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Abstract 

Cryosurgery is the destruction of undesired tissue by freezing. Modern cryosurgery is 

performed by strategically inserting a number of cooling probes (cryoprobes) shaped like long 

hypodermic needles into the target region. Minimally invasive cryosurgery presents unique 

challenges to the clinician associated with the use of ultrasound (US) as the imaging modality, 

the selection of the cryoprobe configuration, the accurate placement of the cryoprobes, and the 

monitoring of the procedure through imaging and temperature measurements. Currently the cost 

of training clinicians to perform cryosurgery is exceptionally high because the procedure itself is 

very complex, and the learning process consists of a long residency period. 

The work presented in this thesis is part of an ongoing project between the Biothermal 

Technology Laboratory and the Computational Engineering and Robotics Laboratory at Carnegie 

Mellon University, to develop a computerized training platform that will teach clinicians how to 

perform the minimally invasive cryosurgery effectively and efficiently. This work uses prostate 

cryosurgery as a developmental model for verification and benchmarking of all algorithms. 

Towards that goal, this work provides many of the tools needed to create a virtual 

training environment. A cryosurgical training framework was presented to enable the diverse 

functionality of such a computerized training system. Next, a method for generating synthetic 

ultrasound images from a small library of samples was presented. This method is based off of a 

texture synthesis technique called “Image Analogies”. The algorithm generates realistic 3D 

ultrasound images from a small library of samples. Then, an improvement was made to an 

efficient bioheat transfer simulator. The implementation used GPU computing to achieve a 15x 

increase in performance over the previous state of the art approach. The enhanced bioheat 

simulator was leveraged in a cryosurgically relevant ultrasound simulator. The ultrasound 

simulator uses nonlinear ray-tracing and a novel energy propagation step to simulate imaging 

artifacts associated with cryoprobe insertion and the thermal field in real-time. Finally, an 

enhancement to the cryoprobe placement algorithm “bubble packing” was performed to enable 

the addition of geometric constraints. These geometric constraints allow more clinically relevant 

plans to be generated. It is the hope of the author that these tools will be the foundation of a fully 

immersive surgical simulator.  
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Chapter 1: Introduction 

The work presented in this thesis is focused on the development of computation tools for 

computerized cryosurgical training. This chapter provides a brief overview of the mechanisms of 

tissue injury and discusses the practices and challenges of modern prostate cryosurgery. 

Additionally, this chapter introduces computerized cryosurgical training, along with a sample 

work flow that this thesis aims to address. Finally, the unique contributions are covered in the 

specific aims. 

 

1.1 Mechanisms of Cryosurgical Tissue Injury 

 Cryosurgery aims to destroy undesired biological tissue through freezing. In order to give 

context and understanding to modern cryosurgical procedures, it is of key importance to 

understand the mechanisms of tissue injury. There are many different mechanisms in which cell 

death may be induced at low temperatures. Cryosurgery utilizes the complex interactions 

between biological tissues and low temperatures in order to destroy undesired tissues, while 

leaving healthy tissues unaffected. Mechanisms of tissue injury may be roughly divided into 

three temperature regions; a hypothermic range (20°C to 0°C), a sub-zero range (0°C to -22°C), 

and a low freezing range (-22°C to -40°C) [1].  

In the hypothermic range temperatures are too high for freezing to occur. However, 

exposure to temperatures in this range causes the cell metabolism to gradually decay, eventually 

leading to cell death. Cell survival at 0°C is a few days at most, but even short exposure to non-

freezing temperatures may destroy the cell. Although tissue injury due to hypothermia has 

received little attention in cryosurgery, it still plays a role in cryosurgical cell death. 
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Hypothermia is present many minutes before and after cryosurgical procedures, especially in the 

regions surrounding the frozen volume [2]. 

As temperatures enter the sub-zero range, water in the extracellular fluid begins to 

crystalize. The conversion from liquid water to solid ice works to increase the effective 

electrolyte concentrations outside the cell. This change in extracellular fluid solute concentration 

induces an osmotic pressure that draws water out of the cells leading to cell dehydration. Also, 

the increase in solute concentration outside of the cell leads to a similar increase in solute 

concentration inside the cell. This increase in solute concentration, combined with cell 

dehydration that accompanies the formation of extracellular ice, significantly damages the cell, 

which is known as solution-effect injury [3]. Cells are resistant to forming ice crystals down to 

temperatures of -10°C. 

