

Carnegie Mellon University
Department of Mathematical Sciences

Doctoral Dissertation

Decision Diagrams for
Combinatorial Optimization

and Satisfaction

Brian Kell

May 2015

Submitted to the Department of Mathematical Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Algorithms, Combinatorics, and Optimization

Dissertation Committee

Willem-Jan van Hoeve, chair
James Cummings

Alan Frieze
Ashish Sabharwal

Abstract

In this thesis we develop techniques for applying binary decision diagrams
(BDDs) and multivalued decision diagrams (MDDs) to combinatorial opti-
mization and satisfaction problems, in particular multidimensional bin pack-
ing problems and the Boolean satisfiability problem.

In the multidimensional bin packing problem, each bin has a multidi-
mensional capacity and each item has an associated multidimensional size.
We develop several MDD representations for this problem and explore differ-
ent MDD construction methods including a new heuristic-driven depth-first
compilation scheme. We also derive MDD restrictions and relaxations, using
a novel application of a clustering algorithm to identify approximate equiva-
lence classes among MDD nodes. Our experimental results show that these
techniques can significantly outperform solvers using current constraint pro-
gramming and mixed-integer programming methods.

The Boolean satisfiability (SAT) problem is the problem of determining
whether a given propositional formula defined on a set of Boolean variables
has a satisfying assignment, that is, an assignment of truth values to the
variables that makes the formula true. We present a generic method for
deducing valid clauses from a SAT instance using BDDs, with the aim of
finding clauses that are bottlenecks for SAT solvers using conflict-directed
clause learning. We formally characterize the strength of these generated
clauses and show that any clause learned from SAT conflict analysis can also
be generated using our method, while our method can additionally generate
stronger clauses than those that are derivable using one application of con-
flict analysis. The method remains valid for approximate BDDs, which is
important for SAT instances that are too large for an exact BDD representa-
tion. Our experimental results show that the clauses generated from BDDs
can significantly reduce the numbers of decisions and conflicts encountered
by a SAT solver.

In order to extend these clause generation techniques to larger SAT in-
stances, we propose several methods to decompose a SAT instance into

iii

iv

smaller subinstances. These methods are based on the identification of
clauses that arise from the application of the widely used Tseitin transfor-
mation, the analysis of the structure of the constraint graph corresponding
to the instance, and the modeling of the instance as a resistive electrical
network. Preliminary experiments demonstrate that these techniques are
promising areas for future research.

Contents

1 Introduction 1

1.1 Preliminaries . 2

1.2 History and previous work . 6

1.2.1 Decision diagrams . 6

1.2.2 Bin packing . 8

1.2.3 Boolean satisfiability 9

1.3 Contributions and outline . 10

2 Construction of decision diagrams 13

2.1 Exact decision diagram construction 13

2.2 Exploratory construction . 17

2.3 Approximate MDDs . 18

2.3.1 Approximation MDDs by merging 19

2.3.2 Restriction MDDs by deletion 21

2.4 Summary . 22

3 MDDs for bin packing 23

3.1 The multidimensional bin packing problem 23

3.2 Direct MDD representation 24

3.3 Ullage MDD representation 27

3.4 State function for the ullage representation 28

3.5 Experimental results . 30

3.6 Summary . 37

4 BDDs for SAT clause generation 39

4.1 BDD representation of SAT instances 41

4.2 Deducing clauses from BDDs 42

4.2.1 Projections onto single variable domains 43

4.2.2 Projections onto multiple variable domains 43

v

vi CONTENTS

4.2.3 Witness clauses from infeasible BDD nodes 45
4.3 Characterization of witness clauses 49
4.4 Implementation and experimental results 58
4.5 Summary . 63

5 Implementation considerations 67
5.1 Implementation of bin packing MDDs 67

5.1.1 Variable ordering . 67
5.1.2 Precomputation . 68

5.2 Implementation of BDDs for SAT instances 68
5.2.1 Data structures . 68
5.2.2 Variable ordering . 69
5.2.3 Preprocessing . 69
5.2.4 Merging heuristics . 70
5.2.5 Unit propagation . 70

6 SAT decomposition 73
6.1 Tseitin clauses . 73

6.1.1 The Tseitin transformation 74
6.1.2 Detecting Tseitin clauses in a CNF formula 75

6.2 Graph structure . 78
6.3 Resistive network decomposition 81
6.4 Summary . 91

7 Conclusions and outlook 93

A Experimental instances 97

Acknowledgements

I am deeply grateful to my advisor, Willem-Jan van Hoeve, for his continuous
direction, encouragement, and advice over the past several years. This thesis
could not have been completed without his guidance.

It has also been a great pleasure to work with Ashish Sabharwal of the
Allen Institute for Artificial Intelligence. His knowledge and insight have
been invaluable, and he has made many helpful suggestions for my work
and this thesis.

I also wish to thank James Cummings and Alan Frieze for their participa-
tion on my dissertation committee, for teaching reading and topics courses
in combinatorics and decision diagrams, and for maintaining a continual
interest in my research work.

Further thanks go to the wonderful staff of the Department of Mathe-
matical Sciences, Stella Andreoletti, Ferna Hartman, P. J. McCarthy, Jeff
Moreci, and Nancy Watson, for their efficient and friendly help with just
about everything. My gratitude is also due to Russell C. Walker and Debo-
rah Brandon, who have been extremely supportive in my teaching and have
provided many opportunities to me.

During my time at Carnegie Mellon, I have been fortunate to meet and
work with an excellent group of graduate students. In particular, William
Gunther, who has put up with me as an officemate since the beginning,
and Marla Slusky, my academic sister, have been great companions as we
all finished up this past year, and I wish them both the best of success as
we begin the next chapter of our lives. I also thank Deepak Bal, Patrick
Bennett, Will Boney, Jacob Davis, Lisa Espig, Jenny Iglesias, Chris Lambie-
Hanson, Misha Lavrov, Emily McGregor, Paul McKenney, Clive Newstead,
Jason Rute, Brendan Sullivan, Andy Zucker, and all of my other fellow
graduate students.

Finally, I must thank my parents, Tom and Patti Kell, for their unceasing
love and support. Mom and Dad, you have always been there for me, and I
dedicate this thesis to you.

vii

viii CONTENTS

Chapter 1

Introduction

In this thesis we investigate decision diagrams, which are compact graphical
representations of sets of assignments of values to variables. Our aim is
to develop effective techniques to apply decision diagrams to combinatorial
optimization and satisfaction problems, in particular a multidimensional bin
packing problem and the Boolean satisfiability problem.

These two problems are both well known to be NP-complete [31, 39],
and consequently it is widely believed that no polynomial-time algorithms
exist to solve them. However, instances of these problems arise in practice
[e.g., 9, 25, 41, 55, 63, 67, 68, 75, 87, 91], so there is a need to find effective
methods to solve instances of practical interest. Much existing work has
been done to apply techniques from constraint programming [82, 84, 86, 89],
linear and mixed-integer programming [6, 7, 24, 91], and clause learning via
resolution proofs [8, 71] to these problems. The algorithms and modeling
techniques that we describe in this thesis improve upon the performance of
these existing methods, as demonstrated by experiment.

We begin by describing new variants of algorithms to construct decision
diagrams that use auxiliary state information for each node in order to enable
a top-down compilation. This is not the conventional way to construct and
use decision diagrams, but the top-down construction method and the use
of state information for nodes are particularly well suited to searching for
a feasible solution to a satisfaction problem and to deriving witnesses of
infeasibility for particular nodes. The use of state information also allows
the construction of approximate decision diagrams, which is useful when an
exact decision-diagram representation would be too large.

We then specialize and expand upon these techniques in order to apply
them effectively to the multidimensional bin packing problem and the Bool-

1

2 CHAPTER 1. INTRODUCTION

ean satisfiability problem. In particular, we show that a technique based on
decision diagrams can significantly outperform current constraint program-
ming and mixed-integer programming methods on the multidimensional bin
packing problem, and that decision diagrams can be used to deduce valid
clauses from instances of the Boolean satisfiability problem that are stronger
than the clauses derivable with one application of the clause learning tech-
niques most commonly used by modern solvers.

Finally, we explore the problem of decomposing a Boolean satisfiability
instance into smaller subinstances. This is an important problem because
many such instances are too large to work with effectively as a whole, even
with approximate decision diagrams. We describe an algorithm to detect
subinstances that correspond to propositional formulas converted to con-
junctive normal form by the widely used Tseitin transformation. We also
describe decomposition methods based on the graph structure of an instance,
in particular a novel technique that models a Boolean satisfiability instance
as a resistive electrical network.

1.1 Preliminaries

A constraint satisfaction problem (CSP) is specified by a set of constraints
{C1, . . . , Cp} on a set of variables {x1, . . . , xn} having domains D1, . . . , Dn,
respectively. A solution to a CSP is an n-tuple (y1, . . . , yn) ∈ D1×· · ·×Dn.
A solution is feasible if the set of assignments x1 = y1, . . . , xn = yn satisfies
every constraint Cj . Note that, by this usage, a “solution” is not necessarily
feasible; a solution is merely a full assignment of values to variables.

A decision diagram is an edge-labeled acyclic directed multigraph whose
nodes are arranged in n+ 1 layers L1, . . . , Ln+1. The layer L1 consists of a
single node, called the root. Every edge in the decision diagram is directed
from a node in Li to a node in Li+1. All of the edges directed out of a node
have distinct labels. The nodes in layer Ln+1 are called sinks or terminals.
Some of the decision diagrams we discuss in this thesis (in particular, those
in Chapter 4) may also have sinks in higher layers. A node that is not a
sink is called a branch node.

A binary decision diagram (BDD) is a decision diagram whose edge labels
are Boolean values (0 and 1, representing false and true, respectively). A
multivalued decision diagram (MDD) is a decision diagram whose edge labels
are taken from an arbitrary (finite) set.

Commonly BDDs have two sinks: one of them, labeled >, is called the
true sink and represents satisfaction, while the other, labeled ⊥, is called

1.1. PRELIMINARIES 3

the false sink and represents falsification. On the other hand, the MDDs we
discuss will have a single sink (representing satisfaction), but the ideas can
easily be generalized to MDDs with multiple sinks [98].

A BDD represents a Boolean function, that is, a Boolean-valued func-
tion f on the Boolean variables x1, . . . , xn. The layers L1, . . . , Ln correspond
respectively to the variables x1, . . . , xn; we say that a (non-sink) node in
layer Li branches on the variable xi. Note that this property implies that
the BDD is ordered, meaning that every path from the root to a sink passes
through nodes that branch on the variables x1, . . . , xn in a sequence that
respects the same linear ordering. A path from the root to a sink corre-
sponds to values of these variables; a “true” edge from a node in layer Li to
a node in layer Li+1 corresponds to xi = 1, while a “false” edge corresponds
to xi = 0. If the path corresponding to the values of x1, . . . , xn ends at the
true sink, then f(x1, . . . , xn) = 1; otherwise the path ends at the false sink,
and f(x1, . . . , xn) = 0. Naturally a BDD can also be viewed as representing
a set of assignments of values to the variables x1, . . . , xn, that is, a subset of
{0, 1}n: it represents the set of such assignments for which the correspond-
ing path from the root ends at the true sink. Therefore, in particular, a
BDD can be used to represent the set of assignments of values to variables
that make a particular propositional formula true.

For example, consider the majority function on three variables x1, x2,
and x3, defined by (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3). This formula is true if
and only if at least two of the three variables are true. A BDD representing
the set of satisfying assignments of values to these variables is shown in
Figure 1.1. All edges point downward; solid lines represent “true” edges,
and dashed lines represent “false” edges. The labels along the left side show
the variables that are being branched on in each layer. Note that every
path from the root at the top to the true sink at the bottom represents an
assignment of values to the variables that makes the majority function true.

Let I be an instance of a CSP. Similarly to the way a BDD represents
a set of assignments of values to Boolean variables, an MDD M with one
sink representing satisfaction can be used to represent a set of solutions
to I [4]. Again, the layers L1, . . . , Ln correspond respectively to the variables
x1, . . . , xn in I. An edge directed from a node in Li to a node in Li+1 and
having the label yi, where yi ∈ Di, corresponds to the assignment xi = yi.
Therefore a path from the root to the sink along edges labeled y1, . . . , yn
corresponds to the solution (y1, . . . , yn). The MDD M represents the set M
of solutions corresponding to all such paths.

In general, an MDD representing the set of feasible solutions to an in-
stance of a CSP may be of exponential size, so it is useful to be able to

4 CHAPTER 1. INTRODUCTION

⊥ >

x1

x2

x3

false

true

Figure 1.1: BDD for the majority function on three variables.

approximate the set of feasible solutions with a smaller MDD. Let F de-
note the set of feasible solutions to I. If M = F , M ⊇ F , or M ⊆ F , then
M is said to be an exact MDD, a relaxation MDD, or a restriction MDD
for I, respectively [4, 11, 14, 45]. Collectively, relaxation and restriction
MDDs are called approximate MDDs, because the sets of solutions they rep-
resent are approximations of F . Note that exact MDDs are both relaxation
MDDs and restriction MDDs.

Likewise we have relaxation BDDs and restriction BDDs. Let F be a
propositional formula on the variables x1, . . . , xn, and let F be the set of
assignments of values to these variables that satisfy F (so F ⊆ {0, 1}n). Let
B be a BDD that represents the subset B ⊆ {0, 1}n. Then B is an exact
BDD, a relaxation BDD, or a restriction BDD, accordingly, if B = F ,
B ⊇ F , or B ⊆ F .

It should be noted that the definition of decision diagrams we have given
here differs in two important ways from the conventional definition.

First, the usual definition of decision diagrams allows edges to “skip”
layers: an edge may go from a node in layer Li to a node in layer Li+k for
k ≥ 1. (These decision diagrams are normally still required to be ordered.)
An edge that skips layers can be interpreted in several ways. One common
interpretation is that the variables whose corresponding layers are skipped
may be assigned any value. Another interpretation, followed by so-called
zero-suppressed BDDs (ZDDs or ZBDDs) [60, 98], is that the variables whose

1.1. PRELIMINARIES 5

corresponding layers are skipped must be assigned the value zero. ZDDs
are useful to represent sparse Boolean functions, that is, Boolean functions
whose support (the set of assignments to the variables x1, . . . , xn that yield
the value >) consists mostly of assignments of values that are mostly zero.
Sparse Boolean functions can be viewed as representations of set families;
ZDDs were introduced by Minato [77, 78] for combinatorial applications.
The algorithms that we describe in this thesis are designed for use with
decision diagrams in which every edge is directed from a node in layer Li to
a node in layer Li+1; none of the edges in our decision diagrams will skip
layers.

Second, in the literature, decision diagrams are commonly required to
be reduced. A path in a decision diagram from the root to a node in the
layer Li represents a partial assignment y = (y1, . . . , yi−1) ∈ D1×· · ·×Di−1.
Let F (y) denote the set of feasible completions of this partial assignment,
that is,

F (y) = { z ∈ Di × · · · ×Dn : (y, z) is feasible }.

If y and y′ are partial assignments with F (y) = F (y′), then we say that
y and y′ are equivalent. An (exact) decision diagram is reduced if every two
equivalent partial assignments correspond to paths starting at the root and
ending at the same node. A reduced decision diagram is the minimal-size
representation of the corresponding set of assignments. Observe that in an
exact decision diagram all paths from the root to a fixed node v represent
equivalent partial assignments, and conversely if two partial assignments
y and y′ are equivalent then the paths in an exact decision diagram that
correspond to y and y′ can lead to the same node; if the decision diagram
is reduced, then those paths must lead to the same node. In a reduced
decision diagram, there exists no pair of nodes v and v′ in the same layer Li

with identical (partial) mappings φ, φ′ : Di → Li+1 given by the outgoing
edges, because if such a pair of nodes did exist then the nodes v and v′

could be replaced by a single node. Additionally, if edges in the decision
diagram are allowed to skip layers, then in a reduced decision diagram there
exists no node v in layer Li with an outgoing edge for every value yi ∈ Di,
all of which point to the same node w, because if such a node did exist all
incoming edges to v could simply be redirected to point to w, and the node v
could be deleted. The decision diagrams we consider in this thesis are not
necessarily reduced in this structural sense. However, they are reduced in
a weaker sense: no two nodes in the same layer have the same state (see
Section 2.1).

Furthermore, in this thesis we are neither constructing nor using deci-

6 CHAPTER 1. INTRODUCTION

sion diagrams in the conventional way. We associate semantic information
with each node, called the state of the node, and this information is used for
top-down construction, the identification of infeasible nodes, and the com-
putation of bounds and witnesses of infeasibility. The conventional method
for constructing BDDs uses a “bottom-up approach,” called synthesis [22],
based on a product operation called melding that combines BDDs for Bool-
ean functions f and g to produce a BDD for a Boolean function f �g, where
� is a Boolean operation such as ∧ or ⊕; see Knuth [60] or Wegener [98]
for details. This is not the approach we take here. Rather, we construct a
decision diagram in a single top-down pass, starting at the root and using
the state information of the nodes to determine the structure of the next
layer. Our construction algorithms are described in full in Chapter 2.

1.2 History and previous work

The work in this thesis builds upon previous work in the theory of decision
diagrams and the problems of bin packing and Boolean satisfiability. We
briefly survey this work in this section.

1.2.1 Decision diagrams

The groundbreaking paper of Shannon [88] in 1938 applied the theory of
Boolean algebra to the design and analysis of electrical switching circuits.
The expansion theorem of Boole [20] states that any function f(x1, . . . , xn)
on the Boolean variables x1, . . . , xn can be expressed as(

x1 ∧ f(0, x2, . . . , xn)
)
∨
(
x1 ∧ f(1, x2, . . . , xn)

)
.

Shannon applied this expansion (along with the other laws of Boolean al-
gebra) to develop a systematic method for the construction of switching
circuits to compute Boolean functions, and it is the foundational idea of
BDDs. Because of Shannon’s pioneering use of this theorem in electrical
engineering, it is often called Shannon expansion. Some of the specific ideas
of decision diagrams are present implicitly in Shannon’s 1938 paper; for
example, a discussion of symmetric Boolean functions and their correspond-
ing switching circuits in Section 4 can be seen as a demonstration that the
number of branch nodes in a BDD for such a function is at most

(
n+1

2

)
.

Shannon’s paper was followed by the paper of Lee [64] in 1959, which
contrasted the algebraic representation of Shannon with a new representa-
tion Lee called “binary-decision programs.” A binary-decision program is a

1.2. HISTORY AND PREVIOUS WORK 7

sequence of conditional jump instructions, each of which specifies a variable
and the addresses of two later instructions (or special addresses θ and I
representing the outputs 0 and 1, respectively). Such a program is executed
by beginning at instruction 1 and repeatedly testing the corresponding vari-
able; if the value of the variable is 0, then execution jumps to the instruction
specified by the first address, and if the value is 1 then execution jumps to
the instruction specified by the second address. This is essentially a string
representation of a (not necessarily ordered or reduced) BDD in which the
nodes are represented by these conditional jump instructions.

The name “binary decision diagram” was coined by Akers [2] in 1978.
Akers described a bottom-up construction method beginning with a truth
table for a Boolean function and a top-down method based on Shannon ex-
pansion followed by reduction. He also described an algorithm for counting
the number of paths from the root to a sink and a BDD-based technique for
generating test cases for circuit verification, and discussed the representation
and manipulation of BDDs by digital computers.

Much of the modern interest in decision diagrams was sparked by a
highly influential paper published in 1986 by Bryant [22] showing that if
the conditions of orderedness and reducedness are enforced then BDDs can
be an efficient representation of many useful Boolean functions, the BDD
representation of a given Boolean function is unique, and many operations on
such functions can be efficiently computed from their BDD representations.
The synthesis algorithm was first presented in this paper.

Since Bryant’s paper, a great variety of applications and generalizations
of decision diagrams have been proposed and used in practice; see the books
by Knuth [60], Meinel and Theobald [76], and Wegener [98] for examples
and further information.

In 2007, Behle [10] investigated threshold BDDs, which are BDDs rep-
resenting the set of 0–1 solutions x = (x1, . . . , xn) satisfying a threshold
function of the form aTx ≤ b for some weight vector a. The size of such a
BDD is bounded by a polynomial in n, provided that the weights are poly-
nomially bounded. A threshold inequality like this is very closely related
to the knapsack problem. Behle presented a top-down algorithm for con-
structing the BDD for a given threshold inequality, and introduced a parallel
AND operation for combining multiple BDDs simultaneously. If the size of
the final BDD is small, this parallel operation can avoid an explosion in the
size of the intermediate BDDs that may occur if pairwise AND operations
were performed sequentially. Behle also investigated the optimal variable
ordering problem, which asks for the ordering of the variables x1, . . . , xn
that minimizes the size of the BDD; he presented a 0–1 integer program-

8 CHAPTER 1. INTRODUCTION

ming formulation of this problem that can be used to compute the variable
ordering spectrum of a threshold function.

Multivalued decision diagrams were introduced by Srinivasan et al. [92]
in 1990 as a generalization of binary decision diagrams for direct applica-
tion to combinatorial problems. Of particular relevance to this thesis are the
recent applications of MDDs and approximate MDDs to constraint program-
ming. Approximate MDDs of limited width and corresponding propagation
algorithms were proposed by Andersen et al. [4] as a way to implement richer
constraint stores for CP solvers while meeting space restrictions. This idea
was developed further by Hadzic et al. [45], systematized by Hoda et al. [47],
and applied by Cire and van Hoeve [28] and Bergman et al. [12] for problems
involving sequencing constraints. Decision diagrams have also been used by
Bergman et al. [11, 13] to obtain bounds on objective functions for many
types of optimization problems, and the use of restriction BDDs to generate
heuristic solutions was investigated in Bergman et al. [14].

1.2.2 Bin packing

The classical one-dimensional bin packing problem consists of a list L =
(a1, . . . , an) of items, each having a size in the interval (0, 1], and the goal
is to pack them into a minimum number of bins having capacity 1. This
problem was first formalized and discussed by Eilon and Christofides [37].
Other early papers include those of Garey et al. [40], Johnson [51], and
Johnson et al. [52]. The bin packing problem is a well known NP-complete
problem; it appears in the extensive list of NP-complete problems of Garey
and Johnson [39]. For this reason, a large amount of work has been done
on approximation algorithms for the bin packing problem. The reader is
referred to Coffman et al. [30] for a recent survey and classification of this
approximation work.

A related problem is the cutting stock problem, in which a number of
items of various sizes must be cut from stock that comes in units of a fixed
size. The main difference between the one-dimensional bin packing problem
and the one-dimensional cutting stock problem is that the items in a bin
packing problem tend to have widely differing sizes, while a cutting stock
problem tends to have many items of the same size. This difference, while ap-
parently subjective, has led to different approaches for the two problems [65].
Dyckhoff [34] and Wäscher et al. [97] discuss and categorize various types
of cutting and packing problems in the literature.

In 2004, Shaw [89] presented a CP constraint for bin packing. This was
improved and extended in the doctoral thesis of Schaus [84] in 2009, and

1.2. HISTORY AND PREVIOUS WORK 9

was further refined and applied to a tank allocation problem in Schaus et al.
[86].

The specific multidimensional variant of the bin packing problem that we
consider in this thesis, which is also known as the multidimensional vector
packing problem, was introduced in Garey et al. [41] in the context of mul-
tiprocessor scheduling with resource constraints. Recent work includes that
of Spieksma [91], who presented a branch-and-bound algorithm; Caprara
and Toth [24], who investigated lower bounds and combinatorial and inte-
ger programming formulations; and Bansal et al. [6, 7], who used random-
ized rounding of the linear programming relaxation. Further applications
of the problem were investigated by Beck and Siewiorek [9], who modeled
the problem of task allocation for embedded, bus-based multicomputers and
examined heuristic solution techniques; Chang et al. [25], who modeled the
efficient packing of steel coils into containers for shipping; and Shachnai
and Tamir [87], who modeled the problem of data placement on disks in
media-on-demand systems.

1.2.3 Boolean satisfiability

The Boolean satisfiability (SAT) problem is the archetypal NP-complete
problem, as shown in the celebrated paper of Cook [31]. It is the problem
of determining whether a given propositional formula defined on a set of
Boolean variables has a satisfying assignment, that is, an assignment of
truth values to the variables that makes the formula true.

The SAT problem arises frequently in practical applications, including
hardware verification [15, 16, 75, 90, 96], software model checking and testing
[29, 50, 58], automatic test-pattern generation [61, 63, 70, 93], combinational
equivalence checking [21, 62, 69], planning in artificial intelligence [55, 83],
and scheduling [42]. Specific applications of SAT techniques have been used
for crosstalk noise prediction in integrated circuits [26], the solution of open
problems in group theory [99], termination analysis in term-rewrite systems
[38], and haplotype inference in bioinformatics [67]. For a survey and dis-
cussion of some applications of Boolean satisfiability, the reader is referred
to Marques-Silva [68].

Many advances have been made in the development of SAT solvers in
recent decades, and SAT solvers can now be used to solve large-scale instan-
ces involving millions of variables and constraints. Much of the success of
modern SAT solvers stems from their ability to quickly learn new constraints
from infeasible search states via conflict-directed clause learning (CDCL).
This technique of conflict analysis and clause learning was first proposed by

10 CHAPTER 1. INTRODUCTION

Marques-Silva and Sakallah [72, 73] in the late 1990s and implemented in
a solver called GRASP. In 2001, Moskewicz et al. [79] presented a solver
called Chaff that was able to solve many unsatisfiable instances two orders
of magnitude faster than previous solvers; it introduced several improve-
ments to the technique used by GRASP, including new heuristics, a restart
strategy, and an efficient implementation of Boolean constraint propagation
based on “watched literals.” For an overview of the application of CDCL to
SAT solving, see Marques-Silva et al. [71]. Conflict analysis has also been
applied in the context of mixed-integer programming [1, 59] and constraint
programming [32, 53, 80, 94] as “nogood” learning.

A formal characterization of the strength of clause learning techniques
was given by Beame et al. [8]. Katsirelos et al. [54] found that the solution
of SAT instances using CDCL often involves bottlenecks: there exist single
clauses that the solver must deduce in order to proceed and upon which all
future progress depends, but which themselves require significant work to
discover.

1.3 Contributions and outline

We make the following contributions in this thesis.

In Chapter 2, we describe several techniques for the construction of de-
cision diagrams. Algorithm 1, described in Section 2.1, is a new generaliza-
tion of a top-down construction algorithm first described in Bergman et al.
[11]; our algorithm allows for exploratory construction if the purpose of the
construction is to seek a feasible solution to a satisfiability problem, as de-
scribed in Section 2.2. In Section 2.3, we give a variant of another algorithm
of Bergman et al. for the construction of approximate decision diagrams,
that is, decision diagrams that represent the solution sets of relaxations or
restrictions of problem instances. Our algorithm uses a novel application of
the median cut algorithm of Heckbert [46] to determine sets of nodes to be
merged.

As a demonstration of these algorithms, we apply them to the solution of
a multidimensional bin packing problem in Chapter 3. We discuss two repre-
sentations of instances of this problem as MDDs in Sections 3.2 and 3.3; the
second representation, called the ullage MDD representation, is better able
to exploit symmetry in the problem instance. In Section 3.4, we make these
ideas practicable by describing precisely how the ullage MDD representation
fits into the model used by the construction algorithms of Chapter 2 and
examining some techniques to improve the performance of the algorithms

1.3. CONTRIBUTIONS AND OUTLINE 11

by identifying and eliminating redundant computations. Our experimental
results, reported in Section 3.5, show that our approach can provide signif-
icant performance improvements over current constraint programming and
mixed-integer programming methods.

The focus of Chapter 4 is the use of BDDs to deduce valid clauses from
instances of the Boolean satisfiability problem with the aim of improving
the performance of existing solvers. After a discussion of the BDD repre-
sentation of SAT instances in Section 4.1, we explore three new methods
for deducing clauses from BDDs in Section 4.2. The last of these methods,
which generates a witness clause for each infeasible node in the BDD as proof
of its infeasibility, is examined more thoroughly in Section 4.3. Here we for-
mally characterize the clauses deduced in this way and show that any clause
learned from SAT conflict analysis, the standard clause-deduction mecha-
nism in modern SAT solvers, can also be generated using our method, while
our method can additionally generate stronger clauses than those that can
be derived from one application of conflict analysis. This method remains
valid for approximate BDDs, so it can be applied in practice for instances
that are too large for an exact BDD representation. Chapter 4 concludes
with a discussion of experimental results, reported in Section 4.4, which
show that the clauses deduced using our method can significantly reduce
the numbers of conflicts and decisions encountered by a SAT solver.

The practical implementation of the techniques described in Chapters
3 and 4 requires certain considerations to be made, and we discuss some of
these design choices in Chapter 5.

In order to extend the applicability of our clause-generation method of
Chapter 4 to larger SAT instances, it is desirable to be able to decompose
a SAT instance into smaller subinstances and work with the subinstances
instead of the instance as a whole. This is the focus of Chapter 6. In Sec-
tion 6.1, we present a well-known method, the Tseitin transformation, to
convert an arbitrary propositional formula into conjunctive normal form,
and then describe a novel algorithm to do the reverse, i.e., to detect subsets
of clauses in a SAT instance that were generated by the Tseitin transfor-
mation. In Section 6.2, we describe ways in which a SAT instance can be
represented by a graph and thereby decomposed into subinstances. This
graph representation is used in a different way in Section 6.3, in which the
graph is interpreted as a resistive electrical network. We present a new algo-
rithm, using this electrical model, to determine “neighborhoods” of clauses
in a SAT instance and thereby decompose the instance into subsets of similar
clauses.

We conclude in Chapter 7 with a summary of the thesis and proposals

12 CHAPTER 1. INTRODUCTION

for future investigation.
Portions of the work in this thesis have been previously published as Kell

and van Hoeve [56] and Kell et al. [57].

