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Abstract

This thesis proposes a novel design of nanoparticles for drug delivery. By tethering a bilayer
membrane vesicle to a solid nanoparticle core at its center using hydrophilic soft polymers,
this structure is expected to exhibit improved stability, narrowed size distribution, and a
variety of functionalization possibilities. Various aspects of this design will be examined
from a theoretical perspective using physico-chemical knowledge and computer simulations.
The aim is to significantly reduce the size of the fairly large parameter space and shed
light on experimental protocols for how to effectively assemble such nanoparticles in the
laboratory.

To study the properties of this design, coarse-grained molecular simulations are in-
troduced in Chapter 2 as one of the major tools employed in this work, thanks to their
computational efficiency and the possibility of obtaining important generic insights of the
system being modeled. The general philosophy of coarse-graining (CGing) will be outlined,
followed by an introduction to the CG models used in this work. Then, it will be illustrated
how to connect length, energy, and time scales in CG simulations to reality. This chapter
is concluded by applying the CG concepts and techniques described earlier on to obtain a
CG model for PEGylated linker molecules, which is one of the two major components of
the system of polymer-tethered nanocomposites studied in this work.

After the second chapter on coarse-graining, this thesis will spend three chapters focus-
ing on either one of the two major components of the system we proposed, namely the poly-
meric linkers and the lipid bilayers. In Chapter 3, to understand the mechanical properties
of the polymer linkers which tether the membrane vesicle to the nanoparticle core, a theo-
retical model for polymer brushes confined by two concentric spheres will be derived based
on single-chain theories and scaling concepts. Using the CG linker model parameterized
in Chapter 2, it will be demonstrated that this theoretical polymer model quantitatively
predicts the force-extension relation of the polymers. This provides an efficient way to es-
timate both the size distribution and the stability of the tethered membrane-nanoparticle
composites.

Following the chapter on polymers, this thesis will proceed to investigate the other
major component in the proposed nanocomposites, namely the lipid membrane. Hence,
computational methods to determine the two curvature elastic moduli in Helfrich theory,
namely the bending modulus and the Gaussian curvature modulus, will be elaborated upon
in the next two chapters. To be more specific, a method to measure the bending modulus
by simulating membrane buckles will be proposed and validated in Chapter 4. Compared
to other existed ways for measuring the bending modulus, the buckling method will turn
out to be computationally efficient, and it can be applied to almost all types of membrane
models.



In Chapter 5, a novel method for determining the Gaussian curvature modulus in
simulations will be developed. The interplay between the bending energy and the edge
tension in the membrane vesiculation process provides an efficient and robust way to pin-
point the Gaussian curvature modulus. As a comparison, another time-honored method to
determine this modulus by measuring the lateral stress profile of flat bilayers is discussed.
Based on the results measured in this alternative technique, as well as a comparison with
the vesiculation protocol, it is argued that the stress profile method in fact fails to produce
trustworthy values for the Gaussian curvature modulus. This unexpected result suggests
caution when attempting to extract bilayer properties from the stress profile.

The models and knowledge which have been developed in this thesis will then be linked
together in Chapter 6. The study of planar polymer-tethered bilayer membranes in this
chapter serves as an intermediate step towards the membrane-nanoparticle composites in
a spherical geometry. Simulations of the assembly process of tethered bilayers mimicking
the rapid solvent exchange and the vesicle fusion protocols are qualitatively consistent
with experimental observations found in the literature, supporting the reliability of our
CG model. Moreover, the polymer theories discussed in Chapter 3 prove sufficient in
semi-quantitatively describing the structural properties of such tethered membranes.

Bringing everything together, this thesis concludes with a study of the polymer-
tethered membrane-nanoparticle composites proposed in Chapter 1. Theoretical con-
straints on the design parameters of this structure are first outlined and tested in sim-
ulations, with a major focus on the plausible range of the nanocomposite size. Then, a
number of practical aspects regarding such nanocomposites, including their assembly pro-
cess, solvent conditions, and the effect of the polydispersity in the linker chain lengths, are
investigated.
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1 Introduction

“There’s plenty of room at the bottom.”

— Richard Feynmann [Fey60]

On December 29th 1959, at the annual meeting of the American Physical Society at
Caltech, Richard Feynman asked the following question [Fey60]:

“Why cannot we write the entire 24 volumes of the Encyclopædia Britannica
on the head of a pin?”

He was promoting a field, in which physics on atomistic length scales (“at the bottom”)
is studied, “in which little has been done, but in which an enormous amount can be done
in principle.” Indeed, a lot has been done since then; today, we can proudly answer “Oh,
but we can!”.1 This work on nanoscales, later coined as the field of “nanotechnology”, has
emerged as one of the most rapidly evolving scientific and engineering endeavors.

So have biomedical sciences.2 Naturally, these two areas intersect; many innovations
have been made to the manufacture of nanoscale particles for biomedical purposes. Due
to the enormously large number of topics in this interdisciplinary area of mathematics,
physics, chemistry, biology, pharmacy, material science and engineering, and so on,3 only
closely related aspects will be reviewed in this section.4

1.1 Overview: nanoparticles for drug delivery

1.1.1 General advantages of nanoparticles for drug delivery

As drug delivery vehicles, artificially designed and produced nanoparticles (NPs), with
sizes ranging from several to several hundreds of nanometers, outperform conventional free
drug agents in many aspects.

1The now 31-volume Encyclopædia contains approximately 40 million words [EB], which can be esti-
mated as 400 million characters or 400MB (1 Byte/character). In my smartphone, which outsmarts any
computer from the 1960’s and yet still fits into my (back) pocket, a micro SD card stores 32GB of data on
an area of 11mm × 15mm = 165mm2 [mSD]. So 400MB takes up about 2mm2, comparable to the size of
the head of a pin.

2“Actually I don’t know any field where they are making more rapid progress than they are in biology
today.” — R. Feynmann [Fey60]

3Any perceived innuendo in this non-exhaustive list, pertaining to the purity [Mun] of these disciplines,
is strictly imaginary.

4Interested readers are kindly refered to the following reviews for more information: [PL03, VRL05,
PKH+07, DCS08, RSL+09, DB12].
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1 Introduction

One advantage of encapsulating the drug molecules into vehicles is the increase in
bioavailability and the protection against premature degradation [AC04, PKH+07, PMS12].
For instance, the solubility of hydrophobic drugs which, as the name suggests, do not
dissolve well in aqueous environments, can be significantly increase by loading into soluble
nanocarriers [Fro83, CGFF11]. Or by means of surface conjugation of hydrophilic polymers
such as polyethylene glycol (PEG) [All94, ONK03], nanocarriers enjoy prolonged half-
life due to the extra steric repulsions that reduce the opsonization5 by serum proteins
and the consequent clearance from the circulatory system by the mononuclear phagocyte
system [All94, CGFF11, AC13]. Moreover, the complexity of delivering every one of the
exponentially growing number of drug variations can be greatly reduced by instead focusing
on general characteristics of drug loading and NP delivery.

Drug delivery NPs also obtain another advantage from their sizes, which helps them to
overcome certain barriers to arrive at the targeted regions. For example, a general scheme
used in “escorting”6 drug carriers to tumor tissues is based on NP sizes and the enhanced
permeability and retention (EPR) effect observed in various tumor tissues [MM86, Gre10]:
Macromolecules in a size range between approximately 10 – 100 nm can escape from the
leaky blood vessels supplying the tumor and obtain long duration in the tumor tissue due
to the underdeveloped lymphatic drainage [PKH+07, DP10]. This specific accumulation
of nanocarriers at the tumor tissues both increases the efficacy of drug agents and reduces
the toxicity to normal organs.

Moreover, this extra layer of drug delivery vehicles brings in additional possibilities of
enhanced functionality, such as the aforementioned long circulation time. One possibility
of targeted drug delivery, in addition to the passive accumulation due to the EPR effect,
is to actively target the NPs to special tumor cells by decorating the NP surface with
ligands that specifically bind to receptors found mostly on the surface of those tumor cells
but rarely on normal cells. Another broadly discussed subfield is the controlled release of
drug payloads when certain internal (e.g. low pH in lysosomes [LKSP10]) conditions are
satisfied and/or external conditions are applied (e.g. shining light with a specific range
of wavelength for photothermal therapy [DB12]). NPs provide a valuable platform for
researchers to extend the functionalities of the administrated agents.

Other advantages of nanoparticles include a large payload (e.g. roughly 2000 small
interfering RNA as compared to less than ten for antibody conjugates), the ability of
containing multiple targeting ligands, the ability of encapsulating multiple drugs, and many
more, which are discussed further in a recent informative review by Davis et al. [DCS08].

5In the process of opsonization, antigens are bound by antibody, which enhances their later binding to
phagocytosis cells such as the white blood cell.

6One may question the use of the word “escort” here since this delivery process is essentially passive.
Yet such words are nevertheless being used broadly in the field of drug delivery without much scrutiny.
This issue will be brought up again in Section 1.1.3.
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1.1 Overview: nanoparticles for drug delivery

1.1.2 Current nanoparticles for biomedical purposes

After a brief overview of some of the advantages of employing nanoparticles for drug deliv-
ery, this subsection will continue with a few example NP systems designed for biomedical
purposes. Note that there exists a large number of systems in the field, e.g. liposomes,
drug-polymer conjugates, polymeric micelles [PMS12, DV13]. The number of varieties
is also growing quickly. For the focus of this work, only the most relevant ones will be
mentioned here.

Liposomes

Liposomes, first developed in 1965 [BSW65], have soon been utilized as drug carriers [Gre73,
Gre76a, Gre76b] and become one of the most widely used drug delivery carriers [FC08,
AC13]. Since then, the liposomal platform has evolved from simple membrane vesicular
systems into complex nanoscale carriers and been used to transport a myriad of thera-
peutic agents, no matter hydrophilic or hydrophobic [Gre76a], ranging from conventional
anticancer drugs to a novel class of genetic drugs (e.g. small interfering RNAs or DNA
plasmids) [FC08]. Liposomes also have become a clinically established platform since the
approval by the US Food and Drug Administration (FDA) of a PEGylated liposome-
encapsulated doxorubicin (Doxil R©, Ortho Biotech) for the treatment of HIV-related Ka-
posi’s sarcoma in 1995.

Generally speaking, biocompatibility, biodegradability, and possibilities of surface dec-
orations provided by liposomal systems distinguish them from other NP delivery sys-
tems [RSL+09, AJK11]. On the other hand, liposomes also suffer from several limitations,
including physical and chemical stability, batch-to-batch reproducibility, drug entrapment,
and so forth [MBM+13].

Lipid-nanoparticle assemblies

In order to mitigate some of the shortcomings of liposome systems, structurally more so-
phisticated liposome-based NPs have been deviced. Some interesting examples are several
types of lipid-NP assemblies, including NP-supported lipid membranes [TL07] and core-
shell-type lipid-polymer NPs [MBM+13], where NPs are coated by bilayer or monolayer
membranes, together with liposome-nanoparticle hybrids [AJK11], where NPs are embed-
ded, encapsulated, or conjugated to liposomes. The goal is to combine the advantages
of liposomes and those of the NPs. On the one hand, by supporting lipid vesicles with
solid colloidal cores, the membranes are stabilized, their morphology is controlled, and
the reproducibility is increased [TL07, MBM+13]. On the other hand, the encapsulation
into biomimetic bilayers improves the biocompatibility of the NPs [AJK11]. Moreover,
including NPs in liposomes could also realize multiple functions with the same delivery
vehicle [AJK11]. The types of solid NPs examined in this direction include, but are not
limited to, silica, magnetic iron oxide, polysaccharide, gold, and solid polymeric parti-
cles [TL07, AJK11, MBM+13]. One of the remaining challenges concerns the stability of
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such composites under different environmental stress conditions [MBM+13].

Metal nanoparticles

Along with the field of delivering therapeutic drugs, another area in biomedical studies,
diagnosis, is also experiencing great inputs from NPs, especially metal NPs made of gold
or iron oxide. Metal NPs become an attractive option mainly because of their versatil-
ity [JMM10]; they can be employed as a stable platform to graft other functional groups,
as imaging contrast, and even for magnetic-directed guidance for superparamagnetic iron-
oxide NPs [GG05, JMM10]. Compared to polymeric or silica NPs, gold NPs also provide
photothermal functions for the possibility of NP-mediated hyperthermia thanks to their
enhanced surface plasmon resonance [PB11]. The fabrication of these NPs allows a wide
range of sizes ranging from a few to a few hundreds of nanometers with controlled poly-
dispersity [RBMR12]. When combining with other ingredients, such as lipid membranes,
these attractive properties of gold and iron oxide NPs have led to many applications as
diagnostic and therapeutic agents, some of which have headed to clinical studies approved
by the FDA [JMM10, MMFC13].

1.1.3 Limitations and challenges

Unfortunately, although significant progress has been accomplished in this field, certain
fundamental limitations and challenges have not yet been successfully addressed, especially
concerning the uptake of drug molecules into the desired cells (e.g. tumor).7

Targeted delivery, as mentioned in Section 1.1.1, mainly relies on the passive EPR effect
which permits the extravasation of nanocarriers into the interstitial space of the tumors,
and the “active” ligand-receptor specific interactions which ideally would enable the carriers
to “home in” on the targets. However, some have argued that such “targeting” is more of a
misnomer, since both of the passive and active targeting mainly depends on the probabilistic
process of escaping through the leaky blood vessels first. [RCF10, Flo12, KLHP12]. As a
result, only a small fraction (1 − 10%) of the intravenously injected NPs extravasate and
accumulate at the tumor: The majority stay in the circulatory system for a while and end
up in the liver and spleen [KLHP12, ATC12].

More importantly, accumulation does not guarantee uptake [PC08]. Several uncertain-
ties may lead to limited uptake. For instance, drug-loaded carriers may lose partial or all
of their payload on the way to the destination due to their instability[RCF10, KLHP12].
Having escaped from the circulatory system, further diffusion of the vehicles deep into the
tumor may be hindered due to the crowded interstitial environment [Jai99, RCF10]. Even
worse, the interalization into the cells should not be taken for granted, either; for example,
in order to enter the cells, some of the NPs rely on receptor-mediated endocytosis, which is

7“There is little use for a carrier that, although highly selective in vitro, ends up in phagocytic cells or
cannot reach its destination in vivo. Since little can be done to influence the target and surroundings, the
carrier must be chosen or designed appropriately.” — Gregory Gregoriadis (1981) [Gre81]
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a complicated biological process that involves many factors such as particle size, receptor
density and mobility. [TDGBS04, ZLL+09, ATC12].

Among these factors, size and shape of the particles impact the biodistribution in
almost every step mentioned above [DJHK+08]: Only NPs within the allowed size range
can extravasate from the leaky vascular walls through the EPR effect [MM86, Gre10]; The
diffusion of NPs among the crowded tumor cells is also greatly affected by the size [PWJ+09,
RCF10, KLHP12]; Early-arrived NPs may physically block the incoming ones and thus
cancel the EPR effect [BP11]; Not to mention the paramount dependence of NP size and
shape in the endocytosis process [OKS+04, CGC06, CC07]. In addition, carefully designing
NP size may bring in extra benefits; the depletion of receptors after the endocytosis of
NPs around certain optimal size may inhibit certain cell-growth pathways, which leads to
apoptosis (programmed cell death) [Fer08].

Figure 1.1: A schematic of the proposed polymer-tethered membrane-nanoparticle composite.

1.2 A novel design of nanoparticles for drug delivery

As discussed in the previous section, it will be beneficial to develop a new type of nanoparti-
cles that enables fine-tuning of the size and shape, and maintains stronger particle stability.
In this section, such a design of a polymer-tethered membrane-nanoparticle composite will
be proposed, followed by the elaboration of its comparative advantages. Then the design
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objective will be stated, followed by a short summary of the existing knowledge that will
lead the way towards this complex structure.

1.2.1 Nanoparticle structure

The proposed nanoparticle is a polymer-tethered membrane-nanoparticle composite, whose
schematic structure is drawn in Figure 1.1. A solid NP core resides at the center, with
hydrophilic polymer spacers covalently grafted onto the solid surface via their endgroups.
The other end of the spacers is conjugated to an amphiphilic molecule which anchors into
an enclosing lipid vesicle.

1.2.2 Comparative advantages

This seemingly complex structure is expected to keep most of the attractive functions of
its components as discussed in Section 1.1.2, e.g. the ability to transport a large number
of hydrophobic and/or hydrophilic drugs via the liposome and the possibility of magnetic
guidance if an iron oxide NP core is chosen.

One direct consequence of combining a liposome with a solid core is the potential
of integrating receptor-specific delivery, diagnosis and monitoring, and other advanced
functions into one unified delivery platform. For instance, the liposome can encapsulate
the therapeutics as usual, while at the same time protect and stabilize the solid core that can
be utilized for imaging, diagnosis, and/or even photothermia. Such “theranostic” particles
have surfaced as one of the most exciting topics in drug delivery [LKHS10, LAH+11,
CLLC12, BMT13].

Moreover, this composite should be able to exhibit several more advantageous prop-
erties besides those it inherits from its components. An equally important goal for this
design is the improvement in mechanical stability. Similar to the lipid-nanoparticle assem-
blies described in Section 1.1.2, the polymer brush and solid core provides support to the
lipid vesicle [TL07, MBM+13]. In addition, the presence of those linkers that have been
grafted to a colloid surface may 1) assist the NP to survive strong shearing and 2) in case
of partial rupture, “heal” the bilayer and save part of the drug payload since the spacer
part of the linkers will pull back upon large stretching. In contrast, for common liposomes
or lipid-NP assemblies, it would be more difficult to recover from a partial rupture, since
the only “healing force” in this case is the membrane’s attempt to reduce the free energy
cost of having an open edge (edge tension).

An even more crucial advantage of this design, as will be examined in detail in later
chapters, is the size and shape control afforded by the spacers. These polymer chains prefer
a certain range of extension, which imposes a constraint on the nanoparticle size. Also, if
the polymers have a relatively narrow length distribution, they will alleviate possible shape
deformations from a sphere. Increased batch-to-batch reproducibility can be expected as
well because the dimensions of the polymer chains and the solid cores can be fabricated
with high precision [MBM+13].
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1.2.3 Design objective

Despite of the strengths outlined above, this polymer-tethered design is unlikely to be a
panacea. The paramount obstacle of delivering drug carriers to desired locations, as sum-
marized in Section 1.1.3, still needs to be addressed. Nevertheless, the hope is that by
providing a general and robust NP design with a size and shape control, this sophisticated
question would become more approachable with the input from other closely related re-
search topics, such as shape- and size-dependent endocytosis [CGC06, CC07] and diffusion
in tumor tissues [Jai99, PWJ+09].

Note that the description of the structure shown above is a generic design without
much specificity: the core can be either a gold or an iron oxide NP; the surface chemistry
of the endgroups also has options such as a disulfide or thiol bond on gold surfaces; the
spacers may be made of PEG, but other biocompatible hydrophilic polymers would also
work; the anchors may have one chain like a cholestanol or two like a lipid; and for the
lipids there exists a wide spectrum of possibilities. Each individual aspect of the design
could expand into a series of independent projects. Yet, they fall out of the scope of this
thesis; only general properties, such as particle size, grafting density, and chain length, will
be studied here.

This is because the main purpose of this work is not to figure out the detailed conditions
to synthesize the composites in experiments, due to our lack of expertise in relevant fields,
and, more importantly, the very high-dimensional parameter space which almost forbids
experimental exploration without supporting theoretical considerations. Instead, we will
focus on laying the foundation for experiments by ruling out the unphysical or unfavorable
part of the large parameter space from a theoretical and computational perspective. In
addition to its academic merits, this effort, hopefully, can significantly reduce the number of
random trials in the lab so that time can be saved and economic costs can be lowered [SS08].

1.2.4 Preliminary knowledge

The potential functional improvements of this polymer-tethered membrane-nanoparticle
structure originate from a relatively complex design, which might seem to be a serious
challenge in fabrication. Fortunately, one does not need to start from scratch; relevant
preliminary knowledge and techniques exist for both experiments and theoretical modeling.

Experiments

In addition to those closely related nanoparticles that have been developed already (see
Section 1.1.2), this polymer-tethered structure was also inspired by a model membrane
system widely used to study membrane-protein interactions: the planar tethered bilayer
membrane [WT00, SK01, MVV+07, VOR+08]. In a planar tethered bilayer system, the
membrane is tethered by polymer linkers to a flat substrate surface, allowing a thin layer of
water in between. This separation of a few nanometers is a key condition for the inclusion
of some proteins into the bilayer and to avoid the unfavorable interactions between integral

7



1 Introduction

proteins and the substrate that immobilize certain membrane proteins. From the study
of tBLM systems, valuable knowledge on linker synthesis, endgroup-substrate interactions,
membrane-substrate interactions, etc., can be utilized for reference in the current project.
More detailed studies about planar tethered bilayer systems using polymer theories and
computer simulations will continue in Chapter 3 and 6.

Theoretical knowledge

Complementary to the experimental knowledge and techniques, delivery of drugs has also
been studied using mathematical and computational modeling. The early work by Higuchi,
in which the release of drug from containing matrices was mathematically modeled by
a diffusion process [Hig61], marked the beginning of quantitative modeling of drug re-
lease [SS08, Pep13]. Since then, a few categories of models have been studied, including
empirical/semi-empirical models at first, and mechanistic models later. The latter describe
the systems based on physical and chemical principles and provide more insights [SS08].
Also, thanks to the ongoing increase in computational power, numerical solutions to some
complicated problems, such as solving partial differential equations under complex bound-
ary and initial conditions, become more feasible and accurate [SS08].

Advances in computation also enable direct modeling of the drug agents and carriers
by molecular dynamic (MD) simulations, where detailed molecular information inaccessi-
ble in experiments can be gained [Jor04].8 For instance, the interactions between drug
molecules and the liposomes containing them have been examined using different mod-
els [XA06]. Studies of the properties of many nanocarriers, e.g. polymersomes [DOS+07b],
pH-responsive polymeric micelles [ZYG+11], dendrimers [HNPA12, TM12], and transloca-
tion of NPs through membranes [DTM12], have also been conducted.

1.3 Thesis overview

Aiming to obtain fundamental knowledge about the proposed membrane-NP structure from
a theoretical and computational point of view, and thus providing insights and guidance
to experimentalists, the rest of this thesis will proceed in the following manner:

Chapter 2 deals with coarse-grained (CG) modeling, which is essential to our study
due to the size and complexity of the system. Some background knowledge about CG
modeling is reviewed, followed by the parameterization of a new CG linker model which
will be used in later chapters to support our theory for a polymer brush tethered to two
concentric shells (Chapter 3) and to study the mesoscopic behaviors of lipid-linker systems
(Chapter 6 and 7).

The elastic properties of lipid membranes, one main ingredient in the formulation,
are also studied. New methods are developed to measure the two elastic moduli of a
membrane, namely the bending modulus that penalizes the increase in mean curvature

8One always needs to be cautious about the ability to correctly represent the reality with any kind of
modeling. More discussions on MD simulation and modeling can be found in the next chapter.
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(Chapter 4), and the Gaussian curvature modulus which matters when topological and
boundary changes take place (Chapter 5).

Equipped with these prerequisites, planar tethered bilayer membrane systems are then
explored as a test case (Chapter 6), before various aspects of our major target, the polymer-
tethered membrane-nanoparticle composite, are investigated (Chapter 7).
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2 Coarse-grained modeling

“The purpose of computing is insight, not numbers.”

— Richard Hamming [Ham86]

Molecular simulations are a useful tool to bridge the gap between microscopic inter-
actions and macroscopic behaviors, providing complementary information to what is ac-
cessible in experiments [vGB90, KM02]. Significant progress has been made in simulating
chemical and biological systems, partially acknowledged by the Nobel Prize in Chemistry
this year (2013).1

Molecular simulations, specifically molecular dynamic (MD) simulations, where the
time evolution of the system follows the classical equations of motion, play a crucial role in
the subject of this thesis, the study of nanoparticle design. Our theoretical considerations
about the global system properties, such as stability and particle dimensions, would be more
convincing if cross-checked by simulations. In addition, some practical issues regarding the
assembly of such NPs will be addressed by further simulations.

For this purpose, it is very important to obtain a reasonable model for our system. Due
to its size and complexity, instead of an all atomistic model, where all atoms are explicitly
represented,2 a coarse-grained (CG) model, where several atoms are combined into one
pseudo-atom, will be constructed to reach the length and time scales of interests. In this
chapter, relevant background knowledge of CG modeling will be reviewed, followed by the
buildup of a CG model for the linker molecules in our system.

2.1 Overview: coarse-grained modeling

This section presents an overview on coarse-grained modeling, with a particular focus on the
background knowledge necessary for constructing a CG model of membrane-nanoparticle
composites. Many topics covered here are based on a thoughtful review by Noid [Noi13].

2.1.1 The need for coarse-graining

With the help of Moore’s Law, computational limits have been pushed forward by many
orders of magnitudes: Before the 1980’s, typical simulations contained roughly 1000 atoms

1Martin Karplus, Michael Levitt, and Arieh Warshel have been awarded the Prize for their contributions
to the “Development of Multiscale Models for Complex Chemical Systems.”

2There is also a type of atomistic models called united-atom models, where atoms within each CH, CH2

and CH3 units are combined as a single pseudo-atom. But since all heavy atoms are represented separately,
these models are still generally considered as atomistic.
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or beads and lasted for about 10 ps [vGB90], whereas the most recent atomistic simula-
tions have stepped into the regimes of tens of millions of atoms for 100 ns (HIV-1 capsid
structure [ZPY+13]), or tens of thousands of atoms for 1 ms with several repeats (ubiquitin
folding [PLLS13]).

Admittedly, these extremely large or long atomistic simulations are tremendous ac-
complishments in computation. However, the ability to run such simulations should not
be confused with the reason to do so, which should be aiming for the insight [Ham86].
Thus, certain “unnecessary” atomistic details can sometimes be “coarse-grained” out care-
fully, leaving a simpler yet more fundamental part of the system which is represented by
a smaller number of interaction “sites” or superatoms and still keeps the physics. During
this process of selecting the necessary features one wishes to preserve, much insight of the
system can be gained [Noi13].

Moreover, characteristic length or time scales of many important biological processes
still remain inaccessible to simulations at atomistic resolutions, e.g. the self-assembly pro-
cess of viral capsids [GKDP13]. Among these two scales, the temporal one sometimes poses
more serious challenges, unlike the problem of having a very large system size, which can
be handled efficiently by simulation techniques such as domain decomposition [BCOY93].3

This happens because, very frequently, the required simulation time grows superlin-
early as a function of system size, especially when global conformational changes are of
interests, or when thermal undulations need to be sampled [GKDP13]. For instance, for
a quasi two-dimensional membrane of length scale L, the number of particles in the simu-
lation scales as L2. However, the relaxation time τ of thermal undulation modes depends
quartically on L, i.e. τ ∝ L4. Thus, the total simulation cost is proportional to L6 [Des09].
This means a 10 times larger system in linear size requires 1 million times more simulation
time! Even with very well-designed parallelization techniques like domain decomposition,
the major simulation effort of sampling the fluctuation modes still requires an additional
factor of 104; parallelization does not help to resolve the L4 problem.

In other words, large systems demand much longer simulation times not only because
of the larger number of degrees of freedom, but also due to the longer equilibration time
for their larger modes, e.g. the thermal undulation modes mentioned above; unable to do
so will undermine the validity of the simulation results [vGB90].

In such cases, a simpler CG model can be a useful alternative. Compared to fully
atomistic models, their CGed counterparts provide significant improvements in computa-
tional efficiency. The decrease in the number of degrees of freedom lowers the cost of force
calculations at each integration step, which can be further reduced due to the shorter in-
teraction range resulting from the “averaging” of atoms into coarser sites, and due to the
larger integration time step permitted by the smoother interactions [MPTV10]. Moreover,
such averaging also flattens energy barriers and lower molecular “friction”, thus leading to
faster dynamics.4 Overall, CG models can easily gain three or more orders of magnitude

3Domain decomposition, as the name suggests, divides the system into domains of smaller size, and
obtains speedup by assigning particles in different domains to separate CPUs for parallel calculations.

4Note that this also makes the interpretation of the dynamics in CG simulations more subtle. More on
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in computational speedup [FHKvdV09].

2.1.2 Building coarse-grained models

Construction of a particle-based CG model normally takes two steps [Noi13]: Firstly, a CG
representation of the system is defined by mapping a detailed chemical structure to a model
with lower resolution (i.e., fewer particles); and secondly, the interactions among those
particles need to be determined in such a manner that the essential physics is preserved.

Mapping

During the mapping process, particles in the model with higher resolution, or atoms in the
chemical structure of the molecules, are grouped together into different CG sites, which
are linked together by CG bonds based on the topology of the molecules. The coordinates
of these sites will then be calculated based on the coordinates of the atoms in the finer
model; the center of mass or geometry of each group is often used.

The choice of such mapping affects accuracy, efficiency, and transferability of the CG
model [Noi13]. However, systematic methods of optimizing the mappings are still under
research [Noi13]. Some conditions have been proposed to screen the mappings for the
physically correct ones [RAG12], but most often, CG mappings still depend on the chemical
intuition of the researcher.

Parameterization

Based on the CG representation of a system, a set of appropriate interactions needs to be
carefully derived, so that the effects from the eliminated degrees of freedom can be replaced
to such an extent that the fundamental physics is intact. For example, when the solvent
degrees of freedom are removed form the system, additional effective interactions need to
be included to capture the hydrophobic effect.

As the field of CG modeling advances rapidly, a broad range of methods have been
studied to obtain optimal sets of CG interactions [Vot09, PK09, SCGH+11, Noi13]. Based
on whether the CG model is derived from a model of higher resolution, these methods can
be categorized into two types: “bottom-up” and “top-down” [FC99, TV05, Noi13]. The
former is built on a more detailed “fine-grained” model (e.g. an all atomistic model) which
provides a good approximation to the real system, while the latter represents the reality by
reproducing important phenomena that are observed in experiments on scales accessible
to the CG model.

Top-down models can be further divided into two sub-categories: “generic” top-down
models and “chemically specific” top-down models [Noi13], depending on, as their names
suggest, whether the model can represent specific chemical systems. Generic models nor-
mally contain only a small number of interaction sites, exchanging the loss of chemical

this topic will be discussed later in this chapter.
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details for efficiency. More importantly, the functional forms of the potentials used in these
generic models are relatively simple and contain only a few parameters, which can be varied
systematically to match desired system properties on larger scales, such as self-assembly and
bending modulus of lipid bilayers [NT01, BB03, Far03, WF05, LS05, CKD05, CD05, Des09].
Chemically specific models also adopt relatively simple functional forms, and their inter-
action parameters are normally determined to match certain thermodynamic properties
measured in experiments, e.g. the partition of chemical groups between aqueous and or-
ganic solvents [MdVM04, MRY+07, MKP+08, MT13].5

The construction of a CG model for our nanoparticles will follow the generic top-down
philosophy, mainly because of the generality of our design.6 As emphasized in Section 1.2.3,
the objective of this work is to study aspects of the overall design that are not specific to
certain chemical implementations. Thus, we will build our model upon general physical
principles without chemical specificity, instead of from some fine-grained models of the
components of the system which are not yet determined. Main parameters in the model
will be tuned so that characteristic length scales (mainly membrane thickness and area per
lipid) and mechanical properties (e.g. polymer persistence length) are comparable to those
found in experiments.

2.1.3 Limitations

Every coin comes with two sides. While coarse-grained modeling generates a significant
speedup, it also imposes certain limitations. During the process of integrating out the
“unnecessary” degrees of freedom, atomistic details contained in the sub-structure of a CG
site re-emerge in the CG model in the form of effective interactions, which, ideally, should
compensate for the absence of those details. In this perspective, the multibody potential of
mean force (PMF) exactly captures all the physics that got integrated out, thus should be
faithfully matched during the CG process. However, it is usually completely impractical to
work with it. The resulting uncontrolled approximations that replace it by a much simpler
but manageable force field is responsible for many inaccuracies created on the CG level.
It is unlikely that all of the properties of the system can simultaneously survive through
the coarse-graining process [RAG12]. Certain trade-offs will be faced: Some properties of
interest, which will be targeted when optimizing the interactions, can often be reproduced;
the rest will be examined after the parameterization, but how well they compare to the
real system is generally not known ahead of time. This general problem goes under the
label “representability”, which has been called for attentions by many researchers such as
Ard Louis [Lou02, JHGL07].

To give an example, in a recent study of CG models of water [WJK09], a structural
property, the two-body radial distribution function, was used to parameterize the interac-

5Note that, in practice, the difference in the parameterization methods among different types of models
(top-down vs bottom-up, generic vs chemically specific) is not always black-and-white. Recent models often
adopt methods with more than a single flavor [Noi13].

6Readers who are interested in the methods of building bottom-up models are encouraged to consult
the recent comprehensive review by Noid [Noi13].
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tions and was reproduced with high accuracy, and, as a consequence, the compressibility
is also exactly matched. However, the pressure of the system was four orders of magni-
tude too high. With further corrections that provide reasonable values of the pressure,
the thermal compressibility is now significantly compromised. Thus, matching those sys-
tem properties of interest should be prioritized, at the cost of a lower accuracy on the
other properties; a balance among the various properties need to be reached based on the
purposes of the simulations.

Moreover, this process of coarse-graining implies that the potential energy of the CG
system is essentially an approximation of the potential of mean force (PMF) in the fine-
grained model [Noi13], which is a free energy function that depends on temperature, pres-
sure, density, and other thermodynamic conditions. This gives rise to the problem of
transferability in bottom-up models: a CG model may not behave as well at thermody-
namic state points other than the one at which it has been constructed using an atomistic
model.

Generic top-down models also have their drawbacks. A major issue is that the rea-
sonable macroscopic phenomena a top-down model exhibits are not a validation of its
underlying microscopic assumptions: right answers might be provided for the wrong rea-
sons [Noi13].

2.1.4 Top-down coarse-grained model examples

A membrane model, namely the Cooke model [CD05, CKD05] will be reviewed here as an
example for generic top-down models. Most of the membrane-related part of this thesis
relies heavily on the efficiency and flexibility of this model. Another top-down membrane
model used in this work, the Martini model [MdVM04, MRY+07], will also be briefly
summarized.

Cooke model

The Cooke model7 is a generic top-down membrane model developed by Cooke and Deserno
to study mesoscopic membrane physics [CD05, CKD05]. Each lipid is represented by three
linearly connected beads/sites (one hydrophilic and two hydrophobic, as shown in Fig. 2.1)
in order to, on the one hand, be minimalistic and efficient in design, and on the other hand,
produce an approximately physical lipid aspect ratio. The nearest neighbors are connected
using finite extensible nonlinear elastic (FENE) bonds:

VF(r) = −1

2
kFr

2
∞ ln

[

1− (r/r∞)2
]

. (2.1)

7a.k.a. the 3-bead model, or the snowman model (named by Cameron Abrams, Drexel University).
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Figure 2.1: The interaction potentials used in the Cooke model. The shaded area emphasizes the

enlarged attraction range of the cosine-square potential when compared to a Lennard-Jones potential.

A Cooke lipid is shown as inset, with a blue bead for the hydrophilic headgroup and two yellow beads

for the hydrophobic tails.

A Weeks-Chandler-Andersen potential (WCA), a truncated and shifted Lennard-Jones
potential, is used to describe the excluded volume effect:

VWCA(r) =

{

4ǫLJ

[

(

r0
r

)12 −
(

r0
r

)6
]

+ ǫ , r < 21/6r0

0 , r > 21/6r0 .
(2.2)

The length scale r0 in the WCA potential will be interpreted as the size of the particles.
These two potentials Eqs. (2.1) and (2.2) also determine the bond lengths b between a pair
of neighbors, which is roughly r0.