Once low freezing temperatures are reached, many cells develop intracellular ice 

(heterogeneous nucleation), however; temperatures are required to drop to -40°C for ice to form 

with certainty. The formation of intracellular ice is almost always lethal. Temperatures below -

45°C are clinically considered lethal, because cell viability after this point is highly unlikely. As 

a result, temperatures in this range are known as “lethal temperatures.” Faster cooling rates make 

intracellular ice more probable while slower cooling rates tend to injure cells through solution 

effect injury. This occurs because fast cooling rates do not allow time for water to escape from 

the cell. Additionally, whether the ice is intracellular or extracellular, ice formation will induce 

shear stresses on the cells, which causes further damage to its walls and organelles [1]. 

Perhaps a more important parameter to cell injury is the warming rate. A slow warming 

rate allows ice crystals to fuse and reform in a process called recrystallization. Large ice crystals 

are injurious to cell membranes. Also, as ice melts in the extracellular environment it becomes 
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hypotonic. This hypotonic environment allows water to enter the dehydrated cell, increasing the 

cell volume until it ruptures [4].  

In addition to these immediate causes of cryosurgical tissue death, there are also delayed 

causes which take effect after the tissue thaws. One mechanism of delayed injury is the 

disruption of the microcirculation caused by previously acquired cell injuries. Cells may also die 

due to apoptosis (programmed cell death) after sustaining injuries due to hypothermia [5]. 

In the context of cryosurgical procedures a considerable number of studies have found 

that cycling the tissue between multiple freeze thaw cycles is beneficial. Multiple freeze thaw 

cycles destroy a greater percentage of tissue within the frozen region [6]. Tissues further from 

the cryoprobes have a slower thermal response. As result of these lower cooling rates, they are 

less likely to produce intracellular ice and cell death. Multiple freeze thaw cycles are used in 

cryosurgery because often times, the tissue that needs to be destroyed is very close to critical 

healthy tissues.  It would be impossible to induce a lethal temperature within the target tissue 

without also producing an unacceptable amount of collateral damage to the surrounding healthy 

tissue. By using multiple freeze thaw cycles, warmer temperatures may be induced in the target 

and surrounding tissues, while increasing the probability of causing cell destruction within the 

cooled region [7]. 

Following cryosurgery, an edema is present within 24 hours. Necrosis of the tissue is 

evident after two days. The cryogenic lesion that forms closely matches the volume of tissue that 

was previously frozen. In the following days more cells die due to delayed effects, achieving 

maximum cellular injury within 10 days. Treated tissue will be replaced by scar tissue as healing 

progresses [8]. 
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1.2 Modern Prostate Cryosurgery 

Prostate cancer is the most common cancer found in men, and the second leading cause 

of cancer-related deaths among men. Prostate Cryosurgery has had practical applications since 

the beginning of the 20th century [9]. The development of cryosurgery as an invasive procedure 

started in 1961, when Cooper and Lee invented the first cryoprobe (then cryostat) based on liquid 

nitrogen boiling [10]. Cryoprobes are shaped like long hypodermic needles with a sharp tip. The 

cooling effect is created near the tip of the cryoprobe. Contrary to common belief, the Joule-

Thomson-based cryoprobe was presented shortly thereafter. Joule-Thompson-based cryoprobes 

are cooled by a sudden release of pressurized gas resulting in a temperature change [11,12]. Ever 

since, the technology of cryosurgical devices has shown tremendous improvements, following 

trends of miniaturization while improving cooling capabilities. Dramatic developments in 

medical imaging in the 1980s eventually led to a quantum leap in cryosurgical practice in the 

early 1990s, from a superficial treatment (often combined with surgical excision) to an image-

guided, minimally invasive procedure on the prostate [13]. While minimally invasive 

cryosurgery has been experimented on virtually every tissue of the body, the prostate was the 

first organ to be treated with this application, for which a wide database is already available 

[6,14,15]. 

Cryo-therapy is an option for men who have non-metastatic cancer (stage T3 or earlier). 

