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Abstract

This dissertation develops a robust, data-driven localization methodology based

on the integration of matched field processing with compressed sensingℓ1 recovery

techniques and scale transform signal processing. The localization methodology

is applied to an ultrasonic guided wave structural health monitoring system for de-

tecting, locating, and imaging damage in civil infrastructures. In these systems,

the channels are characterized by complex, multi-modal, and frequency dispersive

wave propagation, which severely distort propagating signals. Acquiring the charac-

teristics of these propagation mediums from data represents a difficult inverse prob-

lem for which, in general, no readily available solution exists. In this dissertation,

we build data-driven models of these complex mediums by integrating experimental

guided wave measurements with theoretical wave propagation models andℓ1 sparse

recovery methods from compressed sensing. The data-drivenmodels are combined

with matched field processing, a localization framework extensively studied for un-

derwater acoustics, to localize targets in complex, guidedwave environments. The

data-driven matched field processing methodology is then refined, through the use

of the scale transform, to achieve robustness to environmental variations that distort

guided waves. Data-driven matched field processing is experimentally applied to

an ultrasound structural health monitoring system to detect and locate damage in

aluminum plate structures.
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CHAPTER 1

Introduction

1.1 Motivation

Matched field processing is a widely studied methodology in underwater acoustics for lo-

calizing targets in complex environments. Match field processing [1, 2] utilizes a wavefield

propagation of the medium, which represents the Green’s function between any two arbitrary

points in the environment, to find the most likely location ofan acoustic source from experimen-

tal measurements. Traditionally, these wavefield propagation models are obtained analytically,

often by numerical integration of the wave equation, or Helmholtz equation, for environment

of interest. Although these approaches work well in theory,they often face significant of com-

plexity, uncertainty, and variability in the environment.In many scenarios, accurate numerical

models are not available, or we do not have enough accurate knowledge about the environment’s

geometry, its physical parameters, and its boundary conditions. This often occurs due to varying

environmental and operational conditions [3–5].

This dissertation is concerned with overcoming these challenges of uncertainty, complexity,

and variability associated with implementing matched fieldprocessing. We accomplish this by

developing a new methodology that we refer to as data-drivenmodel for matched field process-

ing. Data-driven matched field processing estimates from data an accurate, theoretical multi-

modal and dispersive propagation model of the actual environment that is then used by matched

field processing to detect and localize acoustic sources andstructural damage. The data-driven

model is estimated from data by combining fundamental knowledge about the propagation en-
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vironment with compressed sensing andℓ1 sparse signal recovery. We integrate this data-driven

model with the coherent and incoherent matched field processors and demonstrate, both analyt-

ically and experimentally, the performance characteristics of the resulting data-driven matched

field processors.

We evaluate our methods with ultrasonic guided waves in structural health monitoring ap-

plications. Structural health monitoring systems are designed to track large, physical structures

for damage and degradation. For example, these systems are of interest to observe the structural

integrity of transportation, power, and resource distribution network infrastructures. They can

be employed to monitor bridges, pipelines, airplanes, and many other structures. They allow

operators to reduce the costs associated with testing and maintaining large infrastructures and

help to prevent catastrophic failures that have costly consequences. In the following section,

we discuss the significant challenges, which we address in the dissertation, for designing and

utilizing guided wave structural health monitoring systems.

1.2 Challenges
Ultrasonic guided waves are an attractive tool for monitoring large, physical structures be-

cause they possess low attenuation due to being guided by theboundaries of the structure, and

they are highly sensitive to small variations in the structure, such as damage. However, there are

significant challenges for analyzing guided waves. The geometry of the structure makes them

complex signals that are difficult to interpret without veryaccurate knowledge of the medium.

The waves are also highly sensitive to outside environmental effects, such as temperature. We

discuss these challenges in the following subsections.

Guided waves are high-frequency waves (where the wavelength is much smaller than the

physical dimensions of the environment under test) that are"guided" by the geometry of a

structure, or waveguide. For example, a long and wide plate with finite thickness is a waveguide

for acoustic waves. Acoustic waves reflect off of the top and bottom boundaries of the plate,

which guide the waves in the direction of the plate’s length and width. Guided waves in a plate

are commonly known as Lamb waves [6]. Other well known guidedwaves include Rayleigh

and Love waves that are commonly studied in seismology [7], shallow water Perekis guided
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waves that are studied in underwater acoustics [8], and electromagnetic waves in transmission

lines that are used in electronics and power applications [9].

We address the challenges of uncertainty, complexity, and variability by developing an ef-

ficient method that constructs environmental models using physical principles, measured data,

and signal processing methods. We illustrate our techniquewith wave waves. We combine

fundamental physical principles that allow us to understand, interpret, and leverage the com-

plex characteristics of guided waves, with measured data, from which we can learn specific

unknown parameters of the propagation environment. We learn these propagation characteris-

tics with compressed sensing and integrate them with matched field processing and the scale

transform to design and develop and effective ultrasound structural health monitoring system.

The next section addresses the challenges considered in this dissertation.

1.2.1 Challenge 1: Uncertainty

Due to the geometry of physical structures, ultrasonic guided waves generally exhibit com-

plex behavior. We consider a large plate and, for simplicity, assume it has infinite length, infinite

width, and finite thickness. For this plate, there is well-developed theory that describes the be-

havior of acoustic waves as they travel through the structure [6]. As waves travel through the

plate, the waves interact with the top and bottom surfaces and form interference patterns across

the plate’s thickness. This constructive and destructive interference forms a number of discrete

wave modes. Each wave mode propagates with a unique velocitythat varies as a function of

frequency, a phenomenon known as dispersion. This multimodal and dispersive behavior sig-

nificantly distorts the waves as the travel through they waveguide.

The multimodal and dispersive properties of a guided wave are often characterized by their

dispersion curves. The dispersion curves of a medium illustrate how the wavenumber, or some-

times phase velocity, of the guided waves changes as a function of frequency [10]. Figure 1.1

illustrates the dispersion curves for Lamb waves in an aluminum plate of finite thickness and

infinite length and width. In these plots, each line represents the wavenumber of a propagating

Lamb mode as a function of frequency. At the lowest frequencies, two most always propagate

in the plate: the zeroth antisymmetric mode (A0) and the zeroth symmetric mode (S0). As
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Figure 1.1: Dispersion curves for the waves in an aluminum plate with a Poisson ratio of0.35
and density of2700 kg/m3. Solid lines represent asymmetric wave modes (denoted by A0, A1,
and A2) and dotted lines represent antisymmetric wave modes(denoted by S0, S1, and S2).

frequency increases, more modes are introduced at particular “cut-off” frequencies. The total

number of modes is finite, but at higher frequency, the numberof grows very large.

Lamb wave modes are usually grouped into two families based on their resonant properties:

symmetric modes and antisymmetric modes [11], as illustrated in Figure 1.1. As suggested

by the names, symmetric modes are characterized by evenly symmetric wave displacements

through the plate’s thickness, while antisymmetric modes are characterized by oddly symmetric

wave displacements through the plate’s thickness. We note,however, in this dissertation that we

do need nor will distinguish between mode families for purposes other than discussion.

Many techniques have been proposed to recover the multimodal and dispersive velocities

from observed data. Among these methods are the two dimensional discrete Fourier transform

(2D-DFT) [10, 12], various time-frequency analysis methods [13–15], time-domain matching

pursuit approaches [16,17], and other model-based strategies [18,19]. While these methods are

often effective to analyze guided waves, they are generallynot accurate enough to be used to

build an effective model of the physics [20]. Furthermore, many of these approaches fail when

the plate no longer has an infinite length and infinite width and data is corrupted by unmodeled
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multipath interference, which distorts measurements. We refer to the multipath interference as

“unmodeled” since it is not accounted for in the simple waveguide model.

In chapter 2 of this dissertation, we develop and demonstrate a method known as sparse

wavenumber analysis that utilizes optimization techniques from compressed sensing [21–23] to

accurately, efficiently, and robustly recover the dispersion curves of experimental guided wave

data, even after corrupted by unmodeled multipath interference. We demonstrate that, from the

recovered dispersion curves, we can synthesize guided wavemeasurements based on simulated

and experimental data. The synthesized data is our data-driven model. With simulated data, we

show that the synthesized data can match true measurements with accuracies greater than97.5

%. With experimental data, we achieve similar results.

1.2.2 Challenge 2: Complexity
Due to the distorting effects of multimodal propagation, dispersion, and unmodeled multi-

path interference, guided wave time traces are very complex. Figure 1.2a illustrates an example

of guided wave measurements after traveling from a single source though a1.2 m by 1.2 m by

0.284 cm aluminum plate. The wideband,500 kHz bandwidth chirp excitation is shown in Fig-

ure 1.3a. In a simple medium, without multiple modes or dispersion, we would only observed

delayed replicas of the excitation signals at different points in the structure. From those repli-

cas, we could readily determine the wave’s time-of-flight information. However, we observe

in Figure 1.2a that the measured response does not resemble the excitation, quite to the con-

trary. Therefore, traditional analysis methods that rely on the similarity between the received

and transmitted signals are not sufficient for interpretingguided wave data.

To preserve the shape of the excitation with guided waves, researchers often analyze only a

narrow band of possible frequencies. Figure 1.2b shows a time trace response from a narrow-

band excitation for the same sensor setup used in 1.2a. The narrowband, 50 kHz bandwidth

Gaussian excitation is shown in Figure 1.3b. While the narrowband measurements are visually

simpler, they still only moderately resemble the excitation due to dispersion and unmodeled

multipath interference. Also, due to dispersion, the phaseinformation is unreliable because

different frequencies travel at different speeds. Therefore, researchers also often remove the

phase information by only analyzing the envelope of the narrowband response, which is shown
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Figure 1.2: An example time-domain measurement from a Lamb wave ultrasonic source with
different frequency bandwidths and different preprocessing. (a) Wideband,500 kHz bandwidth
measurement. (b) Narrowband50 kHz bandwidth measurement. (c) Narrowband50 kHz band-
width measurement after envelop extraction.
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Figure 1.3: Excitations signals corresponding to measurements in Figure 1.2. (a) Wideband,
500 kHz bandwidth chirp excitation. (b) Narrowband50 kHz bandwidth Gaussian excitation.

in Figure 1.2c. Using the signal envelope and an estimate of the guided waves group velocity

around the narrow band of frequencies, researchers have employed several methods, such as

delay-and-sum localization [24, 25], time reversal [26–28], multilateration [29–31], and proba-

bilistic methods [32,33] to detect and locate damage in physical structures.

These approaches remove a large amount of valuable information by restricting the data to

a narrow band of frequencies and removing phase information. The analysis of guided waves
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could be made much more precise and effective by utilizing this knowledge. Using the disper-

sion curves or specific knowledge about how waves propagates, we can more effectively use

the phase information. For example, [34, 35] have developedmethods to remove multimodal

and dispersive effects from measured data and to perform high resolution localization with time

reversal methods [26–28]. These methodologies generally assumea priori, accurate dispersion

curve knowledge, which is generally not true.

In chapters 3, 4, and 5 in this dissertation, we demonstrate asparsity-based, data-driven

matched field processing methodology that combines sparse wavenumber analysis (discussed

challenge 1) with a matched field processing framework [1, 2]. Matched field processing is a

model-based localization methodology that has been extensively studied and applied in under-

water acoustics. Data-driven matched field processing allows us to leverage the complexity of

guided wave signals to perform accurate localization by incorporating data-derived multimodal

and dispersive properties within the model. To detect damage, we apply data-driven matched

field processing to the difference between a prior baseline signal and a current measurement.

We compare our data-driven matched field processing resultswith traditional structural health

monitoring localization methods and demonstrate scenarios in which we can achieve more than

a 48 times improvement in localization resolution and more thana 21 times improvement in

localization accuracy.

1.2.3 Challenge 3: Variability
For our second challenge, we integrate our data-driven model with matched field processing

to locate damage that occurs between two points in time. Whenthe environment changes signif-

icantly between those points in time, the baseline subtraction step in matched field processing

will not yield reliable data to use. This is because many environmental parameters, such temper-

ature [36] or applied stress [37,38], have a direct effect onthe material properties, and therefore

the dispersion curves, of the structure under test.

Temperature is one of the most prominent of these effects [39]. Variations in temperature

are known to change the Young’s modulus of a material, therefore affecting the velocity of

the guided waves. Due to the complex, multi-modal, dispersive, and the multi-path behavior

of guided waves, these variations in velocity can be approximated as a uniform time-scaling
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or time-stretching effect on the received signals [40, 41].While different modes often do not

vary at the same rates [3, 42], the aggregate affect on all themultipath components resembles

a stretching effect. This model has been experimentally demonstrated to be accurate for suffi-

ciently small changes in velocity [3,40–43].

To improve the detection and localization of damage in structures, the literature has pro-

posed several methods, such as local peak coherence [41] andoptimal signal stretch (OSS) [40],

to compensate for temperature by estimating the stretch factor and properly adjusting the mea-

sured signal. Local peak coherence [41,42,44] is a stretch factor estimation technique based on

approximating a stretching operation as a series of time-dependent delay operations. Local peak

coherence can be computed very quickly, but is sensitive to other effects that do not uniformly

stretch the signal over time. These changes could come from the formation of damage or other

environmental and operational effects [4]. In contrast, OSS [40] correlates each observed signal

with a library of stretched replicas of a single baseline. This approach is accurate and robust to

damage and other variations but computationally inefficient.

In chapter 6 of this dissertation, we present a robust and computationally efficient method for

temperature compensation based on scale transform signal processing methods. We compare

these results with OSS and demonstrate up to a6.9 times improvement in computational speed.

We then demonstrate how we can combine our previous localization methods with our scale

transform temperature compensation method to achieve accurate localization of damage with

robustness to environmental changes.

1.3 Model Framework
In this section, we provide a brief derivation of the Lamb wave model used throughout this

dissertation. We always assume that our sensors are surfacemounted transducers that cannot

distinguish between displacements in multiple directions, and instead observe some linear com-

bination of each displacement component.

1.3.1 Lamb wave model
We consider a plate of finite depth, infinite length and width,and traction-free surfaces. We

assume cylindrical coordinates such that thez-axis is aligned with the height of the plate. The
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Figure 1.4: Coordinate axes(r, θ, z) for the plate geometry considered in this dissertation.

r-axis and theθ-axis represent the distance and angle from the origin and form a plane parallel

to the plate’s surface. Figure 1.4 illustrates this coordinate system.

Under these conditions, the general phasor solution for displacements originating from

r = 0 and oscillating in ther-directionUr andz-directionUz, can be expressed in the form [6]

Ur(r, z, ω) =
∑

m

Bm(z, ω)H
(1)
1 (km(ω)r)

Uz(r, z, ω) =
∑

m

Cm(z, ω)H
(1)
0 (km(ω)r) , (1.1)

whereH(1)
ν (·) is theν-th order Hankel function of the first kind [45] (also known asa Bessel

function of the third kind) andkm(ω) is a frequency dependent, i.e., dispersive, wavenumber

for wave modem.

To simplify the expressions in (1.1), we assume our observations occur in the “far-field”.

For sufficiently large values ofkm(ω) r, the Hankel function can be approximated as [45]

H(1)
ν (km(ω)r) ≈

√
2

πkm(ω)r
ej(km(ω)r−(1/2)νπ−(1/4)π) (1.2)

This far-field approximation is valid for roughlyr > 2λm(ω) [6], whereλm(ω) = (2π)/km(ω)

is the wavelength of modem. Therefore, the Lamb wave’s displacement can be approximately

represented as

Ur(r, z, ω) ≈
∑

m

√
1

km(ω)r
B̃m(z, ω) e

jkm(ω)r

Uz(r, z, ω) ≈
∑

m

√
1

km(ω)r
C̃m(z, ω) e

jkm(ω)r (1.3)
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where

B̃m(z, ω) =

√
2

π
Bm(z, ω)e

−j(3/4)π

C̃m(z, ω) =

√
2

π
Cm(z, ω)e

−j(1/4)π . (1.4)

In (1.1) and (1.3), we represent the wave propagation in ther- andz-directions as a sum-

mation of guided wave modes. For both displacement functions, each modem is characterized

by a frequency dependent wavenumberkm(ω). Figure 1.1 illustrates each theoreticalkm(ω)

function, which can be computed numerically [11], for a Lambwave propagating in a0.284 cm

thick aluminum plate with a Poisson ratio of0.35 and density of2700 kg/m3. These curves are

known as the dispersion curves of the medium.

Lamb waves will also usually wave evanescent wave modes suchthat the wavenumber

km(ω) for each modem is imaginary and attenuate quickly withkm(ω)r. However, we assume

the effects from these evanescent wave modes to be small for sufficiently largekm(ω)r values.

In our model, we also assume that the propagating waves experience no structural damping due

to internal friction.

1.3.2 Sensor model

In our experiments, we use surface mounted PZT (lead zirconate titanate) transducers for

transmitting and measuring guided Lamb waves. We choose oursensor locations so that each

sensor lies on the same surfacez = z0 of the plate. We also assume that our sensors, which

convert displacements on the plate surface into an electrical voltage, cannot uniquely distinguish

displacements in ther or z directions. Instead the measured voltage signalX(r, ω) can be

represented as a linear combination of each displacement

X(r, ω) = T (ω)R(ω)(αUr(r, z0, ω) + βUz(r, z0, ω)) , (1.5)

whereα andβ are arbitrary constants andT (ω) andR(ω) represent the transfer functions of

the transmitting and receiving transducers respectively [19]. Note that we assume that each

transducer can be characterized by the same transfer functionsR(x) andT (x). This has been

shown to be approximately true for comparable sensors [19].
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By plugging the approximate displacement functions in (1.3) into (1.5), we can represent

the signal between any two transducers as

X(r, ω) =
∑

m

√
1

km(ω)r
Gm(ω) e

jkm(ω)r , (1.6)

wherer is the distance between a given pair of transducers. In (1.6), the coefficient

Gm(ω) = T (ω)R(ω)
(
αB̃m(z0, ω) + βC̃m(z0, ω)

)
(1.7)

represents the frequency dependent complex amplitude for modem in the measured response.

While (1.6) represents a continuous model of the plate across space and frequency, measured

data is sampled across a finite subset of sensors or points in space. Therefore, we represent a

collection ofM measurements by anM × 1 vector

x(ω) ≈
[
X(r1, ω) X(r2, ω) . . . X(rM , ω)

]T
, (1.8)

wherer1, . . . , rM are known distances between points in the environment. We highlight that this

relationship is approximate because most measurements areusually corrupted by some form of

error, such as random measurement noise, coherent multipath interference from boundaries, or

imperfect modeling of the sensors or system. For most data acquisition and processing sys-

tems, we would also use a discrete, finite collection of time samples or frequencies, but for this

dissertation, we consider a continuous time and frequency domain without loss of generality.

1.4 Dissertation Outline
In the following chapters, we use the Lamb wave model and sensor model described in

the previous sections to recover the dispersion curves and build a propagation model of Lamb

waves in a particular aluminum pipe, leverage that model to localize damage or acoustic emis-

sions, and then refine the framework to account for temperature variations in the environment.

In Chapter 2, we derive sparse wavenumber analysis and sparse wavenumber synthesis to re-

cover the dispersion curves and generate the propagation model. In Chapter 3, we integrate

sparse wavenumber analysis with matched field processing toderive data-driven matched field

processing, and we analyze the asymptotic characteristicsof data-driven matched field process-

ing. In Chapter 4, we apply coherent data-driven matched field processing to localize holes in
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the aluminum plate. In Chapter 5, we apply incoherent data-driven matched field processing to

locate spontaneous acoustic emission on an aluminum plate.In Chapter 6, we demonstrate and

integrate a method based on the scale transform to compensate for variations in temperature in

an the aluminum plate. Together, the content of these chapters present a high resolution, robust

structural health monitoring framework. In Chapter 7, we demonstrate how this framework can

be extended to new structures, environments, and applications.
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CHAPTER 2

Learning Data-Driven Models: Sparse

Wavenumber Processing

2.1 Motivation

In guided wave structural health monitoring, researchers are concerned with detecting and

locating damage in complex propagation media. These media are often characterized by mul-

timodal and frequency dispersive behavior [46]. This implies that the received measurements

can be expressed as a sum of wave modes that travel at different frequency dependent veloci-

ties. Often, each velocity may also vary as a function of environmental and operational effects,

such as temperature [3, 5]. Furthermore, most guided wave systems in physical infrastructures

exhibit a significant degree of multipath effects from physical boundaries. As a result of all of

these effects, accurately characterizing and analyzing guided waves is very challenging.

To successfully detect or locate damage, many methods rely on incoherent signal processing

techniques, such as envelope extraction [24], to detect andlocate areas with damage. Incoherent

signal processing techniques can be used to compensate for the distorting effects of dispersion,

but these techniques remove potentially useful information, particular phase information, from

the measured data. In contrast, accurate estimates of the multimodal and frequency dispersive

behavior of a medium could be used to greatly improve currentmethods [34].

In this chapter, we propose a new methodology that we refer toas sparse wavenumber anal-

ysis, which is based on compressed sensing [21–23], to accurately recover the multimodal and
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dispersive properties of guided waves in a plate, also knownas Lamb waves. Compressed sens-

ing concerned with accurately and efficiently recovering signals and systems that admit sparse

signals representations, which contain mostly zeroes [21,47, 48]. We show that Lamb waves

have a sparse representation in the frequency-wavenumber domain and, through this representa-

tion, we can accurately recover the parameters of Lamb waveswith ℓ1 optimization techniques.

We use these recovered parameters to “denoise” the measurements, removing random noise

and multipath signal interference, and generate data-driven models that can predict the mea-

sured response between any other two points on the plate. We refer to this process as sparse

wavenumber synthesis.

In the following sections, we outline and discuss our methodology for using sparse repre-

sentations to recover the multimodal and frequency dispersive behavior of Lamb waves. This

work was originally presented in references [20,49,50]. InSection 2.2, we formulate a general

model for Lamb wave behavior. We then discretize this model across the wavenumber domain

and pose the problem of estimating the multimodal and frequency dispersive behavior of Lamb

waves as a discrete inverse problem that compressed sensingcan accurately solve. In Section

2.3, we formulate our sparse wavenumber analysis and sparsewavenumber sparse synthesis

techniques, and we briefly review compressed sensing and thebasis pursuit algorithm that we

use to solve the Lamb wave inverse problem.

In Section 2.4, we discuss our experimental and simulation methodology, which considers

17 ultrasonic transducers randomly arranged across a finite plate. In Section 2.5 and Section 2.6,

we show that sparse wavenumber analysis can accurately recover the frequency-wavenumber

representation of Lamb waves from simulation and experimental data that are both corrupted by

multipath interference. We then show that sparse wavenumber synthesis can be used to success-

fully remove the multipath interference. Our simulations show that we achieve a correlation

coefficient of0.99 between the true direct path response and the denoised signal. We also apply

sparse wavenumber synthesis to the simulated data to predict the response between two arbitrary

points in the plate. We show that these predicted responses and the true direct path responses

can achieve correlation coefficients greater than0.97.
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2.2 The frequency-wavenumber space
Given the modelX(r, ω) in (1.6), we can fully characterize Lamb waves with knowledge

of km(ω) andGm(ω) for each modem. While km(ω) andGm(ω) may be derived theoretically,

the resulting values are usually not precise due to uncertainty in the properties of the sensors

and medium. The complex amplitudeGm(ω), for example, is significantly affected by the trans-

ducers [51] and their bond with the medium [52]. The wavenumber km(ω) is also affected by

properties of the medium, which can change with environmental conditions such as tempera-

ture [3,5].

In this section, we present an approach to estimatekm(ω) andGm(ω) from our datax(ω) and

the continuous propagation modelX(r, ω). To accomplish this, we discretizeX(r, ω) across

the frequency-wavenumber (ω-κ) space. In the continuous frequency-wavenumber space, we

can rewrite the expression for Lamb waves in (1.6) as

V (κ, ω) =





Gm(ω) if κ = km(ω) for anym

0 otherwise
. (2.1)

Since the true wavenumber valueskm(ω) are unknown to us for analysis, we choose to discretize

the domain acrossN possible wavenumber valuesκ1, κ2, . . . , κN , specifying a sampling inter-

val to achieve some desired resolution. By discretizing thewavenumber domain, we can express

(2.1) as aN × 1 wavenumber vector

v(ω) =
[
V (κ1, ω) V (κ2, ω) . . . V (κN , ω)

]T
(2.2)

that varies with frequency.

Figure 2.1 illustrates an example ofv(ω) coarsely sampled across the wavenumber domain.

Each column of Figure 2.1 representsv(ωi), at some given frequencyωi, discretized over100

wavenumbers. The shading represents the magnitude ofV (ω, κ) at each frequency-wavenumber

pair, generated from the Lamb wave’s theoretical displacement amplitudes [6]. Therefore, the

location of each non-zero component in Figure 2.1 is an estimate ofkm(ω) and the correspond-

ing value at each location is an estimate of the associatedGm(ω). Note that the amplitudes

shown in Figure 2.1 will likely not correspond to experimental results due to the many factors

influencing each mode’s amplitude, such as the transducers and their bond with the medium.
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Figure 2.1: Dispersion curves from Figure 1.1 uniformly discretized across100 wavenumber
values with amplitudes generated from the Lamb wave’s theoretical displacement amplitudes.

The two vectorsx(ω) andv(ω) now illustrate two representations for our model and data:

the frequency-distance representation, which we directlymeasure, and the frequency-wavenumber

representation, which specifieskm(ω) andGm(ω). From (1.6), the two representations are lin-

early related by

x(ω) = DrADκv(ω) , (2.3)

whereDr andDκ areM ×M andN ×N diagonal matrices, respectively, defined by

Dr = diag
[
r
−1/2
1 , . . . , r

−1/2
M

]
(2.4)

Dk = diag
[
κ
−1/2
1 , . . . , κ

−1/2
N

]
(2.5)

andA is aM ×N generalized Vandermonde matrix defined by

A =
[
ejκjri

]
ij

. (2.6)

In (2.6),r1, r2, . . . , rM represent theM known distances associated with each measurement and

κ1, κ2, . . . , κN specify theN chosen wavenumbers to represent our data across the frequency-

wavenumber domain.
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Therefore, (2.3) represents a discrete, linear inverse problem for which our goal is to iden-

tify the vectorv(ω) at each frequency that uniquely represents the multimodal and dispersive

properties of the entire medium. In many situations, the number of sampled wavenumbersN

will be larger than the number of measurementsM . In these circumstances,A represents an

underdetermined system, and therefore, there exists many vectorsv(ω) that satisfy (2.3). How-

ever, as illustrated in (2.1) and Figure 2.1, most elements in v(ω) are zero, i.e., the vector is

sparse. Therefore, we use sparse recovery methods to solve this inverse problem.

Compressed sensing and sparse recovery techniques are concerned with recovering, from a

small number of measurements, signals or systems that admitsparse representations [23]. In the

following section, we briefly discuss compressed sensing and basis pursuit optimization, which

we will use to recoverv(ω). In Section 2.5 and Section 2.6, we apply basis pursuit to simulated

and experimental data to illustrate that we can recoverv(ω) both accurately and robustly.

2.3 Sparse Recovery by Basis Pursuit
In this section, we discuss how sparse recovery techniques from compressed sensing, and

specifically basis pursuit, is used to recoverv(ω). By using sparsity, we show that we can

accurately recover the medium’s frequency-wavenumber representation even when the system

is underdetermined [53].

If our system is noise-free andv(ω) is sparse, the unique solution to (2.3) can be described

as the maximally sparse vector, the vector with the fewest non-zero elements, that satisfies

x(ω) = DrADκv(ω). This solution can be represented as the solution to the optimization

problem [23]

v(ω) = argmin
v(ω)

‖v(ω)‖0

s.t. x(ω) = DrADκv(ω) , (2.7)

where theℓ0-pseudo-norm‖ · ‖0 is defined as the number of non-zero elements in a vector. This

optimization is solved by a combinatorial search [23], which quickly becomes intractable for

largeN . However, a convex relaxation of this optimization problem, known as basis pursuit

[22,54], can often be used in place of (2.7).
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2.3.1 Sparse Wavenumber Analysis

The basis pursuit algorithm relaxes (2.7) by replacing theℓ0-norm with anℓ1-norm,

‖v‖1 =
N∑

n=1

|vn| . (2.8)

The use of anℓ1-norm reformulates the intractable optimization in (2.7) as a convex problem

[54,55]. This implies that the sparse solutionv(ω) can be recovered computationally fast using

a convex program.