Chapter 2

Construction of decision
diagrams

In this chapter we discuss algorithms for the construction of an MDD rep-
resenting the set of feasible solutions to a CSP. In particular, we present a
generic exploratory construction algorithm for MDDs and an application of
the median cut algorithm of Heckbert [46] in the construction of approxi-
mate MDDs. The content of this chapter is joint work with Willem-Jan van
Hoeve [56].

2.1 Exact decision diagram construction

The standard algorithm in the literature for constructing BDDs is called
synthesis [22]. At the core of this algorithm is a product operation called
melding that combines BDDs for Boolean functions f and g to produce a
BDD for a Boolean function f � g, where � is a Boolean operation such as
∧ or ⊕; see Knuth [60] or Wegener [98] for details. The synthesis algorithm
is a “bottom-up” approach to BDD construction.

We describe and use a very different approach in this thesis. The al-
gorithms that we present in this chapter provide “top-down” construction
methods for decision diagrams. A key part of our methods is the association
of auxiliary state information with each node. This state information allows
us to identify equivalent portions of the decision diagram as it is being con-
structed. In Chapter 4 we show that the state information can be useful
even after the construction process is complete.

Recall from Section 1.1 that a path in an MDD from the root to a
node in the layer Li represents a partial assignment y = (y1, . . . , yi−1) ∈

13

14 CHAPTER 2. CONSTRUCTION OF DECISION DIAGRAMS

D1 × · · · × Di−1. Let F (y) denote the set of feasible completions of this
partial assignment, that is,

F (y) = { z ∈ Di × · · · ×Dn : (y, z) is feasible }.

If y and y′ are partial assignments with F (y) = F (y′), then we say that
y and y′ are equivalent. Because equivalent partial assignments have the
same set of feasible completions, the recognition that two partial assignments
are equivalent reduces the size of the MDD, because the corresponding paths
can lead to the same node.

In general, determining whether two partial assignments are equivalent
is an NP-hard problem (because it is NP-hard even to determine whether a
partial assignment for a CSP has a feasible completion). However, we can
sometimes determine that two partial assignments are equivalent by associ-
ating partial assignments with “states.” A state function for the layer Li is a
map σi from the set Yi = D1 × · · · ×Di−1 of partial assignments at layer Li

to some set Si of states, such that σi(y) = σi(y
′) implies F (y) = F (y′).

In other words, two partial assignments that lead to the same state have
the same set of feasible completions. (A “perfect” state function would also
allow us to say that two partial assignments that lead to different states
have different sets of feasible completions, and we strive for this ideal, but
for practical reasons our state function should be easy to compute, so we
cannot require this.)

The notion of states of partial assignments has been used in previous
work. The top-down algorithm described in Akers [2] constructs a BDD for
a Boolean function by using Shannon expansions directly, recognizing equiv-
alent partial assignments by the fact that the corresponding subfunctions
are syntactically identical. Behle [10] described a top-down algorithm for the
construction of threshold BDDs, which are exact representations of solution
sets of instances of 0–1 knapsack problems; his work implicitly uses states
of partial assignments. A general algorithm for a top-down, layer-by-layer
(i.e., breadth-first) construction of an MDD is presented as Algorithm 1,
“Top-down MDD compilation,” in Bergman et al. [11]. The key to the top-
down construction of an MDD is the identification of a node equivalence test,
which determines when two nodes on the same layer (each representing one
or more partial assignments) have the same set of feasible completions; this
is exactly what a state function does.

So far we have spoken of the states of partial assignments. We shall
now extend this idea to states of nodes in an MDD. In the MDD that we
construct, partial assignments to the variables x1, . . . , xi−1 that lead to the

2.1. EXACT DECISION DIAGRAM CONSTRUCTION 15

same state will correspond to paths from the root that lead to the same
node in layer Li; we shall associate this state with this node. Now, given a
node v in layer Li in the MDD and its state, which we shall write as state(v),
and given a value yi ∈ Di, we can determine the state of a child node w
of v if the edge (v, w) has label yi. This is simply the state of the partial
assignment (y, yi), where y is any partial assignment corresponding to the
node v.

Example 2.1.1. Consider a CSP on three variables x1, x2, and x3, having
domains D1 = {0, 1, 2}, D2 = {1, 3}, and D3 = {0, 1}, respectively, with the
single constraint x1 + x2 + x3 ≥ 3.

Given a partial assignment of values to the variables, the important
information about that partial assignment is the sum of the assigned values.
From this information alone, we can determine whether or not a completion
of the partial assignment (i.e., an assignment of values to the rest of the
variables) is feasible. So a reasonable choice for the state of a partial solution
is this sum. Of course, once the sum reaches 3, we do not need to keep
track of its exact value—every completion of the partial assignment will be
feasible. Therefore, the set of states can be {0, 1, 2, ?}, where ? represents a
sum that is greater than or equal to 3.

The MDD in Figure 2.1 represents the set of feasible solutions to this
CSP. (Note that this MDD has only one sink, representing satisfaction.) Any
two partial assignments whose corresponding paths lead to the same node
in this MDD have the same state (i.e., the same sum of assigned values), so
we associate that state with the node itself. The node states are shown in
the figure as labels.

Suppose we are given the state of a node v in layer Li in this MDD and
a value yi ∈ Di. Let w be the node in layer Li+1 to which the outgoing
edge of v labeled yi points. Then we can determine state(w) as follows: if
state(v) = ? or state(v) + yi ≥ 3, then state(w) = ?; otherwise state(w) =
state(v) + yi.

To be more precise, and to make these ideas applicable to generic CSPs,
we make the following definitions. Let i ∈ {1, . . . , n+1}. Let Yi = D1×· · ·×
Di−1 denote the set of partial assignments corresponding to paths from the
root to a node in layer i; take Y1 = {∅}, a singleton set having one element
representing the empty partial assignment. Let Si be an arbitrary set whose
elements are called states and which contains a special element ⊥ indicating
infeasibility. Recall that we say that σi : Yi → Si is a state function if
σi(y) = σi(y

′) implies F (y) = F (y′); we also require that σi(y) = ⊥ implies
F (y) = ∅. We assume that we can test the feasibility of a (complete)

16 CHAPTER 2. CONSTRUCTION OF DECISION DIAGRAMS

0

0 1 2

2 ?

>

0 1 2

3 1
3 1 3

1 0 1

x1

x2

x3

Figure 2.1: MDD for the CSP x1 ∈ {0, 1, 2}, x2 ∈ {1, 3}, x3 ∈ {0, 1},
x1 + x2 + x3 ≥ 3. The node labels are states.

assignment, so for y ∈ Yn+1 we require that σn+1(y) = ⊥ if F (y) = ∅. For
i ∈ {1, . . . , n}, we say that χi : Si × Di → Si+1 is a child state function if
χi

(
σi(y), yi

)
= σi+1(y, yi) for all y ∈ Yi and all yi ∈ Di.

In order to use state information effectively in the construction of an
MDD, we must maintain, for each layer Li, a mapping from states to nodes
that have already been constructed in Li. When we seek a node in Li

having state s, we consult this mapping to see if such a node already exists.
Such a mapping can be implemented with a hash table. It is often called the
unique table because it ensures that the node representing state s in layer Li

is unique [60].

Algorithm 1 constructs an exact MDD. For each i ∈ {1, . . . , n + 1} let
σi be a state function, and for each i ∈ {1, . . . , n} let χi be a corresponding
child state function. Let r be the root node. The algorithm maintains a
collection T of nodes to be processed, i.e., nodes whose children need to be
constructed. When a node v in layer i is processed, each possible domain
value y ∈ Di is considered, and the corresponding child state s is computed.
If the child state is not obviously infeasible (i.e., if it is not ⊥), then the
unique table is consulted to see if a node w with state s already exists in
layer Li+1. If no such node already exists, a new node w is constructed in
layer Li+1 and added to T . Then the edge (v, w) is added to the MDD with

2.2. EXPLORATORY CONSTRUCTION 17

label y. On the other hand, if the child state is infeasible, an edge from v
to a false sink can be constructed if desired (this is useful for the algorithms
in Chapter 4, for example). These steps are repeated until all nodes have
been processed.

Algorithm 1 Exact MDD construction

1: L1 := {r}
2: T := {r} . nodes to be processed
3: while T is not empty do
4: select v ∈ T and remove it from T
5: i := layer(v) . i.e., v ∈ Li

6: for all y ∈ Di do
7: s := χi

(
state(v), y

)
. determine child state

8: if s 6= ⊥ then . child state is not obviously infeasible
9: w := unique-table(i+ 1, s) . does node with state s exist?

10: if w = nil then
11: w := new node with state s
12: add w to Li+1

13: add w to T
14: end if
15: add edge (v, w) with label y
16: else . child state is infeasible
17: if desired, add edge (v,⊥) with label y
18: end if
19: end for
20: end while

2.2 Exploratory construction

The main difference between Algorithm 1 and the top-down exact MDD
compilation algorithm of Bergman et al. [11] is the order in which the nodes
are processed. Instead of requiring that the nodes be processed layer by
layer, we allow the collection T to provide the nodes in any order. This
generalization permits exploratory construction of the MDD. For example,
if we are constructing the MDD in order to seek a feasible solution, we can
build it in a depth-first manner by taking T to be a stack. The layer-by-
layer behavior of the algorithm of Bergman et al. can be achieved by using
a queue for T . Note that if we do construct the MDD layer by layer, we can

18 CHAPTER 2. CONSTRUCTION OF DECISION DIAGRAMS

discard the unique table for each layer as soon as we have finished processing
the previous layer.

It is useful to have a heuristic to estimate the “promise” of a partial
assignment. For example, we may have a heuristic to estimate the likeli-
hood that a partial assignment has a feasible completion (for an instance
of a satisfiability problem) or to estimate the optimal value of a feasible
completion (for an instance of an optimization problem). Such a heuristic
can be used to guide the depth-first construction of an MDD in search of a
feasible solution or an optimal solution. With such a heuristic, we can use
a priority queue for T to select the most promising nodes to process next.
Alternatively, we can use a stack for T and modify Algorithm 1 slightly so
that when we process a node we construct all its children, evaluate their
heuristics, and then add them to T in reverse order of their promise. This
will yield a depth-first algorithm that explores the most promising child of
each node first.

This depth-first MDD construction process, especially if it is being used
simply to find a feasible solution, is very similar to a backtracking search. It
is an improvement, however, because the MDD nodes act as a memoization
technique to prevent the exploration of portions of the search tree that can
be recognized as equivalent to portions already explored.

2.3 Approximate MDDs

In general, exact MDDs can be of exponential size, so the use of Algorithm 1
may not be practical because of space limitations. In this case we may be
able to use an approximate MDD to get useful results.

Recall from Section 1.1 that an approximate MDD represents a super-
set or a subset of the set of feasible solutions to a CSP, which is to say
that an approximate MDD represents a set of solutions to a relaxation or
a restriction of the problem instance. (It is important to note that the in-
dividual solutions represented by an approximate MDD are not themselves
“approximate” solutions to the problem instance; rather, it is the set of
feasible solutions that is being approximated.) Hence, if a restriction MDD
indicates that an instance is feasible, then every solution it represents (i.e.,
every path from the root to the sink) is an exact feasible solution to the orig-
inal instance. Similarly, an indication of infeasibility from a relaxation MDD
is a proof that the original instance is infeasible. In this way, relaxation and
restriction MDDs can be used together to determine the feasibility or infea-
sibility of an instance and to get an exact feasible solution if the instance

2.3. APPROXIMATE MDDS 19

is feasible. Of course, it is possible for a relaxation MDD to indicate that
an instance is feasible while a restriction MDD indicates it is infeasible, in
which case nothing is learned. In response, one could construct MDDs rep-
resenting tighter relaxations or restrictions (probably at the cost of greater
time and space requirements) or could embed the MDDs inside a complete
search.

2.3.1 Approximation MDDs by merging

MDDs of limited width were proposed by Andersen et al. [4] to reduce space
requirements. In this approach, the MDD is constructed in a top-down,
layer-by-layer manner; whenever a layer of the MDD exceeds some preset
value W , an approximation operation is applied to reduce its size to W
before constructing the next layer. For this approximation, Bergman et al.
[11] use a relaxation operation ⊕ defined on states of nodes so that, given
nodes v and v′, the state given by state(v) ⊕ state(v′) is a “relaxation” of
both state(v) and state(v′); see also Hoda et al. [47].

We can formalize this idea as follows. Let Ci = Di×· · ·×Dn denote the
set of all possible assignments of values to the variables xi, . . . , xn (inde-
pendent of any particular partial assignment for the variables x1, . . . , xi−1).
For a partial assignment y ∈ Yi, the set of feasible completions of y is
some subset of Ci, so F (y) ∈P(Ci), where P denotes the power set. Re-
call that a state function σi : Yi → Si is such that σi(y) = σi(y

′) implies
F (y) = F (y′), and σi(y) = ⊥ implies F (y) = ∅. The existence of such
a function implies the existence of a completion function τi : Si → P(Ci)
such that τi

(
σi(y)

)
= F (y) for all y ∈ Yi. For i ∈ {1, . . . , n}, we say that a

binary operation ∨i : Si×Si → Si is a relaxation merge if for all y, y′ ∈ Yi we
have τi

(
σi(y) ∨i σi(y′)

)
⊇ F (y) ∪F (y′). In other words, the set of feasible

completions implied by the state σi(y)∨i σi(y′) contains all feasible comple-
tions implied by the state σi(y) and all feasible completions implied by the
state σi(y

′). Similarly, we call ∧i : Si × Si → Si a restriction merge if for
all y, y′ ∈ Yi we have τi

(
σi(y) ∧i σi(y′)

)
⊆ F (y) ∩F (y′). For simplicity, we

shall omit the subscript and just write ∨ or ∧. These merge operations need
not be associative or commutative. However, in a slight abuse of notation,
we shall write

∨
A to denote a combination of all elements s ∈ A ⊆ Si using

the relaxation merge operation ∨, in any order and parenthesized in any
way; likewise for

∧
A.

Bergman et al. [11] give an algorithm to construct a limited-width MDD
which iteratively merges pairs of nodes in a layer using a relaxation merge.
We propose a refinement of this technique that uses a clustering algorithm

20 CHAPTER 2. CONSTRUCTION OF DECISION DIAGRAMS

to partition the nodes in the layer into W clusters; the nodes in each cluster
are then merged into a single node.

The framework algorithm for top-down approximate MDD construction
is given in Algorithm 2. Line 20 in this algorithm calls a subroutine to
reduce the size of the layer Li+1 to W when necessary. This can be a call
to Algorithm 3, which reduces the size of a layer by merging.

Algorithm 2 Top-down approximate MDD construction

1: L1 := {r}
2: for i = 1 to n do
3: Li+1 := ∅
4: for all v ∈ Li do
5: for all y ∈ Di do
6: s := χi(state(v), y) . determine child state
7: if s 6= ⊥ then . child state is not obviously infeasible
8: w := unique-table(i+ 1, s)
9: if w = nil then

10: w := new node with state s
11: add w to Li+1

12: end if
13: add edge (v, w) with label y
14: else . child state is infeasible
15: if desired, add edge (v,⊥) with label y
16: end if
17: end for
18: end for
19: if |Li+1| > W then . layer too large
20: reduce the size of Li+1 to W
21: end if
22: end for

To perform the clustering of nodes on line 1 of Algorithm 3, we adapted
the median cut algorithm of Heckbert [46], which was originally designed for
color quantization of images. The median cut algorithm operates on a set
of points in q-dimensional Euclidean space (in the original version, q = 3,
representing the red, green, and blue components of each pixel in the image)
and partitions the points into clusters. Initially all of the points are grouped
into a single cluster, which is tightly enclosed by a q-dimensional rectangular
box. Then the following operation is repeatedly performed: the box having
the longest length (among all boxes in all q dimensions) is selected, and it is

2.3. APPROXIMATE MDDS 21

Algorithm 3 Reduction of layer Li+1 to size W by merging

1: partition Li+1 into W clusters A1, . . . , AW

2: for j = 1 to W do
3: wj := new node with state

∨
Aj (or

∧
Aj)

4: for all v ∈ Aj do
5: change every edge (u, v) to (u,wj) with the same label
6: end for
7: end for
8: Li+1 := {w1, . . . , wW }

divided into two boxes along this longest length at the median point, that is,
in such a way that each of the two smaller boxes contains approximately half
of the points in the original box; the two smaller boxes are then “shrunk”
to fit tightly around the points they contain. This process continues until
the desired number of clusters (boxes) have been generated. The median
cut algorithm can be implemented to run in O

(
K(pq+ logK)

)
time, where

K is the desired number of clusters, p is the number of points, and q is the
number of dimensions.

In order to apply the median cut algorithm to the nodes in a layer of
an MDD, we interpret the state of each node as a point in q-dimensional
Euclidean space, for some value of q. In order for the median cut algorithm
to yield a meaningful clustering of the nodes in a layer, this interpreta-
tion should be chosen so that similar states correspond to points that are
close to each other with respect to the maximum norm ‖ · ‖∞, defined by
‖(x1, . . . , xq)‖∞ = max{|x1|, . . . , |xq|}.

If a merged MDD reports that a CSP is feasible, it is desirable to extract
a (possible) feasible solution from it. One way to do this is to maintain a
representative partial assignment for each node as the MDD is constructed;
when two nodes are merged, either of the two corresponding partial assign-
ments can be selected (perhaps in accordance with a heuristic) as the repre-
sentative partial assignment for the merged node. Then the representative
(complete) assignment at the sink will be a (possibly) feasible solution for
the CSP. The representative partial assignment can be viewed as auxiliary
state information of the node.

2.3.2 Restriction MDDs by deletion

Algorithm 2 can be used with Algorithm 3 to construct a limited-width
MDD by merging nodes when the size of a layer becomes too large. If we

22 CHAPTER 2. CONSTRUCTION OF DECISION DIAGRAMS

are constructing a restriction MDD, however, then another option is simply
to delete some of the nodes in the layer [14]. The selection of nodes to keep
can be guided by a heuristic. This is described in Algorithm 4.

Algorithm 4 Reduction of layer Li+1 to size W by deletion

1: use heuristic to select most promising nodes w1, . . . , wW ∈ Li+1

2: for all w ∈ Li+1 \ {w1, . . . , wW } do
3: delete w from Li+1 and delete all edges (u,w)
4: end for

We note that this deletion algorithm does not use a partitioning algo-
rithm to cluster the nodes in each layer as the merging algorithm does;
instead it incurs the cost of computing a heuristic for each node. So the
deletion algorithm may be especially beneficial if partitioning the nodes in
a layer of the MDD is slower than computing a heuristic for a node.

2.4 Summary

In this chapter we presented algorithms for the construction of decision dia-
grams. Our algorithms are based on the association of semantic information
(states) with nodes. We described a generic top-down construction algo-
rithm for MDDs in Section 2.1, and in Section 2.2 we described how this
algorithm can be used to search for a feasible solution to a CSP by enabling
heuristic-driven exploratory construction. In Section 2.3 we gave algorithms
for the construction of approximate decision diagrams by merging or dele-
tion, including an application of a clustering algorithm to determine subsets
of nodes to be merged.

Chapter 3

MDDs for bin packing

In the previous chapter we presented generic MDD construction algorithms,
suitable for any constraint satisfaction problem. In this chapter we specialize
some of these techniques to a multidimensional bin packing problem. Our
experimental results show that such techniques can yield an improvement
on existing methods.

The content of this chapter is joint work with Willem-Jan van Hoeve [56].

3.1 The multidimensional bin packing problem

Many related problems in combinatorial optimization are collectively re-
ferred to as “bin packing problems.” In the classical bin packing problem,
the input is a list (s1, . . . , sn) of item sizes, each in the interval (0, 1], and
the objective is to pack the n items into a minimum number of bins of
capacity 1.

Here we study a multidimensional variant of the bin packing problem,
presented as a satisfaction problem. An instance of this problem consists
of a list (s1, . . . , sn) of item sizes and a list (c1, . . . , cm) of bin capacities,
Each item size and each bin capacity is a d-tuple of nonnegative integers;
for example, si = (si,1, . . . , si,d). The objective is to assign each of the
n items to one of the m bins in such a way that, for every bin and in every
dimension, the total size of the items assigned to the bin does not exceed
the bin capacity.

This can be viewed as a CSP with n variables and md constraints. Each
variable xi has domain {1, . . . ,m} and denotes the bin into which the ith
item is placed. The constraints require that

∑
i:xi=j si,k ≤ cj,k for all j ∈

{1, . . . ,m} and all k ∈ {1, . . . , d}.

23

24 CHAPTER 3. MDDS FOR BIN PACKING

Note that the “dimensions” in this problem should not be interpreted
as geometric dimensions. In this way the problem studied here differs from
the two- and three-dimensional bin packing problems studied, for example,
by Lodi et al. [66] and by Martello et al. [74], in which the items and bins
are geometric rectangles or cuboids. Rather, the dimensions in the prob-
lem studied here correspond to independent one-dimensional bin packing
constraints that must be satisfied simultaneously.

Multidimensional bin packing problems of the kind considered here (also
known as multidimensional vector packing problems) appear in practice, es-
pecially to model resource allocation problems. For example, Garey et al.
[41] introduced the problem in the context of multiprocessor scheduling with
resource constraints; Beck and Siewiorek [9] have modeled the problem of
task allocation for embedded, bus-based multicomputers; Chang et al. [25]
have modeled the efficient packing of steel coils into containers for ship-
ping; Shachnai and Tamir [87] have modeled the problem of data placement
on disks in media-on-demand systems; and the ROADEF/EURO Challenge
20121 involved a set of machines with several resources, such as RAM and
CPU, running processes which consume those resources. However, in com-
parison to other variants of bin packing, this particular multidimensional
variant has received relatively little attention in the literature. Current
CP methods are weak on problems involving simultaneous bin packing con-
straints. Current MIP methods do better but are still limited in their effec-
tiveness.

3.2 Direct MDD representation

Let I be a multidimensional bin packing instance, having n items andm bins.
A direct MDD representation of the set of feasible solutions of I has lay-
ers L1, . . . , Ln corresponding to the variables x1, . . . , xn and also the
last layer Ln+1 which contains the sink. The edge labels are elements of
{1, . . . ,m}. A path from the root to the sink along edges labeled y1, . . . , yn
represents the feasible solution (y1, . . . , yn), that is, the feasible solution in
which item i is placed into bin yi.

After items having sizes si1 , . . . , sik have been placed into a bin of

capacity cj , the remaining capacity of the bin is cj −
∑k

l=1 sil . (Recall that
the item sizes and bin capacities are d-tuples; here and elsewhere in this
chapter addition and subtraction of d-tuples is done componentwise.) We

1Société française de Recherche Opérationnelle et Aide à la Décision. ROADEF/EURO
Challenge 2012: Machine Reassignment. http://challenge.roadef.org/2012/en/.

http://challenge.roadef.org/2012/en/

3.2. DIRECT MDD REPRESENTATION 25

shall call this remaining capacity the ullage of the bin; it is a d-tuple. (The
word “ullage” means “the amount by which a container falls short of being
full.”) Of course, the ullage of each bin is nonincreasing (componentwise)
as the items are placed one by one into the bins.

A useful state function for the direct MDD representation is the map σi
from a partial solution y = (y1, . . . , yi−1) to the list (u1, . . . , um) of the
ullages uj of the m bins; in other words, for j ∈ {1, . . . ,m}, we take

uj = cj −
∑
k∈Kj

sk,

where Kj = { 1 ≤ k ≤ i− 1 : yk = j }.
As an example, Figure 3.1 shows the direct MDD representation for a

one-dimensional bin packing instance having two bins, each of capacity 7,
and four items, with sizes 5, 3, 2, and 1. There are six paths from the root
to the sink, representing the six feasible solutions; for instance, the path
following the edges labeled 2, 1, 1, 2 corresponds to the solution in which
the item of size 5 is packed in bin 2, the items of size 3 and 2 are packed
in bin 1, and the item of size 1 is packed in bin 2. The node labels are
the states. For instance, the path from the root along the edges labeled
1, 2, 2 represents a partial solution for which the ullages of the two bins are
each 2, so the state of this partial solution is (2, 2). The partial solution
corresponding to the path 2, 1, 1 has the same state. Observe that if two
partial solutions at layer i have the same lists of ullages, then they have the
same set of feasible completions, so this is indeed a state function.

If exploratory construction is desirable, as described in Section 2.2, then
it is useful to have a heuristic to estimate the “promise” of a partial solution,
that is, the likelihood that it has a feasible completion. For the multidimen-
sional bin packing problem, we propose the following heuristic. Given a
partial solution (y1, . . . , yi) describing the packing of the first i items into
bins, we perform a non-backtracking random packing of the remaining items
(i+1, . . . , n) as well as we can without violating the bin packing constraints.
In other words, we iterate through the remaining items in order, and we pack
each item into one of the bins that has sufficient ullage, chosen at random;
if no such bin exists, we put the item into a trash pile. At the end we count
the total size of the items in the trash pile, along all d dimensions, and this
number is the score of this packing. This random packing of the remain-
ing items is repeated several times, and the total score of these packings
is used as the heuristic value of the partial solution; a low score is better.
(Occasionally, while we are computing the heuristic for a partial solution

26 CHAPTER 3. MDDS FOR BIN PACKING

7,7

2,7 7,2

2,4 4,2

0,4 2,2 4,0

>

1 2

2 1

1 2 1 2

2 1 2 1

5

3

2

1

Figure 3.1: Direct MDD representation of a multidimensional bin packing
instance. The node labels are the states, and the numbers to the left of the
MDD are the sizes of the items being packed in each layer.

3.3. ULLAGE MDD REPRESENTATION 27

in this way, we may luckily find a feasible completion: the trash pile will
be empty. In this case, if we are constructing the MDD merely to seek a
feasible solution, we can immediately return the solution thus found.)

The construction of an approximate MDD by merging requires an appro-
priate merge operation, as described in Section 2.3.1. For the direct MDD
representation of a multidimensional bin packing instance, node states are
lists of ullages (u1, . . . , um), so an appropriate relaxation merge is the com-
ponentwise maximum and an appropriate restriction merge is the compo-
nentwise minimum.

Also, the use of the median cut algorithm for clustering requires the
interpretation of the state of each node as a point in q-dimensional Euclidean
space, for some value of q. For the direct MDD representation, the state of
a node is a list of d-dimensional ullages, one for each of the m bins; so we
view this state directly as an md-dimensional point.

3.3 Ullage MDD representation

Let I be a multidimensional bin packing instance, having n items andm bins.
One difficulty with the direct MDD representation of I is that it does not
take into account the possible symmetry of the bins. For example, suppose
that item 1 will fit in any of the m bins. Then the root of the direct MDD
will have m outgoing edges labeled 1 through m, indicating the possible
bins into which item 1 can be packed. However, if the bins are all identical,
these possibilities are essentially equivalent (up to a reordering of the bins).
The direct MDD representation cannot recognize this equivalence, because
the sets of feasible completions, corresponding to edge-labeled paths in the
MDD, are different. For example, in Figure 3.1, the two edges directed out
of the root node represent essentially equivalent choices.

To address the possible symmetry of the bins, we can reduce the num-
ber of distinct descriptions of feasible solutions by expressing the solutions
differently. Rather than assigning items directly to bins, we assign each
item to an ullage. For example, instead of saying that item 3 is packed into
bin 2, we say that it is packed into a bin with ullage 4. We call this the
ullage description of the solution; it consists of a list (u1, . . . , un) of d-tuples,
assigning an ullage to each item.

To specify the domains of the variables ui in the ullage description of
a solution, we define the ullage multiset function U . If C = (c1, . . . , cm) is
the list of bin capacities in I, then U

(
C, (u1, . . . , ui)

)
denotes the multiset

of ullages after the first i items have been placed into bins as described by

28 CHAPTER 3. MDDS FOR BIN PACKING

the list (u1, . . . , ui). This is the same as the multiset of ullages after the first
i− 1 items have been placed, except that an item of size si was placed into
a bin having ullage ui; so an element ui of the multiset should be removed
and replaced with an element ui− si. Formally, we can define U recursively
as follows:

• U(C, ∅) = C (viewing C as a multiset).

• For i ∈ {1, . . . , n}, if Ui−1 = U
(
C, (u1, . . . , ui−1)

)
is defined and ui ∈

Ui−1, then U
(
C, (u1, . . . , ui)

)
= (Ui−1 \ ui) ∪ {ui − si}.

With this definition of U , the domain of the variable ui in the ullage descrip-
tion of a solution is U

(
C, (u1, . . . , ui−1)

)
. Note that this domain depends on

the values that have previously been assigned to u1, . . . , ui−1.
An ullage MDD representation of the set of feasible solutions of I has

layers L1, . . . , Ln+1. The label of an edge directed out of a node in layer Li

in an ullage MDD is a d-tuple, representing the ullage of the bin into which
item i is to be placed (after items 1 through i − 1 have been placed into
bins). Therefore the edge labels u1, . . . , un along a path from the root to
the sink in an ullage MDD correspond to an ullage description (u1, . . . , un)
of a feasible solution to I.

Figure 3.2 illustrates the ullage MDD representation for the same one-
dimensional bin packing instance as earlier, having two bins of capacity 7
and items with sizes 5, 3, 2, and 1. At the root, the state is {7 × 2}, i.e.,
a multiset containing the element 7 with multiplicity 2. The first item, of
size 5, must be placed in a bin having ullage 7; this leads to the state {2, 7}.
Then the second item, of size 3, must be placed in the bin that now has
ullage 7, and so forth. Of course, a path from the root to the sink in this
ullage MDD can easily be converted into an explicit list of bin assignments
if desired.

3.4 State function for the ullage MDD represen-
tation

For the ullage MDD representation, it is useful to consider the state of a
partial assignment having ullage description (u1, . . . , ui−1) to be the multiset
of ullages of the bins, that is, U

(
C, (u1, . . . , ui−1)

)
.

This idea can be extended to handle side constraints in the CSP. For
example, the steel mill slab problem [85] is essentially a (one-dimensional)
bin packing problem with the additional constraint that each item has a

3.4. STATE FUNCTION FOR THE ULLAGE REPRESENTATION 29

7×2

2,7

2,4

0,4 2×2

>

7

7

2 4

4 2

5

3

2

1

Figure 3.2: Ullage MDD representation for a multidimensional bin packing
instance.

