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Abstract

This work presents systematical approaches to improve both the application and theory of quan-

tum chemical methods. Semi-empirical and ab initio quantum chemical methods are used to

model fluorescent dyes for bio-imaging. A new approach to development of semiempirical quan-

tum chemical methods is explored, and imitation learning is used to accelerate convergence of

self consistent field calculations.

The fluorescence of the SKC-513 dye is highly sensitive to the binding of K+ ion. Computa-

tions reveal that, in the absence of K+, excitation is to two nearly-degenerate states, a neutral (N)

excited state with high oscillator strength and a charge-transfer (CT) state with lower oscillator

strength. Binding of K+ raises the CT state far above the N state, shutting down a non-radiative

pathway mediated by the CT state. This rationalizes the high sensitivity of the quantum yield

to ion binding. Computations on a series of thiazole orange derivatives are used to successfully

account for the observed spectral shifts through frontier orbital analysis.

A means to take advantage of molecular similarity to lower the computational cost of elec-

tronic structure theory is explored, in which parameters are embedded into a low-cost, low-level

(LL) ab initio model and adjusted to obtain agreement with results from a higher-level (HL) ab

initio model. In the parametrized LL (pLL) model, selected matrix elements of the Hamiltonian

are scaled by factors that depend on element types. Various approaches to scaling, including

making parameters sensitive to atomic charges and bond orders, are explored. The models are

trained on ethane and ethylene, substituted with -NH2, -OH and -F, and tested on substituted

propane, propylene and t-butane. The molecules are distorted and placed in electrostatic fields.
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Fitted properties include total and decomposed energies, frontier orbital energies, and interac-

tions with test charges. The best-performing model forms reduce the root mean square (RMS)

difference between the HL and LL energy predictions by over 85% on the training data and over

75% on the test data.

Many computational methods, including self consistent field calculations in quantum chem-

istry, work by fixed-point iteration—repeatedly applying a given update function until conver-

gence is achieved. A means to accelerate fixed-point iteration via imitation learning is explored.

The approach is simple and needs only black-box access to the original update function. Ex-

periments show that the approach successfully accelerates Hartree-Fock convergence, and that

policies trained on one set of molecules transfer successfully to other molecules of the same gen-

eral class. Imitation learning also leads to more-robust transfer than alternative methods that do

not take into account the distribution of states induced by the learned policies.
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Chapter 1

Overview

1.1 Problem Statement and Thesis Outline

With the discovery of the atom a new world of science was opened up and quantum mechanics

was born.[1] Schrödingers equation along with laws of quantum mechanics established a basis

for understanding the small particles that construct the world that we perceive. This gave rise to

the field of quantum chemistry which can be defined as the application of quantum mechanics to

chemical systems.[2, 3, 4, 5] Although the equations governing the motion of electrons in molec-

ular systems were known, solving them for systems beyond the two-body problem was challeng-

ing. While this challenge still remains, a variety of ab initio approaches have been developed that

provide solutions to the many-body problem with accuracy that is chemically useful. Ultimately

the goal is to develop methods that give as accurate of results as possible, at a reasonable compu-

tational cost. The methods that exist today for calculating the electronic structure of molecules

give us valuable information that helps us understand molecular and chemical behavior. The most

reliable methods are for the ground electronic state of stable molecules.[6, 7, 8, 9, 10] Methods

for excited states[11, 12, 13] and transition states[14, 15, 16] are also steadily improving. A

remaining fundamental challenge is lowering the computational cost such that larger molecular

systems such as polymers or proteins may be addressed.
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The computational cost of highly accurate quantum chemical methods increases rapidly with

system size. Ab initio electronic structure calculations vary along two general dimensions (Ta-

ble 1.1). The first is the basis set, which for the methods considered in this thesis, consists of

atomic orbitals centered on each atom. A minimal basis has just enough atomic orbitals to hold

the electrons, e.g. 1s on H and 1s, 2s, 2p on second row elements. To get a reasonable result,

a much larger basis set is typically needed. A common choice for organic molecules is the 6-

311++G** basis set. In this basis, the valence atomic orbitals are expanded to include a narrow

and a diffuse function, such that the charge density can expand and contract. In addition, the

basis includes polarization functions (p on H, d on second-row elements), as indicated by the

“**” in the name of the basis, and diffuse functions, as indicated by the “++”.

The second dimension along which ab initio methods vary is the approach used to handle

electron correlation, i.e. the tendency of electrons to move in concerted ways in order to avoid

repulsive Coulombic interactions. Hartree Fock (HF) theory, also referred to as Self Consistent

Field (SCF) theory, is the most fundamental form and does not include electron correlation. A

large variety of correlated methods have been developed, with computational costs that increase

steeply with the expected accuracy of the results. Density Functional Theory (DFT) is a popular

method that includes the effects of electron correlation yet has computational costs similar to that

of Hartree Fock.[17]

Table 1.1 illustrates the rapid increase in computational cost along the above two dimensions.

The cost increases as the size of the basis raised to a power that depends on the method used to

include correlation. This increase in cost grows with system size, such that highly accurate

methods become impractical on large systems.

Finding ways to lower the cost of computations on large molecular systems is an active area

of current research. Most current approaches attack the issue of scaling by taking advantage

of nearsightedness.[19] Nearsightedness implies that interactions become simpler at long-range,

and can be replaced by increasingly coarse-grained multi-polar interactions. Algorithms that

take full advantage of nearsightedness, while evaluating Coulomb interactions, can achieve a
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Basis set HF B3LYP MP2
6-31G 1 1 1

6-311G 1.6 1.4 2.9
6-31+G 1.3 1.5 1.8

6-311+G 2.0 2.4 5.8
6-31G(d,p) 1.9 2.0 3.3

6-311G(d,p) 2.9 3.1 7.9
6-31+G(d,p) 3.5 3.2 8.5

6-311+G(d,p) 7.2 5.6 14.2

Table 1.1: Computational cost for a set of different methods for including electron correlation
(columns) and with varying basis sets (rows), on a dataset of fluoromethyl compunds. [18]

computational cost that scales linearly with system size in the limit of large systems. Such

linear-scaling algorithms have been developed for many ab initio methods.[20, 21, 22, 23, 24]

Fragment based methods use a different approach to take advantage of nearsightedness. The

molecular system is divided into smaller partitions (fragments), that may have overlap. These

fragments are calculated separately and the results are combined in various ways to predict the

energy of the entire molecule. A recent review by Gordon et al [25] provides a thorough review

of such methods. In addition, Hebert[26] has proposed a unified view of such methods based on a

generalized many-body expansion. These approaches have the additional advantage of allowing

the fragment calculations to be run in parallel, leading to substantially enhanced performance on

modern computer architectures.

An alternative approach to enabling calculations on large molecules is the use of semiempir-

ical quantum chemical (SEQC) models. As the name suggests, these methods are parameterized

and fitted to empirical data. Early examples include the Parsier-Parr-Pople (PPP) model of π-

electrons[27, 28], and the Complete Neglect of Differential Overlap (CNDO/2) method[29, 30]

which extended PPP to include σ electrons. The Intermediate Neglect of Differential Overlap

(INDO) method is closely related to CNDO/2, and is still in use for computing electronic excita-

tions in organic systems.[31, 32, 33] For the structure and properties of ground electronic states,

the Neglect of Diatomic Differential Overlap (NDDO) methods remain in common use. NDDO

includes Modified Neglect of Diatomic Overlap (MNDO)[34], Austin Model 1 (AM1)[35],
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Semiempirical ab initio Model 1 (SAM1)[36] and Parameterized Model 3 (PM3). [37] Other

more recent NDDO methods are PM6 [38, 39] and RM1 [40], which are reparameterized ver-

sions of PM3 and AM1 trained on a larger dataset, as well as orthogonalization-corrected meth-

ods (OM1, OM2, OM3). [41, 42] These semiempirical models perform quite well, especially

given the simplicity of the model and the low computational cost. A more recent commonly used

semiempirical model is Density Functional Tight Binding (DFTB) and its derivative models.[43,

44, 45, 46, 47] DFTB derives the electronic parameters of a tight binding model from DFT calcu-

lations on isolated atoms. The empirical portion is a set of repulsive interactions between atoms

that are parameterized to accurate calculations on representative molecules.

Semiempirical models use minimal basis sets and make simplifications to the Coulomb in-

teractions that go beyond what may be justified via nearsightedness. The errors introduced by

these approximations are minimized by fitting the empirical parameters to data on molecules that

are similar to those on which the model will be used. These methods can therefore be viewed

as taking advantage of molecular similarity, i.e. the tendency of molecular fragments to behave

similarly in similar environments. A central theme of this thesis is exploring alternative means

to take advantage of molecular similarity in quantum chemical computations.

Approximations based on nearsightedness benefit from having a clear physical basis that

inspires the form of the approximation. For example, when computing Coulomb interactions at

long range, charge distributions may be replaced with multipoles. This physical basis suggests

specific forms for the approximations of linear scaling [20, 21, 22, 23, 24] and fragment-based

methods. [48] The resulting algorithms may have parameters that define, for example, the degree

to which interactions are simplified at long range. These parameters can be adjusted to find

an optimal balance between computational savings and errors introduced by the approximation.

This high level of control is related to the direct physical basis underlying the approximation.

Achieving a similar level of control in approximations based on molecular similarity is more

challenging. Ideally, the resulting methods would provide a means to smoothly improve the accu-

racy of the approximation such that an appropriate balance between accuracy and computational
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cost could be found for the target application.

The flexible model forms of machine learning, such as neural nets, enable construction of

models that are trained to data on representative molecules and then used to make predictions for

molecules not included in the training set. Such models have been successfully used to develop

corrections to predictions of ab initio theory that are applicable across broad classes of molecules

and that substantially reduce the errors in heats of formation and other properties. [49, 50, 51,

52, 53, 54, 55, 56, 57, 58] Models have also been developed that generate predictions using

descriptors, such as the Coulomb matrix, [59] that do not require solution of the Schrödinger

equation. The Coulomb matrix is a square matrix with dimension equal to the number of atoms in

the molecule. The diagonal elements hold 0.5Z2.4
i whereZi is the nuclear charge of the atom. The

off-diagonal elements hold the Coulomb energy between the associated nuclei, ZiZj/Ri,j , where

Ri,j is the distance between the nuclei. Various means of sorting the Coulomb matrix to obtain a

unique map between the Coulomb matrix and the molecular structure have been explored. The

ability of machine learning methods to predict the atomization energy of molecules from the

Coulomb matrix has been extensively studied, with results that compete with quantum chemistry

at substantially reduced computational cost. [59, 60] Extensions to other properties, such as

polarizability and frontier orbital energies, have also led to promising results. [61] Recently,

Guzik et al have obtained highly accurate predictions of frontier orbital energies using features

based on Morgan chemical fingerprints as inputs to neural nets.[62]

The current work explores the use of model Hamiltonians as flexible functional forms for

model development, and so bridges between the flexible model forms of machine learning, [63]

such as neural nets or reproducing-kernel Hilbert space methods, and the model Hamiltonians

of SEQC, such as Intermediate Neglect of Differential Overlap (INDO) [31] and Neglect of

Diatomic Differential Overlap (NDDO). [35] As in machine learning, the goal is to create model

forms that are sufficiently flexible that patterns in the training data may be discovered. As in

SEQC, the strategy is to use ab initio quantum chemistry as inspiration for model forms that can

describe chemical phenomena well.
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The approach used in the investigations is adapted from machine learning. First, a set of

molecular systems across which similarity may be reasonably expected to hold is specified. This

is done by selecting a group of related molecules and creating a set of molecular “instances” by

distorting the molecular geometry and applying external electrostatic environments. Predictions

of a high-level (HL) ab initio model are then generated to serve as target training data (also

referred to as “labels” in supervised learning). The parameters of a lower-cost model are adjusted

to reproduce the target training data and the performance of the model is evaluated on instances

not included in the training data.

The approach used to create the model is adapted from traditional SEQC: we embed empiri-

cal parameters into a quantum chemical Hamiltonian. First, matrix elements of the operators that

appear in a low-level (LL) ab initio Hamiltonian are generated, including kinetic energy, attrac-

tion between the electrons and each nucleus, and the electron-electron repulsion. Selected matrix

elements of these operators are then multiplied by scaling factors that serve as the parameters of

the model, leading to a parametrized low-level (pLL) model. Matrix elements that are not scaled

retain the values of the LL ab initio Hamiltonian. This general approach is flexible because a

variety of LL Hamiltonians may be envisioned into which parameters may be embedded. For

these initial studies, the LL model is restricted to self-consistent-field (SCF) solutions within a

minimal basis set. A variety of schemes for embedding parameters are also explored.

This thesis begins with the application of quantum chemical models to the design of efficient

biological dyes for monitoring cellular activity. These dyes are chromophores whose fluores-

cence is sensitive to changes in their local environment induced by binding to a biomolecule or by

a change in local ion concentration. The general strategy in the investigation of these fluorescent

dyes is to take advantage of computationally inexpensive semiempirical models to explore the

general behavior and properties of the dyes and their derivatives. Using methods such as SAM1

for ground state optimization and INDO for vertical excitation provides us with the properties

of the molecule in both the ground and excited state. Once we have a general understanding of

the dye and its properties, DFT methods are used to confirm and refine the semiempirical results.
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This strategy is quite effective since the low computational cost of SAM1 and INDO provide al-

most instantaneous results, enabling extensive explorations of the photophysics. The more costly

ab initio computations can then focus on making the results more quantitative and refining the

general picture that emerged from the semiempirical investigations.

From the application of quantum chemical models we will move onto the exploration and

development of novel quantum chemical methods. The focus of this work is to develop a model

inspired by semiempirical methods and to explore the limits of molecular similarity. Unlike

nearsightedness, molecular similarity is more difficult to define precisely. However, the study

of molecular similarity maps onto machine learning approaches.[63] Machine learning is the

study of algorithms that can learn from data and so lead to predictive models. Current ab initio

calculations allow us to generate massive amounts of data on molecular fragments. The challenge

is to develop models that can utilize patterns in this data to make useful predictions. The models

explored here are inspired by past semiempirical models, but adopt a quite different means for

both embedding parameters in a model Hamiltonian and for adjusting these to find agreement

with data.

Through the application of existing models and the development and exploration of new

methods, this thesis aims to lay useful groundwork for continued development and use of semiem-

pirical quantum chemical methods.

1.2 Fluorescent Dyes

Fluorescence imaging provides a set of powerful techniques for monitoring biological processes

in living organisms. [64, 65, 66, 67, 68, 69] These techniques rely on dye molecules that report

on the location and the environment of biomolecules. Fluorogenic dyes are a special class of

fluorophores that show distinctly different emission intensities depending on their local environ-

ment. [70, 71, 72, 73, 74, 75, 76] Two types of fluorogenic dyes are studied here.

For neural processes, it is useful to have dyes whose fluorescence tracks the concentration
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Figure 1.1: Chemical structure of SKC-513

of K+ ion. SKC-513 ((E)-N-(9-(4-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-

(butyl(3-sulfopropyl)amino)-3H-xanthen-3-ylidene)-N-(3-sulfopropyl)butan-1-aminium) is a promis-

ing candidate for ion detection (Figure 1.1). SKC513 has a crown ether portion that can bind a

potassium ion, and a chromophore that signals the presence of the ion. Experimental data on

SKC513, from collaborators in the Waggoner and Salama groups, shows a substantial change

in fluorescence quantum yield as the K+ concentration varies from 0 to 1000 mM. Chapter 2 re-

ports quantum chemical calculations that explore the mechanism through which the ion alters the

fluorescence of the chromophore. These computations indicate that SKC-513 is a photoinduced

electron transfer (PET) sensor, a class of dyes whose fluorescence quantum yield is known to be

sensitive to ion binding. [67, 68, 69]

The change in quantum yield for SKC-513 arises from the competition between a radia-

tive pathway, emission from a neutral excited state (N) created on photoexcitation, and a non-

radiative pathway, which is mediated by a charge-transfer (CT) excited state. Binding of the
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ion raises the relative energy of the CT state and this alters the branching ratio between the

radiative and non-radiative pathways. The computations presented in this work find that the

lowest-energy excitations of SKC-513 correspond to a fluorescent state with predominantly N

character and a less optically intense state with predominantly CT character. The potassium ion

preferentially destabilizes the CT state, thereby altering the quantum yield, consistent with the

mechanism implicated in other PET sensors. A feature of the excited states of SKC-513 that

may be contributing to the high sensitivity of the fluorescence quantum yield to ion binding is a

near degeneracy of the N state, which mediates the radiative pathway, and the CT state, which

mediates a nonradiative pathway.

The high sensitivity of SKC-513 to ion binding is related to the near degeneracy of the N and

CT states. This near degeneracy may appear to be accidental, given that SKC-513 has only a two-

fold symmetry axis. However, comparison to a three-fold symmetric parent reveals a systematic

origin. In the parent molecule, the lowest excited state is doubly degenerate. In addition, the

molecular orbitals involved in these degenerate excitations have low density in the regions of

the molecule that must be altered to convert the parent molecule to SKC-513. The degeneracy

of excited states in SKC-513 is therefore not accidental, but can be traced back to degeneracies

expected for this three-fold symmetric parent.

The calculations also find that replacing the potassium ion with a point charge has little effect

on the nature of the relevant excited states. This suggests that changes in the excited states of

the chromophore in SKC-513 arise from field effects of the potassium ion, as opposed to more

specific interactions such as ligation with the nitrogen atom that connects the crown ether to the

chromophore.

Chapter 2 concludes by suggesting modifications to SKC-513 that may improve, leading to

larger changes in fluorescence upon ion binding.

Chapter 3 explores another class of fluorgenic dyes, that of unsymmetrical cyanine dyes.