Most implementations of basis pursuit use a normalized sensing matrixΦ such that each

column has a unitℓ2-norm [23]. By applying this normalization to our sensing matrix DrADκ,

we get

Φ =
1√

M‖Dr‖F
DrA , (2.9)

where‖ · ‖F is the Frobenius norm, such that

‖Dr‖F =

√√√√
M∑

m

r−1
m . (2.10)

To reduce variations in our solution across each frequency,we also normalize the energy of our

measured signal

xn(ω) =
x(ω)

‖x(ω)‖2
(2.11)

so thatxn(ω) has a unitℓ2-norm at each frequency. The normalized frequency-wavenumber

representation of our datavn(ω) can then be expressed through basis pursuit as [22,54,56]

vn(ω) = arg min
vn(ω)

‖vn(ω)‖1

s.t. xn(ω) = Φvn(ω) . (2.12)

The unnormalized frequency-wavenumber representation can then retrieved from

v(ω) = ‖x(ω)‖2‖Dr‖FDκvn(ω) . (2.13)
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However,x(ω) is usually corrupted by errors or noise. Therefore, we electto use a robust

implementation of basis pursuit represented as the unconstrained optimization problem [53,54]

vn(ω) = arg min
vn(ω)

‖Φvn(ω)− xn(ω)‖22 + τ‖vn(ω)‖1 (2.14)

for a particularτ > 0. As with the standard basis pursuit solution, we can computethe unnor-

malized frequency-wavenumber representationv(ω) using (2.13). The optimization in (2.14) is

often known as basis pursuit denoising [53, 54] or theℓ1 penalized least-squares method [57].

In (2.14), a largeτ value will cause the optimization to place greater emphasison makingv(ω)

sparse than fitting the linear modelΦvn(ω) = xn(ω). In contrast, a smallτ will place greater

emphasis on fitting the linear model.

Note that ifτ is too small, the solution converges to a least-squares solution without sparsity,

and ifτ is too large, theℓ1 penalty dominates the cost function and the zero vector becomes the

optimal solution. Therefore, it is necessary to choose an appropriate value ofτ . For this dis-

sertation, we use simulation data to investigate the performance and robustness of our approach

with τ in Section 2.5. Based on these results, we choose a reasonable value ofτ for our experi-

mental data. Alternatively, there exist a number of algorithms designed to automatically obtain

an optimalτ value given additional information, such as the number of non-zero values in the fi-

nal solution. These techniques include the “In-Crowd” algorithm [58], homotopy methods [59],

and the spectral projected gradient forℓ1 minimization approach [60].

The general effectiveness of basis pursuit for a particularsensing matrix is also often evalu-

ated by satisfaction of the restricted isometry property (RIP) with a sufficiently small constant

δr [48]

(1− δr)‖v‖22 ≤ ‖Φv‖2 ≤ (1 + δr)‖v‖22 , (2.15)

where the solutionv hasr non-zero values. Testing if a givenΦ satisfies the RIP condition

is, in general, a combinatorial and intractable problem [61]. However, it has been shown both

theoretically and numerically [62] that matrices of complex exponentials, such as our choice

of Φ, with a collection of random exponentsr1, r2, . . . , rM , will satisfy the restricted isometry

condition with high probably whenM is sufficiently large [62]. These results imply that our

setup is well suited for sparse recovery techniques as long as we use a sufficient number of
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measurements. In Section 2.5, we show that our performance increases monotonically with the

number of measurementsM .

We refer to the process of obtaining this frequency-wavenumber representationv(ω) for

our application as sparse wavenumber analysis. Intuitively, we are transforming a frequency-

distance signal into a sparse frequency-wavenumber signal. The optimization in (2.14) rep-

resents the analysis step of the transformation. In the following subsection, we discuss the

synthesis step of the transformation.

2.3.2 Sparse Wavenumber Synthesis

Given a frequency-wavenumber representationv(ω), we can now generate a data-driven

model of Lamb waves in our plate. That is, we can use the data-derived dispersion curves in

v(ω) to synthesize a Lamb wave responseX(r, ω) between any two points in the medium. This

is accomplished by solving the forward problem in (2.3). To do this, we consider a new collec-

tion ofM̂ distanceŝr1, . . . , r̂M̂ for which we want to estimate or predictX(r̂1, ω), . . . , X(r̂M̂ , ω).

We construct an̂M ×N Â matrix and an̂M × M̂ D̂r matrix based on our model from (1.6)

Â =

[√
1

κj r̂i
ejκj r̂i

]

ij

(2.16)

D̂r = diag
[
r̂
−1/2
1 , . . . , r̂

−1/2
P

]
, (2.17)

and synthesize the response at each frequency by a matrix-vector multiplication

x̂(ω) = D̂rÂDκv(ω) (2.18)

=
[
X̂(r1, ω) X̂(r2, ω) . . . X̂(rM̂ , ω)

]T
. (2.19)

We refer to this process as sparse wavenumber synthesis. By coupling sparse wavenumber

analysis with sparse wavenumber synthesis, we are able to actively predict wave responses

between any points in the medium with only a small subset of measurements. In Section 2.5,

we use sparse wavenumber synthesis to accurately predict signals in a simulated environment.

We refer to the special casêDrÂ ∼= DrA, for which the synthesized signals correspond

to the same distances as the measured signals used in sparse wavenumber analysis, assparse

wavenumber denoising. Intuitively, the “noise” in the each measurement, whetherfrom random
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measurement noise or multipath reflections, is not sparse inthe frequency-wavenumber domain.

As a result, the recovered frequency-wavenumber representation is robust to these errors and

any signal synthesized from this representation shows a significant reduction in this “noise.” In

Section 2.5 and Section 2.6, we show that sparse wavenumber denoising effectively removes

multipath interference in both simulated and experimentaldata.

2.3.3 Debiasing Results
It is known that for sufficiently large values ofτ , the basis pursuit denoising solutionv(ω)

has a multiplicative bias [63, 64]. This is a result of theτ‖vn(ω)‖1 term’s dependence on the

scalar amplitude ofvn(ω) as well as its sparsity. To unbias our results, we estimate the multi-

plicative term at each frequencyµ(ω) by minimizing the squared error between the measured

signalx(ω) and its sparse wavenumber denoised version

µ̂(ω) = argmin
µ(ω)

‖µ(ω)DrADκv(ω)− x(ω)‖ (2.20)

=
(v(ω))HDκA

HDrx(ω)

‖DrADκv(ω)‖22
,

where(·)H denotes the Hermitian transpose of a vector or matrix. The multiplicative bias esti-

mateµ̂(ω) is then multiplied to the frequency-wavenumber representationv(ω) and any synthe-

sized signalŝx(ω).

2.3.4 Comparison with least squares
In Section 2.5, we compare sparse wavenumber analysis to a similar and computationally

fast least-squares approach. In the least-squares formulation, we solve the optimization

vℓ2(ω) = argmin
v(ω)

‖v(ω)‖2 (2.21)

s.t. x = Av(ω) . (2.22)

As a closed form solution,vℓ2(ω) is represented as

vℓ2(ω) = (AHA)−1AHx(ω) = A†x(ω) . (2.23)

Note that this approach is similar to sparse wavenumber analysis with τ = 0 since neither

promote sparsity. For the special case in which the discretized wavenumbersκ1, κ2, ..., κN are
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uniformly sampled with spacing∆κ, the sensors are aligned in a uniform, linear array with

spacing

∆d =
2π

N∆κ
, (2.24)

and the excitation source is positioned on either end of the linear array, we can represent our

sensing matrix as

A = FHDH
F (2.25)

A† =
1

N
DFF (2.26)

DF = diag
(
e−jκ1∆d, . . . , e−jκN∆d

)
. (2.27)

In (2.25), the matrixFH is an unnormalizedM × N Fourier frame, representing theM-point

inverse discrete Fourier transform, andF is anN ×M Fourier frame, representing theN-point

discrete Fourier transform.

In nondestructive testing, this special case is commonly used to measure dispersion curves

and is known as the two-dimensional discrete Fourier transform (2D-DFT) technique [10, 12].

However, given a small number of sensors, the 2D-DFT will generally perform poorly at re-

covering the frequency-wavenumber representation [20]. This is because whenP sensors are

arranged as a uniform, linear array, the number of unique distances that can be measured is

M = P − 1. In contrast, an arbitrary sensor topology can measureM = P (P − 1)/2 unique

distances. Furthermore, in guided wave structural health monitoring, we often desire the sen-

sors to be sparsely separated in space to interrogate areas that are as large as possible. For these

reasons, we choose to compare our approach to the more general least squares solution in (2.23).

In Section 2.5, we show that, by promoting sparsity, we can achieve much more reliable results

through our proposed sparse wavenumber analysis.

Time-frequency approaches [13–15] and related time domainmatching pursuit methods

[16, 17] are also often used to estimate dispersion curves. However, these techniques are not

inherently array-based, and as a result, are usually sensitive to noise and multipath interference.

Furthermore, these approaches compute, as a function of frequency, the group velocity rather

than wavenumber or phase velocity. Since the group velocityis defined as the derivative of
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frequency with respect to wavenumbervg = dω/dk, the wavenumber or phase velocity rep-

resentations may not be recoverable from the group velocity. For these reasons, we do not

consider these techniques to be appropriate comparisons toour approach.

Note that since sparsity is not promoted by either the least-squares and time-frequency ap-

proaches, additional algorithms are often necessary to extract each dispersion curve from the

respective representations [65]. We illustrate this in Section 2.5. This introduces an additional

layer of complexity with an additional possibility of error.

2.4 Simulation and experimental methodologies
In this section, we discuss the setup of our experiment and simulations, which are designed

similarly. We consider a0.284 cm thick,1.22 m long, and1.22 m wide aluminum plate. On the

surface of the plate, we consider a collection of17 randomly placed sensors. Sensors are placed

randomly so that no particular bias affects the results and because, as discussed in Section 2.2,

random sensor placement assures good properties for sparserecovery methods [62]. Figure 2.2

illustrates the location of each sensor. In our experiment,each sensor is a0.7 cm by0.8 cm by

0.2 mm PZT (lead zirconate titanate) transducer permanently bonded to the plate’s surface. In
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Figure 2.2: Sensor configuration for simulations and experiments. Each diamond represents the
location of a sensor on a plate.
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our simulations, we model each sensor as an ideal point source or point receiver.

To recoverv(ω) with basis pursuit denoising in (2.14), we useCVX, a MATLAB package

specifically designed for solving convex programs [66,67].

2.4.1 Data collection

To collect data, we iteratively use each sensor as the transmitter and receive signals from

each of the other16 transducers. This provides a total of272 different measurements for

136 unique distances. For the scenarios considered in this chapter, we found that the perfor-

mance of our methods to be approximately equal whether analyzing all of the measurements or

only a subset with unique distances. However, if the data is corrupted by significant random

measurement noise, the additional redundant information can improve recovery performance.

During each iteration, the transmitter excites a10 µs linear frequency modulated chirp with

a 3 dB bandwidth between0 Hz and2 MHz. This excitation choice allows us to collect data

across a large band of frequencies. Through filtering we can extract narrowband signals, which

are more commonly used in structural health monitoring, from each chirp response [68]. At

the receivers, which are synchronized with the transmitter, waves are measured with a10 MHz

sampling rate.

2.4.2 Simulation models

To simulate the wave response in the plate, we use the “far-field” model in (1.6). The

dispersion curves shown in Figure 1.1 are used to determinekm(ω) for each modem. To aid the

presentation of our results in Section 2.5, we choose the complex amplitudes to beGm(ω) = 1

for eachm. This allows us to more readily compare the amplitudes in frequency-wavenumber

plots.

We simulate multipath signals by computing the distance of the direct path as well as each

additional path that travels from the transmitter to the receiver after reflecting from any boundary

once. Each boundary is considered to be ideally rigid such that all incident wave energy is

reflected but the amplitude is negated. Although this model only approximates the first few

multipath signals in the experiment, it is sufficient to illustrate the effects of multipath on our

methodology.
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We also simulate errors arising from modeling physical sensors, which extend in space, as

point sources and point receivers. We simulate this error byintroducing uncertainty in each

sensor’s position. We accomplish this by perturbing the expected distancesr1, . . . , rM for each

measurement with “position noise” so that we have inaccurate knowledge about the each sen-

sor’s location. While this does not perfectly model the effect of each sensor’s geometry on the

measured responses, it illustrates the approximate effectof such error on our methodology.

2.5 Simulation results and discussion
Through simulations, we evaluate the effectiveness of our methodology for four different

scenarios. 1) We consider only the direct path signal, whichsimulates a plate of unbounded

length and width. 2) We consider both the direct and multipath arrivals as described in Section

2.4. 3) We consider the direct and multipath arrivals but window the signals to remove late

arrivals. 4) We again consider the windowed, multipath responses but with additional sensor

position noise.

In the third and fourth scenarios, we apply a rectangular window with an exponential taper.

The exponential taper begins after the arrival of a hypothetical signal traveling at a group ve-

locity of 2000 m/s and reduces the signal amplitude by3 dB after approximately28 µs. Note

that this window removes multipath as well as some direct arrivals. In the fourth scenario,

we perturb each expected distance by a uniform random variable with a horizontal range from

−0.3 cm to0.3 cm and a vertical range from−0.35 cm to0.35 cm, which is0.1 cm smaller in

each dimension than each0.7 cm by0.8 cm transducer.

Figure 2.3 depicts a single time response between sensor14 and sensor6, as denoted in Fig-

ure 2.2, for the third simulation scenario and our experiment. The top traces represent the simu-

lated or measured wideband signals and the bottom traces represent the same signals filtered by

a narrowband Gaussian filter with a center frequency of180 kHz and a120 kHz bandwidth. As

verification of our simulations, we note that simulated narrowband signals in Figure 2.3(c) and

experimental narrowband signals in Figure 2.3(d) have a close resemblance.

We evaluate our four simulation scenarios with three different metrics: 1) the visual accuracy

of the recovered dispersion curves in the frequency-wavenumber domain, 2) the accuracy of
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Figure 2.3: Wideband and narrowband time responses betweensensors14 and6, labeled in
Figure 2.2. Each narrowband response is a Gaussian filtered response with center frequency of
180 kHz and120 kHz bandwidth. (a) Wideband simulation of a plate with windowed, multipath
effects. (b) Wideband experimental measurement with window. (c) Narrowband simulation
of a plate with windowed, multipath effects. (e) Narrowbandexperimental measurement with
window.

synthesizing a noise-free, direct path response with sparse wavenumber denoising, and 3) the

accuracy of predicting the direct path responses between random points on the plate with sparse

wavenumber synthesis.

For the first metric, we recover the frequency-wavenumber representationv(ω) of our data

by applying sparse wavenumber analysis. We uniformly discretize the wavenumber space

across3000 samples between0 m−1 and4500 m−1. We also consider2000 frequencies uni-

formly spaced between0 Hz and2 MHz. In Figure 2.4, we show the resulting frequency-

wavenumber representations for each scenario. Note that weapply a Gaussian blur and unsharp

mask filter [69] to improve visibility for the reader. We alsoshow a magnified segment of the

A0 mode centered at180 kHz to illustrate that each curve is approximately one or twopixels

wide. For convenience, the figures are normalized so that themaximum value is associated with

0 dB.

For the second metric, we usev(ω) with sparse wavenumber denoising to synthesize the

direct path response between sensor14 and sensor6, as denoted in Figure 2.2, and filter the

results around a center frequency of180 kHz and a120 kHz wide bandwidth. In Figure 2.5,
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Figure 2.4: The sparse wavenumber analysis recovered frequency-wavenumber magnitudes
|v(ω)| for four simulations: (a) unbounded plate, (b) plate with multipath effects, (c) plate
with a windowed response and multipath effects, (d) plate with a windowed response, multipath
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we compare these synthesized responses (shown as a thin, dark curve) with the corresponding

measured responses (shown as a broad, light curve).

For the third metric, we usev(ω) with sparse wavenumber synthesis to predict the direct

path responses corresponding to1000 randomly chosen pairs of points on the plate. We compare

the synthesized signalŝx(ω) with the true signalsx(ω) by computing the correlation coefficient

σ across every frequency and measurement

σ =

∑Q
q=1 x(ωq)

H x̂(ωq)√∑Q
q=1 ‖x(ωq)‖22

√∑Q
q=1 ‖x̂(ωq)‖22

. (2.28)

In (2.28),Q is the number of discrete frequencies being analyzed. When processing a windowed

data set, we also window the true signal in the same manner. Wecompute the correlation

coefficient as a function of the number of sensors, uniformlyspanning from5 to 17, and a

function of the basis pursuit denoising parameterτ , logarithmically spanning fromτ = 0.004

to τ = 10. To ease the computational cost, we recoverv(ω) for 200 different frequencies,

uniformly spanning from0 Hz to2 MHz, instead of2000 frequencies used for the other metrics.

2.5.1 Scenario 1: Unbounded plate

Sparse wavenumber analysis

Figure 2.4(a) illustrates the magnitude of the frequency-wavenumber representation|v(ω)|
for the simulated unbounded plate withτ = 0.01. In the figure, the non-zero values in the

frequency-wavenumber representation overlap very well with the true dispersion curves.

Sparse wavenumber denoising

Figure 2.5(a) compares the synthesized and measured narrowband response between sensor

14 and sensor6 on the unbounded plate. In the plot, the estimated and measured responses are

found to be nearly identical. The two curves have a correlation coefficient of approximately

1.000.

Sparse wavenumber synthesis

Figure 2.6(a) illustrates our capability to predict the wideband response of random locations

in the simulated, unbounded plate. For a large range ofτ values, up to approximatelyτ =
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Figure 2.6: The correlation coefficient between1000 randomly chosen responses generated
from sparse wavenumber synthesis and the corresponding true responses for3 different simula-
tion scenarios: (a) unbounded plate, (b) plate with multipath effects, (c) plate with windowed,
multipath effects.

0.2512, we achieve correlation coefficients greater than0.99 for M ≥ 11. Note that as we

approachτ = 0, we approach a least squares estimate, which does not emphasize any sparsity.

So for some sufficiently smallτ , v(ω) will eventually lose its sparse structure. We illustrate a

similar least squares solution at the end of this section.

Overall, the first simulation scenario shows our methodology to be very accurate and robust

in noise-free conditions.

2.5.2 Scenario 2: Multipath

Sparse wavenumber analysis

Figure 2.4(b) depicts the frequency-wavenumber representation magnitude|v(ω)| for the

simulated plate with multipath and a basis pursuit parameter of τ = 0.25. The sparse curves in

Figure 2.4(b) again overlap well the true dispersion curves. However, the additional multipath

generates an abundant amount of speckle-like noise in the figure.
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Sparse wavenumber denoising

Figure 2.5(b) shows the measured and synthesized narrowband responses between sensor

14 and sensor6 in a simulated plate with multipath interference. In the figure, our denoised

signal very accurately reconstructs the direct path modes at approximately80 µs and140 µs

while only weakly reconstructing the multipath responses at 100 µs, 180 µs, and190 µs. The

synthesized response in Figure 2.5(b) has correlation coefficient of 0.966 with the true direct

path response.

Sparse wavenumber synthesis

Figure 2.6(b) shows the correlation coefficient between thewideband responses predicted

by sparse wavenumber synthesis and true responses of1000 random locations in the simulated

plate with multipath. ForM = 17, we achieve correlation coefficients greater than0.75 for

approximately0.1 < τ < 0.631. Forτ = 0.2512, we achieve a correlation coefficient of0.899.

Therefore, the second simulation scenario shows that our methodology remains accurate in

the presence of additive multipath interference.

2.5.3 Scenario 3: Multipath with window

Sparse wavenumber analysis

Figure 2.4(c) shows the magnitude of the frequency-wavenumber representation|v(ω)|,
with τ = 0.25, for the simulated plate with multipath and windowed responses. In general,

the recovered curves inv(ω) overlap with the true dispersion curves very well. Due to the

window, a small number of frequency-wavenumber pairs with large slopes (small group veloci-

ties) are no longer visible in our estimate. However, for most frequency-wavenumber pairs, we

observe much less noise relative to Figure 2.4(b) .

Sparse wavenumber denoising

Figure 2.5(c) compares the measured and synthesized narrowband and windowed responses

with multipath interference between sensor14 and sensor6. Compared with results in Fig-

ure 2.5(b), the synthesized response is noticeably less influenced by the multipath responses

at 100 µs, 180 µs, and190 µs. The correlation coefficient between the denoised response in
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Figure 2.5(c) and the true direct path was found to be0.992, a significant improvement over the

0.966 correlation coefficient achieved without the window.

Sparse wavenumber synthesis

Figure 2.6(c) shows the accuracy of sparse wavenumber synthesis for predicting the wide-

band, windowed responses corresponding to1000 random locations in the simulated plate with

multipath. Compared with the results in Figure 2.6(b), we observe a significant improvement in

performance and robustness. ForM = 17, we observe correlation coefficients greater than0.75

for approximately0.00631 < τ < 0.5. For τ = 0.2512, we achieve a correlation coefficient of

0.975, a significant improvement over0.899 achieved without the window.

Therefore, the third simulation scenario shows that utilizing a window significantly im-

proves our technique’s accuracy and robustness in the presence of additive multipath interfer-

ence.

2.5.4 Scenario 4: Multipath and position noise with window

Sparse wavenumber analysis

Figure 2.4(d) shows the magnitude of the frequency-wavenumber representation|v(ω)|,
with τ = 0.25, of the simulated plate with multipath, windowed responseswith sensor posi-

tion noise. In the figure, our frequency-wavenumber curves follow the true dispersion curves

closely up until wavenumbers between700 m−1 and1200 m−1. Between these values, the am-

plitude of each mode declines. The wavelength range corresponding to these wavenumbers is

0.5 cm to0.9 cm. This corresponds roughly to the size of the magnitude of the sensor position

noise, which perturbs each expected sensor location by at most±0.461 cm from their original

true location.

For this test, we use a basis pursuit denoising parameter ofτ = 0.25 to compare with sim-

ulation scenarios 2 and 3. We note, however, that due to sensor position noise, the data incurs

larger errors at higher frequencies, which have a greater number higher wavenumber compo-

nents. Therefore, the optimal choice ofτ gradually increases with frequency fromτ = 0.25 to

τ = 0.6. However, our tests indicate that the overall performance does not vary signifignatly

within this range ofτ . Visually, increasingτ will help to reduce the noise in Figure 2.4.
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Figure 2.7: The correlation coefficient between1000 randomly chosen responses generated
from sparse wavenumber synthesis and the corresponding true responses for a simulation of a
plate with windowed, multipath effects and sensor positionnoise.

Sparse wavenumber denoising

Figure 2.5(d) shows the measured and synthesized narrowband responses between sensor

14 and sensor6 in the presence of multipath interference and position noise. We observe a

strong correlation between the measured and synthesized responses. However, we also observe

a significant reduction on the A0 mode’s amplitude. This can be attributed to the A0 mode’s

higher wavenumber at180 kHz. The denoised response has a correlation coefficient of0.9144

with the true direct path, windowed response.

Sparse wavenumber synthesis

Figure 2.7 shows our accuracy of predicting the windowed responses of1000 random lo-

cations from multipath data with sensor position noise. However, unlike Figure 2.6(a), Fig-

ure 2.6(b), and Figure 2.6(c), in which we considered the full wideband signal, we now con-

sider only the response in the narrow band of frequencies between120 kHz and240 kHz. We

choose these frequencies since they are not significantly affected by the thresholding effect

across wavenumber, shown in Figure 2.4(d). ForM = 17, we observe correlation coefficients

greater than0.75 for 0.03981 < τ < 1.0. Forτ = 0.2512, we achieve a correlation coefficient
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Figure 2.8: The magnitude of the least-squares frequency-wavenumber representation of simu-
lation data of an (a) unbounded plate and (b) plate with with awindowed response and multipath
effects.

of 0.926.

Our final simulation scenario suggests that while we may be restricted by the geometry of

our sensors, we can still accurately recover the frequency-wavenumber representation of our

data, remove multipath interference, and predict Lamb waveresponses across certain wavenum-

ber ranges. Across all of the test scenarios, we observe reasonable results for valuesτ in the

neighborhood of0.1 < τ < 0.6. We find this to be a reasonable range for our experiment as

well.

2.5.5 Comparison with least squares

Figure 2.8(a) and Figure 2.8(b) illustrates the least-squares, or generalized 2D-DFT, frequency-

wavenumber representation of an unbounded plate simulation (scenario 1) and a simulation with

a windowed multipath response (scenario 3), respectively.As the figures show, the least-squares

representations do not represent well the true dispersion curves of the medium. In Figure 2.8(a),

the dispersion curves are visible but with a significant amount of additional “noise”, which phys-

ically does not represent any property of the medium. After introducing multipath reflections in

Figure 2.8(b), the dispersion curves become significant overpowered by this noisy information.

Overall, since the least-squares solution does not promotesparsity in the model, it does not

recover the medium’s frequency-wavenumber representation with high precision. As a result,

our signal synthesis and denoising approaches perform poorly. This is supported by Figure 2.6

since the least squares solution is similar to sparse wavenumber analysis forτ = 0.
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Figure 2.9: The average frequency magnitude responses for asimulation with windowed multi-
path effects and experimental data.

2.6 Experimental results and discussion

In this section, we apply sparse wavenumber analysis and sparse wavenumber denoising to

experimental data. For this data, we apply the same window asin the third simulation scenario

in Section 2.5. We also apply a window to remove the first10 µs of each signal to eliminate

any electrical cross-talk. We compute the basis pursuit denoising solution in (2.14) using3000

uniformly spaced samples in the wavenumber domain across between0 m−1 and4500 m−1. We

sample across2000 frequencies from0 Hz to2 MHz.

In the simulation results, we achieved excellent performance with a basis pursuit denoising

parameterτ around the neighborhood of0.25. However, we anticipate a greater degree of

noise in the experimental data, so we choose to increaseτ to 0.50. Testing has shown both

τ = 0.25 and τ = 0.50 achieve good results, butτ = 0.5 achieves greater robustness to

multipath interference.

In contrast with the simulations, the experimental data is also affected by each sensor’s fre-

quency response, which have natural bandpass characteristics. Figure 2.9 illustrates the average

magnitude frequency response for the windowed experimental data and windowed simulation

data. In the figure, the experimental results are most prominent around500 kHz whereas the

simulation data is relatively flat across the entire range ofinterest.
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Figure 2.10: (a) The magnitude of the recovered frequency-wavenumber representation|v(ω)|
for the data with light gray lines illustrating the theoretical dispersion curves for the experiment.
(b) The synthesized narrowband direct path responses generated from sparse wavenumber de-
noising (thin, dark line) and corresponding narrowband measured responses (broad, light line)
between sensor14 and sensor6 for our experiment.

2.6.1 Sparse wavenumber analysis

Figure 2.10(a) shows the magnitude of the frequency-wavenumber representation|v(ω)|
for our experimental data. As with the simulations, we use a Gaussian blur and unsharp mask

filter [69] to broaden lines and ease visibility for the reader. Each estimated curve is generally

only one or two pixels wide. We also crop our results to focus on the frequency-wavenumber

region of most interest. Frequencies greater than1300 kHz and wavenumbers greater than

900 m−1 are only characterized by weak noise.

In Figure 2.10(a), we overlay the theoretical dispersion curves used in our simulations in

light gray. The results show that the frequency-wavenumbervalues follow similar trends as

their corresponding dispersive curves, although the curves do not exactly overlap. However,

this is expected since the theoretical dispersion curves are derived from approximate values for

the material properties of the aluminum plate.

Similar to the simulations with sensor position error in Figure 2.10(d), the experimental

data’s frequency-wavenumber representation shows a rapiddecrease in magnitude for wavenum-
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bers between700 m−1 and900 m−1. This range corresponds to wavelengths in the range of

0.7 cm to0.9 cm. As with the simulations, these wavelength are on the order of the transducer’s

dimensions, which are0.7 cm by0.8 cm.

We also observe in Figure 2.10(a) that the S1 mode is never visible and the A2 mode van-

ishes for frequencies larger than1200 kHz. Decreasing the lower bound on the magnitudes in

Figure 2.10(a) does not reveal any additional structure. Wenote, however, that the S1 mode has

a small group velocity around900 kHz that is also not visible in our simulations in Figure 2.4(d).

Additionally, the measured frequency spectrum in Figure 2.9 shows weak magnitudes for fre-

quencies greater than1100 kHz.

If we apply the least-squares solution in (2.23) to the experimental data, we observe a result

similar to the simulation in Figure 2.8(b). Since the least-squares result does not promote spar-

sity, its frequency-wavenumber domain is dominated by a significant amount of “noise” and the

dispersion curves cannot be clearly identified visible.

