and that
predicted probability can be used to trade off precision and recall.

at p = 0.5, our classification accuracy is 98.2%. In all cases, we see our classifiers predict
probabilities well.

4.4.3 Accurately Predicting the Resulting Object Pose

4.4.3.1 Theory

We would like to predict the resulting probability distribution after an action. For the placing
action, because the robot always moves to the same height before releasing the object, our input
is SE(2), and our output is the SE(2) platform pose that the object ends up in. For the picking
action, although there is the SE(2) platform pose and action a = [d, h, α]T as input, we can
reduce our dimensionality by projecting the object’s platform pose to a single value, x, which is
where it is horizontally with respect to the edge of the platform. Then, for a given action a, we
can compute the relative hand pose with respect to object pose x. This again gives us an SE(2)
input and SE(2) output. Thus, for both placing and picking, we can model the transition model
as:

P (vf |vi), where vi = (1/si)

 xiyi
ρθi

 , vf = (1/sf )

 xfyf
ρθf


As in Section 4.3.2.3, we will use kernel conditional density estimation:

P (vf |vi) =

∑m
j Kγ1(vi, v

j
i )Kγ2(vf , v

j
f )∑m

j Kγ1(vi, v
j
i )

Let the n-th nearest neighbor of v in our dataset be expressed as the function

vn = q(v, n)
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By choosing numbers k1 � m and k2 � m, we can approximate our kernel conditional density
estimate as follows:

P̃ (vf |vi) =

∑k2
j

∑k2
t 1(j = t)Kγ1(vi, q(vi, j))Kγ2(vf , q(vf , t))∑k1

j Kγ1(vi, q(vi, j))

where 1() is the indicator function. Note that by choosing k1 such that Kγ(v, q(v, k1 + 1)) �
Kγ(v, q(v, 1)), and k2 such that there is a sufficient amount of commonality between the vi and
vf data, P̃ (vf |vi) ' P (vf |vi). k1 and k2 can be adjusted to trade off accuracy versus speed.In our
experiments, we chose k1 = 100 and k2 = 500 which both offer significant speedups compared
with m ≈ 8000. Note that we use a Kd-tree implementation for fast nearest-neighbor lookup.

Now that we have our new formulation for kernel conditional density estimation, all that’s
left to do is find the kernel bandwidths γ1 and γ2. If the bandwidths are too small, we will overfit
to the data and not be able to generalize well between data points. If the bandwidths are too
large, we will overly smooth our system and have poor model accuracy. See Figure 4.37 for
a visualization of this. To optimize these bandwidths, we should be minimizing the integrated
squared error (ISE) discussed in Section 4.3.2.3. However we have found that reasonable results
are obtained by finding the bandwidths that minimize the negative log likelihood of the joint
probability P (vf , vi), as suggested by Holmes et al. [54]. That is:

γ∗1 , γ
∗
2 = arg max

γ1,γ2

1

M

m∑
s

log (P−s(vf |vi)P−s(vi))

P−s(vf |vi)P−s(vi) =
m∑
j

1(j 6= s)Kγ1(vi, v
j
i )Kγ2(vf , v

j
f )

A problem that can occur during likelihood cross-validation is extreme observations or heavy-
tailed distributions significantly affecting the outcome. In order to mitigate these effects, we

Figure 4.35: Transition model evaluation. Note that we outperform our baseline both when we
take a single sample from our distribution or when we average many samples. Our median pose
estimation error is 1.9mm for picking and 4.6mm for placing.
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follow Wu [121], and replace the natural log in the equation above with the following robust
function:

log?(x; a) =

{
log(x) x ≥ a

log(a)− 1 + x/a x < a

a is chosen to balance robustness to outliers and accuracy. We have found in practice that the
bandwidths found using robust likelihood cross validation are reasonable, and this significantly
reduces the training time for our model compared with optimizing ISE.

4.4.3.2 Results

Figure 4.36: Intuition for kernel conditional density estimation. The object is shown in red
grasped by the black robot figers. The pink poses are the grasped poses that are close in our
dataset. The blue blocks are where the objects ended up when those pink poses were placed
on the platform. A Gaussian blur can be added around these poses, which gives us our final
probability distribution shown in cyan.

