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Abstract

Decision diagrams are compact graphical representations of Boolean functions originally introduced

for applications in circuit design, simulation, and formal verification. Recently, they have been

considered for a variety of purposes in optimization and operations research. These include facet

enumeration in integer programming, maximum flow computation in large-scale networks, solution

counting in combinatorics, and learning in genetic programming techniques.

In this dissertation we develop new methodologies based on decision diagrams to tackle discrete

optimization problems. A decision diagram is viewed here as a graphical representation of the

feasible solution set of a discrete problem. Since such diagrams may grow exponentially large in

general, we work with the concept of approximate decision diagrams, first introduced by Andersen

et al (2007). An approximate decision diagram is a graph of parameterized size that represents

instead an over-approximation or under-approximation of the feasible solution set. Thus, it can be

used to obtain either bounds on the optimal solution value or primal solutions to the problem.

As our first contribution, we provide a modeling framework based on dynamic programming that

can be used to specify how to build a decision diagram of a discrete optimization problem and how to

approximate it, which facilitates the encoding process of a problem to a diagram representation. We

then present a branching scheme that exploits the recursive structure of an approximate diagram,

establishing a novel generic solver for discrete optimization problems. Computational results in

classical optimization problems show that more instances can be solved in less computation time

using our approach than mathematical programming techniques. In particular, we were able to

reduce the known optimality gap of benchmark instances of the maximum cut problem.

In our second contribution, we focus on the application of approximate diagrams to particular

domains; namely, to sequencing problems, common in the context of routing and scheduling, and

to timetable problems. We indicate that, besides the computation of bounds, approximate decision

diagram can be used to deduce non-trivial constraints of a problem, such as precedence relations

between jobs in scheduling applications. We show that such inference can be incorporated into

state-of-the-art solvers and speed-up the optimization process by orders of magnitude.

Finally, we propose new parallelization strategies that exploits the recursive structure of an

approximate diagram. These strategies decouple a problem in a naturally loose fashion and allow

for more effective load balancing heuristics when considering hundreds of computer cores.
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Chapter 1

Introduction

Optimization has recently stood out as an essential tool for the quantitative and analytical solutions

of modern business problems. Applications that involve optimization are virtually ubiquitous in

our society: They are used to define how crews are scheduled in the flights we take, how ads are

displayed in the web pages we visit, how our mailed packages are routed to reach their destinations,

how banks manage our investments, and even the order of songs in online radios. Fueled by the

increasing availability of data and computer resources, the range of applications tends to grow even

more pronouncedly in the next few years.

One major factor in this trend is the remarkable advancement of optimization techniques in

recent years. In particular, general-purpose optimization methods, such as mathematical program-

ming and constraint programming, have played a key role in this context. They provide a language

from which a user can model their problems, and apply sophisticated mathematical techniques to

propose high-quality solutions to such models. Optimization techniques have improved significantly

in the last decades, as reflected by the substantial speed-ups in solving time. Problems that would

take hours to solve in the past now take just a few seconds, primarily due to algorithmic advance-

ments, not only computer power [125]. Moreover, optimization techniques are also integrated into

other decision-making tools, such as spreadsheets or business analytics software, making them more

accessible and facilitating their use.

However, there are still a wide range of problems that remain extremely challenging for state-

of-the-art generic optimization solvers. The reasons for this vary greatly. For example, they may

contain some combinatorial structure that is hard to exploit in existing techniques, such as in

the case of the classic maximum-cut problem [118]. Or they may involve a huge amount of data

that would result in models with thousands or millions of variables and constraints, as found in

inventory routing problems [38], which cannot be handled directly by any available optimization

software up to this date. These two reasons alone are sufficient to motivate the research on new

generic optimization technologies that show potential to tackle these issues, ultimately extending

the libraries of problems that can be more easily modeled and solved.
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With this project in mind, the work in this dissertation presents novel generic solving method-

ologies based on decision diagrams, which have recently brought a new perspective to the field of

optimization. A decision diagram is a graphical data structure originally introduced for represent-

ing Boolean functions [98, 3], with successful applications in circuit design and formal verification

[32, 89]. Their introduction in optimization is recent and includes facet enumeration in integer pro-

gramming, maximum flow computation in large-scale networks, solution counting in combinatorics,

and learning in genetic programming [16, 132]. As we will show in this dissertation, we expand

this line of research by introducing new ways of formulating and solving optimization problems

with decision diagrams. We also study their structural properties and indicate ways on how these

techniques can be used in conjunction with other methods, with a particular focus on mathematical

programming and constraint programming.

To achieve this, the work throughout this dissertation relies on the decision diagram framework

established in previous studies [16, 132]. The fundamental concept is to use decision diagrams as a

graphical structure to compactly represent a set of solutions to a problem. For example, consider

a typical optimization problem, particularly formulated as an integer linear program:

max 5x1 + 3x2 + 4x3 − 15x4 + 3x5

s.t. x1 + x2 ≥ 1,

x1 + x3 + x5 ≤ 2,

x1 − x3 − x5 ≤ 0, (1.1)

− x1 + x3 − x5 ≤ 0,

x1 + 3x2 − 4x4 ≤ 0,

x1, . . . , x5 ∈ {0, 1}

A decision diagram for the problem above represents possible assignments of the variables

x1, . . . , x5 and is depicted in Figure 1.1. It is a directed acyclic graph where all paths start at a

root node r and end at a terminal node t. The nodes are partitioned into 6 layers so that an arc

leaving a node at layer i corresponds to a value assignment for variable xi. In particular, since all

variables are binaries for this problem, there are two types of arcs: dashed arcs at layer i lead to

the assignment xi = 0 and solid arcs lead to the assignment xi = 1. Hence, any path from r to t

represents a complete value assignment for variables x. One can verify that the diagram in Figure

1.1 exactly represents the 7 feasible solutions of problem (1.1), each compactly represented by one

path from the root node r to the terminal node t in the diagram.

Also, with each arc we associate a weight which evaluates to the contribution of that value

assignment to the objective function. Dashed arcs have thus a weight of zero, while solid arcs

have weight equal to the objective function coefficient of that variable. It follows that the value

assignment that maximizes the objective function corresponds to the longest path from r to t
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Figure 1.1: Example of a decision diagram for problem (1.1). Arcs are partitioned into layers, one
for each problem variable. Dashed and solid arcs at layer i represent the assignments xi = 0 and
xi = 1, respectively.

with respect to these arc weights. For the diagram in Figure 1.1, the longest path has value

−3 and indicates the assignment x1 = x2 = x3 = x4 = 1 and x5 = 0, which is the optimal

solution of the integer programming problem (1.1). Analogously, any linear function (or, more

generally, any separable function) can be optimized in polynomial time in the size of the diagram.

This optimization property, alongside the potential to compactly represent a set of solutions to a

problem, are the main incentives for the majority of works that exploited their use in the field of

optimization so far [16, 132].

Nonetheless, a clear issue with this framework is that a decision diagram representing exactly

the feasible solutions to an optimization problem can grow exponentially large in the number of

variables of the problem. Indeed, since optimizing a linear function over a decision diagram is

equivalent to a minimum-cost flow computation from the root r to the terminal node t, theory

from extended formulations in integer programming demonstrates that all decision diagrams for

some problem instances will undoubtedly have exponential size. This is the case, for example, of

certain independent set problem instances [56]. Most of practical computations using exact decision

diagrams are thus prohibitive in general, as only problems with very few variables can be handled

that way.

To circumvent this issue, the authors in [5] introduced the concept of a relaxed decision diagram,

which is a diagram of limited size that represents instead an over-approximation of the solution
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Figure 1.2: Example of a relaxed decision diagram for problem (1.1).

set of an optimization problem. That is, all feasible solutions are associated with some path in the

diagram, but not all paths in the diagram correspond to a feasible solution of the problem. The size

of the diagram is controlled by limiting its allowed width, i.e. the maximum number of nodes in any

layer. A major property of relaxed diagrams is that, since they represent an over-approximation of

the solution set, a longest path now yields an upper bound on the maximum value of an objective

function (and equivalently, a shortest path yields a lower bound for minimization problems).

For example, Figure 1.2 depicts a relaxed decision diagram for problem (1.1) with a limited

width of 2. Even though one can observe that all feasible solutions of (1.1) are represented by

some path in this relaxed decision diagram, not all paths correspond to feasible assignments. In

particular, the longest path represents the assignment x1 = · · · = x5 = 1 and has a value of 0, which

is an upper bound of the optimal solution value, −3. Such dual bound can be potentially better

than the ones provided by other generic technologies. For example, the typical linear programming

relaxation for problem (1.1), obtained by replacing the integrality constraints by 0 ≤ x1, . . . , x5 ≤ 1,

yields a relatively worse upper bound of 5.25.

Relaxed decision diagrams were initially proposed in [5] as an alternative to the domain store

relaxation that is commonly used in constraint programming solvers. The authors demonstrated

that relaxed diagrams may reveal inconsistent variable assignments that other techniques are unable

to, property which is crucial to the constraint programming paradigm. For instance, we can deduce

from the relaxed decision diagram in Figure 1.2 that x4 = 1 in any feasible solution. The same

deduction is not possible to obtain, for example, from straightforward domain consistency of the

17



linear system. Following the original work from [5], the authors in [78] and [85] developed generic

methods for systematically compiling relaxed diagrams for constraint programming models. The

first work to consider relaxed decision diagrams for the purpose of obtaining optimization bounds

is from [26], where lower bounds for particular set covering instances were compared to the ones

provided by integer programming technology. In this dissertation we extend this line of research

by further exploiting the structural properties of decision diagrams, studying both modeling and

solving aspects for their use as generic tools in optimization.

1.1 Contributions and Outline

The main goal of this work is to improve the solving capabilities of generic optimization technology

through the use of decision diagrams. After showing the previous works that led to this research in

Chapter 2, the goal is achieved here by our five main contributions, described below. All of these

contributions focus on discrete optimization problems, which are naturally suitable to a decision

diagram representation.

1. In Chapter 3 we propose a modeling framework based on dynamic programming that can be

used to specify how to build decision diagrams for an optimization problem. The objective

is to demonstrate that decision diagrams permit a more flexible approach to modeling, since

no particular structure is imposed on the constraints or objective function of the problem.

Instead, it only requires the problem to be formulated in a recursive way. This may be more

appropriate for problems with no adequate integer linear formulation, such as the maximum

cut problem. Furthermore, the framework can also be beneficial for problems where a recursive

formulation is much more compact than an explicit description the constraints; consider, for

example, a maximum independent set problem with millions of vertices and edges.

The relationship between decision diagrams and dynamic programming is often mentioned in

previous studies, such as in [16], and it is exploited thoroughly in [87]. The work presented

here extends those ideas and formalizes the construction of decision diagram from a dynamic

programming model. We provide several examples of classical optimization problems modeled

in this framework.

2. Optimization bounds are essential for many solving techniques in optimization, specially for

those that rely on branch-and-bound strategies. In Chapter 4, we enhance our modeling

framework in order to provide a generic tool for the compilation of relaxed decision diagrams.

We then present an analysis of the different parameters that influence the quality of the

optimization bound it provides, such as how the problem variables are associated with each

of the diagram layers (or variable ordering). Using the maximum independent set problem

as a test case and a suitable choice of such parameters, we find that a decision diagram can
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deliver tighter optimization bounds than those obtained by a strong linear programming (LP)

formulation of the problem. This holds even when the LP is augmented by cutting planes

generated at the root node by a state-of-the-art integer programming solver with non-default

parameters as well. These optimization bounds are also obtained in less computation time

for most of the traditional benchmark instances of the maximum independent set problem.

3. In Chapter 5, we introduce a new type of limited-size diagram in optimization, the restricted

decision diagrams. They define instead an under-approximation of the solution set of an op-

timization problem. That is, any path from the root node to the terminal node in a restricted

decision diagram corresponds to a a feasible solution of the optimization problem at hand, but

not all feasible solutions are represented by a path in the diagram. Thus, a restricted decision

diagram can be used as a general-purpose primal heuristic, similar to the feasibility pump

technique in integer programming [58]. We show that the quality of the solutions provided

by restricted decision diagram can also be superior to integer programming technology for

structured set packing and set covering instances, specially for problems involving thousands

of variables and constraints.

4. In Chapter 6, we introduce a branch-and-bound method based solely on relaxed and restricted

decision diagrams. It differs considerably from traditional enumerative methods, such as those

used in mathematical programming and constraint programming. The key idea is to branch on

the nodes of either a relaxed or restricted diagram, which eliminates symmetry in search since

each diagram nodes may potentially aggregate several equivalent partial solutions. We provide

experiments comparing our branching techniques against state-of-the-art generic optimization

technology for different problem classes. In particular, we are able to reduce the optimality

gap of benchmark maximum cut instances that still remain unsolved.

In addition, we propose the use of a decision diagrams in parallel optimization by turning

the branch-and-bound procedure into a distributed process. Parallel optimization techniques

have proved to be a challenge in practice, as current state-of-the-art integer programming and

constraint programming solvers are not able to exploit more than a couple of dozen computer

cores. We aim to show that, on the other hand, our techniques may be able to exploit

the recursive structure of a decision diagram to yield parallel strategies suitable to massive

computers with hundreds and thousands of cores. Moreover, relaxed decision diagrams can

also be perceived as an approximation of a branching tree, providing measures that can be

used in load balancing heuristics, for example.

5. We present two practical applications of relaxed decision diagrams in the area of scheduling.

The first application is developed in Chapter 7 and concerns sequencing problems, which

are those where the best order for performing a set of tasks must be determined. They are

prevalent in manufacturing and routing applications, including production plants where jobs
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should be processed one at a time in an assembly line, and in mail services where packages

must be scheduled for delivery on a vehicle. The second application, presented in Chapter

8, refers to timetabling problems, in which we need to assign a resource to discrete points in

time during a given horizon. For example, resources can be seen as employee shifts or rest

days, and time points may represent the days of the week.

One of our key contributions from these applications is to demonstrate the inference power

of a decision diagrams, i.e. how effective are the new problem constraints deduced from a

relaxed decision diagram. We show that, besides straightforward domain restrictions (such

as x4 = 1 from our example in Figure 1.2), we can infer highly structured constraints of a

problem from a relaxed decision diagram, such as non-trivial precedence relations that must

hold between tasks in a scheduling application. This inference provides a method to link

decision diagrams with other optimization techniques, since the deduced constraints may be

applied, e.g., to strengthen an integer programming formulation of the problem or to derive

new filtering algorithms in constraint programming.

In the studied applications, we show that this inference may be used to speed up constraint-

based schedulers by orders of magnitude. The technique was particularly used to solve some

open benchmark instances of the traveling salesman problem with precedence constraints,

which still pose a challenge to current solvers.

Final remarks are then discussed in Chapter 9.

The work in this dissertation is based on a collection of papers published during the author’s

doctoral program. The papers were written in collaboration with a number of authors, which were

invaluable and crucial to the development of this work. In particular, Chapter 3 and 6 are based

on [23, 21, 42, 24], and on an unpublished paper under review entitled Discrete Optimization with

Decision Diagrams by David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker.

Chapter 4 is based on [21, 41], Chapter 5 is based on [25], Chapter 7 is based on [41], and Chapter

8 is based on [22].

20



Chapter 2

Related Work

The work on decision diagrams spans more than 30 years of research with dozens of papers con-

cerning a most diverse range of applications. They were first introduced by Lee [98] for the purpose

of representing switching circuits. A switching circuit is defined by a network of “ideal” switches;

that is, each switch has exactly two exclusive states, such as on/off or open/close, and can be

applied to model, for example, computer or telecommunications systems. Switching circuits might

also include memory, in the sense that the state of a certain switch might be dependent on the

state of past switches in the network. For example, Figure 2.1 extracted from [98] presents a simple

switching circuit. The circuit has three switches, or variables, x, y, and z. Each variable can assume

a value of 0 (“off”) or 1 (“on”); when x = 0, we follow the path represented by x′ in the figure,

and if x = 1 we follow the path through x; analogously to the other variables. An output of 0 is

generated when there is no value to follow, and 1 if we reach the end of the circuit. For instance,

the switches x = 1, y = 1, and z = 1 leads to an output of 1 in Figure 2.1, and x = 0, y = 0 to an

output of 0.

The seminal work on switching circuit theory was provided by the Master’s thesis of Claude

E. Shannon [123], a pioneer researcher in computer science. Shannon demonstrated that switch-

ing circuits are representable by symbolic logic, and thus could be written and manipulated in a

language that followed the rules of Boolean algebra. Lee [98] wanted to provide an alternative

representation to Shannon’s algebraic language in order to facilitate the actual computation of the

outputs given by switching circuits. To this end, Lee introduced the concept of binary-decision

program. A binary-decision program was a computer program based on a single instruction T ,

T : x; A,B

which states that, if a variable x assumes a value of 0, go to the instruction in address A; if otherwise

x is 1, go to the instruction in address B. As mentioned in [98], representing switching circuits as

a program facilitates computation because it defines a sequential description of the possible events
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Figure 2.1: Example of a switching circuit from [98].

that may occur. For example, let F represents an output of 0, and T an output 1. Then, as

described in [98] the circuit in Figure 2.1 can be represented by the binary-decision program

1. x; 2, 4

2. y; F , 3

3. z; F ,T

4. y; 3, 5

5. z; T ,F

In [98], Lee established rules to construct binary-decision programs from the logical requirements

of a switching circuit. He also provided upper and lower bounds on the minimum number of

instructions that were necessary to construct a switching circuit. In particular, Lee formally showed

that computing circuits through binary-decision programs was in general faster than computing

them through and/or/sum operations from Boolean programs, usually by orders of magnitude.

The next landmark in the area was achieved by Akers [3]. Akers is the first to introduce a

graphical structure, denoted by binary decision diagram (BDD), to represent switching networks

encoded in functional form, the switching functions. A binary decision diagram is an acyclic directed

graph where nodes represent variables and the arcs leaving a node represent value assignments for

that variable. There are two terminal nodes, representing the outputs 0 and 1. Figure 2.2 depicts

an example of a binary decision for the switching (or Boolean) function f = (x xor y xor z).

Notice that the paths in the BDD encode all true (output 1) and false (output 0) assignments of

the variables x, y, z.

In practice, binary-decision programs and binary decision diagrams can be regarded as equiva-

lent representations. The advantage of using graphical structures is that they are easier to manipu-

late and provide an implementation-free description of a Boolean function. More specifically, they

can be used to derive different implementations aimed at computing outputs. One must note the

dual role that the use of a graphical structure ensues: a BDD can be regarded both as a represen-

tation for Boolean functions as well as a computational model. For instance, in [3], Arkes applies
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Figure 2.2: Example of a binary decision diagram for the switching function f = (x xor y xor z).

BDDs to analyze certain types of Boolean functions, which relates to representation issues, and

also as a tool for test generation, i.e. finding a set of inputs which can be used to confirm that a

given implementation performs correctly, which exploits the computational model provided by a

BDD.

However, the seminal work in the field was developed by Bryant [32]. Bryant also applied BDDs

for the purpose of representing Boolean functions, but his data structure had a key difference when

compared to the works of Lee and Arkes. Namely, the decision variables in his BDD representation

were restricted to a particular ordering, forcing all nodes in a “layer” of the diagram to be related

with the same decision variable (such as in Figure 2.2). Using this property, Bryant was able to

describe BDDs in a canonical form; i.e. every Boolean function has a unique BDD representation for

a fixed variable ordering. Such uniqueness is obtained by means of a reduction operation: Given

any BDD for a Boolean function, the unique BDD representation is attained by superimposing

nodes with isomorphic subgraphs. The unique BDD with the variable ordering restriction was then

denoted by Reduced Ordered Binary Decision Diagram (RO-BDD).

As presented in [32], an important advantage of RO-BDDs is that several Boolean function

manipulations could be performed efficiently over the diagram, such as complementing a function

or combining two or more functions (e.g., through the use of and/or operators). In particular,

Bryant showed that the time complexity for any single operation is bounded by the product of the

BDD sizes representing the functions being operated on. However, he also noted in [32] that the

variable ordering must be fixed in the input and can have a significant impact on the final size of the

BDD. Computing the variable ordering that yields the smallest BDD is a coNP-Complete problem

[63], thus heuristics that take into account the problem domain may be crucial in obtaining small

BDDs for practical applications.

The canonical representation and the efficient operation algorithms provided by Bryant in [32]

were key factors for a large trend of research in BDDs in computer science. Several variants of the

basic BDD data structure model were proposed for different theoretical and practical purposes; we
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refer to the monograph by Wegener [132] for a list of different BDD types, theoretical aspects, and

their uses in practice. Relevant applications of BDDs include formal verification (also check [89]),

model checking, CAD applications, product configuration, and genetic programming.

Decision Diagrams in Optimization

One of the early applications of decision diagrams that relates to optimization is on solution counting

for general combinatorial problems. The idea is to perceive the constraints of a problem as a Boolean

function f(x) representing whether a solution x is feasible (output 1) or not (output 0). One can

then create BDDs representing exactly the set of feasible solutions to a problem by omitting the

paths leading to the output 0, and then counting the number of solutions encoded by a BDD using

traditional graph algorithms. In general, solution counting through BDDs is usually ineffective as

the diagram tends to grow too quickly on the number of variables. However, techniques combining

BDDs, backtracking, and divide-and-conquer can be used to solve classical combinatorial chess

problems efficiently, such as counting the number of knight’s tours [99].

Using the same representation concept, Lai et al [97] proposed one of the initial uses of BDDs

focusing exclusively on optimization problems. The paper presents a compilation method to encode

binary integer programs (binary IPs) as Boolean functions. It also proposes a branch-and-bound

algorithm that employs such BDDs to speed up search. The idea is to start solving the problem

using traditional IP techniques (i.e., methods based on linear programming relaxations enhanced

with cuts). Then, after some branching rounds, a BDD representing all feasible solutions to the

corresponding small subproblem is compiled, and the corresponding optimal solution is extracted so

that no more branching is necessary. Computational experiments were limited to a small number

of instances, but showed a significant improvement over traditional IP methods. We remark in

passing that [132] also presents other ways to formulate binary integer linear programs as BDDs

(e.g., exploiting the use of affine functions), which were never tested experimentally.

BDDs have also been applied for maximum flow computation in large-scale 0-1 networks by

Hacthel and Somenzi [73]. The authors developed an implicit network flow algorithm where BDDs

were used to enumerate flow augmenting paths. Starting with a flow of 0, the corresponding

flow augmenting BDD was compiled and analyzed to compute the next flow, and the process was

repeated until the maximum flow was found (i.e., no more augmenting paths were found, giving

an “empty” BDD). Hacthel and Somenzi were able to compute maximum flow for graphs having

more than 1027 vertices and 1036 edges. However, this is only possible for graphs having short

augmenting paths, since otherwise the resulting augmenting path BDDs would be too large.

A more recent and key work in the use of BDDs for optimization is the PhD dissertation of

Behle [16]. Behle studied the relationship between a BDD representing the feasible solutions to

a 0/1 IP model, which he called a Threshold BDD, and the polyhedral structure of the problem.

Among his main results, Behle showed how BDDs could be used to enumerate vertices or facets of
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the corresponding 0/1 polytope, and provided an IP model for finding the variable ordering that

yields the BDD with the minimum size for a given problem. He also presented a new technique

to generate valid inequalities for 0/1 IPs, which was effective for small but hard combinatorial

optimization problems.

Again in the context of IPs, Hadzic and Hooker [77] applied BDDs to characterize the set of

optimal or near-optimal solution to a general integer programming problem. Such BDDs could then

be used to perform postoptimality or sensitivity analysis. One example is on cost-based domain

analysis: Given a BDD enumerating the set of optimal or near-optimal solutions of a problem, this

analysis calculates how the domain of a variable (i.e., the values the variable can assume) grows as

one permits the cost to deviate further from optimality. Thus, a given variable may take only one

value in any optimal solution, but as one considers solutions whose cost is within 1%, 2% or 3%

of optimality, additional values become possible. This type of analysis can tell a practitioner that

there is little choice as to the value of certain variables if one wants a good solution. The authors

illustrated the analysis on capital budgeting and on network reliability problems.

A follow-up paper to the previous work was written by the same authors in [75]. The paper

addresses the computational issue of how to minimize the growth of the BDD as the problem size

increases. To this end, the authors examine the strategy of representing only near-optimal solutions,

since these are generally the solutions of greatest interest to practitioners. This was done through

the operations of pruning, where arcs identifying solutions below a certain objective function value

were removed, and contraction, where nodes of the BDD were merged so as to reduce its size while

adding solutions with a bounded cost to the BDD representation. A number of computational

experiments were carried out over randomly generated 0/1 programs and showed promising results,

as the near-optimal BDDs were relatively small compared to the optimal BDDs.

In the same year of [75], Andersen et al [5] published the work that plays a fundamental role in

the concepts presented in this dissertation. The authors proposed the use of limited-size decision

diagrams as a discrete relaxation to arbitrary constraint satisfaction problems. That is, decision

diagrams would be applied to represent a superset of the feasible solution space of a discrete

optimization problem, instead of encoding the feasible solutions exactly as in previous works. The

size of such relaxed decision diagrams was controlled by a parameter given as input; the larger

the size, the closer the relaxed decision diagram would be from the exact problem representation.

In particular, the authors considered multivalued decision diagrams (MDDs), which are diagrams

where variables can have arbitrary integer domains.

Relaxed MDDs in [5] were primarily applied as an alternative constraint store for constraint

programming (CP). Namely, the key idea in the CP paradigm is to provide a clear separation be-

tween model and the algorithms to solve it [86]. Models are formulated by constraints representing

rich substructures of a problem, such as a network flow or a knapsack constraint. Each of these

constraints is associated with an algorithm that performs inference, i.e. that exploits the sub-
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structure in order to deduce new constraints to strengthen a particular relaxation of the problem.

Once a sufficient number of constraints has been added to the relaxation, its optimal solution will

be feasible to the original problem (perhaps after some branching as well). In CP, the inferred

constraints are collected in a so called constraint store, which effectively represents the relaxation

of the problem. Traditional CP techniques use a domain store to this purpose, defined by the

Cartesian product of the variable domains. Thus, the inferred constraints take the form of variable

domain reductions, and a solution is found once all domains are singletons.

Andersen et al demonstrated in [5] that the domain store could be potentially ineffective to

capture global information of the problem. The authors then proposed the use of relaxed MDDs as

a new constraint store, where inference was represented by removal of arcs and addition of nodes in

accordance to each constraint substructure, such as in the case of equality constraint demonstrated

in [74]. Experimental results on constraint programming models composed of multiple structured

constraints indicated that the relaxed MDD could speed up solving times by orders of magnitude.

Following that work, Andersen et al [78] and Hoda et al [85] developed generic methods for

systematically compiling relaxed MDDs for CP models, as we will describe in different sections

of this dissertation. The fundamental idea of their approaches is to construct the diagram in an

incremental fashion, associating a particular state information with the MDD nodes so as to indicate

how new nodes and arcs should be added to the diagram. Computational results provided by the

authors in both papers also show orders of magnitude speed ups for a variety of CP problems.

The use of a node state information was also exploited by [19] for the purpose of obtaining

bounds for set covering problems. The computation study provided by the authors indicated that

the resulting bounds were superior to the ones obtained by a continuous relaxation of the problem,

specially for instances having a constraint matrix with small bandwidth. The authors also propose

a top-down compilation method to construct relaxed MDDs, which is the basis of the compilation

method discussed in this dissertation.

In particular, our compilation method is based on a dynamic programming (DP) formulation of

a discrete optimization problem. The relationship between MDDs and DPs was studied by Hooker

in [87]. The author interprets an MDD as a representation of the DP state transition graph and

incorporates state-dependent costs in the theory of MDDs. Furthermore, the paper shows that,

for a given optimization problem and variable ordering, there is an unique MDD with “canonical”

edge costs. An illustration of this analysis on a standard inventory management problem shows

that the DP state transition graph can be greatly simplified when represented by its corresponding

canonical MDD.

In a related note, relaxed MDDs can also be associated with state-space relaxations [39] or with

DP consistency methods for constraint programming, as in [124]. However, these relationships still

remain largely unexplored and provide the basis for future research.
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Chapter 3

Exact Decision Diagrams

3.1 Introduction

In this chapter we introduce a modeling framework based on dynamic programming to compile exact

decision diagrams, i.e. decision diagrams that exactly represent the feasible solutions to a discrete

optimization problem. We show two compilation techniques that can exploit this framework: the

top-down compilation and a compilation method based on constraint separation. We also present

a study on how the structural properties of a combinatorial problem impacts the size of the exact

decision diagram that represents its solution space. To this end, we focus on the independent set

problem, taking advantage of the graph structure associated with the problem instance.

The chapter is organized as follows. In Section 3.2 we introduce the basic concepts of exact

decision diagrams and the notation to be used throughout this dissertation. Section 3.3 presents

the modeling framework and the top-down compilation procedure, which are then exemplified

in a number of classical optimization problems. Section 3.4 presents an alternative approach to

compilation, construction by separation, where classes of the problem constraints are considered

one at a time. Finally, in Section 3.5 we analyze bounds on the size of an exact decision diagram

for the independent set problem.

3.2 Concepts and Notation

In this work we will focus on discrete optimization problems. For our purposes, a discrete optimiza-

tion problem P has the form

max f(x)

Ci, i = 1, . . . ,m (P)

xj ∈ Dj , j = 1, . . . , n
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where x = (x1, . . . , xn) is a tuple representing the decision variables, C = {C1, . . . , Cm} is a (possibly

empty) constraint set, and each variable xj has a finite domain Dj . Let D = D1 × · · · × Dm be

the Cartesian product of the domains. A constraint Ci states an arbitrary relation between two or

more variables; it is satisfied by a variable assignment x̂ ∈ D if the relation is observed by x̂, and

it is violated otherwise. Also, f : D → R is the objective function of P. A feasible solution of P

is any x̂ ∈ D that satisfies all of the constraints in C. The set of feasible solutions of P is denoted

by Sol(P). A feasible solution x∗ is optimal for P if it satisfies f(x∗) ≥ f(x) for all x ∈ Sol(P).

Finally, we let z∗ = f(x∗) be the optimal value.

Example 1 A classical example of discrete optimization problem is the 0/1 knapsack problem.

Given items 1, . . . , n, each associated with a weight wj and a value vj, we wish to select items so

as to maximize the resulting total value while keeping the weight capacity between a lower bound

L and an upper bound U . The knapsack problem can be formulated as the following discrete

optimization problem.

max

n
∑

j=1

vjxj

L ≤
n
∑

j=1

wjxj ≤ U (3.1)

xj ∈ {0, 1}, j = 1, . . . , n

In the formulation above, we define a variable xj for each item j with binary domainDj = {0, 1},

indicating whether item j is selected (xj = 1) or not (xj = 0). The objective function is the total

value of the selected items, f(x) =
∑n

j=1 vjxj , and the constraint set is composed of a single

constraint that maintains the weight capacity within L and U , i.e. C = {L ≤
∑n

j=1wjxj ≤ U}.

Consider now the following 0/1 knapsack problem with four variables:

max x1 + 12x2 + 3x3 + 4x4

5 ≤ 5x1 + 7x2 + 2x3 + 3x4 ≤ 8 (3.2)

xj ∈ {0, 1}, j = 1, . . . , 4

The optimal solution to the problem P above is x∗ = (0, 1, 0, 0) and the optimal value is z∗ = 12.

The set of feasible solutions is Sol(P) = {(0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (1, 0, 0, 0)}. �

A decision diagram (DD) B = (U,A, d) is a layered directed acyclic multi-graph (U,A) with arc

labels d that encode values of the variables. The node set U is partitioned into layers L1, . . . , Ln+1,

where layers L1 and Ln+1 consist of single nodes, the root r and the terminal t, respectively. Each
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Figure 3.1: Exact BDD for the knapsack instance (3.2) in Example 1. Dashed and solid arcs
represent arc labels 0 and 1, respectively. The numbers on the arcs indicate their length.

arc a ∈ A is directed from a node in some Lj to a node in Lj+1 and has a label d(a) ∈ Dj that

represents the value of a variable xj. No two arcs leaving the same node have the same label,

which means every node has a maximum out-degree of |Dj |. If all variables are binaries, then the

DD is a binary decision diagram (BDD), which has been the subject to the majority of studies in

the area due to the applications in Boolean logic [98, 89, 32]. On the other hand, a multi-valued

decision diagram (MDD) allows out-degrees higher than 2 and therefore encodes values of general

finite-domain variables. Finally, the width |Lj | of layer Lj is the number of nodes in the layer, and

the width of a DD B is maxj{|Lj |}. The size |B| of B is the number of nodes in B.

Figure 3.1 shows an exact weighted DD B for the knapsack instance (3.2) described in Example

1. It is composed of 5 layers, since the problem has 4 variables. It is a BDD because all variable

domains are binaries: Every arc a in B represents either a value of 0, depicted as a dashed arc in

the figure, or a value of 1, depicted as a solid arc; e.g., d((j1, k1)) = 1. The width of B is 3, since

L2 and L3 have three nodes, in particular L2 = {j1, j2, j3}. The size of the BDD B is |B| = 10.

Every arc-specified path p = (a(1), . . . , a(n)) from r to t encodes an assignment to the variables

x1, . . . , xn, namely xj = d(a(j)) for j = 1, . . . , n. We will denote this assignment by xp. For example,

in Figure 3.1 the arc-specified path p = ((r, i1), (i1, j1), (j1, k1), (k1, t)) encodes the assignment

xp = (0, 0, 1, 1). The set of r–t paths of B represents the set of assignments Sol(B).

Because we are interested in optimization, we focus on weighted DDs, in which each arc a has an

associated length v(a). The length of a directed path p =
(

a(1), . . . , a(k)
)

rooted at r corresponds to

v(p) =
∑k

j=1 v(a
(j)). A weighted DD B represents an optimization problem P in a straightforward

way. Namely, B is an exact decision diagram representation of P if the r–t paths in B encode
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precisely the feasible solutions of P, and the length of a path is the objective function value of the

corresponding solution. More formally, we say that B is exact for P when

Sol(P) = Sol(B) (E-1)

f(xp) = v(p), for all r–t paths p in B (E-2)

In Figure 3.1 the length v(a) is represented by a number above each arc a. One can verify

that the BDD B depicted in this figure satisfies both conditions (E-1) and (E-2) for the knapsack

problem instance (3.2). For example, the path p = ((r, i1), (i1, j1), (j1, k1), (k1, t)) is such that

v(p) = 7, which coincides with f(xp) = f((0, 0, 1, 1)) = 7.

An exact DD reduces discrete optimization to a longest-path problem. If p is a longest path

in a DD B that is exact for P, then xp is an optimal solution of P, and its length v(p) is the

optimal value z∗(P) = f(xp) of P. For Figure 3.1, the longest path is given by the path p∗ =

((r, i1), (i1, j2), (j2, k2), (k2, t)) with a length of v(p∗) = 12 = z∗, representing the optimal solution

xp
∗

= (0, 1, 0, 0).

It is common in the DD literature to allow various types of long arcs that skip one or more layers

[32, 104]. Long arcs can improve efficiency because they represent multiple partial assignments

with a single arc, but to simplify exposition, we will suppose with minimal loss of generality that

there are no long arcs throughout this dissertation. DDs also typically have two terminal nodes,

corresponding to true and false, but for our purposes only a true node is required as the terminus

for feasible paths.

3.3 Construction by Top-Down Compilation

We now present a generic framework for compiling an exact decision diagram encoding the solutions

of a discrete optimization problem P. The framework requires P to be written as a dynamic

programming (DP) model and extracts a decision diagram from the resulting state transition graph.

We fist describe the elements of a dynamic programming model, then outline the details of our

framework, and finally show DD examples on different problem classes.

3.3.1 Dynamic Programming Concepts

Dynamic programming (DP) is a recursive optimization method. A DP model for a discrete

optimization problem P is formulated to be solved in stages, each representing the transition from

a particular system state to the next until a final (or terminal) state is reached. These transitions

are controlled by the variable assignments and incur a particular cost, representing the objective

function of P. DP methods thus enumerate states instead of variable assignments, which may be

potentially fewer in number.
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To demonstrate the key ingredients involved in a DP model, we reproduce here the example

described in [86] and show how to reformulate the 0/1 knapsack problem as a DP model. Recall

the original linear model (3.1) in Example 1, where we wish to maximize the total value of the

selected items,
∑n

j=1 vjxj , subject to a weight capacity constraint L ≤
∑n

j=1wjxj ≤ U and binary

domains, xj ∈ {0, 1} for all j.

Since a DP is solved in stages, the first step towards formulating a DP model for the knapsack

problem is to introduce a state space, so that transitions from one stage to another are represented

as transitions between states of the system. In particular, the first stage has a pre-defined origin

state denoted by root state r̂. The transitions from a state to another are governed by the variables

x1, . . . , xn, which are regarded in DP as controls. Given a state sj in stage j, the assignment of the

control xj defines the next state sj+1 that is reached.

For the knapsack problem, we consider a DP formulation where each state represents the total

weight of the selected items up to that stage. Namely, the state sj at stage j represents the weight

considering that items 1, 2, . . . , j−1 have already been considered for selection or not. In the initial

stage no items have been considered thus far, hence the root state is such that s1 = 0. In stage i, if

the control xj selects item j (i.e., xj = 1), then the total weight increases by wj and we transition to

state sj+1 = sj +wj ; otherwise, the total weight remains the same and we transition to sj+1 = sj.

Thus, sj+1 = sj + wj xj . Since we are only interested in feasible solutions, the final state sn+1,

denoted by terminal state, must satisfy L ≤ sn+1 ≤ U .

Finally, the objective function is represented by costs incurred by each transition. For the

knapsack, we assign a cost of 0 if xj = 0, and vj otherwise. We wish to find a set of transitions that

lead us from the root state to the terminal state with maximum transition cost. By representing

the reached states as state variables in an optimization model, the resulting DP model for the 0/1

knapsack problem is given as follows.

max
n
∑

j=1

vjxj

sj+1 = sj + wj xj, j = 1, . . . , n (3.3)

xj ∈ {0, 1}, j = 1, . . . , n

s1 = 0, L ≤ sn+1 ≤ U

One can verify that any valid solution (x, s) to the DP model above leads to an assignment

x that is feasible to the knapsack model (3.1). Conversely, any feasible assignment x to model

(3.1) has a unique completion (s, x) that is feasible to the DP model above, thus both models are

equivalent. Notice also that the states are Markovian, i.e. the state sj+1 only depends on the

control xj and the previous state sj, which is a fundamental property of DP models.

As can be perceived from the knapsack example, the main components of a DP model are the
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states, the way how the controls govern the transitions, and finally the costs of each transition. To

specify this formally, a DP model for a given problem P with n variables having domainsD1, . . . ,Dn

must, in general, consist of the following four elements.

1. A state space S with a root state r̂ and a countable set of terminal states t̂1, t̂2, . . . , t̂k. To

facilitate notation, we also consider an infeasible state 0̂ that leads to infeasible solutions to

P. The state space is partitioned into sets for each of the n+ 1 stages, i.e. S is the union of

the sets S1, . . . , Sn+1, where S1 = {r̂}, Sn+1 = {t̂1, . . . , t̂k, 0̂}, and 0̂ ∈ Sj for j = 2, . . . , n.

2. Transition functions tj representing how the controls govern the transition between states,

i.e. tj : Sj ×Dj → Sj+1 for j = 1, . . . , n. Also, a transition from an infeasible state always

lead to an infeasible state as well, regardless of the control value: tj(0̂, d) = 0̂ for any d ∈ Dj .

3. Transition cost functions hj : S ×Dj → R for j = 1, . . . , n.

4. To account for objective function constants, we also consider a root value vr, which is a

constant that will be added to the transition costs directed out of the root state.

The DP formulation has variables (s, x) = (s1, . . . , sn+1, x1, . . . , xn) and is written

min f̂(s, x) =

n
∑

j=1

hj(s
j, xj)

sj+1 = tj(s
j, xj), for all xj ∈ Dj , j = 1, . . . , n (DP)

sj ∈ Sj , j = 1, . . . , n+ 1

The formulation (DP) is valid for P if for every x ∈ D, there is an s ∈ S such that (s, x) is

feasible in (DP) and

sn+1 = t̂ and f̂(s, x) = f(x), if x is feasible for P (A1)

sn+1 = 0̂, if x is infeasible for P (A2)

3.3.2 Top-Down Compilation

We now show how to compile a DD based on a DP model in a top-down fashion. The construction

of an exact weighted decision diagram from a DP formulation (DP) is straightforward in principle.

For a DD B, let bv(u) denote the node at the opposite end of an arc leaving node u with value v (if

it exists). The construction procedure is stated as Algorithm 1, described as follows. Begin with

the root node r in layer 1, which corresponds to the root state r̂. Proceed recursively, creating a

node for each feasible state that can be reached from r. Thus, having constructed layer j, let Lj+1

contain nodes corresponding to all distinct feasible states to which one can transition from states

represented in Lj. Then add an arc from layer j to layer j+1 for each such transition, with length
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Algorithm 1 Exact DD Top-Down Compilation

1: Create node r = r̂ and let L1 = {r}
2: for j = 1 to n do
3: let Lj+1 = ∅
4: for all u ∈ Lj and d ∈ Dj do
5: if tj (u, d) 6= 0̂ then
6: let u′ = tj (u, d), add u

′ to Lj+1, and set bd(u) = u′, v(u, u′) = hj(u, u
′)

7: Merge nodes in Ln+1 into terminal node t

equal to the transition cost. At the last stage, identify all terminal states t̂1, . . . , t̂k to a terminal

node t. Notice that, because distinct nodes always have distinct states, the algorithm identifies

each node with the state associated with that node.

Example 2 Figure 3.2 depicts three consecutive iterations of Algorithm 1 for the 0/1 knapsack

problem instance (3.2). The DP states from model (3.3) are represented as grey boxes next to the

nodes that identify them. In the first iteration, presented in Figure 3.2a, layer L1 is built with

the root node r having state 0, and layer L2 is built with nodes i1 and i2 having states 0 and

5, respectively. In the second iteration, layer L3 is built with four nodes as Figure 3.2b shows.

However, since all costs are positive, we can already identify that the black-filled node with state

12 is infeasible (i.e., 0̂), as all of its branches will have a state larger than the maximum weight

capacity of 8. This node is then removed from the BDD. Figure 3.2c presents one more iteration,

where layer L4 is built. As before, we can already remove node with state 9. Notice that a dashed

arc leaving j2 and a solid arc leaving j3 have the same state 7, so they are directed to the same

node k2.

Finally, we note that node k4 will be removed in the next iteration of the Algorithm, since all of

its branches will be infeasible (as the resulting total weight will be less than 5), yielding the exact

BDD represented in Figure 3.1. �

Algorithm 1 assumes that the controls x1, . . . , xn are ordered according to the DP model input.

Nevertheless, as studied in [15], it is often possible to reorder the controls and obtain DDs of

drastically different sizes. In the context of decision diagrams for optimization, the orderings and

the respective size of a DD are closely related to the combinatorial structure of the problem that

the DD represents. We present a study case on this relationship in Section 3.5. In particular, a

follow-up work of our study shows that the size of a DD for set packing and set covering problems

are related to the bandwidth of the constraint matrix that results from this ordering [80].