2.6.2 Sparse wavenumber denoising
Figure 2.10(b) compares the measured narrowband, experimental response between sen-

sor 14 and sensor6, as denoted in Figure 2.2, with its denoised response. The responses are

shown for a band of frequencies from120 kHz to240 kHz. The results show that our method suc-

cessfully removes the multipath interference from the experimental data. Although we observe

a small reduction in the amplitude of the S0 and A0 modes at80 µs and140 µs, respectively,

we observe a significant reduction in the multipath responses at100 µs,180 µs, and190 µs.

Overall, our experimental results verify our simulations results. We computed the frequency-

wavenumber representation for experimental Lamb wave dataand demonstrated that our ex-

periments can be reasonable well modeled by with additive multipath interference and sensor

position noise. We also used the frequency-wavenumber representation to successfully remove

multipath components from the data.

2.7 Conclusion
In this chapter, we presented a compressed sensing based methodology, which we call sparse

wavenumber analysis, to accurately recover the frequency-wavenumber representation of Lamb
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waves. Using simulation and experimental data, we showed that we could use this represen-

tation to accurately represent Lamb wave dispersion curves. We then utilized this frequency-

wavenumber representation to remove multipath componentsfrom simulated and experimental

data, through a method we refer to as sparse wavenumber denoising, and to predict Lamb wave

responses in a simulated plate, through a method we term sparse wavenumber synthesis.

We tested our methodology with4 simulations of increasing complexity. We showed that,

even with data corrupted by multipath interference and modeling error, we can very accurately

recover the frequency-wavenumber representation of the medium. We quantified this accuracy

by comparing1000 synthesized signals corresponding to1000 randomly chosen pathes, gener-

ated using sparse wavenumber synthesis, with their true direct path responses. We showed that,

with only multipath interference, we could achieve a correlation coefficient of0.975 between the

true and estimated responses across a wide range of frequencies from0 MHz to 2 MHz. After

incorporating sensor position noise, which simulates errors from each sensor’s extended geom-

etry, we could still achieve a correlation coefficient of0.926 between the true and estimated

responses across a narrow band of frequencies from120 kHz to240 kHz.

We applied sparse wavenumber analysis to accurately recover the frequency-wavenumber

representation of experimental data. We showed the recovered frequency-wavenumber repre-

sentation closely followed theoretical dispersion curves. We then used this representation to

accurately remove the multipath components from the experimental time traces. Furthermore,

we visually demonstrated a good correspondence between ourexperimental and simulation re-

sults.
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CHAPTER 3

Leveraging Guided Wave Complexity:

Data-Driven Matched Field Processing

3.1 Motivation

Matched field processing is a general framework that utilizes models of complex propaga-

tion environments to estimate the location of targets with high resolution and accuracy [1, 2].

In underwater acoustics, matched field processing has been studied extensively to improve the

performance of systems operating in acoustically complex underwater environments [2,70–74].

It has also been applied to problems in seismology [75], radar and electromagnetic propaga-

tion [76, 77], and nondestructive evaluation [78, 79]. Matched field processing is also closely

related to time reversal processing [26, 27], which utilizes direct measurements, rather than a

model, to learn the environment and improve localization performance. In guided wave struc-

tural health monitoring, where guided waves are used to detect and locate damage in large

structures, matched field processing is an attractive tool due to the complex multimodal and

dispersive characteristics of these propagation environments.

To implement matched field processing, we require a model of the responses that we expect

to measure from a given target location. Historically, guided wave structural health monitoring

localization methods have used a single mode model with constant and equal group and phase

velocities [24,25]. As a result, significant preprocessingis often necessary to simplify the mea-

sured data to approximately match the model. This is accomplished by filtering measurements
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around a narrow band of frequencies to isolate a single mode and then extracting the signal’s en-

velope to remove phase distortions due to differences in thewave’s group and phase velocities.

Due to these simplifications, these approaches are prone to poor resolutions and large artifacts.

In underwater acoustics, a very different approach is taken. The model is instead carefully

constructed by formulating and solving, numerically, the wave equation for the geometry and

characteristics of the medium [1]. This approach can provide very accurate and highly resolved

localization when the model is correct, but very poor localization performance when the model

is incorrect [80]. Therefore, this approach requires significant knowledge of the material prop-

erties and geometry of the medium, which are often not precisely known. Although researchers

have developed algorithms [81,82] to estimate these properties from calibration data, estimating

these parameters generally requires solving nonlinear andnonconvex optimization problems,

such as simulated annealing [83] and Monte Carlo sampling [81, 83], across many unknown

parameters. For these reasons, the localization process isoften computationally expensive and

unreliable.

This chapter presents a new alternative approach. We assumethat the wave equation for

the environment of interest is solved by a modal solution. Weconstruct the model directly

from our calibration data through a method known as sparse wavenumber analysis [49]. We

refer to the model as a sparsity-based, data-driven model because it is constructed from the

sparse properties of the measured data, which are recoveredby using tools from compressed

sensing [53]. We then integrate this data-driven model withmatched field processing to derive

a sparsity-based, data-driven matched field processing methodology.

Unlike the signal simplification strategies that assume thewaves to have a single velocity,

our approach allows us to use all of the modes and dispersion in the measurements to improve lo-

calization accuracy and resolution. Unlike model-based parameter estimation strategies, sparse

wavenumber analysis is performed using basis pursuit optimization [53, 54], a convex process.

Therefore, the resulting model is globally optimal and can be computed quickly and reliably.

This process can be applied to many problems with modal solutions, such as multilayered

plates [84], pipe waves [6], Rayleigh waves [7], and Pekerisshallow water channels [8]. In

the following two chapters, we specifically consider Lamb wave data from an aluminum plate.
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In this chapter, we develop and analyze data-driven matchedfield processing by integrating

sparse wavenumber analysis with matched field processing. This work was originally presented

in references [50, 85, 86]. We integrate sparse wavenumber analysis with both the coherent

matched field processor [74,87] and the incoherent matched field processing [1], both of which

are commonly applied in the literature. We also analytically deriving the asymptotic behavior of

data-driven matched field processing and show that it provides accurate localization even in the

presence of unmodeled multipath interference. In Chapter 4and Chapter 5, we respectively

apply the new coherent data-driven matched field processor and the incoherent data-driven

matched field processor to localize a passive scatterer and an acoustic emission event on an

aluminum plate.

3.2 Data collection
We consider three collections of data: calibration data, test data, and model data for our

data-driven matched field processing methodology. Each collection of data is represented at

Q discrete frequencies,ω1, ω2, . . . , ωQ. The calibration data represents physical measurements

of waves that have travelled known distances. The test data represents physical measurements,

potentially after removing baseline information, that have travelled unknown distances and po-

tentially interacted with a scatterer in the medium. The model data represents synthesized

signals, generated from the calibration data, that predictwhat the test data will look like given

a scatterer at a chosen location.

3.2.1 Calibration data

We represent the calibration data at frequencyωq as aD × 1 vector

yq = [X(d1, ωq) · · · X(dD, ωq)]
T + n(y)

q

= Φ(d)vq + n(y)
q , (3.1)

whereD is the number of signals measured. The calibration datayq represents the signals

transmitted and received between pairs of sensors with known distancesd = [d1, . . . , dD]
T

between them. The vectorn(y)
q represents errors in our measurements due to random noise
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or unmodeled multipath interference from boundaries that is not included in the ideal plate

framework in (1.6).

The D × N matrix Φ(d) represents a linear mapping between the measured frequency-

distance signalyq and a discretized frequency-wavenumber, or dispersion curve, representation

vq. The matrixΦ(d) can derived from (1.6) as a matrix of complex exponentials [49]

Φ(d) = ρ(d)
[
d
−1/2
i e−jκjdi

]
ij

ρ(d) =

(
D∑

m=1

|dm|−1

)−1/2

. (3.2)

The normalization constantρ(d) is included so that each column ofΦ(d) has a unitℓ2 norm.

Each element ofvq is a weight assigned to each column, or basis vector, inΦ(d). Each column

in Φ(d) then corresponds to one ofN possible wavenumbersκ1 . . . κN . The minimum number

of wavenumbersN required to fully representyq is equal to the number of wave modes in the

data, i.e.,κ1 = k1(ωq), . . . , κN = kN(ωq). If we chooseN to be much larger than the number

of wave modes in the signal, all of the additional elements invq that do not correspond to a

mode will have values of zero.

3.2.2 Test data
We represent the test data at frequencyωq as anM × 1 measurement vector

xq = [X(r∗1, ωq) · · · X(r∗M , ωq)]
T + n(x)

q

= Φ(r∗)vq + n(x)
q . (3.3)

In (3.3), each value in the vectorr∗ = [r∗1, . . . , r
∗
M ]T represents the true, unknown distance

travelled from a transmitter to a scatterer and then to a receiving sensor. The matrixΦ(r∗) is

defined the same as in (3.2) and the vectorn
(x)
q represents error in the data due to random noise

or unmodeled multipath interference.

3.2.3 Model data
We represent the model data at frequencyωq and for chosen distancesr = [r1, . . . , rM ]T as

anM × 1 vector function

x̂q(r) =
[
X̂(r1, ωq) · · · X̂(rM , ωq)

]T
, (3.4)
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whereX̂(ri, ωq) represents an estimate of the true responseX(ri, ωq) from (1.6) with1 ≤ i ≤ M .

The model data represents a collection of expected responses from a scatterer with no ran-

dom noise or unmodeled multipath interference. Each element of r corresponds to the total

travel distance from a transmitting sensor to the damage scatterer and then to a receiving sensor.

In Section 3.3, we discuss how to obtainx̂q(r) using sparse wavenumber analysis and sparse

wavenumber synthesis.

3.3 Data-driven matched field processing
In this section, we present data-driven matched field processing by integrating matched

field processing with a sparsity-based, data-driven model generated from sparse wavenumber

analysis and sparse wavenumber synthesis. We assume our sensors are randomly distributed

across the plate’s surface. In Section 3.4, we analyticallydemonstrate the asymptotic benefits

of using data-driven matched field processing with random sensor placement.

To generate a data-driven model, we apply two processes: sparse wavenumber analysis

and sparse wavenumber synthesis. Sparse wavenumber analysis uses compressed sensing algo-

rithms [53] to recover a sparse frequency-wavenumber representation̂vq from the calibration

datayq. This process leverages the knowledge that, when the chosennumber of wavenumbers

N in (3.1) is very large, the dispersion curvesvq are sparse, or contain mostly zeros. Alterna-

tive sparsity-based approaches for dispersion estimation[88, 89] have been discussed in other
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Figure 3.1: The frequency-wavenumber representation (dispersion curves) of guided wave data
from an aluminum plate, recovered by sparse wavenumber analysis.
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applications but have not been extended for use in broadbandlocalization. Sparse wavenumber

synthesis then uses the recovered dispersion curvesv̂q to predict how waves propagate between

any two points in the medium.

3.3.1 Building the data-driven model

As discussed in Chapter 2, sparse wavenumber analysis recovers the frequency-wavenumber,

or dispersion curve, representationv̂q of the medium by applying a basis pursuit denoising, or

lasso, optimization [53,54] from compressed sensing to thecalibration datayq such that

v̂q = argmin
vq

‖Φ(d)vq − yq‖22 + τ‖vq‖1 , (3.5)

where‖ · ‖1 and‖ · ‖2 are defined as theℓ1 norm, the absolute sum of all elements, and the

ℓ2 norm, the Euclidean distance, of a vector, respectively. Byutilizing the knowledge that the

truevq vector is sparse, basis pursuit denoising allows us to compute an accurate estimatêvq

with high resolution even when the matrixΦ(d) is underdetermined, i.e.,N > M . Figure 3.1

illustrates an example frequency-wavenumber representation recovered from a collection of

experimental plate data. The regularization parameterτ is used to tune the method’s robustness

to error and is chosen to be0.5 based on results from prior work [49,85].

From the recovered frequency-wavenumber representationv̂q, we can then synthesize model

data corresponding to our chosen distancesr through sparse wavenumber synthesis by solving

the forward problem

x̂q(r) = µqΦ(r)v̂q , (3.6)

where the scalarµq is a factor

µq =
yHΦ(d)v̂q

‖Φ(d)v̂q‖22
(3.7)

that adjusts for a multiplicative bias in̂vq introduced by basis pursuit denoising. The function

x̂q(r) represents the sparsity-based, data-driven model of the medium since it represents our

predicted response between any two points, as defined byr, and is based on our sparse, data-

derived dispersion curveŝvq.
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3.3.2 Coherent data-driven matched field processor

Matched field processing localizes a target by comparing test dataxq with model datâxq(r).

This comparison is implemented by a matched field processor [1] and the output of the processor

is an ambiguity functionb(r). If the value of the ambiguity function, at a givenr, is large, the

model and measurements are closely “matched.” For a single target, the target’s estimated

locationr̂ is defined by

r̂ = argmax
r

b(r) . (3.8)

When measured across a large number of locations in a grid, the ambiguity function forms an

“image” of the medium.

In this section, we integrate our data-driven model in (3.6)with the coherent matched field

processor [73, 74], one of the most widely studied and applied processors throughout the lit-

erature. In this next section, we integrate our data-drivenmodel in (3.6) with the also widely

implemented incoherent matched field processor [1]. While we focus on these processors, the

data-driven model can be applied to any other matched field processor [71, 72, 74] and can be

applied to many other localization algorithms [90,91].

The ambiguity function of the coherent matched field processor can by derived from the

solution to the minimization problem [73]

r̂ = argmin
r,β

Q∑

m=1

‖xq − βx̂q(r)‖22 , (3.9)

wherexq is the test data in (3.3) and̂xq(r) is the model data in (3.4). The complex-valued

coefficientβ represents the unknown amplitude of the measured signal. The coherent processor

is best applied when the measured signal’s frequency response is well known up to a single

multiplicative factor.

By solving for and substituting the closed-from solution ofβ into (3.9) and expanding the

results, the coherent processor can be expressed as a maximization problem, in the same form
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as (3.16), with an ambiguity function defined by

r̂ = argmax
r

b(r)

b(r) =

∣∣∣
∑Q

q=1 x
H
q x̂q(r)

∣∣∣
2

∑Q
q=1 ‖x̂q(r)‖22

. (3.10)

In this form, the coherent processor is represented by an inner product between the test dataxq

and the model datâxq(r). Intuitively, the coherent processor propagates a time-reversed replica

of each received signal (or the complex conjugate ofxq in the frequency domain) backward into

the medium modeled bŷxq(r). For this reason, the coherent processor may also be referred to

as a time reversal processor [26,27].

If we substitutexq in (3.10) with its matrix representation in (3.3) andx̂q(r) in (3.10) with

the data-driven model as expressed in (3.6), we derive the coherent data-driven matched field

ambiguity function. For a noise-free (n
(x)
q = 0) system, this ambiguity function is expressed as

b(r) =

∣∣∣
∑Q

q=1 v
H
q Φ

H(r∗)Φ(r)v̂q

∣∣∣
2

∑Q
q=1 ‖Φ(r)v̂q‖22

, (3.11)

wherevq represents thetrue frequency-wavenumber representation at frequencyωq andv̂q is

the recovered dispersion curve representation from sparsewavenumber analysis. We rewrite

(3.11) in a compact matrix/vector. We stack each of the wavenumbers vectors

v = [v1 , v2 , . . . vQ] (3.12)

v̂ = [v̂1 , v̂2 , . . . v̂Q] , (3.13)

and form a block diagonal matrix with the propagation matrices

Φ(r) =




Φ(r) 0 0

...
. . .

...

0 0 Φ(r)


 . (3.14)

The ambiguity function is then written as

b(r) =

∣∣∣vHΦ
H
(r∗)Φ(r)v̂

∣∣∣
2

‖Φ(r)v̂‖22
. (3.15)
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When r = r∗, the value of the ambiguity function is dependent on how wellthe frequency-

wavenumber representationsv andv̂ match. Whenr 6= r∗, the value of the ambiguity function

becomes dependent on the coherence between the columns ofΦ(r∗) andΦ(r). We utilize this

form of the coherent processor for asymptotic analysis in Section 3.4.

3.3.3 Incoherent data-driven matched field processing

We now integrate the dispersion curves from sparse wavenumber analysiŝvq with the inco-

herent matched field processor to localize an acoustic source. As with the coherent matched

field processor, the target’s estimated locationr̂ for a single target is defined by

r̂ = argmax
r

b(r) . (3.16)

Similarly again, when measured across a large number of locations in a grid, the ambiguity

function for the incoherent matched field processor forms an“image” of the medium.

Given the measured test dataxq and the model datâxq(r), the incoherent matched field

processor can be defined by a least-squares optimization such that the optimal location estimate

r̂ is [73]

r̂ = arg min
r,β1,...,βQ

Q∑

q=1

‖xq − βqx̂q(r)‖2 . (3.17)

Unlike the coherent processor, where there is a single unknown constantβ, the incoherent

processor minimizes the error between the dataxq and the model̂xq(r) with an unknown factor

complex-valuedβq at each frequency. By optimizing eachβq value, the minimization chooses

an optimal frequency-domain representation for the data. Intuitively, this means that the process

optimally shifts the model in time (by changing frequency domain phase characteristics) and

optimally alters the frequency domain amplitude to match the measured signal. For this reason,

we do not need prior information about the shape or timing of the acoustic source to localize it.

We simplify the optimization problem in (3.17) by finding theclosed-form solution for each

βq. We then plug these results into (3.17) to represent the original optimization as a maximiza-
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tion problem [73,74]

r̂ = argmax
r

b(r)

b(r) =

Q∑

q=1

∣∣xH
q x̂q(r)

∣∣2

‖x̂q(r)‖2
, (3.18)

whereb(r) is known as the ambiguity function of the incoherent matchedfield processor. Com-

putationally, this representation is much easier to solve than (3.17) since we reduced the number

of unknown variables. In the new form (3.18), we are maximizing the inner product between

the dataxq and the model̂xq(r) at each frequency. The magnitude of the inner product is

squared and normalized such thatb(r) = 1 when the dataxq perfectly matches the modelx̂q(r).

By squaring the magnitude of the inner product at each frequency, the incoherent processor in

(3.18) is invariant to phase shifts or time delays in the data.

We derive the incoherent data-driven matched field processor by substituting the expressions

for our data-derived model̂xq(r) in (3.6) and the guided wave dataxq in (3.3) into the ambiguity

function in (3.18) such that

b(r) =

Q∑

q=1

∣∣vH
q Φ

H(r∗)Φ(r)v̂q

∣∣2

‖Φ(r)v̂q‖2
, (3.19)

wherevq represents thetrue dispersion curves of the medium andv̂q is the recovered dispersion

curves from sparse wavenumber analysis. Notice that this result is similar to (3.15), except

we sum over each frequency independently. Therefore, our analysis of both the coherent data-

driven matched field processor and the incoherent data-driven matched field processor will be

similar. In the following section, we derive the asymptoticbehavior of these localization meth-

ods.

3.4 Asymptotic behavior
In this section, we analyze the asymptotic behavior, as a function of the number of mea-

surementsM , of the coherent data-driven matched field ambiguity function. We analyze this

behavior when the measured dataxq is ideal, i.e. n(x)
q = 0, and whenxq is corrupted by

unmodeled multipath interference. We do not consider the scenario wherexq is corrupted by
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random noise since matched field processing is already well known to be robust to Gaussian

measurement noise [1].

Our analysis shows that, even under arbitrary multipath interference, we can theoretically

guarantee accurate localization in the medium with a sufficient number of measurements. To

show this, we utilize results from compressed sensing and the study of random matrices. The

core assumption used by these results is that the sensors aredistributed randomly across the

medium and thereforeΦ(r) has a random structure.

Our analysis focuses around two properties of random matrices: the restricted isometry

property (RIP) and what we introduce and refer to as the restricted nullity property (RNP).

If the sensors are randomly distributed across the medium, then the matrixΦ(r) represents a

random matrix of complex exponentials with weighted rows. From compressed sensing, it has

been well established that random matrices, such asΦ(r), satisfy RIP [62,92,93]

(1− δs)‖vq‖22 ≤ ‖Φ(r)vq‖22 ≤ (1 + δs)‖vq‖22 , (3.20)

with a smallδs ≥ 0 ands non-zero components invq. Intuitively, a matrix that satisfies RIP with

a smallδs is “nearly unitary,” i.e.,ΦH(r)Φ(r) ≈ I. Although computing the restricted isometry

constantδs for a particular matrix is usually an intractable problem [94], the RIP constantδs

for random matrices is known to decrease in probability as the number of measurementsM

increases [61, 95, 96]. Furthermore, it has been shown that,for matrices of bounded random

vectors, such asΦ(r), the constantδs converges to zero with rate of1/
√
M or faster [96].

Therefore this convergence occurs relatively quick.

We now introduce RNP, which is an extension of RIP. It states that if Φ(r∗), Φ(r), and

(1/
√
2)(Φ(r∗) +Φ(r)) each satisfy RIP with small constants, then the matrices also satisfy the

RNP inequality

−2δ
′

s‖vq‖22 ≤ vH
q Φ

H(r∗)Φ(r)vq ≤ 2δ
′

s‖vq‖22 (3.21)

with a small constantδ
′

s ≥ 0 ands non-zero components invq. The proof of this property

can be found in Appendix A. Intuitively, two matrices that satisfy RNP with a smallδ
′

s have

“nearly uncorrelated” columns, i.e.vH
q Φ

H(r∗)Φ(r)vq ≈ 0. For the simplicity of our analysis,
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we assume the RIP and RNP constants are equal. This occurs when the RIP constants ofΦ(r∗),

Φ(r), and (1/
√
2)(Φ(r∗) +Φ(r)) are all equal.

To satisfy RNP, the distance vectorsr∗ andr should be randomly distributed and sufficiently

different. Under these conditions, the phase components from each element ofΦ(r∗), Φ(r),

andΦH(r∗)Φ(r) will have a high variance and can be treated as a circularly uniform random

variable. As a result, the columns ofΦ(r∗) andΦ(r) will be highly uncorrelated.

However, if we finely sample the localization grid, this willnot be true for allr vectors

corresponding to points on the grid. Due to the uncertainty principle [97], we know that the

width, or resolution, of the peak lobe in the ambiguity function is inversely proportional to the

signal’s width in the wavenumber domain. In this region of space near the target, wherer∗ andr

are similar, our matrices will not satisfy RNP. As a rule of thumb, if the distances inr∗ andr are

more than two times the maximum wavelength apart and random in distribution, then the phase

components of each element inΦ(r∗) andΦ(r) will be effectively random and the matrices

will satisfy RNP. In Chapter 4, we show that this ambiguous region is approximately0.68 cm

to 0.9 cm in diameter for the coherent matched field processor applied to our experiments.

3.4.1 Single path scenario
In this subsection, we derive the asymptotic behavior of thecoherent data-driven ambiguity

function for ideal measurements wheren
(x)
q = 0. In previous work [49], it has been shown that,

whenΦ(d) satisfies RIP, sparse wavenumber analysis can accurately recover the frequency-

wavenumber representation with a sufficient number of measurements. Therefore, we assume

for our analysis that the frequency-wavenumber representation is correctly recovered up to a

constant scalar factor

v̂q
∼= vq . (3.22)

We can ignore the unknown scalar factor since it does not change the ambiguity function when

plugged into (3.15).

By using the assumption in (3.22) and applying the RIP and RNPinequalities in (3.20) and

(3.21), respectively, to the either coherent or incoherentdata-driven matched field ambiguity

function in (3.15) or (3.19), respectively, we derive a lower bound for the ambiguity function’s
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target-to-artifact amplitude ratio

b(r∗)

b(r)
≥ (1− δs)

2

4δ2s
. (3.23)

Note that this result is slightly stronger than the results originally presented in [50]. This inequal-

ity is true for both the coherent and incoherent processors,although the valueδs is different for

the two processors. This relationship is proven in detail inAppendix B and Appendix C for

the coherent and incoherent processors, respectively. Theresult in (3.23) illustrates the behav-

ior of artifacts in the ambiguity function. It shows that, asthe RIP constantδs < 1 decreases,

the ambiguity function’s target-to-artifact amplitude in(3.23) increases monotonically, improv-

ing localization performance. Therefore, as we increase the number of measurementsM , the

target-to-artifact amplitude in (3.23) is guaranteed to decrease in probability.

3.4.2 Multipath scenario

We now consider a scenario in which the measured data is corrupted by unmodeled mul-

tipath interference from the boundaries of the medium. Under this scenario, the test data is

expressed as

xq = η0Φ(r∗)vq +

L∑

ℓ=1

ηℓΦ(rℓ)vq , (3.24)

wherer∗ represents the location of the target andr1, . . . , rL represent the distance vectors asso-

ciated with theL additional paths. The termη0 represents the strength of the direct path signal

andηℓ for 1 ≤ ℓ ≤ L represents the strength of the additional signal corresponding to pathℓ.

We assume the distance vector associated with each pathrℓ is sufficiently different fromr∗ such

thatΦ(rℓ) andΦ(r∗) satisfy RNP in (3.21) for allℓ. This is a reasonable assumption since the

reflected paths will generally travel much further distances than the direct path.

As with the single path scenario, we assumev̂q
∼= vq and then apply both the RIP and

RNP inequalities in (3.20) and (3.21) to the coherent and incoherent data-driven matched field

ambiguity functions to derive a lower bound for the target-to-artifact amplitude ratio

b(r∗) ≥ η2

1 + η2

(
(1− δs)

2

4δ2s
− 1

η2

)
, (3.25)
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whereη is defined as the signal-to-interference ratio

η =
η0∑L
ℓ=1 ηℓ

. (3.26)

Note that this result is slightly stronger than the results originally presented in [50]. As in the

single path scenario, this inequality is true for both the coherent and incoherent processors,

although with differentδs values. The proof for this is shown in Appendix D and AppendixE

for the coherent and incoherent processors, respectively.The result shows that as the signal-to-

interference ratioη approaches infinity, the worst-case target-to-artifact amplitude ratio (3.25)

converges to the single path bound in (3.23). The result alsoillustrates that, although unmodeled

multipath interference negatively affects the target-to-artifact amplitude ratio, the bound still

increases monotonically asδs < 1 decreases. Therefore, as in the ideal signal scenario, the

target-to-artifact amplitude ratio will increase in probability as the number of measurementsM

increases.

In terms of localization, this implies that, for any arbitrary multipath interference and any

single target location in the medium, there exists a sufficient number of measurementsM such

that the region around the target contains the largest valuein the ambiguity function with a

high probability. Said in another way, the data-driven matched field processor is asymptotically

unbiased to within a small ambiguous region around the target, where RNP does not apply.

Note that targets near the boundaries of a medium will have a significantly weaker signal-to-

interference ratioη than targets located in the center of a medium due to the stronger unmodeled

multipath. Therefore, the number of measurementsM necessary for data-driven matched field

processing to locate a target may vary as a function of the target’s location.

3.5 Comparison with clustered sensor topologies
One key assumption used to analyze the asymptotic behavior of the data-driven matched

field processors is that the sensors are sufficiently distant, or sparsely spaced, from each other

and randomly placed in order to satisfy RIP and RNP. To illustrate the necessarily for this as-

sumption, we simulate localization scenarios using both a sparsely spaced and clustered topol-

ogy. We consider a2 m by 2 m two-dimensional region with source located in the area of
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interest. We assume the source transmits a continuous, single-frequency waveform with a sin-

gle wavenumber ofk(ω) = 500 cycles/m (a wavelength of approximately1.25 cm). To perform

matched field processing, we chose a grid spacing of2 cm in the horizontal and vertical direc-

tions.

The receiving sensor locations were chosen randomly from independent uniform distribu-

tions in the horizontal and vertical directions. We generated interference by assuming that the

boundaries of the2 m by 2 m region acted as perfect reflectors and by using ray-tracingpro-

cedures to determine the distance traveled by each path fromthe source to each sensor. We

simulated every path that interacts with a boundary up to fivetimes between the source and

each sensor. We distributed energy equally among each of these interference signals.

We performed a Monte Carlo simulation with50 different random receiving sensor permu-

tations for a varying number of sensors and varying levels ofsignal-to-interference ratio. The

ambiguity ratiob(r0)/b(r) is computed by finding the average ratio between the value at the

source and the maximum value within the the remaining grid points.