A harmonic potential between the first and third site within a lipid is implemented to
straighten the lipid:

Vharmonic =
1

2
k(r −R0)

2 , (2.3)

where equilibrium length R0 is normally set to 4r0, t, i.e. four times of the tail bead size
r0, t. This is an approximation to the harmonic angle potential, Vangle =

1
2kangleb

2(θ− π)2,
where θ is the angle between the two bonds connecting the neighbors and b is the bond
length. The main difference is that the former is a two-body potential, which is more
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efficient in computation, and more importantly, provides an easy way to calculate the local
stress tensor, which will be covered in Chapter 5.

Note that the Cooke model is also an implicit solvent model; the hydrophobic effect
of the lipid tails is replaced by an effective attraction (from here on referred to as the
cosine-square potential):

Vcos(r) =







−ǫcos , r < rc

−ǫcos cos2 π(r−rc)2wc
, rc 6 r 6 rc + wc

0 , r > rc + wc ,

(2.4)

where ǫcos and wc is the depth and width of the attractive potential. Vcos(r) smoothly
goes to zero at r = rc + wc, where in our case rc = 21/6 r0 is the minimum position of
an LJ potential with parameter r0. Lennard-Jones, WCA, FENE, and the cosine-square
potentials are plotted in Fig. 2.1.

The extended range of the cosine-square potential, tuned by the width wc, rescues
translational entropy and is the key to have a fluid phase in between the gas phase (weak
attractions) and the solid phase (strong attractions) in the absence of solvent [CD05].8

One can also use wc to conveniently adjust the bending modulus or the area per lipid of
the membrane [CD05].

Another important membrane property is the shape of the lipids, which can also be
adjusted in the Cooke model. The intrinsic curvature of a lipid, i.e. whether to have a
shape of a cone, a cylinder, or an inverted cone, can be varied in a straightforward way by
changing the size of lipid heads. If lipids with higher aspect ratio are needed, then one can
try to increase wc so that the tail region becomes more contracted, or to append another
bead to the tail. The former can only change the aspect ratio within a limited range before
forcing the membrane into other phases (see the next section), but the phase diagram is
known [CKD05, CD05]. The latter offers a larger range of available aspect ratio, yet the
phase transition for a membrane which consists of lipids made of four or more beads has
not been explored.

In addition to the flexibility described above, the Cooke model is also highly efficient in
computation. The speedup originates from mainly three aspects. First, there are only three
beads in each lipid, as compared to 138 atoms in an all atomistic DOPC (C44H84NO8P).
Second, solvent is treated implicitly, which significantly saves computation time when the
system size increases [Des09]. Third, no many-body interaction potentials, such as angle
potential (3-body) or dihedral potential (4-body), are used. Also, thanks to the smooth
energy landscape, the dynamics of the system is three orders of magnitude faster, which
will be shown later in this chapter.

The intuitiveness, efficiency, and flexibility make this model a very useful tool. For
example, when studying membrane macroscopic properties such as the elastic moduli, this
model can be utilized as a test ground: Although these properties are lipid specific, the

8“...and because of a smart choice of potentials, the solvent (water) can be omitted altogether .” — F.
Schmid [Sch09].
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2 Coarse-grained modeling

fast simulations using the Cooke model provide very short turnaround time for developing
general methods, which can then be applied to high resolution lipid models with specificity
to save development time [HD06, HBD12, HDD13]. It is also helpful in semiquantitative
explorations of phenomenological questions like membrane-mediated protein interactions
that are not chemically specific and computationally demanding [RIH+07, RD08].

Although the generic design and simple interaction forms of the Cooke model offer
many advantages, there are also limitations. First, due to the simplicity of the model,
essentially all properties of the membrane depend on model parameters such as wc in a
convoluted way; for instance, it is quite difficult to change the bending modulus without
affecting the lipid aspect ratio. Thus, as discussed in the previous subsection, for a generic
top-down model like the Cooke model, the choice of model parameters, in this case wc and
others, should focus on reproducing the most relevant system properties given the problem
of interest. Second, although the Cooke model behaves reasonably well on mesoscopic
scales, microscopic details should not be taken too seriously. An example is the form of
the lateral stress profile of a Cooke bilayer, which is unphysical as a direct consequence of
the model design.9 Third, the absence of water leaves certain problems very challenging
to approach using this model. For example, the behavior of lipid vesicles under normal
and shear stress cannot by studied easily, because the excluded volume effect of the solvent
molecules is not included in the model.

MARTINI model

The Martini model is a top-down model with chemical specificity [Noi13, MT13] for
lipid membranes [MdVM04, MRY+07], peptides and proteins [MKP+08], polyethylene
glycol [LdVMP09], and other biomolecules [MT13]. In this model, to balance the com-
putational efficiency and the representability, on average four heavy atoms are combined
into one of the 18 types of CG particles (“building blocks”), depending on the polarity of
the group and the charge they carry. The nonbonded interactions among building blocks
are parameterized to reproduce thermodynamic data obtained in experiments, including
the free energy of hydration, the free energy of vaporization, and the partition coefficients
between water and organic phases. These nonbonded interactions can be transferred across
different systems without further parameterizations, making the Martini model very easy
to use. Thus, it has been applied to investigate a wide range of problems, for instance lipid
rafts [RM08] and membrane-protein interactions [LRvdGM10, SJH+11]. On the down side,
in addition to the general limitations of CG models (resolution, dynamics, entropy, etc.),
the Martini model is also limited in reproducing some structural properties such as the
aspect ratio of lipids. This is understandable, since the model is specifically parameter-
ized for thermodynamic properties, but not for structures. A recent review by Marrink
and Tieleman [MT13] is recommended for a comprehensive picture of the applications,
limitations, and perspectives of the Martini model.

9The lateral stress profile will be discussed in detail in Chapter 5.
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2.1 Overview: coarse-grained modeling

2.1.5 Resolution transformation: back-mapping

As discussed in Section 2.1.1, CG models obtain part of their speedup at the cost of reduc-
tion in resolution. When the details matter, it will be of great advantage if one can make
use of the efficiency and the fast dynamics offered by CG models to simulate large systems
for a long time, and later be able to recover the atomic details lost in the coarse-graining
process. This process of “fine-graining” (FGing) is sometimes referred as back-mapping:
mapping a CG structure back to a corresponding one with higher resolution. Several differ-
ent methods have been developed for this purpose, such as Hamiltonian exchange [LZ06],
adaptive resolution simulations [PSK08], and multigraining [CG06].

Here, a simple simulated annealing [KGV83] procedure will be outlined, in which a CG
configuration can be transformed into a more resolved FG one in three steps [RSG+10].10

The first step is an inverse mapping; the groups of finer atoms are associated with their
corresponding CG sites, and are initially placed randomly within a certain distance of the
CG sites. Then, in the second step, simulated annealing is conducted. These finer atoms
evolve according to their interactions defined by the FG model, with extra restraints on the
center of mass of each group so that they stay near the CG site. During this annealing step,
system temperature is slowly reduced from a high initial value, so that potential barriers
can be overcome. In the last step, the restraints are gradually removed and the system is
allowed to relax into the final FG structure.

This back-mapping technique is very useful when the final FG structure is used simply
as the initial configuration for a serious simulation on the finer resolution. It is, however,
very dangerous to assume that this FG configuration is equilibrated well, and then start to
measure system properties, even after an additional relaxation. This is because the CG and
FG models normally have different energy landscapes and very different relaxation rates.
If for any reason the FG configuration constructed from an equilibrated CG configuration
does not reside at the minimum of the FG energy landscape, then the FG system may not
be able to reach equilibrium within possible FG simulation time.

To give an example, consider a back-mapping of a lipid vesicle from the Cooke model
(CG) to the Martini model (FG). If the lipids in the two representations have different
aspect ratio, especially if the FG lipids are longer, and thus might overlap after back-
mapping, then a simulation after the back-mapping may blow off. If the aspect ratio is
matched exactly, there exists another subtle issue. The Cooke lipids have a conveniently
high flip-flop rate [CD05],11 so within a short simulation time, the chemical potential of
lipids between the inner and outer leaflets will reach equilibrium. When mapped back to
the Martini model, however, due to the difference in the position of the pivotal plane,12

the Martini configuration may not be in equilibrium. The much lower flip-flop rate

10There exists one major difference between this simulated annealing method and those three mentioned
in the last paragraph: the former is applied to obtain a static structure/configuration, while the latter run
on the fly and keep the communications between CG and FG.

11Flip-flop is the behavior of lipids spontaneously move from one leaflet into the other and change their
orientation.

12The pivotal plane is a surface whose area does not change upon bending.
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2 Coarse-grained modeling

of Martini lipids will then keep the two leaflets in the FG configuration unbalanced
throughout the simulation, affecting the study of system properties that are sensitive to
the lipid packing.

2.2 Units and scales in coarse-grained simulations

In computer simulations, variables are simply numbers, which do not naturally come with
units; one needs to assign meanings to these numbers based on the physics which the com-
puter does not know anything about. In all atomistic models, due to their close relationship
with the real chemical systems, such an assignment is normally straightforward. We can
simply set up the system in a way that all physical quantities follow a specific set of real
units. For instance, by assigning the same numeric values of bond length and energy known
from experiment to the bonded interactions in the model, the length and energy values in
the simulation automatically imply their units to be, say, Å and kJ/mol. In this manner,
interpretation of the numeric values in atomistic simulations has little ambiguity.

This becomes more subtle for CG simulations. After the process of coarse-graining,
each interaction site represents a group of real atoms. Many physical quantities, such as
particle size and bond properties, no longer have their counterparts in experiments. For
CG models with chemical specificity, the assignment of units can still be done based on the
mapping which relates the CG particles to real chemical structures. If, for example, the
mapping defines the position of each CG particle to be at the center of mass of the real
atoms this CG particle represents, then the bond length is simply the distance between
the center of mass of the two groups in real molecules, and it inherits its units from the
atomistic simulations.

Unfortunately, for generic CG models, this procedure does not work any more. Take
the Cooke model as an example: Since a Cooke lipid does not represent any real lipid, it
is unclear what real atoms each one of the three CG particles corresponds to. As a result,
the meaning of the numeric values requires additional thought.

In this section, we will focus on how to match simulation units with real physical units,
and thus understand the numeric values in the Cooke model.

2.2.1 Length scales

In the Cooke model, assign σ to be the intrinsic unit of length. Then, for instance, the
Lennard-Jones parameter, r0, can be expressed as r0 = 1.0σ instead of the more awkward
(but frequently found) claim σLJ = 1.0.13 Ideally, one wants to match σ to some value
measured in experiment, then all lengths in simulation can be translated to real units.
However, neither the particle size r0 = 1.0σ nor the approximate bond length b ≈ 1.0σ
has any obvious correspondence for a real lipid. Thus, we need to compare another length

13Such an assignment is not necessary, but it makes the following descriptions more clear and precise.
Otherwise, imagine saying “1 = 1.32 nm” if σ is not defined.
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2.2 Units and scales in coarse-grained simulations

scale in the Cooke model (in units of σ) to experimental values (maybe in nanometers)
instead, so that a conversion from σ to a real unit like nm becomes available.

Find the length scale to match

Membranes are quasi-two-dimensional elastic surfaces with finite thickness. Consequently,
there are two other natural length scales that one could use to match to a length scale in
experiments: 1) the characteristic length for lipid distance

√
aℓ within the two dimensional

surface, where aℓ is the area per lipid in a monolayer, and 2) the membrane thickness d.
Then, the problem becomes which one to choose.

The answer is both and neither. “Neither” is because the aspect ratio
√
aℓ/d of a Cooke

lipid often does not match that of any common lipid, such as 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC) or 1,2 -dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thus,
when one length scale, say the thickness d ≈ 4.5σ for wc = 1.6σ, is matched to the distance
between the phosphate groups in the two leaflets of a real bilayer, e.g. d = 3.83 nm for
DPPC at 50◦ [NTN00], then 1σ ≈ 0.85 nm. However, this leaves the other length scale
aℓ ≈ 1.2σ2 ≈ 0.87 nm2, which is about 35% larger than the corresponding experimental
value aℓ = 0.64 nm2 [NTN00]. Only one of the length scales can be matched.

A better way to solve this problem is to fine-tune the aspect ratio of the Cooke model
to the desired experimental value first, and then match both of the length scales. Of
course, this careful adjustment only matters when the structural properties of the lipids
are of higher priority, e.g. when a geometrically more precise NP system is wanted, or
if one wants to back-map the CG structure to one with higher resolution. When precise
length scale is not required, one can approximate σ ≈ 1 nm.

Fine-tuning the aspect ratio

In order to quantitatively match the lipid aspect ratio, two model parameters, namely the
width of the cosine-square potential, wc, and the temperature kBT , are scanned within
the range where the bilayer remains in the fluid phase. Each simulation contains 1000
lipids and runs in an NPxyT ensemble for 10000 τ .14 Area per lipid aℓ is obtained from
the average box size, and thickness d by the difference in the peak positions of the density
profile of the headgroups. Note that, at this time, there is not a unique way to match
this head-to-head distance to any thickness in a real bilayer, since what atoms the CG
headgroup represents is not specified. However, considering the chemical structure of a
real lipid, it seems plausible to match this distance with real distances between phosphate
groups in opposite leaflets. The lipid aspect ratio

√
aℓ/d is calculated and shown as symbols

in Fig. 2.2. In the left panel, where the
√
aℓ/d is plotted against wc, the simulation results

at different temperature kBT fit well to a parabola, suggesting that
√
aℓ/d may be fit to a

14τ is the intrinsic time unit in the model, which will be discussed later in Subsection 2.2.3.
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Figure 2.2: Fine-tuning the aspect ratio in the Cooke model. Left, the aspect ratio as a function of

wc. Right, paraboloid fit (Eq. (2.5)) of the aspect ratio as a function of wc and kBT . The contour lines

are projected onto the xy-plane.

a0 a1 a2 a3 a4 a5
0.1948 −0.5804 −0.0438 0.4850 −0.1691 0.4943

Table 2.1: Parameters to tune the aspect ratio in the Cooke model, as defined in Eq. (2.5).

quadratic function in wc and kBT :

z(
wc

σ
,
kBT

ǫ
) = a0

(wc

σ

)2
+ a1

wc

σ
+ a2

(

kBT

ǫ

)2

+ a3
kBT

ǫ
+ a4

wc

σ

kBT

ǫ
+ a5 . (2.5)

The fit is shown in Fig. 2.2 (right). The fitting parameters are listed in Table 2.1 and can
be used later as an empirical formula.

For reference, DPPC (50◦), DMPC(30◦), and DOPC (30◦) (1,2-dioleoyl-sn-glycero-3-
phosphocholine) exhibit aspect ratios of 0.209, 0.213, and 0.231, respectively (using the
area per lipid A and headgroup peak-to-peak distance DHH from Nagle and Tristram-
Nagle [NTN00]). Considering the range of wc and kBT where the membrane remains
liquid, matching

√
aℓ/d of the former two using the current Cooke model is not feasible

without adding another bead to the tail. In other words, the Cooke model is slightly too
short to quantitatively reproduce the aspect ratio of saturated lipids.

2.2.2 Energy scales

Similar to the intrinsic length unit σ, determining the meaning of the intrinsic energy unit
ǫ requires a characteristic energy scale. In the Cooke model, there exist a few energy
scales. Since it is normally difficult to stretch a membrane, the bending energy, which
is proportional to the bending modulus κ, and the thermal fluctuation kBT become the
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Figure 2.3: Fine-tuning the energy scales in the Cooke model. Left, κ/kBT as a function of w′
c at four

different temperatures. The attractive range is shifeted by w′
c = 1 + wc − wlg

c , where wlg
c is the wc at

the liquid-gas phase boundary. For the four isotherms, wlg
c /σ is 0.815, 1.025, 1.2, and 1.27, respectively.

Right, κ/kBT as a function of wc and kBT . Note that the surface is an interpolation from the data,

not a fit. The contour lines are projected onto the xy-plane.

most relevant energy scales [Des09]. Thus, in order to have a more realistic energy unit,
one can first tune the ratio κ/kBT so that this value matches experimental data of a real
membrane, and then both kBT and κ can be directly interpreted in real units.

The dependence of κ/kBT as a function of wc and kBT is shown in Fig. 2.3. The data
are taken from the original publication of the Cooke model [CD05].15 The log-log plot
on the left suggests an exponential relation between wc and κ/kBT .

16 Due to this more
complicated exponential function, κ/kBT is not fit to a 2-variable function of wc and kBT .
Instead, the right panel in Fig. 2.3 shows an interpolated surface using the data points.

It has to be pointed out that, as explained in the parameterization section 2.3.2,
spontaneously matching up all system properties with experiments during CGing could be
very difficult. This is also seen here. If one wants to obtain a membrane model where both
structure and energetics compare quantitatively to experimental data, then both

√
aℓ/d

and κ/kBT need to be realistic. Unfortunately, the two sets of contour lines, along which
either the structural or energy ratio stays constant, are almost parallel to each other on
the plane of wc vs. kBT , as shown in Fig. 2.4. This means that, within the parameter
space that corresponds to the correct membrane phase, one may not be able to find an

15Many thanks to Ira Cooke for keeping the data safe for years and kindly sharing them with me.
16In the original publication [CD05], three of the isotherms overlapped upon the shift of wc. However,

from some independent measurements, it appears that κ was plotted in unit of ǫ and not kBT , despite what
is stated in the original publication.
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Figure 2.4: Length and energy scales together. The length scale ratio
√
aℓ/d is plotted as red contours,

while the energy ratio κ/kBT is shown as different shades of blue.

intersection between one structural curve and another energy curve with the desired values.
As a result, one might have to de-emphasize the less important observables.

2.2.3 Time scales

Time scales in CG simulations are more subtle than length and energy scales. On the one
hand, there is an intrinsic time unit derived from the units of length σ, energy ǫ, and mass
µ. For the Cooke model, as discussed above, σ ≈ 1 nm, ǫ ≈ kBT ≈ 4.1 pN · nm. For the
mass unit µ, one can take the mass of a real lipid, say DOPC with a molecular mass of
786, divide it by three, and obtain µ ≈ (786/3)mp ≈ 4× 10−25 kg. Then, the intrinsic time
unit τ would be given by

τ =

√

µσ2

ǫ
≈ 10 ps . (2.6)

However, the dynamics in CG simulations are sped up due to the reduced “friction” and
smoothed free energy landscape, as discussed in Section 2.1.1. Consequently, the effective
time scale which quantifies the evolution of the system could be very different from the one
defined in Eq. (2.6) [NLSK04].

This effective time scale can be estimated by matching a dynamical process. But just
like for the length scale, there are various choices, for instance, diffusion, flip-flop, or lipid
rotation. In the Cooke model, diffusion is normally picked. The diffusion constant is on
average 0.01σ2/τ [CD05]. When compared to the value of lipids in real membranes (on
the order of 1µm2/s [FW78]), the effective time unit τeff ≈ 10 ns.

Note that this effective time unit τeff is 1000 times larger than the intrinsic unit τ ,
which means that, from the perspective of diffusive motions, the CG dynamics evolve

24



2.3 A coarse-grained model for linker molecules

lipid

headgrouptail
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anchor spacer end
group

hydrophilichydrophobic

Figure 2.5: Schematics of the CG linker and lipid molecules. The anchor part of the linkers share the

same structure with the lipids. Different colors indicate the bead types in simulations.

three orders of magnitude faster. This dynamic speedup leaves some ambiguity in the
interpretation of the dynamics in CG models, especially when different parts of the system
experience different dynamic speedup [Noi13]. However, it also shows why CG models are
a powerful tool to study biochemical processes that happen on longer time scales.

2.3 A coarse-grained model for linker molecules

After a brief review of CG modeling and a discussion of units and scales, it is time to
construct our CG model for the membrane-nanoparticle composite.

2.3.1 Molecular structure

As explained previously in this chapter, a generic top-down model will be set up in order
to keep the generality of the NP design. Since the Cooke model has been proven to be very
successful in simulating mesoscopic membrane phenomena [RIH+07, Des09], it is intuitive
to design the other major component of the system, i.e. the linkers, in a similar and
compatible manner.

For simplicity, the amphiphilic anchor part of the linker will be modeled like a Cooke
lipid: There will be three beads in an anchor, one head bead (hydrophilic) and two tail
beads (hydrophobic), interacting with each other via the same interactions that the lipid
beads experience. A soft hydrophilic polymer chain, composed by beads of half the lipid
bead size, is conjugated to the head bead of the anchor on one end, while the other end
connects to an endgroup bead of the same size, which will graft the spacer to the NP. A
schematic structure of this CG linker is shown in Fig. 2.5 together with a Cooke lipid for
comparison. Different colors indicate different bead types in the simulations.
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2 Coarse-grained modeling

2.3.2 Parameterization

Since the anchor part of the linker experiences the same interactions as the lipids do,
there are only two other types of interactions which need to be parameterized, namely the
interactions for the spacer beads, and the cross interactions between the spacer beads and
the others. Note that the endgroups are set up to be the same as the spacer beads, except
that the endgroups may be fixed in simulations when the linkers are supposed to be grafted
to surfaces. Thus, no extra parameterization is necessary for the endgroups.

Basic spacer interactions

For the interactions governing the spacer beads, the same functional forms from the lipid
interactions are used, i.e. FENE for the neighboring bonds, WCA for the excluded volume,
harmonic for the angle between two FENE bonds (see Section 2.1.4). However, since the
spacers are normally soft polymers like PEG, the size of the spacer beads, r0, s, which is its
WCA length parameter, will be reduced to half of the lipid bead r0, ℓ = 1σ, i.e. r0, s = 0.5σ.
The specific number of this reduction is not unique, but it has to be shorter than the Kuhn
length ℓK = 2ℓp, where ℓp is the persistence length of the spacer. The reason to choose r0, s
to be half of the lipid bead size r0, ℓ is because each lipid has two tails, while the polymers
only have single chains; this difference in bead sizes approximately reflects the difference
in chain volume.

With the reduction in size, the balance between the several interaction potentials
requires some attention. The WCA potential (Eq. (2.2)) scales naturally with different
length scales r0, because the distance r between two particles already appears as the ratio
r/r0. However, this is not the case for the FENE and harmonic interactions; they decrease
proportionally with the length scale in the potentials. Thus, in order to maintain the ratio
between these two interactions and the WCA, the energy constants for the FENE and
harmonic interactions, i.e. the “k” in Eqs. (2.1) and (2.3), need to be rescaled. Note, the
spacers are assumed to be hydrophilic, thus no cosine-square interaction is needed.

As an example of this rescaling, the FENE bonds, Eq. (2.1), between two spacer
particles of size r0, s = 0.5σ, can be rewritten as

VF(r) = −1

2
kFr

2
∞ ln

[

1− (r/r∞)2
]

= −1

2
(kFr

2
0, s)

(

r∞
r0, s

)2

ln

[

1−
(

r/r0, s
r∞/r0, s

)2
]

. (2.7)

In the second formula, all lengths are scaled by the size of the bead. Thus, if the bead
size of a polymer were to be reduced to a half of its original value, like in the case of our
spacer, then (kFσ

2
i ) should remain the same after the change in size, so that the bond

length, which is the distance r that corresponds to the minimum of VFENE + VWCA, can
also scale with the bead size. For this reason, the spring constant kF needs to be amplified
by a factor of (r0, ℓ/r0, s)

2 = 4 for the spacer beads.
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Figure 2.6: Left, the scaled persistence length ℓp/r0 as a function of the spring constant kr20, where

r0 is the bead size defined by the length scale in the WCA potential. Right, end-to-end distance is

measured for polymers of different contour length L0 when k = 1.5ǫ/σ2, resulting ℓp = 0.370±0.014σ.

Persistence length of the spacer

Most of the interaction parameters for the spacer beads are easily set up using the scaling
argument described above. The next step is the main target in the parameterization:
obtaining a spacer with predetermined elastic properties, so that their mechanical response
can be tuned to the experimentally relevant situation. For this, the harmonic potential,
which connects the next neighbors and straightens the chain, will be scanned in order to
study how the persistence length ℓp varies with different spring constant k.

The persistence length ℓp is measured in the following way. Chains of different degrees
of polymerization N (N ranges from 20 to 100, bead size r0 = 1.0σ) are simulated at
temperature kBT/ǫ = 1.1 for at least 50000 τ .17 Their end-to-end distance is measured
and fit to the following equation [dG79]

〈

R2
e

〉

= Naa
2 = L0a = 2L0ℓp , (2.8)

where Na is the number of Kuhn segments, a = 2ℓp is the size of each Kuhn segment, and
L0 is the contour length. Note that, during these simulations, only the nearest neighbors
experience the excluded volume interactions, and beads further apart are allowed to overlap,
mimicking the Θ-condition in experiments. An set of simulations to measure the value of
ℓp when k = 1.5ǫ/σ2 is shown in Fig. 2.6 as an example.

The measured ℓp, normalized by the bead size r0, for a range of spring constants kr20,
is shown in Fig. 2.6. A linear fit to the data shows

ℓp/r0 = 0.853kr20/ǫ+ 0.467 . (2.9)

17Depending on the chain length and spring constant, simulation time may be up to 4 × 105 τ . Longer
and softer chains are simulated longer to reduce the errors.
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Eq. 2.9 shows how to tune the persistence length ℓp for chains of any given bead size r0.

This linear dependence of ℓp on k (with an offset) can also be derived by theory.
Assume a really long chain of the above type consists of N ≫ 1 repeating units, and is
arranged into the shape of a complete circle of radius R = Nb/2π, where b is the bond
length. Then each bond occupies an arc angle of θ ≈ b/R. The total bending energy from
the harmonic bonds will be

Ebend = N · 1
2
kb2θ2 =

N

2
b4/R2 . (2.10)

At the same time, creating a curvature K = 1/R costs energy Ecurv

Ecurv =

∮

ds
1

2
κK2 =

Nb

2
κ/R2 , (2.11)

where κ = kBTℓp is the bending modulus of the polymer chain [dG79] (see Technical
Note 3.1 for derivation). Putting Eq. (2.10) and Eq. (2.11) together, one has

ℓp = kb3/kBT . (2.12)

Also considering when k = 0, i.e. when it’s a freely jointed chain, the Kuhn length ℓK
reduces to the bond length b, giving ℓp = ℓK/2 = b/2. Adding this offset to Eq. (2.12),
plus the fact that b ≈ r0, the dependence of ℓp on k should be

ℓp
r0

=
1

kBT
kr20 +

1

2
. (2.13)

Since 1/kBT = 1/1.1ǫ = 0.91/ǫ, Eq. (2.9) measured from simulations is in good agreement
with this simple theoretical estimation. The small disagreement may be a result of, for
instance, ignoring the fluctuation contribution to the persistence length ℓp.

Now, the persistence length of the spacer part can be tuned to a realistic value. Since
ℓp = 0.38 nm for PEG [MF65, KPK+00], the persistence length of the spacer will be fixed
to ℓp = 0.38σ, assuming 1σ = 1nm.18 Using Eq. (2.9) with r0 = r0, s = 0.5σ, one derives
k ≈ 1.5ǫ/σ2. As an independent test, ℓp of a system with r0 = r0, s = 0.5σ and k = 1.5ǫ/σ2

is measured, as shown in Fig. 2.6. The measured ℓp = 0.370±0.014σ is in good agreement
with the targeted ℓp = 0.38σ. This will be the k for the spacers.

Cross terms between the spacer and the anchor

Having successfully derived the interaction parameters for the spacer beads alone, the cross
terms between them and the anchor beads are construct using the Lorentz-Berthelot mixing

18Note, the ratio σ/ nm may be set to a different value later when a more accurate length matching is
required, as described in Section 2.2.1, then ℓp = 0.38σ 6= 0.38 nm any more. But this is not a real issue,
since the persistence length of PEG is only a reference for our generic polymer chain.
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2.3 A coarse-grained model for linker molecules

Type
WCA FENE Harmonic

r0 [σ] ǫLJ [ǫ] kF [ǫ/σ2] R∞ [σ] k [ǫ/σ2] R0 [σ]

lipid/anchor 1.0a 1.0 30.0 1.5 10.0 4.0
spacer 0.5 1.0 120.0 0.75 1.5 2.0

cross terms 0.75 1.0 53.33b 1.125 17.78b 3.0

a The r0, h for the hydrophilic head bead may be varied for different lipid shapes, as demonstrated in

Chapter 5. Normally r0, h = 0.95σ will provide a bilayer with little spontaneous monolayer curvature.
b Only two decimal places are shown here. In simulations, the maximum number of digits allowed by the

float type is used.

Table 2.2: Interaction parameters for the WCA, the FENE, and the Harmonic potentials. Definitions

of the functional forms can be found in Eqs. (2.1)–(2.3).

rule [AT89]: For particles of type A and B, of sizes σA and σB respectively, the cross terms
are given by

σAB =
σA + σB

2
, (2.14a)

ǫAB =
√
ǫAǫB . (2.14b)

As mentioned before, the ǫLJ’s for the spacer beads and the anchor beads are the same.
For the FENE and the harmonic bonds, after σAB = (r0, a + r0, s)/2 = 0.75σ is calculated,
the spring constants were scaled in the same way as shown in Eq. (2.7). All interaction
parameters except for the wc used in later simulations, are collected in Tab. 2.2 for reference.
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3 A theoretical model of the polymers

In the previous chapter, background knowledge of coarse-grained simulations was reviewed,
and a generic model of the membrane-nanoparticle system has been developed. Starting
with this chapter, a divide-and-conquer strategy will be applied to the examination of our
nanoparticle design. The first ingredient, a tethered polymer brush under confinements,
will be studied in this chapter. Lipid membranes, the other ingredient, will be covered in
the subsequent two chapters.

3.1 Introduction

The polymeric tethers between the NP core and the surrounding lipid bilayer are the key
difference between our NP design and the alternatives discussed in Section 1.1.2. As will be
examined later in Chapter 7, most of the benefits of this design can be traced back to the
properties of this extra layer of polymer linkers and their interactions with the enclosing
membrane.

The polymer spacers in this design behave like a polymer brush confined between two
concentric spherical shells, with both of their chain ends either grafted to the NP surface or
anchored in the lipid bilayer. Our goal is to quantitatively, or at least semi-quantitatively,
understand the brush responses when these confinements are changed, so that the spacer-
membrane interactions can be predicted.

Polymers within this brush are subject to a rather complex environment restricting
their conformational degrees of freedom. In the hope to simplify the problem, two extreme
regimes, namely the large extension regime and the strong compression regime, will be
explored separately using polymer theory. In the former regime, the chains are almost
fully extended, and thus they experience little inter-molecular interactions and essentially
behave like single chains. In the latter regime, the strong compression of the brush creates
substantial lateral repulsions between the chains, which lead to a strong radial pressure.
Both of these two regimes can be theoretically analyzed using suitable theoretical models.
Then, the theories for these two regimes can be combined together and utilized to predict
the full-range behaviors, which will be cross-checked using MD simulations. It turns out
that this approximated method is accurate enough to predict the response of the polymer
brush to variations in radial confinement.

Historically, single chain polymer physics has been studied since the first half of last
century, led by the seminal work of Flory [Flo53]. In the 1970’s, the scaling concepts pro-
posed by de Gennes created a convenient framework to deal with the complicated multibody
problem of polymers in solution [dG79]. Starting from the late 70’s and early 80’s, thanks
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3 A theoretical model of the polymers

to the advances in both computer hardware and efficient algorithms, molecular simulations
of polymers have become a powerful tool to study polymer systems under a great variety
of conditions [LW75, EKB82, GK86, Bin02].

After decades of research, a great number of topics in polymer physics have been
covered. In this chapter, a small sliver of this, the theoretical basis of single-chain stretching
and polymer brushes, will be outlined. Then, these useful tools will be applied to the planar
brush system as an example, before being extended to our special spherical geometry and
tested by simulations.

3.2 Single-chain stretching

In the large extension regime of the brush, each chain is approximately aligned in parallel
to the direction of the external force, while its expansion perpendicular to this direction
is very small. The interactions between different chains are therefore negligible: the brush
becomes equivalent to many non-interacting single chains.

Remarkably, important details of the force-extension relation for polymers depend
quite sensitively on details of the underlying theoretical model, so we need to be very
careful to pick the suitable one. In this section, three related models and their predictions
for this relation will be briefly reviewed. Their derivations will only be outlined. However,
the difference between the models will be emphasized.

3.2.1 Freely jointed chain

The most basic polymer model is the freely jointed chain (FJC). Such a chain consists of a
number N of stiff segments, each one of which has the same length b and can freely rotate
with respect to its neighboring bonds without any energy penalty. If each segment i is
denoted as ~ti = bt̂i, where t̂i is a unit direction vector, then the end-to-end distance of
the chain is Re = b

∑

i t̂i. In the absence of external forces, the mean-squared end-to-end
distance 〈R2

e〉 will be given by

〈R2
e〉 = b2

〈

∑

i,j

t̂i · t̂j
〉

= Nb2 = L0b , (3.1)

where the contour length L0 = Nb. In the second to last step, the fact that the orientations
of different segments are uncorrelated,

〈

t̂i · t̂j
〉

= δi,j , has been used.

Thus, for a freely jointed chain, the Kuhn length, defined as ℓK ≡ 〈R2
e〉/L0, is the

same as the bond length b. Also, the root-mean-squared end-to-end distance Re ≡ 〈R2
e〉1/2

is proportional to N1/2. For real polymers in better solvents than their Θ-solvents,1 the

1Θ-condition, or Θ-solvent, refers to the situation in which polymer chains behave like ideal chains,
meaning Re ∼ N1/2. It happens at the point when the excluded volume effect, which tries to expand the
chain, is balanced by the unfavorable mixing between the polymers and the solvent, which attempts to
shrink it.
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3.2 Single-chain stretching

excluded volume effect makes the chain swollen. In this case, the end-to-end distance is
called the Flory radius RF = Re = bNν , where ν ≈ 3/5 is the Flory exponent [Flo53].

If an external force F in the x-direction acts on one end of the chain, while the other
end is fixed, then Re also points in the x-direction in equilibrium. The total energy will
be EFJC = −F ·Re = −Fx = −Fb∑ cos θi, assuming Re · x̂ = Re = x, and t̂i · x̂ = cos θi.
The partition function can be then calculated as

Z =

∫

dΓ eβFx =
∏

i

∫ 2π

0
dφi

∫ π

0
dθi sin θi e

βFb cos θi =

[

4π
sinhβFb

βFb

]N

, (3.2)

where dΓ =
∏

i dt̂i =
∏

i dφidθi sin θi and β = 1/kBT .
Using Eq. (3.2), the average end-to-end distance Re = x will be extended to [FK73]:

x = 〈Re〉 =
1

Z

∫

dΓx eβFx =
1

βZ
d

dF

∫

dΓ eβFx =
1

β

d

dF
lnZ = NbL(βFb) , (3.3)

where L(x) = cothx− 1/x is the Langevin function.
In the large force and extension regime, where βFb≫ 1, the Langevin function can be

approximated as L(x) ≈ 1− 1/x. The force-extension relation for a FJC in this regime is
then

x

L0
= 1− kBT

Fb
, (F ≫ kBT/b) . (3.4)

3.2.2 Worm-like chain

Unfortunately, real polymers are more difficult to describe theoretically, for instance be-
cause they have stiffness; two consecutive repeating segments are correlated due to the
bending energy that penalizes deviations of the angle between the pair of segments from
its relaxed value. Such chains are called worm-like chain (WLC). This correlation intro-
duces a new length scale ℓp:

〈t̂i · t̂j〉 = exp

(

−|i− j|b
ℓp

)

. (3.5)

This scale ℓp is called the persistence length of the chain.
As Eq. (3.5) shows, the bond-angle correlation dies off exponentially when two segments

i and j are sufficiently far away, i.e. when |i − j| ≫ 1. Thus, when N is large, one
can “renormalize” the chain by combining consecutive and correlated segments into one
effective Kuhn segment of length ℓK, so that different Kuhn segments become essentially
independent, and the mean-squared end-to-end distance turns out to be [dG79]

〈R2
e〉 ≡ ℓKL0 = 2ℓpL0 . (3.6)

This is the equation used for the parameterization of our CG linker model (see Eq. (2.8)
in Section 2.3.2).
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3 A theoretical model of the polymers

For such semi-flexible chains, bending contributes to their Hamiltonian as [Kaw04]

Ebend =
κ0
2

∑

i

|t̂i − t̂i+1|2 = −κ0
∑

i

t̂i · t̂i+1 + const. , (3.7)

where κ0 is the bending stiffness between two segments of a chain.

