
Carnegie Mellon University 
MELLON COLLEGE OF SCIENCE 

 
 

THESIS 
     

 
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 
 
  
 

DOCTOR OF PHILOSOPHY IN THE FIELD OF PHYSICS 
 

 
 
TITLE:  "Determination of an Energy Determination Algorithm and the Optimized 
Detector Design for an Ultrahigh-Energy Cosmic Neutrino Experiment” 
 

 
PRESENTED BY: Zhen Tang 
 
 
 
ACCEPTED BY THE DEPARTMENT OF PHYSICS 
 
 
James Russ        6/2/14 
JAMES RUSS, CHAIR PROFESSOR      DATE 

 
 

Stephen Garoff        6/2/14 
STEPHEN GAROFF, DEPT HEAD      DATE 
 
 
 
 
APPROVED BY THE COLLEGE COUNCIL 
 
 
          
FRED GILMAN, DEAN        DATE 
 





Development of an Energy Determination

Algorithm and the Optimized Detector Design

for an Ultrahigh-Energy Cosmic Neutrino

Experiment

by

Zhen Tang

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

at

Carnegie Mellon University

Department of Physics

Pittsburgh, Pennsylvania

Advised by Professor James S. Russ

May 29, 2014

2



Abstract

In this thesis, we discuss the optimization procedure for the TAUWER (TAU shoWER)

experiment, which is designed to detect showers generated by Earth-skimming neutrinos.

Monte Carlo Simulations are done through CORSIKA (COsmic Ray SImulations for KAs-

cade) software to provide us with detailed information about hit patterns on the detector

array from these showers. We use this to determine the trigger conditions, rates, and op-

timal detector layout. We also use machine learning classification methods to generate

classifiers to assign the energy scale for observed showers.
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Chapter 1

Introduction

1.1 Cosmic neutrinos

Experimental results from cosmic ray experiments as of now have covered energy region

of cosmic rays from below 109 eV to several 1020 eV as shown in Fig.1.1. This spectrum

can be described by a power law with two kinks. The first one is a “knee” at about 3 PeV

(1 PeV = 1015 eV), where the curve steepens from E−2.7 to E−3. And the second one is an

“ankle” at about 3 EeV (1 EeV = 1018 eV), where the curve starts to flatten. Although it

is well accepted that the cosmic rays below the knee are from galactic sources such as su-

pernova remnants[23], and cosmic rays above the ankle come from extra-galactic sources,

as indicated by the high level of isotropy[4], yet we have no clue about the origins of these

ultra-high-energy cosmic rays (UHECRs) above the knee, e.g., the locations and compo-

sitions of them. At the same time, according to the “GZK cutoff” effect[42], proposed

by Greisen, Zatsepin and Kuzmin, cosmic rays (protons or heavier nuclei) with energies

in excess of 40 EeV cannot travel for longer than 50 Mpc, due to the interaction with the

cosmic microwave background (CMB) radiation[30], which contradicts the previous ideas

that these UHECRs are from extra-galactic sources. The experimental evidence remains
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unclear both about the nature of UHECRs and their acceleration mechanism and source.

Relativistic shock acceleration is one possible acceleration mechanism for UHECRs. Pro-

tons can accumulate very high energy through the rebounding between plasma shock waves

over billions of years. Gamma-ray bursts (GRBs) and active galactic nuclei (AGN)[20] are

two possible ways to generate UHECRs by this mechanism. However, many theoretical

difficulties still remain unexplained and limited solid evidence has been found so far to

indicate a specific source. Hence new experiments should be designed and appropriate

probes need to be selected to provide us with information about these greatest mysteries

of modern physics[12][33], e.g., the mechanism of how cosmic rays can obtain such high

energies.

Figure 1.1: Cosmic ray energy spectra of various experiments[3]. Different experiments
provide similar spectrum for energies lower than the GZK limit, but large discrepancy exists
above the GZK limit
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Cosmic neutrinos have long been proposed as an ideal probe to explore the above questions

for several reasons. Firstly, they are charge neutral and hence they can travel in straight line

without being deflected by the magnetic fields. Secondly, they interact very weakly with

ambient matter and radiation and therefore can travel across cosmological distances to the

Earth[40]. As we will see in the following part, very close relations are exist beween

UHECRs and these neutrinos. Great progress can be made in understanding the origin of

UHECR if we can obtain the information like the energy spectrum, arrival direction and

flavor ratios of the ultra-high-energy (UHE) cosmic neutrinos[27].

The cosmic neutrino spectrum, from one model of UHECR production, generated by pro-

ton sources undergoing relativistic shock acceleration up to a maximum energy of 200

EeV, is shown in Fig. 1.2[34], with source power spectrum α = 2.4, where α is de-

fined as Flux∝ E−α. UHE protons can interact through photopion production via ∆ res-

onance: pγ → ∆(1232) → π+n. Both of the secondary particles can decay to neutri-

nos: pion decay π+ → µ+νµ → e+νeν̄µνµ and neutron decay n → peν̄e. The neutrinos

from pion decay inherit on average 0.05Ep while neutrinos from neutron decay acquire

only 3 × 10−4Ep[34]. Based on this fact we can derive that [E2
νdΦν/dE]CMB,n−decay

Eν=6×1015eV =

2× 10−3[E2
νdΦν/dE]CMB,π−decay

Eν=1018eV , which is in accordance with the ν (CMB only) curve in

Fig. 1.2. The ∆ resonance production peaks when m2
∆ = m2

p + 2EpEγ(1− cosθ), where

θ is the angle between the proton and γ momenta in the lab frame, which means Ep(∆) '

1.6×1017/(Eγ/eV ). When the protons propagate through CMB whereEγ ∼ 0.7×10−3eV ,

we can have the proton energy at the ∆ resonance peak Ep(∆) ' 2.3× 1020eV , which re-

veals the fact that the interaction between protons with energies in excess of 6 × 1019 eV

and CMB is the main cause of EeV neutrino spectrum. Experimental data from Auger[13]

provides us the upper limit of diffuse neutrino flux at EeV energies for all three flavors

E2
νdΦν/dE < 3× 10−7GeV cm−2sr−1s−1. The measurements of the diffuse photon back-

ground by Fermi LAT experiments lower the amount of low energy photons in CMB and
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hence further lower the upper limit to E2
νdΦν/dE < 5 × 10−8GeV cm−2s−1sr−1. With

the relationship equation between flux of pion decay and neutron decay we have just de-

rived, we can have the upper bound flux of PeV neutrinos from CMB neutron decay as

10−10GeV cm−2s−1sr−1. This is too small to be the major source of PeV neutrinos, based

on the observation of two PeV neutrinos by IceCube[1], as shown in Fig. 1.2. Since the

UV/optical/IR radiation backgrounds will provide much higher energy photons compared

to CMB, the value of corresponding Ep(∆) will be much lower than in the CMB case,

based on the relation Ep(∆) ' 1.6 × 1017/(Eγ/eV ). Numerical simulations show that

interaction between UV/optical/IR photons and protons with energy below 1018 eV is the

main cause of the PeV scale neutrino flux. The experiment result from IceCube indicates

this flux for all neutrino flavors is 3.6× 10−8GeV cm−2sr−1s−1. However, due to the wide

∆ resonance peak, wide thermal spectrum of CMB photons and redshifts, there are still

considerable neutrino flux expected between the two peaks (∼ PeV and EeV), as seen in

Fig. 1.2, looking at the neutrino flux curve between 1015eV ∼ 1018eV .

The situation will change if the sources are nuclei instead of protons. The cosmic ray

spectrum with respect to Fe sources is shown in Fig. 1.3, where the maximum energy

of Fe is 5200 EeV with source spectrum α = 2.0. Photopion processes between nuclei

and CMB photons will be suppressed since this process will require energies of nuclei

above ∼ AEGZK , where A is the mass number of nucleus, which leads to a negligi-

ble diffuse nuclear flux. Yet in an UV/optical/IR background, photopion processes can

produce PeV neutrinos with nuclei energies ∼ 20AEν . But this energy is much higher

than the scenario for protons, and hence makes the protons the dominant source for PeV

neutrino peak. On the other hand, the photodisintegration process will also impact the

neutrino spectrum with nuclear sources. Only the CMB mode will be considered since

neutrinos produced in UV/optical/IR radiation backgrounds via this process will have en-

ergies below 1014 eV. In photodisintegration, because Z ∼ A/2 for typical cosmic nu-
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clei, about half of the secondary nucleons are neutrons. Hence the upper limit of PeV

neutrino flux from secondary neutron decay can be derived as [EνdΦν/dE]CMB,n−dec
Eν=1015eV '

2× 10−4[E2dΦCR/dE]E=2.5×1018eV < 10−11GeV cm−2s−1sr−1, while the upper limit flux

with proton sources is about 10−9GeV cm−2s−1sr−1. Consequently, the neutrino flux with

nuclear sources is highly suppressed compared to that with proton sources.

Figure 1.2: Cosmic neutrino spectrum with proton sources. The blue curve with label
“neutrinos” is the result of Monte Carlo simulation as described in the text. The estimations
of neutrino flux from IceCube[2], Auger[5] and Anita[22] are also shown in this plot. The
estimation from IceCube is based on the two PeV neutrino events they observed

Both two scenarios have the same initial ratio among three flavors as νe : νµ : ντ = 1 :

2 : 0. Due to oscillations with maximal mixing along cosmic distances[6], the final ratio of

neutrinos when they arriving the Earth will become νe : νµ : ντ = 1 : 1 : 1. Identification

of UHE ντ s will bring us pure information about the distribution and energy spectrum of

cosmic ray sources, since the atmospheric neutrino background does not extend into the

UHE regime.
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Figure 1.3: Cosmic neutrino spectrum with Fe sources

1.2 TAUWER physics

As we have discussed in the last section, understanding the shape and amplitude of neutrino

spectrum at ultra-high energy region can help us answer the most interesting questions in

astroparticle physics, such as the acceleration mechanism for UHECRs and the origin of the

highest energy objects in the universe. Several neutrino experiments are currently running,

e.g., IceCube, ANITA, ARIANNA, and ARA. IceCube is trying to detect the signals from

upward-moving neutrinos with near 180◦ zenith angle, which requires the neutrinos and

their interaction products to travel the whole earth. This requirement limits the upper bound

of the neutrino energy at 10 PeV. The ANITA experiment is using a ballon-borne radio

Cerenkov detector to detect the neutrino signals summed over all incident directions. It has

a lower bound for neutrino energy at 5 EeV. The subsequent ice cap experiments ARA[8]

and ARIANNA[10] at the South Pole, which are also pursuing the idea of radio Cerenkov
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detection, relying on long propagation distances for radio signals in ice to cover a very large

sensitive volume compared to IceCube or TAUWER. Their electronic sensitivity decreases

this lower bound to 1 EeV.

TAUWER is designed to detect hadronic air showers generated by Earth-skimming ντ at

the energy scale from 10 PeV to 200 PeV, which covers the energy regime between the

cutoff of IceCube sensitivity due to finite detection volume and the threshold for radio

Cerenkov detection in ARA37 or ARIANNA. If an Earth-skimming ντ interacts with the

rock via weak interaction charged current channel as shown in Eq. 1.1, a τ lepton will be

generated in the direction very close to its parent neutrino. This τ will inherit about 80%

of ντ energy and decay after it escape into the air, via all hadronic modes. The secondary

particles including pions and photons can develop into showers. Such showers will be the

targets we want to detect. More details about this process will be analyzed in Chapter 2.

ντN → τX (1.1)

Neutrinos at small zenith angle with the energy regime we are interested in will rarely

interact in the low-density material of the atmosphere and hence remain invisible to ground

detectors. Upward-moving neutrinos in the 10-200 PeV energy range with zenith angles

near 180◦cannot penetrate the whole Earth to be observed by, e.g., IceCube.

1.2.1 TAUWER detector station and array

Our proposed detector array consists of 1600 detector stations covering 2.5 km2, with the

distance between each two stations at 40 meters, as shown in the right part of Fig. 1.4. This

design is based on the detector optimization, to be described in Chapter 3. The whole array

will be put on a steep mountain slope with an inclined angle about 30◦ to the horizontal

plane, facing another large mountain on the opposite site. The purpose of the steep slope

7



is to provide elevation for rows of detector stations. The detector plane for each station

will be oriented approximately normal to the τ shower axis, in the range of 0◦ to 10◦ to the

horizontal plane, as shown in Fig. 1.5. The two mountains can suppress the background

signals from horizontal cosmic air showers, and the way we put these detectors can max-

imize the signals from the τ air showers, since the detector plane will be perpendicular

to the shower axis. Each detector station includes two 20×40 cm scintillators, parallel to

each other and separated by 1.6 meter as shown in the left part of Fig. 1.4. This design

can provide us information about time of flight (TOF), which can help to distinguish the

directions of the incident showers.

Figure 1.4: The left side shows the geometry of single TAUWER detector station and the
right side provides a view of whole array

Figure 1.5: Geometry requirements for detector array
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1.2.2 KIT test

A test has been done using the Kaskade EAS array at the Karlsruhe Institute of Technology

(KIT) for two years to show the response of the TAUWER detector stations to extensive air

showers (EAS) events, since this is one of the main sources of background. Eight stations

were used, with four at the corners of a square 20m and the others at the corners of a

square 40m. The detector was triggered if the signal was five times the mean noise level.

Triggered events were time-matched to EAS events detected in the full Kaskade array. This

experimental result shows that each TAUWER station will rarely have more than one hit

per EAS event, which matches the result from CORSIKA simulations for the vertical air

showers quite well. Meanwhile, as we will see more details in Chapter 3, the hit patterns

for the τ air showers we are trying to detect are quite different from that of EAS events.

For τ showers, the detector near the intersection point of shower axis and the inclined plane

where we put the detector array on will always have many hits. Therefore, the EAS events

can be effectively excluded as the background noise from the signals of target showers we

want to detect.

In this thesis, we will firstly describe the whole process about how an Earth-skimming

neutrino transfers to a detectable shower, and give the estimation of this process (Chapter

2). Then the simulation results using the shower simulation package CORSIKA will be

described and analyzed in Chapter 3. Based on the simulation results we predict the hit

pattern distribution for each shower. We use classification methods to generate energy

classifiers, which can be used to decide the energy scale for showers in data, based on

their hit patterns (Chapter 4). Meanwhile, we would also like to introduce some of the

key computing techniques we have used for our research, especially the experience about

supercomputing system (Chapter5). The future work and conclusions will be discussed at

the last two chapters.
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Chapter 2

Shower Evolution

Our goal is to detect earth-skimming neutrinos. Hence we would like to analyze the process

of τ neutrinos going through the shell of earth, interacting with the rock and generating a τ

lepton. If the τ lives long enough to escape from the Earth and decays via a hadronic decay

mode (64% probable), then the high energy decay particles will develop air showers in the

atmosphere. These showers will propagate along the τ direction and can be detected by our

detector array. Five of the most significant decay modes of τ lepton are listed as follows,

τ− → π− π0 ντ (25.52± 0.09%) (2.1)

τ− → π− ντ (10.83± 0.06%) (2.2)

τ− → π− π0 π0 ντ (9.30± 0.11%) (2.3)

τ− → π+ π− π− ντ (8.99± 0.06%) (2.4)

τ− → π+ π0 π− π− ντ (2.70± 0.08%) (2.5)

Our detector stations will primarily detect electrons and muons, which are the final long-

lived particles from the hadronic decay of τ lepton. Photons play a small role, as will

be described later. The number of detected particles depends on the initial energy of the
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shower. Hence we can neglect the difference between the decay modes and only focus on

the energy goes into each shower.

Meanwhile, two other neutrinos types, νe and νµ, can also interact with the Earth shell.

However, both electrons and muons generated via CC interactions cannot produce hadronic

air showers to be detected by the array. Hence we only consider the ντ case.

In this section, we will introduce models related to each step we just described. The prob-

abilities for neutrino’s charged-current interaction with the Earth shell and the decay of the

generated τ lepton will be estimated. By combining them we can derive the probabilities of

detecting showers generated from τ neutrinos with different energies and incident angles.

The simulation results from CORSIKA will also be displayed at the end of this section and

comparisons will be made between these results and our analysis.

2.1 Interaction of neutrinos in the Earth shell

2.1.1 Charged-current interaction of neutrino

For our project, we are interested in a ντ ’s interaction with a nucleus in the Earth shell

through the charged-current interaction, since we will need the produced τ lepton to gen-

erate a shower for detection. The charged-current interaction can be represented as,

ντN → τX (2.6)

For a neutrino energy between 10 PeV and 200 PeV, the standard model cross section for

a neutrino charged-current interaction with a nuclear is, according to CTEQ4-DIS[21] or
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Ref. [36].

σCC = 5.53× 10−36cm2(Eν/1GeV)0.363 (2.7)

The charged-current interaction length can be derived as,

Lint =
1

σCCNAρrock/A
(2.8)

where NA = 6.022 × 1023mol−1 is the Avogadro’s constant, ρrock = 2.65g/cm3 is the

density of the rock (the main material of earth shell), and A = 1g/mol is the molar mass

of nucleon. Because of the short range of the weak interaction, each nucleon in the target

molecule adds its cross section incoherently.

Then the interaction length can be expressed as,

Lint =
1

5.53× 10−36 × (Eν/1GeV)0.363 × 6.02× 1023 × 2.65
cm

= 7.524× 103 × (
1PeV

Eν
)0.363km (2.9)

From Eq. 2.9 we can see that the charged-current interaction length of τ neutrino is about

3262 km for 10 PeV and 1099 km for 200 PeV. Older other sources with different cross

section values, such as [16], agree with the energy dependence and are within a factor of

2±1 in total cross section.

The neutrino’s neutral-current interaction cross section is 2.4 smaller than that of charged-

current interaction, which means the interaction length of neutrino through neutral-current

channel is about 2.4 times greater than that of charged-current channel. Hence we can

conclude that with a very high probability there is no neutral-current interaction before the

charged-current interaction. Therefore, the neutrino will almost have the same energy as it

12



just enters the Earth shell when it interacts through a charged-current channel.

Assume the trajectory of a neutrino in the earth is shown in Fig. 2.1. Point A is the incident

point of ντ . At point C, the neutrino interacts with rock via charged-current channel and

generates a τ lepton. The τ keeps going without decaying until it get out of the Earth shell

through point B.

Figure 2.1: Trace of neutrino in the earth shell

We assume the distance between point A and point B is L, the distance between point C

and point B is x, then the distance between point A and point C is L-x. The probability of

ντ goes through point A to point C and decay at C can be shown as follows, where we use

dx to represent the short distance where the charged-current interaction happens.

Pint = e−(L−x)/Lint
dx

Lint
(2.10)
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Lepton inelasticity y is defined as follows,

y =
Eν − Ei

τ

Eν
(2.11)

where Eν is the energy of ντ before the interaction, Ei
τ is the energy of τ lepton when it is

generated.

Meanwhile, the moving direction of generated τ lepton generated will have very small

intersection angle between that of the ντ since the angle ∆θ ∝ ∆PT/Eτ and ∆PT is in the

order of W boson mass. Hence we consider they are travelling along the same direction.

< y >= 0.2 is the average inelasticity for the energy scale we are interested in according

to [16][19][21]. Hence we have,

Ei
τ = 0.8Eν (2.12)

2.1.2 Survival of τ lepton in the Earth shell

Now we need to consider the energy loss of τ lepton when it travels along point C to

point B. The generally used equation to describe the average energy loss of τ is shown as

follows[16][28],

<
dEτ
dx

>= −(α + βEτ )ρrock (2.13)

where α ' 2×10−3GeV cm2/g represents the ionization energy loss[37], and β represents

energy loss from Bremsstrahlung, pair production and photonuclear interaction. Within the

high energy scale from 107 GeV to 2 × 108 GeV where we are interested in, βEτ ' 6 ×

10−7Eτcm
2/g is much larger than α and hence the ionization energy loss can be neglected

compared to radiative energy loss.
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For analytical purposes, one approximation is made as follows:

<
dEτ
dx

>' dEτ
dx

(2.14)

This assumption is made because when radiation processes dominate the energy loss, the

energy loss distribution is nearly symmetric about its mean value, in contrast to the asym-

metric high-loss tail that characterizes ionization-dominated energy loss.

Therefore we have the energy loss formula for the τ as follows,

dEτ
dx
' −βρEτ (2.15)

where we use ρ to represent ρrock for notational simplicity.