Figure 3.2 illustrates the target-to-artifact ratio, which we also refer to as the ambiguity

ratio, as a function of the signal-to-interference ratio. Figure 3.3 shows the ambiguity ratio as

a function of the number of sensors. The solid lines illustrate a random sensor topology that

satisfies RIP and RNP with small constants. The dotted lines represent a cluster sensor topology,

in which a cluster of sensors are randomly placed in a small space and do not satisfy RIP or

RNP with small constants. The sensors are clustered to be positioned within 2 wavelengths

of each other. These figures demonstrate a clear improvementin localization performance and

much larger ambiguity ratiob(r∗)/b(r) when RIP and RNP are satisfied.
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Figure 3.2: The average ambiguity ratio of the localizationresults versus signal-to-interference
ratioη for M = 10 (dark lines) and 25 (light lines) sensors. Solid lines show results for a random
topology while dotted lines illustrate results for a clustered topology.
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Figure 3.3: The average ambiguity ratio of the localizationresults versus the number of sensors
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3.6 Conclusions

In this chapter, we developed data-driven matched field processing, which combines matched

field processing with sparse wavenumber analysis to locate damage for structural health moni-

toring applications. Analytically, we demonstrated data-driven matched field processing to have

good asymptotic localization properties. Given a sufficient number of measurements, the data-
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driven approach guarantees accurate localization to within a small region. This was shown to

be true even in the presence of arbitrary unmodeled multipath interference. Our methodology

also offers an alternative to traditional matched field processing techniques that often use com-

plex and rigid models of the propagation environment. Data-driven matched field processing

uses a relatively simple multimodal framework to generate amodel directly from measured data

through fast, convex optimization.
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CHAPTER 4

Coherent Data-Driven Matched Field

Processing: Acousto-Ultrasonic Localization

4.1 Motivation

Due to their sensitivity to damage and capability of quicklyinterrogating large structures,

guided waves have been an attractive tool for structural health monitoring. However, most

guided waves are multimodal and dispersive in nature. This implies that a propagating wave

pulse can be represented as a superposition of multiple wavemodes that each travel at several

different frequency dependent velocities [46]. These properties reduce the effectiveness of most

conventional localization techniques. Since many localization algorithms rely on accurate tim-

ing information, phase distortions caused by a difference in a wave’s group velocity and phase

velocity, can be particularly problematic.

To mitigate the effects of a guided wave’s complexity on localization techniques, many struc-

tural health monitoring methods preprocess data. These preprocessing steps often filter data and

then extract an envelope of each measured signal to localizethe damage [24, 25, 33]. The fil-

tering usually extracts a narrow band of frequencies with a single, dominant wave mode and

relatively little dispersion. The envelope extraction is then performed to reduce the additional

phase distortion associated with dispersion. Overall, these preprocessing steps improve local-

ization accuracy by utilize specific features of signals, but at the cost of significantly reducing

resolution.
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Other localization methods, matched field processing for example, utilize the complex char-

acteristics of the medium to improve localization performance [1, 2, 70–74]. However, these

approaches require a good model of the propagation environment and are well known to be sen-

sitive to model errors and environmental variations [2]. Instructural health monitoring, known

theoretical and numerical models for many guided waves mediums are also available. However,

these models rely heavily on properties of the medium that may not be precisely known and

may vary over time with changes in environmental and operational conditions [3, 5, 52]. As a

result, techniques are necessary to build appropriate and accurate models.

In this chapter, we use sparse wavenumber analysis [49], a method for recovering the

frequency-wavenumber representation of data (presented in Chapter 2), and coherent data-

driven matched field processing, a localization method thatcombines sparse wavenumber anal-

ysis with matched field processing (presented in Chapter 3),to localize a passive scatterer that

reflects ultrasonic guided waves. We demonstrate the methodology’s performance experimen-

tally by localizing two holes in an aluminum plate with data collected in a laboratory. We use

the coherent processor, which assumes we can accurately predict the frequency characteristics

of the measured signals, because our sensors are synchronized and we model each hole as an

ideal point scatterer. Due to these conditions, the frequency characteristics of the reflections

from each hole should match those recovered by sparse wavenumber analysis.

In our laboratory experiments, we consider a monitoring problem in which sensors actively

search for scatterers in the medium [24]. We compare coherent data-driven matched field pro-

cessing with a delay-and-sum based approach, which is commonly used in structural health

monitoring research [24, 25, 33]. In our results, we achievea 5 times smaller localization er-

ror and a49 times finer resolution than the delay-and-sum method. We also demonstrate that

data-driven matched field processing can localize multiplenearby scatters, which is generally

not possible with the delay-and-sum method due to its poor resolution.

4.2 Data-driven calibration
Data-driven matched field processing consists of calibration and matched field localization.

We use calibration data from the structure to accurately recover the dispersion curves of the
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medium with sparse wavenumber analysis [49]. We then integrate the dispersion curve knowl-

edge with matched field processing to locate a target in the medium. For thein situ system

considered in this chapter, we do not use a reference specimen to collect the calibration data.

The calibration data is collected from the same sensors thatare used to collect the test data. This

is because sparse wavenumber analysis is robust to noise andto unmodeled multipath interfer-

ence (e.g., from damage, boundaries, or other inhomogeneities in the structure), as previously

shown in chapter 2. Therefore, a reference specimen is not necessary.

The calibration datayq, originally discussed and derived in Section 3.2.1, is collected by

transmitting and receiving an ultrasonic pulse between allpossible pairs of sensors in the system.

Therefore, if there areP sensors on the structure, we can collectP (P −1)/2 unique calibration

measurements with which to build a model. For the localization results discussed in Section 4.4,

the calibration data and test data are collected with the same sensors and in the same manner.

The test dataxq, originally discussed and derived in Section 3.2.2, in thischapter is repre-

sented by the difference between a collection of baseline measurements, prior to the introduction

of damage, and the current set of measurements, which may contain damage. This baseline sub-

traction step is often done to remove signals that are not related to the growth of damage and is

commonly applied to guided wave structural health monitoring [25,91]. If the medium has not

been changed due to environmental or operation variations,the result of background subtrac-

tion will contain the Lamb wave response from damage in the aluminum plate corresponding to

travel total distances ofr∗ = [r∗1 . . . r
∗
M ].

The model datâxq(r), originally discussed and derived in Section 3.2.3, represents the

signals predicted by sparse wavenumber synthesis for the distances contained in the vector

r. To localize damage in a structure, we can generate model data for manyr vectors, each

corresponding to a possible scatterer at different locations on a grid, and then apply coherent

matched field processing to compare the data-driven modelx̂q(r) with the test dataxq. The

coherent data-driven matched field processor is discussed in depth in Chapter 3. In the following

sections, we define our specific choice ofr for locating a damage in a large structure, and we

demonstrate the performance of data-driven matched field processing.
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Figure 4.1: A diagram of the aluminum plate used for our experimental setup. Each square
indicates a sensor used to transmit and receive signals and the filled circles indicate the locations
of the two holes, drilled through the plate, that are used in the experiments.

4.3 Experimental methodology
We test data-driven matched field processing on a1.22 m by 1.22 m by 0.28 cm aluminum

plate. To transmit and receive Lamb wave signals, we bonded17 PZT (lead zirconate titanate)

transducers with dimensions of0.7 cm by0.8 cm by0.2 mm across the top surface of the plate.

The positions of each sensor were chosen at random to satisfyRIP, as discussed in Section IV.

Figure 4.1 illustrates the locations of each sensor. Note that several sensors are located near the

edges of the plate, so we measure significant unmodeled multipath interference from reflections.

The experiment was performed in two steps. First, we collected the baseline, calibration

datayq on the undamaged plate by transmitting and measuring a10 µs linear chirp from0 Hz

to 2 MHz between each pair of transducers. This resulted in272 measurements with136 unique

distances. This data was used to compute the frequency-wavenumber representation of the

medium by sparse wavenumber analysis. We then drilled a0.5 cm hole near the center of the

plate and collected an additional272 measurements in the same manner. Additional measure-

ments were taken after the hole was expanded to0.75 cm and after a second0.75 cm hole was

drilled 6.5 cm away from the first. The hole locations are shown in Figure 4.1. For each experi-

ment, the test dataxq is represented by the difference between the data measured with each hole

present and a baseline data set with no hole present. While wealso use the baseline signals for

our calibration datayq, we can alternatively use any of the other measured signals due to the
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Figure 4.2: Example broadband and narrowband signals from the calibration and test data. The
test data represents residue signals after baseline subtraction.

robustness of sparse wavenumber analysis.

Figures 4.2a and 4.2b illustrate signals in the calibrationdata and baseline subtract test data

with the single0.5 cm hole, respectively. Before plotting, the signals are pulse compressed [98]

by correlating them with the transmitted chirp. Figures 4.2c and 4.2d show the same signals but

filtered around a frequency of300 kHz with a bandwidth of120 kHz. These figures illustrate

the complexity of a broadband Lamb wave signal and show that the test data in Figures 4.2b

and 4.2d is heavily buried in noise and multipath interference.

4.3.1 Method parameters

To generate the model datâx(r), we definer with respect to a grid of points. We denote

(xr, yr) to be the coordinates of a specific point on the grid and(x̃i, ỹi) to be the coordinates of

each sensor1 ≤ i ≤ P . To localize a scatterer, we approximate the damage as an ideal point

reflector. Therefore, the distance traveled from one sensorto a point on the grid and then to a

second sensor is defined by

r =

{√
(x̃i − xr)2 + (ỹi − yr)2 +

√
(x̃j − xr)2 + (ỹj − yr)2

∣∣∣∣ i 6= j andi, j ∈ [1, P ]

}
. (4.1)

Note that we assume the transmit and receiver sensors are different.
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We apply sparse wavenumber analysis to the calibration datawith 1000 wavenumbers, uni-

formly spanning fromκ = 0 m−1 to κ = 1000 m−1. Figure 3.1 shows an example frequency-

wavenumber representation for the plate. Before computingthe frequency-wavenumber rep-

resentation, as described in (3.5), we apply a window to the data to remove signals that have

apparent group velocities, relative to the distance between sensors, of less than2000 m/s. This

has been demonstrated to improve performance in previous work [49].

Like many structural health monitoring localization methods, we also apply a window to

the test dataxq to reduce unmodeled multipath interference appearing latein the signal’s time

domain [25]. Note that since the target’s location is unknown, these windows may remove

reflected signals originating from the scatterer. For our experiments, we window the test data

with the same2000 m/s velocity window used by the calibration data. Compared with a fixed

time window, this approach adjusts window duration according to the positions of each sensor.

When performing the localization, we utilize60 frequencies uniformly sampled between

60 kHz and780 kHz. Note that one strength of data-driven matched field processing is its

capability to use wideband signals with many modes and dispersive effects, such as shown in

Figure 4.2b. This is in contrast with many traditional localization methods, such as delay-and-

sum techniques, that must use a narrow band of frequencies toisolate a signal with single mode

and a single group velocity, such as shown in Figure 4.2d.

4.3.2 Comparison with delay-and-sum

We compare our data-driven matched field processing framework with a delay-and-sum

localization technique, which is commonly applied to structural health monitoring problems

[24,25]. This methodology uses a single mode model with constant and equal phase and group

velocities. For Lamb waves, this modeling assumption is generally applicable only around a

narrow band of frequencies. Therefore, before applying delay-and-sum localization, we filter

the test data around300 kHz with a bandwidth of120 kHz, as illustrated in Figures 4.2c and

4.2d.

Specifically, the delay model associated with delay-and-sum localization can be represented
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by anM × 1 vector

x̂dly
q (r) = Sf(ωq)

[
e−jωqr1/vg · · · e−jωqrM/vg

]T
. (4.2)

whereSf (ω) is the narrowband-filtered, transmitted signal and the parametervg represents the

narrowband group velocity of the wave. We letvg = 5110.83 m/s, which is computed from the

slope of the zeroth symmetric mode of the frequency-wavenumber representation, the second

curve shown in Figure 3.1, at300 kHz. In the time domain, each complex exponential term

in (4.2) represents a delay byri/vg, the expected travel time of a wave traveling with a group

velocityvg.

Due to phase errors resulting from dispersion, many Lamb wave delay-and-sum localization

methods do not compare the raw model data and test data, but instead compare the envelopes of

each data set [24]. This envelope-delay model is defined by theM × 1 vector

x̂env
q (r) = F

{∣∣F−1
{
x̂dly
q (r)

}
+ jH

{
F−1

{
x̂dly
q (r)

}}∣∣} , (4.3)

whereF{·}, F−1{·}, andH{·} represent the discrete Fourier transform, the inverse discrete

Fourier transform, and the Hilbert transform, respectively, that operate over the time or fre-

quencyωq domain associated with each vector.

We consider both the standard delay modelx̂dly
q and the envelope-delaŷxenv

q (r). To perform

localization, we integrate these models with the coherent matched field processor in (3.10),

choosingx̂q = x̂dly
q or x̂q = x̂env

q . The pairing of the delay-envelope model and the coherent

matched field processor is very similar to the delay-and-sumlocalization methods commonly

used in other guided wave structural health monitoring work[24,25].

As with our data-driven approach, the delay and envelope-delay models are implemented

over60 frequencies. However, since the delay model requires a narrow band of frequencies, it

uses60 frequencies uniformly spanning from180 kHz to 420 kHz. Also, since the envelope-

delay model removes most high frequency components in the envelope extraction process, it

uses60 frequencies uniformly spanning from0 kHz to 120 kHz. We use a wide band of fre-

quencies for the data-driven model to emphasize that it is not restricted to narrowband signals

like other localization methods. As discussed in Section 4.4, we observe little difference in our

experimental results when the data-driven model uses the same frequencies as the delay model.
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4.4 Experimental results and discussion
In this section, we apply coherent data-driven matched fieldprocessing in (3.15) to our

experimental data. We then compare our results with the delay model and delay-envelope model

in (4.2) and (4.3), respectively. To analyze the relative strength of each method, we consider a

normalized ambiguity function

bn(r) =
b(r)−minr b(r)

maxr (b(r)−minr b(r))
. (4.4)

This normalization scales all values of the ambiguity function b(r) to be between0 and1.

4.4.1 Figures of merit
We evaluate the performance of each model through three metrics: 1) the localization accu-

racy, 2) the localization resolution, and 3) the average peak-to-artifact ratio. The localization

accuracy tests each method’s capability of correctly estimate the target’s position. If we assume

the true coordinates of the target are(x∗
r , y

∗
r) and the estimated coordinates of the target are

(x̂r, ŷr), then the localization errorrerr is defined by

rerr =

√
(x∗

r − x̂r)
2 + (y∗r − ŷr)

2 . (4.5)

We define the localization resolution as the half-amplitudewidth of the main lobe around

the maximum value(x̂r, ŷr) in the normalized ambiguity functionbn(r). We determine the

half-amplitude width of the main lobe by plotting the valuesof bn(r) as a function of distance

from the maximum value(x̂r, ŷr). We then perform a least-square fit of a Gaussian curve with

maximum value of1, an unknown minimum value of1 − c, and an unknown decay coefficient

a,

f(r) = ce−ar2 + (1− c) , (4.6)

wherer is the distance from(x̂r, ŷr). The Gaussian fit is chosen because is generally provides a

good match to the data. The half-amplitude widthσ is then directly computed from the resulting

fitting coefficients as

σ = 2

√
a log

(
c− 1/2

c

)
. (4.7)
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Figure 4.3: An example plot of the normalized ambiguity function from the data-driven model
as function of distance. The dotted line represents the Gaussian curve fit to the data.

In general, a small half-amplitude width is desirable because it indicates less ambiguity concern-

ing the location of the target. The half-amplitude also represents a measure of the region for

which RNP does not apply, which is discussed in Section 3.4. Therefore, a small half-amplitude

width implies that multiple targets may be localized near each another.

Since the maximum of the normalized ambiguity function is1, we define the average peak-

to-artifact ratio asc from (4.6), one minus the minimum value of the Gaussian fit. A largec value

denotes greater confidence in the localization due to fewer artifacts. Figure 4.3 illustrates the

ambiguity function, for the0.5 cm hole, plotted as a function of distance from the maximum

value and its Gaussian curve fit. While other researchers have similarly used an exponential

least-squares fit [90] to evaluate localization performance, we found the Gaussian curve to better

characterize our results.

Table 1 shows the resulting figures of merit from our experiments. Resolutions are not

provided in Table 1 if localization accuracy is poor, more than4 hole diameters away from the

scatterer. The following subsections discuss these results in greater detail.

4.4.2 One scatterer

First we consider the problem of localizing a single0.5 cm hole in an aluminum plate.

Figures 4.4a–4.4c illustrate the ambiguity functions for the data-driven model, the standard

delay model, and the envelope-delay model, respectively. These figures show the ambiguity

function over the entire plate. For each of the plots, the light colors represent large values of
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Model/Test Acc. [cm] Res. [cm] PAR [dB]

Pitch-catch: One 0.5 cm hole

Data-driven 0.36 0.68 19.46

Delay 10.87 – 14.93

Envelope-delay 1.72 33.10 5.68

Pitch-catch: One 0.75 cm hole

Data-driven 0.14 0.78 16.42

Delay 63.76 – 13.95

Envelope-delay 1.72 34.15 5.60

Pitch-catch: Two 0.75 cm holes

Data-driven (hole 1) 0.13 0.88 17.60

Data-driven (hole 2) 0.41 0.90 19.93

Table 4.1: Figures of merit used to evaluate the localization performance of each model. The
figures of merit include the localization accuracy (Acc.), half-amplitude width resolution (Res.),
and average peak-to-artifact ratio (PAR).

the ambiguity function and dark colors represent small values. The color code is chosen to be

readable in both grayscale and color and is used in all of the following figures. Figures 4.5a–4.5c

show a magnified4 cm by4 cm region of the ambiguity function around the scatterer. Ineach

plot, the PZT sensors on the plate are denoted by squares and the hole is represented by a circle.

If located within the bounds of each magnified image, the crosses represent the maximum value

of each respective ambiguity function.

The data-driven method illustrates a clear singular peak with a maximum value located

0.36 cm away from the hole’s measured center, a value28.0% smaller than the hole’s diameter.

The main lobe’s half-amplitude width measures0.69 cm, approximately the same size as the

smallest dimension of each sensor. The data-driven method also achieves an average peak-

to-artifact ratio of19.46 dB and the artifacts gradually weaken as we move further fromthe

target. Note that if we use the same narrowband data as used bythe delay model, we observe a

relatively insignificant change in performance. The localization error and half-amplitude width

improves slightly to0.24 cm and0.56 cm, respectively, and the peak-to-artifact ratio weakens

to 18.48 dB.
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Figure 4.4: Ambiguity functions resulting from applying the data-driven, delay, and envelope-
delay models to localize a single0.5 cm hole in an aluminium plate. The figures show the entire
1.22 m by1.22 m plate. The squares and circles denote the locations of the sensors and the hole,
respectively.
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Figure 4.5: Ambiguity functions resulting from applying the data-driven, delay, and envelope-
delay models to localize a single0.5 cm hole in an aluminium plate. The figures show a4 cm
by 4 cm region around the scatterer. The squares and circles denote the locations of the sensors
and the hole center, respectively. The cross denotes the estimated location of the hole.

Compared with our wideband data-driven approach, the delayand envelope-delay models

achieve poor performance. Due to phase distortions, the delay model fails to localize the scat-

terer. The delay model’s maximum value is located10.87 cm away from the measured hole cen-

ter, resulting in a localization error30.2 times greater than the wideband data-driven method.
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The ambiguity function also has many large artifacts throughout the ambiguity function, re-

sulting in an average peak-to-artifact ratio of14.93 dB, which is2.84 times smaller than the

coherent data-driven matched field processor.

For the envelope-delay model, the maximum value of the ambiguity function is approxi-

mately1.72 cm away from the measured hole center. This result is superior to the standard delay

model since it compensates for phase distortions, but it remains worse than the data-driven ap-

proach, which has a4.8 times smaller error. Due to the envelope extraction, the envelope-delay

model has a poor half-amplitude width. The main lobe covers almost the entire plate, and, as

a result, the wideband data-driven method has a48.7 times smaller resolution. The large main

lobe also results in a poor average peak-to-artifact ratio of 5.68 dB, which is23.9 times worse

than the coherent data-driven matched field processor.

When we increase the hole size from0.5 cm to 0.7 cm, we observe that the data-driven

method’s half-amplitude width increases and its peak-to-artifact ratio decreases slightly. How-

ever, as shown in Table 4.1, the data-driven results do not change significantly. In contrast, the

accuracy of the delay model changes substantially after enlarging the hole. This shows that

coherent data-driven matched field processor is relativelystable to small, structural changes in

the environment.

4.4.3 Two scatterers

As shown in the previous results, the coherent data-driven matched field processor achieves

significantly better accuracy and resolution than the delayand envelope-delay approaches. These

results suggest that the data-driven method should be capable of localizing multiple scatterers

near each other. In this subsection, we test this hypothesisby using the data-driven approach to

localize two0.75 cm holes separated by a distance of6.5 cm, approximately8.7 hole diameters.

We localize a second scatterer by subtracting the Gaussian fit f(r) in (4.6) from the ambi-

guity function and re-normalizing the result using (4.4) toobtain a new ambiguity function. If

we definedbn(r) as the normalized ambiguity as function of distance from theinitial maximum

value(x̂r, ŷr) andf(r) is the Gaussian fit, then the new normalized ambiguity functionb
′

n(r) is
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Figure 4.6: Ambiguity functions resulting from applying the data-driven, delay, and envelope-
delay models to localize two0.75 cm holes in an aluminium plate. The figures show the entire
1.22 m by 1.22 m plate. The squares and circles denote the locations of the sensors and the
holes, respectively.

defined by

b
′

(r) = bn(r)− f(r)

b
′

n(r) =
b
′

(r)−minr b
′

(r)

maxr (b
′(r)−minr b

′(r))
, (4.8)

The new maximum value ofb
′

n(r) and its associated location on the grid is then defined as the lo-

cation of the second hole. Alternative multi-target localization approaches, such as the CLEAN

algorithm [99], have been proposed to detect multiple targets with matched field processing. In

this chapter, we use our iterative approach to quantify the resolution and obtain the figures of

merit for the two largest regions in the ambiguity function.

Figures 4.6a–4.6c illustrate the matched field ambiguity function for the the data-driven

model, delay model, and the envelope-delay model, respectively, across the entire plate for the

two scatterer scenario. Figures 4.7a and 4.7b show the magnified4 cm by4 cm regions around

each of the two scatterer locations for the data-driven model only. The two hole locations are

denoted by circles, the transducers are shown as squares, and the estimated scatterer locations

are illustrated as crosses.

Compared with the data-driven model’s single scatterer ambiguity function in Figure 4.4a,

we visually observe slightly larger artifacts around each hole but good localization of both scat-
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Figure 4.7: Ambiguity functions resulting from applying the data-driven model to localize two
0.75 cm holes in an aluminium plate. The figures show the two4 cm by4 cm regions around
each scatterer. The squares and circles denote the locations of the sensors and the hole centers,
respectively. The crosses denote the estimated locations of each hole.

terers. The maximum value of the ambiguity function corresponds to the new hole and achieves

a localization error of0.41 cm, approximately45.3% smaller than the hole diameter, and a half-

amplitude width of0.88 cm, about20.0% larger than the hole diameter. After removing the

first peak, the second peak corresponds to the location of theoriginal hole from the previous

scenario and has a localization error of0.13 cm, about82.7% smaller than the hole diameter,

and a half-amplitude width of0.90 cm.

In Figures 4.6b and 4.6c, we see that the delay and envelope-delay models fail to accurately

localize both scatterers. As in the single scatterer scenario, the delay method localizes neither

scatterer accurately. For the envelope-delay model, a single main lobe covers both holes, caus-

ing the result to appear as a single scatterer.

4.5 Conclusions
This chapter implemented the coherent data-driven matchedfield processing localization

methodology, initially discussed in Chapter 3, to localizetwo holes in an aluminum plate struc-

ture. To accurately accomplish this, data-driven matched field processing leverages a data-

driven model, which is generated by sparse wavenumber analysis. Sparse wavenumber analysis

and sparse wavenumber synthesis are discussed in depth in Chapter 2.
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Using experimental guided wave data from the aluminum plate, we compared the perfor-

mance of data-driven matched field processing with a delay-and-sum localization approach,

which is commonly applied in the literature. Compared with this approach, we achieved a4.8

times improvement in localization accuracy and a48.7 times improvement in resolution for a

single scatterer. We then demonstrated that data-driven matched field processing successfully

localizes two different scatterers located6.5 cm, or8.7 hole diameters, apart from each other

while the delay-and-sum methods could not.

Overall, the data-driven matched field processing framework achieves an improved localiza-

tion performance over the other methods because it incorporates and obtains information about

the medium directly from data. The delay and envelope-delaymethods use simple models to

represent the complex multimodal and dispersive characteristics of the medium and use filtering

and preprocessing to make the data fit the model. In contrast,data-driven matched field process-

ing utilizes the data-derived wideband, multimodal, and dispersive characteristics to localize

the scatterers.
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CHAPTER 5

Incoherent Data-Driven Matched Field

Processing: Acoustic Emission Localization

5.1 Motivation

Acoustic emissions analysis plays a large role in nondestructive evaluation and structural

health monitoring systems. An acoustic emission is commonly defined as a spontaneous, tran-

sient wave that is generated in a localized region of space. An acoustic emission event may be

the result of crack formation or growth from stresses and strains in the material [100, 101] or

may be generated from strong, external, and potentially damaging impact forces incident on a

structure [28,29]. For these reasons, detecting and locating acoustic emission sources is a widely

applied tool for detecting and locating damage in structures, including concrete structures [102],

steel bridge girders [103], diesel engines [104], laminates and composites [28, 105, 106], and

various plate-like media [30,105,107–109].

In plate-like structures, acoustic emission events generate guided waves that radiate outward

from the damage location. We measure these events using piezoelectric sensors distributed

across the plate’s surface and process the data for information about the acoustic emission’s

origin. Due to the structure’s geometry, plate waves, also known as Lamb waves, propagate

with multimodal and dispersive characteristics that distort the waves as they travel through the

medium. Mathematically, we can represent a sensor’s measured voltage signalX(r, ω) in the

frequency (ω) and (r) domain by the plate framework expressed in (1.6).
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In (1.6) r is the distance traveled by the wave resulting from the acoustic emission. In this

representation,S(ω) is the signal emitted by the source andGm(ω) andkm(ω) are the frequency-

dependent amplitude and wavenumber functions of each modem at angular frequencyω. As

illustrated in (1.6), an acoustic event generates multiplewave modes that each propagate with

a different frequency-dependent wavenumber, or phase velocity vp(ω) = ω/km(ω). We refer

to the collection of wavenumber functionskm(ω) for all m as the dispersion curves of the

medium [10]. An example set of theoretical dispersion curves for Lamb waves is shown in

Figure 1.1.

The multimodal and dispersive wave behavior represents a significant challenge for guided

wave analysis because the multiple modes and dispersion continuously alter both the envelope

and phase of the guided waves as they propagate through the medium. We generally do not

know a priori the true dispersion curves for a structure because they varywith material and

environmental properties, such as density and temperature. Therefore, we do not precisely

know how the guided waves evolve as they travel throughout the medium, and we need to either

learn the dispersion characteristics or compensate for them when performing data analysis.

Traditional acoustic emission localization methods determine the origin of the measured

signal through triangulation [32, 107, 110] or multilateration [29–31] techniques. These meth-

ods are performed in two steps. First, the wave’s time-of-arrival or time-difference-of-arrival,

relative to some anchor sensor, is determined for each sensor. This is usually computed by

peak detection by finding the maximum value of each measured signal. However, to compen-

sate for dispersion’s distorting effects, the data is usually first simplified by narrowband filter-

ing [24,111], sometimes through application of the continuous wavelet transform [29,105], and

extracting each signal’s envelope [31, 107]. The time-of-arrival values are then input into a

least-squares optimization to estimate the acoustic emission origin.

Although triangulation and multilateration work well in ideal conditions, they can be unre-

liable when the data is corrupted by significant multipath interference and noise [112]. These

effects commonly cause time-of-arrival estimation errorssince the signal’s maximum envelope

value can be significantly affected by small signal variations, leading to large errors in the local-

ization result. Due to this sensitivity, adding more sensors into a system, which may introduce
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new errors, is not always beneficial and can degrade localization performance.

In this chapter, we apply data-driven matched field processing [50] to overcome the chal-

lenges associated with triangulation and multilaterationmethods. Data-driven matched field

processing uses data-derived dispersion curves of the medium, extracted from a relatively small

set of calibration data [49], to optimally locate an acoustic emission source. Unlike triangula-

tion and multilateration, data-driven matched field processing utilizes all of the data to perform

localization and requires no filtering or envelope extraction to simplify the signal, resulting in

strong robustness to multipath errors and noise.

In Chapter 5, data-driven matched field processing was used to locate a hole in an aluminum

plate using active guided wave interrogation methods, where the initial excitation is well known.

In this chapter, we extend the framework to acoustic emission localization, in which the excita-

tion’s time trace is unknown and the time of excitation is unknown. Due to those conditions, we

use the incoherent data-driven matched field processor and apply it to experimental measure-

ments of acoustic emission events in a laboratory. We evaluate and compare the performance

of the incoherent data-driven matched field processor with aconventional technique, known as

multilateration, for different levels of multipath error and additive noise. With8 sensors, we

demonstrate a13 dB, or a factor of20 times, improvement in mean accuracy and an11 dB, or a

factor of12.5 times, improvement in robustness to noise when compared with multilateration.