Most often, such a system is treated in the continuum limit, i.e. b → 0 and N → ∞,
while keeping the contour length L0 finite. Then, the summation in Eq. (3.7) can be
replaced by an integral form

H =
κ

2

∫ L0

0
ds

∣

∣

∣

∣

dt̂(s)

ds

∣

∣

∣

∣

2

, (3.8)

where κ = bκ0 is the bending modulus, and t̂(s) ≡ d
dsr(s) is the tangent vector at an arc

length s (measured from one end of the chain). This Hamiltonian is generally referred as
the Kratky-Porod Hamiltonian [KP49].

In the presence of an external force F in the x-direction, the Hamiltonian becomes

H =

∫ L0

0
ds

(

κ

2

∣

∣

∣

∣

dt̂(s)

ds

∣

∣

∣

∣

2

− F · t̂(s)
)

. (3.9)

In the large extension regime, t̂ is roughly parallel to F . One can decompose the
tangent vector t̂ into parallel component t‖ and a perpendicular one t⊥. After Fourier

transforming t⊥ =
∫ dq

2π t̃⊥(q) exp(iqs), the Hamiltonian becomes [MS95, Kaw04]:

H ≈
∫ L0

0
ds

(

κ

2

∣

∣

∣

∣

dt⊥
ds

∣

∣

∣

∣

2

+
F

2
|t⊥|2

)

− FL0

=
1

2

∫

dq

2π
(κq2 + F )|t̃⊥|2 − FL0 ,

(3.10)

From the equipartition theorem, 1
2(κq

2+F )〈|t̃⊥|2〉 = kBT , since there are two polarizations.
Then the mean square perpendicular component 〈t2⊥〉 can be calculated as

〈t2⊥〉 =
∫

dq

2π
〈|t̃⊥|2〉 =

∫

dq

2π

2kBT

(κq2 + F )
=

kBT√
κF

. (3.11)

Now one can calculate the extension 〈x〉/L0 as [MS95]

〈x〉/L0 =
1

L0

∫ L0

0
ds 〈x̂ · t̂〉 = 1

L0

∫ L0

0
ds 〈t‖〉 ≈

1

L0

∫ L0

0
ds (1− 1

2
〈t2⊥〉)

= 1− kBT√
4Fκ

= 1−
√

kBT

4Fℓp
.

(3.15)
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3.2 Single-chain stretching

Technical Note 3.1: Relation between κ and ℓp

From Eq. (3.7), the ensemble average of the angle between segment i and i+ 1 is given by

〈t̂i · t̂i+1〉 = 〈cos θ〉 =
∫

dΓ cos θ exp(βκ0 cos θ)
∫

dΓ exp(βκ0 cos θ)
= L(βκ0) ≈ 1− 1

βκ0
, (3.12)

where dΓ = dθdφ sin θ, assuming kBT/κ0 ≪ 1.
Set j = i+ 1 in Eq. (3.5), one immediately obtains

〈t̂i · t̂i+1〉 = exp

(

− b

ℓp

)

≈ 1− b

ℓp
. for

b

ℓp
≪ 1 . (3.13)

Comparing the two equations above, it is easy to see that

κ ≡ bκ0 = kBTℓp . (3.14)

In the last step, κ = kBTℓp was used (see Technical Note 3.1). Together with the result from
the small extension regime, the widely used interpolation equation for the force-extension
relation of WLCs by Marko and Siggia is derived [MS95]:

Fℓp
kBT

=
〈x〉
L0

+
1

4(1− 〈x〉/L0)2
− 1

4
. (3.16)

Note that a few important assumptions entered this derivation. As clearly shown in
the step from Eq. (3.7) to Eq. (3.8), a fundamental assumption is that the chain needs
to be in the continuum limit, so that the discrete sum can be replaced by an integral.
This requirement on continuity was also seen in Eq. (3.13) in Technical Note 3.1. The
decay length ℓp of the correlation between neighboring segments is assumed to be much
larger than the segment size b. In other words, within the “renormalized” effective Kuhn
segments of ℓK = 2ℓp, there have to be enough repeating units of size b≪ ℓp.

3.2.3 Discrete worm-like chain

In their classical study [MS95], Marko and Siggia successfully fitted Eq. (3.16) to the
force-extension curves of double-stranded DNA (dsDNA) measured in experiments. This
is mainly because, for dsDNA, the requirement of continuity is met beautifully. dsDNA
molecules have a persistence length of ℓp ∼ 50 nm, which is significantly larger than the
dimension of its repeating units (i.e. an approximate separation of 0.34 nm between con-
secutive base pairs) [PKT09].

However, ℓp ∼ b for many polymers which are not that stiff. For example, the repeating
segments in polyethylene glycol (PEG) are (C-O-C), whose size can be estimated using the
bond length of the three C-O or C-C bonds. Each bond has a length of roughly 1.5
Å [MF65, LdVMP09], so a segment is about 4 Å long. The persistence length is very close
to this value: ℓp ∼ 3.8 Å [KPK+00, LVMJP08].
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3 A theoretical model of the polymers

As will be shown in the next subsection, the WLC model shall not be applied to
soft polymers like PEG, due to the discreteness of the chain. Instead, a discrete WLC
model should be considered. A few independent publications can be found on this topic,
including the ones by Rosa et al. [RHMM03], and by Toan and Thirumalai [TT10].2

Both works discuss the existence of a crossover force Fc, beyond which the discrete WLC
behaves essentially like a freely jointed chain which was described in Section 3.2.1. This
happens when the external force F ≫ Fc = ckBTℓp/b

2, where c is a constant around 4,
and hence the energy to bend the chain κ/b becomes insignificant compared to the energy
from the external force, Fb [RHMM03, TT10], thus the force-extension relation of a FJC,
as described by Eq. (3.4), should be recovered.

No significant difference was observed when fitting the two discrete WLC models to
results obtained from simulations (see the next subsection). Thus, only the model by Rosa
et al. will be outlined here, for its derivation is very similar to the one of the WLC model
described above.

In the model by Rosa et al. [RHMM03], the discrete nature of the chain is considered
explicitly; the Hamiltonian of the system is kept in a discrete form, as shown in Eq. (3.7).
After adding the contribution from the external force, −bF ·∑i t̂i, to the Hamiltonian, the
partition function is calculated as

Z =

∫

dΓ e−βH, (3.17)

using the discrete Hamiltonian:

H = −κ0
∑

i

t̂i · t̂i+1 − bF ·
∑

i

t̂i . (3.18)

Then the average elongation 〈x〉 is derived from the partial derivative of the partition
funtion with respect to F :

〈x〉 = − 1

β

∂

∂F
lnZ . (3.19)

In the large extension regime, decompose the direction vectors into parallel and perpen-
dicular components to F , i.e. t̂ = t‖ + t⊥, and approximate |t‖| ≈ 1 − 1

2t
2
⊥ again. After

this, one eventually arrives at [RHMM03]

Fb

kBT
=
2ℓp
b

[
√

1 +

(

b

2ℓp

)

1

(1− ξ)2
−
√

1 +

(

b

2ℓp

)

]

+

(

3
1− L(ℓp/b)
1 + L(ℓp/b)

− b/2ℓp
√

1 + (b/2ℓp)2

)

ξ ,

(3.20)

where ξ = 〈x〉/L0 is the normalized end-to-end extension. When ℓp ≫ b, Eq. (3.16) for the
(continuous) WLC is recovered. This condition of ℓp ≫ b signifies the difference between
the WLC and the discrete version.

2Surprisingly enough, these works were published no earlier than a decade ago.
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3.2 Single-chain stretching

Marko & Siggia: lp = 1.919 σ
Marko & Siggia: lp = 0.380 σ

Rosa et al.: lp = 0.380 σ
Rosa et al.: lp = 0.454 σ

Fc = 7.3 ǫ/σ
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Figure 3.1: Force-extension relation for a single chain of N = 80 segments. The solid points are data

from simulations. Two curves are overlapped with the data: The solid one is a fit, while the dotted

one shows the theoretically predicted force-extension relation with a given ℓp = 0.38σ, both using the

discrete WLC Eq. (3.20). The dashed curve is predicted using the WLC Eq. (3.16) with ℓp = 0.38σ, and

the dash-dotted curve is a fit using the same equation. The crossover force Fc is shown as a horizontal

dotted line.

When the force is large, the normalized end-to-end extension ξ = 〈x〉/L0 → 1. Then,
the leading term in Eq. (3.20) becomes 1/(1 − ξ), following the same scaling behavior as
a freely jointed chain. In fact, in the large force regime, all models should converge to the
FJC model with this scaling of F ∼ 1/(1− ξ) (c.f. Eq. (3.4)), since the bending energy κ/b
between consecutive segments is overwhelmed by the contribution Fb from the external
force [TT10]. The WLC model, however, shows a different scaling of F ∼ 1/(1 − ξ2), as
shown in Eq. (3.16). It is this different scaling in the large force regime that made the
WLC model inappropriate to be used to describe soft polymers with ℓp/b ∼ 1, for which
the large force regime is the relevant one.

3.2.4 Simulations of single-chain stretching

In order to select the most relevant polymer model from the three described above, and
also to understand the single-chain force-extension behavior of our CG linker model, a
set of MD simulations of a single chain was conducted using the spacers parameterized
in Section 2.3.2. Each chain contains N = 80 segments, with excluded volume turned off
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3 A theoretical model of the polymers

except for the nearest neighbors, since segments in a WLC two steps apart are allowed to
overlap. In each specific simulation, the end-to-end distance x is imposed by fixing the end
points. Forces acting on the end points were measured. All simulation ran at temperature
kBT/ǫ = 1.1 for 125000 τ . The results are shown in Fig. 3.1, together with two theoretically
predicted curves and two fits.

Firstly, the curves based on the discrete WLC Eq. (3.20) quantitatively capture the
force-extension relation. The fit (solid curve), as well as the parametric plot (thin dotted)
with a given ℓp = 0.38σ, show very good agreement with the simulation data. Although
the fit results in ℓp = 0.454σ, which is roughly 19% higher than the value ℓp ≃ 0.38σ
that was parameterized and measured based on the end-to-end distance of a free chain (see
Section 2.3.2), the agreement from the two curves suggests that the quality of the fit is
insensitive to such small variations in the persistence length ℓp. Instead, it is the general
functional form in the theory that matters.

Secondly, as a comparison, both curves using the continuous WLC model fail to capture
the chain behavior over the full range of forces, regardless of whether the the persistence
length is obtained from fitting to the data, or taken from the parameterization of the model.
Since ℓp is only a prefactor in the WLC model that simply scales the curve, as shown in
Eq. (3.16), the inability to quantitatively reproduce the force-extension curve suggests that
the fundamental scaling of the WLC model cannot describe such soft polymers.

Of course, this does not mean that the WLC model is useless. On the contrary, for
stiffer polymers like dsDNA, the crossover force Fc ≈ 4kBTℓp/b

2 = 8nN is much larger
than the value it takes for soft polymers like PEG. Applying forces comparable to Fc may
affect the chemical structure of the chains. In the case of dsDNA, the stacking and base-
pairing interactions generate a few kBT per base pair, corresponding to an unstacking force
on the order of 10kBT/ nm ≈ 40 pN [MS95], which is much lower than the crossover force
Fc ≈ 8 nN. This means, for the physically relevant range of forces and extensions, bending
is the dominant physics, which the WLC model can describe very successfully, but the FJC
will inevitably fail, as shown by Marko and Siggia [MS95].

3.3 Scaling theory

Unlike in the large extension regime, where all chains are stretched and essentially sepa-
rated, in the opposite regime, i.e. the large compression regime, chains interact strongly
with each other due to the increased density. Such interactions are inherently multibody
in nature, which increases the difficulty to solve the problem exactly.

Instead, a method called “scaling theory”, pioneered by de Gennes [dG79], deals with
such problems in a mean-field manner. This scaling theory, or a particular manifestation of
it known affectionately as “Blobology”, will be reviewed in this section, and then applied
to two systems of distinct geometries, namely the planar polymer brush system and the
spherical one.

A special note is needed on the notations used in this section. In the literature, when
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3.3 Scaling theory

the scaling theory is introduced and developed, e.g. in the works by de Gennes [dG79],
only theoretical polymers are discussed. For these polymers, the size of their repeating unit
is denoted as the variable a, which is essentially the Kuhn length of the chains. The Kuhn
length is the most relevant quantity in the scaling theory, for instance when predicting the
end-to-end distance of polymer chains, since it is the effective segment size for the random
walk of the chains (regardless of their real chemical structures). However, for more realistic
polymers, the Kuhn length rarely equals the monomer size (of excluded volume), and the
difference is especially large for stiff polymers like DNA. Therefore, we will distinguish
these two by denoting the size of the Kuhn segment as “a”, while referring to the monomer
size as “b”. The monomer size b coincides with the bond length b between two neighboring
monomers used in the previous section. The ratio a/b is of order unity for soft polymers
like PEG, but is much larger for stiff chains (e.g. O(102) for dsDNA). Notice, we now have
two related numbers of segments; the one that counts the number of Kuhn segments will
be denoted as Na, while the other for the monomers will be Nb. Na and Nb are related by
the contour length of the chains, thus bNb = aNa. Na will appear more often in the scaling
theory, whereas Nb typically shows up when one wants to relate the theory to some real
chains.

3.3.1 Blobology

Depending on the average concentration c of the Kuhn segments, polymers in good solvent
can be found in different regimes. When c is low, they are in the dilute regime where
chains behave like single chains on their own. When the concentration is increased to a
critical overlap concentration c∗, polymers start to feel each other’s presence. At c = c∗, the
average concentration c is equal to the local concentration of Kuhn segments inside a single
chain, i.e. the number of Kuhn segments inside a blob of size RF , the Flory radius [Flo53]
of a polymer coil in good solvent. Thus,

c∗ = Na/R
3
F = Na/(aN

ν
a )

3 = a−3N1−3ν
a = a−3N−4/5

a , (3.21)

where the Flory exponent ν ≃ 3/5 has been used. The volume fraction, Φ = ca3, of the
Kuhn segments at the overlap concentration, is

Φ∗ = c∗a3 = N−4/5
a . (3.22)

If Φ increases beyond Φ∗, the polymer solution enters the semi-dilute regime, where
the chains are in contact, but not completely packed as in the polymer melt regime, where
solvent molecules are expelled from the chains and the polymers take up all of the space
with Φ = 1. Thus, in the semi-dilute regime,

Φ∗ ≪ Φ ≪ 1 . (3.23)

This semi-dilute regime is where we need to focus on. This is because 1) Na is normally
large, thus Φ∗ is low as desribed by Eq. (3.22), meaning the semi-dilute and melt regimes
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cover a big range of relevant systems, and 2) the polymer brush in the semi-dilute regime
can provide many desired functions, e.g. the existence of solvent (unlike in the melt regime)
is required for loading hydrophilic drugs.

The key idea in blobology is to separate local interactions, among monomers within a
blob of size ξ, from the global multi-chain interactions: Monomers within a blob behave
as in a self-avoiding walk (SAW), thus the number of Kuhn segments inside a blob, g, is

related to the blob size ξ as g = (ξ/a)1/ν . Interactions of the segments from different blobs
are represented by the excluded volume effect between blobs. In this way, interactions
happening on two length scales are decoupled.

The size of the blobs, ξ, reflects the physics in the system. One example is when a chain
is under a small external force F , similar to the situation of a large force discussed in the
previous section. The blob size is determined by the interplay between the entropy, which
favors to explore as many configurations as possible, and the enthalpy by the force applied.
The blob size ξP in this case, normally referred to as the “Pincus blobs” [Pin76, dG79],
is given by ξP = kBT/F , which is the blob size ξ at which the tensional enthalpy FξP
becomes comparable to the thermal energy kBT . For monomers within this length scale
ξP, the thermal fluctuations rule, thus SAW behavior is observed; while beyond ξP, the
force dominates and blobs align along the direction of F .

The blob size ξ also scales with Φ in the semi-dilute regime. There are two require-
ments [dG79]. First, at the overlap monomer fraction Φ ∼ Φ∗, ξ ≈ RF . Second, with
increasing Φ > Φ∗, because the polymers are largely in contact, ξ should be independent
of the degree of polymerization Nb =

a
bNa. Assuming ξ follows a power law,

ξ = RF

(

Φ∗
Φ

)mξ

= aNν
aN

−4mξ/5
a Φ−mξ . (3.24)

Thus, due to the second requirement, mξ = 5ν/4 ≈ 3/4, leading to

ξ ≈ aΦ−3/4 . (3.25)

3.3.2 Osmotic pressure: theory

Enlightened by the virial expansion, one can expand the osmotic pressure Π as [dG79]

Π

kBT
=

c

Na
+B2c

2 +O(c3) =
c

Na
fΠ

(

cR3
F

Na

)

=
c

Na
fΠ

( c

c∗

)

. (3.26)

Note that, since c denotes the Kuhn segment concentration, c/Na here is the molecule
concentration.

The requirement on Π is that it should be independent of Na when Φ > Φ∗. This
turns out to be a rather strict constraint; in order to cancel out the Na in the prefactor,
the function fΠ(x) must be a simple power of x:

lim
x→∞

fΠ(x) = const.× xm = const.×
(

Φ

Φ∗

)m

= const.× ΦmN4m/5 , (3.27)
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3.4 Planar brushes

where Eq. (3.22) is used in the last step. Thus, m = 5/4. Putting this back into Eq. (3.26),
together with c = Φ/a3, we have

Πa3

kBT
= const.× Φm+1 = const.× Φ9/4 . (3.28)

Combining Eq. (3.25) and (3.28), and ignoring the constant of order unity [dG79], we have

Π ≈ kBT

ξ3
. (3.29)

This means that the osmotic pressure given by the blobs is equal to the energy density
determined by the characteristic energy kBT and the characteristic length ξ.

3.4 Planar brushes

3.4.1 Overview: planar brushes

In this section, the blobology arguments described in the previous section will be applied
to a polymer brush in a planar geometry. This system has been investigated using the
blobology concepts since the late 1970’s by Alexander [Ale77] and de Gennes [dG80, dG87].
Others have studied this system using self-consistent mean-field theory, such as Milner
et al. [MWC88b, MIL91]. However, we will stay focused on the scaling method for its
simplicity and pedagogical implications.

3.4.2 Brush height: planar brushes

In a relaxed brush without external forces, depending on the grafting density Σ (number
of molecules per unit area), the chains can either be in the “mushroom” regime, where
chains do not overlap and behave like separate globules, or in the “brush” regime, where
they do interact with their neighbors [dG80]. Only the semi-dilute “brush” regime will be
the topic here for its interesting properties.

In this regime, the distance D between two neighboring grafting points satisfies D =
Σ−1/2 < RF. Thus, in such a planar brush, the chains are laterally confined while being
extended in the vertical direction. This lateral confinement limits the blob size to be
ξ0 = D.3

Each chain contains a string of blobs of size ξ0. The number of Kuhn segments in
each blob is g ≈ (D/a)5/3. So there will be Na/g blobs per chain, giving a brush height
of [dG80]

L0, pl =
Na

g
D =

(

b

a

)

Nba
5/3D−2/3 . (3.30)

3From here on, all quantities with subscript 0 refer to the uncompressed state.
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3 A theoretical model of the polymers

Notice that in the last step the number of Kuhn segments, Na, is replaced by the number
of monomers, Nb, with an additional factor of b/a. This is because Nb is often known, and
thus using it is more convenient.

One issue should be pointed out here regarding the accuracy of these scaling predic-
tions. Studies using self-consistent field (SCF) theory, with more physical constraints on
its solutions, have predicted a more realistic concentration profile, which quadratically de-
pends on the vertical position from the substrate and thus is normally referred to as the
“parabolic profile” [MWC88a]. The blobology picture, however, implies a step-function-
like concentration profile of the monomers, the value of which is equal to the concentration
inside each blob and vanishes at the brush height L0, pl. Moreover, shown in the SCF
results, the chain ends should also have a broad distribution at different height, even deep
inside the brush [MWC88b], which conflicts with the assumption that the ends of the chains
remain inside the last blob.

These are valid concerns about regular planar polymer brushes discussed in the litera-
ture. However, the polymer brush in our membrane-nanoparticle composite is designed in
a slightly different way; each polymer not only has one of its ends grafted to a solid surface,
but also has the other end anchored into a lipid membrane. So there are no open ends any
more, unlike in conventional polymer brushes. For this reason, blobology provides a more
realistic model for our special brush than for the ordinary brush it has first been invented
for.

3.4.3 Osmotic pressure: planar brushes

If the brush is compressed, then the spacing L between the two parallel planes is reduced
from the relaxed L0, pl, and the monomer concentration increases as Φ/Φ0 = L0, pl/L. Using
Eq. (3.25), the size of the blobs decreases as

ξ

ξ0
=

(

Φ

Φ0

)−3/4

=

(

L

L0, pl

)3/4

. (3.31)

Substitute into Eq. (3.29), the osmotic pressure for a planar polymer brush is derived
as [dG79, WP86]4

Πpl ≈
kBT

ξ30

(

Φ

Φ0

)9/4

=
kBT

ξ30

(

L0, pl

L

)9/4

, (L < L0, pl) . (3.33)

4If the elastic energy of the chains is also taken into account, the osmotic pressure for a planar brush
becomes[dG87, Isr91]

Πpl ≈
kBT

ξ30

[

(

L0, pl

L

) 9

4

−

(

L

L0, pl

) 3

4

]

, (L < L0, pl) (3.32)

However, the additional elastic term is negligible when L < L0, pl [WP86].
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3.5 Spherical brushes

3.5 Spherical brushes

The discussion on planar brushes in the previous section serves as an example application of
the scaling theory reviewed in Section 3.3. For the purpose of understanding the behavior
of the brushes in our NPs, we need to move on to a more complicated geometry: a confined
space between two concentric spherical shells.

3.5.1 Overview: spherical brushes

One key difference between the spherical and the planar geometry is that because of the
geometry the blobs are not all of the same size. As the distance from the center of the
sphere increases, more space is available for each chain and thus the blob size ξ increases.
From pure geometry, we have ξ(r)/ξin = r/Rin, where ξin is the blob size at the inner core,
to which the polymers have one end attached, and Rin is the radius of the core. If, however,
there are only a few layers of blobs due to a short chain length N and the brush height is
comparable to the Rin as in the case of our NPs, then the brush will behave somewhere
between a planar brush and a spherical one.

Two quantities in the result for a planar brush, i.e. Eq. (3.33), need to be adapted,
namely the uncompressed brush thickness L0, sp and the dependence of the concentration
Φ on the separation L. They will be discussed in the following two subsections.

3.5.2 Brush height: spherical brushes

The first revision to Eq. (3.33) is the relaxed brush height L0, since the distance between
the neighboring chains depends on their distance to the center of geometry. Two different
method to derive L0, sp will be compared here.

Blobology Perspective

From the perspective of “Blobology”, each polymer chain consists of a string of blobs,
taking up a cone-shape space. In order to derive L0, sp, one needs to figure out the number
of blobs per chain, the size of each blob, and then add up the diameters of the blobs.

At the surface of the inner sphere, the blob size ξ1 = Σ−1/2. From geometry, the next
one will be ξ2 = αξ1 = ξ1(1 + ξ1/Rin), where the proportionality factor α ≡ (1 + ξ1/Rin).
The blob size for the last blob, labeled as ξn, is [DC82]

ξn = ξ1α
n−1 = ξ1

(

1 +
ξ1
Rin

)n−1

, (3.34)

with the following constraint on the total number of Kuhn segments Na in a chain:

Na =
n
∑

i=1

gn =
n
∑

i=1

(ξi/a)
5/3 =

n
∑

i=1

[

ξ1
a
αi−1

]5/3

=

(

ξ1
a

)5/3 n
∑

i=1

(

α5/3
)i−1

. (3.35)
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Summing up this geometric series and solving for n, one has

n =

log

{

1 +Na

(

a
ξ1

)
5
3

[

(

1 + ξ1
Rin

)
5
3 − 1

]}

5
3 log

(

1 + ξ1
Rin

) . (3.36)

Note that there is no need to round up n into an integer, since it appears in the brush
height L0, sp in the form of αn:

L0, sp =
n
∑

i=1

ξi = ξ1

n
∑

i=1

αi−1 = Rin

{

1 +Na

(

a

ξ1

)
5
3

[

(

1 +
ξ1
Rin

)
5
3

− 1

]}

3
5

−Rin . (3.37)

Again, Na = bNb/a is the number of Kuhn segments, whereas Nb is the degree of polymer-
ization.

One can perform two simple sanity checks on this result for the brush height in a
spherical geometry. First, when Rin → ∞, the planar thickness (Eq. (3.30)) is recovered.
Second, when the distance between two grafting points is equal to their Flory radius, i.e.

ξ1 = RF = aN
3/5
a , the chains are barely in contact thus the thickness L0, sp is equal to the

Flory radius RF.

Concentration Perspective

Another way to derive the brush height L0, sp has been discussed in the literature [DC82,
WP86, BM12]. Assuming ξ(r)/ξ1 = r/Rin , Eq. (3.25) gives

Φ(r) =

(

Rina

ξ1

)4/3

r−4/3 . (3.38)

Since the monomer concentration c(r) = Φ(r)/a3, we can use the constraint of monomer
number again [DC82, WP86]:

Nf = 4π

∫ Rout

Rin

dr
[

c(r) r2
]

, (3.39)

where f is the total number of chains in the brush. Consequently,

L0, sp = Rout −Rin = Rin

[

1 +
5

3
Na

a5/3

ξ
2/3
1 Rin

]3/5

−Rin . (3.40)

This also satisfies L0, sp → Naa
5/3ξ

−2/3
1 when Rin → ∞.

Comparison between the two ways of estimating L0, sp for a range of ξ1 (when Nb = 80)
and Nb (when f = 103 and ξ1 = 2.8σ) is shown in Fig. 3.2. For the same Nb and ξ1, the
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Figure 3.2: Comparison of L0 predicted by Eq. (3.30) (solid, “Planar”), Eq. (3.37) (dashed, “Sum”),

and Eq. (3.40) (dotted, “Int”) as a function of grafting distance ξ1 (when Nb = 80) and Nb (inset,

when f = 103 and ξ1 = 2.8σ), given Rin = 8σ.

value of L0, sp calculated using both methods are lower than the planar L0, pl, as the chains
spread out at larger distance from the substrate. When the grafting density decreases
(ξ1 increases), the brush thickness L0 predicted by the blob arguments (Eq. (3.30) and
(3.37)) reduces to L0 = RF when ξ1 = RF , after which the system enters the mushroom
regime. The result from the concentration perspective (Eq. (3.40)) does not capture this
requirement. Thus, Eq. (3.37) will be used later to predict the height L0, sp of a spherical
brush.

3.5.3 Osmotic pressure: spherical brushes

The second quantity required to be modified in Eq. (3.33) is the dependence of concentra-
tion on the geometry.

Φ(L) = Nafa
3/V =

Nafa
3

4π
3

[

(Rin + L)3 −R3
in

] . (3.41)

Thus, analogous to Eq. (3.33) and (3.32), we obtain the osmotic pressure in the spher-
ical geometry (L < L0, sp)

Πsp ≈ kBT

ξ30

(

(Rin + L0, sp)
3 −R3

in

(Rin + L)3 −R3
in

)9/4

, (L < L0, sp) . (3.42)
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Figure 3.3: The osmotic pressure Π vs the separation L between the two shells, for an example system

with parameters f = 103, Nb = 80, Rin = 8σ, (open circles), and another system with f = 80, Nb = 25,

Rin = 5σ, (closed circles). The dashed curves are predicted by the planar case Πpl (Eq. (3.33)), and

the dotted curves by the spherical case Πsp (Eq. (3.42)), with L0 shown in the keys. Solid curves are

the average between the planar and spherical predictions.

Here, ξ0 is the blob size at L = L0, sp, and is not ξ1 near the inner sphere. In the limit that
Rin → ∞, the planar case (Eq. (3.33)) is recovered.

3.5.4 Compression Results

Two sets of simulations of spherical polymer brushes are conducted. In each simulation, all
polymers have one end grafted to the inner sphere of radius Rin, and the other end confined
by a stiff harmonic potential to a concentric outer sphere that is L apart from Rin. The
confined ends of the polymers are allowed to diffuse laterally in the surface of the outer
sphere in order to mimic the the situation where they are anchored in a fluid lipid bilayer.
The osmotic pressure Π is measured by

Π(L) =

Nbf
∑

i=0

F ir/4π(Rin + L)2 , (3.43)

where F ir is the radial force that monomer i exerts on the outer spherical shell. The
monomers interact with the sphere via a WCA potential, thus F ir is nonzero only if
monomer i is close enough to the shell.
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The results from the two systems, one with parameters f = 103, Nb = 80, Rin = 8σ,
(open circles), and the other with f = 80, Nb = 25, Rin = 5σ, (closed circles), are shown
in Fig. 3.3. Without any fitting, both the planar theory (Eq. (3.33), dashed) and the
spherical theory (Eq. (3.42), dotted) describe the pressure in a semi-quantitative way.
More significantly, the average of the two predicted equations describes the simulation
data with a higher accuracy. This empirical improvement may be justified by the fact
that L ∼ Rin, thus the systems are in the crossover regime from the planar geometry to
spherical geometry. One can potentially increase the accuracy of the combined prediction
by tuning the relative weight between the planar and spherical parts instead of using a
simple 50:50 average. But because this weight may be system-dependent, thus a simple
average has been used.

Note that when L → L0, Π → 0, thus, on the semi-log plot Fig. 3.3, curves diverge
at L = L0. However, because in simulations one end of the polymer chains is confined to
the outer sphere, there will be forces between the other nonconfined monomers and the
sphere even if L > L0. This is why the theoretical curves deviate from the simulations
near L ∼ L0.

3.5.5 Full-range force-extension relation

Combining the results from the large compression and the large extension regimes together,
the force-extension behavior over the whole extension range can be predicted. To be more
specific, for the large compression regime, the average of Eq. (3.33) and (3.42) is calculated
as the osmotic pressure Π produced by the brush. The repulsive part of the force is the
osmotic force averaged over f chains, i.e. ΠA/f . For the large extension regime, Eq. (3.20)
is utilized for the tensile force due to the chain stretching. The repulsive and tensile forces
are then added as the total force per chain, Fchain. Fig. 3.4 shows this full-range force-
extension curve of a system consisting of f = 343 linkers of Nb = 30, grafted on a surface
of radius Rin = 11.12σ (solid curve). A clear crossover from repulsive force to tensile force
can be observed as the separation L between the two shells increases.

To cross-check this theoretical brush model, simulation data (open circles) are also
presented. For these data, the repulsive force per chain is the total osmotic force on the
outer sphere (using Eq. (3.43)) divided by the number of chains f . The tensile force (when
R−Rin > L0) is the force needed to hold the two ends of each chain at a certain distance.
The total force Fchain is the sum of the repulsive and tensile forces. As can be seen in
Fig. 3.4, our theory describes the simulation data with high accuracy. Note that there is
no fitting involed: all parameters in the theory are known.
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Figure 3.4: Single chain force Fchain as a function of separation L = R − Rin. Data from simulation

of a system which consists of f = 343 linkers of Nb = 30 grafted on a surface of radius Rin = 11.12σ

are shown as open circles. The solid curve is a theoretical prediction as described in the main text. The

dashed curve shows the free energy E of the chain obtained by integrating the force.
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4 Membrane elasticity I:
The bending modulus by buckling

In the previous chapter, the mechanical properties of the polymer chains in our nanoparticle
composites have been investigated. The elastic properties of the other major component of
the design, namely the lipid membrane, will be studied in this and the following chapter.

4.1 Introduction

4.1.1 Helfrich theory

In aqueous solutions, lipid molecules spontaneously aggregate into quasi-two-dimensional
surfaces, called lipid membranes, whose lateral length scale can be several orders of magni-
tude larger than their thickness. At length scales only a few times larger than the lipid size,
the (free) energy of a membrane surface S can be quantitatively described by a curvature
elastic theory proposed by Helfrich [Hel73]:

E [S] =
∫

S
dA

{

1

2
κ (K −K0)

2 + κKG

}

+ γ

∮

∂S
ds , (4.1)

where the total curvature K = K1 +K2 is the sum of the two local principal curvatures
K1 and K2, and the Gaussian curvature KG = K1K2 is their product [Car76, Kre91]. In
addition to the two corresponding elastic moduli, namely the bending modulus (or the
bending rigidity) κ and the Gaussian curvature modulus (or the saddle-splay modulus)
κ, two other material parameters enter this expression: first, the spontaneous membrane
curvature K0, which corresponds to the linear term in this quadratic expansion and quan-
tifies the intrinsic lipid curvature a membrane prefers; and second, the edge tension γ, a
free energy cost per unit length of an open edge, where lipids rearrange to minimize their
exposure to water. The first integral in Eq. (4.1) extends over the whole surface S, while
the second covers the boundaries ∂S.

Despite its simple form, the Helfrich Hamiltonian Eq. (4.1) is a remarkably accurate
model for the physics of fluid lipid membranes and has been successfully applied to a
broad range of biological situations, for which it has provided extremely useful descrip-
tions, including the shape transformation of membrane vesicles like red blood cells [DH76,
SBL91, NG05], various lipid phases [GCHT85, Lei86, ST93], membrane budding and
pearling [JL93, BZM94], and membrane fusion [ZVC93, Sie99, KK02].

If one wishes to apply Helfrich theory, the four material parameters in the Helfrich
Hamiltonian need to be known. The spontaneous K0 normally vanishes for a bilayer due
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4 Membrane elasticity I: The bending modulus by buckling

to up-down symmetry, but generally remains nonzero for a monolayer [Mar06]. If the two
leaflets in the bilayer are asymmetric, K0 can be deduced from the shape of curved regions
with opposing K0 [WHZ12], or from simulating half cylinders [SN11]. The edge tension
γ can be determined, both in experiments and in simulations, by studying membrane
pores [KSG+03, TdOB04b, TdOB04a, WdOEB06]. A method to computationally deduce
the first elastic modulus, κ, will be the focus of this chapter, leaving the second modulus
κ for the next chapter.

4.1.2 Existing methods to measure κ in simulations

In simulations, the most widely used method to determine the bending modulus κ is to
measure the height undulation spectrum 〈|hq|2〉 of a flat lipid membrane [GGL99, LE00,
MM01, AV02, Far03, MdVM04, WF05, CKD05, CD05, BB05, MNK07, WD10, WPWB11,
BBS+11, SN11], which is proportional to 1/κq4, where q is the wave vector. However, since
this method requires sampling of a relatively weak fluctuation signal (kBT/κ ∼ 1/20) for
very long time,1 in order to obtain accurate statistics, the computational cost is normally
high. Moreover, to alleviate contaminations of the signal “leaking in” from the high q
regime, where 〈|hq|2〉 ∝ q−2 [BBS+11], one has to simulate sufficiently large membranes,
which substantially increases the simulation cost [Des09] (see also Section 2.1.1). In addi-
tion, it is unclear whether the values of κ derived from these weak bending situations can
also correctly quantify the membrane elasticity at high curvatures.

Recently, Watson et al. proposed to determine the bending modulus κ from the fluctu-
ations of lipid orientations [WPWB11], where smaller membranes and shorter simulations
suffice since the orientation fluctuations are not only much more local than the height fluc-
tuations, but also relax faster. However, in order to link the microscopic lipid orientation
to the macroscopic membrane bending, one needs a theoretical model that has to make
additional assumptions, which may or may not be easily tested (c.f. Section 2.1.3).