30 CHAPTER 3. MDDS FOR BIN PACKING

color and no bin can contain items of more than two colors. To handle a
side constraint like this, we can simply augment the state information of a
node to include the colors of items that have been packed into it so far.

A few observations can be used to identify additional equivalent partial
assignments. Let uj,k denote the ullage of bin j, in the kth dimension,
after we have placed items 1 through i into bins. Let a denote the greatest
possible sum of a subset of the sizes of items i + 1 through n, in the kth
dimension, that does not exceed uj,k. If a < uj,k, then we may consider
the ullage of bin j, in the kth dimension, to be a rather than uj,k without
changing the set of feasible completions. Using this technique of “rounding
down” the ullages across all bins in all dimensions, we can sometimes identify
additional equivalent partial assignments (their states may be the same after
they are rounded down, even if they were not the same before). Moreover,
after rounding down ullages, we may discover that the total ullage in all bins
is not enough for the remaining items; then we know that the current state
has no feasible completions.

If, after we have placed items 1 through i into bins, there is any bin that
is so small that none of the remaining items will fit, we can declare that bin
dead and remove it from further consideration. This is potentially stronger
than rounding down, because it may be that in each dimension, considered
separately, there is some remaining item that will fit into the bin; but no
remaining item is small enough in every dimension to fit into the bin.

Conversely, if after we have placed items 1 through i into bins, there is
some bin that is large enough in every dimension that all of the remaining
items will fit in it, then we know that the instance is feasible. We call such
a bin free. Once we discover a free bin, we can immediately return a feasible
solution: extend a partial assignment corresponding to the current node to
a complete assignment by packing all remaining items into the free bin.

The ideas underlying the concepts of dead and free bins are present in
Behle’s threshold BDD algorithm [10].

In Figure 3.3 we apply the rounding-down technique to the ullage MDD.
If we additionally check for dead and free bins, we will discover a free bin in
the second layer (the bin with rounded-down ullage of 6).

3.5 Experimental results

We implemented the MDD-based algorithms described above in Java, using
the exploratory construction method described in Section 2.2, the approxi-
mation methods from Section 2.3, the ullage MDD representation described

3.5. EXPERIMENTAL RESULTS 31

7×2

2,6

2,3

0,1 1×2

>

7

7

2 4

4 2

5

3

2

1

Figure 3.3: Ullage MDD representation for a multidimensional bin packing
instance, with ullages rounded down.

32 CHAPTER 3. MDDS FOR BIN PACKING

in Section 3.3, and the state function and improvements described in Sec-
tion 3.4. See Chapter 5 for additional implementation details.

Our test instances were generated as follows. Given values for the pa-
rameters d (the number of dimensions), n (the number of items), m (the
number of bins), and β (percentage bin slack), we first generate a list of
n item sizes (s1, . . . , sn), each of which is a d-tuple whose coordinates are
integers chosen uniformly and independently at random from {0, . . . , 1000}.
Then the sum t =

∑n
i=1 si is computed, and the m bin capacities are all

taken to be d(1+β/100)t/me; these computations are done componentwise.
(If β = 20, for example, then the total bin capacity, in each dimension, will
be 20% more than the total item size.) An instance is rejected and regener-
ated if it contains any single item that is too large to be placed into a bin,
as such an instance is obviously infeasible.

Our test instances have 6 dimensions, 18 items, and 6 bins; we generated
52 such instances for each integer value of β from 0 to 35. These instances
are available at http://www.math.cmu.edu/~bkell/6-18-6-instances.

txt or by request; the 52 instances with 20% bin slack are given in Ap-
pendix A.

By their construction, these instances have identical bins. The ullage
MDD representation can exploit this symmetry effectively to reduce the
number of branches in the search tree. This is especially evident in the
infeasible instances, where infeasibility must be established by some kind of
exhaustive search.

The experiments were run on an 32-bit Intel Pentium 4 CPU at 3.00 GHz
with 1 GiB of RAM using Windows 7 Professional. The maximum Java heap
size was set to 512 MiB. We used AIMMS 3.13 with CPOptimizer 12.4 as the
constraint programming (CP) solver and CPLEX 12.4 as the mixed-integer
programming (MIP) solver, with their default settings.

The CP model has n variables x1, . . . , xn, each with domain {1, . . . ,m};
the assignment xi = j indicates that item i is packed into bin j. These
variables are subject to d independent cp::BinPacking constraints [89].

The MIP model has mn binary variables xi,j , for i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}; the assignment xi,j = 1 indicates that item i is packed into
bin j. The MIP model also has a nonnegative “overflow” variable ωj for
each bin, representing the maximum amount by which the bin is overfull
in any dimension, and there is a nonnegative “total overflow” variable Ω =∑m

j=1 ωj . The MIP model is shown in Figure 3.4. It is formulated as a
minimization problem only because that is the form the solver requires; the
constraint Ω = 0 means it is really just a feasibility problem.

We compared the performance of CP and MIP to our MDD approaches:

http://www.math.cmu.edu/~bkell/6-18-6-instances.txt
http://www.math.cmu.edu/~bkell/6-18-6-instances.txt

3.5. EXPERIMENTAL RESULTS 33

min Ω

s.t.

m∑
j=1

xi,j = 1;

n∑
i=1

si,kxi,j ≤ cj,k + ωj for all k ∈ {1, . . . , d}, j ∈ {1, . . . ,m};

Ω =

m∑
j=1

ωj ;

xi,j ∈ {0, 1}, ωj ≥ 0, Ω = 0.

Figure 3.4: MIP model for multidimensional bin packing.

the exact MDD (using depth-first, heuristic-driven exploratory construc-
tion), a relaxation MDD using the relaxation merge operation, and restric-
tion MDDs using the restriction merge operation or deletion. All instances
were run to completion using each method. The maximum width for the
approximation MDDs was set to 5000 nodes. With this width, the approx-
imation MDDs returned “feasible” or “infeasible” correctly in all instances
except two: the restriction merge MDD returned “infeasible” incorrectly for
one instance with 25% bin slack and one instance with 26% bin slack. The
combination of the relaxation merge MDD and the deletion (restriction)
MDD was enough to correctly solve all 1872 instances.

Figure 3.5 displays the feasibility and hardness profiles for these instan-
ces. The horizontal axis corresponds to the bin slack of the instances. The
thick curve in the plot is the feasibility profile: it uses the left vertical axis,
and shows that the percentage of instances that are feasible is 0% when the
bin slack is low and 100% when the bin slack is high, with a dramatic phase
transition centered around approximately 20% bin slack. The other three
curves in the plot show hardness profiles for CP, MIP, and the exact MDD
method. These curves use the right vertical axis and show a prominent
hardness peak near the phase transition.

In the infeasible region, on instances having bin slack between about 2%
and 22%, the average run time of the exact MDD method is consistently less
than that of MIP and significantly less than that of CP (by over three orders
of magnitude at 20% bin slack). On the other hand, in the feasible region,
on instances having bin slack more than about 25%, CP and MIP both

34 CHAPTER 3. MDDS FOR BIN PACKING

��

����

����

����

����

����

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ���
�����

����

��

���

����

�����

������
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
��
��
��
��
�

��������������������

�����������
��

���
���������

Figure 3.5: Feasibility and hardness profiles for instances having 6 dimen-
sions, 18 items, and 6 bins.

tend to outperform the exact MDD method. A notable exception (visible
as a spike in the hardness profile) occurs at 27% bin slack, for which one of
the 52 generated instances happened to be infeasible; this single infeasible
instance greatly increased the average run time of CP and MIP without
noticeably affecting the performance of the exact MDD.

We investigated the instances at the hardness peak, i.e., those having
20% bin slack, in more detail. A performance profile for these instances
appears in Figure 3.6, including CP, MIP, the exact MDD, and the combi-
nation of the relaxation merge MDD and the deletion (restriction) MDD.
The CP solver required over 400 seconds for 35 instances (67%), taking al-
most 14,000 seconds in the extreme case. The MIP solver did much better,
solving every instance in less than 12 seconds. The exact MDD method,
which solved each instance in less than 6 seconds, was faster than MIP in
32 instances (62%), while the relaxation MDD and the deletion MDD to-
gether (sufficient in all 52 instances to establish feasibility or infeasibility)
were faster than MIP in 24 instances (46%).

When we look only at the 37 infeasible instances with 20% bin slack, as
seen in Figure 3.7, the difference between CP/MIP and the MDD approaches
becomes clearer. (Restriction MDDs do not give useful results for infeasible

3.5. EXPERIMENTAL RESULTS 35

��

����

����

����

����

����

����

����

����

����

��

���� �� ��� ���� ����� ������

�
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��������������

��
���

���������
���������������������������

Figure 3.6: Performance profile on the subset of instances having 20% bin
slack.

instances, so they are omitted from this plot merely for clarity. All of the
approximate MDD methods we implemented ran about equally fast on all
instances with 20% bin slack, so using a restriction MDD together with the
relaxation approximately doubles the run time.)

On the other hand, in the performance profile on the 15 feasible instances
with 20% bin slack, shown in Figure 3.8 (with the relaxation MDD omitted
for clarity), the various methods are not so clearly separated.

We make the following observations from these experimental results. The
advantage of the ullage MDD representation on infeasible instances comes
from its ability to exploit the symmetry among identical bins in order to
reduce the number of branches taken in an exhaustive search. The number
of branches in an exhaustive search is further reduced by the techniques
described in Section 3.4, namely, rounding down ullages and identifying
dead bins. However, on feasible instances, our Java code, which is not
particularly optimized, does not find solutions as quickly as the commercial
CP and MIP solvers do. The depth-first, heuristic-driven algorithm tends to
solve feasible instances more quickly than the layer-by-layer approximation
algorithms, but limited-width MDDs tend to be faster than exact MDDs on
infeasible instances.

36 CHAPTER 3. MDDS FOR BIN PACKING

��

����

����

����

����

����

����

����

����

����

��

���� �� ��� ���� ����� ������

�
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��������������

��
���

���������
����������������

Figure 3.7: Performance profile on the infeasible instances having 20% bin
slack.

��

����

����

����

����

����

����

����

����

����

��

����� ���� �� ���

�
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��������������

��
���

���������
�����������������

��������

Figure 3.8: Performance profile on the feasible instances having 20% bin
slack.

3.6. SUMMARY 37

3.6 Summary

In this chapter we developed techniques to apply MDDs effectively to the
multidimensional bin packing problem. We began by describing the prob-
lem in Section 3.1 and formulating it as a CSP. In Sections 3.2 and 3.3 we
described two MDD representations for instances of the problem: the di-
rect MDD representation and the ullage MDD representation. We showed
that the ullage MDD representation can take advantage of symmetry in the
instance to reduce the size of the MDD. We discussed the state function
for the ullage MDD representation in greater depth in Section 3.4, includ-
ing a rounding-down technique in order to detect equivalent states and the
identification of free and dead bins in order to detect feasibility and infea-
sibility. Our experimental results, presented in Section 3.5, demonstrated
that these techniques, when combined with the construction algorithms from
Chapter 2, can outperform current CP and MIP solvers.

38 CHAPTER 3. MDDS FOR BIN PACKING

Chapter 4

BDDs for SAT clause
generation

An instance of the Boolean satisfiability (SAT) problem is a propositional
formula on variables x1, . . . , xn, expressed in conjunctive normal form
(CNF), that is, as a conjunction of disjunctions of literals, where a literal is
a variable xi or its negation xi. Each of these disjunctions is called a clause.
Because logical conjunction and disjunction are commutative, associative,
and idempotent, we may view a SAT instance as a set of clauses, each of
which is a set of literals. The objective is to determine whether there ex-
ists an assignment of Boolean values to the variables that simultaneously
satisfies every clause.

Many advances have been made in the development of SAT solvers in
recent decades, and SAT solvers can now be used to solve large-scale instan-
ces involving millions of variables and constraints. Much of the success of
modern SAT solvers stems from their ability to quickly learn new constraints
from infeasible search states via conflict-directed clause learning (CDCL);
for an overview of the application of CDCL to SAT solving, see the sur-
vey by Marques-Silva et al. [71]. Conflict analysis has also been applied
in the context of mixed-integer programming (MIP) [1, 59] and constraint
programming (CP) [53, 80, 94] as “nogood” learning. In the context of
constraint programming, nogood learning techniques have been proposed
for specific combinatorial structures that arise from global constraints. For
example, Downing et al. [32] study nogoods for global constraints that can
be represented as a network flow. However, it remains a challenge to learn
effective nogoods for MIP and CP solvers in a more generic context.

In this chapter we introduce a generic approach for learning nogoods

39

40 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

from BDDs, both exact and approximate. We specifically focus on clause
learning in the context of SAT solving, which is perhaps the most general
form of nogood learning.

The architecture of today’s SAT solvers, combining unit propagation
with rapid restarts and CDCL, focuses on techniques with very low over-
head and maximizes the number of search nodes that can be processed per
second. While this has clearly been beneficial, the unit propagation infer-
ence performed by SAT solvers is arguably limited in strength. We therefore
investigate a way to generate clauses that are stronger than those currently
derived from unit propagation and CDCL. We show that these clauses, when
added to the original formula, can substantially reduce the search tree size.

Our approach is based on a BDD representation of SAT instances. As
in Chapter 3, we associate a state with each node of the BDD: the set of
clauses that are not yet satisfied. This allows us to apply the top-down
construction algorithms of Chapter 2, using the sets of unsatisfied clauses
to determine node equivalence.

The key observation in our work is that the BDD node states, for those
nodes that do not lead to a satisfying solution, can also be used to generate
new clauses witnessing the infeasibility of these nodes. Such clauses can be
viewed as “nogoods” that forbid the solver to visit the associated search
states. Since a node in a BDD can represent multiple partial assignments, a
single nogood generated in this way is as strong as multiple nogoods derived
from these separate partial assignments.

In Section 4.3, we formally characterize the strength of the clauses gen-
erated by our method. For example, we show that our clauses can indeed be
stronger than those generated by one invocation of traditional conflict analy-
sis. We also show the equivalence of our approach to regular and ordered
resolution, which are specific restricted forms of resolution proofs. Because
exact BDD representations of SAT instances are generally not practicable,
we demonstrate that our method still efficiently produces valid clauses from
approximate BDDs.

In Section 4.4, we report results of computational experiments performed
to evaluate the strength of our generated clauses in practice. We show that,
for certain problem classes, our clauses can considerably reduce the size of
the search tree. However, the solving time is not always reduced accordingly;
we attribute this behavior to the length and number of our generated clauses.
Nonetheless, the qualitative strength of our clauses demonstrates a great
potential for inclusion in SAT solvers.

The content of this chapter is joint work with Ashish Sabharwal and
Willem-Jan van Hoeve. Much of it appears in [57].

4.1. BDD REPRESENTATION OF SAT INSTANCES 41

4.1 BDD representation of SAT instances

In order to apply the top-down BDD construction algorithm from Chapter 2
to construct a BDD from a SAT instance, we define σi(y) for a partial
assignment y = {y1, . . . , yi−1} to be the set of clauses in the instance that
are not satisfied by the assignments x1 = y1, . . . , xi−1 = yi−1. Observe that
if two partial assignments at layer i have the same set of unsatisfied clauses,
then they have the same set of feasible completions, so this is indeed a state
function.

The state of the root node is the full set of clauses in the instance (ex-
cluding tautological clauses like x1 ∨ x1, if such clauses appear), and the
state of a child node is formed from the state of its parent by removing all
clauses that are satisfied by the variable assignment corresponding to the
edge from the parent to the child. Let vars(C) denote the set of variables
that appear in the clause C. If the state of a child node in layer Li would
contain a clause C such that vars(C) ⊆ {x1, . . . , xi−1}, then the clause C
has not yet been satisfied by assignments to the variables x1, . . . , xi−1, but
it contains no variable corresponding to a lower layer of the BDD, and so
C cannot be satisfied by future assignments to variables. Therefore, in this
case the child state function should return ⊥, and the edge from the parent
node should point directly to the false sink.

Example 4.1.1. Consider a graph coloring problem on a complete graph
with three vertices. Vertices 1 and 2 can be colored 0 or 1, while vertex 3 can
be colored 0, 1, or 2. All nodes must be colored differently. We introduce
variable x1 for vertex 1, where x1 represents color 0 and x1 represents color 1.
Likewise we introduce x2 for vertex 2. For vertex 3, we introduce three
variables x3, x4, and x5 for colors 0, 1, and 2, respectively. Here a positive
literal represents that we choose that color, while its negation represents that
we do not choose that color (e.g., x3 means that vertex 3 is not colored 0).
We can formulate this problem as the following SAT instance with 11 clauses:

(1) x3 ∨ x4 ∨ x5 (7) x1 ∨ x2

(2) x3 ∨ x4 ∨ x5 (8) x1 ∨ x4 ∨ x5

(3) x3 ∨ x4 (9) x1 ∨ x3 ∨ x5

(4) x3 ∨ x5 (10) x2 ∨ x4 ∨ x5

(5) x4 ∨ x5 (11) x2 ∨ x3 ∨ x5

(6) x1 ∨ x2

The constructed BDD, using the lexicographic variable ordering, is pre-
sented in Figure 4.1. The state of each node is the set of (indices of) clauses

42 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

1..11

1..6,8,10,11 1..5,7,9..11

⊥ 1..5,8,11 1..5,9,10 ⊥

1,5,8,11 2..5,8 1,5,9,10 2..5,10

1,8,11 5,11 4,8 ⊥ 1,9,10 5,9 4,10 ⊥

⊥ ⊥ ⊥ > ⊥ ⊥ ⊥

x1

x2

x3

x4

x5

false

true

Figure 4.1: The exact BDD for Example 4.1.1. The false sink is drawn
multiple times for clarity.

that have not been satisfied by any path from the root to that node. “True”
edges are drawn as solid lines, and “false” edges are drawn as dashed lines.

For the construction of an approximate BDD by merging, we need an
appropriate merge operation. Since the state of a node is the set of unsatis-
fied clauses, the appropriate relaxation merge is the intersection operation,
and the appropriate restriction merge is the union operation.

4.2 Deducing clauses from BDDs

Katsirelos et al. [54] found that the solution of SAT instances using conflict-
directed clause learning (CDCL) often involves bottlenecks: there exist sin-
gle clauses that the solver must deduce in order to proceed and upon which
all future progress depends, but which themselves require significant work
to discover.

We propose the use of a BDD representation of a SAT instance to gen-
erate clauses. By using a different method to deduce additional clauses and
providing them to the SAT solver along with the SAT instance, it is hoped
that some of these bottleneck clauses (or some of their prerequisite clauses)

4.2. DEDUCING CLAUSES FROM BDDS 43

may be learned earlier, thereby speeding up the search for a solution. We
show later, in Section 4.3, that BDD-generated clauses can be provably
stronger than those produced from a single application of CDCL.

4.2.1 Projections onto single variable domains

One simple way to deduce clauses from a BDD is to project the variable
assignments along the satisfying paths in a BDD and to look for variables
whose values must be fixed. For instance, in Example 4.1.1 above (see
Figure 4.1), we can infer from both feasible paths that we can fix x3, x4,
and x5. However, in practice we must use approximate BDDs, and this
approach does not produce much useful information.

4.2.2 Projections onto multiple variable domains

A second possibility is to derive formulas from projections onto multiple
variable domains. For instance, in Example 4.1.1 (Figure 4.1), the variables
x1 and x2 must take opposite values, which means that it is possible to
deduce the formula (x1 ∧ x2) ∨ (x1 ∧ x2).

Such formulas can be deduced as follows. We define the intersection of a
collection of conjunctions A1, . . . , Ak of literals to be the conjunction of all
the literals that appear in all of the conjunctions A1, . . . , Ak. For example,

(x1 ∧ x2 ∧ x3 ∧ x4) ∩ (x1 ∧ x3 ∧ x4 ∧ x5) = x1 ∧ x4.

We also define the difference of two conjunctions of literals to be the con-
junction of all literals that appear in the first but not the second. For
example,

(x1 ∧ x2 ∧ x3) \ (x2 ∧ x3 ∧ x4) = x1 ∧ x2.

The empty conjunction,
∧
∅, will be denoted >. We use the convention

that > ∧ A = A ∧ > = A and > ∨ A = A ∨ > = > for every propositional
formula A.

To determine the clauses that can be deduced by projection onto multiple
variable domain, we associate with every node n in a BDD two attributes:

• a required conjunction R(n), which is the maximal conjunction of lit-
erals that is satisfied by every partial assignment corresponding to a
path from the root to n; and

• a set O(n) of options, which is a nonempty set of conjunctions of literals
such that R(n)∩O = ∅ for all O ∈ O(n) and every partial assignment

44 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

corresponding to a path from the root to n implies R(n)∧O for some
O ∈ O(n).

Theorem 4.2.1. Let L = {n1, . . . , nk} be any set of nodes in the BDD such
that every path from the root to the true sink passes through at least one
node in L. Then we can deduce the clause

k∨
i=1

[
R(ni) ∧

∨
O(ni)

]
.

Proof. This follows from the definitions of R(n) and O(n).

Corollary 4.2.2. Let L = {n1, . . . , nk} be any set of nodes in the BDD
such that every path from the root to the true sink passes through at least
one node in L. Then we can deduce every clause of the form

k∨
i=1

Ai,

where Ai ∈
{
R(ni),

∨
O(ni)

}
for i = 1, . . . , k.

Note that, in particular, we can apply the above results when L is a
layer of the BDD. Also observe that the clauses deduced in the corollary are
disjunctions of conjunctions of literals. (The clause deduced in the theorem
has a more complicated form.)

For an edge e in the BDD pointing from node n1 to node n2, let l(e)
be the literal corresponding to the variable assignment represented by e
(i.e., the edge label of e). For example, the two edges e1 and e2 pointing
from the root of the BDD to the nodes in the second layer have l(e1) = x1

and l(e2) = x1, assuming that the BDD uses the standard (lexicographic)
variable ordering.

To compute R(n) and O(n) for the nodes in a BDD, we use the following
recursive algorithm.

• The root r has R(r) = > and O(r) = {>}.

• For an edge e pointing from node n1 to node n2, define R(e) = R(n1)∧
l(e).

• A non-root node n with incoming edges e1, . . . , ek has

R(n) =
k⋂

i=1

R(ei),

O(n) = {R(ei) \R(n) : i = 1, . . . , k }.

4.2. DEDUCING CLAUSES FROM BDDS 45

However, in practice the clauses generated in this way do not seem to be
particularly useful. The quality of these clauses depends very strongly on
the variable ordering used in the BDD, and it is not clear how to find a
variable ordering that produces good clauses.

4.2.3 Witness clauses from infeasible BDD nodes

A more fruitful approach is to identify the nodes of the BDD from which
no path leads to the true sink and, for each such node, to generate a clause
that witnesses its infeasibility. As we shall see, we can deduce these clauses
systematically from the state information for these nodes.

Definition 4.2.3. A node v in a BDD is feasible if there exists a path
from v to the true sink. If the BDD is a restricted BDD constructed with
the deletion algorithm described in Section 2.3.2, and at least one child node
of v was deleted during this algorithm, then we also say that v is feasible,
even if there exists no path from v to the true sink in the restricted BDD.
If v is not feasible, then it is infeasible. An infeasible node v is maximally
infeasible if v is the root or v has an incoming edge from a feasible node.
(Note that a maximally infeasible node may also have incoming edges from
infeasible nodes.)

For example, the BDD from Figure 4.1 is redrawn in Figure 4.2 with the
infeasible nodes shaded gray. The maximally infeasible nodes are indicated
with a double border.

The method described in this section requires a BDD that was con-
structed using a procedure having a certain property, as described in the
following definition.

Definition 4.2.4. Let B be a BDD for a SAT instance that is (a) exact,
constructed with the top-down algorithm described in Section 2.1; (b) re-
laxed, constructed with the merging algorithm described in Section 2.3.1;
or (c) restricted, constructed with the deletion algorithm described in Sec-
tion 2.3.2. Then we say that B is a shrinking-state BDD, because neither
the top-down construction nor the approximation operation can increase the
state of a node: the state of every node is a subset of the state of its parent.

Note in particular that restriction BDDs constructed with the merging
algorithm described in Section 2.3.1, using the union operation as the re-
striction operation, are not shrinking-state BDDs.

For the remainder of this section, we shall assume that we are working
with a shrinking-state BDD.

46 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

1..11

1..6,8,10,11 1..5,7,9..11

⊥ 1..5,8,11 1..5,9,10 ⊥

1,5,8,11 2..5,8 1,5,9,10 2..5,10

1,8,11 5,11 4,8 ⊥ 1,9,10 5,9 4,10 ⊥

⊥ ⊥ ⊥ > ⊥ ⊥ ⊥

x1

x2

x3

x4

x5

false

true

Figure 4.2: The exact BDD for Example 4.1.1, with the infeasible nodes
shaded gray and the maximally infeasible nodes indicated with a double
border.

4.2. DEDUCING CLAUSES FROM BDDS 47

We shall deduce clauses from the states of infeasible nodes by applying
a sequence of resolution steps. Resolution is a commonly used inference
rule applied to propositional formulas in conjunctive normal form. The
resolution rule, applied to two clauses xi ∨ P and xi ∨ Q, where P and Q
denote disjunctions of literals, is

xi ∨ P xi ∨Q
P ∨Q

.

Application of this rule is called resolving xi∨P and xi∨Q on the variable xi,
and the resulting clause P ∨Q is called the resolvent.

Recall that during the top-down construction of a BDD for a SAT in-
stance, infeasibility of a child node v in layer Li is detected when the state
of v would contain a clause C such that vars(C) ⊆ {x1, . . . , xi−1}. In other
words, the clause C has not yet been satisfied by assignments to the vari-
ables x1, . . . , xi−1, but it contains no variable corresponding to a lower layer
of the BDD. When this occurs, we choose one such clause as a witness of
the infeasibility of v; we will call this clause witness(v). According to the
BDD construction algorithms discussed previously, the edge from the parent
of v should be directed to point to the false sink. However, in an impor-
tant modification, we will instead construct the node v and treat it as a leaf
node distinct from other leaf nodes, because it now has additional associated
information (its witness clause).

After the BDD construction is complete, we perform a single bottom-up
pass to identify all infeasible branch nodes and generate a witness clause
for each from the witness clauses of its children. For an infeasible branch
node v in layer Li, we generate the witness clause witness(v) as follows:

• If v has a child node w such that witness(w) does not contain the
variable xi, then take witness(v) = witness(w).

• Otherwise, the witness clause of the “false” child wF contains the lit-
eral xi and the witness clause of the “true” child wT contains the
literal xi (see the proof of Lemma 4.3.4), so resolve witness(wF) and
witness(wT) on the variable xi and take the resolvent as witness(v).

At the end, we output the witness clauses for all maximally infeasible nodes
in the BDD.

Example 4.2.5. Continuing the graph-coloring example from earlier (Ex-
ample 4.1.1), consider the infeasible subtree rooted at the node with state
{2, 3, 4, 5, 8} in layer L4 in Figure 4.1. This subtree is redrawn in Figure 4.3.

48 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

2, 3, 4, 5, 8

4, 8 ⊥ (3)

⊥ (8) ⊥ (4)

x1 ∨ x3

x1 ∨ x3 ∨ x4 x3 ∨ x4

x1 ∨ x4 ∨ x5 x3 ∨ x5

x4

x5

Figure 4.3: Witness clauses generated from the infeasible subtree rooted at
the node with state {2, 3, 4, 5, 8} in layer L4.

Setting x4 = 0 satisfies clauses 2, 3, and 5, so the “false” child (i.e., the child
along the “false” edge) has state {4, 8}. However, from this node, setting
x5 = 0 means that clause 8 cannot be satisfied, and setting x5 = 1 means
that clause 4 cannot be satisfied. Therefore, neither of the children of the
node with state {4, 8} is feasible, and we have a witness for the infeasibility
of each: clause 8 (x1 ∨ x4 ∨ x5) for the “false” child, and clause 4 (x3 ∨ x5)
for the “true” child.

Likewise, returning to the node with state {2, 3, 4, 5, 8}, if we set x4 = 1
then clause 3 cannot be satisfied, so clause 3 (x3 ∨ x4) is a witness of the
infeasibility of this child.

Now, in our bottom-up pass, we first determine that the node with state
{4, 8} is infeasible. Both of its child nodes have witness clauses that contain
the variable x5, so we apply the resolution rule to these two witness clauses
with respect to x5 to obtain the clause x1 ∨ x3 ∨ x4, which is a witness
of the infeasibility of the node with state {4, 8}. Likewise, the node with
state {2, 3, 4, 5, 8} is infeasible, so we apply the resolution rule to these two
witness clauses with respect to x4 to obtain the clause x1 ∨ x3.

Since the node with state {2, 3, 4, 5, 8} is a maximally infeasible node,
we produce the clause x1 ∨ x3 as output. Note that this is a valid clause for
the original SAT instance (it is logically entailed by the instance) because
it was produced by the operation of resolution from clauses in the instance
and resolution is a sound proof system.

In a similar way, we generate the witness clause x2∨x3 for the maximally
infeasible node with state {2, 3, 4, 5, 10} in layer L4 in the BDD in Figure 4.1.

4.3. CHARACTERIZATION OF WITNESS CLAUSES 49

This is also a valid clause for the original SAT instance.

Thus we have generated two clauses, x1 ∨ x3 and x2 ∨ x3, that are not
present in the original instance but that are valid: every assignment of values
to variables that satisfies the clauses in the original instance must also satisfy
these two generated witness clauses.

4.3 Characterization of witness clauses

In this section we examine the strength of the clauses generated by the
method described in Section 4.2.3. As in that section, we shall focus only
on shrinking-state BDDs.