The parameter β can depend on Eτ . For Ref. [16], three parameterizations were studied,

(1) Eτ = Ei
τe
−βρx, β = constant (2.16)

(2) Eτ =
Ei
τβτe

−βτρx

βτ + γτEi
τ (1− e−βτρx)

β = βτ + γτEτ (2.17)

(3) Eτ = exp
(
− β0

β1

(1− eβ1ρx) + ln(Ei
τ/E0)e−β1ρx

)
E0

β = β0 + β1ln(E/E0) (2.18)

where x is the distance the τ lepton travelled.

For solution (1), we have β = 0.85×10−6cm2/g. This solution is appropriate forEν = 1010

GeV but does not perform well for lower energies, hence we will not use it. For solution

(2), we have βτ = 0.71×10−6cm2/g and γτ = 0.35×10−18cm2/(g GeV )[9]. Solution (3)

is derived by adding a logarithmic energy dependence and we have β0 = 1.2×10−6cm2/g,

β1 = 1.6× 10−7cm2/g and E0 = 1010GeV [18].
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Monte Carlo simulation results show that the solution (3) fits best over our energy range of

interest, as indicated in Fig. 6 in [16]. Hence we will use solution (3) in the following part

of this section.

One problem we need to consider here is the role of energy loss in determining the maxi-

mum traveling distance of the τ lepton in rock, Xth. To detect the hadronic shower gener-

ated from the τ lepton, we have to impose a lower bound on the τ energy when the τ exits

from the Earth shell.

Based on the simulation results, we take Eth = 10 PeV. If the threshold energy is lower

than 10 PeV, very few tracks in the shower will be detected by our array. Thus lower energy

events are of no use for our analysis. Details will be described in the next Chapter.

From Eq. 2.18, we have,

Eτ (x) = exp
(
− β0

β1

(1− eβ1ρx) + ln(Ei
τ/E0)e−β1ρx

)
E0 (2.19)

which shows how the τ energy decreases when it travels. We define the maximum traveling

distance Xth as the distance the τ lepton has travelled before its energy drops below the

energy threshold Eth, which can be represented by the following equation,

Eth = Eτ (Xth) (2.20)

Combining Eq. 2.19 and Eq. 2.20 we can obtain the numerical solution of Xth by solving

the following equation,

Eth = exp
(
− β0

β1

(1− eβ1ρXth) + ln(Ei
τ/E0)e−β1ρXth

)
E0 (2.21)

If Xth is less than the distance between point C and point B, we can directly conclude that

the probability to detect the corresponding shower generated by this τ lepton is zero.
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Fig. 2.2 shows the relationship between the initial energy of τ lepton and its maximum

traveling distance in rock. Based on this plot, we would like to set the upper limit of x to be

50 km, which means that the neutrino must interact with the earth shell through charged-

current channel and turn out into a τ lepton within 50 km of the surface of the Earth.

Figure 2.2: The range of τ in the rock with respect to its initial energy. This range is defined
as the average distance that τ will travel before its kinetic energy has been reduced to the
threshold energy by the average energy loss

However, most τ leptons cannot survive for such a long distance because of the τ lifetime.

The τ decay length can be represented as follows,

Ld = γct0 ' 5× 10−8 Eτ
1GeV

km (2.22)

According to Eq. 2.22, we can see that for τ with energy 107 GeV, the decay length is

0.5km, and hence only when the neutrino interaction happens very close to the Earth’s

surface can the generated τ lepton survive into the air, or else the τ will decay into a
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shower and this shower will be absorbed immediately by the rock and cannot be detected

by our detector stations. For τ with larger energy such as 2× 108 GeV, the decay length is

about 10 km, and we can allow a much larger distance region for distance between point C

and point B in Fig. 2.1 compared to the low energy case.

The survival probability of the τ with respect to the distance it travelled can be expressed

as follows,

dPsurv
dx

= − Psurv
ct0Eτ/mτ

(2.23)

where t0 is the lifetime of τ lepton.

Since Eτ = Eτ (x), we can have the following equation,

dPsurv
Psurv

= − −dx
ct0Eτ (x)/mτ

= −f(x)dx

where f(x) ≡ 1

ct0Eτ (x)/mτ

(2.24)

From Eq. 2.24 we can derive the solution of survival probability as follows, Since Eτ =

Eτ (x), we can have the following equation,

Psurv = Nexp{−
∫ x

0

f(z)dz} (2.25)

where N is the normalization coefficient.

If the traveling distance of τ lepton is zero, then we have the survival probability of unity,
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which can be used to obtain N as follows,

Psurv|x=0 = 1

⇒ N = 1

⇒ Psurv = exp{−
∫ x

0

f(z)dz} = exp{−
∫ x

0

1

ct0Eτ (z)/mτ

dz}

where Eτ (z) = exp{−β0

β1

+
(β0

β1

+ ln(Ei
τ/E0)

)
e−β1ρz}E0 (2.26)

where t0 = 2.906×10−13 s is the mean lifetime of τ lepton, and mτ = 1776.82 MeV is the

mass of τ . Fig. 2.3 shows the survival probabilities of τ leptons with several typical initial

energies versus the distance they passed.

Figure 2.3: The survival probability of τ with initial energy from 10 to 200 PeV versus the
distance it passed

Combining Eq. 2.26 with Eq. 2.10 which represents the probability that ντ travels through

point A to point C and interacts with rock through charged-current channel at point C, we
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can have the final probability to have τ lepton escapes from the Earth,

Peject =

∫
PintPsurv

=

∫ L

0

dxe−(L−x)/Lint
1

Lint
exp{−

∫ x

0

1

ct0Eτ (z)/mτ

dz} (2.27)

Assume ∠ABD in Fig. 2.1 is θ, then the distance between neutrino incident point A and τ

escape point B is,

L = 2πRcos(π − θ) (2.28)

where R = 6371km is the radius of the Earth.

We calculate the escape probability here with the incident angle θ from 91 to 98 degree.

The result is listed in Table 2.1. The reason why the probabilities are so small is the term

dx/Lint. The interaction length of neutrino is greater than 1000 km for the energy scale we

are interested in while the effective integral path of dx is less than 50 km due to the short

decay length of τ lepton.

Table 2.1: Escape probability with respect to θ and ντ energy in units of 10−4

θ(degree) \ Energy (PeV) 10 20 50 100 200
91 1.2 2.8 8.5 18 35
92 1.1 2.6 7.5 15 29
93 1.0 2.4 6.7 13 23
94 0.97 2.2 5.9 11 19
95 0.91 2.0 5.2 10 16
96 0.85 1.8 4.6 8 13
97 0.79 1.7 4.1 7 10
98 0.74 1.5 3.6 6 9

The long neutrino interaction length and finite size of active detection volume combine to

make the detection probability per neutrino low in all astrophysical neutrino experiments,
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not just this one. The active volume for this proposal is several times larger than that for

IceCube, for example.

2.2 τ lepton in the air

If the τ lepton decays in the Earth’s shell, the secondary particles would be absorbed by

rock immediately and therefore cannot be detected by us. Therefore we require the τ

lepton to decay after it escapes into the air. We use CORSIKA to simulate the generation

of showers from τ leptons after they escape into the air with different energies from 10 to

200 PeV. As we show in Chapter 3, the τ has to decay far enough in front of the detector

array to allow a hadron shower to develop. This will reduce the probabilities in Table 2.1

somewhat, but not dramatically.
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Chapter 3

Detector Optimization and Simulation

Neutrino interactions are very rare and require a very high detection efficiency per event.

For hadronic air showers, the detection centers on the high density of upward-moving par-

ticles in a small region around the shower axis. EAS events develop from interactions in the

upper layers of the earth’s atmosphere. The showers develop at high altitudes, and shower

tracks that reach the earth’s surface are largely muons. The electromagnetic component has

ranged out due to ionization losses. The EAS events have low particle density and move

downward. The TAUWER detector array has to exploit those differences to be sensitive

to neutrino interaction events and insensitive to the much-more prevalent EAS background

rate in the 10-200 PeV range, which is about 105 times larger according to Fig.1.1 and

Fig.1.2.

In TAUWER the detection efficiency will be of order 100% if a τ shower core passes

close to several TAUWER detectors, so that one or more stations detects a large number

of particles within a 20ns time window. In this section we study shower development

characteristics in this energy range and determine the detector arrangement needed and the

shower development length L that will set up the conditions for 100% detection.

22



3.1 Simulation process

After the τ lepton escapes from the Earth, the simulation is started. The first step is to

have the τ decay. As we have already discussed at the beginning of chapter 2, there are

five major hadronic decay modes for high energy τ leptons. We will use the TAUOLA

package with a specific decay mode, shower distance and τ energy to generate the hadron

energies and angles in the τ rest frame, and then boost them to the lab frame. The generated

particles will include pions and photons with known energies and directions. The next step

of simulation will be finished by CORSIKA.

CORSIKA[31] is a Monte Carlo simulation program widely used in astrophysics to gener-

ate air showers. Different geometry conditions can be set in this program and the energy

scale for cosmic radiation is from 0.3 PeV to 1000 PeV. For our case, we will focus on the

models CORSIKA uses for high energy hadronic interactions since our interested energy

scale is from 10 PeV to 200 PeV. Six models are available in CORSIKA: DPMJET[29],

HDPM[24], QGSJET01[29], SIBYLL[7], VENUS[41] and NEXUS[15]. The comparisons

between these models can be found at [32][17]. However, since there is no experimental

evidence to show the correctness of any of these models until now, all the six models re-

main to be theoretical guesses. In our case, we use the default model QGSJET01 to do the

simulation.

Each high energy pion or photon starts its own shower and CORSIKA follows the devel-

opment until the shower has reached the detector plane defined in the program. Here, the

detector plane is an inclined plane indicated in Fig. 3.1. All the shower particles from the

pions and photons in the τ decay are summed to make the CORSIKA event file. Since we

need to define the decay geometry for CORSIKA to do simulations, sampling points along

the decay distribution need to be selected. Each sampling point will have a weight from the

actual decay distribution, and then we can approximate the integral decay distribution by a
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finite set of sampling points. The decay distances we selected are 2.5 km, 3 km, 5 km, 7.5

km, 10 km and 15 km in front of the detector plane. More details will be discussed in the

following part to see why only these distances are selected.

The simulation is done by our team members at Roma for all five main decay modes of τ

leptons. Due to the limitation of computing resources, only several energies of τ leptons

are simulated, they are 10 PeV, 20 PeV, 50 PeV, 100 PeV and 200 PeV.

3.2 Simulation data

The ASCII data files we obtained can be directly read. The first two lines give us the

incident angle and energy of τ leptons, followed by lines of track information. Each line

gives the information of one track arriving at the detector plane in the following format,

Track number, PID, PP, Px, Py, Pz, X, Y, Z, T, weight (3.1)

The PID is the particle ID. PP is the total momentum of each track, while Px, Py and

Pz are the momentum along x, y, z direction which are defined in Fig. 3.1. X, Y and

Z are coordinates of the interaction point between the track and the inclined plane. T

provides us the time stamp information. The weight number here means we use ”THIN”

option in CORSIKA, which is defined in [31]. By applying the “THIN” option, only part

of the secondary particles with energy greater than a limit we set will be followed in the

simulation. For showers with energy greater than 10 PeV, this procedure can reduce the

computing time dramatically. Meanwhile, the size of generated data files will be greatly

compressed, which reduces the load for transferring these data from Roma to us. For

example, the data file corresponding to 100 PeV at 5 km distance for 3π mode is 5.1 GB.

If the “THIN” option is not applied, then the size will increase to about 84 GB. With the
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weight number coming from “THIN” option, we can retrieve the full shower based on the

algorithm we will explain in the section “Obtain unthinned tracks”.

3.2.1 Pre-selection

Before we do anything to the data file we obtain from CORSIKA, a pre-selection according

to the particle ID is done. Many lines come from tracks we are not interested in. Hence,

if we can get rid of them at the beginning, it is much more convenient for the following

steps. Very few pions survive to reach the detector array. If they don’t get to the plane, they

are not in the file. Photons count rarely because they deposit a very small fraction of their

energy in our scintillator detectors. A single photon rarely makes a coincidence, because

that requires the product of two small probabilities. Therefore, only electrons, muons and

their corresponding anti-particles will be selected for further analysis.

Such selection saves us time in running the following unthin step and significantly reduces

the size of the generated unthinned files.

The time spent on this pre-selection step is negligible compared to the other steps. Each

data file usually contains 100 showers. We split the 100 showers as well as the pre-selection

by perl codes named “divide.pl”, which can be found in Appendix A.1.

3.2.2 Obtain unthinned tracks

After the pre-selection, we have significantly decreased the size of the data file. But these

files cannot be directly used because of the weight number at the end of each line in the

data file. As we have just discussed, these weight numbers can be used to retrieve the

whole shower based on the unthin algorithm we will introduce now. Fig. 3.1 describes the

geometry of showers and inclined plane.

Point A is the τ decay point of the shower, with y and z coordinates fixed. To calculate the x
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Figure 3.1: Shower center and inclined plane
.

coordinate of A, we need to read out the incident angle θ from the data file for each shower,

which is uniformly distributed between 2.0◦ to 2.5◦. The normal plane is perpendicular to

the mean shower axis which has an angle 2.5◦ to the horizontal plane. By construction the

mean shower axis always passes a fixed point (0, 0, 2250). The coordinates of A in meters

are,

Ax = −750/tan(θ)

Ay = 0, Az = 1500 (3.2)

Point C is the intersection point of shower axis and the inclined plane. Since we know the

coordinate of A and incident angle θ, we can easily get the coordinate of C by compare the

equations for the line AC and the inclined plane.

The equation for AC is,

z − za = tan(θ)(x− xa) (3.3)
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and that for the inclined plane is,

z − zo = tan(α)(x− xo) (3.4)

As L changes, the origin of the detection plane moves as shown in Table 3.1, where the L

is defined as the mean distance between τ decay point and C.

Table 3.1: Origin of the detection plane with respect to L

L(km) Coordinates of O
2.5 (-16700,0,1600)
3 (-15500,0,1640)
5 (-14000,0,1690)

7.5 (-11500,0,1790)
10 (-9000,0,1900)
15 (-4000,0,2100)

Therefore, the C’s coordinate is,

xc = (−xatan(θ) + xotan(α) + za − zo)/(tan(α)− tan(θ))

yc = 0

zc = tan(θ)(xc − xa) + za (3.5)

Take one track as an example to show how we do the unthin step. We can have the coordi-

nates of the intersection point between this track and the inclined plane from the data file,

as well as its direction. Define that intersection point as P, and the direction of this track as

~np. Then we can have,

P = (x1, y1, z1)

~np = (px, py, pz) (3.6)
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There exists a point F on AC, such that PF is perpendicular to AC. Hence F is the intersec-

tion point of AC and the plane which contains P and is perpendicular to AC. The plane’s

equation is,

(x− x1) + tan(θ)(z − z1) = 0 (3.7)

Combined with the form of AC, we will have,

xf =
xatan

2(θ) + z1tan(θ) + x1

tan2(θ) + 1

yf = 0

zf = z1 − (xf − x1)/tan(θ)

F = (xf , yf , zf ) (3.8)

The unit direction vector of AC is

~nac = (C − A).Unit() (3.9)

The unit direction vector of FP is

~nfp = (P − F ).Unit() (3.10)

Then we can get the tangential unit direction vector of circle (around F, radius=|FP |),

~nt = ~nac.Cross(~nfp) (3.11)

The number of tracks we regenerate is determined by the weight number. Basically, we

just do the loop for floor(weight) times. Within each loop, assume the point we generated
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on the circle is G. The following steps will give us the way to obtain G coordinate in the

normal frame (FM0).

First, generate a random angle φ uniformly between 0 and 2π. In the frame (FM1) where F

is the origin and the circle plane is the y-z plane, we can have the coordinate of G without

losing generality,

xg = 0

yg = |FP |cos(φ)

zg = |FP |sin(φ)

G = (xg, yg, zg) (3.12)

Second, do the clockwise rotation around y-axis by θ to let the FM1 become FM2, such

that the x, y and z axis are parallel to the x, y and z axis in FM0,

G.RotateY (−theta) (3.13)

Third, move the origin of FM2 to the origin of FM0,

G = G+ F (3.14)

Now the G coordinate we get is the point the new track goes through. We still need to find

the direction of the new track, which is the momentum direction ~ng. And to keep the same

style as the original file, the coordinate of K will also be provided, which is the intersection

point of the new track and the inclined plane.

The momentum values of the new track along normal(~n1g = ~nac), radial(~n2g = ~nfg) and

tangential(~n3g = ~n1g × ~n2g) directions should be unchanged. These values could be ob-
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tained by projecting the original momentum vector(~np) into the corresponding three direc-

tions of the original track,

pn = ~np · ~n1p

pr = ~np · ~n2p

pt = ~np · ~n3p (3.15)

Now could get the momentum vector of the new track,

~ng = pn~n1g + pr~n2g + pt~n3g

⇒ pxg = ~ng(0), pyg = ~ng(1), pzg = ~ng(2) (3.16)

The new track is along this direction ~ng and passing through G. We could get the equation

of the new track,

x− xg
pxg

=
y − yg
pyg

=
z − zg
pzg

(3.17)

Compared to the equation of the inclined plane, we will have the intersection point of the

new track with the inclined plane, K.

Until now, we have developed the steps to obtain the new track’s momentum vector and the

corresponding intersection point K’s coordinate. The algorithm tackling with unthinned

files has been finished. And the codes ”regenerate.cpp” can also be found in the Appendix

A.2.

We have also done some tests to see if our algorithm is proceeded in the right way. The

distribution of intersection points on the plane perpendicular to the shower center should

be circularly symmetric. Fig. 3.2 is the test result, and we can see that the distribution here
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fulfills the requirement.
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Figure 3.2: Distribution of intersection points on the normal plane
.

3.3 Detector array

3.3.1 Optimization considerations for TAUWER detector array

The neutrino flux in the ultra-high energy region is quite low and the probabilities of Earth-

skimming neutrinos to generate τ leptons and escape into the air are also very small accord-

ing to Table 2.1. We would like to optimize the detector layout to ensure that no matter

at what incident angle or position in the array area the shower axis has, the shower will

31



be detected. This limits the distance between two neighbor stations of the detector array.

On the other hand, the array cost depends on the number of detector stations, so we cannot

make the spacing too small. The ability to locate the shower core, defined by the electron

cluster, independent of where the shower axis intersects the detector plane is also an impor-

tant consideration to optimize our array. The following analyze of the simulation showers

in this section will drive us the optimization conditions of our detector array. We use the

simulation data under π−π−π+ mode with 100 PeV energy to explain.

3.3.2 Hit patterns of showers on the transverse plane

To show the characteristic of shower development with respect to different shower devel-

opment length L, we need to obtain the coordinates of hit points between tracks in the

shower and the center detector plane, which is defined as the shower transverse plane pass-

ing through through C as shown in Fig. 3.1. The algorithm is shown as follows.

Firstly, read in a line from the unthinned data file, which provides us the particle type,

momentum and intersection point’s coordinates with the detector plane.

Secondly, according to the momentum vector and the intersection point coordinate, we can

calculate the equation of this track. Combining to the equation of the normal plane, we can

have the intersection point’s coordinates of this track and the normal plane passing through

point C.

The following part describes the coding details of this algorithm.

The information we obtained from the data file includes the momentum of a track (px, py, pz),

and the coordinates of the intersection points between this track and the inclined plane

(x1, y1, z1). The track’s equation is,

x− x1

px
=
y − y1

py
=
z − z1

pz
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The equation of center detector plane is

nac(0)(x− xc) + nac(2)(z − zc) = 0

where nac is the unit direction vector of AC while A is the τ decay point and C is the inter-

section point between shower center and the inclined plane. (xc, yc, zc) are the coordinates

of C.