The outlined DD construction procedure can also be perceived as a particular representation of

the state-graph of the DP formulation [87]. Suppose that (DP) is valid for problem P, and consider

the state-transition graph for (DP). Omit all occurrences of the infeasible state 0̂, and let each
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Figure 3.2: Three consecutive iterations of Algorithm 1 for the 0/1 knapsack problem (3.2). Grey
boxes correspond to the DP states in model (3.3), and black-filled nodes indicate infeasible nodes.

remaining arc from state sj to state tj(s
j , xj) have length equal to the transition cost hj(s

j , xj).

The resulting multi-graph BDP is an exact DD for P, because paths from state r to state t in

BDP correspond precisely to feasible solutions of (DP), and the objective function value of the

corresponding solution is the path length.

We remark in passing that the resulting DD is not necessarily reduced [32, 132], meaning that a

layer j may contain two or more equivalent nodes. Two nodes are equivalent when the paths from

each to t correspond to the same set of assignments to (xj , . . . , xn). In a reduced DD, all equivalent

nodes in a layer are superimposed. Although reduced DDs play a key role in circuit verification

and some other applications, they can be unsuitable for optimization, because the arc lengths from

equivalent nodes may differ. This will be the case, e.g., for maximum cut problems described in

Section 3.3.7.

In the next section we exemplify the DP formulation and the diagram construction for dif-

ferent problem classes in optimization. To facilitate reading, proofs certifying the validity of the

formulations are shown in Section 3.3.9.

3.3.3 Maximum Independent Set Problem

A discrete optimization problem that will be studied throughout this dissertation is the maximum

independent set problem. Given a graph G = (V,E) with an arbitrarily ordered vertex set V =

{1, 2, . . . , n}, an independent set I is a subset I ⊆ V such that no two vertices in I are connected

by an edge in E. If we associate weights wj ≥ 0 with each vertex j ∈ V , the maximum independent

set problem (MISP) asks for a maximum-weight independent set of G. For example, in the graph

depicted in Figure 3.3, the maximum weighted independent set is I = {2, 5} and has a value of 13.

The MISP (which is equivalent to the maximum clique problem) has found applications in many

areas, including data mining [53], bioinformatics [51], and social network analysis [13].
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Figure 3.3: Example of a graph with vertex weights for the MISP. Vertices are assumed to be
labeled arbitrarily, and the number above each circle indicates the vertex weight.

The MISP can be formulated as the following discrete optimization problem:

max
n
∑

j=1

wjxj

xi + xj ≤ 1, for all (i, j) ∈ E (3.4)

xj ∈ {0, 1}, for all j ∈ V

In the formulation above, we define a variable xj for each vertex j ∈ V with binary domain

Dj = {0, 1}, indicating whether vertex j is selected (xj = 1) or not (xj = 0). The objective function

is the weight of the independent set, f(x) =
∑n

j=1wjxj , and the constraint set prevents two vertices

connected by edge from being selected simultaneously, i.e. C = {xi + xj ≤ 1 | (i, j) ∈ E}. For the

graph in Figure 3.3, the corresponding model is such that the optimal solution is x∗ = (0, 1, 0, 0, 1)

and the optimal solution value is z∗ = 13. Moreover, Sol(P) is defined by the vectors x that

represents the family of independent sets V ∪ {{1, 4}, {1, 5}, {2, 5}, {3, 5}}.

Example 3 Figure 3.4 shows an exact weighted BDD B for the MISP problem defined over the

graph G in Figure 3.3. Any r–t path in B represents a variable assignment that corresponds to

a feasible independent set of G; conversely, all independent sets are represented by some r–t path

in B, hence Sol(P) = Sol(B). The size of B is |B| = 11 and its width is 3, which is the width of

layer L3. Finally, notice that the length of each path p corresponds exactly to the weight of the

independent set represented by xp. In particular, the longest path in B has a value of 13 and yields

the assignment x∗ = (0, 1, 0, 0, 1), which is the optimum solution to the problem. �

To formulate a DP model for the MISP, we introduce a state space where in stage j we decide

if vertex j will be added to a partial independent set, considering that we have already decided

whether vertices 1, 2, . . . , j − 1 are in this partial independent set or not. In particular, each state

sj in our formulation represents the set of vertices that still can be added to the partial independent
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Figure 3.4: Exact BDD for the MISP on the graph in Figure 3.3. Dashed and solid arcs represent
labels 0 and 1, respectively.

set we have constructed up to stage j. In the first stage of the system, no independent set has

been considered so far, thus the root state is r̂ = V , i.e. all vertices are eligible to be added. The

terminal state is when no more vertices can be considered, 0̂ = ∅. Finally, a state sj in the j-th

stage is such that sj ⊆ {j, j + 1, . . . , n}.

Given a state sj in stage j of the MISP, the assignment of the control xj defines the next state

sj+1. If xj = 0, then by definition vertex j is not added to the independent set thus far, and hence

sj+1 = sj \ {j}. If xj = 1, we add vertex j to the existing independent set constructed up to stage

j, but now we are unable to add any of the adjacent vertices of j, N(j) = {j′ | (j, j′) ∈ E}, to our

current independent set. Thus the new eligibility vertex set is sj+1 = sj \ (N(j) ∪ {j}). Note that

the transition triggered by xj = 1 will lead to an infeasible independent set if j 6∈ sj. Finally, we

assign a transition cost of 0 if xj = 0, and wj otherwise. We wish to find a set of transitions that

lead us from the root state to the terminal state with maximum cost.

Formally, the DP model of the MISP is thus composed of the following components:

• state spaces: Sj = 2Vj for j = 2, . . . , n, r̂ = V , and t̂ = ∅

• transition functions: tj(s
j, 0) = sj \ {j}, tj(s

j, 1) =

{

sj \N(j) , if j ∈ sj

0̂ , if j /∈ sj

• cost functions: hj(s
j, 0) = 0, hj(s

j, 1) = wj

• A root value of 0.

As an illustration, consider the MISP for the graph in Figure 3.3. The states associated with

nodes of BDP are shown in Figure 3.5. For example, node u1 has state {2, 3, 4, 5}, representing the

vertex set V \{1}. We will show in Section 3.5 that the state space described above yields a reduced

DD, thus it is the smallest possible DD for the control ordering given as input.
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Figure 3.5: Exact BDD with states for the MISP on the graph in Figure 3.3.

3.3.4 Set Covering Problem

The set covering problem (SCP) is the binary program

min cTx

Ax ≥ e

xj ∈ {0, 1}, j = 1, . . . , n

where c is an n-dimensional real-valued vector, A is a 0–1 m×n matrix, and e is the m-dimensional

unit vector. Let ai,j be the element in the i-th row and j-th column of A, and define Aj = {i | ai,j =

1} for j = 1, . . . , n. The SCP asks for a minimum-cost subset V ⊆ {1, . . . , n} of the sets Aj such

that for all i, ai,j = 1 for some j ∈ V , i.e. V covers {1, . . . ,m}. It is widely applied in practice and

it was one of the first combinatorial problems to be proved NP-Complete [62].

We now formulate the SCP as a DP model. The state in a particular stage of our model

indicates the set of constraints that still need to be covered. Namely, let Ci be the set of indices of

the variables that participate in constraint i, Ci = {j |ai,j = 1}, and let last(Ci) = max{j | j ∈ Ci}

be the largest index of Ci. The components of the DP model are as follows.

• state spaces: In any stage, a state contains the set of constraints that still need to be covered:

Sj = 2{1,...,m} ∪ {0̂} for j = 2, . . . , n. Initially, all constraints need to be satisfied, hence

r̂ = {1, . . . ,m}. There is a single terminal state which indicates that all constraints are

covered: t̂ = ∅.

• transition functions: Consider a state sj in stage j. If the control satisfies xj = 1 then all

constraints that variable xj covers, Aj = {i | ai,j = 1} = {i : j ∈ Ci}, can be removed from
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sj. However, if xj = 0, then the transition will lead to an infeasible state if there exists some

i such that last(Ci) = j, since then constraint i will never be covered. Otherwise, the state

remains the same. Thus:

tj(s
j , 1) = sj \Aj

tj(s
j , 0) =

{

sj, if last(Ci) > j for all i ∈ sj ,

0̂, otherwise.

• cost functions: hj(s
j, xj) = −cjxj

• A root value of 0.

Example 4 Consider the SCP instance with

c = (2, 1, 4, 3, 4, 3)

and

A =







1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1







Figure 3.6 shows an exact reduced BDD for this SCP instance where the nodes are labeled

with their corresponding states. If outgoing 1-arcs (0-arcs) of nodes in layer j are assigned a cost

of cj (zero), a shortest r–t path corresponds to solution (1, 1, 0, 0, 0, 0) with an optimal value of 3. �

Different than the MISP, this particular DP model does not yield reduced DDs in general. We

show this in Example 5.

{1, 2, 3}

{1, 2, 3} {3}

{1,2,3} {2} {3} ∅

∅

∅

∅

∅

{2, 3} {2} {3}

{2, 3} {2} {3}

{3}

Figure 3.6: Exact BDD for the SCP instance in Example 4.
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Example 5 Consider the set covering problem

minimize x1 + x2 + x3

subject to x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1, x2, x3 ∈ {0, 1}

and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have that the state reached by applying

the first and second set of controls is {2} and {1}, respectively. Thus, they would lead to different

nodes in the resulting DD. However, both have the single feasible completion x̃ = (1). �

There are several ways to modify the state function so that the resulting DD is reduced, as pre-

sented in [26]. This requires only polynomial time to compute per partial solution, but nonetheless

at an additional computational cost.

3.3.5 Set Packing Problem

A problem closely related to the SCP, the set packing problem (SPP) is the binary program

max cTx

Ax ≤ e

xj ∈ {0, 1}, j = 1, . . . , n

where c is an n-dimensional real-valued vector, A is a 0–1 m×n matrix, and e is the m-dimensional

unit vector. Let ai,j be the element in the i-th row and j-th column of A, and define Aj = {i | ai,j =

1} for j = 1, . . . , n. The SPP asks for the maximum-cost subset V ⊆ {1, . . . , n} of the sets Aj such

that for all i, ai,j = 1 for at most one j ∈ V .

We now formulate the SPP as a DP model. The state in a particular stage of our model

indicates the set of constraints for which no variables have been assigned a one and could still be

violated. As in the SCP, let Ci be the set of indices of the variables that participate in constraint i,

Ci = {j | ai,j = 1}, and let last(Ci) = max{j | j ∈ Ci} be the largest index of Ci. The components

of the DP model are as follows.

• state spaces: In any stage, a state contains the set of constraints for which no variables have

been assigned a one: Sj = 2{1,...,m} ∪ {0̂} for j = 2, . . . , n. Initially, r̂ = {1, . . . ,m}. There is

a single terminal state t̂ = ∅, when no more constraints need to be considered.

• transition functions: Consider a state sj in stage j. By the definition of a state, the control

xj = 1 leads to the infeasible state 0̂ if there exists a constraint i that contains variable xj
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Figure 3.7: Exact reduced BDD for the SPP instance in Example 6.

(i ∈ Aj) and does not belong to sj. If xj = 0, then we can remove from sj any constraints i

for which j = last(Ci), since these constraints will not be affected by the remaining controls.

Thus:

tj(s
j , 0) = sj \ {i | last(Ci) = j}

tj(s
j , 1) =

{

sj \ {i | j ∈ Ci}, if Aj ⊆ s
j ,

0̂, otherwise.

• cost functions: hj(s
j, xj) = −cjxj

• A root value of 0.

Example 6 Consider the SPP instance with the same constraint matrix A as in Example 4, but

with weight vector

c = (1, 1, 1, 1, 1, 1).

Figure 3.7 shows an exact reduced BDD for this SPP instance. The nodes are labeled with their

corresponding states, and we assign arc costs 1/0 to each 1/0-arc. A longest r–t path, which can

be computed by a shortest path on arc weights c′ = −c because the BDD is acyclic, corresponds

to solution (0, 0, 1, 0, 1, 1) and proves an optimal value of 3. �

As in the case of the SCP, the above state function does not yield reduced DDs. This is shown

in the following example.
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Example 7 Consider the problem

max x1 + x2 + x3

x1 + x3 ≤ 1

x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have distinct states {2} and {1} reached

by the controls x1 and x2, respectively, but both have the single feasible completion, x̃ = (0). �

There are several ways to modify the state function above so that the DD construction algorithm

outputs reduced decision diagrams. For example, one can reduce the SPP to an independent set

problem and apply the state function defined in Section 3.3.3 , which we demonstrate to have this

property in Section 3.5.

3.3.6 Single Machine Makespan Minimization

Let J = {1, . . . , n} for any positive integer n. A permutation π of J is a complete ordering

(π1, π2, . . . , πn) of the elements of J , where πi ∈ J for all i and πi 6= πj for all i 6= j. Combinatorial

problems involving permutations are ubiquitous in optimization, specially in applications involving

sequencing and scheduling.

For example, consider the following variant of a single machine makespan minimization problem

(MMP) [111]. Let J represent a set of n jobs that must be scheduled in a single machine. The

machine can process at most one job at a time, and a job must be completely finished before

starting the next job. With each job we associate a position-dependent processing time; namely,

let pij be the processing time of job j if it is the i-th job to be performed on the machine. We want

to schedule jobs to minimize the total completion time, or makespan.

Table 3.1 depicts an instance of the MMP problem with 3 jobs. According to the given table,

performing jobs 3, 2, and 1 in that order would result in a makespan of 1+7+9 = 17. The minimum

makespan is achieved by the permutation (2, 3, 1) and has a value of 2+3+9 = 14. Notice that the

MMP presented here can be solved as a classical matching problem [108]. More complex position

position-dependent problems usually represent machine deterioration, and literature on this topic

is relatively new [2].

To formulate the MMP as an optimization problem, we let xi represent the i-th job to be

41



Position in Schedule

Jobs 1 2 3

1 4 5 9
2 3 7 8
3 1 2 10

Table 3.1: Processing times of a single machine makespan minimization problem. Rows and columns
represent the job index and the position in the schedule, respectively.

processed in the machine. The MMP can be written as

min

n
∑

i=1

pi,xi

Alldifferent(x1, . . . , xn) (3.5)

xi ∈ {1, . . . , n}, i = 1, . . . , n (3.6)

Constraint (3.5) is typical in constraint programming models [119] and indicates that variables

x1, . . . , xn must assume pairwise distinct values, i.e. they define a permutation of J . Hence, the

set of feasible solutions to the MMP is the set of permutation vectors of J .

We now formulate the MMP as a DP model. The state in a particular stage of our model

indicates the jobs that were already performed in the machine. The components of the DP model

are as follows.

• state spaces: In a stage j, a state contains the j−1 jobs that were performed previously in the

machine: Sj = 2{1,...,n} ∪ {0̂} for j = 2, . . . , n. Initially, no jobs have been performed, hence

r̂ = ∅. There is a single terminal state t̂ = {1, . . . , n}, when all jobs have been completed.

• transition functions: Consider a state sj in stage j. By the definition of a state, the control

xj = d for some d ∈ {1, . . . , n} simply indicates that job d will now be processed at stage j.

The transition will lead to an infeasible state 0̂ if d ∈ sj, because then job d has already been

processed by the machine. Thus:

tj(s
j, d) =

{

sj ∪ {d}, if d 6∈ sj ,

0̂, otherwise.

• cost functions: the transition cost corresponds to the processing time of the machine at that

stage: hj(s
j , d) = −pj,d.

• A root value of 0.
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Figure 3.8: Example of an MDD for the minimum makespan problem in Table 3.1. Solid, dashed,
and dotted arcs represent labels 1, 2, and 3, respectively.

Example 8 Figure 3.8 depicts the MDD with node states for the MMP instance defined in Ta-

ble 3.1. In particular, the path traversing nodes r, u3, u5, and t corresponds to processing jobs 3,

2, 1, in that order. This path has a length of 14, which is the optimal makespan of that instance. �

Existing works focus on representation issues of the set of permutation vectors (e.g., [122, 131,

11]). DD representations of permutations have also been suggested in the literature [105]. The DP

model presented here yields the same DD as in [78]. It will be again the subject of our discussion in

Section 4.3.1. Also, in Chapter 7 we show how to minimize different scheduling objective functions

over the same decision diagram representation.

3.3.7 Maximum Cut Problem

Given a graph G = (V,E) with vertex set V = {1, . . . , n}, a cut (S, T ) is a partition of the vertices

in V . We say that an edge crosses the cut if its endpoints are on opposite sides of the cut. Given

edge weights, the value v(S, T ) of a cut is the sum of the weights of the edges crossing the cut. The

maximum cut problem (MCP) is the problem of finding a cut of maximum value. The MCP has

been applied to VLSI design, statistical physics, and other problems [79, 55].

To formulate the MCP as a binary optimization problem, let xj indicate the set (S or T ) in

which vertex j is placed, so that Dj = {S,T}. Using the notation S(x) = {j | xj = S} and
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Figure 3.9: Graph with edge weights for the MCP.

T (x) = {j | xj = T}, the objective function is f(x) = v(S(x), T (x)). Since any partition is feasible,

C = ∅. Thus the MCP can be written as

max v(S(x), T (x)) (3.7)

xj ∈ {S, T}, j = 1, . . . , n

Example 9 Consider the graph G depicted in Figure 3.9. The optimal solution of the maximum

cut problem defined over G is the cut (S, T ) = ({1, 2, 4}, {3}) and has a length of 4, which is the

sum of the weights from edges (1, 3), (2, 3), and (3, 4). In our model this corresponds to the solution

x∗ = (S,S,T,S) with v(S(x∗), T (x∗)) = 4. �

We now formulate a DP model for the MCP. Let G = (V,E) be an edge-weighted graph, which

we can assume (without loss of generality) to be complete, because missing edges can be included

with weight 0. A natural state variable sj would be the set of vertices already placed in S, as this

is sufficient to determine the transition cost of the next choice. However, we will be interested in

merging nodes that lead to similar objective function values. We therefore let the state indicate,

for vertex j, . . . , n, the net marginal benefit of placing that vertex in T , given previous choices. We

will show that this is sufficient information to construct a DP recursion.

Formally, we specify the DP formulation as follows. As before, the control variable is xj ∈ {S,T},

indicating in which set vertex j is placed, and we set x1 = S without loss of generality. We will use

the notation (α)+ = max{α, 0} and (α)− = min{α, 0}.

• state spaces: Sk =
{

sk ∈ R
n | skj = 0, j = 1, . . . , k − 1

}

, with root state and terminal state

equal to (0, . . . , 0)

• transition functions: tk(s
k, xk) = (0, . . . , 0, sk+1

k+1, . . . , s
k+1
n ), where

sk+1
ℓ =

{

skℓ + wkℓ, if xk = S

skℓ − wkℓ, if xk = T

}

, ℓ = k + 1, . . . , n
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Figure 3.10: Exact BDD with states for the MCP on the graph in Figure 3.9

• transition cost: h1(s
1, x1) = 0 for x1 ∈ {S,T}, and

hk(s
k, xk) =































(−sk)
+ +

∑

ℓ>k
sj
ℓ
wjℓ≤0

min
{

|sjℓ|, |wjℓ|
}

, if xk = S

(sk)
+ +

∑

ℓ>k
sj
ℓ
wjℓ≥0

min
{

|sjℓ |, |wjℓ|
}

, if xk = T































, k = 2, . . . , n

• root value: vr =
∑

1≤j<j′≤n

(wjj′)
−

Note that the root value is the sum of the negative arc weights. The state transition is based

on the fact that if vertex k is added to S, then the marginal benefit of placing vertex ℓ > k in

T (given choices already made for vertices 1, . . . , k − 1) is increased by wkℓ. If k is added to T ,

the marginal benefit is reduced by wkℓ. Figure 3.10(a) shows the resulting weighted BDD for the

example discussed earlier.

Example 10 Consider the graph G in Figure 3.9. Figure 3.10 depicts an exact BDD for the

MCP on G with the node states as described before. A 0-arc leaving Lj indicates that xj = S,

and a 1-arc indicates xj = T. Notice that the longest path p corresponds to the optimal solution

xp = (S,S,T,S), and its length 4 is the weight of the maximum cut (S, T ) = ({1, 2, 4}, {3}). �
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3.3.8 Maximum 2-Satisfiability Problem

Let x = (x1, . . . , xn) be a tuple of Boolean variables, where each xj can take value T or F (corre-

sponding to true or false). A literal is a variable xj or its negation ¬xj. A clause ci is a disjunction

of literals, which is satisfied if at least one literal in ci is true. If C = {c1, . . . , cm} is a set of clauses,

each with exactly 2 literals, and if each ci has weight wi ≥ 0, the maximum 2-satisfiability problem

(MAX-2SAT) is the problem of finding an assignment of truth values to x1, . . . , xn that maximizes

the sum of the weights of the satisfied clauses in C. MAX-2SAT has applications in scheduling, elec-

tronic design automation, computer architecture design, pattern recognition, inference in Bayesian

networks, and many other areas [90, 95, 45].

To formulate the MAX-2SAT as a binary optimization problem, we use the Boolean variables

xj with domain Dj = {F,T}. The constraint set C is empty, and the objective function is f(x) =
∑m

i=1wici(x), where ci(x) = 1 if x satisfies clause ci, and ci(x) = 0 otherwise. We thus write

max

m
∑

i=1

wici(x) (3.8)

xj ∈ {F,T}, j = 1, . . . , n

Example 11 Consider the following instance of MAX-2SAT with three boolean variables x1, x2,

and x3:

clause index clause weight

1 x1 ∨x3 3

2 ¬x1 ∨¬x3 5

3 ¬x1 ∨x3 4

4 x2 ∨¬x3 2

5 ¬x2 ∨¬x3 1

6 x2 ∨x3 5

The optimal solution to the instance above consists of setting x = (F,T,T). It has length 19 since

it satisfies all clauses but c5. �

To formulate MAX-2SAT as a DP model, We suppose without loss of generality that a MAX-

2SAT problem contains all 4 ·
(

n
2

)

possible clauses, because missing clauses can be given zero weight.

Thus C contains xj ∨ xk, xj ∨ ¬xk, ¬xj ∨ xk and ¬xj ∨ ¬xk for each pair j, k ∈ {1, . . . , n} with

j 6= k. Let wTT
jk be the weight assigned to xj ∨ xk, w

TF
jk the weight assigned to xj ∨ ¬xk, and so

forth.

We let each state variable sk be an array (sk1 , . . . , s
k
n) in which each skj is the net benefit of

setting xj to true, given previous settings. The net benefit is the advantage of setting xj = T over
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setting xj = F. Suppose, for example, that n = 2 and we have fixed x1 = T. Then x1 ∨ x2 and

x1 ∨ ¬x2 are already satisfied. The value of x2 makes no difference for them, but setting x2 = T

newly satisfies ¬x1 ∨ x2, while x2 = F newly satisfies ¬x1 ∨¬x2. Setting x2 = T therefore obtains

net benefit wFT
12 − w

FF
12 . If x1 has not yet been assigned a truth value, then we do not compute a

net benefit for setting x2 = T. Formally, the DP formulation is as follows.

• state spaces: Sk =
{

sk ∈ R
n | skj = 0, j = 1, . . . , k − 1

}

, with root state and terminal state

equal to (0, . . . , 0)

• transition functions: tk(s
k, xk) = (0, . . . , 0, sk+1

k+1, . . . , s
k+1
n ), where

sk+1
ℓ =







skℓ + wTT
kℓ − w

TF
kℓ , if xk = F

skℓ + wFT
kℓ −w

FF
kℓ , if xk = T







, ℓ = k + 1, . . . , n

• transition cost: h1(s
1, x1) = 0 for x1 ∈ {F,T}, and

hk(s
k, xk) =























(−skk)
+ +

∑

ℓ>k

(

wFF
kℓ + wFT

kℓ +min
{

(skℓ )
+ + wTT

kℓ , (−s
k
ℓ )

+ + wTF
kℓ

})

, if xk = F

(skk)
+ +

∑

ℓ>k

(

wTF
kℓ + wTT

kℓ +min
{

(skℓ )
+ + wFT

kℓ , (−s
k
ℓ )

+ + wFF
kℓ

})

, if xk = T























,

k = 2, . . . , n

• root value: vr = 0

Example 12 Figure 3.11(a) shows the resulting states and transition costs for the MAX-2SAT

instance in Example 11. Notice that the longest path p yields the solution xp = (F,T,T) with

length 14. �

3.3.9 Correctness of the DP Formulations

In this section we show the correctness of the MCP and the MAX-2SAT formulations. The proof

of correctness of the MISP formulation can be found in [21], the proof of correctness of the SCP

and the SPP formulations in [25], and finally the proof of correctness of the MMP formulation in

[41].

Theorem 1 The specifications in Section 3.3.7 yield a valid DP formulation of the MCP.
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Figure 3.11: Exact BDD with states for the MAX-2SAT problem in Example 11.

Proof. Note that any solution x ∈ {S, T}n is feasible so that we need only show that condition

(A1) holds. The state transitions clearly imply that sn+1 is the terminal state t̂ = (0, . . . , 0),

and thus sn+1 ∈ {t̂, 0̂}. If we let (s̄, x̄) be an arbitrary solution of (DP), it remains to show

that f̂(s̄, x̄) = f(x̄). Let Hk be the sum of the first k transition costs for solution (s̄, x̄), so that

Hk =
∑k

j=1 hj(s̄
j , x̄j) and Hn + vr = f̂(s̄, x̄). It suffices to show that

Hn + vr =
∑

j,j′

{

wjj′ | 1 ≤ j < j′ ≤ n, x̄j 6= x̄j′
}

(Hn)

because the right-hand side is f(x̄). We prove (Hn) as follows. Note first that the state transitions

imply that

skℓ = Lℓ
k−1 −R

ℓ
k−1, for ℓ ≥ k (Sk)

where

Lℓ
k =

∑

j≤k

x̄j=S

wjℓ, Rℓ
k =

∑

j≤k

x̄j=T

wjℓ, for ℓ > k

We will show the following inductively:

Hk +Nk =
∑

j<j′≤k

x̄j 6=x̄j′

wjj′ +
∑

ℓ>k

min
{

Lℓ
k, R

ℓ
k

}

(Hk)

where Nk is a partial sum of negative arc weights, specifically

Nk =
∑

j<j′≤k

(wjj′)
− +

∑

j≤k<ℓ

(wkℓ)
−

so that, in particular, Nn = vr. This proves the theorem, because (Hk) implies (Hn) when k = n.
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We first note that (Hk) holds for k = 1, because in this case both sides vanish. We now suppose

(Hk) holds for k − 1 and show that it holds for k. The definition of transition cost implies

Hk = Hk−1 + (σks
k
k)

+ +
∑

ℓ>k
σks

k
ℓ
wkℓ≥0

min
{

|skℓ |, |wkℓ|
}

where σk is 1 if x̄k = T and −1 otherwise. This and the inductive hypothesis imply

Hk =
∑

j<j′≤k−1

x̄j 6=x̄j′

wjj′ +
∑

ℓ≥k

min
{

Lℓ
k−1, R

ℓ
k−1

}

−Nk−1 + (σks
k
k)

+ +
∑

ℓ>k
σks

k
ℓ
wkℓ≥0

min
{

|skℓ |, |wkℓ|
}

We wish to show that this is equal to the right-hand side of (Hk) minus Nk. Making the substitution

(Sk) for state variables, we can establish this equality by showing

∑

ℓ≥k

min
{

Lℓ
k−1, R

ℓ
k−1

}

−Nk−1 + (σk(L
k
k−1 −R

k
k−1))

+ +
∑

ℓ>k
σk(L

ℓ
k−1−Rℓ

k−1)wkℓ≥0

min
{

|Lℓ
k−1 −R

ℓ
k−1|, |wkℓ|

}

=
∑

j<k

x̄j 6=x̄k

wjk +
∑

ℓ>k

min
{

Lℓ
k, R

ℓ
k

}

−Nk
(Eq1)

We will show that (Eq1) holds when x̄k = T. The proof for x̄k = S is analogous. Using the fact

that Rℓ
k = Rℓ

k−1 + wkℓ, (Eq1) can be written

min
{

Lk
k−1, R

k
k−1

}

+
∑

ℓ>k

min
{

Lℓ
k−1, R

ℓ
k−1

}

+ (Lk
k−1 −R

k
k−1)

+

+
∑

ℓ>k
(Lℓ

k−1−Rℓ
k−1)wkℓ≥0

min
{

|Lℓ
k−1 −R

ℓ
k−1|, |wkℓ|

}

= Lk
k−1 +

∑

ℓ>k

min
{

Lℓ
k−1, R

ℓ
k−1 + wkℓ

}

− (Nk −Nk−1)

(Eq2)

The first and third terms of the left-hand side of (Eq2) sum to Lk
k−1. We can therefore establish

(Eq2) by showing that for each ℓ ∈ {k + 1, . . . , n}, we have

min
{

Lℓ
k−1, R

ℓ
k−1

}

+ δmin
{

Rℓ
k−1 − L

ℓ
k−1,−wkℓ

}

= min
{

Lℓ
k−1, R

ℓ
k−1 + wkℓ

}

− wkℓ, if wkℓ < 0

min
{

Lℓ
k−1, R

ℓ
k−1

}

+ (1− δ)min
{

Lℓ
k−1 −R

ℓ
k−1, wkℓ

}

= min
{

Lℓ
k−1, R

ℓ
k−1 + wkℓ

}

, if wkℓ ≥ 0

where δ = 1 if Lℓ
k−1 ≤ Rℓ

k−1 and δ = 0 otherwise. It is easily checked that both equations are

identities. �

Theorem 2 The specifications in Section 3.3.8 yield a valid DP formulation of the MAX-2SAT
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problem.

Proof. Since any solution x ∈ {F, T}n is feasible, we need only show that the costs are correctly

computed. Thus if (s̄, x̄) is an arbitrary solution of (DP), we wish to show that f̂(s̄, x̄) = f(x̄). If

Hk is as before, we wish to show that Hn = SATn(x̄), where SATk(x̄) is the total weight of clauses

satisfied by the settings x̄1, . . . , x̄k. Thus

SATk(x̄) =
∑

jj′αβ

{wαβ
jj′ | 1 ≤ j < j′ ≤ k; α, β ∈ {F,T}; x̄j = α or x̄j′ = β}

Note first that the state transitions imply (Sk) as in the previous proof, where

Lℓ
k =

∑

1≤j≤k

x̄j=T

wFT
jℓ +

∑

1≤j≤k

x̄j=F

wTT
jℓ , Rℓ

k =
∑

1≤j≤k

x̄j=T

wFF
jℓ +

∑

1≤j≤k

x̄j=F

wTF
jℓ , for ℓ > k

We will show the following inductively:

Hk = SATk(x̄) +
∑

ℓ>k

min
{

Lℓ
k, R

ℓ
k

}

(Hk-SAT)

This proves the theorem, because (Hk-SAT) reduces to Hn = SATn(x̄) when k = n.

To simplify the argument, we begin the induction with k = 0, for which both sides of (Hk-SAT)

vanish. We now suppose (Hk-SAT) holds for k − 1 and show that it holds for k. The definition of

transition cost implies

Hk = Hk−1 + (σks
k
k)

+ +
∑

ℓ>k

(

wαF
kℓ + wαT

kℓ +min
{

(skℓ )
+ + wβT

kℓ , (−s
k
ℓ )

+ + wβF
kℓ

})

where σk is 1 if x̄k = T and −1 otherwise. Also α is the truth value x̄k and β is the value opposite

x̄k. This and the inductive hypothesis imply

Hk = SATk−1(x̄)+
∑

ℓ≥k

min
{

Lℓ
k, R

ℓ
k

}

+(σks
k
k)

++
∑

ℓ>k

(

wαF
kℓ + wαT

kℓ +min
{

(skℓ )
+ + wβT

kℓ , (−s
k
ℓ )

+ + wβF
kℓ

})

We wish to show that this is equal to the right-hand side of (Hk-SAT). We will establish this equality

on the assumption that x̄k = T, as the proof is analogous when x̄k = F. Making the substitution

(Sk) for state variables, and using the facts that Lℓ
k = Lℓ

k−1+w
FT
kℓ and Rℓ

k = Rℓ
k−1+w

FF
kℓ , it suffices
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to show

∑

ℓ>k

min
{

Lℓ
k, R

ℓ
k

}

+min
{

Lk
k−1, R

k
k−1

}

+ (Lk
k−1 −R

k
k−1)

+

+
∑

ℓ>k

(

wTF
kℓ + wTT

kℓ +min
{

(Lℓ
k−1 −R

ℓ
k−l)

+ + wFT
kℓ , (L

ℓ
k−1 −R

ℓ
k−l)

+ + wFF
kℓ

})

=
∑

ℓ>k

min
{

Lℓ
k−1 + wFT

kℓ , R
ℓ
k + wFF

kℓ

}

+ SATk(x̄)− SATk−1(x̄)

(Eq-SAT)

The second and third terms of the left-hand side of (Eq-SAT) sum to Lk
k−1. Also

SATk(x̄)− SATk−1(x̄) = Lk
k−1 +

∑

ℓ>k

(

wTF
kℓ + wTT

kℓ

)

We can therefore establish (Eq-SAT) by showing that

min
{

Lℓ
k−1, R

ℓ
k−1

}

+min
{

(Lℓ
k−1 −R

ℓ
k−1)

+ +wFT
kℓ , (R

ℓ
k−1 − L

ℓ
k−1)

+ + wFF
kℓ

}

= min
{

Lℓ
k−1 + wFT

kℓ , R
ℓ
k−1 + wFF

kℓ

}

for ℓ > k. It can be checked that this is an identity. �

3.4 Construction by Separation

Construction by separation is an alternative compilation procedure that modifies a DD iteratively

until an exact representation is attained. It can be perceived as a method analogous to the separa-

tion procedures in integer programming (IP). In particular, IP solvers typically enhance a continuous

relaxation of the problem by adding separating cuts in the form of linear inequalities to the model

if its optimal solution is infeasible. Such separating cuts may be general (such as Gomory cuts) or

may exploit problem structure. In the same way, construction by separation consider separating

cuts in a discrete relaxation of the problem. The separating cuts now take the form of DP mod-

els that are used to modify the DD instead of linear inequalities, and can be either general (e.g.,

separate arbitrary variable assignments) or may exploit problem structure.

Given a discrete optimization problem P, the method starts with a DD B′ that is a relaxation

of the exact DD B: Sol(B′) ⊇ Sol(B) = Sol(P). That is, B′ encodes all the feasible solutions to

P but it may encode infeasible solutions as well. Each iteration consists of separating a constraint

over B′, i.e. changing the node and arc set of B′ to remove the infeasible solutions that violate a

particular constraint of the problem. The procedure ends when no more constraints are violated,

or when the longest path according to given arc lengths is feasible to P (if one is only interested in

the optimality) This separation method was first introduced by [78] for building approximate DDs

in constraint programming models. The procedure in the original work, denoted by incremental
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Algorithm 2 Exact DD Compilation by Separation

1: Let B′ = (U ′, A′) be a DD such that Sol(B′) ⊇ Sol(P).
2: while ∃ constraint C violated by B′ do
3: Let s(u) = χ for all nodes u ∈ B′

4: s(u) := r̂
5: for j = 1 to n do
6: for u ∈ Lj do
7: for each arc a = (u, v) leaving node u do
8: if tCj (s(u), d(a)) 6= 0̂ then
9: Remove arc a from B

10: else if s(v) = χ then
11: s(v) = tCj (s(u), d(a))

12: else if s(v) 6= tCj (s(u), d(a)) then
13: Remove arc (u, v)
14: Create new node v′ with s(v′) = tCj (u, d(a))
15: Add arc (u, v′)
16: Copy outgoing arcs from v as outgoing arcs from v′

17: Lj := Lj ∪ {v
′}

refinement, is slightly different than the presented here and will be described in Section 4.3.

The outline of the method is depicted in Algorithm 2. The algorithm starts with a DD B′ that is

a relaxation of P and finds a constraint that is potentially violated by paths in B′. Such constraint

could be obtained by iterating on the original set of constraints of P, or from some analysis of the

paths of B′. The method now assumes that each constraint C is described by its own DP model

having a state space and a transition function tCj . Since the states are particular to this constraint

only, we associate a label s(u) with each node u identifying the current state of u, which is re-set

to a value of χ every time a new constraint is considered. Hence, for notation purposes here, nodes

are not identified directly with a state as in the top-down compilation method.

The next step of Algorithm 2 is to analyze each arc of B′ separately in a top-down fashion. If

the arc is infeasible according to tCj , it is removed from B′ (nodes without incoming or outgoing

arcs are assumed to be deleted automatically). If the endpoint of the arc is not associated with any

state, it is then identified with the one that has the state given by tCj . Otherwise, if the endpoint of

the arc is already associated with another state, we have to split the endpoint since each node in the

DD must necessarily be associated with a single state. The splitting operation consists of adding

a new node to the layer, replicating the outgoing arcs from the original node (so that no solutions

are lost), and resetting the endpoint of the arc to this new node. By performing these operations

to all arcs of the DD, we ensure that constraint C is not violated by any solution encoded by B′.

Transition costs could also be incorporated at any stage of the algorithm to represent an objective

function of P.
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(c) DD after separating C1.

Figure 3.12: First three iterations of the separation method for the problem in Example 13.

Example 13 Consider the following optimization problem P:

max

3
∑

i=1

xi

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x1 + x3 ≤ 1

x1 + 2x2 − 3x3 ≥ 2

x1, x2, x3 ∈ {0, 1}

We partition the constraints into two sets:

C1 = {x1 + x2 ≤ 1, x2 + x3 ≤ 1, x1 + x3 ≤ 1} and C2 = {x1 + 2x2 − 3x3 ≥ 2}.

We will compile the exact BDD for P by separating paths that violate constraint classes C1 and

C2 in that order. The separation procedure requires a BDD encoding a relaxation of P as input.

This can be trivially obtained by creating an 1-width BDD that contains the Cartesian product of

the variable domains, as depicted in Figure 3.12a. The arc lengths were already set to represent

the transition costs.

We now separate the constraint set C1. Notice that the inequalities in C1 define the constraints

of an independent set problem. Thus, we can directly use the state definition and transition

function from Section 3.3.3 to separate C1. Recall that the state in this case represents the variable

indices that can still be added to the independent set so far. The state of the root node r is set

to s(r) = {1, 2, 3}. We now process layer L1. The 0-arc and the 1-arc leaving the root node leads
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to two distinct states {2, 3} and ∅, respectively. Hence, we split node u1 into nodes u4 and u5

as depicted in Figure 3.12b, partitioning the incoming arcs and replicating the outgoing arcs so

that no solutions are lost. Notice now that, according to the independent set transition function ,

the 1-arc leaving node u5 leads to an infeasible state (shaded in Figure 3.12b), therefore it will be

removed when processing layer L2.

The resulting DD after separating constraint C1 is presented in Figure 3.12c. Notice that no

solution violating C1 is encoded in the DD. The separation procedure now repeats the same steps

to separate constraint C2, defining a suitable state and modifying the DD as necessary. �

We remark that, in principle, any constraint C can be separated from a DD B′ simply by

conjoining B′ with a second DD that represents all solutions satisfying C. DDs can be conjoined

using a standard composition algorithm [132]. However, we presented an algorithm that is designed

specifically for separation and operates directly on the given DD. We do so for two reasons. (i)

There is no need for an additional data structure to represent the second DD. (ii) The algorithm

contains only logic that is essential to separation, which allows us to obtain a sharper bound on

the size of the separating DD in some structured cases, as we will describe in Section 3.4.1.

There are some potential benefits of this procedure over the top-down approach from Section 3.3.

First, it allows for an easier problem formulation since the combinatorial structure of each constraint

can be considered separately when creating the DD, similarly to the modeling paradigm applied

in constraint programming. Second, the separating constraints can be generated dynamically ; for

example, given arc lengths on a DD B′, the constraints to be separated could be devised from

an analysis of the longest path of B′, perhaps considering alternative modeling approaches (such

as logic-based Benders decomposition methods [86]). Finally, the DD B′ that contains a feasible

longest path could be potentially much smaller than the exact DD B for P.

As in the top-down approach of Section 3.3, the resulting DD is not necessarily reduced. If

this property is desired, one can reduce a DD by applying a single bottom-up procedure to identify

equivalent nodes, as described in [132].

3.4.1 Separating Partial Assignments: Growth of DDs

A key issue for separating DDs is how fast they grow as solutions are separated. In IP, a solution

can be separated with a single inequality, so that the continuous relaxation grows only linearly

with the number of solutions separated. We will show, however, that a separating DD can grow

exponentially with the number of solutions separated, even if the DD is reduced.

To this end, we consider the problem of separating partial assignments on binary decision

diagrams. Namely, assume all decision variables x are binaries, and let I ⊆ {1, . . . , } be a subset

of variable indices. Also, let xi = x̄i for all i ∈ I be a partial assignment of the decision variables

x. The separating problem for this partial assignment and a given BDD B′ is to find a BDD B′′
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that excludes this partial assignment from B′′. That is, the r-t paths in B′′ consist of those in B′

except those corresponding to assignments x with xi = x̄i for i ∈ I.

As specified in Section 3.4, we need to define a suitable DP model to enforce the constraint

xi 6= x̄i for i ∈ I over all tuples x encoded by B′. This is accomplished as follows. Let a state

sj at stage j represents whether or not all previous partial assignments x′ up to that stage satisfy

x′i = x̄i, for i ∈ I ∩ {1, . . . , j}, thus s
j ∈ {0, 1} for all states j. We let the root state r̂ be such that

r̂ = 1. Given a domain value d ∈ {0, 1}, the transition function tj is given by:

tj(s
j, d) =

{

0, if sj = 0 or (j ∈ I and d 6= x̄j)

1, otherwise.
(3.9)

Transition costs and root values are not necessary in this context.

Theorem 3 The state definition and transition function (3.9) are sufficient to separate constraint

xi = x̄i for i ∈ I from a BDD B′ using Algorithm 2.

Example 14 Suppose the separation algorithm is applied to the BDD of Fig. 3.13(a) to cut off

the partial assignment (x2, x4) = (1, 1). The resulting BDD is shown in Fig. 3.13(b). Because

nodes u18 and u19 do not lie on an r-t path, they and the two arcs adjacent to them may be dropped

from the diagram. �

We first observe that it may be possible to reduce a separating BDD even when the original

BDD is irreducible. Consider, for example, the BDD with two binary variables x1, x2 shown in

Fig. 3.14(a). Using the algorithm to separate the partial assignment x2 = 1 results in the BDD of

Fig. 3.14(b), which can be reduced to the BDD of Fig. 3.14(c).

Suppose the separation algorithm is applied to BDD B to obtain BDD B′. A simple bound on

the size of B′ results from observing that each layer of B′ contains at most two copies of the nodes

in the corresponding layer of B. When a single solution is separated from B, at most node per

layer can have state 1. We therefore have the following.

Theorem 4 The separation algorithm at most doubles number of nodes in the given BDD. When

separating a single solution, it adds at most 1 node to each layer.