These dyes may exhibit enhanced fluorescence when placed in an environment that constrains

the conformation, such as when dissolved in a viscous solution or when bound to a protein.
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For fluorescence imaging, the goal is to find dyes for which the quantum yield is low in water

but high when bound to a protein. This gives the dye a switch property which can be used

to detect protein rich environments.[77, 78] For the dyes studied here, the excited state has a

nonradiative path which requires the molecule to twist along the central methine bridge. In a

constrained environment this pathway is inhibited, thus increasing the branching ratio to the

radiative pathway.[77, 79]

Experiments on derivatives of Thiazole Orange, carried out by collaborators in the Armitage

group, show that the addition of electron donating and withdrawing substituents provides a means

to fine tune the wavelength of the light emitted, while maintaining fluorogenic properties. Chap-

ter 3 reports computations on these dyes and a comparison with experimental data. The results in-

dicate that the changes in wavelength can be understood in terms of the effects of the substituents

on the frontier orbitals. The Highest Occupied Molecular Orbital (HUMO) resides mainly on the

benzothiazole while the Lowest Occupied Molecular Orbital (LUMO) is spread across the entire

molecule. This causes electron withdrawing and donating groups to shift the HOMO and LUMO

energies in predictable ways, with the predicted effects on the HOMO-LUMO gap agreeing with

the experimentally observed spectral shifts.

The predictions of TDDFT, obtained using various functionals, and the predictions of INDO

computations were compared to each other and to the experimental data. The results indicate

that INDO is nearly as reliable as TDDFT, with both approaches giving good agreement with

experimental results in most cases. This supports the use, in this thesis, of INDO theory for the

initial explorations of the dye properties.

1.3 New Semiempirical Models

The general approach of semiempirical methods is to construct a Hamiltonian that is a simpli-

fied version of the ab initio Hamiltonian, and embed parameters in this simplified form. These

parameters are then fit to training data, consisting of either experimental or ab initio data on
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molecules related to those for which the model is being developed. Past semiempirical methods

share a few general approximations as listed below:

MinimalBasis All assume a minimal basis set.

IgnoreCore All ignore the core orbitals.

UnitOverlap All ignore overlap between basis functions on different atoms.

SimplifiedCoulomb All make substantial approximations to two electron integrals between

atoms as discussed further below.

Uncorrelated Most are parameterized to agree at the SCF level. An exception is INDO/S and

other methods that target excitation energies. These models are parameterized to excitation

energies obtained at the Singles Configuration-Interaction (SCI) level.[31, 32, 33] Note

that the resulting model Hamiltonians are sometimes used for correlated calculations, even

though the Hamiltonians were parameterized at the SCF level.

The one-electron terms of the electronic Hamiltonian including the kinetic energy of the

electrons, KE, and the Coulomb interaction between the electrons and the nuclei, Vnuc. In ab

initio theory, the KE and Vnuc appear through separate operators. In semiempirical theory, the

effects of these operators and combined into two types of terms in the Hamiltonian. The first

class of such terms are the energies of the atomic orbitals, which are analogous to the α terms

of Hückel theory. These terms set the energies of the s and p orbitals of the isolated atoms,

including the effects of both the kinetic energy of the electron in that atomic orbital and the

interactions with that atom’s nucleus. The second class of one-electron terms are the interaction

energies between atomic orbitals, with are analogous to the β terms of Hückel theory. These

terms model the bonding interaction between atoms and again include the effects of both kinetic

energy and electron-nuclear interaction. However, rather than base β on the kinetic energy or

electron-nuclear operators, semiempirical methods typically take the one-electron interaction

between atomic orbitals as being proportional to the overlap between these orbitals, Si,j . The

proportionality constants serve as the semiempirical parameters adjusted in fitting the model.
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(Note that DFTB does not treat the one-electron terms empirically and instead computes them

from the electron density of reference atoms.[43, 44, 45, 46, 47])

The principle feature that distinquishes semiempirical model Hamiltonians is the treatment

of Coulomb interactions between electrons, and this is reflected in the names given to many of

these methods. The simplified treatment of electron-electron interactions, along with the use of

a minimal basis, leads to significant reductions in computational cost. The Coulomb interactions

between electrons appear in the quantum chemical Hamiltonian through two-electron integrals

(ij|kl) =

∫
dr1dr2φi(r1)φj(r2)

1

r12

φk(r1)φl(r2) (1.1)

where i,j,k and l refer to atomic basis functions while r1 and r2 refer to positions of two in-

teracting electrons. Eq. 1.1 captures the Coulomb interaction between an electron in a charge

distribution corresponding to the product of basis functions, φi(r1)φj(r1), and an electron in a

charge distribution, φk(r2)φl(r2). If one assumes the atomic orbitals are localized to an individ-

ual atom, φi(r)φj(r) is zero unless i and j are orbitals on the same atom, or “center”. The term

“differential overlap” refers to products φi(r)φj(r) where i is not equal to j. Another common

terminology is that of “n-center” integrals, where n is the total number of centers across which

i, j, k and l are spread. Past semiempirical models set all 3- and 4-center integrals to zero and

keep only a restricted set of the remaining integrals.

1-center integrals involve only atomic orbitals on the same atom, and describe the self-energy

due to interactions between electrons on that atom. The Slater-Condon parameters (F0, G1 and

F2) can be used to construct the two-electron integrals from a set of just three parameters per

element, in a manner that retains rotational symmetry[80]. This approach is used in the INDO

and NDDO methods, with the values being taken from spectroscopic analysis of atomic spectra

for most methods. Notable exceptions are PM3 and PM6, in which these parameters are included

in the empirical parameterization.
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The only 2-center integrals retained in past semiempirical models are those where i and j are

on one atom and k and l are on another atom. These integrals describe the interactions between

the electron densities of these two atoms. In INDO and DFTB, the following approximation is

applied,

(ij|kl) = (ii|kk)δijδkl

which leads to the Coulomb interactions between atoms being treated as that between point

charges. NDDO methods extend this to include interactions between multipoles on the atoms.

NDDO assumes φi(r1)φj(r1) of Eq. 1.1 is zero if i and j are not on the same atom. When i and j

are on the same atom, φi(r1)φj(r1) is replaced with: a point charge, if i and j are both s orbitals;

a dipole, if i and j are an s and p orbital; and a quadrupole, if i and j are both p orbitals. The same

treatment is applied to φk(r2)φl(r2). The integral is evaluated as the interaction between these

multipoles. SAM1 is similar to NDDO, except that the the two-center integrals are explicitly

evaluated and then multiplied by factors that are chosen to mimic the results of NDDO. [36]

Another aspect of past semiempirical models is the inclusion of empirical potentials between

atoms, that are rationalized as including effects from the core electrons, which are neglected in

the overall Hamiltonian. In density functional tight binding (DFTB), such core-core interactions

are the only terms treated empirically, with the electronic Hamiltonian being computed from

DFT. [43, 44, 45, 46, 47] In all cases, the inclusion of such terms is essential for obtaining

reasonable predictions for both the molecular structure and heats of formation.

This thesis explores an approach that is inspired by the above semiempirical models, in that

parameters are embedded in an ab initio Hamiltonian and adjusted to obtain agreement with

external data. However, rather than make substantial approximations regarding the form of the

Hamiltonian, such as the above treatments of the two-electron integrals, the complete form of an

ab initio Hamiltonian is retained. The parameters are then used only to bring a low-level (LL)

ab initio model into agreement with a high-level (HL) ab initio model. In the studies below, both

the LL and HL model use Hartree-Fock theory. The difference is in the basis set, with the LL
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model using a minimal basis and the HL model using a much larger basis.

The LL model with embedded parameters will be called the pLL model, for parameterized-

LL model. When all parameters are set to zero, the original LL ab initio model is recovered.

As detailed in Chapter 4, the disagreement between the LL and HL model is relatively small

compared to the errors introduced by the substantial approximations of traditional semiempirical

theory. The parameters are therefore used to make a relatively small correction to the LL model,

as opposed to compensating for large approximations regarding two-electron integrals. Retain-

ing the form of an ab initio Hamiltonian also makes the pLL model parallel to the HL model.

This allows, for instance, the fits to include bringing various decompositions of the Hamiltonian

operator into agreement between the pLL and HL models. The pLL model form is also quite

flexible, because a number of different schemes may be devised for embedding the parameters.

A number of factors support the use of mimimal-basis Hartree Fock theory for the pLL model.

This level of theory is qualitatively able to describe a broad range of chemical phenomena, in-

cluding chemical valency, hybridization, and resonance. In addition, it is possible to transform,

via Quambo[81], a self-consistent-field solutions in an arbitrary basis to a minimal-basis form,

with no loss in accuracy. The parameters of the pLL model may therefore be viewed as an

attempt to bring the Hamiltonian matrix elements of the LL model into agreement with those

predicted by Quambo.

For the model to be useful, it must be possible to train the model on small molecules and then

apply the model to larger molecules. This is promoted by training to both the energy and the

charge distribution of small molecules. By training to the energy of small molecules, the model

incorporates information on short-range interactions. By training to the charge distribution of

small molecules, the model may incorporate information on longer-range interactions. The pLL

models used here support this by using the LL form for those portions of the Hamiltonian that

describe long-range interactions. At sufficiently long range in SCF calculations, the interaction

between regions of electron density becomes equal to the Coulomb interaction between those re-

gions. In the pLL models, the electron density, ρ (r), is described by the density matrix expressed
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in the LL basis set,

ρ (r) =
∑
i,j

ρi,jφi (r)φj (r), (1.2)

where ρi,j is the density matrix and φi (r) are LL basis functions. Because integrals describing

longer-range interactions retain their LL ab initio values, the longer-range interactions in the pLL

models have the form

Elong range =
∑

i,j∈region1
k,l∈region2

ρi,j (ij|kl) ρk,l (1.3)

where (ij|kl) are two-electron integrals in chemist’s notation. Eq. 1.3 is an accurate expression

for the interaction between the charge distributions of Eq. 1.2. The degree to which the pLL

model provides an accurate description of longer-range interactions is then related to the degree

to which the density of Eq. 1.2 accurately describes the HL density. This accuracy is limited by

both the use of a LL basis and by the degree of success obtained in training the model parameters

to best reproduce the HL charge density. The studies in Chapters 4 and 5 test the ability of models

trained on small molecules to make predictions for larger systems.

The following list of features is parallel to that given above, to aid comparison with past

semiempirical models:

MinimalBasis The pLL model continues to use a minimal basis set.

IgnoreCore Unlike past semiempirical models, the pLL model includes the core orbitals such

that the pLL model reduces to the LL model when all parameters are set to zero.

UnitOverlap The pLL model uses the overlap matrix of the LL model, as opposed to the unit

matrix used in past semiempirical models.

SimplifiedCoulomb The pLL model retains all of the two-electron matrix elements of the LL

model, such that the LL model is recovered when the parameters are set to zero.

Uncorrelated The pLL model, and the HL model to which it is parameterized, use Hartree-

Fock theory and so ignore correlation.
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The way in which parameters are embedded in the pLL model also leads to some substantial

differences from past semiempirical approaches. In past models, the one-electron portion of the

Hamiltonian is described with parameters that are analogous to Hückel theory: the energy levels

of atomic orbitals are given terms analogous to α and the bonding parameters are analogous to

β. In the pLL model, on the other hand, the matrix elements corresponding to kinetic energy and

electron-nuclear interaction are multiplied by scaling factors. In past models, the two-electron

portion of the Hamiltonian invokes the strong approximations detailed above. In the pLL model,

all two-electron integrals are retained and parameters are embedded through either of the follow-

ing two schemes:

2elec The 2-electron integrals are modified directly by the embedded parameters.

JK The coulomb, J , and exchange, K, matrices of Hartree Fock theory are modified by the

embedded parameters.

A number of different schemes, or “policies” are explored for embedding the parameters into

the operators of the LL Hamiltonian. In addition, the parameters are made functions of the local

“context”, by including dependence on bond lengths, atomic charges and bond orders. This

context-sensitivity is found to be important for achieving good performance.

The pLL model uses substantially more parameters than past semiempirical models, with

the goal of creating a model that is sufficiently flexible to describe chemical phenomena. This

makes the approach analogous to the flexible model forms of machine learning, such as neural

nets, which use orders of magnitude more parameters than the pLL models explored here. Two

general strategies are used to prevent the large number of parameters from leading to models

that do not transfer well across chemical systems. The first strategy is fitting the data to a large

amount of detailed data. For each molecule type included in the fits, a number of strongly

perturbed geometries are included, each geometry is placed in a set of external electrostatic

environments, and a broad set of properties is computed including decomposition of the energy

into subcomponents. The second strategy is adopting methodologies from machine learning to
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prevent “over fitting”. Over fitting occurs when the model does well on the data used to train the

parameters, but poorly on data not included in the fits. One means used to prevent over fitting is

the use of a validation set to decide when to terminate the fitting process. The model parameters

are fit to a training data set and, as the fit progresses, the performance on the validation set is

monitored. When the performance on the validatation set begins to degrade, the fit is terminated.

Another means used to prevent over fittings is “regularization”, in which a penalty is applied to

large values for the parameters. This helps keep the pLL model close to the LL model, and so

helps prevent the pLL model from giving spurious results on new molecules.

Chapter 4 considers hydrocarbons in strongly perturbing electrostatic environments. The

results show that models trained on small systems can transfer to larger systems, while reducing

the error between the HL and LL by 85%, to ∼2 kcal/mol. A number of different policies

for embedding the parameters are explored. This chapter also finds that including decomposed

energies, such as kinetic energy and electron-nuclear attractions, in the fits does not improve the

model performance.

Chapter 5 considers hydrocarbons substituted with amine, hydroxyl and fluoro groups. The

results again show that models trained on small systems can transfer to larger systems, while

reducing the error between the HL and LL by 75%, to ∼2 kcal/mol. Various policies for embed-

ding parameters in the pLL model are compared. As in Chapter 4, the inclusion of decomposed

energies did not improve model performance. This points toward the need for future work to

include alternative decompositions of the energy.

1.4 Using Machine Learning to Accelerate Convergence of Self

Consistent Field Iterations

Self consistent field (SCF) calculations are among the most commonly used approaches in quan-

tum chemistry, either as an end in themselves or as a starting point for more advanced methods.
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Such calculations start with a guess for the electronic density matrix and generate a sequence

that, ideally, converges to a fixed point. The mostly commonly used approaches are variants

of the Direct Inversion in the Iterative Subspace (DIIS) method. [82] DIIS uses a linear combi-

nation of previous density matrices to construct a new input guess density at each iteration of

SCF. The coefficients for the linear combination are found by minimizing an error vector. A

number of different DIIS methods have been developed, each of which uses a different error

vector. [83, 84, 85]

Chapter 6 explores the use of imitation learning to accelerate SCF convergence. Imitation

learning is a branch of machine learning which usually focuses on multistep processes, such as

driving of an automobile. Such multistep processes generate a series of states, referred to as a

trajectory. Imitation learning algorithms are trained to trajectories generated by experts, such as

humans driving a car. The goal of the algorithm is to, from a given starting point, generate a

trajectory that mimics that of the expert. Here, the trajectory is the series of density matrices that

DIIS generates on its trajectory from the initial guess density matrix to the final converged density

matrix. From the DIIS trajectory, expert trajectories with accelerated convergence can be created.

For example, deleting every second density matrix from the DIIS trajectory leads to an expert

trajectory that converges twice as fast as the original. In Chapter 6, the DAgger [86] algorithm is

used to train an algorithm that can mimic such accelerated trajectories. The algorithm is trained

on a set of organic molecules and then tested on similar molecules. The results on the test

molecules are promising, suggesting that imitation learning has the potential to help accelerate

SCF convergence.
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Chapter 2

Characterization of a fluorescent dye for

detection of potassium ion concentration

2.1 Introduction

Florescence imaging provides a set of powerful techniques for monitoring biological processes

in living organisms [64, 65, 66, 67, 68, 69]. These techniques rely on dye molecules that change

their fluorescence behavior under varying environments. For neural processes, it is useful to have

dyes whose fluorescence tracks the concentration of K+ ion. The experimental data presented be-

low for the dye SKC-513 shows a substantial change in quantum yield as K+ concentration varies

between 0 and 1000 mM. The dye has a crown ether portion that binds the potassium ion, and

a chromophore that signals the presence of the ion. The experimental data was gathered by

our collaborators Subhasish K. Chakraborty, Beth Gabris, Alan S. Waggoner and Guy Salama.

The contribution of this thesis is computations that give insight into the high sensitivity of the

fluorescence quantum yield upon ion binding, and provide suggestions for improving the sensi-

tivity of the quantum yield to ion binding. The experimental data is included below to place the

computational work in context. Portions of this chapter is based on published work. [87]
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2.2 Experimental Characterization
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Figure 2.1: Experimental data for SKC-513
showing the fluorescence intensity (in ar-
bitrary units) as a function of the concen-
tration of various ions in the range from 0-
1000 mM. SR refers to experiments done in
the presence of a sarcoplasmic reticulum.
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Figure 2.2: As in Figure 2.1, but over an ion
concentration range of 0-40 mM.

The fluorescence intensity of SKC-513 as a function of ion concentration is shown in Fig-

ures 2.1 and 2.2. Figure 2.1 highlights how fluorescence intensity increases with K+ concentra-

tion, saturating at about 1000 mM, giving an enhancement of nearly an order of magnitude in

the fluorescence intensity. Figure 2.2 shows that the binding is selective over the biologically-

relevant range of concentrations, with no change in fluorescence intensity found for Ca+2, Mg+2,

or Na+. Also shown are the effects of K+ on fluorescence intensity in the presence of the sar-

coplasmic reticulum (SR), isolated via the procedure described in Salama et al [88]. The experi-

ment was conducted in a solution composed of the isolated SR with 5µM ion (KCl, NaCl, CaCl2

or MgCl2) in 100 mM Sucrose, 20 mM HEPES and 1mM Gluconic Acid.
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2.3 Computational Methods

Unless otherwise indicated, all calculations used Density Functional Theory (DFT) for the ground

electronic state and Time Dependent DFT (TDDFT) for excited states, with the CAM-B3LYP

functional [89] and a 6-31G** basis. CAM-B3LYP has previously been shown to provide good

results for excitation energies of conjugated dyes [90]. For all calculations reported below, the

Polarizable Continuum Model (PCM) [91], as implemented in Gaussian 09 [92], was used with

water as solvent.