Definition 4.3.1. Let y = (y1, . . . , yi) be a partial assignment for a SAT
instance with variables x1, . . . , xn, and let C be a clause on these variables.
If some literal of C is satisfied by y (i.e., if C contains a literal xj with j ≤ i
such that yj = 1, or C contains a literal xj with j ≤ i such that yj = 0),
then we say that C is satisfied by y; otherwise we say that C is unsatisfied
by y. If every variable in C is assigned a value by y, but no literal of C is
satisfied by these assignments, then we say that C is falsified by y.

Note that a clause C can be unsatisfied by a partial assignment y but
not falsified by y, if no literal of C is satisfied by y but there remain variables
in C that are not assigned values by y.

Lemma 4.3.2. Let B be a shrinking-state BDD for a SAT instance, let v
be a node in B, and let C be a clause in state(v). Then C is unsatisfied by
every partial assignment corresponding to a path from the root of B to v.

Proof. This is true for an exact BDD by the definition of the state function,
and it is true for a shrinking-state approximate BDD because the approxi-
mation operation cannot introduce new clauses into the state of a node.

Definition 4.3.3 (Beame et al. [8]). A resolution derivation of a clause C
from a CNF formula F is a sequence π = (C1, C2, . . . , Cs ≡ C) of clauses in
which each clause Cr either is a clause in F (an initial clause) or is derived
by applying the resolution operation to clauses Cp and Cq with p, q < r
(a derived clause).

Lemma 4.3.4. Let B be a shrinking-state BDD for a SAT instance, let v be
an infeasible node in B, and let C = witness(v). Then there is a resolution
derivation of C from state(v).

50 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

Proof. Let Li be the layer of B containing v.

In the case when v is a leaf node, C itself is a clause in state(v), so the
resolution derivation is simply π = (C).

In the case when one of the children w of v has a witness clause C ′ that
does not contain the variable xi, we have C = C ′. By induction, there is
a resolution derivation π of C ′ from state(w). Since B is a shrinking-state
BDD, we have state(w) ⊆ state(v), and so π is also a resolution derivation
of C from state(v).

In the last case, the witness clauses of both children of v contain the
variable xi. Let wF and wT be the “false” and “true” children of v, respec-
tively, having witness clauses CF and CT. By Lemma 4.3.2, every clause in
state(wF) is unsatisfied by every partial assignment corresponding to a path
from the root of B to wF; in particular, every clause in state(wF) is unsatis-
fied by the assignment xi = 0, and therefore no clause in state(wF) contains
the literal xi. By induction, there is a resolution derivation πF of CF from
state(wF), and the resolvent of any two clauses C ′ and C ′′ contains only
literals that already appear in either C ′ or C ′′, so CF does not contain the
literal xi. Likewise, CT does not contain the literal xi. Therefore, since
both CF and CT contain the variable xi, CF must contain the literal xi, and
CT must contain the literal xi. Thus it is valid to resolve CF and CT on
the variable xi to obtain C, and this, together with the resolution deriva-
tions of CF and CT from state(wF) ⊆ state(v) and state(wT) ⊆ state(v),
respectively, gives a resolution derivation of C from state(v).

Definition 4.3.5. We say that a clause C is valid for a propositional for-
mula F if F logically entails C, that is, if F ∧C has the same set of solutions
as F itself.

Corollary 4.3.6. The witness clause C generated for any infeasible node v
in a shrinking-state BDD for a CNF formula F is valid for F .

Proof. By Lemma 4.3.4, there is a resolution derivation π of C from state(v).
As state(v) is a subset of the clauses of F , π is also a resolution derivation
of C from F . Therefore, C is valid for F , because resolution is a sound proof
system.

This corollary shows that the witness-clause method generates valid
clauses even from approximate BDDs, which is important from a practi-
cal standpoint for instances for which an exact BDD would be too large.

The following lemma, theorem, and corollary apply to shrinking-state
relaxation BDDs (including exact BDDs).

4.3. CHARACTERIZATION OF WITNESS CLAUSES 51

Lemma 4.3.7. Let B be a shrinking-state relaxation BDD for a SAT in-
stance. Let v be an infeasible node in layer Li, and let C = witness(v).
Then vars(C) ⊆ {x1, . . . , xi−1}.

Proof. In the case when v is a leaf node, C is a clause in state(v) that
contains no variable corresponding to a lower layer of the BDD, which is to
say that vars(C) ⊆ {x1, . . . , xi−1}.

In the case when one of the children of v (in layer Li+1) has a witness
clause C ′ that does not contain the variable xi, we have C = C ′. By in-
duction, vars(C ′) ⊆ {x1, . . . , xi}, but C ′ does not contain the variable xi, so
vars(C) = vars(C ′) ⊆ {x1, . . . , xi−1).

In the last case, the witness clause CF of the “false” child of v contains
the literal xi, and the witness clause CT of the “true” child of v contains
the literal xi. By induction, vars(CF) and vars(CT) are both subsets of
{x1, . . . , xi}. The witness clause C for v is obtained by resolving CF and CT

on xi, so vars(C) ⊆ {x1, . . . , xi−1}.

Theorem 4.3.8. Let B be a shrinking-state relaxation BDD for a SAT
instance. Let v be an infeasible node in layer Li, and let C = witness(v).
Then C is falsified by every partial assignment corresponding to a path from
the root of B to v.

Proof. By Lemma 4.3.7, vars(C) ⊆ {x1, . . . , xi−1}. Therefore, every partial
assignment corresponding to a path from the root to v assigns a value to
every variable in C, so such a partial assignment must either satisfy C or
falsify it.

Suppose for the sake of contradiction that some such partial assignment y
satisfies C. Then y satisfies some literal l of C. By Lemma 4.3.4, there
is a resolution derivation of C from state(v), so there exists a clause C ′ in
state(v) that contains the literal l. But then y satisfies C ′, which contradicts
Lemma 4.3.2.

In particular, for an infeasible node v in a relaxation BDD, witness(v)
is never a tautology, nor does it contain any variable that is assigned the
value 0 in some path from the root to v and the value 1 in some other such
path.

Corollary 4.3.9. Let B be a shrinking-state relaxation BDD for a SAT
instance. Let v be an infeasible node in B, and let C = witness(v). Then C
witnesses the infeasibility of v.

Proof. If a partial assignment y corresponding to a path from the root to v
is extended to a full assignment (y, z), then (y, z) also falsifies C.

52 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

In other words, Corollary 4.3.9 says that any (complete) assignment of
values to variables corresponding to a path that passes through v falsifies
witness(v).

The next theorem shows that the set of clauses produced by the method
in Section 4.2.3 for an exact BDD is a reformulation of the original instance.

Theorem 4.3.10. Let F be a CNF formula and let B be a shrinking-state
exact BDD for F . Let U be the set of maximally infeasible nodes in B, and
let

G =
∧
v∈U

witness(v).

Then G is a reformulation of F , i.e., G has the same set of solutions as F .

Proof. By Corollary 4.3.6, all witness clauses of nodes in U are valid for F .
Therefore, if y is a solution of F , it must satisfy all of these witness clauses,
so y is also a solution of G. On the other hand, if y is not a solution of F ,
then the corresponding path P in B must end at an infeasible leaf node, and
so there must be a maximally infeasible node v along P . By Corollary 4.3.9,
y falsifies witness(v), so y is also not a solution of G.

In the remainder of this section, we explore how BDD-guided clause
generation relates to propagation and inference techniques used in today’s
SAT solvers.

Definition 4.3.11. Unit propagation on a CNF formula is the process of
identifying, if there is one, a clause that contains only one literal l, setting l
to true, simplifying the formula by deleting l from all clauses and removing
all clauses containing l, and repeating. Unit propagation is said to result in
a conflict if it generates the empty clause Λ.

For a clause C and a set S of variables, we use the notation C − S to
denote the clause obtained by deleting from C all literals involving variables
in S. Observe that if v is a node in layer Li of a BDD, then any clause C in
state(v) is unsatisfied by every partial assignment y corresponding to a path
from the root to v (by Lemma 4.3.2), which is an assignment of values to
the variables x1, . . . , xi−1, so C will be satisfied by a full assignment (y, z) if
and only if z satisfies C − {x1, . . . , xi−1}. Consequently, if unit propagation
on C−{x1, . . . , xi−1} results in a conflict, then no such partial assignment y
has a feasible completion z.

Definition 4.3.12. Given a BDD B, a unit-propagated BDD, denoted Bup,
is the BDD obtained from B by replacing with a leaf node all nodes v such

4.3. CHARACTERIZATION OF WITNESS CLAUSES 53

that unit propagation on
{
C − {x1, . . . , xlayer(v)−1} : C ∈ state(v)

}
results

in a conflict.

To extend the witness-clause method to unit-propagated BDDs, we need
a way to generate witness clauses for nodes deduced to be infeasible by unit
propagation. This can be done as shown in Algorithm 5.

Algorithm 5 Unit propagation on node v with witness clause generation

1: i := layer(v)
2: J :=

{
1, 2, . . . , |state(v)|

}
. indices of unsatisfied clauses

3: for all Cj ∈ state(v) do
4: R[j] := Cj − {x1, . . . , xi−1} . working version of clause
5: W [j] := Cj . tentative witness clause
6: end for
7: while ∃ j ∈ J such that

∣∣R[j]
∣∣ = 1 do

8: l := unique literal in R[j]
9: J := J \ {j} . set l to true, remove unit clause

10: for all k ∈ J do
11: if l ∈ R[k] then
12: J := J \ {k} . remove satisfied clause
13: else if l ∈ R[k] then
14: R[k] := R[k] \ l . remove l from clause
15: W [k] := resolvent of W [j] and W [k] on var(l)
16: if R[k] = Λ then . unit propagation infers a conflict
17: report infeasibility of v with witness clause W [k]
18: end if
19: end if
20: end for
21: end while

The loop on lines 7–21 of Algorithm 5 maintains the following two in-
variants:

• For all j ∈ J , R[j] = W [j] − {x1, . . . , xi−1}. This justifies the use
of the resolution operation on line 15: the clause R[j] contains the
literal l, and the clause R[k] contains the literal l, so it is valid to
resolve W [j] and W [k] on var(l).

• For all j ∈ J , there is a resolution derivation of W [j] from state(v), by
construction. Therefore, the witness clause reported in line 17 satisfies
Lemma 4.3.4 (for a shrinking-state BDD).

54 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

Note also that if a witness clause W [k] is reported in line 17, then R[k] =
Λ, so the first invariant above implies that vars(W) ⊆ {x1, . . . , xi−1}, and
therefore the witness clause W [k] satisfies Lemma 4.3.7 (for a shrinking-state
relaxation BDD).

Consequently, all of the preceding theorems in this section still hold for
unit-propagated BDDs with witness clauses generated using Algorithm 5.

Definition 4.3.13 (Atserias et al. [5], Pipatsrisawat and Darwiche [81]). A
nonempty clause C is said to be absorbed by a CNF formula F if for every
literal l in C, performing unit propagation on F starting with all literals
of C except l set to false either infers l or infers a conflict.

The meaning of this definition is that a clause C is absorbed by F if
F and F ∧ C have identical entailment power with respect to unit prop-
agation, that is, any clause that can be derived from F ∧ C using unit
propagation can also be derived from F alone.

Pipatsrisawat and Darwiche [81] showed that the conflict-directed clause
learning (CDCL) mechanism in SAT solvers always produces clauses that
are not absorbed by the current theory, that is, by the set of initial clauses
of F and those learned thus far during the search. As we show next, this
property also holds for witness clauses generated at branch nodes by the
BDD method applied to F .

Theorem 4.3.14. Let F be a CNF formula, and let Bup be a unit-propagated
shrinking-state relaxation BDD for F . Let v be a maximally infeasible branch
node in layer Li of Bup, and let C = witness(v). If C is not the empty
clause Λ, then C is not absorbed by F .

Proof. We show that there exists a literal l in C such that performing unit
propagation on F starting with all literals of C except l set to false infers
neither l nor a conflict.

Since v is a maximally infeasible node, either v is the root or v has
an incoming edge from a feasible node u. But if v is the root, then as a
consequence of Lemma 4.3.7 we must have C = Λ. So assume that v has an
incoming edge from a feasible node u.

By Lemma 4.3.7, vars(C) ⊆ {x1, . . . , xi−1}, and by Theorem 4.3.8, C is
falsified by every partial assignment corresponding to a path from the root
of Bup to v. If C does not contain the variable xi−1, then C must therefore
be falsified by every partial assignment corresponding to a path from the
root to u. But C is valid for F by Corollary 4.3.6, so this would imply
that u is infeasible, which is a contradiction. Hence, C must contain the

4.3. CHARACTERIZATION OF WITNESS CLAUSES 55

variable xi−1. Let l be the literal in C that is either xi−1 or xi−1. (By
Theorem 4.3.8, l = xi−1 if v is the “false” child of u, and l = xi−1 if v is the
“true” child of u.)

Let y be a partial assignment corresponding to a path P from the root
to v through u, and let z be the partial assignment corresponding to the
portion of P from the root to u. If unit propagation on F starting from z
infers a conflict, then u would be a leaf node in Bup, which it is not. If
unit propagation on F starting from z infers l, then unit propagation on F
starting from y infers a conflict, so v would be a leaf node in Bup, which
it is not. Therefore unit propagation on F starting from z (i.e., setting all
literals of C except l set to false) infers neither l nor a conflict, so C is not
absorbed by F .

This theorem establishes that our clause generation approach effectively
produces clauses that provide useful information not already captured by
unit propagation inference on F . Note that if C = Λ then we have deduced
infeasibility.

While the solver can eventually learn any clause entailed by F (including
the empty clause Λ if F is unsatisfiable) by using a series of potentially
exponentially many applications of the CDCL mechanism, we show below
that any clause that it can learn with one application of conflict analysis
starting from a CNF formula F can also be learned as a BDD-generated
witness clause from F .

In order to more precisely characterize these witness clauses, we first
define several restrictions on the structure of resolution proofs.

Definition 4.3.15 (see Beame et al. [8]). A resolution derivation π =
(C1, C2, . . . , Cs ≡ C) of a clause C from a CNF formula F is called

• tree-like if every nonempty derived clause Cr is used exactly once;

• regular if every variable is resolved upon at most once along any “path”
in the proof from an initial clause to C, allowing (restricted) reuse of
derived clauses;

• linear if every derived clause Cr is obtained by resolving Cr−1 with Cq

for some q < r − 1;

• ordered (or a Davis–Putnam resolution derivation) if it is regular and
every sequence of resolved variables along any path from an initial
clause to C respects the same ordering on the variables;

56 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

• trivial if all variables resolved upon are distinct and each Cr, for r ≥ 3,
is either an initial clause or is derived by resolving Cr−1 with an initial
clause.

Note that a trivial derivation is tree-like, regular, linear, and ordered.
Each of these restricted resolution schemes is sound and complete as a

proof system, but they differ in their efficiency (measured by the number of
clauses required in a resolution derivation).

Proposition 4.3.16 (Bonet and Galesi [18], Bonet et al. [19], Buresh-Op-
penheim and Pitassi [23]). Regular, linear, and ordered resolution are each
exponentially stronger than tree-like resolution.

Proposition 4.3.17 (Alekhnovich et al. [3], Bonet et al. [19]). Tree-like, reg-
ular, and ordered resolution are each exponentially weaker than unrestricted
resolution.

Proposition 4.3.18 (Beame et al. [8, Proposition 4]). Any conflict clause
produced by CDCL using any clause learning scheme can be derived from
initial and previously derived clauses using a trivial resolution derivation.

This means that each intermediate clause Cr+1 in a CDCL derivation τ
is obtained by resolving Cr with a clause of F and that the sequence of
variables resolved upon in τ consists of all distinct variables, thereby giving
τ a “ladder-like” structure.

Theorem 4.3.19. For any clause C learned from one application of SAT
conflict analysis on F using any clause learning scheme, there exists a vari-
able ordering under which a top-down approximate BDD for F of width at
most 2|C| generates a clause C ′ ⊆ C.

Proof. Let τ be the CDCL derivation of C from F , and let σ be the sequence
of variables resolved upon in τ . The top-down (partial) variable ordering we
use is as follows: first the variables that appear in C (in any order), followed
by the variables in the reverse order of σ. The first |C| variables result in
a BDD B of width at most 2|C|. Let v be the node of B in layer L|C|+1 at
which all literals of C are falsified. When expanding B from v, the ladder-
like structure of τ guarantees that at least one branch on the variables in σ
can be labeled directly by a clause of F that is falsified. The corresponding
lower part of B starting at v is thus of width 1. For the remaining 2|C| − 1
nodes of B in layer L|C|+1, we construct an approximate lower portion of the
BDD such that the overall width does not increase. This makes the overall
width of B at most 2|C|.

4.3. CHARACTERIZATION OF WITNESS CLAUSES 57

While B may have several infeasible nodes, the node v in layer L|C|+1 is
guaranteed by the derivation τ to be infeasible. Let y be a partial assignment
corresponding to a path P from the root of B to v. Let u be a maximally
infeasible node on P , and let C ′ = witness(u). By Theorem 4.3.8, C is
falsified by y, and C ′ is falsified by the partial assignment z corresponding
to the portion of P from the root to u. By construction, C contains all
|C| literals in y, and by Lemma 4.3.7, C ′ contains a subset of the literals
in z and hence in y. It follows that C ′ ⊆ C.

The above reasoning can be extended to construct an exact BDD that
generates a subclause of C. However, the width of such a BDD will depend
not only on |C| but also on the number of resolution steps involved in conflict
analysis during the derivation of C.

Theorem 4.3.20. Witness clauses generated from F correspond to regular
and ordered resolution derivations starting from the clauses of F .

Proof. It is easily seen that the resolution operations performed during
clause generation from a BDD respect, by construction, the restrictions of
being regular and ordered. Hence, any witness clause C can be derived using
regular and ordered resolution starting from F .

On the other hand, let τ be any regular and ordered resolution derivation
of C starting from F . An argument similar to the one in the proof of
Theorem 4.3.19 can be used to show that there exists a natural variable
ordering (namely, first branch on the variables of C, then follow the top-
down variable ordering imposed by τ) under which the top-down BDD B
for F contains a node v such that any path from the root of B to v falsifies
all literals of C. As before, witness clauses for B may not directly include
C as is, but the witness clause C ′ associated with a maximally infeasible
node u with v as a descendant would be a subclause of C.

We recall again the resolution-based characterization of CDCL clauses,
namely, those that can be derived using trivial resolution (i.e., tree-like,
regular, linear, and ordered resolution). This results in linear-size resolution
derivations and thus forms a strict subset of all possible derivations that
are regular and ordered, because not all regular and ordered derivations are
tree-like and linear. Theorem 4.3.20 therefore implies the following result.

Corollary 4.3.21. There exist BDD-generated witness clauses that cannot
be derived using one application of SAT conflict analysis.

58 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

4.4 Implementation and experimental results

We implemented the clause generation algorithm described in Section 4.2.3
in C++, as a program called Clausegen. See Chapter 5 for a discussion of
several implementation details.

To demonstrate our method, we considered SAT instances produced from
randomly generated bipartite graph matching problems, with 15 vertices on
each side, in which a random subset of 10 vertices on one side is adjacent
to only 9 vertices on the other side, so that the graph fails to satisfy Hall’s
condition, thereby making the SAT instance unsatisfiable. We preprocessed
the instance with SatELite 1.0 [35] (using the +pre option) and used Min-
iSat 2.2.0 [36] as the SAT solver (with -rnd-freq=0.01). Because MiniSat
uses a nondeterministic algorithm, it was run 20 times for each test with dif-
ferent random seeds, and the results were averaged. The experiments were
run on an Intel Xeon E5345 at 2.33 GHz with 24 GiB of RAM, running
Ubuntu 12.04.5.

For a representative instance of this type, with 225 variables and 748
clauses (80 variables and 405 clauses after preprocessing), MiniSat made
864,930 decisions and encountered 714,625 conflicts on average. (This in-
stance, hall-set-15-10 01.cnf, is given in Appendix A.)

In Figure 4.4 we show the results of appending the clauses produced
by Clausegen before the instance is given to MiniSat. As the maximum
BDD width is increased from 10 to 10,000, thus yielding more accurate
approximate BDDs, the numbers of decisions and conflicts encountered by
MiniSat decrease. The clauses generated at BDD width 10,000 produced an
improvement in these metrics by over 75% in comparison with the original
instance: MiniSat averaged 212,158 decisions and 178,101 conflicts.

However, we do not see a corresponding improvement in the running
time of MiniSat. The stacked area plot in Figure 4.5 shows the running
time of Clausegen and MiniSat as the BDD width is increased. On the
original instance, MiniSat required an average of 7.83 seconds; this time
increased to 17.65 seconds when the clauses generated at BDD width 10,000
were added. The number of generated clauses increases linearly with the
BDD width, from 12 clauses at width 10 to 9745 clauses at width 10,000, as
seen in Figure 4.6. The clauses generated at width 10,000 have an average
length of 11.8, compared to an average length of 2.1 in the original instance.

Figures 4.7 and 4.8 show our results for another instance, counting-
clqcolor-unsat-set-b-clqcolor-08-06-07.sat05-1257.reshuffled-07.cnf, from the
SAT Challenge 2012 Hard Combinatorial SAT+UNSAT benchmark instan-

4.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 59

����

����

����

����

����

����

����

����

����

��� ���� ����� ������

�����������������

���������
��������

Figure 4.4: Numbers of decisions and conflicts encountered by MiniSat on
an unsatisfiable bipartite matching instance.

��

��

���

���

���

���

���

��� ���� ����� ������

�
��
��
��
��
��
��
��
�

�����������������

�������
���������

Figure 4.5: Running time of Clausegen and MiniSat on an unsatisfiable
bipartite matching instance.

60 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

���

����

�����

������

��� ���� ����� ������

�����������������

�����������������

Figure 4.6: Number of witness clauses generated at various BDD widths for
an unsatisfiable bipartite matching instance.

ces1 and due to Ashish Sabharwal. This instance has 132 variables and
1527 clauses of average length 2.9 (117 variables and 1599 clauses of average
length 4.3 after preprocessing with SatELite) and is also unsatisfiable; it
represents a graph coloring instance with a hidden clique that is larger than
the number of colors available. MiniSat averaged 2,072,107 decisions and
1,511,029 conflicts for the original instance, taking 14.18 seconds on average.
When the 3255 clauses of average length 8.7 produced by Clausegen at BDD
width 10,000 were added, the average numbers of decisions and conflicts de-
creased to 713,718 and 515,514, respectively, and the average running time
of MiniSat decreased to 6.34 seconds. The minimum total running time
of Clausegen and MiniSat together was achieved at a BDD width of 464;
Clausegen took 0.57 seconds to generate 340 clauses of average length 8.7,
and MiniSat averaged 1,351,691 decisions and 972,674 conflicts, taking 9.14
seconds on average to solve the instance, for a total average solving time of
9.71 seconds (an improvement of 31.5% over the original instance).

Our results for hole10.cnf from the SATLIB library [48] are shown in
Figures 4.9 and 4.10. This instance, due to John Hooker, represents an
unsatisfiable pigeonhole instance in which 11 pigeons are to be placed into

1See http://baldur.iti.kit.edu/SAT-Challenge-2012/downloads.html.

http://baldur.iti.kit.edu/SAT-Challenge-2012/downloads.html

4.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 61

����

��

����

��

����

��

��� ���� ����� ������

�����������������

���������
��������

Figure 4.7: Numbers of decisions and conflicts encountered by MiniSat on
counting-clqcolor-unsat-[. . .].cnf from SAT Challenge 2012.

��

��

���

���

���

���

���

��� ���� ����� ������

�
��
��
�
��
��
�
��
��
�

�����������������

�������
���������

Figure 4.8: Running time of Clausegen and MiniSat on counting-clqcolor-
unsat-[. . .].cnf from SAT Challenge 2012.

62 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

��

��

��

��

���

���

���

��� ���� ����� ������

�����������������

���������
��������

Figure 4.9: Numbers of decisions and conflicts encountered by MiniSat on
hole10.cnf from SATLIB.

10 holes without placing two pigeons in the same hole. The original in-
stance has 110 variables and 561 clauses of average length 2.2 (550 clauses
of length 2 and 11 clauses of length 10). MiniSat averaged 12,416,393 de-
cisions and 10,230,929 conflicts on the original instance, taking 177.78 sec-
onds. Clausegen produced 15,440 clauses in 5.88 seconds at BDD width
10,000; when these clauses are added to the original instance, the numbers
of decisions and conflicts decrease to 1,311,429 and 1,102,655, respectively
(improvements of 89.4% and 89.2%). The minimum total running time of
Clausegen and MiniSat together was achieved at BDD width 1957. At this
width, Clausegen took 1.05 seconds to generate 3512 clauses, and MiniSat
took an average of 110.31 seconds to solve the augmented instance, encoun-
tering 2,580,030 decisions and 2,158,505 conflicts; the total solving time was
111.35 seconds, an improvement of 37.4% over the original instance.

Figures 4.11 and 4.12 show the results of applying Clausegen to a SAT
instance generated from a certain biconditional formula. Groote and Zan-
tema [44] gave a construction for a family of unsatisfiable biconditional for-
mulas that require exponentially long resolution proofs of unsatisfiability.
The formula ¬[S4] produced on the fourth iteration of this construction
was converted to a CNF formula by the Tseitin transformation described

4.5. SUMMARY 63

��

���

����

����

����

����

��� ���� ����� ������

�
��
��
��
��
��
��
��
�

�����������������

�������
���������

Figure 4.10: Running time of Clausegen and MiniSat on hole10.cnf from
SATLIB.

in Section 6.1.1. The resulting SAT instance (gz4.cnf; see Appendix A)
has 95 variables and 253 clauses (252 clauses of length 3 and one clause of
length 1) and is unsatisfiable by construction. In our tests, MiniSat took
an average of 1.80 seconds to deduce unsatisfiability, after 842,330 decisions
and 459,076 conflicts.

The exact BDD for this instance has width 2048. As can be seen in
Figure 4.11, as the width of the approximate BDD approaches 2048, the
numbers of decisions and conflicts encountered by MiniSat decrease. When
the maximum-width parameter of Clausegen is 2048 or larger, an exact BDD
is constructed, from which Clausegen can deduce unsatisfiability and return
the empty clause. The empty clause allows MiniSat to terminate immedi-
ately. Therefore, for a sufficiently large BDD width, the instance is solved
completely by Clausegen, taking 0.50 second on average (an improvement
of 72.2% over MiniSat).

4.5 Summary

In this chapter we presented a BDD-based algorithm to deduce valid clauses
from an instance of the Boolean satisfiability problem. Section 4.1 described

64 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

����

����

����

����

����

����

����

����

����

��� ���� ����� ������

�����������������

���������
��������

Figure 4.11: Numbers of decisions and conflicts encountered by MiniSat on
an unsatisfiable biconditional formula.

��

����

����

����

����

��

����

����

����

����

��

��� ���� ����� ������

�
��
��
��
��
��
��
��
�

�����������������

�������
���������

Figure 4.12: Running time of Clausegen and MiniSat on an unsatisfiable
biconditional formula.

4.5. SUMMARY 65

the BDD representation of SAT instances. In Section 4.2 we presented three
techniques for deducing clauses from these BDDs, including an algorithm
to generate clauses that witness the infeasibility of BDD nodes. We char-
acterize these witness clauses in Section 4.3; in particular, we showed that
for an exact BDD the full set of generated witness clauses is a reformula-
tion of the instance and the witness clauses are still valid when generated
from shrinking-state approximate BDDs. When a unit-propagated BDD
is used, the generated witness clauses are not absorbed by the clauses of
the original instance, any clause that can be learned from one application
of conflict analysis can also be generated by our witness-clause algorithm,
and our witness-clause algorithm can generate strictly stronger clauses than
one application of conflict analysis. The experimental results in Section 4.4
demonstrated that the clauses generated by our method can be effective
in reducing the numbers of conflicts and decisions encountered by a SAT
solver.

66 CHAPTER 4. BDDS FOR SAT CLAUSE GENERATION

Chapter 5

Implementation
considerations

In this chapter we briefly discuss a few of the implementation considerations
necessary to put the methods of Chapters 3 and 4 into practice.

5.1 Implementation of bin packing MDDs

5.1.1 Variable ordering

The variable ordering used in a BDD or MDD can have a very significant
effect on its size. Behle [10] investigated the optimal variable ordering prob-
lem for threshold BDDs. Bollig and Wegener [17] showed that in general
the problem of determining whether a given variable ordering of a BDD can
be improved is NP-complete.

It is desirable to have a variable ordering that results in a small MDD,
even if approximate MDDs are to be used, because the structure of the
approximate MDD will be closer to the structure of the exact MDD and
will give better results.

For the multidimensional bin packing problem, we take a simple heuristic
approach. We observe that identifying dead bins and free bins is beneficial,
and we would like to make such identifications as soon as possible. If we
pack the largest items first, then the total size of the remaining unpacked
items will decrease quickly in the beginning, which suggests that we may
reach free bins early; additionally, we will tend to fill bins quickly in the
beginning, which suggests that we may exhaust the bins’ capacity quickly
and reach dead bins early. However, these ideas are somewhat contradictory,

67

68 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

and the latter idea is opposed by the observation that the unpacked items
will be small, so they can fit into small spaces.

We therefore use an “interleaved” ordering, in which the largest item is
packed first, then the smallest item, then the second largest item, then the
second smallest item, and so on, packing the median-sized item last. (Our
item sizes (si,1, . . . , si,d) are multidimensional, so we use the total size of the

item in all dimensions:
∑d

k=1 si,k.) This ordering seemed to work well for
our experimental instances. This straightforward approach means that we
can implement variable ordering by sorting the items in this manner as a
preprocessing step.

5.1.2 Precomputation

Recall from Section 3.4 that it can be profitable to round down ullages in
the states of the ullage MDD representation: Let uj,k denote the ullage of
bin j, in the kth dimension, after we have placed items 1 through i into bins.
Let a denote the greatest possible sum of a subset of the sizes of items i+ 1
through n, in the kth dimension, that does not exceed uj,k. If a < uj,k, then
we may consider the ullage of bin j, in the kth dimension, to be a rather
than uj,k without changing the set of feasible completions.