We can also state a bound on the complexity of the separation algorithm. Creating layer i+1 of

B′ requires examining at most 2|Li| nodes in layer i of B′, where Li is the set of nodes in layer i of

B. For each node, the two possible values of xi are examined in the worst case. So the complexity

is O(
∑

i |Li|) = O(m), where m is the number of nodes in B.

We can give a sharper bound on the size of B′ before reduction as follows, which can be shown

by induction.
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Figure 3.13: (a) A BDD with layers corresponding to 0-1 variables x1, . . . , x5. (b) BDD after
separation of partial assignment (x2, x4) = (1, 1) from (a).
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Figure 3.14: (a) Initial BDD, (b) BDD after separation of partial assignment x2 = 1, and (c)
reduced version of (b).

Theorem 5 Suppose the separation algorithm is applied to a BDD B to obtain B′. Let k be the

smallest index and ℓ the largest index in I. Then the number of nodes in layer i of B′ is bounded

above by Ui, where

Ui =















|Li| for i = 1, . . . , k

|Li|+ ψi for i = k + 1, . . . , ℓ

|Li| for i = ℓ+ 1, . . . , n

The quantities ψi are given by ψk = |Lk|, and

ψi =







min{|Li|, ψi−1} if i− 1 ∈ I

min{|Li|, 2ψi−1} otherwise
(3.10)
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for i = k + 1, . . . ℓ.

An interesting special case is I ⊂ {1, . . . , ℓ}, so that the partial assignment to be separated

involves only a subset of the first ℓ variables. In this case, nodes are added only to the first ℓ layers

of B to obtain B′. No nodes are added to the remainder of the BDD.

Corollary 6 If I ⊂ {1, . . . , ℓ}, then layer i of B′ contains at most |Li| nodes for i = ℓ+1, . . . , n.

In particular, if I = {1, . . . , ℓ}, then layer i of B′ contains at most |Li| + 1 nodes for i = 1, . . . , ℓ

and at most |Li| nodes for i = ℓ+ 1, . . . , n.

The bound in Theorem 5 grows exponentially with the number of partial assignments separated.

We might ask whether the separating BDD can itself grow exponentially. One might expect that

it can, because otherwise one can solve the set covering problem in polynomial time, which implies

P = NP . This is because a set covering constraint can be written
∑

i∈I xi ≥ 1, which is equivalent

to excluding the solutions in x̄(I) where x̄i = 0 for i ∈ I. Thus we can let B be the diagram

representing all 0-1 tuples x, and B′ the diagram that separates all the set covering constraints.

The set covering problem, which minimizes
∑

i xi, can now be solved by placing a cost of 1 on all

1-arcs and 0 on all 0-arcs, and finding a shortest path in B′.

Theorem 7 Given a BDD B, the number of nodes in the reduced BDD that separates the solutions

in x̄1(I1), . . . , x̄
m(Im) from B can grow exponentially with respect to m and the size of B.

The theorem is proved by letting B be a BDD of width 1 that represents all possible 0-1 solutions,

and then separating the partial assignments (x1, xn) = (1, 1), (x2, xn−1) = (1, 1), (x3, xn−2) = (1, 1),

etc. The separating BDD for n = 6 appears in Fig. 3.15. The BDD grows exponentially with n

and is reduced as well. As it happens, the above separation algorithm yields this reduced BDD.

3.5 Variable Ordering: MISP Study Case

The construction algorithms in Sections 3.3 and 3.4 assume that the ordering of the decision

variables in the DD is defined according to the discrete model input. However, it is well-known

from the application of BDDs for Boolean functions [132] and knapsack problems [16] that different

variable orderings for the same problem instance may differ drastically in their sizes.

In this section we provide the first analysis on how the combinatorial structure of a problem can

be exploited to develop variable orderings that bound the size of the DD representing its solution

space. Such analysis is a critical question in the area of decision diagrams for optimization. For ex-

ample, the variable ordering deeply influences the optimization bounds obtained from approximate

DDs, as shown in Section 4.2.4. The overall analysis presented here could possibly be extended to

other problem classes as well, as presented in a follow-up work to our study which further analyses

the orderings for set covering and set packing problems [80].
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Figure 3.15: BDD that excludes partial assignments x = (1, · , · , · , · , 1), (· , 1, · , · , 1, · ), and
(· , · , 1, 1, · , · ).

We will particularly focus on the maximum independent set problem (MISP) for our analysis,

first described here in Section 3.3.3. Given a graph G = (V,E) with a vertex set V , an independent

set I is a subset I ⊆ V such that no two vertices in I are connected by an edge in E, i.e. (u, v) 6∈ E

for any distinct u, v ∈ I. If we associate weights with each vertex j ∈ V , the MISP asks for a

maximum-weight independent set of G.

For the MISP, changing the variable ordering corresponds to relabeling the indices of vertices

in G (or, equivalently, building the decision diagram on an isomorphic graph of G). The order

of variables plays a key role in the size of the exact BDDs for the MISP. The impact of different

orderings can be substantial, as shown in Figure 3.16. The example demonstrates two orderings

for the graph presented in Figure 3.16a. The first ordering is constructed by alternating between

the endpoints of the path, yielding a BDD of width 4 as depicted in Figure 3.16b. If vertices are

taken according to the path order, the exact BDD has half the width, as presented in Figure 3.16c.

We will now analyze variable orderings for the BDD representing the family of independent sets

of a problem. We first examine particular classes of graphs, namely cliques, paths, and trees. We

establish polynomial bounds on the widths (and hence size) of the exact BDDs with respect to the

graph size. This is achieved by providing an ordering of the vertices that forces the width to be

within a certain bound. Finally, we discuss the width for general graphs.
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Figure 3.16: Graph and exact BDD for two different orderings.

3.5.1 Notation

For a graph G = (V,E), let I(G) be the family of independent sets in G. Also, let G[W ] be

the graph induced by a subset W ⊆ V and W := V \W . Two disjoint subsets I, J ⊂ V are

independent if (w, v) /∈ E for any w ∈ I, v ∈ J . The neighborhood N(v) of v ∈ V is defined as

N(v) = {w : (w, v) ∈ E}. Let I(G) be the family of independent sets in G. A partial solution with

respect to W ⊆ V corresponds to any subset I ⊆ W , which is feasible if I ∈ I(G[W ]). Given a

partial feasible solution I with respect to W , the set of feasible completions of I with respect to W

is given by C(I | W ) = {J | J ⊆W, I ∪ J ∈ I(G)}.

A corresponding BDD B = (U,A) for the MISP above defines a bijection between the vertices

v ∈ V and the layers L1, . . . , Ln; let vj be the associated layer of vertex v, with Vj = {v1, . . . , vj}.

As in Section 3.3.3, with every arc-specified path p = (a1, . . . , an) from the root r to the terminal

t we associate a subset Ip ⊆ V defined by Ip := {vj : d(aj) = 1}.

For a given BDD node u ∈ U , we let B+|u be the subgraph of B induced by the subset of

nodes composed of u, the root r ∈ U , and all nodes v ∈ U lying on some directed path from r to

u. In addition, we preserve the arc labels as in B; therefore, B+|u is also a BDD. Analogously, let

B−|u be the subgraph of B induced by the subset of nodes composed by u, the terminal t ∈ U ,

and all nodes v ∈ U such that there is a directed path from u to t. Also, let B+|Lj
be the

digraph induced by L1, . . . , Lj and similarly B+|Lj
be the digraph induced by Lj, . . . , Ln+1, with

Sol(B+|Lj
) = ∪u∈Lj

Sol(B+|u) and Sol(B−|Lj
) = ∪u∈Lj

Sol(B−|u).

Notice that, for a node u, any path p = (a1, . . . , aj−1) in B+|u also corresponds to a vertex

subset in G[Vj−1] and any path p = (aj , . . . , an) in B
−|u corresponds to a vertex subset in G[V j−1].
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Moreover, each solution corresponds to at most one path in any BDD because no node has two

arcs with the same label directed out of it.

3.5.2 Reduced BDDs for the MISP

A reduced BDD is one for which Sol(B−|u) 6= Sol(B−|u′) for any two nodes u and u′ on the same

layer. It can be shown that for a particular ordering of the variables, that is, how layers are mapped

into variables, there is one unique reduced BDD for any set of solutions [32].

Recall from Section 3.3.3 that the state applied in the DP model for the MISP was defined by the

eligibility set, i.e. the set of vertices that could still be added to a partial independent set that was

constructed up to that stage. We now show that a BDD built using this state definition is reduced.

We first establish a condition for identifying when two independent sets I1, I2 ∈ I(G[Vj−1]) have

the same set of feasible completions.

Theorem 8 Given a graph G = (V,E), a subset {v1, . . . , vj−1} = Vj−1 ⊆ V of the vertices of G,

and two independent sets I1, I2 ⊆ I(G[Vj−1]),

C(I1 | V j−1) = C(I2 | V j−1) ⇐⇒ V j−1\ ∪v∈I1 N(v) = V j−1\ ∪v∈I2 N(v).

Proof. For I ∈ I(G[Vj−1]), we must have C(I | V j−1) = I(G[V j−1\∪v∈I1N(v)]), since V j−1\∪v∈I1
N(v) is exactly the set of remaining vertices in G that are independent of I. Conversely, suppose

V j−1\ ∪v∈I1 N(v) 6= V j−1\ ∪v∈I2 N(v). Without loss of generality, suppose there exists some w ∈

V j−1\ ∪v∈I1 N(v) that is not in V j−1\ ∪v∈I2 N(v). Then, w ∈ C(I1 | V j−1) but w /∈ C(I1 | V j−1),

hence {v} ∪ I1 is an independent set while {v} ∪ I2 is not, concluding the proof. �

Corollary 9 The state space for the MISP described in Section 3.3.3 leads to an exact reduced

BDD.

Proof. It is a direct application of Theorem 8. �

3.5.3 Variable Orderings and Bounds on BDD Sizes

Let E(u) be the state associated with a node u, and let S(Lj) be the set of states on nodes in Lj ,

S(Lj) = ∪u∈Lj
E(u). To bound the width of a given layer j, we need only count the number of

states that may arise from independent sets on {v1, . . . , vj−1}. This is because each layer will have

one and only one node for each possible state, and so there is a one-to-one correspondence between

the number of states and the size of a layer. We now show the following Theorems.

Theorem 10 Let G = (V,E) be a clique. Then, for any ordering of the vertices, the width of the

exact reduced BDD will be 2.
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Proof. Consider any layer j. The only possible independent sets on {v1, . . . , vj+1} are ∅ or {vi}, i =

1, . . . , j − 1. For the former, E(∅ | {vj , . . . , vn}) = {vj , . . . , vn} and for the latter, E({vi} |

{vj , . . . , vn}) = ∅, establishing the bound.

�

Theorem 11 Let G = (V,E) be a path. Then, there exists an ordering of the vertices for which

the width of the exact reduced BDD will be 2.

Proof. Let the ordering of the vertices be given by the positions in which they appear in the path.

Consider any layer j. Of the remaining vertices in G, namely {vj , . . . , vn}, the only vertex with

any adjacencies to {v1, . . . , vj−1} is vj. Therefore, for any independent set I ⊆ {v1, . . . , vj−1},

E(I | V j−1) will either be {vj , . . . , vn} (when vj−1 /∈ I) and {vj+1, . . . , vn} (when vj−1 ∈ I).

Therefore there can be at most 2 states in any given layer.

�

Theorem 12 Let G = (V,E) be a tree. Then, there exists an ordering of the vertices for which

the width of the exact reduced BDD will be no larger than n, the number of vertices in G.

Proof. We proceed by induction on n. For the base case, a tree with 2 vertices is a path, which

we already know has width 2. Now let T be a tree on n vertices. Any tree on n vertices contains

a vertex v for which the connected components C1, . . . , Ck created upon deleted v from T have

sizes |Ci| ≤
n
2 [93]. Each of these connected components are trees with fewer than n

2 vertices, so

by induction, there exists an ordering of the vertices on each component Ci for which the resulting

BDD Bi will have width ω(Bi) ≤
n
2 . For component Ci, let v

i
1, . . . , v

i
|Ci| be an ordering achieving

this width.

Let the final ordering of the vertices in T be v11 , . . . , v
1
|C1|, v

2
1 , . . . , v

k
|Ck|, v which we use to create

BDD B for the set of independent sets in T . Consider layer ℓ ≤ n− 1 of B corresponding to vertex

vij . We claim that the only possible states in S(ℓ) are s∪Ci+1∪· · ·∪Ck and s∪Ci+1∪· · ·∪Ck∪{v},

for s ∈ Si(j), where Si(j) is the set of states in BDD Bi in layer j. Take any independent set on

the vertices I ⊆ {v11 , . . . , v
1
|C1|, v

2
1 , . . . , v

i
j−1}. All vertices in I are independent of the vertices in

Ci+1, . . . , Ck, and so E(I | {vij , . . . , v
i
|Ci|} ∪ Ci+1 ∪ · · · ∪ Ck) ⊇ Ci+1 ∪ · · · ∪ Ck. Now, consider

Ii = I ∩ Ci. Ii is an independent set in the tree induced on the variables in Ci and so it will

correspond to some path in Bi from the root of that BDD to layer j, ending at some node u. The

state s of node u contains all of the vertices {vij , . . . , v
i
|Ci|} that are independent of all vertices in

Ii. As v
i
1, . . . , v

i
j−1 are the only vertices in the ordering up to layer ℓ in B that have adjacencies to

any vertices in Ci, we see that the set of vertices in the state of I from component Ci are exactly s.

Therefore, E(I | {vij , . . . , v
i
|Ci|} ∪Ci+1 ∪ · · · ∪Ck) ⊇ s ∪Ci+1 ∪ · · · ∪Ck. The only remaining vertex

that may be in the state is v, finishing the claim. Therefore, as the only possible states on layer ℓ

are s ∪ Ci+1 ∪ · · · ∪ Ck and s ∪ Ci+1 ∪ · · · ∪ Ck ∪ {v}, for s ∈ S
i(j), we see that ωℓ ≤

n
2 · 2 = n, as

desired. The layer remaining to bound is Ln, which contains {v} and ∅. �
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Theorem 13 Let G = (V,E) be any graph. There exists an ordering of the vertices for which

ωj ≤ Fj+1, where Fk is the kth Fibonnaci number.

Theorem 13 provides a bound on the width of the exact BDD for any graph. The importance

of this theorem goes further than the actual bound provided on the width of the exact BDD for

any graph. First, it illuminates another connection between the Fibonnaci numbers and the family

of independent sets of a graph, as investigated throughout the Graph Theory literature (see for

example [33, 59, 49, 134]). In addition to this theoretical consideration, the underlying principles

in the proof provide insight into what heuristic ordering for the vertices in a graph could lead to

BDDs with small width. The ordering inspired by the underlying principle in the proof yields

strong relaxation BDDs.

Proof of Theorem 13 Let P = P 1, . . . , P k, P i = {v11 , . . . , v
1
ik
}, be a maximal path decomposition of

the vertices of G, where by a maximal path decomposition we mean a set of paths that partition

V satisfying that vi1 and viik are not adjacent to any vertices in ∪kj=i+1P
j. Hence, P i is a maximal

path (in that no vertices can be appended to the path) in the graph induced by the vertices not in

the paths, P 1, . . . , P i−1.

Let the ordering of the vertices be given by v11 , . . . , v
1
i1
, v21 , . . . , v

k
ik
, i.e., ordered by the paths

and by the order that they appear on the paths. Let the vertices also be labeled, in this order, by

y1, . . . , yn.

We proceed by induction, showing that if layers Lj and Lj+1 have widths ωj and ωj+1, respec-

tively, then the width of layer Lj+3 is bounded by ωj +2 ·ωj+1, thereby proving that each layer Lj

is bounded by Fj+1 for every layer j = 1, . . . , n+ 1, since Fj+3 = Fj + 2 · Fj+1.

First we show that L4 has width bounded by F5 = 5. We can assume that G is connected and

has at least 4 vertices, so that P1 has at least 3 vertices. ω1 = 1. Also, ω2 = 2, with layer L2 having

nodes u21, u
2
2 arising from the partial solutions I = ∅ and I = {w1}, respectively. The corresponding

states will be E(u21) = V \{y1} and E(u22) = V \({y1}∪N(y1)). Now, consider layer L3. The partial

solution ending at node E(u22) cannot have y2 added to the independent set because y2 does not

appear in E(u22) since y2 ∈ N(w1). Therefore, there will be exact 3 outgoing arcs from the nodes

in L2. If no nodes are combined on the third layer, there will be 3 nodes u3i , i = 1, 2, 3 with states

E(u31) = V \{y1, y2}, E(u32) = V \( {y1, y2} ∪N(y2) ), and E(u33) = V \( {y1, y2} ∪N(y1) ). Finally,

as P 1 has length at least 3, vertex y3 is adjacent to y2. Therefore, we cannot add y3 under node

u32, so layer 4 will have width at most 5, finishing the base case.

Now let the layers of the partially constructed BDD be given by L1, . . . , Lj, Lj+1 with corre-

sponding widths ωi, i = 1, . . . , j +1. We break down into cases based on where yj+1 appears in the

path that it belongs to in P , as follows.

Case 1: yj+1 is the last vertex in the path that it belongs to. Take any node u ∈ Lj+1 and

its associated state E(u). Including or not including yj+1 results in state E(u)\{yj+1} since yj+1
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is independent of all vertices yi, i ≥ j + 2. Therefore, ωj+2 ≤ ωj+1 since each arc directed out of u

will be directed at the same node, even if the zero-arc and the one-arc are present. And, since in

any BDD ωk ≤ 2 · ωk−1, we have ωj+3 ≤ 2 · ωj+2 ≤ 2 · ωj+1 < ωj + 2 · ωj+1.

Case 2: yj+1 is the first vertex in the path that it belongs to. In this case, yj must be the

last vertex in the path that it belongs to. By the reasoning in Case 1, it follows that ωj+1 ≤ ωj.

In addition, we can assume that yj+1 is not the last vertex in the path that it belongs to because

then we are in case 1. Therefore, yj+2 is in the same path as yj+1 in P . Consider Lj+2. In the

worst case, each node in Lj+1 has yj+1 in its state so that ωj+2 = 2 · ωj+1. But, any node arising

from a one-arc will not have yj+2 in its state. Therefore, there are at most ωj+1 nodes in Lj+2 with

yj+2 in their states and at most ωj+1 nodes in Lj+2 without yj+2 in their states. For the set of

nodes without yj+2 in their states, we cannot make a one-arc, showing that ωj+3 ≤ ωj+2 + ωj+1.

Therefore, we have ωj+3 ≤ ωj+1 + ωj+2 ≤ 3 · ωj+1 ≤ ωj + 2 · ωj+1.

Case 3: yj+1 is not first or last in the path that it belongs to. As in case 2, ωj+1 ≤ 2 · ωj,

with at most ωj nodes on layer Lj+1 with wj+2 in it’s corresponding state label. Therefore, Lj+2

will have at most ωj more nodes in it than layer Lj+1. As the same thing holds for layer Lj+3, in

that it will have at most ωj+1 more nodes in it than layer Lj+2, we have ωj+3 ≤ ωj+2 + ωj+1 ≤

ωj+1 + ωj + ωj+1 = ωj + 2 · ωj+1, as desired, and finishing the proof.

�
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Chapter 4

Relaxed Decision Diagrams

4.1 Introduction

Bounds on the optimal value are often indispensable for the practical solution of discrete opti-

mization problems, as for example in branch-and-bound procedures. Such bounds are frequently

obtained by solving a continuous relaxation of the problem, perhaps a linear programming (LP)

relaxation of an integer programming model. In this section, we explore an alternative strategy of

obtaining bounds from a discrete relaxation represented by a relaxed decision diagram.

A weighted DD B is relaxed for an optimization problem P if B represents a superset of the

feasible solutions of P, and path lengths are upper bounds on the value of feasible solutions. That

is, B is relaxed for P if

Sol(P) ⊆ Sol(B) (Rel-1)

f(xp) ≤ v(p), for all r–t paths p in B for which xp ∈ Sol(P) (Rel-2)

Suppose P is a maximization problem. In Chapter 3, we showed that an exact DD reduces

discrete optimization to a longest-path problem: If p is a longest path in a BDD B that is exact for

P, then xp is an optimal solution of P, and its length v(p) is the optimal value z∗(P) = f(xp) of

P. When B is relaxed for P, a longest path p provides an upper bound on the optimal value. The

corresponding solution xp may not be feasible, but v(p) ≥ z∗(P). We will show that the width of a

relaxed DDs is restricted by an input parameter, which can be adjusted according to the number

of variables of the problem and computer resources.

Example 15 Consider the graph and vertex weights depicted in Figure 4.1. Figure 3.4(a) rep-

resents an exact BDD in which each path corresponds to an independent set encoded by the arc

labels along the path, and each independent set corresponds to some path. A 1-arc leaving layer

Lj (solid) indicates that vertex j is in the independent set, and a 0-arc (dashed) indicates that it

64



13

2

4

3

2

4

2

5

7

Figure 4.1: Graph with vertex weights for the MISP.
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Figure 4.2: (a) Exact BDD and (b) relaxed BDD for the MISP on the graph in Figure 4.1.

is not. The longest r–t path in the BDD has value 11, corresponding to solution x = (0, 1, 0, 0, 1)

and to the independent set {2, 5}, the maximum-weight independent set in the graph.

Figure 4.2(b) shows a relaxed BDD. Each independent set corresponds to a path, but there are

paths p for which xp is infeasible (i.e., not an independent set). For example, the path p̄ encoding

xp̄ = (0, 1, 1, 0, 1) does not represent an independent set because both endpoints of edge (2, 3) are

selected. The length of each path that represents an independent set is the weight of that set,

making this a relaxed BDD. The longest path in the BDD is p̄, proving an upper bound of 13. �

Relaxed DDs were introduced by [5] for the purpose of replacing the domain store used in

constraint programming by a richer data structure. Similar methods were applied to other types

of constraints in [78, 74, 85] and [23]. Weighted DD relaxations were used to obtain optimization

bounds in [26, 23], the former of which applied them to set covering and the latter to the maximum

independent set problem.
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The remainder of this chapter is organized as follows. In Section 4.2 we show how to modify

the top-down compilation approach from Section 3.3 to generate relaxed DDs that observe an

input-specified width. We show three modeling examples and provide a thorough computational

analysis of relaxed DDs for the maximum independent set problem. In Section 4.3 we describe an

alternative method to generate relaxed DDs, the incremental refinement procedure, and exemplify

its application to a single machine makespan problem.

4.2 Construction by Top-Down Compilation

Relaxed DDs of limited width can be built by considering an additional step in the modeling

framework for exact DDs described in Section 3.3. Recall that such framework relies on a DP

model composed of a state space, transition functions, transition cost functions, and a root value.

For relaxed DD, the model should also have an additional rule describing how to merge nodes in

a layer to ensure that the output DD will satisfy conditions (Rel-1) and (Rel-2), perhaps with an

adjustment in the transition costs. The underlying goal of such rule is to create a relaxed DD that

provides a tight bound given the maximum available width.

This rule is applied as follows. When a layer Lj in the DD grows too large during a top-down

construction procedure, we heuristically select a subsetM ⊆ Lj of nodes in the layer to be merged,

perhaps by choosing nodes with similar states. The state of the merged nodes is defined by an

operator ⊕(M), and the length v of every arc coming into a node u ∈ M is modified to ΓM (v, u).

The process is repeated until |Lj | no longer exceeds the maximum width W .

The relaxed DD construction procedure is formally presented in Algorithm 3. The algorithm

uses the notation av(u) as the arc leaving node u with label v, and bv(u) to denote the node at the

opposite end of the arc leaving node u with value v (if it exists). The algorithm identifies a node

u with the DP state associated with it. The relaxed DD construction is similar to the exact DD

construction procedure depicted in Algorithm 1, except for the addition of lines 3 to 6 to account

for the node merging rule. Namely, if the layer Lj size exceeds the maximum allotted width W , a

heuristic function node select selects a subset of nodes M . The nodes in M are merged into a new

node with state ⊕(M). The incoming arcs in M are redirected to ⊕(M), and their transition costs

are modified according to ΓM (v, u). This procedure is repeated until |Lj| ≤ W ; when that is the

case, the Algorithm then follows the same steps as in the exact DD construction of Algorithm 1.

The two key operations in a relaxed DD construction are thus the merge operator ⊕(M) and

the node selection rule (represented by the function node select in Algorithm 3). While the first

must ensure that the relaxed DD is indeed a valid relaxation according to conditions (Rel-1) and

(Rel-2), the second directly affects the quality of the optimization bounds provided by relaxed

DDs. We will now present valid relaxation operators ⊕(M) for the maximum independent set, the

maximum cut problem, and the maximum 2-satisfiability problem. In Section 4.2.4 we present a

computational analysis of how the choice of nodes to merge influences the resulting optimization
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Algorithm 3 Relaxed DD Top-Down Compilation for maximum width W

1: Create node r = r̂ and let L1 = {r}
2: for j = 1 to n do
3: while |Lj | > W do
4: let M = node select(Lj), Lj ← (Lj \M) ∪ {⊕(M)}
5: for all u ∈ Lj−1 and i ∈ Dj with bi(u) ∈M do
6: bi(u)← ⊕(M), v (ai(u))← ΓM (v(ai(u)) , bi(u))
7: let Lj+1 = ∅
8: for all u ∈ Lj and d ∈ Dj do
9: if tj (u, d) 6= 0̂ then

10: let u′ = tj (u, d), add u
′ to Lj+1, and set bd(u) = u′, v(u, u′) = hj(u, u

′)
11: Merge nodes in Ln+1 into terminal node t

bound for the maximum independent set problem.

We remark that a research direction still unexplored is whether we could pick a node select

function that gives a formal guarantee on the resulting bound provided by a limited-width DD. We

provide a simple example of such guarantee for the single machine makespan problem in Section

4.3.1.

4.2.1 Maximum Independent Set

The maximum independent set (MISP), first presented in Section 3.3.3, can be summarized as

follows. Given a graph G = (V,E) with an arbitrarily ordered vertex set V = {1, 2, . . . , n} and

weight wj ≥ 0 for each vertex j ∈ V , we wish to find a maximum-weight set I ⊆ V such that no two

vertices in I are connected by an edge in E. It is formulated as the following discrete optimization

problem:

max

n
∑

j=1

wjxj

xi + xj ≤ 1, for all (i, j) ∈ E

xj ∈ {0, 1}, for all j ∈ V

In the DP model for the MISP, recall from Section 3.3.3 that the state associated with a node

is the set of vertices that can still be added to the independent set. That is,

• state spaces: Sj = 2Vj for j = 2, . . . , n, r̂ = V , and t̂ = ∅

• transition functions: tj(s
j, 0) = sj \ {j}, tj(s

j, 1) =

{

sj \N(j) , if j ∈ sj

0̂ , if j /∈ sj

• cost functions: hj(s
j, 0) = 0, hj(s

j, 1) = wj
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Figure 4.3: (a) Exact BDD with states for the MISP on the graph in Figure 4.1. (b) Relaxed BDD
for the same problem instance.

• A root value of 0.

To create a relaxed DD for the MISP, we introduce a merging rule to the DP model above

where states are merged simply by taking their union. Hence, if M = {ui | i ∈ I}, the merged state

is ⊕(M) =
⋃

i∈I ui. The transition cost is not changed, so that ΓM (v, u) = v for all v, u. The

correctness follows from the fact that a transition function leads to an infeasible state only if a

vertex j is not in sj, therefore no solutions are lost.

Example 16 Figure 4.3(a) presents an exact DD for the MISP instance defined on the graph in

Figure 4.1. Figure 4.3(b) depicts a relaxed BDD for the same graph with a maximum width of 2,

where nodes u2 and u3 are merged during the top-down procedure to obtain u′ = u2∪u3 = {3, 4, 5},

which reduces the width of the BDD to 2.

In the exact DD of Figure 4.3(a), the longest path p corresponds to the optimal solution

xp = (0, 1, 0, 0, 1) and its length 11 is the weight of the maximum independent set {2, 5}. In

the relaxed DD of Figure 4.3(b), the longest path corresponds to the solution (0, 1, 1, 0, 1) and has

length 13, which proves an upper bound of 13 on the objective function. Note that the longest

path in the relaxed DD corresponds to an infeasible solution to that instance. �

68



4.2.2 Maximum Cut Problem

The maximum cut problem (MCP) was first presented in Section 3.3.7. Given a graph G = (V,E)

with vertex set V = {1, . . . , n}, a cut (S, T ) is a partition of the vertices in V . We say that an

edge crosses the cut if its endpoints are on opposite sides of the cut. Given edge weights, the value

v(S, T ) of a cut is the sum of the weights of the edges crossing the cut. The MCP is the problem

of finding a cut of maximum value.

The DP model for the MCP in Section 3.3.7 considers a state that represent the net benefit of

adding vertex ℓ to set T . That is, using the notation (α)+ = max{α, 0} and (α)− = min{α, 0}, the

DP model was

• state spaces: Sk =
{

sk ∈ R
n | skj = 0, j = 1, . . . , k − 1

}

, with root state and terminal state

equal to (0, . . . , 0)

• transition functions: tk(s
k, xk) = (0, . . . , 0, sk+1

k+1, . . . , s
k+1
n ), where

sk+1
ℓ =

{

skℓ + wkℓ, if xk = S

skℓ − wkℓ, if xk = T

}

, ℓ = k + 1, . . . , n

• transition cost: h1(s
1, x1) = 0 for x1 ∈ {S,T}, and

hk(s
k, xk) =































(−sk)
+ +

∑

ℓ>k
sj
ℓ
wjℓ≤0

min
{

|sjℓ|, |wjℓ|
}

, if xk = S

(sk)
+ +

∑

ℓ>k
sj
ℓ
wjℓ≥0

min
{

|sjℓ |, |wjℓ|
}

, if xk = T































, k = 2, . . . , n

• root value: vr =
∑

1≤j<j′≤n

(wjj′)
−

Recall that we identify each node u ∈ Lk with the associated state vector sk. When we merge

two nodes u1 and u2 in a layer Lk, we would like the resulting node unew = ⊕({u, u′}) to reflect the

values in u and u′ as closely as possible, while resulting in a valid relaxation. In particular, path

lengths should not decrease. Intuitively, it may seem that unewj = max{u1j , u
2
j} for each j is a valid

relaxation operator, because increasing state values could only increase path lengths. However, this

can reduce path lengths as well. It turns out that we can offset any reduction in path lengths by

adding the absolute value of the state change to the length of incoming arcs.

We therefore merge the nodes in M as follows. If, for a given ℓ, the states uℓ have the same

sign for all nodes u ∈M , we change each uℓ to the state with smallest absolute value, and add the

absolute value of each change to the length of arcs entering u. When the states uℓ differ in sign,
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Figure 4.4: Graph with edge weights for the MCP .

we change each uℓ to zero and again add the absolute value of the changes to incoming arcs. More

precisely, when M ⊂ Lk we let

⊕(M)ℓ =



















min
u∈M
{uℓ}, if uℓ ≥ 0 for all u ∈M

−min
u∈M
{|uℓ|}, if uℓ ≤ 0 for all u ∈M

0, otherwise



















, ℓ = k, . . . , n

ΓM (v, u) = v +
∑

ℓ≥k

(|uℓ| − | ⊕ (M)ℓ|) , all u ∈M

(MCP-relax)

Example 17 Figure 4.5 shows an exact DD and a relaxed DD for the MCP instance defined over

the graph in Figure 4.4. The relaxed DD is obtained by merging nodes u2 and u3 during top-down

construction. In the exact DD of Figure 4.5(a), the longest path p corresponds to the optimal so-

lution xp = (S,S,T,S), and its length 4 is the weight of the maximum cut (S, T ) = ({1, 2, 4}, {3}).

In the relaxed DD of Figure 4.5(b), the longest path corresponds to the solution (S,S,S,S) and has

length 5, which proves an upper bound of 5 on the objective function. Note that the actual weight

of this cut is 0. �

To show that ⊕ and Γ are valid relaxation operators, we rely on the following.

Lemma 14 Let B be a relaxed BDD generated by Algorithm 1 for an instance P of the MCP.

Suppose we add ∆ to one state skℓ in layer k of B (ℓ ≥ k), and add |∆| to the length of each

arc entering the node u associated with sk. If we then recompute layers k, . . . , n + 1 of B as in

Algorithm 1, the result is a relaxed BDD for P.

Proof. Let B′ the result of recomputing the BDD, and take any x̄ ∈ {S,T}n. It suffices to show

that the path p corresponding to x̄ is no shorter in B′ than in B. We may suppose p contains u,

because otherwise p has the same length in B and B′. Only arcs of p that leave layers Lk−1, . . . , Ln
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Figure 4.5: (a) Exact BDD with states for the MCP on the graph in Figure 4.4. (b) Relaxed BDD
for the same problem instance.

can have different lengths in B′. The length v(a) of the arc a leaving Lk−1 becomes v(a) + |∆|.

The states sjℓ along p in B for j = k, . . . , n become sjℓ +∆ in B′, and all other states along p are

unchanged. Thus from the formula for transition cost, the length v(a′) of the arc a′ leaving Lℓ

becomes at least

v(a′) + min
{

(−(sℓℓ +∆))+, (sℓℓ +∆)+
}

−min
{

(−sℓℓ)
+, (sℓℓ)

+
}

≥ v(a′) + min
{

(−sℓℓ)
+ −∆, (sℓℓ)

+ +∆
}

−min
{

(−sℓℓ)
+, (sℓℓ)

+
}

≥ v(a′)− |∆|

From the same formula, the lengths of arcs leaving Lj for j > k and j 6= ℓ cannot decrease. So the

length v(p) of p in B becomes at least v(p) + |∆| − |∆| = v(p) in B′. � �

Theorem 15 Operators ⊕ and Γ as defined in (MCP-relax) are valid relaxation operators for the

MCP.

Proof. We can achieve the effect of Algorithm 1 if we begin with the exact BDD, successively

alter only one state skℓ and the associated incoming arc lengths as prescribed by (MCP-relax), and

compute the resulting exact BDD after each alteration. We begin with states in L2 and work down

to Ln. In each step of this procedure, we increase or decrease skℓ = uℓ by δ = |uℓ| − | ⊕ (M)ℓ| for

some M ⊂ Lk, where ⊕(M)ℓ is computed using the states that were in Lk immediately after all

the states in Lk−1 were updated. We also increase the length of arcs into uℓ by δ. So we can let

∆ = ±δ in Lemma 14 and conclude that each step of the procedure yields a relaxed BDD. � �
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4.2.3 Maximum 2-Satisfiability Problem

The maximum 2-satisfiability problem was described in Section 3.3.8. The interpretation of states

is very similar for the MCP and MAX-2SAT. We therefore use the same relaxation operators

(MCP-relax). The proof of their validity for MAX-2SAT is analogous to the proof of Theorem 15.

Theorem 16 Operators ⊕ and Γ as defined in (MCP-relax) are valid relaxation operators for

MAX-2SAT.

4.2.4 Computational Study

In this section we assess empirically the quality of bounds provided by a relaxed BDD. We first

investigate the impact of various parameters on the bounds. We then compare our bounds with

those obtained by a linear programming (LP) relaxation of a clique-cover model of the problem,

both with and without cutting planes. We measure the quality of a bound by its ratio with the

optimal value (or best lower bound known if the problem instance is unsolved). Thus a smaller

ratio indicates a better bound.

We test our procedure on two sets of instances. The first set, denoted by random, consists of

180 randomly generated graphs according to the Erdös-Rényi model G(n, p), in which each pair

of n vertices is joined by an edge with probability p. We fix n = 200 and generate 20 instances

for each p ∈ {0.1, 0.2, . . . , 0.9}. The second set of instances, denoted by dimacs, is composed by

the complement graphs of the well-known DIMACS benchmark for the maximum clique problem,

obtained from http://cs.hbg.psu.edu/txn131/clique.html. These graphs have between 100

and 4000 vertices and exhibit various types of structure. Furthermore, we consider the maximum

cardinality optimization problem for our test bed (i.e., wj = 1 for all vertices vj).

The tests ran on an Intel Xeon E5345 with 8 GB RAM in single core mode. The BDD method

was implemented in C++.

Merging Heuristics

The selection of nodes to merge in a layer that exceeds the maximum allotted width W is critical

for the construction of relaxation BDDs. Different selections may yield dramatic differences on the

obtained upper bounds on the optimal value, since the merging procedure adds paths corresponding

to infeasible solutions to the BDD.

We now present a number of possible heuristics for selecting nodes. This refers to how the

subsets M are chosen according to the function node select in Algorithm 3. The heuristics we test

are described below.

• random: Randomly select a subset M of size |Lj | − W + 1 from Lj. This may be used

a stand-alone heuristic or combined with any of the following heuristics for the purpose of

generating several relaxations.
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Figure 4.6: Bound quality vs. graph density for each merging heuristic, using the random instance
set with MPD ordering and maximum BDD width 10. Each data point represents an average over 20
problem instances. The vertical line segments indicate the range obtained in 5 trials of the random
heuristic.

• minLP: Sort nodes in Lj in increasing order of the longest path value up to those nodes and

merge the first |Lj | −W + 1 nodes. This is based on the idea that infeasibility is introduced

into the BDD only when nodes are merged. By selecting nodes with the smallest longest

path, we lose information in parts of the BDD that are unlikely to participate in the optimal

solution.

• minSize: Sort nodes in Lj in decreasing order of their corresponding state sizes and merge

the first 2 nodes until |Lj | ≤W . This heuristic merges nodes that have the largest number of

vertices in their associated states. Because larger vertex sets are likely to have more vertices

in common, the heuristic tends to merge nodes that represent similar regions of the solution

space.

We tested the three merging heuristics on the random instance set. We set a maximum width of

W = 10 and used variable ordering heuristic MPD. Figure 4.6 displays the resulting bound quality.

We see that among the merging heuristics tested, minLP achieves by far the tightest bounds.

This behavior reflects the fact that infeasibility is introduced only at those nodes selected to be

merged, and it seems better to preserve the nodes with the best bounds as in minLP. The plot also

highlights the importance of using a structured merging heuristic, because random yielded much

weaker bounds than the other techniques tested. In light of these results, we use minLP as the

merging heuristic for the remainder of the experiments.
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Variable Ordering Heuristics

The ordering of the vertices plays an important role in not only the size of exact BDDs, but also

in the bound obtained by relaxed BDDs. It is well known that finding orderings that minimize

the size of BDDs (or even improving on a given ordering) is NP-hard [50, 30]. We found that the

ordering of the vertices is the single most important parameter in creating small width exact BDDs

and in proving tight bounds via relaxed BDDs.

Different orderings can yield exact BDDs with dramatically different widths, as discussed in

details in Section 3.5 of this dissertation. In particular, recall Figure 3.16a from that section, which

shows a path graph on 6 vertices with two different orderings given by x1, . . . , x6 and y1, . . . , y6. In

Figure 3.16c we see that the vertex ordering x1, . . . , x6 yields an exact BDD with width 2, while in

Figure 3.16b the vertex ordering y1, . . . , y6 yields an exact BDD with width 4. This last example

can be extended to a path with 2n vertices, yielding a BDD with a width of 2n−1, while ordering

the vertices according to the order that they lie on the paths yields a BDD of width 1.

The orderings in Section 3.5 inspire variable ordering heuristics for generating relaxed BDD. We

outline a few that are tested below. Note that the first two orderings are dynamic, in that we select

the j-th vertex in the order based on the first j − 1 vertices chosen and the partially constructed

BDD. In contrast, the last ordering is static, in that the ordering is determined prior to building

the BDD.

• random: Randomly select some vertex that has yet to be chosen. This may be used a stand-

alone heuristic or combined with any of the following heuristics for the purpose of generating

several relaxations.

• minState: Select the vertex vj appearing in the fewest number of states in P . This minimizes

the size of Lj, given the previous selection of vertices v1, . . . , vj−1, since the only nodes in P

that will appear in Lj are exactly those nodes containing vj in their associated state. Doing

so limits the number of merging operations that need to be performed.

• MPD: As proved in Section 3.5, a maximal path decomposition ordering of the vertices

bounds the exact BDD width by the Fibonacci numbers, which grow slower than 2j (the

worst case). Hence this ordering limits the width of all layers, therefore limiting the number

of merging operations necessary to build the BDD.

In first set of experiments, we wish to provide an empirical evidence that a variable ordering

with a smaller exact BDD results in a relaxation BDD with a tighter bound. If this hypothesis

holds, it would function as an additional motivation to study how variable orderings impact the

width on problems with other combinatorial structures, as they may have a substantial effect on

the optimization bound of relaxed DDs. The instances tested for this purpose were generated as

follows. We first selected 5 instances from the DIMACS benchmark: brock200 1, gen200 p.0.9 55,
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keller4, p hat300-2, and san200 0.7 1. Then, we uniformly at random extracted 5 connected

induced subgraphs with 50 vertices for each instance, which is approximately the largest graph size

that the exact BDD can be built within our memory limits.

The tests are described next. For each instance and the three orderings random, minState, and

MPD above, we collected the width of the exact BDD and the bound obtained by a relaxation BDD

with a maximum width of 10 (the average over 100 orderings for the random procedure). This

corresponds to sampling different exact BDD widths and analyzing their respective bounds, since

distinct variables orderings may yield BDDs with very different exact widths.

Figure 4.7 presents a scatter plot of the derived upper bound as a function of the exact widths

in log-scale, also separated by the problem class from which the instance was generated. Analyzing

each class separately, we observe that the bounds and width increase proportionally, reinforcing

our hypothesis. In particular, this proportion tends to be somewhat constant, that is, the points

tend to a linear curve for each class. We notice that this shape has different slopes according to the

problem class, hence indicating that the effect of the width might be more significant for certain

instances.

In Figure 4.8 we plot the bound as a function of the exact width for a single random instance

extracted from san200 0.7 1. In this particular case, we applied a procedure that generated 1000

exact BDDs with a large range of widths: the minimum observed BDD width was 151 and the

maximum was 27684, and the widths were approximately uniformly distributed in this interval.

We then computed the corresponding upper-bounds for a relaxed BDD, constructed using the

orderings described above, with width 10. The width is given in a log-scale. The Figure also shows

a strong correlation between the width and the obtained bound, analogous to the previous set of

experiments. A similar behavior is obtained if the same chart is plotted for other instances.

We now test the three variable ordering heuristics on the complete random instance set to

analyze the quality of the bound. The results (Fig. 4.9) indicate that the MinState ordering is the

best of the three. This is particularly true for sparse graphs, because the number of possible node

states generated by dense graphs is relatively small. We therefore use MinState ordering for the

remainder of the experiments.

Bounds vs. Maximum BDD Width

The purpose of this experiment is to analyze the impact of maximum BDD width on the resulting

bound. Figure 4.10 presents the results for instance p-hat 300-1 in the dimacs set. The results

are similar for other instances. The maximum width ranges from W = 5 to the value necessary to

obtain the optimal value of 8. The bound approaches the optimal value almost monotonically as

W increases, but the convergence is superexponential in W .
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Figure 4.7: Bound of relaxation BDD vs. exact BDD width.
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Figure 4.8: Bound of relaxation BDD vs. exact BDD width for san200 0.7 1.