Both methods mentioned above passively observe a membrane’s response to thermal
fluctuations. Another type of method employs active bending of membranes. Generally
speaking, the passive methods receive larger signals, and hence become more efficient, when
the material is soft, i.e. when its stiffness approximates a few kBT ; in contrast, the active
methods are more appropriate when the material is stiff (κ ≫ kBT ). Lipid membranes
fall between these two regimes; a regular lipid membrane has a bending modulus around
20 kBT [NTN00, Mar06]. Thus, both passive and active methods can be applied.

As an example of an active method of determining κ, inspired by membrane tether
pulling experiments [BW89, CDBN05, TB08], Harmandaris and Deserno have deduced
κ by simulating cylindrical membrane tethers across periodic boundary conditions, and
obtained comparable results with those from height fluctuations [HD06]. In this method,
measurements of the tensile force Fz applied to hold the membrane at a certain curvature
1/R provide direct access to the bending modulus κ = FzR/2π. This force is a ground
state signal, so that the simulations do not require long equilibration time. One drawback

1Equilibration time τ ∼ q−3 (or τ ∼ q−4) in the presence (absence) of solvent [SL93, ZG96].
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of this method, however, is that the cylindrical membrane essentially divides the simulation
box into two separate compartments, which is fine for implicit lipid models [HD06, AYS08,
SN11] like the Cooke model they used, but troublesome for explicit solvent models: It is
necessary to equilibrate the chemical potential of the solvent molecules between the two
sides, and since on typical simulation time scales the membrane is fairly impermeable to the
solvent, this equilibration does not happen automatically. Another potential problem with
this method is the asymmetry between the inner and outer membrane leaflets: For lipid
models with low flip-flop rate, the two leaflets may not be able to relax their lipid chemical
potential during the course of simulations, which then introduces spurious contributions
to the force from membrane stretching and compression that are not simple to disentangle
from the curvature signal.

Recently, Baoukina et al. also simulated membrane tethers using the Martini model
with explicit solvent [BMT12]. Instead of a pre-set cylinder that extends across the pe-
riodic boundaries like in the work of Harmandaris and Deserno, in their simulations a
flat membrane is actively pulled with an external force to form a tether. In this way,
the solvent molecules are not separated by the membrane, and therefore the equilibration
problem of the solvent is solved. However, the equilibration problem of the lipids could
potentially be worse: when using the cylinder method, one can intentionally place different
numbers of lipids in the two leaflets, using an estimation based on the cylinder radius and
the estimated location of the surface of inextension. As one pulls a tether from an initially
flat membrane, the two leaflets start with the same number of lipids. As the tether grows
in length, the area difference between the two leaflets increases. Since this stress is not
relaxed by lipid flip-flop on the time scale of the simulations, the associated energy will
contribute on top of the bending contribution.

Despite the existence of many methods to determine the bending modulus κ in sim-
ulations, existing results are far from consistent, a state of affairs that appears to mirror
the situation in experiments [Nag13]. For example, depending on the method employed
to analyze the same simulation trajectory, by observing either the height undulations or
the orientation fluctuations, Watson et al. found a factor of two difference in the κ they
derived [WPWB11]. Thus, new methods to determine the bending modulus κ, with high
accuracy and efficiency, are still needed.

In the rest of this chapter, a new method to determine the bending modulus κ in simula-
tions, originally proposed by Noguchi [Nog11] and subsequently extended by us [HDD13],
will be described. In this method, a medium-sized strip of membrane is laterally com-
pressed to form a buckle along its longer edge. At different strains, the restoring forces,
which are proportional to κ and caused by this active bending, are measured. This stress-
strain relation provides a direct measurement of κ, which turns out to be accurate and
computationally efficient. Moreover, this setup solves both aforementioned problems with
the solvent and the lipid equilibration. Unless noted otherwise, all derivations and results
are based on our publication [HDD13].
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Figure 4.1: Illustration of the geometry of a buckle.

4.2 Theory

4.2.1 Hamiltonian and shape equation

For a membrane in a box of dimensions (Lx, Ly, Lz), as shown in Fig. 4.1, when its width Ly
is limited to about 10 lipid sizes, the buckle exists only along the x-direction; its curvature
in the y-direction is negligible. Thus, the Gaussian curvature is essentially zero, and the
Gaussian term in the Helfrich Hamiltonian can be neglected.2 Also, since there is no open
edge due to the periodic boundary conditions, the last term in the Helfrich Hamiltonian,
Eq. (4.1), can be dropped as well. This leaves only one term in the Hamiltonian: the term
with the total curvature. If the shape of the membrane is parameterized by the angle ψ(s)
between the membrane tangent direction and the horizontal direction, as shown in Fig. 4.1,
then the Helfrich Hamiltonian can be transformed into

E [ψ] = Ly

∫ L

0
ds

{

1

2
κ ψ̇2 + fx

[

cosψ − Lx
L

]}

, (4.2)

where ψ̇ is the curvature of the membrane, L > Lx is the contour length along the buckle,
and fx is an unknown Lagrange multiplier for the constraint that the buckle needs to fit
into the box along the x-direction.

A simple functional variation shows that ψ(s) satisfies the (Euler-Lagrange) differential
equation

ψ̈ + λ−2 sinψ = 0 with λ2 =
κ

fx
. (4.3)

2A deeper reason why we can skip this Gaussian term is that there is no topological or boundary changes
in this buckling process. By the virtue of the Gauss-Bonnet Theorem, as introduced in Technical Note 5.1,
the integral of the Gaussian term is a constant, and thus does not contribute to the forces.
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Multiplying both sides with ψ̇ and integrating yields 1
2 ψ̇

2 − λ−2 cosψ = const. Denoting
the angle at the inflection points by ψi, the first integral of Eq. (4.3) is

ψ̇ = λ−1
√

2(cosψ − cosψi) . (4.4)

With the boundary condition of ψ(0) = 0, the solution of Eq. (4.4) can be solved as
s/λ = F[arcsin(

√
m sin ψ

2 ),m], where

m ≡ sin2
ψ

2
(4.5)

and F(x,m) is an elliptic integral of the first kind.3 Inverting this solution gives the angle
as

ψ(s) = 2 arcsin
{√

m sn [s/λ,m]
}

. (4.6)

By integrating the cosine and the sine of that angle, one derives a parametric representation
of the buckle shape:

x(s) = 2λ E[am[s/λ,m],m]− s , (4.7a)

z(s) = 2λ
√
m (1− cn[s/λ,m]) . (4.7b)

The amplitude za = z(L/4) = 2λ
√
m, as can be simply read off from Eq. (4.7b).

4.2.2 Constraints of imposed strain

In our solution Eq. (4.7), the parameter m = sin2 ψ2 of the elliptic integrals, as well as the
characteristic length λ, still need to be fixed for a given geometry.

Utilizing Eq. (4.6) and (4.7a), the boundary conditions

ψ(L/4) = ψi , and (4.8a)

x(L/4) = Lx/4 , (4.8b)

can be translated into

L

4λ
= F

[π

2
,m
]

= K[m] , and (4.9a)

Lx = 8λE[m]− L . (4.9b)

Then the length λ can be eliminated, which gives the relation between the strain γ and
the elliptic parameter m as

γ :=
L− Lx
L

= 2

(

1− E[m]

K[m]

)

. (4.10)

3From here, all notations regarding elliptic integrals follow the conventions in Abramowitz and Ste-
gun [AS72].
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To invert Eq. (4.10) and obtain an expression for m as a function of γ, we expand m as a
power series of γ:

m(γ) =
∞
∑

i=1

ai γ
i , (4.11)

whose coefficients ai can be determined by plugging Eq. (4.11) back to Eq. (4.10), expanding
both sides in powers of γ, and matching the terms order by order in γ. This results in a
coupled system of equations for the coefficients ai that can be easily solved. The resulting
series expansion for m(γ) is then found to be

m(γ) = γ − 1

8
γ2 − 1

32
γ3 − 11

1024
γ4 . . . (4.12)

The coefficients ai for terms up to γ10 are listed in Table 4.2. Since the accuracy of this
expansion is better than 2 × 10−9 for the most relevant range of γ 6 0.5, m(γ) can be
considered as known.
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Figure 4.2: Sketch of all five series expansions as a function of γ: Sa(γ) . . . Se(γ), with coefficients

listed in Table 4.2. Since an ideal buckle overlaps at γ ≈ 0.8487, the current theory no longer applies

beyond this value of strain.
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4.2.3 Stress-strain relation

Given the relation between the elliptic parameter m and the strain γ, the stress-strain
relation can be derived from Eq. (4.9a):

fx(γ) = κ

(

4

L
K[m(γ)]

)2

= κ

(

2π

L

)2 ∞
∑

i=0

bi γ
i (4.13a)

= κ

(

2π

L

)2 [

1 +
1

2
γ +

9

32
γ2 +

21

128
γ3 . . .

]

. (4.13b)

The coefficients bi of the first eleven terms in Eq. (4.13) can again be found in Table 4.2.
An illustration of Sb(γ) is shown in Fig. 4.2. The nonzero constant term in Eq. (4.13)
indicates a minimum stress is required to create a buckle.

For a fluid lipid membrane, a compression in the x-direction will also induce a response
in the orthogonal y-direction, contrary to what would be the case for a solid sheet like a
piece of paper. In order to derive this, one can first calculate the total energy and then
diffferentiate it with respect to Ly. Inserting Eq. (4.4) and (4.13) into the Hamiltonian
Eq. (4.2), one gets the total energy as

E = Lyfx(Lx − L cosψi) = fxA [2m− γ] = κ(2π)2
L2
y

A

∞
∑

i=0

bi γ
i+1

i+ 1
, (4.14)

where A = LLy is the total membrane area. Then, the stress in the y-direction can be
obtained:

fy(γ) = − 1

Lx

(

∂E
∂Ly

)

A

= κ
Ly
Lx

(2π)2

A

∞
∑

i=0

ci γ
i (4.15a)

= κ
(2π)2

A

Ly
Lx

[

1− 5

2
γ − 23

32
γ2 − 39

128
γ3 . . .

]

. (4.15b)

The values of ci for terms up to order γ10 are included in Table 4.2. As shown in Fig. 4.2,
the sum Sc =

∑

ciγ
i turns negative when γ > 0.3567, meaning the force in the y-direction

would become contractile. More interestingly, the membrane has a negative compressibility
in the y-direction, since the derivative of this curve is negative everywhere. Also notice
that, within a meaningful range of strains, the change in the stress in the y-direction, fy,
is about four times that of the x-direction, fx.

4.2.4 Fluctuation corrections

The derivations above only account for the ground state response, while the thermal fluc-
tuations are neglected. For real simulations, these fluctuations induce more wrinkles and,
consequently, contract the membrane and affect the stresses. In order to mitigate the fluc-
tuations in the y-direction, i.e. along the ridge of the buckle, the box size in this dimension
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4 Membrane elasticity I: The bending modulus by buckling

is restricted to be roughly 10 lipid diameters, as shown in Table 4.3. Thus, the major
fluctuations only exist in the x-direction, i.e. along the buckle. Nevertheless, these affect
the stresses in both the x- and the y-directions, just as in the case of the ground state
stresses.

A careful analysis of the undulations shows that the correction for the force Fx in the
x-direction is [HDD13]

δFx = Ly δfx = −3 kBT

2L

∞
∑

i=0

diγ
i (4.16a)

= −3 kBT

2L

[

1 +
5

8
γ +

27

64
γ2 +

295

1024
γ3 . . .

]

, (4.16b)

and in the y-direction

δFy = −kBT
Lqc
2πLy

[

1 +
3π Ly
L2qc

∞
∑

i=0

eiγ
i

]

(4.17a)

= −kBT
L

Lya

[

1 +
3Lya

2L2

(

1− 11

8
γ − 37

64
γ2 − 345

1024
γ3 . . .

)]

, (4.17b)

where the coefficients di and ei again are listed in Table 4.2. The length a appearing in
Eq. (4.17) is a microscopic cutoff on the order of the membrane thickness.

It is worthwhile to examine the magnitudes of these two corrections. When compared
to the ground state forces,

∣

∣

∣

∣

δFx
Fx

∣

∣

∣

∣

∼ 3

8π2
× L

Ly
× kBT

κ
∼ 1% (4.18)

∣

∣

∣

∣

δFy
Fy

∣

∣

∣

∣

∼ 1

4π2
× L2

Lya
× kBT

κ
∼ 5% . (4.19)

In the estimation above, L ∼ 40 nm, Ly ∼ 8 nm, a ∼ 5 nm, and kBT/κ ∼ 1/20 have been
assumed. Real parameters of the systems studied can be found in Tables 4.3. Thus, the y
force experiences bigger fluctuation corrections.

To conclude the theoretical basis of the buckling method, one final point should be
emphasized regarding the fluctuation corrections Eqs. (4.16) and (4.17). Even though one
can use these corrections to analyze the data from simulations, the practical impact from
thermal fluctuations should not be overlooked; whenever they contribute a significant part
of the total signal, extra computation time is required to obtain good statistics. From this
perspective, it is recommended to extract the bending modulus κ from the stress measured
in the x-direction, where the fluctuation corrections contribute roughly one percent to the
total signal, as compared to the 5% in the y-direction. Our simulation results will confirm
this expectation.
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4.3 Simulation setup

4.3 Simulation setup

The method to determine κ from simulating membrane buckles has been applied to three
membrane models different in resolution and representation of solvent: the generic Cooke
model [CKD05, CD05], Martini-DMPC [MdVM04, MRY+07], and DMPC in the Berger
model [BEJ97]. The former two CG models have been described in Section 2.1.4. The
last one, the Berger lipid model, is a united-atom model, where all atoms are explicitly
represented, except for the hydrogen atoms in CH, CH2, and CH3 groups. This model
has been shown to successfully reproduce structural and dynamical quantities of phospho-
lipids [LE01, WE06]. System parameters, as well as results from the literatures, are listed
in Table 4.3. The systems using the Cooke model are simulated with ESPResSo [LAMH06],
while the other two systems are run with GROMACS [HKvdSL08].

Requirements on system dimensions

A couple of requirements on the system size should be considered when setting up the
simulations. On the one hand, a smaller membrane speeds up the simulations. On the
other hand, a membrane that is too small may give rise to unfavorable finite size effects.

One possible concern is that a small membrane buckle may have an unfavorably high
radius of curvature at the buckle’s “turning points” that may push the Helfrich theory
to its limit.4 This can be estimated using our theory. The highest curvature appears
at the maximum and minimum of the buckle. Plugging ψ(0) = 0 into Eq. (4.4) yields
ψ̇max = ψ̇(0) = 2

√
m/λ. Then, with m = sin2 ψ2 and Eq. (4.9a), one can derive the ratio

between L and the minimum radius of curvature Rmin as

L

Rmin
= 8

√

m(γ)K[m(γ)] (4.20a)

= 4π
√
γ

[

1 +
3

16
γ +

39

512
γ2 +

303

8192
γ3 . . .

]

. (4.20b)

For example, the right-hand-side of the equation above is approximately 10 at a strain
γ = 0.5. If the minimum tolerable radius of curvature is roughly equal to the membrane
thickness d, i.e. Rmin ≈ d ≈ 4 nm, then the membrane length L should be at least 40 nm.

Another concern is about the width Ly of the membrane, along the ridge of the buckle.
A small Ly not only reduces the number of lipids one needs to simulate, but, more impor-
tantly, suppresses the undulation modes in the y-direction. For this reason the membrane
is set to high aspect ratios of Lx/Ly between 5 to 7, and the undulations in the y-direction
can then be neglected in our theory. However, reducing Ly too much may create artifacts
in simulations due to the periodic boundary conditions. Thus, we have chosen Ly such
that there will be roughly ten lipids in the membrane along this direction.

4Helfrich theory treats the membrane as an infinitely thin two-dimensional surface. However, when the
radius of curvature becomes very close to the membrane thickness, this 2D assumption may break down,
and then further corrections of higher order terms in the curvatures, such as K4, K2KG, K

2
G, and (∇K)2

which are quartic in the principal curvatures, are needed [CGS03].

57



4 Membrane elasticity I: The bending modulus by buckling
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Figure 4.3: Snapshots of two buckled membranes using the Cooke model (left, blue and yellow beads)

and the Martini model (right, mainly pink and green) at γ = 0.4, overlaid on the theoretical shape

prediction from Eq. (4.7). Even though the agreement between the theory and the simulation snapshots

is excellent, it has to be pointed out that the membrane is subject to thermal undulations, thus most of

the time its shape will deviate from the predicted one.

Initial configurations

The initial configurations for these three systems were set up in two ways. For the Cooke
model and the Martini model, a pressure that is a few times larger than the maximum
of Fx/LyLz was applied in the x-direction, so that the membrane strip was compressed to
form a buckle. Various snapshots with different strain γ were taken from this compression
trajectory as the initial configurations to measure the stresses fx and fy.

This method, however, became computationally expensive for the Berger model, since
the higher resolution increased the number of degrees of freedom, and the time step had to
be reduced to 1/10 compared to Martini. Hence, the initial configurations were created
by back-mapping from Martini configurations to Berger. The basic principles of back-
mapping have been explained in Section 2.1.5. Detailed simulation parameters can be
found in the supplementary information of the original paper [HDD13]. The number of
lipids in the Martini system and the Berger system is not the same because a new set of
Martini configurations with fewer lipids were specifically created for back-mapping to the
Berger level, so that a smaller atomistic system can save some computing time.

4.4 Results

4.4.1 Buckle shape

The very first test of the presented theory is to check whether the the membrane remains as
a buckle and its shape indeed follows the prediction from Eq. (4.3). Two example snapshots
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Figure 4.4: The forces in the x-direction (filled circles) and the y-direction (open circles) at strains

between [0, 0.6] for a set of simulations using the Cooke model. The solid curves are fits including

fluctuation corrections, while the dotted curves have these corrections removed to show their significance.

from simulations using the Cooke model and theMartinimodel are shown in Fig. 4.3. The
agreement between the shape in simulations and predicted by theory is excellent. However,
as shown in Fig. 1 in Noguchi’s publication [Nog11], buckled membranes fluctuate around
the predicted shape. Thus, one needs to select snapshots with a high symmetry before any
meaningful comparison can be made.

4.4.2 Stress-strain relation

After cross-checking the shape, the next step is to examine whether the measured stress-
strain relations are in agreement with the theory described in Eqs. (4.13) and (4.15). In
Fig. 4.4, the forces in the x-and the y-direction are plotted for a buckled membrane using
the Cooke model, each with a fit to the theoretical predictions of Fx + δFx and Fy + δFy
in Section 4.2. The excellent agreement between the simulation data and the fits shows
that our theory predicts very accurately the functional form of the forces, which cannot be
adjusted by the fitting, since the main fitting parameter κ is merely a scaling factor, and
the only other parameter a essentially creates only a downward shift of the curve.

More importantly, Fig. 4.4 also verifies the necessity of the flucutation corrections in
the y-direction, Eq. (4.17b). This correction δFy lowers the stress-strain curve (from the
dashed curve to the solid one), and thus improves the quality of the fit. Without this
correction, the curve will always go through zero at γ ≈ 0.3567, regardless of the value of
κ, as shown in Fig. 4.2. In other words, these simulation data are more compatible with
the theory with fluctuation corrections. However, the correction in Fx did not show any
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Model κx/kBT κy/kBT a = 2π/qc R
Cooke 12.8± 0.4 12.9± 0.8 (7.3± 2.4)σ 5.43± 0.12

Martini 29.0± 1.0 27.7± 1.9 (4.4± 2.1) nm 4.59± 0.08
Berger 24.8± 0.9 26± 11 (20± 315) nm 4.5± 3.0

Table 4.1: Summary of the results found using the buckling method. Here, κx and κy are the bending

modulus as derived from the buckling stress in the x- and y-direction, respectively; a is the value of the

microscopic cutoff length in the fluctuation correction δFy from Eq. (4.17); and R is the ratio between

the (shifted) buckling energy Esim(γ) − E0 measured in the simulation and the buckling free energy

E(γ) corresponding to the measured value of κ.

noticeable difference in the fit, confirming our expectation that the force in the y-direction
demands more significant corrections (c.f. Eq. (4.18)).

4.4.3 Bending modulus

Fitting the stress-strain relation Eqs. (4.13) and (4.15) to the simulation data, one can
obtain the bending modulus κ, as collected in Table 4.1. The results for the Cooke and
the Martini model are also in good agreement with those results published in literatures
(c.f. the last column in Table 4.3). For the Berger model, our results lie between previous
results determined by the height fluctuation method [BBS+11] and by the orientation
fluctuation method [WPWB11]. Moreover, the values of κ determined from the stresses
in the x- and the y-directions are consistent within error bars. However, the errors on
κx are significantly smaller than those on κy. As we have seen, the fluctuation correction
plays a more significant role in the y-direction, and we therefore should also expect that
fluctuations contribute more thermal noise to our measurements in the κy. Thus, we
recommend to derive κ from fitting the forces in the x-direction. Note that all errors are
obtained by a Monte Carlo resampling of the fits (see Appendix A).

4.4.4 Microscopic cutoff

The last check for the method is to examine the values of the microscopic cutoff a = 2π/qc,
which is the second fitting parameter used in fitting the y-force. This cutoff a must be
introduced to regularize a short wavelength divergence in the integral leading to Eq. (4.17),
which reflects the fact that the Helfrich Hamiltonian ceases to be a valid theory for a real
membrane at small scales. We therefore expect this cutoff a to be comparable to the
length scale at which actual membrane structure beyond Helfrich theory becomes visible,
and the most obvious length scale which then comes to mind is the membrane thickness
d. As shown in the second last column in Table 4.1, even though the errors on a are
relatively large, especially for the Berger model, our results are of the correct order of
magnitude. For comparison, the head-to-head thickness of the Cooke membrane is roughly
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5σ, and for Martini-DMPC it is about 3.5 nm. For the Berger result, the accuracy of the
y-forces is insufficient to justify such a fluctuation correction; an error resampling shows
qc approximately follows a Gaussian distribution with its mean very close to zero. As a
result, the statistics on a ∝ 1/qc deteriorates badly.

4.5 Discussions

4.5.1 Advantages

In the previous section, the membrane buckling method has been proven to be a reliable way
to obtain the bending modulus κ. It also offers several advantages compared to alternative
methods.

So far, the most widely used method to determine κ in simulations is to measure
the height undulations of a flat bilayer membrane [GGL99, LE00]. As described earlier
in Section 4.1.2, this method requires sampling large membranes for a long time to get
accurate statistics for the fluctuation signal. As a comparison, the requirements for our
buckling method are more manageable: One only needs to simulate a medium size mem-
brane, and the simulation time required by accurate measurements is shorter, since it is
an active method to measure the ground state forces. Although, for the systems studied
in this work, several simulations were conducted at different strains γ, only one of them is
necessary, because 1) κ is the only fitting parameter in the x-force Fx (Eq. (4.13b)) and 2)
more importantly, Fx depends very weakly on γ for the most relevant range of γ ∈ [0, 0.6]
(c.f. Fig. 4.2), thus a data point at any meaningful γ would work for the fitting. Another
simulation at zero tension which provides the free length L of the strip may also be waived,
since the error on the value of L is unlikely to affect the result of κ: One can use the known
area per lipid and the box size in the y-direction to estimate the membrane length L.

Like the proposed buckling method, simulating cylindrical membrane tethers is also an
active method to determine κ [HD06]. Yet, the buckling method improves two drawbacks
of the cylinder method that affect its popularity. Both of these two are related to the
problems in equilibration: The first one has to do with the balance of solvent molecules
inside and outside the cylinder for explicit solvents models. The second one is the more
general difficulty of equating the chemical potential of lipids in the inner and the outer
leaflet, which is limited by the slow flip-flop rate in models with relatively high resolution,
such as the Berger model. For models like the Martini model and the Berger model, one
may need to artificially create holes on the cylinder wall to allow solvent exchange and to
expedite lipid flip-flop through the pore boundaries. On the contrary, the top and bottom
parts of the solvent in the buckling method are connected through the periodic boundary
conditions, so the solvent can be equilibrated without any extra efforts. The two leaflets are
also up-down symmetric, so lateral diffusion within the same leaflet is enough to balance
the monolayer chemical potential.

Watson et al. proposed another method to determine κ from analyzing the orientation
fluctuations of lipids [WPWB11]. Such methods can be computationally very efficient,

61



4 Membrane elasticity I: The bending modulus by buckling

thanks to the short length scale and fast relaxation of the local fluctuations. Even though
the buckling method is unlikely to be computationally more efficient, it does not rely
on microscopic underpinnings of the Helfrich theory, which one may or may not want to
assume. Of course, this is not to disapprove of these microscopic theories, without which
one cannot understand the microscopic nature of the membranes.

4.5.2 Limitations

With some of the advantages pointed out, it is also worthwhile considering some potential
limitations of the buckling method, mainly regarding the isotropic lateral stress Σ induced
by compression. The buckled membrane is created by compression along their longer
dimension, i.e. the x-direction in our case. A minimum stress is required to form the
buckle, as shown in the x-force Eq. (4.13). After the buckle has formed, part of this stress
will be released, except for a part [HDD13]:

Σ = −fx cosψi . (4.21)

Thus, this isotropic stress vanishes only when ψi = π/2, or equivalently γ ≈ 0.543. Before
this strain, Σ remains finite, which may reduce the area per lipid of the membrane, increases
its thickness, and consequently affect the apparent κ.

Another more subtle consequence of this finite compressive stress Σ is that it could
trigger a phase transition of the membrane. A fluid membrane just above the gel-fluid
transition temperature may choose to change into the gel phase upon compression, so that
the lipid area can be reduced. Since we keep the box size (an extensive variable) constant,
it is likely that only parts of the membrane will transition into the gel phase, thus forming
a two-phase system, to which our buckling theory does not apply. Even if the whole piece
has become in the gel phase, and our theory still holds, the outcome is not for the original
fluid membrane any more. In this case, one also has to pay special attention to any possible
defects in the membrane, which will greatly release the stress and provide unrealistically
low κ.

4.5.3 Free energy of buckling

Knowing the x-force at various strains γ allows the measurement of the free energy E(γ)
of the system by integrating Fx with respect to the change in the canonically conjugate
variable Lx. This process is essentially a thermodynamic integration.

Eq. (4.25) provides a way to calculate the free energy of the buckle E(γ):

E(γ) =
∫ γ

0
dλ

〈

∂Epot(λ)

∂λ

〉

, (4.26)

where in this case the control parameter λ is the strain γ. The term in the bracket is

∂Epot(γ)

∂γ
=
∂Epot

∂Lx

∂Lx
∂γ

= Fx(γ)L , (4.27)
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Technical Note 4.1: Thermodynamic integration

Assume a system follows a Hamiltonian, which is a function of particle positions and momenta {xi,pi},
as well as a control parameter λ:

H({xi,pi};λ) = H0({xi,pi}) + U({xi,pi};λ) , (4.22)

where i is the index for each individual particle in the system, and only the extra term U contains λ. This
parameter λ describes different states of the system, for instance the strain γ of a buckled membrane.
Then, the free energy of this system as a function of the parameter λ is given by

F(λ) = −β−1 lnZ(λ) , (4.23a)

with Z(λ) =
1

h3NN !

∫

d{ri}d{pi} e−β[H0({xi,pi
})+U({xi,pi

};λ)] , (4.23b)

where β = 1/kBT , and d{ri}d{pi} include all particles.
The free energy changes with λ as

∂F
∂λ

= −β−1 1

Z(λ)

∂

∂λ
Z(λ)

= −β−1 1

Z(λ)

∂

∂λ

∫

d{ri}d{pi}
(

−β ∂U(λ)

∂λ

)

e−β[H0({xi,pi
})+U({xi,pi

};λ)]

=

〈

∂U(λ)

∂λ

〉

λ

,

(4.24)

where 〈·〉λ denotes thermal averaging over the canonical states belonging to the Hamiltonian H =
H0 + U(λ). So the derivative of the free energy with respect to λ is equal to the thermal average of
∂U/∂λ. The free energy difference between two states of λ1 and λ2 is then

F(λ2)−F(λ1) =

∫ λ2

λ1

dλ

〈

∂U(λ)

∂λ

〉

. (4.25)

where Fx = −∂Epot/∂Lx and ∂γ/∂Lx = −1/L have been used.5 Plugging this back into
Eq. (4.26), one obtains the free energy of the buckle:

E(γ) = L

∫ γ

0
dλ 〈Fx(λ)〉 . (4.28)

This equation states that one can measure the free energy E by integrating the thermal
average of Fx with respect to Lγ = (L− Lx).

The measured E(γ) is shown as the open circles in Fig. 4.5. With the value κ = 12.8 kBT
measured in simulation, Eq. (4.14) predicts the free energy should be the solid curve, which
is in good agreement with the free energy measured by thermodynamic integration via
Eq. (4.28). So, our theory indeed predicts the free energy of a membrane buckle.

5Note that this result is not surprising: Since dF = −S dT +Fx dx+µ dN , and T , N remain constant,
then dF = Fx dx = Fx d(L− Lx).
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Figure 4.5: The shifted potential energy (filled circles and dashed curve) and the free energy (open

circles and solid curve) of a buckled Cooke membrane for strains γ ∈ [0, 0.6]. The total potential energy

Esim(γ) is measured in simulations and shifted to start from zero. The free energy E is determined

by numerically integrating the x-force Fx, as shown in Eq. (4.28). The solid curve is predicted by our

theory of buckled membrane, Eq. (4.14), using the κ obtained from fitting Fx to Eq. (4.13). The dashed

curve is the solid curve scaled up with a proportionality factor R, since the inset suggest that the ratio

R = (Esim(γ)− E0)/E is independent of γ.

4.5.4 Thermodynamics of membrane bending

In contrast to the free energy E(γ), the potential energy Esim in simulations can be extracted
directly from the simulation without any additional steps. With a shift such that Esim(γ =
0) = 0, this energy Esim −E0 is also plotted in Fig. 4.5. Maybe unsurprisingly, the energy
Esim monotonically increases with γ, since after all energy is being transferred into the
system in the form of work done by Fx. And yet, this is a nontrivial statement, since all
we know from dF = Fx dx is that the free energy will increase. But that could also mean
lowering the energy and lowering the entropy even more.

A much more interesting observation is that the free energy change E to buckle the
membrane is much lower than the potential energy change Esim − E0. Since E = E − TS,
this means entropy favors bending of membranes. As shown in the inset of Fig. 4.5,
the ratio between the excess energy Esim − E0 and the free energy E , defined as R ≡
(Esim(γ)−E0)/E(γ), is essentially a constant, regardless of the value of the strain γ. This
constant ratio at varying geometry suggests that we have identified a material property.
Thus, since the bending modulus κ is the material property which quantifies the free energy
per unit area per unit squared curvature, a constant R suggests to decompose the modulus
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Figure 4.6: The temperature dependence of the bending modulus κ for the Cooke model (wc/σ = 1.6).

κ is determined using the cylindrical tether method. On this log-log plot, the data is fit to a straight

line, giving κ ∝ T−(R−1) with R = 5.07± 0.45.

into an enthalpic part κE and an entropic part κS , i.e. κ = κE − TκS , with a constant
ratio R = κE/κ with respect to γ.

The measured values of R are included in the last column of Table 4.1. Very sur-
prisingly, although the three models studied vary vastly in their resolution, so that the
contributions from the degrees of freedom to the entropy could be very different, all three
of them show an R value around 5, meaning the entropy lowers the free energy cost to
approximately 20% of the energetic cost required to bend the membrane into a buckle.

Thermodynamics requires κS = −∂κ/∂T , and consequently 1 − R = ∂ log κ/∂ log T .
Assuming the value of R stays constant around a specific temperature T0 at which one
measures κ, the implication of this thermodynamic statement can be very useful: one can
extract the bending modulus κ at a neighboring temperature T using the simulation results
at T0 as

κ(T ) = κ(T0)

(

T0
T

)R−1

. (4.29)

Considering the difficulties of obtaining one reliable measurement of κ at one temperature,
Eq. (4.29) is a pleasing bonus.

To test the validity of Eq. (4.29), a set of simulations of a Cooke membrane, with
the same parameter of wc = 1.6σ, are conducted at a range of temperature T , and the
bending modulus κ is measured using the cylinder method [HD06], as mentioned earlier in
Section 4.1.2. Results are plotted in Fig. 4.6, which shows that a fit to Eq. (4.29) leads to
R = 5.07 ± 0.45. This agrees well with the value of R = 5.43 ± 0.12 measured with the
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4 Membrane elasticity I: The bending modulus by buckling

buckling method.

In addition, for all of the three models we studied, the ratio R is bigger than 1, which
according to Eq. (4.29) means that all these membranes soften upon heating. This intuitive
observation should not be taken for granted: In experiments, DMPC lipids have been shown
to soften upon cooling at T = 300K [FPBMM94, MGP+97, CKL+05], 3K higher than its
main transition temperature Tm,DMPC ≈ 297K. This is known as “anomalous swelling” in
the literatures. The data measured by Chu et al. suggests a strongly negative value for
R [CKL+05].

The discrepancy between our simulation results and the experiments seems to origi-
nate from an overestimation of the transition temperature Tm of the membrane models:
The values Tm for Martini-DMPC and Berger-DMPC may be lower than values measured
in experiments, thus the temperature in our simulations corresponds to some higher tem-
perature in experiments. This may explain why we did not find the anomalous swelling
behavior, which experimentally is only observed a few degrees above Tm. High above Tm,
membranes do indeed become more flexible when heated. For instance, using the exper-
imental data from Pan et al. [PTNKN08], for DOPC between 288K and 318K, which is
well above its Tm,DOPC ≈ 253K, we find the ratio R ≈ 2.8 ± 0.2, qualitatively consistent
with our results.

In fact, Rodgers et al. [RSdM+12] find Tm ≈ 274K for the Martini-DMPC used in
this study.6 For the Berger-DMPC, no earlier studies have measured its transition temper-
ature Tm. But for a similar DPPC and DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine)
bilayer, which have 2 and 4 extra CH2 per tail, the Berger force field is estimated to give
values of Tm that are 5 − 6K lower than those measured in experiments [CK10]. Both
observations suggest to compare our results of the Martini and the Berger DMPC at
300K to real DMPC at higher temperatures, where it softens when warmed up, just like
we observe.

As discussed in the previous chapter, it is unlikely that a molecular model can cor-
rectly reproduce all properties of the target system. Thus, it is not surprising to find
that the phase transition temperatures of the Martini and even the Berger model are
not quite spot on. This indicates some room for improvement of these models, but it is
much less disconcerting than the alternative that these models fail to capture some basic
membrane thermodynamics. Nevertheless, the buckling method provides not only reliable
measurements of the bending modulus κ, but also a probe into the thermodynamics of
membranes.

6Note that they simulate exactly the same CG lipid model that we also use in the present study, but
interpret it as a model for the lipid 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which has two CH2

units fewer per tail chain than DMPC. This is not a mistake, though, because the resolution of the Martini

model is not accurate enough to distinguish such a small difference in the atomistic structure.
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4.6 Outlook

4.6 Outlook

In this chapter, the buckling method for determining the bending modulus κ of membranes
has been introduced and illustrated using three lipid models, namely the generic CG Cooke
model, the chemical-specific Martini CG model, and the atomistic Berger model. By
measuring the force to buckle a membrane as a function of the strain, κ can be reliably
determined with good accuracy. The required computation resource is moderate, even for
an atomistic model like the Berger model. Moreover, by measuring the potential energy
and the free energy separately, it is possible to deduce κ at neighboring temperatures close
to the one at which the original simulation has been done.

