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Abstract

CPS (Cyber-Physical Systems) enable a new class of applications that perceive

their surroundings using raw data from sensors, monitor the timing of dynamic pro-

cesses, and control the physical environment. Since failures and misbehaviors in

application domains such as cars, medical devices, nuclear power plants, etc., may

cause significant damage to life and/or property, CPS need to be safe and depend-

able. A conventional way of improving dependability is to use redundant hard-

ware to replicate the whole (sub)system. Although hardware replication has been

widely deployed in conventional mission-critical systems, it is cost-prohibitive to

many emerging CPS application domains. Hardware replication also leads to lim-

ited system flexibility.

This dissertation studies the problem of making CPS affordably dependable and

develops a system-level framework that manages critical CPS resources including

processors, networks, and sensors. Our framework called SAFER (System-level Ar-

chitecture for Failure Evasion in Real-time applications) incorporates configurable

software mechanisms and policies to tolerate failures of critical CPS resources while

meeting their timing constraints. It supports adaptive graceful degradation, the effec-

tive use of different sensor modalities, and the fault-tolerant schemes of hot standby,

cold standby, and re-execution. SAFER reliably and efficiently allocates tasks and

their backups to CPU and sensor resources while satisfying network traffic con-

straints. It also fuses and (re)configures sensor data used by tasks to recover from

system failures. The SAFER framework aims to guarantee the timeliness of different

types of tasks that fall into one of four categories: (1) tasks with periodic arrivals,

(2) tasks with continually varying periods, (3) tasks with parallel threads, and (4)

tasks with self-suspensions. We offer the schedulability analyses and runtime sup-



port for such tasks with and without resource failures. Finally, the functionality of

the proposed system is evaluated on a self-driving car using SAFER. We conclude

that the proposed framework analytically satisfies timing constraints and predictably

operates systems with and without resource failures, hence making CPS dependable

and timely.
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Chapter 1

Introduction

Advances in CPS (Cyber-Physical Systems) have enabled a variety of different applications such

as drones, implantable medical devices, smart cars, distributed transportation systems, smart

grids, and planetary robots, which are tightly coupled with the physical world. As CPS become

part of everyday life, we will have many societal benefits ranging from autonomous driving pre-

venting accidents to smart buildings saving energy to implantable medical devices changing the

paradigm for patient treatment. A recent report from NIST (National Institute of Standards and

Technology) predicted that the technical CPS innovations could be applicable to areas constitut-

ing up to $82 trillion in economic activity by 2025.

The rise of CPS, however, poses new reliability and safety challenges. CPS sense the phys-

ical environment, process data in real-time, control actuators, and guarantee the timing of the

whole execution chain for ensuring safety. Since CPS are tightly coupled with the physical

world, anomalies such as hardware failures and timing errors may cause significant damage to

life and/or property. Therefore, CPS need to satisfy strict timing constraints based on operating

characteristics, making timing guarantees an essential requirement. System dependability is also

of high importance in CPS applications due to the interactions with the physical environment. A

typical example of such systems of an autonomous vehicle is depicted in Figure 1.1 [2].

Common practices addressing those anomalies tend to over-provision resources, replicating
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Figure 1.1: During a road test of an autonomous vehicle research platform developed at CMU

hardware components and keeping CPU and network loads low. However, many CPS systems are

targeted towards large-scale cost-sensitive markets that have stringent space and bill-of-material

constraints that cannot afford overprovisioning. For example, the automotive industry has been

trying to consolidate in-vehicle CPUs to reduce assembly and maintenance costs, as CPU- and

network-hungry autonomous driving features hit the market. More specifically, a recent high-

end vehicle has several active safety features such as adaptive cruise control, collision avoidance,

lane departure warning, and parking assist. Such a vehicle may not have enough space or it may

become too expensive to deploy traditional hardware redundancy for all CPS features to meet

reliability requirements. Higher assembly costs and complexity coming from overprovisioning

resources may not be desirable either. This trend is expected to continue as these features will be

available even in mid-range cars in the near future. We tackle such challenges by devising new

computational models reflecting the timing nature of CPS for system timeliness and providing a

runtime framework that improves CPS dependability.
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1.1 Thesis Statement

A dependable cyber-physical system is achievable using a software framework

that enables system analyzability and predictability.

In this dissertation, we study the problem of enabling dependable CPS through a system-level

software framework that manages CPS resources including processors, networks, and sensors.

The framework analytically satisfies timing constraints and predictably operates systems with

and without resource failures. To address these challenges, we develop an analysis engine that

supports efficient task allocation for software replication and guarantees timeliness of different

types of tasks that fall into one of four categories:

• Tasks with periodic arrivals: the proposed approach leverages the characteristics of soft-

ware replicas and network traffic for efficient task and/or backup allocation.

• Tasks with continually varying periods: a new task model is proposed to analyze tasks with

continually varying periods and workloads. We name this type of tasks rhythmic tasks.

• Tasks with parallel threads: task transformations are used to effectively schedule real-time

fork-join tasks with global fixed-priority assignment.

• Tasks with self-suspensions: a new scheduling algorithm that assigns different priority per

task segment is provided to deal with tasks that suspend themselves.

We design and prototype a runtime framework called SAFER (System-level Architecture for

Failure Evasion in Real-time applications). It incorporates configurable software mechanisms

and policies to tolerate failures of critical CPS resources while meeting task timing constraints.

SAFER supports adaptive graceful degradation, effective use of different sensor modalities, and

the fault-tolerance schemes of hot standby, cold standby, and re-execution. SAFER takes outputs

of the analysis engine, and it then reliably and efficiently allocates tasks and their backups to

CPU and sensor resources with network traffic considerations. It also fuses and (re)configures

sensor data used by tasks to recover from system failures. The functionality of the proposed
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Figure 1.2: Overview of the dissertation.

system is evaluated on a self-driving car using SAFER.

An overview of the proposed framework is depicted in Figure 1.2. The efficient resource al-

location algorithms for software replication are described in Chapters 3 and 4. We study schedu-

lability analyses for the different task models: periodic tasks in Chapter 5, rhythmic tasks in

Chapter 6, parallel tasks in Chapter 7, and self-suspending tasks in Chapter 7. The results of the

resource allocation and schedulability analysis methods are utilized in SAFER to telerate failures

of critical CPS resources. The details of how SAFER works can be found in Chapter 8.

1.2 Scope of the Thesis

We assume that the system comprises p nodes communicating via messages over a network,

where each node has a multi-core processor executing real-time tasks. Those tasks are scheduled
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Figure 1.3: Design space of the dissertation.

under the fixed-priority preemptive scheduling policy. Some tasks are independent1, and the

other tasks use a Publish-Subscribe architecture to communicate with each other so that any

task on the system can be configured to be recoverable. The network has an upper-bound on

message delivery and is completely connected. In other words, a message is eventually delivered

within a known delay bound, and the network is assumed not to partition2. The design space of

this dissertation is depicted in Figure 1.3, where the dark gray rectangles represent the design

assumptions considered in this dissertation.

1.2.1 Failure Model

Tasks, processors, and sensors on the system are subject to fail-stop failures, where they fail

by crashing and do not generate incorrect outputs. In other words, tasks running on a live pro-

1Although tasks that share mutually exclusive resources are beyond the scope of this dissertation, conventional

real-time synchronization protocols such as priority inheritance and priority ceiling protocol can be leveraged to

incorporate such tasks.
2Redundant links can make network partitioning highly unlikely. Such network redundancy is the topic of future

study and is beyond the scope of this dissertation.
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cessor/node are assumed to always emit correct outputs. Therefore, in order for the system to

continue to correctly operate, recovery and restoration processes might be required. These fail-

ures may also happen concurrently. In this dissertation, no single-point-of-failure is allowed. We

also expect failures to get recovered within a guaranteed time duration.

The system network may experience occasional omission failures, i.e., it may suffer from

intermittent packet loss. This implies that the network does not fail completely. This again can

be realized (say) by using redundant links.

1.2.2 Task Model

Each task is assumed to generate an infinite series of independent jobs. Each job will have

different characteristics based on the task model: periodic task, rhythmic task, parallel task, or

self-suspending task. One common property is that all jobs have associated timing deadlines.

Although we generally assume a hard real-time system, the effects of a deadline miss may vary.

We assume that all jobs are preemptable with negligible cost. We also assume that there is

negligible migration cost when a job is migrated from one core to another.

We model a real-time task as a sequence of jobs that are releasing every T units of time.

Depending on whether T continually varies or not, we classify tasks into two different classes:

periodic tasks or rhythmic tasks. When a task runs with multi-threads, we categorize it as a

parallel task. When a task suspends itself and hence consists of multiple execution segments, we

treat it as a self-suspending task. Although either a periodic task or a rhythmic task could be a

parallel task and/or a self-suspending task, this dissertation assumes that (1) a self-suspending

task does not have parallel threads, (2) a parallel task does not suspend itself, and (3) both a

self-suspending task and a parallel task are periodic.

We aim to limit the fail-over time on each task to yield a reliable system. Depending on the

fail-over time requirement, we classify each task into one of three classes: (1) Hard Recovery

Task, which should be able to recover and complete within its original deadline, (2) Soft Recovery
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Task, which has more relaxed fail-over time requirements, and (3) Best-Effort Recovery Task,

whose recovery is optional depending on the amount of available resources.

1.2.3 Recovery Model

We use passive replication (primary-backup [3]), which has been mostly used for soft real-time

systems. To support both hard and soft recovery tasks described above, we provide two different

types of backups: hot standby and cold standby.

A hot standby runs concurrently with its primary on another processor. Depending on the

reliability requirements, multiple hot standbys may coexist on different nodes. Only the pri-

mary emits its outputs. Its hot standbys simultaneously run on different nodes, receive the same

input as the primary, but they do not generate any outputs. When a primary fails, one of the

hot standbys is promoted to be the primary and starts generating outputs. Since it has been al-

ready running, only interface redirection from a null output device to the active channel needs to

happen. This enables the use of hot standbys to recover hard recovery tasks3.

A cold standby is a dormant task which is triggered to run when a failure is detected. When

its primary is running, its binary resides in the system memory, and it does not consume any CPU

resources; however, state information from the primary task computations are periodically sent

to its cold standby node(s). On failure of the primary or a specified number of hot standbys, the

cold standby becomes active and starts from the last check-pointed status. The cold standbys can

be used for recovering soft recovery tasks and best-effort recovery tasks.

1.3 Approach Overview

In this section, we describe our proposed approach. Various aspects of our work fall into one of

three categories: (1) resource allocation for fault-tolerant computing, (2) schedulability analysis

3A time synchronization service is important to support hot standbys.
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for cyber-physical systems, and (3) runtime support for fault-tolerance features.

1.3.1 Resource Allocation for Fault-Tolerant Computing

Based on the task classification defined in Section 1.2.2, the recovery-time requirement imposed

by hard recovery tasks does not allow much room for re-executing the failed jobs. For such tasks,

a practical solution is to use multiple hot standbys that can take over the functionality under the

presence of failures. Jobs of these hot standbys are released in parallel with those of the primary

task, and they have the same deadline as the primary.

We assume a fail-stop failure model [4], where a working replica can assume control by

detecting the lack of output from the primary. The replica can immediately provide the output

since it would also have the output by the original deadline. In order to maximize task reliability,

a process and its hot standbys should not be co-located on the same processor. We refer to this as

the placement constraint. For this purpose, we develop a task allocation algorithm that optimizes

for allocating tasks with hot standbys having such placement constraints.

Cold standbys reduce the resource over-provisioning costs further by getting activated only

under failure conditions. The cold standbys use the task state information, which can be stored in

shared memory or obtained during subsequent execution, and are used to recover soft recovery or

best-effort recovery tasks. The benefit of a cold standby is that it leads to lesser consumption of

resources under normal conditions. However, the recovery time bounds under cold standby will

be much larger than those guaranteed by a hot standby. Using the system reliability requirement

and the maximum number of processors that can fail during system operation, we can reduce the

resource over-provisioning required for cold standbys of tasks allocated across different proces-

sors. Using this observation, we develop an algorithm that uses virtual tasks to consolidate and

capture the resource requirements for cold standbys. The details can be found in Chapter 3.

We then consider a set of tasks that communicate each other to achieve the same goal in

Chapter 4. For example, in Steer-by-Wire (SBW) systems [5], sensors measure information
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about steering wheel movement, and computational components in microprocessors compute

signals for controlling the wheels with the information from sensors. Actuators receive the con-

trol signals for the motors directly, and these signals are handled periodically for timely handling

of user operations and reactions to the environment. In order to reflect this nature, we define an

application flow, which is composed of periodically executing tasks generating information data

and events regularly that flow through multiple tasks. An application flow also has an end-to-

end delay constraint from input to output. From a dependability perspective, a single failure of

a task within an application flow may affect all of its successors such that the overall applica-

tion flow timing requirement is violated. By extending the two task allocation algorithms above,

we also propose an algorithm designed for the application flow model. The algorithm captures

communication among tasks and cluster them based on their network bandwidth needs.

1.3.2 Schedulability Analyses for Cyber-Physical Systems

To properly allocate CPS tasks to resources, it is important to understand the characteristics

of CPS tasks beyond the conventional periodic task model. In this subsection, we will show

three different task types: tasks with continually varying periods, tasks with parallel threads, and

tasks with self-suspensions. We then propose how to predict their executions and analyze their

properties for satisfying timing constraints on CPS.

Tasks with Continually Varying Periods

CPS require a high level of confidence in system timeliness as a critical task not meeting its

timing deadline can lead to system failure. The dynamic nature of CPS is a dominant factor af-

fecting the CPS timeliness. In automotive sub-systems, for example, the engine events activating

the fuel injection task come from reference pulses generated by sensors at the engine crankshaft.

Therefore, the periods of these tasks vary depending on the speed of the crankshaft. As an analog

variable, speed is continuous and hence the period of the task can change both rapidly and con-
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tinuously. The execution time of these tasks also vary and the worst-case execution time (WCET)

arises when the engine speed increases to its maximum [6]. It is known in the automotive com-

munity that the engine control performance deteriorates with undersampling, i.e., tasks having a

longer period than the required minimum period for a given speed.

Conventional task models such as periodic tasks or aperiodic tasks are not adequate to deal

with such dynamic CPS behaviors as they do not incorporate physical attributes. In Chapter 5,

therefore, we define a new task model called Rhythmic Tasks for characterizing and analyz-

ing tasks that have continually varying periods depending on external physical events. We also

propose response-time analyses for rhythmic tasks under three cases: constant engine speed, ac-

celerating engine speed and decelerating engine speed. We provide guidelines well-suited for

CPS applications to evaluate schedulable utilization levels for the rhythmic task model.

Tasks with Parallel Threads

Many CPS tasks for perception (tracking) and actuation (planning) must run in real-time; how-

ever the CPU-hogging nature of these algorithms poses challenges in guaranteeing their time-

liness. The timing challenge can be addressed by the fact that such algorithms are immensely

parallelizable. For example, a planning algorithm of a self-driving car can benefit from paral-

lelized tasks composed of numerous threads. The motion-planning algorithm calculates the best

path for the vehicle to follow among a myriad of potential paths. Since the candidate paths are

independent, this algorithm can be expedited by parallelizing the cost calculation for each path.

The more paths the algorithm goes through, the better the driving quality will be. A perception

subsystem of a self-driving car can also benefit from parallel tasks. In order for the vehicle to un-

derstand its surroundings, the perception subsystem should be able to process massive amounts

of data from various types of sensors. The vehicle can classify and track the detected obstacles,

whose number has a major impact on how many parallel threads are spawned by the perception

subsystem.
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In Chapter 6, we extend the fork-join real-time task model proposed in [1] so that an arbi-

trary number of threads can be scheduled, where the number of threads can vary depending on

the physical attributes of the system. To efficiently schedule the proposed task model, we also

propose a task transform to schedule the task model on a given number of processing cores.

Then, we provide a resource augmentation bound for global Deadline Monotoic (DM) schedul-

ing for fork-join real-time tasks. The proposed scheme is implemented on Linux/RK [7] and

ported to the self-driving car Boss [8]. We evaluate our proposed scheme on Boss by showing

its driving quality in terms of curvature and velocity profiles of the vehicle with an enhanced

motion-planning algorithm [9].

Tasks with Self-Suspensions

An increasing number of special-purpose processors in CPS are added to improve the efficiency

of frequently used operations. Unfortunately, the use of such special-purpose processors (a.k.a.

hardware accelerators) may introduce suspension delays that must be taken into account in

schedulability analyses when a task waits for a shared resource and interacts with an I/O device

or communication interface. Offloading complex computations to hardware accelerators such

as Digital Signal Processors (DSPs) or Graphics Processing Units (GPUs) can cause suspension

delays as well, hence reducing the benefits of using such hardware accelerators.

Although many conventional real-time theories [10] have incorporated the delays in the

worst-case execution/response time of a task that suspends itself, the analysis results lead to have

significant pessimism. A pessimistic analysis is not desirable in a compute-intensive system such

as the self-driving car depicted in Figure 1.1. Such systems run computationally-demanding al-

gorithms ranging from perception [11] to planning [9, 12] on GPUs in real-time. In this case, if

we use traditional schedulability analysis, the potential utilization improvement due to the use of

GPUs is eliminated by the pessimism in the CPU scheduling.

In Chapter 7, to improve the schedulability of a taskset with tasks with self-suspensions,
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we propose the segment-fixed priority scheduling that decomposes self-suspending tasks into

multiple segments assigning them different priorities if needed. We use phase enforcement to

prevent jitters [13, 14], and we develop an exact schedulability analysis.

1.3.3 Runtime Support for Fault-tolerance Features

To support the proposed approach in real-time, it is important to build a robust functional archi-

tecture for CPS that allows to perform the repeating sequence of perception, computation and

control in the presence of possible system failures. Most importantly, no single point of failure

is permitted. In other words, a task/processor/sensor failure should not lead to a system failure.

Secondly, failure recovery within a guaranteed duration should be achieved. Since CPS are usu-

ally tightly connected to the physical world, failure recovery without predictable timing behavior

could yield unpredictable results in the physical world. Apart from these two goals, predictive

fault discovery and notification, resource isolation, ease of use of abstraction, ease of application

development, and sensor/actuator control are other factors considered.

The goals are achieved using a layer called SAFER (System-level Architecture for Failure

Evasion in Real-time applications) that incorporates configurable task-level fault-tolerance fea-

tures to tolerate fail-stop processor, task, and sensor failures for CPS in a timely manner. To

detect failures, SAFER monitors the health status and state information of each task and broad-

casts the information. When a failure is detected using either time-based failure detection or

event-based failure detection, SAFER reconfigures the system to retain the functionality of the

whole system using task-level fault-tolerance techniques. More specifically, SAFER provides

the following features: (a) Each task can have zero, one or more backup(s), (b) Each backup

can be either a hot standby or a cold standby, (c) Failure detection and recovery latencies can be

guaranteed, (d) A primary and each of its backup(s) are always allocated to run on independent

processor boards to avoid common failure modes, (e) State transfer is managed for seamless re-

covery from failures, (f) In case of a sensor failure, tasks using the failed sensor will be notified to
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apply appropriate sensor recovery schemes. The detailed information is discussed in Chapter 8.

Our fault-tolerant task allocation schemes proposed in 1.3.1 are integrated with SAFER

through a model-based development tool, SysWeaver, developed at CMU [15]. Our analysis

engine based on the formal timing analysis is added to SysWeaver, and we add a simulation

capability of SAFER features under the presence of failures. Specifically, by injecting failures,

we are able to simulate the timing behavior of the system and verify its operation with different

models and system parameters.

Sensor/Actuator Failure Recovery

The effective use of different sensor/actuator modalities in CPS is essential. CPS have various

sensor modalities providing 360-degree coverage. Many analog sensors are prone to intermittent

faults, so using different sensor modalities is better than duplicating the same type of sensors

because different types of sensors typically respond to the same environmental condition in di-

verse ways. Suppose an autonomous vehicle is equipped with radars for blind spot detection. If

a backward-looking radar does not work properly, a vision algorithm detecting obstacles from

images obtained through a backward-looking camera can be used. A similar approach is also

applicable to actuators. An autonomous vehicle may use a low-grade sensor with complex data-

processing algorithms after a high-grade sensor with simple algorithms fails, until the vehicle

can safely stop.
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Chapter 2

Literature Review

This chapter describes existing work related to this dissertation. Our work can fall into one of

three categories: (1) resource allocation for fault-tolerant computing, (2) schedulability analysis

for CPS, and (3) runtime support for fault-tolerance features. We will discuss the related work in

each domain and explain how our work differs from the literature. Sensor failure recovery will

also be discussed as a part of the runtime support for fault-tolerance features.

2.1 Resource Allocation for Fault-tolerant Computing

Real-time scheduling algorithms for uniprocessors have been studied extensively for guaran-

teeing timeliness. For example, Liu and Layland proposed a static real-time scheduling algo-

rithm, RMS (Rate Monotonic Scheduling), which prioritizes periodic tasks according to their

rates since [16]. Emerging demands on computational capability have driven various multi-

processor scheduling algorithms for supporting similar properties on multiprocessor environ-

ments. Multiprocessor scheduling is therefore a well-studied problem in real-time systems lit-

erature [17, 18, 19, 20]. Existing solutions are broadly classified into global [21] scheduling

with unrestricted task migration, partitioned [22] scheduling with strictly no task migration, and

hybrid [23, 24] with restricted task migration. Although each of these approaches has its own
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benefits, in this work we are primarily interested in the partitioned approach on multiprocessor

environments due to the high cost associated with migrating tasks across processors. We allow

on-demand activation to deal with failed processors, where we explicitly capture the associated

timing cost of restoring the task state on a different processor.

A wealth of literature exists on the topic of fault-tolerant computing [25, 26, 27]. active and

passive replication are standard mechanisms to improve system reliability. These replication-

based approaches affect on research [28, 29, 30] in real-time domain. The key distinction made

in real-time contexts is systems with strict bounds on system recovery time. A successful re-

covery is one where the system not only resumes its normal operation but does so within a

pre-specified recovery time. These recovery time requirements are typically derived from the

physical environment in which the system operates. For example, an autonomous vehicle cannot

stall significantly in the middle of a highway during system recovery.

Fault-tolerant scheduling in multiprocessor systems has also received attention in [31]. In

[32], the FFD (First-Fit Decreasing) is augmented with placement constraints to allocate repli-

cated tasks. Most closely related to our work is [33], where the authors proposed a BFD (Best-Fit

Decreasing) with placement constraints as a practical solution, which we call BFD-P (BFD with

Placement constraint). Our work differs from theirs in two ways: (i) we propose a new bin-

packing heuristic using a cluster of replicated tasks which performs better than BFD-P, and (ii)

we deal with the allocation of cold standbys that are passive entities, which can be potentially

consolidated across processors.

2.2 Schedulability Analysis for Cyber-Physical Systems

2.2.1 Tasks with Continually Varying Periods

Extensions to the conventional periodic task model [16] such as constrained-deadline sporadic

tasks [34] and arbitrary deadline tasks [35] have been explored in the past. Although these task
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models represent tasks having different relationships between their periods and deadlines, the

task parameters themselves are static and/or worst-case in nature. In this dissertation, we explore

a model where certain tasks have dynamically changing parameters, which are determined by

external or physical system attributes such as the engine speed in a PCM.

The importance of task periods on the quality of engine control has been demonstrated in

[6]. As the engine speed varies, the system must continuously change the engine control task

periods. Given vehicle dynamics [36], maintaining a close relationship between the control task

and the engine speed is key for achieving high efficiency. Worst-case execution time analysis

of engine tasks was carried out in [37]. At higher speeds, system designers tend to adaptively

reduce the task computation times to counteract the shrinking task periods, and try to maintain

approximately constant system utilization. We develop the rhythmic task model in detail to

represent such types of engine control tasks and study the resulting properties.

Some task models with dynamically changing parameters have been studied in the past. For

instance, the elastic task model [38] treats tasks as springs with given elastic co-efficients. More

recently, the gravitational task model [39] was introduced by representing tasks as bobs hanging

on a pendulum with the objective of preferably executing at a target set point. Although these

task models have dynamically changing parameters, their usage is often motivated by the need

to provide quality of service or to maximize system utility. Also, due to the fact that the elastic

task model uses dynamic-priority scheduling and the gravitational task model is based on non-

preemptive jobs, the previous work is not appropriate for fixed-priority preemptive scheduling.

We consider a model where the changes in task parameters are resulting from the physical nature

of the system, and changes in the operating environment drive task requirements.

From a schedulability analysis perspective, the analyses of minimum task periods and max-

imum worst-case execution time are well-known results for the periodic task model [40, 41].

The acyclic task model [42] uses a task model where a task comprises successive invocations

but with no constraints between the periods of successive invocations. The utilization bound
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for acyclic tasks was also derived. Our rhythmic task model is more restricted, is motivated by

cyber-physical requirements and should yield better utilization. We provide some bounds and

guidelines to find schedulable regions for the generic rhythmic task model. These results are also

helpful to understand the utilization bounds when only the task periods are given. We study the

properties of acceleration and deceleration, which correspond to the maximum rate at which task

periods can be decreased and increased respectively. In this regard, the closest work to ours is

that of the mode change protocol [43]. However, we are interested in understanding the effect of

a series of continuous mode changes on the schedulability of lower-priority tasks, as opposed to

one single independent system-level mode change.

Tasks with relationships between task periods and physical attributes can be also found in

other cyber-physical subsystems besides the engine control task. For example, in the context

of autonomous driving [8], the sensor processing tasks need to execute at a higher rate when

the vehicle is moving at a higher speed, since the vehicle would cover a longer distance in a

shorter time. Another good example is building energy management [44] where fine-grained

management depending on varying environmental parameters will save more energy. Also, most

CPS with control algorithms can likely obtain benefits from the rhythmic task model because the

quality of control is affected significantly by sampling rates.

2.2.2 Tasks with Parallel Threads

Since Dhall and Liu [17] showed that RMS and Earliest Deadline First (EDF) scheduling could

utilize only one processor regardless of how many processors a system had, there has been exten-

sive research on global real-time scheduling [20, 45, 46, 47, 48, 49, 50, 51], where a comprehen-

sive survey can be found in [51]. It is well-known that the anomaly of global scheduling happens

when a set of tasks has two types of tasks: tasks with a low ratio of the worst-case execution

time to relative deadline and tasks with a high ratio of the worst-case execution time to relative

deadline. Many algorithms have been invented to avoid such cases, and corresponding schedu-
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lability tests have been proposed. Using our proposed task transformation, any existing global

scheduling algorithm can be applied to schedule parallel real-time tasks. In this dissertation, we

have used the schedulability bounds for global DM proposed in [46, 50].

There has not been much research on scheduling parallel real-time tasks [1, 52, 53, 54]. Lak-

shmanan et al. [1] proposed a fork-join real-time task model composed of alternating sequential

and parallel segments. They also provided the analysis and resource augmentation bound for the

partitioned DM scheduling [22] of parallel real-time tasks using the task stretch transformation.

The proposed multiprocessor scheduling algorithm is shown to have a resource augmentation

bound of 3.42, which implies that any task set that is feasible on m unit-speed processors can be

scheduled by the proposed algorithm on m processors that are 3.42 times faster. Our work is a

generalization of this model and provides a resource augmentation bound when global schedul-

ing is used.

Saifullah et al. [53] also proposed a parallel synchronization model that is also generalized

from the fork-join task model in [1] so that a task can have an arbitrary number of threads per

segment. Based on the proposed model, a task decomposition method is used to decompose

each parallel task into a set of sequential tasks. The task decomposition achieves a resource

augmentation bound of 4 and 5 when the decomposed tasks are scheduled using global EDF

and partitioned DM scheduling, respectively. Our work focuses more on global fixed-priority

scheduling and shows the evaluation results measured from a real-world implementation.

More recently, Nelissen et al. [54] presented both offline and online algorithms to minimize

the number of cores to be used to schedule multi-threaded tasks using a similar model to the

model proposed in [53]. By using scheduling algorithms which can guarantee the schedulability

of the given tasks as long as the sum of densities of all the given tasks is less than or equal to the

number of processing cores, they obtained a resource augmentation bound of 2. Our perspective

is different from theirs in a sense that we schedule a set of tasks under a given hardware constraint

(the number of processing cores) rather than finding hardware for the given tasks. We also use
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global DM scheduling algorithm more commonly used in practice and show the evaluation results

obtained from a working system.

Apart from work using the thread model mentioned above, there has also been research based

on gang scheduling, where all parallel components of the same task should arrive and complete

at the same time. Gang EDF [52] was proposed to address gang scheduling in the real-time

context. Our work is different from this in two ways: (1) our model allows the parallel segments

to be preempted during the parallel execution, and (2) a different number of parallel threads can

be used.

2.2.3 Tasks with Self-Suspensions

Previous work related to task-fixed priority scheduling with suspension includes [14, 55, 56, 57,

58]. Ridouard, et al. [56, 58] proved that the problem of scheduling real-time tasks with self-

suspension is NP-Hard in the strong sense. In [55] the authors present a comparison between

two multi-processor priority inheritance protocol (MPCP and MSRP), where tasks can suspend

waiting for a remote lock. In this work the authors highlight the different approaches to deal

with this suspension. In MPCP, a task waiting for a global lock is allowed to suspend, allowing

lower-priority tasks to run, and a period-enforcement is used to avoid jitter [13]. In MSRP, on the

other hand, a busy wait is used and no lower-priority tasks are allowed to run. In our work, we

also use a period enforcement mechanism to avoid jitter in the suspension, but each segment (e.g.

before and after the suspension) is given a different priority according to different schemes of

segment deadline assignments. In [57] the authors analyze the execution of tasks with segments

running in a local processors and segments running on remote co-processors that can be seen

as a suspension in the local processor. In this case the authors bound the suspension with a

minimum and maximum and provide a recurrence equation to find the worst-case interference

that a task can suffer from higher-priority ones with a number of these segments. In contrast,

we provide a schedulability bound for taskset with only the highest-priority task with suspension
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while using a generalized task model with suspensions where each segment is assigned its own

priority. The period enforcement of offsets, which [57] do not use, allows us to provide improved

schedulability.

In [14] the authors analyze the scheduling of fixed-priority tasksets with self-suspension.

Specifically, the authors characterize the critical instant of sporadic self-suspending task under

the influence of non-suspending tasks and developed a response time test. In addition, they

provide two execution control policies that transform the interference of high-priority suspending

tasks into that similar to a non-suspending ones to be able to use their response-time test with

these tasks. In contrast, we developed a schedulability bound for a taskset where the higher-

priority is a self-suspending task and developed a response-time test for suspending tasks where

each segment can be assigned different priorities and have release enforcement.

The schedulability of self-suspending tasks has also been studied for soft-real-time guar-

antees. In [59] Liu and Anderson presented a technique to analyze the schedulability of soft

real-time tasks with suspension with bounded deadline tardiness requirements scheduled under

global EDF in multiprocessors. In [60] the authors studied the problem of bounding the tardiness

of soft-real-time tasks when using GPU as coprocessors, and model them with two techniques,

as a shared resource and as a container. For the shared resource approach they used locking pro-

tocols to frame the analysis of GPU execution either as suspension or busy time depending on

the locking protocol. For the container approach they use a hierarchical bandwidth reservation

(a container) approach grouping all the tasks that use the GPU in a separate container to provide

a FIFO scheduling discipline and considering their suspension as busy time.

In [61] the author presents a schedulability analysis for tasks with offsets. These offsets are

used to synchronize the release of groups of tasks that synchronized within the group (known as

transactions). In [62] the authors extend this work to allow offsets and deadlines to go beyond

periods improving the schedulable utilization. The efficiency of the response time analysis in

this model is then further improved in [63]. These papers have some similarities with the use of
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offsets between segments in tasks in our model. However, in our work we start with suspension

intervals that separate task segments from where we derive intermediate deadlines that in turn

allows us to assign per-segment fixed priorities.

In [64] the authors developed another schedulability analysis for tasks with offsets. However,

in this case the analysis assumes EDF scheduling and the results cannot be applicable to fixed-

priority tasks.

2.3 Runtime Support for Fault-tolerance Features

Fault-tolerant distributed embedded systems have been extensively studied in the literature. The

ISIS system [65] is a well-known software system that supports fault-tolerance services. FT-

CORBA (Fault-Tolerant CORBA) [27, 66, 67] has been used in various applications to design

and implement a fault-tolerant distributed system, and practical experiences on two different

FT-CORBA infrastructures are described in [68]. CORBA-based fault-tolerant middleware ser-

vices are also surveyed in [69]. There are other replication-based recovery services such as

Arjuna [70], REL [71] and IFLOW [72], which are not based on CORBA. One clear distinction

between the existing work and SAFER is that SAFER provides the framework to support timely

failure recovery in a generic distributed embedded system.

There have also been efforts on building real-time fault-tolerant systems. MEAD [73] pro-

vides a proactive fail-over framework using a failure prediction method to overcome the unpre-

dictable nature of failure occurrences and support somewhat predictable timing behavior. FLARe

[74] is designed and implemented to support fault-tolerance for distributed soft real-time appli-

cations. SAFER differs from the above-mention systems in that SAFER is built on a publish-

subscribe model rather than a client-server model. In addition, SAFER provides predictable

timing characteristics of failure detection and recovery when real-time systems become SAFER-

enabled. SAFER also provides a flexible failure detection and recovery infrastructure. SAFER

detects failures using heartbeat signals (time-based) as well as OS (Operating Systems) signals
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(event-driven). A primary can use hot standby and/or cold standby as a backup.

2.3.1 Sensor/Actuator Failure Recovery

There have been extensive efforts on detecting sensor failures and recovering from those failures.

In general, there are two types of sensor failures: hard and soft failures [75]1. When a failure is

hard, the failed sensor is stuck at a certain condition so that it outputs only one value including no

output and the following measured data become invalid. When a sensor experiences a soft failure,

its output becomes less reliable. In other words, the quality of the measurement is degraded, and

the data should be cautiously used. To detect such failures, many different approaches have

been proposed. In [75, 79], the authors used a bank of Kalman filters for a multiple model

adaptive estimator to detect and identify sensor failures. The authors of [80, 81] leveraged a

Bayesian belief network model to achieve these goals. Other methods such as fuzzy logic [82],

the Nadaraya Watson statistical estimator [83], and subspace model identification [84] were also

used. Although our scheme can be used on top of those methods, we choose to use a Kalman

filter-based method in this dissertation due to its speed and accuracy on our evaluation platform.