5.2 Data-driven calibration
Data-driven matched field processing consists of two steps,data-driven calibration followed

by matched field localization. In the first step, we acquire calibration data from the structure

and use it to accurately recover the dispersion curves of themedium. This is accomplished

through sparse wavenumber analysis [49], as discussed in Chapter 2. We then integrate the

dispersion curve knowledge with matched field processing. In this section, we briefly discuss

the data-driven calibration procedure.

The calibration datayq, originally discussed and derived in Section 3.2.1, is assumed to

be collected prior to the acoustic emission localization. We can collect the calibration data

in several ways. For anin situ system with transmission capabilities, the calibration data can
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be gathered by transmitting and receiving guided waves between each of the sensors on the

structure. If the system containsP sensors, this approach will generateP (P − 1)/2 unique

measurements, allowing us to obtain a significant amount of data with relatively few sensors.

This is the approach used in this chapter. Alternatively, wecan manually excite and receive

guided wave measurements from throughout the structure with a combination of manually posi-

tioned ultrasonic probes and/orin situ sensors. This approach can be advantageous when thein

situ sensors cannot transmit information or when we want to collect more calibration data than

available with the former approach.

The measured test dataxq, originally discussed and derived in Section 3.2.2, from each

acoustic emission is represented as a collection of guided Lamb wave responses that travelr∗ =

[r∗1 . . . r
∗
M ] distances from the acoustic emission origin and each sensorin the system. Unlike

the damage localization system in Chapter 4, we do not need toperform baseline subtraction to

remove prior known information. Instead, we process the rawdata.

The model datâxq(r), originally discussed and derived in Section 3.2.1, represents signals

generated from our data-driven model for distancesr. Similar to the damage localization sce-

nario in Chapter 4, we generate model data for manyr vectors, each corresponding to different

source locations on a grid, and apply incoherent matched field processing to compare each data-

driven model vector̂xq(r) with the test dataxq. In the following sections, we demonstrate the

performance of incoherent data-driven matched field processing.

5.3 Experimental methodology
We test and evaluate incoherent data-driven matched field processing on a1.22 m by1.22 m

by 0.28 cm aluminum plate. For generating calibration data and measuring acoustic events, we

attached15 in situ 0.7 cm by0.8 cm by0.09 mm PZT (lead zirconate titanate) transducers on the

surface, near the perimeter of the plate. The specific locations of each transducer are shown in

Figure 5.1. This choice of sensor locations allows the system to effectively monitor most of the

plate’s surface for acoustic emissions. However, reflections from the nearby plate boundaries

complicate the data analysis.

To generate an acoustic emission, we drop a9.5 mm diameter ball bearing from a fixed
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Figure 5.1: Positions of each sensor location (open squares) and acoustic emission(AE) test
location (closed circles) on the experimental plate setup.In the experiments, each acoustic
emission location is tested separately.

height of 6.7 cm above the plate. We repeat this procedure at10 different locations across

the plate, shown in Figure 5.1. During the experiments, we observed no ball bearing bounces.

We use a ball bearing drop rather than the more traditional pencil lead break for two reasons.

First, the ball bearing drop is acoustically stronger. Thisallows us to perform a noise study, by

artificially adding noise, with little additional noise from the experiment.

Second, the ball bearing drop has better repeatability. We test incoherent data-driven matched

field processing with15 sensors but only8 input channels. For each position in Figure 5.1,

we repeat the same acoustic emission experiment5 times for two different sets of8 transduc-

ers, keeping one transducer common between both sets. We then combine the data sets that

have most similar measurements from the common transducer.For the chosen data sets, the

correlation coefficient between the common sensor measurements is always greater than0.99,

indicating good repeatability.

5.3.1 Method parameters

In all of our experiments, the calibration data is acquired by having each of the15 trans-

ducers transmit a0 kHz to 30 kHz linear chirp pulse of1 ms duration and by measuring the

response at each of the other transducers. The entire systemtransmits and receives data with

a 10 MHz sampling rate. Before applying sparse wavenumber analysis to generate the disper-
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Figure 5.2: A recovered3 kHz to19 kHz frequency-wavenumber, or dispersion curve, represen-
tation from measured Lamb wave data.

sion curves shown in Figure 5.2, the calibration data is windowed with an exponential taper to

remove any signals traveling with apparent group velocities less than700 m/s. Figure 5.2 illus-

trates the resulting recovered dispersion curves. While the results in Figure 5.2 do not display

perfectly smooth dispersion curves as found in Chapter 4, possibly due to additional multipath

error, we demonstrate that Figure 5.2 is still a good representation of the medium through our

experiments.

For incoherent data-driven matched field processing, we assume an acoustic emission origi-

nates from a pair of coordinates(xe, ye) and ourP sensors are positioned at coordinates(xi, yi)

for i = 1, 2, . . . , P , the distances between the acoustic emission source and each sensor are

contained in the vector

re =
{√

(xe − xi)2 + (ye − yi)2
∣∣∣ i 6= j andi ∈ [1, P ]

}
. (5.1)

The vector̂xq(r = re) will then represent a model of the measurements that we wouldobserve

from an acoustic emission originating at(xe, ye). By changing the coordinates of(xe, ye), we

can generate a new modelx̂q(r = re) of an acoustic emission at any another point in the

medium. By combining multiple models across a set grid on thestructure, we create a discrete

wave propagation model̂xq(r), which varies as a function of grid location, orr, and can be

integrated with matched field processing.
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Figure 5.3: An example measured Lamb wave signal (a) withoutadditional processing, (b)
with narrowband filtering around10 kHz, (c) with additional white, Gaussian noise, (d) with
additional white Gaussian noise and narrowband filtering.

To localize an acoustic emission with incoherent matched field processing, we useQ = 21

frequencies uniformly spaced between4 kHz and24 kHz and apply no additional processing.

For multilateration, we apply a narrowband Gaussian filter to the data with a3 dB bandwidth

between5 kHz and15 kHz. This is done to isolate a single group velocity. We choose the5 kHz

to 15 kHz frequency band because the strongest frequencies are found in this range. The group

velocity used by multilateration is computed from the slopeof the dispersion curve recovered

by sparse wavenumber analysis in Figure 5.2. We use a group velocity of 1142.4 m/s. Examples

of the typical signals used for localization are found in Figure 5.3.

5.3.2 Comparison with multilateration

The multilateration localization method uses time-of-arrival estimates from each measure-

ment to find the acoustic emission origin. Conventionally, these methods apply a narrowband

filter [29, 111] to reduced distortion from dispersion followed by envelope extraction [31, 107]

to simplify the measured data. Ifxf (t) represents a measured and narrowband filtered signal,
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the envelope can be extracted using the expression

x̃f (t) = |xf(t) + jH{xf (t)}| , (5.2)

wherej is the imaginary number andH{·} is the Hilbert transform. Once the envelope has

been extracted, the maximum value of the data envelope is used to measure the signal’s time-of-

arrival.

The challenge with this approach is that multipath signals and noise can easily result in an

incorrect time-of-arrival estimate. Figure 5.3 shows examples from experimental data where

this occurs. Figure 5.3a shows a measured acoustic emissionsignal before filtering. Figure

5.3(b) shows the filtered signal and demonstrates that the maximum value, at0.64 ms, is not

associated with the direct arrival time, at0.36 ms. Figure 5.3(c) shows the measured data from

Figure 5.3a after being corrupted by wideband white, Gaussian noise. Figure 5.3(d) shows the

corrupted signal after filtering. We can see that the noise again changes the estimate arrival time

to be0.59 ms.

Multilateration uses each time-of-arrival estimate to locate the acoustic emission source

through a least-square optimization. If we assumet1, t2, . . . , tP−1 represent the time-of-arrival

estimates fromP − 1 sensors andta represents the time-of-arrival for a single anchor sensor,

required if the excitation time is not knowa priori, then multilateration estimates the coordinate

source location(x̂, ŷ) as the solution to [30]

(x̂, ŷ) = argmin
x,y

‖u(x, y)‖22 (5.3)

s.t. u(x, y) =

P∑

p=1

(
(xa − xp)

2 + (ya − yp)
2 − (x− xp)

2 + (y − yp)
2)− (tavg − tpvg) ,

wherevg is the assumed known group velocity of the waves around the filter frequency.

Compared with data-driven matched field processing, multilateration is more sensitive to

multipath and noise. Instead of potentially utilizing the entire measured signal, multilateration

optimization only usesP time-of-arrival estimates to locate the acoustic emissionsource. If

one of those estimates is incorrect, it will have a large effect on the result. Therefore, multi-

lateration does not significantly improve with more sensors. We demonstrate this sensitivity

experimentally in Section 5.
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When we solve multilateration optimization, we use an interior point algorithm and select

the center of the plate as its initial condition. We also constrain the optimization so that the

result must be located within the plate’s boundaries.

5.4 Experimental results and discussion
With the experimentally measured data, we conduct two studies. In the first study, we

investigate the performance of data-driven matched field processing when locating acoustic

emissions at different points on the plate that experience different levels of multipath error. This

study demonstrates data-driven matched field processing’srobustness to multipath signals. In

the second study, we corrupt the data with various level of white, Gaussian noise to demonstrate

data-driven matched field processing’s robustness to random noise. We also investigate how the

data-driven ambiguity functionb(r) varies as a function of the number of sensors used and the

signal-to-noise level.

5.4.1 Multipath study
We evaluate data-driven matched field processing at each of the ten acoustic emission loca-

tions shown in Figure 5.1. At each location, we estimate the optimal location with sets of3 to

15 different sensors. The numbers in Figure 5.1 indicate whichsensors are in each set such that
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Figure 5.4: The acoustic emission locations estimated by incoherent data-driven matched field
processing (DDMFP, crosses) and multilateration (MLat, plus signs). The true origin of each
event is shown as an open circle.
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a sensor is a member of a set if its number is less than or equal to the total number of sensors in

that set.

Figure 5.4 summarizes and compares the localization performance of the incoherent data-

driven matched field processor and multilateration for setsof 4, 7, and10 sensors. We observe

that data-driven matched field processing performs much better than multilateration. If we

define an accurate localization to be any estimate less than0.8 cm, the length of one trans-

ducer, away from the true location, then the data-driven matched field processor successfully

locates8, 9, and10 of the acoustic sources with4, 7, and10 sensors, respectively. In contrast,

multilateration never accurately locates more than3 acoustic emissions and only accurately

estimates2 acoustic emission locations with10 sensors. Multilateration degrades with more

sensors because the additional sensors introduce more incorrect time-of-arrival estimates due

the multipath.

Figure 5.5 illustrates the mean and median localization error, in terms of distance from the

true locations, as a function of the number of sensors. For multilateration, the localization

error improves slightly as the number of sensors increases but is significantly biased due to

multipath error. In contrast, the mean and median error for the incoherent data-driven matched

field processor is always below the multilateration error and remains consistently below0.8 cm

for 8 or more sensors.

Figure 5.6 demonstrates how the incoherent data-driven ambiguity function, for a single

acoustic emission location, evolves as we increase the number of sensors. For all three plots,

the maximum value correctly estimates the acoustic emission’s origin. As we increase the

number of sensors, we see the localization uncertainty significantly decreases. In Figure 5.6(c),

where most of the image is relatively dark, we can confidentlystate that the acoustic emission

is only limited to a single point. This demonstrates, in contrast with the multilateration results

from Figure 5.4, that the incoherent data-driven matched field processor benefits greatly from

additional sensor information.

Overall, these results have demonstrated that the incoherent data-driven matched field pro-

cessor can withstand a significant amount of multipath interference in the data and becomes

more robust to multipath as we introduce more sensors into the medium. In contrast, multilater-
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Figure 5.6: The incoherent data-driven ambiguity functions for a specific acoustic emission
location (marked by an open circle) with (a) 4, (b) 7, and (c) 10 sensors. The sensors are
marked as white, open squares.

ation is sensitive to multipath interference and may sufferfrom additional sensors because they

may introduce incorrect time-of-arrival estimates and significantly alter the final localization

result.
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5.4.2 Noise study

This study evaluates the performance of data-driven matched field processing as we increase

the amount of noise in the data. We corrupt the data with additive white, Gaussian noise at a

variety of different average signal-to-noise ratios. If the measured signals, before filtering, at

P sensors are represented in the time domain asx1(t), . . . , xP (t), then we define the average

signal-to-noise ratio (SNR) as

SNR =
1

PQσ2

P∑

p=1

∫ ∞

0

|xp(t)|2 dt , (5.4)

whereQ is the number of frequencies used by the incoherent data-driven matched field proces-

sor andσ2 is the noise variance. We corrupt the data with100 different instantiations of noise

for each signal-to-noise ratio considered. As in the previous study, we claim that the localiza-

tion is accurate when the estimate is less than0.8 cm, the length of a PZT sensor, away from the

true location. Based on this metric, we find the sample probability of detection by computing

the ratio of the number of accurate localizations versus thetotal number of trials.

We test the incoherent data-driven matched field processor’s robustness to noise by esti-

mating the location of the sixth (from left-to-right then top-to-bottom in Figure 5.1) acoustic

emission with both a set of5 and8 sensors. In a noise-free scenario, both data-driven matched

field processing and multilateration accurately locate theacoustic emission.

Figure 5.7 illustrates the resulting sample probability ofdetection as a function of signal-to-

noise ratio. The solid and dotted lines represent the5 and8 sensor results, respectively. Curves

further to the left on the plot indicate better robustness tonoise. Compared with multilateration,

incoherent data-driven matched field processing achieves a7 dB, or 5 times, and a11 dB, or

12.5 times, improvement in signal-to-noise robustness with5 and8 sensors, respectively. Fur-

thermore, we observe that multilateration’s robustness worsens when the number of sensors is

increased. As similarly demonstrated by the multipath study, this effect occurs because addi-

tional sensors introduce additional opportunity for time-of-arrival estimation errors.

Figure 5.8 shows the incoherent data-driven matched field processing ambiguity function

for a 3 dB signal-to-noise ratio with8 sensors. Figure 5.3(c) and 5.3(d) illustrate examples of

measured data with this level of additive noise. At3 dB, data-driven matched field processing
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guity function measured with 8 sensors and
a signal-to-noise ratio of3 dB. The plus
signs (+) show100 different estimated acous-
tic emission locations from multilateration.

has a100 percent localization accuracy while multilateration has a3 percent accuracy. The plus

signs (+) in Figure 5.8 show the100 different location estimates by multilateration. We can see

that multilateration estimates are close in some instancesbut the noise is almost always strong

enough to cause significant error.

Overall, this study demonstrates that the incoherent data-driven matched field processor

is, compared with multilateration, strongly robust to multipath interference and noise. Since

the incoherent data-driven matched field processing utilizes the dispersive properties of the

medium to locate the source, it does not have to rely on the maximum amplitude values like

multilateration. For these reasons, the incoherent data-driven matched field processor uses more

information than multilateration and its performance can improve as we introduce additional

sensors that provide even more information.
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5.5 Conclusions
This chapter implemented the incoherent data-driven matched field processor, which can

localize an acoustic source without knowledge of the acoustic signal’s timing or shape charac-

teristics, for guided wave acoustic emission localization. Unlike conventional acoustic emission

localization methods, the incoherent data-driven matchedfield processor performs localization

as one step and utilizes, through sparse wavenumber analysis, all of the dispersive behavior of

the guided waves over a wide range of frequencies to localizean acoustic emission event. As

a result, the incoherent data-driven matched field processor is robust to multipath interference

and random noise that is commonly encountered in acoustic emission measurements.

We conducted two studies with10 sets of experimental acoustic emission data to demon-

strate the effects of multipath interference and random noise on the incoherent data-driven

matched field processor and a conventional acoustic emission localization technique known

as multilateration. The multipath study demonstrated that, unlike multilateration, the incoher-

ent data-driven matched field processor’s accuracy improves consistently as more sensors are

added to the system. With8 or more sensors, the incoherent data-driven matched field pro-

cessor successfully localized all10 acoustic emission events. In contrast, multilateration only

successfully located2 of the10 events with10 sensors.

In the noise study, we demonstrated that the incoherent data-driven matched field proces-

sor’s robustness to noise also improves as additional sensors are added to the system. In con-

trast, multilateration degrades with additional sensors due to its sensitivity to error. With5 and

8 sensors, the incoherent data-driven matched field processor achieved5 times and12.5 times,

respectively, better noise performance than multilateration.

Overall, the studies show that the data-driven matched fieldprocessing is a robust tool for

localizing acoustic sources in complex media. In future work, we plan to further integrate

sparse wavenumber analysis and its data-driven model with more complex structures and other

localization processors. We also plan to explore the theoretical performance bounds of these

data-driven methodologies.
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CHAPTER 6

Refining for Environmental Variations:

The Scale Transform

6.1 Motivation

In laboratory settings, guided wave ultrasonic inspectionmethods are being extensively ex-

plored for testing large structures. Guided ultrasonic waves are popular because they propagate

through the thickness of the structure and can travel over long distances with little attenua-

tion [46]. This allows sensors to interrogate large areas all at once. However, guided waves are

inherently multi-modal and dispersive in their propagation [113]. In addition, structures’ bound-

aries generate reflections and exchange energy between wavemodes [114]. These effects make

the interpretation of measured data difficult and necessitate the use of baseline measurements.

Under ideal conditions, damage can be detected by performing baseline subtraction or time-

domain correlation between a measured signal and a baselinemeasurement [42]. Baseline

subtraction and correlation techniques attempt to remove effects from static sources, such as

reflecting boundaries, but are impractical under realisticconditions. When environmental or

operational conditions change, the propagating medium andguided wave behavior also change.

Therefore, simple baseline comparison methods are unable to distinguish damage from benign

environmental and operational effects.

One of the most ubiquitous environmental properties to affect signals is temperature [39].

Variations in temperature alter the velocity of the guided waves [38]. This effect on velocity
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can be attributed to temperature’s influence on thermal expansion and the Young’s modulus of

the material [36]. Furthermore, small changes in temperature have been shown to cause large

changes to the residual signal observed after baseline subtraction [42]. For these reasons, it is

important that structural health monitoring systems adjust for the effects of temperature.

Several techniques have already been developed to compensate for temperature in guided

waves. These compensation methods can be divided into two categories: data-driven methods

and model-driven methods. In this chapter, we focus on model-driven techniques based on an

approximate model of the effects of temperature on ultrasonic waves. This is in contrast to

data-driven approaches, where temperature compensation is achieved by comparing new ob-

servations with collections of previously obtained data. Although we focus on model-driven

approaches, these techniques can usually be combined with data-driven methods to improve the

overall compensation performance [115].

The methods explored in this chapter assume a stretch-basedmodel for temperature. A

change in temperatureTα{·} on an ultrasonic signalx(t) is approximated by a time-stretch

Tα{x(t)} ≈ x(αt) (6.1)

for small stretch factorsα. This time-stretch model is attributed to the temperature’s effect

on the wave velocity. A change in the wave velocity causes later wave arrivals to have pro-

portionally larger time shifts, creating a stretch-like effect. Although the time-stretch model

is not generally true, it is approximately true for diffuse waves, which are highly sensitive to

temperature thermal fluctuations [3,41,116]. Temperaturechanges also distort the diffuse wave

fields due to the different sensitivities of shear and longitudinal waves, but we neglect these

effects [38,117].

Methods that use a time-stretch model include the local peakcoherence [42,44] and optimal

signal stretch (OSS) [39, 40, 115] techniques. Given small variations in temperature and ideal

conditions, these approaches work well. However, previouswork has shown local peak coher-

ence to be sensitive to errors associated with the approximate stretch-based model as well as

other effects [118]. Although OSS tends to be more robust to model error, it suffers from a high

computational complexity.
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In this chapter, we present a new methodology for stretch-based, model-driven temperature

compensation algorithms based on the scale transform. Thiswork was originally presented in

references [5, 118–120]. In the scale transform domain, we can directly manipulate the stretch

factor of signals and compute quantities invariant to changes in that stretch factor. We discuss

three algorithms for temperature compensation based on these scale domain tools: the scale-

invariant correlation (SIC) method, the iterative scale transform (IST) method, and the com-

bined SIC/IST method. We demonstrate these algorithms, through analysis and experimental

tests, to be more computationally efficient than currently available techniques.

6.2 Scale transform signal processing

In this section, we express the solution to the temperature compensation problem as an

optimization problem. We then demonstrate how this optimization problem may be solved with

the scale transform.

6.2.1 Problem Formulation

According to the model in (6.1), we can compensate for temperature by stretching the dis-

torted signal by a factor of1/α. Sinceα is usually unknown, it must be estimated. We define

the optimal stretch factor estimatêα between two signalsx(t) ands(t) as that which minimizes

their normalized squared error

α̂ = argmin
α

∫ ∞

0

∣∣∣∣
x(t)

σx

− s(αt)

σs/
√
α

∣∣∣∣
2

dt . (6.2)

The normalization factors in (6.2) are defined as

σ2
x =

∫ ∞

0

|x(t)|2 dt

σ2
s/α =

∫ ∞

0

|s(αt)|2 dt (6.3)

so that the energy of each term,x(t)/σx ands(αt)/(σs/
√
α), in (6.2) is equal to1. This makes

the processing robust when we lack knowledge of the energy ofthe recorded signalx(t).
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Expanding the square in (6.2) yields

α̂ = argmin
α

∫ ∞

0

|x(t)|2
σ2
x

+
|s(αt)|2
σ2
s/α

− x(t)s(αt)

σx(σs/
√
α)

dt

= argmin
α

2−
∫ ∞

0

x(t)s(αt)

σx(σs/
√
α)

dt

= argmax
α

√
α

σxσs
Φxs(α) . (6.4)

In this formulation,̂α is expressed as the stretch factor that maximizes the inner product between

the energy normalized signalsx(t)/σx ands(αt)/(σs/
√
α). In (6.4),

Φxs(α) =

∫ ∞

0

x(t)s(αt) dt (6.5)

is the scale cross-correlation function betweenx(t) ands(t) [121], which, we note, is not a

function of time, but a function of the stretch factorα.

6.2.2 The Scale Transform

In this subsection, we briefly review the scale transform anddiscuss a couple of properties

relevant to solving (6.4). The scale transform is defined as [121]

S {x (t) ; c} = X (c) =

∫ ∞

0

x (t) t−jc−1/2 dt , (6.6)

and the inverse scale transform is

S−1 {X (c) ; t} = x (t) =
1

2π

∫ ∞

−∞

X (c) tjc−1/2 dc . (6.7)

The scale transform is a special variant of the Mellin transform, which has several stretch-

invariant properties and has been used in applications suchas the classifying of ships from radar

signals [122] and the interpreting of speech waveforms [123]. The Fourier-Mellin transform,

which is derived from the Mellin transform of the magnitude of the Fourier transform, is also

popular in several engineering fields [124–133] due to its invariant properties to both shifting

and stretching in time.

To serve as an example, Figure 6.1a and 6.1b illustrate two experimentally measured sig-

nals, truncated to2 ms, at different temperatures. Figure 6.1c and 6.1d show themagnitude of
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Figure 6.1: (a) An experimentally obtained guided wave signal measured at a temperature of
20.5◦C. (b) An experimentally obtained guided wave signal measured at a temperature of
7.8◦C (c) The scale transform magnitude of the signal in Figure 6.1a. (d) The scale transform
magnitude of the signal in Figure 6.1b. (e) The scale cross-correlation between of the signals
in Figure 6.1a and Figure 6.1b. For convenience, the horizontal axis is zoomed into the region
of interested.

the scale transforms of each measured signal. Figure 6.1e shows the normalized scale cross-

correlation function, from (6.5), of the two guided wave signals. Note that, for many physical

signals, the majority of the energy is often concentrated early in the scale transform domain.

This is analogous to a frequency “low pass” signal, but in thescale transform domain [122,133].

Intuitively, the Mellin and scale transforms are analogousto the Laplace and Fourier trans-

forms but with delay or time-shifting operations replaced by stretching or time-scaling opera-

tions. Like the Fourier transform, the scale transform satisfies Parseval’s theorem,

∫ ∞

0

x∗(t)s(t) dt =
1

2π

∫ ∞

−∞

X∗(c)S(c) dc , (6.8)

where(·)∗ denotes complex conjugate. This implies that signal energyis conserved between
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the time and scale transform domains,
∫ ∞

0

|x(t)|2 dt =
1

2π

∫ ∞

−∞

|X(c)|2 dc . (6.9)

When applying the Fourier transform, a time delay operationtranslates to a phase shift in

the frequency domain. Analogously, an energy-preserving stretch operation translates to a phase

shift in the scale transform domain [121]

S
{√

αx(αt); c
}

= X(c)ejc ln(α) . (6.10)

We refer to this stretching as energy-preserving since
∫ ∞

0

∣∣√αx(αt)
∣∣2 dt =

∫ ∞

0

|x(t)|2 dt . (6.11)

6.2.3 The Fast Mellin Transform

In this subsection, we briefly discuss the fast Mellin transform, a computationally efficient

algorithm used to compute the Mellin or scale transform of a signal. Through algebraic manip-

ulation and a change of variables such thatt = eτ anddt = eτ dτ , the scale transform in (6.6)

may be expressed as

S {x(t); c } =

∫ ∞

−∞

x (eτ ) e(1/2)τ e−jcτ dτ (6.12)

= F
{
e(1/2)τx (eτ ) ; c

}
.

The expression in (6.12) shows that the scale transform is the Fourier transform of the exponen-

tially time-skewed signal multiplied by an exponential envelope. With access to the fast Fourier

transform, (6.12) provides a very simple and practical implementation for the scale transform.

This implementation is known as the fast Mellin transform [122,129,134,135].

From this expression, we may also represent the inverse scale transform as

S−1 {X(c); t } = e−(1/2) ln(t)F−1 {X(c); ln(t)} . (6.13)

In practice, we do not always compute the inverse scale transform. Performing thet = ln(τ)

substitution has several numerical complications. Instead, we can often extract the same infor-

mation using the inverse Fourier transform. We demonstratethis in the following subsection.
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Since most discrete signals are uniformly sampled in time, computation ofx (eτ ) requires

that we resample, or interpolate, the signal onto an exponential axis. This is often accomplished

using cubic spline interpolation since it is computationally fast and provides a close approxima-

tion to sinc interpolation [136,137]. For this application, however, we found linear interpolation

to also provide good results. While linear interpolation isfaster, both methods can be computed

in linear time.

To compute the exponential axis, we assume the first sample ofeach data record doesnot

correspond to timet = 0 = e−∞. This allowsx (eτ ) to be finite in length. We also assume

the sampling period to be1 so that the first sample of each data record corresponds to time

t = 1 = e0. This allowsx (eτ ) to be causal. Since uniformly sampling a signalx(nT ) with

periodT is equivalent to stretching a signal by a factorT , this assumption can be corrected for

in the scale transform domain by applying a phase shift.

To properly resample the signal, we also need to ensure that no information is lost. This

condition requires that the minimum sampling rate satisfiesthe Nyquist sampling criteria [138].

To ensure that the Nyquist sampling criteria is satisfied, the length of the resampled signal

must be greater than or equal toN ln(N), whereN is the length of the original truncated

signal [134,139,140]. Figure 6.2 demonstrates the exponential resampling of a sine wave.

6.2.4 Maximization of the Scale Cross-Correlation Functio n

In this subsection, we discuss two strategies for maximizing the scale cross-correlation func-

tion. In Section 6.3, we will discuss the numerical benefits of these approaches.

Maximization in the Stretch Factor Domain α

The scale cross-correlation functionΦxs(α) of two signals,x(t) ands(t), can be computed

from the scale transform as [121,141]

Φxs(α) =

∫ ∞

0

x∗(t)s(αt) dt

= S−1 {X∗(c)S(c);α} . (6.14)
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Figure 6.2: A demonstration of exponential sampling compared with uniform sampling. (a)
A continuous sine wave. (b) A uniformly sampled sine wave. (c) An exponentially sampled
sine wave.

To prove (6.14), we first substitute (6.13) into (6.14), apply the Fourier transform’s convolution

theorem, and finally setτ = ln(t) to show

S−1 {X∗(c)S(c);α } = e−(1/2) ln(α)F−1 {X∗(c)S(c); ln(t)}

=

∫ ∞

−∞

eτx∗(eτ )s(eτ+ln(α)) dτ

=

∫ ∞

0

x∗(t)s(αt) dt

= Φxs(α) . (6.15)

The result in (6.14) computesΦxs(α), a function ofα, directly from the scale transform repre-

sentations,X(c) andS(c), without requiring us to stretch the signals(t). The solution to the

optimization problem in (6.4) can therefore be expressed asthe normalized maximum of (6.14),

i.e.

