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Abstract

This dissertation develops a robust, data-driven loctitimanethodology based
on the integration of matched field processing with comm@sensing, recovery
techniques and scale transform signal processing. ThdéiZattan methodology
is applied to an ultrasonic guided wave structural healthitoang system for de-
tecting, locating, and imaging damage in civil infrastiues. In these systems,
the channels are characterized by complex, multi-modal flieguency dispersive
wave propagation, which severely distort propagatingagrmcquiring the charac-
teristics of these propagation mediums from data represedifficult inverse prob-
lem for which, in general, no readily available solutionstgi In this dissertation,
we build data-driven models of these complex mediums bygnateng experimental
guided wave measurements with theoretical wave propagatomels and; sparse
recovery methods from compressed sensing. The data-drieeels are combined
with matched field processing, a localization frameworleastvely studied for un-
derwater acoustics, to localize targets in complex, guidade environments. The
data-driven matched field processing methodology is thiémed through the use
of the scale transform, to achieve robustness to envirotaheariations that distort
guided waves. Data-driven matched field processing is expetally applied to
an ultrasound structural health monitoring system to deted locate damage in

aluminum plate structures.
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CHAPTER 1

Introduction

1.1 Motivation

Matched field processing is a widely studied methodologyrnidanwater acoustics for lo-
calizing targets in complex environments. Match field pesieg [1, 2] utilizes a wavefield
propagation of the medium, which represents the Greenitifumbetween any two arbitrary
points in the environment, to find the most likely locatioraafacoustic source from experimen-
tal measurements. Traditionally, these wavefield propagahodels are obtained analytically,
often by numerical integration of the wave equation, or Heditz equation, for environment
of interest. Although these approaches work well in thettryy often face significant of com-
plexity, uncertainty, and variability in the environmeit. many scenarios, accurate numerical
models are not available, or we do not have enough accurate&dge about the environment’s
geometry, its physical parameters, and its boundary dondit This often occurs due to varying
environmental and operational conditions [3-5].

This dissertation is concerned with overcoming these ehgks of uncertainty, complexity,
and variability associated with implementing matched fialocessing. We accomplish this by
developing a new methodology that we refer to as data-dnvedel for matched field process-
ing. Data-driven matched field processing estimates frota da accurate, theoretical multi-
modal and dispersive propagation model of the actual enmient that is then used by matched
field processing to detect and localize acoustic sourcestanctural damage. The data-driven

model is estimated from data by combining fundamental kedgeé about the propagation en-
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vironment with compressed sensing @adparse signal recovery. We integrate this data-driven
model with the coherent and incoherent matched field processd demonstrate, both analyt-
ically and experimentally, the performance charactesstif the resulting data-driven matched
field processors.

We evaluate our methods with ultrasonic guided waves ircsiral health monitoring ap-
plications. Structural health monitoring systems aregtesi to track large, physical structures
for damage and degradation. For example, these systemfiaterest to observe the structural
integrity of transportation, power, and resource distitounetwork infrastructures. They can
be employed to monitor bridges, pipelines, airplanes, aadynother structures. They allow
operators to reduce the costs associated with testing amdaiméng large infrastructures and
help to prevent catastrophic failures that have costly eguences. In the following section,
we discuss the significant challenges, which we addressiligsertation, for designing and

utilizing guided wave structural health monitoring syssem

1.2 Challenges

Ultrasonic guided waves are an attractive tool for monitgiiarge, physical structures be-
cause they possess low attenuation due to being guided lptivelaries of the structure, and
they are highly sensitive to small variations in the stroetguch as damage. However, there are
significant challenges for analyzing guided waves. The gagnof the structure makes them
complex signals that are difficult to interpret without vexgcurate knowledge of the medium.
The waves are also highly sensitive to outside environnheffiects, such as temperature. We
discuss these challenges in the following subsections.

Guided waves are high-frequency waves (where the wavdleaghuch smaller than the
physical dimensions of the environment under test) that'guéded” by the geometry of a
structure, or waveguide. For example, a long and wide plétefimite thickness is a waveguide
for acoustic waves. Acoustic waves reflect off of the top aoddm boundaries of the plate,
which guide the waves in the direction of the plate’s lengtti @idth. Guided waves in a plate
are commonly known as Lamb waves [6]. Other well known guidesles include Rayleigh

and Love waves that are commonly studied in seismology [@llew water Perekis guided
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waves that are studied in underwater acoustics [8], andrefeagnetic waves in transmission

lines that are used in electronics and power applicatiopns [9

We address the challenges of uncertainty, complexity, anidbility by developing an ef-
ficient method that constructs environmental models usimgigal principles, measured data,
and signal processing methods. We illustrate our techmigitte wave waves. We combine
fundamental physical principles that allow us to undemstanterpret, and leverage the com-
plex characteristics of guided waves, with measured daba) fvhich we can learn specific
unknown parameters of the propagation environment. Wa lgsse propagation characteris-
tics with compressed sensing and integrate them with mdttiakel processing and the scale
transform to design and develop and effective ultrasounatiral health monitoring system.

The next section addresses the challenges considered issertation.

1.2.1 Challenge 1: Uncertainty

Due to the geometry of physical structures, ultrasonic gdildaves generally exhibit com-
plex behavior. We consider a large plate and, for simplieisgume it has infinite length, infinite
width, and finite thickness. For this plate, there is welNleped theory that describes the be-
havior of acoustic waves as they travel through the stredgl. As waves travel through the
plate, the waves interact with the top and bottom surfacd$@m interference patterns across
the plate’s thickness. This constructive and destructiterierence forms a number of discrete
wave modes. Each wave mode propagates with a unique vetbaityaries as a function of
frequency, a phenomenon known as dispersion. This multaad dispersive behavior sig-

nificantly distorts the waves as the travel through they \gaige.

The multimodal and dispersive properties of a guided wagefien characterized by their
dispersion curves. The dispersion curves of a medium iliteshow the wavenumber, or some-
times phase velocity, of the guided waves changes as a dunatifrequency [10]. Figure 1.1
illustrates the dispersion curves for Lamb waves in an atumi plate of finite thickness and
infinite length and width. In these plots, each line represére wavenumber of a propagating
Lamb mode as a function of frequency. At the lowest freques)diwo most always propagate

in the plate: the zeroth antisymmetric mode (AO) and thethesgmmetric mode (S0). As
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Figure 1.1: Dispersion curves for the waves in an aluminuaeplvith a Poisson ratio @35
and density 02700 kg/m?. Solid lines represent asymmetric wave modes (denoted hyAAD
and A2) and dotted lines represent antisymmetric wave m@ie®ted by SO, S1, and S2).

frequency increases, more modes are introduced at partitadt-off” frequencies. The total

number of modes is finite, but at higher frequency, the nurabgrows very large.

Lamb wave modes are usually grouped into two families basdteir resonant properties:
symmetric modes and antisymmetric modes [11], as illustr& Figure 1.1. As suggested
by the names, symmetric modes are characterized by evemignstric wave displacements
through the plate’s thickness, while antisymmetric modesharacterized by oddly symmetric
wave displacements through the plate’s thickness. We hotegver, in this dissertation that we

do need nor will distinguish between mode families for psg®other than discussion.

Many techniques have been proposed to recover the multinaodiadispersive velocities
from observed data. Among these methods are the two dimeisiscrete Fourier transform
(2D-DFT) [10, 12], various time-frequency analysis meth¢ti3—15], time-domain matching
pursuit approaches [16,17], and other model-based sieatf$, 19]. While these methods are
often effective to analyze guided waves, they are genenaityaccurate enough to be used to
build an effective model of the physics [20]. Furthermor@myof these approaches fail when

the plate no longer has an infinite length and infinite widtt data is corrupted by unmodeled
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multipath interference, which distorts measurements. &k to the multipath interference as
“unmodeled” since it is not accounted for in the simple waudg model.

In chapter 2 of this dissertation, we develop and demomrsaanethod known as sparse
wavenumber analysis that utilizes optimization technsofoem compressed sensing [21-23] to
accurately, efficiently, and robustly recover the dispergiurves of experimental guided wave
data, even after corrupted by unmodeled multipath interfeg. WWe demonstrate that, from the
recovered dispersion curves, we can synthesize guidedmwassurements based on simulated
and experimental data. The synthesized data is our daterdmodel. With simulated data, we
show that the synthesized data can match true measuremiémescauracies greater thaf.5

%. With experimental data, we achieve similar results.

1.2.2 Challenge 2: Complexity

Due to the distorting effects of multimodal propagatiorspgirsion, and unmodeled multi-
path interference, guided wave time traces are very complgure 1.2a illustrates an example
of guided wave measurements after traveling from a singleceathough d.2 m by 1.2 m by
0.284 cm aluminum plate. The wideban@)0 kHz bandwidth chirp excitation is shown in Fig-
ure 1.3a. In a simple medium, without multiple modes or disjo@, we would only observed
delayed replicas of the excitation signals at differennpoin the structure. From those repli-
cas, we could readily determine the wave’s time-of-flighbrmation. However, we observe
in Figure 1.2a that the measured response does not resdmbéxditation, quite to the con-
trary. Therefore, traditional analysis methods that redytloe similarity between the received
and transmitted signals are not sufficient for interpretjogled wave data.

To preserve the shape of the excitation with guided wavesarehers often analyze only a
narrow band of possible frequencies. Figure 1.2b shows a tiiate response from a narrow-
band excitation for the same sensor setup used in 1.2a. Themand, 50 kHz bandwidth
Gaussian excitation is shown in Figure 1.3b. While the neloand measurements are visually
simpler, they still only moderately resemble the excitattue to dispersion and unmodeled
multipath interference. Also, due to dispersion, the phat@mation is unreliable because
different frequencies travel at different speeds. Theefoesearchers also often remove the

phase information by only analyzing the envelope of theavaband response, which is shown

23



(=
o o wm

Voltage [mV]
& o

-15
0 0.5 1 0 0.5 1 0 0.5 1
Time [ms] Time [ms] Time [ms]

(@) (b) (b)

Figure 1.2: An example time-domain measurement from a Lam@newltrasonic source with
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Figure 1.3: Excitations signals corresponding to measeangsin Figure 1.2. (a) Wideband,
500 kHz bandwidth chirp excitation. (b) Narrowbafd kHz bandwidth Gaussian excitation.

in Figure 1.2c. Using the signal envelope and an estimatkeoftiided waves group velocity
around the narrow band of frequencies, researchers haviowsdpseveral methods, such as
delay-and-sum localization [24, 25], time reversal [26;-2&ultilateration [29-31], and proba-
bilistic methods [32, 33] to detect and locate damage in jghystructures.

These approaches remove a large amount of valuable inflomiat restricting the data to

a narrow band of frequencies and removing phase informafibe analysis of guided waves
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could be made much more precise and effective by utilizilgkhowledge. Using the disper-
sion curves or specific knowledge about how waves propagatesan more effectively use
the phase information. For example, [34, 35] have developethods to remove multimodal
and dispersive effects from measured data and to perforimragplution localization with time

reversal methods [26—28]. These methodologies genersdlynaea priori, accurate dispersion
curve knowledge, which is generally not true.

In chapters 3, 4, and 5 in this dissertation, we demonstrajgassity-based, data-driven
matched field processing methodology that combines spaagenumber analysis (discussed
challenge 1) with a matched field processing framework [1\2tched field processing is a
model-based localization methodology that has been axtnstudied and applied in under-
water acoustics. Data-driven matched field processingvallss to leverage the complexity of
guided wave signals to perform accurate localization bgrporating data-derived multimodal
and dispersive properties within the model. To detect danag apply data-driven matched
field processing to the difference between a prior baseigmatand a current measurement.
We compare our data-driven matched field processing resithidraditional structural health
monitoring localization methods and demonstrate scesaniwhich we can achieve more than
a 48 times improvement in localization resolution and more tha1i times improvement in

localization accuracy.

1.2.3 Challenge 3: Variability

For our second challenge, we integrate our data-driven hwagtlematched field processing
to locate damage that occurs between two points in time. iieeanvironment changes signif-
icantly between those points in time, the baseline subtrastep in matched field processing
will not yield reliable data to use. This is because manyremrmental parameters, such temper-
ature [36] or applied stress [37,38], have a direct effedhemmaterial properties, and therefore
the dispersion curves, of the structure under test.

Temperature is one of the most prominent of these effectls &iations in temperature
are known to change the Young’s modulus of a material, tbesedffecting the velocity of
the guided waves. Due to the complex, multi-modal, dispersand the multi-path behavior

of guided waves, these variations in velocity can be appnated as a uniform time-scaling
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or time-stretching effect on the received signals [40, Adhile different modes often do not
vary at the same rates [3, 42], the aggregate affect on athtiiépath components resembles
a stretching effect. This model has been experimentallyatestnated to be accurate for suffi-
ciently small changes in velocity [3,40-43].

To improve the detection and localization of damage in $tmas, the literature has pro-
posed several methods, such as local peak coherence [4@pantil signal stretch (OSS) [40],
to compensate for temperature by estimating the stret¢brfaad properly adjusting the mea-
sured signal. Local peak coherence [41,42,44] is a strefttbif estimation technique based on
approximating a stretching operation as a series of tinpeidgent delay operations. Local peak
coherence can be computed very quickly, but is sensitivéhier@ffects that do not uniformly
stretch the signal over time. These changes could come frerfotmation of damage or other
environmental and operational effects [4]. In contrastSQ®)] correlates each observed signal
with a library of stretched replicas of a single baselineisEpproach is accurate and robust to
damage and other variations but computationally inefficien

In chapter 6 of this dissertation, we present a robust angbatetionally efficient method for
temperature compensation based on scale transform sigpw@dgsing methods. We compare
these results with OSS and demonstrate up@® éimes improvement in computational speed.
We then demonstrate how we can combine our previous lotializenethods with our scale
transform temperature compensation method to achieveateciocalization of damage with

robustness to environmental changes.

1.3 Model Framework

In this section, we provide a brief derivation of the Lamb wavodel used throughout this
dissertation. We always assume that our sensors are sunfaaeted transducers that cannot
distinguish between displacements in multiple directji@msl instead observe some linear com-

bination of each displacement component.

1.3.1 Lamb wave model

We consider a plate of finite depth, infinite length and widiing traction-free surfaces. We

assume cylindrical coordinates such that thexis is aligned with the height of the plate. The
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Figure 1.4: Coordinate axés, 0, z) for the plate geometry considered in this dissertation.

r-axis and thé-axis represent the distance and angle from the origin amd éoplane parallel
to the plate’s surface. Figure 1.4 illustrates this coatérsystem.
Under these conditions, the general phasor solution fglatements originating from

r = 0 and oscillating in the-directionU, andz-directionU,, can be expressed in the form [6]
Up(r,z,0) =Y Bulz,w) HY (ko(w)r)

Uu(r,z,w) = Y Conlz,w) Hy (km(w)r) (1.1)

where H{V(-) is thev-th order Hankel function of the first kind [45] (also knowna8essel
function of the third kind) and:,,,(w) is a frequency dependent, i.e., dispersive, wavenumber
for wave moden.

To simplify the expressions in (1.1), we assume our obsemnatoccur in the “far-field”.

For sufficiently large values df,,(w) r, the Hankel function can be approximated as [45]

2 _
HO (b))~ [— o i (@)r—(1/2)vm—(1/4)m) (1.2)

This far-field approximation is valid for roughly > 2\, (w) [6], where\,,(w) = (27)/k(w)

is the wavelength of mode:. Therefore, the Lamb wave’s displacement can be approgignat

1 5y j w)r
Ur(rvsz) ~ § “ k (CU)’I“ Bm(sz) 6ka( )
1 ~ )
U,(r,z,w) =~ g ”k w)r Crn(z,w) eFFm@r (1.3)
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where

- 2

B, (z,w) = — Bm(z,w)e_j(3/4)”
T

~ 2 —i(1/4)m

Cn(z,w) = — Ch(z,w)e™ : (1.4)
T

In (1.1) and (1.3), we represent the wave propagation in-ttend z-directions as a sum-
mation of guided wave modes. For both displacement funstieach mode. is characterized
by a frequency dependent wavenumbgi(w). Figure 1.1 illustrates each theoretidg|(w)
function, which can be computed numerically [11], for a Lawdve propagating in @.284 cm
thick aluminum plate with a Poisson ratio @85 and density oR700 kg/m?. These curves are
known as the dispersion curves of the medium.

Lamb waves will also usually wave evanescent wave modes shaththe wavenumber
k..(w) for each moden is imaginary and attenuate quickly wikh, (w)r. However, we assume
the effects from these evanescent wave modes to be smallffmiently largek,,(w)r values.
In our model, we also assume that the propagating wavesierpemo structural damping due

to internal friction.

1.3.2 Sensor model

In our experiments, we use surface mounted PZT (lead ziteditanate) transducers for
transmitting and measuring guided Lamb waves. We chooseemsor locations so that each
sensor lies on the same surface= z, of the plate. We also assume that our sensors, which
convert displacements on the plate surface into an elatwidtage, cannot uniquely distinguish
displacements in the or z directions. Instead the measured voltage sigiét, w) can be

represented as a linear combination of each displacement
X(Tv UJ) = T(CU)R(CU)(CYUT(’T’, 20, CU) + 5UZ(T7 20, (.U)) ) (15)

wherea and s are arbitrary constants arft{w) and R(w) represent the transfer functions of
the transmitting and receiving transducers respectived). [ Note that we assume that each
transducer can be characterized by the same transferdusét(x) and7'(x). This has been

shown to be approximately true for comparable sensors [19].
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By plugging the approximate displacement functions in)in® (1.5), we can represent

the signal between any two transducers as

X(r,w) = Z \/ 7km(1w)r G (w) eZFm@r (1.6)

wherer is the distance between a given pair of transducers. In,({thé)xoefficient
G(w) = T(@)RW) (aBp(z0,w) + BCn(z0,)) (1.7)

represents the frequency dependent complex amplitudeddem in the measured response.
While (1.6) represents a continuous model of the plate agpace and frequency, measured
data is sampled across a finite subset of sensors or pointaae s Therefore, we represent a

collection of M measurements by anl x 1 vector

X(w) = | X(r,w) X(ro,w) ... X(ry,w) ' , (1.8)
wherery, ..., r); are known distances between points in the environment. @fdight that this
relationship is approximate because most measuremenisaaély corrupted by some form of
error, such as random measurement noise, coherent mhliigatference from boundaries, or
imperfect modeling of the sensors or system. For most dajaisiion and processing sys-
tems, we would also use a discrete, finite collection of tiamagles or frequencies, but for this

dissertation, we consider a continuous time and frequeanyath without loss of generality.

1.4 Dissertation Outline

In the following chapters, we use the Lamb wave model andasemsdel described in
the previous sections to recover the dispersion curves aihd & propagation model of Lamb
waves in a particular aluminum pipe, leverage that moded¢allze damage or acoustic emis-
sions, and then refine the framework to account for temperatariations in the environment.
In Chapter 2, we derive sparse wavenumber analysis andespargenumber synthesis to re-
cover the dispersion curves and generate the propagatidelmin Chapter 3, we integrate
sparse wavenumber analysis with matched field processidgriee data-driven matched field
processing, and we analyze the asymptotic characteredtatsta-driven matched field process-

ing. In Chapter 4, we apply coherent data-driven matched figdcessing to localize holes in
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the aluminum plate. In Chapter 5, we apply incoherent dataend matched field processing to
locate spontaneous acoustic emission on an aluminum jte@hapter 6, we demonstrate and
integrate a method based on the scale transform to compdosagriations in temperature in

an the aluminum plate. Together, the content of these cisptesent a high resolution, robust
structural health monitoring framework. In Chapter 7, wendastrate how this framework can

be extended to new structures, environments, and applicsati
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CHAPTER 2

Learning Data-Driven Models: Sparse

Wavenumber Processing

2.1 Motivation

In guided wave structural health monitoring, researchegsancerned with detecting and
locating damage in complex propagation media. These meeiaften characterized by mul-
timodal and frequency dispersive behavior [46]. This implihat the received measurements
can be expressed as a sum of wave modes that travel at differgunency dependent veloci-
ties. Often, each velocity may also vary as a function of mmmental and operational effects,
such as temperature [3,5]. Furthermore, most guided wastersg in physical infrastructures
exhibit a significant degree of multipath effects from plegéboundaries. As a result of all of
these effects, accurately characterizing and analyzirdpguwaves is very challenging.

To successfully detect or locate damage, many methodsmehcoherent signal processing
techniques, such as envelope extraction [24], to detedbaate areas with damage. Incoherent
signal processing techniques can be used to compensatefdistorting effects of dispersion,
but these techniques remove potentially useful inforrmago@rticular phase information, from
the measured data. In contrast, accurate estimates of thienodal and frequency dispersive

behavior of a medium could be used to greatly improve cumesthods [34].

In this chapter, we propose a hew methodology that we refas gparse wavenumber anal-

ysis, which is based on compressed sensing [21-23], toa@etyirecover the multimodal and
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dispersive properties of guided waves in a plate, also kremMoamb waves. Compressed sens-
ing concerned with accurately and efficiently recoverirgnals and systems that admit sparse
signals representations, which contain mostly zeroes4[248]. We show that Lamb waves
have a sparse representation in the frequency-wavenurabeid and, through this representa-
tion, we can accurately recover the parameters of Lamb waiteg; optimization techniques.
We use these recovered parameters to “denoise” the meamuiememoving random noise
and multipath signal interference, and generate datawinaodels that can predict the mea-
sured response between any other two points on the plate eféfeto this process as sparse

wavenumber synthesis.

In the following sections, we outline and discuss our methagly for using sparse repre-
sentations to recover the multimodal and frequency dispetsehavior of Lamb waves. This
work was originally presented in references [20, 49, 50 &ation 2.2, we formulate a general
model for Lamb wave behavior. We then discretize this modedss the wavenumber domain
and pose the problem of estimating the multimodal and frequédispersive behavior of Lamb
waves as a discrete inverse problem that compressed seasiragcurately solve. In Section
2.3, we formulate our sparse wavenumber analysis and sparsnumber sparse synthesis
techniques, and we briefly review compressed sensing angasis pursuit algorithm that we

use to solve the Lamb wave inverse problem.

In Section 2.4, we discuss our experimental and simulatiethodology, which considers
17 ultrasonic transducers randomly arranged across a firdte.dh Section 2.5 and Section 2.6,
we show that sparse wavenumber analysis can accuratelyerette frequency-wavenumber
representation of Lamb waves from simulation and experiaieiata that are both corrupted by
multipath interference. We then show that sparse wavenusyin¢hesis can be used to success-
fully remove the multipath interference. Our simulatioh®w that we achieve a correlation
coefficient 0f0.99 between the true direct path response and the denoised. digmalso apply
sparse wavenumber synthesis to the simulated data to ptieeliesponse between two arbitrary
points in the plate. We show that these predicted respomgktha true direct path responses

can achieve correlation coefficients greater tham.
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2.2 The frequency-wavenumber space

Given the modelX (r,w) in (1.6), we can fully characterize Lamb waves with knowlkedg
of k,,(w) andG,,(w) for each moden. While k,,(w) andG,,(w) may be derived theoretically,
the resulting values are usually not precise due to uncgyta the properties of the sensors
and medium. The complex amplitudg, (w), for example, is significantly affected by the trans-
ducers [51] and their bond with the medium [52]. The wavenemih,(w) is also affected by
properties of the medium, which can change with environadesdnditions such as tempera-
ture [3,5].

In this section, we present an approach to estirhgfe’) andG,, (w) from our datax(w) and
the continuous propagation modgl(r,w). To accomplish this, we discretizZ€(r, w) across
the frequency-wavenumbeu<{x) space. In the continuous frequency-wavenumber space, we

can rewrite the expression for Lamb waves in (1.6) as

Gm if kK =k,,(w) foran
V(k,w) = (W) s @) ym : (2.1)
0 otherwise

Since the true wavenumber valugg(w) are unknown to us for analysis, we choose to discretize
the domain acrosd’ possible wavenumber values, ., . . . , Kk, specifying a sampling inter-
val to achieve some desired resolution. By discretizingnteenumber domain, we can express

(2.1) as aV x 1 wavenumber vector
T
vw@) = [Virw) Viw) ... Vieyw)] 2.2)

that varies with frequency.

Figure 2.1 illustrates an examplewvfw) coarsely sampled across the wavenumber domain.
Each column of Figure 2.1 represent8y;), at some given frequency;, discretized ovet00
wavenumbers. The shading represents the magnitudéafx) at each frequency-wavenumber
pair, generated from the Lamb wave’s theoretical displasgramplitudes [6]. Therefore, the
location of each non-zero component in Figure 2.1 is an eséimofk,, (w) and the correspond-
ing value at each location is an estimate of the associ@g@s). Note that the amplitudes
shown in Figure 2.1 will likely not correspond to experimamesults due to the many factors

influencing each mode’s amplitude, such as the transdundrthair bond with the medium.
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Figure 2.1: Dispersion curves from Figure 1.1 uniformlycdétized acros$00 wavenumber
values with amplitudes generated from the Lamb wave’s gtexa displacement amplitudes.

The two vectorsc(w) andv(w) now illustrate two representations for our model and data:
the frequency-distance representation, which we direstigisure, and the frequency-wavenumber
representation, which specifiés,(w) andG,,(w). From (1.6), the two representations are lin-

early related by
x(w) = D,AD,v(w), (2.3)
whereD, andD, areM x M andN x N diagonal matrices, respectively, defined by

D, = diag[r;”?,...,r;}”] (2.4)
D, — diag[n;”?,...,n;vﬂ (2.5)

andA isaM x N generalized Vandermonde matrix defined by

_ TR
A = [e J Lj : (2.6)
In (2.6),71, 72, ...,r)y represent thé/ known distances associated with each measurement and
K1, ks, . .., kn Specify theN chosen wavenumbers to represent our data across the fogguen

wavenumber domain.
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Therefore, (2.3) represents a discrete, linear inversiel@mofor which our goal is to iden-
tify the vectorv(w) at each frequency that uniquely represents the multimaahbéspersive
properties of the entire medium. In many situations, the Imemof sampled wavenumbehé
will be larger than the number of measuremehis In these circumstanced, represents an
underdetermined system, and therefore, there exists mentgrgv (w) that satisfy (2.3). How-
ever, as illustrated in (2.1) and Figure 2.1, most elementg @) are zero, i.e., the vector is
sparse. Therefore, we use sparse recovery methods to b@weverse problem.

Compressed sensing and sparse recovery techniques asgroeohavith recovering, from a
small number of measurements, signals or systems that agange representations [23]. In the
following section, we briefly discuss compressed sensilgoasis pursuit optimization, which
we will use to recover (w). In Section 2.5 and Section 2.6, we apply basis pursuit tolsited

and experimental data to illustrate that we can receyer both accurately and robustly.

2.3 Sparse Recovery by Basis Pursuit

In this section, we discuss how sparse recovery techniqoes éompressed sensing, and
specifically basis pursuit, is used to recowdw). By using sparsity, we show that we can
accurately recover the medium’s frequency-wavenumbeesgntation even when the system
is underdetermined [53].

If our system is noise-free andw) is sparse, the unigue solution to (2.3) can be described
as the maximally sparse vector, the vector with the fewestagyo elements, that satisfies
x(w) = D,AD,v(w). This solution can be represented as the solution to thenggzttion
problem [23]

v(w) = argmin [[v(e)]o

st. x(w)=D,AD,v(w), (2.7)

where the/y-pseudo-norni| - ||, is defined as the number of non-zero elements in a vector. This
optimization is solved by a combinatorial search [23], whirickly becomes intractable for
large N. However, a convex relaxation of this optimization probJémown as basis pursuit

[22,54], can often be used in place of (2.7).
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2.3.1 Sparse Wavenumber Analysis

The basis pursuit algorithm relaxes (2.7) by replacing/theorm with ané;-norm,

N
VI = fval - (2.8)
n=1

The use of arf;-norm reformulates the intractable optimization in (2.3)aaconvex problem
[54,55]. This implies that the sparse solutiofaw) can be recovered computationally fast using
a convex program.