Recovering from sensor failures has been extensively studied in the literature ranging from

building a fault-tolerant sensor [85] to making data fusion reliable [78]. In [85], Marzullo pro-

posed a process control program that can tolerate sensor failures. He used replication and voting

to mask failures and studied hierarchies of failure models to average sensor values in a fault-

tolerant way. Our work is more general in a sense that we do not necessarily use the same type

of sensors. Our focus is also more on leveraging different modalities of sensors to improve the

system dependability. In [86], the authors proposed an algorithm that used one type of sensors

as backups of different types of sensors. They formulated it as a multi-modal sensor allocation

problem and provided schemes that could deal with binary and multi-level sensors. In [78], the

1There are other papers [76, 77, 78] that classify sensor failures into more detailed categories, but most of them

fall into these two categories.

23



authors proposed a fault-tolerant data fusion technique for the same type of sensors to minimize

the mean square error of sensor measurements. Although both papers use multi-sensor data fu-

sion technique [87] to achieve their goals and our work is similar in that sense, our approach

takes into account both the same and different types of sensors. There has also been research on

building a reliable distributed control system [88, 89, 90], which can be applicable to actuator

failure recovery.
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Chapter 3

Resource Allocation for Fault-Tolerant
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Figure 3.1: Resource allocation for fault-tolerant computing in the dissertation overview.
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Cyber-Physical Systems (CPS) are growing in terms of both scale and complexity. An em-

phasis on scalability, extensibility, and flexibility has led to complex electrical/electronic multi-

processor architectures. In a variety of applications such as industrial control, avionics, and auto-

motive systems, such complexity can lead to unavoidable failures in both hardware and software.

Furthermore, developers/designers may not be able to predict when and where faults can happen.

System-level dependability is therefore a key concern in evolving CPS. An emerging application

of such systems is autonomous driving. For example, the Urban Challenge winning autonomous

vehicle, Boss [8], used several embedded processors and ten Intel Core2Duo processors due to

high computing power requirements. However, CMOS scaling for performance improvements

has decreased the reliability of processors [91]. This could potentially have catastrophic effects

if not taken into account, for example, unmanned vehicles can lose driving capability due to

processor failures.

Two different notions, fault-tolerant and fail-safe, are applicable for characterizing the sys-

tem behavior under failures. A fault-tolerant system requires that a system/user does not recog-

nize a failure occurrence during the operation in terms of functionalities. Several conventional

replication methods such as hardware redundancy, software redundancy, and re-execution can be

used to build fault-tolerant systems. A fail-safe system requires a different type of fault handling.

It allows failures, but must not generate an unsafe system state by overriding a proper procedure

when a failure occurs. Developing a fail-safe system requires us to consider specific failure sce-

narios. As described earlier, enumerating all possible failure scenarios is not an easy task for

complex systems, therefore, we focus on achieving the more robust property of fault tolerance.

Systems that interact with the physical world such as autonomous vehicles should adhere to

the strict timing constraints imposed by their operating environment. In such real-time systems,

tasks are conventionally modeled as a periodic sequence of jobs that are releasing every T units of

time, where each job needs to finish within a relative deadline of D time-units from its release.

Dealing with unpredictable failures in such systems is not a trivial job. Therefore, instead of
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assuming a priori failure scenarios, dynamically handling failures with bounded recovery time

is desirable for real-time systems. By handling failures within a required timing boundary, the

Time-To-Recovery is bounded, and the system need not be stopped. Tasks with the requirement

that they complete within D units of time from release, even under the presence of failures (i.e.

recover and complete within the original deadline), are denoted as Hard Recovery Tasks. Tasks

with more relaxed recovery-time requirements are denoted as Soft Recovery Tasks. Optional

tasks that are not critical for system operation and do not require bounded recovery times are

denoted as Best-Effort Recovery Tasks.

The recovery-time requirement imposed by Hard Recovery Tasks does not allow much room

for re-executing the failed jobs. For such tasks, a practical solution is to use multiple hot standby

replicas that can take over the functionality under the presence of failures. Jobs of these hot

standbys are released in parallel with those of the primary task, and they have the same deadline

as the primary. It is not required that the hot standbys execute whenever the primary executes,

however, they have the same relative deadline as the primary. This relaxed synchronicity between

hot standby and its primary enables a more practical solution.

We assume a fail-stop failure model [4], where a working replica can assume control by

detecting the lack of output from the primary. The replica can immediately provide the output

since it would also have the output by the original deadline. In order to maximize task reliability,

a process and its hot standbys should not be co-located on the same processor. We refer to this as

the placement constraint. For this purpose, we develop a task allocation algorithm called R-BFD

(Reliable Best-Fit Decreasing) that optimizes for allocating tasks with hot standbys having such

placement constraints.

Cold standbys reduce the resource over-provisioning costs further by getting activated only

under failure conditions. The cold standbys use the task state information, which can be stored in

shared memory or obtained during subsequent execution, and are used to recover soft recovery

or best-effort recovery tasks. The benefit of cold standbys is that it leads to lesser consumption of
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resources under normal conditions. However, the recovery time bounds under cold standby will

be much larger than those guaranteed by hot standby. Using the system reliability requirement

and the maximum number of processors that can fail during system operation, we can reduce

the resource over-provisioning required for cold standby replicas of tasks allocated across dif-

ferent processors. Using this observation, we develop an algorithm called R-BATCH (Reliable

Bin-packing Algorithm for Tasks with Cold standby and Hot standby) that uses virtual tasks to

consolidate and capture the resource requirements for cold standbys.

In this chapter, we consider the problem of allocating real-time periodic tasks along with their

replicas while meeting the reliability and timeliness requirements of a given system as depicted in

Figure 3.1. The outcomes of the proposed techniques in this chapter can be used by the runtime

support discussed in Chapter 8. The rest of this chapter is organized as follows. Section 3.1

will discuss the timing properties of different task replication mechanisms in a multiprocessor

environment, and will summarize our approach. The proposed task partitioning algorithm will

be described in Section 3.2, and evaluated in Section 3.3. Finally, we provide our concluding

remarks in Section 3.4.

3.1 Design Implications

In this chapter, we will find a reliability-enforced allocation while reducing the processor re-

quired. In other words, we will tolerate ρ permanent processor failures while minimizing number

of processors which can support the given reliability requirement of a target system. Under the

assumption that applications are executed periodically, transient failures can be recovered by ex-

ploiting the periodic nature of tasks. For the scheduling policy, we use RMS [16] with harmonic

tasks to achieve full processor utilization [92] when required. Regarding processor failures, we

use a fail-stop model, in other words, we assume that a failure stops a processor completely, and

completed tasks always generate correct results. Selected tasks on those stopped processors will

be recovered in different processors. We also impose a placement constraint, which requires
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that replicas must be on different processors. If two or more processors fail simultaneously,

the system may be able to recover through multiple hot standbys for hard recovery tasks and a

combination of hot standby and cold standbys for soft recovery tasks.

3.1.1 System Assumptions

In order to model the behavior of each task, we assume a set of tasks, Γ. Γ is composed of n

tasks, τ1, τ2, ..., and τn. These tasks are divided into three subsets of Γ, Hard Recovery Task set,

ΓH , Soft Recovery Task set, ΓS , and Best-effort Recovery Task set, ΓB, and these categories will

be defined in Section 3.1.2.

A task τi is represented as (Ci, Ti, Di, αi), where Ci is the worst-case execution time, Ti is

the period, Di is the deadline relative to the release time, and αi represents the ratio of recovery

time to deadline. The recovery time is defined as the time instant relative to the release time of

τi, within which jobs of τi should be recovered. For example, if αi = 1 or τi ∈ ΓH , the failed

job should be recovered within the original deadline, Di, which is equal to Ti. A task τi has the

response time denoted as Ri, where Ci ≤ Ri ≤ Ti is satisfied because Ri is the duration from

the instant of job release to the moment of job completion of τi.

Every task τi can have ψ(i) hot standbys, which can be represented by τhi,1, τhi,2, ...,τhi,ψ(i).

Either τi or τhi,0 denotes the primary of τi. Since our objective is to tolerate ρ processor failures,

each task τi also can have ζ(i), which is ρ+ 1−ψ(i) cold standbys, which can be represented as

τ ci,1, τ ci,2, ...,τ ci,ζ(i). In addition, ui is the utilization of τi, defined as Ci
Ti

.

A set of processors, P , is used for running a task set, Γ. P is composed of m homogeneous

processors, P1, P2, ..., Pm. Then, Πi is the set of processors which have τi and its hot standbys.

Each element of Πi, Πij is the processor allocated to τij , jth hot standby of task τi. Therefore, the

placement constraint is expressed as ∀i, Πij 6= Πik, where j 6= k. Each processor Pk has its own

failure rate, fk, which denotes the probability of a permanent failure. We assume homogeneous

processors for convenience of presentation, f1 = f2 = ... = fm = f .
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3.1.2 Recovery-timing Requirements and Our Approaches

Real-time systems are composed of multiple tasks with strict timing constraints. In such sys-

tems, fault recovery entails not only restoring functionality but also doing so within a bounded

time. A classical example would be a feedback control system, where failure to recover within

a bounded time could cause the physical state of the controlled system to move into an unsafe

state. Automotive and avionics systems are examples of such applications. Depending on the

timing constraint imposed on recovery time, we classify tasks into three categories:

• Hard Recovery: Tasks that need to meet their original deadlines relative to their release

time even under failures are denoted as Hard Recovery tasks. In other words, αi for a task

in this category is 1. Meeting the original deadline provides very little room for recovery

and re-execution. These tasks are the most difficult ones to provision for failure recovery.

• Soft Recovery: Tasks with relaxed recovery deadlines are denoted as Soft Recovery tasks.

In this case, αi for these tasks is greater than 1, but bounded.

• Best-Effort Recovery: Tasks that do not have any recovery deadlines and only require

recovery from a functional perspective are called as Best-Effort Recovery. For tasks in this

class, αi may not be bounded.

Task replication is a fundamental technique used to improve system reliability. By introduc-

ing task replicas on multiple processors, tasks on failed processors can be recovered. In this

chapter, we consider two techniques for task replication viz. hot standby and cold standby with

different timing characteristics.

• Hot Standby Approach: This approach uses two or more on-line copies of a certain task.

One or more replicas of the task will be running simultaneously. Each replica must be on

a different processor, in order to make sure that at least one of them is working when a

processor failure occurs. When a failure occurs, a replica will take over the task on a failed

processor. For the hot standby approach, at least one of the backup replicas should meet

the original deadline when a failure occurs. In order to support this tight constraint, we use
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Figure 3.2: Example operation scenario of hot standby and cold standby. (a) normal case (b) P1

has failed, and the tasks on P1 have been recovered. (c) P3has failed, and the tasks on P3 have

been recovered.

hot standby replicas, whose jobs are released synchronously with that of the Primary copy

and execute in parallel with the same deadline. Any hot standby can be promoted to be the

primary after recovery.

• Cold Standby Approach: In this case, replicas are not executed until failures occur. This

means that they only use up memory, but not processor under normal operation, and they

are triggered on demand when failures occur. Because cold standby are not running under

normal conditions, only the state information of each primary copy needs to be shared

among replicas. When failures occur, they should be detected as soon as possible, and the

tasks on failed processors should be recovered using replicas within a predefined time. For

the purposes of this dissertation, we consider that faults are detected instantaneously, and

all task information is available in memory for fault recovery. This approach can recover

both soft recovery tasks and best-effort recovery tasks.

3.1.3 Determination of Standby Type

The benefit of using a hot standby is the ability to meet the original deadline with less timing

penalties than the cold standby approach, since all hot standbys are running concurrently with a

primary task. The primary copy and the backup copy are released at the same time. However,

this does not mean that all the replicas complete at the same time. We use the same deadline for
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every replica, therefore, all replicas are guaranteed to finish by the deadline. The disadvantage

of using this scheme is that it requires more resources than single copy execution. Specifically,

for tasks with hot standbys, additional required resource is ψ(i) times ui for τi.

For the cold standby approach, when there are no failures, only the primary copy is executed

during the normal operation. Since we assume failures can be detected through properties of

fail-stop processors, the failure of a primary copy can trigger the execution of a backup copy.

For bounding recovery time, we propose a type of utilizations, Transient Overload Utilization

(TOU). TOU is the additional utilization while a task is being recovered. In other words, TOU is a

required resource for reexecuting a task on a new processor within the remaining time, αiTi−Ri,

after τi fails. Let uti denote TOU of τi. Then, we have the following Theorem.

Theorem 1 If αi ≥ 2, uti ≤ ui for any task.

Proof In TOU, uti, the backup copy of τi should meet the primary’s original deadline by using

a cold standby, which implies that αiTi − Ri ≥ Ci should be satisfied. This is because the

remaining time for computation after τi’s execution should be enough for one more execution in

the worst case. Therefore, uti is denoted as Ci
αiTi−Ri . Then, uti is equal to ui when αi = 1 + ui for

the best case (Ri = Ci) and αi = 2 for the worst case (Ri = Ti). Because 2 ≥ 1 + ui, uti ≤ ui is

satisfied when αi ≥ 2 for any task.

In most embedded systems, only certain tasks are safety-critical. By using a large αi, uti

can be relaxed. The importance of Theorem 1 is seen in the following example. Suppose that

a task with αi = 1 uses a cold standby. Then, the backup copy of τi should meet the condition

Ti − Ri ≥ Ci. Therefore, uti = Ci
Ti−Ri . Since uti ≥ ui, another processor which runs the cold

standby of the primary task which is using only cold standby should have more utilization value

than ui. Therefore, based on αi, we can choose the type of Standby. An important observation in

the cold standby approach is that the processor running the backup should have enough unused

utilization. This is also applicable to other processors, which should take over other tasks that

are not running at the same time on the failed processor. The reserved slack for cold standbys
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can be used by any task but the reserved utilization for hot standby cannot be utilized by other

tasks.

In this chapter, we will use both hot standby and cold standby within the same system as

necessary. In order to decrease the number of processors required to achieve reliability require-

ments and tolerate simultaneous failures, cold standby can be promoted to the hot standby if the

primary of τi fails and the current number of τi is less than ψ(i). Since at least one hot standby

for certain τi can meet its original deadline, Di, we are ready to tolerate another potential failure

if a cold standby can be promoted to a hot standby. By using this, we can tolerate as many as ρ

failures for τi.

Figure 3.2 has an example scenario. Suppose a task set Γ = {τ1, τ2, τ3, τ4, τ5}, and tasks have

utilizations, 0.6, 0.3, 0.2, 0.1, and 0.05, respectively. With respect to replicas:

• τ1, τ2 have both 1 cold standby and 1 hot standby

• τ3 has 1 hot standby

• τ4, τ5 have 1 cold standby each

These tasks are allocated to a set of processors, P , which has four processors. The allocation

is shown in Figure 3.2(a). In Figure 3.2(b), P1 has failed, and P1 holds for τ1, τ3, and τ4. Because

τ1 has one hot standby on P2 and one cold standby on P4, τ1 is recovered by a hot standby on

P2. Then, the cold standby on P4 is promoted to a hot standby. τ3 is recovered by hot standby on

P3, and τ4 is recovered by the cold standby on P2. Similar operations happen when P3 also has

failed in Figure 3.2(c).

3.2 Task Allocation with Hot Standby and Cold Standby Repli-

cation

Allocating tasks to processors is a well-known bin-packing problem [93]. In this chapter, we con-

sider the design-time allocation of tasks and it is well-known that this allocation is NP-hard [94].
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There are several popular heuristics such as BFD, FFD, NFD (Next-Fit Decreasing) , and WFD

(Worst-Fit Decreasing). Each of these algorithms regards the utilization value of each task as

the object size and allocates each task to a proper processor. We will take BFD as a base-line

algorithm.

3.2.1 Fault-tolerant Partitioned Scheduling

The main difference between conventional and fault-tolerant partitioned scheduling is a place-

ment constraint in order to improve system reliability by spreading copies of the primary and the

replicas. For task allocation, the original BFD 1) sorts the tasks in descending order of size, 2) fits

the next task into the best processor that it can fit into, 3) adds a new processor if a task does not

fit into any current processor, and 4) iterates this procedure until no tasks remain. In the current

context, BFD should be modified to satisfy the placement constraint of replicas. Therefore, two

steps are changed. For step 1), when the tasks are sorted, the replicas are sorted together with

their primaries. For step 2), the processor should be determined using placement constraints.

This algorithm is denoted as BFD-P [33] and is listed in Algorithm 3.

3.2.2 Task Allocation with Hot Standby using R-BFD

Consider a task set Γ : {τ1, τ2, ..., τn}, where each task τi has a primary copy τi and ψ(i) hot

standbys {τhi,1, ..., τhi,ψ(i)}. The placement constraint dictates that none of these copies get co-

located on the same processor.

R-PACK is a basic algorithm for allocating a set of n objects Ω : {O1, ..., On}with placement

constraints Π : {Π1, ...,Πn} (see Algorithm 1). It iterates over the objects in the given order,

allocating each objectOi to the best-fit processor Πij ← Pk that satisfies the placement constraint

Pk /∈ Πi. If no existing processor can fit Oi, then a new processor is added for it. The set of

processors and updated placement constraints are obtained from R-PACK.

R-BFD sorts the given tasks in decreasing order of sizes (see Algorithm 2). The primary
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Algorithm 1 R-PACK(Ω : {O1, ..., On},Π : {Π1, ...,Πn}, P : {P1, ..., Pm})
1: for i = 1 to n do

2: . Only worry about non-empty object list

3: if Oi 6= ∅ then

4: For Oi, find a best-fit processor Pk, s.t. Pk /∈ Πi

5: if Pk exists then

6: Πi ← Πi ∪ Pk . Allocate to existing processor

7: else

8: Πi ← Πi ∪ Pm . Need to add new processor

9: P ← P ∪ Πi

10: m← m+ 1

11: return (P,Π)

copies are first allocated using R-PACK. The hot standbys are then allocated in batches using

R-PACK. The key distinction here is that BFD-P (see Algorithm 3) would allocate the whole set

of tasks (including hot standbys) with placement constraints. By operating in batches, R-BFD

can better fill up the space left over in the previous processors, whereas BFD-P would lead to

wastage of this space. This effect is shown in Figure 3.3. Figure 3.3 shows the result of BFD-P

in 3.3(a) and the result of R-BFD in 3.3(b) under the given task set Γ = {τ1, τ2, τ3} with one

hot standby and utilization values, 0.6, 0.3, and 0.2, respectively. In this example, R-BFD saves

1 processor by allocating the hot standby replicas in batches. Since BFD-P assigns τ3 to a new

processor, placement constraints bring one more processor for τh3,1.

3.2.3 Analysis

In order to abstract away from the performance of the individual uniprocessor scheduling algo-

rithm used within the processors themselves and focus on the task allocation, we restrict our

analysis to an optimal uniprocessor scheduling configuration. Under RMS, we focus on har-
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Algorithm 2 R-BFD(Γ : {τ1, τ2, ..., τn})
1: Sort Γ in descending order of utilization

2: . Allocate the primary copies first

3: (P,Π)← R-PACK(Ω← {τ1, τ2, ..., τn},

4: Π← {Π1 ← ∅, ...,Πn ← ∅}, P ← ∅)

5: . Allocate the replicas one by one

6: for j = 1 to max
∀τk∈Γ

(ψ(k)) do

7: . Ignore tasks that do not need j replicas

8: ∀τi s.t. ψ(i) < j, τhi,j ← ∅

9: (P,Π)← R-PACK(Ω← {τh1,j, τh2,j, ..., τhn,j}, Π, P )

10: return (P,Π)

monic task sets that can achieve 100% utilization. Generalizing to arbitrary task periods would

lead to non-ideal processor utilization due to the relationship between task periods [16], thereby

detracting away from the properties of the task allocation algorithm itself. In the following dis-

cussion of BFD and R-BFD properties, we focus on harmonic tasks, although the algorithms

themselves can be applicable to arbitrary task sets.

Lemma 2 For harmonic task sets with ψ(i) = 0 ∀i, BFD heuristic requires at most M0 =

(11
9

(OPT0) + 4) processors, where OPT0 is the number of processors required by an optimal

algorithm.

(a) BFD-P (b) R-BFD

Figure 3.3: Benefit of using R-BFD.
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Proof Harmonic task sets result in a schedulable utilization bound of 100% in each processor.

The task allocation problem is therefore reduced to the standard bin-packing problem, for which

BFD has been established to require no more than 11
9

(OPT0) + 4 processors [95] when the

optimal algorithm requires OPT0 processors.

Lemma 3 For harmonic task sets with ψ(i) = k ∀k, where k is a positive integer constant, BFD

requires at most k(11
9

(OPT0) + 4) processors, where OPT0 is the number of processors that

would be required by an optimal algorithm to schedule the same task set with k = 0.

Proof Let the optimal number of processors required to schedule the same task set assuming

ψ(i) = 0 be OPT0. The number of processors required by BFD to schedule the same task set

under ψ(i) = 0 is M0. We know that M0 ≤ 11
9

(OPT0) + 4 (by Lemma 2). Due to the sorted

order in which BFD considers objects and the placement constraints, when ψ(i) = k the number

of processors required by BFD is kM0. This can be shown from Algorithm 3, which results in k

identical processors following every (k + 1)th processor if ψ(i) = k.

Lemma 4 For harmonic task sets with ψ(i) = k ∀k, R-BFD requires no more processors than

BFD.

Proof This follows from the fact that hot standby replicas in Algorithm 2, R-BFD at least con-

sider the same candidate processors for allocation as in Algorithm 3, BFD-P. R-BFD therefore

requires no more processors than BFD-P.

Corollary 5 For harmonic task sets with ψ(i) = k ∀k, where k is a positive integer constant,

R-BFD requires at most k(11
9

(OPT0) + 4) processors, where OPT0 is the number of processors

that would be required by an optimal algorithm to schedule the same task set with k = 0.

Proof Follows from Lemmas 3 and 4.

3.2.4 Dealing with System Reliability Requirements

Consider a uniform multiprocessor system with m processors. Let F denote the system SIL

(Safety Integrity Level) [96] requirement specified in terms of the PFD (Probability of Failure
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Algorithm 3 BFD-P(Γ : {τ1, τ2, ..., τn})
1: Sort Γ in decreasing order of utilization

2: τi,0 ← τi

3: for i in 1 to n do

4: for j in 0 to ψ(i) do

5: For τi,j , find a best-fit processor Pk s.t. Pk /∈ Πi

6: if Pk exists then

7: Πij ← Pk . Allocate to an existing processor

8: else

9: Πij ← Pm . Need to create a new processor

10: P ← P ∪ Πi

11: m← m+ 1

12: Πi ← Πij ∪ Πi . Update placement constraints

13: return (P,Π)

on Demand). Let the reliability specification of each individual processor be f , denoting that

the processors are designed to have a PFD less than f . Based on F and f , the system designer

can estimate ρ, which is the minimum number of additional processors required to satisfy the

system reliability. ρ should be greater than the maximum number of processor failures that can

be expected in (m+ ρ) processors.

ρ = min
p
{p ∈ Z|F ≥

m+p∑
j=p

Prob(exactly j processor failures)}

ρ = min
p
{p ∈ Z|F ≥

m+p∑
j=p

(
m+ p

j

)
f j(1− f)m+p−j} (3.1)

A system designer may choose a value of ρ greater than the one obtained using Equation (3.1)

depending on design margins.
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Algorithm 4 R-BATCH: Allocate the given task set Γ to processors P for handling ρ processor

failures
1: P ← ∅

2: (P,Π)← R-BFD(Γ)

3: (Γ,Π)← generateVirtualTask(Γ, Π, P , ρ)

4: (P,Π)← R-PACK(Γ, Π, P )

5: return (P,Π)

3.2.5 Task Allocation with Cold Standby using R-BATCH

Allocating tasks with cold standby replication in addition to hot standby replicas is accomplished

by R-BATCH (Reliable-Bin-packing Algorithm for Tasks with Cold standby and Hot standby)

given in Algorithm 4. The basic idea behind the algorithm is to estimate ζ(i) = ρ + 1 − ψ(i),

the number of cold standbys needed for task τi. We observe that the cold standby replicas for

processors other than those hosting τi can be consolidated. Suppose a task set Γ = {τ1, τ2}, and

both tasks have 0.6 utilizations. Since they cannot fit into one processor together, two processors

are necessary for Γ. In order to tolerate one failure per task by using a hot standby, two more pro-

cessors are required. A cold standby, however, can reduce one processor compared to exploiting

a hot standby by sharing one unused processor.

R-BATCH creates virtual task, τ vq,j , where q distinguishes each virtual task and j denotes jth

cold standby replica of tasks covered by τ vq,j . Then, Γvq,j is a set of tasks which can be taken

over by τ vq,j . Each virtual task is responsible for handling the cold standby replica for multiple

processors. As it is assumed that no more than ρ distinct processors will fail during the system

runtime, the virtual tasks can consolidate the replication and reduce the number of processors

required considerably. The procedure for generating virtual tasks is defined in Algorithm 5.

After generating virtual tasks, the placement constraint should be satisfied. This constraint is

considered by following three Lemmas.

Lemma 6 Two virtual tasks τ vq,j and τ vp,j , where q 6= p, can be located on the same processor.
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Lemma 7 Two virtual tasks τ vq,i and τ vp,j , where q 6= p and i 6= j, can be located on the same

processor if Γvq,i ∩ Γvp,j = ∅ is satisfied.

Lemma 8 τ vq,j and τi can be located on a same processor if τi /∈ Γvq,j is satisfied.

Algorithm 5 generateVirtualTask(Γ : {τ1, ..., τn},Π : {Π1, ...,Πn}, P, ρ)

1: q ← 0

2: for j = 0 to max∀τi∈Γ (ζ(i)) do

3: for all τi such that τi ∈ Γ do

4: if j < ζ(i) and τ ci,j /∈ Γv then

5: Γvq,j ← {τ ci,j} . Generate virtual task τ vq,j

6: q ← q + 1

7: uvq,j ← ui . Set the virtual utilization of τ vq,j

8: Πv
q,j ← Πv

q,j ∪ Πi . Set the placement constraint

9: . Pick a processor not containing copies of τi

10: for all Pk such that Pk /∈ Πi do

11: alloc← 0

12: for all ∀τp such that Pk ∈ (Πp − Πi) do

13: . Allocate τp to τ vq,j if possible

14: if alloc+ up ≤ uvq,j and τ cp,j /∈ Γv then

15: Γvq,j ← Γvq,j ∪ {τ cp,j}

16: alloc← alloc+ up

17: if alloc 6= 0 then

18: Πv
q,j ← Πv

q,j ∪ Pk

19: Γv ← Γv ∪ Γvq,j , Πv ← Πv ∪ Πv
q,j

20: return (Γv ∪ Γ,Πv ∪ Π)
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(a) umax = 0.3 (b) umax = 0.5

(c) umax = 0.7

Figure 3.4: Ratios of saved processors when R-BFD is used on a single-node case. Results are

normalized to BFD-P.

3.3 Evaluation

We will now evaluate the performance benefits of using R-BATCH and R-BFD on randomly

generated task sets. We analyze task sets with different characteristics by varying the maximum

task utilization (umax). We generate random tasks whose utilization is uniformly distributed

between 0 and umax. Since we focus on harmonic task sets that can achieve 100% utilization,

we do not generate the worst-case execution time and a period for a randomly generated task.
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(a) umax = 0.3 (b) umax = 0.5

(c) umax = 0.7

Figure 3.5: Ratios of saved processors when R-BFD is used on a 4-node case. Results are

normalized to BFD-P.

The results presented here are at umax values of 0.3, 0.5, and 0.7. The number of tasks is varied

from from 10 to 100. We characterize the performance with respect to tolerating 1, 3, and 7

processor failures by introducing 2, 4, and 8 replicas respectively (including the primary) under

R-BFD. With R-BATCH, we set the number of hot standbys for each task to 1, 2, and 4 hot

standby replicas including the primary. Any possible remaining failures can be recovered by

using a cold standby. Because we are using hot standby and cold standby together, all tasks can
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(a) umax = 0.3 (b) umax = 0.5

(c) umax = 0.7

Figure 3.6: Ratios of saved processors when R-BATCH is used on a single-node case. Results

are normalized to R-BFD.

be recovered even if all of them have Hard Recovery requirements. Tasks can be promoted from

cold standby to hot standby when failures occur. We provide results from both single-node and

4-node platforms to illustrate the performance benefits, where a 4-node platform has 4 processors

per board. Since 4-node platform is augmented at the granularity of boards, it can fail under only

a single processor failure out of 4 processors. Each data point is obtained by averaging sum of

all results from 50 iterations.
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(a) umax = 0.3 (b) umax = 0.5

(c) umax = 0.7

Figure 3.7: Ratios of saved processors when R-BATCH is used on a 4-node case. Results are

normalized to R-BFD.

Figure 3.4 and 3.5 show the number of processors saved by R-BFD over BFD-P, normalized

to BFD-P on single-node and 4-node cases. Figure 3.4(a), 3.4(b), and 3.4(c) show the results at

different umax values. For small umax and task set sizes, R-BFD is most beneficial. R-BFD can

save up to 19% on the single-node case. For the 4-node case, it can save up to 37% processors

compared with BFD-P. Regarding Figure 3.5(a), there are no differences when the number of

tasks is changed from 10 to 19. This happens due to the nature of the 4-node case. Because we
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merge 4 processors into a set of processors, we have more space for allocating tasks. Therefore,

until a certain number of tasks fills up 4 processors without replication, there is no difference.

This is also a reason for the fluctuations seen in Figure 3.5.

Figure 3.6 and 3.7 show the number of processors saved by R-BATCH over R-BFD, normal-

ized to R-BFD. R-BATCH can save up to 45% additional processors compared to R-BFD. The

interesting observation is that benefits get larger when more tasks are used. This is because we

can consolidate more tasks by using virtual tasks. Fluctuations in Figure 3.7(a) are due to the

same reasons given above for R-BFD. Another interesting observation is that R-BATCH can save

more platforms as umax increases. This is a consequence of the fact that larger virtual tasks can

cover more cold standbys.

3.4 Summary

Fault recovery in hard real-time environments requires restoring functionality within pre-specified

deadlines. In this work, we have provided a comprehensive solution for guaranteeing reliability

requirements with bounded recovery times. We have proposed categorizing tasks based on their

recovery time requirement into (i) Hard Recovery, (ii) Soft Recovery, and (iii) Best-Effort Recov-

ery. We then developed a task-partitioning strategy called R-BFD for allocating hot standbys to

processors in order to improve system reliability. In order to further reduce the resource over-

provisioning required for task reliability, we introduced the notion of a cold standby that con-

sumes processing time only when activated. Our consolidated task allocation algorithm called

R-BATCH can allocate both hot standby and cold standby tasks to meet system-level reliability

requirements. Evaluation results suggest that R-BFD saves up to 37% of the required number

of processors, while achieving the same levels of reliability and satisfying the recovery time

requirements as the conventional BFD-P heuristic on 4-node platform case. The introduction

of cold standby can save up to 45% additional processors using R-BATCH, in comparison to

R-BFD with pure hot standbys.
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Chapter 4

Fault-Tolerant Computing in the

Automotive Context

In this chapter, we exploit our proposed techniques in Chapter 3 to an AUTOSAR-compliant

automotive platform to see how applicable they are in the automotive context. To this end,

we consider end-to-end delay requirements to capture the nature of automotive platforms that

execute multiple runnables in sequence to use sensory data to control actuators.

4.1 Motivation

Continuing improvements on embedded systems encourage x-by-wire technology as well as vari-

ous types of safety and comfort features in future vehicles [97]. In particular, safety features such

as lane keeping, lane changing, collision avoidance and driver warning require high dependabil-

ity because of their safety-critical nature. However, these features require complex hardware and

software platforms, and the design and implementation of these features is a challenge. More-

over, because safety features are composed of several subsystems including sensors, processors,

and actuators, the whole system needs to be carefully designed to avoid situations where, for ex-

ample, a single defective sensor can cause an unintended event [98]. Modern multi-core proces-
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sors can execute several applications in parallel and still the overall system needs to be designed

such that single chip failures cannot result in an undesirable situation. Hence, system-level de-

pendability is a key concern in rapidly evolving automotive industries.

Dependable systems can be implemented by using fault-tolerant techniques, and the con-

ventional fault-tolerance technique is to replicate processes, either concurrently or sequentially.

Graceful degradation can also contribute to system dependability [99]. However, graceful degra-

dation can involve considering all possible failure scenarios, which can be an exponentially hard

problem. Replication, such as Triple Modular Redundancy (TMR) for hardware and N-version

programming for software, is a typical approach, but it requires more resources than graceful

degradation. Although these techniques have been extensively used in domains such as avionics,

space shuttles, and industrial facilities, they may not always be appropriate long-term solutions

for automotive architectures due to these exorbitant costs. Our work presents resource-efficient

techniques for achieving the required dependability.

Applications in the automotive system are closely connected to the physical environment

and use sensor information to obtain current physical information. For example, in Steer-by-

Wire (SBW) systems [5], sensors measure information about steering wheel movement, and

computational components in microprocessors compute signals for controlling the wheels with

the information from sensors. Actuators receive the control signals for the motors directly, and

these signals are handled periodically for timely handling of user operations and reactions to the

environment.

In order to reflect this nature, we define an application flow, which is composed of period-

ically executing runnables generating information data and events regularly that flow through

multiple runnables. An application flow also has an end-to-end delay from input to output. Each

runnable is represented by a periodic task [16], ρi, which releases a job every Ti units of time,

where each job consumes at most Ci units of computation time and should be completed within

a relative deadline, Di ≤ Ti.
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Figure 4.1: The application flow model can be applicable to a driverless car.

𝜌1 𝜌2 𝜌3
𝑚𝜌1𝜌2

𝑚𝜌2𝜌3
𝜌4

𝑚𝜌3𝜌4

Sensor Merging Behavioral Reasoning Motion Planning Actuator Control

Figure 4.2: An exemplary application flow from Figure 4.1, where ρ represents a runnable, and

m denotes a message between two runnables.

Within an application flow, runnables are classified into sensor/actuator runnables and com-

putational runnables. For instance, an actuator runnable controlling the steering wheel motors

must run on the Electronic Control Unit (ECU) connected to the motors in an SBW system. Every

runnable generates data to be fed to other runnables, except actuator runnables which terminate

an application flow. Figure 4.1 and Figure 4.2 show an exemplary diagram of an application flow

applied to the autonomous vehicle which won the DARPA Urban Challenge [8].