α̂ = argmax
α

√
α

σxσs
S−1 {X∗(c)S(c);α} (6.16)

We also note that the scale-invariant correlation coefficient betweenx(t) ands(t) is defined by

φxs = max
α

√
α

σxσs
S−1 {X∗(c)S(c);α} , (6.17)
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s(t) t = eτ F{ · ; c }

x(t) t = eτ [F{ · ; c }]∗

e(1/2)τ F−1{ · ; ln(α)} Ψxs(ln(α))

Figure 6.3: Block diagram for computing the scale cross-correlation function betweenx(t) and
s(t).

whereφxs is normalized such thatφxs = 1 whenx(t) is a stretched replica ofs(t).

As previously mentioned, we normally do not compute the inverse scale transform due to

numerical complications. Therefore, to avoid this complication when computingΦxs(α), we

further manipulate (6.16) by substituting the inverse scale transform relationship in (6.13) and

expressing the maximization as

α̂ = argmax
α

√
α

σxσs
e−(1/2) ln(α)F−1 {X∗(c)S(c); ln(α)}

= argmax
α

1

σxσs
F−1 {X∗(c)S(c); ln(α)}

= argmax
α

1

σxσs
Ψxs(ln(α)) . (6.18)

In (6.18),Ψxs(ln(α)) is now a function of the log-stretch factor. Since the natural logarithm is

monotonic, the maximum with respect toα is equivalent to the maximum with respect toln(α).

So, to avoid the inverse scale transform in (6.16), we instead compute the optimal stretch factor

and scale-invariant correlation coefficient as

α̂ = exp

(
argmax

ln(α)
Ψxs(ln(α))

)
(6.19)

φxs = max
ln(α)

1

σxσs
Ψxs(ln(α)) . (6.20)

Figure 6.3 provides a block diagram illustrating each step for computingΨxs(ln(α)).

Maximization in the Scale Transform Domain c

By applying Parseval’s theorem in (6.8) and the time-stretching property in (6.10) to the

scale-cross correlation functionΦxs(α), we can express the optimal stretch estimate in the scale
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transform domain as

α̂ = argmax
α

√
α

σxσs
Φxs(α)

= argmax
α

1

2πσxσs

∫ ∞

−∞

X∗(c)S(c) ejc ln(α) dc (6.21)

In this formulation, we are able to directly change the stretch factorα by altering the phase of

the scale transform. This is accomplished by multiplying eitherX(c) or S(c) by a complex

exponential.

6.3 Performance of Scale Transform Methods
In this section, we present three algorithms for maximizingthe scale cross-correlation func-

tion based on the formulations discussed in Section 6.2. We discuss each algorithm’s imple-

mentation, resolution, and computational complexity. We then compare these algorithms with

current methods and show that the scale transform based techniques are less computationally

complex for a given resolution or signal length.

6.3.1 Scale-invariant correlation (SIC) method

The scale-invariant correlation (SIC) method maximizesΨxs(ln(α)) directly in the log-

stretch factor domainln(α) as expressed in (6.19). Note that, in practice, by samplingx(t)

ands(t) in the time domain and truncating the signal to a length ofN samples, the scale trans-

form representations,X(c) andS(c), are represented only by a finite number of values. Since

(6.19) then computesΨxs(ln(α)) as the inverse Fourier transform ofX∗(c)S(c), we know that

we can also only evaluateΨxs(ln(α)) for a finite, discrete set of stretch factorsα.

The resolution of the set of stretch factors is defined by the sampling interval ofΨxs(ln(α)).

Assuming a unitary sampling period,x(t) is defined over the range1 ≤ t ≤ N andx (eτ ) is

defined for0 ≤ τ ≤ ln(N). Then, sincex (eτ ) is of lengthN ln(N), the interval between each

sample must be1/N . Therefore, sinceΨxs(ln(α)) is related tox (eτ ) ands (eτ ) by a Fourier

transform followed by an inverse Fourier transform, it mustalso have a sampling interval of

1/N .
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This implies that the smallest measurable deviation fromα = 1 is

∆α = exp

(
± 1

N

)
. (6.22)

For sufficiently large values ofN , we can approximate∆α by a first order Taylor series approx-

imation to get

∆α ≈ 1± 1

N
. (6.23)

So the resolution of SIC is approximately1/N . Therefore, SIC is limited in resolution. How-

ever, we will show that we can improve this resolution by combining SIC with an iterative

optimization approach.

We now calculate the computational complexity of the SIC method. To compute SIC, we

need to exponentially resamplex(t) ands(t), compute their Fourier transforms, compute an in-

verse Fourier transform, and then find the maximum of the result. MaximizingΨxs(ln(α)) and

exponentially resamplingx(t) can both be computed in linear time. If we assumex (eτ ) to be

of lengthN ln(N), then the computational complexity of computing its Fourier transform, us-

ing the fast Fourier transform algorithm, isO(N ln(N) log(N ln(N))), orO(N ln(N) log(N))

after simplifying. Since this is the most computationally expensive operation in SIC, the com-

putational complexity of SIC is alsoO(N ln(N) log(N)).

6.3.2 Iterative scale transform (IST) method
The iterative scale transform (IST) method maximizes the scale cross-correlation function

Φxs(α) by phase shiftingX∗(c) or S(c) in the scale transform domainc as shown in (6.21).

Solving this optimization problem iteratively in the scaletransform domainc allows IST to

have a very high precision. However, as shown in Figure 6.1e,the scale cross-correlation is not

(globally) convex, but is locally convex around multiple maxima. In the next subsection, we

address this issue further.

To compute the stretch factor estimateα̂ using IST, we first compute the scale transforms

X∗(c) andS(c). As with SIC, the complexity of these operations isO(N ln(N) log(N)). We

then choose an initial guess forα, multiply S(c) (or X∗(c)) by ejc ln(α), and then compute the

inner product betweenX∗(c) andS(c)ejc ln(α). Each of these operations has a linear complexity.
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This process of choosing anα, applying a phase shift, and computing an inner product is then

repeated for different values ofα by a convex optimization algorithm until the inner product

converges to a maximum value. The complexity of most convex optimization algorithms, ne-

glecting special cases, isO(M2) whereM is the number of parameters to optimize across [55].

For this application, we only optimize across one variableα, soM = 1 and the complexity

is constant. Therefore, the complexity of the optimizationprocedure isO(N ln(N)) for each

iteration, whereN ln(N) is the number of samples in the scale transform domain.

We can also improve the computational speed of IST by taking advantage of the structure

of the scale transform. The majority of the energy in a signalis often located early in the scale

transform domain. Therefore, we can truncate a large portion of the domain with little loss of

information. As a result, the cost of the iterative algorithm becomesO((ρN ln(N)), whereρ

represents the percentage of the scale transform domain retained after truncation. In Section

6.4, we demonstrate that we can reduceρ to 0.25 with only a small change to the scale estimate.

6.3.3 SIC/IST combination
As previously discussed, IST is a very precise estimation strategy but only if the result

converges to the global maximum. In contrast, SIC requires no assumption of convexity but

has a finite resolution. By combining these two methods, we can have highly precise estimates

and guarantee convergence to the global maximum. This is done by using SIC to generate the

initial stretch factor estimatêα for IST. In general, the SIC estimate will lie within the locally

convexity region around the global maximum of the scale cross-correlation functionΦxs(α).

Note however that ifN is small enough such that SIC cannot adequately resolve the main

lobe of the scale cross-correlation function, then the SIC estimate may not be accurate and IST

may not be guaranteed to converge to the globally optimal result. However, for sufficiently large

values ofN , this is not an issue. In our experimental results in Section6.4, where400 ≤ N ≤
10000, the problem never arose.

Since IST already computes the scale transform representations,X(c) andS(c), the only ad-

ditional step required when combined with SIC is the computation of the inverse Fourier trans-

form in (6.18) and maximization overΨxs(α) in (6.19). The computational complexity of these

operations isO(N ln(N) log(N)), the same as initially computingX(c) andS(c). Therefore,
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Methods Resolution Computational Complexity Iterative Complexity

Finite Resolution Methods

Search OSS 1/N O(RN2) –

SIC 1/N O(N ln(N) log(N)) –

Fine Resolution Methods

Search/Iterative OSS – O(RN2) O(N)

SIC/IST – O(N ln(N) log(N)) O(ρN ln(N))

Table 6.1: The computational complexity of each temperature compensation discussed.

these operations do not change the overall computational complexity of IST and the complexity

of SIC/IST is equivalent to the computational complexity ofIST.

6.3.4 Comparison with the optimal signal stretch (OSS) meth od

OSS [39,40,115] is another optimization strategy for estimating the optimal stretch factor̂α

between two signals. As with our scale transform based methodology, OSS also defineŝα as the

stretch factor that minimizes the squared error between thereceived signalx(t) and a stretched

baseline signals(αt). We differentiate SIC and IST with OSS by their different approaches to

implementation.

OSS directly computess(αt) and its associated squared error for several values ofα. This

time-stretching operation is computed by interpolation, which can be done in several ways. One

common method is to apply truncation and zero-padding operations in the time and frequency

domains [115]. This is a relatively efficient method for computing s(αt), but limits the resolu-

tion of α. For a fixed value ofN , the smallest computable deviation from a unitary stretch of

α = 1 is approximately1/N .

The time-stretching operation can also be accomplished by interpolation directly in the time

domain. This approach is not limited in resolution [142]. Sinc interpolation would be theoreti-

cally ideal but is computationally slow. Therefore, cubic spline and linear interpolation, which

are bothO (N) fast, may be used instead to approximate sinc interpolation.

There are then two common strategies for solving the OSS optimization problem. In this

chapter, we will refer to these strategies as search OSS and iterative OSS.
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Search OSS

Search OSS is a simple “brute force” optimization method that performs an optimization

over a finite set of stretch values. In this procedure, a baseline library s(αt) is computed for

different values ofα in an interval of lengthR. The optimal estimatêα is then the stretch value

of the library signal that minimizes the squared error withx(t). This approach is similar to some

data-driven approaches, such as optimal baseline selection [115]. However, in this situation the

library is generated from a single baseline signal rather than a collection of measured data.

We compute the squared error betweenx(t) and each library signal as a matrix-vector mul-

tiplication. To parallel SIC, we choose the resolution of search OSS to be1/N . Given that

resolution, we would need a library ofRN baselines to uniformly cover a rangeR. There-

fore, the computational complexity of searching the library is O (RN2) and the computational

complexity of generating every baseline in the library, with linear or spline based time domain

interpolation, is alsoO (RN2).

Iterative OSS

Like IST, iterative OSS uses local convexity to computeα̂ without a baseline library. The

optimal value is found by an iterative algorithm. As with IST, iterative OSS may be solved

using a variety of convex optimization algorithms. Since the convex optimization has a con-

stant complexity, the overall computational complexity ofiterative OSS is given by theO(N)

computation ofs(αt) by linear or spline based interpolation at each iteration ofthe algorithm.

Search/Iterative OSS

As with SIC and IST, we can combine the search and iterative strategies to improve overall

performance. Search OSS performs a coarse search and iterative OSS performs a fine search

with the initial condition taken from search OSS. This combined method possesses a fine res-

olution and has a computational complexity ofO(RN2) from search OSS plusO(N) from

iterative OSS.

Table 6.1 provides a concise summary of each method implemented in the following sec-

tions. We choose not to focus on the iterative methods alone since they will always perform

poorly for sufficiently large variations in temperature. The table shows separately the computa-

tional complexity of the one-time computations and the complexity of the each iteration of the
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Figure 6.4: The experimental setup shows the aluminum plateand the two PZT (lead zirconate
titanate) transducers used to monitor the plate.

optimization algorithms. The results show that SIC and SIC/IST to have smaller overall compu-

tational complexities than search OSS and search/iterative OSS. In Section 6.4, we confirm this

experimentally.

6.4 Results: Single sensor compensation
In this section, we discuss the experiments used to test the scale transform techniques. We

discuss our physical experimental setup, signal preprocessing steps, and choice of signal excita-

tion. We also briefly discuss the iterative convex optimization algorithms used by iterative OSS

and IST.

6.4.1 Experimental methodology

In our experiment, we excite and measure guided ultrasonic waves on a thin plate under

variable temperature conditions. To generate the guided waves, we used a pair of synchronized

lead zirconate titanate (PZT) piezoelectric transducers permanently bonded to the surface of a

9.8 cm wide by30.5 cm long by0.1 cm thick aluminum plate. The aluminum plate is shown

in Figure 6.4. Guided wave signals are recorded for10 ms at a sampling rate of1 MHz using

National Instruments PXI data acquisition equipment.

For 36.3 hours between 11:30 AM and 11:50 PM of the following day, the aluminum plate

was cooled and warmed by adjusting its ambient temperature.During this time, guided waves
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were synchronously generated and measured every two minutes. Using a thermocouple, the

ambient temperature was also measured every one minute.

At 6:18 PM on the first day, a cylindrical, steel, grease-coupled mass with a diameter of3.8

cm and height of4.5 cm, was placed on top of the aluminum plate to scatter waves and simulate

damage. Although the mass may not perfectly simulate damage, it changes the propagation

environment in ways unlike temperature. At 4:04 PM on the second day, the mass was then

removed from the plate.

During data collection, the acquisition equipment applieda low-pass filter with a cutoff

frequency of500 kHz to each analog signal. After measuring each signal, a high-pass filter

with a 3 kHz cutoff frequency was also applied to remove systematic low frequency noise in

the system. To eliminate any phase effects introduced by theexcitation signal, each measured

signal was correlated with the excitation waveform.

We chose to transmit a wideband, impulsive sinc excitation with a center frequency of250

kHz and flat spectral bandwidth of400 kHz. The wideband excitation helps to satisfy the diffuse

field limit conditions [3,41]. Under these conditions, the approximate time-stretch temperature

model is more reliable.

We implement iterative OSS and IST with three different iterative algorithms: a quasi-

Newton line search method [137], an active-set method [143], and an interior-point method [55].

Our results illustrate the mean results from the three algorithms.

The first algorithm is implemented using MATLAB’sfminunc function. The other two

algorithms are implemented using MATLAB’sfmincon function. We also constrain the active-

set and interior-point methods to solutions based on the resolution of search OSS and SIC.

Therefore we constrain the solution space to−1/(2N) < α − α̂ < 1/(2N), whereα̂ is the

estimate from search OSS or SIC.

6.4.2 Estimation accuracy
We first carry out a simulation study where we stretch the experimental data by a factor of

α = 1.001278, which is comparable to stretch factors observed in our experiment. For each

measurement taken, we use the unaltered signal as the singlebaseline for estimatingα. Figure

6.5 shows the results of estimating this stretch factor withfour methods: search OSS, iterative
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Figure 6.5: Estimation error (̂α−α) of SIC, SIC/IST, search OSS, and search/iterative OSS un-
der simulated ideal conditions. In the simulation, experimental measurements were numerically
stretched by a factor of1.001278 and compared with the original signal to estimate the stretch
factor.

OSS, SIC, and SIC/IST. The results confirm that the estimation error for search OSS and SIC

stay within their resolution bounds (±1/(2N)) while iterative OSS and SIC/IST approaches a

small error (on the order of10−6) very quickly. This study shows that all four methods can

successfully estimate the1.001278 stretch factor.

We then apply our SIC/IST methodology to the experimental data. We use the first mea-

surement, taken at20.5◦C, as a single baseline for estimating the stretch factor between itself

and the other measurements. Figure 6.6 shows the the reciprocal of the stretch factor estimate

1/α̂ plotted with the ambient temperature measured during the experiment. The results show

a strong linear correlation between the stretch factor estimate and temperature. Applying SIC,

search OSS, or search/iterative OSS yields similar results. This study verifies the reliability of

the time-stretch model used by these methods.

6.4.3 Computational cost

We evaluate the computational cost of each algorithm as the average computation time re-

quired to process each measurement. We evaluate each methodfor 41 different record lengths
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Figure 6.6: Comparison between the stretch factor estimateof experimental data, computed
using SIC/IST, with ambient temperature. Results show a close correlation between values.

N , uniformly spanning fromN = 400 to N = 10000. For search OSS, we consider a search

space of(1 − R/2) ≥ α ≥ (1 + R/2) for a range0.008 ≥ R ≥ 0.024. Note that, as shown in

Figure 6.6, the true stretch factor in our experiment variesbetween approximately1 and1.005.

For search/iterative OSS and SIC/IST, we also evaluate the computational effort in terms of the

average number of iterations required for convergence. We define a single iteration as a single

call to the function that stretches the baseline and compares the two signals.

Since the iterative algorithm convergence rate may vary widely with N , we normalize the

average computation time to be

τ̄n =
τn
cn

1

K

∑

k

ck , (6.24)

whereτn andcn represent the average computation time and average number of iterations used

for records of some length specified byn. This helps to reduce anomalies from record lengths

with poor convergence rates.

We first compare the computational effort required to compute search OSS and SIC. Fig-

ure 6.7 shows the average computation time for these techniques as a function of the record

lengthN (the reciprocal of resolution). Figure 6.7 clearly shows that the computational effort

of search/iterative OSS grows quadratically with the number of samplesN while SIC grows
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Figure 6.8: The average, normalized computa-
tion time used to compute the search/iterative
OSS and SIC/IST stretch factor estimates.
The search/iterative OSS methodology is il-
lustrated for multiple stretch factor ranges
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linearly. At N = 10, 000, SIC shows a2.3 (for R = 0.008) to 6.9 (for R = 0.024) times im-

provement in computational speed over search OSS. Note thatSIC’s variations in computational

effort largely due to MATLAB’s fast Fourier transform implementation.

We now compare the computational effort required to computesearch/iterative OSS and

SIC/IST. Figure 6.8 shows the average computation time for these methods as a function of

the record length. As with Figure 6.7, Figure 6.8 shows that the computational effort of

search/iterative OSS increases quadratically with the number of samplesN while SIC/IST

grows linearly. AtN = 10, 000, SIC/IST shows a1.5 (for R = 0.008) to 3.6 (for R = 0.024)

times improvement in computational speed over search/iterative OSS.

We also investigate the effect of reducing the number of samples used by SIC/IST to estimate

α in the scale transform domain. We truncate the scale transform domain and retain a “low

pass” approximation of the domain withρN ln(N) samples. Hereρ represents the percentage

of samples kept by SIC/IST. In Figure 6.9, we show that we can speed up SIC/IST by up to1.3
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times by removing up to75% of the scale transform domain information. Figure 6.8 showsthat

the mean absolute change in the stretch factor estimate resulting from these truncations is small.

Forρ = 0.250, the error is12 (atN = 400) to 100 (atN = 10, 000) times below the resolution

of SIC (1/N). For N > 5000, the error is comparable to or smaller than the resolutions of

search/iterative OSS and SIC/IST, as measured from Figure 6.10.

Figure 6.11 shows the number of iterations required for SIC/IST and search/iterative OSS

to converge, roughly25.5 iterations for search/iterative OSS and17.5 iterations for SIC/IST. On

average, OSS requires approximately1.45 times more iterations to converge. For clarity, we

only show two curves as the results vary little for differentvalues ofR andρ.

We note that SIC/IST also requires much less storage compared with OSS for large values of

N orR. Search/iterative OSS requires a total ofO(RN2) doubles while SIC/IST only requires

O(N ln(N)) doubles.
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Figure 6.10: The average absolute change in the stretch factor estimate of SIC/IST after trun-
cating the scale transform domain to various lengths. The valueρ represents the percentage of
scale domain utilized.
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6.5 Results: Data-driven matched field integration
In this section, we combine our scale transform temperaturecompensation method with

data-driven matched field processing, originally discussed in Chapter 3 and implemented in

Chapter 4 and Chapter 5. We demonstrate that integration of the scale transform temperature

compensation with data-driven matched field processing canbe used to improve localization

results.

Prior work has shown how stretch-based temperature compensation methods can improve

the performance of delay-and-sum localization methods, which were discussed in Chapter 4.

Unlike delay-and-sum localization, data-driven matched field processing utilizes all the phase

information of the signal, and therefore is affected by temperature in a different manner. This

section integrates scale transform temperature compensation to incoherent data-matched field

processing and demonstrates that the scale transform can significantly improve our localization

performance in variable environmental conditions. In our demonstration, we use the incoherent

processor because we assume that the frequency characteristics of signals reflecting from our

scatterer, a large mass, are unknown.

6.5.1 Scale transform temperature compensation

As described in Chapter 3, data-driven matched field processing generates a data-driven

model x̂(r), described in Section 3.2.3, from a collection of calibration datay, described in

Section 3.2.1. The matched field processor then compares themodelx̂(r) with a collection of

test datax, described in Section 3.2.2. For the purpose of discussion,letx(r∗1, t), . . . , x(r
∗
2, t) be

theM time domain test measurements associated with true distancesr∗1, . . . , r
∗
M between pairs

of sensors and the scatterer, such as damage in the structure, such that

x = [F {x(r∗1, t)} · · · F {x(r∗M , t)}]T . (6.25)

For simplicity of discussion, we omit noise from the expressions in this section.

Now let yc(r∗1, t), . . . , yc(r
∗
M , t) andyc(r∗1, t), . . . , yc(r

∗
M , t) represent the collection of cur-

rent measurements and a collection of baseline measurements taken from our sensor system.

These measurements include both a signal originating from the scatterer as well as the direct
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signal originating from the transmitting sensor. In traditional systems, we define the test data

x(r∗m, t) for each measurementm as the difference between our current measurementsyc(r
∗
m, t)

and baseline measurementsyb(r
∗
m, t) such that

x(r∗m, t) = yc(r
∗
m, t)− yb(r

∗
m, t) . (6.26)

In ideal conditions, the result of the baseline subtractionyields only the scattered signal from the

damage. However, if the current measurements are taken at a temperature sufficiently different

from the temperature at which the baseline data is acquired,standard baseline subtraction will

yield a different result.

We use the scale transform, specifically SIC/IST as defined inSection 6.3.3, to estimate

the scale that best relates our current measurements to the baseline signal. We then stretch the

current measurements to best resemble the baseline data. Weuse the baseline datayb(r∗m, t) as

our calibration data

y = [F {y(r∗1, t)} · · · F {y(r∗M , t)}]T , (6.27)

so the stretching process will adjust the current measurementsyc(r∗m, t) to have similar velocity

characteristics as the baseline datayb(r
∗
m, t), the test datax(r∗m, t), and the data-driven model

x(r̂). The test datax(r∗m, t) is then defined by

x(r∗m, t) = yc(r
∗
1, α̂t)− yb(r

∗
1, t) , (6.28)

whereα̂ is the optimal stretch factor betweenyb(r∗m, t) andyc(r∗m, t). We use this adjusted test

data to localize the scatterer.

6.5.2 Experimental methodology
We consider a1.22 m by 1.22 m by 0.2844 cm aluminum plate with sixteen0.7 cm by

0.7 cm PZT (lead zirconate titanate) transducers randomly distributed on its upper surface. We

use the same sensor configuration as shown in Figure 5.1. As inChapter 4, we collect the cali-

bration data to compute the frequency-wavenumber representation of the plate by transmitting

and measuring signals between each of of the transducers. This results in a total of120 unique

measurements. We use frequency wavenumber synthesis to recover the frequency-wavenumber
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representation, or dispersion curves. From the frequency-wavenumber representation, we then

generate the data-driven modelx(r̂) of the medium using the sparse wavenumber synthesis, as

discussed in Chapter 2.

We use the data-driven model to then localize a metal, cylindrical mass placed on the top of

the aluminum plate. The mass has a diameter of approximately5 cm and is used to act as a weak

wave scatterer as a substitute for irreversible damage. Dueto the relatively large size of the mass

compared to the0.75 cm diameter holes from Chapter 4, we utilize lower frequencies (longer

wavelengths) to localize it. We implement incoherent data-driven matched field processing,

derived in Chapter 3, with30 frequencies uniformly spanning from0 kHz to72.5 kHz.

6.5.3 Results and discussion
Each of the plots in Figure 6.12 and Figure 6.13 illustrate the results from applying the in-

coherent data-driven matched field processing in three separate scenarios: (1) no temperature

change, (2) temperature change without compensation, and (3) temperature change with com-

pensation. In each plot in Figure 6.12, we illustrate a0.5 m by0.5 m region of the plate centered

around the mass location. The plots in Figure 6.13 show the magnified6 cm by6 cm region

around the mass location. The largest value in each figure indicates the estimated location of

the mass. The circles in each figure indicate the known centerlocation of the mass, and the

squares indicate sensor locations. Note that not all sensorlocations are shown since they are

outside of the0.5 m by0.5 m region. In Figure 6.13, the maximum value in each plot is marked

by a cross.

Figure 6.12a and Figure 6.13a show the results when there is approximately no temperature

change. In this figure, the incoherent data-driven matched field processor accurately localizes

the mass center. The maximum value is located0.21 cm away from the known mass center

location, a value significantly smaller than the5 cm diameter of the mass.

Figure 6.12b and Figure 6.13b show the results when there is temperature change (a mean

scale factor̂α = 1.0018 across all sensors), but scale transform temperature compensation is

not applied. In these figures, there are more artifacts throughout the image and there is no clear

maximum value near the mass’s center. The largest value in the region0.5 m by 0.5 m region

is located14.93 cm away from the known mass center location, a value approximately three
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Figure 6.12: The incoherent data-driven ambiguity functions of a0.5 m by 0.5 m region to
localize a5 cm cylindrical mass on an aluminum plate for three temperature scenarios: (a) no
temperature change, (b) temperature change without compensation, and (c) temperature change
with compensation. The squares and circles denote the locations of the sensors (only 2 out of
16 sensors fall in the region shown) and the mass, respectively.

times larger than the5 cm mass diameter and falls outside the region shown in Figure6.13b.

Therefore, when there is only a small temperature change, wecan no longer localize the mass.

The signals used in Figure 6.12c and Figure 6.13c incorporate the same temperature change

(a mean scale factor̂α = 1.0018 across all sensors) as in Figure 6.12b and Figure 6.13b. How-

ever, we now use scale transform temperature compensation to better match the current measure-

ments with the baseline measurements. In Figure 6.12c and Figure 6.13, the maximum value

is located0.30 cm away from the mass center location, a value significantly smaller than the

5 cm diameter of the mass. Scale transform temperature compensation successfully accounted

for variations due to temperature, resulting in improved localization performance.
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Figure 6.13: The incoherent data-driven ambiguity functions of a0.06 m by 0.06 m region to
localize a5 cm cylindrical mass on an aluminum plate for three temperature scenarios: (a) no
temperature change, (b) temperature change without compensation, and (c) temperature change
with compensation. The squares and circles denote the locations of the sensors (only 2 out of 16
sensors fall in the region shown) and the mass, respectively. The crosses denote the estimated
locations of the mass.

6.6 Conclusions
In this chapter, we discussed the scale transform and its role in developing three model-

based optimal temperature compensation methods: the scale-invariant correlation method, the

iterative scale transform method, and a combination of the two. These methods were compared

with the optimal signal stretch optimization technique, which we demonstrated to be limited

in computation speed due to its need to directly stretch signals. The scale transform based

techniques circumvent these limitations by computing the results in the stretch factor and scale

transform domains.

We showed that the scale transform methods have an approximately linear computational

complexity while the optimal signal stretch methods have quadratic complexity. We also demon-

strated the scale transform methods, for signals of length400 to 10000, to be up to6.9 times

faster than other optimal methods with equal resolutions over reasonable search spaces. Further-

more, we integrated the scale transform temperature compensation method with the incoherent

data-driven matched field processor and demonstrated that the scale transform can successfully

compensate for small variations in temperature and improvelocalization performance.
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CHAPTER 7

Conclusions and Future Work

In this dissertation, we presented a method for recovering the frequency-wavenumber repre-

sentation, or dispersion curves, of a collection of guided wave structural health monitoring

measurements through the use of compressed sensing andℓ1 sparse recovery methods. We re-

fer to this process assparse wavenumber analysis. We then demonstrated, through a process

we refer to assparse wavenumber synthesis, the capability to use the frequency-wavenumber

representation to generate a data-driven model of the guided wave environment. We integrated

this data-driven model with a localization framework knownas matched field processing, where

the data-driven model replaced computationally expensive, often unreliable, numerical models

of the environment. The new data-driven matched field processing methodology was tested for

localizing holes and acoustic emission events in an aluminum plate. The results were shown to

be more accurate and better resolved than conventional structural health monitoring approaches.

We then integrated the data-driven matched field processor with scale transform temperature

compensation to achieve improved robustness to environmental and operational effects, such as

temperature.

Through this work, we have made several novel contributionsto the current literature.