Most implementations of basis pursuit use a normalizedisgmeatrix & such that each

column has a unit;-norm [23]. By applying this normalization to our sensingtrmaD, AD,,

we get
_ ! pa (2.9)
VMID, [l '
where|| - || is the Frobenius norm, such that
D lr = (2.10)

To reduce variations in our solution across each frequemeylso normalize the energy of our

measured signal

(2.11)

so thatx, (w) has a unit/,-norm at each frequency. The normalized frequency-wavéeum

representation of our datg, (w) can then be expressed through basis pursuit as [22, 54, 56]

Vv, (w) =arg min ||v,(w)|1

VnplW

st x,(w) = dv,(w) . (2.12)
The unnormalized frequency-wavenumber representatiothen retrieved from

v(w) = [[x(W)[2([Drfl pDxvn(w) - (2.13)
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However,x(w) is usually corrupted by errors or noise. Therefore, we dtecise a robust

implementation of basis pursuit represented as the uneonst! optimization problem [53,54]

Vin(w) = arg min [|®v,(w) = X (W)[[3 + 7[[va(w)]ls (2.14)

v (w)
for a particularr > 0. As with the standard basis pursuit solution, we can comgngeinnor-
malized frequency-wavenumber representation) using (2.13). The optimizationin (2.14) is
often known as basis pursuit denoising [53, 54] or theenalized least-squares method [57].
In (2.14), a large- value will cause the optimization to place greater emphasimiakingv (w)
sparse than fitting the linear modek, (w) = x,(w). In contrast, a smalt will place greater
emphasis on fitting the linear model.

Note that ifr is too small, the solution converges to a least-squaretigolvithout sparsity,
and if 7 is too large, the; penalty dominates the cost function and the zero vectorrhesdhe
optimal solution. Therefore, it is necessary to choose aumagguiate value of-. For this dis-
sertation, we use simulation data to investigate the paidioce and robustness of our approach
with 7 in Section 2.5. Based on these results, we choose a reasaadiné ofr for our experi-
mental data. Alternatively, there exist a number of aldonis designed to automatically obtain
an optimalr value given additional information, such as the number ofrero values in the fi-
nal solution. These techniques include the “In-Crowd” alkipon [58], homotopy methods [59],
and the spectral projected gradient fpiminimization approach [60].

The general effectiveness of basis pursuit for a particgasing matrix is also often evalu-
ated by satisfaction of the restricted isometry propertyjRvith a sufficiently small constant
5, [48]

(L= a)lIvIz < [@v]* < (1+8)v3, (2.15)

where the solutiorv hasr non-zero values. Testing if a givel satisfies the RIP condition
is, in general, a combinatorial and intractable problenj.[Glowever, it has been shown both
theoretically and numerically [62] that matrices of comxpéxponentials, such as our choice
of @, with a collection of random exponents, r,, . . ., s, Will satisfy the restricted isometry
condition with high probably whe@/ is sufficiently large [62]. These results imply that our

setup is well suited for sparse recovery technigues as lsngeause a sufficient number of
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measurements. In Section 2.5, we show that our performacceases monotonically with the
number of measurements.

We refer to the process of obtaining this frequency-wavdrmemnepresentation(w) for
our application as sparse wavenumber analysis. Intugive¢ are transforming a frequency-
distance signal into a sparse frequency-wavenumber sighia optimization in (2.14) rep-
resents the analysis step of the transformation. In thevatlg subsection, we discuss the

synthesis step of the transformation.

2.3.2 Sparse Wavenumber Synthesis

Given a frequency-wavenumber representatidn), we can now generate a data-driven
model of Lamb waves in our plate. That is, we can use the dataed! dispersion curves in
v(w) to synthesize a Lamb wave respoiée-, w) between any two points in the medium. This
is accomplished by solving the forward problem in (2.3). ©alis, we consider a new collec-
tion of]\//fdistancesﬂ, ..., y; forwhich we want to estimate or predi&t(7y, w), . .., X (737, w).

We constructad/ x N A matrix and anV/ x M D, matrix based on our model from (1.6)

A = [,/ée%ﬁ] (2.16)
KjTi g
j

D, — diag [?;1/2, o ,?;1/2} , (2.17)
and synthesize the response at each frequency by a mattiorweultiplication

X(w) = D,AD,v(w) (2.18)

~ A~

= | X(r,w) )/(\'(rg,w) X(rﬁ,w)]T. (2.19)

We refer to this process as sparse wavenumber synthesis.oljirtg sparse wavenumber
analysis with sparse wavenumber synthesis, we are abletit@lgcpredict wave responses
between any points in the medium with only a small subset cdilsueements. In Section 2.5,
we use sparse wavenumber synthesis to accurately preghetisin a simulated environment.

We refer to the special cade, A = D, A, for which the synthesized signals correspond
to the same distances as the measured signals used in spaessumber analysis, aparse

wavenumber denoising. Intuitively, the “noise” in the each measurement, wheth@an random
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measurement noise or multipath reflections, is not sparseiftequency-wavenumber domain.
As a result, the recovered frequency-wavenumber reprasemts robust to these errors and
any signal synthesized from this representation showsrgfisignt reduction in this “noise.” In
Section 2.5 and Section 2.6, we show that sparse wavenumebeisihg effectively removes

multipath interference in both simulated and experimeatdié.

2.3.3 Debiasing Results

It is known that for sufficiently large values of the basis pursuit denoising solutiofw)
has a multiplicative bias [63, 64]. This is a result of thev,,(w)||; term’s dependence on the
scalar amplitude of,,(w) as well as its sparsity. To unbias our results, we estimaterthilti-
plicative term at each frequengyw) by minimizing the squared error between the measured

signalx(w) and its sparse wavenumber denoised version

filw) = argmin [(w)D, AD,v(w) ~ x()| (2.20)

(v(w))"D, . AD,x(w)
|D, AD,v (w)]3

)

where(-)" denotes the Hermitian transpose of a vector or matrix. Thigplicative bias esti-
matej:(w) is then multiplied to the frequency-wavenumber represemta (w) and any synthe-

sized signalx(w).

2.3.4 Comparison with least squares
In Section 2.5, we compare sparse wavenumber analysis toiaisand computationally

fast least-squares approach. In the least-squares fdraryleve solve the optimization

Vi, (w) = arg min [v(w)l2 (2.21)
st x=Av(w). (2.22)

As a closed form solutiony,, (w) is represented as
vi,(w) = (ATA)TAFx(w) = ATx(w) . (2.23)

Note that this approach is similar to sparse wavenumbelysisalith - = 0 since neither

promote sparsity. For the special case in which the dism@tivavenumbers,, ko, ..., ky are
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uniformly sampled with spacing\x, the sensors are aligned in a uniform, linear array with

spacing

B 2T
- NAg’

Ad (2.24)

and the excitation source is positioned on either end ofitteat array, we can represent our

sensing matrix as

A = FPDH (2.25)
1

Al = —D,F 2.26
N DF (2.26)

Dy = diag(e "2 . . e7Imad) (2.27)

In (2.25), the matrix* is an unnormalized/ x N Fourier frame, representing thé-point
inverse discrete Fourier transform, aRds an/N x M Fourier frame, representing tié-point
discrete Fourier transform.

In nondestructive testing, this special case is commordy tis measure dispersion curves
and is known as the two-dimensional discrete Fourier teans{2D-DFT) technique [10, 12].
However, given a small number of sensors, the 2D-DFT willegally perform poorly at re-
covering the frequency-wavenumber representation [2@]s & because wheR sensors are
arranged as a uniform, linear array, the number of uniquenties that can be measured is
M = P — 1. In contrast, an arbitrary sensor topology can measiire P(P — 1)/2 unique
distances. Furthermore, in guided wave structural heatihitoring, we often desire the sen-
sors to be sparsely separated in space to interrogate hegase as large as possible. For these
reasons, we choose to compare our approach to the more feastaquares solution in (2.23).
In Section 2.5, we show that, by promoting sparsity, we cdamexe much more reliable results
through our proposed sparse wavenumber analysis.

Time-frequency approaches [13-15] and related time dommgtching pursuit methods
[16, 17] are also often used to estimate dispersion curvesveMer, these techniques are not
inherently array-based, and as a result, are usually sentitnoise and multipath interference.
Furthermore, these approaches compute, as a functiongefeiney, the group velocity rather

than wavenumber or phase velocity. Since the group veligitefined as the derivative of
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frequency with respect to wavenumber = dw/dk, the wavenumber or phase velocity rep-
resentations may not be recoverable from the group veloé¢ityr these reasons, we do not
consider these techniques to be appropriate comparisaus spproach.

Note that since sparsity is not promoted by either the lsgatres and time-frequency ap-
proaches, additional algorithms are often necessary taaxach dispersion curve from the
respective representations [65]. We illustrate this inti8a2.5. This introduces an additional

layer of complexity with an additional possibility of error

2.4 Simulation and experimental methodologies

In this section, we discuss the setup of our experiment andlations, which are designed
similarly. We consider &.284 cm thick,1.22 m long, andl.22 m wide aluminum plate. On the
surface of the plate, we consider a collectiori ofandomly placed sensors. Sensors are placed
randomly so that no particular bias affects the results awaduise, as discussed in Section 2.2,
random sensor placement assures good properties for spacsery methods [62]. Figure 2.2
illustrates the location of each sensor. In our experimeanth sensor is@7 cm by0.8 cm by

0.2 mm PZT (lead zirconate titanate) transducer permanentigéd to the plate’s surface. In
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Figure 2.2: Sensor configuration for simulations and expenits. Each diamond represents the
location of a sensor on a plate.
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our simulations, we model each sensor as an ideal pointsaungoint receiver.
To recoverv(w) with basis pursuit denoising in (2.14), we uS¥X, a MATLAB package

specifically designed for solving convex programs [66, 67].

2.4.1 Data collection

To collect data, we iteratively use each sensor as the titiesrand receive signals from
each of the otheit6 transducers. This provides a total 212 different measurements for
136 unique distances. For the scenarios considered in thigehape found that the perfor-
mance of our methods to be approximately equal whether zinglyll of the measurements or
only a subset with unique distances. However, if the datatirupted by significant random
measurement noise, the additional redundant informatiarimaprove recovery performance.

During each iteration, the transmitter exciteR)aus linear frequency modulated chirp with
a 3 dB bandwidth betweefi Hz and2 MHz. This excitation choice allows us to collect data
across a large band of frequencies. Through filtering we gaa@ narrowband signals, which
are more commonly used in structural health monitoringnfach chirp response [68]. At
the receivers, which are synchronized with the transmittaves are measured withl@ MHz

sampling rate.

2.4.2 Simulation models

To simulate the wave response in the plate, we use the “fdi-firrodel in (1.6). The
dispersion curves shown in Figure 1.1 are used to deterkyjife) for each moden. To aid the
presentation of our results in Section 2.5, we choose thenamplitudes to bé&r,, (w) = 1
for eachm. This allows us to more readily compare the amplitudes iguiemcy-wavenumber
plots.

We simulate multipath signals by computing the distancéefdirect path as well as each
additional path that travels from the transmitter to thenesr after reflecting from any boundary
once. Each boundary is considered to be ideally rigid suahdh incident wave energy is
reflected but the amplitude is negated. Although this modét approximates the first few
multipath signals in the experiment, it is sufficient to sittate the effects of multipath on our

methodology.
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We also simulate errors arising from modeling physical ses)svhich extend in space, as
point sources and point receivers. We simulate this errontrgducing uncertainty in each
sensor’s position. We accomplish this by perturbing theeeigd distances, . .., r,, for each
measurement with “position noise” so that we have inaceukabwledge about the each sen-
sor’s location. While this does not perfectly model the effigf each sensor’'s geometry on the

measured responses, it illustrates the approximate effescich error on our methodology.

2.5 Simulation results and discussion

Through simulations, we evaluate the effectiveness of cethodology for four different
scenarios. 1) We consider only the direct path signal, whkiotulates a plate of unbounded
length and width. 2) We consider both the direct and mulbiativals as described in Section
2.4. 3) We consider the direct and multipath arrivals butdein the signals to remove late
arrivals. 4) We again consider the windowed, multipath oeses but with additional sensor
position noise.

In the third and fourth scenarios, we apply a rectanguladainwith an exponential taper.
The exponential taper begins after the arrival of a hypataksignal traveling at a group ve-
locity of 2000 m/s and reduces the signal amplitudedgB after approximatelg8 ps. Note
that this window removes multipath as well as some direavals. In the fourth scenario,
we perturb each expected distance by a uniform random Vaneth a horizontal range from
—0.3 cmto0.3 cm and a vertical range from0.35 cm to0.35 cm, which is0.1 cm smaller in
each dimension than ea6ly cm by0.8 cm transducer.

Figure 2.3 depicts a single time response between sénsord sensoé, as denoted in Fig-
ure 2.2, for the third simulation scenario and our experimé&he top traces represent the simu-
lated or measured wideband signals and the bottom tracessesy the same signals filtered by
a narrowband Gaussian filter with a center frequency86fkHz and al20 kHz bandwidth. As
verification of our simulations, we note that simulated aadvand signals in Figure 2.3(c) and
experimental narrowband signals in Figure 2.3(d) have seatesemblance.

We evaluate our four simulation scenarios with three déffiémetrics: 1) the visual accuracy

of the recovered dispersion curves in the frequency-wawden domain, 2) the accuracy of
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Figure 2.3: Wideband and narrowband time responses betseresorsi4 and6, labeled in
Figure 2.2. Each narrowband response is a Gaussian filtespdmse with center frequency of
180 kHz and120 kHz bandwidth. (a) Wideband simulation of a plate with wingal, multipath
effects. (b) Wideband experimental measurement with windfc) Narrowband simulation
of a plate with windowed, multipath effects. (e) Narrowbaxgerimental measurement with
window.

synthesizing a noise-free, direct path response with spaasenumber denoising, and 3) the
accuracy of predicting the direct path responses betweelora points on the plate with sparse
wavenumber synthesis.

For the first metric, we recover the frequency-wavenumbaesentatiorv(w) of our data
by applying sparse wavenumber analysis. We uniformly diste the wavenumber space
across3000 samples betweett m~! and4500 m~. We also conside2000 frequencies uni-
formly spaced betweeft Hz and2 MHz. In Figure 2.4, we show the resulting frequency-
wavenumber representations for each scenario. Note thapplg a Gaussian blur and unsharp
mask filter [69] to improve visibility for the reader. We alshow a magnified segment of the
A0 mode centered atl0 kHz to illustrate that each curve is approximately one or py@ls
wide. For convenience, the figures are normalized so thahthémum value is associated with
0 dB.

For the second metric, we uséw) with sparse wavenumber denoising to synthesize the
direct path response between sensband sensof, as denoted in Figure 2.2, and filter the

results around a center frequencyl16b kHz and al20 kHz wide bandwidth. In Figure 2.5,
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we compare these synthesized responses (shown as a thkircutae) with the corresponding
measured responses (shown as a broad, light curve).

For the third metric, we use(w) with sparse wavenumber synthesis to predict the direct
path responses correspondind 800 randomly chosen pairs of points on the plate. We compare
the synthesized signaigw) with the true signals(w) by computing the correlation coefficient

o across every frequency and measurement

o E =1 x(wq) X (w,) (2.28)

L B 2 R

In (2.28),Q) is the number of discrete frequencies being analyzed. Wieaepsing a windowed

data set, we also window the true signal in the same manner.cAonpute the correlation
coefficient as a function of the number of sensors, uniforaggnning fromb to 17, and a
function of the basis pursuit denoising parametelogarithmically spanning fromr = 0.004

to 7 = 10. To ease the computational cost, we recowér) for 200 different frequencies,

uniformly spanning fronf) Hz to 2 MHz, instead 02000 frequencies used for the other metrics.

2.5.1 Scenario 1: Unbounded plate

Sparse wavenumber analysis
Figure 2.4(a) illustrates the magnitude of the frequenayemumber representation(w)|
for the simulated unbounded plate with= 0.01. In the figure, the non-zero values in the

frequency-wavenumber representation overlap very weh thie true dispersion curves.

Sparse wavenumber denoising

Figure 2.5(a) compares the synthesized and measured mamdwesponse between sensor
14 and senso6 on the unbounded plate. In the plot, the estimated and medsesponses are
found to be nearly identical. The two curves have a cormatioefficient of approximately
1.000.

Sparse wavenumber synthesis
Figure 2.6(a) illustrates our capability to predict the @bdnd response of random locations

in the simulated, unbounded plate. For a large range wdlues, up to approximately =
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tion scenarios: (a) unbounded plate, (b) plate with mullipifects, (c) plate with windowed,
multipath effects.

0.2512, we achieve correlation coefficients greater tiedp for M/ > 11. Note that as we
approachr = 0, we approach a least squares estimate, which does not ezghayg sparsity.
So for some sufficiently smafi, v(w) will eventually lose its sparse structure. We illustrate a

similar least squares solution at the end of this section.

Overall, the first simulation scenario shows our methodptode very accurate and robust

in noise-free conditions.

2.5.2 Scenario 2: Multipath

Sparse wavenumber analysis

Figure 2.4(b) depicts the frequency-wavenumber repraientmagnitudev(w)| for the
simulated plate with multipath and a basis pursuit paranadte = 0.25. The sparse curves in
Figure 2.4(b) again overlap well the true dispersion cur¥mvever, the additional multipath

generates an abundant amount of speckle-like noise in tinefig
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Sparse wavenumber denoising

Figure 2.5(b) shows the measured and synthesized narrowkaponses between sensor
14 and senso6 in a simulated plate with multipath interference. In the feguwur denoised
signal very accurately reconstructs the direct path motleproximately80 us and140 us
while only weakly reconstructing the multipath respongeRa s, 180 us, and190 us. The
synthesized response in Figure 2.5(b) has correlatiorficiesit of 0.966 with the true direct

path response.

Sparse wavenumber synthesis
Figure 2.6(b) shows the correlation coefficient betweentlteband responses predicted
by sparse wavenumber synthesis and true respond@®@fandom locations in the simulated
plate with multipath. ForM = 17, we achieve correlation coefficients greater tlafd for
approximately.1 < 7 < 0.631. ForT = 0.2512, we achieve a correlation coefficient@899.
Therefore, the second simulation scenario shows that otlradelogy remains accurate in

the presence of additive multipath interference.

2.5.3 Scenario 3: Multipath with window

Sparse wavenumber analysis

Figure 2.4(c) shows the magnitude of the frequency-wavérumepresentatiofwv(w)

with = = 0.25, for the simulated plate with multipath and windowed resggs In general,
the recovered curves im(w) overlap with the true dispersion curves very well. Due to the
window, a small number of frequency-wavenumber pairs véthe slopes (small group veloci-
ties) are no longer visible in our estimate. However, for nfiexuency-wavenumber pairs, we

observe much less noise relative to Figure 2.4(b) .

Sparse wavenumber denoising

Figure 2.5(c) compares the measured and synthesized remnovand windowed responses
with multipath interference between senddrand sensof. Compared with results in Fig-
ure 2.5(b), the synthesized response is noticeably lesgeinded by the multipath responses

at 100 us, 180 us, and190 us. The correlation coefficient between the denoised regpions
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Figure 2.5(c) and the true direct path was found t0082, a significant improvement over the

0.966 correlation coefficient achieved without the window.

Sparse wavenumber synthesis

Figure 2.6(c) shows the accuracy of sparse wavenumberesiatfor predicting the wide-
band, windowed responses correspondintdté) random locations in the simulated plate with
multipath. Compared with the results in Figure 2.6(b), weaslie a significant improvement in
performance and robustness. Bdr= 17, we observe correlation coefficients greater thaih
for approximatelyd.00631 < 7 < 0.5. ForT = 0.2512, we achieve a correlation coefficient of
0.975, a significant improvement oveér899 achieved without the window.

Therefore, the third simulation scenario shows that umijiza window significantly im-
proves our technique’s accuracy and robustness in thermpresd# additive multipath interfer-

ence.

2.5.4 Scenario 4: Multipath and position noise with window

Sparse wavenumber analysis

Figure 2.4(d) shows the magnitude of the frequency-wavérmimepresentatiofwv(w)

with 7 = 0.25, of the simulated plate with multipath, windowed responséhl sensor posi-
tion noise. In the figure, our frequency-wavenumber curediew the true dispersion curves
closely up until wavenumbers betwe®sd m~—! and1200 m—!. Between these values, the am-
plitude of each mode declines. The wavelength range canrespg to these wavenumbers is
0.5 cm t00.9 cm. This corresponds roughly to the size of the magnitudaetensor position
noise, which perturbs each expected sensor location by stt-hto461 cm from their original
true location.

For this test, we use a basis pursuit denoising parameter0f).25 to compare with sim-
ulation scenarios 2 and 3. We note, however, that due to sposdion noise, the data incurs
larger errors at higher frequencies, which have a greaterbeu higher wavenumber compo-
nents. Therefore, the optimal choicero§radually increases with frequency fram= 0.25 to
7 = 0.6. However, our tests indicate that the overall performarascot vary signifignatly

within this range ofr. Visually, increasing will help to reduce the noise in Figure 2.4.
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from sparse wavenumber synthesis and the correspondiagesponses for a simulation of a
plate with windowed, multipath effects and sensor positioise.

Sparse wavenumber denoising

Figure 2.5(d) shows the measured and synthesized narrowleaponses between sensor
14 and sensof in the presence of multipath interference and positionenoM/e observe a
strong correlation between the measured and synthesigpdnses. However, we also observe
a significant reduction on the A0 mode’s amplitude. This carattributed to the AO mode’s
higher wavenumber ai80 kHz. The denoised response has a correlation coefficiehboi4

with the true direct path, windowed response.

Sparse wavenumber synthesis

Figure 2.7 shows our accuracy of predicting the windoweg@arses ofl 000 random lo-
cations from multipath data with sensor position noise. E\sv, unlike Figure 2.6(a), Fig-
ure 2.6(b), and Figure 2.6(c), in which we considered thevitdeband signal, we now con-
sider only the response in the narrow band of frequenciesdset1 20 kHz and240 kHz. We
choose these frequencies since they are not significarfdgtaél by the thresholding effect
across wavenumber, shown in Figure 2.4(d). Fbe= 17, we observe correlation coefficients

greater thar.75 for 0.03981 < 7 < 1.0. ForT = 0.2512, we achieve a correlation coefficient
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Figure 2.8: The magnitude of the least-squares frequerasyemumber representation of simu-

lation data of an (a) unbounded plate and (b) plate with witlmalowed response and multipath
effects.

of 0.926.

Our final simulation scenario suggests that while we may beicted by the geometry of
our sensors, we can still accurately recover the frequerasyenumber representation of our
data, remove multipath interference, and predict Lamb wasponses across certain wavenum-
ber ranges. Across all of the test scenarios, we observenabke results for valuesin the

neighborhood of).1 < 7 < 0.6. We find this to be a reasonable range for our experiment as

well.

2.5.5 Comparison with least squares

Figure 2.8(a) and Figure 2.8(b) illustrates the least-szgj@r generalized 2D-DFT, frequency-
wavenumber representation of an unbounded plate simnlgoenario 1) and a simulation with
a windowed multipath response (scenario 3), respectivayhe figures show, the least-squares
representations do not represent well the true dispersioms of the medium. In Figure 2.8(a),
the dispersion curves are visible but with a significant amofiadditional “noise”, which phys-
ically does not represent any property of the medium. Afteoiducing multipath reflections in
Figure 2.8(b), the dispersion curves become significantpmyeered by this noisy information.

Overall, since the least-squares solution does not prospaiesity in the model, it does not
recover the medium’s frequency-wavenumber representatith high precision. As a result,
our signal synthesis and denoising approaches performypddnis is supported by Figure 2.6

since the least squares solution is similar to sparse wavkauanalysis for = 0.
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path effects and experimental data.

2.6 Experimental results and discussion

In this section, we apply sparse wavenumber analysis andespavenumber denoising to
experimental data. For this data, we apply the same windowth® third simulation scenario
in Section 2.5. We also apply a window to remove the fifsjus of each signal to eliminate
any electrical cross-talk. We compute the basis pursuibidérg solution in (2.14) using000
uniformly spaced samples in the wavenumber domain acraésgbad m—! and4500 m—t. We
sample acros3000 frequencies front Hz to 2 MHz.

In the simulation results, we achieved excellent perforceamith a basis pursuit denoising
parameterr around the neighborhood ©f25. However, we anticipate a greater degree of
noise in the experimental data, so we choose to incredse).50. Testing has shown both
7 = 0.25 andT = 0.50 achieve good results, but = 0.5 achieves greater robustness to
multipath interference.

In contrast with the simulations, the experimental datdss affected by each sensor’s fre-
guency response, which have natural bandpass chardacteriggure 2.9 illustrates the average
magnitude frequency response for the windowed experirhdata and windowed simulation
data. In the figure, the experimental results are most premtiaround00 kHz whereas the

simulation data is relatively flat across the entire rangatafest.
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Figure 2.10: (a) The magnitude of the recovered frequermyewumber representation(w)|

for the data with light gray lines illustrating the theocatl dispersion curves for the experiment.
(b) The synthesized narrowband direct path responsesajeddrom sparse wavenumber de-
noising (thin, dark line) and corresponding narrowbandsuezd responses (broad, light line)
between sensdr and sensof for our experiment.

2.6.1 Sparse wavenumber analysis

Figure 2.10(a) shows the magnitude of the frequency-wawbeu representatiofv(w)|
for our experimental data. As with the simulations, we useaasSian blur and unsharp mask
filter [69] to broaden lines and ease visibility for the readeach estimated curve is generally
only one or two pixels wide. We also crop our results to focnghe frequency-wavenumber
region of most interest. Frequencies greater th300 kHz and wavenumbers greater than
900 m~! are only characterized by weak noise.

In Figure 2.10(a), we overlay the theoretical dispersiorves used in our simulations in
light gray. The results show that the frequency-wavenunvbéres follow similar trends as
their corresponding dispersive curves, although the udeenot exactly overlap. However,
this is expected since the theoretical dispersion cunedarved from approximate values for
the material properties of the aluminum plate.

Similar to the simulations with sensor position error inu¥ig 2.10(d), the experimental

data’s frequency-wavenumber representation shows adapigase in magnitude for wavenum-
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bers betweerr00 m~! and900 m~!. This range corresponds to wavelengths in the range of
0.7 cm t00.9 cm. As with the simulations, these wavelength are on therafdde transducer’s
dimensions, which are.7 cm by 0.8 cm.

We also observe in Figure 2.10(a) that the S1 mode is nevibleszisnd the A2 mode van-
ishes for frequencies larger than00 kHz. Decreasing the lower bound on the magnitudes in
Figure 2.10(a) does not reveal any additional structurentite, however, that the S1 mode has
a small group velocity aroun@#h0 kHz that is also not visible in our simulations in Figure 21)4(
Additionally, the measured frequency spectrum in FiguBeshows weak magnitudes for fre-
guencies greater thari 00 kHz.

If we apply the least-squares solution in (2.23) to the expental data, we observe a result
similar to the simulation in Figure 2.8(b). Since the lesgtrares result does not promote spar-
sity, its frequency-wavenumber domain is dominated by aiggint amount of “noise” and the

dispersion curves cannot be clearly identified visible.