Comparison with LP Relaxation

We now address the key question of how BDD bounds compare with bounds produced by a tradi-

tional LP relaxation and cutting planes. To obtain a tight initial LP relaxation, we used a clique

cover model [70] of the maximum independent set problem, which requires computing a clique cover
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Figure 4.9: Bound quality vs. graph density for each variable ordering heuristic, using merge
heuristic minLP and otherwise the same experimental setup as Fig. 4.6.

before the model can be formulated. We then augmented the LP relaxation with cutting planes

generated at the root node by the CPLEX MILP solver.

Given a collection C ⊆ 2V of cliques whose union covers all the edges of the graph G, the clique

cover formulation is
max

∑

v∈V
xv

s.t.
∑

v∈S
xv ≤ 1, for all S ∈ C

xv ∈ {0, 1}.

The clique cover C was computed using a greedy procedure as follows. Starting with C = ∅, let

clique S consist of a single vertex v with the highest positive degree in G. Add to S the vertex with

highest degree in G \S that is adjacent to all vertices in S, and repeat until no more additions are

possible. At this point, add S to C, remove from G all the edges of the clique induced by S, update

the vertex degrees, and repeat the overall procedure until G has no more edges.

We solved the LP relaxation with Ilog CPLEX 12.4. We used the interior point (barrier) option

because we found it to be up to 10 times faster than simplex on the larger LP instances. To generate

cutting planes, we ran the CPLEX MIP solver with instructions to process the root node only. We

turned off presolve, because no presolve is used for the BDD method, and it had only a marginal

effect on the results in any case. Default settings were used for cutting plane generation.

The results for random instances appear in Table 4.1 and are plotted in Fig. 4.11. The table
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Figure 4.10: Relaxation bound vs. maximum BDD width for dimacs instance p-hat 300-1.

displays geometric means, rather than averages, to reduce the effect of outliers. It uses shifted

geometric means1 for computation times. The computation times for LP include the time necessary

to compute the clique cover, which is much less than the time required to solve the initial LP for

random instances, and about the same as the LP solution time for dimacs instances.

The results show that BDDs with width as small as 100 provide bounds that, after taking means,

are superior to LP bounds for all graph densities except 0.1. The computation time required is

about the same overall—more for sparse instances, less for dense instances. The scatterplot in

Fig. 4.13 shows how the bounds compare on individual instances. The fact that almost all points

lie below the diagonal indicates the superior quality of BDD bounds.

More important, however, is the comparison with the tighter bounds obtained by an LP with

cutting planes, because this is the approach used in practice. BDDs of width 100 yield better

bounds overall than even an LP with cuts, and they do so in less than 1% of the time. However,

the mean bounds are worse for the two sparsest instance classes. By increasing the BDD width

to 1000, the mean BDD bounds become superior for all densities, and they are still obtained in

5% as much time overall. Increasing the width to 10,000 yields bounds that are superior for every

instance, as revealed by the scatter plot in Fig. 4.15. The time required is about a third as much

as LP overall, but somewhat more for sparse instances.

The results for dimacs instances appear in Table 4.2 and Fig. 4.12, with scatter plots in

Figs. 4.16–4.18. The instances are grouped into five density classes, with the first class correspond-

ing to densities in the interval [0, 0.2), the second class to the interval [0.2, 0.4), and so forth. The

table shows the average density of each class. Table 4.3 shows detailed results for each instance.

BDDs of width 100 provide somewhat better bounds than the LP without cuts, except for

1The shifted geometric mean of v1, . . . , vn is g− α, where g is the geometric mean of v1 + α, . . . , vn + α. We used
α = 1 second.
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Table 4.1: Bound quality and computation times for LP and BDD relaxations, using random
instances. The bound quality is the ratio of the bound to the optimal value. The BDD bounds
correspond to maximum BDD widths of 100, 1000, and 10000. Each graph density setting is
represented by 20 problem instances.

Bound quality (geometric mean) Time in seconds (shifted geometric mean)
LP relaxation BDD relaxation LP relaxation BDD relaxation

Density LP only LP+cuts 100 1000 10000 LP only LP+cuts 100 1000 10000

0.1 1.60 1.50 1.64 1.47 1.38 0.02 3.74 0.13 1.11 15.0
0.2 1.96 1.76 1.80 1.55 1.40 0.04 9.83 0.10 0.86 13.8
0.3 2.25 1.93 1.83 1.52 1.40 0.04 7.75 0.08 0.82 11.8
0.4 2.42 2.01 1.75 1.37 1.17 0.05 10.6 0.06 0.73 7.82
0.5 2.59 2.06 1.60 1.23 1.03 0.06 13.6 0.05 0.49 3.88
0.6 2.66 2.04 1.43 1.10 1.00 0.06 15.0 0.04 0.23 0.51
0.7 2.73 1.98 1.28 1.00 1.00 0.07 15.3 0.03 0.07 0.07
0.8 2.63 1.79 1.00 1.00 1.00 0.07 9.40 0.02 0.02 0.02
0.9 2.53 1.61 1.00 1.00 1.00 0.08 4.58 0.01 0.01 0.01

All 2.34 1.84 1.45 1.23 1.13 0.05 9.15 0.06 0.43 2.92
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Figure 4.11: Bound quality vs. graph density for random instances, showing results for LP only,
LP plus cutting planes, and BDDs with maximum width 100, 1000, and 10000. Each data point is
the geometric mean of 20 instances.
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Figure 4.12: Bound quality vs. graph density for dimacs instances, showing results for LP only,
LP plus cutting planes, and BDDs with maximum width 100, 1000, and 10000. Each data point is
the geometric mean of instances in a density interval of width 0.2.
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Figure 4.13: Bound quality for an LP relax-
ation (no cuts) vs. width 100 BDDs for ran-
dom instances. Each data point represents
one instance. The time required is about the
same overall for the two types of bounds.
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Figure 4.14: Bound quality for an LP re-
laxation with cuts vs. width 1000 BDDs for
random instances. The BDD bounds are
obtained in about 5% of the time required
for the LP bounds.
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Figure 4.15: Bound quality for an LP relax-
ation with cuts vs. width 10000 BDDs for
random instances. The BDD bounds are
obtained in less time overall than the LP
bounds, but somewhat more time for sparse
instances.
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Figure 4.16: Bound quality for an LP relax-
ation (no cuts) vs. width 100 BDDs for di-
macs instances. The BDD bounds are ob-
tained in generally less time for all but the
sparsest instances.

the sparsest instances, and the computation time is somewhat less overall. Again, however, the

more important comparison is with LP augmented by cutting planes. BDDs of width 100 are

no longer superior, but increasing the width to 1000 yields better mean bounds than LP for all

but the sparsest class of instances. The mean time required is about 15% that required by LP.

Increasing the width to 10,000 yields still better bounds and requires less time for all but the

sparsest instances. However, the mean BDD bound remains worse for instances with density less

than 0.2. We conclude that BDDs are generally faster when they provide better bounds, and they

provide better bounds, in the mean, for all but the sparsest dimacs instances.
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Figure 4.17: Bound quality for an LP relax-
ation with cuts vs. width 1000 BDDs for di-
macs instances. The BDD bounds are ob-
tained in about 15% as much time overall as
the LP bounds.
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Figure 4.18: Bound quality for an LP relax-
ation with cuts vs. width 10000 BDDs for di-
macs instances. The BDD bounds are gen-
erally obtained in less time for all but the
sparsest instances.

Table 4.2: Bound quality and computation times for LP and BDD relaxations, using dimacs
instances. The bound quality is the ratio of the bound to the optimal value. The BDD bounds
correspond to maximum BDD widths of 100, 1000, and 10000.

Bound quality (geometric mean) Time in seconds (shifted geometric mean)
Avg. LP relaxation BDD relaxation LP relaxation BDD relaxation

Density Count LP only LP+cuts 100 1000 10000 LP only LP+cuts 100 1000 10000

0.09 25 1.35 1.23 1.62 1.48 1.41 0.53 6.87 1.22 6.45 55.4
0.29 28 2.07 1.77 1.94 1.63 1.46 0.55 50.2 0.48 3.51 34.3
0.50 13 2.54 2.09 2.16 1.81 1.59 4.63 149 0.99 6.54 43.6
0.72 7 3.66 2.46 1.90 1.40 1.14 2.56 45.1 0.36 2.92 10.4
0.89 5 1.07 1.03 1.00 1.00 1.00 0.81 4.19 0.01 0.01 0.01

All 78 1.88 1.61 1.78 1.54 1.40 1.08 27.7 0.72 4.18 29.7
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Table 4.3: Bound comparison for the dimacs instance set, showing the optimal value (Opt), the
number of vertices (Size), and the edge density (Den). LP times correspond to clique cover gen-
eration (Clique), processing at the root node (CPLEX), and total time. The bound (Bnd) and
computation time are shown for each BDD width. The best bounds are shown in boldface (either
LP bound or one or more BDD bounds).

Instance LP with Cutting Planes Relaxed BDD
Time (sec) Width 100 Width 1000 Width 10000

Name Opt Size Den. Bound Clique CPLEX Total Bnd Sec Bnd Sec Bnd Sec

brock200 1 21 200 0.25 38.51 0 9.13 9.13 36 0.08 31 0.78 28 13.05
brock200 2 12 200 0.50 22.45 0.02 13.56 13.58 17 0.06 14 .45 12 4.09
brock200 3 15 200 0.39 28.20 0.01 11.24 11.25 24 0.06 19 0.70 16 8.31
brock200 4 17 200 0.34 31.54 0.01 9.11 9.12 29 0.08 23 0.81 20 10.92
brock400 1 27 400 0.25 66.10 0.05 164.92 164.97 68 0.34 56 3.34 48 47.51
brock400 2 29 400 0.25 66.47 0.04 178.17 178.21 69 0.34 57 3.34 47 51.44
brock400 3 31 400 0.25 66.35 0.05 164.55 164.60 67 0.34 55 3.24 48 47.29
brock400 4 33 400 0.25 66.28 0.05 160.73 160.78 68 0.35 55 3.32 48 47.82
brock800 1 23 800 0.35 96.42 0.73 1814.64 1815.37 89 1.04 67 13.17 55 168.72
brock800 2 24 800 0.35 97.24 0.73 1824.55 1825.28 88 1.02 69 13.11 55 180.45
brock800 3 25 800 0.35 95.98 0.72 2587.85 2588.57 87 1.01 68 12.93 55 209.72
brock800 4 26 800 0.35 96.33 0.73 1850.77 1851.50 88 1.02 67 12.91 56 221.07
C1000.9 68 1000 0.10 219.934 0.2 1204.41 1204.61 265 3.40 235 28.93 219 314.99
C125.9 34 125 0.10 41.29 0.00 1.51 1.51 45 0.05 41 0.43 39 5.73
C2000.5 16 2000 0.50 154.78 35.78 3601.41 3637.19 125 4.66 80 67.71 59 1207.69
C2000.9 77 2000 0.10 398.924 2.88 3811.94 3814.82 503 13.56 442 118.00 397 1089.96
C250.9 44 250 0.10 71.53 0.00 6.84 6.84 80 0.21 75 1.80 67 23.69
C4000.5 18 4000 0.50 295.67 631.09 3601.22 4232.31 234 18.73 147 195.05 107 3348.65
C500.9 57 500 0.10 124.21 0.03 64.56 64.59 147 0.85 134 7.42 120 84.66
c-fat200-1 12 200 0.92 12.00 0.04 0.95 0.99 12 0.00 12 0.00 12 0.00
c-fat200-2 24 200 0.84 24.00 0.05 0.15 0.2 24 0.00 24 0.00 24 0.00
c-fat200-5 58 200 0.57 61.70 0.07 35.85 35.92 58 0.00 58 0.00 58 0.00
c-fat500-10 126 500 0.63 126.00 1.89 2.80 4.69 126 0.01 126 0.01 126 0.01
c-fat500-1 14 500 0.96 16.00 1.03 27.79 28.82 14 0.02 14 0.01 14 0.01
c-fat500-2 26 500 0.93 26.00 0.81 7.71 8.52 26 0.01 26 0.00 26 0.01
c-fat500-5 64 500 0.81 64.00 1.51 3.05 4.56 64 0.01 64 0.01 64 0.01
gen200 p0.9 44 44 200 0.10 44.00 0.00 0.52 0.52 64 0.14 57 1.17 53 15.94
gen200 p0.9 55 55 200 0.10 55.00 0.00 2.04 2.04 65 0.14 63 1.19 61 15.74
gen400 p0.9 55 55 400 0.10 55.00 0.02 1.97 1.99 110 0.56 99 4.76 92 59.31
gen400 p0.9 65 65 400 0.10 65.00 0.02 3.08 3.1 114 0.55 105 4.74 94 56.99
gen400 p0.9 75 75 400 0.10 75.00 0.02 7.94 7.96 118 0.54 105 4.64 100 59.41
hamming10-2 512 1024 0.01 512.00 0.01 0.22 0.23 549 5.05 540 48.17 542 484.66
hamming10-4 40 1024 0.17 51.20 0.50 305.75 306.25 111 3.10 95 30.93 85 322.94
hamming6-2 32 64 0.10 32.00 0.00 0.00 0.00 32 0.01 32 0.09 32 1.20
hamming6-4 4 64 0.65 5.33 0.00 0.10 0.10 4 0.00 4 0.00 4 0.00
hamming8-2 128 256 0.03 128.00 0.00 0.01 0.01 132 0.26 136 2.45 131 25.70
hamming8-4 16 256 0.36 16.00 0.02 2.54 2.56 24 0.10 18 1.01 16 10.32
johnson16-2-4 8 120 0.24 8.00 0.00 0.00 0.00 12 0.02 8 0.10 8 0.23
johnson32-2-4 16 496 0.12 16.00 0.01 0.00 0.01 33 0.72 29 6.10 29 50.65
johnson8-2-4 4 28 0.44 4.00 0.00 0.00 0.00 4 0.00 4 0.00 4 0.00
johnson8-4-4 14 70 0.23 14.00 0.00 0.00 0.00 14 0.00 14 0.06 14 0.36
keller4 11 171 0.35 15.00 0.00 0.45 0.45 15 0.05 12 0.30 11 2.59
keller5 27 776 0.25 31.00 0.36 39.66 40.02 55 1.53 55 16.96 50 178.04
keller6 59 3361 0.18 63.00 55.94 3601.09 3657.03 194 37.02 152 361.31 136 3856.53
MANN a27 126 378 0.01 132.82 0.00 1.31 1.31 152 0.46 142 3.71 136 41.90
MANN a45 345 1035 0.00 357.97 0.01 1.47 1.48 387 2.83 367 26.73 389 285.05
MANN a81 1100 3321 0.00 1129.57 0.07 11.22 11.29 1263 20.83 1215 254.23 1193 2622.59
MANN a9 16 45 0.07 17.00 0.00 0.01 0.01 18 0.00 16 0.00 16 0.00
p hat1000-1 10 1000 0.76 43.45 5.38 362.91 368.29 33 0.76 20 13.99 14 117.45
p hat1000-2 46 1000 0.51 93.19 3.30 524.82 528.12 118 1.23 103 16.48 91 224.92
p hat1000-3 68 1000 0.26 152.74 1.02 1112.94 1113.96 194 2.20 167 21.96 153 313.71
p hat1500-1 12 1500 0.75 62.83 21.71 1664.41 1686.12 47 2.26 28 35.87 20 453.13
p hat1500-2 65 1500 0.49 138.13 13.42 1955.38 1968.80 187 3.11 155 36.76 140 476.65
p hat1500-3 94 1500 0.25 223.60 4.00 2665.67 2669.67 295 5.14 260 47.90 235 503.55
p hat300-1 8 300 0.76 16.778 0.10 20.74 20.84 12 0.06 9 0.19 8 0.22
p hat300-2 25 300 0.51 34.60 0.06 29.73 29.79 42 0.11 38 1.25 34 11.79
p hat300-3 36 300 0.26 55.49 0.02 25.50 25.52 67 0.20 60 2.15 54 27.61
p hat500-1 9 500 0.75 25.69 0.52 42.29 42.81 19 0.18 13 2.12 9 9.54
p hat500-2 36 500 0.50 54.17 0.30 195.59 195.89 70 0.31 61 4.23 53 51.57
p hat500-3 50 500 0.25 86.03 0.11 289.12 289.23 111 0.55 97 5.97 91 85.50
p hat700-1 11 700 0.75 533.10 1.64 115.55 117.19 24 0.35 15 5.95 12 34.68
p hat700-2 44 700 0.50 71.83 1.00 460.58 461.58 96 0.60 80 8.09 72 82.10
p hat700-3 62 700 0.25 114.36 0.30 646.96 647.26 149 1.08 134 11.32 119 127.37
san1000 15 1000 0.50 16.00 43.14 180.46 223.60 19 1.14 15 15.01 15 99.71
san200 0.7 1 30 200 0.30 30.00 0.02 0.74 0.76 30 0.08 30 0.62 30 7.80
san200 0.7 2 18 200 0.30 18.00 0.02 1.55 1.57 19 0.06 18 0.50 18 6.50
san200 0.9 1 70 200 0.10 70.00 0.00 0.16 0.16 71 0.13 70 1.08 70 12.88
san200 0.9 2 60 200 0.10 60.00 0.00 0.49 0.49 66 0.13 60 1.14 60 14.96
san200 0.9 3 44 200 0.10 44.00 0.00 0.46 0.46 60 0.13 54 1.18 49 15.41
san400 0.5 1 13 400 0.50 13.00 1.09 10.08 11.17 13 0.19 13 1.27 13 5.00
san400 0.7 1 40 400 0.30 40.00 0.33 16.91 17.24 45 0.32 40 2.97 40 33.58
san400 0.7 2 30 400 0.30 30.00 0.31 12.22 12.53 39 0.32 32 3.50 30 38.96
san400 0.7 3 22 400 0.30 22.00 0.28 6.38 6.66 31 0.31 26 3.68 23 41.45
san400 0.9 1 100 400 0.10 100.00 0.02 6.52 6.54 123 0.56 107 4.66 100 57.46
sanr200 0.7 18 200 0.30 34.02 0.01 9.00 9.01 31 0.08 28 0.82 24 11.88
sanr200 0.9 42 200 0.10 59.60 0.00 3.32 3.32 67 0.14 60 1.17 57 15.51
sanr400 0.5 13 400 0.50 39.30 0.13 281.21 281.34 31 0.21 24 4.09 18 35.88
sanr400 0.7 21 400 0.30 60.05 0.06 168.64 168.70 58 0.30 47 3.52 39 51.93
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4.3 Construction by Separation: Filtering and Refinement

An alternative procedure to compile relaxed DDs can be obtained by modifying the separation

procedure from Section 3.4 in a straightforward way. Recall that such procedure would separate

constraint classes one at a time by splitting nodes and removing arcs until the exact DD was

attained. At each iteration of the separation procedure, the set of solutions represented in the

DD was a superset of the solutions of the problem, and no feasible solutions were ever removed.

Thus, the method already maintains a relaxed DD at all iterations (considering transition costs

were appropriately assigned). To generate a limited-size relaxed DD, we could then simply stop the

procedure when the size of a layer reached a given maximum width and output the current DD.

Even though valid, this method generates very weak relaxed DDs as not all constraints of the

problem are necessarily considered in the relaxation, i.e. the procedure may stop if separation on

the first constraints generates DDs with maximum width. A modified and more effective version

of the separation procedure was developed by [78] and [85] under the name of incremental refine-

ment. Incremental refinement was particularly used to create discrete relaxations for constraint

satisfaction systems. As in the separation construction for exact DDs, the method also considers

one constraint at a time. However, for each constraint, the steps of the algorithm are partitioned

into two phases: filtering and refinement. Filtering consists of removing arcs for which all paths

that cross them necessarily violate the constraint. Thus, in our notation, filtering is equivalent

to removing arcs for which the corresponding transition functions lead to an infeasible state 0̂.

Refinement consists of splitting nodes to strengthen the DD representation, as long as the size of

the layer does not exceed the maximum width W . As before, we can split nodes based on the state

associated with the constraint.

A key aspect of the filtering and refinement division is that both operations are perceived

as independent procedures that can be modified or applied in any order that is suitable to the

problem at hand. Even if the maximum width is already met, we can still apply the filtering

operation of all constraints to remove infeasible arcs and strengthen the relaxation. Refinement

may also be done in a completely heuristic fashion, or restricted to only some of the constraints

of the problem. Moreover, we can introduce redundant states during filtering in order to identify

sufficient conditions for the infeasibility of arcs, very much like redundant constraints in constraint

programming potentially result in extra filtering of the variable domains. Nevertheless, since not

all nodes are split, their associate state may possibly represent an aggregation of several states from

the exact DD. Extra care must be taken when defining the transition and cost functions to ensure

the resulting DD is indeed a relaxation. This will be exemplified in Section 4.3.1.

A general outline of the relaxed DD compilation procedure is presented in Algorithm 4. The

algorithm also requires a relaxed DD B′ as input, which can be trivially obtained using an 1-width

DD as depicted in Figure 3.12a. The algorithm traverses the relaxed DD B′ in a top-down fashion.

For each layer j, the algorithm first performs filtering, i.e. it removes the infeasible arcs by checking
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Algorithm 4 Relaxed DD Compilation by Separation (Incremental Refinement): Max Width W

1: Let B′ = (U ′, A′) be a DD such that Sol(B′) ⊇ Sol(P).
2: while ∃ constraint C violated by B′ do
3: Let s(u) = χ for all nodes u ∈ B′

4: s(r) := r̂
5: for j = 1 to n do
6: // Filtering
7: for u ∈ Lj do
8: for each arc a = (u, v) leaving node u do
9: if tCj (s(u), d(a)) 6= 0̂ then

10: Remove arc a from B
11: // Refinement
12: for u ∈ Lj do
13: for each arc a = (u, v) leaving node u do
14: if s(v) = χ then
15: s(v) = tCj (s(u), d(a))

16: else if s(v) 6= tCj (s(u), d(a)) and |Lj | < W then
17: Remove arc (u, v)
18: Create new node v′ with s(v′) = tCj (u, d(a))
19: Add arc (u, v′)
20: Copy outgoing arcs from v as outgoing arcs from v′

21: Lj := Lj ∪ {v
′}

22: else
23: Update s(v) with tCj (s(u), d(a)).

whether the state transition function evaluates to an infeasible state 0̂. Next, the algorithm splits

the nodes when the maximum width has not been met. If that is not the case, the procedure

updates the state s associated with a node to ensure that the resulting DD is indeed a relaxation.

Notice that the compilation algorithm is similar to Algorithm 2, except for the width limit, the

order in which the infeasible state 0̂ and the equivalence of states are checked, and the state update

procedure. Filtering and refinement details (such as their order) can also be modified if appropriate.

4.3.1 Single Machine Makespan Minimization

We now present an example of the incremental refinement procedure for the single machine makespan

minimization problem (MMP) presented in Section 3.3.6. Given a positive integer n, let J =

{1, . . . , n} be a set of jobs that we wish to schedule on a machine that can process at most one job

at a time. With each job we associate a processing time pij, indicating the time that job j requires

from the machine if it is the i-th job to be processed. We wish to minimize the makespan of the

schedule, i.e. the total completion time. As discussed in Section 3.3.6, the MMP can be written as
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the following optimization problem:

min
n
∑

i=1

pi,xi

Alldifferent(x1, . . . , xn) (4.1)

xi ∈ {1, . . . , n}, i = 1, . . . , n

We will now show how to define the filtering and refinement operations for the constraint (4.1).

The feasible solutions are defined by all vectors x that satisfy the Alldifferent constraint in

(4.1); that is, they are the permutations of J without repetition. The states used for filtering and

refinement for the Alldifferent were initially introduced by [5] and [85].

Filtering

In the filtering operation we wish to identify conditions that indicate when all orderings identified

by paths crossing an arc a always assign some job more than once. Let an arc a be infeasible if

such condition holds. We can directly use the state and transition function defined in Section 3.3.6;

i.e., the state at a stage j represents the jobs already performed up to j. However, to strengthen

the infeasibility test, we will also introduce an additional redundant state that provides a sufficient

condition to remove arcs. This state represents the jobs that might have been performed up to a

stage. To facilitate notation, we will consider a different state label s(u) with each one of these

states, as they can be computed simultaneously during the top-down procedure of Algorithm 4.

Namely, let us associate two states All↓u ⊆ J and Some↓u ⊆ J to each node u of the DD. The

state All↓u is the set of arc labels that appear in all paths from the root node r to u (i.e., the same

as in Section 3.3.6), while the state Some↓u is the set of arc labels that appear in some path from

the root node r to u. We trivially have All↓r = Some↓r = ∅.

Instead of defining the transitions in functional form, we equivalently write them with respective

to the graphical structure of the DD. To this end, let in(v) be the set of incoming arcs at a node

v. It follows from the definitions that All↓v and Some↓v for some node v 6= r can be recursively

computed through the relations

All↓v =
⋂

a=(u,v)∈in(v)
(All↓u ∪ {d(a)}), (4.2)

Some↓v =
⋃

a=(u,v)∈in(v)
(Some↓u ∪ {d(a)}). (4.3)

For example, in Figure 4.19b we have All↓v1 = {1} and Some↓u = {1, 2, 3}.
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Lemma 17 An arc a = (u, v) is infeasible if any of the following conditions holds:

d(a) ∈ All↓u, (4.4)

|Some↓u| = ℓ(a) and d(a) ∈ Some↓u. (4.5)

Proof. The proof argument follows from [5]. Let π′ be any partial ordering identified by a path

from r to u that does not assign any job more than once. In condition (4.4), d(a) ∈ All↓u indicates

that d(a) is already assigned to some position in π′, therefore appending the arc label d(a) to π′

will necessarily induce a repetition. For condition (4.5), notice first that the paths from r to u are

composed of ℓ(a) arcs, and therefore π′ represents an ordering with ℓ(a) positions. If |Some↓u| = ℓ(a),

then any j ∈ Some↓u is already assigned to some position in π′, hence appending d(a) to π′ also

induces a repetition. �

Thus, the tests (4.4) and (4.5) can be applied in lines 6 to 10 in Algorithm 4 to remove infeasible

arcs. For example, in Figure 4.19b the two shaded arcs are infeasible. The arc (u1, v1) with label 1

is infeasible due to condition (4.4) since All↓u1
= {1}. The arc (vA, t) with label 2 is infeasible due

to condition (4.5) since 2 ∈ Some↓vA = {2, 3} and |Some↓vA | = 2.

We are also able to obtain stronger tests by equipping the nodes with additional states that

can be derived from a bottom-up perspective of the DD. Namely, as in [85], we define two new

states All↑u ⊆ J and Some↑u ⊆ J for each node u of M. They are equivalent to the states All↓u
and Some↓u, but now they are computed with respect to the paths from t to u instead of the paths

from r to u. As before, they are recursively obtained through the relations

All↑u =
⋂

a=(u,v)∈out (u)
(All↑v ∪ {d(a)}), (4.6)

Some↑u =
⋃

a=(u,v)∈out (u)
(Some↑v ∪ {d(a)}), (4.7)

which can be computed by a bottom-up breadth-first search before the top-down procedure.

Lemma 18 An arc a = (u, v) is infeasible if any of the following conditions holds:

d(a) ∈ All↑v, (4.8)

|Some↑v| = n− ℓ(a) and d(a) ∈ Some↑v, (4.9)

|Some↓u ∪ {d(a)} ∪ Some↑v| < n. (4.10)

Proof. The proofs for conditions (4.8) and (4.9) follow from an argument in [85] and are analogous

to the proof of Lemma 17. Condition (4.10) implies that any ordering identified by a path containing

a will never assign all jobs J . �
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Figure 4.19: Three phases of refinement, as described in Example 18.

Refinement

Refinement consists of splitting nodes to remove paths that encode infeasible solutions, therefore

strengthening the relaxed DD. Ideally, refinement should modify a layer so that each of its nodes

exactly represents a particular state of each constraint. However, as it may be necessary to create an

exponential number of nodes to represent all such states, some heuristic decision must be considered

on which nodes to split in order to observe the maximum alloted width.

In this section we present a heuristic refinement procedure that exploits the structure of the

Alldifferent constraint. Our goal is to be as precise as possible with respect to the jobs with a

higher priority, where the priority of a job is defined according to the problem data. More specifi-

cally, we will develop a refinement heuristic that, when combined with the infeasibility conditions

for the permutation structure, yields a relaxed MDD where the jobs with a high priority are repre-

sented exactly with respect to that structure; that is, these jobs are assigned to exactly one position

in all orderings encoded by the relaxed MDD.

Thus, if higher priority is given to jobs that play a greater role in the feasibility or optimality

of the problem at hand, the relaxed MDD may represent more accurately the feasible orderings of

the problem, providing, e.g., better bounds on the objective function value. For example, if we give

priority to jobs with a larger processing time, the bound on the makespan would be potentially

tighter with respect to the ones obtained from other possible relaxed MDDs for this same instance.

We will exploit this property for a number of scheduling problems in Chapter 7.

To achieve this property, the refinement heuristic we develop is based on the following theorem,

which we will prove constructively later.

Theorem 19 Let W > 0 be the maximum MDD width. There exists a relaxed MDD M where at

least ⌊log2W ⌋ jobs are assigned to exactly one position in all orderings identified by M.
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Let us represent the job priorities by defining a ranking of jobs J ∗ = {j∗1 , . . . , j
∗
n}, where jobs

with smaller index in J ∗ have a higher priority. We can thus achieve the desired property of our

heuristic refinement by constructing the relaxed MDDM based on Theorem 19, where we ensure

that the jobs exactly represented inM are those with a higher ranking.

Before proving Theorem 19, we first identify conditions on when a node violates the desired

refinement property and needs to be modified. To this end, let M be any relaxed MDD. Assume

the states All↓u and Some↓u as described before are computed for all nodes u in M, and no arcs

satisfy the infeasibility conditions (4.4) to (4.10). We have the following Lemma.

Lemma 20 A job j is assigned to exactly one position in all orderings identified byM if and only

if j 6∈ Some↓u \All
↓
u for all nodes u ∈ M.

Proof. Suppose first that a job j is assigned to exactly one position in all orderings identified by

M, and take a node u in M such that j ∈ Some↓u. From the definition of Some↓u, there exists a

path from r to u with an arc labeled j. This implies by hypothesis that all paths from u to t do

not have any arcs labeled j, otherwise we will have a path that identifies an ordering where j is

assigned more than once. But then, also by hypothesis, all paths from r to u must necessarily have

some arc labeled j, thus j ∈ All↓u, which implies j 6∈ Some↓u \All
↓
u.

Conversely, suppose j ∈ Some↓u \ All
↓
u for all nodes u inM. Then a node u can only have an

outgoing arc a with d(a) = j if j 6∈ Some↓u, which is due to the filtering rule (4.4). Thus, no job

is assigned more than once in any ordering encoded by M. Finally, rule (4.10) ensures that j is

assigned exactly once in all paths. �

We now provide a constructive proof for Theorem 19.

Proof. Proof of Theorem 19 Let M be an 1-width relaxation. We can obtain the desired MDD

applying filtering and refinement on M in a top-down approach as described in Section 4.3. For

filtering, remove all arcs satisfying the infeasibility rules (4.4) and (4.5). For refining a particular

layer Li, apply the following procedure: For each job j = j1, . . . , jn in this order, select a node

u ∈ Li such that j ∈ Some↓u \ All
↓
u. Create two new nodes u1 and u2, and redirect the incoming

arcs at u to u1 and u2 as follows: if the arc a = (v, u) is such that j ∈ (All↓v ∪ {d(a)}), redirect it

to u1; otherwise, redirect it to u2. Replicate all the outgoing arcs of u to u1 and u2, remove u, and

repeat this until the maximum width W is met, there are no nodes satisfying this for j, or all jobs

were considered.

We now show that this refinement procedure suffices to produce a relaxed MDD satisfying the

conditions of the Theorem. Observe first the conditions of Lemma 20 are satisfied by any job

at the root node r, since Some↓r = ∅. Suppose, by induction hypothesis, that the conditions of

Lemma 20 are satisfied for some job j at all nodes in layers L1, . . . , Li′ , i
′ < i, and consider we

created nodes u1 and u2 from some node u ∈ Li such that j ∈ Some↓u \ All
↓
u as described above.
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By construction, any incoming arc a = (v, u2) at u2 satisfies j 6∈ (All↓v ∪ {d(a)}); by induction

hypothesis, j 6∈ Some↓v, hence j 6∈ Some↓u2
\ All↓u2

by relation (4.2). Analogously, we can show

j ∈ All↓u1
, thus j 6∈ Some↓u1

\All↓u1
.

Since the jobs J are processed in the same order for all layers, we just need now to compute the

minimum number of jobs for which all nodes violating Lemma 20 were split when the maximum

widthW was attained. Just observe that, after all the nodes were verified with respect to a job, we

at most duplicated the number of nodes in a layer (since each split produces one additional node).

Thus, if m jobs were considered, we have at most 2m nodes in a layer, thus at least ⌊log2W ⌋ nodes

will be exactly represented inM. �

We can utilize Theorem 19 to guide our top-down approach for filtering and refinement, following

the refinement heuristic based on the job ranking J ∗ described in the proof of Theorem 19. Namely,

we apply the following refinement at a layer Li: For each job j∗ = j∗1 , . . . , j
∗
n in the order defined

by J ∗, identify the nodes u such that j∗ ∈ Some↓u \All
↓
u and split them into two nodes u1 and u2,

where an incoming arc a = (v, u) is redirected to u1 if j∗ ∈ (All↓v ∪ {d(a)}) or u2 otherwise, and

replicate all outgoing arcs for both nodes. Moreover, if the relaxed MDD is a 1-width-relaxation,

then we obtain the bound guarantee on the number of jobs that are exactly represented.

This procedure also yields a reduced MDD M for certain structured problems, which we will

show in Section 7.7. It provides sufficient conditions to split nodes for any problem where an

Alldifferent constraint is stated on the variables. Lastly, recall that equivalence classes cor-

responding to constraints other than the permutation structure may also be taken into account

during refinement. Therefore, if the maximum width W is not met in the refinement procedure

above, we assume that we will further split nodes by arbitrarily partitioning their incoming arcs.

Even though this may yield false equivalence classes, the resultingM is still a valid relaxation and

may provide a stronger representation.

Example 18 Let J = {1, 2, 3} and assume jobs are ranked lexicographically. Given the relaxed

DD in Figure 4.19a, Figure 4.19b without the shaded arcs depicts the result of the refinement

heuristics for a maximum width of 2. Notice that job 1 appears exactly once in all solutions en-

coded by the DD. Figure 4.19c depicts the result of the refinement for a maximum width of 3. It

is also exact and reduced (which is always the case if we start with an 1-width relaxation and the

constraint set is composed of only one Alldifferent). �
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Chapter 5

Restricted Decision Diagrams

5.1 Introduction

General-purpose algorithms for discrete optimization are commonly branch-and-bound methods

that rely on two fundamental components: a relaxation of the problem, such as a linear program-

ming relaxation of an integer programming model, and primal heuristics. Heuristics are used to

provide feasible solutions during the search for an optimal one, which in practice is often more

important than providing a proof of optimality.

Much of the research effort dedicated to developing heuristics for discrete optimization has

primarily focused on specific combinatorial optimization problems. This includes, e.g., the set

covering problem [34] and the maximum clique problem [69, 112]. In contrast, general-purpose

heuristics have received much less attention in the literature. The vast majority of the general

techniques are embodied in integer programming technology, such as the feasibility pump [57] and

the pivot, cut, and dive heuristic [52]. A survey of heuristics for integer programming is presented

by [65, 66] and [27]. Local search methods for binary problems can also be found in [1] and [28].

We introduce a new general-purpose method for obtaining a set of feasible solutions for discrete

optimization problems. Our method is based on an under-approximation of the feasible solution set

using restricted DDs. Restricted DDs can be perceived as a counterpart of the concept of relaxed

DD introduced in Chapter 4.

A weighted DD B is restricted for an optimization problem P if B represents a subset of the

feasible solutions of P, and path lengths are lower bounds on the value of feasible solutions. That

is, B is restricted for P if

Sol(P) ⊇ Sol(B) (Res-1)

f(xp) ≥ v(p), for all r–t paths p in B for which xp ∈ Sol(P) (Res-2)

Suppose P is a maximization problem. In Chapter 3, we showed that an exact DD reduces
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Figure 5.1: Graph with vertex weights for the MISP.

discrete optimization to a longest-path problem: If p is a longest path in a BDD B that is exact

for P, then xp is an optimal solution of P, and its length v(p) is the optimal value z∗(P) = f(xp)

of P. When B is restricted for P, a longest path p provides a lower bound on the optimal value.

The corresponding solution xp is always feasible and v(p) ≤ z∗(P). Hence, restricted DDs provide

a primal solution to the problem. As in relaxed DDs, the width of a restricted DDs is limited by

an input parameter, which can be adjusted according to the number of variables of the problem

and computer resources.

Example 19 Consider the graph and vertex weights depicted in Figure 5.1 (the same from Fig-

ure 4.1). Figure 5.2(a) represents an exact BDD in which each path corresponds to an independent

set encoded by the arc labels along the path, and each independent set corresponds to some path.

The longest r–t path in the BDD has value 11, corresponding to solution x = (0, 1, 0, 0, 1) and to

the independent set {2, 5}, the maximum-weight independent set in the graph.

Figure 5.2(b) shows a restricted BDD for the same problem instance. Each path p in the BDD

encodes a feasible solution xp with length equal to the corresponding independent set weight. How-

ever, not all independent sets of G are encoded in the BDD, such as the the optimal independent

set {2, 5} for the original problem. The longest path in the restricted DD corresponds to solution

(1, 0, 0, 0, 1) and independent set {1, 5}, and thus proves a lower bound of 10 on the objective func-

tion. �

The remainder of this chapter is divided into two sections. In Section 5.2 we show how to modify

the top-down compilation approach from Section 3.3 to generate restricted DDs that observe an

input-specified width. In Section 5.3 we present a thorough computational study of the bound

provided by restricted DD, particularly focusing on the set covering and set packing problems.
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Figure 5.2: (a) Exact BDD and (b) restricted BDD for the MISP on the graph in Figure 5.1.

5.2 Construction by Top-Down Compilation

Restricted BDDs can be constructed in a much simpler way than relaxed DDs. We need only

eliminate nodes from a layer when the layer becomes too large. Given a valid DP formulation of

a discrete optimization problem P and a maximum width W , Algorithm 5 outputs a restricted

DD for P. Note that it is similar to Algorithm 1 except for lines 3 to 5. Condition (Res-1) for

a restricted BDD is satisfied because the algorithm only deletes solutions, and furthermore, since

the algorithm never modifies the states of any nodes that remain, condition (Res-2) must also be

satisfied. Finally, nodes to be eliminated are also selected heuristically according to a pre-defined

function node select.

We remark in passing that it is also possible to apply Algorithm 3 to obtain restricted DD.

To this end, we modifying the operator ⊕(M) so that the Algorithm outputs restrictions instead

of relaxations. For example, in the MISP relaxation described in Section 4, we could apply the

intersection operator instead of the union. Such technique will not be exploited in this dissertation,

but it could be useful to ensure certain properties of the restricted DD (e.g., it can be show that

a restricted DD built with ⊕(M) may contain more solutions than the one obtained by directly

removing nodes).

5.3 Computational Study

In this section, we perform a computational study on randomly generated set covering and set

packing instances. The set covering problem (SCP) and the set packing problem (SPP) were first

presented in Sections 3.3.4 and 3.3.5, respectively. We evaluate our method by comparing the
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Algorithm 5 Restricted DD Top-Down Compilation for maximum width W

1: Create node r = r̂ and let L1 = {r}
2: for j = 1 to n do
3: while |Lj | > W do
4: let M = node select(Lj)
5: Lj ← (Lj \M)
6: let Lj+1 = ∅
7: for all u ∈ Lj and d ∈ Dj do
8: if tj (u, d) 6= 0̂ then
9: let u′ = tj (u, d), add u

′ to Lj+1, and set bd(u) = u′, v(u, u′) = hj(u, u
′)

10: Merge nodes in Ln+1 into terminal node t

bounds provided by a restricted BDD with the ones obtained via state-of-the-art integer program-

ming technology (IP). We acknowledge that a procedure solely geared toward constructing heuristic

solutions is in principle favored against general-purpose IP solvers. Nonetheless, we sustain that

this is still a meaningful comparison, as modern IP solvers are the best-known general bounding

technique for 0-1 problems due to their advanced features and overall performance. This method

of testing new heuristics for binary optimization problems was employed by the authors in [28] and

we provide a similar study here to evaluate the effectiveness of our algorithm.

The DP models for the set covering and set packing problems are the ones described in Sections

3.3.4 and 3.3.5. The tests ran on an Intel Xeon E5345 with 8 GB of RAM. The BDD code was

implemented in C++. We used Ilog CPLEX 12.4 as our IP solver. In particular, we took the

bound obtained from the root node relaxation. We set the solver parameters to balance the quality

of the bound value and the CPU time to process the root node. The CPLEX parameters that are

distinct from the default settings are presented in Table 5.1. We note that all cuts were disabled,

since we observed that the root node would be processed orders of magnitude faster without adding

cuts, which did not have a significant effect on the quality of the heuristic solution obtained for the

instances tested.

Table 5.1: CPLEX Parameters

Parameters (CPLEX internal name) Value
Version 12.4
Number of explored nodes (NodeLim) 0 (only root)
Parallel processes (Threads) 1
Cuts (Cuts, Covers, DisjCuts, ...) -1 (off)
Emphasis (MIPEmphasis) 4 (find hidden feasible solutions)
Time limit (TiLim) 3600

Our experiments focus on instances with a particular structure. Namely, we provide evidence

that restricted BDDs perform well when the constraint matrix has a small bandwidth. The band-
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width of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}

{ max
j,k:ai,j,ai,k=1

{j − k}}.

The bandwidth represents the largest distance, in the variable ordering given by the constraint

matrix, between any two variables that share a constraint. The smaller the bandwidth, the more

structured the problem, in that the variables participating in common constraints are close to

each other in the ordering. The minimum bandwidth problem seeks to find a variable ordering that

minimizes the bandwidth ([102, 44, 54, 72, 103, 110, 121]). This underlying structure, when present

in A, can be captured by BDDs, resulting in good computational performance.

5.3.1 Problem Generation

Our random matrices are generated according to three parameters: the number of variables n, the

number of ones per row k, and the bandwidth bw. For a fixed n, k, and bw, a random matrix A

is constructed as follows. We first initialize A as a zero matrix. For each row i, we assign the

ones by selecting k columns uniformly at random from the index set corresponding to the variables

{xi, xi+1, . . . , xi+bw}. As an example, a constraint matrix with n = 9, k = 3, and bw = 4 may look

like

A =























1 1 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0

0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 1 1























.

Consider the case when bw = k. The matrix A has the consecutive ones property and is totally

unimodular [61] and IP finds the optimal solution for the set packing and set covering instances

at the root node. Similarly, we argue that an (m + 1)-width restricted BDD is an exact BDD for

both classes of problems, hence also yielding an optimal solution for when this structure is present.