Now we can obtain the coordinates of intersection point between tracks and the center

detector plane in the standard frame.

hitx = (pz ∗ x1/px + nac(0) ∗ xc/nac(2) + zc − z1)/(pz/px + nac(0)/nac(2))

hity = py ∗ (hitx − x1)/px + y1

hitz = pz ∗ (hitx − x1)/px + z1

Based on the coordinates of hit points on the transverse plane, we can derive the posi-

tion distribution of particles on the transverse plane perpendicular to the shower center, as

shown in Fig. 3.3 and Fig. 3.4. From these plots we can see, muons spread much broader

than electrons on the transverse plane. Electrons are produced by EM processes, in which

the characteristic transverse momentum transfer per interaction is of the order of 1 MeV

(electron mass). Therefore, the EM processes remain concentrated near the shower axis,

with some broadening when photons come from π0 production deeper in the shower and

not in the earliest few interactions. This feature of the high density electron core is inde-

pendent of shower development length L and is the crucial feature for TAUWER trigger

design. Muons, on the other hand, are produced only from decays of shower pions, where

the characteristic transverse momentum is around 140 MeV (pion mass). Therefore, the

muon spectrum has a much wider angular spread than the electron spectrum because of the

33



different angular characteristics of the EM interaction and the strong interaction.
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Figure 3.3: Position distribution of electrons on transverse plane per shower for pipipi
mode at 100 PeV

3.3.3 Geometry of TAUWER detector array

As the electron radius plot (Fig. 3.3) shows, independent of energy and shower develop-

ment length, the electrons cluster within a circle of radius 40 meter about the centroid.

Therefore, this detector array with less than 40 meter spacing will always have at least one

detector that sees the high-density electron core, which makes the acceptance of candidate

showers close to 1. The spacing more than 40 meter will make our detector array lose this

characteristic. Meanwhile, as discussed in the beginning of this section, if we decrease

the grid distance, the cost will go up if we want the detector array to cover the same area.

Based on the trade-off between the acceptance of the array and the cost, we determine the

grid spacing to be 40 meter. The funding of 1.5-2 million dollars can afford 1600 detector
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stations, which could cover 2.5 km2 area. We need to make sure the array have at least

about 600 meter along the vertical direction to cover the electron cores from showers with

vertical angle from 91◦ to 98◦. Therefore we make the detector array along each vertical

line have 16 stations and each horizontal line have 100 stations. And our detector array

can be easily expanded if we can have more funding in the future. The detector stations

are placed facing the direction perpendicular to the average direction of shower axis, which

has 2.5 degree with the horizontal plane. Trigger of the array is based on the situation that

upward-moving neutrino showers will have at least one detector with a large number of hits

within a 20 ns time window due to the electron charge cluster near the shower axis. We

require large energy deposit in two layers to eliminate cases of a single vertical air shower

giving a track that deposits a large amount of energy in a single counter because it travels

a long distance in the scintillator. The KIT test runs show that this happens at the µHz rate

in EAS events.

3.3.4 Simulation for detector array

In this part, we will estimate the detection efficiency of the array and correlations among

detector stations under variant conditions such as different position shifts and distances be-

tween τ decay point and the inclined plane, based on the unthinned data files we obtained

from last section. Although we have 1600 detector stations covering 2.5 km2, the simula-

tion is done within an area of 1 km2 which consists an 16× 40 array, since few tracks can

hit the region outside of this area around the shower centroid.

We will calculate the coordinates of hit points between tracks and the detector planes for

two layers per station. If either of the layers of each station is hit by a track, we will

consider this track as a detected track. Otherwise, the track is missed by our detectors.

We will repeat the similar process for 640 times related to all detector elements for each
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track since we only analyze the 16× 40 array. After scanning all tracks from the unthinned

data file, we will have the results such as the number of tracks detected by each detector

element. According to these numbers, we can calculate the correlation between detectors

or some other interesting information we need.

The following part describes the details about judging a track is detected or not.

As we have already explained, the track’s equation is,

x− x1

px
=
y − y1

py
=
z − z1

pz

The equation of detector plane is

nac(0)(x− detx) + nac(2)(z − detz) = 0

where det = (detx, dety, detz) are the coordinates detector plane going through and can be

calculated as follows. There are two layers of detectors, hence we will have 16 ∗ 40 ∗ 2 =

1280 det coordinates. The side geometry of one detector station is shown in Fig. 3.5.

Figure 3.5: Shower center and inclined plane
.
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Here we assume the distance between two detector stations is distance = 40m along x and

z axis in the standard frame. Points(det) of the first layer are on the inclined plane, evenly

distributed along x and z axis by the distance of 40 meters and centered around the mean

position of C. The coordinates of “mean” C is calculated under θ = 2.5◦.

det1z[i ∗ 40 + j] = zc + distance/2− 8 ∗ distance+ i ∗ distance

det1x[i ∗ 40 + j] = (det1z[i ∗ 40 + j]− zo)/tan(α) + xo

det1y[i ∗ 40 + j] = distance ∗ j − 20 ∗ distance+ distance/2

The coordinates of second layer’s det can be derived from the first layer’s det,

det2x[i ∗ 40 + j] = det1x[i ∗ 40 + j]− d ∗ cos(θ)

det2y[i ∗ 40 + j] = det1y[i ∗ 40 + j]

det2z[i ∗ 40 + j] = det1z[i ∗ 40 + j]− d ∗ sin(θ)

where d = 0.2/tan(γ) = 1.6m is the perpendicular distance between two detector layers,

and γ = 7 ∗ Pi/180, which is shown in Fig. 3.5.

Now we can obtain the coordinates of intersection points(hit1 and hit2) between tracks and

detector elements(including two layers) in the standard frame.

hitx = (pz ∗ x1/px + nac(0) ∗ detx/nac(2) + detz − z1)/(pz/px + nac(0)/nac(2))

hity = py ∗ (hitx − x1)/px + y1

hitz = pz ∗ (hitx − x1)/px + z1

We need to judge if the intersection points are located within the detector region. But it

is difficult to do that in the standard frame. We would like to transfer the coordinates into
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frame where det point is the origin, x-axis is along the opposite direction of standard y-axis

and y-axis is parallel to the intersection line between detector plane and standard x-z plane.

hit = hit− det

hit.RotateY (θ)

newhitx = hity, newhity = hitz

Now if newhitx ∈ (−0.2, 0.2) and newhity ∈ (0, 0.2) for hit1 or hit2, we claim this track

is detected.

3.3.5 Information derived from the simulations

The information we can obtain from the detector array are hitnumbers from each detec-

tor station, and the corresponding time stamps of shower tracks. The data we use from

Monte Carlo simulation are able to provide us precisely how many particles each detector

station captures. But in the real experiment, we cut the hitnumbers for each station at four,

since our scintillator detectors may saturate after four hits. All the counts derived from the

simulation greater than four will be considered as four to mimic the real experiment better.

The showers we plan to detect are electron-rich, and the majority of the electrons will

travel in the directions very close to the shower center. Muons come from π-meson de-

cays and have a much broader angular spread and lower density. Many fewer muons will

hit TAUWER stations. The stations around the shower center will have much greater hit

numbers compared to the other stations if we use the simulation data directly, even if we

limit effective hit numbers to let them be less or equal than four. After checking many hit

patterns, we find that under most scenarios, only one muon can hit a given station. The

station with maximum hit number is considered to be the station closest to the shower cen-
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ter, and the region containing this station and the other eight neighbor stations around it is

described as electron core region. Based on simulation results of analysis of shower devel-

opment, most of the electron hits will be located within this region, and all the hits outside

will be considered as muon hits.

The relation between the detection efficiency and the distances between the τ decay point

and inclined plane will also be examined to find out the detecting range of our array.

Table 3.2 provides us the relationship between particles being detected per shower and

the distance. When we make the table, the outliers, defined as the 8 smallest and 8 largest

counts from the 100, are removed to obtain a better estimate of the deviation from average

behavior. This policy will be applied to all the tables we make. But we also attach the

information of statistics without cuts in the plots corresponding to each table, to illuminate

the fluctuation.

From Table 3.2, we can see that the number of particles detected increases as the shower

development length L increases from 2.5 km to 5 km (for electrons) or 7.5 km (for muons)

and then decreases after that. When the distance is greater than 10 km, the number of

detected particles shrinks to a very small number, as shown in the 15 km case. This phe-

nomenon matches our expectation. Shower maximum occurs around 6 interaction lengths

in any material for the energies we are interested in. For electrons in air, that distance is

about 5 km and that is the reason why the 5 km case gives us largest number of detected

electrons. For muons in air, since they do not have a radiative component to their energy

loss, the peak will show up a little further along. Meanwhile, all tracks undergo ionization

energy loss of about 1.2 GeV/km in air. For both electrons and muons, after 10 km the

average track is too soft to generate more tracks, so the shower attenuates by ionization

loss and dies out. This means that at 15 km there are few electrons and muons detected for

a 100 PeV event. For distances smaller than 2.5 km, we see that the variance is so big that

no effective information can be extracted to do further analysis. Hence from now on, we
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will focus on the shower development distances between 2.5 km and 10 km.

Table 3.2: Number of particles detected per shower vs. Distance with energy 100 PeV

Distance(km) Electron Muon
2.5 366.4(346.7) 21.9(13.3)
3 648.7(458.7) 36.2(12.8)
5 696.7(349.1) 36.1(13.1)

7.5 486.6(247.4) 34.2(9.9)
10 186.8(127.5) 25.0(7.7)
15 0.11(0.31) 1.0(0.9)

Fig. 3.6 to Fig. 3.7 show us the details of hit detector numbers for each shower develop-

ment length L, which are corresponding to Table 3.3.

Table 3.3: Hit detector number per shower vs. Distance

Distance(km) 2.5 3 5 7.5 10
Electron 29.0(16.4) 43.5(15.2) 49.4(11.6) 51.0(12.4) 33.7(12.9)
Muon 17.0(10.0) 27.8(9.2) 28.7(9.6) 29.6(7.6) 23.2(6.8)

Even though photons will not contribute to coincidence counting, independent photons in

the high density EM region near the shower core may well interact in the front and back

scintillators within the 20ns trigger time window. This will increase the number of counts

for the stations at the core of the shower. If the number of hits in these stations is already

above the saturation limit, there will be no impact from the added photon hits. For showers

with fluctuations toward low numbers of electrons, the photon hits will help the overall

trigger efficiency somewhat. The effect is not large and we choose to ignore it in the

following calculations.
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Figure 3.6: Number of detectors hit by electrons. We add 0 for 2km case, 100 for 3.5km
case, 200 for 5km case, 300 for 7.5km case and 400 for 10km case to put the five curves in
one plot
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3.3.6 Solid angle of incident ντ

We need the solid angle to estimate event rates of the detector array. The solid angle is

calculated as follows,

4π × θV
180◦

× θH
360◦

(3.18)

θV is defined as the effective vertical angle coverage. θV = 98◦ − 91◦ = 7◦ in our case,

and we need to use the angle-average probability for a specific energy from Table 2.1. We

choose a conservative vertical angle range for the array. If a suitable site is located, we can

use zenith angles less than 90 degrees and accept events that interact in the shield mountain

indicated in Fig. 1.5. θH is defined as the horizontal angle coverage. With a horizontal

rotation test as shown in the next section, we can find a range of angle, that when the

shower is horizontally rotated within this range the detection efficiency of the array will

not be deteriorated.

3.3.7 Rotation Test

We want to find the detector efficiency for showers with different incident horizontal angles.

The easiest way to do this is rotating the particle tracks included in the data file by different

angles around the designated axis, instead of rotating the whole detector array. Since the

algorithm of detecting a track has already been introduced in the previous section, only the

rotation part will be described here.

We rotate tracks along the ”rotateaxis” by five different angles, from 0 degree to 20 degree

with step distance 5 degree. And the ”rotateaxis” is on the x-z plane, perpendicular to the

shower axis AC, and passing through point C, which is the intersection point of the shower

axis and the inclined plane. This algorithm can be achieved by the following codes, and
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Fig. 3.8 and Fig. 3.9 show us the test results.

rotateaxis = ~nAC

rotateaxis.RotateY (Pi/2);

~x = ~x− ~c

~x.Rotate(rotateangle, rotateaxis)

~x = ~x+ ~c

Here ~x representing the coordinates of the intersection points between tracks and the in-

clined plane, and ~c denotes the coordinates of point C. ~nAC is the unit direction of the

shower axis AC.

For electrons, the number of hit detectors will increase when we increase the horizontal

rotation angle within the region between 0◦ and 70◦. The number of hit detectors will

keep increasing after 70◦ but this trend will stop at 90◦ due to physics cuts of the mountain

geometry condition. For muons, the number of hit detectors are almost independent of

the horizontal angle between 0◦ and 70◦. But we can see the trend that this number will

decrease after 70◦.

The event rates of TAUWER experiment can be estimated. E−2 neutrino spectrum is used

here according to IceCube experiment[1]. The following equation gives the flux of one

neutrino flavor,

E2dφντ/dE = 1.2× 10−8GeV cm−2sr−1s−1 (3.19)

Based on the KIT test lasting for two years, the operating efficiency of our stations is above

90%, and hence we use 2× 107 s as the time for an operating year.

According to the rotation test, we can at least have horizontal angle in the range from -
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70◦ to +70◦ to keep the acceptance rate at 1. Meanwhile, we have calculated the escape

probability of τ with respect to vertical angles between 91◦ to 98◦. Hence the solid angle

is 4π × (7/180)× (140/360) = 0.19 sr.

We can take the mean escape probability with respect to a specific energy from 10 PeV to

200 PeV to calculate the event rates, where the mean is taken by averaging the results from

91◦ to 98◦. The mean escape probability for each neutrino energy is shown in Table. 3.4,

which can be derived from Table. 2.1 in Chapter 2.

Table 3.4: Mean escape probability with respect to ντ energy in units of 10−4

Energy (PeV) Probability Energy (PeV) Probability
10 1 110 12
20 2 120 13
30 3 130 14
40 5 140 15
50 6 150 16
60 7 160 16
70 8 170 17
80 9 180 18
90 10 190 19

100 11 200 19

And the event rates can be estimated by summation of rates from each energy bin, which

can be represented as follows,

∑
φντ ×∆E × (0.19sr)× (2× 107s)× (2.5km2)× (mean escape probability) (3.20)

where ∆E = 10 PeV is the energy bin width. The event rates we estimate of our detector

array is 0.434 eV/yr within the energy region between 10 PeV and 200 PeV.

The bounds on the flight distance L require that the τ decay point has to be at least 2.5

km away from the detector array and less than 12.5 km. This lowers the expected rate by

about a factor of 2, but the exact value depends on the final site geometry. An estimate of
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0.2 eV/yr is a good working number, using the IceCube flux estimate. If there are other

sources of UHE neutrinos, e.g., AGN sources whose emission peaks in the 50 PeV range,

then the TAUWER rate can be substantially higher.
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Chapter 4

Event Classification

One of the main purposes of the TAUWER experiment is to measure the energy of each

detected high energy Earth-skimming ντ . Several pieces of information can be provided by

our detector array. Showers from neutrinos with different energies should bring us different

hit patterns, which are reflected by hitnumbers of our detector stations. At the same time,

time stamps of hit tracks in each shower will also be recorded.

First we try to derive the energy of a shower based on its hit pattern. However, there is no

available theory to achieve that. We tried to set up a relation between the mean hitnumber

of each shower and its energy by polynomial regression, but the large variance of mean

hitnumber for showers with same energy did not allow this approach to succeed. The main

difficulty is the wide range of L that is possible for any event. We cannot constrain L

just from the hit pattern. Hence, the job of direct derivation of shower energy needs to be

modified, which will be introduced in detail in this section.

In this thesis the term classification means the assignment of an energy to a given τ lepton

shower candidate based on a statistical comparison of the characteristics of the data event

to those of a selected set of characteristics of simulated events at a set of energy calibration

points. The energy is assigned to the calibration point that gives the best description of the
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data characteristics based on a set of classification algorithms to be described here. The

statistical nature of classification means that the energy of a given event is not determined

precisely but rather is discretized by the calibration energy set. The ultimate resolution of

the energy assignment is limited by the fluctuations and will be described by the relative

probabilities of being assigned to different calibration points in the set for a data event of

true energy Eτ .

4.1 Data characteristics

The data from simulation is summed over L and then divided into two parts, one for the

electron core region and the other for the muon region, which is discussed in last chapter.

As we have already explained, approximate methods need to be introduced to derive the

energy. We will discretize the energies, and after that, each sub-range can be considered as

a class. Based on simulation there are systematic differences on hit patterns from different

classes. For example, showers with energy 100 PeV should have more hits than showers

with energy 10 PeV. If the two energies are considered as two classes, classification can

be done based on the data features extracted from their hit patterns. One can sub-divide

the classification range into smaller energy intervals. In this chapter we will also use a

multi-class method, using three sampling points, in order to illustrate the procedure.

4.2 Classification methods

There are many classification methods available, such as naive Bayes or decision tree. Each

of them will have their own assumptions and applicable conditions. Two famous methods

will be introduced here, logistic regression and support vector machine (SVM). In this

section, we will briefly introduce the two methods and make comparisons between them to
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choose the best classification method for our problem. Details of the methods can be found

in [25][14][35].

4.2.1 Notation

In this section, we use x to represent an event and y to represent the label. Label 0 and

1 is used for a two-class problem and label 1, 2 and 3 is used for a three-class problem.

Assume we have N events and each event has K features, then we can express ith event as

xTi = (x
(1)
i , x

(2)
i , ..., x

(K)
i ), where i = 1, 2, ..., N . For a two-class problem, we have two

labels for y from {0, 1}. For a multi-class problem (assume we have three classes), then y

can be selected from {1, 2, 3}.

4.2.2 Logistic regression

Logistic regression is a discriminative classifier by using log loss, which is widely applied

in both academia and industry. We first consider classification problems with two classes.

There is one assumption made in two-class logistic regression about the probability of a

event to be classified into class 1 under the observation of its feature x, which makes it a

discriminative classification method,

P (y = 1|x) =
1

1 + e−θTx
≡ µ(x) (4.1)

where θT = (θ1, θ2, ..., θK) describes the weights for each feature who will be derived

after classification and θTx = θ1x1 + θ2x2 + ... + θKxk. The ratio between µ(x) and not

µ(x) is called “odds” if 0 < µ(x) < 1 for a binary event. Since the term log odds means

log(µ(x)/(1 − µ(x))) = θTx according to Eq. 4.1, our assumption is equivalent to the

assumption that the log odds between the classes of logistic regression is linear.
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We immediately have,

P (y|x) = µ(x)y(1− µ(x))1−y (4.2)

With this assumption, we can have the likelihood function,

l(θ) =
n∑
i=1

lnP (yi|xi; θ)

=
∑
i

yilnµ(xi) + (1− yi)ln(1− µ(xi)) (4.3)

And then the parameter vector θ can be estimated by maximize this log conditional likeli-

hood,

θ̂ = arg max
θ

l(θ)1 (4.4)

Many methods can be used to derive the value of θ̂, such as gradient ascent, Newton-

Raphson method, and iterative reweighted least squares (IRLS). Details of these methods

can be found in [26].

We can use the value of θ̂ to predict the class of new events for two-class problem,

ŷ =


1, p̂(y = 1|x) > 0.5

0, otherwise

(4.5)

1arg max gives the parameter value where the following function can achieve its maximum
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which can be simplified as,

ŷ =


1, θ̂Tx > 0

0, otherwise

(4.6)

The decision boundary divides events into two labels: 0 and 1, which are the energy as-

signments in our case. Hence θ̂Tx can be considered as the decision boundary for logistic

regression, which is linear due to the strong assumption we made. We may need to worry

about this point since in the real world. Most of the cases will need non-linear decision

boundaries, and the assumption of logistic regression therefore does not hold. However,

the way we use logistic regression is to do classification. The probability for a given event

to be assigned label 0 or 1 is determined by plugging the estimated θ̂ into Eq. 4.1. The en-

ergy label will still be correct if the probability of the right label is greater than the wrong

label, even though the assumption about having a linear decision boundary does not hold.

Because of that, logistic regression is still widely used even when we are not sure if the

decision boundary is linear. In our case, we apply logistic regression as a baseline method

and compare it to the SVM method. But it must be pointed out that if the decision boundary

is nonlinear, systematic errors will exist in the classifier derived from logistic regression.

And gross nonlinearity in the decision boundary could smear the classifier severely, which

gives the limitation of the logistic regression method.

Logistic regression can be extended to deal with multi-class cases. If we have K labels

1,2,3,...K. We need to modify the assumption as follows,

P (y = i|x) =


exp(θix)

1+
∑K−1
k=1 exp(θkx)

, i = 1, 2, ...K − 1

1

1+
∑K−1
k=1 exp(θkx)

, i = K

(4.7)
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we can estimate the parameters {θi}K−1
i=1 , pick up the label ŷ as follows,

ŷ = arg max
i

P (y = i|x) (4.8)

and do classification following the same procedures as two-class cases we just discussed.