We will now assess how well our transition models do at predicting the resulting distribution.
To evaluate our models, we hold out 500 data points and see how our model’s prediction of
the data compares with the true outcome. Note that because our model outputs a probability
distribution of where the object will end up, and we do not have ground truth for this distribution,
it can be tricky to evaluate this correctly. We look at three metrics and compare each against a
baseline. For the first test, we will sample a single pose from our resulting distribution for each
test point, and compare this with the true outcome. Note that since we’re simply taking a single
sample, this could be a very poor match with the true pose. The second test will take the mean
of 1000 output samples from our model and compare that with the true outcome of each data
point. Note that if the true output distribution is multi-modal, this mean could be arbitrarily bad,
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Figure 4.37: Importance of bandwidth selection for KCDE. If the bandwidths are too small, as
shown in the upper figures, the model will overfit to data nearby and not have good generaliza-
tion. If the bandwidths are too large, as shown in the bottom figure, the model will smooth over
too much of the data and not learn anything. It is important to select the right bandwidths by
finding the balance between these two extremes by minimizing the integrated squared error.

as it could predict a pose in between two modes of the distribution. Our third test computes the
negative log likelihood of each resulting output point. Since

∫
V
p(sf |si)dV = 1, the likelihood

log p(sf |si) will depend on the total volume of the space, and so this value is hard to interpret.
For each of these tests, we will compare our models with a baseline, which will randomly sample
a pose from the output training set, and use that as a prediction.

Figure 4.35a shows a box and whisker plot of the prediction errors for estimating object
pose after a pick action for our first 2 metrics. As expected, our model outperforms the baseline
significantly. The error is computed as ‖[x1, y1, ρθ1] − [x2, y2, ρθ2]‖, which is a normalized
distance that trades off position and orientation in a reasonable way. The median error for the
single sample output is 4.3mm and 1.9mm for the case where 1000 model samples are averaged.
This implies that most of our output distrbutions can perhaps be well represented by a unimodal
distribution. Note however that if we are using samples from these models for planning, our
formulation will work regardless of whether the distribution is unimodal or multimodal. For the
third metric, our model outperforms the baseline with an average negative log likelihood of -1.84
compared with the baseline’s 4.88.

Figure 4.35b shows model prediction errors when predicting placing poses for both the hori-
zontal and vertical configurations. Again our model outperforms the baseline. The median error
for the single sample output is 6.5mm and 4.6mm for the case where 1000 model samples are
averaged. Note that these errors are larger because the placing action is more random than a
picking action, as the object is sometimes dropped on the platform. For the third metric, our
model outperforms the baseline with an average negative log likelihood of -0.66 compared with
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the baseline’s 5.97.
Another way to evaluate our pose estimation models is to use a Kernel Two-Sample Test [47].

This test takes samples from two distributions, and computes a test statistic by finding the largest
difference in expectation over reproducing kernel Hilbert space (RKHS) functions, called the
maximum mean discrepancy (MMD). To evaluate our models, we can compute the average prob-
ability distribution across a number of hold out input poses in a neighborhood around key points.
The output poses from those held out input poses should be coming from the average proba-
bility distribution computed from our models. Across various key points, with a significance
level of α = 0.05, we accepted the null hypothesis that our output data came from this modeled
probability distribution.

To gain additional intuition for these models, we show a sample place model result in Fig-
ure 4.36. The object is initially held by the black outline of the gripper and is shown in red. The
pink poses show the closest poses in our data set in input space. The blue poses are the resulting
placement locations where each of the pink poses ended up. We can then add a Gaussian blur
to these blue poses, shown in cyan. The cyan blocks on the platform is our resulting predicted
probability distribution of what we expect to occur when the robot places the block.

4.4.4 Forward Simulation
In order to use these models in planning, we need to be able to forward simulate both our success
and transition models in an accurate and computationally efficient way.

For simulating success, we use Algorithm 1, which can be vectorized in Matlab. The bottle-
neck in speed is the computation of the kernel SVM, which requires computing a Gram matrix
with the data points and support vectors. In practice, we can forward simulate 100,000 points in
4 seconds on a standard laptop.

Algorithm 1 Forward simulate a success model

Input: input particles {si}
Output: remaining particles {sf}

function FORWARDSIMULATESUCCESS({si})
{vi} ← scale data({si})
{sf} ← {}
for j = 1 : N do

pj ← P (1|vji )
if pj > rand(0, 1) then
{sf} ← {sf}+ sji

end if
end for
return {sf}

end function

For forward simulating transition models, we use Algorithm 2. Note that we are selecting a
point in our data set probabilistically according to how close each point vki is to each input point.
Then, we use the selected input points’ corresponding output point as the mean and γ2I(3) as
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the covariance to a multivariate normal distribution, which we sample our output point from.
This procedure approximates P (vf |vi). This procedure can also be vectorized in Matlab, and in
practice we can forward simulate 100,000 points in 1 second on a standard laptop.