2.6.2 Sparse wavenumber denoising

Figure 2.10(b) compares the measured narrowband, expgamesponse between sen-
sor 14 and senso6, as denoted in Figure 2.2, with its denoised response. T¥ponses are
shown for a band of frequencies fra0 kHz to240 kHz. The results show that our method suc-
cessfully removes the multipath interference from the expental data. Although we observe
a small reduction in the amplitude of the SO and A0 mode¥)ats and140 us, respectively,
we observe a significant reduction in the multipath respeasg)0 us, 180 s, and190 us.

Overall, our experimental results verify our simulatioasults. We computed the frequency-
wavenumber representation for experimental Lamb wave aladademonstrated that our ex-
periments can be reasonable well modeled by with additiviéipath interference and sensor
position noise. We also used the frequency-wavenumbegseptation to successfully remove

multipath components from the data.

2.7 Conclusion
In this chapter, we presented a compressed sensing badeadoleigy, which we call sparse

wavenumber analysis, to accurately recover the frequarassenumber representation of Lamb
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waves. Using simulation and experimental data, we showaidvile could use this represen-
tation to accurately represent Lamb wave dispersion curWss then utilized this frequency-

wavenumber representation to remove multipath comporfiemtssimulated and experimental

data, through a method we refer to as sparse wavenumbersdenand to predict Lamb wave

responses in a simulated plate, through a method we terraesp@venumber synthesis.

We tested our methodology withsimulations of increasing complexity. We showed that,
even with data corrupted by multipath interference and riogl@rror, we can very accurately
recover the frequency-wavenumber representation of tliteume We quantified this accuracy
by comparingl000 synthesized signals corresponding é®0 randomly chosen pathes, gener-
ated using sparse wavenumber synthesis, with their treetdiath responses. We showed that,
with only multipath interference, we could achieve a catieh coefficient 0f).975 between the
true and estimated responses across a wide range of fregsiémen (0 MHz to 2 MHz. After
incorporating sensor position noise, which simulatesrsrimom each sensor’s extended geom-
etry, we could still achieve a correlation coefficient(o$26 between the true and estimated
responses across a narrow band of frequencies fenkHz to 240 kHz.

We applied sparse wavenumber analysis to accurately retdodrequency-wavenumber
representation of experimental data. We showed the reedvfeequency-wavenumber repre-
sentation closely followed theoretical dispersion curviéée then used this representation to
accurately remove the multipath components from the experial time traces. Furthermore,
we visually demonstrated a good correspondence betweegxparimental and simulation re-

sults.
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CHAPTER 3

Leveraging Guided Wave Complexity:

Data-Driven Matched Field Processing

3.1 Motivation

Matched field processing is a general framework that uslin®dels of complex propaga-
tion environments to estimate the location of targets wighhesolution and accuracy [1, 2].
In underwater acoustics, matched field processing has beédied extensively to improve the
performance of systems operating in acoustically comphelenwater environments [2, 70—74].
It has also been applied to problems in seismology [75],rradd electromagnetic propaga-
tion [76, 77], and nondestructive evaluation [78, 79]. Mt field processing is also closely
related to time reversal processing [26, 27], which utfidé&ect measurements, rather than a
model, to learn the environment and improve localizatioriggenance. In guided wave struc-
tural health monitoring, where guided waves are used toctieted locate damage in large
structures, matched field processing is an attractive toeltd the complex multimodal and

dispersive characteristics of these propagation enviesrs

To implement matched field processing, we require a moddleofésponses that we expect
to measure from a given target location. Historically, @didvave structural health monitoring
localization methods have used a single mode model withtanhand equal group and phase
velocities [24, 25]. As a result, significant preprocessigften necessary to simplify the mea-

sured data to approximately match the model. This is acdshma by filtering measurements
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around a narrow band of frequencies to isolate a single modi&é@n extracting the signal’s en-
velope to remove phase distortions due to differences imvehwe’s group and phase velocities.

Due to these simplifications, these approaches are pror@ta@solutions and large artifacts.

In underwater acoustics, a very different approach is takére model is instead carefully
constructed by formulating and solving, numerically, thevev equation for the geometry and
characteristics of the medium [1]. This approach can pevity accurate and highly resolved
localization when the model is correct, but very poor lation performance when the model
is incorrect [80]. Therefore, this approach requires sigant knowledge of the material prop-
erties and geometry of the medium, which are often not pegclksrown. Although researchers
have developed algorithms [81,82] to estimate these ptiesdrom calibration data, estimating
these parameters generally requires solving nonlineamandonvex optimization problems,
such as simulated annealing [83] and Monte Carlo samplitgd8], across many unknown
parameters. For these reasons, the localization procefiemscomputationally expensive and

unreliable.

This chapter presents a new alternative approach. We aghiainthe wave equation for
the environment of interest is solved by a modal solution. ddkestruct the model directly
from our calibration data through a method known as sparsemuanber analysis [49]. We
refer to the model as a sparsity-based, data-driven modaluise it is constructed from the
sparse properties of the measured data, which are recoligresing tools from compressed
sensing [53]. We then integrate this data-driven model wietiched field processing to derive

a sparsity-based, data-driven matched field processingadelogy.

Unlike the signal simplification strategies that assumevibees to have a single velocity,
our approach allows us to use all of the modes and dispersitie imeasurements to improve lo-
calization accuracy and resolution. Unlike model-basedrmpater estimation strategies, sparse
wavenumber analysis is performed using basis pursuit agdtion [53, 54], a convex process.
Therefore, the resulting model is globally optimal and cancbmputed quickly and reliably.
This process can be applied to many problems with modal isakit such as multilayered
plates [84], pipe waves [6], Rayleigh waves [7], and Pekehallow water channels [8]. In

the following two chapters, we specifically consider Lamlvevdata from an aluminum plate.

58



In this chapter, we develop and analyze data-driven matiéleidprocessing by integrating
sparse wavenumber analysis with matched field processhigwiork was originally presented
in references [50, 85, 86]. We integrate sparse wavenumisdyss with both the coherent
matched field processor [74,87] and the incoherent matcaktdiocessing [1], both of which
are commonly applied in the literature. We also analytycadiriving the asymptotic behavior of
data-driven matched field processing and show that it pesvéatcurate localization even in the
presence of unmodeled multipath interference. In ChaptndiChapter 5, we respectively
apply the new coherent data-driven matched field processirtlze incoherent data-driven
matched field processor to localize a passive scatterer mrat@ustic emission event on an

aluminum plate.

3.2 Data collection

We consider three collections of data: calibration datst, data, and model data for our
data-driven matched field processing methodology. Eadecatan of data is represented at
() discrete frequenciesy, ws, . .. ,wg. The calibration data represents physical measurements
of waves that have travelled known distances. The test datasents physical measurements,
potentially after removing baseline information, that éaravelled unknown distances and po-
tentially interacted with a scatterer in the medium. The elathta represents synthesized
signals, generated from the calibration data, that prediett the test data will look like given

a scatterer at a chosen location.

3.2.1 Calibration data

We represent the calibration data at frequengys aD x 1 vector

yo = [X(di,wg) -+ X(dDywq)]T"‘n((]y)

= &(d)v, +nV (3.1)

q Y

where D is the number of signals measured. The calibration giateepresents the signals
transmitted and received between pairs of sensors with krdistancesl = [dy, ..., dp]"

between them. The vectméy) represents errors in our measurements due to random noise
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or unmodeled multipath interference from boundaries thatat included in the ideal plate
framework in (1.6).

The D x N matrix ®(d) represents a linear mapping between the measured frequency
distance signay, and a discretized frequency-wavenumber, or dispersiorecoepresentation

v,. The matrix®(d) can derived from (1.6) as a matrix of complex exponentig®§ [4

7

D —1/2
p(d) = (Z |dm|‘1> : (3.2)

m=1

o(d) = p(d) [dfl/Qe—j”jdi}ij

The normalization constan{d) is included so that each column &f(d) has a unit’; norm.
Each element o¥, is a weight assigned to each column, or basis vectab,(idh). Each column

in ®(d) then corresponds to one of possible wavenumbers . .. k. The minimum number
of wavenumbersV required to fully represengt, is equal to the number of wave modes in the
data, i.e.x; = ki(w,), ...,y = kn(w,). If we chooseV to be much larger than the number
of wave modes in the signal, all of the additional elements,ithat do not correspond to a

mode will have values of zero.

3.2.2 Test data
We represent the test data at frequengys an)/ x 1 measurement vector

* * T T
X, = [X(T,wg) - X(ri,wy)] +n((])
= ®(r*)v,+nl" . (3.3)
In (3.3), each value in the vectot = [ri,... r%,]7 represents the true, unknown distance

travelled from a transmitter to a scatterer and then to aviecesensor. The matrid®(r*) is
defined the same as in (3.2) and the veatfﬁ? represents error in the data due to random noise

or unmodeled multipath interference.

3.2.3 Model data
We represent the model data at frequengyand for chosen distances= [ry, ..., ry|" as

anM x 1 vector function

~ T

X,(r) = | X(riw) - X(ranw,)| (3.4)
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whereX (r;, w,) represents an estimate of the true respofige, w,) from (1.6) withl < i < M.
The model data represents a collection of expected respdr@® a scatterer with no ran-
dom noise or unmodeled multipath interference. Each elémien corresponds to the total
travel distance from a transmitting sensor to the damagtesenand then to a receiving sensor.

In Section 3.3, we discuss how to obtaip(r) using sparse wavenumber analysis and sparse

wavenumber synthesis.

3.3 Data-driven matched field processing

In this section, we present data-driven matched field psicgsby integrating matched
field processing with a sparsity-based, data-driven moeeégated from sparse wavenumber
analysis and sparse wavenumber synthesis. We assume gorsare randomly distributed
across the plate’s surface. In Section 3.4, we analyticiiyonstrate the asymptotic benefits
of using data-driven matched field processing with randams@eplacement.

To generate a data-driven model, we apply two processessespavenumber analysis
and sparse wavenumber synthesis. Sparse wavenumberisnalys compressed sensing algo-
rithms [53] to recover a sparse frequency-wavenumber septationv, from the calibration
datay,. This process leverages the knowledge that, when the cimseher of wavenumbers
N in (3.1) is very large, the dispersion curvesare sparse, or contain mostly zeros. Alterna-

tive sparsity-based approaches for dispersion estim@®89] have been discussed in other
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Figure 3.1: The frequency-wavenumber representatiopédison curves) of guided wave data
from an aluminum plate, recovered by sparse wavenumbeysigal
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applications but have not been extended for use in broadbaatization. Sparse wavenumber
synthesis then uses the recovered dispersion cipvispredict how waves propagate between

any two points in the medium.

3.3.1 Building the data-driven model
As discussed in Chapter 2, sparse wavenumber analysismsdbe frequency-wavenumber,
or dispersion curve, representationof the medium by applying a basis pursuit denoising, or

lasso, optimization [53, 54] from compressed sensing te#fiération datay, such that
v, = argmin || ®(d)v, —y,l3 + Vol . (3.5)

where|| - ||; and|| - || are defined as th&4 norm, the absolute sum of all elements, and the
/5 norm, the Euclidean distance, of a vector, respectivelyutlizing the knowledge that the
true v, vector is sparse, basis pursuit denoising allows us to ctergu accurate estimate
with high resolution even when the matdx(d) is underdetermined, i.ely > M. Figure 3.1
illustrates an example frequency-wavenumber representadcovered from a collection of
experimental plate data. The regularization parametgused to tune the method’s robustness
to error and is chosen to loe5 based on results from prior work [49, 85].

From the recovered frequency-wavenumber representajiove can then synthesize model
data corresponding to our chosen distancggough sparse wavenumber synthesis by solving

the forward problem

X,(r) = p,®(r)v,, (3.6)
where the scalat, is a factor
H A~
y" ' ®(d)v,
e = o2t (3.7)
! 1 (d)v[3

that adjusts for a multiplicative bias #, introduced by basis pursuit denoising. The function
x,(r) represents the sparsity-based, data-driven model of tltumesince it represents our
predicted response between any two points, as definad &yd is based on our sparse, data-

derived dispersion curves,.
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3.3.2 Coherent data-driven matched field processor

Matched field processing localizes a target by comparirigitgsx,, with model data,,(r).
This comparison is implemented by a matched field proced$and the output of the processor
is an ambiguity functior(r). If the value of the ambiguity function, at a givenis large, the
model and measurements are closely “matched.” For a siaghett the target’s estimated

locationt is defined by
T = argmaxb(r) . (3.8)

When measured across a large number of locations in a gadrttbiguity function forms an

“image” of the medium.

In this section, we integrate our data-driven model in (8vith the coherent matched field
processor [73, 74], one of the most widely studied and aggi®cessors throughout the lit-
erature. In this next section, we integrate our data-drimexel in (3.6) with the also widely
implemented incoherent matched field processor [1]. Whadwecus on these processors, the
data-driven model can be applied to any other matched fieldgssor [71, 72, 74] and can be

applied to many other localization algorithms [90, 91].

The ambiguity function of the coherent matched field prooesan by derived from the

solution to the minimization problem [73]

Q
To= argmin} [x, — 5% (0)]3 (3.9)
T om=1

wherex, is the test data in (3.3) arxl,(r) is the model data in (3.4). The complex-valued
coefficients represents the unknown amplitude of the measured signalcdlmerent processor
is best applied when the measured signal’s frequency respignwell known up to a single

multiplicative factor.

By solving for and substituting the closed-from solutionsointo (3.9) and expanding the

results, the coherent processor can be expressed as a matiomiproblem, in the same form
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as (3.16), with an ambiguity function defined by

T = arg max b(r)
b(r) = A (3.10)
NG '

In this form, the coherent processor is represented by &t product between the test data
and the model datg,(r). Intuitively, the coherent processor propagates a timersed replica
of each received signal (or the complex conjugate ah the frequency domain) backward into
the medium modeled hy,(r). For this reason, the coherent processor may also be rferre
as a time reversal processor [26, 27].

If we substitutex, in (3.10) with its matrix representation in (3.3) aRg(r) in (3.10) with
the data-driven model as expressed in (3.6), we derive thereat data-driven matched field

ambiguity function. For a noise-frea{’ = 0) system, this ambiguity function is expressed as

2

S v () @(r)Y,
I

wherev, represents th&ue frequency-wavenumber representation at frequencgndv, is

b(r) = (3.11)

the recovered dispersion curve representation from spessenumber analysis. We rewrite

(3.11) in a compact matrix/vector. We stack each of the wandrers vectors

v = [vi, vy, ... Vq] (3.12)

Vo= 1,V ...9] . (3.13)

and form a block diagonal matrix with the propagation mafic

P(r) = S (3.14)

b(r) = — . (3.15)
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Whenr = r*, the value of the ambiguity function is dependent on how wed frequency-
wavenumber representationandv match. Whenr = r*, the value of the ambiguity function
becomes dependent on the coherence between the coluriris‘ofand®(r). We utilize this

form of the coherent processor for asymptotic analysis ttiGe 3.4.

3.3.3 Incoherent data-driven matched field processing

We now integrate the dispersion curves from sparse waveeauartalysis/, with the inco-
herent matched field processor to localize an acoustic eouks with the coherent matched

field processor, the target’s estimated locatidar a single target is defined by
T = argmaxb(r) . (3.16)

Similarly again, when measured across a large number ofidosain a grid, the ambiguity

function for the incoherent matched field processor form$raage” of the medium.

Given the measured test data and the model data,(r), the incoherent matched field
processor can be defined by a least-squares optimizatibrtisaicthe optimal location estimate
Tis[73]

Q
F-arg min ; g — B,%q(r)]|* - (3.17)
Unlike the coherent processor, where there is a single wakrapnstants, the incoherent
processor minimizes the error between the dgtand the modexk,, (r) with an unknown factor
complex-valuegqs, at each frequency. By optimizing eaghvalue, the minimization chooses
an optimal frequency-domain representation for the dataitlvely, this means that the process
optimally shifts the model in time (by changing frequencyrdon phase characteristics) and
optimally alters the frequency domain amplitude to mat&hrtteasured signal. For this reason,

we do not need prior information about the shape or timingnefacoustic source to localize it.

We simplify the optimization problem in (3.17) by finding tbkl®sed-form solution for each

B, We then plug these results into (3.17) to represent thenaligptimization as a maximiza-
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tion problem [73, 74]

T = arg max b(r)
b(r) = Z%, (3.18)

whereb(r) is known as the ambiguity function of the incoherent matdiedd processor. Com-
putationally, this representation is much easier to sdiaa {3.17) since we reduced the number
of unknown variables. In the new form (3.18), we are maxingzihe inner product between
the datax, and the modek,(r) at each frequency. The magnitude of the inner product is
squared and normalized such that) = 1 when the data, perfectly matches the mode}(r).
By squaring the magnitude of the inner product at each frecyyeghe incoherent processor in
(3.18) is invariant to phase shifts or time delays in the data

We derive the incoherent data-driven matched field procdsssubstituting the expressions
for our data-derived mode&i,(r) in (3.6) and the guided wave datain (3.3) into the ambiguity
function in (3.18) such that

H‘I)H

Ve ()%, [ 3.19
Z 1o vq||2 ’ (3.19)

wherev, represents thiue dispersion curves of the medium angis the recovered dispersion
curves from sparse wavenumber analysis. Notice that tkidtres similar to (3.15), except

we sum over each frequency independently. Therefore, @lysis of both the coherent data-
driven matched field processor and the incoherent datamrivatched field processor will be
similar. In the following section, we derive the asymptdiehavior of these localization meth-

ods.

3.4 Asymptotic behavior

In this section, we analyze the asymptotic behavior, as atifum of the number of mea-
surementsV/, of the coherent data-driven matched field ambiguity fuorctie analyze this
behavior when the measured daais ideal, i.e. n{” = 0, and whenx, is corrupted by

unmodeled multipath interference. We do not consider teaato wherex, is corrupted by

66



random noise since matched field processing is already welvk to be robust to Gaussian
measurement noise [1].

Our analysis shows that, even under arbitrary multipatériatence, we can theoretically
guarantee accurate localization in the medium with a sefiichumber of measurements. To
show this, we utilize results from compressed sensing aadtidy of random matrices. The
core assumption used by these results is that the sensodsstiibuted randomly across the
medium and therefor@(r) has a random structure.

Our analysis focuses around two properties of random neatrithe restricted isometry
property (RIP) and what we introduce and refer to as theicgstr nullity property (RNP).
If the sensors are randomly distributed across the medioem the matrix®(r) represents a
random matrix of complex exponentials with weighted romnk compressed sensing, it has

been well established that random matrices, such(a$, satisfy RIP [62,92,93]
(1= 85)[[vallz < [[@(x)vyll3 < (1 +6)[[vgll3 . (3.20)

with a smalld; > 0 ands non-zero components in,. Intuitively, a matrix that satisfies RIP with
a smally, is “nearly unitary,”i.e.® (r)®(r) ~ I. Although computing the restricted isometry
constanty, for a particular matrix is usually an intractable problerd][%he RIP constani,
for random matrices is known to decrease in probability asnihmber of measuremenig
increases [61, 95, 96]. Furthermore, it has been shown fibratatrices of bounded random
vectors, such a®(r), the constant, converges to zero with rate df//M or faster [96].
Therefore this convergence occurs relatively quick.

We now introduce RNP, which is an extension of RIP. It stakes if ®(r*), ®(r), and
(1/4/2)(®@(r*) + ®(r)) each satisfy RIP with small constants, then the matricessalisfy the
RNP inequality

=20, [[vqll3 < vy @1 (1) @(r)v, < 26, [Iv13 (3.21)

with a small constand, > 0 ands non-zero components in,. The proof of this property
can be found in Appendix A. Intuitively, two matrices thatisly RNP with a small, have

“nearly uncorrelated” columns, i.ez}’ ®" (r*)®(r)v, ~ 0. For the simplicity of our analysis,
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we assume the RIP and RNP constants are equal. This occungieénRIP constants @ (r*),
®(r), and (/v/2)(®(r*) + ®(r)) are all equal.

To satisfy RNP, the distance vectaisandr should be randomly distributed and sufficiently
different. Under these conditions, the phase componeots &ach element ob(r*), ®(r),
and®* (r*)®(r) will have a high variance and can be treated as a circulaiifpum random
variable. As a result, the columns @fr*) and®(r) will be highly uncorrelated.

However, if we finely sample the localization grid, this wilbt be true for allr vectors
corresponding to points on the grid. Due to the uncertaimitycgple [97], we know that the
width, or resolution, of the peak lobe in the ambiguity fuantis inversely proportional to the
signal’s width in the wavenumber domain. In this region aiepnear the target, whareandr
are similar, our matrices will not satisfy RNP. As a rule afittib, if the distances in* andr are
more than two times the maximum wavelength apart and randalsiribution, then the phase
components of each elementdn(r*) and ®(r) will be effectively random and the matrices
will satisfy RNP. In Chapter 4, we show that this ambiguowugoe is approximately).68 cm

to 0.9 cm in diameter for the coherent matched field processoreghpd our experiments.

3.4.1 Single path scenario

In this subsection, we derive the asymptotic behavior ottiteerent data-driven ambiguity
function for ideal measurements whef&%) = 0. In previous work [49], it has been shown that,
when ®(d) satisfies RIP, sparse wavenumber analysis can accuratelyerethe frequency-
wavenumber representation with a sufficient number of nreasents. Therefore, we assume
for our analysis that the frequency-wavenumber repreienta correctly recovered up to a

constant scalar factor
V= v, . (3.22)

We can ignore the unknown scalar factor since it does notgghtlre ambiguity function when
plugged into (3.15).

By using the assumption in (3.22) and applying the RIP and Ridgualities in (3.20) and
(3.21), respectively, to the either coherent or incohedaté-driven matched field ambiguity

function in (3.15) or (3.19), respectively, we derive a loweund for the ambiguity function’s
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target-to-artifact amplitude ratio

b(r”) (1—94,)
o) = 45

(3.23)

Note that this result is slightly stronger than the resuligioally presented in [50]. This inequal-
ity is true for both the coherent and incoherent processtttspugh the valué, is different for
the two processors. This relationship is proven in detaAppendix B and Appendix C for
the coherent and incoherent processors, respectivelyreBud in (3.23) illustrates the behav-
ior of artifacts in the ambiguity function. It shows that,the RIP constani, < 1 decreases,
the ambiguity function’s target-to-artifact amplitude(8123) increases monotonically, improv-
ing localization performance. Therefore, as we increasentimber of measurementg, the

target-to-artifact amplitude in (3.23) is guaranteed tordase in probability.

3.4.2 Multipath scenario
We now consider a scenario in which the measured data isptedlby unmodeled mul-
tipath interference from the boundaries of the medium. Wnkdis scenario, the test data is

expressed as

L
x, = no®(r")v, + Zm@(rg)vq : (3.24)
=1

wherer* represents the location of the target and . . , r;, represent the distance vectors asso-
ciated with thelL additional paths. The termy represents the strength of the direct path signal
andn, for 1 < ¢ < L represents the strength of the additional signal corredipgrto path¢.
We assume the distance vector associated with eachr pigtbufficiently different fromx* such
that®(r,) and®(r*) satisfy RNP in (3.21) for all. This is a reasonable assumption since the
reflected paths will generally travel much further distaniten the direct path.

As with the single path scenario, we assume= v, and then apply both the RIP and
RNP inequalities in (3.20) and (3.21) to the coherent andhiercent data-driven matched field
ambiguity functions to derive a lower bound for the targesttifact amplitude ratio

2 5)2
> - = .
b(r™) 1507 < 52 ) (3.25)
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wheren is defined as the signal-to-interference ratio

Mo
n = . (3.26)
25:1 Ne

Note that this result is slightly stronger than the resuittginally presented in [50]. As in the

single path scenario, this inequality is true for both thberent and incoherent processors,
although with different, values. The proof for this is shown in Appendix D and Appertix

for the coherent and incoherent processors, respectiVaf/result shows that as the signal-to-
interference ratio) approaches infinity, the worst-case target-to-artifagblgnde ratio (3.25)
converges to the single path bound in (3.23). The resultlflstrates that, although unmodeled
multipath interference negatively affects the targeadttilact amplitude ratio, the bound still
increases monotonically & < 1 decreases. Therefore, as in the ideal signal scenario, the
target-to-artifact amplitude ratio will increase in prolddy as the number of measurements
increases.

In terms of localization, this implies that, for any arbitranultipath interference and any
single target location in the medium, there exists a sufftarimber of measuremenis such
that the region around the target contains the largest valtiee ambiguity function with a
high probability. Said in another way, the data-driven rhattfield processor is asymptotically
unbiased to within a small ambiguous region around the tamgleere RNP does not apply.
Note that targets near the boundaries of a medium will havgrafisantly weaker signal-to-
interference ratig than targets located in the center of a medium due to theggrammodeled
multipath. Therefore, the number of measurem@itaecessary for data-driven matched field

processing to locate a target may vary as a function of tigetarlocation.

3.5 Comparison with clustered sensor topologies

One key assumption used to analyze the asymptotic behavtbealata-driven matched
field processors is that the sensors are sufficiently distargparsely spaced, from each other
and randomly placed in order to satisfy RIP and RNP. To ithtstthe necessarily for this as-
sumption, we simulate localization scenarios using botpaaisely spaced and clustered topol-

ogy. We consider  m by 2 m two-dimensional region with source located in the area of
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interest. We assume the source transmits a continuousegneguency waveform with a sin-
gle wavenumber of(w) = 500 cycles/m (a wavelength of approximatél5 cm). To perform
matched field processing, we chose a grid spacirgyarh in the horizontal and vertical direc-
tions.

The receiving sensor locations were chosen randomly fralagandent uniform distribu-
tions in the horizontal and vertical directions. We gerenlahterference by assuming that the
boundaries of th& m by 2 m region acted as perfect reflectors and by using ray-trgming
cedures to determine the distance traveled by each pathtfreraource to each sensor. We
simulated every path that interacts with a boundary up totfines between the source and
each sensor. We distributed energy equally among eachs# theerference signals.

We performed a Monte Carlo simulation with different random receiving sensor permu-
tations for a varying number of sensors and varying levelsignial-to-interference ratio. The
ambiguity ratiob(ry)/b(r) is computed by finding the average ratio between the valukeeat t
source and the maximum value within the the remaining gridtpo

Figure 3.2 illustrates the target-to-artifact ratio, whiwe also refer to as the ambiguity
ratio, as a function of the signal-to-interference ratiagyufe 3.3 shows the ambiguity ratio as
a function of the number of sensors. The solid lines illust@random sensor topology that
satisfies RIP and RNP with small constants. The dotted lieg@®sent a cluster sensor topology,
in which a cluster of sensors are randomly placed in a smaltesfand do not satisfy RIP or
RNP with small constants. The sensors are clustered to beopesl within 2 wavelengths
of each other. These figures demonstrate a clear improvemktalization performance and

much larger ambiguity ratio(r*) /6(r) when RIP and RNP are satisfied.
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Figure 3.2: The average ambiguity ratio of the localizatiesults versus signal-to-interference
ration for M =10 (dark lines) and 25 (light lines) sensors. Solid linessghesults for a random
topology while dotted lines illustrate results for a clustétopology.
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Figure 3.3: The average ambiguity ratio of the localizatiesults versus the number of sensors
in the system\/ for signal-to-interference ratios of = 5 dB (dark lines) and-9 dB (light
lines). Solid lines show results for a random topology whitdted lines illustrate results for a
clustered topology.