Handling failures on-demand with bounded recovery time is desirable for real-time fault-

tolerant systems. By handling failures within a pre-defined timing boundary, Time-To-Recovery

can be bounded, and the system can operate continuously. To limit Time-To-Recovery, our pre-

vious research [100] categorized software tasks into three classes: Hard Recovery Tasks, Soft

Recovery Tasks, and Best-Effort Recovery Tasks. We apply the same classification to Software-
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Components (SW-Cs), where a runnable is a part of an SW-C [101]. An SW-C with the require-

ment of completing a released job within a Di units of time, even with the presence of failures,

is classified as a Hard Recovery Software-Component (HSC). An SW-C with a more relaxed

recovery-time requirement is a Soft Recovery Software-Component (SSC). An optional SW-C

that is not critical for system operation and does not require bounded recovery time is classified

as a Best-Effort Recovery Software-Component (BSC). The R-BATCH (Reliable Bin-packing

Algorithm for Tasks with Cold standby and Hot standby) scheme [100] provides a comprehen-

sive solution that allocates HSC, SSC, and BSC to multi-processors for guaranteeing reliability

requirements with bounded recovery times.

From a dependability perspective, a single failure of a runnable within an application flow

will affect all of its successors such that the overall application flow requirement is violated. R-

BATCH, which uses hot standby and cold standby with stand-alone runnables, cannot be directly

utilized for systems with data dependencies. Therefore, we propose a new allocation algorithm,

R-FLOW (Reliable application-FLOW-aware SW-C partitioning algorithm), designed for the

application flow model. R-FLOW has three properties that distinguish it from R-BATCH:

• A new application flow model that captures communication among SW-Cs,

• Clustering of SW-Cs based on their communication bandwidth needs,

• Controlling the number of hot standbys and cold standbys while guaranteeing the recovery-

time requirement of all application flows.

In this chapter, we assume a fail-stop failure model [102], where a failed component is as-

sumed to stop generating any data and a working component can assume control by detecting the

lack of output from the failed component. The component that takes over then aims to meet the

desired deadline of the failed component.

We also aim at supporting R-FLOW within the AUTOSAR framework [101] for providing

dependability. The AUTOSAR framework comprises of application software, a Virtual Func-

tional Bus and a Runtime Environment (RTE). The RTE is responsible for enabling interaction
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between application software and the operating system along with support for different services

within AUTOSAR. Currently, there is no explicit support for recovering from task failures by

means of task replications within AUTOSAR. The standard instead assumes that architecture de-

signers will introduce custom extensions to meet such reliability needs. In this chapter, we pro-

pose enhancements to the different layers of AUTOSAR to enable fault-tolerance and, therefore,

provide support for R-FLOW. This enables fault-tolerance support to be built into the framework

by providing an API for fault-tolerance rather than having to rely on custom service modules.

The rest of this chapter is organized as follows. The next section describes the system model

with the timing properties of different SW-C replication mechanisms in a multiprocessor envi-

ronment. Then, R-FLOW, a new SW-C partitioning algorithm, is proposed. Based on the pro-

posed algorithm, R-FLOW, fault-tolerance characteristics within the AUTOSAR framework is

summarized. After that, R-FLOW is evaluated by using an AUTOSAR-compliant fault-tolerant

platform implementation. Finally, we provide our concluding remarks in the final section.

4.2 System Model and Design

We assume a set of given runnables, Υ, which is composed of n runnables, ρ1,ρ2, , and ρn.

Each runnable ρi is a part of an atomic SW-C, ωj , which may have several runnables. For

representing the relationship between a runnable, ρi, and an SW-C, ωj , we define a function Θ

such that Θ(ρi) = ωj when ωj contains ρi. The inverse function of Θ, Θ−1, returns all runnables

contained in an SW-C. The set of SW-Cs, Ω, is also given. For guaranteeing different recovery

requirements, we classify Ω into three overlapping sets, Hard Recovery Software Component Set,

ΩH , Soft Recovery Software Component Set, ΩS , and Best-effort Recovery Software Component

Set, ΩB. Each SW-C, ωj , is an element of at least one of the three subsets, ΩH , ΩS , and ΩB. The

exact definition of these subsets is defined in a later section.
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4.2.1 Software Architecture

A subset Ak ⊂ Υ contains runnables for the kth application flow out of totalm application flows.

For a certain runnable, ρi ∈ Ak, ρi also can be an element of Al, where k 6= l. The relationship

among tasks in the kth application, Ak, is represented by a directed graph, Gk. Inside the graph

Gk, a node u denotes a runnable, ρi ∈ Υ, and an edge (u, v) of Gk indicates a data flow from u

to v. An edge (u, v) has its own message, muv, which is generated by the node u, and consumed

by the node v in Gk. The allocation of each runnable, ρi, to Gk is assumed to be given at design

time. Let u(Gk, ρi) be the node of Gk allocated to the runnable, ρi. If ρi is not a member of Ak,

the value of u(Gk, ρi) is ∅. This function also works with an SW-C. An application flow, Ak,

is represented by a couple (∆k, T
A
k ) where, ∆k is an end-to-end delay requirement, and TAk is a

period of the application Ak. The end-to-end delay is defined as the worst-case delay between

the release time of the first executed node in Gk and the completion time of the last executed

node in Gk. All runnables in the application Ak share the same period TAk .

A runnable, ρi, is represented by a quadruple (Ci, Ti, Di, αi), where Ci is its worst-case

execution time, Ti is its period,Di is its relative deadline to the release time of each job (instance),

and αi is the ratio of recovery time to relative deadline. The recovery time is defined as the time

instant relative to the release time of a failed job, and the failed job must be fully recovered at

the recovery time. For instance, if αi = 1, the replica of the runnable ρi should recover what

ρi is supposed to execute within the original relative deadline, Di. Let Ri denote the response

time of a runnable ρi, where the response time is the time interval between job release and job

completion of ρi. Although all runnables in one application have the same period, the deadlines

of those runnables will be determined based on the end-to-end delay requirement, ∆k for Ak.

An SW-C j is also represented by a quadruple (Cj, Tj, Dj, αj), but it differs from a runnable

in that Cj is set to max∀ρ∈Ω−1(ωj) Ci, Tj is min∀ρ∈Ω−1(ωj) Ti, Dj is min∀ρ∈Ω−1(ωj)Di, and αj is

min∀ρ∈Ω−1(ωj) αi. Let uj denote the utilization of an SW-C ωj , and it is defined as Cj
Tj

. The

density of ωj is defined as Cj
Dj

and denoted by dj . Both uj and dj are used for measuring the

52



ECU ECU ECU ECU

Network bus

Figure 4.3: Abstracted hardware architecture of an AUTOSAR-compliant platform.

amount of processor resources consumed by ωj . Every SW-C ωj can have ψ(j) hot standbys1,

which is represented by ωh(j,1), ω
h
(j,2), . . . , ω

h
(j,ψ(j)). Either ωj or ωh(j,0) denotes the primary of ωj .

Since our objective is to tolerate π processor failures, each SW-C ωj also can have ζ(j), which

is φ+ 1− ψ(j) cold standbys, which are represented by ωc(j,1), ω
c
(j,2), . . . , ω

c
(j,ζ(j)).

4.2.2 Hardware Architecture and Fault Hypothesis

We will adopt the abstracted platform architecture shown in Figure 4.3. In this architecture, we

will assume that we use a fault-tolerant network such as FlexRay [103] as the underlying in-

vehicle network. Leveraging timeliness of such a network can guarantee the bounded delivery

of packets generated by each SW-C. In other words, we can focus only on permanent processor

failures rather than network failures.

A set of processors (or ECUs), P , is used for running a runnable set, Υ. P is composed of

l homogeneous processors, P1, P2, . . . , Pl. Then, Πi is the set of processors utilized by SW-

C ωi and its hot standbys. Each element of Πi, Π(i,j) is the processor allocated to ω(i,j), the

jth hot standby of SW-C ωi. Two replicas of the same SW-C cannot be allocated to the same

processor. We refer to this as a placement constraint. It can be expressed as ∀i, Π(i,j) 6= Π(i,k),

where j 6= k. Each processor Pk has its own failure rate, fk, which denotes the probability

1In this dissertation, we create a new AUTOSAR task for each replica of SW-C. The reason behind this is that

assigning several runnables to one AUTOSAR task can delay the Time-To-Recovery when a failure occurs.
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of a permanent failure. We assume homogeneous processors for convenience of presentation,

i.e. f1 = f2 = · · · = fl = f . In this chapter, only permanent failures are considered [102].

Occurrences of fail-stop failures of these processors can be detected by using periodic heartbeat

signals.

4.2.3 Dealing with End-to-end Delay of an Application Flow

Under the given requirements on end-to-end delay of an application flow and DMS (Deadline

Monotonic Scheduling) [15], the deadline of a runnable should be determined. The shorter the

deadline of a runnable, the more responsive is the system. However, with a shorter deadline,

a runnable has larger density, and the system may need more processors. Hence, our design

objective is to pick the longest deadline that meets the end-to-end delay of a given application

flow. The end-to-end delay for an application flow is calculated in [104], where a pipeline task

model is used on a FlexRay network. For Ak, ∆k is bounded by the following equation.

∆k ≤
n(Ak)−1∑
i=1

(
Ru(Gk,ρi) +

⌈
Tmu(Gk,ρi)u(Gk,ρi+1)

γ

⌉
× γ + Tu(Gk,ρi+1)

)
(4.1)

+ (n(Ak)− 1)× φ+Ru(Gk,ρn(Ak)) = ∆B
k

where, n(Ak) represents the number of elements in Ak, Rρ is the response time of a runnable

ρ, Tm is the period of message m, γ is the communication cycle length of the FlexRay network,

Tρ is the period of runnable ρ, and φ is the duration of a static slot in the FlexRay network. Under

the assumption that the FlexRay network is synchronized among ECUs, T
(i+1) can be omitted

because T
(i+1) reflects the offset to ρi in terms of ρi+1. The response time of each runnable can

be obtained by using the standard response-time test in the AUTOSAR framework as described

in [105]. Then, we can obtain the deadlines of runnables by satisfying the following objective

function for each application flow.
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minimize
∀ρi∈Ak

n(Ak)∑
i=1

di (4.2)

subject to ∆k ≤ ∆B
k (4.3)

Ci ≤ Di for ∀i (4.4)

In the above objective function, we want to minimize the density di, which is defined as Ci
Di

, for

saving resources while the end-to-end delay requirement is met by Constraint (3). If we find a

set of deadlines for each runnable which minimizes the objective function above, those deadlines

can be used for allocating runnables to processors. In this chapter, due to the NP-hardness of

the given objective function, we use a heuristic which assigns a deadline to each runnable that

is proportional to its period such that it follows the RMS (Rate Monotonic Scheduling) priority

assignment [16]. Each deadline is assigned by the following equation.

Di =

(
∆k −

∑
∀ρj∈Ak

⌈
Tmu(Gk,ρi)u(Gk,ρi+1)

γ

⌉
γ

)
× Ti∑

∀ρj∈Ak Tj
(4.5)

4.2.4 How to Determine Standby Type

Task replication is a fundamental method for improving the reliability of a target system. In

that sense, replicating SW-Cs in the AUTOSAR framework can increase system reliability. SW-

Cs on multiple ECUs can recover SW-Cs on failed processors. In this chapter, we consider

two techniques for replicating SW-Cs viz. hot standby and cold standby with different timing

characteristics [100].

• Hot Standby Approach: This approach uses two or more on-line copies of a certain SW-C.

One or more replicas of the SW-C will be active simultaneously. Each replica must be on

a different processor, in order to make sure that at least one2 of them is working when an

2If an SW-C is involved in both ΩH and ΩS , the SW-C has both of hot standby and cold standby.
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ECU failure occurs. When a failure occurs, a replica will take over the task on a failed

processor. At least one of the backup replicas should meet the original deadline when a

failure occurs. Hot standbys are released synchronously with that of the primary copy and

execute in parallel with the same deadline. Any hot standby can be promoted to be the

primary after a primary fails.

• Cold Standby Approach: In this case, replicas are not active until triggered due to failures.

In other words, they only utilize memory, but not processor cycles under normal operation,

and they are activated on demand when failures occur. Only the state information of each

primary copy needs to be shared and updated among replicas. When failures occur, they

should be detected as soon as possible, and the SW-Cs on failed ECUs should be recovered

using replicas within a predefined time. The main benefit of using cold standbys is that the

cold standbys for processors other than those hosting a certain SW-C can be consolidated.

Suppose an SW-C set Ω = {ω1, ω2}, and both SW-Cs have a utilization of 0.6 each. They

cannot t into one processor together. Hence, in order to tolerate one failure per SW-C by

using only hot standbys, two more processors will be required. A cold standby, however,

can use only one processor since the cold standbys for both ω1 and ω2 can be co-resident

on a single processor if their primaries are running on different processors.

The benefit of using a hot standby is its ability, when the primary fails, to meet the original

deadline with a smaller timing penalty than the cold standby approach, since all hot standbys

are running concurrently with the primary component. However, hot standbys require additional

resources, ψ(j) times uj for ωj . For the cold standby approach, when there are no failures, only

the primary copy is executed. Since processor failures can be detected through the properties

of fail-stop processors, the failure of a primary copy triggers the execution of a cold standby

unless a hot standby is running. For bounding recovery time, we use Transient Overload Density

(TOD), which is extended from Transient Overload Utilization defined in [100]. TOD is the

additional processor utilization required for an SW-C that is recovered through the cold standby
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approach. TOD is the required additional resource for re-executing an SW-C on a new processor

within the remaining time, αjDj − Rj , after a processor Π(j, 0) fails. Let dtj denote the TOD of

ωj . Then, we can use the result that dtj ≤ dj , when j ≥ 2 from [100] to determine the type of

replicas for ωj . By using a large αj , dtj can be relaxed. The importance of this result is seen in

the following example. Suppose that an SW-C ωj with αj = 1 uses a standby. Then, the backup

copy of ωj should meet the condition Dj − Rj ≥ Cj . Therefore, dtj = Cj/(Dj − Rj). Since

Dj − Rj < Dj , dtj ≥ dj , where the hot standby approach might be appropriate. For αj > 1, the

utilization of the standby goes down, but the recovery time goes up. Hence, based on the value

of αj , we can choose the type of standby. An important observation regarding the cold standby

approach is that the processor running the backup should have enough unused utilization. The

reserved slack for cold standby replicas can be used by any SW-C in the presence of failures, but

the reserved utilization for hot standby cannot be utilized by other SW-Cs. A cold standby can

also be promoted to a hot standby if the primary of ωj fails and the current number of ωj is less

than ψ(j). Since at least one hot standby for a certain ωj can meet its original deadline, Dj , the

system can be ready to tolerate another potential failure if a cold standby can be promoted to a

hot standby. By using this approach, we can tolerate as many as π failures for ωj .

4.3 Fault-Tolerant SW-C Allocation with Application Flows

This chapter proposes a comprehensive method for allocating SW-Cs3 to processors while meet-

ing the requirements on reliability and end-to-end delay. The proposed scheme is composed of

two complementary phases: flow-aware allocation and reliability-aware allocation. The flow-

aware allocation tries to co-locate SW-Cs which have dependencies on each other such that the

end-to-end delay can be reduced. After all primary SW-Cs are allocated, their replicas can be

3Allocating a runnable in the AUTOSAR framework implies that the corresponding SW-C is also allocated. In

other words, all runnables of a SW-C should be assigned to one processor. The replication of a runnable therefore

implies a SW-C replication.
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placed on appropriate processors while satisfying the placement constraint. Hot standbys and

cold standbys will be allocated differently because cold standbys only use up memory, but not

processor utilization.

4.3.1 SW-C Allocation with Application Flows

Using fewer processors than conventional allocation methods is a major goal in this chapter. The

allocation of SW-Cs to processors during design time is a well-known bin-packing problem [95].

Each SW-C ωj is treated as an item to be packed with a size, utilization value uj , and these items

will fill up one or more processors, each having a total capacity of 1 under the assumption that

the SW-C periods are harmonic. If an item does not fit into the remaining space of any available

processors, one more processor is added. Since the bin-packing problem is known to be NP-

hard [95], there are various types of heuristics such as BFD (Best-Fit Decreasing), FFD (First-Fit

Decreasing), WFD (Worst-Fit Decreasing), and NFD (Next-Fit Decreasing). However, none of

these heuristics considers dependencies among SW-Cs for using a fewer number of processors.

In the previous section, we stated that co-locating SW-Cs that have dependencies on each

other can reduce the amount of required resources. Suppose that we are given an application

A, which is composed of a set of runnables, Υ : {ρ1, ρ2, ρ3}. The graph G for A depicted in

Figure 4.4, shows that A has a pipeline task model. Each runnable has the period of 100ms,

100ms, and 100ms, and the worst-case execution time of 10ms, 10ms, and 10ms, respectively.

A set of SW-Cs corresponding to Υ is given in Ω : {ω1, ω2, ω3}, where each SW-C has only

one runnable. The length of the communication cycle in FlexRay is assumed to be 20ms, and

the slot duration is 10µs, which is negligibly small. The end-to-end delay ∆ for A should be

𝜌1 𝜌2 𝜌3
𝑚𝜌1𝜌2

𝑚𝜌2𝜌3

Figure 4.4: The graph G for the application A.
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equal to or less than 300ms. Suppose that all three SW-Cs communicate via a FlexRay network.

Then, if all job instances are completed by their deadlines, the given end-to-end delay cannot be

satisfied due to the communication delay. For example, if a job instant of ω1 which is released

at 0ms finishes at 100ms, a generated message by ω1 will spend one FlexRay slot at least for

transmission and may arrive at 120ms due to the communication cycle, where all these effects are

reflected in Equation 4.5. If the same behavior happens on the second processor running ω2, the

end-to-end delay will not be satisfied. Therefore, in order to meet the requirement, the relative

deadline of each SW-C should be 80ms, 80ms, and 80ms, which gives a large density value,

0.375
(

1
8

+ 1
8

+ 1
8

)
. If we assume, however, that all SW-Cs are allocated to the same processor, a

deadline of 100ms would be enough for each SW-C giving 0.3 as the total density of the given

SW-C set, representing a utilization savings of 25%. This example illustrates that co-locating

SW-Cs communicating with each other on a FlexRay network can save a substantial amount of

resources.

We propose a technique called FBFD (Flow-BFD), a variant of BFD which considers de-

pendencies among application flows. We use BFD as a base-line algorithm rather than other

heuristics such as WFD and NFD due to its well-known worst-case behavior [95]. For SW-C al-

location, the original BFD (1) sorts the SW-Cs in descending order of their densities, (2) allocates

the next SW-C into the processor that it best ts into, (3) adds a new processor if an SW-C does

not t into any current processor, and (4) iterates this procedure until no SW-Cs remain. Here,

we used SW-Cs instead of using runnables because ∀ρi ∈ ωj should be allocated to a processor

together.

FBFD uses a flexible definition of items to be packed. It tries to allocate all corresponding

SW-Cs of an application flow as a single item when possible. Else, it splits these consolidated

items when necessary. FBFD starts by combining SW-Cs as part of the same application flow,

where these composite-SW-Cs can include several application flows because one SW-C can be

used by several application flows. These consolidated SW-Cs are sorted in descending order of

59



Algorithm 6 FBFD(Ω : {ω1, ω2, ..., ωn},Π : {Π1,Π2, ...,Πn}, P )

1: ΩC ← ∅
2: . Consolidate SW-Cs based on application flows
3: for i = 1 to n do
4: if ωi /∈ ΩC then
5: Find a composite-SW-C ωcj communicating with ωi
6: if ωcj exists then
7: ΩC

j ← ΩC
j ∪ {ωi}

8: else
9: . Generate a new composite-SW-C

10: ΩC
n(ΩC) ← {ωi}

11: ΩC ← ΩC ∪ ΩC
1+n(ΩC)

12: Sort ΩC in descending order of density
13: i← 1
14: while ΩC 6= ∅ do
15: if i = 0 then
16: . Split the biggest composite into two pieces such that one piece can fit into the proces-

sor which has the largest remaining spce and satisfies the placement constraint
17: ΩC ← ΩC − ΩC

j + ΩC
1+n(ΩC)

18: Update Πj such that ∀ωj ∈ ΩC
j − ΩC

1+n(ΩC)

19: Add a new processor P|P |
20: . Satisfying the placement constraint
21: For ΩC

i , find a best processor, Pk such that Pk /∈ Πj and ∀ωj ∈ ΩC
i

22: if Pk exists then
23: . Allocate ωcj to Pk
24: Update Πj such that ∀ωj ∈ ΩC

i

25: ΩC ← ΩC − ΩC
i

26: else
27: Continue
28: n← n+ 1
29: n← n mod |ΩC |
30: return (P,Π)

size in terms of their total densities. Then, FBFD fits the next SW-C into the best processor. If

there is no processor into which an SW-C fits into, this SW-C is set aside and FBFD searches for

any unallocated SW-Cs in the list which can fit into the current processors. If FBFD cannot find

any such SW-C, it picks the biggest unallocated composite-SW-C among remaining composite-

SW-Cs, and splits it into two pieces such that at least one piece can be allocated to the remaining

space. In this case, the sum of densities of two pieces will be greater than the size of the original
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combined SW-Cs due to the communication delay. A new processor is added if necessary, and

the remaining piece will be sorted again in descending order of sizes with other remaining unal-

located composite-SW-Cs. These steps will be iterated until no SW-Cs remain. This procedure

is also described in Algorithm 6.

4.3.2 Fault-Tolerant SW-C Allocation

We now extend FBFD to make it into a reliability-aware allocation scheme, R-FLOW. For achiev-

ing this goal, we (1) allocate replicas of SW-Cs and (2) spread those replications across different

processors while satisfying the placement constraint. Different forms of replicas, hot standbys

and cold standbys, will be allocated depending on the application flow properties. The number of

replicas meeting the system reliability requirements can be obtained using Equations 3.1 derived

in Chapter 3.

Allocating Hot Standby/Cold Standby with FBFD

Suppose we have the same exemplary set of SW-Cs as given in the previous subsection. The

only difference is that ω3 has one hot standby, ωh3,1. Even if all the primary SW-Cs are allocated

together by FBFD, the placement constraint brings a new processor for allocating ωh3,1. The

deadline of ωh3,1 should be recalculated in this case because the pipeline, ω1 → ω2 → ωh3,1, from

Figure 4.4 should meet the end-to-end delay requirement. Since the periods of T1 and T2 are

already known to be 100ms and 100ms, respectively, Equation 4.5 can be used for determining

D3 as 75ms, which generates a big item in terms of density. As this example shows, the deadline

of each hot standby should be recalculated for allocating it. This deadline recalculation also

affects the sorting which happens at the beginning of the allocation because an SW-C with low

density does not necessarily mean a hot standby with low density. Therefore, after all primaries

are allocated, the SW-Cs are sorted again in decreasing order, in accordance with BFD. This

procedure of deadline recalculation and resorting is also executed whenever all jth replicas are
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Algorithm 7 R-FLOW(Ω : {ω1, ω2, ..., ωn})
1: . Allocate the primaries first

2: (P,Π)← FBFD(Ω← {ω1, ω2, ..., ωn},Π← ∅, P ← ∅)

3: . Allocate the replicas one by one

4: for j = 1 to max∀ωk∈Ω(ψ(k)) do

5: Recalculate the deadlines

6: Recalculate the number of hot standbys

7: . Ignore SW-Cs that do not need the jth replica

8: ∀ωi such that ψ(i) < j, ωhi,j ← ∅

9: (P,Π)← FBFD(Ω← {ωh1,j, ωh2,j, ..., ωhn,j},Π, P )

10: (Ω,Π)← generateVirtualTask(Ω,Π, P, π)

11: (P,Π)← FBFD(Ω,Π, P )

12: return (P,Π)

allocated. Due to the recalculation of deadlines, the TOD of each SW-C is also affected. If

the TOD of an SW-C becomes negative and it does not have any hot standby, the SW-C cannot

be recovered within its required recovery time. In this case, the number of hot standby should

be adjusted accordingly. Reflecting these properties, we propose a new allocation method, R-

FLOW, which allocates primaries, hot standbys, and cold standbys with application flows. The

pseudo-code for R-FLOW is described in Algorithm 7, where generateVirtualTask() is

described in [100].

4.4 Fault-Tolerance with AUTOSAR

We now describe how an implementation of our approach can be integrated into the AUTOSAR

framework. We made modifications to various modules within AUTOSAR to enable our fault-

tolerance algorithm. This section gives a description of the changes made as well as a description
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of services introduced as part of the implementation.

To support the replication of SW-Cs, the AUTOSAR Software Component Template was

modified to introduce new properties. An Automotive Safety Integrity Level (ASIL) value is

assigned to every SW-C to represent the level of safety required for that particular component.

This enables R-FLOW to pick the replication scheme to apply, assuming that the replication of an

SW-C results in the replication of all of its runnables. A new structure was added to the Software

Component Template which provides a description of the internal data representing the current

state of the runnable. This is required to enable cold standbys to remain synchronized with the

primary component to ensure that the cold standby has the most current state available when it

is activated. To this end, a property describing the maximum initialization time of the SW-C is

added which describes the amount of time needed for the cold standby to produce valid data.

A health status module was added to the AUTOSAR ECU Specification and it is responsible

for sending the ECU status to all other ECUs. This is relayed through the AUTOSAR Commu-

nication Service (COM) which is responsible for communicating the health status to all ECUs.

The appropriate mechanisms for COM are put in place by introducing a health message which is

broadcasted using the existing COM API. Several callbacks were added to the AUTOSAR Run-

time Environment (RTE). One of them is a callback function from the COM module regarding

the health status of all ECUs. This callback function is responsible for activating any replicas that

reside on this ECU depending on the status of other ECUs and as part of the on-line procedures

described in the previous section.

There are several assumptions regarding offline analysis and synthesis. First of all, it is

assumed that all runnables within SW-Cs are executed periodically within the context of an

AUTOSAR Task. Secondly, the runnable to Task Mapping exists before R-FLOW is used for

replication and allocation. Lastly, the ECU description is assumed to be already available as

part of the RTE Generation process. This provides R-FLOW with the description of available

resources for task allocation. An example depicting how replication is done within the System
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Figure 4.5: An example configuration without replication.

Model is shown in Figure 4.5. Here, we have three SW-Cs S1, S2, and S3, two AUTOSAR

Tasks T1 and T2, and two ECUs E1 and E2 which are connected through a network. Suppose

that R-FLOW decides to replicate S1, giving component S1. This results in the replication of its

runnables R1 S1 and R2 S1, producing R1 S1 and R2 S1 respectively. Given that S1 is mapped

to E2 as per R-FLOW, we now have to reschedule the Tasks that need to run on the ECUs. There

are two approaches to deal with mapping of the replicated runnables to a Task. New Tasks can be

created or the runnables can be assigned to existing Tasks. This is left up to the System Designer

to decide or can be automated by a tool using predefined rules such as creating a new task for

each replicated runnable. Tasks can contain multiple runnables to capture any explicit ordering

present as part of a task schedule on the original ECU. In this example, a new Task T3 is created

that contains the replicated runnables. The new configuration is depicted in Figure 4.6.

4.5 Evaluation

We developed an experimental platform to evaluate our approach and look at overheads and

costs associated with fault-tolerance. A real automotive platform was necessary to show the

complexities involved in adding fault-tolerance to the system. This section describes the system
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Figure 4.6: An example configuration with replication.

architecture in detail.

4.5.1 Hardware

The hardware architecture was built as part of a testbench as shown in Figure 4.7. The computa-

tional architecture is comprised of five Softec HCS12X development kits using the MC9S12XDP512

processor from Freescale [106]. The ECUs run at 50Mhz and use a 12V supply. Daughter boards

from Freescale are used for FlexRay connectivity. The ECUs are connected using a dual-channel

FlexRay bus and two Full-Speed CAN networks. One of the five ECUs acts as the system gate-

way and is connected to a PC using two RS232 channels. This ECU acts as the fault injection

module and is also used to collect data from the system for diagnosis and analysis. The types of

faults that can be injected include communication shutdown, shorting of bus channels, shutdown

and restart of ECUs, and injection of faulty network bus messages. These faults can be controlled

using a PC interface and data collected by the system are analyzed at the PC as well.
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Figure 4.7: Testbench architecture.

4.5.2 Software

The basic software running on the hardware includes the RTA-OSEK [107] operating system

and generated code from SysWeaver [15] using an AUTOSAR Code Generation module that

was added to SysWeaver. The code generated conforms to the AUTOSAR 4.0 specifications and

produces the minimum required implementation to produce a working system. All the relevant

modules including the RTE, COM, PDU Router and SW-C supplementary headers are gener-

ated. An OIL file for configuration of the RTA-OSEK OS is also generated for each ECU. This

generated code includes the necessary code modifications required as part of the fault-tolerance

support described in the previous section. Integration was added for R-FLOW within the Fault-

Tolerance View of SysWeaver to produce the necessary replicas and SW-C allocation. Code is

then generated for every ECU along with a configuration file for the Gateway ECU. The Freescale

CodeWarrior compiler for the HCS12X is then used along with the RTA-OSEK configuration

tool to produce an executable for each ECU. This is done automatically by SysWeaver.
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Figure 4.8: SysWeaver system model.

The system model is created within SysWeaver and comprises of SW-Cs that were designed

in the tool as well. The Functional View within SysWeaver comprises of communicating SW-Cs.

Each SW-C has the relevant AUTOSAR properties associated with it, including the information

required by R-FLOW. For this chapter, we concentrate on Sender-Receiver Communication as

the only communication mechanism between SW-Cs since a chain of communicating SW-Cs

constitutes an application flow. The Deployment View within SysWeaver consists of the hard-

ware configuration including the ECUs and any network buses within the system. Each ECU

has properties associated with it as described in the AUTOSAR ECU Description. A Dynamic

View exists which contains AUTOSAR Tasks, where each AUTOSAR Task contains a Schedule

Table of runnables with their respective Task offset and periodic intervals. Given these proper-

ties, R-FLOW is then invoked to produce the required Replicas and Task Allocation. The Fault
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Tolerance View in SysWeaver shows the replicas produced along with the type of replication,

and the SW-C allocation can be seen in the Deployment View. Figure 4.8 shows an example

system model in SysWeaver. The figure shows 2 application flows, A and B.

4.5.3 Results

In this section, we evaluate the performance of FBFD relative to BFD, which does not consider

the effects of application flows. Then, we will show the benefits of using R-FLOW on randomly

chosen application flows. We analyze the characteristics of these schemes by varying the number

of application flows and the number of SW-Cs in an application flow. Our experiments pick

different end-to-end delays: 500ms, 1000ms, 1500ms, or 2000ms. In order to get the period

value for each SW-C within an application flow, we divide the end-to-end delays by the number

of SW-Cs in the flow. Then, the worst-case execution time of each SW-C is randomly chosen

such that the utilization of each SW-C is uniformly distributed between 0% and 30%. The number

of application flows is itself varied from 10 to 20, and the number of SW-Cs in an application

flow is varied from 10 to 15 in each experiment. In all our experiments, the communication cycle

length is set at 20ms and each data point is averaged after 500 iterations.

The performance metric used for comparison is the ratio of saved processors which is defined

as (n(BFD)-n(FBFD))(n(BFD)) , where n(A) means the number of required processors when

scheme A is used. Higher the value of this metric, better is the performance of the scheme under

consideration.

For R-FLOW, while the same parameter variations above are applied, we also conduct ex-

periments on using only hot standbys or only cold standbys for guaranteeing system reliability.

We vary the number of tolerated failures from 1 to 4, yielding a total of 2 to 5 copies due to the

inclusion of the primary.

Figure 4.9 and Figure 4.10 show the number of saved processors when FBFD is used, nor-

malized to the number of processors required by BFD. Figure 4.9 depicts the ratio of processors
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Figure 4.9: The ratio of saved processors when we use FBFD under varying number of applica-

tion flows and fixed number of SW-Cs per application flow.

saved when the number of application flows and the end-to-end delay are varied. The number

of SW-Cs in each application is fixed at 10. As seen in Figure 4.9, FBFD can save a substantial

number of processors (up to 45% processors) when the end-to-end delay is 500ms. FBFD can

save more processors when the end-to-end delay is shorter because the overhead of communi-

cation on an application flow represents a larger ratio of the delay when the end-to-end delay

is shorter. It can also be seen that the number of application flows does not affect the perfor-

mance. This means that the size of an SW-C set does not play a major role. Figure 4.10 presents

the results of an experiment where the number of SW-Cs in an application flow is varied from

10 to 15. Again, a large number of processors (up to 56% processors) can be saved when the

end-to-end delay is 500ms. As shown in Figure 4.10, a larger number of stages in an application

flow have a greater impact on the performance of this algorithm because of the bigger impact of

communication delays on shorter end-to-end delays.

Figure 4.11 and Figure 4.12 show the percentage of saved processors when R-FLOW is used,
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Figure 4.10: The ratio of saved processors when we use FBFD under fixed number of application

flows and varying number of SW-Cs per application flow

normalized to R-BATCH. In each of these experiments, the number of tolerated processor failures

is varied from 0 to 4, where tolerating 0 processor failures is equivalent to FBFD. The number

of applications and the number of SW-Cs in an application flow are both fixed at 10. Figure 4.11

captures the results for the experiment when only hot standbys are used. As seen in the figure,

R-FLOW can save up to about 60% of processors when the end-to-end delay is 500ms. The end-

to-end delay is also the dominant performance factor when hot standbys are used. The rate of

improved savings growth is slow because the density (the ratio of computation time to deadline)

of a hot standby is different from that of the primary when R-FLOW is utilized. This is not true

when R-BATCH is used. Since the size of a hot standby for R-FLOW is larger due to additional

communication delays between the primary and the hot standby, the number of saved processors

is not increased as more replicas are introduced to tolerate more failures. Figure 4.12 represents

the case where, only cold standbys are used for recovering from processor failures, and has a

different trend. The ratio of saved processors does not vary much as the end-to-end delays of
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Figure 4.11: The ratio of saved processors when we use R-FLOW in order to tolerate varying

number of processor failures with hot standby.

application flows decrease. The reason behind this is that virtual SW-Cs recover several SW-

Cs simultaneously and an SW-C with a higher density can save more. Therefore, the effect of

end-to-end delay on the ratio of saved processors is negligible.

In summary, R-FLOW can save a substantial number of processors (up to 60% processors)

relative to the required processors by the R-BATCH scheme.