Based on the advantages of this buckling method, it is reasonable to expect that this
method can also be applied to several other types of membrane systems. One important
possibility is to measure κ of a membrane in the gel phase [DID]. The conventional height
fluctuation method cannot be easily employed for a gel membrane because κ is normally
several times higher compared to a fluid membrane, and consequently the fluctuation signal
will be several times weaker (

〈

|hq|2
〉

∝ 1/κ). However, this is not a problem for the buckling
method, as long as the whole membrane is in the gel phase. This is because the buckling
method monitors the ground state forces, which are proportional to κ, instead of fluctuation
signals. Of course, some difficulties may have to be overcome, such as to keep the high
curvature segments from melting or forming defects [NSM+12]. One also should restrict to
fit only the x-forces, since the behaviors of the y-force mainly depend on the fluidity of the
membrane, which is rather different in the gel phase than in the fluid phase. Yet, there is
nothing fundamental to invalidate the application of this method to membranes in the gel
phase.
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i 0 1 2 3 4 5 6 7 8 9 10

ai 0 1 −1
8 − 1

32 − 11
1 024 − 17

4 096 − 55
32 768 − 179

262 144 − 9 061
33 554 432 − 13 285

134 217 728 − 8 093
268 435 456

bi 1 1
2

9
32

21
128

795
8 192

945
16 384

2 247
65 536

42 639
2 097 152

6 446 547
536 870 912

7 574 715
1 073 741 824

70 769 457
17 179 869 184

ci 1 −5
2 −23

32 − 39
128 −1 221

8 192 − 1 281
16 384 − 2 793

65 536 − 49 809
2 097 152 − 7 197 933

536 870 912 − 8 183 511
1 073 741 824 − 74 665 071

17 179 869 184

di 1 5
8

27
64

295
1 024

1 605
8 192

2 163
16 384

92 253
1 048 576

1 944 495
33 554 432

20 252 835
536 870 912

104 242 545
4 294 967 296

530 346 267
34 359 738 368

ei 1 −11
8 −37

64 − 345
1 024 −1 755

8 192 − 2 289
16 384 − 95 907

1 048 576 − 1 999 953
33 554 432 − 20 680 605

536 870 912 − 105 867 135
4 294 967 296 − 536 173 605

34 359 738 368

Table 4.2: Coefficients of γi for the five series expansions derived in this chapter. The associated functions are displayed in Fig. 4.2.
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Model lipid T
beads

lipid
Nlipids Nsolvent L Ly

κ

kBT
[Ref] , method

Cooke wc/σ = 1.6 1.1 ǫ/kB 3 1344 — 66.75σ 12.0σ
11.7± 0.2 [HD06], T
12.5± 1 [HD06], HF

12.44± 0.26 [HBD12], T

Martini DMPC 300K 10 1120
19 623

1 bead=4H2O
46.75 nm 7.1 nm

18 [dOS07a], HF (at 323K)

36 [BBS+11], HF
40.3 [Shk06], HF

40.5 [HJMD13], HF

Berger DMPC 300K 46 934
47 896
(SPC)

39.2 nm 7.1 nm
15.7 [WE09], HF
18 [BBS+11], HF
36 [WPWB11], OF

Table 4.3: Summary of the properties of the three lipid models used. Various methods for obtaining κ have been applied in the past, in

particular measuring the height fluctuations of a membrane (HF), the orientation fluctuations of the lipids (OF), or the axial force along

a tether (T). Note that the work by den Otter and Shkulipa [dOS07a] studied DPPC and not DMPC, but on the CG Martini level this

difference is insignificant.
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5 Membrane elasticity II:
the Gaussian curvature modulus

On mesoscopic scales, lipid membranes can be described by the Helfrich theory outlined
early in the previous chapter. Two curvature elastic moduli, namely the bending modulus
κ and the Gaussian modulus κ, enter Helfrich theory and play important roles. Several
methods to determine κ have been described in the previous chapter, including a new
protocol which extracts κ from the stress-strain relation of a buckled membrane. The
second modulus, κ, is more subtle to investigate. It will be the focus of this chapter.

5.1 Introduction

In Helfrich theory, as described in Section 4.1.1, the (surface) free energy density of a quasi-
two-dimensional membrane quadratically depends on the two local principal curvatures,
giving two elastic moduli: the bending modulus κ and the Gaussian curvature modulus
κ. Because of the Gauss-Bonnet theorem (see Technical Note 5.1), which states that the
surface integral of the Gaussian curvature term remains constant if there is no topological
or boundary changes [Kre91], this Gaussian term is irrelevant in many processes, e.g. in
the buckling of a membrane stripe studied in the previous chapter. However, for some
other processes, the Gaussian term does play a significant role, hence we need to know the
value of this modulus κ. Unfortunately, methods to determine κ are sparse, again due to
the Gauss-Bonnet theorem: one needs to study those processes in which topology and/or
boundary vary. Moreover, to derive an accurate value of κ requires careful control and
manipulation mechanisms for the systems of interest, which may be difficult to realize.

The Gauss-Bonnet theorem might offer some peace of mind, considering that κ only
matters if topology or boundary change. However, many biologically relevant processes in-
volve precisely such changes, and hence the contribution from the Gaussian curvature. Such
processes include vesicle fusion during trasport processes, the remodeling of the Golgi ap-
paratus and endoplamic reticulum, and endo-/exo-cytosis. For instance, during the process
of two vesicles merging into one, the genus g of the topology increases by 1, and conse-
quently the Gaussian terms contributes −4πκ ≈ 240 kBT , assuming κ ∼ −κ ∼ 20 kBT .
Even though the energy barrier to reach some intermediate states may be lower than this
large energy difference between the initial and final states, and active cell processes like
protein-mediated vesicle fusion are fueled by ATP hydrolysis (∼ 20kBT per ATP molecule
under physiological conditions), the dependence of the intermediate states on κ is still very
important [Sie08]. Hence, an accurate value of κ is important to studies of such topics.
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5 Membrane elasticity II: the Gaussian curvature modulus

Technical Note 5.1: Gauss-Bonnet theorem

For a two-dimensional surface S with boundary ∂S, the Gauss-Bonnet theorem states that [Car76, Kre91]

∫

S

dAKG = 4π(1− g)−
∫

∂S

ds kg , (5.1)

where KG is the Gaussian curvature of the surface, kg the geodesic curvature of the boundary ∂S, and
g the genus, i.e. the number of “handles”, in the topology. The geodesic curvature kg is defined as the
change in the tangent vector of the curve ∂S projected on the tangent plane of the surface S. When
the geodesic curvature vanishes everywhere on a curve, this curve is called a “geodesic”, which is as
close as one can get to a straight line on a curved surface. If, in the processes of interest, the boundary
∫

ds kg and the topology g remain constant, then the right hand side of the equation is a constant.
Therefore, the integral of the Gaussian curvature is constant.

Despite the significance of κ for many interesting membrane-related problems, much
less is known about the values of κ compared to the bending modulus κ. Theoretically, the
stability of planar bilayers requires the elastic ratio κ/κ ∈ (−2, 0) [Hel94]. If one is willing
to make the assumption that changes in the splay of a lipid in one direction can be relaxed
to some extent by a change in the orthogonal direction, then the elastic ratio between
monolayer moduli can be further restricted to −1 6 κm/κm 6 0 [TKS98]. The bilayer
κ, however, is not simply twice the monolayer value κm, unlike what is the case for the
bending modulus κ = 2κm: connecting the two Gaussian moduli requires the introduction
of two further microscopic quantities, namely the lipid spontaneous curvature K0m and the
distance z0 between bilayer midplane and the surface of inextension (defined as the surface
within the monolayer where the surface area stays constant upon bending). One then finds
the following relation [Hel81, Hel94, SKBS+90, SK04, Mar06]:

κ = 2 (κm − 2z0K0mκm) . (5.2)

In other words, κ 6= 2κm, since the monolayer lipid curvatureK0m and the distance between
the bilayer midplane and the surface of inextension z0 are generally nonzero.

Experimentally, only a handful of results about κ are available in the literature, most
of which are based on examining membrane phase transitions between the lamellar phase
and some inverted phases [TKS98, Sie06, Sie08]. Most of these results are collected in
Table 1 of Hu et al. [HBD12]. The majority of this small number of studies [TKS98,
SK04, Sie06, Sie08] report a monolayer elastic ratio κm/κm ∈ (−0.95,−0.70). Two other
studies [LSH86, BDWJ05] found the bilayer ratio κ/κ ∼ −0.9.1 In simulations, however,
reliable methods to determine κ with high accuracy are still needed.

In this chapter, we describe our new method to measure the bilayer Gaussian modulus
κ in simulations. The vesiculation process of a circular patch of membrane is investigated,

1Baumgart et al. [BDWJ05] did not measure κ directly, but ∆κ between the gel and fluid phases instead.
If one assumes that the ratio κ/κ in both phases is the same, then one gets −0.9 for the bilayer elastic
ratio.
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5.2 Theory

Figure 5.1: Example snapshots of a vesiculation process of a Cooke membrane containing 1400 lipids.

in which the boundary would vary.2 As we will show, this method provides accurate mea-
surements of κ with a moderate requirement on computational resources. Another existing
method to obtain κ, namely the stress profile method, is also studied for comparison. We
will show that this second strategy, the only one which so far has been used semi-routinely
in the literature, produces physically implausible results that are also at odds with our
method.

5.2 Theory

5.2.1 The vesiculation process

Our method of determining the Gaussian curvature modulus κ is based on the vesiculation
process of lipid membranes, in which a flat membrane patch spontaneously curves and
closes up into a complete lipid vesicle. A sequence of simulation snapshots of this process
is shown in Fig. 5.1.

Essentially, this vesiculation process is an interplay between the excess free energy at
the open edge of the membrane patch, and the energetic cost to bend it into a vesicle [Hel74,
Fro83, BR92]. The former increases linearly with the circumference of the patch, hence
prefers to close up the membrane to eliminate the open boundary; while the latter increases
with membrane curvature, but is (as long as the final vesicle is spherical) capped by the
constant 4π(2κ+κ), regardless of the membrane size. Consequently, beyond a critical size
when these two energy contribution balance each other, the edge energy overweighs the
bending energy of a vesicle, hence the membrane will vesiculate in order to reduce its total
energy [Hel74, Fro83, BR92].

Helfrich studied this process nearly forty years ago when trying to predict the size
of lipid vesicles formed by ultra-sonication [Hel74]. In his one-page paper, the Gaussian
modulus is neglected, so that the transition from the flat initial state to the final vesicle
state can be quantitatively characterized by the Helfrich Hamiltonian (see Eq. (4.1) in

2The topology of the membrane also changes once it closes up. But this is not directly relevant to our
analysis.
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5 Membrane elasticity II: the Gaussian curvature modulus

the previous chapter). With some knowledge of the other material parameters from ex-
periments and other sources,3 his prediction on the size of the final vesicles agrees pretty
well with experimental observations. If, conversely, one wants to determine the Gaussian
curvature modulus κ, one can turn Helfrich’s argument around and look for information of
the final vesicle size, or better, quantitative informations about the characteristics of this
vesiculation transition.

5.2.2 Hamiltonian

Consider a membrane of area A = 4πR2, where R is the radius of the final closed vesicle.
If that membrane is still an open patch, and if that patch remains axisymmetric and takes
the shape of a spherical cap with radius 1/c during the vesiculation process, its total energy
according to Eq. (4.1) is [Hel73, Hel74, Fro83, BR92]:

E = Ebend + Eedge = 4π(2κ+ κ)R2c2 + 4πγR
√

1−R2c2 . (5.3)

Subtracting from E the energy of the flat state, Eflat = 4πγR, and normalizing by the
energy of a spherical vesicle, Eves = 4π(2κ+ κ), the scaled excess (free) energy ∆Ẽ of such
a curved patch is [HBD12]

∆Ẽ(x, ξ) ≡ E − Eflat
Eves

= x+ ξ
[√

1− x− 1
]

, (5.4)

where we have defined the scaled (squared) curvature x and a material parameter ξ as:

x = (Rc)2 , ξ =
γR

2κ+ κ
, and R =

√

A

4π
. (5.5)

The reaction coordinate x ranges from 0 (flat state) to 1 (final vesicle of radius R).

Notice that four material properties, namely the two elastic moduli κ and κ, the edge
tension γ, and the membrane size R, are combined into one single dimensionless parameter
ξ, which completely determines the functional shape of the energy ∆Ẽ(x, ξ) (see the inset
of Fig. 5.2). For ξ < 1, the planar state is the global energy minimum, thus a patch would
remain flat. At ξ = 1, the planar state and the vesicle state share the same energy. For
larger values of E , the vesicle state becomes the global minimum. However, for 1 < ξ < 2
there exists a barrier between the two “endpoint” states, located at x∗ = 1 − (ξ/2)2 with
a barrier height ∆Ẽ∗ = (1 − ξ/2)2. Given that all the other three parameters can be
separately measured, κ can be deduced if one can obtain information about the barrier,
such as x∗ or ∆Ẽ∗, or in fact the full shape of the transition free energy ∆Ẽ(x, ξ)

A few remarks about our application of the Helfrich Hamiltonian to this vesiculation
process are in order. First of all, our theory is a ground state theory, meaning that thermal
fluctuations are not included. For this to be a reasonable approximation, the system size

3Helfrich guessed the edge tension tension γ based on a suggestion from P. G. de Gennes [Hel74].
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5.2 Theory

needs to be carefully considered, as will be discussed later. Second, the patch has been
assumed to follow an axisymmetric and spherical shape, which may not hold at some parts
of the membrane, such as at the edge. However, the results presented later will confirm
that our simple theory based on these assumptions fits our simulation data. Third, since
the lipids can easily swap between the two leaflets by moving around the open edge, their
chemical potential and the area difference between the leaflets is in fact equilibrated.

5.2.3 Determining κ: the splitting probability

In order to obtain κ, some information about the functional form of the barrier ∆Ẽ is
required. One possibility is to directly measure this (free) energy curve, e.g. using the
thermodynamic integration method described in Technical Note 4.1, and then fit Eq. (5.4)
to it. However, free energy calculations can be complicated and time-consuming. So
instead, the patch-closure probability P (x) will be sampled in simulations, which means
that we will measure the probability of finding a membrane that starts with a scaled
curvature x and eventually closes up into a vesicle. This is inspired by the intuition that, at
the top of the barrier, at x = x∗ = 1− (ξ/2)2, this probability P (x∗) will be approximately
1/2.4 Thus, if one can locate x∗ by measuring P (x), then ξ can be calculated, which
provides κ = ξ/γR− 2κ.

In fact, this probability of patch-closure as a function of x can be analytically calculated
as the splitting probability in a one-dimensional diffusive process [vK07], which describes
the probability of reaching one adsorbing end of the diffusion range (here x = 1) before the
other one (here x = 0). With ∆Ẽ(x, ξ) being the diffusion barrier, this splitting probability
is given by [vK07]

Pξ,D̃(x) =

∫ x

0
dy e∆Ẽ(y, ξ)/D̃

∫ 1

0
dy e∆Ẽ(y, ξ)/D̃

, (5.6)

where D̃ is an effective diffusion constant. Due to the simple functional form of ∆Ẽ(x, ξ),
Eq. (5.6) can actually be evaluated analytically, yielding [HBD12]

Pξ,D̃(x) =
2
√

D̃ A(x) +
√
π ξ B [C +D(x)]

2
√

D̃ A(1) +
√
π ξ B [C +D(1)]

, (5.7)

4P (x) is not strictly symmetric on both sides of x∗, since the potential barrier ∆Ẽ(x, ξ) is not.
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Figure 5.2: The probability of patch-closure P (x) for System 1 in Table 5.1. Snapshots of two initial

configurations with different initial curvatures (x = 0.28 and x = 0.56) are included. Inset: The

functional form of the energy barrier ∆Ẽ at different ξ.

where abbreviations are defined as

A(x) = exp

{

ξ

D̃

}

− exp

{

x+ ξ
√
1− x

D̃

}

, (5.8a)

B = exp

{

4 + ξ2

4D̃

}

, (5.8b)

C = erf

{

ξ − 2

2
√

D̃

}

, (5.8c)

D(x) = erf

{

2
√
1− x− ξ

2
√

D̃

}

. (5.8d)

In summary, the procedure to derive κ is the following: First, create initial configura-
tions of curved axisymmetric membrane patches of (squared, scaled) curvature x; Second,
repeatedly simulate the evolution of these patches and thereby measure their probability
P (x) of closing up into vesicles; Third and last, fit Eq. (5.7) to the P (x) sampled in sim-
ulations with two fitting parameters ξ and D̃. From there, determine κ from ξ, using the
definition of ξ in Eq. (5.5).

To illustrate the applicability of our procedure, and the resulting high-quality fit,
Fig. 5.2 shows the patch-closure probability P (x) determined from one of the Cooke systems
studied (System 1 in Table 5.1, plotted as solid circles) and its corresponding fit (solid
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curve). Since each simulation is essentially a Bernoulli trial with the flat state and the
vesicle state as its outcomes, the number of vesicles found follows a binomial distribution.
Its parameter P (x) can be estimated as the ratio between the number of vesicles Nvesicle(x)
and the total number of simulations Nsim(x). The error on the estimated P (x) is then
σP =

√

P (x)[1− P (x)]/Nsim. A fit using Eq. (5.6) provides ξ = 1.503±0.003; the statistical
error on ξ is merely 0.2%. Note that, these errors σP are “honest”: on average a third
of the points are outside the error bar. More importantly, the excellent quality of the fit
confirms that in simulations the membrane indeed follows the reaction coordinates assumed
in our theory, i.e. during the closing process the cap remains axisymmetric and thus can
be characterized by a single reaction coordinate x.

Let us conclude with a few remarks on this procedure of pinning the value of κ using
the patch-closure probability P (x).

First, the reason why it is possible to measure P (x) and skip the free energy calculation
of ∆Ẽ is because the complete “reaction pathway” is assumed and controllable: At every
point along the pathway, the membrane patch approximately maintains the shape of a
spherical cap with a varying curvature x. More importantly, such pre-curved states can be
readily created in simulations on demand. Without either, this procedure would not work.

Second, it is worthwhile to emphasize that the splitting probability in Eq. (5.6) is not
the equilibrium probability of finding the patch in the vesicle state, which would be the
Boltzmann factor of the vesicle state. We could of course also have chosen to approach this
problem from an equilibrium point of view and for instance determine the ratio between the
Boltzmann factors at the end points. However, since the barrier tends to be many kBT , any
naive sampling would quickly have gotten stuck in a formidable barrier crossing problem, in
which the crossing rates are exponentially suppressed. Then, we would have had to amend
the simulations by additional speed-up tricks, such as forward flux sampling [DBCC98]
and transition path sampling [AFtW06]. In contrast, the P (x) employed here is essentially
the first-passage probability of a non-equilibrium barrier-crossing problem starting from
different initial positions along the barrier, the most relevant of which are close to the
barrier in terms of kBT . This saves the time to wait for passive crossing events by simply
starting the system up the barrier, close to the maximum, and then letting go. Note
that this first-passage probability is also what is easily measured in simulations: once it is
“clear” that the patch will form a vesicle or flatten up, this simulation is stopped, and its
result is counted into P (x).

Third, the Hamiltonian Eq. (5.4) does not include the excluded volume and hydrody-
namic effects of the solvent. Hydrodynamics will indeed change the dynamical behavior of
our system. However, as long as the dynamics along the reaction coordinate remains diffu-
sive, our theory should still apply (maybe with a different effective diffusion constant D̃).
In fact, hydrodynamics indeed would make the patch more spherical [NG06], and thus fol-
low more closely along the reaction coordinate. Moreover, the complicated hydrodynamics
at the pore when the membrane is about to close up also is irrelevant, since the destiny of
the patch is already decided before the vesicle completes (see more details in Section 5.3.3).
The most relevant states of the patch are those around the top of the potential barrier, in
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which the membrane states will be set up to half-closed, or at least not “almost-closed”,
to avoid the high curvature corrections in Helfrich theory.

Fourth and last, fitting with the exponentials A(x) and B in Eq. (5.7) may be numer-
ically unstable when D̃ is really small. In that case, one can divide the numerator and the
denominator in Eq. (5.7) by a common factor of exp(ξ/D̃) and proceed with fitting to the
new formula.

5.2.4 Stress profile method

In the literature, another method to determine the Gaussian curvature modulus κ is the
so-called stress profile method, which connects κ with the lateral stress profile Σ0(z) of a
flat and tension-less bilayer. By expanding the energetic cost to deform a thin continuum
elastic sheet and mapping it to the Helfrich Hamiltonian, the lateral stress Σ, the product of
monolayer bending modulus κm and spontaneous curvatureK0m, and themonolayer Gaus-
sian curvature modulus κm are given by [Hel81, SKBS+90, GK92, GZ92, Hel94, Mar06]

1

2
Σ =

∫ ∞

0
dz Σ0(z) , (5.9a)

−κmK0m =

∫ ∞

0
dz Σ0(z)(z − z0) , (5.9b)

κm =

∫ ∞

0
dz Σ0(z)(z − z0)

2 , (5.9c)

where z0, which we already have encountered in Eq. (5.2), is the distance from the bilayer
midplane to the surface of inextension of each monolayer. Note that in the case of zero
surface tension, Σ =

∫

dz Σ0(z) = 0, Eq. (5.9b) is independent of z0, meaning κmK0m can
be determined without the knowledge of z0. Similar to the monolayer version in Eq. (5.9c),
the bilayer Gaussian modulus κ is given by the second moment of Σ0(z) as

κ =

∫ ∞

−∞
dz Σ0(z)z

2 . (5.10)

Observe that combining Eqs. (5.9a), (5.9c), and (5.10), at zero tension, is a way to derive
Eq. (5.10).

5.3 Simulation setup

A few aspects of the implementation of the patch-closure method need to be elaborated
before the results can be presented.

5.3.1 Requirements on the system

As explained in the previous section, our method relies on sampling the probability P (x)
of membrane patches folding into vesicles. For both the planar state and the vesicle state
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to occur a significant number of times, a barrier is needed in between, which requires
1 < ξ < 2. Thus, from the definition of ξ in Eq. (5.5),

1 <
γR

2κ+ κ
=

R

ℓ
< 2 , (5.11)

where the characteristic length ℓ of a given membrane is defined as

ℓ ≡ 2κ+ κ

γ
. (5.12)

Then, Eq. (5.11) means the patch size R should be in the range of (ℓ, 2ℓ).
Since ℓ < 2ℓ is true when ℓ > 0, and the latter holds because −2κ < κ < 0 implies

2κ + κ > 0, these two limits on R described in Eq. (5.11) can always be satisfied by an
appropriate choice of patch size R. However, when other constraints are also considered,
the requirements on the system size may turn out to be rather restrictive. On the one
hand, R, which is the radius of the final closed vesicle, should not be too small; otherwise
the curvature of the membrane is too large for the quadratic Helfrich theory used here.
For this reason, we (somewhat optimistically) require this radius to be larger than the
membrane thickness, i.e. R > d. This requirement would become a problem when ℓ is
small due to weak bending moduli 2κ+ κ or a strong edge tension γ. On the other hand,
R cannot be too large, either; the undulations of the patch should not make a significant
contribution to the system since our method is a ground state theory. This requirement
may become problematic when the patch is stiff or the edge tension is weak.

On top of these requirements explained above, for the barrier which separates the flat
state and the vesicle state on the free energy landscape (Eq. (5.4)), one may also want
its height to be at least a few times higher than the thermal energy. This will make the
transition of P (x), from the “low state” of small initial x which favors the planar state
to the “high state” of large initial x that is more likely to end up with the vesicle state,
sharper, and thus the error on ξ can be smaller. If we denote the barrier height as αkBT ,
where α ∼ 5, then this requires the patch size R to satisfy

R . 2ℓ

[

1 +
1

2

√

αkBT

π(2κ+ κ)

]−1

. (5.13)

Assuming 2κ+κ ≃ κ ≃ 20 kBT and α = 5, one gets R 6 1.75 ℓ. Or if 2κ+κ ≃ κ ≃ 13 kBT ,
as in the Cooke model, α = 5 gives R 6 1.70 ℓ. Both are not far from the upper bound in
Eq. (5.11).

In short, when considering the systems to which the patch-closure method will be
applied, one should have these requirements mentioned above in mind, and on has to be
somewhat lucky that these can actually be satisfied. For the Cooke systems we studied (see
Table 5.1 for system parameters), ℓ ranges from 0.75 to 1.5 times the membrane thickness.
The value of ξ measured for these systems ranges from 1.4 to 1.7, satisfying all requirements
above. Although the radius of the final vesicle is less than twice the membrane thickness,
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Figure 5.3: Sketches of the “groove” and the “sandwich” constraints used to maintain the initial

curvature of the membrane patches.

Helfrich theory seems to hold at this high curvature [HD06], especially if we are mostly
interested in half-closed vesicles (x ∼ 1/2). The Martini system has a slightly smaller
ξ = R/ℓ ≈ 1.36 in order to save some simulation time.

5.3.2 Initial conditions

When setting up the pre-curved patches, the same number of lipids is initially placed in
the two leaflets for simplicity. Due to the opposite sign of their curvatures, the inner
leaflet is compressed, while the outer is stretched. However, the lipid chemical potential
of the two leaflets needs to be balanced. For this, the membrane is constrained by an
external potential of a spherical shape to maintain the preset bilayer curvature, but this
potential is chosen such that the lipids are allowed to laterally diffuse within the bilayer and
move around at the open edge. Then, after the two layers are equilibrated, this external
constraint is removed and the membrane patch evolves freely towards either of the two
endpoint states.

For the simulations with the Cooke model, we used the molecular dynamics package
ESPResSo [LAMH06]. This external potential is implemented as a “groove” constraint,
which harmonically constrains the radial distance r of the last tail bead of each lipid around
the desired radius r0 = 1/c. Its functional form is:

Vgroove(r) =



















V0

[

(

r − r0
d

)2

− 1

]

, |r − r0| < d

0 , otherwise,

(5.14)

where the depth of this potential is V0 = 0.5 ǫ, and the maximum range is d = 1.5σ. A
sketch of this “groove” is shown in Fig. 5.3. Each patch is given 100τ to equilibrate, after
which this potential is turned off and the patch is released.

The simulations using the Martini model are slightly more complicated. The initial
curved caps are generated by backmapping, which has been explained in Section 2.1.5,
from the Cooke configurations equilibrated using the procedures described above. Then
the membrane is “sandwiched”, but not squeezed as shown in Fig. 5.3, between two soft
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Technical Note 5.2: Shape anisotropy indexes

The relative shape anisotropy index κ2s is based on the eigenvalues of the gyration tensor S, which is
defined as

S =
1

N

N
∑

i=1

(ri − rcm)⊗ (ri − rcm) , (5.15)

where ri is the position of the ith particle of relevance, rcm = 1
N

∑N
i=1 ri is the center of mass, and

the sums loop over all such particles in the simulation.
Following Theodorou and Suter [TS85], if one arranges the eigenvalues of S in ascending order, i.e.
λ21 6 λ22 6 λ23, the radius of gyration R2

g, then the asphericity b, the acylindricity c, and the relative

shape anisotropy κ2s are given by:

R2
g = λ21 + λ22 + λ23 , (5.16a)

b = λ23 −
1

2
(λ21 + λ22) , (5.16b)

c = λ22 − λ21 , (5.16c)

κ2s =
b2 + 3

4c
2

R4
g

. (5.16d)

spheres to allow for further equilibration while its curvature is maintained. The two spher-
ical walls interact with only the lipids, but not the water molecules, via a WCA potential.
This is implemented with the Mean Field Force Approximation boundary (MFFA) ap-
proach [RMM08]. It is also worthwhile to point out that the “groove” might not be an
appropriate choice for Martini: Recall that Martini lipids have two tails, then the groove
would bias both tail ends towards the midplane, which is not necessarily typical, since many
conformations are possible in which one tail is stretched towards the middle but the other
tail wiggles up. This “sandwich” avoids this bias.

5.3.3 Sampling closure probability and shape anisotropy

Another important technical aspect of the simulation setup concerns the procedure to
sample the patch-closure probability P (x). The value of that probability is calculated as
the number of vesicles formed divided by the total number of trials.

For each simulation, it is better to monitor the evolution of the system in order to
decide if an endpoint state, either the flat state or the vesicle state, has been reached, then
this simulation can be stopped. This is preferable to using some pre-determined run-time:
if, on the one hand, the fixed run-time is too short, then it is insufficient for the patch
to evolve; if, on the other hand, the run-time is too long, then computational resource is
wasted.

In order to obtain good statistics on P (x), at least 200 simulations are conducted for
each initial curvature x when using the Cooke model, and normally 8 different x will be
sampled for each membrane system studied, as listed in Table 5.1. This large number of
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Figure 5.4: Time-evolution of the relative shape anisotropy κ2s for 20 randomly chosen simulations

of System 1, initially constrained to x = 0.456 for 100τ and then released. As shown in Fig. 5.2,

the measured closure probability P (x) here is roughly 60%, consistent with the fact that 13 out of 20

simulations close up into vesicles.

simulations poses a computational question of how to automatically stop a simulation if
either the flat or the vesicle state has been reached. One solution is to automatically moni-
tor the state of the membrane shape. Ideally, one can simply use the reaction coordinate x.
However, it is not easy to calculate given the coordinates of the lipids. So a relative shape
anisotropy index κ2s [TS85] is used instead. This index is defined in Technical Note 5.2.

For a perfect and complete sphere, κ2s = 0. For an infinitely thin circular disk, κ2s =
1
4 .

Of course, the membrane patches do not belong to any one of these ideal cases due to both
their nonzero thickness and the thermal fluctuations. Through careful “experimentation”,
we found that κ2s < 0.01 is enough to label the patch as in the vesicle state, while κ2s > 0.22
indicates it becomes a flat disk. Note that the precise value of the cutoff at the flat end
and the vesicle end does not matter so much, since at these two ends the system diffuses in
a potential that is strongly biased to either end. As long as the barrier is large enough, it
becomes exponentially unlikely that a trajectory that is very close to the end still completely
changes its mind. Hence, the precise cutoff is not that important.

As an example, the time evolution of κ2s for twenty pre-curved membrane patches
is plotted in Fig. 5.4 for System 1 in Table 5.1. These patches are initially constrained
at x = 0.456 (or κ2s ∼ 0.125) for 100τ , using the procedure described in the previous
subsection, and then let go. One finds 13 out of 20 close up into vesicles, consistent with
the P (x) ≈ 0.6 shown in Fig. 5.2. Note that, from only 20 trajectories, a difference of more
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than an order of magnitude in closure time can already be seen, which supports the need
to automate the termination of the simulations. Moreover, the plot also demonstrates the
diffusive behavior assumed in Section 5.2.3.

For the simulations of Cooke membranes, this analysis of shape anisotropy is imple-
mented in the MD package ESPResSo [LAMH06]. For the Martini simulations, no such
analysis is available with GROMACS [HKvdSL08] on the fly; thus a standalone Python
script is used to monitor the κ2s based on the last frame in the MD trajectory.

5.3.4 Other quantities measured

In order to obtain κ, several other physical quantities are required and thus need to be
measured separately in independent simulations.

Bending modulus κ

When using the Cooke model, κ is measured using the cylindrical membrane tether method
by Harmandaris and Deserno [HD06], as mentioned in the previous chapter.5 For each sys-
tem studied, five cylinder simulations are conducted at different radius that are comparable
to the radius of the caps that will be simulated for κ, and then the resulting values of κ are
averaged. For the study using the Martini model, two different methods are employed to
determine κ, namely the height fluctuation method and the buckling method, both have
been described in the previous chapter.

Edge tension γ

A simple simulation setup is used to measure the edge tension γ. A stripe of flat membrane
is placed in the simulation box in the xy-plane, and it extends infinitely through the periodic
boundary condition in only one of the two directions, e.g. in the y-direction. In the x-
direction, its width does not cover the box, so two open edges are present. Then the stress
in all three directions is measured, and γ is given by

γ = −1

2

[

Pyy −
1

2
(Pxx + Pzz)

]

LxLz , (5.17)

where Pii is the pressure in the i-direction for i = x, y, z (Notice that pressure and stress
differ by a minus sign), Lx and Lz are the box dimensions in the two directions along which
the stripe does not periodically connect. Note that Eq. (5.17) is valid for systems with or
without solvent. In the latter case, the pressure in the x- and z- directions are simply zero.

5Of course, the buckling method described in the previous chapter could have been employed as well;
but it so happens that this part of the thesis historically precedes the buckling work. However, since
Chapter 4 shows that for the Cooke model cylinders and buckles are both efficient and lead to the same
results, it does not matter which one we actually used.
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Membrane size R

The area A = 4πR2 of a spherical cap is estimated based on the area per lipid aℓ of a flat
tensionless bilayer, which is measured in a few simulations of 1000 lipids in the NP‖L⊥T
ensemble and averaged. This estimation ignores the area difference in the inner and outer
leaflet for a curved patch. But since the curvature of the caps are moderate, this error in
the membrane size A, and consequently in the radius of the closed vesicle R, is insignificant.
Moreover, it turns out that the previous two parameters κ and γ contribute to the major
part of the error on ξ, and thus on κ. Thus, no further corrections about the curvature
effect on A is necessary.

5.4 Results

5.4.1 Dependence on other parameters

Twelve different systems are studied using the generic CG Cooke model. The reasons to
start our study with a generic CG model are twofold: First, the curvature elastic prop-
erties in the Helfrich theory are macroscopic observables, and it is worthwhile to check
how universal these properties are (e.g., the elastic ratio κ/κ and its dependence on lipid
curvature). Second, the Cooke model is computationally efficient to allow us to study a
wide range of specific situations with excellent statistics, which we will use to support the
soundness of our underlying analysis.

These systems vary in the number of lipids, elastic properties, and spontaneous cur-
vature, as listed in Table 5.1. The elastic properties, mainly the bending modulus κ and
the edge tension γ, are tuned by changing the attraction range wc in the Cooke model
described in Section 2.1.4. The spontaneous curvature is adjusted by changing the size of
the head bead, b, of each lipid.

In general, all of the systems show a bilayer elastic ratio of κ/κ ≈ −0.95±0.1, in good
agreement with the scarcely available experiment results of κ/κ ≈ −0.9± 0.38 [BDWJ05],
and also within the more restricted theoretical range of −1 6 κ/κ 6 0 for monolay-
ers [TKS98]. However, as we have seen in the introduction, the connection between the
monolayer ratio, which is better studied experimentally, and the bilayer ratio we measured
in simulations, requires additional microscopic inputs, namely the spontaneous lipid cur-
vature K0m and the surface of inextension z0, which will be examined soon. Before that,
two more observations are worth pointing out.

Dependence on membrane size

First, three different system sizes are studied among System 1-3 and 4-6 at two different
values for the bending modulus κ. In each case, the elastic ratio |κ/κ| seems to slightly
increases for smaller systems. This is conceivable since the curvature of the final vesicle is
more substantial for smaller system, thus the higher order curvature corrections in Helfrich
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theory would become more important. However, the difference in κ/κ between these mea-
surements is insignificant within statistical errors obtained from Monte Carlo resampling
of the fit. Thus, we will ignore it in the following analysis and use the average from the
three sizes instead.

Dependence on bending modulus κ

Second, across System 1-3, 4-6, and 7, the effect of bending modulus κ on the elastic
ratio is examined. By setting wc to different values while keeping the head size b fixed,
the value of κ is lowered to roughly 10 kBT in System 7 (wc = 1.55σ), or increased to
approximately 18 kBT in System 4-6 (wc = 1.7σ), from the commonly quoted value of
12.5 kBT (System 1-3, wc = 1.6σ). Even though κ is changed by about 80%, the elastic
ratio is different only by several percents. There is a weak trend that |κ/κ| decreases as the
membrane becomes stiffer. Our tentative explanation for this phenomenon is the following:
increasing wc not only reduces the area per lipid, but also reduces the degree to which the
membrane can be compressed further. This corresponds to a larger Poisson ratio ν in
simple continuum theory [LL86], which can vary within the range of ν ∈ [−1, 0.5]. Recall
that within thin plate theory κ/κ = ν−1 [LL86], thus the less “compressible” a membrane
is, the higher its Poisson ratio is, and thus the less negative the elastic ratio κ/κ, in accord
with our observations here. However, this argument cannot be made more quantitative,
since membranes are not homogeneous and isotropic continuum materials. So it is better
to stop at this semi-quantitative level.