The structure of the SKC-513 dye is shown in Figure 1.1. The ion binds to the crown ether

at the top of the dye. To facilitate the calculations, the structure was simplified to contain only

the optical chromophore shown in Figure 2.3, which will be referred to as Simplified-SKC-513

(SSKC-513). Effects of ion binding were modeled either by explicit inclusion of a potassium

ion or by including the electrical potential arising for a point charge placed at a location corre-

sponding to the center of the crown ether. The charge was positioned at a distance of 3 Å from

the nitrogen of the crown ether, along an axis connecting the nitrogen to the oxygen of the hete-

rocycle. The distance of 3 Å was taken from experimental and theoretical studies on potassium

crown ether complexes. [93, 94, 95].

ϴ

O

N
CH3CH3

N
CH3

CH3

N
+

CH3

CH3

Figure 2.3: Structure of the simplified SKC-513 dye (SSKC-513).

Torsion about the angle θ of Figure 2.3 is relatively facile with a minimum at 52o and the

range 30o to 80o being populated at room temperature. Since the energy and oscillator strengths

of the lowest-energy excited states are only weakly dependent on θ ( see section 2.4.1), the results

shown below are for either the geometry-optimized ground or excited state.
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2.4 Computational Results

2.4.1 Effects of Torsional Motion

Here, we examine the energy as a function of torsion about the bond connecting the heterocycle

to the phenylene of SSKC-513 (θ of Figure 2.3). The molecular structure was optimized using

DFT with the B3LYP functional and 6-21G basis set. A constraint was applied to the torsional

angle to allow a scan of energy versus θ. The thick black line of Figure 2.4 shows that DFT

theory predicts a torsional angle of 52o with a barrier of approximately 2 kcal/mol for the rotation

through 90o. The corresponding population at room temperature is shown in Figure 2.5. From

these results, we conclude that angles between 30o and 80o are well-sampled by the dye at room

temperature.

Figure 2.4: Torsional potential for SSKC-513
obtained from DFT (B3LYP/6-21G) calcula-
tions and from various semiempirical model
Hamiltonians.

Figure 2.5: Populations at room temperature
as a function of torsional angle in the SSKC-
513 dye, obtained from DFT (B3LYP/6-21G)
calculations and from various semiempirical
model Hamiltonians.

The energy and optical intensity of the two lowest excited states depend only weakly on tor-

sional angle. Figure 2.6 shows that these states are nearly degenerate and only weakly dependent

on angle over the populated range of 30o to 80o.
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Torsional Angle

Figure 2.6: Two lowest excited-state energies of SSKC-513 as a function of torsional angle.
Structures were optimized in ground state using SAM1 and vertical excitations were obtained
with TD-DFT (TD CAM-B3LYP/6-31G**). The radii of the circles are proportional to the os-
cillator strengths.

2.4.2 Effects of a Point Charge

Figure 2.7 shows the effect of a point charge placed at a position correponding to the center of

the crown ether in SKC-513. In the absence of a point charge, there are two nearly degenerate

excited states. These states have different oscillator strengths and relative positions that are

strongly dependent on the sign and magnitude of the charge. Following Kasha’s rule [96], we

expect the molecule to fluoresce strongly only when the lowest excited electronic state carries

significant optical intensity. This rule assumes that excitation to the optically intense excited

state is followed by relaxation to the lowest excited electronic state on a time scale that is much

faster than the fluorescence lifetime. If the lowest excited state has a strong optical transition

to the ground state, fluorescence will occur. As the optical intensity of the lowest excited-state

decreases, more population is lost to non-radiative pathways and the fluorescence quantum yield

decreases.

In the absence of a point charge, the lowest-energy state is the less intense state, which

implies the molecule should be only weakly fluorescent. As the magnitude of the point charge is
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Figure 2.7: Effects of a point charge on the excited states of SSKC-513. (The radii of the circles
are proportional to the oscillator strength.)

increased in the positive direction, the bright state drops below the less intense state, suggesting

that the presence of a cation such as potassium should substantially enhance the fluorescence

quantum yield. We next explore the origin of the excited-state degeneracy, and then consider

calculations that use an explicit K+ ion instead of a point charge.

2.4.3 Origin of the Degenerate Excited States

Examination of the frontier orbitals allows assignment of netural (N) and charge-transfer (CT)

character to the excited states of Figure 2.7. These states are essentially pure excitations be-

tween the orbitals shown in Figure 2.8. For vertical excitation in the absence of a point charge,

the first excited state has 95% HOMO-CT→LUMO character and the second excited state has

97% HOMO-N→LUMO character. The lowest unoccupied molecular orbital (LUMO) resides

on the heterocycle. HOMO-CT resides primarily on the phenylene ring, such that the HOMO-

CT→LUMO corresponds to transfer of charge from the phenyl ring to the heterocycle, indicating

a CT state. Since there is little overlap between HOMO-CT and the LUMO, this CT state car-

ries little optical intensity. HOMO-N resides on the heterocycle, such that HOMO-N→LUMO

corresponds to a neutral excitation, with substantially more oscillator strength than the CT state.

The effects of the point charge in Figure 2.7 can also be understood in terms of the frontier
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Figure 2.8: Frontier orbitals of SSKC-513. There are two nearly degenerate HOMOs, one located
on the heterocycle and the other on the phenylene ring. The LUMO is non-degenerate and located
on the heterocycle. Optical intensity relies on good overlap between orbitals, such that only the
transition from HOMO-N to the LUMO carries large optical intensity.

orbitals. Since a positive charge bound to the crown ether is closer to the phenylene ring than

to the heterocycle, it preferentially lowers the energy of the HOMO-CT. This raises the energy

of the HOMO-CT→LUMO transition that dominates the CT state. This is in agreement with

Figure 2.7, which shows that a positive charge causes the less intense CT state to rise significantly

above the bright N state.

Nearly0Degenerate0
Highest0Occupied0
Molecular0Orbitals
(HOMOs)

Non0Degenerate0
Lowest0Unoccupied0
Molecular0Orbital0
(LUMO)

-7.00eV0-7.00eV0

-1.510eV0

Figure 2.9: Frontier molecular orbitals of the three-fold symmetric parent of SSKC-513.
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The near degeneracy of the two lowest-excited states observed in SSKC-513 may be unex-

pected, since the excitations have a largely different character, one being a N excitation on the

heterocycle and the other being a CT excitation from the heterocycle to the phenylene ring. Fur-

thermore, SSKC-513 has at most two-fold symmetry, and degeneracies are not expected for C2

symmetry groups. However, doubly degenerate states are expected for molecules with three-fold

symmetry, since the C3 symmetry groups have doubly degenerate representations. The molecule

of Figure 2.10 uses bridging oxygen atoms to convert SSKC-513 to a three-fold symmetric sys-

tem. The orbitals of this symmetric parent molecule are shown in Figure 2.9. The HOMO is

again doubly degenerate, while the LUMO is non-degenerate. The nodal pattern of the HOMOs

also reveals why removal of oxygen and rotation of the upper phenylene ring to form SSKC-513

does not substantially lift the degeneracy: the HOMOs have little amplitude in the regions of

the additional oxygen atoms. The nearly degenerate HOMOs of SSKC-513 are therefore not an

accidental degeneracy, but rather a result of the three-fold symmetry of this parent molecule.
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Figure 2.10: Effects of a point charge on the excited states of the three-fold symmetric parent of
SSKC-513. (The radii of the circles are proportional to oscillator strength.)

The effects of a point charge on the three-fold symmetric parent molecule are shown in Fig-

ure 2.10. The point charge lifts the degeneracy, similar to the behavior of SSKC-513 in Fig-

ure 2.7. However, both states retain optical intensity such that binding of the ion would not be

expected to have a strong effect on the fluorescent behavior. The three-fold symmetric molecule
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is therefore useful for understanding the origin of the degenerate excited states of SSKC-513, but

is not expected to be a useful chromophore for ion detection.

2.4.4 Effects of a Potassium Ion

Above, the effects of ion binding were explored by examining the effects of a point charge lo-

cated at a position corresponding to the center of the crown ether. The results suggest that a

positive charge preferentially stabilizes HOMO-CT, which resides primarily on the phenylene

ring (Figure 2.8). This causes the less intense CT state to rise above the bright N state (Fig-

ure 2.7), which rationalizes the observed increase in fluorescence quantum yield upon binding of

a cation.

Results from DFT calculations that explicitly include a K+ ion (Figure 2.11) lead to similar

conclusions. Figure 2.11 shows the lowest two excited states, S1 and S2, with CT and N character

assigned based on the predicted optical intensity and examination of the orbitals that contribute

to the excitation. Results are shown for both the ground electronic-state geometry, corresponding

to vertical excitation, and the relaxed S1 geometry, corresponding to fluorescence.

In the presence of K+ (right side of Figure 2.11), the gap between S1 and S2 is large, with

S1 having strong N character and so carrying substantial oscillator strength. We therefore expect

high fluorescence quantum yield in the presence of a K+ ion, for reasons that are consistent with

those obtained above based on the effects of a point charge.

In the absence of K+ (left side of Figure 2.11), the gap between S1 and S2 is small, being

0.05 eV for the ground-state geometry and 0.15 eV for the relaxed S1 geometry. In the ground-

state geometry, the S1 and S2 states have the same character as seen in the presence of a point

charge: S1 has CT character and carries 2.5 times less intensity than the S2 state, which has N

character. Upon excited-state relaxation, the S1 and S2 states are predicted to cross: S1 has N

character and carries 2.5 times more intensity than the S2 state, which now has CT character. The

weaker fluorescence seen in the absence of a K+ ion can then be attributed to the near degeneracy
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Figure 2.11: Electronic states of SSKC-513 (Figure 2.7) with (right) and without (left) a K+ ion
at a location corresponding to the center of the crown ether in SKC-513.

of S1 and S2, with the energy separation being so close that they cross as the geometry relaxes

from that of the vertical excitation to that of the S1 state.

Since torsions associated with θ of Figure 2.3 are low-frequency, it is plausible that the ex-

cited state relaxation is dominated by motion along this coordinate. However, the change in

torsional angles are relatively small. In the absence of a K+ ion, the relaxation of the torsonial

angle is from 54o to 57.5o and in the presence of a K+ ion, the relaxation is from 63o to 60.7o.

Also of interest, is the degree to which the interaction with K+ goes beyond field effects

to include more specific chemical interactions. The molecular orbitals that participate in the

excitation have negligible amplitude on the potassium ion. This, along with the similar behavior

observed for a point charge, suggests that the effects of the ion on the excited state arise primarily

from the electric field of the ion.
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2.4.5 Excited States in the Presence of K+

Figure 2.8 shows the orbital contributions to the excited states of the SSKC-513 dye in the ab-

sence of K+. In that case, the near degeneracy of the HOMO-CT and HOMO-N orbitals leads

to a near degeneracy of the two lowest-energy excited states, which correspond to a less-intense

HOMO-CT→ LUMO transition and a bright HOMO-N→ LUMO transition.

Figure 2.12: Frontier orbitals of SSKC-513 in the presence of K+ ion along with the orbital con-
tributions to the three lowest-energy excited states. The vertical excitation energies and oscillator
strengths, f, are also shown.

Figure 2.12 shows the orbitals that contribute to the lowest-energy excited states in the pres-

ence of K+. The lowest-energy excited state is bright and predominantly a HOMO→LUMO

transition, with the HOMO and LUMO residing primarily on the large heterocycle. This state

therefore retains the character of the N state observed in the absence of K+. The 2nd and 3rd

excited state lie more than 0.7 eV higher in energy and involve promotions to the LUMO from
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the HOMO-1, HOMO-2, and HOMO-3. This suggests that binding of K+ substantially raises the

energy of the less-intense state and leads to state mixing with other high-lying excited states. The

result that is of most relevance to the use of SSKC-513 as a K+ detector is that the lowest-energy

state in the presence of K+ is both optically bright and well-separated from other excited states.

The results therefore predict binding of K+ to substantially enhance fluorescence.

2.4.6 Semiempirical Calculations

Initial exploration of the photophysical properties of the SSKC-513 was done using semiempiri-

cal methods, with the results informing the DFT computations discussed. Partial results from the

initial exploratory work are presented here to illustrate that the main conclusions are robust with

respect to the level of theory. As discussed earlier, the relevant excited states result from break-

ing the symmetry of the parent molecule (Figure 2.9). Since the main conclusions are a result of

symmetry and symmetry breaking, it is not surprising that the conclusions are insensitive to the

level of theory used.

Since accurate predictions of low torsional barriers are challenging for quantum chemical

methods, we compared the results of various models to estimate the likely uncertainty (Fig-

ure 2.4). Semiempirical methods place the minimum energy structure near 60o and predict a low

barrier to rotation through 90o, although they differ considerably regarding the magnitude of this

barrier. These disagreements regarding the magnitude of the torsional barrier do not, however,

impact relevant predictions.

The remaining semiempirical calculations summarized here use the SAM1 method to obtain

optimized ground state structures [36]. Excited states are obtained with the INDO Hamiltonian

and direct singles configuration-interaction (S-CI) calculations that include excitations between

all filled and empty orbitals[97]. Only vertical excitations are considered here, with effects of

geometry relaxation being addressed only in the DFT computations.

Figure 2.13 examines the lowest two excited states as a function of torsional angle. Similar
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Figure 2.13: Excited states of the SSKC-513 dye as a function of torsional angle, obtained using
semiempirical methods.

to DFT, the two degenerate states are only weakly affected by the torsional rotation. The effects

of the potassium ion are modeled by including the potential of a point charge placed at a location

corresponding to the center of the crown ether. The charge lies 2.8 Å from the nitrogen of

the crown ether, somewhat shorter than the 3 Å used in the DFT calculations, but within the

experimental range [93, 94, 95]. Screening of the ionic charge due to solvent was included by

dividing the charge by the dielectric constant, q/ε. For pure water, ε ≈ 80, while for organic

media ε ≈ 2. Since the ionic charge is partially screened by water, values of q/ε between -1/3

and 1/3 were considered. Figure 2.14 shows the dependence of the two lowest excited states of

SSKC-513 on the magnitude of the point charge. For a positive charge, the lowest state is bright,

and the molecule is predicted to be highly emissive. In the absence of a charge or in the presence

of a negative charge, the lowest state is less intense and so the molecule is predicted to be less

fluorescent.

The effects of a point charge on the parent three-fold symmetric molecule are shown in Fig-

ure 2.15. The effects of the point charge on the energies of the two lowest states is simlar to that

of SSKC-513 (Figure 2.14) however, in the parent, both states carry significant optical intensity.

This is the same behavior as seen in the DFT calculations.
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Figure 2.14: Effects of a point charge of magnitude q/ε on the excited states of SSKC-513 ob-
tained using semiempirical methods.

Figure 2.15: Effects of a point charge on the excited states of the three-fold parent symmetric
molecule, obtained using semiempirical methods

The agreement between DFT and semiempirical methods regarding the nature of the lowest

excited states and the effects of a point charge on these states, provides strong support for the

mechanism proposed here regarding sensitivity of fluorescence to the presence of the ion.

2.4.7 Effects of Electronic Substituents

The suggested mechanism for the effects of K+ on the fluorescence quantum yield is that the

electric field of the ion causes the molecule to move from the less-emissive regime on the left

of Figure 2.7 to the more emissive regime on the right. The computations reported here are

approximate, not only in the methods used for the electronic structure of the chromophore, but

also regarding the use of a continuum dielectric model for the solvent and the use of a simpli-
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Figure 2.16: Effects of Flourine substituents on the two lowest excited states of SSKC-513.
Adding F substituents to the phenyl-ring (left) raises the energy of the CT excited state, while
adding F substituents to the heterocycle has the opposite effect.

fied structure for the dye (Figure 2.3). While such approximations likely do not invalidate the

proposed mechanism, they do suggest that the predicted location of the crossing point between

the less emissive and more emissive regimes may not be highly reliable. A reasonable target for

synthetic modification to SKC-513 is adding substituents that alter the crossing point. This can

be done by adding electronic acceptors or donors that alter the relative energies of the HOMOs

in Figure 2.8.

Two derivatives of SSKC-513 are compared with SSKC-513 in Figure 2.16. The results can

be understood in terms of the effects of the substituents on the HOMOs of Figure 2.8. Addition

of fluorine atoms to the phenylene group stablizes the HOMO-CT located on the phenylene ring

(the HOMO on the right in Figure 2.8), thereby raising the energy of the CT state relative to that

of the N state. Similarly, addition of flourine atoms to the heterocycle stabilizes the HOMO-N

shown on the left of Figure 2.8, thereby raising the N state relative to the CT state.

These results suggest that electronic substituents provide a handle that may be used to opti-

mize the sensitivity of SSKC-513 fluorescence to ion binding, by altering the relative energies of
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Figure 2.17: The two lowest excited states of a modified SSKC-513, in which a methylene
bridges between the phenylene group and the heterocycle. (The radii of the circles are propor-
tional to the oscillator strength.)

the N and CT states.

2.4.8 Effects of a Bridging Methylene

Figure 2.17 shows the effects of a point charge on the excited states when an extra methylene

group is placed between the heterocycle and the phenylene group. The calculations are done for

the optimized geometry, in which the phenylene ring is nearly perpendicular to the heterocycle.