4.6 Summary

In this chapter, we have proposed a processor assignment methodology called R-FLOW for allo-

cating SW-Cs while the end-to-end delay of application flow and the given reliability requirement

are guaranteed. We have defined a new model using an abstraction called an application flow,

which enables timing analysis. We have also described the classification of SW-Cs based on their

fault-tolerance requirements. The classification and application flow models are used within R-
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Figure 4.12: The ratio of saved processors when we use R-FLOW in order to tolerate varying

number of processor failures with cold standby.

FLOW, an application flow-aware SW-C partitioning algorithm for improving system reliability.

Our results have shown that R-FLOW results in a savings of up to 45% of processors when only

primary components are allocated. If replicas are used to enhance reliability, savings of more

than 60% of processors can be achieved as compared to our earlier scheme called R-BATCH,

while satisfying the same level of reliability requirements. Finally, we have described how R-

FLOW can be used within the AUTOSAR framework, and have implemented this algorithm

within the SysWeaver tool from Carnegie Mellon resulting in automatic code generation for an

AUTOSAR-compliant system.

As our next steps, we will focus more on improving the on-line performance of R-FLOW

by introducing a new protocol, which is responsible for managing the primary, hot standbys,

and cold standbys of each SW-C. We will also compare our approach to the methods defined as

part of the ISO26262 standard [108] on Functional Safety, and investigate compliance with the

requirements and implementation aspects of the standard.

72



Chapter 5

Tasks with Continually Varying Periods

Cyber-Physical Systems (CPS) embed computing and communication capabilities in all types of

physical objects. Embedded and real-time systems are now essential to control the physical envi-

ronment, to monitor the timing of dynamic processes taking place in it, to efficiently coordinate
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Figure 5.1: Tasks with continually varying periods in the dissertation overview.
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Figure 5.2: Four-stroke cycle in gasoline engines [110].

CPS operations and most importantly to ensure safety. This trend will only continue and in fact

is expected to accelerate [109].

Among many applications of CPS such as aerospace systems, building and industrial in-

frastructure control, medical devices, robotic systems and transportation vehicles, automotive

sub-systems such as engine control and chassis control must operate in real-time. The embedded

control system in a car is also safety-critical and requires a high level of confidence in system

correctness. In such systems, a critical task not meeting its timing deadline can lead to system

failure.

Specifically, the engine and transmission in a car together form the car’s powertrain, which is

controlled by Powertrain Control Module (PCM) software using closed-loop control. At periodic

intervals, software calculates the engine speed and position, determines the next time to fire a

spark signal, and based on speed-change commands from the driver, adjusts settings for fuel flow.

The software then senses the exhaust system to determine the effectiveness of the combustion

process as depicted in Figure 5.2. As the engine runs faster, the fuel intake cycle gets shorter, and

the frequency of calculating the injected fuel volume goes up. Incorrect fuel volumes or mistimed

fuel injection can even damage the engine. Therefore, control algorithms of engine events require

significant signal conditioning, and place stringent response-time requirements. In order to meet
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these requirements, a real-time operating system such as OSEK [107] and AUTOSAR [101] is

used.

Although real-time operating systems are widely used in cars and PCM applications contain

many periodic tasks, the engine events activating the fuel injection task come from reference

pulses generated by sensors at the engine crankshaft. That is, the periods of these tasks vary

depending on the speed of the crankshaft. As an analog variable, speed is continuous and hence

the period of the task also can change both rapidly and continuously. Also, the execution time

of these tasks vary and the worst-case execution time (WCET) arises when the engine speed

increases to its maximum [6]. It is known in the automotive community that the engine control

performance deteriorates with under-sampling, i.e., tasks having a longer period than the required

minimum period for a given speed. In particular, the controller task period is known to have a

greater impact on control performance than execution time.

In this chapter, we will focus on Rate-Monotonic Scheduling (RMS) [16], the optimal fixed-

priority preemptive scheduling policy, which automotive OS standards such as OSEK and AU-

TOSAR support and other general-purpose OSes like Linux also do. Under RMS, the shorter

the period of a task, the higher is its priority. A common assumption of using RMS is that the

task periods do not change during run-time. A Utilization Bound (UB) test is often used to check

if the given tasks are schedulable, which means that each of the given tasks meets its timing

deadlines.

Conventional task models such as periodic tasks or aperiodic tasks are not adequate to handle

engine tasks with varying periods. Consider a periodic task with 60ms execution time and a

140ms period, along with an engine task that has a period varying from 10ms to 120ms, which

is depicted in Figure 5.3. The UB test [16] gives 4ms as the maximum computation time of the

engine task to guarantee the schedulability of the given two tasks, which is 46% utilization in the

worst case. However, the engine task at lower speeds can have up to 60ms as its computation

time, yielding 93% utilization. This 47% difference comes from the worst-case assumption for
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Figure 5.3: The variation of period according to engine RPM.

using a single offline UB test, where the shortest period and no period change are taken into

account. In case we have more than one periodic task, this analysis could require the addition of

more hardware, which is undesirable in a mass production industry such as car manufacturing.

In this chapter, we define a new task model called Rhythmic Tasks for characterizing and

analyzing tasks that have continually varying periods depending on external physical events. We

provide response-time analyses for rhythmic tasks under three cases: constant engine speed,

accelerating engine speed and decelerating engine speed. We provide guidelines to evaluate

schedulable utilization levels for the rhythmic task model by introducing harmonic points and

flexion points. An integrated rhythmic task analysis framework with periodic tasks is also pro-

vided. We finally provide a case study of the rhythmic task model for PCM to show the applica-

bility of the rhythmic task model to a CPS. To the best of our knowledge, this is the first model

considering both continually varying periods and WCET for cyber-physical systems.

From this chapter, we relax the assumption of periodic tasks that are made in Chapters 3 and

4. Given that CPS have certain computational patterns, new task models for CPS are devised to

incorporate such characteristics. In this chapter, we focus on the dynamic nature of CPS tasks as
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depicted in Figure 5.1. The rest of this chapter is organized as follows. In Section 5.1, we define

the rhythmic task model. In Section 5.2, we provide an analysis of one rhythmic task and one

periodic task. In Section 5.3, we provide an integrated analysis framework for one rhythmic task

with multiple periodic tasks. In Section 5.4, a case study on an automotive PCM is presented.

Finally, in Section 5.5, we provide our concluding remarks and discuss future work.

5.1 The Rhythmic Task Model

5.1.1 Definitions

A rhythmic task is a task with a (potentially) continually varying period and varying WCET. The

change in the period value of a rhythmic task can depend on the current physical attributes of the

system. The physical attributes of the given system are represented by a state vector, vs ∈ Rk,

where k is the number of dimensions that capture the current system status. The WCET, period

and deadline of a rhythmic task are a function of vs and are denoted as C(vs), T (vs) and D(vs)

respectively. Hence, the utilization of a rhythmic task is also a function of vs and it is represented

as U(vs).

Let Ji denote the ith job of the rhythmic task and T (vs, Ji) denote the period of Ji. We

define the acceleration α(vs) of the rhythmic task as 1 − T (vs,Ji+1)
T (vs,Ji)

. If T (vs, Ji+1) < T (vs, Ji),

acceleration is positive and the engine speed is increasing. The duration of acceleration is lim-

ited by nα(vs) in terms of the number of job releases. In other words, the rhythmic task can

be positively accelerated by a factor of α(vs) for nα(vs) job releases. When T (vs, Ji+1) >

T (vs, Ji), α(vs) becomes negative and represent the deceleration of the rhythmic task. To

avoid ambiguity, we use nβ(vs) when α(vs) is negative. For ease of readability, we denote

C(vs), T (vs), D(vs), U(vs), α(vs), nα(vs) and nβ(vs) asC∗, T ∗, D∗, u∗, α, nα, and nβ respectively.

A summary of the notation is given in Table 5.1.
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Table 5.1: Rhythmic task model notation.

τ ∗ Rhythmic task

vs State vector that represents physical environmental attributes

C(vs) Varying worst-case execution time of τ ∗

T (vs) Continually varying period of τ ∗

D(vs) Relative deadline of τ ∗

u(vs) Utilization of τ ∗

α Acceleration rate of τ ∗

nα Maximum acceleration duration of τ ∗

nβ Maximum deceleration duration of τ ∗

5.1.2 System Assumptions

We consider a set of hard real-time tasks Γ = {τ1, τ2, ..., τn}, where n is the number of tasks.

The tasks in Γ are classified into two subsets: Periodic Task Set, ΓP , and Rhythmic Task Set, ΓR.

We assume that ΓR consists of m tasks (m ≤ n). In other words, Γ = ΓP ∪ΓR and ΓP ∩ΓR = ∅.

For the sake of convenience, if a task τi is in ΓR, the task may be denoted as τ ∗i . If a task τi is in

ΓP , the task will be represented as τi without the asterisk symbol (∗).

A periodic task τi is specified as (Ci, Ti, Di), where Ci is its WCET, Ti is its period, and Di

is the deadline of each of the task’s jobs relative to the release time of each job. A rhythmic task

τ ∗i is denoted by (C∗i , T ∗i , D∗i ), where the WCET, period, and deadline are functions of vs. In

addition, ui is the utilization of τi, defined as Ci
Ti

. In this chapter, we assume that Ti = Di and

T ∗i = D∗i .

A rhythmic task τ ∗i is classified into three categories according to how C∗i varies. A rhythmic

task in the first category has a constant value of C∗i . We refer to a rhythmic task with constant C∗i

as a Constant Computation Rhythmic Task (CCRT). In the second category, the utilization of a

rhythmic task is maintained constant, and C∗i varies accordingly. We name a rhythmic task with
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Figure 5.4: Two different cases to consider to prove Lemma 9.

a constant utilization u∗i as a Constant Utilization Rhythmic Task (CURT). In the third category,

the WCET C∗i of a rhythmic task is defined by a function C∗i = fi(vs), where f represents a

general behavior of rhythmic tasks. One example of rhythmic tasks in this category is a task

having a step function for C∗i to maintain approximately constant utilization with discrete steps.

We refer to a task in this category as a General Computation-time Rhythmic Task (GCRT).

We assume the use of fixed-priority scheduling, specifically RMS on a uniprocessor. There-

fore, for RMS, the priority of a rhythmic task τ ∗ at time t will be determined based on its period

T ∗ depending on the instantaneous system state vs at time t. In this chapter, we assume that

m = 1 and that the rhythmic task has the highest priority among all the n tasks. Therefore,

T ∗1 and C∗1 represent the period and the WCET of the rhythmic task τ ∗1 . Hence, the inequality,

∀vs, C1(vs) ≤ T1(vs) ≤ T2, also holds. In other words, the only rhythmic task in the system

always has the shortest period and, by RMS, is assigned the highest priority of all tasks. This

chapter defines the rhythmic task model and studies the single rhythmic task scenario with many

periodic tasks. This work in itself is useful for general CPS applications. However, there could

be a need for multiple rhythmic tasks, and analyzing such systems is key future work.
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5.1.3 Application of Rhythmic-Task Definition to Engine Control

The engine shown in Figure 5.2 has two revolutions every engine cycle, and the speed of revo-

lutions is affected by four primary parameters (k = 4): RPM, number of active cylinders, the

amount of fuel injected into cylinders, and gear ratio. Hence, vs := <RPM, Number of active

cylinders, Fuel amount, Gear ratio>. The period of the rhythmic task driven by the engine cycle

is directly related to the duration of each revolution. If the rhythmic task is triggered every rev-

olution, its period varies as illustrated in Figure 5.3. As can be seen, the period of the rhythmic

task can vary over a wide range. Using the parameters of vs, the acceleration rate α and the max-

imum acceleration duration nα can be determined. Most modern cars are equipped with a rev

limiter to prevent engines from being redlined. We can treat this redline as the maximum RPM

for calculating α. By accelerating the engine at a particular gear level till the engine hits the red-

line from the minimum engine RPM, we can measure the acceleration duration at that gear level.

Using the acceleration duration and the RPM changes, the acceleration rate α is determined. The

measured duration is converted to nα. Similarly, the maximum deceleration duration nβ also can

be determined.

5.1.4 Problem Formulation

Our objective is to determine whether a given taskset with a rhythmic task τ ∗1 running at the

highest priority is schedulable under (a) steady-state conditions (b) positive acceleration, and

(c) deceleration. We will provide a schedulability test for each of these cases. For steady-

state conditions, we will propose an algorithm to determine schedulability given the current (C∗1 ,

T ∗1 ) values along with the periodic tasks. For accelerating and decelerating conditions, we will

provide a range of period change ratios for which schedulability holds. These outcomes can

be used by CPS developers to determine when C∗1 needs to be decreased in order to maintain

schedulability.
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5.2 One Rhythmic Task and One Periodic Task

We first consider a simple taskset Γ with one rhythmic task τ ∗1 and one periodic task τ2.

5.2.1 Steady-State Analysis

Lemma 9 Given one rhythmic task, represented by (C∗1 , T
∗
1 ), and one periodic task, represented

by (C2, T2), both tasks are schedulable if the following inequality is satisfied.

C∗1 ≤ max

T2 − C2⌈
T2

T ∗1

⌉ , T ∗1 −
C2⌊
T2

T ∗1

⌋
 (5.1)

Proof In order to prove this statement, we should find the maximum value of C∗1 , which does

not cause τ2 to miss its deadline. By assumption (see Section 5.1.2), τ ∗1 has higher priority than

τ2. Hence, the two tasks are schedulable if τ2 is schedulable. In order to obtain the maximum

schedulable value of C∗1 , we should consider two different cases. The first case is when the

response time of τ2 is less than or equal to its relative deadline, which is illustrated in Figure

5.4(a). In this case, C∗1
⌈
T2

T ∗1

⌉
+ C2 ≤ T2 should be satisfied. Then, in this case, the maximum

value of C∗1 is given by

C∗1 =
T2 − C2⌈

T2

T ∗1

⌉ (5.2)

The second case is depicted in Figure 5.4(b). Since τ ∗1 can preempt τ2, the
⌈
T2

T ∗1

⌉
-th instance

of τ ∗1 can overlap the period of task τ2. Therefore, C∗1
⌊
T2

T ∗1

⌋
+C2 ≤ T ∗1

⌊
T2

T ∗1

⌋
should hold. Hence,

in this case, the maximum value of C∗1 is given by

C∗1 = T ∗1 −
C2⌊
T2

T ∗1

⌋ (5.3)

The maximum value of Equation (5.2) and Equation (5.3) will provide the bound ofC∗1 , given

τ2. Therefore, if Inequality (5.1) is satisfied, both tasks are schedulable.

Inequality (5.1) allows us to visualize the schedulability of one rhythmic task and one peri-

odic task. Given τ2: (6, 14), a well-known worst-case task for the least-upper bound on schedu-
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lable utilization as an example [16], Figure 5.5 plots the maximum value of C∗1 as T ∗1 varies from

0 to 14. If (C∗1 , T
∗
1 ) lies under the curve in this figure, the taskset with τ2: (6, 14) is schedulable.

Accordingly, we can see the utilization change of the taskset. Figure 5.6 shows the variation

in the total utilization as T ∗1 changes. In this figure, we observe two types of interesting points:

local maxima and local minima. We call local maxima as harmonic points, since the task periods

are “compatible” at these points, and local minima as flexion points, since the slope changes from

negative to positive here. Let U(Γ) denote the total utilization and Ulub(Γ) denote the least-upper

bound on schedulable utilization of the given taskset Γ having one rhythmic task and one periodic

task.

Lemma 10 At T ∗1 = T2

i
, where i ∈ Z+, harmonic points occur, where U(Γ) is 1.

Proof Substituting T2

i
for T ∗1 in the right-hand side of Equation (5.2) returns T2−C2

i
since T2

T ∗1

becomes an integer i. We also obtain the same value from the right-hand side of Equation (5.3).

Then, Inequality (5.1) is equivalent to C∗1 ≤ T2−C2

i
. The utilization of two tasks is given by

U(Γ) =
C∗1
T ∗1

+ C2

T2
. By substituting T2−C2

i
and T2

i
for C∗1 and T ∗1 respectively, we obtain 1 as the

total utilization.

Lemma 11 Flexion points, local minima of U(Γ), happen at T ∗1 = C2

i(i−1)
+ T2

i
, where i ≥ 2 and

i ∈ Z+. C∗1 = T2−C2

i
also holds.

Proof From Lemma 10, the harmonic points happen when T ∗1 = T2

i
, where i ∈ Z+. Let’s

assume that the flexion points occur when T ∗1 = T2

i
+ x, where x is the value we want to find.

The flexion points correspond to the intersections of Equation (5.2) and Equation (5.3) as shown

in [16]. We can substitute T2

i
+ x for T ∗1 in both equations. Suppose i ≥ 2. Then, because

T2

i
≤ T2

i
+ x ≤ T2

i−1
,
⌈
T2

T ∗1

⌉
=

⌈
T2

T2
i

+x

⌉
= i − 1 and

⌊
T2

T ∗1

⌋
=

⌊
T2

T2
i

+x

⌋
= i. We substitute these in

both equations, and we obtain C∗1 = T2−C2

i−1
= x + T2

i
− C2

i
. Solving for x, we get x = T2−C2

(i−1)i
.

When i ≥ 2 and i ∈ Z+, T ∗1 = T2

i
+ x = T2

i
+ T2−C2

(i−1)i
= C2

i(i−1)
+ T2

i

Lemma 12 The minimum flexion point, Ulub, occurs at i = 2.
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Figure 5.5: Schedulable region of the taskset including τ ∗1 and τ2 as (6,14).

Proof Substituting the results from Lemma 11 gives us U(Γ) = T2−C2
C2
i−1

+T2
+ C2

T2
. Because T2−C2 ≥

0, Ulub can be found when i has the smallest allowable value, which is 2.

We can see that the results from Lemma 11 and Lemma 12 are consistent with the curve

shown in Figure 5.6. One interesting observation of Lemma 11 is that only the parameters of

the periodic task affect the locations of the flexion points. A similar property will be shown in

Theorem 17.

Lemma 13 The flexion points of one rhythmic task and one periodic task occur atC2 = T2(
√
i(i− 1)−

(i− 1)), where i ∈ Z+ and i ≥ 2.

Proof From the proof of Lemma 12, U(Γ) = T2−C2
C2
i−1

+T2
+ C2

T2
. Differentiating with respect to C2,

we obtain ∂U(Γ)
∂C2

= 1
T2

+ i(i−1)T2

((i−1)T2+C2)2 . We solve the equation ∂U(Γ)
∂C2

= 0, and the solution is given

by C2 = T2

(√
i(i− 1)− (i− 1)

)
, where the flexion points happen.
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Figure 5.6: Corresponding utilization value where there are one rhythmic task and one periodic

task, (6,14).

5.2.2 Acceleration Analysis

The positive acceleration of an engine is a significant event from a schedulability perspective. Car

manufacturers always provide two types of information on engine specifications, horse power

and torque. The horse power of an engine is related to the maximum speed analogous to the

steady-state discussed in Section 5.2.1, and the torque of an engine has a strong relationship with

the acceleration of a vehicle. The acceleration of a car is immediately followed by the change

of task periods controlling the engine. As shown in [6], the quality of engine control decreases

significantly if the periods of engine tasks decrease. In this subsection, we will discuss how much

the engine can accelerate by finding the maximum rate of period changes under the given taskset

Γ.

As shown in Figure 5.3, the duration for one revolution becomes shorter as positive acceler-
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ation occurs. Suppose that the ith revolution occurs at time t. Then, as the engine accelerates,

the (i+ 1)th revolution will have a shorter period. Let α denote the rate of period change, where

0 ≤ α ≤ 1 and α ∈ R. Let nα denote the maximum positive acceleration duration in terms of the

number of job releases of the rhythmic task. Suppose that T ∗,i is the period of the ith revolution

of the rhythmic task τ ∗. Then, if the period of the rhythmic task reduces after the first job release,

we can express the period of the (i + 1)th revolution as T ∗,i+1 = T ∗,i (1− α) by using α, when

i ≤ nα. Otherwise, T ∗,i+1 = T ∗,i. Hence, we can define T ∗,i as T ∗,i = T ∗1 (1 − α)min(i,nα) for a

non-negative integer i. We will find if the given taskset is schedulable under the given α and nα.

Suppose that there are two tasks, one rhythmic task τ ∗1 and one periodic task τ2. Under the

given (C∗1 , T
∗
1 ) at a certain time, let nap denote the number of preemptions which τ2 experiences

while T ∗1 is decreasing. Then, if T ∗1 starts decreasing at the first job release, nap is defined as

nap = max{n|
∑n−1

i=0 T
∗,i
1 ≤ T2 and n ∈ Z+}.

Given the definition of nap, the following inequality should be satisfied.

nap−1∑
i=0

T ∗,i1 ≤ T2 (5.4)

Let f ∗C denote the function of T ∗,i1 which returns the computation time of the rhythmic task,

where f ∗C has a different type of function depending on which category among CCRT, CURT and

GCRT the rhythmic task is classified into. Then, nap and α should meet one of the following two

inequalities:
nap−1∑
i=0

{
f ∗C
(
T ∗,i1

)}
+ C2 ≤ T2 (5.5)

nap−2∑
i=0

{
f ∗C
(
T ∗,i1

)}
+ C2 ≤

nap−2∑
i=0

T ∗,i1 (5.6)

where Inequality (5.5) refers to the case when the nap-th instance of τ ∗1 completes before T2 under

the assumption that the acceleration is started at the first instance. Inequality (5.6) represents

the case when the nap-th instance of τ ∗1 overlaps T2. These two cases are also explained in the

proof of Lemma 9. In order to decide if α is possible, it should be substituted in Inequality (5.4).
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Figure 5.7: The example scenario when a rhythmic task accelerates.

According to the α value, we determine nap, which should be substituted in Inequality (5.5) and

Inequality (5.6) to check if one of those inequalities is satisfied.

As an example of a type of f ∗C , we consider CCRT. As C∗1 does not change, Inequalities (5.5)

and (5.6) become napC
∗
1 + C2 ≤ T2 and (nap − 1)C∗1 + C2 ≤

∑nap−2

i=0 T ∗,i1 , respectively.

Acceleration Example: Suppose that there is one CCRT rhythmic task τ ∗1 and one periodic

task τ2: (6, 14). Given (2,5) as (C∗1 , T
∗
1 ), acceleration is possible when α is 0.3 and nα is 1. As

shown in Figure 5.7, the period of the rhythmic task will become 3.5 at time 5, and τ2 meets its

deadline at time 14. However, any α greater than 0.3 will make the taskset unschedulable. In this

case, therefore, we can say that the maximum possible α is 0.3 when nα = 1.

5.2.3 Deceleration Analysis

Engine deceleration happens generally when the amount of fuel injected into the cylinders de-

creases. Engine deceleration is also significant since it is related to shifting of gears. This occurs

very frequently in urban areas, and careless system design could affect the system schedulability

whenever the gear shifting occurs. When the engine decelerates, the engine task periods increase.

For the deceleration analysis, α becomes a negative value to represent the rate of period

increase. Under the given (C∗1 , T
∗
1 ) at a certain time, let ndp denote the number of preemptions

which τ2 experiences while T ∗1 is increasing. Then, if T ∗1 starts increasing at the first job release,

ndp is defined as ndp = max{n|
∑n−1

i=0 T
∗,i
1 ≤ T2 and n ∈ Z+}.

Given the definition of ndp, the following inequality should be satisfied, and the period does
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Algorithm 8 Rhythm-Max-C(Γ)

Require: Γ: a given taskset including a rhythmic task

Ensure: The WCET of the rhythmic task

1: for i = 1 to n do

2: . Build a set of points to check

3: Si = {kTj|j = 1...i, k is an integer satisfying

4: kTj ≤ Ti}

5: . From Inequalities (5.11) and (5.12)

6: for For each element smi ∈ Si, do

7: Calculate Cm
1,i =

smi −
∑i
j=2

⌈
smi
Tj

⌉
Cj⌈

sm
i
T1

⌉
8: Maintain the largest value of Cm

1,i as C1,i

9: return min{C1,i, 1 ≤ i ≤ n}

not increase after the nβ-th job of the rhythmic task if ndp > nβ .

ndp−1∑
i=0

T ∗,i1 ≤ T2 (5.7)

Then, ndp should meet one of the following two inequalities:

ndp−1∑
i=0

{
f ∗C(T ∗,i1 )

}
+ C2 ≤ T2 (5.8)

ndp−2∑
i=0

{
f ∗C(T ∗,i1 )

}
+ C2 ≤

ndp−2∑
i=0

T ∗,i1 (5.9)

The reason behind these two inequalities is already mentioned in Section 5.2.2. Based on α,

we can find the value of ndp which satisfies Inequalities (5.8) and (5.9) to check if one of those

inequalities is satisfied. This process applies to both CURTs and GCRTs. For rhythmic tasks hav-

ing fixed C∗1 (CCRT defined in Section 5.1.2), they will be always schedulable because periods

are sustainable as they are increased [111].
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5.3 One Rhythmic Task and Many Periodic Tasks

In this section, we consider a taskset Γ with one rhythmic task τ ∗1 and n − 1 periodic tasks

τ2, ..., τn. In Section 5.2, we analyzed the case of having one rhythmic task and one periodic

task. The results from the previous section will be extended to support several periodic tasks

for constant speed, positive acceleration, and deceleration cases. A real-world example will be

analyzed using this model in Section 5.4.

5.3.1 Steady-state Analysis

In order to determine the schedulability of Γ, we find the maximum value of C∗1 which does not

make any periodic task miss its deadline. Let f ∗Cmax(T
∗
1 ) denote the function which returns the

maximum possible value of WCET for C∗1 which makes Γ schedulable when received T ∗1 as an

input.

Theorem 14 f ∗Cmax(T
∗
1 ) is given by

min
∀τi∈Γ

max

T ∗1 −
∑i

j=2

⌈
Ti
Tj

⌉
Cj⌊

Ti
T ∗1

⌋ ,
Ti −

∑i
j=2

⌈
Ti
Tj

⌉
Cj⌈

Ti
T ∗1

⌉
 (5.10)

Proof In order to check if Γ is schedulable, the worst-case response time of each periodic task

τi should not exceed its deadline. Under the assumption of critical instant from [16], we should

compare the worst-case response time of each periodic task to its deadline [112]. Then, as

described in Lemma 9, two different cases should be considered.

The first case is that the execution time of the
⌈
Ti
T ∗1

⌉
-th instance of the rhythmic task is long

enough to overlap Ti, where Ti is the deadline of the ith periodic task τi.⌊
Ti
T ∗1

⌋
C∗1 +

i∑
j=2

⌈
Ti
Tj

⌉
Cj ≤

⌊
Ti
T1

⌋
T1

As long as the following inequality is satisfied,

C∗1 ≤ T ∗1 −

∑i
j=2

⌈
Ti
Tj

⌉
Cj⌊

Ti
T ∗1

⌋ (5.11)
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the given taskset is schedulable.

In the second case, the execution time of the
⌈
Ti
T ∗1

⌉
-th instance of the rhythmic task does not

overlap Ti. Hence, the following inequality must be satisfied:⌈
Ti
T ∗1

⌉
C∗1 +

i∑
j=2

⌈
Ti
Tj

⌉
Cj ≤ Ti

Solving for C∗1 returns the following inequality.

C∗1 ≤
Ti −

∑i
j=2

⌈
Ti
Tj

⌉
Cj⌈

Ti
T ∗1

⌉ (5.12)

Use the maximum value from Inequalities (5.11) and (5.12) as we are looking for the maximum

allowable C∗1 . At this point, we have n− 1 candidates for C∗1 . Since no periodic task must miss

its deadline, we use the minimum value among those candidates. Then, f ∗Cmax(T
∗
1 ) is given by

Equation (5.10).

Theorem 15 The slope of f ∗Cmax(T
∗
1 ) is either 1 or 0.

Proof We consider two different cases as the proof of Theorem 14. In the first case, Inequal-

ity (5.11) indicates that the slope of f ∗Cmax(T
∗
1 ) is 1. In the second case, due to the fact that we

consider the execution time of the
⌈
Ti
T ∗1

⌉
-th instance of the rhythmic task, the right hand side of

Inequality (5.12) does not change as T ∗1 changes. Hence, the slope of f ∗Cmax(T
∗
1 ) is 0 with respect

to T ∗1 .

Based on Theorems 14 and 15, we have designed an algorithm for finding the maximum

possible value of WCET in Algorithm 8. Figure 5.8 shows an outcome of Algorithm 8 for a

rhythmic task with 3 periodic tasks: τ2: (1, 7), τ3: (1, 10) and τ4: (1, 23). As shown, the slope of

the curve in Figure 5.8a is either 1 or 0, where the taskset is schedulable if (C∗1 , T
∗
1 ) lies under

the curve. Also, the minimum flexion point in Figure 5.8b is at 4 which satisfies Theorem 17

when T ∗1 = T2

2
+ C2

2
.

Corollary 16 If a taskset is schedulable with (C∗1 , T
∗
1 ), the taskset is schedulable with

(
C∗1
k
,
T ∗1
k

)
,

where k is a positive integer.
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Figure 5.8: An example for a rhythmic task with 3 periodic tasks: τ2: (1, 7), τ3: (1, 10) and τ4:

(1, 23).

Proof Compute f ∗Cmax . The parameters of (C∗1 , T
∗
1 ) make the system schedulable. Then,

(
C∗1
k
,
T ∗1
k

)
will always be below f ∗Cmax from Theorem 15.

Theorem 17 The minimum flexion point lies in the range, T2

2
+ C2

2
≤ T ∗1 ≤ T2.

Proof The worst-case utilization happens when 1 ≤ T2

T ∗1
≤ 2 from [16]. Hence, T2

2
≤ T ∗1 ≤ T2.

From [16], since T2−C2

2
≥ C∗1 holds good, T ∗1 + T2−C2

2
≥ T2 is satisfied. Then, by solving for T ∗1 ,

T2

2
+ C2

2
≤ T ∗1 ≤ T2.

Theorem 17 is critical to find the least-upper bound utilization of the given taskset regardless

of the other tasks except τ2, the second highest priority task. This theorem could also be a hint

to find the least-upper bound utilization when only the task periods are given, a problem that

appears to be unsolved yet.
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5.3.2 Acceleration Analysis

Let α denote the rate of period decrease of τ ∗1 and nα denote the maximum positive acceleration

duration in terms of the number of job releases of the rhythmic task. Then, the following theorem

is satisfied.

Theorem 18 Given a taskset Γ with one rhythmic task τ ∗1 and n− 1 periodic tasks, Γ is schedu-

lable when the rhythmic task is accelerating if the following inequality is satisfied when nα = 1.

α ≤ 1− T ∗1
C∗1

(
UB(n)−

n∑
i=2

Ci
Ti

)
where UB(n) returns the utilization bound [16] of n tasks.

Proof While the acceleration of a rhythmic task continues, the period of the ith instance affects

the WCET of (i+1)th instance. Hence, C∗1
T ∗1 (1−α)

+
∑n

i=2
Ci
Ti
≤ UB(n) is satisfied from [16] when

nα is 1. Solving for α, α ≤ 1− T ∗1
C∗1

(
UB(n)−

∑n
i=2

Ci
Ti

)
holds.

The bound of Theorem 18 is not tight because it uses the utilization bound [16]. A tighter

bound can be found by extending the results from Section 5.2. We need to extend the definition of

nap first. Let nap,i(t) denote the number of preemptions of the periodic task τi caused by the rhyth-

mic task τ ∗1 during t units of time. Then, nap,i(t) is defined as nap,i(t) = max{n|
∑n−1

j=0 T
∗,j
1 ≤ t, n ∈

Z+}. Therefore, the following inequality should be satisfied.

∀i,
nap,i(Ti)−1∑

j=0

T ∗,j1 ≤ Ti, i ∈ {k|k ∈ Z+ and k ≥ 2} (5.13)

Then, by using the value found above, the response-time test [113] has to be modified as

W k+1
i = Ci + C∗1 +

nap,i(W
k
i )∑

j=0

f ∗C(T ∗,j1 ) +
i−1∑
h=2

⌈
W k+1
i

Th

⌉
Ch (5.14)

where W 0
i = C∗1 +

∑i
j=2 Cj and the test terminates when W k+1

i = W k
i .

Based on Inequality (5.13) and Equation (5.14), the generalized algorithm is given in Al-

gorithm 9 which checks if a taskset is schedulable under the given α and nα. Algorithm 10 is

used for obtaining the number of preemptions caused by the rhythmic task, and Algorithm 11
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Algorithm 9 Rhythmic-Acc-α(Γ, α, nα)

Require: Γ: a taskset including a rhythmic task, α: the acceleration ratio and nα: the duration

of rhythmic task acceleration in terms of the number of job releases

Ensure: Schedulability of Γ

1: for i = 2 to n do

2: . Calculate the initial condition for each task τi

3: W 0
i = C∗1 +

∑i
j=2Cj and W 1

i = 0

4: k = 0

5: while W k+1
i 6= W k

i do

6: . Pick the maximum number of preemptions for each iteration

7: nap,i(W
k
i ) = Num-Preemptions(T ∗1 , α, nα,W

k
i )

8: E∗1 = Execution-Time(nap,i(W
k
i ), C∗1 , α, nα)

9: W k+1
i = Ci + E∗1 +

∑i−1
h=2

⌈
Wk+1
i

Th

⌉
Ch

10: Update necessary parameters

11: if W k
i ≤ Di then

12: Mark τi schedulable

13: if all tasks schedulable then

14: return TRUE

15: else

16: return FALSE

calculates the preemption duration during the execution for CURT. The maximum value can be

found by using this function for the range of α.

For analyzing engine deceleration, the definition of ndp also needs to be extended, and a

similar modified response-time test can be used.
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Algorithm 10 Num-Preemptions(T ∗1 , α, nα,W
k
i )

1: . The time duration of rhythmic task acceleration

2: dacc =
∑nα−1

j=0 {T ∗1 (1− α)j}

3: if dacc > W k
i then

4: nap,i(W
k
i ) = max{l|

∑l−1
j=0{T ∗1 (1− α)j} ≤ W k

i ,

5: where l ∈ Z+}

6: else

7: nap,i(W
k
i ) = nα +

⌈
Wk
i −dacc

T ∗1 (1−α)nα−1

⌉
8: return nap,i(W

k
i )

Algorithm 11 Execution-Time(nap,i(W
k
i ), C∗1 , α, nα)

1: if nap,i(W k
i ) < nα then

2: E∗1 =
∑nap,i(W

k
i )

j=0 {C∗1(1− α)j}

3: else

4: E∗1 =
∑nα−1

j=0 {C∗1(1− α)j}+ (nap,i(W
k
i )− nα)× C∗1(1− α)nα−1

5: return E∗1

5.3.3 Guidelines for CPS Application Developers

In this subsection, we will provide some guidelines that help CPS application developers to apply

the rhythmic task analysis results and guarantee the schedulability of the system. The developers

should ensure that:

1. The application is categorized into one of the three categories: CCRT, CURT and GCRT.

2. The computation time of a rhythmic task lies under the schedulable region as depicted in

Figures 5.5 and 5.8.