If the order of the items is fixed, then the relevant sets of possible sums
of remaining items can be computed once at the beginning of the MDD
construction in O(nc2

max) time, where cmax is the largest bin capacity in a
single dimension.

5.2 Implementation of BDDs for SAT instances

5.2.1 Data structures

The boost::dynamic bitset<> data structure from the Boost library1 is an
implementation of a set of bits whose size can be set at run time. This data
structure is very useful for representing various sets of clauses; for example,
the state of a node is a set of unsatisfied clauses. The clauses themselves,
which are not changed after the instance has been read from input, can be
stored in an array or a vector. The dynamic bitset then represents a subset
of these clauses. The implementation of this class supports efficient compu-

1Documentation for version 1.54.0 of the boost::dynamic bitset<> package, which is
the version we used in our experiments, is available online at http://www.boost.org/

doc/libs/1_54_0/libs/dynamic_bitset/dynamic_bitset.html.

http://www.boost.org/doc/libs/1_54_0/libs/dynamic_bitset/dynamic_bitset.html
http://www.boost.org/doc/libs/1_54_0/libs/dynamic_bitset/dynamic_bitset.html

5.2. IMPLEMENTATION OF BDDS FOR SAT INSTANCES 69

tation of many set operations, such as union, intersection, complement, and
nonemptiness testing.

5.2.2 Variable ordering

Clausegen supports several variable ordering heuristics. For our experi-
ments, we used the following heuristic: each variable is assigned a score,
computed as the quotient between the number of clauses containing the
variable and the average arity of those clauses, and the variables are sorted
in decreasing order according to this score, so that higher-scoring variables
(that is, variables that appear in many mostly short clauses) correspond to
layers nearer the top of the BDD. This heuristic is enabled in Clausegen by
specifying ccaa for the -ordering option (ccaa stands for “clause count/
average arity”).

Other variable ordering heuristics supported by Clausegen include lex

(the lexicographic variable ordering: x1, x2, x3, etc.) and random (a random
variable ordering).

In each of these schemes, the variable ordering is determined before the
BDD is constructed (as opposed to an ordering being determined dynami-
cally during the top-down construction). This allows us to do several com-
putations during preprocessing phases, thereby avoiding recomputation, as
described in the next section.

5.2.3 Preprocessing

It is useful to precompute the sets of clauses that are satisfied by each
possible variable assignment. For an instance with n variables, this requires
the computation of 2n subsets of clauses (represented by dynamic bitsets).
This allows us to easily and efficiently implement the child state function:
if v is a node in the BDD under construction, xi is the variable on which v
branches (i.e., the two outgoing edges from v correspond to the assignments
xi = 0 and xi = 1), and S0 is the set of clauses that are satisfied by the
assignment xi = 0, then the state of the “false” child of v is state(v) \ S0.
Similarly, if S1 is the set of clauses that are satisfied by the assignment
xi = 1, then the state of the “true” child of v is state(v) \ S1.

Additionally, once the variable ordering has been determined, we can
precompute, for each layer of the BDD, the set of clauses that can be satisfied
after that layer (that is, the set of clauses containing at least one variable
that appears later in the variable ordering). These sets allow for efficient
testing of infeasibility: if the child state function returns the state X for

70 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

a child node w, A is the set of clauses that can be satisfied after the layer
containing w, and X ∩A = ∅, then w is infeasible.

If a unit-propagated BDD is being constructed, it is also useful to pre-
compute subsets of clauses that can trigger unit propagation at each layer
of the BDD. This is explained in greater detail in Section 5.2.5.

5.2.4 Merging heuristics

The construction of a relaxation BDD via merging requires a rule for deter-
mining which nodes to merge in a layer that exceeds the maximum width.
Since unsatisfied clauses lead to infeasibility, and our method generates
clauses from infeasible subtrees, the following merging rule was used for
our experiments: if a constructed layer exceeds the maximum width W ,
sort the nodes by the number of unsatisfied clauses in their states, preserve
the W − 1 nodes with the greatest number of unsatisfied clauses, and merge
the other nodes into a single node. (The state of the resulting node is the
intersection of the states of the nodes that were merged.) Merging rules
similar to this one have been applied before in the context of optimization
and scheduling, for example by Cire and van Hoeve [28]. This merging rule
is enabled in Clausegen by specifying unsat for the -merger option.

Other merging heuristics supported by Clausegen include sat (which
preserves the states with the fewest unsatisfied clauses) and random (which
merges pairs of nodes at random until the width of the layer is no greater
than W).

5.2.5 Unit propagation

Given a fixed variable ordering (xi1 , . . . , xin) and a clause C, define

u(C) =
{
k ∈ {1, . . . , n} :

∣∣C − {xi1 , . . . , xik−1
}
∣∣ = 1

}
.

In other words, u(C) is the set of integers k such that removing all variables
in the set {xi1 , . . . , xik−1

} from C leaves a unit clause (a clause with exactly
one literal). The set u(C) contains the element 1 if and only if C itself is a
unit clause.

The intuitive meaning of u(C) is that if C is not yet satisfied at a node
in layer Lk of the BDD, and k ∈ u(C), then C has “one chance left”—
there is only one variable in C corresponding to a lower layer of the BDD.
Consequently, at a node v in layer Lk, k ∈ u(C), at which C has not yet
been satisfied, we can treat C as a unit clause, because all but one of its
literals has been falsified by any partial assignment corresponding to a path

5.2. IMPLEMENTATION OF BDDS FOR SAT INSTANCES 71

from the root to v, and therefore we can apply unit propagation to state(v),
beginning by setting the sole remaining unfalsified literal of C to true.

For each layer Li of the BDD, we can precompute the subset of clauses C
such that p(C) = i. These are the clauses that can trigger unit propagation
at layer Li if they have not yet been satisfied. Call this subset Ti; it can
be represented with a dynamic bitset, like other subsets of clauses. If v is a
node in layer Lk, then we need to run unit propagation (Algorithm 5) on v
only if state(v) ∩ Tk 6= ∅.

72 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

Chapter 6

SAT decomposition

There is a practical limit on the size of the SAT instances to which the
techniques in Chapter 4 can be applied. Larger instances require weaker
approximate BDDs, and as the approximation becomes weaker, the quality
of the deduced clauses decreases. Therefore, it is useful to be able to decom-
pose a SAT instance into smaller subinstances (i.e., subsets of clauses) and
work with the subinstances instead of the whole instance. Note that valid
clauses deduced from a subset of the clauses of an instance are valid for the
instance as a whole.

In this chapter we propose three methods for extracting structured subin-
stances from a SAT instance. The first, described in Section 6.1.2, is based
on recognizing subsets of clauses produced by the Tseitin transformation,
which is a widely used procedure to reformulate an arbitrary propositional
formula as a formula in conjunctive normal form. The second, described in
Section 6.2, is a general technique to determine subinstances by analyzing
the connectivity of the constraint graph. The third, described in Section 6.3,
produces subinstances by modeling the SAT instance as a resistive electrical
network. The results of this chapter are still rather preliminary; more work
remains to be done to develop these ideas into practicable algorithms.

6.1 Tseitin clauses

In general, rewriting a propositional formula in conjunctive normal form
without the introduction of new variables produces a CNF formula that is
exponentially long. In 1968, Tseitin [95] gave a construction to transform
any propositional formula into a CNF formula with only a linear increase in
length by using auxiliary variables.

73

74 CHAPTER 6. SAT DECOMPOSITION

6.1.1 The Tseitin transformation

The idea of the Tseitin transformation is to introduce a new variable for
each subformula of the original formula and to emit clauses that ensure
this variable is true if and only if the corresponding subformula is true. In
addition, a unit clause (i.e., a clause with a single literal) is included to
ensure that the entirety of the original formula is true.

Suppose that the input formula F has vars(F) = {x1, . . . , xn}. In the
output CNF formula, the variables x1, . . . , xn will correspond to the same
variables in the input formula. We produce the CNF formula by recursively
defining auxiliary variables and emitting clauses for each subformula F ′ in
the input formula as follows.

• If F ′ is a variable xi, then the corresponding variable in the CNF
formula is also xi.

• If F ′ is a negation G, let x be the literal in the CNF formula corre-
sponding to G; then x is the literal in the CNF formula corresponding
to F ′.

• If F ′ is a conjunction G ∧ G′, let x and y be the literals in the CNF
formula corresponding to G and G′, respectively; introduce a new
variable α corresponding to F ′; and ensure that α ≡ (x∧y) by emitting
the clauses (α ∨ x ∨ y), (α ∨ x), and (α ∨ y).

• If F ′ is a disjunction G ∨ G′, let x and y be the literals in the CNF
formula corresponding to G and G′, respectively; introduce a new
variable α corresponding to F ′; and ensure that α ≡ (x∨y) by emitting
the clauses (α ∨ x ∨ y), (α ∨ x), and (α ∨ y).

• If F ′ is a biconditional G↔G′, let x and y be the literals in the
CNF formula corresponding to G and G′, respectively; introduce a
new variable α corresponding to F ′; and ensure that α ≡ (x↔ y) by
emitting the clauses (α∨x∨y), (α∨x∨y), (α∨x∨y), and (α∨x∨y).

• If F ′ is an exclusive disjunction G⊕G′, let x and y be the literals in
the CNF formula corresponding to G and G′, respectively; introduce
a new variable α corresponding to F ′; and ensure that α ≡ (x⊕ y) by
emitting the clauses (α∨x∨y), (α∨x∨y), (α∨x∨y), and (α∨x∨y).

At the end of this process, we have a variable α corresponding to the entire
formula F ; emit the unit clause α that requires F to be true.

6.1. TSEITIN CLAUSES 75

The rules in the list above can easily be extended to handle additional
connectives. For example, if F ′ is a selection G ?G′ :G′′, whose value is G′

if G is true and G′′ if G is false, let x, y, and z be the literals in the
CNF formula corresponding to G, G′, and G′′, respectively; introduce a
new variable α corresponding to F ′; and ensure that α ≡ (G ?G′ :G′′) by
emitting the clauses (α ∨ x ∨ z), (α ∨ x ∨ y), (α ∨ x ∨ y), and (α ∨ x ∨ z).

The resulting CNF formula can be reduced in size by maintaining a
cache of previously processed subformulas (in some canonical form) and
their corresponding variables in the CNF formula. For example, if a new
variable α is introduced to correspond to a subformula G ∧G′ in one place
in the input formula F , and elsewhere in F the same subformula G ∧ G′
appears again, the variable α can be reused.

A further improvement is to identify logically equivalent subformulas.
For instance, by De Morgan’s laws, a subformulaG∧G′ is logically equivalent
to the negation of G ∨G′, so if a variable α has previously been introduced
to correspond to the subformula G ∨G′, then α can be used to correspond
to G ∧G′.

By using this caching strategy and the identification of logically equiv-
alent subformulas, tautologies and contradictions can occasionally be de-
tected. For example, given a conjunction G ∧ G′, if α is returned as the
CNF literal corresponding to G and α is returned as the CNF literal cor-
responding to G′, then the subformula G ∧ G′ is a contradiction, and ⊥
can be returned instead of a variable corresponding to G ∧ G′. Similarly,
given a disjunction G∨G′, if α is returned as the CNF literal corresponding
to G and α is returned as the CNF literal corresponding to G′, then the
subformula G ∨G′ is a tautology, and > can be returned.

These deductions can be propagated up to higher-level clauses as well.
For instance, given a conjunction G∧G′, if the recursive processing of G or
of G′ returns ⊥, then G ∧ G′ is a contradiction. On the other hand, if the
recursive processing of G, say, returns >, then G∧G′ is logically equivalent
to G′, so the CNF literal (or the truth value > or ⊥) corresponding to G′

can be returned directly. Thus there is no need to emit clauses or introduce
variables for tautologies or contradictions, and if the input formula F itself is
a tautology or a contradiction, then the output CNF formula can be simply
x1 ∨ x1 or the empty clause Λ, respectively.

6.1.2 Detecting Tseitin clauses in a CNF formula

The Tseitin transformation described above is widely known and commonly
used to convert propositional formulas into conjunctive normal form. Many

76 CHAPTER 6. SAT DECOMPOSITION

SAT instances contain subsets of clauses that were produced by this trans-
formation. It is therefore potentially useful to be able to identify these
subsets of clauses so as to recover the original propositional formula.

Recall that the standard BDD synthesis algorithm [22, 60, 98] constructs
a BDD for a propositional formula by recursively building BDDs for subfor-
mulas and then melding the BDDs for subformulas F and G to produce a
BDD for F �G, where � is a Boolean operator such as ∧ or ⊕. The motivation
for the technique of detecting and extracting Tseitin clauses comes from the
observation that this synthesis algorithm often produces efficient BDDs for
propositional formulas (i.e., BDDs with few nodes), and if a propositional
formula has an efficient BDD representation then the BDD constructed using
the top-down algorithms from Chapter 2 may also be of small size.

To identify Tseitin clauses in a SAT instance, we use the following two
logical equivalences from the list of rules in Section 6.1.1:

[a ≡ (b ∧ c)] ⇐⇒ (a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c),
[a ≡ (b↔ c)] ⇐⇒ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c).

Note that we do not need to consider subformulas of the forms a ≡ (b ∨ c)
and a ≡ (b ⊕ c) separately, because [a ≡ (b ∨ c)] ⇐⇒ [a ≡ (b ∧ c)] and
[a ≡ (b⊕ c)] ⇐⇒ [a ≡ (b↔ c)].

From the equivalences above, we get the following CNF formulas that
include the disjunction x ∨ y ∨ z for literals x, y, and z:

[x ≡ (y ∧ z)] ⇐⇒ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z),
[y ≡ (x ∧ z)] ⇐⇒ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z),
[z ≡ (x ∧ y)] ⇐⇒ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z),
[x ≡ (y↔ z)] ⇐⇒ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z).

The remaining clauses of the form a ≡ (b↔ c) for various combinations of
x or x, y or y, and z or z substituted for a, b, and c in various permutations,
whose equivalent CNF formulas contain x∨y∨z, are all equivalent to the last
formula above; for example, x ≡ (y↔ z) or x ≡ (y↔ z). Also equivalent are
y ≡ (x↔ z) and z ≡ (x↔ y), because these are all equivalent to x⊕ y ⊕ z.
So there is no need to consider them separately.

There is a lot of symmetry in the CNF formula for x ≡ (y↔ z). But,
considering all combinations of negations of variables, there are only two
essentially different formulas of this form: one equivalent to x ⊕ y ⊕ z and
the other equivalent to its negation. The CNF formula for x⊕y⊕z includes
all disjunctions of three literals with an even number of negations, and the

6.1. TSEITIN CLAUSES 77

CNF formula for x⊕ y ⊕ z includes all disjunctions of three literals with
an odd number of negations. So we can canonicalize the forms of these
CNF formulas as |x| ≡ (|y|↔|z|) and |x| ≡ (|y|↔|z|), respectively, where
|x| denotes the positive literal, and |x| < |y| < |z| in a fixed ordering of
the variables. We can distinguish between these two canonical forms for a
particular disjunction x∨ y ∨ z by seeing whether an even or odd number of
the literals are negated.

We can identify subsets of clauses in a CNF formula that represent propo-
sitional formulas of the form a ≡ (b ∧ c) or a ≡ (b↔ c) as follows.

First we iterate through the clauses in the CNF formula and pick out the
clauses of length 2. We record these clauses in a hash table (according to the
canonical form of the clause) so their existence can be quickly checked. At
the same time we pick out the clauses of length 1 (these are fixed variables)
and record them in a hash table keyed on the variable, and we pick out the
clauses of length 3 and record them in a hash table keyed on the canonical
form of the clause (so that we never consider duplicates). We ignore clauses
of length 4 or greater.

Next we iterate through the keys of the hash table containing clauses
of length 3. Each key is a clause of the form x ∨ y ∨ z, where x, y, and z
are literals and |x| < |y| < |z|. Therefore the clause is potentially part of a
subset of clauses representing any of the following propositional formulas:

• x ≡ (y ∧ z), for which we additionally need x ∨ y and x ∨ z;

• y ≡ (x ∧ z), for which we additionally need x ∨ y and y ∨ z;

• z ≡ (x ∧ y), for which we additionally need x ∨ z and y ∨ z;

• |x| ≡ (|y|↔|z|), if an even number of x, y, and z are negative literals,
or |x| ≡ (|y|↔|z|), if an odd number of x, y, and z are negative literals.

For the first three possibilities, we check to see whether the two necessary
clauses of length 2 exist. If so, we emit all three clauses and any clauses of
length 1 for these variables.

For the last possibility, we maintain a hash table whose keys are of the
form a ≡ (b↔ c). The values in this hash table are numerical counts. When
we process a clause that can be part of the representation of a ≡ (b↔ c),
we increment the corresponding count in this hash table. When a count
reaches 4, we know we have seen all of the necessary clauses (because we are
not processing duplicate clauses multiple times), so we emit all four clauses
and any clauses of length 1 for these variables.

78 CHAPTER 6. SAT DECOMPOSITION

6.2 Graph structure

A SAT instance can be modeled with a graph whose vertices are the clauses.
The edges of the graph can be determined and optionally weighted in several
ways. For example, the graph may be constructed by joining two vertices
with an edge when the corresponding clauses share at least one variable (or
literal) in common. Such a graph is called a constraint graph.

The goal of decomposition is to identify and extract a subset of clauses
that are in some way tightly dependent on each other. The structure of the
constraint graph allows us to model and measure this dependence. If the
edges represent pairs of clauses that have at least one variable in common,
for example, then a highly connected subgraph corresponds to a subset of
clauses each of which shares variables with many others.

For finer control over the graph structure, the threshold for the existence
of an edge can be increased to require the clauses to have, say, at least
two variables in common. Alternatively, we can weight each edge with the
number of common variables in the two corresponding clauses. Such an
edge-weighted graph is used in Section 6.3.

Example 6.2.1. Consider the bipartite graph having 10 vertices on each
side whose bipartite adjacency matrix is shown below.

1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 1
1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0 0 0


The first five vertices on the left-hand side (represented by the first five rows
in the matrix above) are each joined only to the first four vertices on the
right-hand side (represented by the first four columns). The remaining five
vertices on the left-hand side are joined to random subsets of four vertices on
the right-hand side, so that every vertex on the left-hand side has degree 4.

Because the first five vertices on the left-hand side violate Hall’s condi-
tion, the bipartite matching problem on this graph is unsatisfiable. A SAT

6.2. GRAPH STRUCTURE 79

instance generated from this graph, hall-set-10-4 1.cnf, appears in Appen-
dix A; it is unsatisfiable by construction. This instance has 100 variables
and 104 clauses.

The constraint graph for this SAT instance is shown in Figure 6.1, drawn
by a force-directed graph drawing algorithm (neato from the Graphviz
suite1). The five black nodes numbered 1 through 5 in the center of the
graph represent the first five clauses in the instance, which specify that
the first five vertices on the left-hand side must each be joined to one of the
first four vertices on the right-hand side. The five light gray nodes numbered
6 through 10, mostly around the perimeter, represent the corresponding con-
straints for the remaining five vertices on the left-hand side. The 40 dark
gray nodes and the 54 white nodes represent the clauses corresponding to
triples (v, v′, w) of distinct vertices, where v and v′ are on the left-hand side
and w is on the right-hand side. Such a constraint mandates that the two
edges vw and v′w are not both chosen in the matching. The dark gray nodes
represent those clauses in which v and v′ are among the first five vertices on
the left-hand side and w is among the first four vertices on the right-hand
side; the white nodes represent the others. Together, the clauses represented
by the black nodes and the clauses represented by the dark gray nodes are
sufficient to prove the unsatisfiability of the instance; any subinstance in-
cluding all of these clauses will be unsatisfiable. We refer to the clauses
represented by the black and dark gray nodes as the Hall clauses.

As can be seen in the figure, the dark gray nodes are generally clustered
around the black nodes in the center, as a consequence of the structure
of the constraint graph (the force-directed graph drawing algorithm tends
to put adjacent nodes near each other and to spread nonadjacent nodes
apart). Thus, in this case, the constraint graph structure hints at a useful
subinstance.

Unfortunately, graph connectivity alone is not useful in this example for
identifying this subinstance, because the nodes corresponding to the Hall
clauses do not form a highly connected subgraph of the constraint graph.
We encountered similar failures with other instances in our experiments.
Additionally, graph connectivity alone seems to be too coarse: the subin-
stances extracted for various thresholds of connectivity tend to be too large
or too small, and it is difficult to find a useful compromise of parameters.

This suggests that we need a more refined measure for the dependencies
between clauses of an instance. In particular, it seems that what we need is
a way to identify a “neighborhood” of a clause, so that we can extract the

1See http://www.graphviz.org/.

http://www.graphviz.org/

80 CHAPTER 6. SAT DECOMPOSITION

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���

���

���

���

���

Figure 6.1: The constraint graph for an unsatisfiable bipartite matching
instance, drawn by a force-directed graph drawing algorithm.

6.3. RESISTIVE NETWORK DECOMPOSITION 81

Figure 6.2: The symbol for a resistor (left) and ground (right).

surrounding neighborhood of a black clause and thereby include all of the
dark gray clauses. This idea of identifying a neighborhood of a clause in the
constraint graph is the subject of the next section.

6.3 Resistive network decomposition

One way to use the constraint graph structure of a SAT instance to decom-
pose the instance into subinstances is to model the instance as a resistive
electrical network. This electrical metaphor has been used before to analyze
the structure of graphs, such as to study the behavior of random walks; see
Doyle and Snell [33] for an exposition of this application.

A resistor is an element of an electric circuit that impedes the flow of
electric current. Resistors are shown in circuit diagrams using the symbol
shown on the left in Figure 6.2. The unit of measurement of resistance
is the ohm, abbreviated Ω. The reciprocal of resistance is conductance,
whose unit of measurement is the mho, abbreviated f (also known as the
siemens, abbreviated S). The unit of measurement of electric current is the
ampere, abbreviated A, and the unit of measurement of voltage is the volt,
abbreviated V. The voltage V across a resistor of resistance R carrying a
current I is described by Ohm’s law, V = IR.

To model a SAT instance as a resistive electrical network, we construct
a (complete) graph whose nodes are the clauses C1, . . . , Cn of the SAT
instance. Each edge {Ci, Cj} of this graph is treated as a resistor by as-
signing it a conductance, given by a function f(Ci, Cj) of the two clauses
corresponding to the endpoints of the edge. An edge joining two “closely
related” clauses should be given a large conductance (i.e., a low resistance),
so, for example, the conductance of an edge could be the number of variables
(or literals) that the two clauses have in common. Note that a conductance
of zero is equivalent to a nonexistent edge. Each node Ci is also connected
to ground (i.e., a node whose voltage is zero, represented by the symbol on
the right in Figure 6.2) by a resistor of conductance f5(Ci). This could be
a constant function, e.g., f5(Ci) = 1, or it could depend on properties of
the clause, such as clause length.

82 CHAPTER 6. SAT DECOMPOSITION

(1)

3f

(3)

5f(4)
2f

(2)

1f

1f

1f

1f

1f

Figure 6.3: The resistive network corresponding to the SAT instance in
Example 6.3.1. Conductances are given in mhos.

Example 6.3.1. Consider the following SAT instance.

(1) x1 ∨ x2 ∨ x3 ∨ x4

(2) x1 ∨ x5 ∨ x6

(3) x2 ∨ x3 ∨ x4 ∨ x7 ∨ x8 ∨ x9 ∨ x10 ∨ x11

(4) x5 ∨ x6 ∨ x7 ∨ x8 ∨ x9 ∨ x10 ∨ x11

Using f5(Ci) = 1 for all i and f(Ci, Cj) = |vars(Ci) ∩ vars(Cj)|, that is,
the number of variables that the clauses Ci and Cj have in common, we
obtain the resistive network shown in Figure 6.3.

Once this resistive network is constructed, we apply a specified voltage
to a given node and use Ohm’s law to calculate the voltages at all other
nodes. The nodes whose voltages exceed a specified threshold give a subset
of the clauses of the original SAT instance, and this subset of clauses can be
extracted as a subinstance.

The intuitive motivation behind this approach is illustrated in Exam-
ple 6.2.1: useful subinstances should consist of closely related clauses, and
closely related clauses are “nearby” each other in the constraint graph. Thus
we should seek a model that can identify “nearby” nodes in a graph.

6.3. RESISTIVE NETWORK DECOMPOSITION 83

When voltage is applied to a node of a resistive network of the form
described here, it “spreads” to neighboring nodes in accordance with the
conductivities between the nodes: nodes joined by a link of high conduc-
tance will have very similar voltages, whereas nodes joined by a link of low
conductance may have voltages that differ significantly. But the effective
conductance between two nodes (and hence their relative voltages) is also
affected by the way in which they are mutually connected to other nodes—
two nodes that are themselves joined by a link of low conductance may each
be connected to a third node by links of high conductance, which provides
a high-conductance path between the original two nodes. This meshes well
with the notion that two clauses in a SAT instance may not have variables
in common themselves, but nevertheless they are related by the fact that
they each share several variables with a third clause.

When positive voltage is applied at a node k, then the subset of nodes
whose voltages exceed a specified threshold form a neighborhood of k. Vary-
ing the threshold will of course change the number of nodes in the neighbor-
hood. Since we are identifying nodes in the resistive network with clauses
in the SAT instance, we will also speak of the neighborhood of a clause.

If every node is connected to ground via a link with positive conductance,
then for any node l having positive voltage there is a path from k to l along
which the voltages of the nodes strictly decrease. For there is current flowing
from l to ground (under the convention that current flows from positive
voltage to ground), and the only source of current in the network is k; so
there must be a path from k to l taken by this current, and current flows
only from nodes of higher voltage to nodes of lower voltage. Therefore, the
neighborhood of a node k always induces a connected subgraph.

A family of neighborhoods of clauses determined in this way is a full
decomposition of the SAT instance if every clause in the instance is included
in at least one of these neighborhoods.

To calculate the voltages at all nodes of the network when voltage is
applied at one node, we solve a linear system. For each node i, let Vi
be the voltage at i, let R−1

i5 = f5(Ci) be the conductance between i and
ground, and let Ii5 be the current from i to ground. For nodes i and j
with i 6= j, let R−1

ij = f(Ci, Cj) be the conductance of the edge {i, j}, and
let Iij be the current flowing from i to j. Note that Iij = −Iji. By Ohm’s
law, Iij = R−1

ij (Vi − Vj). (This assumes the convention that that current
flows from positive voltage to ground, but this assumption is not materially
important—the opposite convention merely results in a sign flip.) Likewise,
Ii5 = R−1

i5Vi. By Kirchhoff’s circuit laws, a current conservation property
applies to every node (except the one to which voltage is applied): the net

84 CHAPTER 6. SAT DECOMPOSITION

current out of the node must be zero, i.e.,

Ii5 +
∑
j 6=i

Iij = 0.

(The node to which voltage is applied has a net outflow of current, because
the application of voltage acts as a current source; ground acts as a current
sink.) By substituting Iij = R−1

ij Vi−R
−1
ij Vj and Ii5 = R−1

i5Vi we obtain the
equations

R−1
i5Vi +

∑
j 6=i

(R−1
ij Vi −R

−1
ij Vj) = 0.

This gives a system of n−1 linear equations in n unknowns (V1 through Vn).
The last equation in the system comes from setting Vk to the applied voltage
for the node k to which voltage is applied.

It turns out that the system becomes computationally easier to solve if
we instead view the process as injecting a certain current into the network at
the chosen node k, rather than applying a certain voltage. For simplicity, we
may assume that the injected current is 1 ampere. Then all of the equations
in the system have the same form: for all i = 1, . . . , n,

R−1
i5Vi +

∑
j 6=i

(R−1
ij Vi −R

−1
ij Vj) = δik,

where k is the index of the chosen node and δik is the Kronecker delta,
defined by

δik =

{
1, if i = k;

0, otherwise.

This gives us a symmetric coefficient matrix A. In fact, the following theo-
rem holds:

Theorem 6.3.2. The coefficient matrix A of the system defined above is
positive definite if all conductances to ground R−1

i5 are positive, and positive
semidefinite if all conductances to ground are nonnegative.

Proof. The coefficient matrix A has off-diagonal entries aij = aji = −R−1
ij

for i < j and diagonal entries aii = R−1
i5 +

∑
j 6=iR

−1
ij . So for any z ∈ Rn we

6.3. RESISTIVE NETWORK DECOMPOSITION 85

have

zTAz = −2
∑
i<j

R−1
ij zizj︸ ︷︷ ︸

off-diagonal terms

+
∑
i

[
R−1

i5 +
∑
j 6=i

R−1
ij

]
z2
i︸ ︷︷ ︸

diagonal terms

= −2
∑
i<j

R−1
ij zizj +

∑
i

R−1
i5z

2
i +

∑
i

∑
j 6=i

R−1
ij z

2
i

=
∑
i<j

R−1
ij (z2

i + z2
j − 2zizj) +

∑
i

R−1
i5z

2
i

=
∑
i<j

R−1
ij (zi − zj)2 +

∑
i

R−1
i5z

2
i .

Both of these summations are nonnegative, and the second is strictly positive
for z 6= 0 if all conductances to ground R−1

i5 are positive.

As a consequence of Theorem 6.3.2, if all conductances to ground are
positive, then the matrix A has a unique Cholesky factorization A = LLT,
where L is a lower-triangular matrix with (real) positive entries on the di-
agonal [49]. Moreover, the matrix A does not depend on which node k is
chosen as the current injection point (only the right-hand side of the system
changes), so we can compute the Cholesky factorization of A once for a given
SAT instance and use it many times to determine neighborhoods of many
clauses.

The node voltages obtained by injecting a fixed current (say, 1 ampere)
into a given node will not necessarily be the same as the voltages obtained
by applying a fixed voltage (say, 1 volt) to that node, but the current-
injection solution will be a linear scaling of the voltage-application solution.
Therefore, we can obtain the voltage-application solution from the current-
injection solution by normalization, namely, by multiplying each node volt-
age by the reciprocal of the voltage at the node where the current was
injected.