The avoided crossing between N and CT states suggests a stronger electronic coupling between

these states than is seen in Figure 2.7 for SSKC-513. A more detailed examination of the curve

crossings suggests a coupling of 0.15 eV for this system, compared to about 0.01 eV for SSKC-

513. The proposed mechanism for ion sensitivity assumes rapid relaxation between N and CT

states. A stronger coupling between N and CT states may enhance this relaxation, such that

the addition of a bridge methylene group may enhance the sensitivity of fluorescence to ion

binding [98]. The introduction of a bridging methylene also leads to a substantial decrease in the

oscillator strength of the CT state. This increased contrast between the N and CT states may also

enhance the sensitivity of fluorescence to ion binding.
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2.5 Conclusions

The quantum chemical calculations presented here suggest a mechanism for the sensitivity of

SKC-513 to ion binding, and a possible means for enhancing this sensitivity. The mechanism

relates to the near degeneracy of a bright excitation, corresponding to a N excitation on the het-

erocycle of SKC-513, and a CT excitation corresponding to charge transfer from the phenylene

group to the heterocycle. In the absence of K+, these two states lie close in energy. Binding of

K+ destabilizes the CT excited state, raising its energy far above the N state. In the presence of

K+, the lowest-energy excited state has high oscillator strength and is well separated from other

electronic states. This rationalizes the increase in fluorescence intensity seen experimentally

upon binding of K+. Computations suggest that electronic substituents may be used to alter the

relative location of the N and CT states, while the introduction of a methylene group as a bridge

bewteen the heterocycle and the phenylene group alters the electronic coupling between these

states. Such modifications may therefore provide synthetic handles with which to optimize the

sensitivity of the fluorescence to ion binding.

This chapter opens up a number of avenues for future work. One such avenue is better under-

standing why the electronic coupling between the nearly degenerate states is increased when a

non-conjugated group is placed between the heterocycle and the phenylene (Figure 2.17). More

detailed computational studies may shed light on the origin of this increase, and may suggest

other routes to increasing the coupling. Another possible avenue of research is exploring the

degree to which dye molecules may be designed by breaking the symmetry of a 3-fold sym-

metric parent. The lifting of the three-fold symmetry nearly retains the two-fold degeneracy

of the HOMO because of the nodes present at the linking oxygen atoms (Figure 2.9). A more

detailed symmetry analysis may reveal the conditions under which these nodes will be present.

Given those conditions, it may be possible to identify other classes of dyes that can serve as PET

sensors.
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Chapter 3

Computational characterization of

fluorogenic dyes

3.1 Introduction

This chapter reports computational studies of the spectral properties of a series of Thiazole Or-

ange derivatives. These computations were motivated by experimental work conducted by our

collaborators Elizabeth E. Rastede, Simon C. Watkins, Alan S. Waggoner and Bruce A. Ar-

mitage. The experimental work is included in this chapter to place the computations in context.

This chapter is based on published work. [99]

Unsymmetrical cyanine dyes exhibit low fluorescence quantum yields in fluid solution but

strongly enhanced emission in viscous solution or other environments that conformationally con-

strain the dyes [77, 78]. This phenomenon arises from a nonradiative twisting pathway about the

central methine bridge that is inhibited when the dye is constrained [77, 78, 79]. To enable si-

multaneous monitoring of multiple biomolecules, fluorgens that span a range of wavelengths are

highly desirable. Electron donating and withdrawing substituents provide a means to shift the

spectral peaks of dyes and so design dyes that emit at different wavelengths. This chapter uses

quantum chemical calculations to understand the origins of the shifts seen experimentally.
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A number of different computational approaches are compared, including TDDFT with dif-

ferent functionals and semiempirical INDO calculations. The results indicate that INDO is nearly

as reliable as TDDFT, with both approaches giving good agreement with experiment in most

cases.

3.2 Computational Methods

The molecular geometries of the ground electronic state were optimized using DFT with the

B3LYP functional [100] and 6-31G** basis set. Vertical excitations were obtained from single-

point TDDFT calculations with the CAM-B3LYP/6-31G** [89], since this functional has been

shown to perform well on cyanine dyes [90, 101, 102]. In addition, the correlation between the

predicted and observed λmax is compared for CAM-B3LYP, M06HF and PBE0 functionals as

well as ZINDO [97]. All calculations were performed using GAUSSIAN09 [103] and included

the effects of the methanol solvent through the Polarization Continuum Model (PCM) [91].

INDO calculations were performed using a direct singles configuration interaction method that
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includes excitations between all molecular orbitals [97]. Solvent was not included in the INDO

computations

3.3 Comparison of Computational Methods

Figure 3.1: Correlation plots of predicted values from different calculations of the TO derivative
dyes and experimental results

The predicted absorption wavelengths (Table 3.1) are plotted against the experimental obser-

vations in Figure 3.1. The correlations are significantly better for CAM-B3LYP than for the other

methods. We see that there is in general a good correlation between predicted and experimentally

observed absorption λmax values.
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Method TO TO-1F TO-p2F TO-4F TO-CF3 TO-OMe MeO-TOCF3

(nm)
CAM-B3LYP 417.6 417.66 410.8 409.3 423.6 422.6 429.8

PBE0 435.5 437.2 428.8 429.5 442.8 447.2 456.8
M06HF 421.7 419.6 411.7 406.4 429 423.4 431.9
INDO 473.6 469 465.7 460.3 480.1 473.6 480

Experiment 502 516 512 509 492 496 526
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Figure 3.2: Frontier orbital analysis for TO and its donor/acceptor substituted analogues, includ-
ing HOMO and LUMO orbitals of TO (far left), HOMO and LUMO energies (black), HOMO-
LUMO gaps (blue arrows) and TDDFT excitation energies (red text).

3.4 Results and Discussion

Figure 3.2 shows the calculated frontier orbitals for TO, along with the effects of the substituents

on the HOMO and LUMO energies and on the excitations energies predicted by TDDFT. The

trends in the HOMO-LUMO gaps correlate well with the excitation energies, such that the

spectral shifts can be understood in terms of the effects of the substituents on the frontier or-

bitals. These effects are consistent with EWGs (F and CF3) preferentially stabilizing, and EDGs

(methoxy) preferentially destabilizing, the frontier orbital whose density is largest on the het-

erocycle to which the group is attached. Fluorine substitution on the benzothiazole thus pref-

erentially stabilizes the HOMO and leads to blue-shifted absorption, while CF3 substitution on

the quinoline preferentially stabilizes the LUMO and leads to red-shifted absorption. Methoxy
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substitution on the benzothiazole preferentially destabilizes the HOMO, leading to red-shifted

absorption, as observed previously by Ivanov and co-workers. [104] The substituent effects rein-

force one another in CH3O-TO-CF3, leading to the largest red shift (Table 3.1).

Figure 3.3: (A) Normalized absorbance spectra of TO dyes (1µM) in methanol. (B) Normalized
fluorescence spectra of TO dyes (1µM) in 90% glycerol in water.

Normalized UV-vis spectra for the new TO derivatives in methanol solution are shown in

Figure 3.3A, along with the spectra for TO and the previously reported TO-CF3. Trifluoromethy-

lation of the quinoline group causes a 14 nm red shift in the absorption spectrum relative to TO.

Introduction of a methoxy group at position 5 on the benzothiazole heterocycle causes a similar

red shift of 10 nm, and the combination of both substituents, methoxy on the benzothiazole and

trifluoromethyl on the quinoline, shows an additive effect with a red shift of 24 nm (Table 3.1).

Similar results were observed in fluorescence emission spectra recorded for the dyes (Fig-

ure 3.3B and Table 3.1). Since TO and its analogues exhibit very low fluorescence in fluid

solution, we measured emission spectra in a viscous solvent consisting of 90% glycerol in water.

The spectra are relatively broad, but the emission clearly red-shifts in the order TO < TO-CF3 ≈

CH3O-TO < CH3O-TO-CF3.

The fluorescence quantum yields were also determined for TO analogs in 90% glycerol in

water (Table 3.1; the values for TO and TO-CF3 are lower than we previously reported; this

could be due to slight variation in the glycerol content.) As previously reported the addition of
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Dye εa (M−1cm−1) Absλmax
a Emλmax

b φf
b

TO 68,000 502 529 0.013
CH3O-TO 68,600 512 545 0.009
TO-CF3 65,000 516 547 0.009

CH3O-TO-CF3 58,000 526 560 0.007

Table 3.1: Extinction coefficients, wavelength maxima (nm) and fluo-
rescence quantum yields for TO dyes in homogeneous solution.

a in methanol
bin 90% glycerol in water

the trifluoromethyl group to the quinoline side decreases the quantum yield due to reduction in

the activation barrier for twisting about the central methine in the excited state. Addition of a

methoxy substituent to the benzothiazole group also decreases the quantum yield, and when both

substituents are present the quantum yield decreases further.

3.5 Conclusion

This chapter reports calculations on a family of fluorogenic cyanine dyes in which strategic place-

ment of electron donating and withdrawing groups was used in order to finely tune the absorbance

and fluorescence spectra. The computed shifts in wavelength induced by the substituents are in

good agreement with experiment. In addition, a frontier orbital analysis successfully accounts

for the observed spectral shifts. The relative shifts of the HOMO and LUMO orbitals is as ex-

pected based on the amplitude of these orbitals at the atom where the substitution occurs, and the

electron donating versus withdrawing character of the substituent.
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Chapter 4

Embedding parameters in ab initio theory

to develop well-controlled approximations

based on molecular similarity

4.1 Introduction

Section 1.3 motivated and introduced a new approach to developing semiempirical quantum

chemical models. The approach embeds parameters into a low level (LL) ab initio theory and

adjusts these to obtain agreement with results of a high level (HL) ab initio theory. We will

refer to such models as parameterized-LL (pLL) models, to reflect that the LL model is being

used as a functional form to be trained through machine learning techniques. The embedded

parameters are associated with molecular fragments, and agreement between pLL and HL models

is sought on data that spans a range of chemical systems over which molecular similarity can be

plausibly assumed to hold. To achieve a predictable level of accuracy, we divide the data used to

parameterize the model into a training and a test set. The model parameters are adjusted to obtain

agreement on the training set, while monitoring the performance on the test set. The accuracy

achieved on the test set thereby provides an estimate of the accuracy of the pLL model on systems
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that are sufficiently similar to those used to train the model. The model can be systematically

improved by increasing either the sophistication of the LL ab initio theory, by increasing the size

of the basis or level of correlation, or by improving the means through which the parameters

are embedded to form the pLL model, as is done below through the use of context sensitive

parameters.

The goal is explore the degree to which a pLL model can take advantage of molecular similar-

ity to incorporate aspects of the electronic structure. Here, we use minimal-basis Hartree-Fock

theory (HF/STO-3G) as the basis for the pLL model and a split-valence Hartree-Fock theory

(HF/6-31G) as the HL theory. The HL theory differs from the LL by allowing the charge distri-

bution to expand and contract in response to changes in the molecular geometry and the electro-

static environment. Our hypothesis is that the effects of this expansion and contraction behave

similarly within a restricted class of molecules. If this holds, then we should be able to train

a pLL model on a subset of molecules within that class and create a model that applies across

the entire class. In addition, we embed the parameters in a manner that builds on intuitions

regarding the effect the pLL model is attempting to capture. For instance, we invoke the intu-

ition that the expansion and contraction is influenced by the charge on the atom. The training

of the pLL model on HL data, as opposed to experimental data, has the advantage of allowing

the computational experiments to explore the degree to which the pLL model can capture the

differences between the LL and HL model. These differences are much better understood than

the differences between the LL model and experiment.

Our approach is similar to traditional semiempirical quantum chemistry (SEQC) [31, 105]

in that parameters are embedded into a quantum mechanical Hamiltonian and adjusted to obtain

agreement with available data. There are however a number of important distinctions. First is the

use of a training and test set to obtain an estimate of the error introduced by the approximation.

A second distinction relates to the nature of the data used for the parameterization. Here, the

model is parameterized to a large set of data generated from HL ab initio theory, including

the expectation values of all operators that appear in the electronic Hamiltonian. Traditional
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SEQC attempts to obtain agreement with either a small set of experimental data, or with sparse

data (geometries, heats of formation) obtained from HL ab initio theory. A third distinction

is the meaning attributed to the embedded parameters. The parameters of SEQC are typically

assumed to have some meaning, such as atomic ionization potentials or screened Coulombic

interactions. Here, the parameters are viewed in a manner similar to the parameters embedded

into a neural net, with little meaning being attached to the parameters themselves. The pLL

model serves as a convenient functional form for an approximating function that is assumed to

hold over some limited range. Finally, the model is assumed to be valid only for molecules that

are sufficiently similar to those included in the training of the model. The intent is that models

will be developed for different classes of molecules, making the approach more analogous to

molecular mechanics, where parameters are often specific to particular fragments such as amino

acids or polymer subunits.

The SCC-DFTB method [43, 46] has some similarities with the current approach, including

the use of detailed data from a higher-level theory to extract parameters for a LL model and the

use of parameters tuned to specific classes of systems. However, our approach differs in the use

of a training and test set to estimate error and in the general approach of using a pLL model as an

approximating function that is trained to data with little regard for the meaning of the embedded

parameters.

The choice of LL and HL theory for the current work is partly motivated by our previous

work on empirical models. Features extracted from the results of a LL calculation were used to

predict the results of a HL calculation. For instance, such a model was successful at predicting

the two-electron density matrix, and thus the correlation energy, from the one-electron density

matrix obtained from Hartree-Fock theory [106]. Another study considered the collinear reaction

H2 + F→ HF + H in environments that strongly perturb the reaction energy profile [58]. A linear

regression obtained chemical accuracy (<0.6 kcal/mol) in predicting the results of a HL calcula-

tion (QCISD/6-31G++**) using only inputs (energy and distributed multipoles) generated from

a LL calculation (HF/3-21G). The error in such models was dominated by the extrapolation from
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small to large basis sets (3-21G → 6-31G++**), with much less error resulting from extrapo-

lating to correlated theories (HF → QCISD). These results suggest that a key challenge in the

development of empirical models is the extrapolation across basis set. This past work was empir-

ical, in the sense that simple linear models were used to predict HL results from LL inputs. The

current work is semi-empirical, in the sense that a modified Hamiltonian is used as the functional

form in which to embed parameters. This model form may lead to substantially improved per-

formance, especially given the success of traditional semiempirical quantum chemistry (SEQC),

which used only a handful of embedded parameters fit to a handful of experimental data. Our

choice of LL and HL model is meant to explore the degree to which a semiempirical model can

address the aspect that was most difficult in our past empirical models, the extrapolation across

basis set.

The chemical systems considered here are saturated hydrocarbons. Section 4.2.1 describes

the data used to train and test the model. The form of the model is then described, including

the embedding of parameters into the LL Hamiltonian (Section 4.2.2), and addition of context

sensitivity to these parameters (Section 4.2.3). The training and performance of the model are

then described in Section 4.3.

4.2 Methods

4.2.1 Chemical Data

The data consists of the electronic structure of a hydrocarbon with varying geometries in a range

of environments. Both LL (HF/STO-3G) and HL (HF/6-31G) data is generated. Random ge-

ometries are obtained by perturbing the equilibrium geometry with random distortions. These

distortions are generated using a z-matrix that defines the molecular geometry in terms of bond

lengths, angles, and dihedrals. A random number is then added to each value in the z-matrix,

using a uniform random distribution with a width of ±0.15 Å for bond lengths, ±6o for bond
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angles, and ±7o for dihedral angles. Bond angles that are not explicitly included in the z-matrix

thus have a range that is up to twice that of the angles included in the z-matrix. For ethane, the

random variable is chosen to span the full range for the internal rotation angle.

The environment perturbs the electronic structure of the fragment in a manner that explores

the types of perturbations that will be present in large molecules. This includes perturbations

from external electrostatic potentials, due to other portions of the molecule or from solvent, and

inductive effects from acceptors and donors. The environments consist of a cube, each corner of

which holds a point charge. The length of each side of the cube is 12 Å for methane and ethane

and 14 Å for propane and butane, with the molecule placed at its center. The magnitudes of

the point charges are randomly generated using a uniform distribution between -25 and 25 amu,

chosen to induce variations in the Mulliken charges on the C and H in methane and ethane that

are similar to the charges induced on the methyl group in CF3CH3 (∼0.2 amu).

For each pairing of a molecular configuration with an environment, we generate expectation

values of each operator that appears in the Hamiltonian (total kinetic energy, interaction of the

electron density with each nucleus, and total two-electron repulsion energy). Each data set con-

sists of 10 configurations in 10 environments, corresponding to 100 calculations. Ethane has

eight nuclei which, along with kinetic energy and two-electron energy, leads to 1000 data points.

The goal of the model fitting is to get the 1000 values generated from the pLL model to agree

with those from the HL theory.

4.2.2 Effective Hamiltonian

Rather than use the ad hoc functional forms of traditional SEQC, we embed parameters into a

LL (STO-3G) ab initio model. A systematic comparison of different embedding schemes will

be presented in next chapter. Here, we choose a scheme that performs well and focus on issues

related to the training and testing of the model.

For one-electron operators, we embed parameters by multiplying the matrix elements, (i|h1|j),
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by a multiplicative constant, (1+x), with x constrained to be greater than -1. For diagonal blocks,

where i and j are atomic orbitals on the same atom, a different parameter is used for each atom

type (C, H) and for each shell (1s, 2s, and 2p). For off-diagonal blocks, where i and j are on

different atoms, modifications are included only between bonded atoms. For each bond, the

atomic orbitals of C are transformed to create an sp3 hybrid orbital directed along the bond,

and the matrix element between the orbitals participating in this bond (1s for H, sp3 for C) are

multiplied by (1+x). (Note that only singly-bonded molecules are included here.) The parameter,

x, used between bonded atoms is a function of the atom types participating in the bond. Integrals

that are not modified according to the above rules retain their LL values, as opposed to being set

to zero.

For the two electron operators, we use a multiplicative constant, (1+x), to modify the follow-

ing classes of two electron integrals:

Diagonal: (ij|kl) with i j k and l all on the same atom
Off-diagonal: (ij|kl) with i j on one atom and k l on another atom

The diagonal element in which all orbitals are 1s has a single parameter for each atom type.