• The minimum flexion point of the total utilization can be used. By not exceeding this

bound, the system schedulability is guaranteed. However, it should be noted that this

bound could be pessimistic.
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Figure 5.9: The maximum possible computation time for a rhythmic task that has varying period

from 7.5ms to 120ms with 9 periodic tasks.

• Algorithm 8 and Theorem 14 can be used together to find the exact schedulable re-

gion.

3. The application can be in the form of modules for different speeds. The application can

have all the modules or a subset of the modules depending upon the execution time to meet

the system schedulability.

4. The difference between the maximum allowable worst-case execution time and the actual

computation time should be enough to tolerate the acceleration for the values α, nα and

nβ . Theses values are computed by using Algorithm 9.

Once the parameters of the schedulable rhythmic task (C∗, T ∗) are found, this information can

be used for finding other schedulable regions. For CCRT, the rhythmic task with a longer period

will be schedulable. For CURT, the rhythmic task with (C
∗

k
, T
∗

k
), where k is a positive integer,

will be also schedulable.
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5.4 Case Study of the Rhythmic Task Model

In this section, we provide a case study to show how to apply the rhythmic task model to an

existing CPS. Our model is applicable to a generic CPS having tasks with varying periods. In

this section, we investigate the automotive PCM.

Figure 5.10 illustrates a process for injecting and delivering fuel to each cylinder at every

revolution [114]. Since the depicted task is triggered by timing signals from engine events,

increasing/decreasing the duration of revolution will change the period of the given task. Sup-

pose the RPM varies from 500 to 9000, so the period of the corresponding task varies from

7.5ms to 120ms. The operations illustrated in Figure 5.10 are also executed. The execution

path is composed of a service routine, sensor reads, air calculation, fuel calculation and fuel

delivery. We model this task as a rhythmic task. Each block has its own WCET: Service

Routine and Fuel Delivery: 4ms, Sensor Reads: 6ms, Air Calculation: 10ms and Fuel Cal-

culation: 22ms. In addition, a typical Engine Control Module (ECM) has other features [61]

such as monitoring the processor that runs the control algorithms, reporting the current status

to a diagnosis module, and managing sensors which measure the amount of fuel injected. We

picked nine tasks to show the typical behaviors of the ECM representing the periodic engine

operations [61] and study the impact of having a rhythmic task. Specifically, we use the follow-

ing periodic tasks: τ2:(5ms, 120ms), τ3:(20ms, 120ms), τ4:(5ms, 180ms), τ5:(6ms, 200ms),

τ6:(8ms, 240ms), τ7:(10ms, 240ms), τ8:(3ms, 300ms), τ9:(1ms, 360ms) and τ10:(7ms, 400ms).

The solid line in Figure 5.9 shows the maximum possible computation time of the rhythmic

task using Algorithm 8. As mentioned earlier, if the value of (C∗1 , T
∗
1 ) is below the given solid

Timing 
Signal 

Service 
Routine 

Sensor 
Reads 

Air 
Calc. 

Fuel 
Calc. 

Fuel 
Delivery 

22ms 10ms 6ms 2ms 2ms 

Figure 5.10: Flow diagram for the start of injection in PCM software.
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Figure 5.11: The corresponding utilization value to Figure 5.9 for a rhythmic task that has varying

period from 7.5ms to 120ms with 9 periodic tasks.

curve, the taskset is schedulable. This offers design-time guidelines to determine the feasible

WCET of the engine control task. The dotted line is a recommendation for when a particular

software block from Figure 5.10 can be executed. The Service Routine and Fuel Delivery func-

tions will be executed by every job of the rhythmic task regardless of the value of T ∗1 . The Sensor

Reads function will be executed in addition to Service Routine and Fuel Delivery if T ∗1 is greater

than 17ms. Since the WCET of Sensor Reads is 6ms, it can make the system unschedulable if

T ∗1 is smaller than 17ms. In this case, however, instead of not running the whole instructions of

Sensor Reads, the previous sensor values can be used for the operation. Similarly, the function

Air Calculation will be executed if T ∗1 is greater than 34.7ms; Fuel Calculation will be executed

if T ∗1 is greater than 73ms. These recommendations correspond to making the rhythmic task a

GCRT with a discrete step function.

Figure 5.11 illustrates the corresponding utilization based on the WCET given in Figure 5.9.

It shows the maximum allowable utilization of the rhythmic task, where the minimum flexion

point is at T ∗1 = 92.5ms, where T2

2
+ C2

2
≤ T ∗1 = 92.5ms ≤ T2, which is computed using

Algorithm 8 and Theorem 17. An alternative way of determining the engine control task behavior

is to use this information to ensure that the total utilization does not exceed this bound. The dotted
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(b) Maximum acceleration duration nα: 5

Figure 5.12: Plots of acceleration values for a rhythmic task that has varying period from 7.5ms

to 120ms with 9 periodic tasks.

line in Figure 5.11 is the utilization curve corresponding to our recommendation above.

Figure 5.12 depicts the bound for Acceleration α considering the maximum allowable rate

of period change with different acceleration durations. These curves are generated by using

Algorithms 9, 10 and 11, where Algorithm 11 is modified such that it can handle GCRT. The

plots use the recommended WCET corresponding to the dotted line from Figure 5.9. As shown

in the figures, the acceleration bound plays a negative role. For example, we cannot accelerate

the engine at all when T ∗1 is 17ms or 34.7ms because the processor is fully utilized already. This
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can be avoided by delaying the timing of changing the execution mode from 17ms/34.7ms to

later values. The effect of the acceleration duration is also shown in Figures 5.12(a) and 5.12(b).

Figure 5.12(a) is when the maximum acceleration duration nα is 3, and nα is 5 in Figure 5.12(b).

When the acceleration duration is longer, the acceleration bound becomes significantly low. This

happens because a longer acceleration duration increases the number of preemptions of periodic

tasks.

5.5 Summary

In automotive systems, safety-critical mechanical systems are being replaced by electronically

controlled systems. A critical task not meeting its deadline can be catastrophic. In order to meet

these stringent requirements, real-time scheduling techniques such as Rate Monotonic Schedul-

ing (RMS) are used to guarantee the schedulability of the periodic tasks. However, the param-

eters of certain critical control tasks in cyber-physical systems depend on physical attributes of

the system such as the speed of the engine in a car. The periods of these engine tasks vary dra-

matically depending on the engine speed. Conventional periodic task analysis is too conservative

for handling such tasks. In this chapter, we have defined a new task model called Rhythmic Tasks

for modeling tasks having continually varying periods depending on external physical events. To

the best of our knowledge, this is the first model considering continually varying periods. We

provide response-time analysis techniques for rhythmic tasks under constant engine speed, ac-

celerating engine speed and decelerating engine speed along with schedulability tests. We have

also provided guidelines to find schedulable utilization levels for the rhythmic task model. We

apply our analyses and guidelines to a case-study desired from a real environment. The case

study shows how the rhythmic task model is applicable to an existing CPS.

Dealing with multiple rhythmic tasks is an important and needed extension for cyber-physical

systems. For example, the periods of planning and perception tasks in an autonomous vehicle [8]

are functions of the vehicle speed, and the rates of their period changes depend on various envi-
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ronmental factors.

Future applications of rhythmic tasks include fault-tolerance support and autonomous vehi-

cles. Rhythmic tasks can be replicated for fault-tolerance, and our techniques need to be ex-

tended. This rhythmic task model can also be used in autonomous vehicle systems. For example,

perception algorithms for vision-based obstacle detection can be analyzed using the rhythmic

task model.
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Chapter 6

Tasks with Parallel Threads

With cyber-physical systems (CPS), such as medical devices, aerospace systems, smart grids, nu-

clear power plants, robots and transportation vehicles, becoming more popular, demands for new

functionality features multiply [109]. For example, active safety options such as adaptive cruise

Periodic Tasks

Rhythmic Tasks

Parallel Tasks

System 
Configurations

Sensors
Computing 

Nodes
Actuators

FT Resource Allocation and 
Schedulability Analysis

Fixed Priority

Runtime Support Analysis Engine

Daemon User App

IPC

User App

Library Library Library......

Self-suspending 
Tasks

Segment-fixed 
Priority

Figure 6.1: Tasks with parallel threads in the dissertation overview.
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Figure 6.2: A motion planning algorithm for autonomous driving.

control, brake assist, collision avoidance, lane departure warning, sign detection and traction con-

trol are not rare anymore in recently built vehicles. We, in fact, expect these CPS functionalities

to be readily available even in mid-range cars. With this trend, embedded real-time systems are

indispensable in order to sense the physical environment, process data in real-time, control the

actuators in a desirable manner and monitor the timing of the whole execution chain for ensuring

safety.

Autonomous driving [8, 115, 116, 117, 118] is an appealing emerging CPS technology. In an

autonomous car, motion planning, sensor fusion, computer vision and other artificial intelligence

algorithms must run in real-time; however, the CPU-hogging nature of those algorithms poses

challenges in guaranteeing their timeliness.

The timing challenge can be addressed by the fact that most algorithms for autonomous

driving are parallelizable. A planning algorithm of a self-driving car can profit from parallelized

tasks composed of numerous threads. The motion planning algorithm calculates the best path

for the vehicle to follow among a myriad of potential paths. This algorithm can be expedited by

parallelizing the cost calculation for each path. The more paths the algorithm goes through, the
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better driving quality will be. Figure 6.2 is a screenshot of the operator interface for Boss, which

won the 2007 DARPA Urban Challenge [8] showing a motion planning algorithm in operation.

In the figure, the multiple lines coming out from Boss represent possible paths which Boss may

follow, where each line is generated by a parallel thread of the motion planning algorithm. When

all threads are completed, they merge into a master thread that selects the best path. It should

be noted that the number of threads can vary depending on the physical conditions such as the

shape of the road, the number of detected obstacles and the speed of the vehicle.

A perception subsystem of a self-driving car can also benefit from parallel tasks. In order for

the vehicle to understand its surroundings, the perception subsystem should be able to process

massive amounts of data from various types of sensors. Boss, for example, manages 36000

independent segments from its Velodyne HDL-64 LIDAR before fusing them with other sensor

data. Then, the vehicle can classify and track the detected obstacles, whose number has a major

impact on how many parallel threads are spawned by the perception subsystem.

The automotive industry has already started moving towards the multi-core processors for

higher performance [106, 119]. AUTOSAR, a widely used automotive software infrastructure,

supports multi-core processors [101]. In addition, parallel programming models like OpenMP [120]

utilize multiple processing cores to guarantee concurrent execution. We believe that other CPS

application domains will follow this trend sooner rather than later.

There has been relatively little research on tackling challenges in scheduling parallel real-time

tasks. In [1], Lakshmanan et al. proposed a parallel task model and a partitioned fixed-priority

scheduling algorithm on a multi-core processor, but the number of threads could not exceed the

number of given processing cores. In [53], Saifullah et al. proposed a more generalized parallel

real-time task model which allows different fork-join segments of a task to have a different

number of threads.

In this chapter, we extend the fork-join real-time task model proposed in [1] so that an arbi-

trary number of threads can be scheduled, where the number of threads can vary depending on
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the physical attributes of the system. To efficiently schedule the proposed task model, we also

propose a task stretch∗ transform to schedule the task model on a given number of processing

cores. Then, we prove that a resource augmentation bound of 3.73 is achieved when we use the

task stretch∗ transform for global Deadline Monotoic (DM) scheduling for fork-join real-time

tasks. The proposed scheme is implemented on Linux/RK [121] and ported to the self-driving

car Boss [8]. We evaluate our proposed scheme on Boss by showing its driving quality in terms

of curvature and velocity profiles of the vehicle with an enhanced motion planning algorithm [9].

In this chapter, we relax the assumption of sequential tasks that are made in Chapters 3 and

4 to incorporate parallel threads for real-time periodic tasks. We focus on the benefit of using

parallelism in CPS as depicted in Figure 6.1. The rest of this chapter is organized as follows. In

Section 6.1, we define our fork-join real-time task model and describe the system assumptions.

We provide a scheduling algorithm to handle parallel real-time tasks in Section 6.2. The anal-

ysis using resource augmentation bound for global DM scheduling follows in Section 6.3. We,

then, briefly explain in Section 6.4 the modifications made to Linux/RK to support the proposed

scheme on a Linux-based system. Section 6.5 shows the curvature and velocity profiles of a

self-driving car when our proposed scheme is used. In Section 6.6, we summarize our chapter

and discuss future work.

6.1 System Model and Assumptions

Definition: We consider a set of tasks τ composed of n multi-threaded real-time tasks, and the

given set τ runs on a system withm processing cores. τ is represented as τ: {τ1, τ2, . . . , τn}, and

the tasks in τ are sorted in non-decreasing order of task periods (deadlines). Each task τi begins

with a single thread spawning parallel threads, which join with another sequential thread of τi.

τi interchanges this pattern between parallel and sequential segments. The number of parallel

threads depends on the physical attributes of the given system vs ∈ Rp, where p is the number of

dimensions that capture aspects of the operating environment. Then, as depicted in Figure 6.3,
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Figure 6.3: A fork-join real-time task model.

each task τi is represented as τi: ((C1
i , (P

2
i ,m

2
i (vs)), C

3
i , . . . , (P

si−1
i ,msi−1

i (vs)),

Csi
i ), Ti, Di), where

• si is the number of computation segments of τi. Since τi starts with a sequential segment

and ends with a sequential segment while having parallel segments in the middle, si is a

positive odd integer. For 1 ≤ j ≤ si, the jth element is a parallel segment if j is an even

number. Similarly, the jth element is a sequential segment if j is an odd number.

• mj
i (vs) is the number of parallel threads for the jth segment when 1 ≤ j ≤ si. When j

is an odd integer, mj
i (vs) is 1 and omitted from the representation of τi above for ease of

presentation. When j is an even integer, mj
i (vs) is equal to or greater than 1 and represents

the number of parallel threads spawned by the previous segment.

• Cj
i is the worst-case execution time of the jth segment in task τi on a unit-speed processor

when the jth element is a sequential segment. Also, let τ j,1i denote the jth sequential

segment of τi.

• P j
i is the worst-case execution time of each thread run in the jth segment of task τi on a

unit-speed processor when the jth element is a parallel segment. For parallel segments of

τi, each thread of parallel threads is represented as τ j,ki , where k varies from 1 to mj
i (vs).

• Di is the relative deadline to its release time.

• Ti is the period of τi. An implicit deadline is assumed, i.e., Ti = Di.
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Application Examples to Autonomous Driving: The motion planning algorithm of Boss

uses OpenMP to parallelize its cost calculations to find the best path. Since the algorithm takes

its inputs: the road rules, the road shape, the vehicle speed, the list of static obstacles and the list

of dynamic obstacles, we define vs as < RoadRule, RoadShape,

V ehicleInfo, StaticObstacles,DynamicObstacles>. This vector vs is then used to decide the

number of parallel threads accordingly. The perception algorithm of Boss leverages pthread to

expedite its executions of processing perceived objects. We therefore define vs for the perception

algorithm as <SensorList, SensorPose,RawSensorDataList,

V ehiclePose>. In this chapter, we consider the number of threads within each parallel segment

not to exceed the maximum value of mj
i (vs) for ∀vs ∈ Rp. For ease of presentation, therefore,

we use mj
i instead of mj

i (vs).

Assumptions: Each task τi is assumed to generate an infinite series of independent jobs.

The release time of the jth segment of each job of τi should be after the completion time of the

(j−1)th segment1. Therefore, if the jth element of τi is a sequential segment, all parallel threads

of (j− 1)th segment of τi should complete before the jth element of τi starts. We assume that all

jobs are preemptable with negligible cost. We also assume that there is negligible migration cost

when a job is migrated from a core to another.

Terminology: Using this model, we define the maximum number of threads of τi, which is

the maximum value among mj
i of τi. Formally,

mi =
si

max
j=1

mj
i

The maximum execution length of a task τi on a unit-speed processor is defined as:

Ci =

si−1

2∑
j=0

C2j+1
i +

si−1

2∑
j=1

m2j
i P

2j
i

where, Ci represents the response time on a unit-speed single core processor when run alone. The

first term corresponds to sequential task segments and the second term corresponds to fork-join
1We will use the terms ‘jobs’ and ‘tasks’ interchangeably where the distinction is not of importance.
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segments.

To define the minimum execution length of a task τi, we have to consider two different cases:

(1) mi ≤ m and (2) mi > m. For the first case, the minimum execution length is defined as

ηi =
∑ si−1

2
j=0 C2j+1

i +
∑ si−1

2
j=1 P 2j

i , where ηi is the response time when each single thread of τi can

use a core exclusively. When mi > m, the definition above does not hold good because some

threads must be serialized. When mi > m, therefore, we define the minimum execution length

ηi as:

ηi =

si−1

2∑
j=0

C2j+1
i +

si−1

2∑
j=1

⌈
m2j
i

m

⌉
P 2j
i (6.1)

The definition above can also be used when mi ≤ m because dm
j
i

m
e = 1 when mi ≤ m. Hence,

it holds good for both cases. For ease of presentation, we also let Pi =
∑ si−1

2
j=1

⌈
m2j
i

m

⌉
P 2j
i , which

is the execution requirement of the parallel segments contributing to ηi.

The task model in this chapter is extended from the fork-join task model2 proposed in [1].

The two main differences between the previous one and this model are that (1) our model places

no limitation on the number of threads, and (2) our model allows different number of threads per

parallel segment. Hence, this model is more practical.

6.2 Scheduling Fork-Join Real-Time Tasks

It was shown in [1] that there are unschedulable task sets where the total utilization of the taskset

is slightly greater and very close to 1 even though there are m processing cores. In other words,

deadlines can be missed even though only 1
m

of available cycles is used. Although m approaches

infinity, the schedulability does not change [1]. This worst-case behavior continues to hold good

for the proposed model because it is an extended form of the task model proposed in [1]. In this

section, we first consider a scheduling method to handle fork-join real-time tasks on a processor

with a given number of cores. Then, we propose the task stretch∗ transform to deal with our

2We also call our proposed model a fork-join task model unless stated otherwise.
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Figure 6.4: τ1 : ((2, (3, 8), 2), 15, 15) misses its deadline on a dual-core processor, but not on a

quad-core processor.

enhanced task model.

6.2.1 Running Fork-Join Real-Time Tasks on m CPU Cores

Consider a task τi ∈ τ running on m processing cores. If the maximum number mi of parallel

threads among all parallel segments in τi is less than the number of processing cores m, we can

directly apply the task transformation algorithm described in [1]. If mi exceeds the number of

processing cores m, then the serialization of some parallel threads must happen as depicted in

Figure 6.4, where a task meets its deadline on a quad-core processor, but not on a dual-core

processor.

Proposition 19 A fork-join real-time task τi requires at least the minimum execution length ηi

units of time on m CPU cores to meet its deadline.

We obtain the minimum execution length ηi of τi depicted in Figure 6.4 as 10 on a quad-core

processor and 16 on a dual-core processor from Equation 6.1. From Proposition 19, we can show

that the given task is infeasible on a dual-core processor because ηi on a dual-core processor is

greater than its deadline.
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6.2.2 The Task Stretch∗ Transform

We propose a task transformation algorithm stretch∗ in Algorithm 12. It breaks down a fork-

join real-time task into a set of tasks. This set is composed of a long task called a master string

and a bunch of constrained-deadline tasks with D < T . This set can be scheduled using any

scheduling algorithm supporting conventional single-threaded tasks such as global DM, global

EDF [17] and FBB-FFD [22].

In Algorithm 12, when a new constrained-deadline task is created, it is represented as τ :

(C,D, φ), where C is the worst-case execution time, D is the relative deadline, and φ is the

release offset. When a parallel thread is merged into an existing task, we use ⊕ as a symbol and

τ : (C) as the thread added to the existing task. Merging a thread does not change either the

deadline or the offset of the existing task. In this algorithm, we made a small change on how to

use the modulo function. k mod qi returns qi if k mod qi = 0.

We use two parameters fi and qi in Algorithm 12. fi is the ratio of the parallel execution

requirements Pi to the slack of the task Ti − ηi. We use this value to evenly distribute the

slack to each parallel segment. qi is the number of parallel threads after a task is processed by

Algorithm 12. In other words, at any point of time t, τ stretch∗i will have at most qi concurrent

running threads on m cores. It should be noted that the deadline assignment for the qthi thread

is different from others because we split the thread so that we can avoid the worst-case scenario

explained in [1].

The algorithm is an extension of the task stretch transformation proposed in [1]. The stretch∗

transformation can handle more general cases: (1) when the number of parallel threads exceeds

the number of cores, and (2) when the number of parallel threads of each segment is different.

The improvements can be described as follows:

• If the number of parallel threads within a fork-join segment exceeds the number of CPU

cores m, all parallel threads τ 2j,k
i with the same value of (k mod qi), where 1 ≤ k ≤

m2j
i , coalesce into the thread τ 2j,k mod qi

i . This step guarantees that the number of parallel
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Figure 6.5: The task stretch∗ transformation example with τ1 : ((2, (3, 8), 2), 15, 15).

threads does not exceed the number of processing cores after the task transformation.

• Based on the new worst-case execution time of the merged threads of each parallel seg-

ment, a constrained deadline proportional to (1 + fi) is assigned to each parallel segment

by the algorithm. Accordingly, an offset is also determined so that parallel threads are

released at the right time instants.

Figure 6.5 shows an example of the task stretch∗ transformation with a task τ1: ((2, (3, 8), 2), 15, 15).

The task has 8 parallel threads, and it has a slack of 5 because the minimum execution length η1

is 10. Using the slack, a portion of τ 2,4
1 and τ 2,8

1 are scheduled with the master string.
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6.3 Resource Augmentation Bound Analysis for Global Dead-

line Monotonic Scheduling

In this section, we derive the resource augmentation bound of global DM scheduling for the task

model described in Section 6.2. To the best of our knowledge, this is the first result of resource

augmentation bound of global DM scheduling for parallel real-time tasks. For this approach, we

use a density-based schedulability test proposed in [50] given below.

Theorem 20 (from [50]) A set of periodic or sporadic tasks with constrained deadlines is schedu-

lable with Deadline-Monotonic priority assignment on m ≥ 2 processors if:

λsum ≤
m

2
(1− λmax) + λmax (6.2)

where, λsum is the sum of the density of each task in the taskset, λmax is the maximum value of

task densities, and a density λ is a ratio of the deadline of a task to its worst-case execution time.

Let λstretch∗i denote the sum of the density of each task in the stretched taskset τ stretch∗i . As

specified in Algorithm 12, two cases, (1) Ci ≤ Ti and (2) Ci > Ti should be considered to

understand the properties of λstretch∗i . Two corresponding lemmas are presented next.

Lemma 21 For a fork-join real-time task τi, the density of the resulting stretched task τ stretch
∗

i

is bounded by Ci
Ti

if Ci ≤ Ti.

Proof For the case of Ci ≤ Ti, we use the fact that the execution requirement and Ti(= Di) of

both τi and τ stretch∗i are equal. Then, from the definition of density, Ci
Ti

.

Before investigating a fork-join real-time task τi with Ci > Ti, we assume that τi is provided

with a level of parallelism so that Ci
min(m,mi)

≥ Pi is satisfied. In the ideal case, based on Amdahl’s

law [122], Ci
min(m,mi)

= Pi holds good because all the segments are running in parallel. Since we

assume a fork-join model that has non-zero serial segments, the ideal case cannot be achieved.

However, approaching Pi to Ci
min(m,mi)

is desirable to fully utilize parallelism.
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Lemma 22 For a fork-join real-time task τi, the sum of the density of the resulting stretched

τ stretch
∗

i is bounded by Ci
Ti−ηi if Ci > Ti.

Proof For the case of Ci > Ti, it should be noted that the output of the algorithm is a set of tasks

composed of a master thread τmasteri and several constrained deadline tasks {τ cdi }. Hence, the

following inequality holds good:

λstretch
∗

i ≤ λmasteri +
∑

τi∈{τcdi }

λi

Since the worst-case execution time of τmasteri is less than Ti, λmasteri ≤ 1 from the implicit

deadline assumption. It is known that there will be at most qi concurrent running threads includ-

ing the master thread at any point of time t. We ensure this by assigning an offset whenever a

new parallel thread is created in Algorithm 12. The offset also guarantees that only one segment

is active at a time. Thus, the density of τi can be substituted with the density of a segment that

has the largest value among the densities of the segments of τi.

Let Pmax
i = max

si−1

2
j=1 d

m2j
i

m
eP 2j

i . We first consider the case of qi > 2. When qi threads are

simultaneously running, for the qi− 1 constrained tasks, there will be qi− 2 parallel threads with

the execution time of Pmax
i and the relative deadline of (1+fi)P

max
i . There will also be a parallel

thread with the execution time of (1+bfic−fi)Pmax
i and the relative deadline of (1+bfic)Pmax

i .

Therefore, if we let Pi =
∑ si−1

2
j=1

⌈
m2j
i

m

⌉
P 2j
i , the following inequalities are satisfied:

∑
τi∈{τcdi }

λi ≤
(qi − 2)Pmax

i

(1 + fi)Pmax
i

+
(1 + bfic − fi)Pmax

i

(1 + bfic)Pmax
i

≤ (qi − 1)

(1 + fi)
=

(qi − 1)Pi
(Pi + Ti − ηi)

We then consider the case of 0 < qi ≤ 2. When qi is 1, it means that τi can run on a single

core. Therefore, we focus on the case of qi = 2, which means that
∑

τi∈{τcdi }
λi will have only
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the task which is split. Therefore,

∑
τi∈{τcdi }

λi ≤
(1 + bfic − fi)Pmax

i

(1 + bfic)Pmax
i

≤ 1

(1 + fi)

=
Pi

(Pi + Ti − ηi)
=

(qi − 1)Pi
(Pi + Ti − ηi)

Now, we consider both τmasteri and {τ cdi }.

λstretch
∗

i ≤ 1 +
(qi − 1)Pi

(Pi + Ti − ηi)
=
Pi + Ti − ηi + (qi − 1)Pi

(Pi + Ti − ηi)

=
(fi + qi)Pi

(Pi + Ti − ηi)
=

(fi +min(m,mi)− bfic)Pi
(Pi + Ti − ηi)

≤ min(m,mi)Pi
(Pi + Ti − ηi)

≤ Ci
Ti − ηi

From the inequality above, the lemma is proved.

We define a task called a heavy task that has a density greater than or equal to 1
ν

on a ν-speed

processing core.

Theorem 23 Global Deadline Monotonic scheduling of the fork-join real-time task model has

a resource augmentation bound of 3.73 when each heavy task is assigned to its own processing

core.

Proof Consider a set of n fork-join real-time tasks τ . We assume that the given taskset is feasible

on m identical unit-speed processors, which implies
∑n

i=1
Ci
Ti
≤ m. Otherwise, the given taskset

is not feasible.

Let there be k heavy tasks on a ν-speed processor. Under the task stretch∗ transform described

in Algorithm 12, these are either fully stretched tasks (Ci ≤ Ti) or master threads (Ci > Ti). Both

types of tasks have a deadline equal to their period, and their density is at least 1 on a unit-speed

processor by the definition of a heavy task.

Therefore, for the remaining n′ tasks:

n′∑
i=1

Ci
Ti

=
n′∑
i=1

Ci
Di

=
n′∑
i=1

λi = λsum ≤ (m− k) (6.3)
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We need to show that these remaining tasks are schedulable on m′(= m − k) processors of

speed ν, where ν ≥ 3.73.

On a processor that is ν times faster, the minimum execution length ηνi on a ν-speed processor

is given by

ηνi =

si−1

2∑
j=0

C2j+1
i

ν
+

si−1

2∑
j=1

⌈
m2j
i

m

⌉
P 2j
i

ν
≤ ηi
ν
≤ Ti

ν
(6.4)

where, ∀1 ≤ i ≤ n. Also, the maximum execution length of τi on a ν-speed processor is

Cν
i =

si−1

2∑
j=0

C2j+1
i

ν
+

si−1

2∑
j=1

m2j
i

P 2j
i

ν
=
Ci
ν

(6.5)

where, ∀1 ≤ i ≤ n.

Case (1): For each fully stretched task τi that is non-heavy on ν-speed processors, the density

is
Ci
ν

Ti
≤ 1

ν
Ci
Ti
≤ 1

ν−1
Ci
Ti

from Lemma 21 and Equation 6.5.

Case (2): Consider the constrained-deadline taskset generated by stretch∗ on ν-speed proces-

sors for task τi. From the perspective of load, the total density on ν-speed processors is bounded

by Cνi
Ti−ηνi

≤ Ci/ν

Ti−
Ti
ν

= 1
ν−1

Ci
Ti

from Lemma 22, Inequality 6.4 and Equation 6.5.

λsum on ν-speed processors, therefore, is bounded by m′

ν−1
because λsum ≤

∑n′

i=1
1

ν−1
Ci
Ti

=

1
ν−1

∑n′

i=1
Ci
Ti
≤ m′

ν−1
from Inequality 6.3. The master threads for tasks that cannot be fully

stretched are always heavy tasks since they use up the entire Ti on the ν-speed processor. By the

definition of heavy tasks, λmax is always upper bounded by 1
ν

on ν-speed processors. Then, for

m′ ≥ 2 using Inequalities 6.2 and 6.3 and the cases considered above,

m′

2

(
1− 1

ν

)
+

1

ν
≥ m′

ν − 1

⇔m′

2
− 1 ≤ ν

(
m′

2
− m′

ν − 1

)
⇔m′4ν − ν

2 − 1

2ν(ν − 1)
≤ 1

ν

⇔4ν − ν2 − 1

2(ν − 1)
≤ 1

m′
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As m′ →∞, we get,

4ν − ν2 − 1

2(ν − 1)
≤ 1

m′
⇐ ν ≥ 2 +

√
3

This holds good for all m′ ≥ 2 processors using ν ≥ 2 +
√

3 ≈ 3.73.

6.4 Global Scheduling on Linux/RK

We have designed an operating system abstraction for managing our parallel real-time task model

using the resource-reservation paradigm. A parallel task in our model is composed of multiple

threads. A thread called master string executes all sequential segments and a portion3 of parallel

segments. Parallel threads are spawned by the master thread and execute the remaining portion

of parallel segments. In order to represent the multiple threads and their precedence constraints,

our abstraction employs the resource management entities, resource set and reserve, introduced

in resource kernels [123], where

• Resource set: A resource set corresponds to a parallel task. It is a container of multiple

reserves.

• Reserve: A reserve represents the amount of CPU budget to be reserved on a single core or

multiple cores. A reserve is specified with (C, T,D, φ): C is a worst-case execution time;

T is a period; D is a relative deadline; φ is a release offset.

Figure 6.6 shows the scheduling of a parallel real-time task on four cores with the stretch∗

transformation. The parallel task τ1 has one parallel segment comprising four threads. The

stretch∗ transformation splits the last thread of the parallel segment, τ 2,4
1 , into τ ′2,41 and τ ′′2,41 .

Hence, τ ′2,41 is assigned a relative deadline of 8 that is equal to the release offset of τ ′′2,41 . The CPU

usage and its offset on each core can be represented as a reserve. Since a reserve is equivalent

to an individual sequential periodic task, the global DM scheduling algorithm can determine

the scheduling priorities for reserves. Then, we assign reserves to threads so that each thread

3This portion is obtained by running Algorithm 12.
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Figure 6.6: CPU resource abstraction for a parallel task with global DM scheduling.

is scheduled with the priority and the release offset of the assigned reserve and consumes the

reserve’s CPU budget. The master string thread, (τ 1,1
1 → τ 2,1

1 → τ 3,1
1 ), is assigned a reserve

(rsv1). The second and the third thread in the parallel segment, τ 2,2
1 and τ 2,3

1 , are assigned

(rsv2) and (rsv3), respectively. The last thread τ 2,4
1 is assigned an ordered list of reserves,

(rsv4 → rsv1). This means that τ 2,4
1 first uses rsv4’s priority and CPU budget, and when it

uses up rsv4’s budget, it continues its execution with rsv1’s priority and remaining CPU budget.

We implemented the abstraction for parallel tasks on Linux/ RK [121], which is based on the

Linux 2.6.38.8 kernel. We used hrtimers to release threads at specified offsets and to account

the CPU usage of threads. When a thread uses up all reserves assigned to it, the abstraction

enforces the CPU usage of the thread by suspending it. The accounting and the enforcement of

our abstraction can also be used for the measurement-based worst-case-execution-time estima-

tion of threads in a parallel task, by checking an occurrence of the enforcement with a tentative

execution time.
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Figure 6.7: The map followed by Boss.

6.5 Case Study on Self-Driving Car

We studied the efficacy of our proposed scheme using a self-driving car platform Boss. The

latest motion planning algorithm running on Boss [9] is used for our evaluation. The algorithm

considers the distance to the next destination, the lateral offset of the car to the center of the

lane, the longitudinal velocity, the longitudinal acceleration, the lateral acceleration and a list

of static/dynamic obstacles on the road where the vehicle is driving. With the given informa-

tion based on which the number of parallel threads varies, the algorithm generates curvature

and velocity profiles for the path which the vehicle should follow. The planning algorithm is

implemented using OpenMP, and we evaluate the quality of autonomous driving by analyz-

ing curvature and velocity profiles of Boss (1) when the conventional reservation approach with

Linux/RK [121] is used, (2) when the previous task model [1] is used, and (3) when our proposed

task model and algorithm are used.

We ran the planning algorithm on a simulation cluster [124, 125] equipped with an Intel Core

i7 quad-core processor. Although we run the exact same algorithm on the vehicle, we measure

the results on the simulation cluster due to testing, convenience and safety considerations. We
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ran a scenario with the layout of our test track located at Robot City in Hazelwood, Pittsburgh,

PA, where we test the vehicle at straight multi-lane roads, curvy roads, intersections, U-turns

and parking lots. The exact same scenario file is also used during the field test, but the tasks for

receiving raw sensor data are replaced with simulation tasks. In Figure 6.7, the test track for the

scenario is illustrated. Boss will depart at the point circled in the middle of Figure 6.7. Boss

will follow the road, (1) cross a 4-way intersection governed by stop signs, follow the straight

road and (2) make a left turn at NW intersection. Then, Boss will (3) make a left turn at SE

intersection, proceed to NW intersection and (4) turn right towards the curve marked with (5)

connecting to the long straight road.