Example 6.3.3. Consider the network from Example 6.3.1. Suppose 1 am-
pere is injected into node 1. Then the system to compute the voltages at
each node is 

5 −1 −3 0
−1 4 0 −2
−3 0 9 −5

0 −2 −5 8



V1

V2

V3

V4

 =


1
0
0
0

 .

86 CHAPTER 6. SAT DECOMPOSITION

The Cholesky factorization of the coefficient matrix A above is A = LLT,
where

L =


√

5 0 0 0

−1/
√

5
√

19/5 0 0

−3/
√

5 −3/
√

95 3
√

15/19 0

0 −2
√

5/19 −101/(3
√

285) (
√

401/15)/3



≈


2.23607 0 0 0
−0.44721 1.94936 0 0
−1.34164 −0.30779 2.66557 0

0 −1.02598 −1.99424 1.72348

 .
The solution to this system is

V1 = 152/401 ≈ 0.37905,

V2 = 77/401 ≈ 0.19202,

V3 = 94/401 ≈ 0.23441,

V4 = 78/401 ≈ 0.19451.

We normalize these voltages by dividing by V1 to get

V̂1 = 1,

V̂2 = 77/152 ≈ 0.50658,

V̂3 = 47/76 ≈ 0.61842,

V̂4 = 39/76 ≈ 0.51316.

These are the node voltages that would be obtained by applying 1 volt to
node 1. Using these voltages, we can determine a neighborhood of clause 1
by selecting the subset S of clauses whose corresponding node voltages meet
or exceed a given threshold voltage Vth:

S = {Ci : V̂i ≥ Vth }.

In this case,

S =


{C1, C2, C3, C4}, if 0 ≤ Vth ≤ 77/152;

{C1, C3, C4}, if 77/152 < Vth ≤ 39/76;

{C1, C3}, if 39/76 < Vth ≤ 47/76;

{C1}, if 47/76 < Vth ≤ 1.

6.3. RESISTIVE NETWORK DECOMPOSITION 87

+1 V

(1) 1 V

3f
87
76 A

(3) 47
76 V

5f

10
19 A(4)

39
76 V

2f 1
76 A

(2)77
152 V

1f
75
152 A

1f

77
152 A

1f

1 A

1f

47
76 A

1f

39
76 A

Figure 6.4: Voltages and currents in the resistive network from Figure 6.3
when 1 volt is applied to node 1 (under the convention that current flows
from positive voltage to ground).

Note that as the threshold voltage Vth is increased from 0 to 1, the size of
the neighborhood decreases. This gives us a way to control the size of the
extracted subinstance.

The voltages and currents in the network when 1 volt is applied to node 1
are shown in Figure 6.4.

Algorithm 6 uses this resistive network representation of a SAT instance
to fully decompose the instance as the union of smaller subinstances. The
idea is to choose a node of the network, extract a neighborhood of that node,
and repeat this process until every node of the network has been included
in at least one of these neighborhoods.

88 CHAPTER 6. SAT DECOMPOSITION

Algorithm 6 Resistive network decomposition of a SAT instance I =
{C1, . . . , Cn}

1: for i = 1 to n do
2: R−1

i5 := f5(Ci) . conductance to ground
3: end for
4: for i = 1 to n− 1 do
5: for j = i+ 1 to n do
6: R−1

ij := f(Ci, Cj) . conductance between clauses
7: end for
8: end for
9: construct the coefficient matrix A from {R−1

i5} and {R−1
ij }

10: L := Cholesky-factorize(A)
11: b := 0 ∈ Rn . right-hand side of system
12: U := I . clauses that have not yet been covered
13: while U 6= ∅ do
14: select Ci ∈ U
15: b[i] := 1
16: x := solution to Ax = b using L
17: b[i] := 0
18: x := x/x[i] . normalize
19: select threshold voltage Vth

20: S := {Ci ∈ I : x[i] ≥ Vth } . select subinstance
21: output or process S
22: U := U \ S
23: end while

6.3. RESISTIVE NETWORK DECOMPOSITION 89

Several remarks about this algorithm are in order.
The loop on lines 1–3 uses the function f5 to compute a positive conduc-

tance to ground for each node, and the loop on lines 4–8 uses the function f
to compute a nonnegative conductance between each pair of nodes. The
behavior of the resistive network can be modified by changing the defini-
tions of these two functions. As a reasonable starting point, we can define
f5(Ci) = 1 for all i and f(Ci, Cj) = |vars(Ci) ∩ vars(Cj)|, that is, the
number of variables that the clauses Ci and Cj have in common.

The set U keeps track of the clauses in the instance that have not yet
been included in any subinstance. It is initialized to the entire instance on
line 12, and on line 14 a clause Ci is selected from U to act as the current
injection point. This clause can be selected in several ways. One possibility
is to choose Ci from U uniformly at random. Another possibility is to
choose a starting point in the resistive network uniformly at random and
then perform a weighted random walk on the network, where the transition
probabilities from a given node are proportional to the conductances of the
corresponding edges (that is, from node i, the probability of transitioning to
node j is R−1

ij /
∑

k 6=iR
−1
ik). This random walk can be continued for a fixed

number of steps, or until an element of U is reached, to choose a clause to
act as the current injection point. A fuller exposition of the properties of
random walks on electric networks is given by Doyle and Snell [33].

The threshold voltage Vth is selected on line 19. The value of Vth can be
a fixed parameter of the algorithm, or it can be selected dynamically based
on the solution x to the linear system Ax = b. For example, the mth largest
component of x can be selected and this value used for Vth; this will yield
a subinstance S consisting of (approximately) m clauses (it is possible that
Vth is the voltage of several nodes, in which case S will contain more than
m clauses). This latter approach is useful to decompose a SAT instance into
subinstances of (approximately) equal size.

We implemented this technique in C. Our program constructs and solves
the linear system to model the injection of current at a clause, using the
CHOLMOD package [27] to find the Cholesky decomposition of the coef-
ficient matrix, and outputs a neighborhood of that clause. This can be
repeated until the entire instance has been decomposed into subinstances,
or it can be applied only to specified clauses. The size of the neighborhoods
can be controlled by specifying a number of clauses or a threshold voltage.
Optionally, a random walk can be performed, starting at an indicated clause
(or at a clause chosen at random), to determine the clause at which current
is to be injected.

As a proof of concept, we constructed random unsatisfiable bipartite

90 CHAPTER 6. SAT DECOMPOSITION

matching instances like the one in Example 6.2.1 as follows. A bipartite
graph is constructed with n vertices on each side. Each of the first six vertices
on the left-hand side is joined only to the first five vertices on the right-hand
side. The other vertices on the left-hand side were joined to random subsets
of size 5 on the right-hand side. This graph was then converted to an
(unsatisfiable) SAT instance modeling the bipartite matching problem.

The SAT instance contains n2 variables xi,j for 1 ≤ i, j ≤ n; the value
of the variable xi,j is true if and only if the ith vertex on the left-hand side
is matched to the jth vertex on the right-hand side. (The variables xi,j
corresponding to edges that do not exist in the graph are ignored; they do
not appear in any of the clauses and therefore may take either value.) The
clauses are of two types:

• For each vertex v on the left-hand side, there is one clause ensuring
that v is matched to some vertex on the right-hand side.

• For each triple (v, v′, w) of distinct vertices, where v and v′ are on the
left-hand side, w is on the right-hand side, and vw and v′w are both
edges in the graph, there is one clause ensuring that vw and v′w are
not both selected to be in the matching.

(Note that the random structure of the graph means that different instances
have slightly different numbers of this second type of clause, even for the
same value of n.) The 81 Hall clauses (that is, the clauses corresponding to
the subgraph that violates Hall’s condition) form an unsatisfiable subset.

We then applied the resistive network decomposition described here to
find neighborhoods of a Hall clause of the first type, that is, subsets of clauses
whose voltage exceeds a given threshold when a fixed voltage is applied to a
clause of the first type within the infeasible Hall set. The number of clauses
in the neighborhood was adjusted to the minimum number required (by
adjusting the voltage threshold) in order for the neighborhood to include all
81 Hall clauses. This was repeated for 20 different random bipartite graphs
for each value of n.

The results, averaged over the 20 trials for each value of n, are shown
in Table 6.1. The second and third columns of this table give the number
of variables and clauses in the full instance. The last two columns show
the size of the neighborhood required to encompass all 81 Hall clauses and
the corresponding threshold voltage Vth. We see that the neighborhood is
relatively small in comparison to the total number of clauses in the instance,
demonstrating that the resistive network decomposition is able to effectively
identify and extract these closely related clauses.

6.4. SUMMARY 91

n variables clauses neighborhood Vth

20 400 320.10 164.85 0.11564
30 900 453.15 171.65 0.10687
40 1600 598.75 192.35 0.09712
50 2500 727.70 173.40 0.09698
75 5625 1072.85 174.55 0.09081

100 10000 1420.45 203.15 0.08625

Table 6.1: Experimental results for resistive network decomposition on ran-
dom unsatisfiable bipartite matching instances.

6.4 Summary

In this chapter we proposed three techniques for decomposing a SAT in-
stance into smaller subinstances. In Section 6.1 we presented a method
for recognizing and extracting subsets of clauses that were produced from
Boolean formulas by the Tseitin transformation. Section 6.2 described the
constraint graph of a SAT instance and briefly explored the structure of this
graph as a means of decomposition. In Section 6.3 we presented a technique
to extract neighborhoods of clauses in a SAT instance by modeling the in-
stance as a resistive electrical network, applying voltage at a given clause,
and measuring the voltage at the other clauses. Preliminary results show
that this method has the potential to identify useful subsets of clauses in
the instance, which can be extracted as subinstances.

92 CHAPTER 6. SAT DECOMPOSITION

Chapter 7

Conclusions and outlook

Our aim in this thesis was to develop effective techniques to apply decision
diagrams to combinatorial optimization and satisfaction problems, in partic-
ular a multidimensional bin packing problem and the Boolean satisfiability
problem.

In Chapter 2, we described several variations of a generic algorithm for
the construction of exact and approximate decision diagrams representing
sets of feasible solutions to constraint satisfaction problems, including a
heuristic-driven depth-first method to construct an exact decision diagram
and an application of a clustering algorithm to construct approximate deci-
sion diagrams.

In Chapter 3, we examined several techniques to work effectively with
instances of a multidimensional bin packing problem using MDDs, includ-
ing the ullage MDD representation to handle symmetry, a rounding-down
technique to more reliably detect equivalent nodes, and the identification of
free and dead bins to quickly recognize feasibility and infeasibility. Experi-
mental results show that our MDD algorithms, when combined with these
representation techniques, can significantly outperform currently used CP
techniques and can also consistently outperform MIP.

In Chapter 4, we presented a new algorithm that uses BDDs and resolu-
tion to generate valid clauses from a SAT instance. This algorithm can use
approximate BDDs for instances that are too large for an exact BDD. We
compared the strength of our method to that of SAT conflict analysis and
showed that our method can generate strictly stronger clauses than a single
application of conflict analysis. Our experimental results show that con-
catenating these generated clauses to the original instance can significantly
reduce the size of the search tree for a SAT solver.

93

94 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Chapter 5 discusses a few implementation considerations for the practical
application of the algorithms described in Chapters 3 and 4.

In Chapter 6, we examined the problem of decomposing a SAT instance
into useful subinstances and presented several ideas toward a solution, in-
cluding the identification and extraction of clauses that were produced by
the Tseitin transformation, the decomposition of a SAT instance based on
its graph structure, and the modeling of a SAT instance as a resistive electric
network in order to identify neighborhoods of clauses.

We conclude with several questions that remain opportunities for future
research.

The results from Chapter 4 show that our BDD-guided clause genera-
tion method for the SAT problem has a solid theoretical foundation and
is potentially stronger than conflict analysis, but finding the best way to
put this idea into practice requires more study. Our experimental results
show that these clauses can significantly reduce the numbers of conflicts and
decisions encountered by the SAT solver during the search. However, the
solution time generally does not exhibit a corresponding decrease. There
is still much research to be done in discovering heuristics that work well
together and in exploring the effects of the number, length, and structure of
the generated clauses on the time required by the SAT solver. Preliminary
experiments seem to indicate that some subsets of the generated clauses are
significantly more helpful than others, which suggests that it may be fruitful
to study the properties of these useful subsets and to explore heuristics for
selecting such subsets. It may also be productive to adjust the way in which
the SAT solver uses the generated clauses (for example, by treating them in
the same way as its own learned clauses rather than as clauses in the original
instance). Alternatively, rather than performing the clause generation as a
preprocessing step, the generation of witness clauses may be more closely
integrated into the SAT solver. For instance, when the solver appears to be
making very little progress, and the number of free variables is limited, we
can interrupt the search and give the rest of the formula to a BDD-based
algorithm to generate witness clauses conditional on the partial assignment
represented by the last search state.

The decomposition techniques discussed in Chapter 6 are also deserving
of further investigation. Only preliminary experiments have been done so
far. In particular, can the resistive network decomposition technique be ef-
fectively applied to large real-world SAT instances to identify subinstances
from which useful clauses can be derived? The graph-theoretical properties
of the neighborhoods obtained using this approach are also worth investi-
gating.

95

Propositional model counting, or #SAT, is the problem of determin-
ing the number of satisfying solutions to a SAT instance [43]. Areas of
study in which model counting is useful include the analysis of combina-
torial problems, such as combinatorial designs, and various probabilistic
inference problems, such as Bayesian net reasoning. This is a challenging
problem; it is #P-complete, and current model counters are not scalable for
many problems. Because model counters must perform exhaustive analyses
for both satisfiable and unsatisfiable instances, nogoods are especially ben-
eficial. Consequently, it may be profitable to extend the application of our
witness-clause method to improve the performance of model counters.

Much of the existing theory of BDDs (see Knuth [60], for example) is
based on a fundamental synthesis algorithm that takes the BDDs for two
Boolean functions f and g and produces the BDD for the function f �
g, where � is a Boolean operator; this can be viewed as a “bottom-up”
process for BDD construction and results in reduced BDDs. However, the
construction algorithms that we have presented and applied in this thesis
use a different, top-down approach that does not always produce structurally
reduced decision diagrams. It would be enlightening to extend or adapt the
existing theory to these top-down algorithms. The theory of approximate
decision diagrams is also relatively unexplored and awaits results such as
provable bounds on the effectiveness of approximate decision diagrams for
various problems.

96 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Appendix A

Experimental instances

In this appendix we present some of the instances that were used in the
experiments reported in Sections 3.5, 4.4, and 6.2. These instances are also
available in machine-readable form by request.

A.1 Multidimensional bin packing instances

Each of the following multidimensional bin packing instances has 6 dimen-
sions, 18 items, and 6 identical bins. The columns of the table correspond
to the 6 dimensions. The first 18 rows of the table specify the sizes of
the items, and the last row specifies the size of each of the bins (every bin
has the same 6-dimensional size). These are the 52 instances with 20% bin
slack examined in detail in Section 3.5. The full set of multidimensional bin
packing instances used in the experiments in Section 3.5, having bin slack
between 0% and 35%, is available at http://www.math.cmu.edu/~bkell/

6-18-6-instances.txt or by request.

907 356 772 517 721 511
403 916 467 470 678 666
611 791 111 47 82 304
847 771 778 432 798 17
966 224 90 312 339 765
407 961 105 677 298 868
472 845 973 844 547 144
806 453 572 487 211 608
729 87 363 94 958 483
193 203 380 841 731 178
184 789 957 568 565 725
321 761 744 72 377 963
818 543 475 809 725 379
719 903 353 279 469 791
704 690 610 95 506 46
632 181 351 941 570 242
770 482 258 408 472 308
953 598 78 524 860 188

2289 2111 1688 1684 1982 1638

801 925 825 138 791 510
75 125 465 26 610 103

279 827 681 871 819 22
855 171 953 709 108 506
299 404 328 639 313 240
931 483 557 466 476 728
784 704 591 625 698 584
318 620 574 172 863 226
252 581 62 310 330 383
433 247 716 806 825 577
617 258 238 445 95 993
758 489 697 157 804 562
635 381 336 486 23 989
848 742 333 99 568 400
135 490 730 646 104 533
957 212 636 439 3 679
554 185 336 894 689 685
345 976 917 267 311 251

1976 1764 1995 1639 1686 1795

435 147 454 285 822 495
660 409 353 180 33 903
618 293 493 529 791 455
847 342 252 882 860 966
449 928 91 477 752 5
981 591 298 762 860 691
725 696 967 82 487 647
228 861 191 377 904 765
369 191 585 645 254 838
676 434 277 791 859 218
877 174 680 440 986 759
475 107 881 566 807 60
713 434 270 727 949 559
444 90 510 320 477 308
133 836 337 78 70 145
97 372 441 749 907 190

971 348 287 797 466 943
395 586 34 750 595 188

2019 1568 1481 1888 2376 1827

184 846 679 19 580 429
496 180 594 579 428 287
166 267 905 629 967 684
322 713 140 844 448 464
439 617 461 640 383 718
19 501 485 682 289 319

174 970 676 145 881 364
142 946 850 588 298 265
166 875 613 557 863 590
702 162 664 475 999 903
147 125 35 347 113 857
984 123 559 560 597 927
540 47 197 21 347 208
43 947 287 722 710 333

343 122 441 788 289 796
775 737 861 225 674 38
528 381 691 380 369 594
201 58 806 247 208 870

1275 1724 1989 1690 1889 1930

97

http://www.math.cmu.edu/~bkell/6-18-6-instances.txt
http://www.math.cmu.edu/~bkell/6-18-6-instances.txt

98 APPENDIX A. EXPERIMENTAL INSTANCES

622 195 984 735 87 649
710 978 213 274 209 754
878 312 49 160 482 904
416 85 126 252 45 205
88 944 536 896 489 823
38 106 888 837 239 665

987 612 670 621 457 813
76 296 398 390 145 143
25 828 801 905 618 395

825 516 530 689 435 335
398 187 21 213 417 962
279 739 943 219 582 960
861 878 394 894 525 810
417 994 992 943 367 5
232 872 859 803 430 415
211 382 996 905 823 111
816 361 766 666 568 457
393 167 189 937 608 327

1655 1891 2071 2268 1506 1947

212 719 641 998 784 790
178 94 37 414 594 838
707 113 806 149 264 829
819 541 320 207 22 775
931 24 43 628 496 396
948 264 733 555 296 834
854 891 110 381 14 8
346 210 792 987 133 642
483 197 388 107 178 573
595 485 496 349 723 401
162 826 107 730 667 855
707 45 617 664 533 372
155 432 512 578 180 115
968 707 164 324 523 751
806 787 573 90 77 735
731 276 728 166 30 560
134 158 530 386 214 343
415 598 609 716 565 574

2031 1474 1642 1686 1259 2079

670 604 911 675 419 923
294 750 275 344 991 354
391 768 305 82 265 199
366 303 740 104 397 388
609 130 231 59 185 490
748 331 422 148 603 971
451 340 324 634 697 391
600 804 569 402 28 259
537 49 264 380 625 192
777 766 826 80 969 107
346 102 573 4 211 947
624 537 750 360 894 641
347 921 966 669 858 374
805 871 703 999 573 616
52 960 588 266 856 989

659 470 205 30 731 681
869 334 198 777 831 69
733 162 820 730 478 523

1976 1841 1934 1349 2123 1823

469 753 354 325 98 717
575 899 593 585 696 563
720 808 156 50 697 666
344 633 335 567 14 633
552 379 352 506 133 112
409 320 454 711 180 144
371 69 135 268 221 704
40 46 536 816 371 947

964 463 760 825 387 75
946 746 387 947 541 223
669 57 919 89 155 661
366 625 74 291 395 192
676 3 4 872 66 371
914 532 344 801 495 387
94 464 581 936 607 781

374 541 68 782 234 965
746 322 546 660 982 221
901 594 365 453 9 782

2026 1651 1393 2097 1257 1829

43 932 988 781 476 244
167 730 371 41 823 813
205 260 527 836 556 25
395 756 218 98 756 258
843 969 626 271 987 181
245 849 666 346 211 430
834 818 789 154 437 83
226 485 163 572 899 511
909 405 405 34 130 994
497 651 523 357 664 815
157 938 263 981 554 504
64 816 714 788 239 410

563 746 233 239 812 229
219 865 168 767 281 364
131 428 373 860 612 628
623 188 344 753 205 112
360 476 373 178 222 960
157 863 61 522 200 531

1328 2435 1561 1716 1813 1619

336 918 321 230 359 233
756 358 621 949 372 552
56 837 438 626 702 627

748 155 92 700 950 333
181 978 338 977 428 687
942 884 961 159 791 125
418 509 568 440 6 201
530 215 90 498 635 970
509 948 82 218 35 110
204 641 45 744 759 255
301 143 969 34 877 683
902 305 150 403 415 289
397 202 563 665 887 661
491 271 473 506 505 230
467 696 728 114 355 507
847 863 898 950 169 76
934 817 99 903 951 770
54 725 393 979 268 153

1815 2093 1566 2019 1893 1493

67 885 48 539 184 164
213 130 597 45 248 87
799 822 250 117 878 588
404 15 294 519 343 711
218 57 564 769 112 543
664 779 957 670 217 349
117 136 315 767 995 30
787 856 327 117 792 937
694 792 877 195 971 241
731 633 99 835 919 884
631 595 864 918 990 751
253 157 146 317 286 714
362 285 960 858 174 634
697 752 607 676 974 401
880 688 772 276 262 939
959 943 756 465 124 637
433 825 551 677 107 459
281 513 935 42 910 434

1838 1973 1984 1761 1898 1901

552 857 403 173 281 214
350 521 540 896 534 236
804 766 576 594 490 663
146 603 70 26 198 472
567 786 95 560 915 765
574 196 967 405 440 674
30 408 272 107 420 667

504 359 223 17 416 34
298 456 391 918 874 939
840 109 270 137 906 909
836 852 485 592 625 600
341 516 643 630 107 427
793 424 382 553 701 359
442 636 284 931 437 962
703 347 708 70 37 395
433 529 63 232 505 324
834 22 301 66 576 453
259 700 393 250 633 551

1862 1818 1414 1432 1819 1929

803 243 79 538 14 849
589 324 802 908 310 767
718 690 414 642 489 613
347 424 144 626 55 663
563 283 769 24 214 266
835 950 935 724 244 512
493 819 472 823 919 711
29 691 853 684 289 842

729 362 783 772 497 18
113 392 725 305 10 442
97 202 363 747 555 259

150 638 751 481 403 562
241 203 124 373 827 514
929 651 275 713 504 82
357 954 328 950 108 550
468 472 169 710 498 971
538 974 511 120 73 931
918 874 660 155 802 65

1784 2030 1832 2059 1363 1924

99 539 893 138 163 857
899 359 227 550 933 890
277 88 955 19 910 136
375 418 815 802 994 935
613 248 698 301 89 547
515 539 619 99 491 586
951 576 299 926 30 32
433 146 542 987 481 22
395 892 298 747 956 718
625 59 407 401 658 155
683 210 268 513 296 305
17 707 661 406 786 501

626 936 221 135 888 637
53 41 519 628 985 627

920 343 372 556 478 781
803 983 770 606 413 964
956 317 309 560 813 832
398 334 742 353 568 802

1928 1547 1923 1746 2187 2066

517 730 152 361 515 601
80 687 910 807 0 942

994 895 238 797 413 898
109 557 431 219 22 141
178 321 382 47 853 377
447 785 951 201 952 319
652 927 895 939 240 306
99 763 899 92 766 342

718 236 633 888 941 358
142 847 380 147 309 716
399 351 313 320 119 614
463 682 770 589 483 421
463 797 32 443 760 156
54 889 422 289 377 785

219 365 454 775 696 624
547 925 512 762 286 426
681 865 124 590 183 716
403 23 703 788 530 885

1433 2329 1841 1811 1689 1926

192 961 569 264 727 859
383 112 150 76 344 825
135 351 145 809 998 13
679 179 724 332 594 812
354 126 162 650 446 326
632 267 149 21 718 152
974 730 704 129 56 732
530 14 331 709 349 499
93 403 354 609 367 648

532 969 151 547 824 211
25 807 171 608 62 904

282 308 885 50 205 315
299 228 997 89 988 126
596 615 453 541 972 18
987 289 937 565 211 2
203 954 977 104 773 299
843 406 330 725 790 439
771 252 910 967 442 372

1702 1595 1820 1559 1974 1511

837 944 825 897 416 696
603 926 688 627 489 532
631 858 200 417 770 492
286 29 361 304 383 734
80 983 636 619 230 184

694 346 615 660 188 175
763 633 690 477 443 806
413 229 25 76 272 403
66 378 911 477 37 29

533 545 136 66 794 270
409 349 776 943 968 566
23 755 202 421 234 994

930 67 845 491 586 784
483 841 645 926 605 285
814 320 338 701 443 208
339 936 60 901 265 958
244 147 277 987 36 366
352 911 548 386 780 391

1700 2040 1756 2076 1588 1775

963 482 311 993 711 12
197 298 585 95 314 545
917 248 338 985 162 905
495 781 858 995 987 383
561 151 358 451 381 722
890 304 637 605 505 576
51 444 536 250 60 269

371 997 301 395 681 7
739 210 288 630 254 506
571 301 352 134 303 783
610 632 408 525 570 351
28 604 36 226 122 480

360 637 96 592 530 82
762 828 667 254 598 656
868 725 681 610 990 965
571 34 448 271 106 521
585 212 181 330 951 815
903 887 920 817 707 531

2089 1755 1601 1832 1787 1822

485 303 704 783 475 249
643 802 919 141 672 15
544 195 442 249 270 682
471 234 177 354 365 232
394 867 320 835 523 454
724 799 682 556 492 730
628 728 260 166 54 756
693 856 327 242 802 670
390 75 259 217 561 100
924 767 82 787 239 487
21 285 692 768 705 652

437 251 743 115 165 127
681 276 95 281 201 916
243 721 723 294 293 385
459 506 123 729 936 173
164 125 479 632 436 176
671 5 191 996 599 375
861 290 560 252 647 246

1887 1617 1556 1680 1687 1485

113 834 608 136 151 396
457 417 729 117 51 313
143 311 474 102 350 660
555 759 807 149 244 475
999 415 900 566 678 381
368 535 510 93 611 286
970 120 431 155 615 611
145 685 264 669 660 241
989 744 988 925 829 936
24 727 133 176 729 742

368 334 406 111 233 582
604 905 141 955 398 885
730 929 755 397 966 18
462 431 555 50 397 688
689 993 404 639 602 690
246 107 54 810 157 936
910 615 911 165 82 843
761 106 428 360 736 636

1907 1994 1900 1315 1698 2064

A.1. MULTIDIMENSIONAL BIN PACKING INSTANCES 99

555 168 336 318 376 814
543 488 224 383 116 480
396 963 965 369 347 258
426 449 656 854 87 933
296 418 377 154 163 193
97 254 869 384 795 395

498 313 164 834 640 962
18 982 317 235 575 564

941 907 46 683 434 270
525 134 459 89 97 742
912 534 539 760 828 451
647 325 101 262 676 738
412 555 266 924 894 814
817 715 613 312 597 967
816 726 924 545 687 114
680 718 439 917 444 284
998 582 48 70 905 807
628 656 392 376 91 862

2041 1978 1547 1694 1751 2130

574 800 506 945 631 779
759 974 208 261 902 843
379 968 99 645 756 852
992 54 289 422 613 481
190 370 766 475 611 381
633 620 514 960 320 89
40 401 21 800 579 1

656 625 569 410 635 605
741 821 756 124 747 178
985 972 227 15 697 131
26 244 359 821 774 628

387 713 309 298 277 217
31 435 867 131 45 427

392 440 927 540 671 889
519 808 677 22 546 312
350 893 739 23 122 424
980 954 376 24 845 738
210 775 712 297 278 862

1769 2374 1785 1443 2010 1768

384 487 480 837 240 407
309 770 817 428 803 249
281 578 448 655 436 18
978 881 827 770 968 271
129 137 861 440 613 790
696 415 134 574 359 95
902 919 2 392 452 132
442 595 423 720 620 872
288 535 643 498 471 926
472 955 15 12 573 756
975 210 70 182 813 243
262 965 59 357 339 776
722 398 509 73 792 144
373 341 922 636 750 231
972 920 157 259 302 201
614 438 681 877 960 776
424 530 794 84 853 592
116 153 198 304 486 677

1868 2046 1608 1620 2166 1632

259 677 979 906 323 741
793 553 478 258 489 453
497 174 231 271 311 544
912 267 523 398 73 953
540 244 375 882 330 960
488 94 413 158 250 265
693 457 609 772 364 875
631 24 482 117 710 740
712 638 61 476 251 616
85 980 334 201 945 584

811 130 271 818 739 650
996 273 355 831 350 440
433 810 495 704 157 579
131 604 835 953 330 455

1 32 318 741 332 555
397 390 80 482 432 500
594 304 538 533 415 369
483 115 204 120 663 459

1892 1354 1517 1925 1493 2148

366 674 839 194 628 309
268 563 493 626 771 830
490 128 512 41 103 679
830 501 738 210 758 347
656 423 187 591 220 253
955 550 932 115 507 3
572 622 512 491 136 761
578 815 539 638 92 962

6 763 417 73 441 387
120 558 442 879 748 236
646 203 450 254 629 918
165 760 6 202 933 56
416 846 669 453 287 419
346 715 719 202 373 750
433 761 721 932 709 81
605 287 517 937 507 21
362 479 521 677 699 710
295 531 173 305 60 722

1622 2036 1878 1564 1721 1689

26 984 175 937 341 524
107 277 461 541 249 234
585 943 64 521 262 982
335 376 844 55 539 393
794 838 38 119 771 325
296 994 75 851 940 672
641 186 235 571 761 112
906 67 304 862 525 95
863 293 315 240 980 90
462 110 235 33 149 893
959 870 579 564 667 365
560 459 884 908 327 906

5 439 744 968 162 296
808 370 246 355 892 372
124 952 56 726 290 18
727 466 246 193 550 748
610 841 495 919 69 413
143 79 690 580 536 375