For the (2s, 2p) shells of carbon, we use the form introduced by Slater and utilized in INDO

theory [80] to express the on-atom integrals in terms of three parameters, F0, G1 and F2. For

the off-diagonal integrals, the values from the LL STO-3G theory are multiplied by a constant

that depends on the two atom types. Between C and H, and between C and C, the integrals are

modified only if there is a bond between the atoms. For integrals between H and H, the integrals

are always modified. This approach to the two-electron operator has some similarities with the

Zero Differential Overlap (ZDO) approximation, since the two-electron integrals being modified

are those that are included in ZDO theories. However, unlike ZDO, the remaining two-electron

integrals are retained, and set to the value they have in the unmodified LL theory.

To further illustrate the embedding scheme, Table 4.1 lists the parameters used for ethane.
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Matrix element type Atom types Number of Parameters
Kinetic energy (KE) Diagonal C 3 (1s, 2s, 2p)

H 1 (1s)
Off-diagonal C-H 1 (sp3 1s)

C-C 1 (sp3 sp3)
Elec-nuclear interaction Diagonal C 3 (1s, 2s, 2p)

H 1 (1s)
Off-diagonal C-H 1 (sp3 1s)

C-C 1 (sp3 sp3)
Two-electron On-atom C 4 (1s, F0, G0, G2)

H 1 (1s)
Between atoms C-H, C-C, H-H 3

TOTAL 20

Table 4.1: List of parameter types for ethane

4.2.3 Context Sensitive Parameters

We expect that a given set of parameters will be valid only over some limited range of molecules.

We can extend this range by making the parameters functions of the current context of the

molecule, where the context is extracted from the geometry and electronic density matrix. The

current work considers the ad hoc context variables shown in Table 4.2. (The use of feature

extraction methods to develop machine-learning derived contexts will be presented in a future

work.) Below, these contexts are added sequentially. The first context is bond length, so we can

determine the improvement obtained from including only geometry dependence in the model.

The second context is the aspect of the electron density that seems most likely to be of relevance,

with regards to the expansion and contraction of charge density present only in the HL model.

For diagonal blocks, as charge is pushed onto (or pulled from) an atom, we expect the charge

density to expand (or contract). For the off-diagonal blocks, the bond order may play a simi-

lar role of influencing the expansion and contraction of the electron density. The third context

crosses these, using bond order for diagonal blocks and atomic charges for off-diagonal blocks.

Since the density matrix is updated on each iteration of the Hartree-Fock (HF) solution pro-

cess, the context can also be updated on each iteration and so integrate smoothly into the HF

algorithm. However, for the fits shown here, the context variables are derived from HF/STO-3G
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and are not updated as the model is trained. In addition, the charges are those induced by the

environment, as opposed to absolute charges.

Contexts for diagonal blocks

1) r: Average bond length to bonded atoms

2) q: Mulliken charge on the atom

3) bo: Average bond order to bonded atoms

Contexts for off-diagonal blocks

1) r: Bond length

2) bo: Bond order

3) q: Difference in charges on bonded atoms

Table 4.2: hoc context variables

Each of the parameters embed-

ded in the Hamiltonian (Table 4.1)

is made a linear function of the

three context variables listed in Ta-

ble 4.2. An exception is the param-

eter that modifies the two-electron

integrals between hydrogen atoms:

it becomes a linear function of

only the bond-order. The restric-

tion to bond order is motivated by

the fact that these interactions are

present between non-bonded atoms. The inclusion of bond order allows the model to make a

small distinction between adjacent versus distant hydrogens. The resulting model has 78 embed-

ded parameters.

4.3 Results

As discussed in Section 4.2.1, each data set consists of 10 molecular configurations coupled

with 10 electrostatic environments, for a total of 100 molecule/environment pairs. The model is

trained on such a data set for ethane. During training, performance is monitored on a test set, also

for ethane, which has the same size as the training set. The model parameters are optimized using

the trust-region reflexive algorithm [107, 108], as implemented in MATLAB 2012a [109], with

the objective being the RMS error of the training set. The error is computed for each operator,
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and each molecular environment pair,

ErrÔi
mol,env = 〈Ôi〉

HL

mol,env − 〈Ôi〉
pLL

mol,env , (4.1)

where i ranges over kinetic energy (KE), the electron-nuclear interaction for each atom in the

molecule, and the two-electron energy (E2). We also consider the operator that sums all of these

terms to give Etot. Note that the energy of interaction with the environment is not included in

Etot. The environment is used to perturb the electronic distribution, and the model is adjusted to

the self-energy of the molecule in the presence of such perturbations. The RMS error sums this

over all environment/molecule pairs and over each operator,

RMSerror =

√
1

N

∑
i,mol,env

(ErrÔi
mol,env)

2, (4.2)

where N is the total number of terms in the summation. In the fits shown below, the summation

of Eq. 4.2 includes Etot, with an optional weighting factor, w.

The errors of Eqs. 4.1 and 4.2 reflect disagreement between the pLL and HL models with

regards to total energy. However, the absolute energy from a quantum chemical model has little

meaning since it is only energy differences that can be measured experimentally. To capture the

error associated with energy differences, we subtract the mean of the error,

Err′Ôi
mol,env = ErrÔi

mol,env − Err
Ôi
mol,env, (4.3)

where the mean is taken over all molecule/environment pairs, for each operator type. The RMS

error is then,

RMSerror′ =

√
1

N

∑
i,mol,env

(Err′Ôi
mol,env)

2, (4.4)

The error of Eq. 4.4 thus reflects the disagreement between the pLL model and HL model re-

garding changes in the operator expectation values arising from changes in either the geometry
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Figure 4.1: Training of the pLL model on an ethane data set (solid lines), while monitoring
performance on an ethane test set (dotted lines). The objective is the RMS error, Eq. 4.2, summed
over all operators including Etot (black lines). The RMS error, Eq. 4.2, for just the total energy,
Etot, (red lines) is also shown. The vertical lines show addition of context variables to the model
(Table 4.2).

or environment of the molecule. Since there are sufficient parameters in the pLL model for the

fitting algorithm to adjust the mean of the predictions to that of the HL model, Eqs. 4.2 and

4.4 are expected to be the same for the training set. However, Eq. 4.4 provides a more relevant

measure of the performance on test sets. Figure 4.1 shows the error as a function of iteration

number for a weighting factor of w= 1 on Etot. The model is first optimized without the inclu-

sion of context dependence in the parameters. Once convergence is achieved, the first level of

context dependence is added to the model (contexts labeled 1 in Table 4.2), and so on. The fit

shown here used tight convergence criteria (10-10 relative change in either the parameters or the

RMS error, or 200 maximum iterations at each stage). The objective tends to decrease smoothly,

such that in later fits, we stop the optimization when there are 4 successive steps in which the

performance on the test set drops by less than 0.01 kcal/mol. In most cases, this stopping criteria

is met when performance on the test set degrades for four successive steps. This criteria would

stop the optimization before the drop in RMS error that occurs near iteration 325 in Figure 4.1.

This may indicate the need for a global optimization procedure [110]. However, this drop does
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Figure 4.2: Error in the individual operators, excluding Etot, for the optimization of Figure 4.1.
The RMS error is obtained using Eq. 4.2, with summations limited to a particular operator type.

not lead to improved performance on the total energy and so does not suggest a need to alter our

stopping criteria. The performance on the test set roughly tracks that of the training set, with a

final performance for the total energy only 30% higher than the training set, 4 kcal/mol average

for the training set as opposed to 3 kcal/mol for the test set.

Figure 4.2 shows the average error for each operator type. The error for these operators is

substantially higher than that of the total energy in Figure 4.1, indicating that there is considerable

cancellation of error when the operators are summed to give the total energy. The cancellation of

errors is likely related to the variational nature of the Hartree-Fock method, which minimizes the

total energy under the constraint of a single Slater determinantal wavefunction. Since only the

total energy is minimized, the better performance observed for Etot versus other operators may

not be surprising.

The performance of the model of Figure 4.1 on molecule types not included in the training is

shown in Figure 4.3 through Figure 4.5. Figure 4.3 shows the error in the absolute energy, Eq. 4.2,

in which case the performance is quite poor for molecules not included in the fit. However,

the absolute energy of a quantum chemical model has little meaning since it is only energy

differences that can be measured experimentally. Figure 4.4, shows the error of Eq. 4.4, which
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Figure 4.3: RMS error, Eq. 4.2, in the total energy, Etot, for a variety of molecules, using the pLL
model of Figure 4.1.

reflects the performance expected for such energy differences. The performance on molecules not

included in the fit is comparable to that obtained on the test set of ethane molecules. This verifies

that a model trained on one type of molecule can be transferred to other similar molecules.

Figure 4.5 shows the error of Eq. 4.4, summed over all operators except that correspond to Etot .

The results show that performance on molecules types not included in the training is comparable

to the performance of the ethane test set.

The better performance obtained for Etot than individual operators indicates a substantial

cancellation of errors upon addition of operators to obtain the total energy. This suggests that

improved performance for Etot may be obtained by weighting Etot more strongly in the objective

function of Eq. 4.2. The performance on energy differences, computed via Eq. 4.4, is shown as

a function of such a weighting parameter in Figure 4.6 and Figure 4.7. Figure 4.6 shows that the

performance for the total energy tends to improve with increased weighting of the total energy.

This includes performance on molecule types not included in the training of the model, although

the improvement on the training set is substantially larger than that on the test sets. Figure 4.7

shows that the improved performance on the total energy comes at a cost to performance on the

individual operators, with the error becoming 1000s of kcal/mol when individual operators are
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Figure 4.4: RMS error, Eq. 4.4, in the total energy, Etot, for a variety of molecules, using the pLL
model of Figure 4.1. This error reflects performance on the change in total energy arising from
changes in geometry or environment.
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Figure 4.5: RMS error associated with individual operators for the fits of Figure 4.4, computed
using Eq. 4.4 with summation over all operators except Etot.
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Figure 4.6: RMS error, Eq. 4.4, in total energy of various molecules, obtained from fitting the
pLL model to ethane, with the total energy multiplied by a weighted factor.
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Figure 4.7: RMS error associated with individual operators for the fits of Figure 4.6, computed
using Eq. 4.4 with summation over all operators except Etot.
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Error in Energy Eq. 4.2 Error in Energy Differences Eq. 4.4
KE ENH ENC E2 Etot KE ENH ENC E2 Etot

Ethane (train)
Initial 938 45 716 311 545 126 21 86 112 17

No Context 25 27 25 29 7.6 24 26 25 28 7.6
Context 6.6 3.6 5.4 7.1 0.7 6.6 3.6 5.3 7 0.7

Ethane (test)
Initial 904 51 693 352 542 142 23 93 111 15

No Context 33 28 31 42 7.2 32 28 31 42 7.2
Context 11 4.2 9.2 11 2.1 11 4.2 9.2 11 2.1

Methane
Initial 424 47 717 161 279 63 22 67 51 8.8

No Context 197 28 482 213 60 13 28 44 18 6.2
Context 38 5.2 144 110 2.2 8 5.1 13 8.5 2.2
Propane

Initial 1456 39 737 372 831 81 17 56 66 6.1
No Context 182 21 252 248 55 18 20 206 51 5.2

Context 49 4.3 97 250 5.9 10 4.3 12 14 1.3
nButane

Initial 1959 40 734 503 1104 82 18 65 80 7.7
No Context 379 22 328 608 101 19 22 200 64 4.7

Context 136 6.3 196 657 19 14 6.3 27 32 2.2
tButane
Initial 1893 45 718 554 1109 119 18 66 90 8

No Context 327 22 416 535 91 34 22 343 47 4.9
Context 107 5.7 195 680 19 16 5.7 23 37 1.7

Table 4.3: Detailed errors (in kcal/mol) from the fit in Figure 4.6corresponding to w=10

not included in the fit (a weight of infinity). Fits to just the total energy therefore obtain good

performance on the total energy, but very poor performance for individual operators. This poor

performance on individual operators does not appear to harm transfer of model parameters be-

tween molecular systems, as reasonable performance is obtained for the total energy of molecule

types not included in the training of the model, even when the molecule is trained on just total

energy (see results for a weight of infinity in Figure 4.6).

A weighting of 10 in Figure 4.6 and Figure 4.7 reduces the error in the total energy on the

test molecules, while having little impact on the errors for the individual operators. Table 4.3

summarizes the results obtained from this fit. The left portion of the table shows errors in the
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absolute energies, while the right shows errors in energy differences. The rows labeled initial

refer to differences between STO-3G (LL) and 6-31G (HL). The initial disagreement regarding

energy differences, Eq. 4.4, is large for individual operators and considerably smaller for the

total energy, Etot. This indicates substantial cancellation of errors between the operators of

STO-3G and 6-31G. The use of constant parameters, labeled no context in the table, reduces

the error in the total energy by about a factor of two for both the train and test data sets, while

substantially improving the agreement on individual operators. The decrease of only a factor

of two in the error associated with the total energy speaks to the complex nature of the data set

being explored here. The environments are perturbing the electron density in ways that cannot

be captured by simply scaling the matrix elements of the minimal basis Hamiltonian. When the

model parameters are made functions of context, the model improves substantially. With context

included, the error for Etot of test molecules is reduced by a factor of between 3.5 and 7 relative

to the initial error. Performance on individual operators is also improved substantially, although

these remain considerably larger than the error in Etot.

4.4 Conclusions

This work explores a form of semiempirical model in which parameters are embedded into a LL

ab initio theory and adjusted to obtain agreement with a HL ab initio theory. The results suggest

that the approach provides a well-controlled approximation based on molecular similarity.

The approximation introduces a predictable level of accuracy. Estimates of the error intro-

duced by the approximation are obtained from the performance of the model on test data. Here,

we trained a model to data on ethane and monitored convergence of the training process on a

test set containing also data on just ethane. The performance on this ethane test set correlated

well with the performance seen on molecules (methane, propane, and butane) not included in the

training process. This suggests that the performance on test data provides a reliable measure of

the error introduced by the approximation.
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The model also has a means for systematically improving the accuracy. The general ap-

proach explored here may be improved by increasing either the sophistication of the LL ab initio

theory into which the parameters are embedded, or by improving the means through which the

parameters are embedded. The current implementation considered only the latter, by making the

parameters functions of the molecular context such as bond lengths, atomic charges and bond

orders. Incremental addition of the context variables to the model led to steady improvements in

the accuracy of the model, as judged by performance on test data.

The results presented here suggest this approach holds promise for creating models of organic

systems. The next chapter builds on this work by considering organic molecules containing N,

O and F. A more systematic comparison of various means for embedding the parameters in the

Hamiltonian is also carried out.
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Chapter 5

An Embedded Parameters Model of

CNOFH Containing Molecules

5.1 Introduction

This chapter extends the model of Chapter 4 to a broader range of molecules, consisting of

hydrocarbons substituted with amine, hydroxyl, and fluoro groups. A broader range of model

forms is also explored, by comparing a variety of approaches through which parameters may

be embedded into the low-level (LL) ab initio Hamiltonian, to form a parameterized low-level

(pLL) models.

A number of means are explored to improve training of the model. That the parameters of the

pLL model are associated with molecular fragments has the advantage of allowing model param-

eters to be transferred between different molecules. However, challenges in training the model

result from the parameters being associated with molecular fragments while model performance

is measured on the molecule as a whole. The training data includes total energy and frontier

orbital energies as target properties the model is intended to predict. In addition, the extent to

which inclusion of additional properties can enrich the training data and so lead to better model

performance is explored. These additional properties include decomposition of the total energy
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by operator into kinetic energy, electron-nuclear and electron-electron components. Inclusion of

data regarding the molecular charge distribution is also explored, to include information related

to longer-range interactions, Eq. 1.3.

Section 5.2 describes the data used to train and test the pLL models. Section 5.3 describes

the various approaches used to apply scaling factors to the operator matrix elements of the LL

Hamiltonian. The manner in which these scaling factors are made functions of the molecular

context is described in Section 5.4. Training of pLL models is described in Section 5.5 and the

results are discussed in Section 5.6. Section 5.7 reflects on the outcomes and discusses possible

next steps.

5.2 Chemical Data

The data used to train and test the model is constructed by selecting a set of molecules across

which molecular similarity may be expected to hold, generating geometries of these molecules

that are distorted from the minimum-energy geometry in some controlled manner, and finally

placing these molecules in external electrostatic environments. The combination of a molecular

geometry and an environment will be referred to as a molecular “instance”.

The geometries are distorted in a manner that is meant to provide uniform sampling over

some prespecified range of perturbations to both bond lengths and bond angles. The approach

utilizes a function, R (ξ), that maps the internal coordinates of the z-matrix, ξ, to all bond lengths

and bond angles, R, of the molecule. A set of target bond lengths and angles is generated as

Rtarget = R
(
ξopt
)

+ X (5.1)

where ξopt are the internal coordinates of the optimized structure and X is a list of random

numbers that specify distortions in bond lengths and angles. A uniform random distribution is

used for X to ensure that the geometries well sample the specified range of bond lengths and
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angles. Because there are typically more bond lengths and angles than internal coordinates,

R (ξ) is not directly invertible. The internal coordinates are therefore adjusted to give the best

match to Rtarget by minimizing the following root mean square (RMS) deviation,

N∑
i=1

[
wi

(
Ri (ξ)−Rtarget

i

)]2
, (5.2)

where N is the total number of bond lengths and angles and wi is a weight that is inversely

proportional to the width of the uniform random number distribution used in generating Rtarget.

In cases where a dihedral angle between groups is sampled, this is done by creating a z-

matrix where a single internal coordinate controls the relative rotation of the two groups. This

coordinate is assigned to a randomly generated value and not altered during the minimization of

Eq. 5.2. For propane, propylene and butane, the range of dihedral angles is restricted to prevent

overlapping groups.

To include information on the manner in which the systems respond to external electrostatic

environments, each molecule is placed in static electric fields applied along the X, Y and Z

directions. A magnitude of 0.00333 a.u. was chosen, which is sufficient to induce a dipole of 0.1

Debye in water. Each molecular geometry thus leads to four instances, one instance in zero field

and three instances for fields along the X, Y and Z directions.