The scenario is composed of eight tasks: BehaviorTask, MissionPlannerTask,

OnRoadMotionPlannerTask, PrePlannerTask, RobotClient, ServerTask,

RoadBlockageDetector, and SimpleControllerTask. The BehaviorTask de-

cides what to do such as turning, intersection handling and lane changing. The MissionPlannerTask

interacts with the stored map to decide where to go. The OnRoadMotionPlannerTask and

the PrePlannerTask send trajectories to the vehicle controller. The RoadBlockageDetector

works with the BehaviorTask so that the vehicle detects the blocked road and finds an alter-

nate route when needed. The SimpleControllerTask receives the actuator commands and

directly interfaces with the vehicle hardware such as the accelerator, the brake and the steering

wheel. On the simulation cluster, this task operates in simulation mode, and the ServerTask

and the RobotClient behave as the vehicle hardware. In this chapter, our focus is on the

OnRoadPlannerTask running the motion planning algorithm [9] with OpenMP enabled. The

task generates curvature and velocity profiles for the vehicle hardware, so the lack of resources

will affect the control algorithm, making the car drive in an unstable manner. If the planning

algorithm does not meet the deadline, the steering wheel, for example, jerks and the car goes to

an unexpected place, which can cause an accident.

Figure 6.8 shows the autonomous driving performance, i.e., the curvature and velocity pro-
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Figure 6.8: Curvature and velocity profiles during the entire journey of Boss illustrated in Fig-

ure 6.7.
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Figure 6.9: Curvature and velocity profiles of Boss when conventional resource reservation is

used.

files collected from the output of OnRoadMotionPlannerTask when the proposed task

model and algorithm are used with a varying number of threads. We limit the maximum number

of threads to 50. The curvature graph shows when Boss makes turns; a negative value means a

left rotation of steering wheel, and vice versa. For example, Boss arrives at the SE intersection

in Figure 6.8 around t = 65s, and that is the fourth valley in the curvature graph. Accordingly,

we can see the velocity of Boss decreases to turn left. The bigger the absolute value of curvature,

the steeper will be the turn made by Boss. From the perspective of autonomous driving quality,
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Figure 6.10: Curvature and velocity profiles of Boss when previously known techniques [1] are

used.

a sudden control change on an actuator is not desirable.

Figure 6.9 shows an undesirable case when the conventional resource reservation approach

with Linux/RK is used. Since the traditional Linux/RK does not consider a parallel task model,

it assigns all child threads into a reserve allocated to a processing core. Since this may prevent

the planning algorithm from running in parallel, the planner may not be able to meet its deadline,

which is shown from 130s to 150s in Figure 6.9. The planning algorithm requires more threads

when a car is moving faster and/or when a car is making a sharp turn. The results shown,

therefore, are consistent with the property of the planning algorithm. Figure 6.10 also shows

the result when the model of [1] is used, where only four threads can run in parallel because

the simulation cluster has a quad-core processor. For this case, the velocity profiles are fine, but

the curvatures show some jitters that can make the vehicle unstable and also uncomfortable for

passengers. The results shown in Figure 6.9 and 6.10 could be potentially dangerous on the real

vehicle because the vehicle in the real-world may slip, drift and crash.
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6.6 Summary

To meet rapidly increasing demands for complex cyber-physical systems, we motivated the ne-

cessity of using multi-core processors and corresponding parallel programming models such as

OpenMP [120]. In particular, emerging CPS such as a self-driving vehicle can benefit signifi-

cantly from parallel real-time tasks allowing multiple compute-intensive real-time tasks to sup-

port demanding requirements. Thus, a self-driving vehicle can model its physical surroundings

in parallel and react to them in real-time. In this chapter, we proposed a fork-join parallel real-

time task model, where the amount of parallel executions can vary depending on the physical

attributes of the system. The proposed task model is transformed using our stretch∗ algorithm.

With global deadline-monotonic scheduling, we obtained a resource augmentation bound of 3.73,

which means that any task set that is feasible on m unit-speed processors can be scheduled by

the proposed algorithm onm processors that are 3.73 times faster. The proposed scheme was im-

plemented on Linux/RK [121] as a proof of concept, and ported to Boss, the self-driving car that

won the 2007 DARPA Urban Challenge [8]. On Boss, we evaluated our proposed scheme that

improved its autonomous driving quality. Future work to be done includes supporting dynamic

changes of periods and execution times of parallel real-time tasks. We already have early work

on varying periods [126], and the dynamic nature of CPS will be addressed using this model

combined with parallel tasks.
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Algorithm 12 Stretch∗(τ)

Require: τ : a fork-join real-time task
Ensure: τ stretch∗: a stretch∗ed task set

1: τmasteri ← ()
2: {τ cdi } ← {}
3: if Ci ≤ Ti then
4: . The task can run on a single core
5: for j = 1 to si−1

2
do

6: τmasteri ← τmasteri ⊕ τ 2j−1,1
i : (C2j−1

i )
7: for k = 1 to m2j

i do
8: τmasteri ← τmasteri ⊕ τ 2j,k

i : (P 2j
i )

9: τmasteri ← τmasteri ⊕ τ si,1i : (Csi
i )

10: else
11: . Stretch∗ the task to its deadline
12: fi ← Ti−ηi∑ si−1

2
j=1 d

m
2j
i
m
eP 2j
i

13: qi ← min (m,mi)− bfic
14: for j = 1 to si−1

2
do

15: τmasteri ← τmasteri ⊕ τ 2j−1,1
i : (C2j−1

i )
16: . 1) Coalesce threads so that the total number of parallel threads is less than qi
17: for k = 1 to m2j

i do
18: if k mod qi = 1 then
19: . Part of the master string
20: τmasteri ← τmasteri ⊕ τ 2j,k

i : (P 2j
i )

21: else if τ 2j,k mod qi
i /∈ {τ cdi } then

22: . Create a new parallel thread
23: D2j

i ← (1 + fi)dm
2j
i

m
eP 2j

i

24: φ2j
i ←

∑j−1
l=0 C

2l+1
i +

∑j−1
l=1 D

2l
i

25: {τ cdi } ← {τ cdi } ∪ τ
2j,k mod qi
i : (P 2j

i , D
2j
i , φ

2j
i )

26: else if τ 2j,k mod qi
i ∈ {τ cdi } then

27: . Part of the existing threads
28: τ 2j,k mod qi

i ← τ 2j,k mod qi
i ⊕ τ 2j,k

i : (P 2j
i )

29: . 2) Split among the qi-th thread and the master string
30: if τ 2j,qi

i ∈ {τ cdi } then
31: {τ cdi } ← {τ cdi } − τ

2j,qi
i

32: τmasteri ← τmasteri ⊕ τ ′2j,qii : ((fi − bfic)dm
2j
i

m
eP 2j

i )
33: . Create a new parallel thread
34: D2j,qi

i ← (1 + bfic)dm
2j
i

m
eP 2j

i

35: φ2j
i ←

∑j−1
l=0 C

2l+1
i +

∑j−1
l=1 D

2l
i

36: {τ cdi } ← {τ cdi } ∪ τ
′′2j,k
i : ((1 + bfic − fi)dm

2j
i

m
eP 2j

i , D
2j,qi
i , φ2j

i )

37: τmasteri ← τmasteri ⊕ τ si,1i : (Csi
i )

38: return τ stretch
∗

i :=
(
τmasteri , {τ cdi }

)
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Chapter 7

Tasks with Self-Suspensions

Recent trends in System-on-a-Chip (SoC) show that an increasing number of special-purpose

processors in these systems are added to improve the efficiency of frequently-used operations [127].

Figure 7.2 illustrates a high-level diagram of a modern SoC composed of various subsystems

Periodic Tasks

Rhythmic Tasks

Parallel Tasks

System 
Configurations

Sensors
Computing 

Nodes
Actuators

FT Resource Allocation and 
Schedulability Analysis

Fixed Priority

Runtime Support Analysis Engine

Daemon User App

IPC

User App

Library Library Library......

Self-suspending 
Tasks

Segment-fixed 
Priority

Figure 7.1: Tasks with self-suspensions in the dissertation overview.
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Figure 7.2: Modern SoC architecture.

such as application processor and multimedia and communication subsystems. Unfortunately,

the use of such special-purpose processors (a.k.a. hardware accelerators) may introduce sus-

pension delays that must be taken into account in the schedulability when a task waits for a

shared resource and interact with an I/O device or communication interface. Offloading complex

computations to hardware accelerators such as Digital Signal Processors (DSPs) or Graphics

Processing Units (GPUs) can cause suspension delays as well. Many conventional real-time the-

ories [10] have incorporated the delays in the worst-case execution/response time of a task that

suspends itself. Even though the analyses can guarantee the timeliness of systems, the analysis

results may have significant pessimism.

A pessimistic analysis is not desirable in a compute-intensive system such as the self-driving

car that we have recently developed [2]. Such systems run computation-demanding algorithms

ranging from perception [11] to planning [9, 12] on GPUs in real-time. In this case, if we use

traditional schedulability analysis, the potential utilization improvement due to the use of GPUs

is eliminated by the pessimism in the CPU scheduling.

In this chapter, we present a new scheme to schedule self-suspending tasks to improve their

schedulable utilization. To derive our new scheme we first study the schedulability of these tasks

under RMS [16] that is widely used in embedded real-time OSes like OSEK and general-purpose

OSes such as Linux. RMS is also known to be the optimal fixed-priority scheduling policy. Ex-

plicitly modeling self-suspending real-time tasks is desirable to remove the pessimism described
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above, but it breaks a common assumption of RMS that tasks do not suspend themselves during

run-time, making RMS not directly applicable. Since such self-suspending behaviors can cause

unexpected jitters, the critical scheduling instant and utilization bound test defined and proved

in [16] do not always hold for self-suspending tasks. Therefore, RMS is not an optimal schedul-

ing algorithm for this type of tasks. In other words, there exist other scheduling algorithms that

can schedule tasksets that cannot be scheduled under RMS.

Research on self-suspending tasks is limited. In [56] the authors proved that the problem of

scheduling self-suspending tasks is NP-hard in the strong sense. There has also been recent work

on scheduling self-suspending tasks for soft real-time systems [59].

In this chapter, we provide schedulability analyses for segment-fixed priority scheduling

for self-suspending tasks. We provide response-time analyses for self-suspending tasks with

RMS [16] and identify the conditions when RMS can be used without modifications. We then

derive a utilization bound as a function of the ratio of suspension time to the task period when

RMS is compatible.

To improve the schedulability of a taskset that is not compatible with RMS, we propose the

segment-fixed priority scheduling that decomposes self-suspending tasks into multiple segments

assigning them different priorities if needed. We use phase enforcement to prevent jitters [13, 14].

Finally, we developed an exact schedulability analysis and evaluate it with randomly generated

tasksets.

In this chapter, we relax the assumption of sequential tasks that are made in Chapters 3 and

4 to incorporate self-suspensions for real-time periodic tasks as depicted in Figure 7.1. The rest

of this chapter is organized as follows. In Section 7.1, we define the self-suspending task model

and represent the overall system assumptions. Section 7.2 provides schedulability analyses for

self-suspending tasks when a task-fixed priority scheduling is used. Then, in Section 7.3, we

propose a new scheme called segment-fixed priority scheduling to overcome the drawbacks of

task-fixed priority scheduling. Section 7.4 shows evaluation results of the proposed schemes.
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Finally, we conclude our chapter and discuss future work in Section 7.5.

7.1 System Model and Assumptions

A system is modeled as a taskset Γ: {τ1, τ2, . . . , τn} running on a single processor. Each task τi

generates an infinite number of jobs. Each job consists of multiple computing segments with a

minimum suspension interval between each pair of segments. In other words, each job alternates

between a computing segment and a suspending stage1. A job finishes when the last computing

segment of the job is completed. As illustrated in Figure 7.3, each task τi is represented as

τi: ((Ci,1, Gi,1, Ci,2, . . . , Ci,si−1, Gi,si−1, Ci,si), Ti, Di), where

• Ci,j is the worst-case execution time of the jth segment of τi on a unit-speed processor. We

also let τi,j denote the jth segment of τi.

• Gi,j is a time gap between τi,j and τi,j+1, where 1 ≤ j < si. In other words, τi,j+1 can

start its execution after Gi,j units of time after τi,j completes. Gi,j lies between GMin
i,j and

GMax
i,j .

• si is the number of computing segments of τi. Each task τi also has si − 1 suspending

stages as τi,j and τi,j+1 are separated by one suspending stage when 1 ≤ j < si.

• Ci is the worst-case execution time of τi. Ci =
∑si

j=1Ci,j .

• Gi is the whole self-suspension time of τi. Gi =
∑si−1

j=1 Gi,j .

• Ti describes the job arrivals of task τi. We consider two models (1) periodic model and (2)

sporadic model. In the periodic model, the first job of task τi can arrive at any time but

subsequent jobs of task τi arrives Ti time units apart. In the sporadic model, jobs of task τi

can arrive at any time but two consecutive jobs of task τi have arrival times separated by at

least Ti time units.

1We will use the terms ‘segments’ and ‘stages’ interchangeably where the distinction is not of importance.
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Figure 7.3: A multi-segment self-suspending real-time task model.

• Di is the relative deadline of each job to its release time. We assume a constrained deadline,

i.e., Ti ≥ Di.

• Ri is the worst-case response-time of τi.

• Li is the slack from the completion of the last segment of τi to the beginning of the next

job of τi

The tasks in Γ are sorted in non-decreasing order of Ti parameters, that is, T1 ≤ T2 ≤ . . . ≤

Tn. We assume that all computing segments are preemptable with insignificant cost. We also

assume that the cost of state transitions between computing and suspending stages is negligible

on a processor.

Application of multi-segment self-suspending real-time task model: A task leveraging

GPU can be modeled using a multi-segment self-suspending real-time task model. For example,

a planning algorithm for autonomous driving can benefit from using GPU by calculating numer-

ous potential paths in parallel [12]. The motion planning algorithm receives its inputs such as the

current vehicle status, the road map data, and the list of obstacles that are static or moving. The

preprocessing for motion planning (τplan,1) occurs on CPU, and the processed data are transferred

to the GPU to generate the best trajectory. While the algorithm runs on the GPU (Gplan,1), the

CPU will let other algorithms run. Once the best trajectory is found, the output is extrapolated

(τplan,2) to be used by the embedded controller. This happens repeatedly every Tplan units of

time, and this algorithm can be represented as τplan : ((Cplan,1, Gplan,1, Cplan,2), Tplan).
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7.2 Fixed Priority Scheduling for Self-Suspending Tasks

In this section we investigate the schedulability of tasksets composed of self-suspending tasks

under RMS. We first consider a simple taskset composed of one self-suspending task and one

non-suspending tasks2. Under the assumption that the self-suspending task is the highest priority

task, we provide a response-time test and derive a utilization bound with rate-monotonic policy.

We then look at the case of having n self-suspending tasks. To simplify our discussion, we

assume a constant gap Gi,j = GMin
i,j = GMax

i,j .

7.2.1 One Self-Suspending Task and One Non-Suspending Task

Consider a taskset Γ1s1n with one self-suspending task and one non-suspending task. Let τ1ss

denote the self-suspending task, and τ2 is a non-suspending task. We assume that the self-

suspending task has the highest priority. Then, the following properties are satisfied.

Theorem 24 For Γ1s1n, a critical scheduling instant happens when τ2 arrives at the same time

with one of the segments of τ1ss.

Proof A critical instant for τ2 is when the response time of τ2 is maximized. Since τ2 is a

non-suspending task, a processor will be busy during the execution of τ2 including preemptions

incurred by τ1ss. Let R1
2 denote the response-time of the first job of τ2. We assume that the

first job of τ1ss arrives at the time origin, and φ2 denotes the release time offset of τ2 to the time

origin. We limit the range of φ2 between 0 to T1 because τ1ss is periodic and the time origin can

be transformed to any of the time instant when a job of τ1ss is released. Then, R1
2 can be found

2‘Periodic tasks’ are interchangeably used with ‘non-suspending tasks’ in this dissertation.
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1
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Figure 7.4: The illustration of Equation (7.1) to find the response time of τ2.

by solving the following equation.

R1
2 =− φ2 + C2 +

⌈
R1

2 + φ2

T1

⌉
C1,1 −

⌈
φ2

T1

⌉
C1,1

+

s1∑
i=2

⌈
R1

2 + φ2 −
∑i

j=1 (C1,j +G1,j)

T1

⌉
C1,i

−
s1∑
i=2

⌈
φ2 −

∑i
j=1 (C1,j +G1,j)

T1

⌉
C1,i + φ2 (7.1)

Equation (7.1) calculates the length of busy-period while τ2 is being executed from time φ2 to

φ2 + R1
2. We do not start from the time origin because the processor could be idle while τ1ss

suspends itself. That’s why we subtract the executions of τ1ss happening from the time origin to

φ2.

The solution will be the first intersection of a 45◦-line (the left-hand side of Equation (7.1))

and a step function (the right-hand side of Equation (7.1)) as illustrated in Figure 7.4. Although

the solution cannot be obtained easily because there are two unknowns with one equation, we

can find a useful property of the equation. Since the terms that subtract in Equation (7.1) increase

only when φ2 or φ2−
∑i

j=1 (C1,j +G1,j) is an integer multiple of T1, φ2 can be selected from 0,

C1,1 +G1,1,
∑2

k=1 (C1,k +G1,k), . . . , or
∑s1−1

k=1 (C1,k +G1,k) when τ1ss has s1 segments. Those
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values are aligned with the release time of each segment of τ1ss. Then, let Φ2 denote a set of

possible values of φ2 as described above.

With the given φ2, R1
2 can be found from the equation. Let R1

2(φ) denote the value of the

response-time of τ2 according to φ. maxφ∈Φ2 R
1
2(φ) is the worst-case response time of τ2 because

going through all elements from Φ2 gives all the possible values of the response-time of τ2.

Therefore, for Γ1s1n, a critical scheduling instant happens when τ2 arrives at the same time with

one of the segments of τ1ss.

From Theorem 24, we can derive the following corollary.

Corollary 25 For Γ1sns, the worst-case response time of τ2 is given as R2 = maxφ∈Φ2 R2(φ),

where Φ2 is a set that has each segment release offset of the first job of τ1ss and R2(φ) returns

the response time of τ2 under the given release offset φ.

Proof It follows from the proof of Theorem 24.

The following lemma is useful because the worst-case phasing can be obtained by just check-

ing the given task parameters.

Lemma 26 Consider a taskset having a non-suspending task τ2 : (C2, T2) and a self-suspending

task with two segments τ1ss : ((C1,1, G1,1, C1,2), T1). Let L1 denote the slack from the completion

of the second segment of τ1ss to the beginning of the next job of τ1ss. In other words, T1 =
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Figure 7.5: R2 in the case of (C1,1 ≥ C1,2) ∧ (G1,1 ≥ L1) ∧ (G1,1 ≥ C2 > L1).

C1,1 +G1,1 + C1,2 + L1. Then, the worst-case response time R2 of τ2 can be defined as follows:

R2 =



[(C1,1 ≥ C1,2) ∧ (G1,1 < L1)]∨

R2(φ2,1), [(C1,1 ≥ C1,2) ∧ (G1,1 ≥ L1) ∧ (C2 ≤ L1)]∨

[(C1,1 < C1,2) ∧ (G1,1 < L1) ∧ (G1,1 < C2 ≤ L1)]

[(C1,1 < C1,2) ∧ (G1,1 ≥ L1)]∨

R2(φ2,2), [(C1,1 < C1,2) ∧ (G1,1 < L1) ∧ (C2 ≤ G1,1)]∨

[(C1,1 ≥ C1,2) ∧ (G1,1 ≥ L1) ∧ (G1,1 ≥ C2 > L1)]

, where φ2,1 is the offset of τ2 when τ2 is released with the first segment of τ1ss, and φ2,2 is the

offset of τ2 when τ2 is released with the second segment of τ1ss.

Proof For this particular case, Equation (7.1) can be rewritten as follows.

R2(φ) =
⌈
R2(φ)+φ

T1

⌉
C1,1 +

⌈
R2(φ)+φ−C1,1−G1,1

T1

⌉
C1,2

−
⌈
φ
T1

⌉
C1,1 −

⌈
φ−C1,1−G1,1

T1

⌉
C1,2 + C2

Since we assume that τ1ss is released at the time origin in the proof of Theorem 24, φ2,1 is 0.

When φ is 0,
⌈
φ
T1

⌉
C1,1 and

⌈
φ−C1,1−G1,1

T1

⌉
C1,2 become 0. Similarly, φ2,2 is C1,1 + G1,1, and
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⌈
φ−C1,1−G1,1

T1

⌉
C1,2 becomes 0. Then, we have the following two equations.

R2(φ2,1)=

⌈
R2(φ2,1)

T1

⌉
C1,1 +

⌈
R2(φ2,1)− C1,1 −G1,1

T1

⌉
C1,2 + C2 (7.2)

≥
⌈
R2(φ2,1)

T1

⌉
C1,1 +

(⌈
R2(φ2,1)

T1

⌉
− 1

)
C1,2 + C2

R2(φ2,2)=

(⌈
R2(φ2,2) + C1,1 +G1,1

T1

⌉
− 1

)
C1,1 +

⌈
R2(φ2,2)

T1

⌉
C1,2 + C2

=

⌈
R2(φ2,2)− C1,2 − L1

T1

⌉
C1,1 +

⌈
R2(φ2,2)

T1

⌉
C1,2 + C2 (7.3)

≥
(⌈

R2(φ2,2)

T1

⌉
− 1

)
C1,1 +

⌈
R2(φ2,2)

T1

⌉
C1,2 + C2

We identify different conditions that will cause either R2(φ2,1) < R2(φ2,2) or R2(φ2,1) ≥

R2(φ2,2). From Equations (7.2) and (7.3), it is obvious that the lengths of C1,1 and C1,2 are

dominant factors because the offsets φ2,1 and φ2,2 decide which segment of τ1ss preempts τ2 first.

It should also be noted that R2 does not depend on T2 from the equations. Although C1,1 and

C1,2 are dominant, there are exceptions found below.

Case 1 (C1,1 ≥ C1,2): When (G1,1 ≥ L1) ∧ (G1,1 ≥ C2 > L1), τ2 will be preempted more

when τ2 is aligned with the second segment of τ1ss. τ2 will be preempted by both segments of

τ1ss, but τ2 will be preempted only once if it is aligned with the first segment as illustrated in

Figure 7.5.

Case 2 (C1,1 < C1,2): When (G1,1 < L1) ∧ (G1,1 ≤ C2 < L1), τ2 will be preempted more

when τ2 is aligned with the first segment of τ1ss. τ2 will be preempted by both segments of

τ1ss, but τ2 will be preempted only once if it is aligned with the second segment as illustrated in

Figure 7.6.

By rearranging the conditions found above, we can obtain the results given in Lemma 26.

7.2.2 One Self-Suspending Task and Many Periodic Tasks

Although we extend the results described in the previous section to understand a case when there

are one self-suspending task and many non-suspending tasks, finding a critical scheduling instant
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Figure 7.6: R2 in the case of (C1,1 < C1,2) ∧ (G1,1 < L1) ∧ (G1,1 < C2 ≤ L1).

is not trivial. Suppose a taskset Γ that is composed of three tasks: τ1 : ((1, 2ε, 2), 5), τ2 : (ε, 5+ε),

and τ3 : (3ε, 5 + 2ε). From Lemma 26, the worst-case response time of τ2 occurs when τ2 is

released with the second segment of τ1. However, the worst-case response time of τ3 does not

happen when τ3 is aligned with the second segment of τ1. Instead, the worst-case phasing occurs

when τ3 is aligned with the first segment of τ1 as depicted in Figure 7.7. Therefore, we can claim

the following proposition.

Proposition 27 Consider a taskset Γ1s that has one self-suspending task and n−1 non-suspending

tasks. Let τ1ss denote the self-suspending task, and τi a non-suspending task when 1 < i ≤ n.

We assume that the self-suspending task has the highest priority. If i < j, τi has a higher priority

than τj . We let φ∗i denote the phasing of τi and τ1ss that causes the worst-case response time of

τi. Then, φ∗i may not be the same as φ∗j when i < j.

We assume that the first job of τ1ss arrives at the time origin. Let Φ1ss denote a set of arrival

times, where each arrival time is a time instant when a segment of the first job of τ1ss is released.

In other words, Φ1ss = {0, C1,1 +G1,1, . . . ,
∑s1−1

j=1 C1,j +G1,j}. We also define a functionRi(~φi)

that returns the response time of τi, where ~φi is an i − 1 dimensional vector. ~φi consists of τi’s

offset (φi) to τ1ss and the offsets (φ2, φ3, . . . , φi−1) of the tasks that have higher priorities than τi.

Each element of ~φi is one of the elements in Φ1ss. When i > 2, the actual value of Ri(~φi) can be
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Figure 7.7: An exemplary taskset, where the worst case phasing between τ2 and τ1 is different

from the one between τ3 and τ1.

obtained by solving the following equation that is extended from Equation (7.1).

Ri(~φi) = Ci +

⌈
Ri(~φi) + φi

T1

⌉
C1,1 −

⌈
φi
T1

⌉
C1,1

+

s1∑
j=2

⌈
Ri(~φi) + φi −

∑j
k=1 (C1,k +G1,k)

T1

⌉
C1,j

−
s1∑
j=2

⌈
φi −

∑j
k=1 (C1,k +G1,k)

T1

⌉
C1,j

+
i−1∑
j=2

⌈
Ri(~φi) + φi

Tj

⌉
Cj −

i−1∑
j=2

⌈
max(φi, φj)

Tj

⌉
Cj (7.4)

Equation (7.4) is similar to Equation (7.1) except that it considers more non-suspending tasks.

The last term of the right-hand side of Equation (7.4) comes from the fact that the tasks that have

higher priority than τi actually can have different release offsets. The solution of Equation (7.4)

can be obtained with Algorithm 13. By going through all possible combinations of ~φi, we can

find the worst-case response time Ri of τi. If Ri ≤ Di, τi is schedulable.

Although we can find the schedulability of Γ1s, the exponential complexity of the given algo-

rithm is not desirable. Lemma 26 gives a useful intuition in this case, where a critical scheduling

instant for a taskset can be identified by looking at task parameters. If the critical instant is

when all the tasks arrive at the same time, the traditional fixed priority scheduling properties can

be applied. In other words, the corollary can help us with easily classifying a taskset with a
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Algorithm 13 Response-Time(Γ, i, ~φi)

Require: Γ1s: a taskset including a self-suspending task and n − 1 non-suspending tasks, i: a

task index, ~φi = (φ2, φ3, . . . , φi): an offset vector

Ensure: the response time of τi under ~φi

1: . Calculate the initial condition for τi.

2: W 0
i =

∑s1
j=1C1,j +

∑i
j=2 Cj

3: l = 0

4: while W l+1
i 6= W l

i do

5: . From Equation (7.4).

6: W l+1
i =

∑s1
j=2

⌈
W l
i+φi−

∑j
k=1(C1,k+G1,k)
T1

⌉
C1,j +

⌈
W l
i+φi
T1

⌉
C1,1 +

∑i−1
j=2

⌈
W l
i+φi
Tj

⌉
Cj + Ci−⌈

φi
T1

⌉
C1,1 −

∑s1
j=2

⌈
φi−

∑j
k=1(C1,k+G1,k)

T1

⌉
C1,j−

∑i−1
j=2

⌈
max(φi,φj)

Tj

⌉
Cj

7: l = l + 1

8: return W l
i

self-suspending task into a category that RMS can be used without any modification.

Lemma 28 For Γ1s1n that has a self-suspending task with two segments and a non-suspending

task, a critical instant occurs when all the tasks are released at the same time when R1 =

C1,1 +G1,1 + C1,2 < C2 ≤ L1.

Proof From Lemma 26, the critical scheduling instant of τ1ss and τ2 is same as the conventional

critical instant [16] if (1) [(C1,1 ≥ C1,2) ∧ (G1,1 < L1)] or (2) [(C1,1 < C1,2) ∧ (G1,1 < L1) ∧

(G1,1 < C2 ≤ L1)]. If G1,1 < C2 ≤ L1 is satisfied, therefore, τ2 experiences the worst-case

response time when τ1ss and τ2 are released at the same time. Since R1 = C1,1 + G1,1 + C1,2 >

G1,1, the phasing between τ1ss and τ2 will still remain the same as before if R1 = C1,1 + G1,1 +

C1,2 < C2 ≤ L1 satisfies. This proves the lemma.

We extend Lemma 28 to be applicable to a taskset including many non-suspending tasks and

a self-suspending task with s1 segments. We let L1 denote the slack from the completion of

the last segment of the first job of τ1ss to the beginning of the next job of τ1ss. In other words,
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T1 = C1 + G1 + L1, where C1 =
∑s1

j=1C1,j and G1 =
∑s1−1

j=1 G1,j as described in Section 7.1.

Then, the following property is satisfied.

Theorem 29 For Γ1s having a self-suspending task and many non-suspending tasks, a critical

instant occurs when all the tasks are released at the same time if R1 = C1 + G1 < Ci ≤ L1 for

i ∈ {i|i ∈ Z+ and 1 < i ≤ n} is satisfied.

Proof From Equation (7.4), the worst-case response time of each task occurs when all subtract-

ing terms become 0 and all adding terms are positive. At first, all subtracting terms become 0

if all offsets of non-suspending tasks to the self-suspending task are 0. Regarding the adding

terms, since we assume the worst-case execution time of each task is greater than the response

time of τ1ss, no adding terms become 0. As described in the proof of Theorem 24, rises of the

step function (the right-hand side of Equation (7.4)) occur at an integer multiple of T1 or Tjs.

Therefore, offsetting the release of non-suspending tasks can make the rises of the step function

happen earlier. This can in turn decrease the response-time test. Therefore, the critical instant

for tasksets satisfying R1 = C1 +G1 < Ci ≤ L1 for i ∈ {i|i ∈ Z+ and 1 < i ≤ n} occurs when

all tasks arrive at the same time.

Now, we will provide a least upper bound of utilization for Γ∗1s that satisfies the conditions

given in Theorem 29 with rate monotonic policies.

Theorem 30 For a taskset Γ∗1s with implicit deadlines, Γ∗1s is schedulable if the total utilization

of the taskset is less than or equal to

URM−SS(n, k) = n
(

(2 + 2k)
1
n − 1

)
− k (7.5)

where n is the number of tasks in Γ∗1s, and k is the ratio of G1 to T1 and lies in the range of 0 to

2
1

n−1 − 1.

Proof We assume that all non-suspending task periods are less than 2T1. We will relax this

assumption later. From Theorem 29 and the definition of the conventional critical instant [16],

the worst-case response time of a task happens when it is released with its higher priority tasks
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Figure 7.8: The worst-case phasing for a taskset having one self-suspending task and n − 1

non-suspending tasks.

at the same time. Therefore, we will take a look at a busy interval when all tasks arrive at the

same time. Figure 7.8 shows the worst-case taskset3 for Γ∗1s that satisfies the conditions given in

Theorem 29. The worst-case execution times of tasks are given as follows:

Ci =


T2 − T1 −G1 , i = 1

−Ti+1 − Ti , 1 < i < n

2T1 − Tn + 2G1 , i = n

Then, the total utilization U of Γ∗1s is given like the following:

U =
T2 − T1 −G1

T1
+
T3 − T2

T2
+ · · ·+ 2T1 − Tn + 2G1

Tn

=
T2

T1
+
T3

T2
+ · · ·+ Tn

Tn−1
+

2T1

Tn
− n− G1

T1
+

2G1

Tn

=
T2

T1
+ · · ·+ Tn

Tn−1
+

2T1

Tn
− n− G1(Tn − 2T1)

T1Tn

3Although we do not go through details here, we can prove that the taskset in Figure 7.8 is actually the worst

case. Adding ε to C1 or subtracting ε from C1 increases the total utilization U .
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Let k denote G1

T1
, and qi is the ratio of Ti+1 to Ti. Then,

U =
T2

T1

+ · · ·+ Tn
Tn−1

+
2T1

Tn
− n− k

(
1− 2T1

Tn

)
=

n−1∑
i=1

qi +
2(1 + k)∏n−1

i=1 qi
− n− k (7.6)

From Equation (7.6), we can see that U is a convex function of n− 1 qis for 1 ≤ i ≤ n− 1.

It should have a unique minimum value that is the least upper bound for Γ∗1s. We compute the

partial derivative with respect to n− 1 qis for 1 ≤ i ≤ n− 1. Then, we have the following n− 1

equations for 1 ≤ i ≤ n− 1,

∂U

∂qi
= 1− 2(1 + k)

qi
∏n−1

j=1 qj
= 0

By solving these equations, we can find the minimum. The solution from the equations

above, we get qi = (2 + 2k)
1
n . Substituting this solution to Equation (7.6) gives us the following

equation.

URM−SS (n, k) = (n− 1) (2 + 2k)
1
n +

2 + 2k

(2 + 2k)1− 1
n

− n− k

=n
(

(2 + 2k)
1
n − 1

)
− k (7.7)

It should also be noted that k cannot exceed 2
1

n−1 − 1 because k = G1

T1
< T2−T1

T1
= q1 − 1

should be satisfied.

Now we relax the assumption that all non-suspending task periods are less than 2T1. Consider

a set of tasks that still meet the condition given in Theorem 29, but Tn ≥ lT1, where l is an integer

greater than 1. If we transform τ1 so that (1) T ′1 = lT1 and (2) C ′1 = C1 are satisfied, τ ′n can have

at most (l − 1)Cn more computation time to keep CPU busy. Then, the transformed taskset

always has the utilization that is larger than the one before the task transformation4. Therefore,
4This proof is based on Theorem 5 in [16] and holds good for this case because the taskset still meets the

condition given in Theorem 29.
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Figure 7.9: Utilization bound for a taskset having one self-suspending task and n − 1 non-

suspending tasks.

we need to consider the worst case when all non-suspending task periods are less than 2T1. This

proves the theorem.

Figure 7.9 shows the trend of URM−SS while n and k vary. One interesting fact is that the

utilization bound of Γ∗1s is sometimes larger than the bound for non-suspending tasks. This

happens due to the nature of self-suspending behaviors.