Indeed, we show that A containing the consecutive ones property implies that the state of a BDD

node u is always of the form {j, j + 1, . . . ,m} for some j ≥ L(u) during top-down compilation.

To see this, consider the set covering problem. For a partial solution x identified by a path

from r to a certain node u in the BDD, let s(x) be the set covering state associated with u.

We claim that for any partial solution x′ that can be completed to a feasible solution, s(x′) =

{i(x′), i(x′)+1, . . . ,m} for some variable index i(x′), or s(x′) = ∅ if x′ satisfies all of the constraints

when completed with 0’s. Let j′ ≤ j be the largest index in x′ with x′j = 1. Because x′ can be

completed to a feasible solution, for each i ≤ bw+j−1 there is a variable xji with ai,ji = 1. All other

constraints must have xj = 0 for all i with ai,j = 0. Therefore s(x′) = {bw+ j, bw+ j+1, . . . ,m}, as
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desired. Hence, the state of every partial solution must be of the form i, i+ 1, . . . ,m or ∅. Because

there are at most m+1 such states, the size of any layer cannot exceed (m+1). A similar argument

works for the SPP.

Increasing the bandwidth bw, however, destroys the totally unimodular property of A and the

bounded width of B. Hence, by changing bw, we can test how sensitive IP and the BDD-based

heuristics are to the staircase structure dissolving.

We note here that generating instances of this sort is not restrictive. Once the bandwidth

is large, the underlying structure dissolves and each element of the matrix becomes randomly

generated. In addition, as mentioned above, algorithms to solve the minimum bandwidth problem

exactly or approximately have been investigated. To any SCP or SPP one can therefore apply these

methods to reorder the matrix and then apply the BDD-based algorithm.

5.3.2 Relation between Solution Quality and Maximum BDD Width

We first analyze the impact of the maximum width W on the solution quality provided by a

restricted BDD. To this end, we report the generated bound versus maximum width W obtained

for a set covering instance with n = 1000, k = 100, bw = 140, and a cost vector c where each cj was

chosen uniformly at random from the set {1, . . . , ncj}, where ncj is the number of constraints in

which variable j participates. We observe that the reported results are common among all instances

tested.

Figure 5.3a depicts the resulting bounds, where the width axis is in log-scale, and Figure 5.3b

presents the total time to generate the W -restricted BDD and extract its best solution. We tested

all W in the set {1, 2, 3, . . . , 1000}. We see that as the width increases, the bound approaches the

optimal value, with a super-exponential-like convergence in W . The time to generate the BDD

grows linearly in W , which can be shown to be consistent with the complexity of the construction

algorithm.

5.3.3 Set Covering

First, we report the results for two representative classes of instances for the set covering problem.

In the first class, we studied the effect of bw on the quality of the bound. To this end, we fixed

n = 500, k = 75, and considered bw as a multiple of k, namely bw ∈ {⌊1.1k⌋, ⌊1.2k⌋, . . . , ⌊2.6k⌋}. In

the second class, we analyzed if k, which is proportional to the density of A, also has an influence

on the resulting bound. For this class we fixed n = 500, k ∈ {25, 50, . . . , 250}, and bw = 1.6k. In

all classes we generated 30 instances for each triple (n, k, bw) and fixed 500 as the restricted BDD

maximum width.

It is well-known that the objective function coefficients play an important role in the bound

provided by IP solvers for the set covering problem. We considered two types of cost vectors c in

our experiments. The first is c = 1, which yields the combinatorial set covering problem. For the
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Figure 5.3: Restricted BDD performance versus the maximum allotted width for a set covering
instance with n = 1000, k = 100, bw = 140, and random cost vector.
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Figure 5.4: Average optimality gaps for combinatorial and weighted set covering instances with
n = 500, k = 75, and varying bandwidth.

second cost function, let ncj be the number of constraints that include variable xj, j = 1, . . . , n.

We chose the cost of variable xj uniformly at random from the range [0.75ncj , 1.25ncj ]. As a

result, variables that participate in more constraints have a higher cost, thereby yielding harder set

covering problems to solve. This cost vector yields the weighted set covering problem.

The feasible solutions are compared with respect to their optimality gap. The optimality gap

of a feasible solution is obtained by first taking the absolute difference between its objective value

and a lower bound to the problem, and then dividing this by the solution’s objective value. In both

BDD and IP cases, we used the dual value obtained at the root node of CPLEX as the lower bound

for a particular problem instance.

The results for the first instance class are presented in Figure 5.4. Each data point in the figure

represents the average optimality gap, over the instances with that configuration. We observe that
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Figure 5.5: Average optimality gaps for combinatorial and weighted set covering instances with
n = 500, varying k, and bw = 1.6k.

the restricted BDD yields a significantly better solution for small bandwidths in the combinatorial

set covering version. As the bandwidth increases, the staircase structure is lost and the BDD gap

becomes progressively worse in comparison to the IP gap. This is a result of the increasing width

of the exact reduced BDD for instances with larger bandwidth matrices. Thus, more information

is lost when we restrict the BDD size. The same behavior is observed for the weighted set covering

problem, although we notice that the gap provided by the restricted BDD is generally better in

comparison to the IP gap even for larger bandwidths. Finally, we note that the restricted BDD

time is also comparable to the IP time, which is on average less than 1 second for this configuration.

This time takes into account both BDD construction and extraction of the best solution it encodes

by means of a shortest path algorithm.

The results for the second instance class are presented in Figure 5.5. We note that restricted

BDDs provide better solutions when k is smaller. One possible explanation for this behavior is

that a sparser matrix causes variables to participate in fewer constraints thereby decrease the

possible number of BDD node states. Again, less information is lost by restricting the BDD width.

Moreover, we note once again that the BDD performance, when compared with CPLEX, is better

for the weighted instances tested. Finally, we observe that the restricted BDD time is similar to

the IP time, always below one second for instances with 500 variables.

Next, we compare solution quality and time as the number of variables n increases. We generated

random instances with n ∈ {250, 500, 750, . . . , 4000}, k = 75, and bw = 2.2k = 165 to this end.

The choice of k and bw was motivated by Figure 5.4b, corresponding to the configuration where

IP outperforms BDD with respect to solution quality when n = 500. As before, we generated 30

instances for each n. Moreover, only weighted set covering instances are considered in this case.

The average optimality gap and time are presented in Figures 5.6a and 5.6b, respectively. The

y axis in Figure 5.6b is in logarithm scale. For n > 500, we observe that the restricted BDDs

yield better-quality solutions than the IP method, and as n increases this gap remains constants.

However, IP times grow in a much faster rate than restricted BDD times. In particular, with
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Figure 5.6: Average optimality gaps and times for weighted set covering instances with varying n,
k = 75, and bw = 2.2k = 165. The y axis in the time plot is in logarithm scale.

n = 4000, the BDD times are approximately two orders-of-magnitude faster than the corresponding

IP times.

5.3.4 Set Packing

We extend the same experimental analysis of the previous section to set packing instances. Namely,

we initially compare the quality of the solutions by means of two classes of instances. In the

first class we analyze variations of the bandwidth by generating random instances with n = 500,

k = 75, and setting bw in the range {⌊1.1k⌋, ⌊1.2k⌋, . . . , ⌊2.5k⌋}. In the second class, we analyze

variations in the density of the constraint matrix A by generating random instances with n = 500,

k ∈ {25, 50, . . . , 250}, and with a fixed bw = 1.6k. In all classes, we created 30 instances for each

triple (n, k, bw) and set 500 as the restricted BDD maximum width.

The quality is also compared with respect to the optimality gap of the feasible solutions, which

is obtained by dividing the absolute difference between the solution’s objective value and an upper

bound to the problem by the solution’s objective value. We use the the dual value at CPLEX’s

root node as the upper bound for each instance.

Similarly to the set covering problem, experiments were performed with two types of objective

function coefficients. The first, c = 1, yields the combinatorial set packing problem. For the

second cost function, let ncj again denote the number of constraints that include variable xj ,

j = 1, . . . , n. We chose the objective coefficient of variable xj uniformly at random from the range

[0.75ncj , 1.25ncj ]. As a result, variables that participate in more constraints have a higher cost,

thereby yielding harder set packing problems since this is a maximization problem. This cost vector

yields the weighted set packing problem.

The results for the first class of instances are presented in Figure 5.7. For all tested instances,

the solution obtained from the BDD restriction was at least as good as the IP solution for all cost

functions. As the bandwidth increases, the gap also increases for both techniques, as the upper
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Figure 5.7: Average optimality gaps for combinatorial and weighted set packing instances with
n = 500, k = 75, and varying bandwidth.
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Figure 5.8: Average optimality gaps for combinatorial and weighted set packing instances with
n = 500, varying k, and bw = 1.6k.

bound obtained from CPLEX’s root node deteriorates for larger bandwidths. However, the BDD

gap does not increase as much as the IP gap, which is especially noticeable for the weighted case.

We note that the difference in times between the BDD and IP restrictions are negligible and lie

below one second.

The results for the second class of instances are presented in Figure 5.8. For all instances

tested, the BDD bound was at least as good as the bound obtained with IP, though the solution

quality from restricted BDDs was particularly superior for the weighted case. Intuitively, since A

is sparser, fewer BDD node states are possible in each layer, implying that less information is lost

by restricting the BDD width. Finally, we observe that times were also comparable for both IP

and BDD cases, all below one second.

Next, we proceed analogous to the set covering case and compare solution quality and time

as the number of variables n increases. As before, we generated random instances with n ∈

{250, 500, 750, . . . , 4000}, k = 75, and bw = 2.2k = 165, and 30 instances per configuration. Only

weighted set packing instances are considered.
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Figure 5.9: Average optimality gaps and times for weighted set packing instances with varying n,
k = 75, and bw = 2.2k = 165. The y axis in the time plot is in logarithm scale.

The average optimality gap and solving times are presented in Figures 5.9a and 5.9b, respec-

tively. Similar to the set covering case, we observe that the BDD restrictions outperform the IP

heuristics with respect to both gap and time for this particular configuration. The difference in

gaps between restricted BDDs and IP remains approximately the same as n increases, while the

time to generate restricted BDDs is orders–of-magnitude less than the IP times for the largest

values of n tested.
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Chapter 6

Branch-and-bound Based on Decision

Diagrams

6.1 Introduction

Some of the most effective methods for discrete optimization are branch-and-bound algorithms ap-

plied to an integer programming formulation of the problem. Linear programming (LP) relaxation

plays a central role in these methods, primarily by providing bounds and feasible solutions as well

as guidance for branching.

We propose an alternative branch-and-bound method in which decision diagrams take over the

functions of the traditional LP relaxation. As we analyzed in Chapters 4 and 5, limited-size DDs can

be used to provide useful relaxations and restrictions of the feasible set of an optimization problem

in the form of relaxed and restricted DDs, respectively. We will use them in a novel branch-and-

bound scheme that operates within a DD relaxation of the problem. Rather than branch on values

of a variable, the scheme branches on a suitably chosen subset of nodes in the relaxed DD. Each

node gives rise to a subproblem for which a relaxed DD can be created, and so on recursively. This

sort of branching implicitly enumerates sets of partial solutions, rather than values of one variable.

It also takes advantage of information about the search space that is encoded in the structure of

the relaxed DD. The branching nodes are selected on the basis of that structure, rather than on

the basis of fractional variables, pseudo-costs, and other information obtained from an LP solution.

Because our DD-based solver is proposed as a general-purpose method, it is appropriate to

compare it with another general-purpose solver. Integer programming is widely viewed as the most

highly developed technology for general discrete optimization, and we therefore compare DD-based

optimization to a leading commercial IP solver in Section 6.2.3. We find that although IP solvers

have improved by orders of magnitude since their introduction, our rudimentary DD-based solver

is competitive with or superior to the IP state of the art on the tested problem instances.

Finally, we will show that the proposed branch-and-bound method can be easily parallelized by
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distributing the DD node processing (i.e., the construction of relaxed and restricted DDs) across

multiple computers. This yields a low-communication parallel algorithm that is suitable to large

clusters with hundreds or thousands of computers. We will also compare the parallel version of

the branch-and-bound algorithm with IP, since it is a general-purpose solver with parallelization

options, and show that our parallel method achieves almost linear speed-ups.

This chapter is organized as follows. The branch-and-bound algorithm is presented in Section

6.2, where we demonstrate how to branch on nodes and provide a computational study on three

classical combinatorial problems. The parallel branch-and-bound is described in Section 6.3. In

this case, we will particularly focus on the maximum independent set problem to illustrate the

related concepts and perform an experimental analysis.

6.2 Sequential Branch-and-bound

We now present our sequential DD-based branch-and-bound algorithm. We first define the notion

of exact and relaxed nodes and indicate how they can be identified. Then, given a relaxed DD,

we describe a technique that partitions the search space so that relaxed/restricted DD can be used

to bound the objective function for each subproblem. Finally, we present the branch-and-bound

algorithm. For simplification, we focus on binary decision diagrams (BDDs), but the concepts

presented here can be easily extended to MDDs.

For a given BDD B and nodes u, u′ ∈ B with L(u) < L(u′), we let Buu′ be the BDD induced

by the nodes that lie on directed paths from u to u′ (with the same arc-domains and arc-cost as in

B). In particular, Brt = B.

6.2.1 Exact Cutsets

The branch-and-bound algorithm is based on enumerating subproblems defined by nodes in an

exact cutset. To develop this idea, let B̄ be a relaxed BDD created by Algorithm 1 using a valid

DP model of binary optimization problem P. We say that a node ū in B̄ is exact if all r–ū paths

in B̄ lead to the same state sj. A cutset of B̄ is a subset S of nodes of B̄ such that any r–t path

of B̄ contains at least one node in S. We call a cutset exact if all nodes in S are exact.

As an illustration, Figure 6.1(a) duplicates the relaxed BDD B̄ from Figure 3.4 and labels the

nodes labeled exact (E) or relaxed (R). Node ū4 in B̄ is an exact node because all incoming paths

(there is only one) lead to the same state {4, 5}. Node ū3 is relaxed because the two incoming paths

represent partial solutions (x1, x2) = (0, 0) and (0, 1) that lead to different states, namely {3, 4, 5}

and {5}, respectively. Nodes ū1 an ū4 form one possible exact cutset of B̄.

We now show that an exact cutset provides an exhaustive enumeration of subproblems. If B is

an exact BDD for binary optimization problem P, and let v∗(Buu′) be the length of a longest u–u′

path in Buu′ . For a node u in B, we define P|u to be the restriction of P whose feasible solutions
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ū3R ū4 R

0 4 0
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ū7

R

ū8
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Figure 6.1: (a) Relaxed BDD for the MISP on the graph in Figure 3.3 with nodes labeled as
exact (E) or relaxed (R); (b) exact BDD for subproblem corresponding to ū1; (c) exact BDD for
subproblem corresponding to ū4.

correspond to r–t paths of B that contain u. Recall that z∗(P) is the optimal value of P.

Lemma 21 If B is an exact BDD for P, then for any node u in B,

v∗(Bru) + v∗(But) = z∗(P|u)

Proof. Proof z∗(P|u) is the length of a longest r–t path of B that contains u, and any such path

has length v∗(Bru) + v∗(But). � �

Theorem 22 Let B̄ be a relaxed BDD created by Algorithm 1 using a valid DP model of binary

optimization problem P, and let S be an exact cutset of B̄. Then

z∗(P) = max
u∈S
{z∗(P|u)}

Proof. Proof Let B be the exact BDD for P created using the same DP model. Because each node

ū ∈ S is exact, it has a corresponding node u in B (i.e., a node associated with the same state),

and S is a cutset of B. Thus

z∗(P) = max
u∈S
{v∗(Bru) + v∗(But)} = max

u∈S
{P|u}

where the second equation is due to Lemma 21. � �
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Algorithm 6 Branch-and-Bound Algorithm

1: initialize Q = {r}, where r is the initial DP state
2: let zopt = −∞, v∗(r) = 0
3: while Q 6= ∅ do
4: u← select node(Q), Q← Q \ {u}
5: create restricted BDD B′

ut using Algorithm 1 with root u and vr = v∗(u)
6: if v∗(But) > zopt then
7: zopt ← v∗(B′)
8: if B′

ut is not exact then
9: create relaxed BDD B̄ut using Algorithm 1 with root u and vr = v∗(u)

10: if v∗(B̄ut) > zopt then
11: let S be an exact cutset of B̄ut

12: for all u′ ∈ S do
13: let v∗(u′) = v∗(u) + v∗(B̄uu′), add u′ to Q
14: return zopt

6.2.2 Enumeration of Subproblems

We solve a binary optimization problem P by a branching procedure in which we enumerate a set

of subproblems P|u each time we branch, where u ranges over the nodes in an exact cutset of the

current relaxed BDD. We build a relaxed BDD and a restricted BDD for each subproblem to obtain

upper and lower bounds, respectively.

Suppose u is one of the nodes on which we branch. Because u is an exact node, we have already

constructed an exact BDD Bru down to u, and we know the length v∗(u) = v∗(Bru) of a longest

path in Bru. We can obtain an upper bound on z∗(P|u) by computing a longest path length v∗(But)

in a relaxed BDD B̄ut with root value v∗(u). To build the relaxation B̄ut, we start the execution of

Algorithm 1 with j = L(u) and root node u, where the root value is vr = v∗(u). We can obtain a

lower bound on z∗(P|u) in a similar fashion, except that we use a restricted rather than a relaxed

BDD.

The branch-and-bound algorithm is presented in Algorithm 6. We begin with a set Q = {r} of

open nodes consisting of the initial state r of the DP model. Then, while open nodes remain, we

select a node u from Q. We first obtain a lower bound on z∗(P|u) by creating a restricted BDD

B′
ut as described above, and we update the incumbent solution zopt. If B

′
ut is exact (i.e., |Lj| never

exceeds W in Algorithm 5), there is no need for further branching at node u. This is analogous

to obtaining an integer solution in traditional branch and bound. Otherwise we obtain an upper

bound on z∗(P|u) by building a relaxed BDD B̄ut as described above. If we cannot prune the search

using this bound, we identify an exact cutset S of B̄ut and add the nodes in S to Q. Because S is

exact, for each u′ ∈ S we know that v∗(u′) = v∗(u) + v∗(B̄uu′). The search terminates when Q is

empty, at which point the incumbent solution is optimal by Theorem 22.

As an example, consider again the relaxed BDD B̄ in Figure 6.1(a). The longest path length in
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this graph is v∗(B̄) = 13, an upper bound on the optimal value. Suppose that we initially branch

on the exact cutset {ū1, ū4}, for which we have v(ū1) = 0 and v(ū4) = 3. We wish to generate

restricted and relaxed BDDs of maximum width 2 for the subproblems. Figure 6.1 (b) shows a

restricted BDD B̄ū1t for the subproblem at ū1, and Figure 6.1 (c) shows a restricted BDD B̄ū4t

for the other subproblem. As it happens, both BDDs are exact, and so no further branching is

necessary. The two BDDs yield bounds v∗(B̄ū1t) = 11 and v∗(B̄ū4t) = 10, respectively, and so the

optimal value is 11.

Exact Cutset Selection

Given a relaxed BDD, there are many exact cutsets. Here we present three such cutsets and

experimentally evaluate them in Section 6.2.3.

• Traditional branching (TB). Branching normally occurs by selecting some variable xj and

branching on xj = 0/1. Using the exact cutset S = L2 has the same effect. Traditional

branching therefore uses the shallowest possible exact cutset for some variable ordering.

• Last exact layer (LEL). For a relaxed BDD B̄, define the last exact layer of B̄ to be the set of

nodes LEL(B̄) = Lj′ , where j
′ is the maximum value of j for which each node in Lj is exact.

In the relaxed BDD B̄ of Figure 6.1(a), LEL(B̄) = {ū1, ū2}.

• Frontier cutset (FC). For a relaxed BDD B̄, define the frontier cutset of B to be the set of

nodes

FC(B̄) =
{

u in B̄ | u is exact and b0(u) or b1(u) is relaxed
}

In the example of Figure 6.1(a), FC(B̄) = {ū1, ū4}. A frontier cutset is an exact cutset, due

to the following.

Lemma 23 If B̄ is a relaxed BDD that is not exact, then FC(B̄) is an exact cutset.

Proof. Proof By the definition of a frontier cutset, each node in the cutset is exact. We need

only show that each solution x ∈ Sol(B̄) contains some node in FC(B̄). But the path p

corresponding to x ends at t, which is relaxed because B̄ is not exact. Since the root r is

exact, there must be a first relaxed node u in p. The node immediately preceding this node

in p is in FC(B̄), as desired. � �

6.2.3 Computational Study

Since we propose BDD-based branch-and-bound as a general discrete optimization method, it is

appropriate to measure it against an existing general-purpose method. We compared BDDs with a
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state-of-the-art IP solver, inasmuch as IP is generally viewed as the most highly-developed general-

purpose solution technology for discrete optimization.

Like IP, a BDD-based method requires several implementation decisions, chief among which are

the following:

• Maximum width: Wider relaxed BDDs provide tighter bounds but require more time to build.

For each subproblem in the branch-and-bound procedure, we set the maximum widthW equal

to the number of variables whose value has not yet been fixed.

• Node selection for merger: The selection of the subset M of nodes to merge during the

construction of a relaxed BDD (line 4 of Algorithm 1) likewise affects the quality of the

bound, as discussed in Chapters 4 and 5. We use the following heuristic. After constructing

each layer Lj of the relaxed BDD, we rank the nodes in Lj according to a rank function

rank(u) that is specified in the DP model with the state merging operator ⊕. We then let M

contain the lowest-ranked |Lj | −W nodes in Lj .

• Variable ordering: Much as branching order has a significant impact on IP performance, the

variable ordering chosen for the layers of the BDD can affect branching efficiency and the

tightness of the BDD relaxation. We describe below the variable ordering heuristics we used

for the three problem classes.

• Search node selection: We must also specify the next node in the set Q of open nodes to be

selected during branch and bound (Algorithm 6). We select the node u with the minimum

value v∗(u).

The tests were run on an Intel Xeon E5345 with 8GB RAM. The BDD-based algorithm was

implemented in C++. The commercial IP solver CPLEX 12.4 was used for comparison. Default

settings, including presolve, were used for CPLEX unless otherwise noted. No presolve routines

were used for the BDD-based method.

Results for the MISP

We first specify the key elements of the algorithm that we used for the MISP. Node selection for

merger is based on the rank function rank(u) = v∗(u). We used the variable ordering heuristic in

Section TODO: after selecting the first j − 1 variables and forming layer Lj, we choose vertex j

as the vertex that belongs to the fewest number of states in Lj. We used FC cutsets for all MISP

tests.

For graph G = (V,E), a standard IP model for the MISP is

max

{

∑

i∈V
xi

∣

∣

∣

∣

∣

xi + xj ≤ 1, all (i, j) ∈ E; xi ∈ {0, 1}, all i ∈ V

}

(6.1)
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A tighter linear relaxation can be obtained by pre-computing a clique cover C of G and using the

model

max

{

∑

i∈S
xi

∣

∣

∣

∣

∣

xi ≤ 1, all S ∈ C; xi ∈ {0, 1}, all i ∈ V

}

(6.2)

We refer to this as the tight MISP formulation. The clique cover C is computed using a greedy

procedure as follows. Starting with C = ∅, let clique S consist of a single vertex v with the highest

positive degree in G. Add to S the vertex with highest degree in G \ S that is adjacent to all

vertices in S, and repeat until no more additions are possible. At this point, add S to C, remove

from G all the edges of the clique induced by S, update the vertex degrees, and repeat the overall

procedure until G has no more edges.

We begin by reporting results on randomly generated graphs. We generated random graphs

with n ∈ {250, 500, . . . , 1750} and density p ∈ {0.1, 0.2, . . . , 1} (10 graphs per n, p configuration) ac-

cording to the Erdös-Rényi model G(n, p) (where each edge appears independently with probability

p).

Figure 6.2 depicts the results. The solid lines represent the average percent gap for the BDD-

based technique after 1800 seconds, one line per value of n, and the dashed lines depict the same

statistics for the integer programming solver using the tighter, clique model, only. It is clear that

the BDD-based algorithm outperforms CPLEX on dense graphs, solving all instances tested with

density 80% or higher, and solving almost all instances, except for the largest, with density equal

70%, whereas the integer programming solver could not close any but the smallest instances (with

n = 250) at these densities.

CPLEX outperformed the BDD technique for the sparsest graphs (with p = 10), but only for the

small values of n. As n grows, we see that the BDD-based algorithm starts to outperform CPLEX,

even on the sparsest graphs, and that the degree to which the ending percent gaps increase as n

grows is more substantial for CPLEX than it is for the BDD-based algorithm.

We also tested on the 87 instances of the maximum clique problem in the well-known DI-

MACS benchmark set (http://cs.hbg.psu.edu/txn131/clique.html). The MISP is equivalent to the

maximum clique problem on the complement of the graph.

Figure 6.3 shows a time profile comparing BDD-based optimization with CPLEX performance

for the standard and tight IP formulations. The BDD-based algorithm is superior to the standard IP

formulation but solved 4 fewer instances than the tight IP formulation after 30 minutes. However,

fewer than half the instances were solved by any method. The relative gap (upper bound divided

by lower bound) for the remaining instances therefore becomes an important factor. A comparison

of the relative gap for BDDs and the tight IP model appears in Fig. 6.3(b), where the relative

gap for CPLEX is shown as 10 when it found no feasible solution. Points above the diagonal are

favorable to BDDs. It is evident that BDDs tend to provide significantly tighter bounds. There

are several instances for which the CPLEX relative gap is twice the BDD gap, but no instances for
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which the reverse is true. In addition, CPLEX was unable to find a lower bound for three of the

largest instances, while BDDs provided bounds for all instances.

Results for the MCP

We generated random instances of the MCP as follows. For n ∈ {30, 40, 50} and p ∈ {0.1, 0.2, . . . , 1},

we again generated random graphs (10 per n, p configuration). The weights of the edges generated

were drawn uniformly from [−1, 1].

We let the rank of a node u ∈ Lj associated with state sj be

rank(u) = v∗(u) +
n
∑

ℓ=j

∣

∣

∣
sjℓ

∣

∣

∣

We order the variables xj according to the sum of the lengths of the edges incident to vertex j.

Variables with the largest sum are first in the ordering.

A traditional IP formulation of the MCP introduces a 0–1 variable yij for each edge (i, j) ∈ E

to indicate whether this edge crosses the cut. The formulation is

min







∑

(i,j)∈E
wijyij

∣

∣

∣

∣

∣

∣

{

yij + yik + yjk ≤ 2

yij + yik ≥ yjk

}

all i, j, k ∈ {1, . . . , n}; yij ∈ {0, 1}, all (i, j) ∈ E







We first consider instances with n = 30 vertices, all of which were solved by both BDDs and

IP within 30 minutes. Figure 6.4 shows average solution time for CPLEX and the BDD-based

algorithm, using both LEL and FC cutsets for the latter. We tested CPLEX with and without

presolve because presolve reduces the model size substantially. We find that BDDs with either type

of cutset are substantially faster than CPLEX, even when CPLEX uses presolve. In fact, the LEL

solution time for BDDs is scarcely distinguishable from zero in the plot. The advantage of BDDs

is particularly great for denser instances.

Results for n = 40 vertices appear in Figure 6.5. BDDs with LEL are consistently superior to

CPLEX, solving more instances after 1 minute and after 30 minutes. In fact, BDD solved all but

one of the instances within 30 minutes, while CPLEX with presolve left 17 unsolved.

Figure 6.6(a) shows time profiles for 100 instances with n = 50 vertices. The profiles for

CPLEX (with presolve) and BDDs (with LEL) are roughly competitive, with CPLEX marginally

better for larger time periods. However, none of the methods could solve even a third of the

instances, and so the gap for the remaining instances becomes important. Figure 6.6(b) shows that

the average percent gap (i.e., 100(UB − LB)/LB) is much smaller for BDDs on denser instances,

and comparable on sparser instances, again suggesting greater robustness for a BDD-based method

relative to CPLEX. In view of the fact that CPLEX benefits enormously from presolve, it is

conceivable that BDDs could likewise profit from a presolve routine.

110



 0

 50

 100

 150

 200

 250

 300

 350

 0.2  0.4  0.6  0.8  1

tim
e 

(s
)

density

Average Run-Time for Random MCP Instances (n=30)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

Figure 6.4: Average solution time for MCP instances (n = 30 vertices) using BDDs (with LEL
and FC cutsets) and CPLEX (with and without presolve). Each point is the average of 10 random
instances.

 0

 2

 4

 6

 8

 10

 0.2  0.4  0.6  0.8  1

nu
m

be
r 

so
lv

ed

density

Number of MCP Instances Solved in 60 Seconds (n=40)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

 0

 2

 4

 6

 8

 10

 0.2  0.4  0.6  0.8  1

nu
m

be
r 

so
lv

ed

density

Number of MCP Instances Solved in 1800 Seconds (n=40)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

Figure 6.5: Number of MCP instances with n = 40 vertices solved after 60 seconds (left) and 1800
seconds (right), versus graph density, using BDDs (with LEL and FC cutsets) and CPLEX (with
and without presolve).

111



-5

 0

 5

 10

 15

 20

 25

 30

 35

 0.1  1  10  100  1000

nu
m

be
r 

so
lv

ed

time (s)

Number of Random MCP Instances Solved (n=50)

BDD (LEL)
BDD (FC)

IP (no presolve)
IP (with presolve)

 0

 100

 200

 300

 400

 500

 0.2  0.4  0.6  0.8  1

pe
rc

en
t g

ap

density

Average Percent Gap after 1800 Seconds for Random MCP Instances (n=50)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

(a) (b)

Figure 6.6: (a) Time profile for 100 MCP instances with n = 50 vertices, comparing BDDs (with
LEL and FC cutsets) and CPLEX (with and without presolve). (b) Percent gap versus density
after 1800 seconds, where each point is the average over 10 random instances.

We also tested the algorithm on the g-set, a classical benchmark set, created by the authors

in [82], which has since been used extensively for computational testing on algorithms designed to

solve the MCP. The 54 instances in the benchmark set are large, each having at least 800 vertices.

The results appear in Table 6.1 only for those instances for which the BDD-based algorithm was

able to improve upon the best known integrality gaps. For the instances with 1% density or more,

the integrality gap provided by the BDD-based algorithm is about an order-of-magnitude worse

than the best known integrality gaps, but for these instances (which are among the sparsest), we are

able to improve on the best known gaps through proving tighter relaxation bounds and identifying

better solutions than have ever been found.

The first column provides the name of the instance. The instances are ordered by density, with

the sparsest instances reported appearing at the top of the table. We then present the upper bound

(UB) and lower bound (LB), after one hour of computation time, for the BDD-based algorithm,

follow by the best known (BK) upper bound and lower bound that we could find in the literature.

In the final columns, we record the previously best known percent gap and the new percent gap,

where the decrease is due to the improvements from the BDD-based algorithm. Finally, we present

the reduction in percent gap obtained.

For three instances (g32, g33, and g34), better solutions were identified by the BDD-based

algorithm than have ever been found by any technique, with an improvement in objective function

value of 12, 4, and 4, respectively. In addition, for four instances (g50, g33, g11, and g12) better

upper bounds were proven than were previously known, reducing the best known upper bound by

89.18, 1, 60, and 5, respectively. For these instances, the reduction in the percent gap is shown

in the last column. Most notably, for g50 and g11, the integrality gap was significantly tightened
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(82.44 and 95.24 percent reduction, respectively). As the density grows, however, the BDD-based

algorithm is not able to compete with other state-of-the-art techniques, yielding substantially worse

solutions and relaxation bounds than the best known values.

We note here that the BDD-based technique is a general branch-and-bound procedure, whose

application to the MCP is only specialized through the DP model that is used to calculate states

and determine transition costs. This general technique was able to improve upon best known

solutions obtained by heuristics and exact techniques specifically designed to solve the MCP. And

so, although the technique is unable to match the best known objective function bounds for all

instances, identifying best known solution via this general purpose technique is an indication of the

power of the algorithm.

Table 6.1: G-Set Computational Results

Instance BDD(UB) BDD(LB) BK(UB) BK(LB) BK(%gap) NewBK(%gap) %ReductionInGap

g50 5899 5880 5988.18 5880 1.84 0.32 82.44

g32 1645 1410 1560 1398 11.59 10.64 8.20

g33 1536 1380 1537 1376 11.7 11.30 3.39

g34 1688 1376 1541 1372 12.32 11.99 2.65

g11 567 564 627 564 11.17 0.53 95.24

g12 616 556 621 556 11.69 10.79 7.69

Results for MAX-2SAT

For the MAX-2SAT problem, we created random instances with n ∈ {30, 40} variables and density

d ∈ {0.1, 0.2, . . . , 1}. We generated 10 instances for each pair (n, d), with each of the 4 ·
(n
2

)

possible

clauses selected with probability d and, if selected, assigned a weight drawn uniformly from [1, 10].

We used the same rank function as for the MCP, and we ordered the variables in ascending

order according to the total weight of the clauses in which the variables appear.

We formulated the IP using a standard model. Let clause i contain variables xj(i) and xk(i).

Let xij be xj if xj is posited in clause i, and 1− xj if xj negated. Let δi be a 0-1 variable that will

be forced to 0 if clause i is unsatisfied. Then if there are m clauses and wi is the weight of clause

i, the IP model is

max

{

m
∑

i=1

wiδi

∣

∣

∣

∣

∣

xij(i) + xik(i) + (1− δi) ≥ 1, all i; xj, δi ∈ {0, 1}, all i, j

}

Figures 6.7 shows the time profiles for the two size classes. BDDs with LEL are clearly superior

to CPLEX for n = 30. When n = 40, BDDs prevail over CPLEX as the available solving time

grows. In fact, BDDs solve all but 2 of the instances within 30 minutes, while CPLEX leaves 17
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Figure 6.7: Time profile for 100 MAX-2SAT instances with n = 30 variables (left) and n = 40
variables (right), comparing BDDs (with LEL and FC cutsets) and CPLEX (with and without
presolve).

unsolved using no presolve, and 22 unsolved using presolve.

6.3 Parallel Branch-and-bound

In recent years, hardware design has increasingly focused on multi-core systems and parallelized

computing. In order to take advantage of these systems, it is crucial that solution methods for

combinatorial optimization be effectively parallelized and built to run not only on one machine but

also on a large cluster.

Different combinatorial search methods have been developed for specific problem classes, includ-

ing mixed integer programming (MIP), Boolean satisfiability (SAT), and constraint programming

(CP). These methods represent (implicitly or explicitly) a complete enumeration of the solution

space, usually in the form of a branching tree where the branches out of each node reflect variable

assignments. The recursive nature of branching trees suggests that combinatorial search methods

are amenable to efficient parallelization, since we may distribute sub-trees to different compute

cores spread across multiple machines of a compute cluster. Yet, in practice this task has proved

to be very challenging. For example, Gurobi, one of the leading commercial MIP solvers, achieves

an average speedup factor of 1.7 on 5 machines (and only 1.8 on 25 machines) when compared

to using only 1 machine [71]. Furthermore, during the 2011 SAT Competition, the best parallel

SAT solvers obtained a average speedup factor of about 3 on 32 cores, which was achieved by

employing an algorithm portfolio rather than a parallelized search [92]. In our experimentation,

the winner of the parallel category of the 2013 SAT Competition also achieved a speedup of only

about 3 on 32 cores. Constraint programming search appears to be more suitable for parallelization

than search for MIP or SAT: different strategies, including a recursive application of search goals
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[109], work stealing [40], problem decomposition [116], and a dedicated parallel scheme based on

limited discrepancy search [106] all exhibit good speedups (sometimes near-linear) of the CP search

in certain settings, especially those involving infeasible instances or scenarios where evaluating

search tree leaves is costlier than evaluating internal nodes. Yet, recent developments in CP have

moved towards more constraint learning during search, for which efficient parallelization becomes

increasingly more difficult.

In general, search schemes relying heavily on learning during search (such as learning new

bounds, activities for search heuristics, cuts for MIP, nogoods for CP, and clauses for SAT) tend to

be more difficult to efficiently parallelize. It remains a challenge to design a robust parallelization

scheme for solving combinatorial optimization problems which must necessarily deal with bounds.

Recently, a branch-and-bound scheme based on approximate decision diagrams was introduced

as a promising alternative to conventional methods (such as integer programming) for solving

combinatorial optimization problems [20]. In this paper, our goal is to study how this branch-and-

bound search scheme can be effectively parallelized. The key observation is that relaxed decision

diagrams can be used to partition the search space, since for a given layer in the diagram each path

from the root to the terminal passes through a node in that layer. We can therefore branch on

nodes in the decision diagram instead of branching on variable-value pairs, as is done in conventional

search methods. Each of the subproblems induced by a node in the diagram is processed recursively,

and the process continues until all nodes have been solved by an exact decision diagram or pruned

due to reasoning based on bounds on the objective function.

When designing parallel algorithms geared towards dozens or perhaps hundreds of workers

operating in parallel, the two major challenges are i) balancing the workload across the workers,

and ii) limiting the communication cost between workers. In the context of combinatorial search

and optimization, most of the current methods are based on either parallelizing the traditional tree

search or using portfolio techniques that make each worker operate on the entire problem. The

former approach makes load balancing difficult as the computational cost of solving similarly sized

subproblems can be orders of magnitude different. The latter approach typically relies on extensive

communication in order to avoid duplication of effort across workers.

In contrast, using decision diagrams as a starting point for parallelization offers several notable

advantages. For instance, the associated branch-and-bound method applies relaxed and restricted

diagrams that are obtained by limiting the size of the diagrams to a certain maximum value.

The size can be controlled, for example, simply by limiting the maximum width of the diagrams.

As the computation time for a (sub)problem is roughly proportional to the size of the diagram,

by controlling the size we are able to control the computation time. In combination with the

recursive nature of the framework, this makes it easier to obtain a balanced workload. Further,

the communication between workers can be limited in a natural way by using both global and

local pools of currently open subproblems and employing pruning based on shared bounds. Upon

115



processing a subproblem, each worker generates several new ones. Instead of communicating all of

these back to the global pool, the worker keeps several of them to itself and continues to process

them. In addition, whenever a worker finds a new feasible solution, the corresponding bound is

communicated immediately to the global pool as well as to other workers, enabling them to prune

subproblems that cannot provide a better solution. This helps avoid unnecessary computational

effort, especially in the presence of local pools.

Our scheme is implemented in X10 [36, 120, 133], which is a modern programming language

designed specifically for building applications for multi-core and clustered systems. For example,

[29] recently introduced SatX10 as an efficient and generic framework for parallel SAT solving using

X10. We refer to our proposed framework for parallel decision diagrams as DDX10. The use of X10

allows us to program parallelization and communication constructs using a high-level, type checked

language, leaving the details of an efficient backend implementation for a variety of systems and

communication hardware to the language compiler and run-time. Furthermore, X10 also provides

a convenient parallel execution framework, allowing a single compiled executable to run as easily

on one core as on a cluster of networked machines.

Our main contributions are as follows. First, we describe, at a conceptual level, a scheme for

parallelization of a sequential branch-and-bound search based on approximate decision diagrams

and discuss how this can be efficiently implemented in the X10 framework. Second, we provide

an empirical evaluation on the maximum independent set problem, showing the potential of the

proposed method. Third, we compare the performance of DDX10 with a state-of-the-art parallel

MIP solver, IBM ILOG CPLEX 12.5.1 . Experimental results indicate that DDX10 can obtain

much better speedups than parallel MIP, especially when more workers are available. The results

also demonstrate that the parallelization scheme provides near-linear speedups up to 256 cores,

even in a distributed setting where the cores are split across multiple machines.

The limited amount of information required for each BDD node makes the branch-and-bound

algorithm naturally suitable for parallel processing. Once an exact cut C is computed for a relaxed

BDD, the nodes u ∈ C are independent and can be each processed in parallel. The information

required to process a node u ∈ C is its corresponding state, which is bounded by the number

of vertices of G, |V |. After processing a node u, only the lower bound v∗(G[E(u)]) is needed to

compute the optimal value.

6.3.1 A Centralized Parallelization Scheme

There are many possible parallel strategies that can exploit this natural characteristic of the branch-

and-bound algorithm for approximate decision diagrams. We propose here a centralized strategy

defined as follows. A master process keeps a pool of BDD nodes to be processed, first initialized

with a single node associated with the root state V . The master distributes the BDD nodes to a set

of workers. Each worker receives a number of nodes, processes them by creating the corresponding
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relaxed and restricted BDDs, and either sends back to the master new nodes to explore (from an

exact cut of their relaxed BDD) or sends to the master as well as all workers an improved lower

bound from a restricted BDD. The workers also send the upper bound obtained from the relaxed

BDD from which the nodes were extracted, which is then used by the master for potentially pruning

the nodes according to the current best lower bound at the time these nodes are brought out from

the global pool to be processed.

Even though conceptually simple, our centralized parallelization strategy involves communica-

tion between all workers and many choices that have a significant impact on performance. After

discussing the challenge of effective parallelization, we explore some of these choices in the rest of

this section.

6.3.2 The Challenge of Effective Parallelization

Clearly, a BDD constructed in parallel as described above can be very different in structure and

overall size from a BDD constructed sequentially for the same problem instance. As a simple

example, consider two nodes u1 and u2 in the exact cut C. By processing u1 first, one could

potentially improve the lower bound so much that u2 can be pruned right away in the sequential

case. In the parallel setting, however, while worker 1 processes u1, worker 2 will be already wasting

search effort on u2, not knowing that u2 could simply be pruned if it waited for worker 1 to finish

processing u1.

In general, the order in which nodes are processed in the approximate BDD matters — infor-

mation passed on by nodes processed earlier can substantially alter the direction of search later.

This is very clear in the context of combinatorial search for SAT, where dynamic variable activities

and clauses learned from conflicts dramatically alter the behavior of subsequent search. Similarly,

bounds in MIP and impacts in CP influence subsequent search.

Issues of this nature pose a challenge to effective parallelization of anything but brute force

combinatorial search oblivious to the order in which the search space is explored. Such a search

is, of course, trivial to parallelize. For most search methods of interest, however, a parallelization

strategy that delicately balances independence of workers with timely sharing of information is often

the key to success. As our experiments will demonstrate, our implementation, DDX10, achieves this

balance to a large extent on both random and structured instances of the independent set problem.

In particular, the overall size of parallel BDDs is not much larger than that of the corresponding

sequential BDDs. In the remainder of this section, we discuss the various aspects of DDX10 that

contribute to this desirable behavior.

6.3.3 Global and Local Pools

We refer to the pool of nodes kept by the master as the global pool. Each node in the global pool

has two pieces of information: a state, which is necessary to build the relaxed and restricted BDDs,
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and the longest path value in the relaxed BDD that created that node, from the root to the node.

All nodes sent to the master are first stored in the global pool and are then redistributed to the

workers. Nodes with an upper bound that is no more than the best found lower bound at the time

are pruned from the pool, as these can never provide a solution better than one already found.