Dependence on lipid curvature K0m

As described in Eq. (5.2), the dependence of κ on the lipid curvature K0m is nontrivial. To
study this, the size of the head bead, b, is changed in Systems 1-3, 8, 9, 10, 11, and 12, such
that b/σ ∈ {0.92, 0.935, 0.95, 0.965, 0.98, 1.0}. As shown in Fig. 5.5, the elastic ratio varies
by ∼ 17% over this range, while the change in κ is merely 5% (see Table 5.1). To connect b
andK0m, a simply geometric model, shown as the inset in Fig. 5.5, is employed. This model
suggests that the spontaneous lipid curvature K0m = α/R0 ≃ α(b/bt−1)/2σ, using the fact
that b ≃ bt ≃ 1σ, where b and bt are the size of the head and tail beads, respectively. The
prefactor α would be 2 if only geometry mattered, but it would be smaller if the entropy of
lipid tail-bending fluctuations are included. Thus, we expect 1 6 α 6 2, and the value of
α will be estimated given the value of z0 measured independently. Plugging this geometric
model into Eq. (5.2) yields

κ

κ
=

(

κm
κm

+
αz0
σ

)

−
(

αz0
bt

)

b

σ

fit
= (0.69± 1.49)− (1.71∓ 1.56)

b

σ
, (5.18)

where the second part of the equation is obtained by fitting to the data (straight line in
Fig. 5.5). Note that the errors of the fit are strongly anti-correlated.

In addition to confirming the linear relation between the elastic ratio κ/κ and the
spontaneous curvature K0m, the fit above also provides additional information regarding
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Figure 5.5: Elastic ratio κ/κ as a function of lipid head size b for wc = 1.6σ (System 1-3, 8, 9, 10,

11, and 12 in Table 5.1). A straight line is fit to the data (solid line). Inset: Definition of the distance

to the surface of inextension, z0; the bead size b for the head and bt for the tails; and the geometric

curvature radius R0 ≃ 2σ/(b/bt − 1). A sketch of the lateral stress profile Σ0(z) for the Cooke model

is also included.

the membrane elasticity and structure. First, the monolayer elastic ratio can also be esti-
mated, if one is willing to make two more assumptions: 1) b/bt predominantly affects K0

but not the monolayer elastic ratio κm/κm; and 2) the effective size for the tail bead is
bt = 0.95σ for a Cooke lipid, i.e. when b = 0.95σ the spontaneous curvature of a Cooke
membrane is zero. The former is supported by the observation that, for monomethy-
lated 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE-Me), the spontaneous curva-
ture K0m varies by roughly 13% from 55◦ to 90◦ [SK04, Sie06], whereas the value of κm/κm
barely changes [Sie08]. The latter is plausible because in the Cooke model the lipid tails
attract each other due to the cohesion, while the heads only repel, thus the effective tail size
is slightly smaller than the head [CKD05, CD05]. With these two assumptions, Eq. (5.18)
gives αz0 ≈ (1.63 ± 1.48)σ and the monolayer elastic ratio κm/κm ≈ −0.93 ± 0.03. The
large error on the product αz0 is because the slope of the fit is difficult to pinpoint. In
contrast, the statistical error for κm/κm is very small, for the reason that the strong anti-
correlated errors in slope and intercept cancel each other. If we allow the real head size b
to be somewhere between 0.92σ and 0.98σ, then a more realistic estimation of κm/κm is
−0.93 ± 0.05, which is compatible with experiment measurements for DOPE-Me, DOPE,
and DOPC [SK04, Sie06, Sie08].

The second additional piece of knowledge involves the lipid spontaneous curvature
K0m. From the fit in Eq. (5.18), the prefactor α = (1.71 ± 1.56) bt/z0 ≈ (1.1 ± 1.0),
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using bt = 0.95σ, and z0 ≈ 1.5σ.6 Following this, K0m can be estimated as K0m ≈
1.1(b/bt − 1)/2σ ∈ (−0.017, 0.029)σ−1 for the range of b studied, which approximately
corresponds to K0m ∈ (−0.017, 0.029) nm−1 using the rule of thumb mapping of σ ≈ 1 nm.
Compared to experimental results, this range is on the same order of magnitude with the
K0m of some lipids that form planar bilayers, such as DPPC and 1-palmitoyl,2-oleoyl-sn-
glycero-3-phosphocholine (POPC) [KHRP13], and is an order of magnitude lower than the
K0m for some more curved lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), which tend to form in-
verse hexagonal phase HII [Mar06]. Of course, due to the large uncertainty on α and the
generic essence of the Cooke model, the resulting K0,m should not be overinterpreted.

Despite the low resolution of the Cooke model, this semi-quantitative agreement be-
tween our simulations and experiments on the elastic ratio κm/κm and K0m has deep
meanings: Firstly, it supports our assumption that the curvature dependence of κ on
K0m is universal and does not require any more sophisticated underlying microscopic lipid
structure (which is probably missing in the Cooke model), since the Helfrich theory is
a macroscopic description of lipid membranes without any chemical specificity. Secondly,
this study of the subtle dependence of κ/κ on the other parameters is possible only because
our patch-closure method is able to determine κ with such high accuracy to distinguish a
difference of approximately a few percents in κ/κ.

5.4.2 Results from the stress profile method

Another, potentially easier way, to derive the Gaussian curvature modulus κ is by calcu-
lating the second moment of the lateral stress profile of a tensionless flat membrane, as de-
scribed in Section 5.2.4. For the Cooke membrane with wc = 1.6σ, the stress profile Σ0(z)
is measured using the Irving-Kirkwood method [IK50]. Both ESPResSo [LAMH06] and
GROMACS [HKvdSL08] are used to cross-check the accuracy of the calculated Σ0(z), and
their results are identical. Without any assumption about z0, Eq. (5.9b) gives κmK0m ≃
3.75 kBT/σ, while Eq. (5.10) results in κ ≃ −21.7 kBT . Using κm = κ/2 = 6.22 kBT for this
system, the former suggests that the spontaneous curvature K0m ≃ 0.67σ−1, a extremely
large value given the fact these lipids would like to form planar bilayers; the latter shows
an unusual, yet still permissible, elastic ratio κ/κ ≃ −1.7. If one assumes the stress profile
will also provide the same monolayer κm ≃ −0.93κm = −5.8 kBT measured by the patch
closure method, then Eq. (5.9c) requires a very small z0 ≃ 0.68σ, which is less than one
third of the monolayer thickness away from the bilayer midplane. If a separately measured
z0 ≈ 1.6σ is used, then the monolayer κm becomes positive. All these results are neither
plausible nor in agreement with our patch closure data and, in fact, experiments. There-
fore, this stress profile method to derive the material parameters is, if possible at all, not
as straightforward as one would hope.

6For the surface of inextension, independent simulations of cylindrical, spherical, and buckled mem-
branes suggest that z0 ≈ 1.5σ (from personal communication with Wang and Deserno).
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5.4.3 Results using MARTINI model

The stress profile method fails to provide meaningful results of the elastic properties of
the Cooke membrane. It is unclear whether the stress profile method or the Cooke model
should be blamed for these implausible results. It is true that the stress profiles of Cooke
membranes are completely unphysical due to the fact that the hydrophobic interaction is
replaced by an effective attraction among the tails, as sketched in the inset of Fig. 5.5.
However, the results from the patch-closure method are in agreement with theoretical ex-
pectations and experiment measurements, which suggests that the Cooke model is able
to reproduce fundamental physics of lipid membrane to a large extent. Moreover, noth-
ing in the derivation of Eq. (5.9) and (5.10) needs to make any assumptions about the
“physicalness” of Σ0(z). Thus, it is worthwhile to apply both methods to a more resolved
lipid model to figure out the causes of the discrepancy between the results from the two
methods.

Moreover, the study using the Cooke model proves that our patch-closure method is
highly efficient. Since this efficiency does not rely on any specific properties of this model
(such as its implicit solvent nature), it is possible to apply our method to a more resolved
CG model. Although several lipid CG models are available at a higher resolution than
the Cooke model, we choose to use the Martini model again, due to its wide range of
successful applications and the potential benefits to the community with some additional
information about this model.

Patch-closure results

The procedure of the patch-closure method as described above is applied to a Martini

DMPC membrane consisting of 1200 lipids. Since the Martini-DMPC membrane size
we chose is on the small side in the optimal range discussed in Section 5.3.1, the energy
barrier between the two endpoints is large (∼ 50kBT ). This leads to a sharp transition
in the closure probability P (x), allowing us to reduce the sample size at each initial x to
be 60 without losing accuracy of the final results. This is a substantially smaller number
compared to the 200–500 times for the Cooke model. However, as we will discuss in the
next section, this saving in computation effort is unlikely to increase the final error on the
measured κ, since its major contribution stems from the measurements of κ and γ. The
cutoff range for the relative shape anisotropy index (see Section 5.3.3) is slightly adjusted
to κ2s < 0.008 for the vesicle state and κ2s > 0.21 for the flat state.

From these simulations, we measured κ/κ = −1.04± 0.03, as listed in Table 5.1 with
the other material parameters. This result is in line with the κ/κ ∈ (−1.05,−0.85) mea-
sured using the Cooke model. Also consider the fact that DMPC lipids have shorter tails
than DPPC, which has a slight positive spontaneous curvature [KHRP13], thus a positive
spontaneous curvature K0m is plausible for DMPC. This leads to a more negative elastic
ratio of κ/κ ∼ −1, as expected according to Eq. (5.2).

The monolayer elastic ratio can again be estimated using Eq. (5.2), if further micro-
scopic assumptions are made. For the spontaneous curvature K0m, a recent experimental
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Figure 5.6: Martini model lateral stress profiles Σ0(z) of DMPC (solid, black), DPPC (dashed, red),

and DOPC (dotted, blue) bilayer of 256 lipids (DMPC and DOPC at 300K, DPPC at 323K). The

original stress profile by Marrink et al. [MRM05] for 512 DPPC lipids at 323K is shown as the purple

dash-dotted curve.

study, which employs small-angle X-ray scattering of mixture lipids that form HII-phase,
reported a K0m = +0.068± 0.032 nm−1 for DPPC [KHRP13]. Since DMPC has two fewer
CH2 groups in each chain, and both PC lipids contain saturated chains, DMPC’s K0m

is expected to be slightly more positive, roughly in the range of (0.05, 0.10) nm−1. The
value of z0, however, is less obvious. It is generally believed to approximately locate at
the hydrophilic-hydrophobic interface of a monolayer. Given the thickness of DMPC is
3.53 nm [KLC+05], it is plausible that z0 ∈ (1.0, 1.5) nm, which is roughly 55%-85% of the
monolayer thickness away from the bilayer center. These two assumptions together gives
2K0mz0 ∈ (0.1, 0.3), leading to a monolayer ratio κm/κm ≃ −0.84 ± 0.10, in accord with
the experiment range.

Stress profile results

As an alternative way of determining κ, the lateral stress profile of Martini DMPC mem-
branes is also calculated using a special version of GROMACS designed for calculations of
the 3D local stress tensor [GL98, ORL+09], as shown in Fig. 5.6.

For all stress profiles measured, a negative valley at the bilayer center is observed,
indicating a repulsion (negative stress) between the lipid tails. At z ≈ 1.5 . . . 2.0 nm, a
significant peak of a height of several hundred bars can be seen, showing the strong surface
tension created at the hydrophilic-hydrophobic interface. Then, another repulsive region for
the head groups dips down to roughly 100 bars, before the profile vanishes 3 to 4 nm away
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Figure 5.7: The integrand of the second moment, z2 Σ0(z), of DMPC (black), DPPC (red), and DOPC

(blue) bilayer of 256 lipids (DMPC and DOPC at 300K, DPPC at 323K). In all three Martini cases,

z2 Σ0(z) approaches zero at sufficiently large z.

from the midplane. The general features of these profiles are consistent with the results in
literature, including those ones from fully atomistic simulations [ORKV07, OV10].

Several additional simulations are conducted to cross-check the validity of our simula-
tion results, as listed in Table 5.2. To test for the finite size effect, three systems (System
1-3) of 128, 256, and 512 lipids were simulated. Although the profile is widened due to
the more extensive fluctuations in larger system, the moments that we need are not af-
fected.7 Thus, all other systems were chosen to contain 256 lipids, in order to balance
between efficiency and potential finite size effect. Then, the hydration level is also shown
to have little effect on the results, when comparing System 2 and 4. In addition to DMPC,
Martini DPPC and DOPC are also simulated for comparison (System 5-7). Finally, with
the concern about the quality of the stress profiles far away from the bilayer center, where
the noise is likely to heavily contribute to the second moment, the integrand of the second
moment, z2 ·Σ0(z), is plotted in Fig. 5.7. For all these three PC membranes, this quantity
approaches zero when z > 4 nm, showing that the noise in the profiles is well controlled
and will not affect the result of the second moment.

Applying Eqs. (5.9) and (5.10), the surface tension Σ, the monolayer spontaneous
curvature K0m, and the bilayer elastic ratio κ/κ are calculated. All results can be found
in Table 5.2.8 For all three types of PC lipids studied, the values of K0m are significantly

7Interested readers can find a simple proof of this statement in the publication of Hu et al. [HJMD13].
8For the bending modulus κ, the value of κ = 16.6 × 10−20 J measured using the height undulation

method is used for all systems for simplicity. Note that using more accurate values of κ, e.g. by applying the
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shifted towards the negative side, comparing to experimental results of +0.068±0.032 nm−1

for DPPC and −0.091±0.008 nm−1 for DOPC [KHRP13]; for DMPC and DPPC the results
are even different by a minus sign. More importantly, the calculated bilayer elastic ratio
κ/κ are either barely negative (for DMPC) or actually positive (for DPPC and DOPC).
The latter means the lamellar phase becomes unstable [Hel94], in contrary to the fact that
these Martini-PC lipids tend to form perfectly stable planar bilayers. Thus, our results
indicate that the stress profile method fails to provide physically meaningful results also
for Martini-lipids.

5.5 Discussion

5.5.1 Notes on the stress profile method

Since it is computationally more efficient (smaller systems, very few simulations) than the
patch-closure method we propose, it is quite disappointing to find that the stress profile
method fails to measure the Helfrich elastic parameters, namely the spontaneous lipid
curvature K0m and the bilayer and monolayer Gaussian curvature moduli κ and κm, .

In recent years, the stress profile method has been implemented in several studies to
study K0m and κ, using CG lipid models [MRM05, OHSE08, OME10, OE11, HJMD13] or
atomistic models [ORKV07, OV10]. As collected in Table 3 of [HJMD13], one finds that 1)
the results for K0m tend to be too negative compared to the values found in experiments;
2) the monolayer ratio κm/κm is normally between -0.5 and 0; although they are physically
permissible, but disagree with the range of (-0.95,-0.75) measured in experiments; and 3)
the bilayer ratio κ/κ then becomes less negative or even positive (c.f. Eq. (5.2)). This
breakdown of the stress profile method is then unlikely due to the imperfect nature of the
CG models we used.

In fact, our stress profile simulations using the the generic CG Cooke model and the
high-resolution CG Martini model show errors in two opposite directions: while κ/κ for
the Cooke model is an implausibly negative value of −1.7, it is unreasonably large for the
Martini model: −0.05 for DMPC and even positive for DPPC and DOPC, which indi-
cates the lamellar phase in not stable any more. Since the Martini model seems to be
able to represent realistic lipid curvatures [FM11], it may not be the loss of local details
in the CG models that is to blame, but rather be the intrinsic neglect of local correla-
tions in the continuum theory which leads to Eqs. (5.9) and (5.10). Such local correlations
would affect the free energy and hence the stress distribution. In addition, the derivation
relies on the continuum nature of the theory [Hel81, Hel94, HJMD13], while membranes
are inhomogeneous across their normal direction [GK92]. Also, in this continuum theory,
local correlations are neglected, but they affect the free energy and hence the stress dis-
tribution. Oversteegen and Leermakers have pointed out that additional thermodynamic

buckling method or by measuring each type of lipid separately, will not change the quality of the argument
here, since it won’t affect the sign of the results.
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Figure 5.8: The bilayer elastic ratio κ/κ of Martini-DMPC as a function of the value of κ used in

the analysis (solid curve). The values of ξ, γ, and R listed in Table 5.1 are used. The dashed curves

indicate the estimated error on κ/κ assuming the relative error σκ/κ stays constant over the range of

κ plotted. Inset: the patch-closure probability P (x) (dots) and a fit using Eq. (5.6).

derivatives should be included into the stress profile moments to determine elastic constants
of membranes [OL00], which are generally not present in standard derivations.

Thus, even though the stress profile method has existed for more than three decades
since the early work by Helfrich [Hel81], it is still unclear whether it can be applied to
determine membrane elastic parameters.

5.5.2 Notes on the patch-closure method

On the contrary, the patch-closure method is proven to be a reliable and accurate way to
determine the Gaussian curvature modulus κ, assuming other material parameters, namely
the bending modulus κ, the edge tension γ, and the membrane size A are known with high
precision through other independent measurements.

Unfortunately, sometimes these prerequisites are not determined as accurately as one
would like. It is especially true for κ, as discussed in the previous chapter. In fact, what
the patch-closure really measures with excellent accuracy is the combination of the two
elastic moduli, 2κ + κ = γR/ξ, since ξ and R on the right-hand-side can be determined
with an error of much less than 1 percent, and γ measured by simulating ribbons normally
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contains a couple percents of error (see Table 5.1). This means the major contribution to
the error in κ is from κ.

To illustrate this idea, given the values of ξ, γ, and Rmeasured for theMartini-DMPC
membrane we studied, the bilayer elastic ratio is calculated as a function of κ

κ

κ
=

(

γR

ξ

)

1

κ
− 2 . (5.19)

As shown in Fig. 5.8, the value of κ = 16.6×10−20 J measured from the height undulations
leads to κ/κ = −1.04. If the result using the buckling method, κ = 29 kBT ≃ 12 ×
10−20 J, is given as the input, then our patch-closure method predicts κ/κ ≃ −0.7. Both of
the numbers above are consistent with expectations based on experiments and theoretical
knowledge. A more dramatic example is when one takes certain values of κ measured in
experiments: if κ < 8 × 10−20 J, which is within the range of experiment results collected
by Marsh [Mar06], the bilayer elastic ratio becomes positive and the planar bilayer state
is no longer stable. However, since we have no guarantee that Martini DMPC actually
reproduces the experimentally known elastic parameters, it is inconsistent to take a value
2κ+ κ determined via Martini and extract κ by using the value of κ from experiments.

This strong dependence of the resulting κ on the input value of κ is somewhat unfor-
tunate, given the fact that we can pinpoint ξ with an excellent accuracy of less than 1%
statistical error, while the disagreement on κ is still significant (see the discussion in Sec-
tion 4.1.2). However, this does not weaken the applicability of the patch-closure method;
the accurate result of 2κ + κ = γR/ξ as a whole is useful due to its natural appearance
as 4π(2κ + κ), which is the Helfrich energy of a complete membrane vesicle. In fact, the
combination 2κ+ κ occurs frequently, so accurately knowing its value is useful.

5.6 Outlook

When all prerequisite parameters are available, the patch-closure method has turned out
to be very efficient when applied to CG models even with relatively high resolution, such as
the Martini model. Each one of these simulations contains approximately 75000 particles,
and simulates at about 200 ns per day using a current cluster node with 8CPUs. Thus, a
total of roughly 400 simulations can be finished in a month, given 10 cluster nodes. The
total clock time can be further reduced if more computational resources are available, since
the the process of sampling P (x) can be trivially parallelized. At this cost, it is affordable
to explore more complex membrane systems using the versatility of the Martini model,
such as a whole spectrum of lipids.

A possibility to further improve the patch-closure method is to measure κ in equilib-
rium, instead of in a dynamic process of patch closure. This may reduce the total number
of simulations needed, because the sampling of probabilistic processes is eliminated. For
this purpose, the thermodynamic integration method, as described in Technical Note 4.1,
could be a good candidate to employ. A direct problem to solve, then, is 1) to come up
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5 Membrane elasticity II: the Gaussian curvature modulus

with the correct reaction coordinate λ to describe the system state, such as the reduced
curvature x or the relative shape anisotropy κ2s ; and 2) to include an additional potential
energy U(λ) into the total Hamiltonian, which confines the system to stay in state λ. For
the two intuitive reaction coordinates mentioned, i.e. x and κ2s , it is unclear yet how to
implement the corresponding U(λ). It is important to realize that the biasing potential
U(λ) really should be a function of the reaction coordinate only, because otherwise its
contribution to the free energy of the system cannot be easily disentangled from the free
energy of the unconstrained system at the given value of λ.

94



5
.6

O
u
tlo

o
k

# Nlipid R [σ] Nx | Ns b [σ] wc [σ] γ [kBT/σ] ξ ℓ [σ] κ [kBT ] −κ [kBT ] −κ/κ

1 900 6.57 8 | 500 0.95 1.6 3.043± 0.060 1.503± 0.003 4.371± 0.009 12.44± 0.26 11.59± 0.57 0.93± 0.03
2 1000 6.92 8 | 500 0.95 1.6 3.043± 0.060 1.568± 0.003 4.413± 0.008 12.44± 0.26 11.46± 0.57 0.92± 0.03
3 1100 7.26 11 | 500 0.95 1.6 3.043± 0.060 1.631± 0.003 4.451± 0.008 12.44± 0.26 11.34± 0.58 0.91± 0.03
4 900 6.38 8 | 500 0.95 1.7 4.558± 0.061 1.439± 0.002 4.434± 0.006 18.36± 0.29 16.51± 0.65 0.90± 0.02
5 1000 6.72 8 | 500 0.95 1.7 4.558± 0.061 1.477± 0.002 4.550± 0.006 18.36± 0.29 15.97± 0.65 0.87± 0.02
6 1100 7.05 8 | 500 0.95 1.7 4.558± 0.061 1.534± 0.002 4.596± 0.006 18.36± 0.29 15.77± 0.65 0.86± 0.02
7 900 6.67 8 | 250 0.95 1.55 2.478± 0.054 1.541± 0.004 4.328± 0.011 10.10± 0.32 9.46± 0.68 0.94± 0.04
8 720 5.76 8 | 250 0.92 1.6 3.767± 0.054 1.703± 0.004 3.382± 0.008 11.72± 0.23 10.71± 0.50 0.91± 0.03
9 740 5.90 8 | 250 0.935 1.6 3.495± 0.058 1.559± 0.004 3.784± 0.010 11.82± 0.27 10.42± 0.59 0.88± 0.03
10 1050 7.16 8 | 200 0.965 1.6 2.676± 0.057 1.469± 0.005 4.874± 0.017 12.43± 0.36 11.81± 0.78 0.95± 0.04
11 1430 8.44 8 | 250 0.98 1.6 2.208± 0.045 1.529± 0.005 5.520± 0.018 11.87± 0.40 11.54± 0.83 0.97± 0.04
12 1660 9.23 8 | 200 1.00 1.6 1.657± 0.048 1.407± 0.006 6.560± 0.028 11.41± 0.37 11.95± 0.80 1.05± 0.04

Nlipid R [nm] Nx | Ns γ [pN] ξ ℓ [nm] κ [kBT ] −κ [kBT ] −κ/κ

Martini 1200 5.33 6 | 60 40.49± 0.34 1.359± 0.004 3.92± 0.01 40.5± 1.2 42.2± 0.2 1.04± 0.03

#: system index of the Cooke membranes;

Nlipid: number of lipids;

R: radius of the vesicle if the patch closes (the error is much less than 1%);

Nx: number of different x-values investigated for each system;

Ns: number of folding simulations for each value of x;

b: diameter of lipid head bead in the Cooke model;

wc: attractive range of the interaction potential in the Cooke model;

γ: edge tension measured by simulating membrane ribbons;

ξ: parameter in the energy barrier from Eq. 5.4, determined by fitting the closing up probabilities via Eq. 5.6;

ℓ: characteristic length defined as ℓ ≡ (2κ+ κ)/γ = R/ξ;

κ: bending modulus, determined through simulating tethers [HD06] for the Cooke membranes, and height undula-
tions [GGL99, BBS+11] for the Martini system;

κ: Gaussian curvature modulus, inferred from ξ, κ, γ, and R.

Table 5.1: List of all simulated systems95



5 Membrane elasticity II: the Gaussian curvature modulus

# Lipid Nlipid|4Nwater

Nlipid
T [K] Σ [mN

m ] K0m [nm−1] κ/κ

1 DMPC 128|46 300 0.43± 0.09 −0.077± 0.001 −0.045± 0.004
2 DMPC 256|46 300 0.09± 0.08 −0.070± 0.001 −0.053± 0.003
3 DMPC 512|52 300 −0.17± 0.05 −0.067± 0.001 −0.061± 0.003
4 DMPC 256|79 300 0.02± 0.06 −0.063± 0.001 −0.074± 0.003
5 DPPC 256|42 300 0.08± 0.08 −0.141± 0.001 0.116± 0.004
6 DPPC 256|42 323 0.12± 0.08 −0.146± 0.001 0.135± 0.004
7 DOPC 256|41 300 0.14± 0.08 −0.246± 0.001 0.481± 0.004

Nlipid: number of lipids in the bilayer;

Nwater: number of CG water molecule, which is equivalent to 4 real water molecules;

T : temperature;

Σ: the zeroth moment of the bilayer stress profile, which equals the surface tension;

K0m: lipid spontaneous curvature, calculated using Eq. (5.9b), with κm = κ/2 = 8.3 ×
10−20J from height undulation analysis;

κ/κ: bilayer elastic ratio.

All error bars come from MC resampling of the original stress profiles (see Appendix A).
Note that: 1) κ is assumed to be same for DMPC, DPPC, and DOPC, 2) Martini DPPC
membranes remain in the fluid phase at 300 K.[MRM05]

Table 5.2: Elastic parameters of some Martini membranes obtained using the stress profile method.
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6 Planar tethered bilayer lipid membranes

After developing a generic CG model for the linker/tether molecules (Chapter 2), and learn-
ing about the two major components of our membrane-nanoparticle composites, namely
the polymers (Chapter 3) and the lipid membranes (Chapter 4 and 5), it is time to com-
bine these aspects. In this chapter, planar tethered bilayer membranes, a model membrane
system, will be studied, which serves as an intermediate step towards our tethered nanopar-
ticles in a curved geometry.

6.1 Introduction

Cell membranes are complicated systems consisting of a large number of components,
including different types of lipids, membrane proteins, and carbohydrates. As a conse-
quence of this complexity, model membrane systems with much simpler but controlled
constituents are developed to study membrane properties, such as lipid vesicles, black lipid
membranes, and solid supported/tethered bilayers. Among these, supported bilayer lipid
membranes [TM85, Sac96] are model systems where a bilayer membrane physically adsorbs
to a (normally hydrophilic) solid surface. This stabilizes the membrane and enables a host
of surface-sensitive characterization techniques. An important example of this asymmetry
between the two leaflets is the fact that, due to the interactions between the proximal
leaflet and the substrate, the lipid diffusion in the proximal leaflet of a supported bilayer is
severely hindered [PSH+06]; also, the study of membrane-protein interactions is compro-
mised, for instance because the limited (less than 10 Å [TM85, KKO+96]) layer of water
underneath the bilayer prohibits the incorporation of transmembrane proteins having any
appreciable portion outside the bilayer on both sides, or because the interaction with the
substrate immobilizes the protein [PST91, SGB96].

To alleviate these limitations on the study of membrane-protein interactions, tethered
bilayer lipid membranes (tBLM) have been developed [CBMK+97, WT00, SK01, NPL+02,
TS05, MVV+07]. In these systems, the bilayer membrane is lifted from the substrate by a
layer of polymers, which are chemically linked to some of the lipids in the proximal leaflet
on the one end, and covalently grafted to the substrate on the other end. This layer of
polymer-lipid conjugates, hereafter referred to as tethers, allows a nanometer-thick sub-
membrane water reservoir [MVV+07]. Consequently, tBLMs can be employed to examine
membrane-protein interactions for a much larger class of transmembrane proteins.

While the distal leaflet purely consists of lipid molecules, the proximal leaflet of tBLMs
can be composed of different fractions of tether molecules and lipids. The tethers can be
diluted by “backfillers”, such as β-mercaptoethanol (β-ME), which take up binding sites on
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6 Planar tethered bilayer lipid membranes

the substrate that would otherwise be occupied by another tether molecule, thereby leaving
space for free lipids to reside in the proximal leaflet. This type of sparsely tethered bilayer
lipid membrane (stBLM) significantly increase the volume fraction of the solvent in the
sub-membrane region [MVV+07], which can be highly desirable when studying membrane
proteins.

Tethered bilayer lipid membranes are normally prepared in two steps: First, a self-
assembled monolayer (SAM) of tethers, or a tether and backfiller mixture for stBLMs, is
prepared on the substrate, utilizing the strong chemisorption between the tethers’ end-
groups and the substrate; Second, the bilayer is completed by adding lipids. The second
step can be realized either by the “rapid solvent exchange” method [CBMK+97, MVV+07]
or by vesicle fusion [BM84, LCC00, RBB06]. In the former process, a SAM is incu-
bated with lipids in some organic solution in which the lipids are soluble, followed by
a rapid exchange of the organic phase by aqueous buffer. The lipids then precipitate
onto the SAM to form a tBLM. For the latter, giant unilamellar vesicles (GUVs) fuse
with the SAM, which is hydrophobically terminated, rupture, and complete the bilayer.
The tBLMs formed by rapid solvent exchange typically exhibit a superior electrical resis-
tance [RBMC+98, MVV+07] and a lower defect density [MVV+07], while those prepared
by vesicle fusion permit a more precise control of their lipid composition (in the case of mix-
tures), since they inherit this composition without much change from that of the progenitor
GUVs [Goh13].

In this chapter, properties of tBLMs will be studied using our CG model containing
Cooke lipids [CKD05, CD05] and the linkers newly parameterized in Chapter 2. The sig-
nificance of this study is twofold: first, we will test whether our CG model can successfully
reproduce the behaviors of this well-studied tethered system; and second, we will exam-
ine how various factors affect physical characteristics of planar tBLMs, e.g. the grafting
density, polymer chain length, and bilayer assembly. With a better understanding of our
model and tethered membrane systems, we can then proceed to the final chapter towards
the polymer-tethered membrane-nanoparticle composites in the relevant but more difficult
spherical geometry.

6.2 Simulation setup

Similar to the experimental procedure, a monolayer of tethers is first deposited onto a
surface within the simulation box. To mimic the randomness in this self-assembly step of
the monolayer, the endgroup of each tether is randomly placed on the bottom plane of the
box. This is essentially a Poisson distribution, but amended by the additional constraint
that a minimum distance of 0.5σ (which equals to the size of a tether bead) is enforced
between any pairs. Different from experiments, all tethers are fully extended at the start
of each simulation. The lipids are then introduced in two different ways: a simple implicit
solvent mimic of rapid solvent exchange, or vesicle fusion.
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6.2 Simulation setup

6.2.1 Rapid solvent exchange

In experiments using the “rapid” solvent exchange protocol to form tBLMs, the replace-
ment of the organic solvent with an aqueous buffer happens on a time scale of several
seconds [MVV+07, HNV+09], which is a really slow process in simulations and is beyond
what we can simulate.1 Hence, a “poor man’s” version of this rapid solvent exchange pro-
tocol is employed in simulations. Remember that, in our CG model, solvents are implicitly
represented, thus they enter the physics of our system only by determining effective in-
teractions between the degrees of freedom that are explicitly represented. So before the
simulation begins, lipids are randomly distributed inside the box, which mimics their state
in organic solvents (in which they dissolve). When the simulation starts, the lipids begin to
attract each other and the lipidic anchor part of the tethers due to the hydrophobic effect,
as if the solvent has been replaced by aqueous buffer. Of course, one can emulate the
(in fact) gradual solvent exchange in multiple steps, in which the strength of the effective
attraction among hydrophobic groups is increased incrementally. But in practice, we have
not seen any difference in the resulting structure of the tBLMs. Thus, for simplicity, we
will turn on the attraction due to solvent in one go. Note that this is not terribly surprising
if one only monitors equilibrium properties, which should not depend on the history. But
the production of a tBLM via “rapid” solvent exchange is a dynamic process, and it is
conceivable that the final state is some kinetically trapped structure. In that case, one
needs to change the solvent condition in a more gentle manner.

6.2.2 Vesicle fusion

In the case of vesicle fusion, a unilamellar vesicle is placed on top of the SAM. To make
sure the vesicle gets in contact with the SAM without being explicitly placed there, a DPD
thermostat is used since it conserves momentum,2 and the vesicle is given a “moderate”
initial velocity of v0 = 0.01σ/τ perpendicularly towards to the SAM, which is approxi-
mately 1% of the speed of sound vsound ∼

√

kBT/µ ∼ 1σ/τ .3 In terms of the total kinetic
energy Ek, a vesicle of 2000 lipids will have Ek = 1

2(3 × 2000µ)(0.01σ/τ)2 ≃ 0.3 kBT ,
verifying that the vesicle approaches the SAM with a moderate velocity—in the sense that
this extra energy will not be thermodynamically relevant.

1The time scales in CG simulations have been discussed in Section 2.2.3.
2In the DPD thermostat, the noise force in the equation of motion is added in pairs of the same

magnitude but opposite directions, so that at any given integration step, the total momentum is conserved.
In contrast, in the Langevin thermostat, the noise terms simply are white noise, hence the particles cannot
maintain an inertial drift velocity.

3If the approximate length scale and dynamic time scale of this model discussed in Section 2.2 are used,
then this velocity can be mapped to v0 ≈ 0.01 (1 nm)/(10 ns) = 10−3 m/s. The difference between the two
mappings is a consequence of the dynamical speedup of the CG model, but it does not change the fact that
v0 is moderate.

99



6 Planar tethered bilayer lipid membranes

6.3 Results

After initial configurations are generated, simulations are conducted in the NV T ensemble,
at kBT/ǫ = 1.1. The Langevin thermostat is used for simulations following the mimic of
the rapid solvent exchange procedure, while the DPD thermostat is employed in those of
vesicle fusion. Two repulsive walls cover the top and bottom of the simulation box to
stop particles from moving across the periodic boundaries in the vertical z-direction. In
contrast, particles can move freely in the horizontal xy-direction across the boundaries.
The size of the box in the horizontal directions is set in such a way that the area of the
box is equal to the area of a pure Cooke bilayer membranes if all of the tethers were to be
replaced by lipids. The size in the vertical direction is chosen to be large enough to contain
all macroscopic structures, such as the polymer brush and the vesicle in the case of vesicle
fusion.

6.3.1 tBLM assembly

Rapid solvent exchange

Fig. 6.1 shows a sequence of snapshots from an example rapid solvent exchange simulation,
which contains 300 tethers of 12 subunits and 700 lipids. These lipids are randomly placed
in the box before the simulation starts (Fig. 6.1A), after which they aggregate into small
pieces of bilayers (Fig. 6.1B). Some of these patches form with the anchor of the tethers,
others, which contain only lipids in the bulk, gradually merge with the tethers (Fig. 6.1C).
Eventually, the tBLM is completed (Fig. 6.1D).

Vesicle fusion

The vesicle fusion process is also simulated, as shown in Fig. 6.2. A lipid vesicle containing
1792 lipids is placed above a SAM made of 768 tethers (and also 12 subunits, as in the
case of rapid solvent exchange) (Fig. 6.2A). Since the vesicle is given an initial velocity of
v0 = 0.01σ/τ , it approaches the SAM and induces (hemi)fusion: The outer leaflet of the
vesicle ruptures at the boundary of the contact area with the SAM, part of its lipids merge
with the SAM as the proximal leaflet, while the rest slide on top of the SAM and form the
distal leaflet (Fig. 6.2B). Then a pore forms in the vesicle bilayer near the contact site,
and the rest of the vesicle becomes a bilayer patch attached to the tBLM (Fig. 6.2C). This
dangling piece merges into the tBLM at the end (Fig. 6.2D).