7.2.3 Many Self-Suspending Tasks

We now consider a taskset that has many self-suspending tasks. In the previous section, we have

shown that finding the worst-case response times of lower-priority non-suspending tasks is not

trivial because all results from all the possible phases need to be compared against each other ex-

cept for some special cases that we have identified. Therefore, having many self-suspending tasks

makes the scheduling problem intractable. In addition, the conventional fixed priority scheduling

such as RMS does not account for a different timing requirement per segment. For example, if

there is a relatively long suspension time between two segments of a lower priority task and the

completion time of the second segment is close enough to its deadline, the task may not easily

meet its deadline.

Consider a taskset that is composed of two self-suspending tasks: τ1: ((1, 1, 1), 5) and τ2:
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Figure 7.10: Scheduling τ1: ((1, 1, 1), 5) and τ2: ((2, 5, 2), 10) with rate monotonic scheduling.

((2, 5, 2), 10). The executions of τ1 and τ2 with RMS are illustrated in Figure 7.10. The boxes

filled with horizontal lines represent τ1, and the boxes filled with diagonal lines represent τ2. The

release of each job is also depicted below the time axis to show the different phasing behaviors.

By extending Proposition 27, we can understand that we need to consider four different phases.

The case when τ1,1 and τ2,1 arrive at the same time is depicted in Figure 7.10(a). The case

when τ1,2 and τ2,1 arrive at the same time is illustrated in Figure 7.10(b), where τ1,1 and τ2,2

are also released at the same time at time 10. The case when τ1,2 and τ2,2 are released together

cannot exist for Figure 7.10. Since τ1 has the shortest period, it has the highest priority. As

shown in Figure 7.10, regardless of different phases, τ2 always misses its deadline. This happens

because the conventional fixed priority scheduling does not consider the suspension time between

segments. For example, τ2 has only 5 units of time to execute for 4 units of time due to 5 units

of suspension time.

One possible way of resolving this issue is to assign a segment that requires a fast execution

a higher priority. Figure 7.11 illustrates the execution behaviors of τ1 and τ2 when τ2,1 has

the highest priority, τ1,1 and τ1,2 are assigned the priorities in the middle, and τ2,2 is assigned

the lowest priority. As shown in Figure 7.11, τ2 meets its deadline, and the given taskset is

schedulable with the proposed scheduling method.
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Figure 7.11: Scheduling τ1: ((1, 1, 1), 5) and τ2: ((2, 5, 2), 10) with segment-fixed priority

scheduling.

7.3 Segment-Fixed Priority Scheduling

We propose the segment-fixed priority scheduling, where we decompose a self-suspending task

into multiple segments and assign them different priorities. In this section, we also relax the

assumption of a constant gap that was made in Section 7.2 so that GMin
i,j ≤ GMax

i,j is allowed.

In other words, suspension time can vary during run-time, but it is bounded. Although this is

a more realistic assumption, variable suspension time easily makes the analysis intractable. We

have shown that different phases among tasks need to be considered, so variable suspension time

gives myriads of different phase differences. This ends up being hard-to-predict jitters in tasks.

This issue can be avoided by leveraging a phase enforcement scheme [13, 14] that guarantees

a computing segment of a self-suspending task τi arrives at time φi time units after the arrival

of the job of task τi and hence a segment does not arrive before its enforced phase time. This

reduces jitter. We first provide an optimal method to determine phases and priorities to support

segment-fixed priority scheduling.

7.3.1 Fast Deadline and Phase Assignment using Heuristics

Although the optimal priorities and phases can be obtained using the above-mentioned method,

the execution time of the algorithm grows exponentially with the number of tasks and segments.

To overcome this, we propose four heuristics in this subsection. The high-level ideas are (1)
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Algorithm 14 ED(Γ)

Require: Γ: a set of n self-suspending tasks

Ensure: ∆: a set of segment-level relative deadlines

Ensure: Φ: a set of segment-level phase offsets

1: for i = 1 to n do

2: . Calculate the actual amount of processing time for τi with the suspension-time consid-

eration.

3: Di = Di −Gi

4: φi,0 = 0

5: for j = 1 to si − 1 do

6: . Assign τi,j Di,j so that ∀j, Ci,j
Di,j

is all same.

7: Di,j =
Ci,jDi
Ci

, φi,j = φi,j−1 +Di,j +Gi,j

8: ∆← Di,j , Φ← φi,j

9: Di,si = Di +Gi − φi,si−1, ∆← Di,si

10: return ∆ and Φ

taking into account only available CPU time for a task after subtracting suspension time from its

deadline, (2) distributing its slack to each segment based on computation demands, (3) assigning

a segment a deadline with a phase, and (4) scheduling each segment using Deadline-Monotonic

Scheduling (DMS). The four heuristics are about how to distribute the slack of a self-suspending

task to assign a segment a deadline, hence assigning the segment a priority.

To effectively show how the algorithms work, we introduce few new notations. Since we

want to assign intermediate segment-level deadlines to determine the priorities of task segments,

we let Di,j denote the segment-level deadline of τi,j relative to its release time that is represented

as φi,j−1. Then, we define a segment density as the ratio of the worst-case execution time of the

task segment to the task period. We also define UTot
j as

∑n
i=1

Ci,j
Ti

, which is the total utilization

of the jth segments of all tasks. We use these terms to define the following heuristics.
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• ED (Equal Density): Assign τi,j a segment deadline so that all segment densities for τi are

same. In other words, there is a certain value νi =
Ci,1
Di,1

=
Ci,2
Di,2

= · · · = Ci,si
Di,si

.

• MTD (Minimize Total Density): Assign τi,j a segment deadline so that the total density

for τi is minimized. That is to find Di,js that minimizes
∑si

j=1
Ci,j
Di,j

.

• ES (Equal Slack): Assign τi,j a segment deadline so that Di,1−Ci,1 = Di,2−Ci,2 = · · · =

Di,si − Ci,si is satisfied.

• PS (Proportional Slack): Assign τi,j a segment deadline so that ∀j ∈ {j|1 ≤ j < si, j ∈

Z+}, Di,j − Ci,j : Di,j+1 − Ci,j+1 :: Ui,j : Ui,j+1 is satisfied.

Outputs of the heuristics are a set of segment deadlines that will determine priorities of task

segments under DMS policy. The shorter the relative deadline is, the higher the priority is. The

release phases are determined based on the segment deadline. For example, if τi,j is assigned a

segment deadline Di,j , the release phase for τi,j+1 is φi,j−1 + Di,j + Gi,j . One of the heuristic

implementations are presented in an algorithmic format in Algorithm 14.

7.4 Evaluation

We have provided the optimal method to determine priorities and phases for computation seg-

ments of self-suspending tasks. We have also proposed four heuristics that have lower compu-

tation complexity compared to the MILP-based optimal method. In this section, we show the

evaluation results of (1) the Rate-Monotonic policy (RM), (2) the MILP-based optimal solver

(OPT), and (3) four heuristics (ES, ED, MTD, and PS).

We vary the number of tasks from 2 to 16 while randomly picking a period that is uniformly

distributed between 10 and 100. Then, we randomly choose the worst-case execution time of

each task segment, where the worst-case execution time is uniformly distributed between 0 and

its period. We then scale the tasks so that the total utilization of the taskset does not exceed

the maximum value defined in each test scenario. The maximum utilization ranges from 0.1 to
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1. In terms of the suspension time, we show two cases: Gi
Ti

= 0.1 and Gi
Ti

= 0.6 for ∀i, 1 ≤

i ≤ n. It turns out that the ratio of the suspension time to the task period is important to the

schedulability of the given taskset. We fixed the number of task segments to 2, hence, there is

one suspension stage between two computing segments. With these configuration parameters,

we randomly generate 100 tasksets per test scenario, 8000 tasksets in total. We then apply (1)

the Rate-Monotonic policy (task-level fixed priority assignment), (2) the MILP-based optimal

method, and (3) four heuristics to see if the randomly generated tasksets are schedulable under

those methods.

Figure 7.12 shows the schedulability analysis results when the ratio of Gi to Ti for all ran-

domly generated tasks is bounded by 0.1. As shown in the figure, all heuristics perform better

than RM. ES shows almost similar performance to RM because ES divides the slack by the number

of segments, hence not giving more room to execute for a segment that has a longer execution

time. The performance of ED is the best among heuristics and RM. By balancing densities of

task segments, ED also minimizes the maximum segment density that has large impact on the

schedulability. In Figure 7.12(d), ED performs about 40 times better than RM. MTD is designed

to reduce the maximum total density of a task. By minimizing the total density, the peak density

among segments can be reduced, but it does not perform as well as ED. MTD would work better

if all the segments arrive at the same time. PS is intended to deal with assigning more slacks

the competitive segments by looking at the sum of utilization of the jth segment of all tasks, but

it does not perform as well as ED or MTD. The performance different between OPT and ED gets

larger as the total utilization becomes large. When the total utilization is large, the exact analysis

is required to deal with tight deadlines and phases.

Figure 7.13 shows the schedulability analsys results when max∀i∈ΓGi/Ti = 0.6. The trend

shown in this figure is similar to the one shown in Figure 7.12 in terms of the algorithm per-

formance. One interesting aspect is that even OPT starts failing to schedule tasksets quite early.

This can be interpreted as the impact of the suspension time on the schedulability. As the sus-
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pension time becomes larger, it is difficult for tasks to meet their deadlines due to their tightness

regardless of the amount of CPU idle time.

Figure 7.12(d) and 7.13(d) do not have the results of OPT because OPT did not generate the

solution due to its exponential complexity. This aspect motivates the necessity of heuristics, and

ED performs well as shown in the evaluation results.

7.5 Summary

We have provided schedulability analyses and proposed a new method called segment-fixed pri-

ority scheduling for self-suspending tasks. We have identified a condition that allows us to lever-

age the conventional task-fixed priority scheduling such as Rate-Monotonic Scheduling (RMS).

However, the condition is narrow, and RMS is shown to not be the optimal scheduler in many

cases for self-suspending tasks. This is mainly caused by (1) reduced available CPU time due

to self-suspension and (2) unknown suspension time during run-time. These two issues are ad-

dressed by utilizing segment-level priority assignment and phase enforcement. To determine the

priority and phase per task segment, we have proposed the MILP-based optimal method and four

heuristics. The evaluation results show that one of our heuristics performs 40 times better than

RMS at best. The heuristics perform well as long as tasksets are not in a very tightly scheduled

region that requires the optimal method for the correct parameters. The heuristics could also be

complementary to the optimal method because they do not require significant CPU time to get

the results. A quick check can be done by using heuristics, and the optimal solver can be used if

needed. Future work to be done includes implementing segment-level fixed priority scheduling

on a real system [125, 128] so that special-purpose processors can be used in a predictable and

analyzable way.
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Figure 7.12: Schedulability analysis results when max∀i∈ΓGi/Ti = 0.1. The number of tasks

varies from 2 to 16. The x-axis represents the maximum total utilization of the randomly gener-

ated tasksets. The y-axis denotes the ratio of the number of schedulable tasksets to the number

of generated tasksets. For example, 0.5 means that half of the randomly generated tasksets are

schedulable.

146



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1

OPT

RM

ES

ED

MTD

PS

(a) n = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1

OPT

RM

ES

ED

MTD

PS

(b) n = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1

OPT

RM

ES

ED

MTD

PS

(c) n = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1

RM

ES

ED

MTD

PS

(d) n = 16

Figure 7.13: Schedulability analysis results when max∀i∈Γ Gi/Ti = 0.6. The same axis definition

as Figure 7.12 is used.
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Chapter 8
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Figure 8.1: Runtime support for fault-tolerance features in the dissertation overview.
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This chapter describes our distributed layer called SAFER (System-level Architecture for

Failure Evasion in Real-time applications) used to incorporate the proposed algorithms in Chap-

ters 3 through 6 as depicted in Figure 8.1. To realize dependable CPS, SAFER is designed to

achieve multiple goals. Most importantly, no single point of failure is permitted. In other words,

a task/processor failure should not lead to system failure. Secondly, failure recovery within a

guaranteed duration should be achieved. Since cyber-physical systems are usually tightly con-

nected to the physical world, failure recovery without predictable timing behavior could return

unpredictable results in the physical world. Apart from these two goals, predictive fault discovery

and notification, resource isolation, ease of use of abstraction, ease of application development,

and sensor/actuator control are other factors considered.

SAFER incorporates configurable task-level fault-tolerance features to tolerate fail-stop pro-

cessor failures and task failures for distributed embedded real-time systems in a timely manner.

To detect failures, SAFER monitors the health status and state information of each task and

broadcasts the information. When a failure is detected using either time-based failure detection

or event-based failure detection, SAFER reconfigures the system to retain the functionality of

the whole system using task-level fault-tolerance techniques. More specifically, SAFER pro-

vides the following features: (a) Each task can have zero, one or more backup(s), (b) Each

backup can be either a hot standby or a cold standby, (c) Failure detection and recovery laten-

cies can be guaranteed, (d) A primary and each of its backup(s) are always allocated to run on

independent processor boards to avoid common failure modes, (e) State transfer is managed for

seamless recovery from failures.

To integrate SAFER with our fault-tolerant task allocation schemes [100, 129] and verify

that the system works well with SAFER, we have implemented new features in a model-based

development tool, SysWeaver developed at CMU [15]. Our analysis engine based on the formal

timing analysis given in Section 8.1.5 has been added to SysWeaver, and we have added a sim-

ulation capability of SAFER features under the presence of failures. Specifically, by injecting
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failures, we can simulate the timing behavior of the system and verify its operation with different

models and system parameters.

SAFER has been implemented as a proof of concept on Ubuntu 10.04 LTS and deployed on

Boss, an award-winning self-driving car developed at CMU [8]. We provide a case study showing

the quality of mobile robotics algorithms running on the vehicle. The results are measured using

the autonomous driving simulation scenarios used during the 2007 DARPA Urban Challenge.

We also provide extensive measurement results in TTR and the overhead of SAFER.

The major contributions of this chapter are as follows:

1. The design, implementation and evaluation of a real-time fault-tolerant distributed archi-

tecture, SAFER, to provide task-level fault-tolerance techniques.

2. The analyses of the worst-case timing behaviors of SAFER features.

3. Modeling of a system equipped with SAFER to analyze timing characteristics through a

model-based design tool, SysWeaver.

4. A case study showing the quality of mobile robotics algorithms of Boss in the presence of

failures after the SAFER layer is integrated.

The rest of this chapter is organized as follows. Section 8.1 describes the architecture of

SAFER and its implementation, and it also provides detailed analysis of the SAFER layer on

failure detection and recovery time. Section 8.2 describes a modeling technique on SysWeaver

to find proper system parameters for SAFER. The evaluation results and the case study on Boss

will follow in Section 8.3 and 8.4, respectively. We conclude our chapter in Section 8.7.

8.1 The Architecture of SAFER

The overall architecture of the SAFER layer is illustrated in Figure 8.2. The SAFER layer is

composed of SAFER daemons, one running on each processor, and a library supporting a task

execution environment. The library enables any task launched on the SAFER layer to be peri-
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odically executed, with configurable parameters. The daemons have a master-slave architecture,

and the master SAFER daemon controls the slave SAFER daemons responsible for managing

tasks on each node and monitoring its health status. The configurable parameters for each task

are given to the library when the task is launched by a SAFER daemon. For the underlying

communication layer, an inter-process communication primitive can be used.

SAFER uses multiple techniques for recovering from processor or task failures. For a task

failure without a processor failure, SAFER tries to re-spawn the failed task several times. If

the task fails to run, the re-spawning process can be restarted with a different software state or

with new inputs because the failure might have been caused by the current software state or/and

the current inputs. This re-spawning process can be configured for different applications. The

SAFER layer also supports task-level replication techniques, where selective tasks on failed pro-

cessors are recovered on other live processors. Replicas must therefore be placed on independent

nodes, a constraint that is referred to as a placement constraint [100]. The major benefit of us-

ing selective task-level recovery is its flexibility. Since we can selectively recover tasks, we can

increase the reliability of highly critical tasks by adding more hot/cold standbys for those tasks.

We can also efficiently manage the available computing resources by not replicating less-critical

tasks, thus enabling an affordable solution.

SAFER provides process group management which is applicable to the SAFER daemons and

application tasks. SAFER has two different types of groups: one that is formed by the SAFER

daemons and the other formed by each application. The SAFER daemons have a master-slave

relationship and manage tasks on each machine. Hence, when the master SAFER daemon fails,

one of the slave SAFER daemons will be promoted to become the master SAFER daemon. Also,

any application task that has at least one hot standby forms a group that includes the primary

and its hot standbys. When the primary fails, one of the hot standbys will become the primary.

Therefore, one generic group management method can be used for the SAFER daemons and

application tasks in the system.
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Figure 8.2: The overall architecture of SAFER.

8.1.1 Group Membership Protocol

The process group management is done using a group membership protocol [130, 131]. Our

group membership protocol is implemented as a separate thread in the SAFER library used by

both the SAFER daemons and application tasks. The membership protocol of SAFER is specif-

ically designed to provide predictable timing behavior and deterministic recovery times. In this

membership protocol, all members send heartbeat messages to the master, where the master of

a group can be either the master SAFER daemon or the primary of an application group. The

master broadcasts its own health status including the list of group members to the group mem-

bers. Based on this information, only the master will decide who is in the group. The master can

detect the failure of a group member if no heartbeat messages are received from that member.

The failure of the master can be detected by the group members due to the absence of status

messages, and one of the group members will be promoted to become the master by following a

pre-determined sequence of group members. If the failed master rejoins the group, it will broad-

cast a message to obtain group information and send a message to the current primary. After

successful state transfer, the current primary will be demoted, and the rejoined primary takes the

role of the primary. If a failed group member rejoins, it will be detected through its heartbeat
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messages by the current primary, which in turn will add it to the group. These steps are important

to provide consistent group management when simultaneous failures occur. Suppose an applica-

tion group is composed of a primary and two hot standbys. If the primary fails and the heartbeat

messages from the first hot standby to the second hot standby are lost, each hot standby may

try to become the primary. When they see each other, the pre-determined sequence decides who

has precedence. Therefore, we can guarantee that we have only one primary in the group, hence

maintaining consistency.

8.1.2 The SAFER Library

As illustrated in Figure 8.2, the SAFER library is a task execution environment composed of a

status updater, process handler, timing enforcer and network abstraction. User threads and the

SAFER daemons run on top of the library.

Status Updater

The SAFER group membership protocol is implemented as a separate thread in the status updater.

The status updater supports task-level replication techniques by managing state information be-

tween the primary (the master SAFER daemon) and its backups (the slave SAFER daemons).

The role of the status updater changes based on whether a task it monitors is a primary (e.g. the

master SAFER daemon) or a backup (e.g. the slave SAFER daemon). The status updater of the

primary task periodically sends a heartbeat message, its internal state information and the list

of group members to its hot/cold standbys, where the update period is configurable. The status

updater at the backup node sends out heartbeat signals to the primary such that the primary can

decide who is in the group. The rejoining process is also dealt with by the status updater. There-

fore, the status updater enables the members in the group to agree upon the availability of each

node.
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Process Handler

The process handler of the SAFER library promotes a backup to be the primary when it receives

the corresponding request from the master SAFER daemon or the status updater. When a backup

is promoted, the new primary starts generating outputs for use and confirms its promotion to the

requester. It must be noted that a hot standby is always running and its outputs are filtered by the

network abstraction of the library in Figure 8.2 under the control of the process handler.

Timing Enforcer

The timing enforcer enables tasks to have guaranteed and protected access to required processing

resources in a timely manner based on Linux/RK [121]. In Linux/RK, a shared resource is re-

served and enforced by the following parameters: computation time C every T time-units within

a deadline D. We refer to these parameters {C, T,D} as explicit parameters of our reservation

model. These C units of usage time will be guaranteed to be available for consumption before

D units of time after the beginning of every periodic interval.

8.1.3 The SAFER Daemon

As illustrated in Figure 8.2, a SAFER daemon is composed of a health monitor, a status manager,

a time synchronization manager, a mapping manager and a process launcher.

Health Monitor

The health monitor of the master SAFER daemon monitors the health status of the other daemons

and their processors. Once the daemon detects and notifies the failure of a processor, other

SAFER daemons can trigger the recovery procedures using the process launcher and process

handler unless it is already recovered by the hot standbys of the tasks running on the failed

processor.
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Status Manager

The status manager tracks the current status of tasks running on its own node and issues failure

notification if there is a task failure (say due to a segmentation fault) by capturing the OS signal,

which may trigger the failed task re-spawning process on the local node. If there is any cold

standby on the processor where the daemon runs, the status manager stores the state information

of that cold standby from its primary as depicted in Figure 8.4. It should be noted that the

daemons themselves cannot have cold standbys because the daemon should operate as long as

the processor is alive.

Time Synchronization Manager

The SAFER layer offers a global time service using a service similar to NTP [132] used for time

synchronization over the Internet. The master SAFER daemon behaves as a time server, and each

slave becomes a client for this service and listens to messages from the time server. This service

is essential to synchronize all the daemons so that failure recovery occurs within the given timing

requirement1 between the primary task and its hot/cold Standbys. This also enables the timing

enforcer of the SAFER library to have a smaller penalty in resource scheduling.

1Please see Section 8.1.5.
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Process Mapping Manager and Launcher

The process mapping manager and launcher are responsible for automatically deploying tasks on

the nodes of the SAFER layer based on system configuration parameters. The system configura-

tion includes information about where tasks are allocated and the resource requirements of each

task. It also contains the location of the primary and hot/cold standbys if the tasks are selected

to have backups. The process mapping manager maintains and updates the system configuration

information. Changes to this information can occur due to processor failures, resource demand

changes, task completions, and so forth. Based on the up-to-date information from the process

mapping manager, the process launcher loads tasks on different processors. The process map-

ping manager and launcher can be connected to a user-interface application that provides a global

view of the system with the current health status of each task on each node. As an example, the

information from the process mapping manager and launcher are visualized on TROCS [124],

the operator interface of Boss [8].

8.1.4 Failure Detection and Recovery

Heartbeat signals from the status updater of each task will be used for detecting task/processor

failures. The status updater of the SAFER library at a backup node will decide the failure of the

primary if heartbeat messages of its primary are missed a specified number of times. We call this

failure detection scheme as time-based failure detection. A task failure may be directly detected

by the status manager of the SAFER daemon by catching a signal generated by the OS when

a task has unexpectedly failed. Then, an appropriate recovery will be initiated. We name this

failure detection scheme as event-driven failure detection. It should be noted that event-driven

detection cannot be used for processor failure detection.

The recovery from a failure is done by using either the task re-spawning process or the task-

level replication techniques of hot and cold standbys. The re-spawning process relaunches the

failed task with a different software state and/or a random back-off time to apply new inputs,
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which could be different from the inputs causing the failure. This process can be suspended by

either the limited number of retries or the task recovery, where the task recovery can be achieved

by either the re-spawning process or one of the backups on different processors.

A hot standby receives the same inputs as the primary with no failure, and the user threads of

the hot standby run normal operations except that the output from them is filtered by the network

abstraction2. In the presence of any task failure detected by a hot standby, one of the live backups

will promote itself to become the primary based on the predetermined precedence information.

Then, it will send a notification to the SAFER daemons.

In the case of a cold standby, without a failure, a cold standby node daemon periodically

receives and stores the state information of the primary coming from the status updater of the

primary. The disadvantage of using a cold standby is that the recovery latency could be long

when there is a failure detected by the master SAFER daemon. Conversely, since it runs only on

demand, it saves computing resources in the absence of failures.

2We do not generate outputs from hot standbys because we assume the fail-stop failure model. To relax the

failure assumption model so that we can check if the outputs from the primary are valid, the network abstraction can

be modified to compare the results of the primary with the results of its hot standbys.
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8.1.5 Worst-Case Analysis and Admission Control

Assigning a proper standby to a task is of vital importance to meet the fail-over requirements of

the given set of tasks. Regardless of the detection methods we provide, we have to consider the

worst-case behavior to meet the fail-over requirements. We explicitly consider the time-based

failure detection method. Event-based failure detection takes no longer than time-based failure

detection and will not be analyzed directly.

For this analysis, we assume a synchronous network [130], and we define a time delay d to

represent the maximum network delay of the heartbeat signal packets. We let Theartbeat denote

the interval between two consecutive heartbeat signals. Then, the status updater of the SAFER

library at a backup node decides the death of the primary unless it hears a heartbeat signal from a

processor within d+kTheartbeat, where k is an adjustable positive integer based on the underlying

communication medium and protocol.

We consider a set of tasks, Γ composed of n tasks, τ1, τ2, ..., τn. Each task is in one of three

sets: Hard Recovery Task set, ΓH , Soft Recovery Task set, ΓS , and Best-effort Recovery Task set,

ΓB. A task τi is represented by (Ci, Ti, Di, µi) [100]. τi will compute for a maximum of Ci

time-units every Ti time-units within a relative deadline Di, and µi denotes the ratio of recovery

instance to its deadline. The recovery instance is defined as the time instance when the failed

job is completed by the new primary, which used to be the backup. For example, if τi ∈ ΓH or

µi = 1, the failed job should be recovered within Di. Ri denotes the worst-case response time

of τi in the absence of a failure, and we assume an implicit deadline of Di = Ti in this chapter.

si denotes the worst-case slack-to-recovery time of τi, i.e., the time duration between the failure

and the recovery instance. If τi runs on processor, Pl, the response time of τi on Pl is represented

as RPl
i . τi can have nH(τi) hot standbys and nC(τi) cold standbys. Then, τHi,j denotes the jth hot

standby of τi, and τCi,k is the kth cold standby of τi. Either τHi,0 or τCi,0 can represent τi. We also

have a set of processors, P , composed of p processors, P1, P2, ..., Pp, and τi ∈ Pl means that τi is

running on Pl. Let Π represent the allocation information. We use ΠH
ij to represent the processor
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allocated to τHij . ΠC
ik is the processor that contains τCik .

On SAFER, the following theorems are satisfied.

Theorem 31 Given τi and its nH(τi) hot standbys, at least one of the hot standbys will detect

and recover3 the failure (only) of the primary if Theartbeat ≤ (si−d)
k

, where d is a network delay.

The primary is marked as failed if k consecutive heartbeat signals are missing.

Proof The worst case of recovering a failure happens when a task fails just before the released

job completes. Under this circumstance, the slack-to-recovery time is minimized as si = µiTi −

RΠi
i . Then, the worst-case slack-to-recovery time si should be greater than the failure detection

time, d + kTheartbeat so that one of the hot standbys becomes the primary and sends out the

computed outputs from the failed job. Hence, Theartbeat ≤ (si−d)
k

is satisfied.

Theorem 32 Given τi and its nC(τi) cold standbys, at least one cold standby will detect and

recover the failure of the primary if Tdaemon ≤ (si−R
ΠCi,j
i −d−dS)

k
, where Tdaemon is the period of the

SAFER daemon, dS is the time required for copying and processing the state information from

the daemon and j is determined based on the precedence sequence.

Proof A similar proof to that of Theorem 1 can be applied. First, we have to consider the

response time of the cold standby on ΠC
i,j because the cold standby will start running after the

node receives the fault notification. This will further decrease si. Also, the period of the daemon

should be applied instead of Theartbeat from the SAFER library, since the cold standby is managed

by the SAFER daemons. Then, Tdaemon ≤ (si−R
ΠCi,j
i −d−dS)

k
is satisfied.

These two theorems provide significant information to task partitioning algorithms because

these properties should be applied to the admission test of hot standby and cold standby along

with the relevant schedulability-based admission tests. Based on these two theorems, a schedu-

lability test is given in Algorithm 15.

3In order to fully recover within the given value in this theorem, the hot standby should always keep the outputs

until the next period starts. Otherwise, the recovery can be off by the period of the hot standby.
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Algorithm 15 System-Schedulability-Test-(Γ, P,Π)

Require: Γ: a taskset, P : a set of processors and Π: allocation information between Γ and P

Ensure: Schedulability of Γ on P with Π

1: for i = 1 to n do

2: . Do the response time test for τi and its standbys

3: Ri ← the response time of τi on Πi.

4: if Ri ≤ Di then

5: . The primary is schedulable, so check its standbys

6: for j = 1 to nH(τi) do

7: Rj ← the response time of τHi,j on ΠH
i,j .

8: if Rj ≤ Di then

9: . This hot standby is schedulable.

10: . Check its slack-to-recovery time

11: if Ri ≤ µiDi − kTheartbeat − d then

12: . The primary and hot standbys are recoverable

13: for j = 1 to nC(τi) do

14: Rj ← the response time of τCi,j on ΠC
i,j .

15: if Rj ≤ Di then

16: . This cold standby is schedulable.

17: . Check its slack-to-recovery time

18: if Ri ≤ µiDi −Rj − kTheartbeat − d− dS then

19: . Mark this cold standby recoverable

20: if all tasks schedulable and recoverable then

21: return TRUE

22: else

23: return FALSE
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Figure 8.5: Fault-tolerance dimension in SysWeaver.

8.2 SysWeaver Integration

SysWeaver is a model-based design, integration, and analysis framework introduced by de Niz

et. al [15] for embedded real-time systems. It explicitly captures the para-functional behaviors

such as timeliness and dependability, and their impact on the functional aspects of a system.

It uses a view-based representation of various system dimensions such as Functional, Timing,

Fault-Tolerance and Deployment. Different domain experts can work on each of these different

dimensions, while SysWeaver resolves dependencies among the different views automatically.

The framework enables the use of analysis plugins and task-level system simulation capabilities

to evaluate and verify system properties along with automatic system code generation. This

provides the ability to automatically generate distributed system-oriented glue code which ties

together the distributed functional code.
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We use SysWeaver to model and capture the SAFER fault-tolerance properties of the system

in the Fault-Tolerance Dimension. This view enables us to model the fault-tolerance strategy as

well as give us a component-level mapping of the backups running in the system. Figure 8.5

shows an example of the Fault-Tolerance Dimension in SysWeaver. A system model is created

within SysWeaver and we then use fault-tolerance task allocation algorithms described in our

previous work [100, 129] to provide a fully deployed system.

As part of the verification of the SAFER layer, we have implemented the theoretical analysis

as an analysis plugin in SysWeaver. Using the system properties represented in the different

dimensions, the analysis engine provides an evaluation of the fault-tolerance techniques and

analytic results that are then fed back into the system model. To evaluate these analytical results,

we then use the distributed system simulation engine within SysWeaver. The simulation engine

uses task level properties such as execution time and task priorities along with communication

delays to simulate the system response. A fault injection framework has been integrated into the

simulation engine that enables us to inject faults and evaluate fault-based mode changes for tasks

and captures system response times and deadlines of primary tasks in the presence of faults. The

analytical results from SysWeaver for SAFER will be shown in the next section.

8.3 Evaluation

A proof-of-concept implementation of SAFER runs on Linux and x86 hardware. SAFER is de-

ployed and has been running on Boss [8]. To measure the performance of the SAFER layer with

the presence of a failure, we have built a cluster composed of three Intel Quad-Core machines.

We ran a scenario used to test Boss during the competition in 2007 without the perception sys-

tem. The artificial intelligence algorithms for behavior and planning along with vehicle control

were run on the cluster. By injecting processor failures through a script, we measured the fault

detection and fault recovery times for different tasks with different periods. The fail-over time is

the summation of failure detection time and recovery time. For a hot standby, the fault detection
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Figure 8.6: Fail-over time measurements when time-based detection is used.
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time is the time duration between when a failure happens and when the backup detects the fail-

ure. Its fault recovery time is the time duration between when the backup detects the failure and

when the failed task is completely recovered. For a cold standby, the fault detection time is the

time duration between when a failure happens and when the master SAFER daemon detects the

failure; its fault recovery time is the time duration between when the master SAFER daemon de-

tects the failure and when the failed task is completely recovered, where the recovery procedure

includes state information copy, initialization and one re-execution.

For the measurements, we chose two tasks, BehaviorTask and LocalPlannerTask,

which have 10ms and 100ms as their respective periods. Since Boss has a set of harmonic tasks

composed of 10ms-period tasks, 50ms-period tasks and 100ms-period tasks, those two tasks are

appropriate to understand the behavior of Boss with SAFER. We measured the fail-over time with

a hot standby and a cold standby4 with two different detection methods, time-based detection and

event-based detection. Each point corresponds to the average of 50 iterations.

8.3.1 Time-based Failure Detection

Figure 8.6 shows the fail-over time measurements when the time-based detection is used for

detecting a failure, while the period of heartbeat signals from the primary varies from 10ms to

100ms. The hot standby (the master SAFER daemon for cold standby) declares a failure if it

misses three continuous heartbeat signals from the primary with a delay d of 20ms that includes

network and node-side delay. From the data in the figures, it is seen that the failure detection time

highly depends on the period of the heartbeat signals of the primary. The failure detection time

linearly increases as the period of heartbeat signals increases because the waiting time from the

backup linearly increases. The worst-case of the failure detection time calculated in SysWeaver

4The fail-over time measurements with the re-spawning process are not described in this dissertation because the

fail-over time with cold standby is longer than the time with the re-spawning process due to the network delay. If

the process fails to recover the failure after several retries, it could take longer; however, it is beyond the scope of

this dissertation.
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is also depicted. As shown in the figures, our measurements in average case are under the worst-

case.

The recovery time of a task is related to its task period because the process handler of its hot

(cold) standby should be able to receive the command from the status updater thread (the master

SAFER daemon). For the cold standby measurements, the recovery time is much longer because

of state recovery and re-execution to recover the failure. The state recovery could depend on each

application. For example, the state recovery of the 100ms-period task (LocalPlannerTask)

in Figure 8.6(d) takes a long time because the task has a large amount of state information and it

has a long initialization sequence.

8.3.2 Event-based Failure Detection

Figure 8.7 shows the measurements when event-driven detection is used when the period of

SAFER daemon is 10ms. Since the local SAFER daemon detects local task failure, the failure

detection time is hugely reduced. The local SAFER daemon captures the signal from the task

with failure and reports it to the master SAFER daemon. Therefore, the failure detection time is

measured as 5ms in average. If the period of SAFER daemon increases, the failure detection time

will also be increased. The recovery time of a task is related to its period as shown previously.

The worst-case from SysWeaver is also depicted as solid lines in Figure 8.7(a) and 8.7(b).