In order to select which nodes to send to workers first, the global pool is implemented here

using a data structure that mixes a priority queue and a stack. Initially, the global pool gives

priority to nodes that have a larger upper bound, which intuitively are nodes with higher potential

to yield better solutions. However, this search strategy simulates a best-first search and may result

in an exponential number of nodes in the global queue that still need to be explored. To remedy

this, the global pool switches to a last-in, first-out node selection strategy when its size reaches a

particular value (denoted maxPQueueLength), adjusted according to the available memory on the

machine where the master runs. This strategy resembles a stack-based depth-first search and limits

the total amount of memory necessary to perform search.

Besides the global pool, workers also keep a local pool of nodes. The subproblems represented

by the nodes are usually small, making it advantageous for workers to keep their own pool so as

to reduce the overall communication to the master. The local pool is represented by a priority

queue, selecting nodes with a larger upper bound first. After a relaxed BDD is created, a certain

fraction of the nodes (with preference to those with a larger upper bound) in the exact cut is

sent to the master, while the remaining fraction (denoted fracToKeep) of nodes are added to the

local pool. The local pool size is also limited; when the pool reaches this maximum size (denoted

maxLocalPoolSize ), we stop adding more nodes to the local queue and start sending any newly

created nodes directly to the master. When a worker’s local pool becomes empty, it notifies the

master that it is ready to receive new nodes.

6.3.4 Load Balancing

The global queue starts off with a single node corresponding to the root state V , which is assigned

to an arbitrary worker which then applies a cut to produce more states and sends a fraction of

them, as discussed above, back to the global queue. The size of the global pool thus starts to grow

rapidly and one must choose how many nodes to send subsequently to other workers. Sending one

node (the one with the highest priority) to a worker at a time would mimic the sequential case

most closely. However, it would also result in the most number of communications between the

master and the workers, which often results in a prohibitively large system overhead. On the other

hand, sending too many nodes at once to a single worker runs the risk of starvation, i.e., the global

queue becoming empty and other workers sitting idle waiting to receive new work.

Based on experimentation with representative instances, we propose the following parameterized

scheme to dynamically decide how many nodes the master should send to a worker at any time.

Here, we use the notation [x]uℓ as a shorthand for min{u,max{ℓ, x}}, that is, x capped to lie in the
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interval [ℓ, u].

nNodesToSend c,c̄,c∗(s, q, w) =
[

min
{

c̄s, c∗
q

w

}]∞

c
(6.3)

where s is a decaying running average of the number of nodes added to the global pool by workers

after processing a node,1 q is the current size of the global pool, w is the number of workers, and

c, c̄, and c∗ are parametrization constants.

The intuition behind this choice is as follows. c is a flat lower limit (a relatively small number)

on how many nodes are sent at a time irrespective of other factors. The inner minimum expression

upper bounds the number of nodes to send to be no more than both (a constant times) the number

of nodes the worker is in turn expected to return to the global queue upon processing each node and

(a constant times) an even division of all current nodes in the queue into the number of workers.

The first influences how fast the global queue grows while the second relates to fairness among

workers and the possibility of starvation. Larger values of c, c̄, and c∗ reduce the number of times

communication occurs between the master and workers, at the expense of moving further away

from mimicking the sequential case.

Load balancing also involves appropriately setting the fracToKeep value discussed earlier. We

use the following scheme, parameterized by d and d∗:

fracToKeepd,d∗(t) = [t/d∗]1d (6.4)

where t is the number of states received by the worker. In other words, the fraction of nodes to

keep for the local queue is 1/d∗ times the number of states received by the worker, capped to lie in

the range [d, 1].

6.3.5 DDX10: Implementing Parallelization Using X10

As mentioned earlier, X10 is a high-level parallel programming and execution framework. It sup-

ports parallelism natively and applications built with it can be compiled to run on various operating

systems and communication hardware.

Similar to SatX10 [29], we capitalize on the fact that X10 can incorporate existing libraries

written in C++ or Java. We start off with the sequential version of the BDD code base for MISP

used in Section 6.2.3 and integrate it in X10, using the C++ backend. The integration involves

adding hooks to the BDD class so that (a) the master can communicate a set of starting nodes to

build approximate BDDs for, (b) each worker can communicate nodes (and corresponding upper

bounds) of an exact cut back to the master, and (c) each worker can send updated lower bounds

immediately to all other workers and the master so as to enable pruning.

The global pool for the master is implemented natively in X10 using a simple combination of a

1When a cut C is applied upon processing a node, the value of s is updated as snew = rsold + (1 − r)|C|, with
r = 0.5 in the current implementation.
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priority queue and a stack. The DDX10 framework itself (consisting mainly of the main DDSolver

class in DDX10.x10 and the pool in StatePool.x10) is generic and not tied to MISP in any way. It

can, in principle, work with any maximization or minimization problem for which states for a BDD

(or even an MDD) can be appropriately defined.

6.3.6 Computational Study

The MISP problem can be formulated and solved using several existing general purpose discrete

optimization techniques. A MIP formulation is considered to be very effective and has been used

previously to evaluate the sequential BDD approach in Section 6.2.3. Given the availability of

parallel MIP solvers as a comparison point, we present two sets of experiments on the MISP

problem: (1) we compare DDX10 with a MIP formulation solved using IBM ILOG CPLEX 12.5.1

on up to 32 cores, and (2) we show how DDX10 scales when going beyond 32 cores and employing

up to 256 cores distributed across a cluster. We borrow the MIP encoding from Section 6.2.3 and

employ the built-in parallel branch-and-bound MIP search mechanism of CPLEX. The comparison

with CPLEX is limited to 32 cores because this is the largest number of cores we have available on a

single machine (note that CPLEX 12.5.1 does not support distributed execution). Since the current

version of DDX10 is not deterministic, we run CPLEX also in its non-deterministic (‘opportunistic’)

mode.

DDX10 is implemented using X10 2.3.1 [133] and compiled using the C++ backend with g++

4.4.5.2 For all experiments with DDX10, we used the following values of the parameters of the

parallelization scheme: maxPQueueLength = 5.5× 109 (determined based on the available memory

on the machine storing the global queue), maxLocalPoolSize = 1000, c = 10, c̄ = 1.0, c∗ = 2.0, d =

0.1 and d∗ = 100. The maximum width W for the BDD generated at each subproblem was set to

be the number of free variables (i.e., the number of active vertices) in the state of the BDD node

that generated the subproblem. The type of exact cut used in the branch-and-bound algorithm

for the experiments was the frontier cut [20]. These values and parameters were chosen based on

experimentation on our cluster with a few representative instances, keeping in mind their overall

impact on load balancing and pruning as discussed earlier.

DDX10 versus Parallel MIP

The comparison between DDX10 and IBM ILOG CPLEX 12.5.1 was conducted on 2.3 GHz AMD

Opteron 6134 machines with 32 cores, 64 GB RAM, 512 KB L2 cache, and 12 MB L3 cache.

To draw meaningful conclusions about the scaling behavior of CPLEX vs. DDX10 as the number

w of workers is increased, we start by selecting problem instances where both approaches exhibit

comparable performance in the sequential setting. To this end, we generated random MISP in-

stances as also used previously by TODO. We report comparison on instances with 170 vertices

2The current version of DDX10 may be downloaded from http://www.andrew.cmu.edu/user/vanhoeve/mdd
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Figure 6.8: Performance of CPLEX (left) and DDX10 (right), with one curve for each graph density
ρ shown in the legend as a percentage. Both runtime (y-axis) and number of cores (x-axis) are in
log-scale.
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Figure 6.9: Scaling behavior of DDX10 on MISP instances with 170 (left) and 190 (right) vertices,
with one curve for each graph density ρ shown in the legend as a percentage. Both runtime (y-axis)
and number of cores (x-axis) are in log-scale.

and six graph densities ρ = 0.19, 0.21, 0.23, 0.25, 0.27, and 0.29. For each ρ, we generated five

random graphs, obtaining a total of 30 problem instances. For each pair (ρ,w) with w being the

number of workers, we aggregate the runtime over the five random graphs using the geometric

mean.

Figure 6.8 summarizes the result of this comparison for w = 1, 2, 4, 16, and 32. As we see,

CPLEX and DDX10 display comparable performance for w = 1 (the left-most data points). While

the performance of CPLEX varies relatively little as a function of the graph density ρ, that of

DDX10 varies more widely. As observed earlier by TODO for the sequential case, BDD-based

branch-and-bound performs better on higher density graphs than sparse graphs. Nevertheless, the

performance of the two approaches when w = 1 is in a comparable range for the observation we

want to make, which is the following: DDX10 scales more consistently than CPLEX when invoked

121



Table 6.2: Runtime (seconds) of DDX10 on DIMACS instances. Timeout = 1800.

instance n density 1 core 4 cores 16 cores 64 cores 256 cores

hamming8-4.clq 256 0.36 25.24 7.08 2.33 1.32 0.68
brock200 4.clq 200 0.34 33.43 9.04 2.84 1.45 1.03
san400 0.7 1.clq 400 0.30 33.96 9.43 4.63 1.77 0.80
p hat300-2.clq 300 0.51 34.36 9.17 2.74 1.69 0.79
san1000.clq 1000 0.50 40.02 12.06 7.15 2.15 9.09
p hat1000-1.clq 1000 0.76 43.35 12.10 4.47 2.84 1.66
sanr400 0.5.clq 400 0.50 77.30 18.10 5.61 2.18 2.16
san200 0.9 2.clq 200 0.10 93.40 23.72 7.68 3.64 1.65
sanr200 0.7.clq 200 0.30 117.66 30.21 8.26 2.52 2.08
san400 0.7 2.clq 400 0.30 234.54 59.34 16.03 6.05 4.28
p hat1500-1.clq 1500 0.75 379.63 100.3 29.09 10.62 25.18
brock200 1.clq 200 0.25 586.26 150.3 39.95 12.74 6.55
hamming8-2.clq 256 0.03 663.88 166.49 41.80 23.18 14.38
gen200 p0.9 55.clq 200 0.10 717.64 143.90 43.83 12.30 6.13
C125.9.clq 125 0.10 1100.91 277.07 70.74 19.53 8.07
san400 0.7 3.clq 400 0.30 – 709.03 184.84 54.62 136.47
p hat500-2.clq 500 0.50 – 736.39 193.55 62.06 23.81
p hat300-3.clq 300 0.26 – – 1158.18 349.75 172.34
san400 0.9 1.clq 400 0.10 – – 1386.42 345.66 125.27
san200 0.9 3.clq 200 0.10 – – – 487.11 170.08
gen200 p0.9 44.clq 200 0.10 – – – 1713.76 682.28
sanr400 0.7.clq 400 0.30 – – – – 1366.98
p hat700-2.clq 700 0.50 – – – – 1405.46

in parallel and also retains its advantage on higher density graphs. For ρ > 0.23, DDX10 is

clearly exploiting parallelism better than CPLEX. For example, for ρ = 0.29 and w = 1, DDX10

takes about 80 seconds to solve the instances while CPLEX needs about 100 seconds—a modest

performance ratio of 1.25. This same performance ratio increases to 5.5 when both methods use

w = 32 workers.

Parallel versus Sequential Decision Diagrams

The two experiments reported in this section were conducted on a larger cluster, with 13 of 3.8 GHz

Power7 machines (CHRP IBM 9125-F2C) with 32 cores (4-way SMT for 128 hardware threads)

and 128 GB of RAM. The machines are connected via a network that supports the PAMI message

passing interface [96], although DDX10 can also be easily compiled to run using the usual network

communication with TCP sockets. We used 24 workers on each machine, using as many machines

as necessary to operate w workers in parallel.
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Table 6.3: Number of nodes in multiples of 1, 000 processed (#No) and pruned (#Pr) by DDX10
as a function of the number of cores. Same setup as in Table 6.2.

1 core 4 cores 16 cores 64 cores 256 cores
instance #No #Pr #No #Pr #No #Pr #No #Pr #No #Pr

hamming8-4.clq 43 0 42 0 40 0 32 0 41 0
brock200 4.clq 110 42 112 45 100 37 83 30 71 25
san400 0.7 1.clq 7 1 8 1 6 0 10 1 14 1
p hat300-2.clq 80 31 74 27 45 11 46 7 65 12
san1000.clq 29 16 50 37 18 4 13 6 28 6
p hat1000-1.clq 225 8 209 0 154 1 163 1 206 1
sanr400 0.5.clq 451 153 252 5 354 83 187 7 206 5
san200 0.9 2.clq 22 0 20 0 19 0 18 1 25 0
sanr200 0.7.clq 260 3 259 5 271 17 218 4 193 6
san400 0.7 2.clq 98 2 99 5 112 21 147 67 101 35
p hat1500-1.clq 1586 380 1587 392 1511 402 962 224 1028 13
brock200 1.clq 1378 384 1389 393 1396 403 1321 393 998 249
hamming8-2.clq 45 0 49 0 49 0 47 0 80 0
gen200 p0.9 55.clq 287 88 180 6 286 90 213 58 217 71
C125.9.clq 1066 2 1068 0 1104 38 1052 13 959 19
san400 0.7 3.clq – – 2975 913 2969 916 2789 779 1761 42
p hat500-2.clq – – 2896 710 3011 861 3635 1442 2243 342
p hat300-3.clq – – – – 18032 4190 17638 3867 15852 2881
san400 0.9 1.clq – – – – 2288 238 2218 207 2338 422
san200 0.9 3.clq – – – – – – 9796 390 10302 872
gen200 p0.9 44.clq – – – – – – 43898 5148 45761 7446
sanr400 0.7.clq – – – – – – – – 135029 247
p hat700-2.clq – – – – – – – – 89845 8054

Random Instances.

The first experiment reuses the random MISP instances introduced in the previous section, with

the addition of similar but harder instances on graphs with 190 vertices, resulting in 60 instances

in total.

As Figure 6.9 shows, DDX10 scales near-linearly up to 64 cores and still very well up to 256

cores. The slight degradation in performance when going to 256 cores is more apparent for the

higher density instances (lower curves in the plots), which do not have much room left for linear

speedups as they need only a couple of seconds to be solved with 64 cores. For the harder instances

(upper curves), the scaling is still satisfactory even if not linear. As noted earlier, coming anywhere

close to near-linear speedups for complex combinatorial search and optimization methods has been

remarkably hard for SAT and MIP. These results show that parallelization of BDD based branch-

and-bound can be much more effective.
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DIMACS Instances.

The second experiment is on the DIMACS instances used by [20], where it was demonstrated that

sequential BDD-based branch-and-bound has complementary strengths compared to sequential

CPLEX and outperforms the latter on several instances, often the ones with higher graph density

ρ. We consider here the subset of instances that take at least 10 seconds (on our machines) to solve

using sequential BDDs and omit any that cannot be solved within the time limit of 1800 seconds

(even with 256 cores). The performance of DDX10 with w = 1, 4, 16, 64, and 256 is reported in

Table 6.2, with rows sorted by hardness of instances.

These instances represent a wide range of graph size, density, and structure. As we see from the

table, DDX10 is able to scale very well to 256 cores. Except for three instances, it is significantly

faster on 256 cores than on 64 cores, despite the substantially larger communication overhead for

workload distribution and bound sharing.

Table 6.3 reports the total number of nodes processed through the global queue, as well as the

number of nodes pruned due to bounds communicated by the workers.3 Somewhat surprisingly,

the number of nodes processed does not increase by much compared to the sequential case, despite

the fact that hundreds of workers start processing nodes in parallel without waiting for potentially

improved bounds which might have been obtained by processing nodes sequentially. Furthermore,

the number of pruned nodes also stays steady as w grows, indicating that bounds communication

is working effectively. This provides insight into the amiable scaling behavior of DDX10 and shows

that it is able to retain sufficient global knowledge even when executed in a distributed fashion.

3Here we do not take into account the number of nodes added to local pools, which is usually a small fraction of
the number of nodes processed by the global pool.
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Chapter 7

Application: Sequencing Problems

7.1 Introduction

Sequencing problems are among the most widely studied problems in operations research. Specific

variations of sequencing problems include single machine scheduling, the traveling salesman problem

with time windows, and precedence-constrained machine scheduling. Sequencing problems are those

where the best order for performing a set of tasks must be determined, which in many cases leads

to an NP-hard problem [62, Section A5]. Sequencing problems are prevalent in manufacturing

and routing applications, including production plants where jobs should be processed one at a

time in an assembly line, and in mail services where packages must be scheduled for delivery on

a vehicle. Industrial problems that involve multiple facilities may also be viewed as sequencing

problems in certain scenarios, e.g. when a machine is the bottleneck of a manufacturing plant

[111]. Existing methods for sequencing problems either follow a dedicated heuristic for a specific

problem class, or utilize a generic solving methodology such as integer programming or constraint

programming. Given the practical importance and computational hardness, understanding how

sequencing problems can be solved more effectively is an active research area.

In this work we propose a new approach for solving sequencing problems based on MDDs. We

argue that relaxed MDDs can be particularly useful as a discrete relaxation of the feasible set of

sequencing problems. In particular, a relaxed MDD can be embedded within a complete search

procedure such as branch-and-bound for integer programming or backtracking search for constraint

programming [5, 85].

We focus on a broad class of sequencing problems where jobs should be scheduled on a single

machine and are subject to precedence and time window constraints, and in which setup times can

be present. It generalizes a number of single machine scheduling problems and variations of the

traveling salesman problem (TSP). The relaxation provided by the MDD, however, is suitable to

any problem where the solution is defined by a permutation of a fixed number of tasks, and it does

not directly depend on particular constraints or on the objective function.
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The main contributions in this chapter are as follows. We propose a novel formulation of the

feasible set of a sequencing problem as an MDD, and show how it can be relaxed so that its size is

limited according to a given parameter. We present how the MDD can be used to compute bounds

on typical objective functions in scheduling, such as the makespan and total tardiness. Moreover,

we demonstrate how to derive more structured sequencing information from the relaxed MDD, in

particular a valid set of precedence relations that must hold in any feasible solution.

We also propose a number of techniques for strengthening the MDD relaxation, which take into

account the precedence and time window constraints. We demonstrate that these generic techniques

can be used to derive a polynomial-time algorithm for a particular TSP variant introduced by [10]

by showing that the associated MDD has polynomial size.

To demonstrate the use of relaxed MDDs in practice, we apply our techniques to constraint-based

scheduling [14]. Constraint-based scheduling plays a central role as a general-purpose methodology

in complex and large-scale scheduling problems. Examples of commercial applications that apply

this methodology include yard planning of the Singapore port and gate allocation of the Hong Kong

airport [60], Brazilian oil-pipeline scheduling [100], and home health care scheduling [117]. We show

that, by using the relaxed MDD techniques described here, we can improve the performance of

the state-of-the-art constraint-based schedulers by orders of magnitude on single machine problems

without losing the generality of the method. In particular, we were able to close three open TSPLIB

instances for the sequencing ordering problem.

The chapter is organized as follows. Section 7.2 presents a brief overview of related literature.

Section 7.3 defines the general sequencing problem that will be considered throughout the chapter,

and Section 7.4 shows how its feasible set is represented with an MDD. Section 7.5 describes relaxed

MDDs and the basic operations for strengthening its representation. Sections 7.6 and 7.7 present

detailed methods to filter and refine relaxed MDDs. In Section 7.8, we present an efficient procedure

to deduce precedence relations from the relaxation. Section 7.9 demonstrates how the techniques

can be used to obtain a polynomial-size MDD that exactly represents the feasible set of a particular

TSP variant. Finally, Section 7.10 presents the application of MDDs to constraint-based scheduling,

and concluding remarks are given in Section 7.11.

7.2 Related Work

The application of relaxed MDDs to disjunctive scheduling was first proposed by [85], and studied

in the context of constraint-based propagators by [43]. Our work expands on the ideas presented

in these previous papers, showing new theoretical properties and improved techniques that are

applicable to arbitrary sequencing problems.

The techniques we develop here are based on associating a state information with the nodes of

the MDD, as in [85]. By doing so, our method is closely related to that of state-space relaxations

by [39] for routing problems. A similar idea was exploited by [83], which considers a branch-
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and-bound algorithm based on homomorphic abstractions of the search space for the sequential

ordering problem. In our case, the state-space relaxation is implicitly represented by the nodes

of the MDD, which allow us to accommodate multiple constraints more easily in the relaxation.

Moreover, we are able to work with different state relaxations simultaneously; namely, one from a

top-down perspective of the diagram, and another from a bottom-up perspective, as will become

clear in later sections.

Lastly, decision diagrams have also been considered in other areas of optimization, e.g., cut

generation in integer programming [15] and 0-1 vertex and facet enumeration [17].

7.3 Problem Definition

In this work we focus on generic sequencing problems, presented here in terms of ‘unary machine’

scheduling. Note that a machine may refer to any resource capable of handling at most one activity

at a time.

Let J = {j1, . . . , jn} be a set of n jobs to be processed on a machine that can perform at most

one job at a time. Each job j ∈ J has an associated processing time pj , which is the number of

time units the job requires from the machine, and a release date rj, the time from which job j is

available to be processed. For each pair of distinct jobs j, j′ ∈ J a setup time tj,j′ is defined, which

indicates the minimum time that must elapse between the end of j and the beginning of j′ if j′

is the first job processed after j finishes. We assume that jobs are non-preemptive, i.e. we cannot

interrupt a job while it is being processed on the machine.

We are interested in assigning a start time sj ≥ rj for each job j ∈ J such that job processing

intervals do not overlap, the resulting schedule observes a number of constraints, and an objective

function f is minimized. Two types of constraints are considered in this work: precedence con-

straints, requiring that sj ≤ sj′ for certain pairs of jobs (j, j′) ∈ J ×J , which we equivalently write

j ≪ j′; and time window constraints, where the completion time cj = sj+pj of each job j ∈ J must

be such that cj ≤ dj for some deadline dj. Furthermore, we study three representative objective

functions in scheduling: the makespan, where we minimize the completion time of the schedule,

or maxj∈J cj ; the total tardiness, where we minimize
∑

j∈J (max{0, cj − δj}) for given due dates

δj ; and the sum of setup times, where we minimize the value obtained by accumulating the setup

times tj,j′ for all consecutive jobs j, j′ in a schedule. Note that for these objective functions we can

assume that jobs should always be processed as early as possible (i.e., idle times do not decrease

the value of the objective function).

Since jobs are processed one at a time, any solution to such scheduling problem can be equiva-

lently represented by a total ordering π = (π1, π2, . . . , πn) of J . The start time of the job j implied

by π is given by sj = rj if j = π1, and sj = max{rj , sπi−1 + pπi−1 + tπi−1,j} if j = πi for some

i ∈ {2, . . . , n}. We say that an ordering π of J is feasible if the implied job times observe the

precedence and time window constraints, and optimal if it is feasible and minimizes f .
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Job Parameters

Job Release (rj) Deadline (dj) Processing (pj)

j1 2 20 3
j2 0 14 4
j3 1 14 2

Setup Times

j1 j2 j3

j1 - 3 2
j2 3 - 1
j3 1 2 -

(a) Instance data.

r

u1 u2

u3 u4 u5

t

j2 j3

j1 j3 j2 j1

j3 j1 j2

π1

π2

π3

(b) MDD.

Figure 7.1: Example of an MDD for a scheduling problem.

7.4 MDD Representation

For the purposes of this chapter, an MDDM is a directed acyclic graph whose paths represent the

feasible orderings of J . The set of nodes ofM are partitioned into n+1 layers L1, . . . , Ln+1, where

layer Li corresponds to the i-th position πi of the feasible orderings encoded byM, for i = 1, . . . , n.

Layers L1 and Ln+1 are singletons representing the root r and the terminal t, respectively. An arc

a = (u, v) ofM is always directed from a source node u in some layer Li to a target node v in the

subsequent layer Li+1, i ∈ {1, . . . , n}. We write ℓ(a) to indicate the layer of the source node u of

the arc a (i.e., u ∈ Lℓ(a)).

With each arc a of M we associate a label d(a) ∈ J that represents the assignment of the

job d(a) to the ℓ(a)-th position of the orderings identified by the paths traversing a. Hence, an

arc-specified path (a1, . . . , an) from r to t identifies the ordering π = (π1, . . . , πn), where πi = d(ai)

for i = 1, . . . , n. Every feasible ordering is identified by some path from r to t inM, and conversely

every path from r to t identifies a feasible ordering.

Example 20 We provide an MDD representation for a sequencing problem with three jobs j1,

j2, and j3. The instance data is presented in Figure 7.1a, and the associated MDDM is depicted

in Figure 7.1b. No precedence constraints are considered. There are 4 feasible orderings in total,

each identified by a path from r to t inM. In particular, the path traversing nodes r, u2, u4, and

t represents a solution where jobs j3, j2, and j1 are performed in this order. The completion times

for this solution are cj1 = 15, cj2 = 9, and cj3 = 3. Note that we can never have a solution where

j1 is first on the machine, otherwise either the deadline of j2 or j3 would be violated. Hence, there

is no arc a with d(a) = j1 directed out of r. �
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Some additional notation follows. The incoming arcs at a node u are denoted by in(u), and

the outgoing arcs leaving u by out(u). The width of a layer Li is |Li|, and the width of M is the

maximum width among all layers. The MDD in Figure 7.1b has a width of 3.

Two nodes u, v on the same layer in an MDD are equivalent (or belong to the same equivalence

class) if the set of u-t paths is equal to the set of v-t paths. That is, for any u-t arc-specified

path (a1, a2, . . . , ak) there exists a v-t arc-specified path (a′1, a
′
2, . . . , a

′
k) such that d(a1) = d(a′1),

d(a2) = d(a′2), . . . , d(ak) = d(a′k), and vice-versa. An MDD M is reduced if no two nodes in any

layer are equivalent. This is the case, for example, for the MDD in Figure 7.1b. A standard result

in decision diagram theory is that there exists a unique reduced MDD representing the feasible

orderings of J , provided that we do not change the mapping between the layers Li ofM and the

ordering positions πi; see, e.g, [132]. The reduced MDD also has the smallest width among the

MDDs encoding the feasible orderings of J .

We next show how to compute the orderings that yield the optimal makespan and the optimal

sum of setup times in polynomial time in the size of M. For the case of total tardiness and

other similar objective functions, we are able to provide a lower bound on its optimal value also in

polynomial time inM.

• Makespan. For each arc a in M, define the earliest completion time of a, or ecta, as the

minimum completion time of the job d(a) among all orderings that are identified by the paths

inM containing a. If the arc a is directed out of r, then a assigns the first job that is processed

in such orderings, thus ecta = rd(a)+pd(a). For the remaining arcs, recall that the completion

time cπi
of a job πi depends only on the completion time of the previous job πi−1, the setup

time tπi−1,πi
, and on the specific job parameters; namely, cπi

= max{rπi
, cπi−1+tπi−1,πi

}+pπi
.

It follows that the earliest completion time of an arc a = (u, v) can be computed by the relation

ecta = max{rd(a), min{ecta′ + td(a′),d(a) : a
′ ∈ in(u)}} + pd(a). (7.1)

The minimum makespan is given by mina∈in(t) ecta, as the arcs directed to t assign the last

job in all orderings represented by M. An optimal ordering can be obtained by recursively

retrieving the minimizer arc a′ ∈ in(u) in the “min” of (7.1).

• Sum of Setup Times. The minimum sum of setup times is computed analogously: For an

arc a = (u, v), let sta represent the minimum sum of setup times up to job d(a) among all

orderings that are represented by the paths inM containing a. If a is directed out of r, we

have sta = 0; otherwise,

sta = min{sta′ + td(a′),d(a) : a
′ ∈ in(u)}. (7.2)

The minimum sum of of setup times is given by mina∈in(t) sta.
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• Total Tardiness. The tardiness of a job j is defined by max{0, cj − δj} for some due date δj .

Unlike the previous two cases, the tardiness value that a job attains in an optimal solution

depends on the sequence of all activities, not only on its individual contribution or the value of

its immediate predecessor. Nonetheless, as the tardiness function for a job is non-decreasing

in its completion time, we can utilize the earliest completion time as follows. For any arc

a = (u, v), the value max{0, ecta − δd(a)} yields a lower bound on the tardiness of the job

d(a) among all orderings that are represented by the paths inM containing a. Hence, a lower

bound on the total tardiness is given by the length of the shortest path from r to t, where

the length of an arc a is set to max{0, ecta − δd(a)}. Observe that this bound is tight if the

MDD is composed by a single path.

We remark that valid bounds for many other types of objective in the scheduling literature can

be computed in an analogous way as above. For example, suppose the objective is to minimize
∑

j∈J fj(cj), where fj is a function defined for each job j and which is non-decreasing on the

completion time cj . Then, as in total tardiness, the value fd(a)(ecta) for an arc a = (u, v) yields

a lower bound on the minimum value of fd(a)(cd(a)) among all orderings that are identified by the

paths inM containing a. Using such bounds as arc lengths, the shortest path from r to t represents

a lower bound on
∑

j∈J fj(cj). This bound is tight if fj(cj) = cj , or ifM is composed by a single

path. Examples of such objectives include weighted total tardiness, total square tardiness, sum of

(weighted) completion times, and number of late jobs.

Example 21 In the instance depicted in Figure 7.1, we can apply the recurrence relation (7.1) to

obtain ectr,u1 = 4, ectr,u2 = 3, ectu1,u3 = 10, ectu1,u4 = 7, ectu2,u4 = 9, ectu2,u5 = 7, ectu3,t = 14,

ectu4,t = 11, and ectu5,t = 14. The optimal makespan is min{ectu3,t, ectu4,t, ectu5,t} = ectu4,t = 11;

it corresponds to the path (r, u1, u4, t), which identifies the optimal ordering (j2, j3, j1). The same

ordering also yields the optimal sum of setup times with a value of 2.

Suppose now that we are given due dates δj1 = 13, δj2 = 8, and δj3 = 3. The length of an

arc a is given by la = max{0, ecta − δd(a)}, as described earlier. We have lu1,u4 = 4, lu2,u4 = 1,

lu3,t = 11, and lu5,t = 6; all remaining arcs a are such that la = 0. The shortest path in this case is

(r, u2, u4, t) and has a value of 1. The minimum tardiness, even though it is given by the ordering

identified by this same path, (j3, j2, j1), has a value of 3.

The reason for this gap is that the ordering with minimum tardiness does not necessarily coincide

with the schedule corresponding to the earliest completion time. Namely, we computed lu4,t = 0

considering ectu4,t = 11, since the completion time of the job d(u4, t) = j1 is 11 in (j2, j3, j1).

However, in the optimal ordering (j3, j2, j1) for total tardiness, the completion time of j1 would

be 15; this solution yields a better cost than (j2, j3, j1) due to the reduction on the tardiness of j3. �
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Figure 7.2: Two relaxed MDDs for the sequencing problem in Figure 7.1.

7.5 Relaxed MDDs

A relaxed MDD is an MDDM that represents a superset of the feasible orderings of J ; i.e., every

feasible ordering is identified by some path in M, but not necessarily all paths in M identify a

feasible ordering. We construct relaxed MDDs by limiting the size to a fixed maximum allowed

width W . Thus, the strength of the relaxed MDD can be controlled by increasing W ; we obtain

an exact MDD by setting W to infinity.

Figures 7.2a and 7.2b present two examples of a relaxed MDD with maximum width W = 1

and W = 2, respectively, for the problem depicted in Figure 7.1. In particular, the MDD in

Figure 7.2a encodes all the orderings represented by permutations of J with repetition, hence it

trivially contains the feasible orderings of any sequencing problem. It can be generally constructed

as follows: We create one node ui for each layer Li and connect the pair of nodes ui and ui+1,

i = 1, . . . , n, with arcs a1, . . . , an such that d(al) = jk for each job jk.

It can also be verified that the MDD in Figure 7.2b contains all the feasible orderings of the

instance in Figure 7.1. However, the right-most path going trough nodes r, u2, u4, and t identifies

an ordering π = (j3, j1, j1), which is infeasible as job j1 is assigned twice in π.

The procedures in Section 7.4 for computing the optimal makespan and the optimal sum of

setup times now yield a lower bound on such values when applied to a relaxed MDD, since all

feasible orderings of J are encoded in the diagram. Moreover, the lower bounding technique for

total tardiness remains valid.

Considering that a relaxed MDDM can be easily constructed for any sequencing problem (e.g.,

the 1-width relaxation of Figure 7.2a), we will now recall the techniques presented in Section 4.3

to modifyM in order to strengthen the relaxation it provides while observing the maximum width

W . These are based on the compilation procedures developed by [78] and [85] for general constraint

satisfaction systems. Under certain conditions, we obtain the reduced MDD representing exactly

the feasible orderings of J , provided that W is sufficiently large.
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Namely, we modify a relaxed MDDM by applying the operations of filtering and refinement,

which aim at approximating M to an exact MDD, i.e., one that exactly represents the feasible

orderings of J . They are described as follows.

• Filtering. We write that an arc a is infeasible if all the paths in M containing a represent

orderings that are not feasible. Filtering consists of identifying infeasible arcs and removing

them fromM, which would hence eliminate one or more infeasible orderings that are encoded

inM. We will provide details on the filtering operation in Section 7.6.

• Refinement. A relaxed MDD can be intuitively perceived as a diagram obtained by merging

non-equivalent nodes of an exact MDD for the problem. Refinement consists of identifying

these nodes inM that are encompassing multiple equivalence classes, and splitting them into

two or more new nodes to represent such classes more accurately (as long as the maximum

width W is not violated). In particular, a node u in layer Li can be split if there exist two

partial orderings π′1, π
′
2 identified by paths from r to u such that, for some π∗ = (πi, . . . , πn),

(π′1, π
∗) is a feasible ordering while (π′2, π

∗) is not. If this is the case, then the partial paths

in M representing such orderings must end in different nodes of the MDD, which will be

necessarily non-equivalent by definition. We will provide details on the refinement operation

in Section 7.7.

Observe that if a relaxed MDD M does not have any infeasible arcs and no nodes require

splitting, then by definitionM is exact. However, it may not necessarily be reduced.

Filtering and refinement are independent operations that can be applied toM in any order that

is suitable for the problem at hand. In this work we assume a top-down approach: We traverse

layers L2, . . . , Ln+1 one at a time in this order. At each layer Li, we first apply filtering to remove

infeasible arcs that are directed to the nodes in Li. After the filtering is complete, we perform

refinement to split the nodes in layer Li as necessary, while observing the maximum width W .

Example 22 Figure 7.3 illustrates the top-down application of filtering and refinement for layers

L2 and L3. Assume a scheduling problem with three jobs J = {j1, j2, j3} and subject to a single

precedence constraint stating that job j2 must precede job j1. The initial relaxed MDD is an

1-width relaxation depicted in Figure 7.3a. Our maximum width is set to W = 2.

We start by processing the incoming arcs at layer L2. The filtering operation detects that the

arc a ∈ in(u) with d(a) = j1 is infeasible, otherwise we will have an ordering starting with job j1,

violating the precedence relation. Refinement will split node u into nodes u1 and u2, since for any

feasible ordering starting with job j2, i.e. (j2, π
′) for some π′, the ordering (j3, π

′) is infeasible as it

will necessarily assign job j3 twice. The resulting MDD is depicted in Figure 7.3b. Note that when

a node is split, we replicate its outgoing arcs to each of the new nodes.
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Figure 7.3: Example of filtering and refinement. The scheduling problem is such that job j2 must
precede j1 in all feasible orderings. Shaded arrows represent infeasible arcs detected by the filtering.

We now process the incoming arcs at layer L3. The filtering operation detects that the arc

with label j2 directed out of u1 and the arc with label j3 directed out of u2 are infeasible, since

the corresponding paths from r to v would yield orderings that assign some job twice. The arc

with label j1 leaving node u2 is also infeasible, since we cannot have any ordering with prefix

(j3, j1). Finally, refinement will split node v into nodes v1 and v2; note in particular that the

feasible orderings prefixed by (j2, j3) and (j3, j2) have the same completions, namely (j1), therefore

the corresponding paths end at the same node v1. The resulting MDD is depicted in Figure 7.3c. �

7.6 Filtering

In this section we apply a methodology derived from [5] and [85] to identify necessary conditions for

the infeasibility of an arc inM. This is done as follows. For each constraint type C, we equip the

nodes and arcs of M with a state information sC . Each state sC is then considered separately to

identify conditions that deem an arc as infeasible according to the particular structure of C. Note

that, in general, we are not able to derive efficient infeasibility conditions that are necessary and

sufficient for all constraints of the problem (if P 6= NP ), since it is NP-hard to decide if there is a

feasible solution to a scheduling problem with arbitrary release dates and deadlines.

The tests presented here can be computed in polynomial-time in the size of the relaxed MDD

M. Namely, we restrict our state definitions to those with size O(|J |) and that satisfy a Markovian

property, in that they only depend on the states of the nodes and arcs in the adjacent layers. Thus,

the states can be computed simultaneously with the filtering and refinement operations during the

top-down approach described in Section 7.5. We also describe additional states that are obtained

through an extra bottom-up traversal of the MDD and that, when combined with the top-down

states, lead to stronger tests.
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7.6.1 Filtering invalid permutations

The feasible orderings of any sequencing problem are permutations of J without repetition, which

can be perceived as an implicit constraint to be observed. Here we can directly use the filtering

conditions described in Section 4.3.1. Namely, let us associate two states All↓u ⊆ J and Some↓u ⊆ J

to each node u of M. The state All↓u is the set of arc labels that appear in all paths from the

root node r to u, while the state Some↓u is the set of arc labels that appear in some path from

the root node r to u. For example, in Figure 7.3b without the shaded arcs, All↓v = {j2} and

Some↓v = {j1, j2, j3} for node v.

We trivially have All↓r = Some↓r = ∅. Furthermore, it follows from the definitions that All↓v and

Some↓v for some node v 6= r can be recursively computed through the relations

All↓v =
⋂

a=(u,v)∈in(v)
(All↓u ∪ {d(a)}), (7.3)

Some↓v =
⋃

a=(u,v)∈in(v)
(Some↓u ∪ {d(a)}). (7.4)

As presented in Section 4.3.1, an arc a = (u, v) is infeasible if either d(a) ∈ All↓u (condition 4.4)

or |Some↓u| = ℓ(a) and d(a) ∈ Some↓u (condition 4.5).

We also equip the nodes with additional states that can be derived from a bottom-up perspective

of the MDD. Namely, we define two new states All↑u ⊆ J and Some↑u ⊆ J for each node u of M.

They are equivalent to the states All↓u and Some↓u, but now they are computed with respect to

the paths from t to u instead of the paths from r to u. As before, they are recursively obtained

through the relations

All↑u =
⋂

a=(u,v)∈out (u)
(All↑v ∪ {d(a)}), (7.5)

Some↑u =
⋃

a=(u,v)∈out (u)
(Some↑v ∪ {d(a)}), (7.6)

which can be computed by a bottom-up breadth-first search before the top-down procedure.

It follows from Section 4.3.1 that an arc a = (u, v) is infeasible if either d(a) ∈ All↑v (condition

4.8), |Some↑v| = n − ℓ(a) and d(a) ∈ Some↑v (condition 4.9), or |Some↓u ∪ {d(a)} ∪ Some↑v| < n

(condition 4.10).

7.6.2 Filtering precedence constraints

Suppose now we are given a set of precedence constraints, where we write j ≪ j′ if a job j

should precede job j′ in any feasible ordering. We assume the precedence relations are not trivially

infeasible, i.e. there are no cycles of the form j ≪ j1 ≪ · · · ≪ jm ≪ j. We can apply the same
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states defined in Section 7.6.1 for this particular case.

Lemma 24 An arc a = (u, v) is infeasible if any of the following conditions hold:

∃ j ∈ (J \ Some↓u) s.t. j ≪ d(a), (7.7)

∃ j ∈ (J \ Some↑v) s.t. d(a)≪ j. (7.8)

Proof. Let π′ be any partial ordering identified by a path from r to u, and consider (7.7). By

definition of Some↓u, we have that any job j in the set (J \ Some↓u) is not assigned to any position

in π′. Thus, if any of such jobs j must precede d(a), then all orderings prefixed by (π′, d(a)) will

violate this precedence constraint, and the arc is infeasible. The condition (7.8) is the symmetrical

version of (7.7). �

7.6.3 Filtering time window constraints

Consider now that a deadline dj is imposed for each job j ∈ J . With each arc a we associate the

state ecta as defined in Section 7.4: It corresponds to the minimum completion time of the job in

the ℓ(a)-th position among all orderings that are identified by paths inM containing the arc a. As

in relation (7.1), the state ecta for an arc a = (u, v) is given by the recurrence

ecta =

{

rd(a) + pd(a) if a ∈ out(r),

max{rd(a), min{ecta′ + td(a′),d(a) : a
′ ∈ in(u), d(a) 6= d(a′)}} + pd(a) otherwise,

where we added the trivial condition d(a) 6= d(a′) to strengthen the bound on the time above. We

could also include the condition d(a) 6≪ d(a′) if precedence constraints are imposed over d(a).

We next consider a symmetrical version of ecta to derive a necessary infeasibility condition for

time window constraints. Namely, with each arc a we associate the state lsta, which represents

the latest start time of a: For all orderings that are identified by paths inM containing the arc a,

the value lsta corresponds to an upper bound on the maximum start time of the job in the ℓ(a)-th

position so that no deadlines are violated in such orderings. The state lsta for an arc a = (u, v)

is given by the following recurrence, which can be computed through a single bottom-up traversal

ofM:

lsta =

{

dd(a) − pd(a) if a ∈ in(t),

min{dd(a), max{lsta′ − td(a),d(a′) : a
′ ∈ out(v), d(a) 6= d(a′)}} − pd(a) otherwise.

Lemma 25 An arc a = (u, v) is infeasible if

ecta > lsta + pd(a). (7.9)
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Proof. The value lsta+pd(a) represents an upper bound on the the maximum time the job d(a) can

be completed so that no deadlines are violated in the orderings identified by paths inM containing

a. Since ecta is the minimum time that job d(a) will be completed among all such orderings, no

feasible ordering identified by a path traversing a exists if rule (7.9) holds. �

7.6.4 Filtering objective function bounds

Let z∗ be an upper bound of the objective function value (e.g., corresponding to the best feasible

solution found during the search for an optimal solution). Given z∗, an arc a is infeasible with

respect to the objective if all paths inM that contain a have objective value greater than z∗. How-

ever, the associated filtering method depends on the form of the objective function. For example,

if the objective is to minimize makespan, we can replace the deadline dj by d′j = min{dj , z
∗} for

all jobs j and consider the same infeasibility condition in Lemma 25.

If z∗ corresponds to an upper bound on the sum of setup times, we proceed as follows. For each

arc a = (u, v) in M, let st↓a be the minimum possible sum of setup times incurred by the partial

orderings represented by paths from r to v that contain a. We have

st↓a =

{

0, if a ∈ out(r),

min{td(a′),d(a) + st↓a′ : a
′ ∈ in(u), d(a) 6= d(a′)}, otherwise.

Now, for each arc a = (u, v) let st↑a be the minimum possible sum of setup times incurred by the

partial orderings represented by paths from u to t that contain a. The state st↑a is given below,

computed through a bottom-up traversal ofM:

st↑a =

{

0, if a ∈ in(t),

min{td(a),d(a′) + st↑a′ : a
′ ∈ out(v), d(a) 6= d(a′)}, otherwise.