Often cryosurgery is performed as a salvage surgery after another treatment such as 

brachytherapy has failed. Cryosurgery is also commonly used among patients with a high 

bleeding risk due to its minimally invasive nature. Often it can be performed as an outpatient 

procedure with only minor swelling and tenderness after surgery. 

Modern prostate cryosurgery is performed by placing a number of cryoprobes (modern 

procedures can use upwards of 12) into the prostate through a registration grid. This registration 
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grid is used to place cryoprobes in known locations relative to the trans-rectal ultrasound probe 

used for imaging [6]. The urethra travels through and is encircled by the prostate, so urethral 

tissue must be protected during the freezing process. In order to prevent the urethra from 

freezing, a warming catheter (urethral warmer) is inserted through the urethra and into the 

bladder. A saline solution is then circulated through this urethral warmer during the procedure. A 

diagram of a typical surgical setup is shown below in Figure 1-1. 

 

 

Figure 1-1: Diagram of modern minimally invasive prostate cryosurgery [16] 

 

Once cooling has begun, the extent of the frozen tissue is monitored through the use of 

both temperature sensors and ultrasound imaging. As shown in Figure 1-2, frozen tissue creates a 

distinct shadow in the ultrasound where clinicians can track the extent of cooling in the lower 

half of the prostate. Usually, multiple freeze-thaw cycles are performed in order to maximize 

damage to the target tissue and minimize collateral damage to surrounding healthy tissue [17]. 

The prostate is similar in size and shape to a chestnut, and has a wide base close to the 

bladder and a narrow apex away from the bladder. Because of this irregular shape, a “pullback” 
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procedure is often performed, where cryoprobes are inserted to their maximum depth to freeze 

the wide base of the prostate with a number of freeze thaw cycles. Then, some of the periphery 

probes are removed, while centrally located probes are pulled back in depth to freeze the narrow 

apex of the gland [18]. 

 

 

Figure 1-2: Ultrasound shadowing caused by freezing of tissue [19] 
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1.3 Computerized Training of Cryosurgery 

The application of cryosurgery is  a four-stage process:    (i) reconstruction of the target 

region based on an imaging technique; (ii) evaluation of the optimum number of cryoprobes and 

their layout; (iii) insertion of the cryoprobes according to the optimal plan; and, (iv) orchestration 

of cryoprobe operation to achieve the optimum match between the target region and the forming 

frozen region. Cryosurgical success is the product of the successes of each of the above stages. 

To date, these surgical steps are performed manually, relying solely upon the cryosurgeon’s 

experience. While, current surgical training practices necessitate an elongated learning curve and 

extended practice time.  

The new minimally invasive procedure has presented practical challenges associated with 

selecting the most effective cooling technology (i.e., liquid nitrogen versus Joule-Thomson 

cooling), optimizing the cryoprobe for its diameter and active length, optimizing the 

cryoprocedure for the total number of cryoprobes and their layout, identifying the most effective 

cooling protocol (also known as thermal history), and monitoring the extent of treated tissue 

during the surgery by using ultrasound imaging and temperature sensors. While the literature is 

saturated with clinical reports on best cryosurgery practices [1], often sponsored by device 

manufacturers, an unbiased holistic approach to cryosurgery training and practice remains an 

unmet need.  

It is the view of the author that cryosurgery technology has far surpassed cryosurgery 

practice, and that modern cryosurgery devices could be used at far higher levels of efficiency, 

effectiveness, and sophistication. Concurrent developments in computer hardware and 

computation techniques are likely to facilitate the next quantum leap in cryosurgery applications. 

One current barrier is the level of complexity of the procedure. Optimizing cryosurgery is 

essentially a multi-parameter optimization process, where clinical constraints are intimately 
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linked with technological limitations. For example, even when the cooling technology is 

predetermined for a particular procedure and the number of cryoprobes along with their 

operational parameters are chosen, the optimal cryoprobe layout alone is a complex optimization 

problem [20,21,22,23]. The design of the frozen region based on the configuration of cryoprobes 

is probably the difficult obstacle to overcome. The clinician must visualize how the frozen region 

formed by a specific cryoprobe layout compares to the 3D shape of the target region. Here, a 

suboptimal cryoprobe layout may leave areas in the target region untreated, lead to cryoinjury of 

healthy surrounding tissues, increase the duration of the surgical procedure, or increase the 

likelihood of post-cryosurgery complications; all of which affect the quality and cost of the 

medical treatment. The minimally invasive nature of the procedure also introduces challenges. 