1791 1909 1338 1989 1802 1563

269 261 798 845 512 176
994 564 97 906 98 502
617 348 290 841 507 215
361 651 155 831 133 69
588 300 580 793 825 517
926 72 723 688 422 722
847 979 383 558 127 564
372 307 815 747 8 349
686 471 445 610 500 464
259 742 672 901 646 771
941 38 648 327 444 800
975 436 542 535 167 38
214 587 825 816 548 92
627 284 169 585 720 814
433 553 940 402 793 439
970 210 422 489 389 510
101 652 562 489 355 152
218 134 546 246 413 119

2080 1518 1923 2322 1522 1463

559 0 611 834 932 980
96 691 456 1000 837 840

909 913 89 602 870 936
790 647 699 389 777 251
441 423 199 669 333 320
401 612 975 671 558 387
286 914 309 624 111 293
614 195 631 256 65 728
435 283 69 202 332 742
188 13 61 568 429 614
820 708 617 12 524 306
239 525 256 417 419 938
510 341 856 818 980 109
869 403 404 498 578 436
570 738 253 11 543 412
705 284 931 308 20 921
835 988 648 664 313 303
248 391 626 595 435 704

1903 1814 1738 1828 1812 2044

672 111 99 639 826 960
605 569 532 727 418 372
49 475 789 190 910 502
7 177 920 137 568 484

810 956 33 467 454 958
83 121 803 785 159 931

454 633 66 266 790 222
402 300 389 427 262 284
379 940 530 829 515 39
870 55 717 927 520 997
488 463 790 318 960 921
423 88 508 871 375 329
497 298 458 559 755 389
227 411 252 798 255 711
226 559 271 746 713 616
129 371 886 222 150 37
438 588 691 678 643 27
852 603 904 334 383 16

1523 1544 1928 1984 1932 1759

435 788 335 522 191 290
808 618 344 181 658 70
299 11 376 169 568 822
547 562 53 575 156 756

3 510 38 296 362 999
386 639 849 312 613 610
287 744 285 35 963 196
644 686 156 922 44 45
840 423 199 516 968 384
829 74 200 872 899 886
306 907 602 705 802 118
849 43 265 10 927 442
772 226 813 324 498 529
654 802 128 402 271 670
918 819 936 270 861 945
414 986 336 80 717 34
360 531 580 393 916 934
168 70 170 925 504 458

1904 1888 1333 1502 2184 1838

54 523 364 109 936 517
61 342 954 263 357 582

381 244 375 967 17 31
153 727 734 537 997 214
834 821 957 464 578 303
839 668 545 593 758 183
233 70 121 260 202 920
635 726 675 209 938 527
745 890 38 718 485 736
107 802 572 665 921 446
164 800 9 32 307 607
539 361 407 727 881 432
14 358 921 842 981 933

432 668 960 265 340 358
989 177 155 786 799 744
174 781 21 93 75 574
610 257 534 753 705 447
835 329 932 197 43 555

1560 1909 1855 1696 2064 1822

476 128 585 720 782 48
470 526 307 343 525 550
344 514 385 376 490 886
244 603 432 835 444 897
969 995 488 591 694 471
75 422 348 456 200 494

367 906 388 870 124 921
52 505 711 910 145 936

815 228 663 417 777 634
864 115 139 928 902 423
654 639 386 838 132 4
603 834 855 980 871 516
719 279 551 601 669 36
729 68 205 493 553 581
73 978 480 631 205 297

253 276 236 968 388 725
611 202 427 936 517 820
539 879 272 893 455 55

1772 1820 1572 2558 1775 1859

665 478 342 397 559 876
288 576 375 624 642 848
148 227 228 429 150 796
57 900 420 288 837 811

317 293 995 966 410 868
634 470 259 183 196 836
774 404 842 281 337 999
522 84 794 907 513 311
165 218 71 133 352 814
47 683 23 555 374 549

900 495 552 158 560 133
735 480 262 227 810 727
868 506 272 660 919 420
337 484 514 63 913 732
465 184 764 738 910 175
799 372 637 58 900 954
771 939 58 255 439 146
388 497 297 57 192 321

1776 1658 1541 1396 2003 2264

506 966 272 77 3 133
288 998 428 312 869 373
162 15 183 94 683 903
266 114 708 692 210 613
679 138 220 949 151 782
930 187 452 629 554 660
237 448 807 388 459 476
258 899 809 199 373 211
977 389 352 215 731 903
745 40 857 759 558 211
512 990 344 44 50 51
160 548 523 125 442 244
562 15 601 855 584 732
952 125 660 575 205 615
122 872 380 265 558 599
394 882 654 371 407 278
347 586 206 111 72 683
100 514 608 25 182 103

1640 1746 1813 1337 1419 1714

201 306 730 826 953 14
253 812 527 783 650 531
72 951 655 877 731 792

850 685 943 472 61 701
421 172 111 571 754 62
794 900 400 832 417 630
162 403 534 68 374 874
265 55 603 759 691 899
82 369 816 819 132 419
0 446 639 712 797 421

666 315 569 726 494 700
608 389 336 789 598 878
532 416 974 636 196 556
772 330 297 216 875 248
839 51 788 446 413 712
393 162 993 920 624 183
422 845 869 513 996 780
152 184 921 814 613 892

1497 1559 2341 2356 2074 2059

1 553 445 376 299 921
941 729 405 284 525 600
750 835 453 209 588 765
213 941 570 313 941 638
585 723 257 513 109 642
250 204 326 874 88 753
107 868 819 719 881 314
428 491 543 42 557 417
845 267 334 612 381 793
673 543 696 224 122 66
629 750 613 602 426 896
583 23 783 861 998 295
397 624 816 276 372 544
319 961 849 256 845 869
279 192 947 80 214 989
456 697 703 512 687 873
440 654 965 927 876 332
559 949 449 47 376 611

1691 2201 2195 1546 1857 2264

100 APPENDIX A. EXPERIMENTAL INSTANCES

284 57 755 294 543 672
791 975 298 12 34 203
208 718 679 107 953 930
319 218 614 300 709 856
300 36 619 600 750 198
160 814 890 463 420 87
664 435 55 448 174 231
226 628 261 773 493 959
977 644 789 507 995 775
476 216 934 86 902 311
910 142 779 268 890 873
798 212 311 877 940 756
280 736 41 718 940 2
368 288 43 83 66 904
355 939 79 856 139 94
762 617 90 974 946 74
395 238 650 634 857 196
435 279 979 439 567 457

1742 1639 1774 1688 2264 1716

167 818 608 814 23 548
961 39 870 415 511 737
236 113 691 741 439 313
751 450 897 956 788 622
833 446 733 891 631 427
358 585 372 464 367 650
250 395 230 153 680 283
991 294 781 1000 696 307
350 899 249 948 611 936
661 856 398 572 113 59
538 847 764 733 869 199
611 740 521 266 524 201
675 824 608 686 854 439
293 22 954 15 469 209
610 889 159 462 268 398
421 117 56 276 72 918
775 654 31 15 658 678
832 811 989 131 221 318

2063 1960 1983 1908 1759 1649

852 507 72 408 14 558
278 244 897 702 823 546
607 595 51 55 602 718
337 142 711 707 156 843
784 437 826 399 685 941
111 975 30 649 934 304
333 639 115 394 890 519
751 49 931 414 281 103
456 88 255 594 99 790
838 876 626 93 303 200
901 73 156 610 224 390
558 654 89 802 509 911
740 257 925 800 318 268
721 620 102 475 547 932
178 102 948 999 653 457
635 174 464 253 654 542
782 161 344 969 972 955
986 524 570 844 752 946

2170 1424 1623 2034 1884 2185

469 238 374 848 904 960
887 446 204 110 151 270
699 229 575 122 973 79
266 764 719 627 732 843
540 333 412 940 728 347
950 576 73 936 273 187
74 696 641 890 944 802

644 181 770 24 225 390
550 376 336 629 919 406
999 613 249 185 392 640
267 959 664 981 236 875
503 547 86 477 920 979
539 593 914 934 159 245
726 367 748 710 977 216
173 669 354 480 260 735
568 862 169 650 550 643
79 42 684 6 108 176

357 517 403 153 790 953
1858 1802 1675 1941 2049 1950

845 989 248 81 305 972
883 569 237 518 139 489
225 117 518 970 600 457
872 505 599 840 257 752
698 281 923 737 956 544
648 65 321 890 396 996
485 565 774 563 434 497
868 647 95 799 442 240
564 537 358 861 728 695
469 902 345 92 255 79
356 281 887 342 164 405
406 256 565 711 71 717
202 565 492 116 143 758
900 10 208 467 252 845
346 752 513 660 681 794
951 262 880 505 497 716
528 163 519 413 481 410
660 475 758 504 647 148

2182 1589 1848 2014 1490 2103

522 94 826 245 623 359
475 769 166 439 589 487
88 130 255 578 393 358
75 532 220 579 818 456

395 21 415 630 369 84
858 940 171 438 777 870
91 354 0 308 705 865

457 800 28 341 0 765
272 735 406 844 908 722
946 941 776 707 183 31
237 613 98 684 910 563
872 908 710 262 701 914
637 862 960 825 780 231
431 392 466 518 268 738
249 987 351 921 417 762
60 338 61 500 157 596

136 103 344 636 916 171
207 201 706 160 274 675

1402 1944 1392 1923 1958 1930

870 223 637 982 142 395
442 992 320 47 900 162
952 281 403 642 276 289
92 441 583 536 949 116

909 56 719 90 648 862
613 5 435 891 209 111
856 324 751 425 258 83
788 627 208 980 437 989
450 462 7 78 514 554
668 629 856 813 282 497
350 263 950 293 38 717
569 354 22 26 588 659
773 392 560 37 166 590
75 867 186 52 585 497

438 715 155 368 476 787
624 726 417 640 811 977
863 917 889 370 611 526
549 966 411 674 173 969

2177 1848 1702 1589 1613 1956

563 155 777 198 257 801
475 24 142 52 257 146
926 908 377 355 431 99
226 706 72 722 548 507
41 346 131 391 795 752
56 253 16 865 920 928

340 364 40 302 246 932
760 442 153 818 53 522
892 63 349 648 417 482
130 197 600 357 253 956
603 112 383 894 4 694
630 497 448 861 901 887
822 695 477 4 106 197
809 357 652 295 372 336
231 889 653 931 827 734
697 221 230 57 373 432
661 466 75 894 592 268
658 828 389 405 523 124

1904 1505 1193 1810 1575 1960

70 767 387 291 65 307
881 62 755 409 654 536
414 99 797 555 652 157
563 525 134 762 842 65
280 438 452 974 440 923
203 603 123 823 577 247
484 73 829 117 700 617
408 21 522 476 870 586
708 401 550 307 654 229
672 542 374 539 746 10
455 379 358 85 585 408
610 624 365 310 130 881
142 183 495 669 462 589
178 967 890 327 946 797
513 230 452 896 974 353
767 219 391 951 76 659
435 468 61 312 978 993
676 701 862 683 945 548

1692 1461 1760 1898 2260 1781

766 313 798 401 807 719
149 177 26 678 443 540
312 842 554 754 923 628
473 786 238 983 168 700
739 831 738 885 892 937
800 147 40 971 587 150
971 379 615 304 791 660
354 76 180 516 804 933
70 142 218 567 941 346

333 23 933 180 392 705
510 111 438 514 565 289
191 282 161 286 37 707
467 340 136 117 464 440
601 961 967 855 914 486
873 136 669 349 581 755
269 938 879 554 906 463
913 503 579 247 886 143
890 353 691 571 48 688

1937 1468 1772 1947 2230 2058

946 165 344 812 951 433
730 917 280 67 286 151
983 744 117 29 926 286
21 220 401 518 639 971

193 921 550 105 756 767
554 334 181 494 972 713
129 675 918 655 768 78
344 511 660 12 110 352
709 230 70 628 854 119
978 723 304 753 80 5
174 613 190 248 810 26
639 528 529 565 825 463
222 970 542 868 832 852
125 613 810 877 895 420
173 75 443 645 5 796
537 433 38 452 887 321
755 536 536 378 88 611
29 238 87 669 518 550

1649 1890 1400 1755 2241 1583

452 856 880 851 948 856
964 831 604 137 562 733

6 29 982 405 567 647
180 243 102 19 225 710
342 522 75 986 317 424
234 134 782 962 467 132
887 569 658 728 438 136
14 115 689 771 912 283

764 29 987 626 245 498
406 547 95 49 375 470
823 142 480 942 959 412
571 38 401 528 813 186
420 745 740 684 756 653
812 441 310 321 955 56
91 502 56 334 902 762

260 625 305 862 447 613
597 150 605 1000 293 28
979 277 818 428 501 24

1761 1359 1914 2127 2137 1525

256 167 271 375 927 86
405 811 469 118 795 606
970 603 343 620 526 394
507 676 811 479 482 439
388 592 868 3 189 633
57 926 313 811 810 979

180 166 975 518 563 866
931 213 116 743 442 798
346 736 354 132 784 362
283 98 275 675 307 861
240 461 290 895 711 801
514 326 875 651 863 16
782 164 114 77 496 30
72 792 522 540 346 647

471 798 269 777 784 63
571 186 975 80 630 613
881 747 902 405 167 815
966 438 874 773 595 76

1764 1780 1924 1735 2084 1817

558 843 750 686 735 77
628 74 909 78 199 856
110 186 939 163 706 312
919 5 15 50 96 665
840 630 376 103 719 177
247 533 273 72 815 644
834 853 868 200 274 71
799 122 197 987 642 143
385 48 491 122 344 860
955 461 638 442 387 103
718 869 436 313 865 11
178 820 928 715 192 973
215 9 168 29 925 120
522 655 799 715 475 35
321 975 39 140 869 223

6 185 558 420 166 689
82 372 998 735 75 826
3 613 268 537 586 771

1664 1651 1930 1302 1814 1512

82 725 224 264 938 898
690 603 25 590 667 815
601 20 373 184 614 540
896 275 568 228 783 208
994 503 150 262 565 932
988 867 49 650 600 349
461 632 998 422 988 622
499 169 278 122 596 609
696 187 340 867 826 329
64 142 734 756 11 16

625 444 647 722 899 54
211 488 872 250 253 648
392 884 191 581 586 723
283 337 870 868 200 485
650 881 476 182 478 494
589 712 277 617 273 826
750 685 963 103 683 620
16 16 123 464 875 171

1898 1714 1632 1627 2167 1868

746 423 244 175 751 499
897 817 164 101 148 554
311 962 513 263 268 849
732 415 772 832 911 970
25 937 580 933 251 928
41 822 253 653 491 987

646 734 246 501 559 262
856 771 796 965 880 469
831 587 705 842 106 660
235 737 282 169 855 306
579 247 43 684 969 982
383 235 243 797 867 987
659 879 768 526 17 708
574 704 557 384 943 948
517 681 568 801 670 198
743 35 428 466 95 160
787 424 808 705 211 218

6 779 743 281 588 29
1914 2238 1743 2016 1916 2143

A.2. SAT INSTANCES 101

A.2 SAT instances

The following SAT instances were used in the experiments reported in Sec-
tions 4.4 and 6.2. These instances are in DIMACS CNF format. The first
line is of the form “p cnf n m”, where n is the number of variables in the
instance (numbered 1 through n) and m is the number of clauses. Following
this header line are m lines, one for each clause; each of these lines contains
a set of positive or negative integers specifying the literals in the clause (for
example, 3 denotes x3 and -3 denotes x3), followed by 0.

A.2.1 Unsatisfiable bipartite matching: hall-set-15-10 01.cnf

This SAT instance represents an unsatisfiable bipartite matching instance.
The underlying bipartite graph has 15 vertices on each side. Every vertex
on the left-hand side has degree 9. The meaning of the variables in the
SAT instance is as follows: For an edge joining vertex i on the left-hand
side and a vertex j on the right-hand side, with i, j ∈ {0, 1, 2, . . . , 14}, the
variable x15i+j+1 indicates whether the edge is part of the matching. (The
header line specifies that the SAT instance contains 225 variables, but only
135 variables appear in the clauses; variables corresponding to non-edges
in the underlying graph are irrelevant, do not appear in any clause, and
therefore may take either value.) The first 15 clauses, which are of length 9,
require that every vertex on the left-hand side is matched with at least
one vertex on the right-hand side. The remaining 733 clauses, which are of
length 2, require that no vertex on the right-hand side is matched with more
than one vertex on the left-hand side. The instance is unsatisfiable because
there is a subset of 10 vertices on the left-hand side that is adjacent to only
9 vertices on the right-hand side, thereby violating Hall’s condition.

p cnf 225 748

2 3 4 5 8 11 12 13 15 0

16 18 19 22 23 25 27 28 30 0

32 33 34 35 38 41 42 43 45 0

46 47 49 52 53 56 57 58 60 0

62 63 64 65 68 71 72 73 75 0

77 78 79 80 83 86 87 88 90 0

92 93 94 95 98 101 102 103 105 0

107 108 109 110 113 116 117 118 120 0

123 125 126 128 129 130 131 133 134 0

136 137 139 141 144 146 147 148 149 0

102 APPENDIX A. EXPERIMENTAL INSTANCES

151 152 153 155 159 160 161 164 165 0

167 168 169 170 173 176 177 178 180 0

182 183 184 185 188 191 192 193 195 0

197 198 199 200 203 206 207 208 210 0

212 213 214 215 218 221 222 223 225 0

-16 -46 0

-16 -136 0

-16 -151 0

-46 -136 0

-46 -151 0

-136 -151 0

-2 -32 0

-2 -47 0

-2 -62 0

-2 -77 0

-2 -92 0

-2 -107 0

-2 -137 0

-2 -152 0

-2 -167 0

-2 -182 0

-2 -197 0

-2 -212 0

-32 -47 0

-32 -62 0

-32 -77 0

-32 -92 0

-32 -107 0

-32 -137 0

-32 -152 0

-32 -167 0

-32 -182 0

-32 -197 0

-32 -212 0

-47 -62 0

-47 -77 0

-47 -92 0

-47 -107 0

-47 -137 0

-47 -152 0

-47 -167 0

-47 -182 0

-47 -197 0

-47 -212 0

-62 -77 0

-62 -92 0

-62 -107 0

-62 -137 0

-62 -152 0

-62 -167 0

-62 -182 0

-62 -197 0

-62 -212 0

-77 -92 0

-77 -107 0

-77 -137 0

-77 -152 0

-77 -167 0

-77 -182 0

-77 -197 0

-77 -212 0

-92 -107 0

-92 -137 0

-92 -152 0

-92 -167 0

-92 -182 0

-92 -197 0

-92 -212 0

-107 -137 0

-107 -152 0

-107 -167 0

-107 -182 0

-107 -197 0

-107 -212 0

-137 -152 0

-137 -167 0

-137 -182 0

-137 -197 0

-137 -212 0

-152 -167 0

-152 -182 0

-152 -197 0

-152 -212 0

-167 -182 0

-167 -197 0

-167 -212 0

-182 -197 0

-182 -212 0

-197 -212 0

-3 -18 0

-3 -33 0

-3 -63 0

-3 -78 0

-3 -93 0

-3 -108 0

-3 -123 0

-3 -153 0

-3 -168 0

-3 -183 0

-3 -198 0

-3 -213 0

-18 -33 0

-18 -63 0

-18 -78 0

-18 -93 0

-18 -108 0

-18 -123 0

-18 -153 0

-18 -168 0

-18 -183 0

-18 -198 0

-18 -213 0

-33 -63 0

-33 -78 0

-33 -93 0

-33 -108 0

-33 -123 0

-33 -153 0

-33 -168 0

-33 -183 0

-33 -198 0

-33 -213 0

-63 -78 0

-63 -93 0

-63 -108 0

-63 -123 0

-63 -153 0

-63 -168 0

-63 -183 0

-63 -198 0

-63 -213 0

-78 -93 0

-78 -108 0

-78 -123 0

-78 -153 0

-78 -168 0

-78 -183 0

-78 -198 0

-78 -213 0

-93 -108 0

-93 -123 0

A.2. SAT INSTANCES 103

-93 -153 0

-93 -168 0

-93 -183 0

-93 -198 0

-93 -213 0

-108 -123 0

-108 -153 0

-108 -168 0

-108 -183 0

-108 -198 0

-108 -213 0

-123 -153 0

-123 -168 0

-123 -183 0

-123 -198 0

-123 -213 0

-153 -168 0

-153 -183 0

-153 -198 0

-153 -213 0

-168 -183 0

-168 -198 0

-168 -213 0

-183 -198 0

-183 -213 0

-198 -213 0

-4 -19 0

-4 -34 0

-4 -49 0

-4 -64 0

-4 -79 0

-4 -94 0

-4 -109 0

-4 -139 0

-4 -169 0

-4 -184 0

-4 -199 0

-4 -214 0

-19 -34 0

-19 -49 0

-19 -64 0

-19 -79 0

-19 -94 0

-19 -109 0

-19 -139 0

-19 -169 0

-19 -184 0

-19 -199 0

-19 -214 0

-34 -49 0

-34 -64 0

-34 -79 0

-34 -94 0

-34 -109 0

-34 -139 0

-34 -169 0

-34 -184 0

-34 -199 0

-34 -214 0

-49 -64 0

-49 -79 0

-49 -94 0

-49 -109 0

-49 -139 0

-49 -169 0

-49 -184 0

-49 -199 0

-49 -214 0

-64 -79 0

-64 -94 0

-64 -109 0

-64 -139 0

-64 -169 0

-64 -184 0

-64 -199 0

-64 -214 0

-79 -94 0

-79 -109 0

-79 -139 0

-79 -169 0

-79 -184 0

-79 -199 0

-79 -214 0

-94 -109 0

-94 -139 0

-94 -169 0

-94 -184 0

-94 -199 0

-94 -214 0

-109 -139 0

-109 -169 0

-109 -184 0

-109 -199 0

-109 -214 0

-139 -169 0

-139 -184 0

-139 -199 0

-139 -214 0

-169 -184 0

-169 -199 0

-169 -214 0

-184 -199 0

-184 -214 0

-199 -214 0

-5 -35 0

-5 -65 0

-5 -80 0

-5 -95 0

-5 -110 0

-5 -125 0

-5 -155 0

-5 -170 0

-5 -185 0

-5 -200 0

-5 -215 0

-35 -65 0

-35 -80 0

-35 -95 0

-35 -110 0

-35 -125 0

-35 -155 0

-35 -170 0

-35 -185 0

-35 -200 0

-35 -215 0

-65 -80 0

-65 -95 0

-65 -110 0

-65 -125 0

-65 -155 0

-65 -170 0

-65 -185 0

-65 -200 0

-65 -215 0

-80 -95 0

-80 -110 0

-80 -125 0

-80 -155 0

-80 -170 0

-80 -185 0

-80 -200 0

-80 -215 0

-95 -110 0

-95 -125 0

-95 -155 0

-95 -170 0

-95 -185 0

-95 -200 0

-95 -215 0

-110 -125 0

-110 -155 0

-110 -170 0

-110 -185 0

-110 -200 0

-110 -215 0

-125 -155 0

-125 -170 0

-125 -185 0

-125 -200 0

-125 -215 0

104 APPENDIX A. EXPERIMENTAL INSTANCES

-155 -170 0

-155 -185 0

-155 -200 0

-155 -215 0

-170 -185 0

-170 -200 0

-170 -215 0

-185 -200 0

-185 -215 0

-200 -215 0

-126 -141 0

-22 -52 0

-8 -23 0

-8 -38 0

-8 -53 0

-8 -68 0

-8 -83 0

-8 -98 0

-8 -113 0

-8 -128 0

-8 -173 0

-8 -188 0

-8 -203 0

-8 -218 0

-23 -38 0

-23 -53 0

-23 -68 0

-23 -83 0

-23 -98 0

-23 -113 0

-23 -128 0

-23 -173 0

-23 -188 0

-23 -203 0

-23 -218 0

-38 -53 0

-38 -68 0

-38 -83 0

-38 -98 0

-38 -113 0

-38 -128 0

-38 -173 0

-38 -188 0

-38 -203 0

-38 -218 0

-53 -68 0

-53 -83 0

-53 -98 0

-53 -113 0

-53 -128 0

-53 -173 0

-53 -188 0

-53 -203 0

-53 -218 0

-68 -83 0

-68 -98 0

-68 -113 0

-68 -128 0

-68 -173 0

-68 -188 0

-68 -203 0

-68 -218 0

-83 -98 0

-83 -113 0

-83 -128 0

-83 -173 0

-83 -188 0

-83 -203 0

-83 -218 0

-98 -113 0

-98 -128 0

-98 -173 0

-98 -188 0

-98 -203 0

-98 -218 0

-113 -128 0

-113 -173 0

-113 -188 0

-113 -203 0

-113 -218 0

-128 -173 0

-128 -188 0

-128 -203 0

-128 -218 0

-173 -188 0

-173 -203 0

-173 -218 0

-188 -203 0

-188 -218 0

-203 -218 0

-129 -144 0

-129 -159 0

-144 -159 0

-25 -130 0

-25 -160 0

-130 -160 0

-11 -41 0

-11 -56 0

-11 -71 0

-11 -86 0

-11 -101 0

-11 -116 0

-11 -131 0

-11 -146 0

-11 -161 0

-11 -176 0

-11 -191 0

-11 -206 0

-11 -221 0

-41 -56 0

-41 -71 0

-41 -86 0

-41 -101 0

-41 -116 0

-41 -131 0

-41 -146 0

-41 -161 0

-41 -176 0

-41 -191 0

-41 -206 0

-41 -221 0

-56 -71 0

-56 -86 0

-56 -101 0

-56 -116 0

-56 -131 0

-56 -146 0

-56 -161 0

-56 -176 0

-56 -191 0

-56 -206 0

-56 -221 0

-71 -86 0

-71 -101 0

-71 -116 0

-71 -131 0

-71 -146 0

-71 -161 0

-71 -176 0

-71 -191 0

-71 -206 0

-71 -221 0

-86 -101 0

-86 -116 0

-86 -131 0

-86 -146 0

-86 -161 0

-86 -176 0

-86 -191 0

-86 -206 0

-86 -221 0

-101 -116 0

-101 -131 0

-101 -146 0

-101 -161 0

-101 -176 0

-101 -191 0

-101 -206 0

-101 -221 0

-116 -131 0

A.2. SAT INSTANCES 105

-116 -146 0

-116 -161 0

-116 -176 0

-116 -191 0

-116 -206 0

-116 -221 0

-131 -146 0

-131 -161 0

-131 -176 0

-131 -191 0

-131 -206 0

-131 -221 0

-146 -161 0

-146 -176 0

-146 -191 0

-146 -206 0

-146 -221 0

-161 -176 0

-161 -191 0

-161 -206 0

-161 -221 0

-176 -191 0

-176 -206 0

-176 -221 0

-191 -206 0

-191 -221 0

-206 -221 0

-12 -27 0

-12 -42 0

-12 -57 0

-12 -72 0

-12 -87 0

-12 -102 0

-12 -117 0

-12 -147 0

-12 -177 0

-12 -192 0

-12 -207 0

-12 -222 0

-27 -42 0

-27 -57 0

-27 -72 0

-27 -87 0

-27 -102 0

-27 -117 0

-27 -147 0

-27 -177 0

-27 -192 0

-27 -207 0

-27 -222 0

-42 -57 0

-42 -72 0

-42 -87 0

-42 -102 0

-42 -117 0

-42 -147 0

-42 -177 0

-42 -192 0

-42 -207 0

-42 -222 0

-57 -72 0

-57 -87 0

-57 -102 0

-57 -117 0

-57 -147 0

-57 -177 0

-57 -192 0

-57 -207 0

-57 -222 0

-72 -87 0

-72 -102 0

-72 -117 0

-72 -147 0

-72 -177 0

-72 -192 0

-72 -207 0

-72 -222 0

-87 -102 0

-87 -117 0

-87 -147 0

-87 -177 0

-87 -192 0

-87 -207 0

-87 -222 0

-102 -117 0

-102 -147 0

-102 -177 0

-102 -192 0

-102 -207 0

-102 -222 0

-117 -147 0

-117 -177 0

-117 -192 0

-117 -207 0

-117 -222 0

-147 -177 0

-147 -192 0

-147 -207 0

-147 -222 0

-177 -192 0

-177 -207 0

-177 -222 0

-192 -207 0

-192 -222 0

-207 -222 0

-13 -28 0

-13 -43 0

-13 -58 0

-13 -73 0

-13 -88 0

-13 -103 0

-13 -118 0

-13 -133 0

-13 -148 0

-13 -178 0

-13 -193 0

-13 -208 0

-13 -223 0

-28 -43 0

-28 -58 0

-28 -73 0

-28 -88 0

-28 -103 0

-28 -118 0

-28 -133 0

-28 -148 0

-28 -178 0

-28 -193 0

-28 -208 0

-28 -223 0

-43 -58 0

-43 -73 0

-43 -88 0

-43 -103 0

-43 -118 0

-43 -133 0

-43 -148 0

-43 -178 0

-43 -193 0

-43 -208 0

-43 -223 0

-58 -73 0

-58 -88 0

-58 -103 0

-58 -118 0

-58 -133 0

-58 -148 0

-58 -178 0

-58 -193 0

-58 -208 0

-58 -223 0

-73 -88 0

-73 -103 0

-73 -118 0

-73 -133 0

-73 -148 0

-73 -178 0

-73 -193 0

-73 -208 0

-73 -223 0

106 APPENDIX A. EXPERIMENTAL INSTANCES

-88 -103 0

-88 -118 0

-88 -133 0

-88 -148 0

-88 -178 0

-88 -193 0

-88 -208 0

-88 -223 0

-103 -118 0

-103 -133 0

-103 -148 0

-103 -178 0

-103 -193 0

-103 -208 0

-103 -223 0

-118 -133 0

-118 -148 0

-118 -178 0

-118 -193 0

-118 -208 0

-118 -223 0

-133 -148 0

-133 -178 0

-133 -193 0

-133 -208 0

-133 -223 0

-148 -178 0

-148 -193 0

-148 -208 0

-148 -223 0

-178 -193 0

-178 -208 0

-178 -223 0

-193 -208 0

-193 -223 0

-208 -223 0

-134 -149 0

-134 -164 0

-149 -164 0

-15 -30 0

-15 -45 0

-15 -60 0

-15 -75 0

-15 -90 0

-15 -105 0

-15 -120 0

-15 -165 0

-15 -180 0

-15 -195 0

-15 -210 0

-15 -225 0

-30 -45 0

-30 -60 0

-30 -75 0

-30 -90 0

-30 -105 0

-30 -120 0

-30 -165 0

-30 -180 0

-30 -195 0

-30 -210 0

-30 -225 0

-45 -60 0

-45 -75 0

-45 -90 0

-45 -105 0

-45 -120 0

-45 -165 0

-45 -180 0

-45 -195 0

-45 -210 0

-45 -225 0

-60 -75 0

-60 -90 0

-60 -105 0

-60 -120 0

-60 -165 0

-60 -180 0

-60 -195 0

-60 -210 0

-60 -225 0

-75 -90 0

-75 -105 0

-75 -120 0

-75 -165 0

-75 -180 0

-75 -195 0

-75 -210 0

-75 -225 0

-90 -105 0

-90 -120 0

-90 -165 0

-90 -180 0

-90 -195 0

-90 -210 0

-90 -225 0

-105 -120 0

-105 -165 0

-105 -180 0

-105 -195 0

-105 -210 0

-105 -225 0

-120 -165 0

-120 -180 0

-120 -195 0

-120 -210 0

-120 -225 0

-165 -180 0

-165 -195 0

-165 -210 0

-165 -225 0

-180 -195 0

-180 -210 0

-180 -225 0

-195 -210 0

-195 -225 0

-210 -225 0

A.2.2 Unsatisfiable biconditional formula: gz4.cnf

Groote and Zantema [44] describe a particular iterative procedure for gener-
ating unsatisfiable biconditional formulas. This SAT instance was produced
from the formula ¬[S4] generated on the fourth iteration of this construc-
tion; it was converted to conjunctive normal form by applying the Tseitin
transformation (see Section 6.1.1).