Algorithm 2 Forward simulate a transition model

Input: input particles {si}
Output: resulting particles {sf}

function FORWARDSIMULATETRANSITIONMODEL({si})
{vi} ← scale data({si})
{sf} ← {}
for j = 1 : N do
{px} ← {}
pT ← 0
for k = 1 : M do

pkx ← Kγ1(v
j
i , v

k
i )

pT ← pT + pkx
end for
pick index t randomly from histogram {px}/pT
vjf ← rand norm(vtf , γ2)

sjf ← scale data inverse(vjf )

{sf} ← {sf}+ sjf
end for
return {sf}

end function
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Chapter 5

Planning

5.1 Planning Sequences of Manipulation Actions
With statistical models of robot manipulation actions in hand, a natural next step is to plan with
these actions. We attempt to answer the following question:

Given an initial pose of an object in a robot’s hand or on a platform, find a sequence of ac-
tions to move the object to a desired final pose within the robot’s hand or on the platform.

Suppose we have an objective function J(s, sg), which represents how close we are to a
desired final pose sg. An example objective function for s = [x, y, θ] could be:

J(s, sg) = exp
(
−Ds(s, sg)/(2σ

2)
)

Ds(s1, s2) =

∥∥∥∥[x1y1
]
−
[
x1
y1

]∥∥∥∥2 + 2ρ2(1− cos(θ1 − θ2))

however, J can be any function we wish to optimize.
Suppose our initial object pose is P (s0), and we wish to find a sequence of actions S =

{a1, ..., aM} such that we end up at our goal. After each action ai, we will end up at state si. So,
we wish to find the sequence of actions that maximizes the expected value of our objective:

S = {a1, ..., aM}

S∗ = arg max
S

E [J(sM , sg)]

which we can estimate using Monte-Carlo Integration:

S∗ = arg max
S

1

N

N∑
k

J(sM , sg)P (sM |sk0, S), sk0 ∼ P (s0)

P (sM |s0, S) =
M∏
i=1

P (si|si−1, ai)
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where P (si|si−1, ai) can be forward simulated from our learned success and transition mod-
els. Note that for post-grasp manipulation actions in Section 4.2, there is only one action step,
and so J can be maximized via a simple grid search or random sampling in that action space.

We apply the framework above to sequences of placing and picking actions. With the for-
ward simulation algorithms shown in Section 4.4.4 we can quickly simulate many particles. The
only challenge that remains is how to choose what sequences of actions to use. While there
are many algorithms for planning on Markov Decision Processes with continuous actions and
states [63, 64, 77], we will initially use brute force search, and then sample around actions that
are succeeding more often. With our current set of actions, our plans will have very short hori-
zons, on the order of two to four steps, which means the branching factor is not too high. In
addition, given that we generate our plans offline, we are less concerned with computational
constraints. The purpose of this section is to validate our models and show how they can be used
for planning. We hope others will use more efficient planning methods with our models in the
future.

5.2 Results

Figure 5.1: Executed plan for moving an object 8cm to the right.

We select several scenarios to test our placing and picking plans. Note that all of these plans
will be executed open loop, with no sensing in between. The robustness of these plans could
be improved by using sensing, or closed-loop control, however the purpose of this section is to
validate our statistical models.
• Platform Translation: Starting with an object on the platform, move the object 8cm to

the right.
• Platform Rotation: Starting with the object on the platform, rotate the object 90 degrees

and move it 4cm to the left.
• Handling Uncertainty: Starting from an in-hand pose such that the object sometimes

lands in a horizontal configuration and sometimes in a vertical configuration, find the se-
quence of actions that maximizes the probability that the object comes to rest horizontally
on the platform.

For each plan, the number of steps was set ahead of time. A place action is one step, and a pick
action is another step. Our planner automatically chooses to use a place or pick action depending
on whether the object is in the hand or on the platform. Note that for the placing action, there
are no action parameters, as the robot always moves to a specified height and releases its gripper.
For the picking action, we have a three dimensional action space a = [d, h, α], which is the pose
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Figure 5.2: Executed plan for rotating an object 90 degrees and moving the center of mass 4cm
to the left.

Figure 5.3: Plan for making sure the object ends up in a horizontal configuration on the platform,
regardless of an uncertain initial placement

of the gripper with respect to the platform. We initially start with 100000 particles and randomly
select action parameters when needed. Then, we forward simulate 100000 particles again, this
time sampled from the sequences of actions that were successful. Finally, we bin our action
sequences, select the top 5, and rerun our simulation to find the best action sequence.