4.2.3 Support Vector Machine (SVM)

SVM is a method with outstanding classification capability which is widely used in statis-

tical and machine learning fields[14][38]. The key idea in SVM is to maximize the margin

between different classes of samples, where the margin is defined as distances between

closest samples to the decision boundary, as shown in Fig. 4.1. The margin can be repre-

sented as follows,

Figure 4.1: Decision boundary and margin of SVM
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Margin = 2γ = 2a/||w|| (4.9)

Now we can have the objective function of SVM to maximize the margin,

min
w,b

w ·w

such that (w · xj)yj ≥ 1 (4.10)

The above algorithm is called a hard margin SVM and will provide us a linear decision

boundary. However, if the two-class data we have can not be separated by a linear decision

boundary as shown in Fig. 4.2, the hard margin algorithm will fail since it never allow any

mis-classification.

Figure 4.2: No available linear decision boundary

The way we fix that is by adding a loss function to the objective function. The loss function

can be considered to be a penalty term. Instead of forbidding the mis-classification in the

hard margin case, we want to limit the happening of mis-classification by adding penalty

term for each mis-classified event. This is called a soft margin problem.

56



There are several available loss functions. We pick three of them, shown in Fig. 4.3. The

mathematical form is as follows, where we have y as the true value and ŷ as the predicted

value (the continuous value from the classification).

1, zero-one loss: I(y = ŷ).

2, hinge loss: max(0, 1− yŷ).

3, log loss: log(1 + exp(−yŷ)).

The most popular one is zero-one loss. This loss function is very straightforward. We

assign 0 to the rightly classified events and assign 1 to the mis-classified events. However,

this loss function gives mis-classified events with the same penalty without considering

how far they are away from the decision boundary. Also the zero-one loss is more difficult

to implement from the optimization angle compared to continuous loss functions. Hence,

we introduce loss functions like hinge loss and log loss.

Figure 4.3: Three popular loss functions (made by Fabian Pedregosa, loss functions for
ordinal regression, http://fa.bianp.net/blog/2013/loss-functions-for-ordinal-regression/)
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We use the hinge loss for SVM, and the objective function can be modified as follows,

min
w,b

w ·w + C
∑
j

ξj

such that (w · xj)yj ≥ 1− ξj and ξj ≥ 0 ∀j (4.11)

This objective function actually demonstrates the difference between SVM and logistic

regression. If we modify Eq.4.11 slightly as follows,

min
w,b

w ·w + C
∑
j

max
(
0, 1− (w · xj)yj

)
(4.12)

which shows that hinge loss is used for SVM. Log loss is used for logistic regression shown

as follows,

min
w,b

w ·w + C
∑
j

log(1 + exp(−(w · xj)yj)) (4.13)

SVM can also be used to tackle multi-class cases. The objective function for K-class SVM

with hinge loss is as follows,

min
w,b

K∑
k=1

w(k) ·w(k) + C
∑
j

∑
t6=k

ξ
(k)
j

such that w(k) · x(k)
j ≥ w(t) · x(t)

j + 1− ξ(t)
j and ξ

(t)
j ≥ 0 ∀t 6= k,∀j (4.14)

Eq. 4.11 is called as primal problem. By introducing Lagrange multipliers, Eq. 4.11 is
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equivalent to the following problem,

min
w,b

max
α,µ
L(w, b, α, µ)

where L =
1

2
w ·w + C

∑
j

ξj −
∑
j

αj((w · xj + b)yj − 1 + ξj)−
∑
j

µjξj (4.15)

For SVM, Karush-Kuhn-Tucker conditions[11] hold and we can generate the dual problem

which is equivalent to the prime one simply by changing the order of minimization and

maximization in Eq. 4.15,

max
α,µ

min
w,b
L(w, b, α, µ) (4.16)

α can be derived from the following equation which is an optimization problem named as

quadratic programming (QP) and many available packages can be directly applied to solve

this problem.

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj

such that
∑
i

αiyi = 0 and 0 ≤ αi ≤ C (4.17)

Then w and b can be derived as,

w =
∑
i

αiyixi

b = yj −w · xj ∀j such that 0 < αj ≤ C (4.18)

Until now, the differences between logistic regression and SVM are just their loss functions.

In the reality, most of the decision boundaries between classes are not linear. Although

sometimes a linear decision boundary can give us acceptable classification accuracy when
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true boundary is nonlinear, we still hope there would be improvement by generating a

nonlinear decision boundary. This can be easily implemented for SVM by using kernel

tricks. A slight modification to Eq. 4.17 and Eq. 4.18 as follows can bring us the nonlinear

boundary we want,

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyjφ(xi)φ(xj)

such that
∑
i

αiyi = 0 and 0 ≤ αi ≤ C

w =
∑
i

αiyiφ(xi)

b = yj −w · φ(xj) ∀j such that 0 < αj ≤ C (4.19)

where φ(x) is the function to map the data point x into high dimension feature space. But

we never need its explicit form, since the dot product of two such points, φ(xi) and φ(xj),

can be computed fastly using the kernel function K(xi,xj).

There are several kernel functions available. We will use three of the most popular ones.

They are,

1, Radial kernel: exp(−γ|xi − xj|2)

2, Polynomial kernel: (γxi · xj + a)b

3, Sigmoid kernel: tanh(γxi · xj + a)

4.3 Energy Identification

For energy identification, the time stamp information of tracks is not very helpful. We will

only use the hitnumbers from 640 detector stations to do the classification. As we have

discussed in section ”Data characteristics”, our scintillator detectors are not very sensitive
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to detect hitnumbers greater than four, but are sensitive enough to tell the hitnumbers under

four. Hence we will divide these hitnumbers into three kinds: no hit, hitnumbers between

one and three, and hitnumbers larger than three.

4.3.1 Classification of events with 20 PeV and 100 PeV

The sample we use in this section consists of 376 events with 20 PeV and 500 events with

100 PeV. These events are grouped from 2km, 3km, 5km, 7km and 10km cases without

any rotation.

Feature extraction

For each event’s hit pattern, eight features can be extracted, which are listed as follows,

• Number of detectors with one hit in the electron region

• Number of detectors with two hits in the electron region

• Number of detectors with three hits in the electron region

• Number of detectors with hitnumber>3 in the electron region

• Number of detectors with one hit outside the electron region

• Number of detectors with two hits outside the electron region

• Number of detectors with three hits outside the electron region

• Number of detectors with hitnumber>3 outside the electron region

All the eight features are independent. We have tried to extract more features related to the

geometry characteristics of the hit pattern, such as the moments. But these features do not

bring us any benefits in the classification. We hope more useful features can be extracted

in the future.

61



Data normalization

We perform data normalization before we apply any training algorithms on them. Other-

wise the different scales of data in the feature space will bias the training methods.

We calculate the mean and standard deviation for each feature column, and then the data

normalization can be done as follows,

xi = (xi −meank)/stdk, i = 1, 2, ...N, k = 1, 2, ...K (4.20)

where N is the number of events, and K is the total number of features in each event.

And now the data on each feature column have mean at zero and standard deviation at one.

Feature selection

Lasso[39] is a widely used method to do feature selection. And we will use lasso together

with logistic regression to do feature selection for our data. We use cross-validation to

implement this algorithm as follows,

1, The labeled samples are randomly divided into 10 segments with approximately equal

size.

2, For the ith loop ( i = 1,2,...10) we use the ith segment as the test set, and the other nine

segments as the training set. We then apply logistic regression with lasso to do the feature

selection and record the selected features.

3, Features which are selected at least one time will be kept for future use.

Fig. 4.4 describes the number of times being selected for each feature, which shows all

eight features we extracted from the data are selected.
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Figure 4.4: Feature selection by logistic regression with lasso

Selection of classification methods

One common comparison metric is classification accuracy. For each method, we will apply

the same steps to calculate the accuracies as follows,

1, Divide the labeled data into 10 segments.

2, For the ith(i = 1, 2, ...10) loop, choose the ith segment as the test set, and the remaining

nine segments as the training set. Use different methods to do classification.

3, Record the number of mis-classified events for each iteration as mci, i = 1, 2, ...10, and

assume the number of all labeled events is tc, then the accuracy of this classification method

is 1-
∑

imci/tc.

However, we would like to know more information from the classification besides the ac-

curacy according to our objective, and hence cannot compare these classification methods

only based on the accuracies. More details need to be reviewed.

Several corresponding concepts will be considered in the comparison. They are,

True positive: Positive event which is classified as positive.
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False positive: Negative event which is classified as positive.

False negative: Positive event who is classified as negative.

True negative: Negative event who is classified as negative.

False negative is the counterpart of true positive and true negative is the counterpart of false

positive. We can derive all of the above numbers if we know true positive and false positive,

as well as the accuracy, which can be easily calculated if we know the event numbers.

Receiver operating characteristic (ROC) curves can be used to provide this information

all together. The ROC curve describes the relationship between the true positive rate and

the false positive rate at various discrimination thresholds for the classification method.

The accuracy of the classification method only shows one cutpoint on the ROC curve. A

classifier with higher accuracy does not necessarily mean better performance, since the high

accuracy may come because of the discrimination threshold we choose. With a different

discrimination threshold, the result may change dramatically. Hence a more comprehensive

standard to compare these classification methods needs to be provided. We can use the

area under the curve of ROC (AUC) as the new standard. Methods with largest AUC will

be considered as the winner. To achieve this goal, we only need to modify the previous

algorithm slightly as follows,

1, Divide the labeled data into 10 segments.

2, In the ith loop, we choose the ith segment as the test datasets, and the remaining nine

segments will be the training datasets. In the training, we use different discrimination

thresholds. In the previous algorithm, when the probability of being positive for one event

is greater than 0.5, we classify this event as positive sample. However, to make the ROC

curve, we can choose a group of threshold values from 0 to 1. For each threshold we choose,

the number of misclassified negative events will be recorded as false positives fpi, and the

number of positive events who are classified correctly will be recorded as true positive as

tpi.
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3, Calculate the true positive rate and false positive rate for each discrimination threshold

and draw ROC curve with these points.

Classification by logistic regression

We use logistic regression with lasso as the baseline method to do the classification. The

classification accuracy for two energy scales is shown in Table 4.1

Table 4.1: Energy identification accuracy by logistic regression for two-class

Real \ Predicted 20 PeV 100 PeV
20 PeV 0.86(0.06) 0.14(0.06)

100 PeV 0.19(0.05) 0.81(0.05)

The classifier is trained by two energy scales, 20 PeV and 100 PeV. We would also like to

see the classification ability of this classifier on the middle energy events, i.e., events with

50 PeV. And the result is shown in Fig. 4.5, from which we can see that 58.0% of 50 PeV

events are classified into 100 PeV and the leftover 42.0% are classified into 20 PeV.

Figure 4.5: The probability of 50 PeV events classified into 100 PeV by logistic regression
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Classification by SVM

As we have discussed before, SVM with three kernel functions will be used on our datasets

and comparisons will be made among them to decide which kernel is the most appropriate

choice for our case.

Again, we use cross-validation to select the coefficients in SVM objective function. Take

radial kernel case as an example, C and γ need to be selected. We scan C from 0.1, 1, 10,

100 and γ from 0.01, 0.1, 1, 10. The classification accuracy are listed in Table. 4.2 for

each pair of C and γ. We can conclude that C = 10 and γ = 0.1 will be used for SVM

with radial kernel.

Table 4.2: Use cross-validation to select coefficients for SVM with radial kernel

C \ γ 0.01 0.1 1 10
0.1 0.830 0.836 0.832 0.718
1 0.830 0.843 0.818 0.731

10 0.840 0.849 0.788 0.735
100 0.843 0.837 0.751 0.722

Similarly, we can choose the coefficients for polynomial kernel and sigmoid kernel. For

polynomial kernel, we have C = 10, γ = 1, a = 0 and b = 3. For sigmoid kernel, we have

C = 100, γ = 0.01 and a = −0.3.

A comparison between the three kernel function are made through ROC curves. The algo-

rithm to obtain the ROC plots are shown as follows, which will be used to generate all the

ROC curves in this section.

• Split all data points into 10 segments. For each run, use one segment as testing set

and the other nine segments as training set

• For each run, we can obtain (fpr,tpr) pairs with fixed numbers of fpr, where tpr stands

for true positive rate and fpr stands for false positive rate.
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• After 10 runs, we will have 10 tprs for each fpr. Obtain the mean of these 10 tprs as

mtpr, and standard error as stpr. Then the final ROC curves will be drawn by points

(fpr, mtpr) and stpr will be used as error bars.

The ROC curves related to three kernel functions are shown in Fig. 4.6 and Fig. 4.7. From

the plot we can conclude that kernel function is not sensitive to the classification in our case

and we will pick up radial kernel as this kernel usually gives us best result.

One phenomenon can be seen from each ROC curve, that there will be larger error bars at

the low false positive rate side, and this phenomenon holds for all the ROC curves we draw

in this paper. On the very high false positive rate side, almost all events will be classified

as positive no matter which segment we select as the testing set, and hence the error bars

there are quite small. On the other side, we do not have that restriction. And 10 testing sets

can give us very different true positive rates leading to larger error bars.

Figure 4.6: ROC curves of SVM with radial kernel, polynomial kernel and sigmoid kernel

The classification accuracy of SVM with radial kernel is listed in Table 4.3.

According to this table, we cannot see any advantage brought by SVM. But the accuracy

is calculated when we set the decision threshold at 0.5, which means when the possibility
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Figure 4.7: Semilog ROC curves of SVM with radial kernel, polynomial kernel and sig-
moid kernel

Table 4.3: Energy identification accuracy by SVM for two-class

Real \ Predicted 20 PeV 100 PeV
20 PeV 0.88(0.04) 0.12(0.04)

100 PeV 0.22(0.06) 0.78(0.06)

of one event to be classified into 100 PeV is greater than 0.5, then we will classified this

event with energy 100 PeV. However, this threshold can be modified due to our needs. For

example, if we prefer larger true positive rate for 100 PeV, we can decrease the threshold to

make more events classified into this energy scale. To make a better comparison, we still

need to take a look at the ROC curves of logistic regression and SVM, which are shown in

Fig. 4.8 and Fig. 4.9. However, still no statistically important difference can be seen from

the two plots. Although generally SVM performs better than logistic regression, it is not

the case for our data sets. In the following part of this chapter, we will provide classification

results from both two methods.

As the logistic regression case, we will use the SVM classifier generated from 20 PeV and

100 PeV events to test 50 PeV events. And the probability of these events classified into
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Figure 4.8: ROC curves of SVM and logistic regression with lasso

Figure 4.9: Semilog ROC curves of SVM and logistic regression with lasso

100 PeV is shown in Fig. 4.10, from which we can see that 67.0% of 50 PeV events are

classified into 100 PeV and the leftover 33.0% are classified into 20 PeV. From which we

can see that SVM would like to classify more 50 PeV events into 100 PeV compared to

logistic regression.
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Figure 4.10: The probability of 50 PeV events classified into 100 PeV by SVM

Classification for multiple energy scales

In this section, we use logistic regression with lasso and SVM with radial kernel to classify

three energy scales, 20 PeV, 50 PeV and 100 PeV. We merge all different distance scales

(2km, 3km, 5km,7km and 10km) for each energy scale.

The classification result of logistic regression is shown in Table 4.4 and that of SVM is

shown in Table 4.5. The algorithm to generate the results is as follows,

• Given data: events with 20 PeV, 50 PeV and 100 PeV

• To generate the result for 20 PeV, we split the events with 20 PeV into 10 segments.

For each run, combine nine segments with all events in the energy of 50 PeV and 100

PeV as the training set, and the leftover one segment as the testing set.

• Use corresponding classification method and training set to train the classifier and

then do the test using the testing set. For each run, we have the probability of events

with 20 PeV to be classified into all three energy scales. Since we have 10 runs, we

70



will get 10 numbers for each energy scale. The mean will be the final classification

probability and the number within the parentheses is the standard deviation of the 10

numbers.

• repeat the same procedures for 50 PeV and 100 PeV

Table 4.4: Energy identification accuracy by logistic regression for three-class

Test vs predicted 20 PeV 50 PeV 100 PeV
20 PeV 0.59(0.09) 0.40(0.09) 0.01(0.01)
50 PeV 0.28(0.05) 0.39(0.07) 0.33(0.08)

100 PeV 0.13(0.04) 0.27(0.05) 0.60(0.07)

Table 4.5: Energy identification accuracy by SVM for three-class

Test vs predicted 20 PeV 50 PeV 100 PeV
20 PeV 0.60(0.09) 0.38(0.10) 0.01(0.02)
50 PeV 0.32(0.08) 0.42(0.07) 0.25(0.04)

100 PeV 0.12(0.04) 0.33(0.06) 0.55(0.06)

4.4 Conclusion

In this section, two widely used classification methods, logistic regression and SVM are ap-

plied to identify the energy regime of ντ s based on the hit patterns from their corresponding

τ air showers. A comparison between the two methods is done via the ROC curves, which

shows SVM does not outperform logistic regression in our case. One possible reason is

that the events we use in the classification are a mixture of events with five different shower

development lengths. Both two methods show strong abilities to distinguish events at the

energy of 20 PeV and 100 PeV. Three-class classification is also done to give us a picture

about how well we can achieve with our classifiers to identify events into smaller energy

intervals.
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Chapter 5

Future Work

5.1 Different decay modes

As we have already discussed in Chapter 2, we have five main decay mode of τ lepton.

However, limited by the time, we only analyze the πππ mode in detail. Although we have

claimed that it should be the energy goes into the shower matters instead of the decay mode,

we would still like to verify this viewpoint by analyzing the other four decay modes in the

future.

5.2 Classification

5.2.1 Feature extraction

For each shower, we extract 8 features as described in Chapter 4. However, such extraction

lost some geometric information of the hit pattern. In the future, we will try to find out

more useful features to see if they could help improving the quality of classification.
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5.2.2 Resolution of energy estimator

Until now, we have discussed the difficulties encountered when we use the hit patterns of a

shower to decide its energy. The way to deal with that is to discretize the energy scale into

several bins, and use classification methods to decide the specific energy bin each shower

will fall in. The bin width decides the energy resolution of the classifier. For now, we

can have a high accuracy in distinguish the events with 20 PeV and 100 PeV as shown

in Table ??. But limited by the computing powers, we only did simulations for several

energies. In the future, we will run more samples to cover more energy scales, say, all

the energies from 10 PeV to 200 PeV with the step size at 10 PeV. Then we can get the

energy resolution by finding out the two closest energies who can generate us a non-trivial

classifier, which has the classification accuracy greater than 0.6 (the trivial classifier has the

mean accuracy at 0.5).

5.3 Location of detector array

The geometry requirements for our detector array is shown in Fig. 1.5. The left and right

side’s objects stand for two mountain peaks while the middle part represents a valley. The

right side’s plane OBC is the position we will mount our detector stations on, and the left

side’s mountain peak is used to suppress the environment noise.

The angles of ∠COH and ∠DAE are all about 30 degree. The distance between two

mountains AO is about 6 km and the length of valley OB should be at least 2.5 km. The

height of both peaks CH and DE should be at least 1 km.

It is believed that the possible location candidates within the US can be found in Utah or

Colorado states. And hence we download the geometry data from USGS website, which

provide us the elevation information the land grid for the two states. After we download
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the geometry data in the format of “.img”, a software named ERDAS need to be used to

transfer the “.img” files into “.grd” files which is similar to “.txt” and can be read by text

editors. The detailed explanation of these steps can be found in Appendix B.

Each dataset stands for one area region with highest and lowest elevation provided. Since

we will need the mountain peak with height at about 1 km, all the regions with the differ-

ence between highest and lowest elevation less than 1 km will be firstly excluded. And then

we will calculate the inclined angle of two neighbor grid based on their elevations together

with longitudinal and latitudinal degrees. We will need this inclination to last at 30 degree

for at least 1.7 km, while the inclination on the perpendicular direction lasts at about 0 de-

gree for at least 2.5km. This is the requirement from the mountain peak and valley length.