Lemma 26 An arc a is infeasible if

st↓a + st↑a > z∗. (7.10)

Proof. It follows directly from the definitions of st↓a and st↑a. �

To impose an upper bound z∗ on the total tardiness, assume ecta is computed for each arc a.

We define the length of an arc a as la = max{0, ecta − δd(a)}. For a node u, let sp↓
u and sp↑

u be the

shortest path from r to u and from t to u, respectively, with respect to the lengths la. That is,

sp↓u =

{

0, if u = r,

min{la + sp↓v : a = (v, u) ∈ in(u)}, otherwise.
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and

sp↑u =

{

0, if u = t,

min{la + sp↑v : a = (u, v) ∈ out(u)}, otherwise.

Lemma 27 A node u should be removed from M if

sp↓u + sp↑
u > z∗, (7.11)

Proof. Length la represents a lower bound on the tardiness of job d(a) with respect to solutions

identified by r-t paths that contain a. Thus, sp↓
u and sp↑u are a lower bound on the total tardiness

for the partial orderings identified by paths from r to u and t to u, respectively, since the tardiness

of a job is non-decreasing on its completion time. �

7.7 Refinement

Recall from Section 7.5 that a relaxed MDD can be strengthened by a refinement operation. Ideally,

refinement should modify a layer so that each of its nodes exactly represents a particular equivalence

class. However, as it may be necessary to create an exponential number of nodes to represent all

equivalence classes, we apply in this section a heuristic refinement procedure that observes the

maximum width W when creating new nodes in a layer.

We consider the refinement heuristic described in Section 4.3.1 for all applications in this chap-

ter. Our goal is to be as precise as possible with respect to the equivalence classes that refer to

jobs with a higher priority, where the priority of a job is defined according to the problem data.

More specifically, we will develop a refinement heuristic that, when combined with the infeasibility

conditions for the permutation structure described in Section 7.6.1, yields a relaxed MDD where

the jobs with a high priority are represented exactly with respect to that structure; that is, these

jobs are assigned to exactly one position in all orderings encoded by the relaxed MDD.

Thus, if higher priority is given to jobs that play a greater role in the feasibility or optimality

of the sequencing problem at hand, the relaxed MDD may represent more accurately the feasible

orderings of the problem, providing, e.g., better bounds on the objective function value. For

example, suppose we wish to minimize the makespan on an instance where certain jobs have a

very large release date and processing times in comparison to other jobs. If we construct a relaxed

MDD where these longer jobs are assigned exactly once in all orderings encoded by the MDD,

the bound on the makespan would be potentially tighter with respect to the ones obtained from

other possible relaxed MDDs for this same instance. Examples of job priorities for other objective

functions are presented in Section 7.10. Recall that the refinement heuristic requires a ranking of

jobs J ∗ = {j∗1 , . . . , j
∗
n}, where jobs with smaller index in J ∗ have a higher priority.

We note that the refinement heuristic also yields a reduced MDD M for certain structured

problems, given a sufficiently large width. The following corollary, stated without proof, is directly
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derived from Lemma 20 and Theorem 19.

Corollary 28 Assume W = +∞. For a sequencing problem having only precedence constraints,

the relaxed MDDM that results from the constructive proof of Theorem 19 is a reduced MDD that

exactly represents the feasible orderings of this problem.

Lastly, recall that equivalence classes corresponding to constraints other than the permutation

structure may also be taken into account during refinement. Therefore, if the maximum width

W is not met in the refinement procedure above, we assume that we will further split nodes by

arbitrarily partitioning their incoming arcs. Even though this may yield false equivalence classes,

the resultingM is still a valid relaxation and may provide a stronger representation.

7.8 Inferring Precedence Relations from Relaxed MDDs

Given a set of precedence relations to a problem (e.g., that were possibly derived from other re-

laxations), we can use the filtering rules (7.7) and (7.8) from Section 7.6.2 to strengthen a relaxed

MDD. In this section, we show that a converse relation is also possible. Namely, given a relaxed

MDDM, we can deduce all precedence relations that are satisfied by the partial orderings repre-

sented byM in polynomial time in the size ofM. To this end, assume that the states All↓u, All
↑
u,

Some↓u, and Some↑u as described in Section 7.6.1 are computed for all nodes u inM. We have the

following results.

Theorem 29 Let M be an MDD that exactly identifies all the feasible orderings of J . A job j

must precede job j′ in any feasible ordering if and only if (j′ 6∈ All↓u) or (j 6∈ All↑u) for all nodes u

in M.

Proof. Suppose there exists a node u in layer Li, i ∈ {1, . . . , n + 1}, such that j′ ∈ All↓u and

j ∈ All↑u. By definition, there exists a path (r, . . . , u, . . . , t) that identifies an ordering where job j′

starts before job j. This can only be true if and only if job j does not precede j′ in any feasible

ordering. �

Corollary 30 The set of all precedence relations that must hold in any feasible ordering can be

extracted from M in O(n2 |M|).

Proof. Construct a digraph G∗ = (J , E∗) by adding an arc (j, j′) to E∗ if and only if there exists

a node u inM such that j′ ∈ All↓u and j ∈ All↑u. Checking this condition for all pair of jobs takes

O(n2) for each node inM, and hence the time complexity to construct G∗ is O(n2|M|). According

to Theorem 29 and the definition of G∗, the complement graph of G∗ contains an edge (j, j′) if and

only if j ≪ j′. �

As we are mainly interested in relaxed MDDs, we derive an additional corollary of Theorem 29.

138



Corollary 31 Given a relaxed MDD M, an activity j must precede activity j′ in any feasible

solution if (j′ 6∈ Some↓u) or (j 6∈ Some↑u) for all nodes u inM.

Proof. It follows from the state definitions that All↓u ⊆ Some↓u and All↑u ⊆ Some↑u. Hence, if the

conditions for the relation j ≪ j′ from Theorem 29 are satisfied by Some↓u and Some↑v, they must

be also satisfied by any MDD which only identifies feasible orderings. �

By Corollary 31, the precedence relations implied by the solutions of a relaxed MDD M can

be extracted by applying the algorithm in Corollary 30 to the states Some↓v and Some↑v. SinceM

has at most O(nW ) nodes and O(nW 2) arcs, the time to extract the precedences has a worst-

case complexity of O(n3W 2) by the presented algorithm. These precedences can then be used for

guiding search or communicated to other methods or relaxations that may benefit from them.

7.9 Encoding Size for Structured Precedence Relations

The actual constraints that define a problem instance greatly impact the size of an MDD. If these

constraints carry a particular structure, we may be able to compactly represent that structure in

an MDD, perhaps enabling us to bound its width.

In this section we present one of such cases for a problem class introduced by [10], in which

jobs are subject to discrepancy precedence constraints: For a fixed parameter k ∈ {1, . . . , n}, the

relation jp ≪ jq must be satisfied for any two jobs jp, jq ∈ J if q ≥ p+k. This precedence structure

was motivated by a real-world application in steel rolling mill scheduling. The work by [12] also

demonstrates how solution methods to this class of problems can serve as auxiliary techniques in

other cases, for example as heuristics for the traveling salesman problem and vehicle routing with

time windows.

We stated in Corollary 28 that we are able to construct the reduced MDD M when only

precedence constraints are imposed and a sufficiently large W is given. We have the following

results forM if the precedence relations satisfy the discrepancy structure for a given k.

Lemma 32 For a node v ∈ Lm+1, m = 1, . . . , n, we have All↓v ⊆ {j1, . . . , jmin{m+k−1, n}}.

Proof. Ifm+k−1 > n we obtain the redundant condition All↓u ⊆ J , therefore assumem+k−1 ≤ n.

Suppose there exists jl ∈ All↓v for some v ∈ Lm+1 such that l > m+k−1. Then, for any i = 1, . . . ,m,

we have l− i ≥ m+ k − i ≥ m+ k −m = k. This implies {j1, . . . , jm} ⊂ All↓v, since job jl belongs

to a partial ordering π only if all jobs ji for which l − i ≥ k are already accounted in π. But then

|All↓v| ≥ m + 1, which is a contradiction since v ∈ Lm+1 implies that |All↓v| = m, as any partial

ordering identified by a path from r to v must contain m distinct jobs. �

Theorem 33 The width of M is 2k−1.
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Proof. Let us first assume n ≥ k + 2 and restrict our attention to layer Lm+1 for some m ∈

{k, . . . , n− k+1}. Also, let F := {All↓u : u ∈ Lm+1}. It can be shown that ifM is reduced, no two

nodes u, v ∈ Lm+1 are such that All↓u = All↓v. Thus, |F| = |Lm+1|.

We derive the cardinality of F as follows. Take All↓v ∈ F for some v ∈ Lm+1. Since |All
↓
v| = m,

there exists at least one job ji ∈ All↓v such that i ≥ m. According to Lemma 32, the maximum

index of a job in All↓v is m+k−1. So consider the jobs indexed by m+k−1− l for l = 0, . . . , k−1;

at least one of them is necessarily contained in All↓v. Due to the discrepancy precedence constraints,

jm+k−1−l ∈ All↓v implies that any ji with i ≤ m− l− 1 is also contained in All↓v (if m− l− 1 > 0).

Now, consider the sets in F which contain a job with index m+ k − 1− l, but do not contain

any job with index greater than m+ k− 1− l. Any of such set All↓u contain the jobs j1, . . . , jm−l−1

according to Lemma 32. Hence, the remaining m − (m − l − 1) − 1 = l job indices can be freely

chosen from m− l, . . . ,m+ k− l− 2. Notice there are no imposed precedences on these remaining

m+ k− l− 2− (m− l)+ 1 = k− 1 elements; thus, there exist
(k−1

l

)

of such subsets. But these sets

define a partition of F . Therefore

|F| = |Lm+1| =
k−1
∑

l=0

(

k − 1

l

)

=

(

k − 1

0

)

+ · · ·+

(

k − 1

k − 1

)

= 2k−1.

We can use an analogous argument for the layers Lm+1 such that m < k or m > n− k + 1, or

when k = n− 1. The main technical difference is that we will have less than k − 1 possibilities for

the new combinations, and hence the maximum number of nodes is strictly less than 2k−1 for these

cases. The width ofM is therefore 2k−1. �

According to Theorem 33, M has O(n 2k−1) nodes as it contains n + 1 layers. Since arcs

only connect nodes in adjacent layers, the MDD contains O(n 22k−2) arcs (assuming a worst-case

scenario where all nodes in a layer are adjacent to all nodes in the next layer, yielding at most

2k−1.2k−1 = 22k−2 arcs directed out of a layer). Using the recursive relation (7.2) in Section 7.4, we

can compute, e.g., the minimum sum of setup times in worst-case time complexity of O(n2 22k−2).

The work by [10] provides an algorithm that minimizes this same function in O(n k2 2k−2), but that

is restricted to this particular objective.

7.10 Application to Constraint-based Scheduling

We added the techniques described here to ILOG CP Optimizer (CPO), the current state-of-

the-art general-purpose scheduler. Given a sequencing problem as considered in this work, CPO

applies a depth-first branch-and-bound search where jobs are recursively appended to the end of a

partial ordering until no jobs are left unsequenced. At each node of the branching tree, a number

of sophisticated propagators are used to reduce the possible candidate jobs to be appended to the
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ordering. Examples of such propagators include edge-finding, not-first/not-last rules, and deductible

precedences; details can be found in [14] and [130].

We have implemented our techniques as a user-defined propagator, which maintains a relaxed

MDD and runs one round of top-down filtering and refinement when activated at each node of the

branching tree. In particular, the filtering operation takes into account the search decisions up

to that point (i.e., the jobs that are already fixed in the partial ordering) and possible precedence

constraints that are deduced by CPO. At the end of a round, we use the relaxed MDD to reduce the

number of candidate successor jobs (by analyzing the arc labels in the appropriate layers) and to

communicate new precedence constraints as described in Section 7.8, which may trigger additional

propagation by CPO. Our implementation follows the guidelines from [91].

In this section we present computational results for different variations of single machine se-

quencing problems using the MDD-based propagator. Our goal is twofold. First, we want to analyze

the sensitivity of the relaxed MDD with respect to the width and refinement strategy. Second, we

wish to provide experimental evidence that combining a relaxed MDD with existing techniques for

sequencing problems can improve the performance of constraint-based solvers.

7.10.1 Experimental setup

Three formulations were considered for each problem: a CPO model with its default propagators,

denoted by CPO; a CPO model containing only the MDD-based propagator, denoted by MDD; and

a CPO model with the default and MDD-based propagators combined, denoted by CPO+MDD. The

experiments mainly focus on the comparison between CPO and CPO+MDD, as these indicate whether

incorporating the MDD-based propagator can enhance existing methods.

We have considered two heuristic strategies for selecting the next job to be appended to a partial

schedule. The first, denoted by lex search, is a static method that always tries to first sequence the

job with the smallest index, where the index of a job is fixed per instance and defined by the order in

which it appears in the input. This allows for a more accurate comparison between two propagation

methods, since the branching tree is fixed. In the second strategy, denoted by dynamic search, the

CPO engine automatically selects the next job according to its own state-of-the-art scheduling

heuristics. The purpose of the experiments that use this search is to verify how the MDD-based

propagator is influenced by strategies that are known to be effective for constraint-based solvers.

The dynamic search is only applicable to CPO and CPO+MDD.

We measure two performance indicators: the total solving time and the number of fails. The

number of fails corresponds to the number of times during search that a partial ordering was

detected to be infeasible, i.e., either some constraint is violated or the objective function is greater

than a known upper bound. The number of fails is proportional to the size of the branching tree

and, hence, to the total solving time of a particular technique.

The techniques presented here do not explore any additional problem structure that was not
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described in this work, such as specific search heuristics, problem relaxations, or dominance cri-

teria (except only if such structure is already explored by CPO). More specifically, we used the

same MDD-based propagator for all problems, which dynamically determines what node state and

refinement strategy to use according to the input constraints and the objective function.

The experiments were performed on a computer equipped with an Intel Xeon E5345 at 2.33GHz

with 8 Gb RAM. The MDD code was implemented in C++ using the CPO callable library from the

ILOG CPLEX Academic Studio V.12.4.01. We have set the following additional CPO parameters

for all experiments: Workers=1, to use a single computer core; DefaultInferenceLevel=Extended,

to use the maximum possible propagation available in CPO; and SearchType=DepthFirst.

7.10.2 Impact of the MDD Parameters

We first investigate the impact of the maximum width and refinement on the number of fails

and total solving time for the MDD approaches. As a representative test case, we consider the

traveling salesman problem with time windows (TSPTW). The TSPTW is the problem of finding

a minimum-cost tour in a weighted digraph starting from a selected vertex (the depot), visiting

each vertex within a given time window, and returning to the original vertex. In our case, each

vertex is a job, the release dates and deadlines are defined according to the vertex time windows,

and travel distances are perceived as setup times. The objective function is to minimize the sum

of setup times.

We selected the instance n20w200.001 from the well-known Gendreau benchmark proposed

by [64], as it represents the typical behavior of an MDD. It consists of a 20-vertex graph with

an average time window width of 200 units. The tested approach was the MDD model with lex

search. We used the following job ranking for the refinement strategy described in Section 7.7:

The first job in the ranking, j∗1 , was set as the first job of the input. The i-th job in the ranking,

j∗i , is the one that maximizes the sum of the setup times to the jobs already ranked, i.e. j∗i =

argmaxp∈J\{j∗1 ,...,j∗i−1}{
∑i−1

k=1 tj∗k ,p} for the setup times t. The intuition is that we want jobs with

largest travel distances to be exactly represented inM.

The number of fails and total time to find the optimal solution for different MDD widths

are presented in Figure 7.4. Due to the properties of the refinement technique in Theorem 19, we

consider only powers of 2 as widths. We note from Figure 7.4a that the number of fails is decreasing

rapidly as the width increases, up to a point where it becomes close to a constant (from 512 to

1024). This indicates that, at a certain point, the relaxed MDD is very close to an actual exact

representation of the problem, and hence no benefit is gained from any increment of the width. The

number of fails has a direct impact on the total solving time, as observed in Figure 7.4b. Namely,

the times decrease accordingly as the width increases. At the point where the relaxed MDD is close

to be exact, larger widths only introduce additional overhead, thus increasing the solving time.

To analyze the impact of the refinement, we generated 50 job rankings uniformly at random
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Figure 7.4: Impact of the MDD width on the number of fails and total time for the TSPTW
instance n20w200.001 from the Gendreau class. The axes are in logarithmic scale.

for the refinement strategy described in Section 7.7. These rankings were compared with the

structured one for setup times used in the previous experiment. To make this comparison, we

solved the MDD model with lex search for each of the 51 refinement orderings, considering widths

from 4 to 1024. For each random order, we divided the resulting number of fails and time by the

ones obtained with the structured refinement for the same width. Thus, this ratio represents how

much better the structured refinement is over the random strategies. The results are presented in

the box-and-whisker plots of Figure 7.5. For each width the horizontal lines represent, from top to

bottom, the maximum observed ratio, the upper quartile, the median ratio, the lower quartile, and

the minimum ratio.

We interpret Figure 7.5 as follows. An MDD with very small width captures little of the jobs that

play a more important role in the optimality or feasibility of the problem, in view of Theorem 19.

Thus, distinct refinement strategies are not expected to differ much on average, as shown, e.g., in

the width-4 case of Figure 7.5a. As the width increases, there is a higher chance that these crucial

jobs are better represented by the MDD, leading to a good relaxation, but also a higher chance

that little of their structure is captured by a random strategy, leading in turn to a weak relaxation.

This yields a larger variance on the refinement performance. Finally, for sufficiently large widths,

we end up with an almost exact representation of the problem and the propagation is independent

of the refinement order (e.g., widths 512 and 1024 of Figure 7.5a). Another aspect we observe in

Figure 7.5b is that, even for relatively small widths, the structured refinement can be orders of

magnitude better than a random one. This emphasizes the importance of applying an appropriate

refinement strategy for the problem at hand.
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Figure 7.5: Performance comparison between random and structured refinement strategies for the
TSPTW instance n20w200.001. The axes are in logarithm scale.

7.10.3 Traveling Salesman Problem with Time Windows

We first evaluate the relative performance of CPO and CPO+MDD on sequencing problems with time

window constraints, and where the objective is to minimize the sum of setup times. We considered

a set of well-known TSPTW instances defined by the Gendreau, Dumas, and Ascheuer benchmark

classes, which were proposed by [64], [48], and [8], respectively. We selected all instances with up

to 100 jobs, yielding 388 test cases in total. The CPO and the CPO+MDD models were initially solved

with lex search, considering a maximum width of 16. A time limit of 1,800 seconds was imposed

to all methods, and we used the structured job ranking described in Section 7.10.2.

The CPO approach was able to solve 26 instances to optimality, while the CPO+MDD approach

solved 105 instances to optimality. The number of fails and solution times are presented in the

scatter plots of Figure 7.6, where we only considered instances solved by both methods. The plots

provide a strong indication that the MDD-based propagator can greatly enhance the CPO inference

mechanism. For example, CPO+MDD can reduce the number of fails from over 10 million (CPO) to

less than 100 for some instances.

In our next experiment we compared CPO and CPO+MDD considering a maximum width of 1024

and applying instead a dynamic search, so as to verify if we could still obtain additional gains

with the general-purpose scheduling heuristics provided by CPO. A time limit of 1,800 seconds was

imposed to all approaches.

With the above configuration, the CPO approach solved to optimality 184 out of the 388 in-

stances, while the CPO+MDD approach solved to optimality 311 instances. Figure 7.7a compares the

times for instances solved by both methods, while Figure 7.7b depicts the performance plot. In
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Figure 7.6: Performance comparison between CPO and CPO+MDD for minimizing sum of setup times
on Dumas, Gendreau, and Ascheuer TSPTW classes with lex search. The vertical and horizontal
axes are in logarithmic scale.

particular, the overhead introduced by the MDD is only considerable for small instances (up to 20

jobs). On the majority of the cases, the CPO+MDD is capable of proving optimality much quicker.

7.10.4 Asymmetric Traveling Salesman Problem with Precedence Constraints

We next evaluate the performance of CPO and CPO+MDD on sequencing problems with precedence

constraints, while the objective is again to minimize the sum of setup times. As benchmark problem,

we consider the asymmetric traveling salesman problem with precedence constraints (ATSPP), also

known as sequential ordering problem. The ATSPP is a variation of the asymmetric TSP where

precedence constraints must be observed. Namely, given a weighted digraph D = (V,A) and a set

of pairs P = V × V , the ATSPP is the problem of finding a minimum-weight Hamiltonian tour T

such that vertex v precedes u in T if (v, u) ∈ P .

The ATSPP has been shown to be extremely challenging for exact methods. In particular, a

number of instances with less than 70 vertices from the well-known [126] benchmark, proposed

initially by [9], are still open. We refer to the work of [6] for a more detailed literature review of

exact and heuristic methods for the ATSPP.

We applied the CPO and CPO+MDD model with dynamic search and a maximum width of 2048

for 16 instances of the ATSPP from the TSPLIB benchmark. A time limit of 1,800 seconds was

imposed, and we used the structured job ranking described in Section 7.10.2. The results are

reported in Table 7.1. The column Best corresponds to the best solution found by the method

and the column Time corresponds to the time that the solution was proved optimal. A value TL
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Figure 7.7: Performance comparison between CPO and CPO+MDD for minimizing sum of setup times
on Dumas, Gendreau, and Ascheuer TSPTW classes using default depth-first CPO search. The
horizontal and vertical axes in (a) are in logarithmic scale.

indicates that the time limit was reached. Since the TSPLIB results are not updated, we report

updated bounds obtained from [83], [68], and [6].

We were able to close three of the unsolved instances with our generic approach, namely p43.2,

p43.3, and ry48p.4. In addition, instance p43.4 was solved before with more than 22 hours of CPU

time by [83] (for a computer approximately 10 times slower than ours), and by more than 4 hours

by [68] (for an unspecified machine), while we could solve it in less than 90 seconds. The presence

of more precedence constraints (indicated for these instances by a larger suffix number) is more

advantageous to our MDD approach, as shown in Table 7.1. On the other hand, less constrained

instances are better suited to MILP-based approaches; instances p43.1 and ry48p.1 are solved by

a few second in [9].

As a final observation, we note that the bounds for the p43.1-4 instances reported in the TSPLIB

are inconsistent. They do not match any of the bounds from existing works we are aware of and

the ones provided by [9], from where these problems were proposed. This includes the instance

p43.1 which was solved in that work.

7.10.5 Makespan Problems

Constraint-based solvers are known to be particularly effective when the objective function is

makespan, which is greatly due to specialized domain propagation techniques that can be used

in such cases; see, e.g., [14].

In this section we evaluate the performance of CPO and CPO+MDD on sequencing problems with
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CPO CPO+MDD, width 2048
instance vertices bounds best time (s) best time (s)

br17.10 17 55 55 0.01 55 4.98
br17.12 17 55 55 0.01 55 4.56
ESC07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 [28175, 28480] 28545 TL 28480 279.18

p43.3 43 [28366, 28835] 28930 TL 28835 177.29

p43.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 [15220, 15805] 18209 TL 16561 TL
ry48p.2 48 [15524, 16666] 18649 TL 17680 TL
ry48p.3 48 [18156, 19894] 23268 TL 22311 TL
ry48p.4 48 [29967, 31446] 34502 TL 31446 96.91

ft53.1 53 [7438, 7531] 9716 TL 9216 TL
ft53.2 53 [7630, 8026] 11669 TL 11484 TL
ft53.3 53 [9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79

Table 7.1: Results on ATSPP instances. Values in bold represent instances solved for the first time.

time window constraints and where the objective is to minimize makespan. Our goal is to test the

performance of such procedures on makespan problems, and verify the influence of setup times on

the relative performance. In particular, we will empirically show that the MDD-based propagator

makes schedulers more robust for makespan problems especially when setup times are present.

To compare the impact of setup times between methods, we performed the following experiment.

Using the scheme from [35], we first generated three random instances with 15 jobs. The processing

times pi are selected uniformly at random from the set {1, 100}, and release dates are selected

uniformly at random from the set {0, . . . , α
∑

i pi} for α ∈ {0.25, 0.5, 0.75}. No deadlines are

considered. For each of the three instances above, we generated additional random instances

where we add a setup time for all pairs of jobs i and j selected uniformly at random from the

set {0, . . . , (50.5)β}, where β ∈ {0, 0.5, 1, . . . , 4}. In total, 10 instances are generated for each

β. We computed the number of fails and total time to minimize the makespan using CPO and

CPO+MDD models with a maximum width of 16, applying a lex search in both cases. We then

divided the CPO results by the CPO+MDD results, and computed the average ratio for each value of

β. The job ranking for refinement is done by sorting the jobs in decreasing order according to the

value obtained by summing their release dates with their processing times. This forces jobs with

larger completion times to have higher priority in the refinement.

The results are presented in Figure 7.8. For each value of α, we plot the ratio of CPO and

CPO+MDD in terms of the number of fails (Figure 7.8a) and time (Figure 7.8b). The plot in Figure 7.8a

indicates that the CPO+MDD inference becomes more dominant in comparison to CPO for larger values

of β, that is, when setup times become more important. The MDD introduces a computational

overhead in comparison to the CPO times (around 20 times slower for this particular problem size).

This is compensated as β increases, since the number of fails for the CPO+MDD model becomes orders

of magnitude smaller in comparison to CPO. The same behavior was observed on average for other
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Figure 7.8: Comparison between CPO and CPO+MDD for minimizing makespan on three instances
with randomly generated setup times. The vertical axes are in logarithmic scale.

base instances generated under the same scheme.

To evaluate this on structured instances, we consider the TSPTW instances defined by the

Gendreau and Dumas benchmark classes, where we changed the objective function to minimize

makespan instead of the sum of setup times. We selected all instances with up to 100 jobs, yielding

240 test cases in total. We solved the CPO and the CPO+MDDmodels with lex search, so as to compare

the inference strength for these problems. A maximum width of 16 was set for CPO+MDD and a time

limit of 1,800 was imposed to both cases. The job ranking is the same as in the previous experiment.

The CPO approach was able to solve 211 instances to optimality, while the CPO+MDD approach

solved 227 instances to optimality (including all the instances solved by CPO). The number of fails

and solving time are presented in Figure 7.9, where we only depict instances solved by both methods.

In general, for easy instances (up to 40 jobs or with a small time window width), the reduction

of the number of fails induced by CPO+MDD was not significant, and thus did not compensate the

computational overhead introduced by the MDD. However, we note that the MDD presented a

better performance for harder instances; the lower diagonal of the Figure 7.9b is mostly composed

by instances from the Gendreau class with larger time windows, for which the number of fails

was reduced by five and six orders of magnitude. We also note that the result for the makespan

objective is less pronounced than for the sum of setup times presented in Section 7.10.3.

7.10.6 Total Tardiness

Constraint-based schedulers are usually equipped with specific filtering techniques for minimizing

total tardiness, which are based on the propagation of a piecewise linear function as described
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Figure 7.9: Performance comparison between CPO and CPO+MDD for minimizing makespan on Dumas
and Gendreau TSPTW classes. The vertical and horizontal axes are in logarithmic scale.

by [14]. For problems without any constraints, however, the existing schedulers are only capable of

solving small instances, and heuristics end up being more appropriate as the propagators are not

sufficiently strong to deduce good bounds.

In this section we evaluate the performance of CPO and CPO+MDD on sequencing problems where

the objective is to minimize the total tardiness. Since we are interested in evaluating the inference

strength of the objective function bounding mechanism, we do not take into account any additional

side constraints and we limit our problem size to 15 jobs. Moreover, jobs are only subject to a

release date, and no setup time is considered.

We have tested the total tardiness objective using random instances, again generated with the

scheme of [35]. The processing times pi are selected uniformly at random from the set {1, 10},

the release dates ri are selected uniformly at random from the set {0, . . . , α
∑

i pi}, and the due

dates are selected uniformly at random from the set {ri + pi, . . . , ri + pi + β
∑

i pi}. To generate a

good diversity of instances, we considered α ∈ {0, 0.5, 1.0, 1.5} and β ∈ {0.05, 0.25, 0.5}. For each

random instance generated, we create a new one with the same parameters but where we assign

tardiness weights selected uniformly at random from the set {1, . . . , 10}. We generated 5 instances

for each configuration, hence 120 instances in total. A time limit of 1,800 seconds was imposed to

all methods. The ranking procedure for refinement is based on sorting the jobs in decreasing order

of their due dates.

We compared the CPO and the CPO+MDD models for different maximum widths, and lex search

was applied to solve the models. The results for unweighted total tardiness are presented in Fig-

ure 7.10a, and the results for the weighted total tardiness instances are presented in Figure 7.10b.
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Figure 7.10: Performance comparison between CPO and CPO+MDD for minimizing total tardiness on
randomly generated instances with 15 jobs.

We observe that, even for relatively small widths, the CPO+MDD approach was more robust than

CPO for unweighted total tardiness; more instances were solved in less time even for a width of 16,

which is a reflection of a great reduction of the number of fails. On the other hand, for weighted

total tardiness CPO+MDD required larger maximum widths to provide a more significant benefit with

respect to CPO. We believe that this behavior may be due to a weaker refinement for the weighted

case, which may require larger widths to capture the set of activities that play a bigger role in the

final solution cost.

In all cases, a minimum width of 128 would suffice for the MDD propagation to provide enough

inference to solve all the considered problems.

7.11 Conclusion

In this chapter we presented a novel generic approach to solving sequencing problems using multival-

ued decision diagrams (MDDs). We introduced relaxed MDDs to represent an over-approximation

of all feasible solutions of a sequencing problem. We showed how these can be used to provide

bounds on the objective function value or to derive structured sequencing information, such as

precedence relations that must hold in any feasible solution. To strengthen the relaxed MDDs, we

proposed a number of techniques for a large class of scheduling problems where precedence and time

window constraints are imposed. We also showed that, for a TSP problem introduced by [10], the

MDD that exactly represents all its feasible solutions has a polynomial size in the number of cities.

Lastly, we have applied our MDD relaxations to constraint-based scheduling, and we showed that

we can improve the performance of a state-of-the-art solver by orders of magnitude. In particular,
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we were able to close three open TSPLIB instances for the TSP with precedence constraints. Re-

laxed MDDs thus provide a strong addition to existing generic approaches for solving constrained

sequencing problems.
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Chapter 8

Application: Timetabling

8.1 Introduction

In this chapter we will focus on particular timetabling applications formulated as constraint pro-

gramming models [119, 46, 7]. The central inference process of constraint programming is constraint

propagation. While traditional constraint processing techniques were designed for explicitly defined

relations of small arity, state-of-the-art constraint programming solvers apply specialized constraint

propagation algorithms for global constraints of any arity, often based on efficient combinatorial

methods such as network flows [127, 114].

Conventional constraint propagation algorithms (or domain filtering algorithms) operate on

individual constraints of a given problem. Their role is to identify and remove values in the variable

domains that are inconsistent with respect to the constraint under consideration. Whenever the

domain of a variable is updated (i.e., a value is removed), the constraints in which this variable

appears can be reconsidered for inspection. This cascading process of propagating the changes in

variable domains through the constraints continues until a fixed point is reached. Most constraint

programming solvers assume that the variable domains are finite, which ensures termination of the

constraint propagation process. Note that constraint propagation in itself may not be sufficient to

determine the resolution of a given problem. Therefore, constraint propagation is normally applied

at each search state in a systematic search process.

A major benefit of propagating variable domains is that it can be implemented efficiently in

many cases. However, an inherent weakness of domain propagation is that it implicitly represents

the Cartesian product of the variable domains as potential solution space. By communicating only

domain changes, this limits the amount of information shared between constraints.

To address this shortcoming of domain propagation, [4] proposed the use of MDDs as an alter-

native to variable domains in the context of constraint propagation. MDDs can be used to represent

individual (global) constraints, subsets of constraints, or all constraints in a given problem. When

representing individual constraints, as in [81, 37], the higher-level information carried by the MDD

152



is lost when projecting this down to the variable domains for the traditional domain propagation.

The highest potential for MDD propagation instead appears to be in representing specific subsets

of constraints within the same MDD. That is, for a given set of constraints, we create and maintain

one single limited-width MDD, which is then propagated through this constraint set. Since an

MDD is defined with respect to a fixed variable ordering, it is most useful to select a subset of

constraints compatible with this ordering. When applied in this way, MDD propagation can be

implemented in parallel to the existing domain propagation in constraint programming systems,

thus complementing and potentially strengthening the domain propagation process. For exam-

ple, Chapter 7 introduced MDD propagation for a subset of constraints representing disjunctive

scheduling problems. They embedded this as a custom global constraint in the ILOG CP Optimizer

constraint programming solver, which greatly improved the performance.

Methodology

Constraint propagation based on limited-width MDDs amounts to applying MDD filtering and

MDD refinement as described in Section 4.3. The role of an MDD filtering algorithm is to remove

provably inconsistent arcs from the MDD [74, 84]. An MDD refinement algorithm on the other

hand, aims at splitting nodes in the MDD to more accurately reflect the solution space [76]. In

order to make this approach scalable and efficient, refinement algorithms must ensure that the MDD

remains within a given maximum size (typically by restricting its maximum width—the number of

nodes on any layer). By increasing this maximum width, the MDD relaxation can be strengthened

to any desired level. That is, a maximum width of 1 would correspond to the traditional Cartesian

product of the variable domains, while an infinite maximum width would correspond to an exact

MDD representing all solutions. However, increasing the size of the MDD immediately impacts

the computation time, and one typically needs to balance the trade-off between the strength of the

MDD and the associated computation time.

In order to characterize the outcome of an MDD filtering algorithm, the notion of MDD consis-

tency was introduced by [4], similar to domain consistency in finite-domain constraint programming:

Given an MDD, a constraint is MDD consistent if all arcs in the MDD belong to at least one so-

lution to the constraint. As a consequence of the richer data structure that an MDD represents,

establishing MDD consistency may be more difficult than establishing domain consistency. For ex-

ample, [4] show that establishing MDD consistency on the Alldifferent constraint is NP-hard,

while establishing traditional domain consistency can be done in polynomial time [113].

Contributions

The main focus of this chapter is the Sequence constraint, that is defined as a specific conjunction

of Among constraints, where an Among constraint restricts the occurrence of a set of values for a

sequence of variables to be within a lower and upper bound [18]. The Sequence constraint finds
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applications in, e.g., car sequencing and employee scheduling problems [115, 129]. It is known that

classical domain consistency can be established for Sequence in polynomial time [128, 129, 31,

101, 47]. Furthermore, [84] present an MDD filtering algorithm for Among constraints establishing

MDD consistency in polynomial time. However, it remained an open question whether or not MDD

consistency for Sequence can be established in polynomial time as well.

In this work, we answer that question negatively and our first contribution is showing that

establishing MDD consistency on the Sequence constraint is NP-hard. This is an important result

from the perspective of MDD-based constraint programming. Namely, of all global constraints, the

Sequence constraint has perhaps the most suitable combinatorial structure for an MDD approach;

it has a prescribed variable ordering, it combines sub-constraints on contiguous variables, and

existing approaches can handle this constraint fully by using bounds reasoning only.

As our second contribution, we show that establishing MDD consistency on the Sequence

constraint is fixed parameter tractable with respect to the lengths of the sub-sequences (the Among

constraints), provided that the MDD follows the order of the Sequence constraint. The proof is

constructive, and follows from a generic algorithm to filter one MDD with another.

The third contribution is a partial MDD propagation algorithm for Sequence, that does not

necessarily establish MDD consistency. It relies on the decomposition of Sequence into ‘cumulative

sums’, and a new extension of MDD filtering to the information that is stored at its nodes.

Our last contribution is an experimental evaluation of our proposed partial MDD propagation

algorithm. We evaluate the strength of our algorithm for MDDs of various maximum widths, and

compare the performance with existing domain propagators for Sequence. We also compare our

algorithm with the currently best known MDD approach that uses the natural decomposition of

Sequence into Among constraints [84]. Our experiments demonstrate that MDD propagation can

outperform domain propagation for Sequence by reducing the search tree size, and solving time,

by several orders of magnitude. Similar results are observed with respect to MDD propagation of

Among constraints. Our results thus provide further evidence for the power of MDD propagation

in the context of constraint programming.

The remainder of this chapter is structured as follows. In Section 8.2, we provide the necessary

definitions of MDD-based constraint programming and the Sequence constraint. In Section 8.3,

we present the proof that establishing MDD consistency on Sequence is NP-hard. Section 8.4

describes that establishing MDD consistency is fixed parameter tractable. In Section 8.5, the partial

MDD filtering algorithm is presented. Section 8.6 shows the experimental results. We present final

conclusions in Section 8.7.
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8.2 Definitions

We first recall some basic definitions of MDD-based constraint programming, following [4, 84].

In this work, an ordered Multivalued Decision Diagram (MDD) is a directed acyclic graph whose

nodes are partitioned into n+ 1 (possibly empty) subsets or layers L1, . . . , Ln+1, where the layers

L1, . . . , Ln correspond respectively to variables x1, . . . , xn. L1 contains a single root node r, and

Ln+1 contains a single terminal node t. For a node u in the MDD, we let Lu denote the index

of its layer. For an MDD M , the width w(M) is the maximum number of nodes in a layer, or

maxni=1{|Li|}. In MDD-based CP, the MDDs typically have a given fixed maximum width.

All arcs of the MDD are directed from an upper to a lower layer; that is, from a node in some

Li to a node in some Lj with i < j. For our purposes it is convenient to assume (without loss of

generality) that each arc connects two adjacent layers. Each arc out of layer Li is labeled with an

element of the domain D(xi) of xi. For an arc a, we refer to the label it represents as ℓ(a). For

notational convenience, we also write ℓ(u, v) instead of ℓ((u, v)) for an arc (u, v). An element in

D(xi) appears at most once as a label on the arcs out of a given node u ∈ Li. The set A(u, v)

of arcs from node u to node v may contain multiple arcs, and we denote each with its label. Let

Ain(u) denote the set of arcs coming into node u. We define the size of an MDD M by the number

of its arcs, i.e., |M | =
∣

∣{a | a ∈ Ain(u), u ∈ Li, i = 2, . . . , n+ 1}
∣

∣.

An arc with label v leaving a node in layer i represents an assignment xi = v. Each path in the

MDD from r to t can be denoted by the arc labels v1, . . . , vn on the path and is identified with the

solution (x1, . . . , xn) = (v1, . . . , vn). A path v1, . . . , vn is feasible for a given constraint C if setting

(x1, . . . , xn) = (v1, . . . , vn) satisfies C. Constraint C is feasible on an MDD if the MDD contains a

feasible path for C.

A constraint C is called MDD consistent on a given MDD if every arc of the MDD lies on

some feasible path. Thus MDD consistency is achieved when all redundant arcs (i.e., arcs on no

feasible path) have been removed. We also say that such MDD is MDD consistent with respect

to C. Domain consistency for C is equivalent to MDD consistency on an MDD of width one that

represents the variable domains. That is, it is equivalent to MDD consistency on an MDD in which

each layer Li contains a single node si, and A(si, si+1) = D(xi) for i = 1, . . . , n.

Lastly, we formally recall the definitions of Among [18], Sequence [18], andGen-Sequence [129]

constraints. The Among constraint counts the number of variables that are assigned to a value in

a given set S, and ensures that this number is between a given lower and upper bound:

Definition 34 Let X be a set of variables, l, u integer numbers such that 0 ≤ l ≤ u ≤ |X|, and

S ⊂ ∪x∈XD(x) a subset of domain values. Then we define Among(X, l, u, S) as

l ≤
∑

x∈X
(x ∈ S) ≤ u.
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Note that the expression (x ∈ S) is evaluated as a binary value, i.e., resulting in 1 if x ∈ S and 0 if

x /∈ S. The Sequence constraint is the conjunction of a given Among constraint applied to every

sub-sequence of length q over a sequence of n variables:

Definition 35 Let X be an ordered set of n variables, q, l, u integer numbers such that 0 ≤ q ≤ n,

0 ≤ l ≤ u ≤ q, and S ⊂ ∪x∈XD(x) a subset of domain values. Then

Sequence(X, q, l, u, S) =

n−q+1
∧

i=1

Among(si, l, u, S),

where si represents the sub-sequence xi, . . . , xi+q−1.

Finally, the generalized Sequence constraint extends the Sequence constraint by allowing the

Among constraints to be specified with different lower and upper bounds, and sub-sequence length:

Definition 36 Let X be an ordered set of n variables, k a natural number, ~s, ~l, ~u vectors of

length k such that si is a sub-sequence of X, li, ui ∈ N, 0 ≤ li ≤ ui ≤ n for i = 1, 2, . . . , k, and

S ⊂ ∪x∈XD(x) a subset of domain values. Then

Gen-Sequence(X,~s,~l, ~u, S) =

k
∧

i=1

Among(si, li, ui, S).

8.3 MDD Consistency for Sequence is NP-Hard

As stated before, the only known non-trivial NP-hardness result for a global constraint in the

context of MDD-based constraint programming is that of [4] for the Alldifferent constraint. A

challenge in determining whether a global constraint can be made MDD consistent in polynomial

time is that this must be guaranteed for any given MDD. That is, in addition to the combinatorics of

the global constraint itself, the shape of the MDD adds another layer of complexity to establishing

MDD consistency. For proving NP-hardness, a particular difficulty is making sure that in the

reduction, the MDD remains of polynomial size. For Sequence constraints, so far it was unknown

whether a polynomial-time MDD consistency algorithm exists. In this section we answer that

question negatively and prove the following result.

Theorem 37 Establishing MDD consistency for Sequence on an arbitrary MDD is NP-hard even

if the MDD follows the variable ordering of the Sequence constraint.

Proof. The proof is by reduction from 3-SAT, a classical NP-complete problem [63]. We will show

that an instance of 3-SAT is satisfied if and only if a particular Sequence constraint on a particular

MDDM of polynomial size has a solution. Therefore, establishing MDD consistency for Sequence

on an arbitrary MDD is at least as hard as 3-SAT.
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Consider a 3-SAT instance on n variables x1, . . . , xn, consisting of m clauses c1, . . . , cm. We first

construct an MDD that represents the basic structure of the 3-SAT formula (see Example 23 after

this proof for an illustration). We introduce binary variables yi,j and yi,j representing the literals

xj and xj per clause ci, for i = 1, . . . ,m and j = 1, . . . , n (xj and xj may or may not exist in ci).

We order these variables as a sequence Y , first by the index of the clauses, then by the index of

the variables, and then by yi,j, yi,j for clause ci and variable xj . That is, we have Y = y1,1, y1,1,

y1,2, y1,2,. . . ,y1,n, y1,n, . . . , ym,1, ym,1, . . . ,ym,n, ym,n. We construct an MDD M as a layered graph,

where the k-th layer corresponds to the k-th variable in the sequence Y .