Section 5.1 argued that the degree to which long-range interactions are well described by

the pLL model is related to the degree to which the density of Eq. 1.2 agrees with that of the

HL model. To obtain a measure of electron density that is comparable across basis sets, the

interaction of the electron density with a set of point charges surrounding the molecule, Echg,

is computed. One hundred locations for the point charges are first constructed using the Chelpg

method. [111] Values are then assigned to these charges from a uniform random distribution of -

0.08 e to +0.08 e. Twenty such external point charge environments are created for each molecular

geometry.

For each instance in the dataset, the following properties are generated.

63



Etot The total energy of the molecule, without inclusion of the interaction with an external

field. The external field thereby serves to perturb the electron density and Etot measures

the electronic energy associated with this perturbation.

Eorb The energy of the HOMO and LUMO orbitals. Because the calculations are being done

at the SCF level, these are Koopman’s theory estimates of the ionization potential and

electron affinity.

KE, ENA, E2 Expectation values of the operators that make up the Hamiltonian. KE is the

total kinetic energy. ENA is the interaction of the electron density with the Ath nucleus,

and E2 is the total electron-electron repulsion energy. Unlike decomposition of the energy

into atoms or molecular fragments, the decomposition of the energy by operator is uniquely

defined and directly comparable across basis set.

Echg The interaction energy between the electron density and the randomized point charges

described above.

The model parameters are adjusted to obtain agreement between the pLL and HL models for the

above quantities, as described in Section 5.5.

The following data sets were generated. Models were trained on the first three datasets, with

the remaining used for model testing.

ethane Includes all 16 unique ways to place between zero and two substituents, selected from

-NH2, -OH, and -F, on ethane. The optimized geometry, at the 6-31G level, is included

along with distorted geometries created as described above. The bond lengths are uni-

formly distorted by ±0.2 Å, bond angles are distorted by ±10◦, and rotation about the

central C-C bond is randomized. For each such geometry, four instances are created cor-

responding to no external field, and external fields along the X, Y and Z axes of 0.0033

atomic units. A training and validation set are created, both of which contain the optimized

geometry along with 10 distorted geometries in the training set and 9 in the validation set,

leading to 640 instances in the training and 576 instances in the validation set.
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ethylene This dataset is generated in a manner identical to the ethane dataset, except that the sub-

stituents are attached to ethylene and the bond lengths are uniformly distorted by±0.15 Å.

Just as in ethane, the geometries include full sampling of rotation about the central carbon-

carbon double bond. The bond length distortions were reduced to make the disagreements

between the initial LL and the HL model for Etot comparable.

combined A combination of the ethane and ethylene datasets.

propane Includes all unique combinations of zero to two of the above substituents on propane,

but with at most one substituent attached to each carbon. The bond lengths are distorted by

±0.2 Å, bond angles are distorted by ±10◦, and rotation about one carbon-carbon bond is

randomized subject to avoiding overlapping groups. A total of 576 instances are included

in this dataset.

propylene This dataset is generated in a manner similar to the propane dataset, except that the

substituents are attached to propylene, the bond lengths are uniformly distorted by ±0.15

Å, and rotation about the double bond is randomized. The substituents are either on each

end of the molecule or adjacent across the double bond.

t-butane This dataset is identical to the ethane dataset but has two methyl groups attached to one

of the carbons. This tests the ability of a model trained on molecules in which carbon has

at most three heavy atom substituents to transfer to molecules in which carbon has four

heavy atom substituents. This dataset consists of 576 instances.

The magnitude of geometric distortions used above was chosen to provide data that is challenging

to model yet is on molecules of sufficiently small size that models can be trained in an efficient

manner. The average change in energy associated with the distortions in the combined dataset

is 65 kcal mol−1. Table 5.1 shows disagreements between the HL model and traditional SEQC

models for the combined dataset. The relatively large values point towards the level of difficulty

associated with these datasets, although this is only qualitative because the differences are quoted

with respect to the HL model while the SEQC models are parametrized to experimental data.
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Method Etot EHOMO ELUMO

kcal mol−1 eV eV
CNDO/2 58.97 2.98 1.62

INDO 59.94 2.43 1.56
MNDO 34.49 1.99 3.55
AM1 32.95 1.84 3.37
PM3 34.81 2.09 3.78

Table 5.1: RMS differences between the HL model and SEQC methods for the combined dataset.
Etot refers to the change in energy associated with geometric distortions and applied fields (see
Section 5.5).

The amount of training data for the ethane and combined datasets is shown in Table 5.2. The

values that most influence the training are Etot and Eorb. With the default weighting of Echg in

the objective function of Section 5.5, Echg does not play a strong role in the fitting. The effects

of increasing the weighting of Echg are explored in Section 5.6. Comparisons are also made

between models trained with and without inclusion of the decomposed energies (KE, ENA and

E2).

ethane combined
Etot 688 1376
Eorb 1408 2816
Echg 13376 26752
KE 688 1376

ENA 6665 11954
E2 688 1376

Table 5.2: Amount of training data in the datasets used to develop pLL models.

5.3 Embedding Parameters in the Low-Level Hamiltonian

Flexible model forms are created by embedding parameters into a low-level (LL) ab initio model,

to form a parametrized low-level (pLL) model. The parameters of the pLL model are then ad-

justed to obtain agreement with a higher-level (HL) ab initio model. We have chosen to use

SCF solutions for both the pLL and HL model, such that the empirical parameters are used

66



only to compensate for differences related to the basis set. For the HL model, a split-valence

basis set with polarization functions (6-31G**) is used. For the valence electrons of the pLL

model, the STO-3G minimal basis is used. For the core electrons of the pLL model, the core

orbitals of the 6-31G basis are used, in order to make the description of the core electrons in

the pLL model equivalent to that in the HL model. This combination of 6-31G core functions

and STO-3G valence functions will be referred to as the modified STO-3G basis (mSTO-3G).

The unparametrized low-level (LL) model therefore corresponds to SCF solutions within the

mSTO-3G basis.

To initialize the pLL model, the matrix elements of each of the operators appearing in the

electronic Hamiltonian are evaluated in the mSTO-3G basis of the LL model

KEi,j EN
A
i,j (ij|kl) Henv

i,j (5.3)

where KE is the kinetic energy operator, ENA is the interaction of the electrons with the Ath

nucleus, (ij|kl) are the two-electron integrals in chemists notation, and Henv is the interaction

with the external electrostatic environment. The pLL model embeds parameters into the mSTO-

3G Hamiltonian by multiplying subblocks of these matrices by scaling factors, S. Different

scaling factors are used for different operator types (KE, ENA, E2) and for differing elements

(H, C, N, O, F) involved in the sub-block being modified. The scaling factors, S, depend on

context through the form

S = 1 + p0 +
Nc∑
i=1

pici (5.4)

where ci are context variables that describe the local environment of the atom or bond associated

with the sub-block being modified (Section 5.4). The total number of parameters, pi, is then

related to both the number of scaling factors and the degree to which these are made context

sensitive, Nc. A number of different approaches, or policies, are explored for embedding the

scaling factors. These policies differ along two dimensions. One dimension is whether different

67



scaling factors are used for σ versus π interactions between p orbitals, indicated as σπ policies.

The other dimension is whether scaling factors are applied directly to the two-electron matrix

elements, 2elec, or to the matrix elements of the J and K operators in the Fock matrix, JK. Note

that matrix elements that are not scaled retain their LL values, and scaling is not applied to matrix

elements involving core orbitals.

For diagonal blocks of one-electron operators, Oi,j where i and j are orbitals on the same

atom, one scaling factor is used for the s orbitals and a different scaling factor is used for the

subblock corresponding to the p orbitals. For off-diagonal blocks of one-electron operators,

Oi,j where i and j are orbitals on different atoms, scaling is applied only when i and j are on

bonded atoms. Two different policies are used for these off-diagonal blocks. In the default

policy, different scaling factors are used for matrix elements connecting s with s, p with p, and

s with p orbitals, leading to three parameters for each pair of elements. The σπ policy adds an

additional scaling factor per pair of heavy elements by using different parameters for σ versus π

orientations of the p orbitals. (This is done by temporarily rotating the p orbitals such that one

p orbital of each atom lies along the internuclear axis.) For the attraction between the electron

density and the Ath nucleus, ENA
i,j is modified according to the above rules only when i, j, or

both i and j reside on atom A. Henv is not modified.

For electron-electron interactions, two different policies are explored. The 2elec policy modi-

fies the two-electron integrals, (ij|kl), directly. Scaling factors are applied only to those integrals

that are retained in the NDDO approximation [35] but, unlike NDDO, the remaining integrals re-

tain their LL values instead of being set to zero. For on-atom integrals, where i, j, k, and l are on

the same atom, the three-parameter form developed by Slater [31, 80, 112] is used, which leads

to parameters F0, G1, and F2 per heavy element. The unscaled values of F0, G1 and F2 are first

determined from the two-electron integrals of the LL basis, and these values are then multiplied

by scaling factors, leading to one scaling factor for hydrogen and three scaling factors for each

heavy element. Between bonded atoms, all integrals (ij|kl) where i and j are on one atom while

k and l are on the other atom, are multiplied by a single scaling factor, leading to one scaling
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factor for each pair of elements. A scaling factor between non-bonded atoms is included only

for non-bonded hydrogen atoms closer than 2.8 Å, because this leads to a small improvement in

model predictions. This nonbonded scaling uses bond order as its single context variable, c1 of

Eq. 5.4.

The JK policy is an alternative to the 2elec policy based on scaling of the Coulomb, J, and

exchange, K, matrices of the Fock operator. The scaling is applied in each iteration of the self-

consistent solution of the Roothan equations. The unscaled two-electron integrals of the LL

model are first used to evaluate the J and K matrices. The policies discussed above for the one-

electron operators are then used to scale the J and K matrices, with different scaling factors used

for J versus K.

5.4 Context Sensitive Scaling Factors

A given set of scaling factors is likely to be valid only over some limited range of molecules.

To extend this range, the scaling factors are made functions of the current context of the atom or

bond by making them linear functions of context variables, ci of Eq.5.4. In training of the model

parameters (Section 5.5), the context sensitivity is turned on sequentially in the order shown in

Table 5.3. The first level of context involves only bond lengths and so only introduces simple

geometry dependence into the scaling factors. The second and third level of context go beyond

geometry to include aspects of the electronic structure of the molecule through atomic charges

and bond orders. As charge is pushed onto (or pulled from) an atom, we expect the charge density

to expand (or contract). This effect is not present in the minimal basis of the LL model. Making

the scaling factors functions of atomic charge and bond orders is an attempt to compensate for

this. For scaling factors applied to the diagonal, on-atom, matrix elements, the atomic charge

seems most relevant and so this is included at the second level of context sensitivity. For scaling

factors applied to off-diagonal blocks, the bond order seems more relevant and so this is included

at the second level of context. The third level crosses these, using bond order for diagonal blocks
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and atomic charges for off-diagonal blocks. The context variables are calculated using the LL

model.

level on-atom between-atom
c1a r: Average bond length to bonded atoms r: Bond length
c2b q: Mulliken charge on the atom bo: Bond order
c3 bo: Average bond order to bonded atoms q: charge difference between atoms

Table 5.3: Context variables, ci of Eq.5.4, for the three levels of context added sequentially to
the model during training.

ar refers to deviations of the bond length from 1.1Å for C-H bonds and 1.5Å for all other bonds.
bq refers to deviations from average values of 0.112 for H, -0.335 for C, -0.713 for N, -0.639 for O, and -0.417

for F.

5.5 Training the pLL Model

The parameters of the pLL model are trained by minimizing

Obj (p) =

Ndata∑
i

w2
i

(
XHL

i −XpLL
i (p)

)2

+R (p) (5.5)

where Obj is the objective to be minimized, p is a vector containing all parameters in the scaling

factors of Eq. 5.4, XHL
i and XpLL

i (p) are predictions of the HL and pLL models respectively,

and wi sets the relative weight of the computed properties in the objective. The sum includes

all molecular instances and all properties of these instances, leading to a total of Ndata values to

be fit. R (p) is the regularization function described below and is included only for the training

dataset. The properties that are optionally included in the objective are those listed in Section 5.2.

Because only energy differences are relevant to making predictions regarding molecules,

properties related to absolute energies (Etot, KE, ENA, E2) are included in the objective of

Eq. 5.5 in only a relative manner. This is done by taking, as a reference state for each molecule,

the optimized geometry of that molecule in no external environment. The quantity Xi of Eq. 5.5

is then the difference between the computed energy and that computed for the reference state.
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The objective therefore includes only the change in energy associated with distorting the molecule

and placing it in an external electrostatic environment. For the remaining properties of Sec-

tion 5.2 (Eorb, and Echg), Xi of Eq. 5.5 is the value itself, not the difference relative to the

reference state.

The weights, wi, are based on the relative accuracy desired for the predicted quantities and

here are set to (2 kcal mol−1)−1 for Etot and (0.1 eV)−1 for Eorb. For Echg, the default value of

0.016 (kcal mol−1)−1 is sufficiently low that inclusion does not degrade performance on Etot or

Eorb. In Section 5.6, the impacts of increasing the weight of Echg is examined. The weighting of

decomposed energies is 1/30th that of Etot, as discussed further in Section 5.6.

The parameters are optimized using the trust-region reflective algorithm [108] as imple-

mented within Matlab. [109] To help prevent negative and overly large scaling factors from being

explored, p0 of Eq. 5.4 is constrained to lie between -1 and 2. The inclusion of context sensitive

parameters is done in stages, such that all non-context sensitive parameters, p0 of Eq. 5.4, are

first optimized, with all other parameters set to zero. As parameters associated with additional

levels of context are added, all of the currently active parameters are optimized, using the values

from the previous level of context as initial values.

The regularization function, R (p) of Eq. 5.5, has the form

R (p) = NdataC‖p− pinit‖ (5.6)

where pinit is the initial value of the parameters for that level of context. For the initial fit

of non-context sensitive parameters, pinit = 0 and thus the regularization adds a penalty for

scaling factors that deviate strongly from 1. As context is added, the regularization penalizes

large deviations from the scaling factors that were obtained at the previous context level. Initial

studies on smaller datasets led to a value of 6 for C.

To help prevent overtraining, decisions on when to terminate the optimization are based on

performance of the model on the validation dataset. The training dataset is used to calculate the
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objective and its Jacobian, which the optimization algorithm then uses to generate a new trial set

of parameters. If performance on the validation dataset degrades for four sequential optimization

steps, this is taken as a sign of overtraining and the optimization is terminated. This process is

applied at each level of context discussed above.

The linear dependence of the scaling factors on model parameters, Eq. 5.4, enables compu-

tational optimizations. For each molecular instance, the derivative of each operator with respect

to each of the parameters is first computed. This data is then distributed such that different pro-

cessor cores handle different molecular instances. This allows the operators to be constructed

quickly for arbitrary parameters. The Jacobian for the objective of Eq. 5.5 is obtained from finite

differences, using a step size of 0.01. Analytical evaluation of the Jacobian, as obtained from the

Hellmann-Feynman theorem, does not lead to as high quality in the final fits. Optimization of

the parameters on the ethane training datasets required about 100 iterations and took about 18

hours on 12 processor cores.

5.6 Results

Figure 5.1 shows iterative improvement of the objective function of Eq. 5.5 during model train-

ing, with vertical lines indicating addition of context dependence to the model. The training

objective includes the regularization of Eq. 5.6 and the strong decrease in the training objective

on addition of context reflects the redefinition of the regularization in terms of deviations of the

parameters from those obtained at the previous context level (Section 5.5). The greatest reduc-

tion in error occurs in the first stage, where the scaling parameters are constants, referred to as

context level zero. Including the first level of context, Table 5.3, adds bond-length dependence

to the parameters and also leads to a significant reduction in error. The degree to which higher

levels of context lead to additional improvements is smaller and varies depending on dataset and

policy.

Models were trained on the ethane, ethylene and combined datasets using the four policies
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Figure 5.1: The objective of Eq. 5.5 versus iteration during training of a model on the com-
bined dataset. The pLL model uses the JK policy and decomposed energies are included in the
objective. Vertical lines indicate addition of the contexts of Table 5.3.

discussed in Section 5.3. In addition, fits were done both with and without inclusion of the

decomposition of the energy by operator (Section 5.2). Here, the focus is on models trained on

the ethane (Figures 5.2 and 5.3) and on the combined datasets (Figures 5.4 and 5.5 and Tables 5.5

and 5.4). Models trained on ethane were not tested on ethylene or propylene since the training

set did not include molecules with carbon-carbon double bonds.

For some sets of parameters in a pLL model, the SCF iterations may fail to lead to a con-

verged density matrix. In such cases, predictions obtained with the unconverged density matrix

are retained, and the RMS errors in Etot rise to hundreds of kcal mol−1. During model training,

inclusion of unconverged values in evaluation of the objective of Eq. 5.5 provides a sufficiently

large penalty that the optimization algorithm rejects sets of parameters that lead to such instabil-

ities. In reporting performance on model testing, inclusion of such unconverged values provides

an indication of the degree to which a model leads to poor or unstable performance.