After we have found all the candidate peaks, we have to pick up the pairs of peaks such

that their distance is about 6 km to fulfill the requirement from valley width. And finally

we will select the location manually from all selected pairs of mountain peaks.
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Chapter 6

Conclusion

In this thesis, we have discussed some physics background about ultra-high energy neutri-

nos from extra-galactic sources. Many theories have been developed to explain but they

are all guesses at this energy scale due to the lacking of experimental observations. Hence

ultra-high energy neutrino experiments are of great necessity. The IceCube experiment has

been operating for more than eight years and has observed twenty-eight neutrino candi-

dates for extra-galactic neutrinos. But only two events are above 1 PeV. The history of

cosmic ray physics emphasizes the importance of having independent experiments to mea-

sure important quantities like the extra-galactic neutrino spectrum above 1 PeV. Therefore,

TAUWER project, with a different mechanism to detect ultra-high energy neutrinos, has

been introduced. Our study of simulation events shows that TAUWER can be optimized to

have sensitivity above 10 PeV, and the event rates we estimated show that our experiment

has more counts per year than IceCube produces at lower energy. It is also explained that

TAUWER array is modular in square kilometer array sizes and can be expanded to improve

sensitivity with relatively low cost. Classification methods from machine learning field are

applied here to estimate the energy of an individual neutrino interaction event, based on

the shower statistics. Because the energy scale is logarithmic, even the present estimator is
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good enough to give an indication of the spectral behavior of observed events. Since the

accuracy of the present energy estimator is limited by the available statistics of the training

and evaluation samples, the estimator can be made more precise by having higher sam-

ple populations that enable additional factors to be included in the estimation algorithm,

employing the same methods we used in this thesis.
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Appendix A

Codes to analyze CORSIKA data sets

A.1 The code to do pre-selection and divide each data file

shower by shower

Perl is good at texture manipulation because of its strong “regular expression” function. We

will exclude all the lines include “nan’ and then select lines with PIDs represent electron,

muon and their anti-particles. The codes “divide.pl” is shown as follows,

#! /usr/bin/perl -w
use strict;
my $count = 0;
my $flag = 0;
open ZENITH, ’>’, ”zenith 100evt.dat”;
while(<>){
chomp;
if(/nan/){
print “nan\n”;
next;
}
my @lines = split;
if(/1e\+08/){
$count++;
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print $count,”th event starts\n”;
print ZENITH $lines[4],”\n”;
open OUTPUTFILE, ’>’, ”shower$count.dat”;
$flag = 1;
}
if($flag == 1){
print OUTPUTFILE $ ,”\n” if(($lines[1]==2) || ($lines[1]==3) || ($lines[1]==5) || ($lines[1]==6));
}
if(/ -999 /){
print $count,”th event ends\n”;
close OUTPUTFILE;
$flag = 0;
last if ($count == 100);
}
}
close ZENITH;

A.2 The code to unthin the dataset

#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#include ”time.h”
#include ”omp.h”
#include ”TMath.h”
#include ”TFile.h”
#include ”TVector3.h”
#include ”TRandom3.h”
using namespace std;
const Double t Pi = 3.14159265359;

Int t main(){
clock t evstart,evend;
Double t timeregion = 0;
evstart = clock();
Int t num = 0;
Double t alpha = 30*TMath::Pi()/180;
Double t theta[100] = {0};
ifstream anglefile;
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anglefile.open(”zenith 100evt.dat”);
while(!anglefile.eof()){
anglefile >> theta[num];
theta[num] = (theta[num]*180/TMath::Pi()-90)*Pi/180;
//cout<<num<<” ”<<theta[num]<<endl;
num++;
}
anglefile.close();

//TVector3 o(-16700,0,1600); //for 2.5km;
//TVector3 o(-15500,0,1640); //for 3km;
TVector3 o(-14000,0,1690); //for 5km;
//TVector3 o(-11500,0,1790); //for 7.5km;
//TVector3 o(-9000,0,1900); //for 10km;
//TVector3 o(-4000,0,2100); //for 15km;
num = 0;

#pragma omp parallel for private(num)
for(int iter=0;iter<100;iter++){
num = 0;
Int t threadnum = omp get thread num();
TVector3 a;
a(0) = -750/tan(theta[iter]);
a(1) = 0;
a(2) = 1500;
TVector3 c;
c(0)=(-a(0)*tan(theta[iter])+o(0)*tan(alpha)+a(2)-o(2))/(tan(alpha)-tan(theta[iter]));
c(1) = 0;
c(2) = tan(theta[iter])*(c(0)-a(0))+a(2);
TVector3 n1 = c-a;
n1=n1.Unit();
TVector3 n2;

ifstream infile;
ofstream o file;
TRandom3 r1(0);
Int t ipart = 0;
Int t iflag = 0;
Double t pp = 0, px = 0, py = 0, pz = 0;
Double t x1 = 0, y1 = 0, z1 = 0, t1 = 0;
Double t wei = 0;
Double t angle = 0;
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Double t xf = 0, yf = 0, zf = 0;
Double t xg = 0, yg = 0, zg = 0;
Double t r = 0;
char infilename[100] = {0};
char outfilename[100] = {0};
sprintf(infilename,”shower%d.dat”,iter+1);
sprintf(outfilename,”shower%d unthinned.dat”,iter+1);
infile.open(infilename,ifstream::in);
o file.open(outfilename);
while(!infile.eof()){
infile>>ipart>>iflag>>pp>>px>>py>>pz>>x1>>y1>>z1>>t1>>wei;
if(infile.fail()) break;
num++;
wei = TMath::Nint(wei);
if(wei < 1) continue;
x1=x1/100;
y1=y1/100;
z1=z1/100;
if(iflag == 2 —— iflag == 3 —— iflag == 5 —— iflag == 6 —— iflag == 14 —— iflag
== 15){
xf = ((c(2)-a(2))*c(0)/(c(0)-a(0))+x1/tan(theta[iter])+z1-c(2))/((c(2)-a(2))/(c(0)-a(0))+1/tan(theta[iter]));
yf = 0;
zf = z1-(xf-x1)/tan(theta[iter]);
r = sqrt((x1-xf)*(x1-xf)+y1*y1+(z1-zf)*(z1-zf));
TVector3 f(xf,yf,zf);
TVector3 p(x1,y1,z1);
TVector3 mom(px,py,pz);
n2=p-f;
n2=n2.Unit();
TVector3 n3 = n1.Cross(n2);
n3=n3.Unit();
Double t a1 = mom*n1;
Double t a2 = mom*n2;
Double t a3 = mom*n3;
o file<<iflag<<” ”<<pp<<” ”<<px<<” ”<<py<<” ”<<pz<<” ”<<x1<<” ”<<y1<<”
”<<z1<<” ”<<t1<<endl;
Double t beta1 = pp*1000;//find the speed of the track
if(iflag == 2 —— iflag == 3) beta1 = beta1/sqrt(beta1*beta1+0.511*0.511);
if(iflag == 5 —— iflag == 6) beta1 = beta1/sqrt(beta1*beta1+105.7*105.7);
if(iflag == 14 —— iflag == 15) beta1 = beta1/sqrt(beta1*beta1+938.3*938.3);
for(Int t np=0;np<wei-1;np++){
angle = r1.Uniform(0,2*Pi);
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xg = 0;
yg = r*cos(angle);
zg = r*sin(angle);
TVector3 g(xg,yg,zg);
g.RotateY(-theta[iter]);
xg = g(0);
yg = g(1);
zg = g(2);
g += f;
xg = g(0);
yg = g(1);
zg = g(2);
TVector3 n4 = g-f;
n4 = n4.Unit();
TVector3 n5 = n1.Cross(n4);
TVector3 momg = a1*n1+a2*n4+a3*n5;
momg=momg.Unit()*pp;
Double t xk = 0, yk = 0, zk = 0;
Double t p1 = 0, p2 = 0, p3 = 0;
p1 = momg(0);
p2 = momg(1);
p3 = momg(2);
xk = ((p3*xg)/p1+o(2)-o(0)*tan(alpha)-zg)/(p3/p1-tan(alpha));
yk = p2*(xk-xg)/p1+yg;
zk = p3*(xk-xg)/p1+zg;
//time difference
Double t delta dis = sqrt((xg-xk)*(xg-xk)+(yg-yk)*(yg-yk)+(zg-zk)*(zg-zk));
Double t speed = 3.0*pow(10.0,8.0)*beta1;
Double t delta time = delta dis/(speed);
if(xk<xg)
delta time = -delta time;
Double t newt1 = t1+delta time;
o file<<iflag<<” ”<<pp<<” ”<<p1<<” ”<<p2<<” ”<<p3<<” ”<<xk<<” ”<<yk<<”
”<<zk<<” ”<<newt1<<endl;
}
}
}
o file.close();
infile.close();
}
evend = clock();
timeregion = (Double t)(evend-evstart);
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return 0;
}

A.3 The code to analyze showers

As discussed in Chapter 6, we would like to provide the two versions of code to analyze

hit patters of showers. The first version is names as PC version, which reads the data files

line by line directly from the hard drive. Hence it has low memory requirement and can

be run on local machines. The second version is named as blacklight version, which firstly

read all the data files into memory and then scan the files stored in memory instead of hard

drive. The blacklight version requires large memory and can save a great amount of time

on complexity systems such as Pittsburgh Supercomputing Center, but it will not helpful

on local machines.

For simplicity, we only provide the blacklight version as follows, and the PC version can

be obtained by replacing the buffer read code as discussed in Chapter 6.

#include <cstdio>
#include <cstdlib>
#include <streambuf>
#include <string>
#include <iostream>
#include <fstream>
#include <time.h>
#include ”omp.h”
#include ”TMath.h”
#include ”TFile.h”
#include ”TRandom3.h”
#include ”TVector3.h”
#include ”TH2.h”
#include ”TCanvas.h”
#include ”TStyle.h”
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using namespace std;

const Double t Pi = 3.14159265358979312;
const Int t nshift = 1;
const Double t mydistance = 40;

struct membuf : std::streambuf {
membuf(char* begin, char* end) {
this->setg(begin, begin, end);
}
};

Int t shiftcount(Double t x1, Double t y1, Double t x2, Double t y2, Double t pid, Int t
i, Int t j, Int t k, Int t& num hit, Int t (&det tot)[1][640], Int t (&detel)[1][640], Int t
(&detmu)[1][640], Int t (&detpr)[1][640], Int t (&detot)[1][640]){
Int t num = 0;
Int t flag = 0;
Double t x = 0, y = 0;
if( (( (x1>=-0.2)&&(x1<=0.2) ) && ( (y1>=0)&&(y1<=0.2) )) || (( (x2>=-0.2)&&(x2<=0.2)
) && ( (y2>=0)&&(y2<=0.2) )) ){
if(pid==2 || pid==3 || pid==5 || pid==6 || pid==14 || pid==15){
det tot[k][i*40+j]++;
num hit++;
if(pid==2 || pid==3) detel[k][i*40+j]++;
else if(pid==5 || pid==6) detmu[k][i*40+j]++;
else if(pid==14 || pid==15) detpr[k][i*40+j]++;
else {
detot[k][i*40+j]++;
cout�”strange pid: ”�pid�endl;
}
if(( (x1>=-0.2)&&(x1<=0.2) ) && ( (y1>=0)&&(y1<=0.2) )) flag += 1;
if(( (x2>=-0.2)&&(x2<=0.2) ) && ( (y2>=0)&&(y2<=0.2) )) flag += 2;
}
}
return flag;
}

Int t main(int argc, char* argv[]){
if(argc!=5){
cout�”Format Error, Format should be: ./detectors 2km 0 5 100”�endl;
return -1;
}
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for (int i = 0; i < argc; ++i) {
std::cout� argv[i]� std::endl;
}
const Int t showernum = (const Int t)atof(argv[4]);

Double t angleshift = atof(argv[2])*TMath::Pi()/180;
TRandom3 r(0);
Double t alpha = 30*TMath::Pi()/180;
Double t meantheta = 2.25*TMath::Pi()/180;

Double t *theta = new[showernum] Double t;
Int t num=0;
ifstream anglefile;
string infilepath1 = argv[1];
char infilename1[100] = {0};
sprintf(infilename1,”pipipi %s data/zenith 100evt.dat”,infilepath1.c str());
anglefile.open(infilename1);
while(!anglefile.eof()){
anglefile�theta[num];
theta[num] = (theta[num]*180/TMath::Pi()-90)*Pi/180;
num++;
}
anglefile.close();

Int t i=0, j=0, k=0;

TVector3 o;
if(!strcmp(argv[1],”2km”))
o.SetXYZ(-16700,0,1600);
else if(!strcmp(argv[1],”3km”))
o.SetXYZ(-15500,0,1640);
else if(!strcmp(argv[1],”5km”))
o.SetXYZ(-14000,0,1690);
else if(!strcmp(argv[1],”7km”))
o.SetXYZ(-11500,0,1790);
else if(!strcmp(argv[1],”10km”))
o.SetXYZ(-9000,0,1900);
else if(!strcmp(argv[1],”15km”))
o.SetXYZ(-4000,0,2100);
else{
cout�”ERROR!”�endl;
cout�argv[1]�endl;
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return -1;
}
TVector3 meana;
meana(0) = -750/tan(meantheta);
meana(1) = 0;
meana(2) = 1500;
TVector3 meanc;
meanc(0)=(-meana(0)*tan(meantheta)+o(0)*tan(alpha)+meana(2)-o(2))/(tan(alpha)-tan(meantheta));
meanc(1) = 0;
meanc(2) = tan(meantheta)*(meanc(0)-meana(0))+meana(2);
TVector3 meann = meanc-meana;
Double t d0 = 0.2/tan(7*Pi/180);
//Calculate the coodinate of each pair of detectors;
Double t det1x[640] = {0};
Double t det1y[640] = {0};
Double t det1z[640] = {0};
Double t det2x[640] = {0};
Double t det2y[640] = {0};
Double t det2z[640] = {0};
for(i=0;i<16;i++){
for(j=0;j<40;j++){
det1z[i*40+j] = meanc(2)+mydistance/2-8*mydistance+i*mydistance;
det1x[i*40+j] = (det1z[i*40+j]-o(2))/(tan(alpha))+o(0);
det1y[i*40+j] = mydistance*j-20*mydistance+mydistance/2;
det2x[i*40+j] = det1x[i*40+j]-d0*cos(meantheta);
det2y[i*40+j] = det1y[i*40+j];
det2z[i*40+j] = det1z[i*40+j]-d0*sin(meantheta);
}
}

#pragma omp parallel for private(num, i, j, k) schedule(dynamic,1)
for(Int t iter=0; iter<showernum;iter++){
TVector3 a;
a(0) = -750/tan(theta[iter]);
a(1) = 0;
a(2) = 1500;
TVector3 c;
c(0)=(-a(0)*tan(theta[iter])+o(0)*tan(alpha)+a(2)-o(2))/(tan(alpha)-tan(theta[iter]));
c(1) = 0;
c(2) = tan(theta[iter])*(c(0)-a(0))+a(2);
TVector3 n = c-a;
n=n.Unit();
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TVector3 direcshift = n;
direcshift.RotateY(-TMath::Pi()/2);

Int t det tot[nshift][640] = {0};
Int t detel[nshift][640] = {0};
Int t detmu[nshift][640] = {0};
Int t detpr[nshift][640] = {0};
Int t detot[nshift][640] = {0};
Int t flag = 0;
char infilename[100] = {0};
char inclinehit[100] = {0};
char outfiletime[100] = {0};
ofstream o file;
ofstream o file time;
Int t threadnum = omp get thread num();
sprintf(infilename,”pipipi %s data/shower%d unthinned.dat”,infilepath1.c str(),iter+1);
sprintf(inclinehit,”shower%d incline hit.dat”,iter+1);
sprintf(outfiletime,”shower%d time hit.dat”,iter+1);
filebuf *pbuf;
ifstream filestr;
long size;
filestr.open(infilename,ios::binary);
pbuf = filestr.rdbuf();
size = pbuf->pubseekoff(0,ios::end,ios::in);
pbuf->pubseekpos(0,ios::in);
char *buffer = new[size] char;
pbuf->sgetn(buffer,size);
filestr.close();
membuf sbuf(buffer,buffer+size);
istream infile(&sbuf);
o file.open(inclinehit);
o file time.open(outfiletime);
Double t pid = 0;
Double t pp = 0, px = 0, py = 0, pz = 0;
Double t x1 = 0, y1 = 0, z1 = 0, t1 = 0;
Double t x2 = 0, y2 = 0, z2 = 0;
TVector3 incline1;
TVector3 hit1, hit2;
Int t num hit = 0;
while(!infile.eof()){
num++;
infile�pid�pp�px�py�pz�x1�y1�z1�t1;
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if(infile.fail()) break;
if(t1<0) continue;
Double t tmpx = x1+atof(argv[3]);
Double t tmpy = y1;
Double t tmpz = z1;

x1 = (o(2)+pz*tmpx/px-o(0)*tan(alpha)-tmpz)/(pz/px-tan(alpha));
y1 = py*(x1-tmpx)/px+tmpy;
z1 = pz*(x1-tmpx)/px+tmpz;

TVector3 xangleshift(x1,y1,z1);
TVector3 pangleshift(px,py,pz);
xangleshift = xangleshift-c;
xangleshift.Rotate(angleshift,direcshift);
pangleshift.Rotate(angleshift,direcshift);
xangleshift = xangleshift+c;
px = pangleshift(0);
py = pangleshift(1);
pz = pangleshift(2);
x1 = xangleshift(0);
y1 = xangleshift(1);
z1 = xangleshift(2);
if(px == 0) continue;
for(i=0;i<16;i++){
hit1(0) = (pz*x1/px+n(0)*det1x[i*40]/n(2)+det1z[i*40]-z1)/(pz/px+n(0)/n(2));
hit1(1) = py*(hit1(0)-x1)/px+y1;
hit1(2) = pz*(hit1(0)-x1)/px+z1;
hit2(0) = (pz*x1/px+n(0)*det2x[i*40]/n(2)+det2z[i*40]-z1)/(pz/px+n(0)/n(2));
hit2(1) = py*(hit2(0)-x1)/px+y1;
hit2(2) = pz*(hit2(0)-x1)/px+z1;

Double t tmp1 x,tmp1 y,tmp1 z,tmp2 x,tmp2 y,tmp2 z;
for(j=0;j<40;j++){
tmp1 y = hit1(1)-det1y[i*40+j];
tmp1 z = hit1(2)-det1z[i*40+j];
tmp2 y = hit2(1)-det2y[i*40+j];
tmp2 z = hit2(2)-det2z[i*40+j];
for(k=0;k<nshift;k++){
flag = shiftcount(tmp1 y,tmp1 z/cos(theta[iter]),tmp2 y,tmp2 z/cos(theta[iter]),pid,i,j,k,num hit,
det tot, detel,detmu,detpr,detot);
if(flag > 0){
incline1(0) = x1;
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incline1(1) = y1;
incline1(2) = z1;
incline1 = incline1-c;
incline1.RotateY(-60*Pi/180);
o file�pid�” ”�incline1(0)�” ”�incline1(1)�” ”�incline1(2)�’\n’;
o file time�pid�” ”�i�” ”�j�” ”�” ”�flag�” ”�det1x[i*40+j]�” ”�det1y[i*40+j]�”
”�det1z[i*40+j]�” ”�det2x[i*40+j]�” ”�det2y[i*40+j]�” ”�det2z[i*40+j]�” ”�pp�”
”�px�” ”�py�” ”�pz�” ”�x1�” ”�y1�” ”�z1�” ”�t1�’\n’;
flag = 0;
}
}//end nshift
}//end j
}//end i
}//end while
o file.close();
o file time.close();

ofstream o file 1;
ofstream o file 2;
ofstream o file 3;
ofstream o file 4;
char detectorhit[40] = {0};
char detectorhit el[40] = {0};
char detectorhit mu[40] = {0};
char detectorhit pr[40] = {0};
char detectorhit ot[40] = {0};
sprintf(detectorhit,”shower%d detectors hit.dat”,iter+1);
sprintf(detectorhit el,”shower%d detectors el hit.dat”,iter+1);
sprintf(detectorhit mu,”shower%d detectors mu hit.dat”,iter+1);
sprintf(detectorhit pr,”shower%d detectors pr hit.dat”,iter+1);
sprintf(detectorhit ot,”shower%d detectors ot hit.dat”,iter+1);
o file.open(detectorhit);
o file 1.open(detectorhit el);
o file 2.open(detectorhit mu);
o file 3.open(detectorhit pr);
o file 4.open(detectorhit ot);
for(k=0;k<nshift;k++){
for(i=0;i<16;i++){
for(j=0;j<40;j++){
o file�det tot[k][40*i+j]�” ”;
o file 1�detel[k][40*i+j]�” ”;
o file 2�detmu[k][40*i+j]�” ”;
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o file 3�detpr[k][40*i+j]�” ”;
o file 4�detot[k][40*i+j]�” ”;
}
}
o file�’\n’;
o file 1�’\n’;
o file 2�’\n’;
o file 3�’\n’;
o file 4�’\n’;
}
o file.close();
o file 1.close();
o file 2.close();
o file 3.close();
o file 4.close();

char detectorplot[40] = {0};

for(k=0;k<nshift;k++){
for(i=0;i<640;i++){
det tot[k][i] = 0;
detel[k][i] = 0;
detmu[k][i] = 0;
detpr[k][i] = 0;
detot[k][i] = 0;
}
}
num = 0;
num hit = 0;
flag = 0;
delete[] buffer;
cout�”New Shower”�endl;
}
delete[] theta;
return 0;
}

And we have run a test job for both versions on blacklight. For PC version, the run time is,

Elapsed Time : 2406 Seconds
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User CPU Time : 1488.6680 Seconds

System CPU Time : 28943.3830 Seconds

Maximum Core Memory Used : 27.8672 Mbytes

Characters Read : 94.7131 Mbytes

Characters Written : 7903.5594 Mbytes

Logical I/O Read Requests : 12734

Logical I/O Write Requests : 104824829

CPU Delay : 1200.4635 Seconds

Block I/O Delay : 105.2895 Seconds

For blacklight version, the run time is,

Elapsed Time : 804 Seconds

User CPU Time : 4166.7640 Seconds

System CPU Time : 6203.0470 Seconds

Maximum Core Memory Used : 121.6680 Mbytes

Characters Read : 94.5451 Mbytes

Characters Written : 7903.4014 Mbytes

Logical I/O Read Requests : 672

Logical I/O Write Requests : 1011579

CPU Delay : 15.8707 Seconds

Block I/O Delay : 11.6889 Seconds

From the two results we can see that running speed of blacklight version is largely improved

compared to PC version due to the significant decrease of I/O times.