These difficulties may further affect the quality and duration of clinical training.  

A holistic approach to improve modern cryosurgery necessitates the development of 

computerized tools. For example, the current research team has devoted efforts in recent years to 

develop a computerized planning scheme for cryosurgery, based on bioheat-transfer simulations. 

This scheme integrates a bioheat simulation [24,25]with two planning algorithms, known as 

bubble packing [26,27] and force-field analogy [23,27]. The planning scheme has used an early 

prototype method for organ model reconstruction [28,29]. However, those prior efforts have 

been aimed at developing the fundamental building blocks for computerized planning, while 

bypassing challenges associated with current clinical practice and human-machine interface—the 

interface necessary for the clinician to effectively use the computer code. Challenges in human-

machine interaction for a minimally invasive thermal procedure arise from the need to combine 

medical imaging data with thermal data, while simulating the clinical procedure in order to 

provide a realistic training environment.  
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As a part of our ongoing program to develop a computerized training tool for 

cryosurgery, the objective of the current study is to provide the foundation for a computerized 

training platform for cryosurgery, while benchmarking and integrating previously developed 

building blocks [23,24,25,26,27,30,29,28]. Developing the human-interface module [31] and 

integration of clinical data on the abnormal growth of the organ with the progress of the disease 

[32] are subject matters of parallel efforts. It is envisioned that future integration of the key 

elements developed in this and other parallel studies will enable computerized training of 

cryosurgery in a virtual setup.  

 The structure of the thesis roughly follows a typical workflow of a virtual surgical 

procedure. The following list details the necessary steps performed by the user and tutoring 

program during a virtual procedure.  

1. The tutor generates the most valuable 3D US for the user to perform. 

2. The user segments the US in order to extract the 3D shape of the prostate that will be 

used for surgical planning. 

3. The tutor provides feedback on the segmentation quality based on the known ground 

truth shape of the organ.  

4. The user generates their best cryoprobe configuration for the surgery based on the 

segmented prostate shape. 

5. The tutor evaluates the user’s plan and gives guidance on how to modify the cryoprobe 

layout to improve the surgical outcome. This requires that the program has the ability to 

generate its own high quality plan that meets a given set of clinical constraints.  

6. The user virtually inserts cryoprobes into the correct locations in the 3D ultrasound 

image. 
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7. The user begins the virtual cooling of the tissue. This requires the tutor to simulate the 

intra-operative heat transfer and US imaging effects. 

8. The user uses feedback from the simulated 3D ultrasound image along with virtual 

temperature sensors placed in various locations within the domain in order to track the 

extent of the freezing.  

9. The program rates the quality of the procedure based on the amount of damage to both 

cancerous and healthy tissue.  

The overall structure and requirements of a surgical planner are presented in Chapter 2. 

Chapters 3, 4, and 5 explain how the ultrasound images and heat transfer physics are simulated. 

Chapter 6 explains how high quality surgical plans are automatically generated, and also 

describes how the user generated plans and surgical procedures are evaluated. A summary and 

conclusion to the thesis work is presented in Chapter 7. Finally, Chapter 8 proposes the future 

direction and improvements to the foundation of work laid out in this thesis.  
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1.4 Research Objectives 

 The primary objective of this research is to develop efficient tools for cryosurgical 

training that enable a fully immersive computerized learning environment for clinicians. Toward 

that goal, the following contributions have been made. 

 

1. To develop a robust cryosurgery training framework 
 

2. To develop a method for generating synthetic ultrasound images 
 
3. To develop an efficient implementation for an established finite difference (FD) bioheat 

simulation on a graphics processing unit (GPU) 
 
4. To validate and benchmark the GPU bioheat simulation against state of the art central 

processing unit (CPU) based FD and finite element (FE) implementations. 
 
5. To develop a method for simulating intraoperative US imaging artifacts for the purpose of 

medical training 
 
6. To enhance the Bubble-Packing surgical planning algorithm to allow for the addition of 

clinically relevant constraints. 
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Chapter 2: Cryosurgical Training Framework 

 The purpose of this section is to lay out the necessary requirements of an effective 

cryosurgical trainer, and to present the structure of the current cryosurgical framework. Chapter 

6 discusses one practical example of a prototype implementation of this framework. 