This process of vesicle fusion shows a number of similarities with the one described in
the experimental study by Goh et al., which studied the hemifusion process of vesicles ad-
sorbing onto SAMs by observing fluorescently labeled GUVs in video microscopy [ZTD+12].
In their experiments, these authors covered the hydrophilic glass substrate with a mono-
layer of octadecyltri chlorosilane to form a hydrophobic monolayer, which induces the
hemifusion with the lipid vesicle. They also see a spread of the outer leaflet upon fusion,
which increases the stress in the vesicle bilayer and leads to membrane rupture near the
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A B

C D

Figure 6.1: Snapshots of a tBLM, which consists of 300 tethers of 12 subunits and 700 lipids, formed

using the rapid solvent exchange protocol. A, initially the lipids are randomly distributed in the box. B,

when the simulation starts, the lipids begin to aggregate into patches in the bulk or on the SAM. C, the

patch in the bulk “fuses” with the SAM, and D, completes the tBLM.

contact site, accompanied by the ejection of vesicle contents and fusion of the lipids from
both leaflets.

Despite the great similarity, a few differences do exist. The first important one is that
their SAM is much larger than the surface area that the lipids in the vesicle able to cover;
while in our case, the size of the box is set up to accommodate all lipids without any excess
area. Thus, we did not see any depleted region (beyond the vesicle patch or at the center
of the fusion site). The second difference is related to the fact that there is no solvent
present in our CG model. As a consequence, the membrane vesicle is not subjected to a
volume constraint due to the enclosed solvent, which in the experimental situation creates
additional lateral stress in the lipid bilayer due to the Young-Laplace relation between
pressure and tension, and thereby presumably also affects the manner and timing of when
the rupture will happen. Nevertheless, since ultimately our goal is not studying vesicle
fusion at a quantitative level, or in fact elucidating the formation dynamics of a tBLM, we
did not devote more time to investigations of this protocol of preparing a tBLM.
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6 Planar tethered bilayer lipid membranes

A B

C D

Figure 6.2: Snapshots of a tBLM formed by vesicle fusion, which consists of 768 tethers of 12 subunits

and 1792 lipids. Only a thin slice of the system is shown for clarity. A, initially the lipid vesicle hovers

above the SAM. B, The outer leaflet of the vesicle ruptures at the peripheral, spreads, and starts to merge

with the SAM. C, both leaflets of the vesicle ruptures. D, tBLM has formed. [I’m still experimenting

with the colors...]

6.3.2 tBLM height

After the brief study of the assembly of tBLMs, let us now examine their properties. The
first important quantity is the height H(φ) of the tethered bilayer as a function of the mole
fraction of the tethers, φ ≡ Ntether/Ntotal, whereNtether andNtotal are the number of tethers
and the total number of lipids and tethers, respective. The higher φ is, the more crowed the
submembrane region is, and the tether chains would become more stretched. This is very
similar to the brush height of a planar polymer brush, as analyzed in Section 3.4.2. The
slight difference is that, unlike in a regular brush, the chain ends here in the tethered bilayer
need to stay within the membrane. But, fortunately, this is very close to the assumption
made by the blobology analysis, in which the chain ends locate within the last blobs away
from the substrate. Thus, we will test whether the blobology prediction about the brush
height, namely Eq. (3.4.2), can correctly describe the tether height H(φ) measured in our
simulations.

For a brush of f = Ntether chains in a box of size Lx = Ly = L, the average distance
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D between two grafting sites is given by

D(φ) =

√

LxLy
f(φ)

=
L√

φNtotal
. (6.1)

Then the brush height in Eq. (3.30) becomes

H(φ) =
b

a
Nba

1/ν [D(φ)]1−1/ν

=
b

a
NbL

( a

L

)1/ν
(φNtotal)

(1/ν−1)/2 , for D(φ) < RF = aNν
a ,

(6.2)

where Na is the number of Kuhn segments, Nb is the number of monomers per chain, a is
the Kuhn length, b ≃ 0.5σ is the monomer size, and a general Flory exponent ν is used
instead of the specific value ν = 3/5, the approximate value for real chains discussed in
Chapter 3. The condition in Eq. (6.2) arises because this prediction only works when the
tethers are in the brush regime.

In a set of simulations of tethered bilayers (formed by “rapid solvent exchange”), a total
of Ntotal = 360 molecules are included into a box of size (15, 15, 60)σ. The mole fraction φ
of the tether is varied from 0.05 to 0.40. Each tether contains Nb = 100 monomers of size
b ≃ 0.5σ. The Kuhn length a ≃ 0.76σ, giving a Flory radius of RF = aNν

a = aNν
b (b/a)

ν ≃
9.37σ if ν ≃ 0.6. For the most sparsely tethered bilayer, i.e. when φ = 0.05, Eq. (6.1) shows
that the distance D between two chains is D(φ = 0.05) = L/

√
φNtotal ≃ 3.53σ < RF.

Thus, this tethered bilayer is always in the brush regime, and its height H(φ) can be
compared to the theoretical prediction Eq. (6.2).

The simulation results for the height of the tethered bilayers, as measured by the
vertical positions of the end bead of the spacer part, are shown in Fig. 6.3. A fit using
Eq. (6.2) with a and ν as fitting parameters yields ν = 0.5809± 0.0005 and a/σ = 0.515±
0.001 (error derived from Monte Carlo resampling, as described in Appendix A.3). The
former is very close to the approximated Flory exponent of ν = 0.6 that is commonly
used, and even closer to the exponent ν = 0.588 ± 0.001 calculated using field theory
and renormalization group [LGZJ77].4 Although the Kuhn length a is different from the
parameterized value of a ≃ 0.76σ, it is on the same order of magnitude. Remember that
the scaling theory is relatively accurate only in the prediction of the scaling exponents; any
factors of order unity are ignored.

Thus, our simulation data confirm that the blobology calculation leading to Eqs. (3.4.2)
and (6.2) can be utilized to semi-quantitatively predict the brush height of planar tethered
bilayer membranes.

4The statistical error on our result is very small. However, the systematic errors are not yet included:
only a finite-size system is measured, while the field theory result is for systems in the thermodynamic
limits. Thus, this somewhat disconcertingly good value for the random walk scaling exponent is therefore
most likely fortuitous.
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a/σ = 0.515± 0.001

ν = 0.581± 0.0005

φ = Ntether/Ntotal
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Figure 6.3: The height of the tethered bilayer, H(φ), as a function of the mole fraction φ of the tethers.

Each system, which contains a total of Ntotal = 360 lipids and tethers in a box of (15, 15, 60)σ, is formed

using rapid solvent exchange. Simulation data are shown as solid circles, with blocked errors smaller

than the size of the symbol. The solid curve is a fit to the data using Eq. (6.2), giving a Flory exponent

of ν = 0.5809± 0.0005 and Kuhn length a/σ = 0.515± 0.001.

6.3.3 Diffusion constants

The coexistence of the tethers and the bilayer also affects the behavior of the bilayer.
As mentioned in the introduction, one of the key improvements of the tBLM, especially
the stBLM, over supported bilayers is the mobility of the lipids in the proximal leaflet
due to the much weakened interaction between this leaflet and the substrate. Thus, it is
meaningful to examine the fluidity of the tBLMs.

In a set of simulations containing Ntotal = 1000 molecules in a box of (25, 25, 25)σ, the
mean-squared displacement

〈

d2
〉

of the lipids within the two leaflets is measured separately
every time interval of δt = 5 τ ≃ 50 ns, and the mole fraction φ of the 12-mer tethers is
varied between 2.5% and 50%. After confirming the system is in the normal diffusion
regime, the diffusion constant D is calculated as

D =

〈

d2
〉

4δt
. (6.3)
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Figure 6.4: A, diffusion constants of lipids, D, in the proximal (solid) and distal (open) leaflet. Units are

mapped using 1σ = 1nm and 1 τ = 10ns. B, the number of lipids Ntether in the proximal (solid) and

distal (open) leaflet. The two dashed lines are guide lines of Ntether = 500 and Ntether = 500− 1000φ,

the latter shows the number of lipids in the proximal leaflet if the total number of molecules in both

leaflets is the same.

The measured lipid diffusion constant D is plotted in Fig. 6.4A. On the one hand, for
the lipids in the proximal leaflet (solid circles), D decreases linearly as the mole fraction φ
of the tethers increases, showing how the presence of less mobile tethers can slow down the
lipids around them. Compared to free lipids in the distal leaflet, a decrease of approximately
40% in the diffusion constant is found. On the other hand, the lipid diffusion constant in
the distal leaflet stays almost constant, except a slight increase when φ → 1/2, i.e. when
the proximal leaflet is almost exclusively occupied by tethers. This small increase in D is
likely due to a decrease in the number of lipids in the distal leaflet, as shown in Fig. 6.4B.
When Ntethers increases as φ → 1/2, it is entropically favorable for some the lipids in the
distal leaflet to flip-flop into the proximal one, since the tether anchors are less mobile and
thus effectively the “free area” in the proximal leaflet for lipids to diffuse is larger. As a
result, the total number of molecules in the proximal leaflet will exceed the number in the
distal one. The lipids in the distal leaflet then enjoy a larger area per lipid, and hence
diffuse faster.
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6 Planar tethered bilayer lipid membranes

We should mention that the phenomenon of decreasing fluidity of lipids in the proximal
leaflet due to an increase in the tether number is also observed in experiments using fluores-
cence correlation spectroscopy. Shenoy et al. [SMF+10] separately measured the diffusion
constant of lipids in the two leaflets and found a decrease in the diffusivity in the proximal
leaflet as the tether density increases. However, these authors found that the effect is more
pronounced than what our simulations show: At a tether density of tether:β-ME=30:70,
which is much smaller than the the largest fraction in our simulation, the diffusion con-
stant of lipids in the proximal leaflet decreased by approximately 70%. In their study, the
diffusion constant of lipids in the distal leaflet is measured using a densely tethered bilayer
with barely any lipids in the proximal leaflet, so that the major part of the fluorescent
signal comes from the distal leaflet; the diffusivity in the proximal layer is determined by
quenching the distal leaflet by adding potassium iodide to the bulk solution. Our results
are qualitatively in line with the experiment measurements of Shenoy et al. in that an
increasing amount of tethers does slow down the lipids in the proximal leaflet. However,
because of the loss of atomistic degrees of freedom during the coarse-graining process, there
is no reason to expect such a generic model to quantitatively reproduce changes in dynamic
properties.

6.3.4 Destabilization by long linker chains

One additional type of tether-membrane interaction studied using our CG model is the
destabilization of a membrane caused by long tether chains. This effect could poten-
tially lead to complications when one considers creating polymer-tethered membrane-
nanoparticle composites by first mixing lipids with tethers to form membranes with an-
chored tethers, and then let the tethers grab onto nanoparticles and wrap the membrane
around it. Before one starts such a setup, it is necessary to figure out whether the mem-
brane with anchored tethers is actually stable.

For this purpose, tether anchors are implanted into a pre-assembled lipid bilayer on
both sides. The simulation box is allowed to adjust in the horizontal directions where
the membrane spans the box, in such a way that the bilayer is under zero lateral tension.
Tethers with three different degrees of polymerization, Nb, are simulated, where Nb =
30, 40, and 60. For each chain length Nb, the mole fraction φ of the tethers is scanned.
The final state of the polymer-anchored membranes in each simulation is plotted in Fig. 6.5.

As can be seen, given a chain length Nb, the bilayer will disintegrate as the fraction φ of
the tethers increases beyond a critical limit. Longer chains lead to a smaller critical limit,
which means they are more effective in destroying the bilayer. The resulting structure
is similar to connected worm-like micelles, which is shown in the inset of Fig. 6.5. Our
observation is qualitatively in agreement with a simulation study done by Liu and Faller
using the Martini model for lipids and tether-lipids [LF12]. They have found pores in the
membrane when the tether length and density is sufficiently high.

Thus, our simulations indicate that there exists a critical chain length and tether
fraction for free-standing membranes with anchored tethers, beyond which the tethers

106



6.3 Results

Nb

φ

706050403020

0.50

0.40

0.30

0.20

0.10

0.00

L

ξ
A

Figure 6.5: Destabilization of membranes due to anchored tethers when the degree of polymerization

Nb and the mole fraction φ = Ntether/Ntotal of the tethers are changed. Open circles denote the bilayer

is stable throughout simulations, while closed circles mean that the membrane is ruptured by the tethers.

The stability boundary (dashed curve) is predicted using Eq. (6.10) with a manually chosen α = 1.1

to fit the data. Snapshots of the final state of two systems, namely Nb = 40, φ = 0.20 (stable) and

Nb = 40, φ = 0.25 (ruptured), are shown as examples. A schematic side view of the system setup is also

shown on the left, with A being the total area of the bilayer, ξ the blob size, and L the brush height.

will tear the bilayer apart and form worm-like micelles. This destabilization of polymer-
decorated bilayer is probably driven by the entropy of the free tether chains: The presence
of the membrane limits the free volume which an anchored tether chain can occupy and
form random structures. Hence, the longer the chains are, the more entropy they gain by
changing the planar bilayer into a cylindrical “worm”, since the chain enjoys more space at
the open edges of a membrane or in a worm-like micelle. The driving force towards higher
entropy exerts physical stress on the membrane within which the chains are anchored, and
this eventually ruptures the bilayer.

This destabilization can be semi-quantitatively understood using the scaling concepts
described in Section 3.3.1. A schematic picture of the system is shown as the inset in
Fig. 6.5. Assume a complete planar bilayer covers a surface area of A, and a fraction φ of
the Nℓ lipids are conjugated to polymer chains of degree of polymerization Nb, which form
two planar polymer brushes of height L on both sides of the bilayer. Denoting the total
number of polymer chains as f , the distance D between two neighboring chains, and the
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blob size ξ, are then D = ξ =
√

2A/f . In this geometry, the number of Kuhn segments
within a blob is g = (ξ/a)1/ν , where a is the Kuhn length, and ν is the Flory exponent.
Hence, the total free energy of the brush, Ebrush, can be estimated as the total number of
blobs, Naf/g, times the free energy per blob, kBT , up to a constant α of order unity [dG79]:

Ebrush(A)

kBT
= αf

Na

g
= αNaf(

a

ξ
)1/ν = αNafa

1/ν

(

√

f

2A

)1/ν

= α
f1+1/2ν

21/2ν
Naa

1/νA−1/2ν .

(6.4)

Since increasing the surface area A reduces Ebrush, the polymer chains tend to expand the
membrane into which they anchor.

However, it costs energy to stretch a membrane: To quadratic order in strain s ≡
(A − A0)/A0, where A0 is the area under zero tension, the free energy cost to stretch the
membrane, Estretch, is given by

Estretch =
1

2
KA

(A−A0)
2

A0
, (6.5)

where KA is the area-stretching modulus, which is roughly 19ǫ/σ2 for the Cooke membrane
at standard parameters [Des09]. Thus, a free bilayer will prefer the tensionless area A0 to
minimize the stretching free energy Estretch, while the polymers would like to increase the
surface area to reduce their free energy due to the crowding. The equilibrium area A∗ is
then determined by the balance of these two contributions as

0
!
=
∂Ebrush + Estretch

∂A

∣

∣

∣

∣

A∗

= α
kBT

21/2ν

(

f

A∗

)1+1/2ν

Naa
1/ν(− 1

2ν
) +KA

A∗ −A0

A0
. (6.6)

This equation can be simplified as

αNaa
1/ν kBT

ν

(

f

2A0(1 + s∗)

)1+1/2ν

= KAs
∗ . (6.7)

However, the membrane cannot be stretched beyond a critical strain sc = (Ac−A0)/A0

before it ruptures. For the Cooke membrane previous work has found sc ≈ 9% [CD05,
Des09]. When the equilibrium strain s∗ obtained from Eq. (6.7) exceeds this critical strain
sc, the membrane ruptures, which gives the following condition for the stability limit:

αNaa
1/ν kBT

ν
Σ
1+1/2ν
0 = KAsc(1 + sc)

1+1/2ν sc≪1≃ KAsc , (6.8)

where Σ0 = f/2A0 is the grafting density before the membrane expands (the factor of 2
originates from the fact that there are two brushes on both sides of the membrane). The
mole fraction of the tethers φ is related to Σ0 as

φ =
f

f +Nℓ
≈ f

2A0/aℓ0
= Σ0aℓ0 (6.9)
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where aℓ0 is the area per lipid in the unstressed bilayer. Plugging Eq. (6.9) into Eq. (6.8),
one derives the relation between the mole fraction φ of the tethers and the degree of
polymerization Nb = aNa/b at the stability boundary as

φ =

[

νsc
α

a

b

(√
aℓ0
a

)1/ν aℓ0KA

kBT

1

Nb

]
1

1+1/2ν

. (6.10)

This predicted stability boundary is plotted in Fig. 6.5, with ν = 3/5, and a handpicked
α = 1.1 to fit the data. This value of α confirms the assumption in Eq. (6.4) that α is
indeed of order unity.

Therefore, if trying to assemble the proposed polymer-tethered membrane-nanoparticle
composites by letting membranes with anchored tethers wrap around the NP cores, one
has to keep in mind that tether chains that are too long or too dense can destabilize the
bilayer. The stability boundary can be predicted using Eq. (6.10), up to a factor of order
unity.

6.4 Discussion

In this chapter, we have shown that the CG model we parameterized in Chapter 2 is able to
qualitatively reproduce many important behaviors of a model membrane system, namely
the tethered bilayer lipid membranes. These behaviors are closely relevant to our study of
the polymer-tethered membrane-NP complexes. In our model, lipids can self-assemble on
a self-aggregated monolayer via the rapid solvent exchange or the vesicle fusion procedures.
Moreover, the polymer theories derived in Chapter 3 are found to semi-quantitatively, or
even quantitatively, predict properties of the tethers, such as the brush height and their
ability to destabilize the membrane in which they anchor. With the proven ability of our
model to represent a relatively well-understood model tethered system, and the verified
applicability of the relevant polymer theories, the newly-proposed nanocomposites can be
studied in the next chapter.
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In the previous chapter, planar tethered bilayers have been investigated using the generic
CG model parameterized in Chapter 2 and the scaling concepts discussed in Chapter 3.
As demonstrated, our CG model captures many important aspects of polymer-tethered
membrane systems, and the theory of “blobology” is able to semi-quantitatively describe
the behavior of the polymer brush in such systems. Equipped with these powerful tools,
we can finally move on to study the polymer-tethered membrane-nanoparticle composites
which we have been expecting to enter the stage ever since they have been promised in
Chapter 1. Their spherical geometry around the NP core naturally raises additional com-
plications compared to planar tBLMs. Our goal is, as explained in the first chapter, to
address many generic problems in such a design from a theoretical and simulational per-
spective without getting involved in discussions about specific chemical implementations.
By considering theoretical constraints from geometry and material properties, the enor-
mously large parameter space can be effectively reduced to a physically plausible subspace
of much smaller volume. It is the hope of this author that the guiding principles devel-
oped in this thesis will help to both shorten the time and reduce economic costs for any
endeavors to assemble such NPs in the lab with one’s preferred specific realizations.

7.1 Generic constraints

Fundamental physical principles limit the combination of design parameters from which
one can choose, regardless of the chemical specificity of the components in the systems.
Such constraints include the maximum number of tethers allowed on the surface of the
solid core, and optionally the minimum number of them if one plans to wrap an assembled
membrane around the NP core with grafted tethers.

Maximum grafting density

One “hard” limitation is the maximum grafting density, Σmax, on the surface of the solid
core, which is mainly dictated by the surface area, alinker, of the endgroups of the linkers
when chemically adsorbed to the surface. Ignoring all the interactions among the linkers
except for the excluded volume effect, the grafting density Σ is bounded from above by
Σmax as

Σ 6 Σmax = 1/alinker . (7.1)
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We assume the Σ can be tuned down from this maximum value by placing “backfillers”
on the core surface, as seen in the case of planar tethered bilayer membranes [RBMC+98,
MVV+07, HNV+09]. Thus, given a solid core of a fixed radius Rcore, the maximum amount
of linkers in the structure is then 4πR2

coreΣmax.

Minimum grafting density (optional)

Depending on the assembly process, additional requirements on the minimum grafting
density may arise. During assembly, if one needs to wrap the membrane around the solid
core and linkers, the free energy gain from inserting anchors into the inner leaflet must
compensate the energy cost of bending the membrane [Hel73, Hel74]. If ǫins is the free
energy gained by inserting a single lipid anchor into the membrane, then the total free
energy of insertion is given by Eins = ǫins4πR

2
coreΣ, while the total bending energy is of

course Ebend = 4π(2κ+ κ), assuming that the final membrane is spherical. Requiring that
insertion mush pay for bending leads to the inequality

Σ > Σ
(1)
min =

2κ+ κ

ǫins

1

R2
core

. (7.2)

When the membrane is stiff, or when the solid core is small, or the free energy of insertion
per anchor is small, a larger grafting density is required to curve the membrane.

A second lower bound on the grafting density stems from the experience gained over
many years from working with planar tethered bilayer membranes. In order to keep a
planar tBLM nicely tethered to the substrate, the anchor:lipid ratio should stay roughly
above 1 : n ≈ 1 : 10 [MVV+07]. In the spherical case, even though it is unlikely for
the anchors to detach from a vesicle formed around them, it may still require a minimum
anchoring density during the wrapping process. Because of the spherical geometry, this
constraint on the anchoring density at the membrane vesicle is translated in terms of the
grafting density on the core surface as

Σ > Σ
(2)
min =

1

naℓ

(

Rves

Rcore

)2

, (7.3)

where n ≈ 10, aℓ is the area per lipid, and Rves is the radius of the membrane vesicle.
To stay on the safe side, one may take the larger value from Eqs. 7.2 and 7.3 as the

lower bound for the grafting density: Σ > Σmin = max{Σ(1)
min,Σ

(2)
min}. Note that 1) both

constraints are optional if wrapping is not part of the assembly process, and 2) these two
conditions become the same when the total insertion free energy Eins is equal to the bending
energy Ebend of the vesicle.

7.2 Optimal combination of the parameters

So far, the important interplay between these linkers and the enclosing membrane vesicle
has not been discussed, which introduces additional requirements on the parameter set of
the system.
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Recall that the simple theoretical model for spherical polymer brushes developed in
Chapter 3, which is based on scaling concepts and single-chain theories, could quantita-
tively predict the full force-extension relation of the brush. Although the crossover regime
between the strong compression and the strong stretching regime is not very accurately
described (due to some of the simplifying assumptions made in the model), it provides a
straightforward estimate of the relaxed position of the chains given other material param-
eters.

This ability to predict the response of the polymer brush to the stresses resulting from
its confinement between the membrane vesicle and the solid core is of great importance,
since it is reasonable to assume that this brush behavior will determine the possible range of
the NP size, which in turn affects the uptake of the nanocarriers in many different ways (see
the discussion in Section 1.1.3). On the one hand, if the vesicle size is too small, then the
polymer chains are strongly compressed, and pores might form in the membrane because
the osmotic pressure created by the chains will induce a large Young-Laplace tension in the
lipid bilayer. Once this tension exceeds the rupture tension (or comes close), the stability
of the vesicle is at risk. If, on the other hand, the vesicle is too large, then the linkers
are strongly stretched, the energy in the chains increases, the vesicle may be deformed,
and eventually some anchors will be pulled out from the bilayer. Therefore, if the NPs are
allowed to choose their preferred structures during the assembly process, then they should
arrive at a radius at which the polymer linkers are neither compressed nor stretched. Note
that, in reality, this simple reasoning would not hold if kinetic issues prevent the system
from reaching thermodynamic equilibrium. These two limits of the NP size will now be
examined.

For convenience, when discussing the polymer chains, the interface radius, which quan-
tifies the average radial position of the polymer-membrane interface between the last poly-
mer bead and the head bead of the anchor, will be denoted as r. The volume between
the radius of the solid core, Rcore, and this interface radius r will be the space which the
polymer chains can occupy. The value of r is related to the vesicle radius Rves (the radius
of the bilayer midplane) through the bilayer thickness d as

Rves = r +
d

2
. (7.4)

We need to distinguish Rves and r because the monolayer thickness d/2 is not necessarily
very small compared to the chain extension r−Rcore (which is also the separation between
the inner leaflet and the core surface). In simulations, the values for Rves, d, and r can be
very easily determined from the radial distribution profiles of the membrane beads.

Minimum vesicle size

The polymer chains between the solid core and the lipid vesicle serves as a cushion when
the vesicle is compressed, which poses a lower bound on the radius of the vesicle, Rves,min =
rmin + d/2.
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The osmotic pressure Π from the polymer brush will induce a surface tension σ in
the lipid membrane according to the Young-Laplace relation σ(r) = Π(r)r/2. When the
interface radius r decreases below rmin, the induced surface tension σ will exceed the
rupture tension σrup of the membrane, which will lead to pore formation and potentially
the loss of drug payload.1

This osmotic pressure Π can be semi-quantitatively predicted using the scaling theory
described in Section 3.5.3. Adapting Eq. (3.42) with the current notations, Π is given by

Π(r) ≈ kBT

ξ30

(

Φ(r)

Φ0

)9/4

=
kBT

ξ30

(

r30 −R3
core

r3 −R3
core

)9/4

, for r < r0 . (7.5)

Here, Φ is the monomer volume fraction, and kBT is the thermal energy. The subscript 0
denotes the relaxed reference state: r0 is the radius of the polymer-membrane interface at
which the linkers are relaxed, and ξ0 = (r0/Rcore)/

√
Σ is the average distance between two

chains at the surface of r = r0. When the vesicle size Rves is reduced, the concentration
Φ increases, and the pressure Π increases with a larger exponent. Thus, as Rves decreases,
the stress σ in the membrane increases, until the membrane rupture tension is reached; the
lower bound on the vesicle size, Rves,min, is given by the solution of the following equation:

σ(rmin) = Π(rmin)rmin/2 = σrup . (7.6)

For an example system described later, we will show this minimum vesicle radius as a
dotted vertical line in Fig. 7.1.

Maximum vesicle size

There also exists an upper bound on the vesicle size, Rves,max = rmax + d/2. The linker
chains are subject to a tensile stress when they are stretched by an increased vesicle size
Rves beyond their relaxed length, before reaching a point when the hydrophobic anchors
are pulled out from the membrane. Since this happens when the chains are in the large
extension regime, their force-extension relation can be approximated by the single-chain
theories discussed in Section 3.2 (assuming the persistence length ℓp and the degree of
polymerization N of the polymers are known). For each chain, the excess energy due to
pulling, E , can be calculated by integrating the force-extension relation. When E accu-
mulates beyond the (free) energy of insertion ǫins of an anchor into the membrane, some
chains will be pulled out. For a regular fluid membrane, the maximum vesicle size Rves,max

is then determined by the solution of the following equation:

E(rmax) = ǫins ≃ 10 . . . 20 kBT . (7.7)

Again, this maximum vesicle radius will be shown as a dotted vertical line in Fig. 7.1 for
illustration.

1In real life, σrup = a few mN

m
.
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7.3 Simulation setup

A comprehensive view

As argued above, the various parameters in the design of this polymer-tethered membrane-
nanoparticle composite are entangled due to the theoretical constraints derived above.
Thus, depending on which parameter is the limiting factor, or which parameter needs to
be optimized, one may have to adjust the other parameters accordingly. For instance, if
there is no backfiller available to dilute the tethers on the core surface, then the grafting
density is presumably close to Σmax. If now the size of the final nanocomposites needs to be
within a certain range (e.g. in order to pass through the leaky blood vessels in the tumor
issue), then, with one fewer “knob” of Σ to tune, one can only try to pick an appropriate
combination of the core size Rcore and the chain length N of the linkers. Or if, in some
other cases, one hopes the nanocomposites could be more resilient to deformation due
to external pressures, meaning the particles can recover from larger deformation without
their membranes being ruptured, then one should lower the grafting density or pick softer
polymer linkers to lower the induced osmotic pressure by compression (see Section 3.5.3).

7.3 Simulation setup

In order to support our theoretical considerations elaborated in the previous sections,
several sets of MD simulations are conducted, using our generic lipid and tether model.
Although these simulations differ in many aspects of their setup, depending on which
purpose they serve, they still share several common aspects that will be outlined in this
section.

The first common aspect concerns the interactions between the different particles in
the system. For simplicity, the lipidic anchors of the linkers share their parameters with the
Cooke lipids. With the conventional temperature kBT/ǫ = 1.1 for the Cooke model, the
attraction range wc in the cosine-square potential between any two hydrophobic particles,
irrespective of whether they are lipid tails or anchors, is slightly changed to wc = 1.72σ, so
that the aspect ratio of the lipids and anchors can closely match the ratio of real DOPC. If
this aspect ratio of DOPC lipids is used as the reference for the mapping of length scales,
then 1 nm ≃ 1.236σ. The mapped real units will be used for a more intuitive picture of
the systems. The details of how to tune the aspect ratio of the lipids in our model have
been discussed in Section 2.2.1.

The second common aspect in all systems involves how the solid core is realized.
Because the size of the core (several to a few tens of nanometers in diameter) is normally
an order of magnitude larger than the size of a linker bead (roughly half a nanometer), it
is (for purely technical reasons) computationally more expensive to represent the NP core
with a real bead.2 Instead, the core is implemented as a constraint in simulations, which

2The reason is that — at least within the earlier version of ESPResSo used for this study — the largest
interaction range sets the interaction cutoff for all pair forces, and this is inconvenient because the number
of pair interactions one needs to consider increases super-linearly with respect to the interaction range.
More advanced MD packages circumvent this problem by using different interaction ranges for different
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7 Polymer-tethered membrane-nanoparticle composites

is fixed at the center of the box and repels all other particles via a WCA potential.
Thirdly, with this “pseudo core”, the endgroups of the linkers, which are supposed to

be covalently linked to the core, are simply fixed in simulations onto its surface. Note that
these grafting sites are placed on a lattice with a roughly equal distance between the nearest
neighbors, so that this underlying assumption in the blobology theory is satisfied. A more
realistic setup with randomly distributed grafting sites may slightly affect the results, but
this has not been tested yet. However, we suspect that the effects of a slightly uneven
distribution is comparable to the effects that result from a polydispersity of the polymer
chain length, which will be discussed in the next section.

7.4 Results

7.4.1 Stability of pre-assembled vesicles

In Section 7.2, our theoretical polymer model predicts that the optimal size of our nanocar-
riers will be approximately the radius at which their polymer linkers are relaxed: being too
small or too large will destabilize the membrane vesicle or the tether anchors. This relaxed
position of the polymers can be predicted by our theoretical model of spherical brushes, as
explained in Section 3.5.5.

An example force-extension curve for a polymer brush is shown in Fig. 7.1 for a system
with Rcore = 9.0 nm and f = 342 linker chains, each of length N = 30, monomer size
a ≃ 0.4 nm, and persistence length ℓp ≃ 0.32 nm. The measured average force per chain,
F (r), black dots, our theoretically predicted F (r), dashed red curve, and the free energy
accumulated in the chain, E(r), solid blue curve, are plotted against the interface radius
r. Given this curve, the minimum and maximum radius Rves of a mechanically stable
nanocomposite can be calculated: Plugging in σrup ≈ 5 pN/nm, Eq. (7.6) gives rmin ≈
11.6 nm, or equivalently Rves,min ≈ 11.6 nm + d/2. Below this radius, the pressure from
the polymers will very likely rupture the membrane. On the opposite side, assuming
the free energy of insertion of a lipid is around 15 kBT , then the solution of Eq. (7.7) is
rmax ≈ 17.0 nm, above which vesicle deformations may occur, and anchors may be pulled
out from the bilayer. The optimal vesicle size, Rves, 0 = r0 + d/2, at which F (r0) = 0,
is r0 ≈ 12.4 nm. Note that the left cutoff happens at a fairly low E(r), while the right
cutoff has a much larger E(r). The reason is that the left cutoff is a collective effect of all
chains pushing against the membrane vesicle, while the right cutoff looks at the pull-out
of a single chain.

To test our statement on NP sizes, membrane vesicles of four different sizes are as-
sembled around the aforementioned spherical polymer brush, whose interface radii r are
indicated by the arrows in Fig. 7.1. The number of lipids in each vesicle is approximated
separately for the two leaflets, based on their own monolayer radii and the area per lipid
of a flat bilayer. Based on the simple reasoning above, these four systems would behave in

particle types. Luckily, this is not a big problem here, because it is not in fact necessary to represent the
NP core as an actual degree of freedom.
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Figure 7.1: The force-extension curve (red dashed) for a single polymer chain in the example system

described in the main text, predicted by our theoretical model for spherical brushes. The horizontal

axis is the interface radius r, the vertical axis on the left is the average force per chain, F (r), and the

vertical axis on the right is the free energy per chain, E(r) (blue), obtained by integrating −F (r)dr. The
solid circles are the forces measured in simulations of the brush constrained by two concentric repulsive

shells. Note that the repulsive (positive) force diverges at the core surface (r = 9.0 nm, shaded), while

the contractile force (negative) diverges when the chains are fully extended (r = 21.1 nm, shaded).

The predicted range of a physically viable vesicle size, i.e. rmin ≃ 11.6 nm predicted by Eq. (7.6) and

rmax ≃ 17.0 nm by Eq. (7.7), is indicated by two vertical dotted lines. Two snapshots of an overly small

vesicle (brush over-compressed) and an overly large vesicle (brush over-extended) show examples of how

the polymers can destabilize and deform the enclosing membrane vesicle.
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7 Polymer-tethered membrane-nanoparticle composites

the following different ways: System I includes the smallest lipid vesicle, and is expected to
be in the regime that chains repel so strongly that the membrane will be ruptured; System
II contains a vesicle whose radius is almost optimal to keep the polymer linkers relaxed;
System III is larger, but still within the permissible range; The last system, System IV, is
even larger so that the chains are stretched so much that some of them may be pulled out.

Indeed, huge membrane pores are found in System I, while Systems II and III remain
stable throughout the simulation time, backing up our theoretical considerations of the
minimum vesicle size Rves,min. However, System IV shows some unexpected behavior: All
chains together can pull the vesicle inwards so strongly that they force it to assume a
smaller radius. Since a smaller vesicle needs fewer lipids, the chains thus collectively force
the vesicle to shed lipids. This unexpected behavior stems from the assumption in our
constraint of the maximum vesicle radius Rves,max, in which only single-chain pull-outs
have been considered as the consequence of over-stretching the brush. But our simulations
show that the collective deforming effect of these polymer chains on the membrane will
step in earlier than the pull-outs.

7.4.2 Assembly

The polymer brush in our nanocomposites prefers a range of vesicle sizes, outside of which
it may deform or rupture the vesicle. However, if the vesicular membrane is in contact with
a lipid “reservoir” and is allowed to adjust the number of lipids it contains (and thus its
surface area), then our theory predicts that it is most likely to lead to assembled vesicles
with their linkers roughly relaxed. To enable the system to choose its own size, and also to
test a potential procedure to assemble such composites in experiments, a set of simulations
are conducted in a way which is analogous to the rapid solvent exchange method for the
planar tethered bilayers covered in the previous chapter.

In the current setup, the self-assembled monolayer (SAM) is the “lawn” of linkers that
have their endgroup fixed around the solid core. The lipids in a good organic solvent are
again mimicked by randomly placing them in the simulation box. After the “replacement”
of the solvent, which is simply enacted by turning on the effective hydrophobic interactions,
the development of the system is observed. Note that the total number of lipids in the
simulations is approximately twice the number in a vesicle of the optimal size, so that the
membrane has the possibility to be (at most

√
2 times) larger than the predicted optimal

size.

As shown in Fig. 7.2 with a sequence of snapshots from such a simulation (System
V), this assembly process is indeed reminiscent of the rapid solvent exchange method to
prepare tBLMs pictured in Fig. 6.1. Once the hydrophobic attraction becomes effective,
lipids aggregate into membrane patches in the bulk and around the SAM. After the merge
of patches with the SAM and clipping off the excess lipids, a complete membrane vesicle
forms with polymer tethers linking it to the solid core.