3.6 Conclusions

In this chapter, we developed data-driven matched fieldgasing, which combines matched
field processing with sparse wavenumber analysis to locateade for structural health moni-
toring applications. Analytically, we demonstrated ddta«en matched field processing to have

good asymptotic localization properties. Given a sufficirmmmber of measurements, the data-
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driven approach guarantees accurate localization to nvétsmall region. This was shown to
be true even in the presence of arbitrary unmodeled muftipé¢rference. Our methodology
also offers an alternative to traditional matched field pesing techniques that often use com-
plex and rigid models of the propagation environment. Qtaen matched field processing
uses a relatively simple multimodal framework to generatedel directly from measured data

through fast, convex optimization.
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CHAPTER 4

Coherent Data-Driven Matched Field

Processing: Acousto-Ultrasonic Localization

4.1 Motivation

Due to their sensitivity to damage and capability of quickiterrogating large structures,
guided waves have been an attractive tool for structurdttheaonitoring. However, most
guided waves are multimodal and dispersive in nature. Thies that a propagating wave
pulse can be represented as a superposition of multiple mades that each travel at several
different frequency dependent velocities [46]. These progs reduce the effectiveness of most
conventional localization techniques. Since many loadilin algorithms rely on accurate tim-
ing information, phase distortions caused by a differenc@wave’s group velocity and phase

velocity, can be particularly problematic.

To mitigate the effects of a guided wave’s complexity on lazedion techniques, many struc-
tural health monitoring methods preprocess data. Thegpequessing steps often filter data and
then extract an envelope of each measured signal to loddkzdamage [24, 25, 33]. The fil-
tering usually extracts a narrow band of frequencies witingls, dominant wave mode and
relatively little dispersion. The envelope extractionhern performed to reduce the additional
phase distortion associated with dispersion. Overalkdlmgeprocessing steps improve local-
ization accuracy by utilize specific features of signalg,ditthe cost of significantly reducing

resolution.
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Other localization methods, matched field processing fangde, utilize the complex char-
acteristics of the medium to improve localization perfonca[1, 2, 70-74]. However, these
approaches require a good model of the propagation envaohamd are well known to be sen-
sitive to model errors and environmental variations [2]structural health monitoring, known
theoretical and numerical models for many guided waves umesiare also available. However,
these models rely heavily on properties of the medium that nt be precisely known and
may vary over time with changes in environmental and opamaticonditions [3,5,52]. As a
result, techniques are necessary to build appropriate @ndate models.

In this chapter, we use sparse wavenumber analysis [49], thochdor recovering the
frequency-wavenumber representation of data (presentéchapter 2), and coherent data-
driven matched field processing, a localization methoddbatbines sparse wavenumber anal-
ysis with matched field processing (presented in Chaptepn3jcalize a passive scatterer that
reflects ultrasonic guided waves. We demonstrate the melihgygls performance experimen-
tally by localizing two holes in an aluminum plate with datdlected in a laboratory. We use
the coherent processor, which assumes we can accurateigtpies frequency characteristics
of the measured signals, because our sensors are syndtr@md we model each hole as an
ideal point scatterer. Due to these conditions, the frequeharacteristics of the reflections
from each hole should match those recovered by sparse wanmmanalysis.

In our laboratory experiments, we consider a monitoringfem in which sensors actively
search for scatterers in the medium [24]. We compare cohdega-driven matched field pro-
cessing with a delay-and-sum based approach, which is cognased in structural health
monitoring research [24, 25, 33]. In our results, we acheebetimes smaller localization er-
ror and a49 times finer resolution than the delay-and-sum method. We @gdsnonstrate that
data-driven matched field processing can localize multnglarby scatters, which is generally

not possible with the delay-and-sum method due to its pamugion.

4.2 Data-driven calibration

Data-driven matched field processing consists of caliwnatind matched field localization.

We use calibration data from the structure to accuratelgueicthe dispersion curves of the
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medium with sparse wavenumber analysis [49]. We then iateghe dispersion curve knowl-
edge with matched field processing to locate a target in thdiune For thein situ system
considered in this chapter, we do not use a reference spedonellect the calibration data.
The calibration data is collected from the same sensorsitkatsed to collect the test data. This
is because sparse wavenumber analysis is robust to noige andhodeled multipath interfer-
ence (e.g., from damage, boundaries, or other inhomogemneitthe structure), as previously

shown in chapter 2. Therefore, a reference specimen is ©esgary.

The calibration datg,, originally discussed and derived in Section 3.2.1, iseméd by
transmitting and receiving an ultrasonic pulse betweepassible pairs of sensors in the system.
Therefore, if there ar@ sensors on the structure, we can collB¢P — 1) /2 unique calibration
measurements with which to build a model. For the localratesults discussed in Section 4.4,

the calibration data and test data are collected with thesansors and in the same manner.

The test datx,, originally discussed and derived in Section 3.2.2, in thiapter is repre-
sented by the difference between a collection of baseliresarements, prior to the introduction
of damage, and the current set of measurements, which mégicaamage. This baseline sub-
traction step is often done to remove signals that are nataglto the growth of damage and is
commonly applied to guided wave structural health momip{R5, 91]. If the medium has not
been changed due to environmental or operation variatibestesult of background subtrac-
tion will contain the Lamb wave response from damage in tamalum plate corresponding to

travel total distances af = [r]...r},].

The model data,(r), originally discussed and derived in Section 3.2.3, regresthe
signals predicted by sparse wavenumber synthesis for 8tandies contained in the vector
r. To localize damage in a structure, we can generate modalfdamanyr vectors, each
corresponding to a possible scatterer at different lonatmn a grid, and then apply coherent
matched field processing to compare the data-driven mogde) with the test data,. The
coherent data-driven matched field processor is discusskpth in Chapter 3. In the following
sections, we define our specific choicerdbr locating a damage in a large structure, and we

demonstrate the performance of data-driven matched fielcegsing.
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Figure 4.1: A diagram of the aluminum plate used for our expental setup. Each square
indicates a sensor used to transmit and receive signalfafitied circles indicate the locations
of the two holes, drilled through the plate, that are usetiéneixperiments.

4.3 Experimental methodology

We test data-driven matched field processing ara m by 1.22 m by 0.28 cm aluminum
plate. To transmit and receive Lamb wave signals, we bonddZ T (lead zirconate titanate)
transducers with dimensions @7 cm by 0.8 cm by0.2 mm across the top surface of the plate.
The positions of each sensor were chosen at random to sRiiBfyas discussed in Section IV.
Figure 4.1 illustrates the locations of each sensor. Na@edéveral sensors are located near the
edges of the plate, so we measure significant unmodeledaathitinterference from reflections.

The experiment was performed in two steps. First, we catbéthe baseline, calibration
datay, on the undamaged plate by transmitting and measuritiyes linear chirp fronm) Hz
to 2 MHz between each pair of transducers. This result@d2measurements witht36 unique
distances. This data was used to compute the frequencyrwan®er representation of the
medium by sparse wavenumber analysis. We then drilleéd am hole near the center of the
plate and collected an additiorz2 measurements in the same manner. Additional measure-
ments were taken after the hole was expanded®® cm and after a secorid75 cm hole was
drilled 6.5 cm away from the first. The hole locations are shown in Figute Bor each experi-
ment, the test dats, is represented by the difference between the data measitredagh hole
present and a baseline data set with no hole present. Whitdseaise the baseline signals for

our calibration datg,, we can alternatively use any of the other measured sign@daithe

78



Amplitude

Amplitude

1 3
p}
0 =
o 2
| | | | J | | | | J
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time [ms] Time [ms]
(a) Broadband calibration signal (b) Broadband test signal
3
=
]
IS
<
| | | | J | | | J
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time [ms] Time [ms]
(c) Narrowband calibration signal (d) Narrowband test signal

Figure 4.2: Example broadband and narrowband signals finerodlibration and test data. The
test data represents residue signals after baseline stidtra

robustness of sparse wavenumber analysis.

Figures 4.2a and 4.2b illustrate signals in the calibratiata and baseline subtract test data
with the singled.5 cm hole, respectively. Before plotting, the signals ars@abmpressed [98]
by correlating them with the transmitted chirp. Figuresc4afd 4.2d show the same signals but
filtered around a frequency 800 kHz with a bandwidth ofi20 kHz. These figures illustrate
the complexity of a broadband Lamb wave signal and show teatdst data in Figures 4.2b

and 4.2d is heavily buried in noise and multipath interfesen

4.3.1 Method parameters

To generate the model datdr), we definer with respect to a grid of points. We denote
(z.,y,) to be the coordinates of a specific point on the grid @ndy;) to be the coordinates of
each sensar < i < P. To localize a scatterer, we approximate the damage as ahgdmt
reflector. Therefore, the distance traveled from one seasapoint on the grid and then to a

second sensor is defined by

r= {J@ “E P G+ (@ — )P+ @ - )| i £ Jandij € 1, P]} (@)

Note that we assume the transmit and receiver sensors &eedit
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We apply sparse wavenumber analysis to the calibrationwd#tal 000 wavenumbers, uni-
formly spanning fromx = 0 m~! to x = 1000 m~!. Figure 3.1 shows an example frequency-
wavenumber representation for the plate. Before computiegrequency-wavenumber rep-
resentation, as described in (3.5), we apply a window to #ia tb remove signals that have
apparent group velocities, relative to the distance batvgeasors, of less tha000 m/s. This

has been demonstrated to improve performance in previots[48).

Like many structural health monitoring localization melbpwe also apply a window to
the test dat, to reduce unmodeled multipath interference appearingréatee signal’'s time
domain [25]. Note that since the target’s location is unknpthese windows may remove
reflected signals originating from the scatterer. For oyreexnents, we window the test data
with the same2000 m/s velocity window used by the calibration data. Comparét e fixed

time window, this approach adjusts window duration aceaydo the positions of each sensor.

When performing the localization, we utiliz#) frequencies uniformly sampled between
60 kHz and780 kHz. Note that one strength of data-driven matched field ggsing is its
capability to use wideband signals with many modes and digeeffects, such as shown in
Figure 4.2b. This is in contrast with many traditional lozation methods, such as delay-and-
sum techniques, that must use a narrow band of frequendssabte a signal with single mode

and a single group velocity, such as shown in Figure 4.2d.

4.3.2 Comparison with delay-and-sum

We compare our data-driven matched field processing framkewidh a delay-and-sum
localization technique, which is commonly applied to stowal health monitoring problems
[24, 25]. This methodology uses a single mode model with @msnd equal phase and group
velocities. For Lamb waves, this modeling assumption isegaly applicable only around a
narrow band of frequencies. Therefore, before applyingydahd-sum localization, we filter
the test data arounth0 kHz with a bandwidth ofl20 kHz, as illustrated in Figures 4.2c and
4.2d.

Specifically, the delay model associated with delay-and-4ecalization can be represented
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by anM x 1 vector

RV (r) = Sp(wy) [eienm/ra . emieana/va] T (4.2)

whereS(w) is the narrowband-filtered, transmitted signal and therpatarv, represents the
narrowband group velocity of the wave. We lgt= 5110.83 m/s, which is computed from the
slope of the zeroth symmetric mode of the frequency-wavdranmepresentation, the second
curve shown in Figure 3.1, 800 kHz. In the time domain, each complex exponential term
in (4.2) represents a delay by/v,, the expected travel time of a wave traveling with a group
velocity v,,.

Due to phase errors resulting from dispersion, many Lamtkewalay-and-sum localization
methods do not compare the raw model data and test data sbedchcompare the envelopes of

each data set [24]. This envelope-delay model is defineddoy/thx 1 vector

M) = FUFEP@O) M {FTHEM ) (4.3)

q

where F{-}, F~'{-}, andH{-} represent the discrete Fourier transform, the inverseetisc
Fourier transform, and the Hilbert transform, respecyivéiat operate over the time or fre-
qguencyw, domain associated with each vector.

We consider both the standard delay m(ﬁgé’l and the envelope-delaf™(r). To perform
localization, we integrate these models with the cohereaiiched field processor in (3.10),
choosingx, = ig'y orx, = X;"™. The pairing of the delay-envelope model and the coherent
matched field processor is very similar to the delay-and-ggalization methods commonly
used in other guided wave structural health monitoring W24 25].

As with our data-driven approach, the delay and envelopeydeaodels are implemented
over60 frequencies. However, since the delay model requires awdrand of frequencies, it
uses60 frequencies uniformly spanning frot30 kHz to 420 kHz. Also, since the envelope-
delay model removes most high frequency components in thelagre extraction process, it
uses60 frequencies uniformly spanning frothkHz to 120 kHz. We use a wide band of fre-
guencies for the data-driven model to emphasize that ittisestricted to narrowband signals
like other localization methods. As discussed in Sectidnwe observe little difference in our

experimental results when the data-driven model uses the faquencies as the delay model.
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4.4 Experimental results and discussion

In this section, we apply coherent data-driven matched fietetessing in (3.15) to our
experimental data. We then compare our results with theyaetmlel and delay-envelope model
in (4.2) and (4.3), respectively. To analyze the relativerggth of each method, we consider a
normalized ambiguity function

b(r) — min, b(r)
max, (b(r) — min, b(r))

by (r) (4.4)

This normalization scales all values of the ambiguity fiott(r) to be betwee and1.

4.4.1 Figures of merit

We evaluate the performance of each model through threeastely) the localization accu-
racy, 2) the localization resolution, and 3) the averageé{peartifact ratio. The localization
accuracy tests each method’s capability of correctly estrthe target’s position. If we assume
the true coordinates of the target dre, y) and the estimated coordinates of the target are

(Z, yr), then the localization error,,, is defined by

Fer = M@ —E)+ (- (4.5)

We define the localization resolution as the half-amplituadth of the main lobe around
the maximum valuéz,,y,) in the normalized ambiguity functioh,(r). We determine the
half-amplitude width of the main lobe by plotting the valwé#gd,, (r) as a function of distance
from the maximum valu€z,., y,.). We then perform a least-square fit of a Gaussian curve with
maximum value ofi, an unknown minimum value df — ¢, and an unknown decay coefficient

flr)y = ce™ v 4 (1—-2¢), (4.6)

wherer is the distance fronfz,., 3,.). The Gaussian fit is chosen because is generally provides a

good match to the data. The half-amplitude widltis then directly computed from the resulting

o = 2\/alog (C_CW). (4.7)

fitting coefficients as
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Figure 4.3: An example plot of the normalized ambiguity fime from the data-driven model
as function of distance. The dotted line represents the €&ausurve fit to the data.

In general, a small half-amplitude width is desirable beeatindicates less ambiguity concern-
ing the location of the target. The half-amplitude also espnts a measure of the region for
which RNP does not apply, which is discussed in Section 3xrdfore, a small half-amplitude
width implies that multiple targets may be localized neaheanother.

Since the maximum of the normalized ambiguity functiom,isve define the average peak-
to-artifact ratio ag from (4.6), one minus the minimum value of the Gaussian fiar§éc value
denotes greater confidence in the localization due to fewiaas. Figure 4.3 illustrates the
ambiguity function, for thé).5 cm hole, plotted as a function of distance from the maximum
value and its Gaussian curve fit. While other researchers kiawilarly used an exponential
least-squares fit [90] to evaluate localization perforneame found the Gaussian curve to better
characterize our results.

Table 1 shows the resulting figures of merit from our expentse Resolutions are not
provided in Table 1 if localization accuracy is poor, morarth hole diameters away from the

scatterer. The following subsections discuss these sisulfreater detail.

4.4.2 One scatterer

First we consider the problem of localizing a singlé cm hole in an aluminum plate.
Figures 4.4a—4.4c illustrate the ambiguity functions toe tata-driven model, the standard
delay model, and the envelope-delay model, respectivehes@ figures show the ambiguity

function over the entire plate. For each of the plots, thktlgplors represent large values of
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Model/Test Acc. [cm] Res. [cm] PAR [dB]
Pitch-catch: One 0.5 cm hole

Data-driven 0.36 0.68 19.46

Delay 10.87 - 14.93

Envelope-delay 1.72 33.10 5.68
Pitch-catch: One 0.75 cmhole

Data-driven 0.14 0.78 16.42

Delay 63.76 - 13.95

Envelope-delay 1.72 34.15 5.60
Pitch-catch: Two 0.75 cmholes

Data-driven (hole 1) 0.13 0.88 17.60

Data-driven (hole 2) 0.41 0.90 19.93

Table 4.1: Figures of merit used to evaluate the localipgtierformance of each model. The
figures of meritinclude the localization accuracy (Accalffamplitude width resolution (Res.),
and average peak-to-artifact ratio (PAR).

the ambiguity function and dark colors represent smalleslurhe color code is chosen to be
readable in both grayscale and color and is used in all ofalf@Aing figures. Figures 4.5a—4.5c
show a magnified cm by4 cm region of the ambiguity function around the scattereedoh

plot, the PZT sensors on the plate are denoted by squareb@hdle is represented by a circle.
If located within the bounds of each magnified image, thesgesepresent the maximum value

of each respective ambiguity function.

The data-driven method illustrates a clear singular pedak wimaximum value located
0.36 cm away from the hole’s measured center, a vakie% smaller than the hole’s diameter.
The main lobe’s half-amplitude width measufe69 cm, approximately the same size as the
smallest dimension of each sensor. The data-driven metlsodaghieves an average peak-
to-artifact ratio 0f19.46 dB and the artifacts gradually weaken as we move further fifoen
target. Note that if we use the same narrowband data as ugbeé biglay model, we observe a
relatively insignificant change in performance. The lagaiion error and half-amplitude width
improves slightly ta).24 cm and0.56 cm, respectively, and the peak-to-artifact ratio weakens
to 18.48 dB.
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Figure 4.4: Ambiguity functions resulting from applyingetdata-driven, delay, and envelope-
delay models to localize a singdes cm hole in an aluminium plate. The figures show the entire
1.22 m by 1.22 m plate. The squares and circles denote the locations oétisoss and the hole,
respectively.
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Figure 4.5: Ambiguity functions resulting from applyingetdata-driven, delay, and envelope-
delay models to localize a single5 cm hole in an aluminium plate. The figures show em

by 4 cm region around the scatterer. The squares and circlesedéreolocations of the sensors
and the hole center, respectively. The cross denotes tinea¢st! location of the hole.

Compared with our wideband data-driven approach, the datayenvelope-delay models
achieve poor performance. Due to phase distortions, they debdel fails to localize the scat-
terer. The delay model’s maximum value is locatéd&7 cm away from the measured hole cen-

ter, resulting in a localization err@0.2 times greater than the wideband data-driven method.
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The ambiguity function also has many large artifacts thhmug the ambiguity function, re-
sulting in an average peak-to-artifact ratiolaf93 dB, which is2.84 times smaller than the

coherent data-driven matched field processor.

For the envelope-delay model, the maximum value of the anityidunction is approxi-
mately1.72 cm away from the measured hole center. This result is sugeribe standard delay
model since it compensates for phase distortions, but iamesnworse than the data-driven ap-
proach, which has &8 times smaller error. Due to the envelope extraction, thelepe-delay
model has a poor half-amplitude width. The main lobe covkr®st the entire plate, and, as
a result, the wideband data-driven method hd8.a times smaller resolution. The large main
lobe also results in a poor average peak-to-artifact rdtioG® dB, which is23.9 times worse

than the coherent data-driven matched field processor.

When we increase the hole size frand cm to 0.7 cm, we observe that the data-driven
method’s half-amplitude width increases and its peakrtifaat ratio decreases slightly. How-
ever, as shown in Table 4.1, the data-driven results do rastgan significantly. In contrast, the
accuracy of the delay model changes substantially afterginly the hole. This shows that
coherent data-driven matched field processor is relatstalgle to small, structural changes in

the environment.

4.4.3 Two scatterers

As shown in the previous results, the coherent data-drivatcined field processor achieves
significantly better accuracy and resolution than the datelyenvelope-delay approaches. These
results suggest that the data-driven method should be leapglocalizing multiple scatterers
near each other. In this subsection, we test this hypotbgsising the data-driven approach to

localize two0.75 cm holes separated by a distanc& 6fcm, approximately.7 hole diameters.

We localize a second scatterer by subtracting the Gaussiarjiin (4.6) from the ambi-
guity function and re-normalizing the result using (4.4ptwain a new ambiguity function. If
we defined, (r) as the normalized ambiguity as function of distance frominftgl maximum

value(z,, 7,) and f(r) is the Gaussian fit, then the new normalized ambiguity famdtj (r) is
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Figure 4.6: Ambiguity functions resulting from applyingetdata-driven, delay, and envelope-
delay models to localize tw®.75 cm holes in an aluminium plate. The figures show the entire
1.22 m by 1.22 m plate. The squares and circles denote the locations ofetfigoss and the
holes, respectively.

defined by
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b S0)
D) = b (r) — min, b (r) (4.8)

max, (b'(r) — min, 0'(r)) ’

The new maximum value &f, () and its associated location on the grid is then defined asihe |
cation of the second hole. Alternative multi-target lozafion approaches, such as the CLEAN
algorithm [99], have been proposed to detect multiple targgth matched field processing. In
this chapter, we use our iterative approach to quantify éiselution and obtain the figures of
merit for the two largest regions in the ambiguity function.

Figures 4.6a—4.6c¢ illustrate the matched field ambiguitycion for the the data-driven
model, delay model, and the envelope-delay model, resedgtacross the entire plate for the
two scatterer scenario. Figures 4.7a and 4.7b show the fredyhcm by 4 cm regions around
each of the two scatterer locations for the data-driven rholy. The two hole locations are
denoted by circles, the transducers are shown as squatks)eaastimated scatterer locations
are illustrated as crosses.

Compared with the data-driven model’s single scattereriguitly function in Figure 4.4a,

we visually observe slightly larger artifacts around eacleibut good localization of both scat-
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Figure 4.7: Ambiguity functions resulting from applyingetbdata-driven model to localize two
0.75 cm holes in an aluminium plate. The figures show the #wn by 4 cm regions around
each scatterer. The squares and circles denote the logafitime sensors and the hole centers,
respectively. The crosses denote the estimated locatfarech hole.

terers. The maximum value of the ambiguity function coroeg}s to the new hole and achieves
a localization error 06.41 cm, approximatelyt5.3% smaller than the hole diameter, and a half-
amplitude width of0.88 cm, about20.0% larger than the hole diameter. After removing the
first peak, the second peak corresponds to the location afripaal hole from the previous
scenario and has a localization error0of3 cm, about’2.7% smaller than the hole diameter,
and a half-amplitude width af.90 cm.

In Figures 4.6b and 4.6¢, we see that the delay and envekelpg-thodels fail to accurately
localize both scatterers. As in the single scatterer sezrntie delay method localizes neither
scatterer accurately. For the envelope-delay model, d4esmgin lobe covers both holes, caus-

ing the result to appear as a single scatterer.

4.5 Conclusions

This chapter implemented the coherent data-driven matfibltiprocessing localization
methodology, initially discussed in Chapter 3, to locati@e holes in an aluminum plate struc-
ture. To accurately accomplish this, data-driven matcheld forocessing leverages a data-
driven model, which is generated by sparse wavenumber sisalyparse wavenumber analysis

and sparse wavenumber synthesis are discussed in depthjneCB.
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Using experimental guided wave data from the aluminum platecompared the perfor-
mance of data-driven matched field processing with a detalysam localization approach,
which is commonly applied in the literature. Compared witis approach, we achievedia
times improvement in localization accuracy and8ar times improvement in resolution for a
single scatterer. We then demonstrated that data-driveched field processing successfully
localizes two different scatterers locatéd cm, or8.7 hole diameters, apart from each other
while the delay-and-sum methods could not.

Overall, the data-driven matched field processing framkwohieves an improved localiza-
tion performance over the other methods because it incatg®and obtains information about
the medium directly from data. The delay and envelope-delathods use simple models to
represent the complex multimodal and dispersive chatiatiter of the medium and use filtering
and preprocessing to make the data fit the model. In contlatst;driven matched field process-
ing utilizes the data-derived wideband, multimodal, arspdrsive characteristics to localize

the scatterers.
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CHAPTER 5

Incoherent Data-Driven Matched Field

Processing: Acoustic Emission Localization

5.1 Motivation

Acoustic emissions analysis plays a large role in nondetsievaluation and structural
health monitoring systems. An acoustic emission is comgndefined as a spontaneous, tran-
sient wave that is generated in a localized region of spaceaodustic emission event may be
the result of crack formation or growth from stresses anairsérin the material [100, 101] or
may be generated from strong, external, and potentiallyaggmy impact forces incident on a
structure [28,29]. For these reasons, detecting and tagatioustic emission sources is a widely
applied tool for detecting and locating damage in strugiureluding concrete structures [102],
steel bridge girders [103], diesel engines [104], lamisaed composites [28, 105, 106], and
various plate-like media [30, 105, 107-109].

In plate-like structures, acoustic emission events géaenaided waves that radiate outward
from the damage location. We measure these events usingebeeric sensors distributed
across the plate’s surface and process the data for infammabout the acoustic emission’s
origin. Due to the structure’s geometry, plate waves, alsonn as Lamb waves, propagate
with multimodal and dispersive characteristics that digtoe waves as they travel through the
medium. Mathematically, we can represent a sensor’s medsitage signak (r,w) in the

frequency ¢) and ) domain by the plate framework expressed in (1.6).
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In (1.6) r is the distance traveled by the wave resulting from the aeoamission. In this
representatior(w) is the signal emitted by the source afg (w) andk,,(w) are the frequency-
dependent amplitude and wavenumber functions of each modeangular frequency. As
illustrated in (1.6), an acoustic event generates multi@liee modes that each propagate with
a different frequency-dependent wavenumber, or phaseitele,(w) = w/k,,(w). We refer
to the collection of wavenumber functiors,(w) for all m as the dispersion curves of the
medium [10]. An example set of theoretical dispersion csifigeg Lamb waves is shown in

Figure 1.1.

The multimodal and dispersive wave behavior representgrefisiant challenge for guided
wave analysis because the multiple modes and dispersidimgounsly alter both the envelope
and phase of the guided waves as they propagate through tiermeWe generally do not
know a priori the true dispersion curves for a structure because theywilnymaterial and
environmental properties, such as density and temperaflinerefore, we do not precisely
know how the guided waves evolve as they travel through@&utrtédium, and we need to either

learn the dispersion characteristics or compensate fan thieen performing data analysis.

Traditional acoustic emission localization methods deiee the origin of the measured
signal through triangulation [32, 107, 110] or multilatéwa [29—31] techniques. These meth-
ods are performed in two steps. First, the wave’s time-of-aror time-difference-of-arrival,
relative to some anchor sensor, is determined for each sei$is is usually computed by
peak detection by finding the maximum value of each measugeadls However, to compen-
sate for dispersion’s distorting effects, the data is ugdebt simplified by narrowband filter-
ing [24,111], sometimes through application of the cortimiwavelet transform [29,105], and
extracting each signal’s envelope [31,107]. The timesoif/al values are then input into a

least-squares optimization to estimate the acoustic eénissigin.

Although triangulation and multilateration work well ingdl conditions, they can be unre-
liable when the data is corrupted by significant multipatierference and noise [112]. These
effects commonly cause time-of-arrival estimation ersinge the signal’s maximum envelope
value can be significantly affected by small signal variagideading to large errors in the local-

ization result. Due to this sensitivity, adding more sessoto a system, which may introduce
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new errors, is not always beneficial and can degrade lot@alizperformance.

In this chapter, we apply data-driven matched field proogsg0] to overcome the chal-
lenges associated with triangulation and multilateratimethods. Data-driven matched field
processing uses data-derived dispersion curves of thaumeditracted from a relatively small
set of calibration data [49], to optimally locate an acaustnission source. Unlike triangula-
tion and multilateration, data-driven matched field preass utilizes all of the data to perform
localization and requires no filtering or envelope ext@ttio simplify the signal, resulting in
strong robustness to multipath errors and noise.