A clause ci is represented by 2n consecutive layers corresponding to yi,1, . . . , yi,n. In such part of

the MDD, we identify precisely those paths that lead to a solution satisfying the clause. The basis

for this is a ‘diamond’ structure for each pair of literals (yi,j, yi,j), that assigns either (0, 1) or (1, 0)

to this pair. If a variable does not appear in a clause, we represent it using such a diamond in the

part of the MDD representing that clause, thus ensuring that the variable can take any assignment

with respect to this clause. For the variables that do appear in the clause, we will explicitly list

out all allowed combinations.

More precisely, for clause ci, we first define a local root node ri representing layer Lyi,1, and

we set tag(ri) = ‘unsat’. For each node u in layer Lyi,j (for j = 1, . . . , n), we do the following. If

variable xj does not appear in ci, or if tag(u) is ‘sat’, we create two nodes v, v′ in Lyi,j, one single

node w in Lyi,j+1, and arcs (u, v) with label 1, (u, v′) with label 0, (v,w) with label 0, and (v′, w)

with label 1. This corresponds to the ‘diamond’ structure. We set tag(w) = tag(u). Otherwise

(i.e., tag(u) is ‘unsat’ and yi,j appears in ci), we create two nodes v, v′ in Lyi,j, two nodes w,w′ in

Lyi,j+1, and arcs (u, v) with label 1, (u, v′) with label 0, (v,w) with label 0, and (v′, w′) with label

1. If ci contains as literal yi,j, we set tag(w) = ‘sat’ and tag(w′) = ‘unsat’. Otherwise (ci contains

yi,j), we set tag(w) = ‘unsat’ and tag(w′) = ‘sat’.

This procedure will be initialized by a single root node r representing Ly11. We iteratively

append the MDDs of two consecutive clauses ci and ci+1 by merging the nodes in the last layer of

ci that are marked ‘sat’ into a single node, and let this node be the local root for ci+1. We finalize

the procedure by merging all nodes in the last layer that are marked ‘sat’ into the single terminal

node t. By construction, we ensure that only one of yij and yij can be set to 1. Furthermore, the

variable assignment corresponding to each path between layers Lyi,1 and Lyi+1,1 will satisfy clause

ci, and exactly n literals are chosen accordingly on each such path.

We next need to ensure that for a feasible path in the MDD, each variable xj will correspond

to the same literal yi,j or yi,j in each clause ci. To this end, we impose the constraint

Sequence(Y, q = 2n, l = n, u = n, S = {1}) (8.1)

on the MDD M described above. If the sub-sequence of length 2n starts from a positive literal

yi,j, by definition there are exactly n variables that take value 1. If the sub-sequence starts from a
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Figure 8.1: The MDD corresponding to Example 23.

negative literal yi,j instead, the last variable in the sequence corresponds to the value xj in the next

clause ci+1, i.e., yi+1,j. Observe that all variables except for the first and the last in this sequence

will take value 1 already n − 1 times. Therefore, of the first and the last variable in the sequence

(which represent xj and its complement xj in any order), only one can take the value 1. That is, xj

must take the same value in clause ci and ci+1. Since this holds for all sub-sequences, all variables

xj must take the same value in all clauses.

The MDD M contains 2mn+ 1 layers, while each layer contains at most six nodes. Therefore,

it is of polynomial size (in the size of the 3-SAT instance), and the overall construction needs

polynomial time. �

Example 23 Consider the 3-SAT instance on four Boolean variables x1, x2, x3, x4 with clauses

c1 = (x1 ∨x3 ∨x4) and c2 = (x2 ∨x3 ∨x4). The corresponding MDD used in the reduction is given

in Figure 8.1. �
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Figure 8.2: The exact MDD for the Sequence constraint of Example 24.

8.4 MDD Consistency for Sequence is Fixed Parameter Tractable

In this section we show that establishing MDD consistency for Sequence on an arbitrary MDD is

fixed parameter tractable, with respect to the length of the sub-sequences q. It was already shown

in [128, 129] that an exact MDD for the Sequence constraint exists with O(n2q) nodes (i.e., the

‘unfolded’ automaton of the Regular constraint), as illustrated in the next example.

Example 24 Consider the constraint Sequence(X, q = 3, l = 1, u = 2, S = {1}) where X =

{x1, x2, . . . , x6} is an ordered set of binary variables. The corresponding exact MDD, following the

order of X, is presented in Figure 8.2. For convenience, each node in the MDD is labeled with the

last q − 1 labels that represent the sub-sequence up to that node (starting q − 1 layers up). For

example, the second node in the third layer represents decisions x1 = 0 and x2 = 1, corresponding

to sub-sequence 01. To construct the next layer, we either append a 0 or a 1 to this sub-sequence

(and remove the first symbol), leading to nodes labeled 10 and 11, respectively. Note that from

nodes labeled 00 we must take an arc with label 1, because l = 1. Similarly for nodes labeled 11

we must take an arc with label 0, because u = 2. After q layers, all possible sub-sequences have

been created (maximally O(2q−1)), which thus defines the width of the subsequent layers. �

However, since we are given an arbitrary MDD, and not necessarily an exact MDD, we need some

additional steps to exploit this connection. For this we apply a generic approach that will not only
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show fixed parameter tractability for Sequence, but in fact can be applied to determine whether

MDD consistency is tractable for any constraint.

Our goal is to establish MDD consistency on a given MDD M with respect to another MDD

M ′ on the same set of variables. This is compatible with our earlier definitions since M ′ can be

interpreted to define a constraint. That is, M is MDD consistent with respect to M ′ if every arc

in M belongs to a path (solution) that also exists in M ′. For our purposes, we assume that M and

M ′ follow the same variable ordering.

We can establish MDD consistency by first taking the intersection of M and M ′, and then

removing all arcs fromM that are not compatible with the intersection. Computing the intersection

of two MDDs is well-studied, and we present a top-down intersection algorithm that follows our

definitions in Algorithm 7. This description is adapted from the ‘melding’ procedure in [94].

The intersection MDD, denoted by I, represents all possible paths (solutions) that are present

both in M and M ′. Each partial path in I from the root rI to a node u thus will exist in M and

M ′, with respective endpoints v, v′. This information is captured by associating with each node u

in I a state s(u) = (v, v′) representing those nodes v ∈M and v′ ∈M ′. The root of I is initialized

as rI with s(rI) := (r, r′) where r and r′ are the respective roots of M and M ′ (lines 1-2). The

algorithm then, in a top-down traversal, considers a layer LI
i in I, and augments a node u ∈ LI

i

with s(u) = (v, v′) with an arc only if both M and M ′ have an arc with the same label out of v

and v′ respectively (lines 5-7). If the next layer already contains a node ũ with the same state we

re-use that node. Otherwise we add a new node ũ to LI
i+1 and add the arc (u, ũ) to I. Note that

the last layer of I contains a single terminal tI with state s(tI) = (t, t′), provided that I is not

empty. In the last step (line 14) we clean up I by removing all arcs and nodes that do not belong

to a feasible path. This can be done in a bottom-up traversal of I. Observe that this algorithm

does not necessarily create a reduced MDD.

Algorithm 8 presents an algorithm to establish MDD-consistency on M with respect toM ′. We

first compute the intersection I of M and M ′ (line 1). We then traverse M in a top-down traversal,

and for each layer LM
i we identify and remove infeasible arcs. For this, we define a Boolean array

Support[u, l] (initialized to 0) that represents whether an arc out of node u ∈ M with label l has

support in I (line 3). In line 4, we consider all arcs out of layer LI
i in I. If an arc a = (v, ṽ) exists

in LI
i with label l and s(v) = (u, u′), we mark the associated arc out of u as supported by setting

Support[u, l] := 1 (lines 4-6). We then remove all arcs out of LM
i that have no support (lines 7-9).

Lastly, we again clean up M by removing all arcs and nodes that do not belong to a feasible path

(line 11).

Theorem 38 Algorithm 8 establishes MDD-consistency onM with respect toM ′ in O(|M | · w(M ′)

time and space.

Proof. The correctness of Algorithm 7 follows by induction on the number of layers. To prove

that Algorithm 8 establishes MDD-consistency, consider an arc a = (u, ũ) in M after applying
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Algorithm 7 Intersection(M ,M ′)

Input: MDD M with root r, MDD M ′ with root r′. M and M ′ are defined on the same ordered
sequence of n variables.

Output: MDD I with layers LI
1, . . . , L

I
n+1 and arc set AI . Each node u in I has an associated

state s(u).
1: create node rI with state s(rI) := (r, r′)
2: LI

1 := {r
I}

3: for i = 1 to n do
4: LI

i+1 := {}
5: for all u ∈ LI

i with s(u) = (v, v′) do
6: for all a = (v, ṽ) ∈M and a′ = (v′, ṽ′) ∈M ′ such that ℓ(a) = ℓ(a′) do
7: create node ũ with state s(ũ) := (ṽ, ṽ′)
8: if ∃ w̃ ∈ LI

j+1 with s(w̃) = s(ũ) then ũ := w̃

9: else LI
i+1 += ũ end if

10: add arc (u, ũ) with label ℓ(a) to arc set AI

11: remove all arcs and nodes from I that are not on a path from rI to tI ∈ LI
n+1

12: return I

Algorithm 8 MDD-Consistency(M ,M ′)

Input: MDD M with root r, MDD M ′ with root r′. M and M ′ are defined on the same ordered
sequence of n variables.

Output: M that is MDD-consistent with respect to M ′

1: create I := Intersection(M ,M ′)
2: for i = 1 to n do
3: create array Support[u, l] := 0 for all u ∈ LM

i and arcs out of u with label l
4: for all arcs a = (v, ṽ) in AI with s(v) = (u, u′) such that v ∈ LI

i do
5: Support[u, ℓ(a)] := 1
6: for all arcs a = (u, ũ) in M such that u ∈ LM

i do
7: if Support[u, ℓ(a)] = 0 then remove a from M end if
8: remove all arcs and nodes from M that are not on a path from r to t ∈ LM

n+1

9: return M
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the algorithm. There exists a node v ∈ I with s(v) = (u, u′) such that solutions represented by

the paths from r to u in M and from r′ to u′ in M ′ are equivalent. There also exists an arc

aI = (v, ṽ) ∈ AI with the same label as a. Consider s(ṽ) = (w,w′). Since M and I are decision

diagrams, a label appears at most once on an arc out of a node. Therefore, w = ũ. Since aI belongs

to I, there exist paths from w (or ũ) to t in M and from w′ to t′ in M ′ that are equivalent. Hence,

a belongs to a feasible path in M (from r to u, then along a into ũ and terminating in t) for which

an equivalent path exists in M ′ (from r′ to u′, then into w′ and terminating in t′).

Regarding the time complexity for computing the intersection, a coarse upper bound multiplies

n (line 3), w(M) · w(M ′) (line 5), and d2max (line 6), where dmax represents the maximum degree

out of a node, or maxx∈X |D(x)|. We can amortize these steps since the for-loops in lines 3 and

6 consider each arc in M once for comparison with arcs in M ′. Each arc is compared with at

most w(M ′) arcs (line 6); here we assume that we can check in constant time whether a node has

an outgoing arc with a given label (using an arc-label list). This gives a total time complexity of

O(|M | ·w(M ′)). The memory requirements are bounded by the size of the intersection, which is at

most O(n ·w(M) ·w(M ′) ·dmax) = O(|M | ·w(M ′)). This dominates the complexity of Algorithm 8,

since lines 2-12 can be performed in linear time and space (in the size of M). �

Observe that Algorithm 8 no longer ensures that each solution in M is represented by some

path in M ′, as is the case for the intersection. MDD-consistency merely establishes that each arc

in M belongs to some solution that is also in M ′. Although MDD intersections are stronger than

MDD consistency, their limitation is that the width of the intersection MDD may be as large as

the product of the widths of M and M ′. Therefore intersecting M with multiple MDDs will, in

general, increase the size of the resulting MDD exponentially.

We next apply Theorem 38 to the Sequence constraint.

Corollary 39 Let X be an ordered sequence of variables, C = Sequence(X, q, l, u, S) a sequence

constraint, and M an arbitrary MDD following the variable ordering of X. Establishing MDD

consistency for C on M is fixed parameter tractable with respect to parameter q.

Proof. We know from [128, 129] that there exists an exact MDDM ′ of size O(n2q−1) that represents

C. Applying Theorem 38 gives an MDD-consistency algorithm with time and space complexity

O(|M | 2q−1), and the result follows. �

We note that Theorem 38 can also be applied to obtain the tractability of establishing MDD con-

sistency on other constraints. Consider for example the constraint Among(x1, x2, . . . , xn, l, u, S).

For any variable ordering, we can construct an exact MDD in a top-down procedure by associating

with each node v the number of variables taking a value in S along the path from r to v, representing

the ‘length’ of that path. Nodes with the same length are equivalent and can be merged. Because

the largest layer has at most u+ 1 different path lengths, the exact MDD has size O(nu), and by
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Theorem 38 establishing MDD consistency is tractable for Among. Indeed, [84] also showed that

MDD consistency can be established for this constraint, with quadratic time complexity.

The converse of Theorem 38 does not hold: there exist constraints for which MDD consistency

can be established in polynomial time on any given MDD, while a minimal reduced exact MDD

has exponential size. As a specific example, consider linear inequality constraints of the form
∑n

i=1 aixi ≥ b where xi is an integer variable, ai is a constant, for i = 1, . . . , n, and b is a constant.

MDD consistency can be established for such constraints in linear time, for any given MDD, by

computing for each arc the longest r-t path (relative to the coefficients ai) that uses that arc [4].

However, [88] provide the following explicit linear inequality. For k even and n = k2, consider
∑

1≤i,j≤k aijxij ≥ k(22k − 1)/2, where xij is a binary variable, and aij = 2i−1 + 2k+j−1, for 1 ≤

i, j ≤ k. They show that, for any variable order, the size of the reduced ordered BDD for this

inequality is bounded from below by Ω(2
√
n/2).

8.5 Partial MDD Filtering for Sequence

In many practical situations the value of q will lead to prohibitively large exact MDDs for estab-

lishing MDD consistency, which limits the applicability of Corollary 39. Therefore we next explore

a more practical partial filtering algorithm that is polynomial also in q.

One immediate approach is to propagate the Sequence constraint in MDDs through its nat-

ural decomposition into Among constraints, and apply the MDD filtering algorithms for Among

proposed by [84]. However, it is well-known that for classical constraint propagation based on

variable domains, the Among decomposition can be substantially improved by a dedicated domain

filtering algorithm for Sequence [128, 129, 31, 101]. Therefore, our goal in this section is to provide

MDD filtering for Sequence that can be stronger in practice than MDD filtering for the Among

decomposition, and stronger than domain filtering for Sequence. In what follows, we assume that

the MDD at hand respects the ordering of the variables in the Sequence constraint.

8.5.1 Cumulative Sums Encoding

Our proposed algorithm extends the original domain consistency filtering algorithm for Sequence

by [128] to MDDs, following the ‘cumulative sums’ encoding as proposed by [31]. This represen-

tation takes the following form. For a sequence of variables X = x1, x2, . . . , xn, and a constraint

Sequence(X, q, l, u, S), we first introduce variables y0, y1, . . . , yn, with respective initial domains

D(yi) = [0, i] for i = 1, . . . , n. These variables represent the cumulative sums of X, i.e., yi repre-

sents
∑i

j=1 (xj ∈ S) for i = 1, . . . , n. We now rewrite the Sequence constraint as the following
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system of constraints:

yi = yi−1 + δS(xi) ∀i ∈ {1, . . . , n}, (8.2)

yi+q − yi ≥ l ∀i ∈ {0, . . . , n− q}, (8.3)

yi+q − yi ≤ u ∀i ∈ {0, . . . , n− q}, (8.4)

where δS : X → {0, 1} is the indicator function for the set S, i.e., δS(x) = 1 if x ∈ S and δS(x) = 0 if

x /∈ S. [31] show that establishing singleton bounds consistency on this system suffices to establish

domain consistency for the original Sequence constraint.

In order to apply similar reasoning in the context of MDDs, the crucial observation is that the

domains of the variables y0, . . . , yn can be naturally represented at the nodes of the MDD. In other

words, a node v in layer Li represents the domain of yi−1, restricted to the solution space formed by

all r-t paths containing v. Let us denote this information for each node v explicitly as the interval

[lb(v),ub(v)], and we will refer to it as the ‘node domain’ of v. Following the approach of [84],

we can compute this information in linear time by one top-down pass, by using equation (8.2), as

follows:
lb(v) = min(u,v)∈Ain(v) {lb(u) + δS (ℓ(u, v))} ,

ub(v) = max(u,v)∈Ain(v) {ub(u) + δS (ℓ(u, v))} ,
(8.5)

for all nodes v 6= r, while [lb(r),ub(r)] = [0, 0].

As the individual Among constraints are now posted as yi+q− yi ≥ l and yi+q− yi ≤ u, we also

need to compute for a node v in layer Li+1 all its ancestors from layer Li. This can be done by

maintaining a vector Av of length q + 1 for each node v, where Av[i] represents the set of ancestor

nodes of v at the i-th layer above v, for i = 0, . . . , q. We initialize Ar = [{r}, ∅, . . . , ∅], and apply

the recursion
Av[i] = ∪(u,v)∈Ain(v)Au[i− 1] for i = 1, 2, . . . , q,

Av[0] = {v}.

The resulting top-down pass itself takes linear time (in the size of the MDD), while a direct

implementation of the recursive step for each node takes O(q · (w(M))2) operations for an MDD

M . Now, the relevant ancestor nodes for a node v in layer Li+q are stored in Av[q], a subset of

layer Li. We similarly compute all descendant nodes of v in a vector Dv of length q + 1, such

that Dv[i] contains all descendants of v in the i-th layer below v, for i = 0, 1, . . . , q. We initialize

Dt = [{t}, ∅, . . . , ∅].

However, for our purposes we only need to maintain the minimum and maximum value of the

union of the domains of Av, resp., Dv, because constraints (8.3) and (8.4) are inequalities; see the

application of Av and Dv in rules (8.8) below. This makes the recursive step more efficient, now

taking O(qw(M)) operations per node.

Alternatively, we can approximate this information by only maintaining a minimum and max-
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imum node domain value for each layer, instead of a list of ancestor layers. This will compromise

the filtering, but may be more efficient in practice, as it only requires to maintain two integers per

layer.

8.5.2 Processing the Constraints

We next process each of the constraints (8.2), (8.3), and (8.4) in turn to remove provably inconsistent

arcs, while at the same time we filter the node information.

Starting with the ternary constraints of type (8.2), we remove an arc (u, v) if lb(u)+δS(ℓ(u, v)) >

ub(v). Updating [lb(v),ub(v)] for a node v is done similar to the rules (8.5) above:

lb(v) = max
{

lb(v),min(u,v)∈Ain(v) {lb(u) + δS(ℓ(u, v))}
}

,

ub(v) = min
{

ub(v),min(u,v)∈Ain(v) {ub(u) + δS(ℓ(u, v))}
}

,
(8.6)

In fact, the resulting algorithm is a special case of the MDD consistency equality propagator of

[76], and we thus inherit the MDD consistency for our ternary constraints.

Next, we process the constraints (8.3) and (8.4) for a node v in layer Li+1 (i = 0, . . . , n). Recall

that the relevant ancestors from Li+1−q are Av[q], while its relevant descendants from Li+1+q are

Dv[q]. The variable corresponding to node v is yi, and it participates in four constraints:

yi ≥ l + yi−q,

yi ≤ u+ yi−q,

yi ≤ yi+q − l,

yi ≥ yi+q − u.

(8.7)

Observe that we can apply these constraints to filter only the node domain [lb(v),ub(v)] corre-

sponding to yi. Namely, the node domains corresponding to the other variables yi−q and yi+q

may find support from nodes in layer Li+1 other than v. We update lb(v) and ub(v) according to

equations (8.7):

lb(v) = max{ lb(v), l + min
u∈Av [q]

lb(u), min
w∈Dv[q]

lb(w) − u },

ub(v) = min{ ub(v), u+ max
u∈Av [q]

ub(u), max
w∈Dv[q]

ub(w) − l }.
(8.8)

The resulting algorithm is a specific instance of the generic MDD consistent binary constraint

propagator presented by [84], and again we inherit the MDD consistency for these constraints. We

can process the constraints in linear time (in the size of the MDD) by a top-down and bottom-up

pass through the MDD.
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Figure 8.3: MDD propagation for the constraint Sequence(X, q = 3, l = 1, u = 2, S = {1}) of
Example 25.

Example 25 Consider the constraint Sequence(X, q = 3, l = 1, u = 2, S = {1}) with the

ordered sequence of binary variables X = {x1, x2, x3, x4, x5}. Assume we are given the MDD in

Figure 8.3.a. In Figure 8.3.b. we show the node domains that result from processing rules (8.5).

Figure 8.3.c. shows the resulting MDD after processing the constraints via the rules (8.6) and (8.8).

For example, consider the middle node in the fourth layer, corresponding to variable y3. Let this

node be v. It has initial domain [0, 2], and Av[q] only contains the root node, which has domain

[0, 0]. Since l = 1, we can reduce the domain of v to [1, 2]. We can next consider the arcs into v,

and conclude that value 1 in its domain is not supported. This further reduces the domain of v to

[2, 2], and allows us to eliminate one incoming arc (from the first node of the previous layer).

The resulting MDD in Figure 8.3.c. reflects all possible deductions that can be made by our

partial algorithm. We have not established MDD consistency however, as witnessed by the infea-

sible path (1, 1, 0, 0, 0). �

Observe that our proposed algorithm can be applied immediately to the more general Gen-

Sequence constraints in which each Among constraint has its individual l, u and q. The cu-

mulative sums encoding can be adjusted in a straightforward manner to represent these different

values.
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8.5.3 Formal Analysis

We next formally compare the outcome of our partial MDD filtering algorithm with MDD propa-

gation for the Among encoding and domain propagation for Sequence. First, we recall Theorem

4 from [31].

Theorem 40 [31] Bounds consistency on the cumulative sums encoding is incomparable to bounds

consistency on the Among encoding of Sequence.

Note that since all variable domains in the Among and cumulative sums encoding are ranges

(intervals of integer values), bounds consistency is equivalent to domain consistency.

Corollary 41 MDD consistency on the cumulative sums encoding is incomparable to MDD con-

sistency on the Among encoding of Sequence.

Proof. We apply the examples from the proof of Theorem 4 in [31]. Consider the constraint

Sequence(X, q = 2, l = 1, u = 2, S = {1}) with the ordered sequence of binary variables X =

{x1, x2, x3, x4} having domains D(xi) = {0, 1} for i = 1, 2, 4, and D(x3) = {0}. We apply the

‘trivial’ MDD of width 1 representing the Cartesian product of the variable domains. Establishing

MDD consistency on the cumulative sums encoding yields

y0 ∈ [0, 0], y1 ∈ [0, 1], y2 ∈ [1, 2], y3 ∈ [1, 2], y4 ∈ [2, 3],

x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0}, x4 ∈ {0, 1}.

Establishing MDD consistency on the Among encoding, however, yields

x1 ∈ {0, 1},x2 ∈ {1}, x3 ∈ {0},x4 ∈ {1}.

Consider the constraint Sequence(X, q = 3, l = 1, u = 1, S = {1}) with the ordered sequence

of binary variables X = {x1, x2, x3, x4} having domains D(xi) = {0, 1} for i = 2, 3, 4, and D(x1) =

{0}. Again, we apply the MDD of width 1 representing the Cartesian product of the variable

domains. Establishing MDD consistency on the cumulative sums encoding yields

y0 ∈ [0, 0], y1 ∈ [0, 0], y2 ∈ [0, 1], y3 ∈ [1, 1], y4 ∈ [1, 1],

x1 ∈ {0}, x2 ∈ {0, 1}, x3 ∈ {0, 1},x4 ∈ {0},

while establishing MDD consistency on the Among encoding does not prune any value. �

As an additional illustration of Corollary 41, consider again Example 25 and Figure 8.3. MDD

propagation for the Among encoding will eliminate the value x4 = 0 from the infeasible path

(1, 1, 0, 0, 0), whereas our example showed that MDD propagation for cumulative sums does not

detect this.
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Theorem 42 MDD consistency on the cumulative sums encoding of Sequence is incomparable

to domain consistency on Sequence.

Proof. The first example in the proof of Corollary 41 also shows that domain consistency on Se-

quence can be stronger than MDD consistency on the cumulative sums encoding.

To show the opposite, consider a constraint Sequence(X, q, l, u, S = {1}) with a set of binary

variables of arbitrary size, arbitrary values q, l, and u = |X| − 1. Let M be the MDD defined over

X consisting of two disjoint paths from r to t: the arcs on one path all have label 0, while the arcs

on the other all have value 1. Since the projection onto the variable domains gives x ∈ {0, 1} for all

x ∈ X, domain consistency will not deduce infeasibility. However, establishing MDD consistency

with respect to M on the cumulative sums encoding will detect this. �

Even though formally our MDD propagation based on cumulative sums is incomparable to domain

propagation of Sequence and MDD propagation of Among constraints, in the next section we will

show that in practice our algorithm can reduce the search space by orders of magnitude compared

to these other methods.

8.6 Computational Results

The purpose of our computational results is to evaluate empirically the strength of the partial

MDD propagator described in Section 8.5. We perform three main comparisons. First, we want

to assess the impact of increasing the maximum width of the MDD on the filtering. Second, we

want to compare the MDD propagation with the classical domain propagation for Sequence. In

particular, we wish to evaluate the computational overhead of MDD propagation relative to domain

propagation, and to what extent MDD propagation can outperform domain propagation. Third,

we compare the filtering strength of our MDD propagator for Sequence to the filtering strength

of the MDD propagators for the individual Among constraints, being the best MDD approach for

Sequence so far [84].

We have implemented our MDD propagator for Sequence as a custom global constraint in

IBM ILOG CPLEX CP Optimizer 12.4, using the C++ interface. Recall from Section 8.5 that

for applying rules (8.8) we can either maintain a minimum and maximum value for the q previous

ancestors and descendants of each node, or approximate this by maintaining these values simply

for each layer. We evaluated both strategies and found that the latter did reduce the amount

of filtering, but nonetheless resulted in much more efficient performance (about twice as fast on

average). Hence, the reported results use that implementation.

For the MDD propagator for Among, we apply the code of [84]. For the domain propagation,

we applied three models. The first uses the domain consistent propagator for Sequence from [129],

running in O(n3) time. The second uses the domain consistent propagator for Sequence based
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on a network flow representation by [101], which runs in O(n2) time.1 As third model, we applied

the decomposition into cumulative sums, which uses no explicit global constraint for Sequence.

Propagating this decomposition also takes O(n2) in the worst case, as it considers O(n) variables

and constraints while the variable domains contain up to n elements. We note that for almost

all test instances, the cumulative sums encoding established domain consistency. As an additional

advantage, the cumulative sums encoding permits a more insightful comparison with our MDD

propagator, since both are based on the cumulative sums decomposition.

We note that [31] introduce the ‘multiple-Sequence’ constraint that represents the conjunction

of multiple Sequence constraints on the same set of ordered variables (as in our experimental

setup). [107] shows that establishing bounds consistency on such system is already NP-hard, and

presents a domain consistent propagator that encodes the system as an automaton for theRegular

constraint. The algorithm runs in O(nmq) time, where n represents the number of variables, m the

number of Sequence constraints, and q the length of the largest subsequence.

In order to compare our algorithms with the multiple-Sequence constraint, we conducted ex-

periments to identify a suitable testbed. We found that instances for which the multiple-Sequence

constraint would not run out of memory could be solved instantly by using any domain propagator

for the individual Sequence constraints, while creating the multiple-Sequence constraint took

substantially more time on average. For instances that were more challenging (as described in the

next sections), the multiple-Sequence constraint could not be applied due to memory issues. We

therefore excluded this algorithm from the comparisons in the sections below.

Because single Sequence constraints can be solved in polynomial time, we consider instances

with multiple Sequence constraints in our experiments. We assume that these are defined on

the same ordered set of variables. To measure the impact of the different propagation methods

correctly, all approaches apply the same fixed search strategy, i.e., following the given ordering

of the variables, with a lexicographic value ordering heuristic. For each method, we measure the

number of backtracks from a failed search state as well as the solving time. All experiments are

performed using a 2.33GHz Intel Xeon machine.

8.6.1 Systems of Sequence Constraints

We first consider systems of multiple Sequence constraints that are defined on the same set of

variables. We generate instances with n = 50 variables each having domain {0, 1, . . . , 10}, and 5

Sequence constraints. For each Sequence constraint, we set the length of sub-sequence uniform

randomly between [5, n/2) as

q = (rand()%((n/2)− 5)) + 5.

Here, rand() refers to the standard C++ random number generator, i.e., rand()%k selects a number

1We thank Nina Narodytska for sharing the implementation with us.
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in the range [0, k−1]. Without the minimum length of 5, many of the instances would be very easy

to solve by either method. We next define the difference between l and u as ∆ := (rand()%q), and

set

l := (rand()%(q −∆)),

u := l +∆.

Lastly, we define the set of values S by first defining its cardinality as (rand()%11) + 1, and

then selecting that many values uniformly at random from {0, 1, . . . , 10}. We generated 250 such

instances in total.2

We solve each instance using the domain consistency propagator for Sequence, the cumulative

sums encoding (domain propagation), and the MDD propagator with maximum widths 2, 4, 8, 16,

32, 64, 128. Each method is given a maximum time limit of 1,800 seconds per instance.

We compare the performance of domain propagation and MDD propagation in Figure 8.4. In

this figure, we report for each given time point how many instances could be solved within that

time by a specific method. The three domain propagation methods are represented by ‘Cumulative

Sums’ (the cumulative sums decomposition), ‘Sequence - HPRS’ (the Sequence propagator by

2All instances are available at http://www.andrew.cmu.edu/user/vanhoeve/mdd/.
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Figure 8.5: Comparing domain and MDD propagation for Sequence constraints. Each data point
reflects the number of backtracks (a.) resp. solving time in seconds (b.) for a specific instance, when
solved with the best domain propagator (cumulative sums encoding) and the MDD propagator with
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could not be solved within 1,800s (Fig. b.). In Figure a., these instances are labeled separately by
TO (at tick-mark 108); note that the reported number of backtracks after 1,800 seconds may be
much less than 108 for these instances. All reported instances with fewer than 108 backtracks were
solved within the time limit.

[128, 129]), and ‘Sequence - Flow’ (the flow-based propagator by [101]). Observe that the cumulative

sums domain propagation, although not guaranteed to establish domain consistency, outperforms

both domain consistent Sequence propagators. Also, MDD propagation with maximum width

2 can already substantially outperform domain propagation. We can further observe that larger

maximum widths require more time for the MDDs to be processed, but in the end it does allow

to solve more instances: maximum MDD width 128 permits to solve all 250 instances within the

given time limit, whereas domain propagation can respectively solve 220 (Sequence - Flow), 230

(Sequence - HPRS), and 232 (Cumulative Sums) instances.

To illustrate the difference between domain and MDD propagation in more detail, Figure 8.5

presents scatter plots comparing domain propagation (cumulative sums) with MDD propagation

(maximum width 32). This comparison is particularly meaningful because both propagation meth-

ods rely on the cumulative sums representation. For each instance, Figure 8.5.a depicts the number

of backtracks while Figure 8.5.b depicts the solving time of both methods. The instances that
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Figure 8.6: Evaluating the impact of increased width for MDD propagation via survival function
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were not solved within the time limit are collected under ‘TO’ (time out) for that method. Fig-

ure 8.5.a demonstrates that MDD propagation can lead to dramatic search tree reductions, by

several orders of magnitude. Naturally, the MDD propagation comes with a computational cost,

but Figure 8.5.b shows that for almost all instances (especially the harder ones), the search tree

reductions correspond to faster solving times, again often several orders of magnitude.

We next evaluate the impact of increasing maximum widths of the MDD propagator. In Fig-

ure 8.6, we present for each method the ‘survival function’ with respect to the number of backtracks

(a.) and solving time (b.). Formally, when applied to combinatorial backtrack search algorithms,

the survival function represents the probability of a run taking more than x backtracks [67]. In

our case, we approximate this function by taking the proportion of instances that need at least x

backtracks (Figure 8.6.a), respectively seconds (Figure 8.6.b). Observe that these are log-log plots.

With respect to the search tree size, Figure 8.6.a clearly shows the strengthening of the MDD prop-

agation when the maximum width is increased. In particular, the domain propagation reflects the

linear behavior over several orders of magnitude that is typical for heavy-tailed runtime distribu-

tions. Naturally, similar behavior is present for the MDD propagation, but in a much weaker form

for increasing maximum MDD widths. The associated solving times are presented in Figure 8.6.b.

It reflects similar behavior, but also takes into account the initial computational overhead of MDD

propagation.
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Requirement Sequence(X, q, l, u, S)

At least 20 work shifts every 28 days: Sequence(X, 28, 20, 28, {D,E,N})

At least 4 off-days every 14 days: Sequence(X, 14, 4, 14, {O})

Between 1 and 4 night shifts every 14 days: Sequence(X, 14, 1, 4, {N})

Between 4 and 8 evening shifts every 14 days: Sequence(X, 14, 4, 8, {E})

Nights shifts cannot appear on consecutive days: Sequence(X, 2, 0, 1, {N})

Between 2 and 4 evening/night shifts every 7 days: Sequence(X, 7, 2, 4, {E,N})

At most 6 work shifts every 7 days: Sequence(X, 7, 0, 6, {D,E,N})

Table 8.1: Nurse rostering problem specification. Variable set X represents the shifts to be assigned
over a sequence of days. The possible shifts are day (D), evening (E), night (N), and day off (O).

Domain Domain MDD MDD MDD MDD

Sequence Cumul. Sums Width 1 Width 2 Width 4 Width 8

n BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

40 438,059 43.83 438,059 32.26 438,059 54.27 52,443 12.92 439 0.44 0 0.02
60 438,059 78.26 438,059 53.40 438,059 80.36 52,443 18.36 439 0.68 0 0.04
80 438,059 124.81 438,059 71.33 438,059 106.81 52,443 28.58 439 0.94 0 0.06
100 438,059 157.75 438,059 96.27 438,059 135.37 52,443 37.76 439 1.22 0 0.10

Table 8.2: Comparing domain propagation and the MDD propagation for Sequence on nurse
rostering instances. Here, n stands for the number of variables, BT for the number of backtracks,
and CPU for solving time in seconds.

8.6.2 Nurse Rostering Instances

We next consider a more structured problem class inspired by nurse rostering problems. The

problem is to design a work schedule for a nurse over a given horizon of n days. On each day, a

nurse can either work a day shift (D), evening shift (E), night shift (N), or have a day off (O). We

introduce a variable xi for each day i = 1, . . . , n, with domain D(xi) = {O,D,E,N} representing

the shift. We impose the eight Sequence constraints modeling the requirements listed in Table 8.1.

By the combinatorial nature of this problem, the size of the CP search tree turns out to be

largely independent on the length of the time horizon, when a lexicographic search (by increasing

day i) is applied. We however do consider instances with various time horizons (n = 40, 60, 80,

100), to address potential scaling issues.

The results are presented in Table 8.2. The columns for ‘Domain Sequence’ show the total

number of backtracks (BT) and solving time in seconds (CPU) for the domain consistent Sequence

propagator. Similarly, the columns for ‘Domain Cumul. Sums’ show this information for the

cumulative sums domain propagation. The subsequent columns show these numbers for the MDD

propagator, for MDDs of maximum width 1, 2, 4, and 8. Note that propagating an MDD of

width 1 corresponds to domain propagation, and indeed the associated number of backtracks is
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Figure 8.7: Performance comparison of MDD propagation for Sequence and Among for various
maximum widths. Each data point reflects the total number of instances that are solved by a
particular method within the corresponding time limit.

equivalent to the domain propagator of the cumulative sums. As a first observation, a maximum

width of 2 already reduces the number of backtracks by a factor 8.3. For maximum width of 8 the

MDD propagation even allows to solve the problem without search. The computation times are

correspondingly reduced, e.g., from 157s (resp. 96s) for the domain propagators to 0.10s for the

MDD propagator (width 8) for the instance with n = 100. Lastly, we can observe that in this case

MDD propagation does not suffer from scaling issues when compared to domain propagation.

As a final remark, we also attempted to solve these nurse rostering instances using the Sequence

domain propagator of CP Optimizer (IloSequence). It was able to solve the instance with n = 40

in 1,150 seconds, but none of the others instances were solved within the time limit of 1,800 seconds.

8.6.3 Comparing MDD Filtering for Sequence and Among

In our last experiment, we compare our Sequence MDD propagator to the MDD propagator for

Among constraints by [84]. Our main goal is to determine whether a large MDD is by itself sufficient

to solve these problem (irrespective of propagating Among or a cumulative sums decomposition),

or whether the additional information obtained by our Sequence propagator makes the difference.

We apply both methods, MDD propagation for Sequence and MDD propagation for Among,

to the data set of Section 8.6.1 containing 250 instances. The time limit is again 1,800 seconds,
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Figure 8.8: Evaluating MDD propagation for Sequence and Among for various maximum widths
via scatter plots with respect to search backtracks (a.) and solving time (b.). Both plots are in
log-log scale and follow the same format as Figure 8.5.

and we run the propagators with maximum MDD widths 2, 8, 32, and 128.

We first compare the performance of the MDD propagators for Among and Sequence in

Figure 8.7. The figure depicts the number of instances that can be solved within a given time limit

for the various methods. The plot indicates that the Among propagators are much weaker than

the Sequence propagator, and moreover that larger maximum widths alone do not suffice: using

the Sequence propagator with maximum width 2 outperforms the Among propagators for all

maximum widths up to 128.

The scatter plot in Figure 8.8 compares the MDD propagators for Among and Sequence in

more detail, for widths 2, 8, 32, and 128 (instances that take 0 backtracks, resp. less than 0.01

seconds, for either method are discarded from Figure 8.8.a, resp. 8.8.b). For smaller widths, there

are several instances that the Among propagator can solve faster, but the relative strength of the

Sequence propagator increases with larger widths. For width 128, the Sequence propagator can

achieve orders of magnitude smaller search trees and solving time than the Among propagators,

which again demonstrates the advantage of MDD propagation for Sequence when compared to

the Among decomposition.
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8.7 Conclusion

Constraint propagation with limited-width MDDs has recently been shown to be a powerful al-

ternative to the conventional propagation of variable domains in constraint programming. In this

work, we have studied MDD propagation for the Sequence constraint, which appears in, e.g.,

rostering and scheduling applications. We have first proved that establishing MDD consistency for

Sequence is NP-hard. However, we have also shown that this task is fixed parameter tractable

with respect to the length of the sub-sequences defined by the constraint, provided that the MDD

follows the variable ordering specified by the constraint. We then proposed a practical MDD propa-

gation algorithm for Sequence that is also polynomial in the length of the sub-sequences, which is

based on a cumulative decomposition. We provided extensive experimental results comparing our

MDD propagator for Sequence to domain propagators for Sequence as well as an existing MDD

propagator for Among. Our computational experiments have shown that our MDD propagator for

Sequence can outperform domain propagators by orders by magnitude in terms of search tree size

and solving time. Similar results were obtained when compared to the existing MDD propagator

for Among, which demonstrates that in practice a large MDD alone is not sufficient to solve these

problems; specific MDD propagators for global constraints such as Sequence can lead to orders

of magnitude speedups.
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Chapter 9

Conclusion

The main objective of this dissertation is to enhance the modeling and solving capabilities of generic

optimization technology through the use of decision diagrams (DDs). To this end, we extended the

analysis and application of decision diagrams for optimization problems in several ways.

First, we provided a modeling framework based on dynamic programming that can be used

to specify how to build a decision diagram of a discrete optimization problem and how to relax

it, facilitating the encoding process of a problem to a diagram representation. Using a number of

classical optimization problems as test cases, we analyzed the strength of the bounds obtained from

a relaxed decision diagram and those provided by a restricted decision diagram. This is a new type

of limited-size diagram introduced by us that only encodes feasible solutions of the problem, but

not necessarily all of them, thus defining a novel generic primal heuristic. We observed that both

relaxed and restricted diagrams were superior to state-of-the-art integer programming technology

when a large number of variables was involved.

We then introduced a novel branch-and-bound technique based on relaxed and restricted de-

cision diagrams. The key idea of the technique is to branch on the nodes of a relaxed decision

diagram, which eliminates symmetry in search as they aggregate partial assignments belonging to

the same equivalence class. Computational experiments for different problem classes indicate that

our rudimentary implementation is competitive with state-of-the-art generic optimization technol-

ogy. In particular, we were able to reduce the optimality gap of benchmark maximum cut instances

that still remain unsolved.

Another key characteristic of our branch-and-bound method is that it can be easily parallelized

and does not require too much communication among computer cores or complex load balancing

heuristics. It could therefore be suitable to cloud computing or to clusters with hundreds of com-

puter cores. We performed experiments on the maximum independent set problem, and obtained

almost linear solving time speed-ups on a cluster with 256 cores.

We also studied the application of relaxed diagrams to specific domains; namely, to sequencing

problems and to timetabling problems. We showed that our approach can be embedded into a state-
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of-the-art constraint programming solver to speed-up solving times by orders of magnitude. We

were specifically able to close open TSPLib benchmark instances of a traveling salesman problem

version where precedence constraints must be considered.

In summary, the resulting theoretical and empirical study of the techniques in this thesis indicate

four favorable characteristics of decision diagrams in the context of optimization:

• Modeling flexibility: The use of decision diagrams permits a more flexible approach to mod-

eling, since no particular structure is imposed on the constraints or objective function of the

problem. Instead, it only requires the problem to be formulated in a recursive way. This may

be more appropriate, e.g., for problems with no adequate integer linear formulation, such as

the maximum cut problem.

• Potentially suitable to large-scale problems: All involved operations are performed in com-

putationally inexpensive steps over a diagram with a parameterized size. We observed that

relevant information, such as non-trivial bounds, can be obtained even when the imposed

decision diagram sizes are small. Large scale problems are thus potential candidates to be

tackled with our techniques, for instance by adjusting the diagram size to take into account

the available computing resources.

• Alternative inference technique: Besides the computation of bounds, relaxed decision diagram

can also be used for inference purposes, i.e. to deduce new constraints of a problem. This

inference provides a method to link decision diagrams with other optimization techniques,

since the deduced constraints may be applied, e.g., to strengthen an integer programming

formulation of the problem or to derive new filtering algorithms in constraint programming.

For example, we showed that a relaxed decision diagram for certain scheduling problems

allows us to deduce non-trivial precedence relations between jobs, which can be incorporated

in constraint-based schedulers to significantly speed-up search.

• Parallelization: The recursive structure of a decision diagram permits more natural paral-

lelization strategies suitable for thousands of computer cores. Moreover, relaxed decision

diagrams can also be perceived as an approximation of a branching tree, providing measures

that can be used in load balancing heuristics, for example.

Decision diagrams provide a fresh perspective in optimization and many research directions are

possible in the near future. For instance, one could study different diagram representations for

integer programming models and how they could be relaxed or restricted. Moreover, one may also

study the relationship between a relaxed decision diagram and other forms of relaxation, such as a

linear programming relaxation or an approximate dynamic programming model. In summary, the

range of applications is quite exciting and can lead to significant insights and enhancements on the

way how discrete optimization problems are modeled and solved.
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