From our theoretical analysis of the polymer brush, the optimal size of the membrane
vesicle would be Rves = r0 + d/2, at which these linkers are relaxed. To test this, the
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A B

C D

Figure 7.2: A sequence of snapshots of the assembly of System V. Lipids are rendered as semi-

transparent licorices so that the linkers and the core are more visible. A, the initial random configuration

of the lipids. B, lipids start to aggregate into membrane patches. C, excess lipids bud out from the

vesicle. D, the final structure.

radial distribution profile of the particles in this assembled nanocomposite is measured, as
shown in Fig. 7.3. The interface radius r of this assembled structure is measured to be
r ≈ 14.3 nm, showing a separation of roughly 5 nm between the vesicle and the solid core.
Admittedly, compared to the predicted value of r0 ≈ 12.4 nm, the measured value of r is
approximately 2 nm larger. However, as shown in Fig. 7.1, the free energy per chain, E , is
rather flat in this range of r: at r ≈ 14.3 nm, the increase in the free energy per polymer
chain is around 5 kBT , which is safely below the free energy of insertion ǫins ≈ 15 kBT .
Hence, the anchors can remain inside the bilayer.

In fact, it is the interface radius r0 preferred by the linkers that the polymer theory
predicts. The lipids, however, may choose to form a larger vesicle to lower their free energy:
Including one single lipid into the bilayer will lower the free energy by ǫins ∼ 15 kBT , while
merging a membrane patch into the vesicle also can reduce the free energy by removing
open edge. Thus, it is plausible that the vesicle would slightly swell, as we have seen in
our simulations. On the other hand, this swelling of the vesicle will inevitably stretch the
tethers and increase the free energy of the brush. But notice, the lipids do not pay for
this directly; instead, the tethers do. The additional pulling from the tethers increases the
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Figure 7.3: Radial distribution profile of System V. The horizontal axis is the interface distance r, and

the vertical one is the density of particles, defined as ρ = N(r)/4πr2dr, at a radial distance r from the

center. Solid and dashed curves denote lipids and tether anchors, respectively. Red and black curves

stand for the head and the two tail beads. The polymer spacer is shown as the dotted curve. A vertical

line separates the solid core (shaded) from the rest at Rcore = 9nm.

surface stress in the bilayer, hence would cost energy. But since the lipids easily outnumber
the tethers by one order of magnitude, the cost per lipid could be very bearable. In the
extreme scenario when the free energy accumulated per chain is sufficiently high, these
chains will induce membrane deformation, followed by possible pullout of the anchors,
which defeats our purpose of tethering the membrane vesicle to the solid nanoparticle core.

Another important observation from several assembly simulations is the possibility
that the nanocomposite may be kinetically trapped in states with a higher free energy. For
instance, if a large patch of membrane is adsorbed onto the tethers while the membrane
vesicle is almost complete, then a part of this patch may end up dangling outside the vesicle
as an attachment for a really long time. This is because, on the one hand, the amount
of the free energy the vesicle lowers by including all these extra lipids into the vesicle
(thus eliminating the open edge) may not suffice to compensate for the cost to significantly
expand a membrane under tension; on the other hand, the patch may not be able to detach
either, since exposing open edges also increases the free energy.

Of course, getting trapped in these intermediate states may not be a real issue in
experiments, since the available time scale is much longer than what is achievable in simu-
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lations. Without additional experimental knowledge it is unclear whether one can simply
wait for the system to evolve towards its free energy minimum or whether additional mea-
sures would have to be taken, such as creating shear forces through extrusion, or mildly
sonicating the system. Moreover, we neither intend to invalidate this potential assembly
procedure, nor do we at the present state aim to find practical solutions to the problem of
dangling bilayer patches, using our CG model. Our purpose is to point out the possibilities
one may overlook, based on the events observed in simulations.

7.4.3 Solvent condition

In addition to the problem of having undesirable membrane attachments on the surface
of the tethered vesicle, the existence of empty lipid vesicles formed by excess lipids (as
shown in Fig. 7.2) also raise the practical question of how to separate the membrane-
nanoparticles from these empty vesicles, considering that the size of such self-assembled
lipid vesicles (tens of nanometers, as first predicted in the work by Helfrich [Hel74]) are
comparable to the vesicles with a core inside.

One conceptually possible method to alleviate both of these problems at the same
time is to change the quality of the solvent where the assembly will take place. It is
conceivable that with a very carefully chosen range of lipid concentration, which is slightly
below the lipid’s critical micelle concentration (CMC),3 the translational entropy of being
a free lipid would only slightly overweigh the free energy decrease of grouping hydrophobic
parts together and forming aggregates. Thus, the lipids in the bulk would remain in a
random configuration. However, near the surface of the solid core with grafted tethers,
it could be entropically more beneficial for the lipids to assemble into a bilayer with the
anchors, since the anchors have already lost most of their translational entropy. If such
a range of lipid concentration exists, then one can filter away the stray lipids and small
aggregates in the bulk easily, and collect mostly the membrane- coated nanoparticles. One
may concern about the extremely low CMC for lipids in water : for instance, the values of
the CMC for the PC lipids discussed in previous chapters are on the order of nM [Mar13].
However, we can choose to use a much better solvent, for example good organic solvent like
ethanol, in which the lipid CMC is orders of magnitude higher. This not only significantly
increases the probability of lipids arriving at the NP surface (which linearly depends on the
lipid concentration), but also shifted the chemical potential balance between the lipids in
the bulk (logarithmically depending on the lipid concentration) and the lipids around the
NP towards the latter. In addition, under such solvent conditions it could be conceivable
that the exchange of lipids between membranes and the bulk reservoir, or between two
membranes, will be facilitated, such that the system may escape more quickly from some
intermediate states.

We have indeed found a small range of solvent condition under which the above scenario
is observed. A system consisting of 508 linkers of length N = 10 and roughly 10800 lipids

3The CMC (critical micelle concentration) is the concentration beyond which the lipids in solution will
start to form micelles.
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7 Polymer-tethered membrane-nanoparticle composites

Figure 7.4: Under a carefully chosen solvent quality condition, lipids in the bulk remain randomly

distributed, while a bilayer forms with the help of the tether anchors near the surface of the core. Stray

lipids are rendered as transparent, so that the molecules around the NP core are better visible. The

system contains 508 10-mer linkers and approximately 10800 lipids. The strength of the cosine-square

attraction is reduced to 55% of its normal level in an aqueous solution.

is simulated under different solvent quality conditions that are systematically varied by
increasing the depth ǫ of the cosine-square potential (see Eq. (2.4), from 0 to its normal
value of 1). As shown in Fig. 7.4, when the attraction strength is lowered to 55% of its
normally used value, lipids starts to cover the NP core, without any significant aggregation
happening in the bulk. Relating the quantitative information from these simulations to
experimental systems is probably difficult due to the generic nature of our CG model. But
the observation that a range of such solvent condition does exist in simulation suggests
that it may be worthwhile looking for the experimental analogue of this condition when
one tries to assemble such nanocomposites in experiments.

7.4.4 Polydispersity

So far, only monodisperse polymeric linkers have been considered. This situation is surely
easiest to treat in theory, but it usually requires substantial experimental effort. Hence, it
is also worthwhile to look into the effects of polydispersity in the chain length. Intuitively
speaking, if the chains have a wide distribution in length, then they will prefer different
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chain extensions, and thus respond differently to the confinement from the membrane vesi-
cle: the shorter chains are under tension so they pull on the bilayer, while the longer ones
are compressed and hence push on the membrane. This could lead to, for instance, local
deformations of the bilayer they anchor into. These “crumbled” vesicles with nonuniformly
distributed stress inside may exhibit a compromised mechanical stability. In the extreme
case, one can imagine that the chains belonging to the short end of the length distribution
function simply pull out of the vesicle, especially if their immediate neighbors happen to
be long chains. Such effects would cause an uneven tethering density and presumably lead
to other undesired results.

In this subsection, the effects of polydispersity in the tether chains is examined. The
distribution of the chain length is assumed to follow the two-parameter Schulz distribution
with parameters b and α [RMG96]:

W (N) =
αb+1N b

Γ(b+ 1)
exp(−αN), (7.8)

where W (N) is the mass distribution function of chains with a degree of polymerization
N , and Γ denotes the gamma-function. W (N) is related to the degree of polymerization
distribution function, F (N), by

W (N) =
NF (N)

∑∞
N=1NF (N)

. (7.9)

Using Eqs. (7.8) and (7.9), F (N) can be expressed as

F (N) =
αbxb−1

Γ(b)
exp(−αN) . (7.10)

The two parameters b and α are related to the number (Nn) and weight (Nw) averaged
chain length as [RMG96]

Nn =
b

α
(7.11)

and Nw =
b+ 1

α
, (7.12)

respectively. Then the polydispersity index (PDI), defined as the the ratio of Nn/Nw, is

PDI =
Nw

Nn

=
b+ 1

b
= 1 +

1

b
. (7.13)

We have simulated four polydisperse systems that are similar to System V discussed
previously in Section 7.4.2, with a PDI of 1.05, 1.1, 1.2, and 1.5, respectively. The PDI
of each system determines the parameter b in the Schultz distribution via Eq. (7.13). The
other parameter α is then determined by Eq. (7.11) to keep the number averaged chain
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Figure 7.5: Schultz (number) distribution function, F (Nb), as a function of the degree of polymer-

ization Nb, for PDIs equal to 1.05 (solid), 1.10 (thin dotted), 1.20 (dashed), and 1.50 (dash-dotted),

respectively. The number averaged degree of polymerization Nn = 30 is the same in all four cases and

is indicated as a vertical dashed line. For the systems with a PDI of 1.20 and 1.50 (shown as inset),

the final membrane around the NP is “crumbled” with bulges, where no tethers (drawn as small orange

beads connected to a large red-blue anchor) are anchored to.

length Nn = 30, comparable to N = 30 which we used in the monodisperse System V. The
amount of tethers of various length are set roughly to the same f = 342; a slight deviation
of 1 or 2 in f may be caused by the rounding error when applying the distribution function
Eq. (7.10). The frequency distribution function F (N) of these four systems is plotted
in Fig. 7.5. Notice that, as the PDI increases, the distribution function becomes not just
broader but also less symmetric with respect toNn; shorter chains show up more frequently.

As discussed in the previous subsection, the tether-membrane system may be trapped
in some intermediate states, such as states that have a small amount of excess lipids
attached to the outside of the bilayer. One potential method to facilitate the escape from
such states is by increasing the exchange of lipids with the bulk environment or with other
floating membrane patches, which can be realized by adjusting the solvent condition. Thus,
all these four systems are initially simulated with a weakened hydrophobic attraction (c.f.
Section 7.4.3). If a complete vesicle forms around the NP core, then the solvent condition
is tuned back to its regular level in water, followed by measurements of the equilibrium
properties of the system. Of course, the area per lipid depends on the effective attraction
used to represent the hydrophobic interaction. Thus, it is conceivable that if a nice bilayer
forms around the relaxed tethers in a carefully chosen solvent quality condition, then
switching to an aqueous solvent will contract the bilayer and consequently compress the
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polymers.

Among the four polydisperse systems, the desired membrane-nanoparticle composite
is found in the two systems with a lower PDI of 1.05 and 1.10; the radial distribution
profile of the particles resembles the one measured for the monodisperse System V (which
has been shown in Fig. 7.3). The lipids in the other two systems with a PDI of 1.20 and
1.50, however, fail to form a nice membrane vesicle anchored around tethers. Instead, a
crumbled vesicle with a few large bulges is observed, with no tethers anchoring to the inside
of the bulges. An example snapshots of a system with a PDI of 1.50 is shown as the inset in
Fig. 7.5. These “defects” in the vesicle do not disappear throughout the entire simulation
time, suggesting that these two systems are indeed stuck — at least in the simulations, but
conceivably the same might happen for experimental systems. Observation of the tethers
near these bulges shows that the alternation of randomly distributed long and short chains
seems to limit the impact of the polymer brush on the vesicle.

7.5 Discussion

In this concluding chapter, we have studied a few important aspects of the proposed
membrane-nanoparticle composites. First, by simulating pre-assembled nanoparticles with
vesicles of different sizes, we verified that our theoretical model for polymer brushes in a
spherical geometry can be applied to semi-quantitatively predict the force-extension re-
sponse of the tether chains in the composites. This helps us to estimate the range of
vesicle sizes in which the interactions from the tethers will not deform or destroy the en-
closing bilayer vesicle. Second, an analogue of the rapid solvent exchange protocol for
planar tethered bilayers is tested in simulations, suggesting a possible way to assemble
these nanocomposites under some fine-tuned solvent condition where lipids form a bilayer
vesicle around the core but remain scattered in solution. This special environment could
be beneficial when one wants to separate the assembled nanocomposites from the lipid ag-
gregates. Meanwhile, escaping kinetically trapped states in the assembly process may also
be achieved in such solvent condition, since the exchange of lipids between the membrane
vesicle around the tethers and other lipids in the bulk or in free membrane patches might
happen more easily.

Thermal response

Many further questions regarding this design of polymer-tethered membrane-nanoparticle
structure may be investigated following the current study. One especially interesting one
concerns a potential strategy to release the drug payload utilizing external thermal input.

Suppose the complete membrane-nanoparticle structure can be prepared using lipids
which stay in the gel phase under physiological conditions. Then, upon the increase of
the local temperature around the particles, e.g. by utilizing enhanced surface plasmon
resonance [PB11], the membrane and the polymer chains would behave very differently:
On the one hand, the increase in temperature may drive the lipids over the phase transition
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7 Polymer-tethered membrane-nanoparticle composites

from the gel phase into the fluid phase, during which the surface area of the vesicle expands
normally by 10 to 30%[NE88, NTN00]. On the other hand, the polymer chains would tend
to contract more strongly due to the enhanced entropic effect.4 As a consequence of these
two types of responses in the opposite directions, one might hope that the membrane vesicle
ruptures, and releases the drug payload.5

4This is the same effect that makes rubber contract upon heating.
5Series of research have been devoted to developing temperature-dependent drug release lipo-

somes [NAKD00, ND01, NPWT13]. Ideally, one can implement such optimized membrane formulations
in our nanocomposites. Then the additional stress from the polymer chains may further improve the
release mechanism.
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Appendix A

Notes on Data Analysis

After the design and implementation of simulations, data analysis is a crucial step leading
to sound conclusions and enabling meaningful discussions. It involves much more than
simply calculating averages and feeding numbers into your favorite fitting software. In this
appendix, I will outline those aspects of data analysis that are the most relevant ones to
my day-to-day research, in an order that is similar to the typical work-flow.

First, after investing hundreds of CPU hours, we need to extract measurements with
reliable errors out of our simulation trajectories. The blocking method, nicely described
by Flyvbjerg and Peterson [FP89], provides an accurate estimate of the variance of the
original data even in the presence of correlations between consecutive data points. This
method also warns the user when such estimates are unavailable based on the current data
set, and thus longer simulations are needed. A general procedure for this method will be
explained in Section A.1.

Second, fitting is also a key step of any analysis that aims to extract some physical
quantities of a theoretical model that purports to explain these data. For this, a short
overview of weighted least square regression is described in Section A.2, covering both
linear and nonlinear regressions.

Third, to estimate the errors on the fitting parameters, the Monte Carlo resampling
technique is almost universally applicable and nevertheless straightforward to implement.
As described in Section A.3, this technique does not require one to analytically carry out
complicated error propagation (an endeavor that is anyways almost never pushed beyond
linear order). At the same time, much more information regarding the fits can be learned
through this method.

A.1 Blocking Analysis

Generally, the output of our MD simulations consists of various physical quantities, such as
energies, forces, and pressures of the simulated system, in the form of a time series. Because
having more data points helps to obtain better statistics, and thus make better use of the
trajectories, it is tempting to generate output data as frequently as possible. However,
this brings in a new problem one now needs to solve: The commonly used quantity, the
(naively calculated) standard error of the mean, underestimates the real error on the series
average, because it overlooks correlations between neighboring data points.
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A classical remedy for this situation is to calculate the correlation function, from which
one can calculate the correlation time of the series of data points, and this permits one
to calculate correction factors to the naive (and too small) error of the mean. Yet, the
blocking method, which will be outlined in this section, has been proven to be both more
rigorous and computationally less demanding. For more details, the reader is encouraged
to consult the very lucid paper by Flyvbjerg and Peterson [FP89].

Consider a system in equilibrium, thus the unknown probability distribution of a quan-
tity x, p(x), will be independent of time. Let xi be a set of measurements of x, where
i = 1 . . . n indicate the order of the measurement, which we will assume to have been taken
at regular time increments. The expectation value of some function f(x) is then

〈f〉 ≡
∫

dx p(x)f(x) , (A.1)

while the sample average f is

f ≡ 1

n

n
∑

i=1

f(xi) . (A.2)

The former expression, 〈· · · 〉, is a theoretical quantity based on the unknown probability
distribution function p(x), whereas the latter one, · · ·, is calculated from the finite sample
of measurements {xi| i = 1 . . . n}.

Assuming ergodicity, x is then an unbiased estimator of 〈x〉, and it will become arbi-
trarily accurate in the limit of infinite sample size. But in reality, only finite sample sizes
are available, thus we need a good estimate of the error on x. More specifically, we want
to estimate the variance of m ≡ x = 1

n

∑n
i=1 xi, i.e.

σ2(m) =
〈

m2
〉

− 〈m〉2 . (A.3)

Note that the “naive” sample variance

c0 ≡
1

n

n
∑

k=1

(xk − x)2 (A.4)

is not the real variance, since the data are correlated.
The blocking method provides a rigorous estimate of σ2(m). It relies on the following

linear transformation: Let {x′} be the transformed data set with

x′i =
1

2
(x2i−1 + x2i) , (A.5)

n′ =
1

2
n . (A.6)

This means every two consecutive data points are averaged into one “new” data points. In
case that the number of data points is odd, the last point would be dropped.

It is clear that x′ = x due to the linearity. Flyvbjerg and Peterson point out two more
properties of the blocking transformation [FP89]:
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1. σ2(m) stays invariant through this transformation, i.e. σ2(m′) = σ2(m). Thus, all
information we want to obtain about σ2(m) is kept after the blocking transformation.

2. As one repeats the blocking again and again, the system approaches a fixed point, at
which

σ2(m) =

〈

c0
n− 1

〉

. (A.7)

As a consequence, to obtain σ2(m), one keeps applying the blocking transformation
Eq. (A.5) until n′ = 2. After each round of transformation, calculate

σ(m) ≈
√

c′0
n′ − 1

(

1± 1
√

2(n′ − 1)

)

. (A.8)

When σ(m) reaches a plateau within error bars, the system is at the fixed point. Then,
Eq. (A.8) gives a good estimate of σ(m).

If, unfortunately, no plateau is found, this means that the current sample size is in-
sufficient for the system to arrive at the fixed point. This should be taken as a warning:
a larger sample size, i.e. a longer simulation, is needed. Meanwhile, Eq. (A.8) at least
constitutes a lower bound of σ(m).

The advantages of the blocking method include, but are not limited to:

• computational efficiency: the total number of operations is O(n lnn), and

• possibility of automation: for example, one can compare the estimated error σ(m′)
from one round of blocking with the error σ(m) from the previous round in order to
determine whether the plateau is reached, and output the value of σ(m) when it is
converged.

In this thesis, the blocking method is applied to all possible cases when an accurate
error of a physical quantity is needed from a time series.

A.2 Least Square Curve Fitting

From the blocking analysis described in the previous section, one obtains meaningful errors
σi associated with each measurement yi, thus our data points can be denoted as {xi, yi±σi},
i = 1 . . . n. Note that we assume no error is associated with the independent variables xi.
If this assumption does not hold, instead of the weighted least square regression model
described here, other fitting models, for instance the errors-in-variables models [RPL81],
should be adopted.

The purpose of reviewing some basics of the weighted least square regression is to
provide a better understanding of the fitting process. Then, one can easily code it into
scripts, so that repeating the fitting for a large amount of times becomes possible, as
required by the resampling techniques which will be described in the next section.
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The general aim of fitting is to obtain a set of optimal fitting parameters β∗ =
(β1, β2, . . . , βp)

′ (denoted by the superscript *) in the fitting function f(x;β) which “fit”
the data set best.1 Within least square methods, the best fit is found by minimizing the
weighted sum of squared residuals S as a function of β:

min
β=(β1,...,βp)′

S({xi};β) = min
β

n
∑

i=1

wi [yi − f(xi;β)]
2 , (A.9)

where the weights are wi = 1/σ2i for uncorrelated errors {σi}. This is equivalent of maxi-
mizing the likelihood of the data given the fit, under the assumption that all data points
follow Gaussian distributions with mean yi and standard deviation σi.

A linear fit assumes the fitting function f(x;β) is a linear combination of certain
functions that are independent of β, i.e.

f(x;β) =

p
∑

j=1

βjfj(x) . (A.10)

Notice, fj(x) does not need to be linear in x: For instance, in polynomial regression,
fj(x) = xj . However, fj(x) has to be independent of β. So fj(x) = exp (βjx) is in fact a
nonlinear fit.

Linear fitting is deterministic and requires no initial guess on β, while nonlinear fitting
normally uses iterative numerical solvers to refine an initial guess β0. This difference
originates from the distinct dependence on β: For linear models, ∂f(x;β)/∂βk = fk(x) is
constant, given the data x. On the other hand, a nonlinear model may have a complicated
β dependency. The following two subsections will discuss corresponding strategies for
solving linear and nonlinear problems.

A.2.1 Linear Least Square Regression

The linear dependence of f(x) on β, Eq. (A.10), makes it possible to analytically solve the
minimization problem of Eq. (A.9) by calculating the partial derivatives of S with respect
to the fitting parameters:

0
!
=

∂S
∂βm

=
∑

i

2 [wi(yi − f(xi;β))]

[

− ∂

∂βm
f(xi;β)

]

(A.11)

= −2
∑

i

[

wi(yi −
∑

j

βjfj(xi))

]

fm(xi) (A.12)

Denote Wij ≡ δijσ
−2
i , Xij ≡ fj(xi) and y ≡ (y1, . . . yn)

′. Now, W is an n× n matrix,
X an n × p matrix, and y an n-dimensional column vector. Then, Eq. (A.12) can be
written into matrix form as

X ′ (W (y −Xβ)) = 0 , (A.13)

1The prime in β means β is a column vector.
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which leads to the normal equation:

X ′WXβ = X ′Wy . (A.14)

If the n × n matrix (X ′WX) is invertable, we obtain the unique solution of the fitting
parameters

β∗ =
(

X ′WX
)−1

X ′Wy . (A.15)

Nowadays, most of the scientific computing packages contain modules for linear least
square fitting, so it is unnecessary to code the fitting kernel by hand. Yet, some high
performance packages, such as the GNU Scientific Library GSL,2 require users to provide
input data in the format of X, y, W . Thus, for implementation, one needs to understand
the basic concepts in Eq. (A.9 – A.15).

A.2.2 Nonlinear Least Square Regression

For nonlinear least square problems, the partial derivative ∂
∂βm

f(xi;β) is no longer equal
to fm(xi), but becomes a function of β. This extra complication eliminates the simple
solutions à la Eq. (A.15).

To find β∗, we rewind to a multidimensional minimization problem as described in
Eq. (A.9). Fortunately, most of the scientific packages also contain optimization modules.
Elaborating on optimization methods is beyond the scope of this appendix. But, generally
speaking, the input should contain

• A target function S(β; {xi}),3

• A set of initial parameter β0 to start with, and sometimes

• The dependence of S on β, i.e the Jacobian
∣

∣

∣

∂S
∂β

∣

∣

∣
.

After feeding the package with the data in the required format, we can find the fitting
parameters β as outputs of the minimization modules.

It is important to realize that the quest for a minimum of S need not have a unique
solution, because the problem is nonlinear. Multiple solutions could exist, and these can
vary substantially in “quality”. Arriving at a “good” one often depends quite crucially
on how well one guessed the initial parameter set β0. To find better fits, one can sample
various initial β0 and pick the results with a minimum weighted sum of square residual S.

A.3 Monte Carlo Data Resampling

In addition to the values of the fitting parameters, we would like to know the errors
and sometimes even the distributions of these parameters or their cross-correlations. One

2http://www.gnu.org/software/gsl/
3Note that S is a function of β here, not of {xi}.
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intuitive method is to divide the data set into smaller subsets (or equivalently, try to obtain
more data sets), fit each individual set, and study the “ensemble” of each parameter.
However, in real life obtaining more data is always limited by the available computational
resources.

Another less expensive method is to resample the original data set many times based
on the variance of the data, and treat the resampled sets as “new” data sets. The logic
is, if our original data set follows an unknown population distribution, then the resampled
sets will follow the same distribution.

To resample the data {xi, yi ± σi}, ideally we should draw “new” points {xi, y′i ± σi}
according to the probability distributions of the original measurements {yi}. Since these
distributions are generally unknown, we normally assume normality, i.e. yi ∼ N (yi, σi).
Here, N (µ, σ) denotes a Gaussian distribution with mean µ and standard deviation σ. This
assumption is often (but of course not always) endorsed by the central limit theorem.

The general procedure is as follows:

1. Create an artificial shift δyi for each yi with δyi ∼ N (0, σi), thus the “new” data
point y′i = yi + δyi ∼ N (yi, σi);

2. Fit the newly generated data set, {xi, y′i ± σi}, and record the results β′;

3. Repeat step 1 and 2 sufficiently often (say, more than 1000 times), and obtain
{β(0),β(1), . . . ,β(R)}, where β(r) denotes the result β′ from the rth resampled set;
and

4. Analyze {β(0),β(1), . . . ,β(R)} to get the statistics of β.

This resampling technique tries to exploit the maximum information embedded in the
original data set; Instead of a single result β∗, now we have an ensemble of β at hand,
which presumably follows the probability distribution implied by in the original data for
the model parameters. Essentially, we are exploring the possibilities in the sample space
allowed by the original data.

A closely related resampling method is the Bootstrap Method [Efr79].4 In bootstrap-
ping, one resamples the data by drawing the same number of data points from the original
data set with replacement, so it is possible that some data points appear multiple times
in the resampled set. Except for the way in which the data is resampled, the Bootstrap
method shares all other aspects with the MC resampling method described here in this
section. Since bootstrapping has been studied for decades, we can borrow many analysis
methods and apply them to our resampling.5 A key difference between bootstrapping and
MC resampling is the former does not work effectively if the size of the data set is too
small, since one is always choosing the same data.

4The name originated from the saying “pulling oneself up by bootstraps”, because one is generating
more “new” data out of the old data.

5More details with the Bootstrap Method and resampling can be found in Ref. [ET94].
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Figure A.1: Resampling results of an artificial data set is shown. Closed circles denote the original

data. The thick solid curve is the averaged fit over resampled results. Dashed curves show the 95%

confidence interval of the fitted curve, while dotted ones envelope all resampled fitting results. The inset

shows the histogram of the fitting parameter β1, with real value β1 = 0.5 plotted as the vertical dashed

line.

The error on the fitting parameters β can be approximated by the standard deviation
of β from the set {β(0),β(1), . . . ,β(R)}. In addition, the confidence interval of β can be
estimated from the empirical quantiles of the set. In case β follows a non-Gaussian distri-
bution, especially a nonsymmetric one, the confidence interval contains more information
than the standard deviation.

Besides the knowledge on β, resampling also provides access to the “confidence in-
terval” of the fitted curve f(x;β∗) on the graph, which indicates the region where the
curve could possibly locate with some probability, say 95%. This can be implemented by
inserting an extra step after step 2 in the previous procedure:

2′. Calculate and keep the values of the fitting function f(x;β(r)) at a fixed set of grid
points {Xk}, k = 1 . . .K. Denote Fk,r = f(Xk;β

(r)) for the function value at grid
point k in resampled set r.

After completing all resampling, one sorts the matrix F = ‖Fk,r‖ by columns, i.e. by grid
points Xk, to obtain the empirical quantiles (say, the 2.5%- and 97.5%-quantiles) and thus
the confidence interval at x = Xk.

As a demonstration, an artificial data set was created, shown in Fig. A.1. These data
follow

y = β̂1x+ β̂0 + ε , (A.16)
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with β̂1 = 1/2, β̂0 = 1, and ε being a term for random noise . Using the aforementioned
resampling method, the following statistics are obtained from 2000 resamplings:

β1 = 0.513± 0.034 , and β0 = 0.963± 0.109 .

Within error bars, we successfully rediscover the true parameters of the original distribu-
tion.

Moreover, the best fit (solid curve) with confidence interval (dashed) is plotted in
Fig. A.1, as well as the extrema of the resampled fits (dotted). These curves provide an
excellent picture of where the fit could be.

Even better is the access to the distribution of each fitting parameter. Exemplified by
the inset of Fig. A.1, the slope of the line, β1, does not peak around its true value 0.5, but
slightly higher. In addition, the distribution is asymmetric. In this case, the fact that the
noise ǫ depends in some nontrivial way on x leads to the observed skewness.

All information discussed so far could deepen the understanding of the system studied,
and the computational cost is economic, too. Using a Perl implementation on a single
core, the 2000 resamplings took less than one minute.6 With other scientific programming
languages that have better support in parallelization, e.g. C/C++, this cost can be further
reduced significantly by distributing the resamplings to multiple cores; Each resampling
process is independent of the others, thus the method trivially parallelizes.

6Note that our artificial data set consists of 100 points, while in real cases this number is normally
much smaller. Thus, the program will work much faster.
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M. Kléman and J. P. Poirier (eds.), Physics of Defects, 715–755, North-
Holland, Amsterdam (1981).

[Hel94] W. Helfrich, Lyotropic Lamellar Phases, Journal of Physics: Condensed Mat-
ter 6, A79–A92 (1994).

[Hig61] T. Higuchi, Rate of release of medicaments from ointment bases containing
drugs in suspension, Journal of Pharmaceutical Sciences 50, 874–875 (1961).

[HJMD13] M. Hu, D. H. d. Jong, S. J. Marrink and M. Deserno, Gaussian curva-
ture elasticity determined from global shape transformations and local stress
distributions: a comparative study using the MARTINI model, Faraday Dis-
cussions 161, 365–382 (2013).

[HKvdSL08] B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, GROMACS 4: Al-
gorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simu-
lation, Journal of Chemical Theory and Computation 4, 435–447 (2008).

[HNPA12] L. Huynh, C. Neale, R. Pomès and C. Allen, Computational approaches to
the rational design of nanoemulsions, polymeric micelles, and dendrimers
for drug delivery, Nanomedicine: Nanotechnology, Biology and Medicine 8,
20–36 (2012).

[HNV+09] F. Heinrich, T. Ng, D. J. Vanderah, P. Shekhar, M. Mihailescu, H. Nanda
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Frank, The Polymer-Supported Phospholipid Bilayer: Tethering as a New
Approach to Substrate-Membrane Stabilization, Biomacromolecules 3, 27–35
(2002).

[NPWT13] D. Needham, J.-Y. Park, A. M. Wright and J. Tong, Materials characteri-
zation of the low temperature sensitive liposome (LTSL): effects of the lipid
composition (lysolipid and DSPE–PEG2000) on the thermal transition and
release of doxorubicin, Faraday Discussions 161, 515–534 (2013).

[NSM+12] S. Nagarajan, E. E. Schuler, K. Ma, J. T. Kindt and R. B. Dyer, Dynamics
of the Gel to Fluid Phase Transformation in Unilamellar DPPC Vesicles,
The Journal of Physical Chemistry B 116, 13749–13756 (2012).

[NT01] H. Noguchi and M. Takasu, Self-assembly of amphiphiles into vesicles: A
Brownian dynamics simulation, Physical Review E 64, 041913 (2001).

[NTN00] J. F. Nagle and S. Tristram-Nagle, Structure of lipid bilayers, Biochimica et
Biophysica Acta (BBA) - Reviews on Biomembranes 1469, 159–195 (2000).

[OE11] M. Orsi and J. W. Essex, The ELBA Force Field for Coarse-Grain Modeling
of Lipid Membranes, PLoS ONE 6, e28637 (2011).

[OHSE08] M. Orsi, D. Y. Haubertin, W. E. Sanderson and J. W. Essex, A Quantitative
Coarse-Grain Model for Lipid Bilayers, The Journal of Physical Chemistry
B 112, 802–815 (2008).

[OKS+04] F. Osaki, T. Kanamori, S. Sando, T. Sera and Y. Aoyama, A Quantum
Dot Conjugated Sugar Ball and Its Cellular Uptake. On the Size Effects

156



Bibliography

of Endocytosis in the Subviral Region, Journal of the American Chemical
Society 126, 6520–6521 (2004).

[OL00] S. M. Oversteegen and F. A. M. Leermakers, Thermodynamics and mechan-
ics of bilayer membranes, Physical Review E 62, 8453–8461 (2000).

[OME10] M. Orsi, J. Michel and J. W. Essex, Coarse-grain modelling of DMPC and
DOPC lipid bilayers, Journal of Physics: Condensed Matter 22, 155106
(2010).

[ONK03] H. Otsuka, Y. Nagasaki and K. Kataoka, PEGylated nanoparticles for bi-
ological and pharmaceutical applications, Advanced Drug Delivery Reviews
55, 403–419 (2003).

[ORKV07] O. H. S. Ollila, T. Róg, M. Karttunen and I. Vattulainen, Role of
sterol type on lateral pressure profiles of lipid membranes affecting mem-
brane protein functionality: Comparison between cholesterol, desmosterol,
7-dehydrocholesterol and ketosterol, Journal of Structural Biology 159, 311–
323 (2007).

[ORL+09] O. H. S. Ollila, H. Risselada, M. Louhivuori, E. Lindahl, I. Vattulainen and
S. J. Marrink, 3D Pressure Field in Lipid Membranes and Membrane-Protein
Complexes, Physical Review Letters 102, 078101 (2009).

[OV10] O. H. S. Ollila and I. Vattulainen, Chapter 2. Lateral Pressure Profiles in
Lipid Membranes: Dependence on M olecular Composition, in M. S. P. San-
som and P. C. Biggin (eds.), Molecular Simulations and Biomembranes, 26–
55, Royal Society of Chemistry, Cambridge (2010).

[PB11] M. R. Preiss and G. D. Bothun, Stimuli-responsive liposome-nanoparticle
assemblies, Expert Opinion on Drug Delivery 8, 1025–1040 (2011).

[PC08] K. F. Pirollo and E. H. Chang, Does a targeting ligand influence nanoparticle
tumor localization or uptake?, Trends in Biotechnology 26, 552–558 (2008).

[Pep13] N. A. Peppas, Historical perspective on advanced drug delivery: How engi-
neering design and mathematical modeling helped the field mature, Advanced
Drug Delivery Reviews 65, 5–9 (2013).

[Pin76] P. Pincus, Excluded Volume Effects and Stretched Polymer Chains, Macro-
molecules 9, 386–388 (1976).

[PK09] C. Peter and K. Kremer, Multiscale simulation of soft matter systems – from
the atomistic to the coarse-grained level and back, Soft Matter 5, 4357–4366
(2009).

157



Bibliography

[PKH+07] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit and R. Langer,
Nanocarriers as an emerging platform for cancer therapy, Nature Nanotech-
nology 2, 751–760 (2007).

[PKT09] R. Phillips, J. Kondev and J. Theriot, Physical biology of the cell, Garland
Science, New York (2009).

[PL03] J. Panyam and V. Labhasetwar, Biodegradable nanoparticles for drug and
gene delivery to cells and tissue, Advanced Drug Delivery Reviews 55, 329–
347 (2003).

[PLLS13] S. Piana, K. Lindorff-Larsen and D. E. Shaw, Atomic-level description
of ubiquitin folding, Proceedings of the National Academy of Sciences
201218321 (2013).

[PMS12] S. Parveen, R. Misra and S. K. Sahoo, Nanoparticles: a boon to drug deliv-
ery, therapeutics, diagnostics and imaging, Nanomedicine: Nanotechnology,
Biology and Medicine 8, 147–166 (2012).
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