In Chapter 5, data-driven matched field processing was adeddte a hole in an aluminum
plate using active guided wave interrogation methods, a/tier initial excitation is well known.
In this chapter, we extend the framework to acoustic emmdsicalization, in which the excita-
tion’s time trace is unknown and the time of excitation ismokn. Due to those conditions, we
use the incoherent data-driven matched field processor @plg & to experimental measure-
ments of acoustic emission events in a laboratory. We etaluad compare the performance
of the incoherent data-driven matched field processor withre&entional technique, known as
multilateration, for different levels of multipath erroné additive noise. Witt¥ sensors, we
demonstrate &3 dB, or a factor oR0 times, improvement in mean accuracy and &ulB, or a

factor of12.5 times, improvement in robustness to noise when comparddmuttilateration.

5.2 Data-driven calibration

Data-driven matched field processing consists of two stigia;driven calibration followed
by matched field localization. In the first step, we acquirébcation data from the structure
and use it to accurately recover the dispersion curves ofrtbeéium. This is accomplished
through sparse wavenumber analysis [49], as discussedapt&h2. We then integrate the
dispersion curve knowledge with matched field processinghis section, we briefly discuss
the data-driven calibration procedure.

The calibration datg,, originally discussed and derived in Section 3.2.1, is meslito
be collected prior to the acoustic emission localizatione &8n collect the calibration data

in several ways. For am situ system with transmission capabilities, the calibratiotadzaan
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be gathered by transmitting and receiving guided waves dmtveach of the sensors on the
structure. If the system contai® sensors, this approach will generd@téP — 1)/2 unique
measurements, allowing us to obtain a significant amounatd dith relatively few sensors.
This is the approach used in this chapter. Alternatively,cale manually excite and receive
guided wave measurements from throughout the structuheasbmbination of manually posi-
tioned ultrasonic probes and/fiorsitu sensors. This approach can be advantageous whén the
situ sensors cannot transmit information or when we want to coiteore calibration data than
available with the former approach.

The measured test datg, originally discussed and derived in Section 3.2.2, frorohea
acoustic emission is represented as a collection of guidetblwave responses that travel=
[ry...73,] distances from the acoustic emission origin and each sémsbe system. Unlike
the damage localization system in Chapter 4, we do not negerform baseline subtraction to
remove prior known information. Instead, we process thedata.

The model dat&,(r), originally discussed and derived in Section 3.2.1, regressignals
generated from our data-driven model for distanceSimilar to the damage localization sce-
nario in Chapter 4, we generate model data for mawgctors, each corresponding to different
source locations on a grid, and apply incoherent matchedigrelcessing to compare each data-
driven model vectok, (r) with the test dat,. In the following sections, we demonstrate the

performance of incoherent data-driven matched field psiogs

5.3 Experimental methodology

We test and evaluate incoherent data-driven matched fielbpsing on @.22 m by 1.22 m
by 0.28 cm aluminum plate. For generating calibration data and oreggacoustic events, we
attached 5 insitu0.7 cm by0.8 cm by0.09 mm PZT (lead zirconate titanate) transducers on the
surface, near the perimeter of the plate. The specific loestdf each transducer are shown in
Figure 5.1. This choice of sensor locations allows the systeeffectively monitor most of the
plate’s surface for acoustic emissions. However, reflastioom the nearby plate boundaries
complicate the data analysis.

To generate an acoustic emission, we drapfamm diameter ball bearing from a fixed
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Figure 5.1: Positions of each sensor location (open squaresacoustic emission(AE) test
location (closed circles) on the experimental plate setipthe experiments, each acoustic
emission location is tested separately.

height of 6.7 cm above the plate. We repeat this proceduréOatlifferent locations across
the plate, shown in Figure 5.1. During the experiments, wseoled no ball bearing bounces.
We use a ball bearing drop rather than the more traditionatipkead break for two reasons.
First, the ball bearing drop is acoustically stronger. Tlisws us to perform a noise study, by
artificially adding noise, with little additional noise frothe experiment.

Second, the ball bearing drop has better repeatability édtericoherent data-driven matched
field processing withl5 sensors but onlg input channels. For each position in Figure 5.1,
we repeat the same acoustic emission experirhdimes for two different sets df transduc-
ers, keeping one transducer common between both sets. Wedhabine the data sets that
have most similar measurements from the common transdé&oerthe chosen data sets, the
correlation coefficient between the common sensor measmisns always greater th&m9,

indicating good repeatability.

5.3.1 Method parameters

In all of our experiments, the calibration data is acquirgchving each of thé5 trans-
ducers transmit 8 kHz to 30 kHz linear chirp pulse of ms duration and by measuring the
response at each of the other transducers. The entire syrstesmits and receives data with

a 10 MHz sampling rate. Before applying sparse wavenumber arsaty generate the disper-
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Figure 5.2: Arecovered kHz to 19 kHz frequency-wavenumber, or dispersion curve, represen-
tation from measured Lamb wave data.

sion curves shown in Figure 5.2, the calibration data is wivetl with an exponential taper to
remove any signals traveling with apparent group velogigss tharr00 m/s. Figure 5.2 illus-
trates the resulting recovered dispersion curves. WhdedBults in Figure 5.2 do not display
perfectly smooth dispersion curves as found in Chapter gsipty due to additional multipath
error, we demonstrate that Figure 5.2 is still a good reprteasien of the medium through our
experiments.

For incoherent data-driven matched field processing, wenassn acoustic emission origi-
nates from a pair of coordinatés., y.) and ourP sensors are positioned at coordingtesy; )

fori = 1,2,..., P, the distances between the acoustic emission source ahdseasor are

contained in the vector

r, = {\/(xe—xi)QJr(ye—yi)z i+ jandi € [1,P]} . (5.1)

The vectorx,(r = r.) will then represent a model of the measurements that we wahsdrve
from an acoustic emission originating @t., y.). By changing the coordinates 6f., v.), we
can generate a new model(r = r.) of an acoustic emission at any another point in the
medium. By combining multiple models across a set grid orsthecture, we create a discrete
wave propagation modél,(r), which varies as a function of grid location, orand can be

integrated with matched field processing.
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Figure 5.3: An example measured Lamb wave signal (a) witldditional processing, (b)
with narrowband filtering arountl0 kHz, (c) with additional white, Gaussian noise, (d) with
additional white Gaussian noise and narrowband filtering.

To localize an acoustic emission with incoherent matched fieocessing, we us@ = 21
frequencies uniformly spaced betweekHz and24 kHz and apply no additional processing.
For multilateration, we apply a narrowband Gaussian filbethe data with & dB bandwidth
betweerb kHz and15 kHz. This is done to isolate a single group velocity. We cleabgb kHz
to 15 kHz frequency band because the strongest frequenciesiard iio this range. The group
velocity used by multilateration is computed from the slgp¢he dispersion curve recovered
by sparse wavenumber analysis in Figure 5.2. We use a gréogityeof 1142.4 m/s. Examples

of the typical signals used for localization are found inUfig5.3.

5.3.2 Comparison with multilateration

The multilateration localization method uses time-ofvairestimates from each measure-
ment to find the acoustic emission origin. Conventionalgse methods apply a narrowband
filter [29, 111] to reduced distortion from dispersion folled by envelope extraction [31, 107]

to simplify the measured data. d4f;(¢) represents a measured and narrowband filtered signal,
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the envelope can be extracted using the expression

rp(t) = lawp(t) + 51 s (O} (5.2)

wherej is the imaginary number an#l {-} is the Hilbert transform. Once the envelope has
been extracted, the maximum value of the data envelope dstaseeasure the signal’s time-of-
arrival.

The challenge with this approach is that multipath signats@oise can easily result in an
incorrect time-of-arrival estimate. Figure 5.3 shows egbas from experimental data where
this occurs. Figure 5.3a shows a measured acoustic emisigjpal before filtering. Figure
5.3(b) shows the filtered signal and demonstrates that thénmian value, a).64 ms, is not
associated with the direct arrival time,(886 ms. Figure 5.3(c) shows the measured data from
Figure 5.3a after being corrupted by wideband white, Ganssoise. Figure 5.3(d) shows the
corrupted signal after filtering. We can see that the noiseaghanges the estimate arrival time
to be0.59 ms.

Multilateration uses each time-of-arrival estimate toal@cthe acoustic emission source
through a least-square optimization. If we assume,, . .., tp_; represent the time-of-arrival
estimates fromP — 1 sensors and, represents the time-of-arrival for a single anchor sensor,
required if the excitation time is not knoapriori, then multilateration estimates the coordinate
source locatioriz, ) as the solution to [30]

(@) = argmin [lu(z, y)l; (5.3)

P
stoulry) = D (e =)+ Yo — )" = (# = 2)" + (y = 1)) = (favy — tyy),

p=1

wherev, is the assumed known group velocity of the waves around tiee fiequency.
Compared with data-driven matched field processing, natdtibition is more sensitive to

multipath and noise. Instead of potentially utilizing theiee measured signal, multilateration
optimization only uses’ time-of-arrival estimates to locate the acoustic emissioarce. If
one of those estimates is incorrect, it will have a largectféen the result. Therefore, multi-
lateration does not significantly improve with more sensdie demonstrate this sensitivity

experimentally in Section 5.
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When we solve multilateration optimization, we use an iotgpoint algorithm and select
the center of the plate as its initial condition. We also ¢@is the optimization so that the

result must be located within the plate’s boundaries.

5.4 Experimental results and discussion

With the experimentally measured data, we conduct two egtudin the first study, we
investigate the performance of data-driven matched fietatgssing when locating acoustic
emissions at different points on the plate that experieifterent levels of multipath error. This
study demonstrates data-driven matched field procesgiolgisstness to multipath signals. In
the second study, we corrupt the data with various level dfeyBaussian noise to demonstrate
data-driven matched field processing’s robustness to mmaase. We also investigate how the
data-driven ambiguity functiob(r) varies as a function of the number of sensors used and the

signal-to-noise level.

5.4.1 Multipath study
We evaluate data-driven matched field processing at eadtedé&h acoustic emission loca-
tions shown in Figure 5.1. At each location, we estimate i@l location with sets of to

15 different sensors. The numbers in Figure 5.1 indicate whatsors are in each set such that
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Figure 5.4: The acoustic emission locations estimated tgharent data-driven matched field
processing (DDMFP, crosses) and multilateration (MLaisggigns). The true origin of each
event is shown as an open circle.
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a sensor is a member of a set if its number is less than or egjtia total number of sensors in

that set.

Figure 5.4 summarizes and compares the localization pedoce of the incoherent data-
driven matched field processor and multilateration for eéts 7, and10 sensors. We observe
that data-driven matched field processing performs mucteb#tan multilateration. If we
define an accurate localization to be any estimate lesstsaom, the length of one trans-
ducer, away from the true location, then the data-drivercheat field processor successfully
locatess, 9, and10 of the acoustic sources with 7, and10 sensors, respectively. In contrast,
multilateration never accurately locates more tlaacoustic emissions and only accurately
estimates2 acoustic emission locations with) sensors. Multilateration degrades with more
sensors because the additional sensors introduce momggoctme-of-arrival estimates due

the multipath.

Figure 5.5 illustrates the mean and median localizatioorgeim terms of distance from the
true locations, as a function of the number of sensors. Fdtilataration, the localization
error improves slightly as the number of sensors increasesstsignificantly biased due to
multipath error. In contrast, the mean and median errortfelincoherent data-driven matched
field processor is always below the multilateration errat BBmains consistently belov8 cm

for 8 or more sensors.

Figure 5.6 demonstrates how the incoherent data-drivergaiity function, for a single
acoustic emission location, evolves as we increase the aeuoflsensors. For all three plots,
the maximum value correctly estimates the acoustic emnm&smrigin. As we increase the
number of sensors, we see the localization uncertaintyfgigntly decreases. In Figure 5.6(c),
where most of the image is relatively dark, we can confidestéye that the acoustic emission
is only limited to a single point. This demonstrates, in cast with the multilateration results
from Figure 5.4, that the incoherent data-driven matchdd fieocessor benefits greatly from

additional sensor information.

Overall, these results have demonstrated that the incoheéa¢a-driven matched field pro-
cessor can withstand a significant amount of multipath ietence in the data and becomes

more robust to multipath as we introduce more sensors ietondium. In contrast, multilater-
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Figure 5.6: The incoherent data-driven ambiguity fundidéor a specific acoustic emission
location (marked by an open circle) with (a) 4, (b) 7, and (@)sknsors. The sensors are
marked as white, open squares.

ation is sensitive to multipath interference and may suffan additional sensors because they
may introduce incorrect time-of-arrival estimates andgigantly alter the final localization

result.
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5.4.2 Noise study

This study evaluates the performance of data-driven mdtiélel processing as we increase
the amount of noise in the data. We corrupt the data with meédithite, Gaussian noise at a
variety of different average signal-to-noise ratios. K thheasured signals, before filtering, at
P sensors are represented in the time domaim &9, ..., zp(t), then we define the average

signal-to-noise ratio (SNR) as

P
_ 1 = 2
SNR = 52 QUQ; /0 2 (8)[2 dt (5.4)

where( is the number of frequencies used by the incoherent datardmatched field proces-
sor ando? is the noise variance. We corrupt the data wifl different instantiations of noise
for each signal-to-noise ratio considered. As in the previstudy, we claim that the localiza-
tion is accurate when the estimate is less th&rcm, the length of a PZT sensor, away from the
true location. Based on this metric, we find the sample pritibabf detection by computing
the ratio of the number of accurate localizations versusdtad number of trials.

We test the incoherent data-driven matched field processobustness to noise by esti-
mating the location of the sixth (from left-to-right therptto-bottom in Figure 5.1) acoustic
emission with both a set éfand8 sensors. In a noise-free scenario, both data-driven nditche
field processing and multilateration accurately locatesit@ustic emission.

Figure 5.7 illustrates the resulting sample probabilitgefection as a function of signal-to-
noise ratio. The solid and dotted lines representthad8 sensor results, respectively. Curves
further to the left on the plot indicate better robustnessaise. Compared with multilateration,
incoherent data-driven matched field processing achieiedB, or 5 times, and a1 dB, or
12.5 times, improvement in signal-to-noise robustness witnd8 sensors, respectively. Fur-
thermore, we observe that multilateration’s robustnessens when the number of sensors is
increased. As similarly demonstrated by the multipathsttlis effect occurs because addi-
tional sensors introduce additional opportunity for tiofearrival estimation errors.

Figure 5.8 shows the incoherent data-driven matched fi@dgssing ambiguity function
for a3 dB signal-to-noise ratio wit sensors. Figure 5.3(c) and 5.3(d) illustrate examples of

measured data with this level of additive noise.3AtB, data-driven matched field processing
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Figure 5.7: The sample probability of detec-Figyre 5.8: The incoherent data-driven ambi-

tion versus signal-to-noise ratio for the in- guity function measured with 8 sensors and
coherent data-driven matched field processog signal-to-noise ratio of dB. The plus

(DDMFP) and multilateration (MLat) with  signs (+) showi00 different estimated acous-

|5_ se;sors (solid lines) or 8 sensors (dottedic emission locations from multilateration.
ines).

has al00 percent localization accuracy while multilateration h@s@rcent accuracy. The plus
signs (+) in Figure 5.8 show thig)0 different location estimates by multilateration. We cae se
that multilateration estimates are close in some instabgethe noise is almost always strong

enough to cause significant error.

Overall, this study demonstrates that the incoherent davan matched field processor
is, compared with multilateration, strongly robust to rpdth interference and noise. Since
the incoherent data-driven matched field processing esilihe dispersive properties of the
medium to locate the source, it does not have to rely on themrmam amplitude values like
multilateration. For these reasons, the incoherent datardmatched field processor uses more
information than multilateration and its performance cauptiove as we introduce additional

sensors that provide even more information.
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5.5 Conclusions

This chapter implemented the incoherent data-driven neatdield processor, which can
localize an acoustic source without knowledge of the adcosginal’s timing or shape charac-
teristics, for guided wave acoustic emission localizatidnlike conventional acoustic emission
localization methods, the incoherent data-driven matdieddi processor performs localization
as one step and utilizes, through sparse wavenumber asajlof the dispersive behavior of
the guided waves over a wide range of frequencies to localizacoustic emission event. As
a result, the incoherent data-driven matched field processobust to multipath interference
and random noise that is commonly encountered in acousigsen measurements.

We conducted two studies with) sets of experimental acoustic emission data to demon-
strate the effects of multipath interference and randonsenoin the incoherent data-driven
matched field processor and a conventional acoustic emissaalization technique known
as multilateration. The multipath study demonstrated, thialike multilateration, the incoher-
ent data-driven matched field processor’s accuracy imgroueasistently as more sensors are
added to the system. Witk or more sensors, the incoherent data-driven matched field pr
cessor successfully localized all acoustic emission events. In contrast, multilateratioly on
successfully located of the 10 events withl0 sensors.

In the noise study, we demonstrated that the incoherentdiatan matched field proces-
sor’'s robustness to noise also improves as additional sease added to the system. In con-
trast, multilateration degrades with additional sensows t its sensitivity to error. With and
8 sensors, the incoherent data-driven matched field procasbeved times andl2.5 times,
respectively, better noise performance than multilaitemat

Overall, the studies show that the data-driven matched fieldessing is a robust tool for
localizing acoustic sources in complex media. In future kyave plan to further integrate
sparse wavenumber analysis and its data-driven model vwatle ctomplex structures and other
localization processors. We also plan to explore the thigatgperformance bounds of these

data-driven methodologies.
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CHAPTER 6

Refining for Environmental Variations:

The Scale Transform

6.1 Motivation

In laboratory settings, guided wave ultrasonic inspecti@thods are being extensively ex-
plored for testing large structures. Guided ultrasonicesaare popular because they propagate
through the thickness of the structure and can travel ovsgy kistances with little attenua-
tion [46]. This allows sensors to interrogate large arebatance. However, guided waves are
inherently multi-modal and dispersive in their propaga{ibl 3]. In addition, structures’ bound-
aries generate reflections and exchange energy betweemveales [114]. These effects make

the interpretation of measured data difficult and necdssitee use of baseline measurements.

Under ideal conditions, damage can be detected by perfgrib@seline subtraction or time-
domain correlation between a measured signal and a basekasurement [42]. Baseline
subtraction and correlation techniques attempt to reméfeete from static sources, such as
reflecting boundaries, but are impractical under realisbieditions. When environmental or
operational conditions change, the propagating mediungaitted wave behavior also change.
Therefore, simple baseline comparison methods are unablistinguish damage from benign
environmental and operational effects.

One of the most ubiquitous environmental properties tocagnals is temperature [39].

Variations in temperature alter the velocity of the guideaves [38]. This effect on velocity
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can be attributed to temperature’s influence on thermalresipa and the Young’s modulus of
the material [36]. Furthermore, small changes in tempegdtave been shown to cause large
changes to the residual signal observed after baselineastibh [42]. For these reasons, it is
important that structural health monitoring systems adpsthe effects of temperature.

Several techniques have already been developed to contpdaséemperature in guided
waves. These compensation methods can be divided into twgarées: data-driven methods
and model-driven methods. In this chapter, we focus on mddetn techniques based on an
approximate model of the effects of temperature on ultr@seaves. This is in contrast to
data-driven approaches, where temperature compensatechieved by comparing new ob-
servations with collections of previously obtained datdthéugh we focus on model-driven
approaches, these techniques can usually be combinedatétddven methods to improve the
overall compensation performance [115].

The methods explored in this chapter assume a stretch-lmagdd| for temperature. A

change in temperatufg,{-} on an ultrasonic signal(¢) is approximated by a time-stretch

T {z(t)} ~ z(at) (6.1)

for small stretch factors.. This time-stretch model is attributed to the temperasuedfect
on the wave velocity. A change in the wave velocity cause= latve arrivals to have pro-
portionally larger time shifts, creating a stretch-likéeef. Although the time-stretch model
is not generally true, it is approximately true for diffusawes, which are highly sensitive to
temperature thermal fluctuations [3,41, 116]. Temperathaages also distort the diffuse wave
fields due to the different sensitivities of shear and lamdjital waves, but we neglect these
effects [38,117].

Methods that use a time-stretch model include the local pehkrence [42,44] and optimal
signal stretch (OSS) [39, 40, 115] techniques. Given snaalhtions in temperature and ideal
conditions, these approaches work well. However, preweurk has shown local peak coher-
ence to be sensitive to errors associated with the approgisteetch-based model as well as
other effects [118]. Although OSS tends to be more robustddeherror, it suffers from a high

computational complexity.
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In this chapter, we present a new methodology for stretaedhanodel-driven temperature
compensation algorithms based on the scale transform.widris was originally presented in
references [5,118-120]. In the scale transform domain,amedirectly manipulate the stretch
factor of signals and compute quantities invariant to clearig that stretch factor. We discuss
three algorithms for temperature compensation based @e theale domain tools: the scale-
invariant correlation (SIC) method, the iterative scabnsform (IST) method, and the com-
bined SIC/IST method. We demonstrate these algorithmsugfr analysis and experimental

tests, to be more computationally efficient than currentbilable techniques.

6.2 Scale transform signal processing

In this section, we express the solution to the temperatanepensation problem as an
optimization problem. We then demonstrate how this optati@n problem may be solved with

the scale transform.

6.2.1 Problem Formulation

According to the model in (6.1), we can compensate for teatpeg by stretching the dis-
torted signal by a factor of/«. Sincea is usually unknown, it must be estimated. We define
the optimal stretch factor estimatebetween two signalg(t) ands(t) as that which minimizes

their normalized squared error

2

a = argmin/o x;z) —Ui(/oij)a dt . (6.2)
The normalization factors in (6.2) are defined as
o2 = / lz(t)* dt
0
olla = / |s(act)|? dt (6.3)
0

so that the energy of each termit) /o, ands(at)/(os/+/@), in (6.2) is equal td. This makes

the processing robust when we lack knowledge of the enertiyeafecorded signal(t).
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Expanding the square in (6.2) yields

S ROR | [senf  a(0s(an)
oo / 2 T o ooy

= argmin?2 — MM
= argmn? / oa(on)a) "

= argmax a D, (). (6.4)

@ 0,05

In this formulationg is expressed as the stretch factor that maximizes the imodupt between

the energy normalized signatét) /o, ands(at)/(os/+/a). In (6.4),

Byola) = /0 " a()s(at) dt (6.5)

is the scale cross-correlation function betweét) and s(t) [121], which, we note, is not a

function of time, but a function of the stretch factor

6.2.2 The Scale Transform

In this subsection, we briefly review the scale transform@disduss a couple of properties

relevant to solving (6.4). The scale transform is definedLas]

S{z(t)ic) = X(c)= /0 T 2 gy (6.6)

and the inverse scale transform is

SX ()it} = z(t) = % /_ T X () e (6.7)

The scale transform is a special variant of the Mellin transf which has several stretch-
invariant properties and has been used in applicationsasutite classifying of ships from radar
signals [122] and the interpreting of speech waveformsJ[12Be Fourier-Mellin transform,
which is derived from the Mellin transform of the magnitudettte Fourier transform, is also
popular in several engineering fields [124-133] due to Nafiant properties to both shifting
and stretching in time.

To serve as an example, Figure 6.1a and 6.1b illustrate twerarentally measured sig-

nals, truncated t@ ms, at different temperatures. Figure 6.1c and 6.1d showntgnitude of
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Figure 6.1: (a) An experimentally obtained guided wave aigneasured at a temperature of
20.5°C. (b) An experimentally obtained guided wave signhal mezsat a temperature of
7.8°C (c) The scale transform magnitude of the signal in Figuta 6. (d) The scale transform
magnitude of the signal in Figure 6.1b. (e) The scale crosselation between of the signals
in Figure 6.1a and Figure 6.1b. For convenience, the hat@taxis is zoomed into the region

of interested.

the scale transforms of each measured signal. Figure 6dvessihe normalized scale cross-
correlation function, from (6.5), of the two guided waversats. Note that, for many physical
signals, the majority of the energy is often concentratety eéa the scale transform domain.

This is analogous to a frequency “low pass” signal, but insttede transform domain [122,133].

Intuitively, the Mellin and scale transforms are analogtwghe Laplace and Fourier trans-
forms but with delay or time-shifting operations replacgdskretching or time-scaling opera-

tions. Like the Fourier transform, the scale transforms§ias Parseval’s theorem,

/0 Trwsta = = [ x*0)S(e) de. 6.8)

21 J_ o

where(-)* denotes complex conjugate. This implies that signal energpnserved between
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the time and scale transform domains,
> 2 1 oo 2
lx(t)]7dt = — | X (c)|” de . (6.9)
0 27 —00
When applying the Fourier transform, a time delay operatiianslates to a phase shift in
the frequency domain. Analogously, an energy-presentiegch operation translates to a phase

shift in the scale transform domain [121]
S{Vaz(at);c} = X (c)eie@ (6.10)
We refer to this stretching as energy-preserving since

/Ow‘\/ax(at)‘zdt = /Ooo\x(t)\2 dt . (6.11)

6.2.3 The Fast Mellin Transform

In this subsection, we briefly discuss the fast Mellin transf, a computationally efficient
algorithm used to compute the Mellin or scale transform afaa. Through algebraic manip-
ulation and a change of variables such that e” anddt = e™ dr, the scale transform in (6.6)
may be expressed as

S{z(t);c} = /_OO z(e7) eI gr (6.12)

o0

= F{e"z(e)ic} .
The expression in (6.12) shows that the scale transforneiBdlrier transform of the exponen-
tially time-skewed signal multiplied by an exponential elmpe. With access to the fast Fourier
transform, (6.12) provides a very simple and practical enpntation for the scale transform.

This implementation is known as the fast Mellin transforr@g1129, 134, 135].

From this expression, we may also represent the inverse seaalsform as
S HX(e);t} = e WAROF-LIX(c);In(t)} . (6.13)

In practice, we do not always compute the inverse scalefoams Performing theé = In(7)
substitution has several numerical complications. Irstea can often extract the same infor-

mation using the inverse Fourier transform. We demonsthéden the following subsection.
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Since most discrete signals are uniformly sampled in timeyutation ofz (e”) requires
that we resample, or interpolate, the signal onto an exg@iexis. This is often accomplished
using cubic spline interpolation since it is computatibnédst and provides a close approxima-
tion to sinc interpolation [136,137]. For this applicatitwever, we found linear interpolation
to also provide good results. While linear interpolatiofaster, both methods can be computed

in linear time.

To compute the exponential axis, we assume the first sammaatf data record doest
correspond to timeé = 0 = ¢~*°. This allowsz (e”) to be finite in length. We also assume
the sampling period to bé so that the first sample of each data record corresponds & tim
t =1 = ¢ This allowsz (e7) to be causal. Since uniformly sampling a signakT") with
periodT is equivalent to stretching a signal by a facigrthis assumption can be corrected for

in the scale transform domain by applying a phase shift.

To properly resample the signal, we also need to ensure thatfarmation is lost. This
condition requires that the minimum sampling rate satisfiedNyquist sampling criteria [138].
To ensure that the Nyquist sampling criteria is satisfied, ldngth of the resampled signal
must be greater than or equal In(V), where N is the length of the original truncated

signal [134, 139, 140]. Figure 6.2 demonstrates the exgaieasampling of a sine wave.

6.2.4 Maximization of the Scale Cross-Correlation Functio n

In this subsection, we discuss two strategies for maxirgite scale cross-correlation func-

tion. In Section 6.3, we will discuss the numerical benefitdese approaches.

Maximization in the Stretch Factor Domain Qo

The scale cross-correlation functidn,(«) of two signals,z(t) ands(t), can be computed

from the scale transform as [121, 141]

O,s(a) = /000 x*(t)s(at) dt
= SH{X*()S(c);al . (6.14)
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Uniform samples

Figure 6.2: A demonstration of exponential sampling coragawith uniform sampling. (a)
A continuous sine wave. (b) A uniformly sampled sine wave.) Afc exponentially sampled
sine wave.