We executed the resulting plans for the three scenarios discussed above. Figure 5.1 shows
the robot’s plan for moving the block horizontally 8cm to the right. Note that because the robot
always places the block with the same hand pose, the robot correctly realizes that it needs to
grasp the block as far left as possible in order to move it 8cm.

Figure 5.2 shows the robot’s plan for rotating and moving the block as desired. Note that our
planner realizes the robot needs to grasp the block horizontally, and from a high enough position
for both the 90 degree rotation and 4cm translation requirement to be satisfied.

Figure 5.3 shows four runs of the robot attempting to place the object on the platform hor-
izontally. Because of the initial grasped pose, the object can end up either in a horizontal or
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vertical configuration the first time around. However, through forward simulation, our planner
finds a grasp pose that is able to capture both the horizontal and vertical poses by moving to the
correct horizontal position, and then selects the right angle so that when the object is placed on
the platform the second time, the object is likely to end up in a horizontal configuration. This
plan showcases the power of modeling the entire resulting probability distribution of an action
rather than just its most likely pose.

In this short chapter we have formulated a simple framework for planning with data-driven
statistical models, and executed plans for three separate scenarios. Our plans were executed on a
real robot, and moved the object to a desired pose in each case. In the future, we look forward to
using more computationally efficient planning models which are also probabilistically complete.
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Chapter 6

Summary and Future Work

6.1 Contributions

As discussed in the introduction, this thesis makes the following contributions:
1. Data Collection of Robotic Manipulation - We look at several case studies on how to

collect a large amount of robot manipulation data. We then use these case studies to cre-
ate a list of insights on how robots can collect manipulation data with minimal human
intervention.

2. Data-Driven Statistical Models for Robotic Manipulation - We present methods for
modeling manipulation statistically using collected data sets. We present the following
statistical models:
• Sensing capabilities of a robot hand
• Task requirements of post-grasp manipulation actions
• Combining the above models to predict the probability of succeeding at a task given

sensor readings
• Probability of maintaining a grasp of an object after a regrasp, place, or pick action
• Predicting the probability distribution of where we expect the object to end up after

a regrasp, place, or pick action

Finally, we validate our data-driven models by having the robot create and execute end to
end plans for a series of actions to position an object in a robot’s hand, or in the environ-
ment.

6.2 Applications

6.2.1 Factory Robot Learning to Manipulate a New Object
Suppose a new product needs to be assembled in a factory. A robot could be given a part that
needs to be assembled, and play with it for several days on its own. At the end of this session, the
robot has good statistical models of how to manipulate this object. It knows how the object will
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move when it grasps, places, pushes, or regrasps it, to name a few. Now, the engineers specify
how this part needs to be assembled. The robot knows how to grasp the object in the desired
way, and can assemble the part. Error recovery can also be automatically handled by the robot
as it can use its learned models to plan correcting motions. Rather than engineers spending days
carefully designing specialized fixtures and robot motions to assemble this part, the robot has
learned how to do it on its own. This could lead to faster and cheaper production.

6.2.2 Anomaly Detection in Factories

As robots are working to build products in a factory, sensor data could be collected to build
statistical models of the task at hand. After many successful runs, a model of what the nominal
operating condition of the manipulation action can be learned. Now, each time an action is
performed, the sensor readings can be compared against the nominal model. If the probability
of a certain combination of sensor readings is low according to the nominal model, there is a
high likelihood of an anomaly. Engineers could be alerted to a potential problem in the factory,
improving efficiency and potentially decreasing manufacturing costs.

6.2.3 Improving Personal Robotics via the Cloud

A robot operating in the home faces numerous challenges because of the sheer number of differ-
ent objects it needs to manipulate. It also faces a harsher environment than a controlled labora-
tory setting, with both higher sensing and actuation uncertainty. One way in which home service
robots might be improved is if they all pooled their resources as they manipulate objects in the
home via the cloud. The combined experiences of all of the robots could be used to build statis-
tical models which all robots could use. In addition, there could be workcells of similar robots
in more controlled settings where better sensors are available. The statistical models learned by
these robots could then be integrated with the higher sensor uncertainty of the in-home robots to
improve their probabilistic predictions.