The script we use for RAMDISK mechanism is,
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#! /bin/csh
#PBS -l walltime min=10:50:00
#PBS -l walltime max=12:00:00
#PBS -l ncpus=256
#PBS -j oe
#PBS -q batch
set echo
set EXE=detectors
set BINDIR=/usr/users/6/tminuit/TAUWER/job 03 15 2014
set RESULT=/brashear/tminuit/inclined 30degree/2E17 40m
set WORKDIR=$SCRATCH RAMDISK
setenv OMP NUM THREADS PBS $NCPUS
cd $WORKDIR
cp $BINDIR/$EXE .
mkdir 0degree 10degree 20degree 30degree 40degree 50degree 60degree 70degree
ja
omplace -nt $OMP NUM THREADS ./$EXE 10km 0 0 80 /brashear/tminuit/unthin/2E17
0degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 10 0 80 /brashear/tminuit/unthin/2E17
10degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 20 0 80 /brashear/tminuit/unthin/2E17
20degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 30 0 80 /brashear/tminuit/unthin/2E17
30degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 40 0 80 /brashear/tminuit/unthin/2E17
40degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 50 0 80 /brashear/tminuit/unthin/2E17
50degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 60 0 80 /brashear/tminuit/unthin/2E17
60degree &
omplace -nt $OMP NUM THREADS ./$EXE 10km 70 0 80 /brashear/tminuit/unthin/2E17
70degree &
wait
ja -cshlt
mkdir pipipi$ $10km
mv *degree pipipi 10km/.
mv pipipi 10km $RESULT/.
unset echo

And the time report is shown as follows, which tells us the RAMDISK will bring us about
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85% improvement.

Elapsed Time : 117 Seconds

User CPU Time : 1212.9080 Seconds

System CPU Time : 10.4760 Seconds

Maximum Core Memory Used : 123.1328 Mbytes

Maximum Virtual Memory Used : 634.5312 Mbytes

Characters Read : 94.3445 Mbytes

Characters Written : 7903.4140 Mbytes

Logical I/O Read Requests : 134

Logical I/O Write Requests : 1011615

CPU Delay : 0.3368 Seconds

Block I/O Delay : 0.0000 Seconds
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Appendix B

Steps to obtain readable geometry

datasets

B.1 Download geometry data

We have selected Colorado and Utah states as the region to find ideal position for our

detector array. Elevation maps about the two states are downloaded from USGS website.

The following steps show the details about that and the same methods can be used to other

states if we decide to enlarge our search region in the future.

• Go to national map viewer and select the interested region.

• Choose “Elevation” and click next. Then download the 1/3 arc-second .img files.

B.2 Tranfer .img to .grd via ERDAS

This process is under the instruction of Debaleena Majumdar. Since the downloaded img

files cannot be directly used by programs such as C++ or python, we need to transfer these
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files into grd files by ERDAS and then do future analysis. The steps to generate grd files

are listed as follows,

• Create a 2D Viewer by File→New→2D View. And load img file into ERDAS via

this 2D Viewer by File→Open→Raster Layer.

• Go to File→Export Data. And select export format as GRD (Surfer:ASCII/Binary).

Click save, and a new window will come out. Choose the ASCII GRD File option,

and click OK. Then the grd file will be generated.
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Appendix C

Computing techniques

In this chapter, we will discuss the computing techniques we applied in our research, such

as multi-thread programming, and ramdisk in supercomputer center.

C.1 Multithreading programming

Nowadays, most of the desktops have used CPUs with multi-cores, and each core can run

one to two threads. Take the cpu I use as an example. It is i7-3770k produced by Intel, with

4 cores in it and each core can handle two threads. Hence this cpu can run eight parallel

jobs at the same time, which could largely shrink the computing time.

The ideal speed should be eight times faster. However, several drawbacks could reduce the

speed of multithreading. One major point is, the intermediate variable within each thread

may need to communicate each other which is very time consuming. The running time

is usually decided by the slowest thread, since all the other threads need to wait for it no

matter how fast they finish their own jobs. If we can reduce the communication between

different threads and assign approximately equal load for each thread, these drawbacks can

be largely suppressed.
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Our jobs fortunately fulfill the requirements to suppress the drawbacks of multithreading.

For each energy scale at specific decay mode, we will generate about 100 showers from

CORSIKA, and the main information we want to obtain from them is to find out the hit

pattern of each shower, which requires minimal communication between the analysis of

two showers. At the same time, since the showers are simulated from the same initial

condition, many of them will have similar shower size in general even though big variance

between showers can exist. Based on that, we can see that the multithreading will be of

great help in our analysis.

There are several popular API (application programming interface) available to implement

the multithreading such as OpenMP, MPI and pthreads. We apply OpenMP in our jobs.

And it can be done simply by adding the following short code in front of the for loop where

we analysis the showers one by one.

#pragma omp parallel for private(num, i, j, k) (C.1)

Where the private means that the variables num, i, j and k used in each thread are totally

different even though they are in the same names.

Another improvement can be made through dynamic mechanism by modifying the previous

code as follows,

#pragma omp parallel for private(num, i, j, k) schedule(dynamic,1) (C.2)

In the previous case shown in (C.1), the computer will assign each shower a specific thread

number before they are analyzed. Since we have eight threads available for i7-3770k CPU

and 100 shower waiting for run, the computer will assign shower i + 8j to thread i, where

i = 1, 2, ...8, j = 0, 1, ... and i + 8j ≤ 100. We find a problem when running in this static
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mode. Some threads have to run many large showers and could be really slow while the

others threads are just waiting there since the shower assigned to them are very small due

to the variance in the 100 showers. If we apply the dynamic mechanism as shown in (C.2),

such situation can be diminished. The computer will only assign shower 1 to shower 8 to

thread 1 to thread 8 correspondingly in the beginning, then the next shower will be assigned

dynamically to the thread who just finishes the previous analysis job.

Table. C.1 gives us the run time of above three mechanisms on analyzing 100 showers

with 100 PeV, where “Single” means no multithreading is applied, “Static” means static

schedule with eight threads and “Dynamic” means dynamic schedule for eight threads.

From the table we can see that the applying of multithreading gives us running speed about

Table C.1: Run time of three mechanisms to show the benefit of dynamic multithreading

Mechanism Run time
Single 666m58.216s
Static 217m32.958s

Dynamic 174m23.583s

three times faster and the dynamic schedule provides 20% improvement compared to the

static schedule.

C.2 Pittsburgh Supercomputing Center (PSC)

To speed up the analysis, we need the blacklight system at PSC. The code we run on

blacklight is the same as the code we run on my desktop. But in blacklight, we can apply

for much more cores and each core can have one thread. Therefore the ideal running speed

should be much faster. The unit available in blacklight is called blade, and each blade

includes 16 cores and 128 GB memory. We are required to apply for at least one blade or

more, which provides a huge amount of memory. For example, if we apply for two blades,
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then we could have 32 threads and 256 GB memory while the typical size of 100 showers is

less than 100 GB. This characteristic will be made use of and the details will be explained

in this section.

At first, we use the code from my desktop directly to run on blacklight. However, the speed

is much lower than we expected. From the running report we find that it is the large amount

of I/O result in the slow speed. Therefore we need to modify the code to reduce the I/O

times.

The PC version code can read in dataset line by line directly from the hard driver where

these data files are stored, which is shown as follows,

ifstream infile;

infile.open(infilename);

while(!infile.eof()){

infile�pid�pp�px�py�pz�x1�y1�z1�t1;

...

} (C.3)

The modification we made is to read in all data files into the memory before we start to

analyze them. And then scan the file stored in memory line by line. One requirement is

of course, there are enough memeory to store all these data files, and we do have that on
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blacklight as discussed in the first paragraph. The code to do that is shown as follows,

filebuf *pbuf;

ifstream filestr;

long size;

filestr.open(infilename,ios::binary);

pbuf = filestr.rdbuf();

size = pbuf→pubseekoff(0,ios::end,ios::in);

pbuf→pubseekpos(0,ios::in);

char *buffer = new[size] char;

pbuf→sgetn(buffer,size);

filestr.close();

membuf sbuf(buffer,buffer+size);

istream infile(&sbuf); (C.4)

where the infilename is the dataset we will read into the memory. And now we can easily

read the variables line by line from memory just as the while loop shown in (C.3).

The experiment shows that this procedure can largely decrease the running time on black-

light. However, the two versions of codes spend very similar time on my local desktop. The

reason for that is on local machine, the contents read from the hard drive is time-consuming

but the number of I/O does not matter. On the other side, for computers with huge com-

plexity system and large amount of nodes such as blacklight, the number of I/O time does

matter. Hence in the future if we want to run the code on our own desktop, we do not have

to use the buffer-reading, which means low memory size is required. But if we want to

use blacklight, it is better to use the buffer-reading version which can reduce the time three
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times in our case.

Another important improvement is suggested by the expert from PSC, David O’Neal, which

is not directly related to our codes but the blacklight system. A technique called RAMDISK

can be applied. The main idea is to make use of the available memory to form a “disk”,

which will be used to store all the results generated by our code. However, this ramdisk

will disappear when our blade allocation ends, so we have to copy all the files on the

ramdisk to normal hard disk before the job ends. The advantage for RAMDISK is because

the Memory I/O speed is usually 100 times faster than that of the hard disk. As well

as we have enough memory, this technique could help greatly. A comparison of running

time based on a test job is listed in Table. C.2, where “PC” means the version we run on

local machine, “blacklight” means the version we use buffer-reading, and “RAMDISK”

represents the combination of buffer-reading and RAMDISK technique. And the last one

has achieved 20 times improvement.

Table C.2: Run time of three mechanisms to show the benefit of RAMDISK

Mechanism Run time (s)
PC 2406

Blacklight 804
RAMDISK 117

The complete code of blacklight version and the time analysis report can be found in Ap-

pendix A.3.

C.3 More about blacklight

We have discussed a lot of benefits brought by the supercomputing center in last chapter.

However, one big drawback of blacklight must be pointed out here. In the script we have

attached in the Appendix to apply for the allocation of computing units, we also need to
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request the time we need to use. This time will including the running time of the program

and the leftover jobs such as copy the generated files from ramdisk to hard drive. If the real

time exceeds the time we requested, the whole job will be abandoned with no intermediate

results saved. Therefore, a precise estimation of running time is needed. However, different

jobs will need different running time. For examples, showers with different energies could

result in a significant difference in the size of data files. Such phenomenon largely increases

the difficulty to estimate the running time. For now, I use a relatively large time request,

which also leads to some waste. In the future, better estimation way should be developed

to solve this problem.
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Appendix D

Previous analysis work: Fitting CDF

Upsilon Mass Data

The Υ mesons consist of bound states with a b quark and an anti-b-quark. They have orbital

angular momentum at zero, spin angular momentum at 1 and negative parity. Strong force

is the binding force of the Υ system, and hence we can use the Υ mesons to learn the char-

acteristics of strong interactions, which can contribute to the understanding of Quantum

Chromodynamics (QCD).

The CDF detector at the Fermilab Tevatron, using events generated in pp interactions at

1.96 TeV, can provide us the largest samples for three Υ states: the ground state Υ(1S), and

two stable radial excitations Υ(2S) and Υ(3S). The Υ mesons can decay into a pair of µ+µ−

by annihilation of the quark and antiquark. We can therefore obtain the mass distribution

of the Υ mesons by calculating the invariant mass of the muon pair. However, many other

ways can bring us the muon pair. Hence there is background noise in the mass distribution

of the Υ mesons. Meanwhile, the signal peaks corresponding to the three Υ states cannot

be fit simply by one Gaussian distribution due to apparatus resolution, kinematic selection

cuts, and quantum electrodynamic radiative effects. This Appendix describes a study to use
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the combination of different functional forms to fit the mass distribution curves of three Υ

states from Monte Carlo simulation. After that, we can have the function forms to describe

both the mass distribution of three Υ mesons, as well as the background noise.

D.1 Types of fitting functions

To determine the Υ(nS) yields in the various cosθ∗ bins for data, we rely on fitting fixed

signal shapes to the distribution, along with a polynomial background. We determine the

signal shapes by fitting Monte Carlo events for each Υ(nS) state after processing through

CdfSim and Production. Trigger effects are developed from data and are emulated in the

BSTntuple step. The resulting mass distributions are binned into histograms and are fit by

a smooth functional form.

We studied many different fitting functions and their combinations to fit the upsilon mass

distribution. The basic shapes are Gaussian (G), Crystal Ball (CB), Modified Crystal Ball

(MCB) or Johnson SU function. The functional forms used and the paramters involved are

shown in the following equations.

PDFG =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(D.1)
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δ
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√
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+ 1
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−1/2
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+
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PDFCB =
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PDFMCB =
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(D.4)

Single function shapes did not fit well at all, so we used combinations of functions: 2G,

3G, JSU+G, JSU+2G, CB+G, JSU+CB. We chose JSU+CB as our fitting function, because

it alone can fit all the data distributions successfully with no fit status complaints from Mi-

nuit and with suitable χ2 values. The other options all led to MINUIT fit errors, either an

inaccurate error matrix or an error matrix that is not positive-definite. The fit parameters

for each pT and cosθ∗ bin for each state are given in Tables 1-3. The label for each column

is (pT bin) (cosθ∗bin). The column at left gives the name of the fit variable as it appears in

the CB (first four entries) or JSU function definition. There are a pair of numbers for each

entry: the fit value and its uncertainty. The mass centroids for the CB (Et) and JSU (ε)

are fixed in all fits (zero uncertainty) to values determined by letting these parameters float,

then fixing them to the mean values for the ensemble of distributions. The uncertainties in

these parameters are always very small when they float.

To illustrate the difference that the tail function of the CB makes, Fig. 1 shows successful

fits results using two different fitting functions JSU+G and JSU+CB for Υ(1S) events gen-
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erated with | y |< 0.8 and 3 < pT < 4 GeV/c. The histogram data are the same in both

plots, all events which survive production and cut selection, integrated over decay angles.

The JSU+CB choice has a much better χ2 value for the fit, in accord with our observation

above that it alone behaves well for all the mass fits in pT and cosθ∗ bins.

In order to prepare for a study of possible mass shifts and width scale factors between

data and Monte Carlo, we also made fits to data integrated over all decay angles in all pT

bins for the three Υ(nS) states.

For the 1S and 3S cases the JSU+CB function gave a good fit to the integrated data as well

as to the angle-binned data, as shown in the example of Fig. 1. However, for 2S case, we

observed indication of a shape discrepancy in the deviation between the Monte Carlo dis-

tribution and the bin integral of the JSU+CB fit function. The effect is subtle, but to ensure

good behavior in the fit function for scale factor studies we defined a modified crystal ball

function (MCB) for the 2S case by introducing a second Gaussian with the same centroid

but different width and normalization. In Figure 2 one sees that using a JSU+MCB function

improves the agreement between the MC distribution and the fit compared to JSU+CB. The

difference is small but noticeable for these statistics. The parameterization of the MCB is

given in Eq.(4). The forms for both JSU+CB and JSU+MCB functions are well suited for

mass shift and scale factor studies, described in the body of this note. Applying the MCB

to the 1S and 3S distributions did not produce a significant improvement in the fit χ2. The

parameters for the fit functions for the angle-integrated distributions are given in Table 4

and the plots are shown in Figs. 3-5 for all three states in all pT bins.

The mass fits in individual cosθ∗ bins for each pT bin of the 1S data are shown in Fig.

3. For the 2S, they are in Fig. 4. For the 3S they are in Fig. 5.1.

1In Minuit all bins are used. In evaluating the fit we calculate χ2 only for bins with population content
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Figure D.1: 1S 01 pt bin

>25. In all cases the peak bin population exceeds 6000 events/bin.
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Figure D.2: 2S 0 pt bin
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D.2 Results

The following tables describe fitting results for 1S, 2S and 3S states of upsilon. We apply

JSU+CB for 1S and 3S, and JSU+MCB for 2S.