To prove (6.14), we first substitute (6.13) into (6.14), dpk Fourier transform’s convolution

theorem, and finally set = In(¢) to show
STHX (S(chia} = e WINOFL{X(€)S(c);n(t)}
et (er)s(er—i—ln(a)) dr

x*(t)s(at) dt

®

Il
o

= D,(a). (6.15)

The result in (6.14) computes,;(«), a function ofa, directly from the scale transform repre-
sentations,X (¢) and S(c), without requiring us to stretch the signdk). The solution to the
optimization problem in (6.4) can therefore be expressedenormalized maximum of (6.14),
ie.
a = arg maxﬂ STH{X*(e)S(c); a} (6.16)
a 0,04

We also note that the scale-invariant correlation coefiidietween:(¢) ands(t) is defined by

boe = max YL ST IX()S(0):al | (6.17)

@ 0,05
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s(t) —| t=¢" —&—| F{-;c}

Q= 7 { s In(a)} = Vas(In(a))

z(t) — t=¢" Q—| [F{ e}

Figure 6.3: Block diagram for computing the scale crossetation function between(t) and

s(t).

whereg, is normalized such that,, = 1 whenz(¢) is a stretched replica {¢).

As previously mentioned, we normally do not compute thensgescale transform due to
numerical complications. Therefore, to avoid this congtiien when computin@,.;(«), we
further manipulate (6.16) by substituting the inverse es¢ansform relationship in (6.13) and

expressing the maximization as

a = argmax Ve e~ /D@ =1L x*()S(c); In(a)}

@ 05054

L x(0)5(e) n(a)}

= argmax

@ z0s

Uos(In(a)) . (6.18)

= argmax
a 0,04

In (6.18),¥,,(In(a)) is now a function of the log-stretch factor. Since the ndtlogarithm is
monotonic, the maximum with respectdds equivalent to the maximum with respectitdo).
So, to avoid the inverse scale transform in (6.16), we imsteanpute the optimal stretch factor

and scale-invariant correlation coefficient as

a = exp <arg max \I’xs(ln(a))) (6.19)
s \Ilms 1 . 6.20
¢ max - (In(a)) (6.20)

Figure 6.3 provides a block diagram illustrating each stegdmputing? ., (In(«)).

Maximization in the Scale Transform Domain ¢
By applying Parseval’'s theorem in (6.8) and the time-shietg property in (6.10) to the

scale-cross correlation functidn,;(a), we can express the optimal stretch estimate in the scale
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transform domain as

a4 = argmax ve D, ()
a 0.0

r¥s

1 o .
— * jeln(a)
arg max o0 / X*(e)S(c) e de (6.21)

— 00

In this formulation, we are able to directly change the strdaictora by altering the phase of
the scale transform. This is accomplished by multiplyindpesi X (¢) or S(c) by a complex

exponential.

6.3 Performance of Scale Transform Methods

In this section, we present three algorithms for maximizhgscale cross-correlation func-
tion based on the formulations discussed in Section 6.2. Mé&uss each algorithm’s imple-
mentation, resolution, and computational complexity. Wentcompare these algorithms with
current methods and show that the scale transform basedigeels are less computationally

complex for a given resolution or signal length.

6.3.1 Scale-invariant correlation (SIC) method

The scale-invariant correlation (SIC) method maximiZes(In(«)) directly in the log-
stretch factor domaiin(«) as expressed in (6.19). Note that, in practice, by sampliny
ands(t) in the time domain and truncating the signal to a lengtivafamples, the scale trans-
form representationsY (¢) andS(c), are represented only by a finite number of values. Since
(6.19) then computed.;(In(«)) as the inverse Fourier transform &f(c).S(c), we know that
we can also only evaluate,,(In(«)) for a finite, discrete set of stretch factaers

The resolution of the set of stretch factors is defined by #éimegding interval of . (In(«)).
Assuming a unitary sampling periogd(t) is defined over the range < ¢t < N andz (e7) is
defined for0 < 7 < In(V). Then, sincer (e7) is of length/V In(V), the interval between each
sample must bé/N. Therefore, sinca . (In(«)) is related taz (¢7) ands (e”) by a Fourier
transform followed by an inverse Fourier transform, it malsto have a sampling interval of
1/N.
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This implies that the smallest measurable deviation from 1 is

Aa = exp (:I:%) . (6.22)

For sufficiently large values a¥, we can approximatd« by a first order Taylor series approx-

imation to get

1
Ao~ 1x—. (6.23)

So the resolution of SIC is approximatelyN. Therefore, SIC is limited in resolution. How-
ever, we will show that we can improve this resolution by corrly SIC with an iterative
optimization approach.

We now calculate the computational complexity of the SIChnodt To compute SIC, we
need to exponentially resamptét) ands(t), compute their Fourier transforms, compute an in-
verse Fourier transform, and then find the maximum of theltedlaximizing ¥, (In(«)) and
exponentially resampling(¢) can both be computed in linear time. If we assunie™) to be
of length N In(V), then the computational complexity of computing its Foutiansform, us-
ing the fast Fourier transform algorithm,d& N In(NV) log(N In(NV))), or O(N In(N) log(N))
after simplifying. Since this is the most computationatkpensive operation in SIC, the com-

putational complexity of SIC is als@(N In(N) log(N)).

6.3.2 lterative scale transform (IST) method

The iterative scale transform (IST) method maximizes tlaescross-correlation function
d..(ov) by phase shifting{*(c) or S(c) in the scale transform domainas shown in (6.21).
Solving this optimization problem iteratively in the scatansform domairc allows IST to
have a very high precision. However, as shown in Figure @hbescale cross-correlation is not
(globally) convex, but is locally convex around multiple xiraa. In the next subsection, we
address this issue further.

To compute the stretch factor estimataising IST, we first compute the scale transforms
X*(c) andS(c). As with SIC, the complexity of these operationg2$N In(N) log(N)). We
then choose an initial guess fay multiply S(c) (or X*(c)) by e7°™(®), and then compute the

inner product betweeX *(c) andS(c)e’*™(@). Each of these operations has a linear complexity.
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This process of choosing an applying a phase shift, and computing an inner productds th
repeated for different values of by a convex optimization algorithm until the inner product
converges to a maximum value. The complexity of most conysirozation algorithms, ne-
glecting special cases, @(1?) where)M is the number of parameters to optimize across [55].
For this application, we only optimize across one variahleso M/ = 1 and the complexity
is constant. Therefore, the complexity of the optimizatwoacedure iSO(N In(N)) for each
iteration, whereV In(N) is the number of samples in the scale transform domain.

We can also improve the computational speed of IST by takihvguatage of the structure
of the scale transform. The majority of the energy in a sigmaften located early in the scale
transform domain. Therefore, we can truncate a large podidhe domain with little loss of
information. As a result, the cost of the iterative algaritbecomes)((pN In(V)), wherep
represents the percentage of the scale transform domainedtafter truncation. In Section

6.4, we demonstrate that we can redude 0.25 with only a small change to the scale estimate.

6.3.3 SIC/IST combination

As previously discussed, IST is a very precise estimatioatesjy but only if the result
converges to the global maximum. In contrast, SIC requigeassumption of convexity but
has a finite resolution. By combining these two methods, weheare highly precise estimates
and guarantee convergence to the global maximum. This is bpmsing SIC to generate the
initial stretch factor estimat@ for IST. In general, the SIC estimate will lie within the Idiga
convexity region around the global maximum of the scalesasrelation functio®, ().

Note however that ifV is small enough such that SIC cannot adequately resolve #ie m
lobe of the scale cross-correlation function, then the SifGreate may not be accurate and IST
may not be guaranteed to converge to the globally optimalt:eddowever, for sufficiently large
values ofN, this is not an issue. In our experimental results in Sedidnwherel00 < N <
10000, the problem never arose.

Since IST already computes the scale transform repregamgak (¢) andS(c), the only ad-
ditional step required when combined with SIC is the comfparteof the inverse Fourier trans-
form in (6.18) and maximization over,.(«) in (6.19). The computational complexity of these

operations iSO(N In(N) log(NV)), the same as initially computing (¢c) and S(c). Therefore,
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Methods Resolution Computational Complexity Iterativen@@dexity
Finite Resolution Methods

Search OSS 1/N O(RN?) -
S 1/N O(N In(N) log(N)) -
Fine Resol ution Methods
Search/Iterative OSS - O(RN?) O(N)
SIC/IST - O(N In(N) log(N)) O(pNIn(N))

Table 6.1: The computational complexity of each tempeeatompensation discussed.

these operations do not change the overall computationgbleaxity of IST and the complexity

of SIC/IST is equivalent to the computational complexity8T.

6.3.4 Comparison with the optimal signal stretch (OSS) meth od

0SS [39,40,115] is another optimization strategy for eating the optimal stretch factar
between two signals. As with our scale transform based ndetbgy, OSS also definesas the
stretch factor that minimizes the squared error betweereiteived signat(¢) and a stretched
baseline signa¢(at). We differentiate SIC and IST with OSS by their different eggrhes to
implementation.

OSS directly computes(at) and its associated squared error for several values dhis
time-stretching operation is computed by interpolatiohicll can be done in several ways. One
common method is to apply truncation and zero-padding ¢ipasain the time and frequency
domains [115]. This is a relatively efficient method for cartipg s(«at), but limits the resolu-
tion of . For a fixed value ofV, the smallest computable deviation from a unitary strefch o
a = 1is approximatelyl / V.

The time-stretching operation can also be accomplishedteypolation directly in the time
domain. This approach is not limited in resolution [142]nSinterpolation would be theoreti-
cally ideal but is computationally slow. Therefore, cubtise and linear interpolation, which
are bothO (N) fast, may be used instead to approximate sinc interpolation

There are then two common strategies for solving the OSS$nag#tion problem. In this

chapter, we will refer to these strategies as search OSSemative OSS.
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Search OSS

Search OSS is a simple “brute force” optimization method geaforms an optimization
over a finite set of stretch values. In this procedure, a basébrary s(at) is computed for
different values ofy in an interval of lengthR. The optimal estimat@ is then the stretch value
of the library signal that minimizes the squared error with). This approach is similar to some
data-driven approaches, such as optimal baseline seldtti&]. However, in this situation the
library is generated from a single baseline signal rathen eincollection of measured data.

We compute the squared error betwegt) and each library signal as a matrix-vector mul-
tiplication. To parallel SIC, we choose the resolution cired OSS to béd /N. Given that
resolution, we would need a library @tV baselines to uniformly cover a range There-
fore, the computational complexity of searching the lipriarO (RN?) and the computational
complexity of generating every baseline in the libraryhwibear or spline based time domain

interpolation, is als@® (RN?).

Iterative OSS

Like IST, iterative OSS uses local convexity to compataithout a baseline library. The
optimal value is found by an iterative algorithm. As with |Sterative OSS may be solved
using a variety of convex optimization algorithms. Since tlonvex optimization has a con-
stant complexity, the overall computational complexityitefative OSS is given by th@ (V)

computation of(«at) by linear or spline based interpolation at each iteratiothefalgorithm.

Search/Iterative OSS

As with SIC and IST, we can combine the search and iteratre¢egfies to improve overall
performance. Search OSS performs a coarse search and/@€d&S performs a fine search
with the initial condition taken from search OSS. This congai method possesses a fine res-
olution and has a computational complexity @ RN?) from search OSS plu®(N) from
iterative OSS.

Table 6.1 provides a concise summary of each method implemaen the following sec-
tions. We choose not to focus on the iterative methods alome shey will always perform
poorly for sufficiently large variations in temperature.elfable shows separately the computa-

tional complexity of the one-time computations and the clexipy of the each iteration of the
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Figure 6.4: The experimental setup shows the aluminum pladethe two PZT (lead zirconate
titanate) transducers used to monitor the plate.

optimization algorithms. The results show that SIC and ET#to have smaller overall compu-
tational complexities than search OSS and search/iter@8S. In Section 6.4, we confirm this

experimentally.

6.4 Results: Single sensor compensation

In this section, we discuss the experiments used to testtie gansform techniques. We
discuss our physical experimental setup, signal prepstogsteps, and choice of signal excita-
tion. We also briefly discuss the iterative convex optimaatlgorithms used by iterative OSS
and IST.

6.4.1 Experimental methodology

In our experiment, we excite and measure guided ultrasoaies/on a thin plate under
variable temperature conditions. To generate the guidegsyave used a pair of synchronized
lead zirconate titanate (PZT) piezoelectric transducermpnently bonded to the surface of a
9.8 cm wide by30.5 cm long by0.1 cm thick aluminum plate. The aluminum plate is shown
in Figure 6.4. Guided wave signals are recordedlfoms at a sampling rate dfMHz using
National Instruments PXI| data acquisition equipment.

For 36.3 hours between 11:30 AM and 11:50 PM of the following day, therenum plate

was cooled and warmed by adjusting its ambient temperaueng this time, guided waves
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were synchronously generated and measured every two minuteing a thermocouple, the
ambient temperature was also measured every one minute.

At 6:18 PM on the first day, a cylindrical, steel, grease-¢edpnass with a diameter 88
cm and height of.5 cm, was placed on top of the aluminum plate to scatter wawsiamulate
damage. Although the mass may not perfectly simulate damitigkanges the propagation
environment in ways unlike temperature. At 4:04 PM on theosdaday, the mass was then
removed from the plate.

During data collection, the acquisition equipment appketbw-pass filter with a cutoff
frequency of500 kHz to each analog signal. After measuring each signal, b-pass filter
with a 3 kHz cutoff frequency was also applied to remove systematicftequency noise in
the system. To eliminate any phase effects introduced bgxtbiation signal, each measured
signal was correlated with the excitation waveform.

We chose to transmit a wideband, impulsive sinc excitatidh & center frequency &0
kHz and flat spectral bandwidth o0 kHz. The wideband excitation helps to satisfy the diffuse
field limit conditions [3,41]. Under these conditions, thppeoximate time-stretch temperature
model is more reliable.

We implement iterative OSS and IST with three differentatse algorithms: a quasi-
Newton line search method [137], an active-set method [1&8] an interior-point method [55].
Our results illustrate the mean results from the three dlgos.

The first algorithm is implemented using MATLAB®ninunc function. The other two
algorithms are implemented using MATLABfmincon function. We also constrain the active-
set and interior-point methods to solutions based on thelugsn of search OSS and SIC.
Therefore we constrain the solution space-tb/(2N) < o« — a < 1/(2N), wherea is the

estimate from search OSS or SIC.

6.4.2 Estimation accuracy

We first carry out a simulation study where we stretch the expntal data by a factor of
a = 1.001278, which is comparable to stretch factors observed in our ix@at. For each
measurement taken, we use the unaltered signal as the baggéne for estimating. Figure

6.5 shows the results of estimating this stretch factor ¥athr methods: search OSS, iterative
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Figure 6.5: Estimation errot— «) of SIC, SIC/IST, search OSS, and search/iterative OSS un-
der simulated ideal conditions. In the simulation, experital measurements were numerically
stretched by a factor af.001278 and compared with the original signal to estimate the diretc
factor.

0SS, SIC, and SIC/IST. The results confirm that the estimagroor for search OSS and SIC
stay within their resolution bound<(/(2N)) while iterative OSS and SIC/IST approaches a
small error (on the order of0~°) very quickly. This study shows that all four methods can
successfully estimate tHe001278 stretch factor.

We then apply our SIC/IST methodology to the experimentsh.d&Ve use the first mea-
surement, taken &0.5°C, as a single baseline for estimating the stretch factavdsst itself
and the other measurements. Figure 6.6 shows the the reaimfthe stretch factor estimate
1/a plotted with the ambient temperature measured during tperément. The results show
a strong linear correlation between the stretch factonedé and temperature. Applying SIC,
search OSS, or search/iterative OSS yields similar restiis study verifies the reliability of

the time-stretch model used by these methods.

6.4.3 Computational cost

We evaluate the computational cost of each algorithm aswbeage computation time re-

quired to process each measurement. We evaluate each nfethidddifferent record lengths
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Figure 6.6: Comparison between the stretch factor estimiagxperimental data, computed
using SIC/IST, with ambient temperature. Results show sectmrrelation between values.

N, uniformly spanning fromV = 400 to N = 10000. For search OSS, we consider a search
space of 1 — R/2) > a > (1 + R/2) for arange).008 > R > 0.024. Note that, as shown in
Figure 6.6, the true stretch factor in our experiment varetsveen approximatelly and1.005.
For search/iterative OSS and SIC/IST, we also evaluatedimpatational effort in terms of the
average number of iterations required for convergence. &lleela single iteration as a single
call to the function that stretches the baseline and corspheetwo signals.

Since the iterative algorithm convergence rate may vanelyidith N, we normalize the
average computation time to be

1
T = Tn 2 Ck » (6.24)
cp K -

wherer,, andc, represent the average computation time and average nuribenations used
for records of some length specified by This helps to reduce anomalies from record lengths
with poor convergence rates.

We first compare the computational effort required to cormmgarch OSS and SIC. Fig-
ure 6.7 shows the average computation time for these tesbsigs a function of the record
length NV (the reciprocal of resolution). Figure 6.7 clearly showet tfhe computational effort

of search/iterative OSS grows quadratically with the nunmddesamples/V while SIC grows
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Figure 6.7: The average, normalized computa-igure 6.8: The average, normalized computa-

tion time used to compute the search OSS antlon time used to compute the search/iterative

SIC stretch factor estimates. The search OS®SS and SIC/IST stretch factor estimates.

methodology is illustrated for multiple stretch The search/iterative OSS methodology is il-

factor range$).008 > R > 0.024. Data is fit lustrated for multiple stretch factor ranges

with curves to illustrate trends. 0.008 > R > 0.024. Data is fit with curves to
illustrate trends.

linearly. At N = 10,000, SIC shows 2.3 (for R = 0.008) to 6.9 (for R = 0.024) times im-
provement in computational speed over search OSS. Not8tGa&t variations in computational

effort largely due to MATLAB's fast Fourier transform impleentation.

We now compare the computational effort required to compgetach/iterative OSS and
SIC/IST. Figure 6.8 shows the average computation timeles¢ methods as a function of
the record length. As with Figure 6.7, Figure 6.8 shows that computational effort of
search/iterative OSS increases quadratically with thebminof samplesV while SIC/IST
grows linearly. AtN = 10,000, SIC/IST shows d.5 (for R = 0.008) to 3.6 (for R = 0.024)

times improvement in computational speed over searchfierOSS.

We also investigate the effect of reducing the number of $asngsed by SIC/IST to estimate
« in the scale transform domain. We truncate the scale tramsftomain and retain a “low
pass” approximation of the domain withV In(/NV) samples. Herg represents the percentage

of samples kept by SIC/IST. In Figure 6.9, we show that we gaed up SIC/IST by up tb.3
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Figure 6.9: The average, normalized computation time ugemmpute the SIC/IST stretch
factor estimate after truncating the scale transform donaivarious lengths. The valye
represents the percentage of scale domain retained. Citevith curves to illustrate trends.

times by removing up t@5% of the scale transform domain information. Figure 6.8 shihas
the mean absolute change in the stretch factor estimatiimgsuom these truncations is small.
For p = 0.250, the error isl2 (at N = 400) to 100 (at N = 10, 000) times below the resolution
of SIC (1/N). For N > 5000, the error is comparable to or smaller than the resolutidns o
search/iterative OSS and SIC/IST, as measured from Figite 6

Figure 6.11 shows the number of iterations required for ISTC/and search/iterative OSS
to converge, roughlg5.5 iterations for search/iterative OSS andb iterations for SIC/IST. On
average, OSS requires approximatélys times more iterations to converge. For clarity, we
only show two curves as the results vary little for differealues of andp.

We note that SIC/IST also requires much less storage comhpatie OSS for large values of
N or R. Search/iterative OSS requires a totat®f N?) doubles while SIC/IST only requires
O(N In(N)) doubles.
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Figure 6.10: The average absolute change in the stretobr fastimate of SIC/IST after trun-
cating the scale transform domain to various lengths. Theevarepresents the percentage of
scale domain utilized.
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Figure 6.11: The number of iterations used when computiegtiC/IST and search/iterative
OSS methods.
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6.5 Results: Data-driven matched field integration

In this section, we combine our scale transform temperatarepensation method with
data-driven matched field processing, originally discdgseChapter 3 and implemented in
Chapter 4 and Chapter 5. We demonstrate that integratiomea$¢ale transform temperature
compensation with data-driven matched field processingobeansed to improve localization
results.

Prior work has shown how stretch-based temperature corapensnethods can improve
the performance of delay-and-sum localization methodschwivere discussed in Chapter 4.
Unlike delay-and-sum localization, data-driven matchettifprocessing utilizes all the phase
information of the signal, and therefore is affected by terapure in a different manner. This
section integrates scale transform temperature compengatincoherent data-matched field
processing and demonstrates that the scale transformgraficgintly improve our localization
performance in variable environmental conditions. In aemdnstration, we use the incoherent
processor because we assume that the frequency chatadasfssignals reflecting from our

scatterer, a large mass, are unknown.

6.5.1 Scale transform temperature compensation

As described in Chapter 3, data-driven matched field praogggenerates a data-driven
modelX(r), described in Section 3.2.3, from a collection of calilmattatay, described in
Section 3.2.1. The matched field processor then comparesdbelx(r) with a collection of
test datax, described in Section 3.2.2. For the purpose of discuskgbon(ry, t), ..., z(r;, t) be
the M time domain test measurements associated with true desanc. ., r;, between pairs

of sensors and the scatterer, such as damage in the stristtahethat
x = [Fla@i )} - Fla(ri )} (6.25)

For simplicity of discussion, we omit noise from the express in this section.
Now let y.(r5,1), . .., y.(r3, t) andy.(ri, t), ..., y.(r3,, t) represent the collection of cur-
rent measurements and a collection of baseline measurentaain from our sensor system.

These measurements include both a signal originating flerstatterer as well as the direct
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signal originating from the transmitting sensor. In traial systems, we define the test data
x(r* . t) for each measurement as the difference between our current measureme(its, )

and baseline measuremepiér’,, t) such that

x(r:nvt) = yc(r;knvt) - yb(r;kmt) . (626)

In ideal conditions, the result of the baseline subtracfietds only the scattered signal from the
damage. However, if the current measurements are takereatpetature sufficiently different
from the temperature at which the baseline data is acqustaddard baseline subtraction will
yield a different result.

We use the scale transform, specifically SIC/IST as defineSeiction 6.3.3, to estimate
the scale that best relates our current measurements tasleére signal. We then stretch the
current measurements to best resemble the baseline datasébe baseline datg(r;,,t) as

our calibration data

y = [Flyti}y - Flyia 03", (6.27)

so the stretching process will adjust the current measuremgr; , t) to have similar velocity
characteristics as the baseline daf@,,t), the test data:(r},, ¢t), and the data-driven model

x(r). The test data(r?,, t) is then defined by
x(rr t) = y(ri,at) —yp(ry, t), (6.28)

wherea is the optimal stretch factor betweey(r?,, t) andy.(r},, t). We use this adjusted test

data to localize the scatterer.

6.5.2 Experimental methodology

We consider a .22 m by 1.22 m by 0.2844 cm aluminum plate with sixteef.7 cm by
0.7 cm PZT (lead zirconate titanate) transducers randomlyilliged on its upper surface. We
use the same sensor configuration as shown in Figure 5.1. @kapter 4, we collect the cali-
bration data to compute the frequency-wavenumber reptasam of the plate by transmitting
and measuring signals between each of of the transduceissreBults in a total of20 unique

measurements. We use frequency wavenumber synthesiote@reébe frequency-wavenumber

127



representation, or dispersion curves. From the frequarasyenumber representation, we then
generate the data-driven modgr) of the medium using the sparse wavenumber synthesis, as
discussed in Chapter 2.

We use the data-driven model to then localize a metal, cyiatimass placed on the top of
the aluminum plate. The mass has a diameter of approxinfatetyand is used to act as a weak
wave scatterer as a substitute for irreversible damagetdhe relatively large size of the mass
compared to th@.75 cm diameter holes from Chapter 4, we utilize lower frequesi¢longer
wavelengths) to localize it. We implement incoherent diiteaen matched field processing,

derived in Chapter 3, witR0 frequencies uniformly spanning froonkHz to 72.5 kHz.

6.5.3 Results and discussion

Each of the plots in Figure 6.12 and Figure 6.13 illustraterébsults from applying the in-
coherent data-driven matched field processing in threera@pacenarios: (1) no temperature
change, (2) temperature change without compensation,3rtdrperature change with com-
pensation. In each plotin Figure 6.12, we illustratefam by 0.5 m region of the plate centered
around the mass location. The plots in Figure 6.13 show thgnifiad 6 cm by 6 cm region
around the mass location. The largest value in each figuieates the estimated location of
the mass. The circles in each figure indicate the known cémtation of the mass, and the
squares indicate sensor locations. Note that not all sdasations are shown since they are
outside of the).5 m by 0.5 m region. In Figure 6.13, the maximum value in each plot iskedr
by a cross.

Figure 6.12a and Figure 6.13a show the results when theppisxdmately no temperature
change. In this figure, the incoherent data-driven matcledd firocessor accurately localizes
the mass center. The maximum value is locaied cm away from the known mass center
location, a value significantly smaller than them diameter of the mass.

Figure 6.12b and Figure 6.13b show the results when theempdrature change (a mean
scale factorw = 1.0018 across all sensors), but scale transform temperature catien is
not applied. In these figures, there are more artifacts tiirout the image and there is no clear
maximum value near the mass’s center. The largest valuesiretfion0.5 m by 0.5 m region

is located14.93 cm away from the known mass center location, a value appiteiy three
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Figure 6.12: The incoherent data-driven ambiguity fundiof a0.5 m by 0.5 m region to
localize a5 cm cylindrical mass on an aluminum plate for three tempeeagaenarios: (a) no
temperature change, (b) temperature change without caapen, and (c) temperature change
with compensation. The squares and circles denote thadosatf the sensors (only 2 out of
16 sensors fall in the region shown) and the mass, resphctive

times larger than thé cm mass diameter and falls outside the region shown in Figur&b.

Therefore, when there is only a small temperature changeaw@o longer localize the mass.
The signals used in Figure 6.12c and Figure 6.13c incorptinetsame temperature change

(a mean scale facter = 1.0018 across all sensors) as in Figure 6.12b and Figure 6.13b. How-

ever, we now use scale transform temperature compensati@tter match the current measure-

ments with the baseline measurements. In Figure 6.12c anad=6.13, the maximum value

is located0.30 cm away from the mass center location, a value significamigller than the

5 cm diameter of the mass. Scale transform temperature caapen successfully accounted

for variations due to temperature, resulting in improvezilzation performance.
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Figure 6.13: The incoherent data-driven ambiguity funtdiof a0.06 m by 0.06 m region to
localize a5 cm cylindrical mass on an aluminum plate for three tempeeagaenarios: (a) no
temperature change, (b) temperature change without caapen, and (c) temperature change
with compensation. The squares and circles denote thedosaif the sensors (only 2 out of 16
sensors fall in the region shown) and the mass, respectiVélky crosses denote the estimated
locations of the mass.

6.6 Conclusions

In this chapter, we discussed the scale transform and ksinotleveloping three model-
based optimal temperature compensation methods: theigsgalant correlation method, the
iterative scale transform method, and a combination ofwlte These methods were compared
with the optimal signal stretch optimization technique,ishhwe demonstrated to be limited
in computation speed due to its need to directly stretchadsggnThe scale transform based
techniques circumvent these limitations by computing @seilts in the stretch factor and scale
transform domains.