8.3.3 Overheads of SAFER

We have analyzed the worst-case timing behavior using SysWeaver and measured the average-

case timing behavior on our simulation cluster. We must also consider the overheads such as

additional CPU utilization, network bandwidth and memory consumption that are imposed by

the SAFER services. When hot standbys are used, the CPU utilization increases linearly as

the number of hot standbys increases. Hot standbys also add to the network load by sending

regular heartbeat signals. We limited the size of a heartbeat message to 132 bytes in order to
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Figure 8.7: Fail-over time measurements when event-based detection is used.

minimize the impact of heartbeat messages. Since the failure detection time heavily depends

on the period of heartbeat messages, the trade-off between the network load and the failure

detection time should be considered. In the case study described in Section 8.4, for example,

25.78 Kbps and 2.578 Kbps of additional network load are added for BehaviorTask and

LocalPlannerTask, respectively.

The network load is also increased by state transfer requirements for cold standbys. Mini-

mizing the amount of data to transfer reduces network congestion and is aided by the support

provided by SAFER to easily configure the specific state information to transfer. The period of

data transfer is another dimension to consider. If cold standbys are used in the case study, 112.89

Kbps and 41.29Kbps of the network load are added when 1024 bytes for BehaviorTask and

4096 bytes for LocalPlannerTask are required for state transfer. Furthermore, the SAFER

daemons storing state information from primaries also consume more CPU resources. The com-

putation time of daemons increases by 2 to 5 percent5 depending on the number of cold standbys

that each SAFER daemon manages. Cold standbys also consume memory resources even if they

are dormant in system memory.

5This value could be different on different configurations.
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4-way intersection 

Boss follows this path 

Failure injected at 32.5s  
when Boss passes here 

The node rejoins 
here at 50s 

Figure 8.8: The map Boss follows during the simulation.

8.4 Case study on Boss

The SAFER layer has been heavily tested on Boss. As a case study, we show results from a

scenario used during the 2007 DARPA Urban Challenge. The scenario uses the layout of our test

track located at Robot City in Hazelwood, Pittsburgh, PA, where we test our self-driving car at

intersections, stop signs, U-turns, two-lane roads, curvy roads and parking lots. In the scenario

illustrated in Figure 8.8, Boss will start from the point depicted at the bottom left of the figure.

Boss will follow the road, cross an intersection governed by stop signs, increase the velocity

while following the straight road and make turns on the curves. The same scenario file is also

used on the real vehicle, but only the tasks that interact with the sensors are replaced with the

simulated tasks.

The scenario is composed of nine tasks, excluding the SAFER daemons: BehaviorTask,

ControllerTask, LocalPlannerTask, MissionPlannerTask, Planner3DTask 1,

Planner3DTask 2, RoadBlockageDetector, RobotClient and ServerTask. Then,

MissionPlannerTask decides where to go. BehaviorTask decides the behavior such as
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turning, lane changing and intersection traversal, and LocalPlannerTask sends commands

to the vehicle actuators such as accelerator, brake and steering wheel. ControllerTask re-

ceives those actuator commands and directly interfaces with the vehicle hardware. On the simula-

tion cluster, this task runs in simulation mode. Planner3DTask 1 and Planner3DTask 2

are mainly used in unstructured driving conditions such as parking and are therefore not heavily

used in this scenario. To test SAFER with this scenario, we replicated BehaviorTask and

LocalPlannerTask using hot standbys. The period of heartbeat signals is fixed at 10ms,

and the period of the SAFER daemon is also 10ms. We run the scenario while Boss navigates

the map. In reference to Figure 8.9, we inject a failure by disconnecting one of the three cluster

machines at t = 32.5s after Boss turns left at the intersection. Then, the disconnected machine

rejoins the cluster at t = 50s when Boss is at the top left corner.

Figure 8.9 shows the velocity profile of Boss measured from ControllerTask. The ve-

locity is an important variable to visualize the behavior of a self-driving car. During normal

operations, as depicted in Figure 8.9(a), Boss stops at the intersection controlled by the stop

sign at t = 15s, hence the velocity becomes zero. The velocity graph shows valleys when

Boss decreases its speed before and along curves at t = 39s and t = 50s. Boss then increases

its speed along the straight road. The velocity cannot be sent to ControllerTask without

BehaviorTask and LocalPlannerTask running. With SAFER disabled, therefore, Boss

completely stops when a node failure is injected as depicted in Figure 8.9(b). Figure 8.9(c) shows

the case with SAFER enabled. The node failure is injected at t = 32.5s, and the node rejoins at

t = 50s. As can be seen, there is very little if any behavioral difference at the level of driving. At

a microscopic level, the graphs zoomed into the time interval [32, 52] are shown in Figure 8.10. It

can be seen that the differences between Figure 8.10(a) and 8.10(b) are subtle as SAFER detects

and recovers from the failure within the original deadline. However, the velocity profile shows a

small amount of jitter during the process rejoining step as the new primary becomes hot standby

again when the old primary rejoins.

169



 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60

V
e

lo
c
it
y
 (

m
/s

)

Time (sec)

(a) Normal velocity trace without a failure injection
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(b) Failure injected at 32.5s with SAFER disabled
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(c) Failure injected at 32.5s with SAFER enabled

Figure 8.9: The velocity trace of Boss measured from ControllerTask.

We have leveraged the benefits of SAFER on the vehicle. Boss is equipped with various

sensors, but the Velodyne HDL-64E is the most critical sensor on the vehicle due to its wide

field of view (360◦ horizontal by 26.8◦ vertical). This provides enough data to reconstruct a good

three-dimensional view of the world around the vehicle. After the competition, we saw that the

processing board running the task for Velodyne frequently crashed. With the SAFER layer in

place, this undesirable situation can be avoided. We also sometimes suffered from over-heated

processing nodes in the harsh environment. When the densely deployed processing nodes are

over-heated, cooling time is required not to damage the hardware. SAFER is also able to handle

this unwanted event. Although SAFER is a generic framework, it may be limited by physical

constraints. For example, a machine that is used exclusively to interface with a sensor may not

be recovered even with SAFER when the machine fails.
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Figure 8.10: The scaled version of Figure 8.9(a) and 8.9(c).

8.5 Actuator Failure Recovery

SAFER provides an adaptive and affordable way of tolerating processor and/or task failures

on distributed real-time embedded systems. However, it has a limitation in tolerating a failure

of processor that has a dedicated connection to an actuator,6 which plays an essential role in

CPS applications. SAFER uses the publish-subscribe model for data transfer among all system

nodes. Any node connected to a network including an actuator is recoverable using SAFER. Even

though distributed control on a publish-subscribe network is getting popular [89, 133], most

actuators require separate I/O connections for enabling, controlling and disabling themselves.

For instance, many electric motors receive direct pulse-code modulation (PCM) signals from

analog input ports to control dynamics. Hence, it is common to have a separate embedded

controller for such a motor. Then, the failure of this controller itself cannot be tolerated by

SAFER because those signals are not connected to the network. In other words, the controller

becomes a single point of failure.

6A failure of processor having a direct connection to a sensor cannot be tolerated, neither. Although this section

focuses more on an actuator side, a similar approach can be used for a processor dedicatedly connected to a sensor.
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Figure 8.11: An example of actuator connections on SAFER.

This section provides a method that relaxes this limitation by (1) deploying a simple piece

of hardware to avoid a dedicated connection between a processor and an actuator, (2) adding a

software module that monitors and controls the hardware, and (3) enhancing the failure detection

and recovery mechanisms of SAFER to support these changes.

8.5.1 Actuator Connections on SAFER

In this subsection, we will describe how actuators are used with SAFER taking the Boss imple-

mentation as an example. SAFER assumes the publish-subscribe model for data delivery among

all computing units. Since SAFER is capable of tolerating a task-level failure, the failure of any

running task with standby(s) connected to a network can be recovered from. On SAFER, an

actuator can also subscribe to its publishers that control the actuator. This architecture is becom-

ing common for distributed control [89], and it can be a desirable way to move forward [133].

For example, all motors that control the steering, acceleration, brake and gear shift of Boss are

connected to a CAN bus, and all control messages are transferred via the bus.

A problem, however, arises when an actuator requires dedicated I/O connections. For in-

stance, all electric motor units used on Boss receive three individual direct inputs and one output

in addition to the control messages from CAN. The inputs are used for enabling/disabling the

motor and controlling its rotation. The output represents the current status of the motor. A
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Figure 8.12: An example of actuator connections with switches on SAFER.

high-level connection diagram of Boss is depicted in Figure 8.11. From the figure, Actuator 1

has direct connections to Computing Node n − 1, and Actuator 2 also has direct connections

to Computing Node n. Then, (say) the failure of Computing Node n may cause a single point

of failure because Actuator 2 cannot be used anymore7. This cannot be resolved even though

SAFER is enabled and Actuator 2 does not have its own fault.

8.5.2 The Proposed Method

We address the problem stated in the previous section by adding a simple switch, designing a

new software module for controlling the switch and enhancing the SAFER layer to support these

changes.

Switch Design and its Control

The main idea of the proposed solution is that we do not allow any direct connection between an

actuator and its controlling unit. In other words, we enable more than one computing unit to be

able to control any actuator. An actuator unit usually has several input and output connections.

7Boss is designed to be fail-safe when this happens.
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Any number of computing units can be connected to the input/output ports from the actuator

unit8. This resembles a publish-subscribe model, and several computing units can monitor the

output of the actuator unit using a relatively simple circuit. The challenge arises from the input

side of the actuator unit because only one unit should control the actuator at any given time. To

satisfy this requirement, we need to have an additional switch which multiplexes one and many

possible inputs (outputs from controlling CPUs going to the actuator) and enables only one set

of inputs to the actuator. This architecture is illustrated in Figure 8.12 when a computing unit for

an actuator has one standby9.

The reader may note that this switch itself is a single point of failure, but in practice a very

simple unit can be built to have less probability of failure than a complex unit. Let p denote the

probability of failure for a switch. Let q denote the probability of failure for a computing unit.

We assume that (1) actuators do not fail and (2) all tasks have standbys so that they can tolerate

two processor failures. We expect that in practice p << q << 1. This is a reasonable assumption

because a computing unit on a CPS usually has a probability of failure that is much less than 1.

Since the switch is supposed to be a very simple circuit, p is even less than q. Then, from the

architecture in Figure 8.11, the probability of system failure is 2q. For the architecture using the

switch from Figure 8.12, the probability is 2(q2 + p). Based on the assumption p << q << 1,

2(q2 + p) << 2q satisfies, and the switch architecture from Figure 8.12 is significantly better in

terms of reliability.

Figure 8.13 shows a more detailed diagram focusing on a primary computing unit (Comput-

ing Node 1), its standby (Computing Node 2) and an actuator unit (Motor Controller and Motor).

For the switch design, we recommend using a relay due to its simplicity and high reliability re-

liability. As shown in the figure, the connection is controlled by the primary. When the standby

fails, the primary is still in place. When the primary fails, its standby will take over. The switch

can be designed to automatically make connections between the actuator and the standby when

8It is common that an actuator has an output port for its current status.
9The number of standbys affects the switch design.
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Figure 8.13: A detailed switch diagram with the primary and standby nodes.

the control signal from the primary is absent. A daisy chain configuration can be used to support

multiple standbys. Thus, we can tolerate a failure of a node that controls an actuator that requires

direct input and output connections.

SAFER Modifications

SAFER needs to be modified to support the above-mentioned switch. Two main modifications

are required: (1) the switch added in Figure 8.13 should be supported by the SAFER layer; and

(2) the failure detection and recovery scheme should be extended.

SAFER must control connections between an actuator unit and its computing units based on

which node is the primary. In other words, when the primary takes control, the relay should

maintain the connection between an actuator and the primary. If the standby is promoted to the

primary due to the failure of its primary, the relay should alternate the connection. This operation

can be done on SAFER by modifying appropriate software modules. For hot standby as the type

of standby, the status updater of the SAFER library needs be modified to be able to set a GPIO

pin10. It is important to promptly control the switch when the primary failure is detected. For

10This is for the current implementation. Depending on how SAFER is implemented, the modification may be

different.
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cold standby as the standby type, this should be managed by the SAFER daemon. Therefore, the

status manager of the SAFER daemon should manage the switch status, and the process launcher

of the daemon should handle the switch when it activates the cold standby.

The SAFER library was originally implemented to subscribe to other tasks via an inter-

process communication primitive using Ethernet. Currently, it can send heartbeat signals using

only one communication interface, and this is also a limitation. For example, Boss has a few

controllers only on CAN. To make them work together with computing units on an Ethernet, the

network abstraction should be modified to support two or more different network types at the

same time. Then, a standby on the Ethernet can subscribe to the heartbeat signals of the primary

on CAN. In this case, additional care must be given to time-based failure detection because the

network characteristics are different between Ethernet and CAN. The failure recovery scheme

also requires more design-time analysis. The original SAFER assumes all binaries of the various

standbys are the same as the primary’s. However, when a different network is used, the binary

itself and configuration parameters can be different, hence making design-time analysis more

time-consuming.

8.6 Sensor Failure Recovery

We have shown how SAFER can tolerate processor, task, or actuator failures so far. In this

section, we extend the SAFER layer to tolerate sensor failures. Unlike processors, it is not trivial

to duplicate sensors on CPS due to the lack of enough physical room in many cases. Sensors such

as LIDARs, radars, and cameras can be rather expensive to be duplicated. One way of tackling

this challenge is to leverage different sensor modalities that are already deployed on CPS. Recent

consumer vehicles, for example, are already equipped with forward-looking radars and cameras

for various safety features. The front-facing radars are usually used for ACC (Adaptive Cruise

Control), and the cameras are often leveraged for lane departure warning, pedestrian detection,

sign detection, and so on. As the sensors are already looking at the same direction in the example,
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they can be interchangeably used for different functionalities in the presence of a radar/camera

failure as long as appropriate algorithms are provided. When the ACC radar failed, for instance,

a vision algorithm detecting cars can be used for ACC. The quality of driving might be worse

as vision outputs are usually noisier; however, having such a capability is essential to ensure

safety. To this end, SAFER should be able to (1) monitor sensor health status, (2) detect sensor

failures, (3) notify algorithms of any failure, and (4) reconfigure the system correspondingly. We

also have a case study using an algorithm picking up a target for ACC running on our automated

SRX. The major modifications made to SAFER in this section is quite important as the SAFER

layer now can support application-aware fault-tolerance features in addition to tolerating sensor

failures.

8.6.1 Sensor Failure Detection

In Sections 1.2 and 2.3.1, we assumed a hard sensor failure model. In this section, we further

classify the model into two different categories: fail-stop and stuck-at failures. For the sensors

that fail in a fail-stop manner, they just crash and do not output wrong values. For the sensors that

fail in a stuck-at manner, their output values are stuck at a certain value that is potentially wrong.

This classification is important because the fail-stop sensor failures can be directly dealt with by

the SAFER layer. For the stuck-at sensor failures, however, a coordination between SAFER and

the perception subsystem might be necessary because SAFER may not be capable of directly

reading the sensor output values.

We use both periodic heartbeat signals and proactive pings to detect fail-stop sensor failures.

Most sensors such as LIDARs, radars, and cameras that are connected to a network can be

configured to send out periodic messages that can be leveraged as heartbeat signals. For example,

the radar sensors deployed on the autonomous car at CMU emit periodic track messages over a

CAN network regardless of any track presence. SAFER reads such messages from the CAN

network and monitors the health status of those radar sensors. SAFER also does a series of
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Figure 8.14: An abstracted computing hardware architecture of the automated SRX.

similar actions over the in-vehicle Ethernet for the LIDAR sensors. Figure 8.14 depicts the

abstracted computing hardware architecture of the autonomous vehicle and explains why SAFER

can read the heartbeat signals from the LIDAR and radar sensors. The LIDAR sensors send their

outputs over the Ethernet switches, and the radar sensors emit their outputs over the perception

CAN network. Some cameras do not have a capability of sending out periodic messages, so

SAFER is also able to periodically ping such cameras. If SAFER does not receive any response

within a predefined time window even with multiple retries, a failure is declared. Then, the

following measured data become invalid.

To detect stuck-at sensor failures, we exploit a data grabber for each sensor type that converts

raw sensor data to an internal format for the perception subsystem of our autonomous vehicle.

While the grabbers read the sensory data, they detect stuck-at failures by using the methods

proposed in [75, 79]11. The grabbers then notify the SAFER layer about the detected failure(s).

To avoid a single point of failure, each grabber can also have a hot standby supported by SAFER.

11The algorithms detecting stuck-at failures are the beyond the scope of this dissertation, so we do not provide

the details of the algorithms used in the grabbers.

178



The SAFER layer sends out this information to the corresponding modules that use the failed

sensor(s). Another benefit of using the data grabbers is to reduce the amount of data going

through the networks on SAFER. Raw sensory data usually contain large amounts of information,

and the grabbers extract the required data only and hence help to reduce the network traffic caused

by the sensor data. The standbys of algorithms using the sensor data also benefit from having

sensor data grabbers because we assume a publish-subscribe model and the standbys can be

easily configured to run.

8.6.2 SAFER Extensions for Sensor Failure Recovery

SAFER leverages different sensor modalities to recover from sensor failures and hence improve

the system dependability. We assume that all the sensors are connected to at least one network

on the SAFER layer. After a sensor failure is detected, the SAFER layer lets the corresponding

algorithms know that they cannot rely on the data from the failed sensor anymore. This is very

useful in different aspects. We can avoid the waste of computing resources. When a camera

fails in an autonomous vehicle, for example, we do not need to run vision algorithms that are

usually compute-intensive. Also, we can control the quality of the perception outputs. Consider a

sensor fusion algorithm for autonomous driving that merges radar data with LIDAR point clouds.

When the radar sensor fails, we have to rely only on the LIDAR sensors. Without an appropriate

adjustment, the perception outputs from the fusion algorithm will be extremely degraded, hence

making autonomous driving potentially dangerous. If the perception subsystem cannot provide

good enough data for autonomous driving, a human operator of the system should be alerted to

the failure to ensure safety.

SAFER needs modifications to the SAFER daemon to support sensor failure recovery. The

health monitor and status manager should have entries for the sensors used by the user applica-

tions. Compared to a processor/task entry, each sensor entry has extra information: sensor type,

coverage, list of applications that use the sensor, and criticality. The sensor type is used for dis-
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Figure 8.15: An example of interchange advance guide signs.

tinguishing different sensor modalities and includes LIDARs, radars, cameras, and thermostats.

The coverage contains information about where the sensor is placed. The list of applications

that use the sensor is necessary for SAFER to notify them about the sensor failure or another

status change. The criticality is used to represent the importance of the sensor. For example, if

there is a sensor that may cause a single point of failure, that should be the most critical sensor

and the SAFER layer may even change the mode of the behavior/planning algorithms to react

to the failure. If the system with the failed sensor cannot operate reliably, the human operator

should take over the system so that the system does not become unsafe. The above-mentioned

information can be added during the design time.

When current sensor status changes due to a sensor failure, the mapping manager of the

SAFER daemon must reconfigure the system accordingly. If there are user applications that

solely rely on the failed sensor, these applications should be turned off not to waste process-

ing/networking resources. Other applications that partially sue the failure sensor should be re-

configured not to use the failed sensor. If there is a mode of operation that can make up the

lack of the failed sensor, this mode should be activated even though the mode requires a higher

portion of system resources. When this mode is activated, SAFER considers the resources re-

tained from the halted applications that were using the failed sensor. Consider a map-matching
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algorithm localizing an autonomous vehicle using map data and GPS coordinates. If the GPS

receiver fails, SAFER can activate an algorithm that uses camera images to roughly localize the

vehicle location using interchange advance guide signs depicted in Figure 8.15. The process

launcher actually sends out control signals to each application so that the SAFER library recon-

figures individual applications. A case study using this framework will be discussed in the next

subsection.

8.6.3 Case Study: Selecting a Target for Adaptive Cruise Control

We apply the framework proposed in the previous section to an algorithm responsible for picking

up a target used for ACC. The algorithm is called ACCTargetSelector and has already

been running on our automated SRX. The algorithm takes LIDAR point clouds, radar point

targets, vision objects, the current/intended lane for autonomous driving, and map information

to determine a target that is used for ACC. An ACC target is important to autonomous driving

because the target provides important context-aware information. For example, our automated

vehicle can just follow the ACC target, or we can avoid its misbehavior by moving to another

lane.

The overview of ACCTargetSelector is depicted in Figure 8.16. As mentioned above,

raw data from sensors are converted to an appropriate internal format and transferred to the

algorithm. Using the map information, ACCTargetSelector identifies a list of candidate

targets in the current/intended lane detected by each type. Therefore, three sets of targets are

identified. Then, the closest target to the vehicle is selected among the validated targets using

domain knowledge such as road rules. The KF (Kalman Filter)-based sensor fusion algorithm

takes the chosen target as a measurement. ACCTargetSelector periodically selects a target,

and the estimated target will be the output of the algorithm.

Since ACCTargetSelector equally relies on three different types of sensors when pick-

ing up a candidate from three sets of candidate targets, the presence of a sensor failure can
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Figure 8.16: The procedure block diagram of ACCTargetSelector.

make the algorithm fail to output an ACC target. To resolve this issue, we have modified

ACCTargetSelector to leverage the SAFER layer. When a sensor failure is detected, SAFER

reports the failure to ACCTargetSelector. Then, when the closest target is chosen for the

KF-based sensor fusion, the validation algorithm runs in a different mode to incorporate the

sensor failure.

8.7 Summary

We have proposed a layer called SAFER (System-level Architecture for Failure Evasion in Real-

time applications) to incorporate configurable task-level fault-tolerance features using hot stand-

bys and cold standbys in order to tolerate fail-stop processor and task failures for distributed

embedded real-time systems. SAFER is implemented on Ubuntu 10.04 LTS and integrated into

a self-driving car developed at Carnegie Mellon. The formal analyses of the worst-case timing

behavior are also provided, and our analysis engine is integrated with a model-based design tool,

SysWeaver. We have presented measurements along with analytical results from the driving sim-
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ulation scenarios used during the 2007 DARPA Urban Challenge. A case study on Boss has also

shown that there is no noticeable behavioral difference even when node failure is injected and the

failed node later rejoins. Future work to be done includes supporting graceful degradation based

on load and resource changes and providing a generic infrastructure to recover from different

types of sensor and actuator failures.

We have also proposed a method to realize a fault-tolerant embedded controller on distributed

real-time systems. We have avoided a direct connection between an actuator and a computing

unit so that the actuator can be controlled by other computing units in the distributed real-time

system. To apply this idea, we have proposed a way to modify SAFER (System-level Architec-

ture for Failure Evasion in Real-time applications). We achieve this goal by (1) adding simple

relay circuits controlling the connections between actuators and computing units, (2) adding a

software module for maintaining the relay circuits, and (3) enhancing the failure detection and

recovery schemes of SAFER. The hardware design has been completed, but the implementation

of the SAFER extension is on-going.
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Chapter 9

Conclusions and Future Work

In this dissertation, we have studied the problem of realizing dependable CPS (Cyber-Physical

Systems). We have designed and implemented a system-level software framework that enables

essential system components including processors, networks, and sensors the ability to meet

their timeliness and reliability requirements. New computational models proposed in this disser-

tation catalyze the analyzability in different types of CPS tasks. The task models capture peri-

odic, dynamic, parallel, and self-suspending CPS attributes, and the corresponding schedulability

analyses provide deterministic timing properties. Even in the presence of resource failures, the

framework reliably operates systems using software redundancy. Coupled with a model-based

design tool, a distributed layer called SAFER (System-level Architecture for Failure Evasion in

Real-time applications) substantiates the framework in practice and enables the predictability in

system behaviors with and without the resource failures. The framework is also deployed on an

autonomous vehicle developed at Carnegie Mellon to show how the proposed techniques make

the real-world vehicle dependable. This dissertation contributes to advances in response-time

analyses, resource augmentation bounds, and utilization bounds for CPS.
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9.1 Contributions

The major contributions of this dissertation fall into one of the following categories:

• Resource allocation for fault-tolerant computing

• Schedulability analyses for cyber-physical systems

• Runtime support for fault-tolerance features

The details of the contributions are presented below.

9.1.1 Resource Allocation for Fault-Tolerant Computing

A task-partitioning strategy for allocating software replications to processors has been developed

to improve system reliability. R-BFD (Reliable Best Fit Decreasing) is proposed to allocate hot

standbys. R-BATCH (Reliable Bin-packing Algorithm for Tasks with Cold standby and Hot

standby) is developed to further reduce the resource over-provisioning required for task reliability

using the notion of virtual tasks by consolidating standbys. We have categorized real-time CPS

tasks based on their recovery time requirement into hard recovery, soft recovery, and best-effort

recovery tasks. To tolerate fail-stop processor or task failures, the task categorization is used to

determine the appropriate recovery type: hot standby, cold standby, or re-execution. Evaluation

results show that R-BFD can save up to 37% on computing resources, in comparison to prior

approaches. When the virtual tasks can meet the recovery time requirements of their primary

tasks, R-BATCH can save even 45% more on the computing resources, while maintaining the

same level of reliability as prior techniques.

To incorporate CPS task dependencies, we have defined an abstraction called an applica-

tion flow, which enables timing analysis. A processor assignment methodology called R-FLOW

(Reliable application-FLOW-aware SW-C partitioning algorithm) is proposed to consider task

dependencies and network bandwidth. A key observation is that consolidating tasks that com-

municate each other can save computing/networking resources as the consolidation reduces the
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processing and networking overhead. Our evaluation shows that R-FLOW can save up to 60%

of computing resources as compared to prior work that does not incorporate the task dependen-

cies. R-FLOW is also adapted to an AUTOSAR-compliant platform to see how the proposed

algorithms can be used in the automotive context.

9.1.2 Schedulability Analyses for Cyber-Physical Systems

Conventional real-time theories are in general applicable to CPS; however, they do not incorpo-

rate highly dynamic physical attributes and hence do not provide tight schedulability analyses.

We have identified three dominant factors affecting the CPS timeliness: dynamically varying

periods, parallelism, and self-suspensions.

Tasks with Continually Varying Periods

A periodic real-time task model widely used in the literature is often too conservative for handling

a CPS task that depends on physical attributes that dramatically change the task period/workload.

We have defined a new task model called Rhythmic Tasks for modeling such tasks having continu-

ally varying periods/workloads depending on external physical events. We provide response-time

analysis techniques for rhythmic tasks under constant speed, accelerating speed, and decelerating

speed. We have also derived utilization bounds for some simple cases. We offer comprehensive

guidelines to find schedulable utilization levels for the rhythmic task model. We have applied our

schedulability analyses and guidelines to a case study in engine control. The case study shows

how the proposed techniques can be used effectively.

Tasks with Parallel Threads

Parallel real-time tasks can significantly help emerging CPS meet demanding computational re-

quirements while guaranteeing their timeliness constraints. Since there has not been much re-

search on parallel real-time scheduling, we have formally defined a fork-join parallel real-time
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task model that has a varying number of parallel threads depending on physical attributes. A

task transformation algorithm is proposed to improve the schedulability when parallel real-time

tasks are co-located with periodic real-time tasks. When global deadline-monotonic scheduling

is used, we obtain a resource augmentation bound of 3.73, which means that any task set that is

feasible onm unit-speed processors can be scheduled by the proposed algorithm onm processors

that are 3.73 times faster. The proposed scheme is implemented on Linux/RK as a proof of con-

cept and applied to a case study in autonomous driving. The case study shows that our proposed

scheme improves the quality of autonomous driving from the speed and curvature perspectives.

Tasks with Self-Suspensions

Segment-fixed priority scheduling is proposed to deal with self-suspending real-time tasks. A

task with self-suspensions alternates between a computing segment and a suspending stage. The

segment-fixed priority scheduling decomposes self-suspending tasks into multiple segments and

assigns them different priorities and phases if needed. This mitigates the negative effects caused

by (1) reduced available CPU time due to self-suspensions and (2) unknown suspension time

during runtime. We have provided four heuristics and a MILP-based optimal algorithm that

decides the priority and phase per task segment. Evaluation results show that one of our heuris-

tics performs up to 40 times better than RMS, in comparison to task-fixed priority scheduling

such as rate-monotonic scheduling. We have analytically identified the reason why the proposed

scheduling algorithm is better in general by providing schedulability analyses and utilization

bounds.

9.1.3 Runtime Support for Fault-Tolerance Features

We have proposed a layer called SAFER (System-level Architecture for Failure Evasion in Real-

time applications) to incorporate configurable task-level fault-tolerance features using hot stand-

bys and cold standbys in order to tolerate fail-stop processor and task failures for CPS. SAFER
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is implemented on the Linux operating system and integrated into an autonomous vehicle de-

veloped at Carnegie Mellon. The formal analyses of the worst-case timing behavior with and

without failures are also provided, and our analysis engine is integrated with a model-based de-

sign tool, SysWeaver. We have presented measurements along with analytical results from the

driving simulation scenarios used during the 2007 DARPA Urban Challenge. A case study in

autonomous driving has also shown that there is no noticeable behavioral difference even when

node failure is injected and the failed node later rejoins.

9.2 Future work

As CPS represent a relatively new area, there are still many possible research directions for

future work relevant to this dissertation. We discuss below some of research topics that need to

be studied in depth.

9.2.1 Adaptive Graceful Degradation

Graceful degradation is a well-established approach to maintain limited functionality in a system

with a component failure. The basic idea behind this is to avoid potential undesirable effects

by providing downgraded functionality to accommodate the reduction in available resources due

to a failure. When it comes to autonomous vehicles, for example, graceful degradation should

be appropriately adjusted depending on different situations. Suppose a failure takes down a

processing board running vision algorithms to detect pedestrians. If a vehicle with the failure

is driving on a highway, the vehicle may notify its driver of the failure and keep driving. If

the vehicle is in an urban area, pedestrians are highly likely to be present. Hence, the vehicle

may run the pedestrian detection algorithms in a degraded mode (possibly with a lower frame

rate) on another live processing board and also slow down the vehicle. It is important to apply

graceful degradation in an adaptive manner so that a system can recover a failure even with fewer
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resources.

In CPS such as autonomous vehicles, most algorithms (tasks) deal with a periodic sequence

of perception, computation and control. The periods of such tasks play an important role in

determining how much resources are required in the system. By dynamically adjusting task

periods, we can regulate overall resource utilization. Lowering the utilization of a task creates

more room for other tasks to use. In other words, a framework for adaptive graceful degradation

is indispensable to run critical tasks with limited resources caused by a failure. For example, the

vision algorithms mentioned above can be run on another live processing board along with tasks

that are adjusted to have lower utilization.

9.2.2 Smart Sensor Control

Dealing with sensor and actuator failures is vital for obtaining dependable CPS. Since many

accidents in avionics and automotive industries have been traced to unexpected sensor failures,

how CPS can be tolerant to them should be investigated. CPS with cost and space constraints

may not always be able to have redundant sensors. Thus, different sensor modalities can be

leveraged when sensors, such as cameras and radars, have overlapping fields of view. Failure

conditions for each sensor or actuator type must be identified, and methods must be developed

to detect failures. Any detected failure will be notified to higher layers so that algorithms can be

reconfigured to use fewer sensors or actuators while generating less accurate but useful outputs.

Many analog sensors are also prone to intermittent faults, so using different sensor modalities

is better than duplicating the same type of sensors because different types of sensors typically

react to the same environmental condition in diverse ways. Suppose a vehicle is equipped with

radars for blind spot detection. If a backward-looking radar does not work properly, a vision al-

gorithm detecting obstacles from images obtained through a rear-facing camera needs to be used.

An autonomous vehicle may use a low-grade sensor with complex data-processing algorithms

after a high-grade sensor with simple algorithms fails, until the vehicle can safely stop.

190



9.2.3 Runtime Support

Realizing adaptive graceful degradation and smart use of sensor/actuator modalities requires a

runtime framework with flexible configuration options. SAFER must be extended to support

adaptive graceful degradation. When a processing board failure is detected, the standbys of

the primary tasks on the failed board can be activated to run elsewhere. If resources are lim-

ited, SAFER will make sure that all required tasks are executed in a degraded manner. The

schedulability of the adjusted tasks can be guaranteed by using admission control algorithms or

response-time tests that can handle varying periods using the rhythmic task model. Depending

on a given condition, the best configuration parameters can be adaptively set by SAFER.

SAFER must also be extended to effectively use sensor/actuator modalities. The SAFER

layer should have the capability to detect sensor anomalies that are different for each type of

sensors, which can be a plug-in module for the SAFER layer. When a sensor failure happens,

SAFER can trigger a different configuration using different types of sensors to recover from the

failure. Since different data-processing algorithms are mandatory for different types of sensors,

the logical combination among algorithms are given a priori as configuration parameters. Then,

SAFER can assign the suitable amount of resources to tasks.

9.2.4 Occlusion-free Perception using Communications as a Sensor

Large-scale CPS should operate reliably . One of the possible approaches is to accomplish this

by addressing the lack of global perception. As CPS stand now, each node constituting large-

scale CPS can only access local sensors. Communications can be leveraged as a sensor to make

local sensory information globally available. In intelligent transportation systems, for example,

it will generate an occlusion-free perception system for safety (avoiding accidents), lower delays

(avoiding congested routes), and fuel efficiency (avoiding sudden acceleration/deceleration). In

virtual hospitals, a remote surgeon will be able to perform a surgery. Cooperative citywide

surveillance systems will be able to find missing kids, prevent theft and robbery, and rescue
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people in danger. To this end, timely and reliable interactions among the CPS nodes will play

a major role. The effects of any resource failures on the entire system must be minimized by

isolating such failures. It is also important to understand how CPS can work appropriately with

people, where uncertainties arise not just from the physical environment but also from the hu-

mans operating the system.

9.2.5 Workload Estimations for Cyber-Physical Systems

To verify CPS timeliness, a tool for predicting CPU and network loads is essential. A tight

coupling between CPS algorithms and the physical inputs can be used to infer the loads. For

example, a motion-planning algorithm for mobile robots requires more CPU utilization on curvy

roads. Using this idea, methods can be developed to predict resource usage. By properly identi-

fying dominant physical inputs (features), a machine learning based approach can be potentially

leveraged.

9.2.6 Real-Time Scheduling for Heterogeneous Computing Architectures

Running complex computations on many-core processors, such as general-purpose graphics pro-

cessing units (GP-GPU), will become common in CPS. However, this trend poses a challenge

in guaranteeing timeliness. Using such hardware may lead to unpredictable suspension delays,

hence reducing the benefits of using parallel computations. A runtime framework must be devel-

oped for a real-time task that can use both CPU and GPGPU. Depending on workload needs and

system status, the task can run either CPU- or GPGPU-based implementations. This research

will lead to new directions for efficient resource usage.
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