 

2.1 Requirements 

 The purpose of the proposed computerized trainer is to more quickly and efficiently teach 

clinicians the necessary skills needed to perform cryosurgery. In order to meet this goal, the 

skills and knowledge gained in the virtual training environment must translate into useable skills 

in the operating room. To accomplish this, the training tool must give the user the correct 

information at the right time and provide a realistic practice environment for clinicians to hone 

their skills. 

 To begin training, the tutor must first present the user with the necessary background 

knowledge regarding the mechanics of the surgery. The delivery and content of this information 

is part of a parallel study [31]. After the user has been presented with the knowledge necessary to 

perform the surgery, he or she can begin performing test cases. This is the area in which tutor 

intelligence and realistic simulations are necessary. The requirements listed in the following 

paragraphs will list the components necessary for a successful cryosurgical training simulator. 

 At the start of the test case the tutor must intelligently select the most useful exercise for 

the trainer to perform. The prostate can take on a range of sizes and shapes, due to tumor growth. 

Additionally each patient can have a different set of physical constraints concerning clinical 

practice. The tutor must select the most beneficial training case for the user to perform based on 

previously acquired data. This is an important step because it ensures that the user is receiving 
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the maximum benefit from each case performed. As of the time of this writing, there is not an 

extensive database of prostate ultrasounds or segmented prostate surface geometry to present to 

users as test cases. Additionally, such a database would be prohibitively expensive to create. 

There are only a few small libraries of 3D prostate ultrasounds, and they are far too small to help 

clinicians learn all of the necessary cryosurgical skills. To overcome this obstacle the tutor must 

generate synthetic 3D US data from the small library of scans. This synthetic US data should 

correspond to the geometry that is most useful for the user to practice on. Once the user is 

presented with the 3D US image, they must segment the target shape. Then, the tutor must 

compare the user’s segmented shape to the “ground truth” model the US was synthesized from. 

Next the user begins planning the surgery and selecting the configuration of the cryoprobes. An 

example of the planning stage in a prototype prostate cryosurgical system is shown in Figure 2-1. 
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Figure 2-1: A representative screen of the cryosurgery ITS used to evaluate rules and constrains 
in a tested cryoprobe layout: (A) instructions panel; (B) geometrical presentation of the prostate 
to be treated, where (1) is the prostate capsule, (2) is the urethral warmer, and (3) is a cryoprobe; 
(C) color-coded scheme for probes at various stages of placement; (D) a transverse cross section 
of the prostate and urethra, with an sliding bar (E) for sagittal location; (F) a sagittal cross section 
of the prostate, with adjustable transverse location with the sliding bar below; (G) a button to 
request the trainer for a constraints-violation check; (H) table summarizing all probe violations; 
(I) probe-selection list for detailed analysis; (J) and (K) are distance tools, where the red line 
represents the distance constraint, blue line represents measured distance by the training 
software, green corresponds to the portion of the active surface of the cryoprobe which does not 
violate any constraints, yellow bar corresponds to a constraint-violating portion of the probe; (L) 
a button to request the trainer for a bioheat simulation of the current layout; (M) table displaying 
the total defect value results; and (N) is an area to for the trainer to provide comments and hints 
after an execution of a simulation. The viewing direction with trans-rectal ultrasound transducer 
during an actual prostate cryosurgery case can be switched between D and F [33] 

 

Then the tutor generates its own optimal plan and gives feedback on how to improve the user’s 

plan. After the cryoprobe configuration is planned, the intraoperative simulation begins. Here the 

user will use simulated US images with coupled heat transfer effects in order to virtually place 
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the probes in the tissue and monitor the frozen region progress. The user should use a 

combination of simulated US artifacts as well as virtual temperature sensor readings to 

accomplish this. Finally, the system should be able to output an overall score for the virtual 

procedure which corresponds to the expected clinical outcome [32].  An example of the 

verification stage in a prototype prostate cryosurgical system is shown in Figure 2-2. 