TABLE 1: Υ(1S)

1S_10MeV 0_0 0_1 0_2 0_3 0_4 0_5 0_6 0_7 0_8 0_9

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0 0 0

sigma 0.0425089 0.038882 0.0411788 0.0413963 0.0401254 0.0409778 0.0402457 0.0426179 0.0396393 0.0330786

0.00126944 0.00163081 0.00112434 0.00058379 0.00092477 0.00059822 0.00064427 0.00167435 0.00057791 0.00400483

n 0.861583 1.11066 0.970489 0.992449 1.02875 0.942269 1.00726 0.840479 1.11715 0.87432

0.0609162 0.0657177 0.0579229 0.0708235 0.0713722 0.0690353 0.0712068 0.090559 0.089384 0.186826

alpha 1.80875 1.52522 1.73533 1.85772 1.75655 1.87728 1.82102 1.88804 1.79899 1.3277

0.0787825 0.100161 0.10093 0.0419161 0.066118 0.0436722 0.0465132 0.112882 0.0439253 0.303074

gamma 0.209741 0.17329 0.181144 0.114666 0.145696 0.0738587 0.0386369 0.274812 -0.226844 0.247094

0.0298975 0.0293473 0.0471431 0.0688773 0.0450568 0.0883749 0.122295 0.0355258 0.37183 0.0278401

delta 1.65888 2.19359 1.86026 1.2992 1.64155 1.29727 1.47136 1.54277 1.06891 4.05382

0.228158 0.322157 0.346737 0.164842 0.205134 0.18809 0.249385 0.270192 0.183726 1.83465

lamda 0.0666344 0.091333 0.0745187 0.0483414 0.0647098 0.04908 0.0545291 0.0565496 0.0340228 0.169468

0.0116191 0.015732 0.0165737 0.00844095 0.00997748 0.00973175 0.0125165 0.0105802 0.0110062 0.0803961

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0 0 0

a_crystal 0.582759 0.511462 0.590063 0.71461 0.607444 0.766248 0.75842 0.587379 0.868392 0.30193

0.0746312 0.070998 0.106369 0.0661638 0.0730565 0.0601129 0.078395 0.0910653 0.0634969 0.0926775

chisq 43.1838 52.4812 62.2024 49.827 62.9288 57.743 54.8929 47.2233 50.0251 27.2671

Bin 70 62 65 64 59 60 52 46 44 31

MaximumX 9.46025 9.46001 9.46015 9.46116 9.46074 9.46037 9.46059 9.46029 9.46141 9.45865

1S_10MeV 1_0 1_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0 0 0

sigma 0.040174 0.0389165 0.0438454 0.0399275 0.0429724 0.0413121 0.0412828 0.0404976 0.0482938 0.0394459

0.00226208 0.00128043 0.00091725 0.00169598 0.00067608 0.00080105 0.00068322 0.00076347 0.00388304 0.00362961

n 0.905437 1.15547 0.876667 1.01777 0.888587 0.855163 0.99855 1.20957 1.35879 0.799432

0.0777192 0.0662775 0.061799 0.0759942 0.0660951 0.0639603 0.0923418 0.0810603 0.316553 0.233109

alpha 1.64451 1.57014 1.85484 1.71813 1.92059 1.88388 1.83699 1.7 1.25579 1.67212

0.119183 0.0728748 0.0655761 0.0915831 0.0460591 0.0523314 0.0547661 0.0543494 0.493496 0.241329

gamma 0.180743 0.120256 0.156702 0.171382 0.100292 0.123245 0.0776814 0.0664577 0.294484 0.207197

0.0258955 0.0392595 0.0573976 0.0381013 0.0590983 0.0630558 0.105968 0.121055 0.020046 0.036907

delta 2.0417 2.33786 1.50931 1.90047 1.25923 1.51175 1.16821 1.62493 3.24239 2.09103

0.351509 0.404935 0.228227 0.375672 0.144472 0.226763 0.219515 0.303637 0.792767 0.33765

lamda 0.0878081 0.103291 0.0562999 0.0795927 0.045121 0.0583368 0.0443831 0.0629225 0.122184 0.0830137

0.018036 0.0205184 0.0108161 0.0193004 0.00689335 0.0114213 0.0110989 0.0154411 0.033538 0.015425

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0 0 0

a_crystal 0.475808 0.584463 0.64982 0.58577 0.709483 0.686241 0.746865 0.728207 0.346219 0.337793

0.07215 0.0663696 0.0846443 0.0786017 0.0527841 0.0741538 0.077284 0.0990346 0.18831 0.12045

chisq 47.2102 49.5312 45.4496 55.6895 72.8489 58.2478 57.9303 26.6631 29.9171 31.8278

Bin 63 58 59 55 56 58 60 50 46 32

MaximumX 9.46024 9.45937 9.46164 9.45961 9.46233 9.46068 9.46107 9.46026 9.45958 9.46155
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1S_10MeV 2_0 2_1 2_2 2_3 2_4 2_5 2_6 2_7 3_0 3_1 3_2

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0414979 0.0425255 0.0412956 0.0408522 0.0417938 0.0420081 0.0415767 0.0416398 0.0407285 0.0387104 0.043403

0.00087274 0.001224 0.00141349 0.00164165 0.00071563 0.00111608 0.00078165 0.00061252 0.00118149 0.0014798 0.00090965

n 0.989245 0.896928 0.927184 0.995937 0.915738 0.952756 1.15554 1.23295 0.945176 0.978141 0.920011

0.0562755 0.0550725 0.0571853 0.0620911 0.0639685 0.0594537 0.0680852 0.0807066 0.0739491 0.0727919 0.0868944

alpha 1.77749 1.74713 1.7389 1.72594 1.87539 1.72696 1.7164 1.7947 1.76551 1.66463 1.84656

0.0462831 0.0704808 0.0788231 0.0718905 0.0466196 0.0627307 0.0490549 0.0422128 0.0622802 0.0732943 0.055589

gamma 0.0908545 0.17352 0.165311 0.143574 0.121356 0.161103 0.0682772 -0.0242764 0.0920377 0.114042 0.110444

0.0509381 0.0265954 0.0295157 0.0336733 0.0512056 0.0333947 0.0738749 0.0911325 0.0424114 0.0337292 0.0509844

delta 1.6115 1.6996 1.79554 1.94261 1.47048 1.67836 1.546 1.33214 2.02119 2.47875 1.38262

0.204416 0.181998 0.270491 0.362114 0.18279 0.169253 0.210584 0.13121 0.307784 0.490395 0.157581

lamda 0.0674308 0.0707555 0.0766364 0.0838888 0.0597945 0.0671744 0.0627251 0.0489618 0.0931732 0.116825 0.0586413

0.0110231 0.00965653 0.0141754 0.0196409 0.00953748 0.00870737 0.0111477 0.00712784 0.0167642 0.0262024 0.00870731

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.666838 0.542945 0.575115 0.602333 0.68652 0.572042 0.692524 0.733765 0.604021 0.553561 0.646821

0.0612401 0.0650349 0.0679236 0.0606921 0.0608609 0.0622679 0.0727168 0.0534158 0.0619466 0.0600742 0.0644066

chisq 89.5586 69.3082 70.9565 69.0584 60.8943 69.1303 77.6858 64.4182 44.1457 61.3344 59.8081

Bin 76 78 76 72 73 72 65 54 59 62 59

MaximumX 9.46041 9.46086 9.46003 9.45968 9.4603 9.46112 9.46072 9.46244 9.45966 9.45907 9.46111

1S_10MeV 3_3 3_4 3_5 3_6 3_7 4_0 4_1 4_2 4_3 4_4 4_5

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0404472 0.043002 0.0446679 0.0433679 0.039491 0.0417605 0.0417328 0.0466099 0.0477213 0.0433253 0.0461749

0.00222502 0.00082186 0.0007922 0.00065904 0.00133104 0.00185918 0.00136481 0.00068395 0.00120013 0.00184838 0.00117393

n 0.978555 0.99126 0.962447 1.10602 2.22503 0.886358 0.973029 0.84052 0.845139 0.843975 0.789224

0.084351 0.0865602 0.0853293 0.0934322 0.343751 0.076685 0.0940518 0.0825284 0.0863962 0.0867226 0.0883743

alpha 1.6946 1.83486 1.84253 1.85859 1.57165 1.58532 1.75044 1.943 1.85656 1.86744 1.91108

0.11837 0.0525572 0.0539255 0.0459701 0.0797359 0.11673 0.0673033 0.0504429 0.0897816 0.0866809 0.0812861

gamma 0.137485 0.0884843 0.112091 -0.239487 -1.05843 0.174465 0.133917 0.116386 0.199393 0.114983 0.163022

0.0349153 0.0854788 0.0748618 0.277783 0.489768 0.0236774 0.0374613 0.0633035 0.0359642 0.0467579 0.0524176

delta 2.0555 1.43021 1.23502 1.04398 1.72715 2.23903 2.04479 1.13765 1.37889 1.93093 1.52864

0.460569 0.236289 0.185608 0.148922 0.225981 0.292558 0.348228 0.150916 0.208022 0.455675 0.271676

lamda 0.0936983 0.0589543 0.0458519 0.0336161 0.0494647 0.10437 0.10246 0.0449803 0.055045 0.0901303 0.064269

0.0243854 0.0127196 0.00952631 0.00956644 0.0145751 0.0153832 0.0210574 0.00828558 0.0105861 0.0257863 0.0141506

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.540164 0.717204 0.704235 0.838502 0.854984 0.42422 0.574157 0.724868 0.590515 0.60312 0.62834

0.0836566 0.0822053 0.0750216 0.0588319 0.0246468 0.0702804 0.0636903 0.0616237 0.0874225 0.082911 0.0985203

chisq 74.2719 41.5369 37.9468 38.9658 34.8621 86.2724 56.9153 51.2187 57.2525 48.319 76.2578

Bin 56 56 49 47 32 58 54 58 53 51 49

MaximumX 9.45975 9.46042 9.46235 9.46413 9.463 9.46012 9.45875 9.46195 9.46185 9.45978 9.46089

1S_10MeV 4_6 4_7 5_0 5_1 5_2 5_3 5_4 5_5 5_6 5_7 6_0

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0441602 0.0308923 0.088509 0.0441242 0.0518952 0.0466031 0.101048 0.0439797 0.0612643 0.0458825 0.0812936

0.00160097 0.00957508 0.0187178 0.00422741 0.0139128 0.00324452 0.0220763 0.0369955 0.00396949 0.00220055 0.0173389

n 0.835066 20 0.946546 0.266817 0.513344 0.332216 3.83901 20 0.494242 2.76062 20

0.122254 10.0795 1.22942 0.178837 0.258233 0.156424 13.626 17.2274 0.16168 2.00847 13.2744

alpha 1.79286 0.270219 0.452263 1.86304 1.15021 2.07558 0.32246 0.0443491 1.89493 1.57005 0.189383

0.0897331 0.106194 0.615994 0.292677 0.710669 0.160758 0.356062 0.0504218 0.159659 0.183719 0.114807

gamma 0.170282 0.107396 0.290075 0.211418 0.236316 0.199835 0.246961 0.24055 0.221869 -1.0392 0.272783

0.0382437 0.0374258 0.0148193 0.0262212 0.0254725 0.0435356 0.0145997 0.0218604 0.0420741 1.88291 0.0171436

delta 1.6643 3.93777 2.43909 2.16502 3.21357 1.87209 5.01373 2.91111 3.0871 1.94433 3.11011

0.213938 1.57342 0.338046 0.326244 0.704182 0.363418 2.65416 0.485324 1.8077 2.58085 0.666023

lamda 0.0761513 0.172832 0.111375 0.1031 0.153067 0.0912441 0.235195 0.141372 0.110249 0.0895032 0.150369

0.0116681 0.0704085 0.0150267 0.0168875 0.0345624 0.0200569 0.123673 0.0247834 0.064469 0.156692 0.0319208

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.524995 0.150677 0.137408 0.271162 0.194672 0.489013 0.154814 0.106238 0.587867 0.896126 0.121904

0.0852674 0.0377494 0.0440962 0.106247 0.0896036 0.125395 0.0351125 0.0121335 0.12701 0.0884158 0.0189622

chisq 37.5855 38.6585 33.3664 36.1091 28.0814 29.7396 35.114 41.4951 32.8656 21.4503 30.9156

Bin 43 26 33 32 29 32 30 29 28 21 28

MaximumX 9.46043 9.46416 9.45919 9.46064 9.45982 9.45959 9.45941 9.45999 9.46187 9.45824 9.45859

110



1S_10MeV 6_1 6_2 6_3 6_4 6_5 6_6 6_7 7_0 7_1 7_2 7_3

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0500843 0.0473122 0.05366 0.0553469 0.0414716 0.0252683 0.0531346 0.0536802 0.0806845 0.0565015 0.0551185

0.0038774 0.00997728 0.00179501 0.00113224 0.0190859 0.00668657 0.00278102 0.00191535 0.0185396 0.00279337 0.00612665

n 0.254132 0.442937 0.856061 0.590918 20 1.44231 1.48375 0.339814 0.7886 0.80375 0.380445

0.181816 0.349175 0.184889 0.156511 19.9655 0.965243 0.658283 0.187795 0.787176 0.219516 0.191674

alpha 2.10952 1.75985 1.91518 2.10021 0.0895978 0.356265 1.59674 2.28101 0.564918 1.74689 1.73643

0.21112 0.358802 0.105679 0.0918492 0.0750264 0.271351 0.178783 0.190882 0.884003 0.21351 0.284869

gamma 0.205859 0.186309 0.0116132 0.00940167 0.234307 0.151884 -0.991244 0.164203 0.243178 0.208237 0.224816

0.0439862 0.0430521 0.252564 0.166214 0.021184 0.0268375 0.623858 0.0456266 0.01379 0.0274585 0.020313

delta 2.80945 2.05243 141.961 1.27875 2.47493 82.3024 0.745743 1.74797 3.4668 3.95237 2.39954

0.780168 0.545326 109.702 0.769118 0.410986 100.869 0.285505 0.490011 0.679135 1.76376 0.300317

lamda 0.144515 0.103774 5.19223 0.030205 0.125746 4.40917 0.0138241 0.10465 0.184076 0.230308 0.138261

0.041814 0.0325946 17.2689 0.0212566 0.0216406 10.668 0.010725 0.0312013 0.0359463 0.105332 0.0198335

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.468368 0.288717 0.86457 0.897538 0.10222 0.183232 0.880582 0.63477 0.134417 0.482081 0.262744

0.171229 0.157212 0.0878045 0.040957 0.0170581 0.0371368 0.0292779 0.119271 0.0585757 0.153894 0.107126

chisq 27.8596 16.9807 31.6659 26.5808 51.6933 37.7721 16.9159 47.6453 76.1845 46.2103 63.2609

Bin 28 28 29 28 29 27 23 37 38 37 37

MaximumX 9.45858 9.46104 9.46019 9.46603 9.46011 9.45914 9.47467 9.45803 9.45859 9.45726 9.45856

1S_10MeV 7_4 7_5 7_6 7_7

Et 9.455 9.455 9.455 9.455

0 0 0 0

sigma 0.0540902 0.0465043 0.0545578 0.033615

0.00225972 0.0149628 0.00950304 0.0293988

n 0.379633 0.123568 0.404124 20

0.205791 0.269655 0.372404 12.8994

alpha 2.18521 1.10022 1.3547 0.0555888

0.148024 0.58995 0.539208 0.0606488

gamma 0.16584 0.187535 0.211028 0.180957

0.0429816 0.0195727 0.0223925 0.0216329

delta 1.86547 2.34236 2.54852 2.72467

0.409605 0.356756 0.428265 0.516696

lamda 0.115183 0.136231 0.156432 0.166169

0.0279253 0.0230079 0.0296599 0.0322726

epsilon 9.4706 9.4706 9.4706 9.4706

0 0 0 0

a_crystal 0.573633 0.11169 0.175914 0.100379

0.135028 0.0442043 0.0992047 0.0162621

chisq 52.0618 56.1031 58.1132 44.3912

Bin 39 38 36 35

MaximumX 9.45814 9.46089 9.45871 9.46028

111



TABLE 2: Υ(2S)

2S_10MeV 0_0 0_1 0_2 0_3 0_4 0_5 0_6 0_7 0_8 1_0 1_1

Et 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0431504 0.0432583 0.042693 0.0421808 0.0410493 0.0415879 0.0405585 0.0425495 0.0409204 0.0434407 0.0431602

1.08E-05 0.00048331 1.31E-05 0.00069226 0.00049241 0.00040443 0.00072954 0.00048739 0.00083853 1.00E-05 0.00057227

n 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

alpha 3.08486 3.14191 3.1376 3.03658 3.28431 3.17897 3.12401 3.01052 3.04843 3.33112 3.55249

0.0652814 0.0336269 0.0010585 0.0451666 0.0480095 0.0385632 0.0450216 0.0388398 0.057985 0.347671 0.103784

gamma 0.721057 0.672115 0.738222 0.617866 1.21048 0.680024 0.837054 0.657496 0.913361 0.973997 1.33515

0.125162 0.0685898 0.080589 0.101773 0.223911 0.0578043 0.161941 0.0905023 0.154038 0.318561 0.342127

delta 0.922577 0.838586 0.88047 1.01796 0.855318 0.797609 1.00998 1.03499 1.06919 0.746449 0.780589

0.0779458 0.0428174 0.0356364 0.0869509 0.066512 0.0425889 0.110115 0.0807621 0.166276 0.151663 0.0843903

lamda 0.0418537 0.0379772 0.0418092 0.0504143 0.034387 0.0356949 0.0482565 0.0476648 0.0483178 0.0373486 0.0332723

0.00518048 0.00322987 0.00315991 0.00667706 0.00406436 0.00314064 0.00769146 0.00577663 0.0109204 0.00968982 0.00643178

epsilon 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.75096 0.721855 0.760121 0.736834 0.827955 0.725569 0.772188 0.718573 0.782115 0.810193 0.84919

0.0350431 0.0251671 0.0238486 0.0443406 0.0232446 0.0216751 0.0419369 0.0367593 0.0339819 0.0364213 0.0257633

R 0.0243345 0.0274591 0.0173022 0.0105012 0.0566179 0.0718431 0.0486294 0.00219844 0.0226634 0.0319623 0.0468311

0.0100142 0.0184357 0.00842074 0.0124123 0.0182458 0.0369737 0.0224605 0.00428987 0.0174003 0.0127925 0.0209108

B 1.9522 1.82155 2.13385 2.37521 1.83659 1.50599 1.8942 5.16021 2.20262 1.93124 1.92406

0.234752 0.328857 0.352253 0.631185 0.120744 0.17096 0.190528 10.0786 0.508634 0.285338 0.210999

chisq 59.223 57.7239 57.2987 54.0267 63.7416 48.2564 59.1487 46.7767 58.4144 53.8196 60.2948

Bin 65 67 65 66 65 66 64 62 62 62 60

MaximumX 10.0269 10.0274 10.0272 10.0274 10.0263 10.0277 10.0267 10.0268 10.0262 10.0272 10.0266

2S_10MeV 1_2 1_3 1_4 1_5 1_6 1_7 2_0 2_1 2_2 2_3 2_4

Et 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0418625 0.0429914 0.0420672 0.0427183 0.0431847 0.0425095 0.0434346 0.0453571 0.0452802 0.0450949 0.043571

0.00044902 9.90E-06 0.0009254 1.84E-05 0.00076384 0.00067497 0.00020699 0.00087167 0.00084124 5.40E-05 0.00062946

n 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

alpha 3.19383 3.17454 3.16023 3.19775 3.00017 3.0406 3.06919 3.17587 3.40708 2.90117 2.9072

0.0678918 0.118007 0.0911642 0.126462 0.0486054 0.0504282 0.0103858 0.098211 0.114423 0.00287788 0.01857

gamma 0.768813 0.681697 0.900831 0.685969 0.50618 0.517031 1.10256 0.695462 0.888483 0.447341 0.466528

0.100244 0.144755 0.25716 0.170709 0.0661273 0.0593448 0.330332 0.100564 0.177325 0.0362107 0.0409053

delta 0.781919 0.878994 0.983544 0.857586 1.12112 1.07561 1.19533 0.731127 0.715348 1.18817 1.17296

0.0659165 0.10181 0.191243 0.126295 0.117863 0.109199 0.147628 0.0677753 0.0596822 0.0654867 0.095376

lamda 0.0357842 0.0467606 0.0539645 0.0455764 0.0561059 0.0555572 0.0618291 0.0338096 0.0377763 0.0624564 0.0630654

0.00485128 0.00673328 0.0144005 0.00885 0.0086559 0.00820871 0.00722297 0.00445398 0.00533186 0.00528045 0.00764481

epsilon 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.751167 0.745189 0.82038 0.777508 0.67211 0.690941 0.838462 0.723249 0.789 0.642309 0.646018

0.0297709 0.0438397 0.0461808 0.0466616 0.0435313 0.0356982 0.0395553 0.031449 0.0355093 0.0287949 0.0325668

R 0.193946 0.012702 0.0590167 0.0288638 0.00096211 0.00085157 0.0667499 0.0648581 0.0391613 0.0126164 0.0676609

0.0906709 0.0142409 0.0395968 0.0272069 0.00209307 0.00144768 0.0129331 0.0544544 0.0234724 0.0199079 0.0555263

B 1.42652 2.20256 1.74629 1.77387 19.9964 19.9997 1.90925 1.55705 1.95206 1.90318 1.49915

0.124092 0.931889 0.287496 0.600385 12.6888 13.4752 0.101303 0.263776 0.278198 0.768768 0.22686

chisq 41.055 51.6413 69.0625 44.2405 67.3314 65.2356 72.6467 72.4215 63.1134 58.8979 90.0363

Bin 63 61 61 57 59 56 65 65 64 67 65

MaximumX 10.0272 10.0275 10.0274 10.0278 10.0273 10.0276 10.0266 10.0276 10.0272 10.0273 10.0272

2S_10MeV 2_5 2_6 2_7 3_0 3_1 3_2 3_3 3_4 3_5 3_6 3_7

Et 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03

0 0 0 0 0 0 0 0 0 0 0

sigma 0.0449813 0.0445685 0.0426519 0.0493109 0.0509833 0.0526345 0.0518424 0.0505866 0.0502951 0.0486928 0.0543039

0.00059694 6.85E-06 0.00139896 0.00043835 6.91E-05 0.00070015 0.00044135 0.00013703 0.00074098 0.00077447 8.49E-06

n 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

alpha 3.45043 3.118 3.05095 3.58567 3.33339 3.0547 2.93578 2.96419 2.94387 2.83088 2.92472

0.104736 0.00027074 0.0785518 0.0563691 0.00466063 0.0783245 0.0157195 0.0044835 0.0395919 0.0182104 0.0003197

gamma 0.996248 0.663236 0.451967 1.60253 0.89035 0.545657 0.645563 0.624237 0.45176 0.435629 1.95655

0.245627 0.0978163 0.0928704 0.273508 0.229974 0.068322 0.097571 0.17969 0.0654716 0.0517512 0.450649

delta 0.733418 0.913502 1.06894 0.720789 0.745497 0.891769 90.484 1.81101 1.59957 116.793 107.351