We showed that the scale transform methods have an apprayniaear computational
complexity while the optimal signal stretch methods havadyatic complexity. We also demon-
strated the scale transform methods, for signals of lesghto 10000, to be up t06.9 times
faster than other optimal methods with equal resolutiors ceasonable search spaces. Further-
more, we integrated the scale transform temperature cosafien method with the incoherent
data-driven matched field processor and demonstratedinatale transform can successfully

compensate for small variations in temperature and implemadization performance.
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CHAPTER 7

Conclusions and Future Work

In this dissertation, we presented a method for recovetiegftequency-wavenumber repre-
sentation, or dispersion curves, of a collection of guidexavstructural health monitoring
measurements through the use of compressed sensing apdrse recovery methods. We re-
fer to this process agparse wavenumber analysis. We then demonstrated, through a process
we refer to asparse wavenumber synthesis, the capability to use the frequency-wavenumber
representation to generate a data-driven model of the dwidee environment. We integrated
this data-driven model with a localization framework knaagmatched field processing, where
the data-driven model replaced computationally expensiten unreliable, numerical models
of the environment. The new data-driven matched field pingsnethodology was tested for
localizing holes and acoustic emission events in an alumiplate. The results were shown to
be more accurate and better resolved than conventionatstalihealth monitoring approaches.
We then integrated the data-driven matched field procesgbrswale transform temperature
compensation to achieve improved robustness to envirotaiemd operational effects, such as
temperature.

Through this work, we have made several novel contributiorie current literature.

e SPARSE WAVENUMBER ANALYSIS In Chapter 2, We accurately recovered dispersion

curves from guided wave data that has been corrupted bypatlitinterference. [20, 49]

e SPARSE WAVENUMBER SYNTHESIS In Chapter 2, we also synthesized and predicted

guided wave signals from sparse wavenumber analysis segiéherating a data-driven
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model of an environment. Through simulations, we predicteshsurements with accu-

racies greater than 97%. From experimental data, we denatedsimilar results.

e DATA-DRIVEN MATCHED FIELD PROCESSING In Chapter 3, we integrated data-driven
models from sparse wavenumber synthesis with matched frelckpsing, yielding data-
driven matched field processing, and analyzed the new melingygls asymptotic local-
ization performance. We found data-driven matched fielctgseing to be theoretically

accurate to within a small region for a sufficient number ofsses. [50, 85, 86]

e COHERENT DATA -DRIVEN MATCHED FIELD PROCESSING In Chapter 4, we local-
ized two holes in an aluminum plate using coherent dateedrimatched field processing.
We demonstrated a 5 times improvement in accuracy and a €8 tmprovement in resolu-

tion over conventional localization methods. [50]

e |INCOHERENT DATA -DRIVEN MATCHED FIELD PROCESSING In Chapter 5, we lo-
calized acoustic emissions on an aluminum plate using rest data-driven matched field
processing. We demonstrated a 2 times improvement in agcaral a 12.5 times improve-

ment robustness to noise.

e SCALE TRANSFORM TEMPERATURE COMPENSATION In Chapter 6, we reduced the
distorting effects of temperature on ultrasonic signathwhe computational efficient scale
transform. The scale transform was shown to be up to 6.9 tiasésr than other approaches

with near identical performance. [5,119, 120]

e SCALE TRANSFORM INTEGRATED DATA -DRIVEN MATCHED FIELD PROCESSING
In Chapter 6, we also integrated the scale transform with-daven matched field process-

ing to achieve localization that is robust to environmeugalations.

The combination of these signal processing methods presaesitong framework for struc-
tural health monitoring that can detect and locate damatgege, physical infrastructures. Yet,
there are many ways to improve these methods and expandrmn bthehe following sections,

we discuss several possible directions for the future sfwark.

132



7.1 Extension to new applications

For our future work, we plan to extend the structural healtimitoring framework and signal
processing methods developed to generate data-drivenisrtodaore complex structures and
materials that are found in modern bridges, buildings, Ipips, rail lines, airplanes, and wind
turbines. Many of these structures exhibit inhomogeneoanisotropic properties as well as
unique geometric features that further complicate anslgsd processing. Pipes, for example,
have a periodic boundary condition that creates signifioauntipath behavior. In our future
work, we plan to develop methods that will incorporate tlddidonal information to produce
accurate and reliable data-driven models for the structure

Complex guided wave propagation environments are alsadfaumany other disciplines,
including seismology [7], underwater acoustics [8], powgstems [9], medical ultrasound
[144]. Due to relatively similar geometries and wave chimastics encountered in these fields
and structural health monitoring current applications, gkisting work can be directly applied
to a variety of problems in these disciplines. For partidylaomplex environments, we can
construct data-driven models from rigorous analysis amtktstanding of the complex wave
propagation or from integrating numerical modelling taglies, such as finite element analysis.
In seismology and geotechnical engineering, these mettmdd help improve site characteri-
zation algorithms, which are used to determine the praggeaind integrity of soil prior to laying
the foundations for new construction. In power systemsiegipbns, these techniques can be
used to help locate faults in transmission lines or wiring.uhderwater acoustics, the meth-
ods can be used to better track marine vehicles and aquatiaksn In medical and biological
acoustics, data-driven models could improve our estinaftasaterial and elastic properties of
biological structures, which are common indicators forgdiasing tumors, lesions, and other

ailments.

7.2 Integration with data science
In chapter 6, we refined data-driven matched field processitigthe scale transform to
compensate for variations in environmental temperatureohtrolled, laboratory experiments

these methods have shown to be very effective with relgtiittle data. However, for uncon-
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trolled, real-world environments, more data and modelisngecessary to distinguish damage
from benign environmental and operation changes. Furtbestructural damage does not
form immediately. Instead, it evolves slowly over many \geairwear. Fortunately, large-scale
structural health monitoring systems can collect vast artsoaf data for processing and analy-
sis over these periods of time. For these practical sces)axie need to develop computational
efficient methods to model and process the large reservbifata.

We have explored some effective approaches for processigg kets of data through ma-
chine learning [145-148]. We plan to further utilize methdbm data science and machine
learning to best store, manage, process, and data-minargerdata sets. The large volumes of
data will likely be measured from large-scale sensor nétgidviany questions in implementing
these networks will need to be addressed, including poweragement, communication pro-
tocols, distributed data processing, and data storagey Mesearchers have begun to propose
solutions to these problems through the development of Betyviblogy for sensor networks,
communication systems, energy harvesting, and distabcdenputing, but there is still signif-
icant work necessary to improve and integrate these methéfsplan to further investigate

areas through collaboration with experts in each field.

7.3 Application to imaging modalities

Data-driven models are built by populating a general, thieoal framework of a physical
system with information extracted from experimental datais approach allows us to develop
a holistic understanding about a medium by utilizing gehlemawledge about an environment
with specific knowledge from experiments. We applied dateed models to problems in
acoustics and ultrasound in order to recover velocity mfation from guided waves. How-
ever, these concepts have strong applicability in othegingamodalities. In medical imaging,
for example, incomplete knowledge about material and gé&dengroperties is common and
creates significant challenges for image-generation [148]lti-modal medical imaging ap-
proaches, which utilize data from more than one modaliy,ering explored to address these
challenges by using a variety of information obtained froiffecent modalities. Yet in these

approaches, it is still necessary to fuse this informatigh some underlying knowledge about
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the physical system.

In these scenarios, data-driven models may help to reducertamties in each imaging
modality and help fuse data between multiple modalitiesindénd to further investigate these
potential applications for data-driven models for medin#ging, including computed tomog-
raphy (CT), magnetic resonance imaging (MRI), Electropheéography (EEG), and Electro-
cardiography (ECG). Overall, there are many opportunfiiesmproving and extending the
sparsity-based, data-driven matched field processingefranrk and data-driven modelling con-

cepts from this dissertation to new domains and new appitsit
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APPENDIX / \

The restricted nullity property

Our proofs utilize two properties of random matrices: th&tneted isometry property (RIP),
defined in (3.20), and what we refer to as the restrictedtyydhoperty (RNP), which we derive
here. A matrixA is said to be “nearly unitary” if it satisfies RIP with a smadktricted isometry
constant, [62,92,93]. We use RIP to derive RNP, which considers twaiced whose columns
are “nearly uncorrelated.” In this Appendix, we prove RNPd@eneral pair of matrice& and
B. For the proofs in Appendix A and Appendix B, we use a probtgraeific form of RNP,
shown in (3.21).

We consider two arbitrary matrice’s andB that both satisfy RIP with small constarit$

anddZ. We claim the columns oA andB are “nearly uncorrelated” if
— (A +B) (A1)

also satisfies RIP with a small constaitZ.

We can show this by plugging (A.1) into the RIP inequality 3120) to get

1 1
SIAVIE + VI AFBY + JBv = (1-5248)|v]3
1 1
SIAVIZ+ VA By + SBVI3 < (1+544P)|v]3 .

(A.2)
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Subtracting each term in the inequality bfj| Av||3 + | Bv/||3) provides

1
(1= D)vIE = S (IAV]E + [1BvI3)
vIATBY < (1+60F)|vI3 — S(IAVIE + |Bv]3) .

vl AR By

Y

1
2
(A.3)

Applying the RIP inequality in (3.20) thAv||2 and|Bv||3 in (A.3) changes the bounds to

viA"Bv > (1 — ot — % (146 + (1 + 55)]) IvI3
vIATBy < (1 + 04+B % [(1—ohH+(01- 55)]) [v]|2 .
(A.4)
Finally, simplifying the expression in (A.4) provides thesult
—20,|v[l3 < v ATBv < 25||v][3 , (A.5)

where2s, = 64+8 4+ §4/2 + 68 /2. This expression tells us that the columnstoindB are
“nearly uncorrelated” o A¥ Bv ~ 0 whend, is small, and- contains onlys non-zero values.
Said in another way, all vectosswith sparsitys are nearly in the null space &“B whenA

and B satisfy this property with smali,. We refer to this as the restricted nullity property

(RNP) for a pair a matrices.

138



APPENDIX B

Proof of (3.23) single path scenario

(coherent processor)

We now derive the target-to-artifact ratio of the coheremiaedriven matched field processor
when there is no unmodeled multipath interference. For palyais, we assume the recovered

frequency-wavenumber representation is correct up to langdactor, and therefore satisfies

I

B.1 Ambiguity function lower bound when r=r"

The coherent data-driven matched field processor in (3.tL8)eatarget locatiomr = r*

simplifies to

’VHEH(r*)E(r)V’Q

= [[@@)v], - (B.1)

B.2 Ambiguity function upper bound when r#r’

We can derive an upper bound by assumirig be sufficiently far from the target such that

&% (r) and®(r*) satisfy RNP. Under this condition, we can apply the RNP imdiguin (A.5)
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to the numerator to derive the upper bound

VHgH(r*)g(r)v i
1@ (r)vli3

IvIz

L2 4(5))?. B.2
v (82)

b(r) =

We now utilize part of the the RIP inequality, which states

[®(x)v]3

Vi3

Z (1 - 55) ) (83)
and we apply it to the denominator of (B.2). This simplifies bound to

b(r) <

400, | 12
AL (B.4)
B.3 Target-to-artifact ratio

Taking the ratios of (B.1) to (B.4) obtains the lower boundtfee single path

o) B, (-4
by~ VIR A

s

(B.5)

By applying the RIP inequality in (B.3) once more to the nuater of this expression, the

bound becomes

= 2
o) vl -6y (-6
> e 2 , (B.6)
b(r) VI3 4(0,)? 4(0,)?
Settingd, = d, then yields the expression in (3.23),
* _ 2

>
b(r) — 402
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APPENDIX C

Proof of (3.23) single path scenario

(incoherent processor)

In this appendix, we derive the target-to-artifact ratiohe&f incoherent data-driven matched field
processor when there is no unmodeled multipath interferes for the coherent processor,
we assume the recovered frequency-wavenumber reprasansatorrect up to a scaling factor,

and therefore satisfias= v.

C.1 Ambiguity function lower bound when r=r"

The coherent data-driven matched field processor in (3.tL8)eatarget locatiomr = r*

simplifies to
Q H H 2
. D (r*)®(r)v,|
ble=x) = Z Ok
Q
= Z||‘I> Wally - (C.1)

C.2 Ambiguity function upper bound when r #r*

We can derive an upper bound by assumirig be sufficiently far from the target such that

&% (r) and®(r*) satisfy RNP. Under this condition, we can apply the RNP irmdiguin (A.5)
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to the numerator to derive the upper bound

[vi' " ()2 (x)v, [

Mo

R IO
< XQ:MM&’)?. (C.2)
= L,

1

q

We now apply part of the the RIP inequality, shown in (B.3)tite denominator of (C.2). This

simplifies the bound to

140502 &
) < TS c3
s g=1
C.3 Target-to-artifact ratio
Taking the ratios of (C.1) to (C.3) obtains the lower boundifi@ single path
o) T IRVl -8y BV, 06 4

b)) TS vz A0 T IVIB A

By applying the RIP inequality in (B.3) once more to the nuater of this expression, the

bound becomes

b)) BV (1-5) _ (16,
O AL AL (C:5)

Note that for simplicity of analysis of the asymptotic beloaywe assume that the RIP constant
§, for @ is equivalent to the RIP constant f@. For a more comprehensive analysis, we would

want to analyze each RIP constant as distinct values. Thdugimplify the analysis, we also

setd, = 0, and achieve the expression in (3.23),

b(r*) (1—4,)?
o) = AR (C.6)
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APPENDIX D

Proof of (3.25) multipath scenario

(coherent processor)

We derive the target-to-artifact ratio of the coherent diataen matched field processor when
there is unmodeled multipath interference that is corngpthe measured data. As with the
single path scenarios, we assuméZ v. To analyze the ambiguity function under multipath
corruption, we substitute expression for the test gtaith unmodeled multipath interference

in (3.24) into the coherent data-driven ambiguity funciim(3.15). This results in an ambiguity

function expressed by

2

v (B) + SE () By

b = — . D.1
) pIEIS ®-H

D.1 Ambiguity function lower bound when r=r"

In the numerator, we apply the RNP inequality in (A.5) to eatthe mismatched matrix
pairs, i.e.v®(r,)®(r*)v for 1 < ¢ < L. For simplicity, we assume each pair of matrices to

have the same RNP constant. Applying this inequality resaithe ambiguity function

- 7 2
1@ )vI5 — 20,07 V]3]
1@ (r*)v][3 7

b(r =r") (D.2)
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wheren is the signal-to-interference ratio as defined by

— (D.3)

T .
Zé:l Ne

We then apply a form of the triangle inequality that states émy scalar valuesandb must

satisfy|a — b|> > ||a|? — |b|?|, wherea = |[®(r*)v]||2 andb = 26,7~ ||v||3. We assumé,n ' is
sufficiently small such thdta|* — |b]?| = |a|* — |b|>. Applying the triangle inequality changes
the lower bound to

12 (r*)vil — 4(0.)*n %[ vl3

bl =r") BV
_ vi4 52
T |@|<|r*”>2v E <4(n;’ ) | (0.4)

By then applying the RIP inequality in (B.3) to the denomarathe bound changes to

br=r) > v - (%) vz (D.5)

This expression shows us that the lower bound is equal to thennum possible value from
the single path scenario, as shown in (B.1), minus a smatitigyaAs ¢, approaches zero ar

approaches infinity, the bound converges to the single pattiton.

D.2 Ambiguity function upper bound when r#r’

Whenr andr* are sufficiently different to satisfy RNP, the numerator loé ambiguity
function in (D.1) consists of only mismatched matrix paige apply the RNP inequality from
(A.5) to each term in the numerator to get

o) < el () 0.6
wheren is the signal-to-interference ratio as defined in (D.3). Bgrtapplying RIP in (B.3) to

the denominator, the bound then changes to

0 < e (s ) VB .7

This expression is equal to the single path scenario in ([Buijiplied by (1 + 7)%/n?. Asn
approaches infinity, (D.7) approaches the single pathtras(B.4).
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D.3 Target-to-artifact ratio
When we take the ratio of (D.5) to (D.7), we derive the loweunt for the peak-to-artifact

ratio

b ||$<r*>v||%( Ui )(1—58) 1 (D.8)

b(r) IvIE \1+92) \4(5,)2) 1+n?

s

If we then apply RIP in (B.3) to this expression, the boundngjes to

i > (i) () -7

B n? (1—4,)> 1
- 1+n2< TTEAE ‘?) ’ (B:9)

s

Then by setting, = J,, we derive the expression found in (3.25),

b(r*) n? (1—4,)? 1
o) - 1+n2< 12 ‘P)' (b-10)
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APPENDIX E

Proof of (3.25) multipath scenario

(incoherent processor)

In this appendix, we derive the target-to-artifact ratiotloé incoherent data-driven matched
field processor with unmodeled multipath interference irasueed data. Again, we assume
v, = v,. We substitute expression for the test dafdor unmodeled multipath interference in
(3.24) into the incoherent data-driven ambiguity funciim(3.19). This results in an incoherent

ambiguity function expressed by

Q
b(r) = . .
() = > FESSIAE ED

E.1 Ambiguity function lower bound when r=r"
In the numerator, we apply the RNP in (A.5) to the mismatchattimpairs, i.e.,vftI)(rg)@(r*)vq
for1 < ¢ < L and assume each pair of matrices to have the same RNP corstaenapplying

RNP to the incoherent ambiguity function, we get

ZQ 1@ (x*)vyll5 — 26,07 " Iv Hzf

b * > qi12 S 2112 E.2
(r ' ) ” i<r*)qu% 7 ( )
q=1

wheren is the signal-to-interference ratio as defined by (D.3).
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As in the coherent matched field processing scenario, we mpply @ form of the trian-
gle inequality such that scalar valuesand b must satisfy|a — b|*> > ||a|* — |b|?|, where
a = ||®(r*)v|j3 andb = 20,77 |v,||2. We also assumé& " is sufficiently small such that
l|a]? — |b]?| = |a]® — |b|*>. Applying this inequality changes the lower bound to

- 18 (v 1t — 405022 valls
ble=r7) 2 Z 150w, 2

_ oz IVl (4(6;>2)

By applying the RIP inequality in (B.3) to the denominatdre tambiguity function’s bound

becomes

Q 5’ 2
3 ()3 (%) vl (E4)
q=1

As with the coherent scenario, this expression shows ugshkeadbwer bound is equal to the
maximum possible value from the single path scenario, assi(C.1), minus a small quan-
tity that represents the multipath error. Asapproaches zero oy approaches infinity, the

bound converges to the single path condition.

E.2 Ambiguity function upper bound when r#r’
Whenr andr* are sufficiently different to satisfy RNP, the numerator loé ambiguity
function in (E.1) consists of only mismatched matrix paiife apply the RNP inequality from

(A.5) to each term in the numerator to get

Z 5 ||Vq||2 ( 5)2(1+77_1)2> 7 (E.5)

Vq||2

wheren is the signal-to-interference ratio as defined in (D.3). Bgrtapplying RIP in (B.3) to

the denominator, the bound then changes to

N9 Q
) < 0 (i ) S Il (E6)

This expression is equal to the single path scenario shoW@.B8) multiplied by(1 + 7)?/7?.
As 7 approaches infinity, (E.6) approaches the single pathtrigs(C.3).
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E.3 Target-to-artifact ratio
When we take the ratio of (E.4) to (E.6), we derive the lowearrmbfor the peak-to-artifact

ratio

b Eiﬂﬂm%@(nz)(kwﬁ_ 1
br) = 22 v l3 \1+n2)\48)?2) 142

n@wwm<n2><nmﬁ_ 1 €
Vi \T2) a2~ T |

If we then apply RIP in (B.3) to this expression, the boundngjes to

5 - (29)() -+

s (1-0,)% 1
- (e ) =9

As with the single path, incoherent scenario in Appendix €,agsume that the RIP constant
§, for @ is equivalent to the RIP constant f@r to simplify our asymptotic analysis. By then
settingd, = &,, we derive the expression found in (3.25),

b(r*) n? (1—6,)? 1
o - 1+n2< 12 ‘ﬁg' (E9)

149






[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

A. B. Baggeroer, “Matched field processing: Source l@zdion in correlated noise as
an optimum parameter estimation probleh,Acoust. Soc. Am., vol. 83, no. 2, p. 571,
1988.

A. Baggeroer, W. Kuperman, and P. Mikhalevsky, “An ovew of matched field meth-
ods in ocean acousticdEEE J. Ocean. Eng., vol. 18, no. 4, pp. 401-424, Oct. 1993.

R. L. Weaver and O. I. Lobkis, “Temperature dependencdiffifise field phase,Ultra-
sonics, vol. 38, no. 1-8, pp. 491-4, Mar. 2000.

H. Sohn, “Effects of environmental and operational &hrlity on structural health moni-
toring.” Phil. Trans. R. Soc. A, vol. 365, no. 1851, pp. 539-60, Feb. 2007.

J. B. Harley and J. M. F. Moura, “Scale transform signalgassing for optimal ultrasonic
temperature compensationZEE Trans. Ultrason., Ferroelectr., Freg. Control, vol. 59,
no. 10, pp. 2226 — 2236, Oct. 2012.

K. F. Graff, Wave motion in elastic solids, 1st ed. New York: Dover Publications, 1991.

J. D. AchenbachWave propogation in elastic solids. Amsterdam: Elsevier Science
Publishers B.V., 1975.

F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schm@timputational ocean
acoustics. New York, NY: Springer New York, 2011.

P. C. Magnusson, A. Weisshaar, V. K. Tripathi, and G. Gxander]Transmission Lines
and Wave Propagation, Fourth Edition. Boca Raton: CRC Press, 2000.

D. Alleyne, “A two-dimensional Fourier transform methfor the measurement of prop-
agating multimode signals,). Acoust. Soc. Am., vol. 89, no. 3, pp. 1159-1168, Sep.
1991.

J. L. RoseUltrasonic Wavesin Solid Media, 1sted. Cambridge: Cambridge University
Press, 2004.

151



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

152

W. Gao, C. Glorieux, and J. Thoen, “Laser ultrasonidgtaf Lamb waves: determina-
tion of the thickness and velocities of a thin plateyt. J. Eng. ci., vol. 41, no. 2, pp.
219-228, Jan. 2003.

W. H. Prosser, M. D. Seale, and B. T. Smith, “Time-fregcyeanalysis of the dispersion
of Lamb modes,J. Acoust. Soc. Am,, vol. 105, no. 5, pp. 2669-2676, May 1999.

M. Niethammer, L. Jacobs, J. Qu, and J. Jarzynski, “Firequency representation of
Lamb waves using the reassigned spectrogrdnitoust. Soc. Am,, vol. 107, no. 5 Pt 1,
pp. L19-24, May 2000.

F. Li, G. Meng, L. Ye, Y. Lu, and K. Kageyama, “Dispersianalysis of Lamb waves and
damage detection for aluminum structures using ridge irtithe-scale domain,Meas.
ci. Technal., vol. 20, no. 9, p. 095704, Sep. 2009.

A. Raghavan and C. E. S. Cesnik, “Guided-wave signatgseing using chirplet match-
ing pursuits and mode correlation for structural health nooimg,” Smart Mater. Sruct.,
vol. 16, no. 2, pp. 355-366, Apr. 2007.

W. Yuemin, “Guided waves modes identification in pipesettion by application of the
matching pursuit method,” ilEEE Inter national Conference on Electronic Measurement
& Instruments, vol. 4, Chengdu, Aug. 2011, pp. 50-53.

J. S. Hall and J. E. Michaels, “A model-based approacHdispersion and parameter
estimation for ultrasonic guided waves,” Acoust. Soc. Am., vol. 127, no. 2, pp. 920—
930, Feb. 2010.

——, “Model-based parameter estimation for charazteg wave propagation in a ho-
mogeneous mediumihverse Probl., vol. 27, no. 3, p. 035002, Mar. 2011.

J. B. Harley, A. C. Schmidt, and J. M. F. Moura, “Accurafgarse recovery of guided
wave characteristics for structural health monitoring Proc. of the IEEE International
Ultrasonics Symposium. Dresden: IEEE, Oct. 2012, pp. 158-161.

D. Donoho, “Compressed sensing?EE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289—
1306, Apr. 2006.

E. J. Candés and M. B. Wakin, “An introduction to comgites sampling,1EEE Sgnal
Process. Mag., vol. 25, no. 2, pp. 21-30, 2008.

M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutykjd'Introduction to com-
pressed sensing,” ifompressed Sensing: Theory and Applications, Y. C. Eldar and
G. Kutyniok, Eds. Cambridge: Cambridge University Pre€4,2 ch. 1, pp. 1-68.

J. E. Michaels, “Detection, localization and charsizttion of damage in plates with
an in situ array of spatially distributed ultrasonic sessdgmart Mater. Sruct., vol. 17,
no. 3, p. 035035, Jun. 2008.



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

T. Clarke and P. Cawley, “Enhancing the defect locaigracapability of a guided wave
SHM system applied to a complex structurgfuct. Health Monit., vol. 10, no. 3, pp.
247-259, Jun. 2010.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. |leerand D. R. Jack-
son, “Phase conjugation in the ocean: Experimental demaiimst of an acoustic time-
reversal mirror,’J. Acoust. Soc. Am., vol. 103, no. 1, pp. 2540, Jan. 1998.

J. M. F. Moura and Y. Jin, “Time reversal imaging by adapinterference canceling,”
|EEE Trans. Sgnal Process,, vol. 56, no. 1, pp. 233-247, Jan. 2008.

F. Ciampa and M. Meo, “Impact detection in anisotropiaterials using a time reversal
approach,Sruct. Health Monit., vol. 11, no. 1, pp. 43—-49, Jan. 2011.

——, “Acoustic emission source localization and vetgaietermination of the funda-
mental mode AO using wavelet analysis and a Newton-basethiaption technique,”
Smart Mater. Sruct., vol. 19, no. 4, p. 045027, Apr. 2010.

L. De Marchi, A. Marzani, N. Speciale, and E. Viola, “Agsve monitoring technique
based on dispersion compensation to locate impacts inlatstructures, Smart Mater.
Struct., vol. 20, no. 3, p. 035021, Mar. 2011.

A. Perelli, L. De Marchi, A. Marzani, and N. Speciale, ¢dustic emission localization
in plates with dispersion and reverberations using spafdedénsors in passive mode,”
Smart Mater. Sruct., vol. 21, no. 2, p. 025010, Feb. 2012.

E. Dehghan Niri and S. Salamone, “A probabilistic framoek for acoustic emission
source localization in plate-like structuressmart Mater. Sruct., vol. 21, no. 3, p.
035009, Mar. 2012.

E. B. Flynn, M. D. Todd, P. D. Wilcox, B. W. Drinkwater, dra. J. Croxford, “Maximum-
likelihood estimation of damage location in guided-waveicural health monitoring,”
P. Roy. Soc. A, vol. 467, no. 2133, pp. 2575-2596, Apr. 2011.

P. D. Wilcox, “A rapid signal processing technique tonve the effect of dispersion
from guided wave signalsJEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50,
no. 4, pp. 419-27, Apr. 2003.

K. Xu, D. Ta, P. Moilanen, and W. Wang, “Mode separatidr_Lamb waves based on
dispersion compensation methodl,Acoust. Soc. Am., vol. 131, no. 4, pp. 2714-22, Apr.
2012.

A. Raghavan and C. E. Cesnik, “Effects of elevated tenafpee on guided-wave struc-
tural health monitoring,’J. Intel. Mat. Syst. Str., vol. 19, no. 12, pp. 1383-1398, May
2008.

A. D. Degtyar, “Wave propagation in stressed compasite Acoust. Soc. Am,, vol. 104,
no. 4, p. 2192, Oct. 1998.

153



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

154

K. Salama and C. K. Ling, “The effect of stress on the temagure dependence of ultra-
sonic velocity,”J. Appl. Phys., vol. 51, no. 3, pp. 1505-1509, Mar. 1980.