Three general trends emerge. First is that using separate parameters for σ and π interactions
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Figure 5.2: Residual error in Etot as a function of context level for pLL models trained on the
ethane dataset, without inclusion of decomposed energies in the objective of Eq. 5.5. Residual
error is RMS disagreement between the pLL and HL models, quoted relative to initial disagree-
ment between the LL and HL models. Panels refer to the policies of Section 5.3.
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Figure 5.3: Residual error in Etot as a function of context level for pLL models trained on the
ethane dataset, with inclusion of decomposed energies in the objective of Eq. 5.5. Conventions
are as in Fig. 5.2.
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Figure 5.4: Residual error in Etot as a function of context level for pLL models trained on
the combined dataset, without inclusion of decomposed energies in the objective of Eq. 5.5.
Conventions are as in Fig. 5.2.
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Figure 5.5: Residual error in Etot as a function of context level for pLL models trained on the
combined dataset, with inclusion of decomposed energies in the objective of Eq. 5.5. Conven-
tions are as in Fig. 5.2.
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Figure 5.6: Boxplots of disagreements in Etot between HL and the best performing pLL model.
The pLL model uses the 2elec policy and is trained on the combined dataset without inclusion of
decomposed energies. Initial refers to the unparametrized LL model.
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Train Validation Propane t-Butane Propylene
Context npar Etot Eorb Etot Eorb Etot Eorb Etot Eorb Etot Eorb

Initial 21.47 4.44 19.21 4.43 26.68 5.38 32.69 5.31 20.03 2.78

2elec

c0 75 5.86 0.25 6.07 0.26 6.64 0.39 8.58 0.44 4.04 0.26
c1 150 3.05 0.15 3.63 0.17 3.96 0.34 7.44 0.63 4.99 0.17
c2 224 3.08 0.15 3.62 0.17 3.97 0.34 7.48 0.65 4.05 0.26
c3 298 3.00 0.14 3.52 0.17 3.84 0.35 7.18 0.66 3.90 0.26

σπ-2elec

c0 83 5.33 0.26 15.09 0.31 7.10 0.38 11.50 0.45 5.93 0.27
c1 166 3.28 0.15 3.94 0.18 4.60 0.31 10.32 0.55 311.65 1.17
c2 248 3.27 0.14 3.66 0.17 4.65 0.44 1514.45 2.28 740.76 1.74
c3 330 2.66 0.13 3.59 0.16 4.44 0.50 2046.02 2.24 255.79 1.20

JK

c0 108 4.49 0.23 5.35 0.24 6.31 0.41 9.34 0.58 5.23 0.36
c1 216 3.68 0.20 4.45 0.21 5.47 0.33 8.49 0.48 4.91 0.27
c2 324 3.56 0.20 4.28 0.20 5.19 0.32 8.21 0.48 4.76 0.26
c3 432 3.70 0.20 4.29 0.20 5.12 0.33 8.13 0.48 4.72 0.26

σπ-JK

c0 125 5.77 0.24 6.33 0.26 10.64 0.40 15.75 0.44 9.13 0.20
c1 250 4.03 0.20 4.68 0.21 7.55 0.36 13.89 0.40 6.93 0.19
c2 374 4.09 0.20 4.72 0.21 7.47 0.36 13.82 0.40 6.85 0.19
c3 498 4.20 0.21 4.62 0.21 7.36 0.36 13.70 0.40 6.79 0.19

Table 5.4: RMS errors for models trained on the combined dataset without inclusion of decom-
posed energies. npar is the number of parameters in the model. Large RMS errors reflect failures
of SCF iterations to converge (Section 5.6). Units are eV for Eorb and kcal mol−1 for all other
quantities.

between p orbitals does not improve model performance. Although the σπ-2elec and σπ-JK

models do, in some cases, outperform their 2elec and JK counterparts on the training dataset,

performance on the test datasets is not substantially improved and in many cases degrades.

A second general trend is that models trained on the combined dataset typically perform bet-

ter than those trained on ethane alone. The inclusion of ethylene in the combined dataset has

the advantage of extending the training data to include a broader class of molecules. However,

inclusion of ethylene also requires a single model to describe a broader class of molecules, in-

cluding large amplitude rotation about a double bond. The improvement in performance seen

for the combined dataset suggests that the benefits accruing from training on more diverse data

overrides the challenges associated with using a single model to describe a more diverse class of

molecules. This is a promising result with regards to the ability of the approach explored here to

develop models that are applicable to a diverse range of molecules.
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Train Validation Propane t-Butane Propylene
Context npar Etot Eorb Etot Eorb Etot Eorb Etot Eorb Etot Eorb

Initial 21.47 4.44 19.21 4.43 26.68 5.38 32.69 5.31 20.03 2.78

2elec

c0 75 6.83 0.29 6.65 0.30 9.46 0.57 10.36 0.55 5.08 0.24
c1 150 3.78 0.18 4.05 0.18 4.42 0.32 7.50 0.31 524.89 1.78
c2 224 3.98 0.18 4.03 0.18 4.38 0.32 7.44 0.31 580.27 1.94
c3 298 3.39 0.18 3.83 0.18 3.95 0.30 751.20 1.82 627.40 2.03

σπ-2elec

c0 83 6.32 0.29 6.49 0.29 8.18 0.53 10.93 0.49 6.69 0.27
c1 166 3.78 0.18 4.01 0.18 5.14 0.31 1105.67 1.41 851.01 1.60
c3 248 3.36 0.17 3.82 0.19 4.82 0.29 4234.52 4.28 1743.58 4.06
c3 330 3.08 0.17 3.83 0.18 4.82 0.31 4531.66 4.79 2109.05 4.36

JK

c0 108 7.39 0.37 7.64 0.33 10.38 0.39 15.66 0.50 8.30 0.27
c1 216 5.05 0.31 5.45 0.31 9.18 0.38 14.39 0.47 6.71 0.22
c3 324 3.78 0.25 4.37 0.27 5.71 0.32 9.18 0.44 5.60 0.28
c3 432 3.70 0.24 4.05 0.25 5.67 0.31 9.19 0.42 5.72 0.28

σπ-JK

c0 125 7.99 0.27 8.45 0.28 12.92 0.36 17.86 0.48 11.85 0.22
c1 250 3.90 0.24 4.56 0.25 6.42 0.37 11.84 0.42 7.39 0.20
c3 374 3.52 0.23 4.26 0.24 5.54 0.36 11.39 0.40 6.28 0.22
c3 498 3.51 0.22 4.23 0.24 5.49 0.36 11.40 0.40 6.25 0.21

Table 5.5: RMS errors for models trained on the combined dataset with inclusion of decomposed
energies. Conventions are as in Table 5.4.

A third general trend is that addition of decomposed energies does little to improve model

performance and often substantially degrades performance. The initial disagreement between

the LL and HL models is 5 to 20 times larger for the individual energy components than for the

total energy. This indicates a large cancellation of errors occurs as the expectation values of the

individual operators are summed to give the total energy. The weight of decomposed energies in

Eq. 5.5 is set to 1/30th that of Etot. With this value, the model performance on Etot of the training

data is degraded by less than 20%. The question is then the degree to which inclusion of this

substantial amount of additional data (Table 5.2) impacts transfer to other molecules. For the

ethane dataset, comparison of Figs. 5.2 and 5.3 shows little benefit from including decomposed

energies. In some cases, such as for the 2elec policy without context, inclusion of decomposed

energies leads to instabilities in the resulting model. The cases where including decomposed en-

ergies improves transfer are for the σπ policies. Similar results are seen for the combined dataset

in Figs. 5.4 and 5.5 where again, inclusion of decomposed energies improves transfer primarily

for the σπ policies. However, the best performing models are those with the 2elec and JK poli-
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cies, for which inclusion of decomposed energies either does little to improve or substantially

lowers transfer. This can be rationalized in terms of the larger number of parameters present in

the σπ policies (Table 5.4). Inclusion of decomposed energies is helpful for specifying these

parameters, however, better performance is obtained by using a policy with fewer parameters.

The best performing model is that obtained from the 2elec policy trained on the combined

dataset without inclusion of decomposed energies. Fig. 5.6 shows the distribution of errors in

Etot for the training and test datasets. The distributions show that the pLL model has low sys-

tematic error such that the RMS errors reflect primarily the width of the distribution. Outliers

are also present for both the initial LL model and the trained pLL models. Removal of these

outliers would lower the reported RMS errors by approximately 0.3 to 0.5 kcal mol−1, for the

well-performing models.

Dataset Weight Train Validation Propane tButane propylene
(kcal mol−1)−1 Etot Echg Eorb Etot Echg Eorb Etot Echg Eorb Etot Echg Eorb Etot Echg Eorb

ethane

0.016 2.55 4.15 0.18 2.57 4.14 0.23 4.31 5.90 0.27 8.72 7.32 0.37 - - -
0.16 2.42 3.98 0.18 2.48 3.98 0.23 4.32 5.74 0.26 8.58 7.13 0.35 - - -
0.20 2.19 3.50 0.16 2.24 3.49 0.20 3.99 5.06 0.22 7.58 6.33 0.30 - - -
0.27 2.53 3.31 0.16 2.51 3.31 0.20 4.05 4.74 0.22 7.45 5.98 0.30 - - -
0.40 2.71 3.09 0.17 2.93 3.10 0.19 4.18 4.32 0.25 7.22 5.51 0.33 - - -
0.80 2.81 2.98 0.20 3.40 3.01 0.22 4.86 4.07 0.29 7.02 5.17 0.36 - - -

combined

0.016 3.00 4.27 0.14 3.52 4.51 0.17 3.84 4.86 0.35 7.18 6.11 0.66 3.91 5.46 0.26
0.16 3.09 4.25 0.15 3.65 4.46 0.17 3.92 4.80 0.44 7.36 6.03 0.76 4.15 5.40 0.31
0.20 3.78 3.53 0.15 4.14 3.72 0.15 5.15 4.57 0.45 10.20 5.83 0.88 5.43 4.93 0.34
0.27 4.00 3.38 0.17 4.45 3.56 0.18 5.49 4.57 0.51 11.59 5.89 1.17 22.60 5.11 0.56
0.40 3.99 3.36 0.16 4.47 3.54 0.18 5.59 4.57 0.52 11.88 5.91 1.19 24.84 5.11 0.58
0.80 4.00 3.28 0.17 4.53 3.46 0.19 6.09 4.59 0.57 13.99 6.02 1.39 89.12 5.51 1.04

Table 5.6: Effects of increasing the weighting of Echg in the objective of Eq. 5.5, for pLL models
using the 2elec policy with full context trained without inclusion of decomposed energies.

The effects of increasing the weighting of Echg in the objective of Eq. 5.5 is examined in

Table 5.6, for the best performing model. For training on the combined dataset, increasing the

weight by an order of magnitude from the default value of 0.016 (kcal mol−1)−1 leads to an

improved description of the charge distribution, as measured by Echg, at the expense of Etot. Ac-

cording to the arguments accompanying Eq. 1.3, an improved description of the charge distribu-

tion should lead to improvements in the longer-range interactions. However, the performance of

the model on the larger test molecules degrades with increased weighting of Echg. This suggests
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the longer-range interactions are not the primary source of error in those systems. A somewhat

different behavior is observed for the smaller ethane dataset. Here, as the the weighting of Echg

is increased, the training error in Etot first decreases and then increases. This suggests that ad-

ditional information regarding interaction of the charge density with the external charges aids

the training process at intermediate weights and, only at large weights, does improved perfor-

mance on Echg come at the expense of degraded performance on Etot. Similar behavior is seen

for the validation dataset, which includes different geometries of the training molecules. For the

larger test molecules, increasing the weight of Echg improves the performance on Etot. These

observations can be rationalized by viewing the interaction with external charges as simply ad-

ditional data. For the smaller ethane dataset, this additional data aids the training. For the larger

combined dataset, placing increased weight on this additional data degrades performance.

5.7 Discussion

The goal of this work is to develop flexible and systematically-improvable means to take ad-

vantage of molecular similarity in quantum chemical computations. The approach explored here

embeds parameters in a LL ab initio Hamiltonian and adjusts these to obtain agreement with pre-

dictions of a HL ab initio Hamiltonian. This approach bridges between the flexible models of ma-

chine learning, such as neural nets, and the model Hamiltonians of SEQC. Model forms based on

quantum chemical Hamiltonians may have advantages that stem from being more closely related

to chemical phenomena than generic forms such as neural nets. For example, models trained on

small molecules may incorporate sufficient information regarding molecular fragments as to be

applicable to larger systems. Here, models trained on ethane and ethylene transfer reasonably

well to propane, propylene and butane. In addition, models trained on ethane and ethylene per-

form better than models trained on ethane alone. This indicates that the benefits gained from

including the additional ethylene data in the training override the challenges associated with

using a single model to describe a more diverse class of molecules.
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The general approach of embedding parameters in a LL ab initio Hamiltonian provides a

flexible approach to model construction. Considerable flexibility may stem from using different

LL Hamiltonians. However, the current work considers only different schemes, or policies, for

embedding scaling factors in a minimal basis ab initio Hamiltonian. The policies differ along

two dimensions. One dimension is whether different scaling factors are used for σ versus π

interactions between p orbitals, indicated as σπ policies. For the datasets considered here, better

performance is obtained when σ versus π interactions were not treated separately. The other

dimension along which the policies differ is whether scaling factors were applied directly to the

two-electron matrix elements, 2elec, or to the matrix elements of the J and K operators in the

Fock matrix, JK. The 2elec policy led to somewhat better performance than the JK policy. That

the best performing policy, 2elec, is the policy with the fewest parameters may indicate that the

parameters in the other policies are underdetermined (Table 5.4). If this is the case, the other

policies may perform better on datasets involving larger classes of molecules.

Another means through which the model is made flexible and improvable is by making the

scaling factors functions of context variables that capture the environment of the molecular frag-

ment. Here, the model is first trained with no context dependence. A first level of context is

added by making the scaling factors linear functions of bond lengths. This leads to substan-

tial performance enhancements. Two additional levels of context are added that relate to the

electronic structure, via the charge and bond order predicted by the unparametrized LL model.

Depending on the policy and training dataset, these additional levels can lead to additional small

improvements. Context variables are a means to add considerable flexibility to the model, but

taking better advantage of this flexibility may require discovery of variables that better describe

the molecular context.

Extending the types of data used to train the model is a potential means to improve model per-

formance. One source of additional data is the interaction with external charges. This provides

information on the electron density that is comparable across LL and HL models. Inclusion of

this additional data leads to small improvements for the ethane dataset but not for the combined
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dataset. Another source of additional data is decomposition of the energy by operator. Inclusion

of such data improves performance for σπ policies in some cases, but tends to degrade perfor-

mance for the other policies. This is consistent with the above conclusion that the larger number

of parameters in the σπ policies leads to an underdetermined model. The improvement in the

σπ policies resulting from inclusion of decomposed energies is, however, not sufficient to make

them competitive with the other policies. Decomposition of the energy by operator is therefore

not found to lead to benefits in model training.

Decomposition of the energy by operator has the advantage of being uniquely defined, such

that it can be applied unambiguously in both the LL and HL models. Decomposition of the

energy by molecular fragment may provide information more relevant to the training, since the

embedded parameters are associated with local interactions on and between bonded atoms. How-

ever, such decompositions are not unique and require division of the electron density in a manner

that is compatible across the LL and HL models. [81, 113]

A means through which future work may increase the flexibility of the pLL models is by

relaxing some constraints present in the current approach to applying scaling factors. In particu-

lar, the p orbitals on an atom are currently treated as equivalent such that, for example, a single

scaling factor is used for the p sub-block of the kinetic energy operator on a heavy atom. When

the Quambo method is used to transform the high-level electron densities to a minimal basis

form, the resulting p orbitals do not retain this equivalency. [81] The quambo orbitals are well

localized on individual sites, this may allow the energies to be decomposed into atom and bond

contributions. This would substantially increase the amount of data used to train the model, and

also bring in more detailed information on the nature of the fragments

Addition of parametrized core-core potentials is an additional avenue through which the

model can be made more flexible. The current pLL models do not include such terms because

the core electrons are included explicitly using basis functions that are identical to those in the

HL model. In SEQC and DFTB, core-core terms substantially enhance the accuracy. A pos-

sible approach is to follow the above training of the pLL model with an additional stage that
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trains only core-core terms to reproduce HL molecular forces. This would be analogous to the

DFTB approach, which first derives the electronic Hamiltonian and then fits the core-core po-

tentials. [43, 45, 46, 47] The distinction being that here both the electronic Hamiltonian and the

core-core potentials would be obtained empirically.

In the current work, the parameters in the pLL model were used only to compensate for

errors arising from the use of a minimal basis set in the LL model. The ability of this approach

to compensate for errors arising from the absence of electron correlation in a LL model is yet to

be explored. The ability of parametrized LL models to reduce errors in the original LL model by

over 75%, for molecules larger than those included in the training data, suggests this approach

has promise for using molecular similarity to reduce the computational cost of quantum chemical

computations.

The results in the previous chapter suggested that charge and bond order are useful context

variables. This may be because the data set studied in that chapter included molecules placed in

strongly perturbing electrostatic environments. Here, where weaker external environments are

employed, those context variables did not significantly improve performance. In future work, it

may be useful to explore alternative context variables, such as those related to local geometry,

e.g. bond angles.

For future work, it is also critical to test the resulting models on much larger molecules. This

is necessary to fully evaluate the potential of this approach to address challenging computational

problems. The results presented in this chapter lay the ground work for such studies and provide

initial results.
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Chapter 6

Accelerating Hartree Fock convergence

6.1 Introduction

Many computational methods in science and engineering use fixed-point iteration (xi+1 = f(xi)

for i = 0, 1, 2, . . .) to attempt to find fixed points of f , i.e., points at which f(x) = x. These

methods generate a trajectory of iterates, x0, x1, x2, . . ., that ideally converge to a fixed point x.

This chapter explores the application of imitation learning to fixed-point iteration to accelerate

convergence and improve stability. Imitation learning, also called learning from demonstration,

is designed to learn a policy that imitates an expert’s method of performing a target task: we

gather training data by posing task instances to the expert, and train a function approximator to

mimic the expert’s mapping from situations to actions.

The most straightforward way to apply imitation learning to fixed-point iteration would be to

treat our original update function as the expert: train a cheaper function approximator to imitate

the original, more expensive update. (There are two reasonable variants of this approach: in the

first we need only a trajectory from our original fixed-point iteration, and we train our learner

to produce the ith point on this trajectory at step i, no matter what the current point xi is. In

the second variant we need black-box access to the original update function f , and we train

our learner to produce f(xi) when the current point is xi.) [114] demonstrate that this type of
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imitation learning can be successful in calculating fixed points, specifically in the context of

belief propagation for computing marginals of a posterior distribution.