A.2. SAT INSTANCES 107

p cnf 95 253

1 2 3 0

-1 -2 3 0

-1 2 -3 0

1 -2 -3 0

3 4 5 0

-3 -4 5 0

-3 4 -5 0

3 -4 -5 0

5 6 7 0

-5 -6 7 0

-5 6 -7 0

5 -6 -7 0

7 8 9 0

-7 -8 9 0

-7 8 -9 0

7 -8 -9 0

9 10 11 0

-9 -10 11 0

-9 10 -11 0

9 -10 -11 0

11 12 13 0

-11 -12 13 0

-11 12 -13 0

11 -12 -13 0

6 13 14 0

-6 -13 14 0

6 -13 -14 0

-6 13 -14 0

14 15 16 0

-14 -15 16 0

-14 15 -16 0

14 -15 -16 0

16 17 18 0

-16 -17 18 0

-16 17 -18 0

16 -17 -18 0

4 18 19 0

-4 -18 19 0

4 -18 -19 0

-4 18 -19 0

19 20 21 0

-19 -20 21 0

-19 20 -21 0

19 -20 -21 0

21 22 23 0

-21 -22 23 0

-21 22 -23 0

21 -22 -23 0

23 24 25 0

-23 -24 25 0

-23 24 -25 0

23 -24 -25 0

12 25 26 0

-12 -25 26 0

12 -25 -26 0

-12 25 -26 0

20 26 27 0

-20 -26 27 0

20 -26 -27 0

-20 26 -27 0

27 28 29 0

-27 -28 29 0

-27 28 -29 0

27 -28 -29 0

2 29 30 0

-2 -29 30 0

2 -29 -30 0

-2 29 -30 0

30 31 32 0

-30 -31 32 0

-30 31 -32 0

30 -31 -32 0

32 33 34 0

-32 -33 34 0

-32 33 -34 0

32 -33 -34 0

34 35 36 0

-34 -35 36 0

-34 35 -36 0

34 -35 -36 0

10 36 37 0

-10 -36 37 0

10 -36 -37 0

-10 36 -37 0

37 38 39 0

-37 -38 39 0

-37 38 -39 0

37 -38 -39 0

33 39 40 0

-33 -39 40 0

33 -39 -40 0

-33 39 -40 0

40 41 42 0

-40 -41 42 0

-40 41 -42 0

40 -41 -42 0

17 42 43 0

-17 -42 43 0

17 -42 -43 0

-17 42 -43 0

31 43 44 0

-31 -43 44 0

31 -43 -44 0

-31 43 -44 0

44 45 46 0

-44 -45 46 0

-44 45 -46 0

44 -45 -46 0

46 47 48 0

-46 -47 48 0

-46 47 -48 0

46 -47 -48 0

24 48 49 0

-24 -48 49 0

24 -48 -49 0

-24 48 -49 0

38 49 50 0

-38 -49 50 0

38 -49 -50 0

-38 49 -50 0

45 50 51 0

-45 -50 51 0

45 -50 -51 0

-45 50 -51 0

1 51 52 0

-1 -51 52 0

1 -51 -52 0

-1 51 -52 0

52 53 54 0

-52 -53 54 0

-52 53 -54 0

52 -53 -54 0

54 55 56 0

-54 -55 56 0

-54 55 -56 0

54 -55 -56 0

56 57 58 0

-56 -57 58 0

-56 57 -58 0

56 -57 -58 0

8 58 59 0

-8 -58 59 0

8 -58 -59 0

-8 58 -59 0

59 60 61 0

-59 -60 61 0

-59 60 -61 0

59 -60 -61 0

61 62 63 0

-61 -62 63 0

-61 62 -63 0

61 -62 -63 0

57 63 64 0

-57 -63 64 0

57 -63 -64 0

-57 63 -64 0

15 64 65 0

-15 -64 65 0

15 -64 -65 0

108 APPENDIX A. EXPERIMENTAL INSTANCES

-15 64 -65 0

65 66 67 0

-65 -66 67 0

-65 66 -67 0

65 -66 -67 0

55 67 68 0

-55 -67 68 0

55 -67 -68 0

-55 67 -68 0

68 69 70 0

-68 -69 70 0

-68 69 -70 0

68 -69 -70 0

22 70 71 0

-22 -70 71 0

22 -70 -71 0

-22 70 -71 0

71 72 73 0

-71 -72 73 0

-71 72 -73 0

71 -72 -73 0

62 73 74 0

-62 -73 74 0

62 -73 -74 0

-62 73 -74 0

69 74 75 0

-69 -74 75 0

69 -74 -75 0

-69 74 -75 0

28 75 76 0

-28 -75 76 0

28 -75 -76 0

-28 75 -76 0

53 76 77 0

-53 -76 77 0

53 -76 -77 0

-53 76 -77 0

77 78 79 0

-77 -78 79 0

-77 78 -79 0

77 -78 -79 0

79 80 81 0

-79 -80 81 0

-79 80 -81 0

79 -80 -81 0

35 81 82 0

-35 -81 82 0

35 -81 -82 0

-35 81 -82 0

60 82 83 0

-60 -82 83 0

60 -82 -83 0

-60 82 -83 0

83 84 85 0

-83 -84 85 0

-83 84 -85 0

83 -84 -85 0

80 85 86 0

-80 -85 86 0

80 -85 -86 0

-80 85 -86 0

41 86 87 0

-41 -86 87 0

41 -86 -87 0

-41 86 -87 0

66 87 88 0

-66 -87 88 0

66 -87 -88 0

-66 87 -88 0

78 88 89 0

-78 -88 89 0

78 -88 -89 0

-78 88 -89 0

89 90 91 0

-89 -90 91 0

-89 90 -91 0

89 -90 -91 0

47 91 92 0

-47 -91 92 0

47 -91 -92 0

-47 91 -92 0

72 92 93 0

-72 -92 93 0

72 -92 -93 0

-72 92 -93 0

84 93 94 0

-84 -93 94 0

84 -93 -94 0

-84 93 -94 0

90 94 95 0

-90 -94 95 0

90 -94 -95 0

-90 94 -95 0

-95 0

A.2.3 Unsatisfiable bipartite matching: hall-set-10-4 1.cnf

This SAT instance, whose constraint graph appears in Section 6.2, rep-
resents an unsatisfiable bipartite matching instance. The construction is
identical to that of hall-set-15-10 01.cnf above, except that the underlying
graph is smaller: there are 10 vertices on each side, and each vertex on the
left-hand side has degree 4. The first five vertices on the left-hand side are
adjacent only to the first four vertices on the right-hand side, thus forming
a subset that violates Hall’s condition.

p cnf 100 104

1 2 3 4 0

11 12 13 14 0

21 22 23 24 0

31 32 33 34 0

41 42 43 44 0

53 55 56 60 0

61 64 67 70 0

73 78 79 80 0

83 84 85 86 0

92 94 95 97 0

-1 -11 0

-1 -21 0

-1 -31 0

-1 -41 0

-1 -61 0

-11 -21 0

-11 -31 0

-11 -41 0

-11 -61 0

A.2. SAT INSTANCES 109

-21 -31 0

-21 -41 0

-21 -61 0

-31 -41 0

-31 -61 0

-41 -61 0

-2 -12 0

-2 -22 0

-2 -32 0

-2 -42 0

-2 -92 0

-12 -22 0

-12 -32 0

-12 -42 0

-12 -92 0

-22 -32 0

-22 -42 0

-22 -92 0

-32 -42 0

-32 -92 0

-42 -92 0

-3 -13 0

-3 -23 0

-3 -33 0

-3 -43 0

-3 -53 0

-3 -73 0

-3 -83 0

-13 -23 0

-13 -33 0

-13 -43 0

-13 -53 0

-13 -73 0

-13 -83 0

-23 -33 0

-23 -43 0

-23 -53 0

-23 -73 0

-23 -83 0

-33 -43 0

-33 -53 0

-33 -73 0

-33 -83 0

-43 -53 0

-43 -73 0

-43 -83 0

-53 -73 0

-53 -83 0

-73 -83 0

-4 -14 0

-4 -24 0

-4 -34 0

-4 -44 0

-4 -64 0

-4 -84 0

-4 -94 0

-14 -24 0

-14 -34 0

-14 -44 0

-14 -64 0

-14 -84 0

-14 -94 0

-24 -34 0

-24 -44 0

-24 -64 0

-24 -84 0

-24 -94 0

-34 -44 0

-34 -64 0

-34 -84 0

-34 -94 0

-44 -64 0

-44 -84 0

-44 -94 0

-64 -84 0

-64 -94 0

-84 -94 0

-55 -85 0

-55 -95 0

-85 -95 0

-56 -86 0

-67 -97 0

-60 -70 0

-60 -80 0

-70 -80 0

110 APPENDIX A. EXPERIMENTAL INSTANCES

Bibliography

[1] Tobias Achterberg. Conflict analysis in mixed integer programming.
Discrete Optimization, 4(1):4–20, March 2007.

[2] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on
Computers, C-27(6):509–516, June 1978.

[3] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general res-
olution. In Proceedings of the 34th Annual ACM Symposium on Theory
of Computing (STOC ’02), pages 448–456, Montreal, May 2002.

[4] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A con-
straint store based on multivalued decision diagrams. In Proceedings of
the 13th International Conference on Principles and Practice of Con-
straint Programming (CP ’07), pages 118–132, Providence, September
2007.

[5] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-
learning algorithms with many restarts and bounded-width resolution.
Journal of Artificial Intelligence Research, 40:353–373, January 2011.

[6] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. Improved ap-
proximation algorithms for multidimensional bin packing problems. In
Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’06), pages 697–708, Berkeley, October 2006.

[7] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new ap-
proximation method for set covering problems, with applications to
multidimensional bin packing. SIAM Journal on Computing, 39(4):
1256–1278, 2010.

111

112 BIBLIOGRAPHY

[8] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards under-
standing and harnessing the potential of clause learning. Journal of
Artificial Intelligence Research, 22:319–351, December 2004.

[9] James E. Beck and Daniel P. Siewiorek. Modeling multicomputer task
allocation as a vector packing problem. In Proceedings of the 9th Inter-
national Symposium on System Synthesis (ISSS ’96), pages 115–120,
La Jolla, November 1996.

[10] Markus Behle. On threshold BDDs and the optimal variable order-
ing problem. Journal of Combinatorial Optimization, 16(2):107–118,
August 2008.

[11] David Bergman, Willem-Jan van Hoeve, and J. N. Hooker. Manipu-
lating MDD relaxations for combinatorial optimization. In Proceed-
ings of the 8th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2011), pages 20–35, Berlin, May 2011.

[12] David Bergman, Andre A. Cire, and Willem-Jan van Hoeve. MDD
propagation for sequence constraints. Journal of Artificial Intelligence
Research, 50:697–722, July 2014.

[13] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N.
Hooker. Optimization bounds from binary decision diagrams. IN-
FORMS Journal on Computing, 26(2):253–268, Spring 2014.

[14] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and Tallys
Yunes. BDD-based heuristics for binary optimization. Journal of
Heuristics, 20(2):211–234, April 2014.

[15] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Proceedings
of the 36th Design Automation Conference (DAC ’99), pages 317–320,
Atlanta, October 1999.

[16] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in
an Alpha microprocessor using satisfiability solvers. In Proceedings
of the 13th International Conference on Computer Aided Verification
(CAV ’01), pages 454–464, Paris, July 2001.

[17] Beate Bollig and Ingo Wegener. Improving the variable ordering of
OBDDs is NP-complete. IEEE Transactions on Computers, 45(9):993–
1002, September 1996.

BIBLIOGRAPHY 113

[18] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs
for resolution. Computational Complexity, 10(4):261–276, December
2001.

[19] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Jo-
hannsen. On the relative complexity of resolution refinements and
cutting planes proof systems. SIAM Journal on Computing, 30(5):
1462–1484, 2000.

[20] George Boole. An Investigation of the Laws of Thought, on Which Are
Founded the Mathematical Theories of Logic and Probabilities. Walton
and Maberly, London, 1854.

[21] Daniel Brand. Verification of large synthesized designs. In Digest of
Technical Papers of the 1993 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’93), pages 534–537, Santa Clara, No-
vember 1993.

[22] Randal E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers, C-35(8):677–691, August
1986.

[23] Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of
resolution refinements. In Proceedings of the 18th Annual IEEE Sym-
posium on Logic in Computer Science (LICS 2003), pages 138–147,
Ottawa, June 2003.

[24] Alberto Caprara and Paolo Toth. Lower bounds and algorithms for the
2-dimensional vector packing problem. Discrete Applied Mathematics,
111(3):231–262, August 2001.

[25] Soo Y. Chang, Hark-Chin Hwang, and Sanghyuck Park. A two-
dimensional vector packing model for the efficient use of coil cassettes.
Computers & Operations Research, 32(8):2051–2058, August 2005.

[26] Pinhong Chen and Kurt Keutzer. Towards true crosstalk noise analy-
sis. In Proceedings of the 1999 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD ’99), pages 132–138, San Jose,
November 1999.

[27] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran
Rajamanickam. Algorithm 887: CHOLMOD, supernodal sparse
Cholesky factorization and update/downdate. ACM Transactions on

114 BIBLIOGRAPHY

Mathematical Software, 35(3):22:1–14, October 2008. Available as part
of the SuiteSparse library, http://faculty.cse.tamu.edu/davis/

suitesparse.html.

[28] Andre A. Cire and Willem-Jan van Hoeve. Multivalued decision dia-
grams for sequencing problems. Operations Research, 61(6):1411–1428,
December 2013.

[29] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Proceedings of the 10th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004), pages 168–176, Barcelona, March–April 2004.

[30] Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello,
and Daniele Vigo. Bin packing approximation algorithms: Survey and
classification. In Panos M. Pardalos, Ding-Zhu Du, and Ronald L.
Graham, editors, Handbook of Combinatorial Optimization, volume 1,
pages 455–531. Springer, second edition, 2013.

[31] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Comput-
ing (STOC ’71), pages 151–158, Shaker Heights, May 1971.

[32] Nicholas Downing, Thibaut Feydy, and Peter J. Stuckey. Explaining
flow-based propagation. In Proceedings of the 9th International Confer-
ence on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR 2012), pages
146–162, Nantes, May–June 2012.

[33] Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Net-
works, volume 22 of Carus Mathematical Monographs. Mathematical
Association of America, Washington, 1984.

[34] Harald Dyckhoff. A typology of cutting and packing problems. Euro-
pean Journal of Operational Research, 44(2):145–159, January 1990.

[35] Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Proceedings of the 8th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2005), pages 61–75, St. Andrews, June 2005.

[36] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Selected
Revised Papers of the 6th International Conference on Theory and Ap-

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html

BIBLIOGRAPHY 115

plications of Satisfiability Testing (SAT 2003), pages 502–518, Santa
Margherita Ligure, May 2004.

[37] Samuel Eilon and Nicos Christofides. The loading problem. Manage-
ment Science, 17(5):259–268, January 1971.

[38] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, and Harald Zankl. SAT solving for termination analy-
sis with polynomial interpretations. In Proceedings of the 10th Interna-
tional Conference on Theory and Applications of Satisfiability Testing
(SAT 2007), pages 340–354, Lisbon, May 2007.

[39] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, New York,
1979.

[40] M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis
of memory allocation algorithms. In Proceedings of the 4th Annual
ACM Symposium on Theory of Computing (STOC ’72), pages 143–
150, Denver, May 1972.

[41] M. R. Garey, R. L. Graham, D. S. Johnson, and Andrew Chi-Chih Yao.
Resource constrained scheduling as generalized bin packing. Journal of
Combinatorial Theory, Series A, 21(3):257–298, November 1976.

[42] Carla P. Gomes, Bart Selman, Ken McAloon, and Carol Tretkoff.
Randomization in backtrack search: Exploiting heavy-tailed profiles
for solving hard scheduling problems. In Proceedings of the 4th
International Conference on Artificial Intelligence Planning Systems
(AIPS ’98), pages 208–213, Pittsburgh, June 1998.

[43] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, ed-
itors, Handbook of Satisfiability, chapter 20, pages 633–654. IOS Press,
2009.

[44] J. F. Groote and H. Zantema. Resolution and binary decision diagrams
cannot simulate each other polynomially. Discrete Applied Mathemat-
ics, 130(2):157–171, August 2003.

[45] Tarik Hadzic, John N. Hooker, Barry. O’Sullivan, and Peter Tiede-
mann. Approximate compilation of constraints into multivalued deci-
sion diagrams. In Proceedings of the 14th International Conference on

116 BIBLIOGRAPHY

Principles and Practice of Constraint Programming (CP 2008), pages
448–462, Sydney, September 2008.

[46] Paul Heckbert. Color image quantization for frame buffer display. In
Proceedings of the 9th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’82), pages 297–307, Boston, July
1982.

[47] Samid Hoda, Willem-Jan van Hoeve, and J. N. Hooker. A systematic
approach to MDD-based constraint programming. In Proceedings of the
16th International Conference on Principles and Practice of Constraint
Programming (CP 2010), pages 266–280, St. Andrews, September 2010.

[48] Holger H. Hoos and Thomas Stützle. SATLIB: An online resource for
research on SAT. In Proceedings of the 3rd Workshop on Satisfiability
(SAT 2000), pages 283–292, Renesse, May 2000. SATLIB is available
online at http://www.satlib.org/.

[49] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, 1985.

[50] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the Alloy
constraint analyzer. In Proceedings of the 2000 International Confer-
ence on Software Engineering, pages 730–733, Limerick, June 2000.

[51] David S. Johnson. Fast allocation algorithms. In Proceedings of the 13th
Annual Symposium on Switching and Automata Theory (SWAT ’72),
pages 144–154, October 1972.

[52] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Gra-
ham. Worst-case performance bounds for simple one-dimensional pack-
ing algorithms. SIAM Journal on Computing, 3(4):299–325, December
1974.

[53] George Katsirelos. Nogood Processing in CSPs. Ph.D. thesis, Graduate
Department of Computer Science, University of Toronto, 2008.

[54] George Katsirelos, Ashish Sabharwal, Horst Samulowitz, and Laurent
Simon. Resolution and parallelizability: Barriers to the efficient paral-
lelization of SAT solvers. In Proceedings of the 27th AAAI Conference
on Artificial Intelligence (AAAI-13), pages 481–488, Bellevue, July
2013.

http://www.satlib.org/

BIBLIOGRAPHY 117

[55] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings
of the 10th European Conference on Artificial Intelligence (ECAI ’92),
pages 359–363, Vienna, August 1992.

[56] Brian Kell and Willem-Jan van Hoeve. An MDD approach to mul-
tidimensional bin packing. In Proceedings of the 10th International
Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR 2013),
pages 128–143, Yorktown Heights, May 2013.

[57] Brian Kell, Ashish Sabharwal, and Willem-Jan van Hoeve. BDD-guided
clause generation. In Proceedings of the 12th International Conference
on Integration of AI and OR Techniques in Constraint Programming
(CPAIOR 2015), pages 215–230, Barcelona, May 2015.

[58] Sarfraz Khurshid and Darko Marinov. TestEra: Specification-based
testing of Java programs using SAT. Automated Software Engineering,
11(4):403–434, October 2004.

[59] Fatma Kılınç Karzan, George L. Nemhauser, and Martin W. P. Savels-
bergh. Information-based branching schemes for binary linear mixed
integer problems. Mathematical Programming Computation, 1(4):249–
293, December 2009.

[60] Donald E. Knuth. The Art of Computer Programming, volume 4A:
Combinatorial Algorithms, Part 1. Addison-Wesley, Upper Saddle
River, 2011.

[61] Haluk Konuk and Tracy Larrabee. Explorations of sequential ATPG
using Boolean satisfiability. In Digest of Papers of the 11th Annual
IEEE VLSI Test Symposium (VTS ’93), pages 85–90, Atlantic City,
April 1993.

[62] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K.
Ganai. Robust Boolean reasoning for equivalence checking and func-
tional property verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21(12):1377–1394, Decem-
ber 2002.

[63] Tracy Larrabee. Test pattern generation using Boolean satisfiability.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 11(1):4–15, January 1992.

118 BIBLIOGRAPHY

[64] C. Y. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell System Technical Journal, 38(4):985–999, July 1959.

[65] R. Lewis, X. Song, K. Dowsland, and J. Thompson. An investigation
into two bin packing problems with ordering and orientation implica-
tions. European Journal of Operational Research, 213(1):52–65, August
2011.

[66] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional
packing problems: A survey. European Journal of Operational Research,
141(2):241–252, September 2002.

[67] Inês Lynce and João Marques-Silva. Efficient haplotype inference with
Boolean satisfiability. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI-06), page 104, Boston, July 2006.

[68] João Marques-Silva. Practical applications of Boolean satisfiability. In
Proceedings of the 9th International Workshop on Discrete Event Sys-
tems (WODES 2008), pages 74–80, Göteborg, May 2008.

[69] João Marques-Silva and Thomas Glass. Combinational equivalence
checking using satisfiability and recursive learning. In Proceedings of
the 1999 Design, Automation and Test in Europe Conference and Ex-
hibition (DATE ’99), pages 145–149, Munich, March 1999.

[70] João Marques-Silva and Karem A. Sakallah. Robust search algorithms
for test pattern generation. In Digest of Papers of the 27th Annual In-
ternational Symposium on Fault-Tolerant Computing (FTCS-27), pages
152–161, Seattle, June 1997.

[71] João Marques-Silva, Inês Lynce, and Sharad Malik. CDCL solvers. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, chapter 4, pages 131–154. IOS Press, 2009.

[72] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD ’96), pages
220–227, San Jose, November 1996.

[73] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Transactions on Computers,
48(5):506–521, May 1999.

BIBLIOGRAPHY 119

[74] Silvano Martello, David Pisinger, and Daniele Vigo. The three-
dimensional bin packing problem. Operations Research, 48(2):256–267,
April 2000.

[75] K. L. McMillan. Interpolation and SAT-based model checking. In Pro-
ceedings of the 15th International Conference on Computer Aided Ver-
ification (CAV 2003), pages 1–13, Boulder, July 2003.

[76] Christoph Meinel and Thorsten Theobald. Algorithms and Data
Structures in VLSI Design: OBDD—Foundations and Applications.
Springer, Berlin, 1998.

[77] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in com-
binatorial problems. In Proceedings of the 30th Design Automation
Conference (DAC ’93), pages 272–277, Dallas, June 1993.

[78] Shin-ichi Minato. Calculation of unate cube set algebra using zero-
suppressed BDDs. In Proceedings of the 31st Design Automation Con-
ference (DAC ’94), pages 420–424, San Diego, June 1994.

[79] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the 38th Design Automation Conference (DAC ’01), pages
530–535, Las Vegas, June 2001.

[80] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation
via lazy clause generation. Constraints, 14(3):357–391, September 2009.

[81] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-
learning SAT solvers as resolution engines. Artificial Intelligence, 175
(2):512–525, February 2011.

[82] Jean-Charles Régin and Mohamed Rezgui. Discussion about constraint
programming bin packing models. In AI for Data Center Manage-
ment and Cloud Computing: Papers from the Workshop at the 25th
AAAI Conference on Artificial Intelligence (AAAI-11), pages 21–23,
San Francisco, August 2011.

[83] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satis-
fiability: parallel plans and algorithms for plan search. Artificial Intel-
ligence, 170(12–13):1031–1080, September 2006.

120 BIBLIOGRAPHY

[84] Pierre Schaus. Solving Balancing and Bin-Packing Problems with Con-
straint Programming. Doctoral thesis, Ecole polytechnique de Louvain,
Département d’Ingénierie Informatique, Université catholique de Lou-
vain, Louvain-la-Neuve, August 2009.

[85] Pierre Schaus, Pascal Van Hentenryck, Jean-Noël Monette, Carleton
Coffrin, Laurent Michel, and Yves Deville. Solving Steel Mill Slab
Problems with constraint-based techniques: CP, LNS, and CBLS. Con-
straints, 16(2):125–147, April 2011.

[86] Pierre Schaus, Jean-Charles Régin, Rowan Van Schaeren, Wout Dul-
laert, and Birger Raa. Cardinality reasoning for bin-packing constraint:
Application to a tank allocation problem. In Proceedings of the 18th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2012), pages 815–822, Québec City, October 2012.

[87] Hadas Shachnai and Tami Tamir. Approximation schemes for gener-
alized two-dimensional vector packing with application to data place-
ment. Journal of Discrete Algorithms, 10:35–48, January 2012.

[88] Claude E. Shannon. A symbolic analysis of relay and switching circuits.
Transactions of the American Institute of Electrical Engineers, 57(12):
713–723, 1938.

[89] Paul Shaw. A constraint for bin packing. In Proceedings of the 10th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2004), pages 648–662, Toronto, September–October
2004.

[90] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety
properties using induction and a SAT-solver. In Proceedings of the
3rd International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2000), pages 127–144, Austin, November 2000.

[91] Frits C. R. Spieksma. A branch-and-bound algorithm for the two-
dimensional vector packing problem. Computers & Operations Re-
search, 21(1):19–25, January 1994.

[92] Arvind Srinivasan, Timothy Kam, Sharad Malik, and Robert K. Bray-
ton. Algorithms for discrete function manipulation. In Digest of Tech-
nical Papers of the 1990 IEEE International Conference on Computer-
Aided Design (ICCAD-90), pages 92–95, Santa Clara, November 1990.

BIBLIOGRAPHY 121

[93] Paul Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Combinational test generation using satisfiability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 15(9):1167–1176, September 1996.

[94] Peter J. Stuckey. Lazy clause generation: Combining the power of SAT
and CP (and MIP?) solving. In Proceedings of the 7th International
Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR 2010),
pages 5–9, Bologna, June 2010.

[95] G. S. Tseitin. On the complexity of derivation in propositional calculus.
In Jörg H. Siekmann and Graham Wrightson, editors, Automation of
Reasoning, volume 2: Classical Papers on Computational Logic 1967–
1970, pages 466–483. Springer, 1983.

[96] Miroslav N. Velev and Randal E. Bryant. Effective use of Boolean
satisfiability procedures in the formal verification of superscalar and
VLIW microprocessors. Journal of Symbolic Computation, 35(2):73–
106, February 2003.

[97] Gerhard Wäscher, Heike Haußner, and Holger Schumann. An improved
typology of cutting and packing problems. European Journal of Oper-
ational Research, 183(3):1109–1130, December 2007.

[98] Ingo Wegener. Branching Programs and Binary Decision Diagrams:
Theory and Applications. Society for Industrial and Applied Mathe-
matics, Philadelphia, 2000.

[99] Hantao Zhang and Jieh Hsiang. Solving open quasigroup problems
by propositional reasoning. In Proceedings of the 1994 International
Computer Symposium (ICS ’94), Hsinchu, December 1994.

	Introduction
	Preliminaries
	History and previous work
	Decision diagrams
	Bin packing
	Boolean satisfiability

	Contributions and outline

	Construction of decision diagrams
	Exact decision diagram construction
	Exploratory construction
	Approximate MDDs
	Approximation MDDs by merging
	Restriction MDDs by deletion

	Summary

	MDDs for bin packing
	The multidimensional bin packing problem
	Direct MDD representation
	Ullage MDD representation
	State function for the ullage representation
	Experimental results
	Summary

	BDDs for SAT clause generation
	BDD representation of SAT instances
	Deducing clauses from BDDs
	Projections onto single variable domains
	Projections onto multiple variable domains
	Witness clauses from infeasible BDD nodes

	Characterization of witness clauses
	Implementation and experimental results
	Summary

	Implementation considerations
	Implementation of bin packing MDDs
	Variable ordering
	Precomputation

	Implementation of BDDs for SAT instances
	Data structures
	Variable ordering
	Preprocessing
	Merging heuristics
	Unit propagation

	SAT decomposition
	Tseitin clauses
	The Tseitin transformation
	Detecting Tseitin clauses in a CNF formula

	Graph structure
	Resistive network decomposition
	Summary

	Conclusions and outlook
	Experimental instances