G. Konstantinidis, P. D. Wilcox, and B. W. DrinkwateAH investigation into the temper-
ature stability of a guided wave structural health monitgrsystem using permanently
attached sensord EEE Sensors J., vol. 7, no. 5, pp. 905-912, May 2007.

T. Clarke, F. Simonetti, and P. Cawley, “Guided wave Itieanonitoring of complex
structures by sparse array systems: Influence of temperetianges on performancd,”
Sound Vib., vol. 329, no. 12, pp. 2306—-2322, Jun. 2010.

Y. Lu and J. E. Michaels, “A methodology for structuradith monitoring with diffuse
ultrasonic waves in the presence of temperature varigtidHgasonics, vol. 43, no. 9,
pp. 717-31, Oct. 2005.

J. E. Michaels and T. E. Michaels, “Detection of struatldamage from the local tem-
poral coherence of diffuse ultrasonic signal&EE Trans. Ultrason., Ferroelectr., Freqg.
Control, vol. 52, no. 10, pp. 1769-1782, Oct. 2005.

A. J. Croxford, P. D. Wilcox, Y. Lu, J. Michaels, and B. \Brinkwater, “Quantification
of environmental compensation strategies for guided whavetsiral health monitoring,”
in Proc. SPIE, 2008, pp. 69 350H.1-69 350H.11.

Y. Lu and J. E. Michaels, “Feature extraction and seigsion for ultrasonic structural
health monitoring under changing environmental condgjbhrEEE Sensors J., vol. 9,
no. 11, pp. 1462-1471, Sep. 2009.

F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. ClaM,ST Handbook of Mathemat-
ical Functions. Cambridge: Cambridge University Press, 2010.

P. Cawley, “Practical long range guided wave inspectionanaging complexityReview
of Progressin Quantitative Nondestructive Evaluation, vol. 22, no. 657, pp. 22—-40, 2003.

E. J. Candeés, J. K. Romberg, and T. Tao, “Stable sigraivery from incomplete and
inaccurate measurement§€dmm. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, Aug.
2006.

E. J. Candes, “The restricted isometry property aniisdications for compressed sens-
ing,” C. R. Math, vol. 346, no. 9-10, pp. 589-592, May 2008.

J. B. Harley and J. M. F. Moura, “Sparse recovery of thdtimodal and dispersive
characteristics of Lamb wavesJ. Acoust. Soc. Am., vol. 133, no. 5, pp. 2732-2745,
May 2013.

——, “Data-driven matched field processing for Lamb wateictural health monitor-
ing.” J. Acoust. Soc. Am., vol. 135, no. 3, p. 1231, Mar. 2014.

A. Raghavan, “Guided-wave structural health monitgyi Ph.D. dissertation, The Uni-
versity of Michigan, 2007.



[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

X. P. Qing, H.-L. Chan, S. J. Beard, T. K. Ooi, and S. A. bt#a, “Effect of adhesive
on the performance of piezoelectric elements used to mositactural health,1nt. J.
Adhes. Adhes,, vol. 26, no. 8, pp. 622-628, Dec. 2006.

D. Donoho, M. Elad, and V. Temlyakov, “Stable recovefysparse overcomplete repre-
sentations in the presence of noisksEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6-18,
Jan. 2006.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic deposition by basis pursuit,”
SAM J. &i. Comput., vol. 43, no. 1, pp. 129-159, 1998.

S. Boyd and L. Vandenbergh@pnvex optimization. Cambridge: Cambridge University
Press, Jun. 2009.

D. Donoho and X. Huo, “Uncertainty principles and idatdmic decompositionJEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 2845-2862, Nov. 2001.

J. F. Claerbout, “Robust modeling with erratic datagophysics, vol. 38, no. 5, pp. 826—
844, Oct. 1973.

P. R. Gill, A. Wang, and A. Molnar, “The in-crowd algdmiin for fast basis pursuit de-
noising,”|EEE Trans. Sgnal Process,, vol. 59, no. 10, pp. 4595-4605, Oct. 2011.

D. Malioutov, M. Cetin, and A. Willsky, “Homotopy comtuation for sparse signal rep-
resentation,” inProc. of the IEEE International Conference on Acoustics, Speech and
Sgnal Processing, vol. 5, no. 1. Philadelphia, PA: IEEE, Mar. 2005, pp. 73373

E. van den Berg and M. P. Friedlander, “Probing the Rafaintier for basis pursuit
solutions,”"SAM J. ci. Comput., vol. 31, no. 2, pp. 890-912, Jan. 2009.

J. Blanchard, C. Cartis, and J. Tanner, “Decay propguf testricted isometry constants,”
IEEE Sgnal Process. Lett., vol. 16, no. 7, pp. 572-575, Jul. 2009.

S. Kunis and H. Rauhut, “Random sampling of sparse trigoetric polynomials, II.
orthogonal matching pursuit versus basis purséiind. Comput. Math., vol. 8, no. 6,
pp. 737-763, Aug. 2008.

H. Zou, “The adaptive lasso and its oracle propertidsAmer. Satist. Assoc., vol. 101,
no. 476, pp. 1418-1429, Dec. 2006.

N. Meinshausen and P. Buhimann, “High-dimensionagbgsaand variable selection with
the lasso,’Ann. Sat., vol. 34, no. 3, pp. 1436-1462, Jun. 2006.

I. Zorych and Z.-H. Michalopoulou, “Particle filterinigr dispersion curve tracking in
ocean acousticsJ. Acoust. Soc. Am., vol. 124, no. 2, pp. EL45-50, Aug. 2008.

M. Grant and S. Boyd, “Graph implementations for nonsthoconvex programs,” in
Recent Advancesin Learning and Control, ser. Lecture Notes in Control and Information
Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. Springatag Limited, 2008, pp.
95-110.

155



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

156

——, “CVX: Matlab software for disciplined convex pragnming, version 1.21,” Apr.
2011.

J. E. Michaels, S. J. Lee, J. S. Hall, and T. E. Michadl,lti-mode and multi-frequency
guided wave imaging via chirp excitations,”inoc. of SP1E Conference on Health Mon-
itoring of Sructural and Biological Systems, vol. 7984, San Diego, CA, Mar. 2011, pp.
79 8401-79 8401-11.

R. C. Gonzalez and R. E. Wood3igital Image Processing. Upper Saddle River, NJ:
Prentice Hall, 2001.

J. L. Krolik, “Matched-field minimum variance beamfoimg in a random ocean chan-
nel,” J. Acoust. Soc. Am,, vol. 92, no. 3, pp. 1408-1419, 1992.

Z.-H. Michalopoulou, “Robust multi-tonal matchedifieinversion: A coherent ap-
proach,”J. Acoust. Soc. Am., vol. 104, no. 1, pp. 163-170, Jul. 1998.

C. Debever and W. A. Kuperman, “Robust matched-fieldcpssing using a coherent
broadband white noise constraint processdrAcoust. Soc. Am,, vol. 122, no. 4, pp.
1979-1986, Oct. 2007.

W. Mantzel, J. Romberg, and K. Sabra, “Compressive hetdield processing,J.
Acoust. Soc. Am,, vol. 132, no. 1, pp. 90-102, Jul. 2012.

S. E. Dosso and M. J. Wilmut, “Maximum-likelihood andhet processors for incoherent
and coherent matched-field localizatiod,’Acoust. Soc. Am., vol. 132, no. 4, pp. 2273—
2285, Oct. 2012.

D. B. Harris and T. Kvaerna, “Superresolution with seis arrays using empirical
matched field processing3eophys. J. Int., vol. 182, no. 3, pp. 1455-1477, Sep. 2010.

M. Papazoglou and J. Krolik, “Matched-field estimatadraircraft altitude from multiple
over-the-horizon radar revisitd EEE Trans. Sgnal Process,, vol. 47, no. 4, pp. 966976,
Apr. 1999.

P. Gerstoft, D. Gingras, L. Rogers, and W. Hodgkiss titRation of radio refractivity
structure using matched-field array processihgEE Trans. Antennas Propag., vol. 48,
no. 3, pp. 345-356, Mar. 2000.

G. Turek and W. A. Kuperman, “Applications of matcheeldi processing to structural
vibration problems,J. Acoust. Soc. Am,, vol. 101, no. 3, p. 1430, Mar. 1997.

R. K. Ing and M. Fink, “Ultrasonic imaging using spatiemporal matched field (STMF)
processing—applications to liquid and solid waveguiddsEZE Trans. Ultrason., Ferro-
electr., Freg. Control, vol. 48, no. 2, pp. 374-386, Mar. 2001.

A. Tolstoy, “Applications of matched-field processitajinverse problems in underwater
acoustics,1nverse Problems, vol. 16, no. 6, pp. 1655-1666, Dec. 2000.



[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

P. Gerstoft, “Inversion of seismoacoustic data usiagegic algorithms and a posteriori
probability distributions,J. Acoust. Soc. Am,, vol. 95, no. 2, pp. 770-782, 1994.

S. E. Dosso, P. L. Nielsen, and M. J. Wilmut, “Data errovariance in matched-field
geoacoustic inversionJ. Acoust. Soc. Am., vol. 119, no. 1, p. 208, 2006.

N. M. Shapiro and M. H. Ritzwoller, “Monte-Carlo inveos for a global shear-velocity
model of the crust and upper mantl&eophys. J. Int., vol. 151, no. 1, pp. 88-105, Oct.
2002.

M. Lowe, “Matrix techniques for modeling ultrasonic wes in multilayered media,”
|[EEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, no. 4, pp. 525-542, Jul. 1995.

J. B. Harley and J. M. F. Moura, “Broadband localizatio@ dispersive medium through
sparse wavenumber analysis,”Fnoc. of the IEEE International Conference on Acous-
tics, Speech and Sgnal Processing, Vancouver, BC, May 2013, pp. 4071-4075.

J. B. Harley, C. Liu, I. J. Oppenheim, and J. M. Moura, gHiResolution Localization
with Lamb Wave Sparse Wavenumber Analysis,Pioc. of the International Workshop
on Structural Health Monitoring, F.-K. Chang, Ed., no. 732, Stanford, CA, Sep. 2013.

Z.-H. Michalopoulou and M. Porter, “Matched-field pessing for broad-band source
localization,”|EEE J. Ocean. Eng., vol. 21, no. 4, pp. 384-392, 1996.

S. Aeron, S. Bose, H.-P. Valero, and V. Saligrama, “Bitsend dispersion extraction
using simultaneous sparse penalizatid&EE Trans. Sgnal Process., vol. 59, no. 10,
pp. 4821-4837, Oct. 2011.

G. Chardon, A. Leblanc, and L. Daudet, “Plate impulsgpmnse spatial interpolation
with sub-Nyquist samplingJ. Sound Vib., vol. 330, no. 23, pp. 5678-5689, Nov. 2011.

J. Hall and J. E. Michaels, “Minimum variance ultrasoimnaging applied to an in situ
sparse guided wave arrayEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 57,
no. 10, pp. 2311-2323, Oct. 2010.

R. M. Levine and J. E. Michaels, “Model-based imagingdamage with Lamb waves
via sparse reconstruction]’ Acoust. Soc. Am., vol. 133, no. 3, pp. 1525-34, Mar. 2013.

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “Angple Proof of the Restricted
Isometry Property for Random Matrice€;onstr. Approx., vol. 28, no. 3, pp. 253-263,
Jan. 2008.

H. Rauhut, “Stability results for random sampling ofsge trigonometric polynomials,”
|EEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5661-5670, Dec. 2008.

A. M. Tillmann and M. E. Pfetsch, “The computational cplexity of the restricted isom-
etry property, the nullspace property, and related cosdeptompressed sensindEEE
Trans. Inf. Theory, pp. 1248-1259, Feb. 2013.

157



[95] J. D. Blanchard, C. Cartis, and J. Tanner, “Compresseding: How sharp is the re-
stricted isometry property?3 AM Review, vol. 53, no. 1, pp. 105-125, Jan. 2011.

[96] R. Vershynin, “Introduction to the non-asymptotic &rsés of random matrices,” i€om-
pressed Sensing, Theory and Applications, Y. Eldar and G. Kutyniok, Eds. Cambridge:
Cambridge University Press, 2012, ch. 5, pp. 210-268.

[97] D. Gabor, “Theory of communication. Part 1: The anadysi information,”Journal of
the lEE, vol. 93, no. 26, pp. 429 — 441, 1946.

[98] H. L. Van Trees,Radar-Sonar Sgnal Processing and Gaussian Signals in Noise, ser.
Detection, Estimation, and Modulation Theory. New YorkhddViley and Sons, 2001.

[99] H.C. Song, J.de Rosny, and W. a. Kuperman, “Improvenmemiatched field processing
using the CLEAN algorithm,J. Acoust. Soc. Am., vol. 113, no. 3, pp. 1379-1386, Mar.
2003.

[100] D. Eitzen and H. Wadley, “Acoustic Emission: Estabiigy the Fundamentals). Res.
Nat. Bur. Sand., vol. 89, no. 1, pp. 75-100, Jan. 1984.

[101] C. B. Scruby, “An introduction to acoustic emissiod,Phys. E, vol. 20, no. 8, pp. 946—
953, Aug. 1987.

[102] G. C. McLaskey, S. D. Glaser, and C. U. Grosse, “Beamiiog array techniques for
acoustic emission monitoring of large concrete structudeSound Vib., vol. 329, no. 12,
pp. 2384-2394, Jun. 2010.

[103] K. Holford, A. Davies, R. Pullin, and D. Carter, “Danm@agocation in Steel Bridges by
Acoustic Emission,J. Intel. Mat. Syst. Str., vol. 12, no. 8, pp. 567-576, Aug. 2001.

[104] P. Nivesrangsan, J. Steel, and R. Reuben, “Sourcédnaaf acoustic emission in diesel
engines,Mech. Syst. Sgnal. Pr., vol. 21, no. 2, pp. 1103-1114, Feb. 2007.

[105] N. Toyama, T. Okabe, and N. Takeda, “Lamb wave evatnatind localization of trans-
verse cracks in cross-ply laminated,"Mater. <ci., vol. 38, no. 8, pp. 1765-1771, Apr.
2003.

[106] T. Kundu, S. Das, and K. V. Jata, “Detection of the pahimpact on a stiffened plate
by the acoustic emission techniqu&art Mater. Struct., vol. 18, no. 3, p. 035006, Mar.
2009.

[107] S. M. Ziola, “Source Location in Thin Plates Using G3ogrrelation,” Ph.D. dissertation,
Naval Postgraduate School, 1991.

[108] J.-H. Park and Y.-H. Kim, “Impact source localization an elastic plate in a noisy
environment,Meas. Sci. Technol., vol. 17, no. 10, pp. 2757-2766, Oct. 2006.

158



[109] C. Chen and F.-G. Yuan, “Impact source identificatiorinite isotropic plates using a
time-reversal method: theoretical studgart Mater. Sruct., vol. 19, no. 10, p. 105028,
Oct. 2010.

[110] A. Tobias, “Acoustic-emission source location in tdionensions by an array of three
sensors,Non-Destructive Testing, vol. 9, no. 1, pp. 9-12, Feb. 1976.

[111] T. Kosel, I. Grabec, and F. Kosel, “Intelligent loeatiof simultaneously active acoustic
emission sources: Part Kircr. Eng. Aerosp. Tec., vol. 75, no. 1, pp. 11-17, 2003.

[112] T. Kundu, S. Das, and K. V. Jata, “Point of impact prédit in isotropic and anisotropic
plates from the acoustic emission dath.Acoust. Soc. Am,, vol. 122, no. 4, pp. 2057—66,
Oct. 2007.

[113] P. Wilcox, M. Lowe, and P. Cawley, “Mode and transdwssgection for long range Lamb
wave inspection,J. Intel. Mat. Syst. Str., vol. 12, no. 8, pp. 553-565, Aug. 2001.

[114] D. N. Alleyne and P. Cawley, “The interaction of Lambwea with defects.TEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 39, no. 3, pp. 381-97, Jan. 1992.

[115] A.J. Croxford, J. Moll, P. D. Wilcox, and J. E. Michagl&fficient temperature compen-
sation strategies for guided wave structural health manigg’ Ultrasonics, vol. 50, no.
4-5, pp. 517-528, Apr. 2010.

[116] R. L. Weaver, “On diffuse waves in solid medid,"’Acoust. Soc. Am., vol. 71, no. 6, pp.
1608-1609, 1982.

[117] R. L. Weaver and O. I. Lobkis, “Temperature dependesfceltrasonic velocity using
diffuse fields; implications for measurement of stress AiR Conference Proceedings,
vol. 557, Ames, lowa, May 2001, pp. 1480-1486.

[118] J. B. Harley and J. M. F. Moura, “Guided wave tempematompensation with the scale-
invariant correlation coefficient,” iRroc. of the IEEE International Ultrasonics Sympo-
sium, Orlando, FL, Oct. 2011, pp. 1068 — 1071.

[119] J. B. Harley, Y. Ying, J. M. Moura, I. J. Oppenheim, L.If&man, and J. H. Garrett,
“Application of Mellin transform features for robust ulg@anic guided wave structural
health monitoring,” inReview of Progress in Quantitative Nondestructive Evaluation,
vol. 31, Burlington, VT, Jul. 2011, pp. 1551-1558.

[120] J. B. Harley and J. M. F. Moura, “An efficient tempera&wompensation technique for
guided wave ultrasonic inspection,” ifroc. of the Inter national Workshop on Structural
Heatlh Monitoring, Stanford, CA, Sep. 2011.

[121] L. Cohen, “The scale representatiolEEE Trans. Sgnal Process., vol. 41, no. 12, pp.
3275-3292, Dec. 1993.

159



[122] P. E. Zwicke and I. Kiss, “A new implementation of the ltetransform and its ap-
plication to radar classification of shipdEEE Trans. Pattern Anal. Mach. Intell., vol.
PAMI-5, no. 2, pp. 191-199, Mar. 1983.

[123] T. Irino, “Segregating information about the size aidhpe of the vocal tract using a
time-domain auditory model: The stabilised wavelet-Meliansform,” Speech Com-
mun., vol. 36, no. 3-4, pp. 181-203, Mar. 2002.

[124] D. Casasent and D. Psaltis, “Scale invariant optioaietation using Mellin transforms,”
Opt. Commun., vol. 17, no. 1, pp. 59-63, Apr. 1976.

[125] R. A. Altes and L. Jolla, “The Fourier-Mellin transfarand mammalian hearing,J.
Acoust. Soc. Am,, vol. 63, no. 1, pp. 174-183, Jan. 1978.

[126] Y. Sheng and H. H. Arsenault, “Experiments on patteroognition using invariant
Fourier-Mellin descriptors,J. Opt. Soc. Am., vol. 3, no. 6, pp. 771-6, Jun. 1986.

[127] Q. Chen, M. Defrise, and F. Deconinck, “Symmetric masly matched filtering of
Fourier-Mellin transforms for image registration and rgeition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, no. 12, pp. 1156-1168, Dec. 1994.

[128] B. S. Reddy and B. N. Chatterji, “An FFT-based techeidpr translation, rotation, and
scale-invariant image registratiodlEEE Trans. Image Process., vol. 5, no. 8, pp. 1266—
71, Jan. 1996.

[129] S. Derrode and F. Ghorbel, “Robust and efficient FatiMellin transform approxima-
tions for gray-level image reconstruction and completaiiant description, Comput.
Vis. Image Und., vol. 83, no. 1, pp. 57-78, Jul. 2001.

[130] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and .YM. Lui, “Rotation, scale,
and translation resilient watermarking for image&EE Trans. Image Process., vol. 10,
no. 5, pp. 767-82, Jan. 2001.

[131] R. Cassinis, “Unsupervised matching of visual landaaor robotic homing using
Fourier-Mellin transform,Robot. Auton. Syst., vol. 40, no. 2-3, pp. 131-138, Aug. 2002.

[132] J. Zhang, Z. Ou, and H. Wei, “Fingerprint matching gsphase-only correlation and
Fourier-Mellin transforms,” irBxth International Conference on Intelligent Systems De-
sign and Applications, Jinan, Oct. 2006, pp. 379-383.

[133] J. Yang, T. Sarkar, and P. Antonik, “Applying the Faurmodified Mellin transform
(FMMT) to Doppler-distorted waveformsDigit. Sgnal Process., vol. 17, no. 6, pp.
1030-1039, Nov. 2007.

[134] A. De Sena and D. Rocchesso, “A Fast Mellin and Scalesioam,” EURASP J. Adv.
Sg. Pr., vol. 2007, no. 1, pp. 1-10, Jan. 2007.

160



[135] J. Bertrand, P. Bertrand, and J. P. Ovarlez, “The Médlliansform,” inTransforms and
Applications Handbook, 3rd ed., L. D. Poularikas, Ed. Boca Raton: CRC Press, 2010,
ch. 12, pp. 12-1 - 12-37.

[136] M. Unser, “Splines: a perfect fit for signal and imageqessing,1EEE Sgnal Process.
Mag., vol. 16, no. 6, pp. 22—38, Nov. 1999.

[137] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and BFRinnery,Numerical Recipes,
3rd ed. New York: Cambridge University Press, 2007.

[138] A.V.Oppenheim, R. W. Schafer, and J. R. Bubkscrete-time Sgnal Processing, 2nd ed.
Upper Saddle River: Prentice Hall, 1999.

[139] G. Robbins and T. Huang, “Inverse filtering for linedifsvariant imaging systems,”
Proc. |IEEE, vol. 60, no. 7, pp. 862—-872, Jul. 1972.

[140] H. Sundaram, S. Joshi, and R. Bhatt, “Scale perigdasid its sampling theorem,EEE
Trans. Sgnal Process., vol. 45, no. 7, pp. 1862-1865, Jul. 1997.

[141] A. De Sena, “A computational framework for sound asaywith the Mellin and scale
transform,” Ph.D. dissertation, Universita di Verona, 200

[142] Z. Lu, S. J. Lee, J. E. Michaels, T. E. Michaels, D. O. iitpson, and D. E. Chimenti,
“On the optimization of temperature compensation for gdiave structural health mon-
itoring,” in Review of Progress in Quantitative Nondestructive Evaluation, vol. 1211, no.
May 2012, Kingston, 2010, pp. 1860-1867.

[143] P. E. Gill, W. Murray, and M. H. Wrigh®ractical Optimization. New York: Academic
Press Inc., 1981.

[144] P. H.F. Nicholson, P. Moilanen, T. Karkkainen, J. Tmea, and S. Cheng, “Guided ultra-
sonic waves in long bones: modelling, experiment and in &glication,”Physiol ogical
Measurement, vol. 23, no. 4, pp. 755768, Nov. 2002.

[145] Y. Ying, J. H. Garrett, J. Harley, . J. Oppenheim, Ji,8imd L. Soibelman, “Damage
Detection in Pipes under Changing Environmental Conditiosing Embedded Piezo-
electric Transducers and Pattern Recognition TechnitjueBjpeline Syst. Eng. Pract.,
vol. 4, no. 1, pp. 17-23, Feb. 2013.

[146] Y. Ying, J. H. Garrett, I. J. Oppenheim, L. SoibelmanBJHarley, J. Shi, and Y. Jin,
“Toward Data-Driven Structural Health Monitoring: Appditon of Machine Learning
and Signal Processing to Damage DetectidnComput. Civil Eng., vol. 27, no. 6, pp.
667-680, Nov. 2013.

[147] C. Liu, J. B. Harley, N. O’'Donoughue, Y. Ying, M. Berged. H. Altschul, J. H. Garrett,
Jr, D. Greve, J. M. F. Moura, I. J. Oppenheim, and L. Soibelmidfirasonic scatterer
detection in a pipe under operating conditions using serguhlue decomposition,” in
Review of Progress in Quantitative Nondestructive Evaluation, vol. 1454, Denver, CO,
Jul. 2013, pp. 1454-1461.

161



[148] C. Liu, J. B. Harley, M. Bergés, D. W. Greve, W. R. Junkand I. J. Oppenheim, “A
robust baseline removal method for guided wave damagezatain,” in Proc. of SPIE
Conference on Smart Structures Technologies for Civil, Mechanical, and Aerospace Sys-
tems, J. P. Lynch, K.-W. Wang, and H. Sohn, Eds., San Diego, CA, 2pt4, p. 90611K.

[149] C. Stubbs, M. Brenner, A. Despain, R. Henderson, D.d,0N. Press, J. Tonry, and
P. Weinberger, “The Computational Challenges of Medicading,” Mitre Corp. and
McLean VA JASON Program Office, Tech. Rep., Apr. 2004.

162



	List of Figures
	List of Tables
	Introduction 
	Motivation
	Challenges
	Challenge 1: Uncertainty
	Challenge 2: Complexity 
	Challenge 3: Variability 

	Model Framework
	Lamb wave model
	Sensor model

	Dissertation Outline

	Learning Data-Driven Models: Sparse Wavenumber Processing 
	Motivation
	The frequency-wavenumber space
	Sparse Recovery by Basis Pursuit
	Sparse Wavenumber Analysis
	Sparse Wavenumber Synthesis
	Debiasing Results
	Comparison with least squares

	Simulation and experimental methodologies
	Data collection
	Simulation models

	Simulation results and discussion
	Scenario 1: Unbounded plate
	Scenario 2: Multipath
	Scenario 3: Multipath with window
	Scenario 4: Multipath and position noise with window
	Comparison with least squares

	Experimental results and discussion
	Sparse wavenumber analysis
	Sparse wavenumber denoising

	Conclusion

	Leveraging Guided Wave Complexity: Data-Driven Matched Field Processing 
	Motivation
	Data collection
	Calibration data
	Test data
	Model data

	Data-driven matched field processing
	Building the data-driven model
	Coherent data-driven matched field processor
	Incoherent data-driven matched field processing

	Asymptotic behavior 
	Single path scenario
	Multipath scenario

	Comparison with clustered sensor topologies
	Conclusions

	Coherent Data-Driven Matched Field Proc.: Acousto-Ultrasonic Localization
	Motivation
	Data-driven calibration
	Experimental methodology
	Method parameters
	Comparison with delay-and-sum

	Experimental results and discussion
	Figures of merit
	One scatterer
	Two scatterers

	Conclusions

	Incoherent Data-Driven Matched Field Proc.: Acoustic Emission Localization
	Motivation
	Data-driven calibration
	Experimental methodology
	Method parameters
	Comparison with multilateration

	Experimental results and discussion
	Multipath study
	Noise study

	Conclusions

	Refining for Environmental Variations: The Scale Transform
	Motivation
	Scale transform signal processing
	Problem Formulation
	The Scale Transform
	The Fast Mellin Transform
	Maximization of the Scale Cross-Correlation Function

	Performance of Scale Transform Methods 
	Scale-invariant correlation (SIC) method 
	Iterative scale transform (IST) method
	SIC/IST combination
	Comparison with the optimal signal stretch (OSS) method

	Results: Single sensor compensation 
	Experimental methodology
	Estimation accuracy
	Computational cost

	Results: Data-driven matched field integration
	Scale transform temperature compensation
	Experimental methodology
	Results and discussion

	Conclusions

	Conclusions and Future Work 
	Extension to new applications
	Integration with data science
	Application to imaging modalities

	The restricted nullity property 
	Proof of (3.23): single path scenario (coherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Proof of (3.23): single path scenario (incoherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Proof of (3.25): multipath scenario (coherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Proof of (3.25): multipath scenario (incoherent processor)
	Ambiguity function lower bound when r = r*
	Ambiguity function upper bound when r =r*
	Target-to-artifact ratio

	Bibliography
	ADPA395.tmp
	THESIS