However, scientific and engineering applications often have two important differences from

typical uses of imitation learning, making the straightforward approach problematic. First, to

achieve a useful speedup, we do not need to completely eliminate calls to the original update

function; it is enough to reduce their frequency. Second, considerable effort has often gone

into developing and fine-tuning the original update function; simply replacing it with a naive

function approximator would throw away much of this effort. In particular, the original update

function often encodes physical constraints and intuitions that would be difficult to enforce with

a naive function approximator; dropping these constraints and intuitions would lead to solutions

that are not acceptable to domain experts, even if we were able to maintain or improve overall

approximation error.

So instead of completely replacing the original update function, we propose to train our imi-

tation learner to skip some of the steps from our original sequence of iterates: given the output of

the update function at steps 1 . . . t, the learner tries to predict a good input for the update function

at step t+ ∆. By doing so, we replace two or more calls to the expensive update function with a

single call, saving computation; but we still only task our learner with the easier job of produc-

ing a good input to the update function instead of mimicking its output. The difference is that,

unlike the output, the input need not respect physical constraints or intuitions: we assume that

the original update function itself is responsible for enforcing these, and is capable of repairing

small violations.

As a test case for our methodology, we accelerate the Hartree-Fock method from computa-

tional quantum chemistry. Hartree-Fock is a fixed-point algorithm that approximates the elec-

tronic structure and energy of molecules. It is a specific instance of a broader class of mean-

field-theory approaches to many-body problems. In such mean-field theories, the effect of all

individuals on any given individual is approximated by a single averaged effect, thus reducing a

many-body problem to a one-body problem. In quantum chemistry, the mean field arises from
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the averaged charge distribution of all electrons, as described by the electron density, ρ(r). The

Hartree-Fock iterations thereby generate a sequence of electron densities that ideally converge

to a fixed point. Quantum chemical methods that go beyond mean-field theory typically begin

with the results of a Hartree-Fock calculation, making the Hartree-Fock algorithm a pervasive

component of quantum chemistry [115]. Portions of this chapter has been published. [116]

6.2 Background

6.2.1 Hartree-Fock

The core problem of quantum chemistry is to compute the distribution of electrons in a molecule

given the positions of its nuclei. The Hartree-Fock method efficiently approximates this distri-

bution. From a computational standpoint, its relevant properties are:

• It is a fixed-point algorithm, whose iterates are single-electron density functions ρ(r), rep-

resented as symmetric matrices, ρ, using a fixed set of basis functions {χi(r)}Nbasis
i=1 .

• The basis set size Nbasis is typically at least linear in the number of nuclei in the molecule

we are considering.

• Each iteration of Hartree-Fock is expensive: among other operations, we must iterate over

all 4-tuples of basis functions to construct our mean-field approximation (nominally tak-

ing O(N4
basis) time, although scalings closer to O(N3

basis) are routinely achieved by taking

advantage of sparsity [115]).

Hartree-Fock is shown as Algorithm 1. The lines inside the while loop constitute the fixed point

update, mapping ρi to ρi+1. A number of extensions to the base Hartree-Fock method have

been proposed; most relevant to the current study is an approach called Direct Inversion in the

Iterative Subspace, or DIIS [82]. In DIIS, we no longer take the output of iteration t directly

as the input to iteration t + 1. Instead, at the beginning of iteration t, we build an input density

matrix ρ′t as a linear combination of the past several output density matrices ρt, ρt−1, ρt−2, . . .,
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and use ρ′t to calculate the Fock operator F̂ in the first line of the while loop. The coefficients

of the linear combination are chosen by minimizing some measure of the error of the resulting

iterates. Various methods have been used to define the error measure and to find the weights

that minimize it [83, 117, 118]. However, identifying weights that lead to the fastest and most

stable convergence remains an open question [85, 119]. The relevance of DIIS is that its overall

Data: Coordinates of atomic nuclei; basis set χi; number of electrons N ; initial density
matrix ρ0; termination criterion δ > 0

Result: Density matrix with approximately-minimum energy
Calculate overlap matrix: Sij ← 〈χi, χj〉
Initialize t← 0
while t = 0 or |Et − Et−1| > δ do

Calculate the Fock matrix F ← F (ρt)
Solve generalized eigenproblem Fc = εSc for eigenpairs ca, εa
Build matrix C: stack eigenvectors ca side by side, two copies of each, starting from
lowest energy εa, until we have added N columns
Update density matrix ρt+1 = CC>

Update energy Et+1 ← sum of εa for columns of C
t← t+ 1

end
Algorithm 1: Hartree-Fock

form is the same as that of our proposed method: we train a function approximator (in this case

linear regression) to produce a good input to our original fixed-point update step (in this case the

Hartree-Fock update). In contrast to existing DIIS methods, however, we view the problem of

training our function approximator as one of imitation learning: we explicitly take into account

the effect of our learned weights, not just on the immediate error, but on the overall degree to

which the fixed-point iteration tracks the behavior of our desired fixed-point iteration. By so

doing, we hope to achieve faster and more stable convergence than existing methods.

6.2.2 Imitation learning

In imitation learning, we wish to discover how to solve a sequential decision problem by using

expert demonstrations. We are given access to the expert’s policy π∗, which is a (possibly ran-
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domized) mapping from states of the world s to actions a = π∗(s). And, we are given access to a

world model M : for any state s and action a, M is a (possibly randomized) mapping to the next

state s′ = M(s, a). Using the policy and the world model we can sample training trajectories:

for each trajectory, we start in a designated start state s0 = start, execute action a0 = π∗(s0),

transition to state s1 = M(s0, a0), and repeat for T steps. We can then use these trajectories to

train a predictor that, given the current state, predicts the expert’s action. The key difficulty in

imitation learning is that prediction errors early in a trajectory can cause us to deviate from the

expert’s distribution over states; so, we can easily drift into areas of the state space where we

have little or no training data, causing a growing cascade of errors.

In our experiments, we use the DAgger algorithm for imitation learning [86]. DAgger (Algo-

rithm 2) avoids the above difficulty by using its current hypothesized policy at each iteration to

gather additional training trajectories, so that it gains experience on how to correct its own errors.

Data: Policy class Π, expert’s policy π∗, horizon T , world model M
Result: Best π̂j on validation
Initialize D ← ∅
Initialize π̂1 to any policy in Π
for j=1 to N do

Let πj = βjπ∗ + (1− βj)π̂j
Sample a trajectory s0, s1, . . . , sT using πj and M
Construct dataset Dj = {(st, π∗(st))} of visited states and their expert actions
Aggregate datasets: D ← D ∪Dj

Train policy π̂j+1 by supervised learning on D
end

Algorithm 2: DAgger

6.3 Learning the Policy

To apply imitation learning methods like DAgger to speed up fixed-point iterations like Hartree-

Fock, we need to specify three things: the world model M , the policy class Π, and the expert

policy π∗. For our target problem of accelerating fixed-point updates, the world model is simple:
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Table 6.1: Example: applying DAgger on expert demonstrations with step size = 2

Hartree-Fock iterations (with step size = 2)

DAgger

iterations

iter iter 1 iter 2 iter 3 . . . iter x = n
2

1
Objective (ρ0)→ ρ2 (ρ0, ρ2)→ ρ4 (ρ0, ρ2, ρ4)→ ρ6 . . . (ρ2i)

x−1
i=0 → ρn

Result (ρ0)→ ρ′2 (ρ0, ρ2)→ ρ′4 (ρ0, ρ2, ρ4)→ ρ′6 . . . (ρ2i)
x−1
i=0 → ρ′n

2
New objective (ρ0, ρ

′
2)→ ρ4 (ρ0, ρ2, ρ

′
4)→ ρ6 . . . ((ρ2i)

x−2
i=0 , ρ

′
2(x−1))→ ρn

Result (ρ0, ρ
′
2)→ ρ′′4 (ρ0, ρ2, ρ

′
4)→ ρ′′6 . . . ((ρ2i)

x−2
i=0 , ρ

′
2(x−1))→ ρ′′n

3
New objective (ρ0, ρ

′
2, ρ
′′
4)→ ρ6 . . . ((ρ2i)

x−3
i=0 , (ρ

[i−(x−3)]
2i )x−1i=x−2)→ ρn

Result (ρ0, ρ
′
2, ρ
′′
4)→ ρ′′′6 . . . ((ρ2i)

n−3
i=0 , (ρ

[i−(x−3)]
2i )x−1i=x−2)→ ρ′′′n

...
...

. . .
...

x=n
2

New objective (ρ
[i]
2i)

x−1
i=0 → ρn

Result (ρ
[i]
2i)

x−1
i=0 → ρ

[x]
n

our state is the history of iterates (e.g., density matrices) we have visited so far, and our action is

to append another iterate to this history.

We have already mentioned our policy class: at each iteration i of our fixed-point calcula-

tion, we apply a function approximator with parameter vector c(i) to the history of past iterates,

and then we pass the output of the function approximator into the original fixed-point update

(e.g., the base Hartree-Fock update). In our experiments, the function approximator is a linear

combination: c(i) is a vector of weights on previous density matrices.

Finally, there are two reasonable choices for an expert policy. In both cases we pick a step

size ∆; recall that the goal is to replace ∆ calls to the original update function with just a single

call.

The simpler choice of expert policy is to work from one or more expert demonstrations—

in our case, each demonstration is a sequence of density matrices ρ0, ρ1, ρ2, . . .. At step i we

train our function approximator to predict ρi+∆ of the expert, no matter what the current iterate

is. In addition to simplicity, this choice of expert has the advantage that we can gather expert

demonstrations however we like: we don’t have to be able to make calls to the expert at training

time. We use this choice of expert policy in our experiments below.

The second choice of expert policy is to use ∆ calls to our original update function f : e.g.,
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if the current iterate is ρ and ∆ = 2, then the expert predicts that we should move to f(f(ρ)).

This choice of expert has the possible advantage that it could adapt better to mistakes by the

learner. However, in our application it is substantially more expensive, since it requires calling

the update function repeatedly during training; so, we defer experiments with this expert policy

to future work.

We introduce the notation (ρi, ρj, ....)→ ρk to represent: (i) creating a linear combination of

the density matrices ρi, ρj, .... and (ii) carrying out one iteration of the Hartree-Fock algorithm to

generate the next iterate ρk. We use a different set of coefficients for each step of the trajectory;

write ĉi for the coefficients at step i. The training data is a set of molecular examples, and we train

the coefficients to minimize a regularized sum of squared errors over these examples, subject to

some constraints (details in Section 6.4).

The training process is visualized in Table 6.1, in which Hartree-Fock iterations are shown

as columns and Dagger iterations are shown as rows. We begin by training a policy for the

first iteration of Hartree-Fock. In this case DAgger has only one iteration, in which a policy

is trained on the objective (ρ0) → ρ2. The learned policy uses the coefficients ĉ[1]
1 , where the

superscript indicates DAgger iteration and the subscript indicates Hartree-Fock iteration. The

density matrices generated from this learned policy are referred to as ρ′
2, where the number of

primes indicates the DAgger iteration.

The training process then moves onto the second Hartree-Fock iteration, which has two DAg-

ger iterations. In the first DAgger iteration, a policy is trained on (ρ0, ρ2) → ρ4. The learned

policy uses coefficients ĉ[1]
2 and generates induced states ρ′

4. The second DAgger iteration uses an

objective, symbolized (ρ0, ρ
′
2)→ ρ4, that includes states, ρ′

2, induced from the learned policy of

the previous Hartree-Fock iteration. For each molecular example, the objective selects between

the expert density, ρ2, and the induced one, ρ′
2, with probability β2. (βj of Algorithm 2 is set to

0.5j−1: sampling of expert states decreases with DAgger iteration.) The resulting learned policy

uses ĉ[2]
2 and generates induced states, ρ′′

4 . At this point, there are no additional induced states

to include in the training and so the DAgger iteration terminates, leading to the upper triangular
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structure of Table 6.1.

In the third Hartree-Fock iteration, the DAgger iterations train objectives (ρ0, ρ2, ρ4) → ρ6,

(ρ0, ρ2, ρ
′
4) → ρ6, and (ρ0, ρ

′
2, ρ

′′
4) → ρ6, respectively, such that each DAgger iteration samples

induced states earlier in the trajectories.

6.4 Exprimental Design

The computational experiments use the approach of Section 6.3 to train a policy for accelerating

Hartree-Fock and compare the results to some baseline approaches. Of particular interest is the

degree to which a policy trained on one class of molecules can transfer to a different class of

molecules.

CH2
C

C
CH

CH2

R

R

R

R R

(a) Pent-2-ene

CH
CH2

CH

CH2

CH

R

(b) Cyclo-Pentene

CH3
C

C
CH

CH2

CH2

FH

H
CH2

CH2R

(c) 4-fluoromethyl-2-heptene

Figure 6.1: The chemical structure of molecules in the datasets, R = H, F, OH or NH2

We generated the following three data sets, with the first being used for training. Each data

set consists of a set of molecules, as defined by the bonding pattern between the atoms, and

a set of distinct geometries of these molecules, as defined by distortions of the structure away

from the equilibrium geometry. The geometric distortions are generated using a random uniform

distribution of ±0.5Å for bond lengths and ±10o for bond angles. This approach of uniform

sampling generates highly distorted structures. To prevent inclusion of structures that are of

little interest in chemical applications, structures are rejected if there are contacts closer than 3Å

between non-bonded atoms. In addition, each molecular configuration is placed in 4 different

electrical field environments (1 with no field + 3 different fields for X, Y and Z directions).

pent2ene 15 unique molecules corresponding to single substition of pent-2-ene: we place a
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single substituent at one of the positions indicated by R in Figure 6.1a, with all other R’s

being hydrogen (-H). The substituents are fluorine (-F), hydroxyl (-OH) and amine (-NH2).

The training set includes, for each molecule, the equilibrium geometry and three distorted

geometries. Distortion includes a random free rotation about the leftmost carbon-carbon

single bond of Figure 6.1a.

cycloPentene Includes cyclo-pentene and its three singly-substituted analogues (Figure 6.1b),

each in the equilibrium geometry and 4 distorted geometries.

fluoroMethylHeptene Includes the three singly-substituted species of 4-fluoromethyl-2-heptene

(Figure 6.1c), each in its equilibrium geometry and 7 distorted geometries. Distortion in-

cludes a random free rotation about the leftmost carbon-carbon single bond of Figure 6.1c.

For each molecular instance, we use a heuristic approach to generate a high-quality expert

demonstration. We start from a steady-state density matrix, ρn, obtained from a standard fixed-

point algorithm [82]. We first train a policy that takes the initial density matrix to the final

density matrix directly, (ρ0) → ρn, and use this policy to generate ρ1. We next train a policy on

(ρ0, ρ1) → ρn and use it to generate ρ2, and so on. Expert demonstration is constructed from

using the densities from DIIS [82]. To further expand the training data, expert demonstrations

are constructed starting from two starting points, ρ0 = 0 and ρ0 = I. In our experiments we

compare the learned DAgger policy both to this “IL-final” policy and to the “DIIS” policy.

In training a policy to the objective, (ρa, ρb, ....) → ρc, the error is defined as the sum of

the distance of the density matrix, ‖ρ − ρc‖, and the molecular energy, |E(ρ) − E(ρc)| in

Hartrees, from the target. We optimize the policy coefficients using the trust-region reflective

algorithm [108] as implemented within Matlab [109]. Since we are assuming only black-box ac-

cess to the expert (and since the Hartree-Fock update step contains a number of operations, such

as eigenvalue calculations, that are difficult to differentiate analytically), we computed gradients

for the optimizer using finite differences.

To help ensure the stability of our learned policy, we constrain the coefficients ci to lie in
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[0, 1]. As in DIIS methods, it is likely desirable to have the coefficients sum to one [84], which

we promote by adding regularizers to the objective, one for each step i of the Hartree-Fock

iteration:

R(i) = w(1>ĉ(i) − 1)2 (6.1)

where the weight w was empirically adjusted to a value of 30.

6.5 Results
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Figure 6.2: Average error in energy as a function of iteration tested on pent2ene test dataset

The error from “DAgger” and “IL-final” decreases more rapidly than the “DIIS” policy for

the initial 6 iterations in all cases. Looking at the pent2ene test dataset and cycloPentene dataset

(figure 6.2 and 6.3) “DAgger” performs better than “IL-final” by the 6th iteration. Testing on the

fluoroMethylHeptene dataset containing larger molecules (figure 6.4) “IL-final”has a lower error

throughout the iterations, however, “DAgger” is not far off.

These results demonstrate that imitation learning can accelerate fixed-point iteration in a

manner that generalizes to situations not included in the training data.
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Figure 6.3: Average error in energy as a function of iteration tested on cycloPentene dataset
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Figure 6.4: Average error in energy as a function of iteration tested on fluoroMethylHeptene
dataset

6.6 Conclusion

The work explores a new application of imitation learning: accelerating the fixed-point iterations

that are common in science and engineering. The mapping to imitation learning is quite general

in that it requires only black-box access to the update function from an existing fixed-point

algorithm. The intuition is simple: we accelerate convergence by attempting to skip ∆−1 out of

every ∆ calls to the original update function, replacing the skipped calls by a learned mapping.

The specific case considered here, the Hartree-Fock algorithm from quantum chemistry, allowed
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us to test the ability of policies trained on one situation (chemical system) to transfer to different

situations (chemical systems). Our results indicate successful transfer: imitation learning leads

to policies that transfer better between systems than competing approaches.

In future work, it may be useful to explore fragment based methods. In such an approach,

blocks of the density matrix corresponding to different molecular fragments could be updated

independently. This could improve transfer between molecules, because models trained on

molecules composed of a certain set of fragments may transfer well to other molecules com-

posed of those same fragments.

Another direction for future work is use of this approach in quantum chemical calculation of

the minimum-energy geometry of a molecule. In such geometry optimizations, SCF calculations

are run on the same molecule in a set of geometries that gradually converge to the minimum-

energy geometry. A model trained on the results from the initial SCF calculations may transfer

well to later SCF calculations.
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