0.0652852 0.0566886 0.157108 0.064171 0.0656017 0.118092 126.29 0.429801 0.272253 141.649 153.676

lamda 0.0365413 0.0473141 0.0605859 0.0297523 0.0521833 0.0533204 8.72966 0.151316 0.113981 9.73996 7.89166

0.00543114 0.00534386 0.0134318 0.00588505 0.00817993 0.00960858 12.6347 0.0445616 0.0265722 14.0528 13.9124

epsilon 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366 10.0366

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.809794 0.754223 0.723454 0.874101 0.841967 0.732612 0.878065 0.816483 0.719901 0.722587 0.953678

0.0373696 0.0344399 0.064346 0.0123589 0.0322211 0.029238 0.0162424 0.0555961 0.0521205 0.0319562 0.00788406

R 0.0325894 0.0305214 0.139406 0.0571149 0.0420094 0.00275824 0.00446565 0.0401591 0.00676674 0.00861737 0.0154991

0.0164171 0.015327 0.137089 0.0118522 0.0113236 0.00151894 0.00123538 0.0205826 0.00223266 0.0041935 0.00535289

B 2.18864 2.01228 1.44835 2.14223 2.06186 20 20 2.04125 19.9993 18.8192 4.23468

0.354937 0.335782 0.267828 0.125858 0.222769 9.74546 10.5285 0.24061 13.631 15.6603 2.22824

chisq 74.1556 67.6876 54.3778 201.689 160.385 243.752 153.181 251.178 224.806 266.49 147.41

Bin 60 58 44 68 67 66 65 63 62 62 45

MaximumX 10.0269 10.0273 10.0282 10.0257 10.0276 10.0272 10.0289 10.028 10.0273 10.0278 10.0295

112



TABLE 3: Υ(3S)

3S_10MeV 0_0 0_1 0_2 0_3 0_4 0_5 0_6 0_7 1_0 1_1 1_2

Et 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24

0 0 0 0 0 0 0 0 0 0 0

sigma 0.131138 0.123773 0.117747 0.00747787 0.104525 0.101703 0.132745 0.0936172 0.135424 0.121338 0.144584

0.0074282 0.0109735 0.0107926 0.00276833 0.0152727 0.0186231 0.00928483 0.0191259 0.0146831 0.0120812 0.00986487

n 0.656961 0.903889 2.74543 1.78474 1.06476 1.29653 0.52392 0.798513 0.715752 0.718482 0.348573

0.213463 0.351665 1.79132 0.599531 0.383493 0.449781 0.278413 0.231222 0.397996 0.287417 0.188325

alpha 0.95651 0.788834 0.598201 0.0441861 0.79143 0.674293 1.09177 0.743729 0.781603 0.801022 1.04583

0.120243 0.154453 0.12412 0.0187703 0.181047 0.162843 0.19587 0.137441 0.195729 0.146754 0.158934

gamma 0.139911 0.134121 0.148165 0.167034 0.144831 0.145093 0.150428 0.13673 0.137796 0.1254 0.137644

0.00732875 0.00777999 0.00779153 0.00662949 0.00873285 0.00934391 0.0081943 0.0113123 0.00956701 0.00956207 0.00897168

delta 3.09886 2.72556 2.94553 2.9253 2.93727 3.04273 2.82449 2.70925 2.85894 2.60603 2.83108

0.255701 0.203882 0.24794 0.219043 0.235309 0.264345 0.226452 0.217971 0.275097 0.204525 0.246906

lamda 0.140281 0.123301 0.131565 0.132121 0.131287 0.135472 0.122516 0.118729 0.132387 0.119841 0.130703

0.0120068 0.00950341 0.0113665 0.0103171 0.0108288 0.012077 0.0102117 0.0100492 0.0131705 0.00985965 0.011916

epsilon 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.107136 0.100943 0.0985144 0.0623782 0.0958815 0.0950568 0.104128 0.0981458 0.0984659 0.097258 0.0997721

0.00356066 0.00470151 0.00482795 0.00212745 0.0055398 0.00631323 0.00421651 0.00593366 0.00524442 0.00469695 0.0041718

chisq 53.0012 64.0797 58.6867 52.5547 65.6288 58.6813 52.0823 51.5601 61.846 61.4986 72.3201

Bin 61 60 59 58 60 57 51 47 49 50 49

MaximumX 10.359 10.3594 10.3588 10.3582 10.3588 10.3588 10.359 10.3594 10.3591 10.3597 10.3591

3S_10MeV 1_3 1_4 1_5 1_6 1_7 2_0 2_1 2_2 2_3 2_4 2_5

Et 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24

0 0 0 0 0 0 0 0 0 0 0

sigma 0.1355 0.115475 0.138047 0.098614 0.101724 0.136706 0.142415 0.13303 0.137282 0.138962 0.136929

0.00777053 0.0124587 0.0170835 0.01426 0.0186551 0.00625259 0.00647423 0.00678506 0.00733995 0.00667998 0.00806886

n 0.316243 0.660078 1.0448 0.519395 0.529886 1.03578 1.76539 0.62725 1.70662 0.823569 1.03411

0.16239 0.255489 0.850135 0.16561 0.280767 0.406632 0.929997 0.1752 0.712712 0.289151 0.425813

alpha 1.21663 0.921276 0.66769 0.885918 1.02479 0.810448 0.714581 0.945742 0.739111 0.891361 0.786458

0.133004 0.140823 0.235871 0.137982 0.233176 0.132018 0.125731 0.0988468 0.104586 0.1206 0.132844

gamma 0.125387 0.125095 0.148638 0.129253 0.114696 0.141993 0.142035 0.130291 0.136363 0.130804 0.151513

0.00907716 0.010588 0.0101297 0.0112898 0.0119003 0.0063107 0.00621479 0.00665381 0.00663305 0.00671126 0.00715125

delta 3.93795 2.59407 2.45138 2.75859 3.18967 2.90908 2.77575 3.04516 2.65219 3.03632 3.00422

0.599715 0.204897 0.218375 0.246443 0.349977 0.213286 0.191898 0.221001 0.166505 0.232159 0.241001

lamda 0.18012 0.11594 0.110163 0.124767 0.143213 0.13995 0.131425 0.147019 0.126408 0.14595 0.142411

0.0282423 0.00962088 0.0101196 0.0116444 0.016266 0.0105831 0.0093502 0.0110422 0.00822789 0.0115364 0.0117616

epsilon 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365

0 0 0 0 0 0 0 0 0 0 0

a_crystal 0.10957 0.101056 0.0993347 0.102279 0.101364 0.105068 0.107198 0.104678 0.103087 0.104965 0.102113

0.00393668 0.00473124 0.00706751 0.00492753 0.00620767 0.00368526 0.00388922 0.00315267 0.00371206 0.0034395 0.00382723

chisq 52.4905 44.2343 45.0259 38.2215 51.7069 73.2499 71.1438 87.1666 69.6056 82.9732 74.3465

Bin 46 45 47 46 42 75 76 74 73 73 69

MaximumX 10.3593 10.3598 10.3591 10.3594 10.3599 10.3586 10.3588 10.359 10.359 10.359 10.3583

3S_10MeV 2_6 2_7 3_0 3_1 3_2 3_3 3_4 3_5 3_6 3_7

Et 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24

0 0 0 0 0 0 0 0 0 0

sigma 0.105113 0.12569 0.160193 0.170715 0.157542 0.163827 0.099753 0.179572 0.136496 0.186843

0.0124535 0.00898073 0.00705072 0.00920554 0.00618268 0.00983351 0.0137841 0.00647636 0.0149218 0.0127427

n 0.703579 0.598036 2.08632 0.700243 0.189268 7.84182 0.701684 0.00378975 0.549241 4.82E-08

0.175133 0.216442 1.46607 0.357988 0.134133 12.9053 0.185409 0.0983485 0.241934 0.04303

alpha 0.905751 1.10469 0.698835 0.918181 1.32613 0.586246 0.889396 1.50944 0.755058 1.40911

0.111604 0.12599 0.123473 0.14828 0.134311 0.121162 0.12945 0.112427 0.158471 0.0804943

gamma 0.117731 0.109965 0.0997866 0.113455 0.0904699 0.11033 0.0467575 0.120002 0.094372 0.114558

0.00954408 0.00836495 0.00651669 0.00669588 0.00681714 0.00707409 0.0098548 0.00745061 0.00897148 0.009693

delta 2.5706 2.82842 3.84161 3.48808 3.17137 2.78256 2.62309 2.94113 2.55212 2.68685

0.158173 0.213022 0.464436 0.350287 0.245917 0.21695 0.152266 0.241429 0.186486 0.236648

lamda 0.120244 0.133273 0.21284 0.189919 0.173007 0.151436 0.143189 0.161603 0.141386 0.154544

0.00776173 0.0105033 0.0262163 0.0195051 0.0139014 0.0120662 0.00875042 0.0137328 0.0106717 0.0141384

epsilon 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365 10.365

0 0 0 0 0 0 0 0 0 0

a_crystal 0.102245 0.0909992 0.108912 0.103496 0.11232 0.104106 0.094818 0.123254 0.0878408 0.108632

0.00420835 0.00346863 0.00387648 0.00353897 0.0033016 0.00461743 0.00429607 0.00376248 0.00529634 0.00489767

chisq 67.8845 58.3913 256.797 243.691 231.161 238.57 190.803 189.973 165.869 121.668

Bin 63 51 76 73 76 69 69 71 56 51

MaximumX 10.3598 10.3601 10.3595 10.359 10.3601 10.3594 10.3621 10.3588 10.3601 10.3589
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TABLE 4: Parameters for angle-integrated pt bins

1S_10MeV pt_0 pt_1 pt_2 pt_3 pt_4 pt_5 pt_6 pt_7

Et 9.455 9.455 9.455 9.455 9.455 9.455 9.455 9.455

0 0 0 0 0 0 0 0

sigma 0.0411922 0.0417284 0.0420343 0.0425716 0.0455928 0.0831717 0.0863095 0.0564572

0.00023169 0.0002686 0.00026501 0.00038451 0.00045105 0.00320212 0.00340639 0.00113931

n 0.961239 0.996901 1.01112 0.994826 0.915354 2.19683 3.28123 0.976207

0.0231309 0.0238562 0.0213303 0.0298568 0.0317881 0.764054 1.71469 0.0604198

alpha 1.83529 1.80615 1.78561 1.79183 1.8387 0.528178 0.455861 1.84212

0.0147152 0.0157288 0.0144254 0.0193263 0.0224807 0.13589 0.113523 0.0495863

gamma 0.125697 0.10986 0.102297 0.0856344 0.125295 0.257087 0.253507 0.145859

0.0197401 0.0203579 0.0159247 0.0207283 0.0183133 0.0053341 0.00575364 0.0188484

delta 1.4022 1.4434 1.51871 1.5596 1.45923 3.23262 3.18451 1.80295

0.0478093 0.0520427 0.044157 0.0604725 0.0656859 0.292419 0.31949 0.185264

lamda 0.0533452 0.0557802 0.0609806 0.0665943 0.0630328 0.148433 0.155406 0.10746

0.00258642 0.00286524 0.00247154 0.00354603 0.00395261 0.0130847 0.0153146 0.0135122

epsilon 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706 9.4706

0 0 0 0 0 0 0 0

a_crystal 0.702284 0.687711 0.653872 0.652677 0.639265 0.155396 0.146831 0.610775

0.020533 0.021865 0.0190031 0.0239443 0.0272383 0.0179159 0.0165612 0.0510626

chisq 118.329 145.669 152.771 110.114 118.636 72.2151 77.9992 128.419

Bin 78 78 77 80 82 83 80 83

MaximumX 9.46073 9.46103 9.46115 9.46078 9.46109 9.45973 9.45925 9.45885

2S_10MeV pt_0 pt_1 pt_2 pt_3 3S_10MeV pt_0 pt_1 pt_2 pt_3

Et 10.03 10.03 10.03 10.03 Et 10.24 10.24 10.24 10.24

0 0 0 0 0 0 0 0

sigma 0.0418525 0.0424482 0.0439852 0.0495952 sigma 0.133286 0.135607 0.143584 0.161836

4.12E-06 4.39E-06 3.91E-06 4.41E-06 0.0015994 0.00212532 0.00145849 0.00166898

n 0 0 0 0 n 0.97296 1.03573 0.921574 1.26647

0 0 0 0 0.120702 0.167906 0.117788 0.238968

alpha 3.0814 3.14908 3.07781 2.89692 alpha 0.855101 0.853179 0.885276 0.798778

0.00014987 0.00018104 0.00015891 0.00026493 0.0406802 0.0521789 0.0403668 0.046505

gamma 0.690706 0.682025 0.661013 0.442158 gamma 0.151357 0.130448 0.135035 0.0982616

0.0149185 0.0154209 0.0184667 0.0137433 0.00239141 0.00286726 0.002232 0.00245412

delta 0.928447 0.882559 0.92875 1.39973 delta 3.07041 2.83961 2.92058 3.01238

0.0130275 0.019512 0.0223082 0.0699951 0.0859653 0.0858293 0.0715056 0.0876093

lamda 0.0435133 0.045313 0.0500297 0.101467 lamda 0.136308 0.128986 0.139006 0.166132

0.00110476 0.00188723 0.00216033 0.00743588 0.00396264 0.00406134 0.00353769 0.00498217

epsilon 10.0366 10.0366 10.0366 10.0366 epsilon 10.365 10.365 10.365 10.365

0 0 0 0 0 0 0 0

a_crystal 0.738343 0.75891 0.754037 0.732545 a_crystal 0.106717 0.102195 0.105698 0.109904

0.00592092 0.00661158 0.00787237 0.0103607 0.00115661 0.00143291 0.0011236 0.00139285

R 0.0374741 0.065833 0.0779581 0.0614813 chisq 123.479 99.5111 119.033 269.086

0.00484135 0.0121667 0.0103158 0.0131848 Bin 82 83 83 87

B 1.75212 1.52956 1.63025 1.59119 MaximumX 10.3587 10.3595 10.359 10.3598

0.0650247 0.0643942 0.0542262 0.068585

chisq 89.9629 89.6683 106.403 186.721

Bin 66 66 67 71

MaximumX 10.0271 10.0275 10.0273 10.0277
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Figure D.3: Angle-integrated 1S pt bins
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Figure D.4: Angle-integrated 2S pt bins
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Figure D.5: Angle-integrated 3S pt bins
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Pisin Chen, Amy Connolly, Jonathan Davies, et al. Design and initial performance of

the askaryan radio array prototype eev neutrino detector at the south pole. Astropar-

ticle physics, 35(7):457–477, 2012.

[9] C Aramo, A Insolia, A Leonardi, G Miele, L Perrone, O Pisanti, and DV Semikoz.

Earth-skimming uhe tau neutrinos at the fluorescence detector of pierre auger obser-

vatory. Astroparticle Physics, 23(1):65–77, 2005.

[10] Steven W Barwick. Arianna: A new concept for uhe neutrino detection. In Journal

of Physics: Conference Series, volume 60, page 276. IOP Publishing, 2007.

[11] Kristin P Bennett and Erin J Bredensteiner. Duality and geometry in svm classifiers.

In ICML, pages 57–64, 2000.

[12] Pasquale Blasi. Theoretical challenges in acceleration and transport of ultra high

energy cosmic rays: A review. arXiv preprint arXiv:1208.1682, 2012.

[13] Pierre Auger Collaboration. Ultrahigh energy neutrinos at the pierre auger observa-

tory. arXiv preprint arXiv:1304.1630, 2013.

119



[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[15] HJ Drescher, M Hladik, S Ostapchenko, T Pierog, and Klaus Werner. Parton-based

gribov–regge theory. Physics Reports, 350(2):93–289, 2001.

[16] Sharada Iyer Dutta, Yiwen Huang, and Mary Hall Reno. Tau neutrino propagation

and tau energy loss. Physical Review D, 72(1):013005, 2005.

[17] Ralph Engel, Dieter Heck, and Tanguy Pierog. Extensive air showers and hadronic

interactions at high energy. Annual Review of Nuclear and Particle Science, 61:467–

489, 2011.

[18] Daniele Fargion. Discovering ultra-high-energy neutrinos through horizontal and up-

ward τ air showers: evidence in terrestrial gamma flashes? The Astrophysical Journal,

570(2):909, 2002.

[19] George M Frichter, Douglas W McKay, and John P Ralston. Prediction for the ultra-

high energy neutrino-nucleon cross section from new structure function data at small

x. Physical review letters, 74(9):1508, 1995.

[20] Thomas K Gaisser and Todor Stanev. Neutrinos and cosmic rays. Astroparticle

Physics, 2012.

[21] Raj Gandhi, Chris Quigg, Mary Hall Reno, and Ina Sarcevic. Neutrino interactions at

ultrahigh energies. Physical Review D, 58(9):093009, 1998.

[22] PW Gorham, P Allison, BM Baughman, JJ Beatty, K Belov, DZ Besson, S Bevan,

WR Binns, C Chen, P Chen, et al. Observational constraints on the ultrahigh energy

cosmic neutrino flux from the second flight of the anita experiment. Physical Review

D, 82(2):022004, 2010.

120



[23] Francis Halzen and Spencer R Klein. Astronomy and astrophysics with neutrinos.

Physics Today, 61(5):29, 2008.

[24] Dieter Heck, J Knapp, JN Capdevielle, G Schatz, T Thouw, et al. CORSIKA: A Monte

Carlo code to simulate extensive air showers, volume 6019. FZKA, 1998.

[25] David W Hosmer Jr and Stanley Lemeshow. Applied logistic regression. John Wiley

& Sons, 2004.

[26] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic

regression. Wiley. com, 2013.

[27] M Iori, A Sergi, D Fargion, M Gallinaro, and M Kaya. Study of a detector array for

upward tau air-showers. arXiv preprint astro-ph/0602108, 2006.

[28] J Jones, I Mocioiu, MH Reno, and I Sarcevic. Tracing very high energy neutrinos

from cosmological distances in ice. Physical Review D, 69(3):033004, 2004.

[29] NN Kalmykov, SS Ostapchenko, and AI Pavlov. Quark-gluon-string model and eas

simulation problems at ultra-high energies. Nuclear Physics B-Proceedings Supple-

ments, 52(3):17–28, 1997.

[30] Spencer R Klein et al. Arianna: A radio detector array for cosmic neutrinos on the

ross ice shelf. arXiv preprint arXiv:1207.3846, 2012.

[31] Johannes Knapp and Dieter Heck. Extensive Air Shower Simulation with CORSIKA:

A User’s Manual. Kernforschungszentrum Karlsruhe, 1993.

[32] Johannes Knapp, Dieter Heck, and Gerd Schatz. Comparison of hadronic interaction

models used in air shower simulations and of their influence on shower development

and observables, volume 5828. FZKA, 1996.

121



[33] AV Olinto. Ultra high energy cosmic rays: the theoretical challenge. Physics Reports,

333:329–348, 2000.

[34] Esteban Roulet, Guenter Sigl, Arjen van Vliet, and Silvia Mollerach. Pev neutrinos

from the propagation of ultra-high energy cosmic rays. Journal of Cosmology and

Astroparticle Physics, 2013(01):028, 2013.

[35] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:

Primal estimated sub-gradient solver for svm. Mathematical Programming, 127(1):3–

30, 2011.

[36] Günter Sigl. Cosmic rays and neutrino interactions beyond the standard model. Nu-

clear Physics B-Proceedings Supplements, 87(1):439–441, 2000.

[37] RM Sternheimer, MJ Berger, and Stephen M Seltzer. Density effect for the ionization

loss of charged particles in various substances. Atomic Data and Nuclear Data Tables,

30(2):261–271, 1984.

[38] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine clas-

sifiers. Neural processing letters, 9(3):293–300, 1999.

[39] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[40] V Van Elewyck. High-energy neutrino astronomy: Status and prospects for cosmic-

ray physics. arXiv preprint arXiv:1209.3425, 2012.

[41] Klaus Werner. Strings, pomerons and the venus model of hadronic interactions at

ultrarelativistic energies. Physics Reports, 232(2):87–299, 1993.

[42] Georgi T Zatsepin and Vadem A Kuz’min. Upper limit of the spectrum of cosmic

rays. JETP Lett.(USSR)(Engl. Transl.), 4, 1966.

122


	ZHEN TANG THESISFORM
	tang