6.3 Future Work

6.3.1 Generalizing Across Objects

Currently, the models we learn are tied to a specific object and a specific action. While this
enables us to plan a sequence of motions for that object, what would be more useful is if this
could extend across different objects. An example solution might be to train models on spheres
of different sizes, which would perhaps enable us to generalize to spheres we have not seen
before. Whether this is possible is unclear however, as manipulation is not continuous. For
example, a grasp that is stable for a large sphere might not even be a grasp for a smaller sphere
if the sphere is smaller than the distance between fingers. A parameter cannot just be tuned. The
physics are fundamentally different.
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6.3.2 Combining Physics and Simulators with Data

Our models are learned entirely from data. While this enables us to precisely model what happens
freed from physics assumptions that may be incorrect, it also greatly increases the amount of
data we need. On the other hand, using physics enables us to generalize relatively well to new
situations with little or no data. By combining physics and learning together, we should be
able to generalize well and have more precise models. There are two ways in which using
physics or simulators might be combined with data. First, physics could be used as constraints
in our learning framework, such as not allowing objects to penetrate the table or hand. Care
should be taken here however, as modeling inaccuracies such as deformation or objects and
environment dimensions not being known precisely might affect where the true constraint is.
Sensing inaccuracies will also affect where these true constraints are, so it may be that soft
constraints perform better than hard constraints.

A second way to use physics or simulators would be to use them as priors. We could generate
thousands of data samples from physics models or simulators, and give this data high weight in
regions where relatively little true data has been collected. Over time, as more real samples are
collected, the influence of the physics prior could be diminished to pave the way for the more
realistic samples collected from the robot itself.

6.3.3 Improving Data Efficiency

Another important problem to solve is how to be more efficient in our data collection. Currently,
we just sample actions uniformly in regions which may result in successful actions. This is
wasteful in two ways. First, a large number of our samples may result in failures, as seen in
Figure 3.20. Second, certain actions may be “boring”, where small changes do not result in large
differences in physics. This implies that these regions can be sampled more coarsely, whereas
regions near edges in the distribution should be sampled more finely.

If we learned models online as we collected data, we could sample from regions where our
models are performing poorly. Performance could be measured as predicting success probabili-
ties well or accurately predicting the resulting pose after an action. Collecting data points where
our performance is low should increase the overall accuracy of our models for an equivalent
number of data points.

A second point to consider is when certain portions of the state space are “rare events”.
Suppose we have an object with a slot just slightly wider than the width of the robot’s fingers.
If one of our actions caused large forces to be applied to the object, we may only be able to
resist this force if the robot’s fingers are in this slot. If we sampled our grasps uniformly, the
robot would almost never encounter this firm grasp, and would assume the second action which
applies large forces to the object always results in a failure. Thus, in addition to learning models
online, it may also be important to do planning online, so the robot can focus its effort on getting
to regions in its state space it is unfamiliar with.
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6.3.4 Closing the Loop
The models we have of manipulation actions can only be so accurate. This could be because our
hardware is changing over time, we have not yet collected enough data, the object we are using
is different, etc. If our models are somewhat close, wrapping a feedback loop around this model
could enable us to improve robustness, accuracy, and generalization. How accurate the models
need to be, what type of sensing is important (vision, force, tactile), and required closed loop
frequency are all interesting open questions.

6.4 Concluding Remarks
In this thesis, we have proposed to advance the field of robotic manipulation by modeling manip-
ulation actions more accurately by leveraging real data. We showed how to statistically model
robotic manipulation with data, and how to collect enough real robotic manipulation data to make
the models accurate. In addition, we showed how robots can use these models to automatically
plan a series of actions to change where the object is from any initial pose to any final pose,
either in the hand or environment. It is our hope that this thesis will show the power of real data
in increasing the manipulation capabilities of robots both in factories and the home.
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[83] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select and
generalize striking movements in robot table tennis. The International Journal of Robotics
Research, 32(3):263–279, 2013. 3.7.2

[84] Matteo Munaro, Filippo Basso, and Emanuele Menegatti. Openptrack: Open source

108



multi-camera calibration and people tracking for rgb-d camera networks. Robotics and
Autonomous Systems, 75:525–538, 2016. 3.7.1.1

[85] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with super-
vised learning. In Proceedings of the 22nd international conference on Machine learning,
pages 625–632. ACM, 2005. 4.4.2.1

[86] John Oberlin and Stefanie Tellex. Learning to pick up objects through active exploration.
In Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 2015 Joint IEEE
International Conference on, pages 252–253. IEEE, 2015. 3.7.2

[87] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 3400–3407. IEEE,
2011. 3.4, 3.5, 3.7.2.3

[88] Damir Omrcen, Christian Boge, Tamim Asfour, Ales Ude, and Rüdiger Dillmann. Au-
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