• SPARSE WAVENUMBER ANALYSIS In Chapter 2, We accurately recovered dispersion

curves from guided wave data that has been corrupted by multipath interference. [20,49]

• SPARSE WAVENUMBER SYNTHESIS In Chapter 2, we also synthesized and predicted

guided wave signals from sparse wavenumber analysis results, generating a data-driven
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model of an environment. Through simulations, we predictedmeasurements with accu-

racies greater than 97%. From experimental data, we demonstrated similar results.

• DATA -DRIVEN MATCHED FIELD PROCESSING In Chapter 3, we integrated data-driven

models from sparse wavenumber synthesis with matched field processing, yielding data-

driven matched field processing, and analyzed the new methodology’s asymptotic local-

ization performance. We found data-driven matched field processing to be theoretically

accurate to within a small region for a sufficient number of sensors. [50,85,86]

• COHERENT DATA -DRIVEN MATCHED FIELD PROCESSING In Chapter 4, we local-

ized two holes in an aluminum plate using coherent data-driven matched field processing.

We demonstrated a 5 times improvement in accuracy and a 49 times improvement in resolu-

tion over conventional localization methods. [50]

• I NCOHERENT DATA -DRIVEN MATCHED FIELD PROCESSING In Chapter 5, we lo-

calized acoustic emissions on an aluminum plate using incoherent data-driven matched field

processing. We demonstrated a 2 times improvement in accuracy and a 12.5 times improve-

ment robustness to noise.

• SCALE TRANSFORM TEMPERATURE COMPENSATION In Chapter 6, we reduced the

distorting effects of temperature on ultrasonic signals with the computational efficient scale

transform. The scale transform was shown to be up to 6.9 timesfaster than other approaches

with near identical performance. [5,119,120]

• SCALE TRANSFORM INTEGRATED DATA -DRIVEN MATCHED FIELD PROCESSING

In Chapter 6, we also integrated the scale transform with data-driven matched field process-

ing to achieve localization that is robust to environmentalvariations.

The combination of these signal processing methods presents a strong framework for struc-

tural health monitoring that can detect and locate damage inlarge, physical infrastructures. Yet,

there are many ways to improve these methods and expand on them. In the following sections,

we discuss several possible directions for the future of this work.
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7.1 Extension to new applications
For our future work, we plan to extend the structural health monitoring framework and signal

processing methods developed to generate data-driven models to more complex structures and

materials that are found in modern bridges, buildings, pipelines, rail lines, airplanes, and wind

turbines. Many of these structures exhibit inhomogeneous or anisotropic properties as well as

unique geometric features that further complicate analysis and processing. Pipes, for example,

have a periodic boundary condition that creates significantmultipath behavior. In our future

work, we plan to develop methods that will incorporate this additional information to produce

accurate and reliable data-driven models for the structure.

Complex guided wave propagation environments are also found in many other disciplines,

including seismology [7], underwater acoustics [8], powersystems [9], medical ultrasound

[144]. Due to relatively similar geometries and wave characteristics encountered in these fields

and structural health monitoring current applications, the existing work can be directly applied

to a variety of problems in these disciplines. For particularly complex environments, we can

construct data-driven models from rigorous analysis and understanding of the complex wave

propagation or from integrating numerical modelling techniques, such as finite element analysis.

In seismology and geotechnical engineering, these methodscould help improve site characteri-

zation algorithms, which are used to determine the properties and integrity of soil prior to laying

the foundations for new construction. In power systems applications, these techniques can be

used to help locate faults in transmission lines or wiring. In underwater acoustics, the meth-

ods can be used to better track marine vehicles and aquatic animals. In medical and biological

acoustics, data-driven models could improve our estimatesof material and elastic properties of

biological structures, which are common indicators for diagnosing tumors, lesions, and other

ailments.

7.2 Integration with data science
In chapter 6, we refined data-driven matched field processingwith the scale transform to

compensate for variations in environmental temperature. In controlled, laboratory experiments

these methods have shown to be very effective with relatively little data. However, for uncon-
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trolled, real-world environments, more data and modellingis necessary to distinguish damage

from benign environmental and operation changes. Furthermore, structural damage does not

form immediately. Instead, it evolves slowly over many years of wear. Fortunately, large-scale

structural health monitoring systems can collect vast amounts of data for processing and analy-

sis over these periods of time. For these practical scenarios, we need to develop computational

efficient methods to model and process the large reservoirs of data.

We have explored some effective approaches for processing large sets of data through ma-

chine learning [145–148]. We plan to further utilize methods from data science and machine

learning to best store, manage, process, and data-mine our large data sets. The large volumes of

data will likely be measured from large-scale sensor networks. Many questions in implementing

these networks will need to be addressed, including power management, communication pro-

tocols, distributed data processing, and data storage. Many researchers have begun to propose

solutions to these problems through the development of new technology for sensor networks,

communication systems, energy harvesting, and distributed computing, but there is still signif-

icant work necessary to improve and integrate these methods. We plan to further investigate

areas through collaboration with experts in each field.

7.3 Application to imaging modalities
Data-driven models are built by populating a general, theoretical framework of a physical

system with information extracted from experimental data.This approach allows us to develop

a holistic understanding about a medium by utilizing general knowledge about an environment

with specific knowledge from experiments. We applied data-driven models to problems in

acoustics and ultrasound in order to recover velocity information from guided waves. How-

ever, these concepts have strong applicability in other imaging modalities. In medical imaging,

for example, incomplete knowledge about material and geometric properties is common and

creates significant challenges for image-generation [149]. Multi-modal medical imaging ap-

proaches, which utilize data from more than one modality, are being explored to address these

challenges by using a variety of information obtained from different modalities. Yet in these

approaches, it is still necessary to fuse this information with some underlying knowledge about
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the physical system.

In these scenarios, data-driven models may help to reduce uncertainties in each imaging

modality and help fuse data between multiple modalities. Weintend to further investigate these

potential applications for data-driven models for medicalimaging, including computed tomog-

raphy (CT), magnetic resonance imaging (MRI), Electroencephalography (EEG), and Electro-

cardiography (ECG). Overall, there are many opportunitiesfor improving and extending the

sparsity-based, data-driven matched field processing framework and data-driven modelling con-

cepts from this dissertation to new domains and new applications.
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APPENDIX A

The restricted nullity property

Our proofs utilize two properties of random matrices: the restricted isometry property (RIP),

defined in (3.20), and what we refer to as the restricted nullity property (RNP), which we derive

here. A matrixA is said to be “nearly unitary” if it satisfies RIP with a small restricted isometry

constantδs [62,92,93]. We use RIP to derive RNP, which considers two matrices whose columns

are “nearly uncorrelated.” In this Appendix, we prove RNP for a general pair of matricesA and

B. For the proofs in Appendix A and Appendix B, we use a problem-specific form of RNP,

shown in (3.21).

We consider two arbitrary matricesA andB that both satisfy RIP with small constantsδAs

andδBs . We claim the columns ofA andB are “nearly uncorrelated” if

1√
2
(A+B) (A.1)

also satisfies RIP with a small constantδA+B
s .

We can show this by plugging (A.1) into the RIP inequality in (3.20) to get

1

2
‖Av‖22 + v

H
A

H
Bv +

1

2
‖Bv‖22 ≥ (1− δ

A+B
s )‖v‖22

1

2
‖Av‖22 + v

H
A

H
Bv +

1

2
‖Bv‖22 ≤ (1 + δ

A+B
s )‖v‖22 .

(A.2)
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Subtracting each term in the inequality by1
2
(‖Av‖22 + ‖Bv‖22) provides

v
H
A

H
Bv ≥ (1− δ

A+B
s )‖v‖22 −

1

2
(‖Av‖22 + ‖Bv‖22)

v
H
A

H
Bv ≤ (1 + δ

A+B
s )‖v‖22 −

1

2
(‖Av‖22 + ‖Bv‖22) .

(A.3)

Applying the RIP inequality in (3.20) to‖Av‖22 and‖Bv‖22 in (A.3) changes the bounds to

v
H
A

H
Bv ≥

(
1− δ

A+B
s − 1

2

[
(1 + δ

A
s ) + (1 + δ

B
s )
])

‖v‖22

v
H
A

H
Bv ≤

(
1 + δ

A+B
s − 1

2

[
(1− δ

A
s ) + (1− δ

B
s )
])

‖v‖22 .

(A.4)

Finally, simplifying the expression in (A.4) provides the result

−2δ
′

s‖v‖22 ≤ vHAHBv ≤ 2δ
′

s‖v‖22 , (A.5)

where2δ
′

s = δA+B
s + δAs /2 + δBs /2. This expression tells us that the columns ofA andB are

“nearly uncorrelated” orvHAHBv ≈ 0 whenδ
′

s is small, andv contains onlys non-zero values.

Said in another way, all vectorsv with sparsitys are nearly in the null space ofAHB whenA

andB satisfy this property with smallδ
′

s. We refer to this as the restricted nullity property

(RNP) for a pair a matrices.
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APPENDIX B

Proof of (3.23): single path scenario

(coherent processor)

We now derive the target-to-artifact ratio of the coherent data-driven matched field processor

when there is no unmodeled multipath interference. For our analysis, we assume the recovered

frequency-wavenumber representation is correct up to a scaling factor, and therefore satisfies

v̂ ∼= v.

B.1 Ambiguity function lower bound when r = r∗

The coherent data-driven matched field processor in (3.15) at the target locationr = r∗

simplifies to

b(r = r∗) =

∣∣∣vHΦ
H
(r∗)Φ(r)v

∣∣∣
2

‖Φ(r)v‖22
=

∥∥Φ(r∗)v
∥∥2
2
. (B.1)

B.2 Ambiguity function upper bound when r 6= r∗

We can derive an upper bound by assumingr to be sufficiently far from the target such that

ΦH(r) andΦ(r∗) satisfy RNP. Under this condition, we can apply the RNP inequality in (A.5)
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to the numerator to derive the upper bound

b(r) =

∣∣∣vHΦ
H
(r∗)Φ(r)v

∣∣∣
2

‖Φ(r)v‖22
≤ ‖v‖42

‖Φ(r)v‖22
4(δ

′

s)
2 . (B.2)

We now utilize part of the the RIP inequality, which states

‖Φ(r)v‖22
‖v‖22

≥ (1− δs) , (B.3)

and we apply it to the denominator of (B.2). This simplifies the bound to

b(r) ≤ 4(δ
′

s)
2

1− δs
‖v‖22 . (B.4)

B.3 Target-to-artifact ratio
Taking the ratios of (B.1) to (B.4) obtains the lower bound for the single path

b(r∗)

b(r)
≥

∥∥Φ(r∗)v
∥∥2
2

‖v‖22
(1− δs)

4(δ′

s)
2

. (B.5)

By applying the RIP inequality in (B.3) once more to the numerator of this expression, the

bound becomes

b(r∗)

b(r)
≥

∥∥Φ(r∗)v
∥∥2
2

‖v‖22
(1− δs)

4(δ′

s)
2

≥ (1− δs)
2

4(δ′

s)
2

. (B.6)

Settingδ
′

s = δs then yields the expression in (3.23),

b(r∗)

b(r)
≥ (1− δs)

2

4δ2s
. (B.7)
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APPENDIX C

Proof of (3.23): single path scenario

(incoherent processor)

In this appendix, we derive the target-to-artifact ratio ofthe incoherent data-driven matched field

processor when there is no unmodeled multipath interference. As for the coherent processor,

we assume the recovered frequency-wavenumber representation is correct up to a scaling factor,

and therefore satisfieŝv ∼= v.

C.1 Ambiguity function lower bound when r = r∗

The coherent data-driven matched field processor in (3.15) at the target locationr = r∗

simplifies to

b(r = r∗) =

Q∑

q=1

∣∣vH
q Φ

H(r∗)Φ(r)vq

∣∣2

‖Φ(r)vq‖22

=

Q∑

q=1

‖Φ(r∗)vq‖22 . (C.1)

C.2 Ambiguity function upper bound when r 6= r∗

We can derive an upper bound by assumingr to be sufficiently far from the target such that

ΦH(r) andΦ(r∗) satisfy RNP. Under this condition, we can apply the RNP inequality in (A.5)
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to the numerator to derive the upper bound

b(r) =

Q∑

q=1

∣∣vH
q Φ

H(r∗)Φ(r)vq

∣∣2

‖Φ(r)vq‖22

≤
Q∑

q=1

‖vq‖42
‖Φ(r)vq‖22

4(δ
′

s)
2 . (C.2)

We now apply part of the the RIP inequality, shown in (B.3), tothe denominator of (C.2). This

simplifies the bound to

b(r) ≤ 4(δ
′

s)
2

1− δs

Q∑

q=1

‖vq‖22 . (C.3)

C.3 Target-to-artifact ratio
Taking the ratios of (C.1) to (C.3) obtains the lower bound for the single path

b(r∗)

b(r)
≥

∑Q
q=1 ‖Φ(r∗)vq‖22∑Q

q=1 ‖vq‖22
(1− δs)

4(δ′

s)
2

=

∥∥Φ(r∗)v
∥∥2
2

‖v‖22
(1− δs)

4(δ′

s)
2

. (C.4)

By applying the RIP inequality in (B.3) once more to the numerator of this expression, the

bound becomes

b(r∗)

b(r)
≥

∥∥Φ(r∗)v
∥∥2
2

‖v‖22
(1− δs)

4(δ′

s)
2

≥ (1− δs)
2

4(δ′

s)
2

. (C.5)

Note that for simplicity of analysis of the asymptotic behavior, we assume that the RIP constant

δs for Φ is equivalent to the RIP constant forΦ. For a more comprehensive analysis, we would

want to analyze each RIP constant as distinct values. To further simplify the analysis, we also

setδ
′

s = δs and achieve the expression in (3.23),

b(r∗)

b(r)
≥ (1− δs)

2

4δ2s
. (C.6)
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APPENDIX D

Proof of (3.25): multipath scenario

(coherent processor)

We derive the target-to-artifact ratio of the coherent data-driven matched field processor when

there is unmodeled multipath interference that is corrupting the measured data. As with the

single path scenarios, we assumev̂ ∼= v. To analyze the ambiguity function under multipath

corruption, we substitute expression for the test dataxq with unmodeled multipath interference

in (3.24) into the coherent data-driven ambiguity functionin (3.15). This results in an ambiguity

function expressed by

b(r) =

∣∣∣∣vH
(
η0Φ(r∗) +

∑L
ℓ=1 ηℓΦ(rℓ)

)H
Φ(r)v

∣∣∣∣
2

η20‖Φ(r)v‖22
. (D.1)

D.1 Ambiguity function lower bound when r = r∗

In the numerator, we apply the RNP inequality in (A.5) to eachof the mismatched matrix

pairs, i.e.,vHΦ(rℓ)Φ(r∗)v for 1 ≤ ℓ ≤ L. For simplicity, we assume each pair of matrices to

have the same RNP constant. Applying this inequality results in the ambiguity function

b(r = r∗) ≥
∣∣‖Φ(r∗)v‖22 − 2δ

′

sη
−1‖v‖22

∣∣2

‖Φ(r∗)v‖22
, (D.2)
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whereη is the signal-to-interference ratio as defined by

η =
η0∑L
ℓ=1 ηℓ

. (D.3)

We then apply a form of the triangle inequality that states that any scalar valuesa andb must

satisfy|a− b|2 ≥ ||a|2 − |b|2|, wherea = ‖Φ(r∗)v‖22 andb = 2δ
′

sη
−1‖v‖22. We assumeδ

′

sη
−1 is

sufficiently small such that||a|2 − |b|2| = |a|2 − |b|2. Applying the triangle inequality changes

the lower bound to

b(r = r∗) ≥ ‖Φ(r∗)v‖42 − 4(δ
′

s)
2η−2‖v‖42

‖Φ(r∗)v‖22

= ‖Φ(r∗)v‖22 −
‖v‖42

‖Φ(r∗)v‖22

(
4(δ

′

s)
2

η2

)
. (D.4)

By then applying the RIP inequality in (B.3) to the denominator, the bound changes to

b(r = r∗) ≥ ‖Φ(r∗)v‖22 −
(

4(δ
′

s)
2

η2(1− δ)

)
‖v‖22 . (D.5)

This expression shows us that the lower bound is equal to the maximum possible value from

the single path scenario, as shown in (B.1), minus a small quantity. As δ
′

s approaches zero orη

approaches infinity, the bound converges to the single path condition.

D.2 Ambiguity function upper bound when r 6= r∗

When r and r∗ are sufficiently different to satisfy RNP, the numerator of the ambiguity

function in (D.1) consists of only mismatched matrix pairs.We apply the RNP inequality from

(A.5) to each term in the numerator to get

b(r) ≤ ‖v‖42
‖Φ(r)v‖22

(
4(δ

′

s)
2(1 + η−1)2

)
, (D.6)

whereη is the signal-to-interference ratio as defined in (D.3). By then applying RIP in (B.3) to

the denominator, the bound then changes to

b(r) ≤ (1 + η)2
(

4(δ
′

s)
2

η2(1− δs)

)
‖v‖22 , (D.7)

This expression is equal to the single path scenario in (B.4)multiplied by (1 + η)2/η2. As η

approaches infinity, (D.7) approaches the single path result in (B.4).
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D.3 Target-to-artifact ratio
When we take the ratio of (D.5) to (D.7), we derive the lower bound for the peak-to-artifact

ratio

b(r∗)

b(r)
≥ ‖Φ(r∗)v‖22

‖v‖22

(
η2

1 + η2

)(
1− δs
4(δ′

s)
2

)
− 1

1 + η2
, (D.8)

If we then apply RIP in (B.3) to this expression, the bound changes to

b(r∗)

b(r)
≥

(
η2

1 + η2

)(
(1− δs)

2

4(δ′

s)
2

)
− 1

1 + η2

=
η2

1 + η2

(
(1− δs)

2

4(δ′

s)
2

− 1

η2

)
, (D.9)

Then by settingδ
′

s = δs, we derive the expression found in (3.25),

b(r∗)

b(r)
≥ η2

1 + η2

(
(1− δs)

2

4δ2s
− 1

η2

)
. (D.10)
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APPENDIX E

Proof of (3.25): multipath scenario

(incoherent processor)

In this appendix, we derive the target-to-artifact ratio ofthe incoherent data-driven matched

field processor with unmodeled multipath interference in measured data. Again, we assume

v̂q
∼= vq. We substitute expression for the test dataxq for unmodeled multipath interference in

(3.24) into the incoherent data-driven ambiguity functionin (3.19). This results in an incoherent

ambiguity function expressed by

b(r) =

Q∑

q=1

∣∣∣∣vH
q

(
η0Φ(r∗) +

∑L
ℓ=1 ηℓΦ(rℓ)

)H
Φ(r)vq

∣∣∣∣
2

η20‖Φ(r)vq‖22
. (E.1)

E.1 Ambiguity function lower bound when r = r∗

In the numerator, we apply the RNP in (A.5) to the mismatched matrix pairs, i.e.,vH
q Φ(rℓ)Φ(r∗)vq

for 1 ≤ ℓ ≤ L and assume each pair of matrices to have the same RNP constant. After applying

RNP to the incoherent ambiguity function, we get

b(r = r∗) ≥
Q∑

q=1

∣∣‖Φ(r∗)vq‖22 − 2δ
′

sη
−1‖vq‖22

∣∣2

‖Φ(r∗)vq‖22
, (E.2)

whereη is the signal-to-interference ratio as defined by (D.3).
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As in the coherent matched field processing scenario, we now apply a form of the trian-

gle inequality such that scalar valuesa and b must satisfy|a − b|2 ≥ ||a|2 − |b|2|, where

a = ‖Φ(r∗)v‖22 andb = 2δ
′

sη
−1‖vq‖22. We also assumeδ

′

sη
−1 is sufficiently small such that

||a|2 − |b|2| = |a|2 − |b|2. Applying this inequality changes the lower bound to

b(r = r∗) ≥
Q∑

q=1

‖Φ(r∗)vq‖42 − 4(δ
′

s)
2η−2‖vq‖42

‖Φ(r∗)vq‖22

=

Q∑

q=1

‖Φ(r∗)vq‖22 −
‖vq‖42

‖Φ(r∗)vq‖22

(
4(δ

′

s)
2

η2

)
. (E.3)

By applying the RIP inequality in (B.3) to the denominator, the ambiguity function’s bound

becomes

b(r = r∗) ≥
Q∑

q=1

‖Φ(r∗)vq‖22 −
(

4(δ
′

s)
2

η2(1− δ)

)
‖vq‖22 . (E.4)

As with the coherent scenario, this expression shows us thatthe lower bound is equal to the

maximum possible value from the single path scenario, as shown in (C.1), minus a small quan-

tity that represents the multipath error. Asδ
′

s approaches zero orη approaches infinity, the

bound converges to the single path condition.

E.2 Ambiguity function upper bound when r 6= r∗

When r and r∗ are sufficiently different to satisfy RNP, the numerator of the ambiguity

function in (E.1) consists of only mismatched matrix pairs.We apply the RNP inequality from

(A.5) to each term in the numerator to get

b(r) ≤
Q∑

q=1

‖vq‖42
‖Φ(r)vq‖22

(
4(δ

′

s)
2(1 + η−1)2

)
, (E.5)

whereη is the signal-to-interference ratio as defined in (D.3). By then applying RIP in (B.3) to

the denominator, the bound then changes to

b(r) ≤ (1 + η)2
(

4(δ
′

s)
2

η2(1− δs)

) Q∑

q=1

‖vq‖22 , (E.6)

This expression is equal to the single path scenario shown in(C.3) multiplied by(1 + η)2/η2.

As η approaches infinity, (E.6) approaches the single path result in (C.3).
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E.3 Target-to-artifact ratio
When we take the ratio of (E.4) to (E.6), we derive the lower bound for the peak-to-artifact

ratio

b(r∗)

b(r)
≥

∑Q
q=1 ‖Φ(r∗)vq‖22∑Q

q=1 ‖vq‖22

(
η2

1 + η2

)(
1− δs
4(δ′

s)
2

)
− 1

1 + η2

=
‖Φ(r∗)v‖22

‖v‖22

(
η2

1 + η2

)(
1− δs
4(δ′

s)
2

)
− 1

1 + η2
, (E.7)

If we then apply RIP in (B.3) to this expression, the bound changes to

b(r∗)

b(r)
≥

(
η2

1 + η2

)(
(1− δs)

2

4(δ′

s)
2

)
− 1

1 + η2

=
η2

1 + η2

(
(1− δs)

2

4(δ′

s)
2

− 1

η2

)
, (E.8)

As with the single path, incoherent scenario in Appendix C, we assume that the RIP constant

δs for Φ is equivalent to the RIP constant forΦ to simplify our asymptotic analysis. By then

settingδ
′

s = δs, we derive the expression found in (3.25),

b(r∗)

b(r)
≥ η2

1 + η2

(
(1− δs)

2

4δ2s
− 1

η2

)
. (E.9)

149





Bibliography

[1] A. B. Baggeroer, “Matched field processing: Source localization in correlated noise as
an optimum parameter estimation problem,”J. Acoust. Soc. Am., vol. 83, no. 2, p. 571,
1988.

[2] A. Baggeroer, W. Kuperman, and P. Mikhalevsky, “An overview of matched field meth-
ods in ocean acoustics,”IEEE J. Ocean. Eng., vol. 18, no. 4, pp. 401–424, Oct. 1993.

[3] R. L. Weaver and O. I. Lobkis, “Temperature dependence ofdiffuse field phase,”Ultra-
sonics, vol. 38, no. 1-8, pp. 491–4, Mar. 2000.

[4] H. Sohn, “Effects of environmental and operational variability on structural health moni-
toring.” Phil. Trans. R. Soc. A, vol. 365, no. 1851, pp. 539–60, Feb. 2007.

[5] J. B. Harley and J. M. F. Moura, “Scale transform signal processing for optimal ultrasonic
temperature compensation,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 59,
no. 10, pp. 2226 – 2236, Oct. 2012.

[6] K. F. Graff, Wave motion in elastic solids, 1st ed. New York: Dover Publications, 1991.

[7] J. D. Achenbach,Wave propogation in elastic solids. Amsterdam: Elsevier Science
Publishers B.V., 1975.

[8] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt,Computational ocean
acoustics. New York, NY: Springer New York, 2011.

[9] P. C. Magnusson, A. Weisshaar, V. K. Tripathi, and G. C. Alexander,Transmission Lines
and Wave Propagation, Fourth Edition. Boca Raton: CRC Press, 2000.

[10] D. Alleyne, “A two-dimensional Fourier transform method for the measurement of prop-
agating multimode signals,”J. Acoust. Soc. Am., vol. 89, no. 3, pp. 1159–1168, Sep.
1991.

[11] J. L. Rose,Ultrasonic Waves in Solid Media, 1st ed. Cambridge: Cambridge University
Press, 2004.

151



[12] W. Gao, C. Glorieux, and J. Thoen, “Laser ultrasonic study of Lamb waves: determina-
tion of the thickness and velocities of a thin plate,”Int. J. Eng. Sci., vol. 41, no. 2, pp.
219–228, Jan. 2003.

[13] W. H. Prosser, M. D. Seale, and B. T. Smith, “Time-frequency analysis of the dispersion
of Lamb modes,”J. Acoust. Soc. Am., vol. 105, no. 5, pp. 2669–2676, May 1999.

[14] M. Niethammer, L. Jacobs, J. Qu, and J. Jarzynski, “Time-frequency representation of
Lamb waves using the reassigned spectrogram,”J. Acoust. Soc. Am., vol. 107, no. 5 Pt 1,
pp. L19–24, May 2000.

[15] F. Li, G. Meng, L. Ye, Y. Lu, and K. Kageyama, “Dispersionanalysis of Lamb waves and
damage detection for aluminum structures using ridge in thetime-scale domain,”Meas.
Sci. Technol., vol. 20, no. 9, p. 095704, Sep. 2009.

[16] A. Raghavan and C. E. S. Cesnik, “Guided-wave signal processing using chirplet match-
ing pursuits and mode correlation for structural health monitoring,” Smart Mater. Struct.,
vol. 16, no. 2, pp. 355–366, Apr. 2007.

[17] W. Yuemin, “Guided waves modes identification in pipes detection by application of the
matching pursuit method,” inIEEE International Conference on Electronic Measurement
& Instruments, vol. 4, Chengdu, Aug. 2011, pp. 50–53.

[18] J. S. Hall and J. E. Michaels, “A model-based approach todispersion and parameter
estimation for ultrasonic guided waves,”J. Acoust. Soc. Am., vol. 127, no. 2, pp. 920–
930, Feb. 2010.

[19] ——, “Model-based parameter estimation for characterizing wave propagation in a ho-
mogeneous medium,”Inverse Probl., vol. 27, no. 3, p. 035002, Mar. 2011.

[20] J. B. Harley, A. C. Schmidt, and J. M. F. Moura, “Accuratesparse recovery of guided
wave characteristics for structural health monitoring,” in Proc. of the IEEE International
Ultrasonics Symposium. Dresden: IEEE, Oct. 2012, pp. 158–161.

[21] D. Donoho, “Compressed sensing,”IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–
1306, Apr. 2006.

[22] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”IEEE Signal
Process. Mag., vol. 25, no. 2, pp. 21–30, 2008.

[23] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, “Introduction to com-
pressed sensing,” inCompressed Sensing: Theory and Applications, Y. C. Eldar and
G. Kutyniok, Eds. Cambridge: Cambridge University Press, 2012, ch. 1, pp. 1–68.

[24] J. E. Michaels, “Detection, localization and characterization of damage in plates with
an in situ array of spatially distributed ultrasonic sensors,” Smart Mater. Struct., vol. 17,
no. 3, p. 035035, Jun. 2008.

152



[25] T. Clarke and P. Cawley, “Enhancing the defect localization capability of a guided wave
SHM system applied to a complex structure,”Struct. Health Monit., vol. 10, no. 3, pp.
247–259, Jun. 2010.

[26] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jack-
son, “Phase conjugation in the ocean: Experimental demonstration of an acoustic time-
reversal mirror,”J. Acoust. Soc. Am., vol. 103, no. 1, pp. 25–40, Jan. 1998.

[27] J. M. F. Moura and Y. Jin, “Time reversal imaging by adaptive interference canceling,”
IEEE Trans. Signal Process., vol. 56, no. 1, pp. 233–247, Jan. 2008.

[28] F. Ciampa and M. Meo, “Impact detection in anisotropic materials using a time reversal
approach,”Struct. Health Monit., vol. 11, no. 1, pp. 43–49, Jan. 2011.

[29] ——, “Acoustic emission source localization and velocity determination of the funda-
mental mode A0 using wavelet analysis and a Newton-based optimization technique,”
Smart Mater. Struct., vol. 19, no. 4, p. 045027, Apr. 2010.

[30] L. De Marchi, A. Marzani, N. Speciale, and E. Viola, “A passive monitoring technique
based on dispersion compensation to locate impacts in plate-like structures,”Smart Mater.
Struct., vol. 20, no. 3, p. 035021, Mar. 2011.

[31] A. Perelli, L. De Marchi, A. Marzani, and N. Speciale, “Acoustic emission localization
in plates with dispersion and reverberations using sparse PZT sensors in passive mode,”
Smart Mater. Struct., vol. 21, no. 2, p. 025010, Feb. 2012.

[32] E. Dehghan Niri and S. Salamone, “A probabilistic framework for acoustic emission
source localization in plate-like structures,”Smart Mater. Struct., vol. 21, no. 3, p.
035009, Mar. 2012.

[33] E. B. Flynn, M. D. Todd, P. D. Wilcox, B. W. Drinkwater, and a. J. Croxford, “Maximum-
likelihood estimation of damage location in guided-wave structural health monitoring,”
P. Roy. Soc. A, vol. 467, no. 2133, pp. 2575–2596, Apr. 2011.

[34] P. D. Wilcox, “A rapid signal processing technique to remove the effect of dispersion
from guided wave signals,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50,
no. 4, pp. 419–27, Apr. 2003.

[35] K. Xu, D. Ta, P. Moilanen, and W. Wang, “Mode separation of Lamb waves based on
dispersion compensation method,”J. Acoust. Soc. Am., vol. 131, no. 4, pp. 2714–22, Apr.
2012.

[36] A. Raghavan and C. E. Cesnik, “Effects of elevated temperature on guided-wave struc-
tural health monitoring,”J. Intel. Mat. Syst. Str., vol. 19, no. 12, pp. 1383–1398, May
2008.

[37] A. D. Degtyar, “Wave propagation in stressed composites,” J. Acoust. Soc. Am., vol. 104,
no. 4, p. 2192, Oct. 1998.

153



[38] K. Salama and C. K. Ling, “The effect of stress on the temperature dependence of ultra-
sonic velocity,”J. Appl. Phys., vol. 51, no. 3, pp. 1505–1509, Mar. 1980.

[39] G. Konstantinidis, P. D. Wilcox, and B. W. Drinkwater, “An investigation into the temper-
ature stability of a guided wave structural health monitoring system using permanently
attached sensors,”IEEE Sensors J., vol. 7, no. 5, pp. 905–912, May 2007.

[40] T. Clarke, F. Simonetti, and P. Cawley, “Guided wave health monitoring of complex
structures by sparse array systems: Influence of temperature changes on performance,”J.
Sound Vib., vol. 329, no. 12, pp. 2306–2322, Jun. 2010.

[41] Y. Lu and J. E. Michaels, “A methodology for structural health monitoring with diffuse
ultrasonic waves in the presence of temperature variations,” Ultrasonics, vol. 43, no. 9,
pp. 717–31, Oct. 2005.

[42] J. E. Michaels and T. E. Michaels, “Detection of structural damage from the local tem-
poral coherence of diffuse ultrasonic signals,”IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 52, no. 10, pp. 1769–1782, Oct. 2005.

[43] A. J. Croxford, P. D. Wilcox, Y. Lu, J. Michaels, and B. W.Drinkwater, “Quantification
of environmental compensation strategies for guided wave structural health monitoring,”
in Proc. SPIE, 2008, pp. 69 350H.1–69 350H.11.

[44] Y. Lu and J. E. Michaels, “Feature extraction and sensorfusion for ultrasonic structural
health monitoring under changing environmental conditions,” IEEE Sensors J., vol. 9,
no. 11, pp. 1462–1471, Sep. 2009.

[45] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,NIST Handbook of Mathemat-
ical Functions. Cambridge: Cambridge University Press, 2010.

[46] P. Cawley, “Practical long range guided wave inspection – managing complexity,”Review
of Progress in Quantitative Nondestructive Evaluation, vol. 22, no. 657, pp. 22–40, 2003.

[47] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,”Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, Aug.
2006.

[48] E. J. Candès, “The restricted isometry property and itsimplications for compressed sens-
ing,” C. R. Math, vol. 346, no. 9-10, pp. 589–592, May 2008.

[49] J. B. Harley and J. M. F. Moura, “Sparse recovery of the multimodal and dispersive
characteristics of Lamb waves,”J. Acoust. Soc. Am., vol. 133, no. 5, pp. 2732–2745,
May 2013.

[50] ——, “Data-driven matched field processing for Lamb wavestructural health monitor-
ing.” J. Acoust. Soc. Am., vol. 135, no. 3, p. 1231, Mar. 2014.

[51] A. Raghavan, “Guided-wave structural health monitoring,” Ph.D. dissertation, The Uni-
versity of Michigan, 2007.

154



[52] X. P. Qing, H.-L. Chan, S. J. Beard, T. K. Ooi, and S. A. Marotta, “Effect of adhesive
on the performance of piezoelectric elements used to monitor structural health,”Int. J.
Adhes. Adhes., vol. 26, no. 8, pp. 622–628, Dec. 2006.

[53] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcomplete repre-
sentations in the presence of noise,”IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6–18,
Jan. 2006.

[54] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”
SIAM J. Sci. Comput., vol. 43, no. 1, pp. 129–159, 1998.

[55] S. Boyd and L. Vandenberghe,Convex optimization. Cambridge: Cambridge University
Press, Jun. 2009.

[56] D. Donoho and X. Huo, “Uncertainty principles and idealatomic decomposition,”IEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862, Nov. 2001.

[57] J. F. Claerbout, “Robust modeling with erratic data,”Geophysics, vol. 38, no. 5, pp. 826–
844, Oct. 1973.

[58] P. R. Gill, A. Wang, and A. Molnar, “The in-crowd algorithm for fast basis pursuit de-
noising,”IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4595–4605, Oct. 2011.

[59] D. Malioutov, M. Cetin, and A. Willsky, “Homotopy continuation for sparse signal rep-
resentation,” inProc. of the IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 5, no. 1. Philadelphia, PA: IEEE, Mar. 2005, pp. 733–736.

[60] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for basis pursuit
solutions,”SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912, Jan. 2009.

[61] J. Blanchard, C. Cartis, and J. Tanner, “Decay properties of testricted isometry constants,”
IEEE Signal Process. Lett., vol. 16, no. 7, pp. 572–575, Jul. 2009.

[62] S. Kunis and H. Rauhut, “Random sampling of sparse trigonometric polynomials, II.
orthogonal matching pursuit versus basis pursuit,”Found. Comput. Math., vol. 8, no. 6,
pp. 737–763, Aug. 2008.

[63] H. Zou, “The adaptive lasso and its oracle properties,”J. Amer. Statist. Assoc., vol. 101,
no. 476, pp. 1418–1429, Dec. 2006.

[64] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and variable selection with
the lasso,”Ann. Stat., vol. 34, no. 3, pp. 1436–1462, Jun. 2006.

[65] I. Zorych and Z.-H. Michalopoulou, “Particle filteringfor dispersion curve tracking in
ocean acoustics.”J. Acoust. Soc. Am., vol. 124, no. 2, pp. EL45–50, Aug. 2008.

[66] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in
Recent Advances in Learning and Control, ser. Lecture Notes in Control and Information
Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited, 2008, pp.
95–110.

155



[67] ——, “CVX: Matlab software for disciplined convex programming, version 1.21,” Apr.
2011.

[68] J. E. Michaels, S. J. Lee, J. S. Hall, and T. E. Michaels, “Multi-mode and multi-frequency
guided wave imaging via chirp excitations,” inProc. of SPIE Conference on Health Mon-
itoring of Structural and Biological Systems, vol. 7984, San Diego, CA, Mar. 2011, pp.
79 840I–79 840I–11.

[69] R. C. Gonzalez and R. E. Woods,Digital Image Processing. Upper Saddle River, NJ:
Prentice Hall, 2001.

[70] J. L. Krolik, “Matched-field minimum variance beamforming in a random ocean chan-
nel,” J. Acoust. Soc. Am., vol. 92, no. 3, pp. 1408–1419, 1992.

[71] Z.-H. Michalopoulou, “Robust multi-tonal matched-field inversion: A coherent ap-
proach,”J. Acoust. Soc. Am., vol. 104, no. 1, pp. 163–170, Jul. 1998.

[72] C. Debever and W. A. Kuperman, “Robust matched-field processing using a coherent
broadband white noise constraint processor.”J. Acoust. Soc. Am., vol. 122, no. 4, pp.
1979–1986, Oct. 2007.

[73] W. Mantzel, J. Romberg, and K. Sabra, “Compressive matched-field processing,”J.
Acoust. Soc. Am., vol. 132, no. 1, pp. 90–102, Jul. 2012.

[74] S. E. Dosso and M. J. Wilmut, “Maximum-likelihood and other processors for incoherent
and coherent matched-field localization,”J. Acoust. Soc. Am., vol. 132, no. 4, pp. 2273–
2285, Oct. 2012.

[75] D. B. Harris and T. Kvaerna, “Superresolution with seismic arrays using empirical
matched field processing,”Geophys. J. Int., vol. 182, no. 3, pp. 1455–1477, Sep. 2010.

[76] M. Papazoglou and J. Krolik, “Matched-field estimationof aircraft altitude from multiple
over-the-horizon radar revisits,”IEEE Trans. Signal Process., vol. 47, no. 4, pp. 966–976,
Apr. 1999.

[77] P. Gerstoft, D. Gingras, L. Rogers, and W. Hodgkiss, “Estimation of radio refractivity
structure using matched-field array processing,”IEEE Trans. Antennas Propag., vol. 48,
no. 3, pp. 345–356, Mar. 2000.

[78] G. Turek and W. A. Kuperman, “Applications of matched-field processing to structural
vibration problems,”J. Acoust. Soc. Am., vol. 101, no. 3, p. 1430, Mar. 1997.

[79] R. K. Ing and M. Fink, “Ultrasonic imaging using spatio-temporal matched field (STMF)
processing–applications to liquid and solid waveguides,”IEEE Trans. Ultrason., Ferro-
electr., Freq. Control, vol. 48, no. 2, pp. 374–386, Mar. 2001.

[80] A. Tolstoy, “Applications of matched-field processingto inverse problems in underwater
acoustics,”Inverse Problems, vol. 16, no. 6, pp. 1655–1666, Dec. 2000.

156



[81] P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms and a posteriori
probability distributions,”J. Acoust. Soc. Am., vol. 95, no. 2, pp. 770–782, 1994.

[82] S. E. Dosso, P. L. Nielsen, and M. J. Wilmut, “Data error covariance in matched-field
geoacoustic inversion,”J. Acoust. Soc. Am., vol. 119, no. 1, p. 208, 2006.

[83] N. M. Shapiro and M. H. Ritzwoller, “Monte-Carlo inversion for a global shear-velocity
model of the crust and upper mantle,”Geophys. J. Int., vol. 151, no. 1, pp. 88–105, Oct.
2002.

[84] M. Lowe, “Matrix techniques for modeling ultrasonic waves in multilayered media,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, no. 4, pp. 525–542, Jul. 1995.

[85] J. B. Harley and J. M. F. Moura, “Broadband localizationin a dispersive medium through
sparse wavenumber analysis,” inProc. of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, Vancouver, BC, May 2013, pp. 4071–4075.

[86] J. B. Harley, C. Liu, I. J. Oppenheim, and J. M. Moura, “High Resolution Localization
with Lamb Wave Sparse Wavenumber Analysis,” inProc. of the International Workshop
on Structural Health Monitoring, F.-K. Chang, Ed., no. 732, Stanford, CA, Sep. 2013.

[87] Z.-H. Michalopoulou and M. Porter, “Matched-field processing for broad-band source
localization,”IEEE J. Ocean. Eng., vol. 21, no. 4, pp. 384–392, 1996.

[88] S. Aeron, S. Bose, H.-P. Valero, and V. Saligrama, “Broadband dispersion extraction
using simultaneous sparse penalization,”IEEE Trans. Signal Process., vol. 59, no. 10,
pp. 4821–4837, Oct. 2011.

[89] G. Chardon, A. Leblanc, and L. Daudet, “Plate impulse response spatial interpolation
with sub-Nyquist sampling,”J. Sound Vib., vol. 330, no. 23, pp. 5678–5689, Nov. 2011.

[90] J. Hall and J. E. Michaels, “Minimum variance ultrasonic imaging applied to an in situ
sparse guided wave array,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 57,
no. 10, pp. 2311–2323, Oct. 2010.

[91] R. M. Levine and J. E. Michaels, “Model-based imaging ofdamage with Lamb waves
via sparse reconstruction,”J. Acoust. Soc. Am., vol. 133, no. 3, pp. 1525–34, Mar. 2013.

[92] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A Simple Proof of the Restricted
Isometry Property for Random Matrices,”Constr. Approx., vol. 28, no. 3, pp. 253–263,
Jan. 2008.

[93] H. Rauhut, “Stability results for random sampling of sparse trigonometric polynomials,”
IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5661–5670, Dec. 2008.

[94] A. M. Tillmann and M. E. Pfetsch, “The computational complexity of the restricted isom-
etry property, the nullspace property, and related concepts in compressed sensing,”IEEE
Trans. Inf. Theory, pp. 1248–1259, Feb. 2013.

157



[95] J. D. Blanchard, C. Cartis, and J. Tanner, “Compressed sensing: How sharp is the re-
stricted isometry property?”SIAM Review, vol. 53, no. 1, pp. 105–125, Jan. 2011.

[96] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” inCom-
pressed Sensing, Theory and Applications, Y. Eldar and G. Kutyniok, Eds. Cambridge:
Cambridge University Press, 2012, ch. 5, pp. 210–268.

[97] D. Gabor, “Theory of communication. Part 1: The analysis of information,”Journal of
the IEE, vol. 93, no. 26, pp. 429 – 441, 1946.

[98] H. L. Van Trees,Radar-Sonar Signal Processing and Gaussian Signals in Noise, ser.
Detection, Estimation, and Modulation Theory. New York: John Wiley and Sons, 2001.

[99] H. C. Song, J. de Rosny, and W. a. Kuperman, “Improvementin matched field processing
using the CLEAN algorithm,”J. Acoust. Soc. Am., vol. 113, no. 3, pp. 1379–1386, Mar.
2003.

[100] D. Eitzen and H. Wadley, “Acoustic Emission: Establishing the Fundamentals,”J. Res.
Nat. Bur. Stand., vol. 89, no. 1, pp. 75–100, Jan. 1984.

[101] C. B. Scruby, “An introduction to acoustic emission,”J. Phys. E, vol. 20, no. 8, pp. 946–
953, Aug. 1987.

[102] G. C. McLaskey, S. D. Glaser, and C. U. Grosse, “Beamforming array techniques for
acoustic emission monitoring of large concrete structures,” J. Sound Vib., vol. 329, no. 12,
pp. 2384–2394, Jun. 2010.

[103] K. Holford, A. Davies, R. Pullin, and D. Carter, “Damage Location in Steel Bridges by
Acoustic Emission,”J. Intel. Mat. Syst. Str., vol. 12, no. 8, pp. 567–576, Aug. 2001.

[104] P. Nivesrangsan, J. Steel, and R. Reuben, “Source location of acoustic emission in diesel
engines,”Mech. Syst. Signal. Pr., vol. 21, no. 2, pp. 1103–1114, Feb. 2007.

[105] N. Toyama, T. Okabe, and N. Takeda, “Lamb wave evaluation and localization of trans-
verse cracks in cross-ply laminates,”J. Mater. Sci., vol. 38, no. 8, pp. 1765–1771, Apr.
2003.

[106] T. Kundu, S. Das, and K. V. Jata, “Detection of the pointof impact on a stiffened plate
by the acoustic emission technique,”Smart Mater. Struct., vol. 18, no. 3, p. 035006, Mar.
2009.

[107] S. M. Ziola, “Source Location in Thin Plates Using Crosscorrelation,” Ph.D. dissertation,
Naval Postgraduate School, 1991.

[108] J.-H. Park and Y.-H. Kim, “Impact source localizationon an elastic plate in a noisy
environment,”Meas. Sci. Technol., vol. 17, no. 10, pp. 2757–2766, Oct. 2006.

158



[109] C. Chen and F.-G. Yuan, “Impact source identification in finite isotropic plates using a
time-reversal method: theoretical study,”Smart Mater. Struct., vol. 19, no. 10, p. 105028,
Oct. 2010.

[110] A. Tobias, “Acoustic-emission source location in twodimensions by an array of three
sensors,”Non-Destructive Testing, vol. 9, no. 1, pp. 9–12, Feb. 1976.

[111] T. Kosel, I. Grabec, and F. Kosel, “Intelligent location of simultaneously active acoustic
emission sources: Part I,”Aircr. Eng. Aerosp. Tec., vol. 75, no. 1, pp. 11–17, 2003.

[112] T. Kundu, S. Das, and K. V. Jata, “Point of impact prediction in isotropic and anisotropic
plates from the acoustic emission data.”J. Acoust. Soc. Am., vol. 122, no. 4, pp. 2057–66,
Oct. 2007.

[113] P. Wilcox, M. Lowe, and P. Cawley, “Mode and transducerselection for long range Lamb
wave inspection,”J. Intel. Mat. Syst. Str., vol. 12, no. 8, pp. 553–565, Aug. 2001.

[114] D. N. Alleyne and P. Cawley, “The interaction of Lamb waves with defects.”IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 39, no. 3, pp. 381–97, Jan. 1992.

[115] A. J. Croxford, J. Moll, P. D. Wilcox, and J. E. Michaels, “Efficient temperature compen-
sation strategies for guided wave structural health monitoring,” Ultrasonics, vol. 50, no.
4-5, pp. 517–528, Apr. 2010.

[116] R. L. Weaver, “On diffuse waves in solid media,”J. Acoust. Soc. Am., vol. 71, no. 6, pp.
1608–1609, 1982.

[117] R. L. Weaver and O. I. Lobkis, “Temperature dependenceof ultrasonic velocity using
diffuse fields; implications for measurement of stress,” inAIP Conference Proceedings,
vol. 557, Ames, Iowa, May 2001, pp. 1480–1486.

[118] J. B. Harley and J. M. F. Moura, “Guided wave temperature compensation with the scale-
invariant correlation coefficient,” inProc. of the IEEE International Ultrasonics Sympo-
sium, Orlando, FL, Oct. 2011, pp. 1068 – 1071.

[119] J. B. Harley, Y. Ying, J. M. Moura, I. J. Oppenheim, L. Sobelman, and J. H. Garrett,
“Application of Mellin transform features for robust ultrasonic guided wave structural
health monitoring,” inReview of Progress in Quantitative Nondestructive Evaluation,
vol. 31, Burlington, VT, Jul. 2011, pp. 1551–1558.

[120] J. B. Harley and J. M. F. Moura, “An efficient temperature compensation technique for
guided wave ultrasonic inspection,” inProc. of the International Workshop on Structural
Heatlh Monitoring, Stanford, CA, Sep. 2011.

[121] L. Cohen, “The scale representation,”IEEE Trans. Signal Process., vol. 41, no. 12, pp.
3275–3292, Dec. 1993.

159



[122] P. E. Zwicke and I. Kiss, “A new implementation of the Mellin transform and its ap-
plication to radar classification of ships,”IEEE Trans. Pattern Anal. Mach. Intell., vol.
PAMI-5, no. 2, pp. 191–199, Mar. 1983.

[123] T. Irino, “Segregating information about the size andshape of the vocal tract using a
time-domain auditory model: The stabilised wavelet-Mellin transform,”Speech Com-
mun., vol. 36, no. 3-4, pp. 181–203, Mar. 2002.

[124] D. Casasent and D. Psaltis, “Scale invariant optical correlation using Mellin transforms,”
Opt. Commun., vol. 17, no. 1, pp. 59–63, Apr. 1976.

[125] R. A. Altes and L. Jolla, “The Fourier-Mellin transform and mammalian hearing,”J.
Acoust. Soc. Am., vol. 63, no. 1, pp. 174–183, Jan. 1978.

[126] Y. Sheng and H. H. Arsenault, “Experiments on pattern recognition using invariant
Fourier-Mellin descriptors,”J. Opt. Soc. Am., vol. 3, no. 6, pp. 771–6, Jun. 1986.

[127] Q. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only matched filtering of
Fourier-Mellin transforms for image registration and recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, no. 12, pp. 1156–1168, Dec. 1994.

[128] B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and
scale-invariant image registration.”IEEE Trans. Image Process., vol. 5, no. 8, pp. 1266–
71, Jan. 1996.

[129] S. Derrode and F. Ghorbel, “Robust and efficient Fourier-Mellin transform approxima-
tions for gray-level image reconstruction and complete invariant description,”Comput.
Vis. Image Und., vol. 83, no. 1, pp. 57–78, Jul. 2001.

[130] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, scale,
and translation resilient watermarking for images,”IEEE Trans. Image Process., vol. 10,
no. 5, pp. 767–82, Jan. 2001.

[131] R. Cassinis, “Unsupervised matching of visual landmarks for robotic homing using
Fourier-Mellin transform,”Robot. Auton. Syst., vol. 40, no. 2-3, pp. 131–138, Aug. 2002.

[132] J. Zhang, Z. Ou, and H. Wei, “Fingerprint matching using phase-only correlation and
Fourier-Mellin transforms,” inSixth International Conference on Intelligent Systems De-
sign and Applications, Jinan, Oct. 2006, pp. 379–383.

[133] J. Yang, T. Sarkar, and P. Antonik, “Applying the Fourier-modified Mellin transform
(FMMT) to Doppler-distorted waveforms,”Digit. Signal Process., vol. 17, no. 6, pp.
1030–1039, Nov. 2007.

[134] A. De Sena and D. Rocchesso, “A Fast Mellin and Scale Transform,” EURASIP J. Adv.
Sig. Pr., vol. 2007, no. 1, pp. 1–10, Jan. 2007.

160



[135] J. Bertrand, P. Bertrand, and J. P. Ovarlez, “The Mellin Transform,” inTransforms and
Applications Handbook, 3rd ed., L. D. Poularikas, Ed. Boca Raton: CRC Press, 2010,
ch. 12, pp. 12–1 – 12–37.

[136] M. Unser, “Splines: a perfect fit for signal and image processing,”IEEE Signal Process.
Mag., vol. 16, no. 6, pp. 22–38, Nov. 1999.

[137] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.Flannery,Numerical Recipes,
3rd ed. New York: Cambridge University Press, 2007.

[138] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-time Signal Processing, 2nd ed.
Upper Saddle River: Prentice Hall, 1999.

[139] G. Robbins and T. Huang, “Inverse filtering for linear shift-variant imaging systems,”
Proc. IEEE, vol. 60, no. 7, pp. 862–872, Jul. 1972.

[140] H. Sundaram, S. Joshi, and R. Bhatt, “Scale periodicity and its sampling theorem,”IEEE
Trans. Signal Process., vol. 45, no. 7, pp. 1862–1865, Jul. 1997.

[141] A. De Sena, “A computational framework for sound analysis with the Mellin and scale
transform,” Ph.D. dissertation, Università di Verona, 2008.

[142] Z. Lu, S. J. Lee, J. E. Michaels, T. E. Michaels, D. O. Thompson, and D. E. Chimenti,
“On the optimization of temperature compensation for guided wave structural health mon-
itoring,” in Review of Progress in Quantitative Nondestructive Evaluation, vol. 1211, no.
May 2012, Kingston, 2010, pp. 1860–1867.

[143] P. E. Gill, W. Murray, and M. H. Wright,Practical Optimization. New York: Academic
Press Inc., 1981.

[144] P. H. F. Nicholson, P. Moilanen, T. Kärkkäinen, J. Timonen, and S. Cheng, “Guided ultra-
sonic waves in long bones: modelling, experiment and in vivoapplication,”Physiological
Measurement, vol. 23, no. 4, pp. 755–768, Nov. 2002.

[145] Y. Ying, J. H. Garrett, J. Harley, I. J. Oppenheim, J. Shi, and L. Soibelman, “Damage
Detection in Pipes under Changing Environmental Conditions Using Embedded Piezo-
electric Transducers and Pattern Recognition Techniques,” J. Pipeline Syst. Eng. Pract.,
vol. 4, no. 1, pp. 17–23, Feb. 2013.

[146] Y. Ying, J. H. Garrett, I. J. Oppenheim, L. Soibelman, J. B. Harley, J. Shi, and Y. Jin,
“Toward Data-Driven Structural Health Monitoring: Application of Machine Learning
and Signal Processing to Damage Detection,”J. Comput. Civil Eng., vol. 27, no. 6, pp.
667–680, Nov. 2013.

[147] C. Liu, J. B. Harley, N. O’Donoughue, Y. Ying, M. Berges, M. H. Altschul, J. H. Garrett,
Jr, D. Greve, J. M. F. Moura, I. J. Oppenheim, and L. Soibelman, “Ultrasonic scatterer
detection in a pipe under operating conditions using singular value decomposition,” in
Review of Progress in Quantitative Nondestructive Evaluation, vol. 1454, Denver, CO,
Jul. 2013, pp. 1454–1461.

161



[148] C. Liu, J. B. Harley, M. Bergés, D. W. Greve, W. R. Junker, and I. J. Oppenheim, “A
robust baseline removal method for guided wave damage localization,” in Proc. of SPIE
Conference on Smart Structures Technologies for Civil, Mechanical, and Aerospace Sys-
tems, J. P. Lynch, K.-W. Wang, and H. Sohn, Eds., San Diego, CA, Apr. 2014, p. 90611K.

[149] C. Stubbs, M. Brenner, A. Despain, R. Henderson, D. Long, W. Press, J. Tonry, and
P. Weinberger, “The Computational Challenges of Medical Imaging,” Mitre Corp. and
McLean VA JASON Program Office, Tech. Rep., Apr. 2004.

162


	List of Figures
	List of Tables
	Introduction 
	Motivation
	Challenges
	Challenge 1: Uncertainty
	Challenge 2: Complexity 
	Challenge 3: Variability 

	Model Framework
	Lamb wave model
	Sensor model

	Dissertation Outline

	Learning Data-Driven Models: Sparse Wavenumber Processing 
	Motivation
	The frequency-wavenumber space
	Sparse Recovery by Basis Pursuit
	Sparse Wavenumber Analysis
	Sparse Wavenumber Synthesis
	Debiasing Results
	Comparison with least squares

	Simulation and experimental methodologies
	Data collection
	Simulation models

	Simulation results and discussion
	Scenario 1: Unbounded plate
	Scenario 2: Multipath
	Scenario 3: Multipath with window
	Scenario 4: Multipath and position noise with window
	Comparison with least squares

	Experimental results and discussion
	Sparse wavenumber analysis
	Sparse wavenumber denoising

	Conclusion

	Leveraging Guided Wave Complexity: Data-Driven Matched Field Processing 
	Motivation
	Data collection
	Calibration data
	Test data
	Model data

	Data-driven matched field processing
	Building the data-driven model
	Coherent data-driven matched field processor
	Incoherent data-driven matched field processing

	Asymptotic behavior 
	Single path scenario
	Multipath scenario

	Comparison with clustered sensor topologies
	Conclusions

	Coherent Data-Driven Matched Field Proc.: Acousto-Ultrasonic Localization
	Motivation
	Data-driven calibration
	Experimental methodology
	Method parameters
	Comparison with delay-and-sum

	Experimental results and discussion
	Figures of merit
	One scatterer
	Two scatterers

	Conclusions

	Incoherent Data-Driven Matched Field Proc.: Acoustic Emission Localization
	Motivation
	Data-driven calibration
	Experimental methodology
	Method parameters
	Comparison with multilateration

	Experimental results and discussion
	Multipath study
	Noise study

	Conclusions

	Refining for Environmental Variations: The Scale Transform
	Motivation
	Scale transform signal processing
	Problem Formulation
	The Scale Transform
	The Fast Mellin Transform
	Maximization of the Scale Cross-Correlation Function

	Performance of Scale Transform Methods 
	Scale-invariant correlation (SIC) method 
	Iterative scale transform (IST) method
	SIC/IST combination
	Comparison with the optimal signal stretch (OSS) method

	Results: Single sensor compensation 
	Experimental methodology
	Estimation accuracy
	Computational cost

	Results: Data-driven matched field integration
	Scale transform temperature compensation
	Experimental methodology
	Results and discussion

	Conclusions

	Conclusions and Future Work 
	Extension to new applications
	Integration with data science
	Application to imaging modalities

	The restricted nullity property 
	Proof of (3.23): single path scenario (coherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Proof of (3.23): single path scenario (incoherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Proof of (3.25): multipath scenario (coherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Proof of (3.25): multipath scenario (incoherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Bibliography
	ADPA395.tmp
	THESIS