 

 

Figure 2-2: A representative screen of the cryosurgery ITS to evaluate rules and constrains in a 
tested cryoprobe layout: (A) prostate contour with user-selected distance measurements; (B) 
temperature map presented at the end of a cryosurgery simulation, where pink represents the 
prostate contour, black represents defect region, and the red-blue spectrum is correlated with 
temperature according to color scale (C); (D) goal defect, which is equal to the defect value of 
the optimized, computer-generated cryoprobe layout; and, (E) total defect value of the most 
recent trainee planning [33]. 
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2.2 Structure  

 With reference to Figure 2-3, the proposed trainer in the current study is composed of a 

graphical user interface (GUI), which accesses three additional modules: Tutor, Simulator, and 

Database. The GUI is the portion of the program that presents the user with information, and 

accepts input. The GUI is driven by the other three modules. Its purpose is to keep the other 

modules well separated and concise, and to eliminate unnecessary coupling between tutor system 

logic and algorithmic implementation. The Tutor contains much of the logic on how workflows 

within the program are executed. It is the tutor’s job to present the user with the most suited 

sample surgery cases and relevant information. Additionally, it allows the user to select a 

suggested cryoprobe layout, and then automatically generates an optimal layout, and provides 

feedback on how the user could improve performance. The Tutor module uses the Simulator to 

accurately create a virtual procedure based on relevant data selected from the Database. The 

Simulator is capable of simulating both the bioheat transfer process during cryosurgery and the 

clinical operation via US imaging guidance. The Simulator returns the thermal history in the 

target region to the Tutor, in order to evaluate the effectiveness of the specific surgical case. 

Additionally, the Simulator evaluates the outcome of a particular surgical setup. This 

functionality is contained in the Simulator because it is used as a stopping criterion to end the 

simulation. Following an optimization scheme, the Tutor may execute the Simulator multiple 

times with variable input datasets, until a preferred simulated protocol is identified. At the end of 

each simulation, the thermal history is stored in the Database with the evaluation of results by the 

Tutor. 

Examples of the data stored in the Database in conjunction with a particular test case are: 

ultrasound voxel data of the organ to be treated, volumetric prostate and urethra models, thermal 

history of simulated procedure, history of cryoprobe insertion, cryoprobe operational parameters, 
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and the planning objectives for the particular case study. At the end of each tutoring session, the 

new data generated during the session is added to the Database. Database management, exchange 

with the Tutor and Simulator, presentation, and interaction with the trainee is the subject of a 

parallel study [31]. This effort is done in concert with parallel studies, to ensure compatibility 

and efficiency in data sharing, all internally-controlled. 

 

 

Figure 2-3: Structural design of the cryosurgery training code [34] 
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Chapter 3: An Efficient Implementation of Cryosurgical Bioheat 
Simulations 

For the purposes of computerized training of cryosurgery, a fast and efficient method to 

carry out cryosurgically relevant bioheat simulations is of utmost importance. The heat transfer 

simulation is used by many different portions of the tutor. As a result it is one of the most 

important components to optimize. First and foremost, the bioheat simulator rates the quality of a 

user plan. In order for the user to improve their planning abilities the simulator must provide 

rapid feedback as the user iterates to the desired solution. Next, during the surgery the bioheat 

simulator is used in conjunction with the US artifacts simulator to simulate the effects of 

temperature on tissue in the resulting US image. Finally, many advanced planning algorithms 

such as the “Force-Field Analogy” require many iterations of full bioheat simulations to run in 

order to produce optimal plans [23]. These methods typically require a long runtime. As a result, 

more approximate methods such as “Bubble-Packing” are often used when runtime is a critical 

factor [30]. If significant speedups to the heat transfer simulation are made, the applicability of 

these more accurate yet computationally expensive planning methods could be broadened.  

 

3.1 Previous Work on Bioheat Simulations 

 An initial implementation of a multiple grid size, multiple time-step size finite difference 

(FD) algorithm was created by previous members of the Biothermal Technology Laboratory and 

the Computational Engineering and Robotics Laboratory [25]. This scheme was specifically 

designed to simulate cryosurgery. The goal of their research was to develop a numerical scheme 

that reduces the overall number of numerical operations needed to perform a given simulation. 

Since the introduction of the technique, additional work was performed on optimizing and 
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parallelizing the implementation on the CPU [32]. However, the previous work lacked fair 

comparisons to the commonly used Finite Element (FE) method, which is the “gold standard” 

technique for heat transfer simulations. The current study addresses this issue by implementing a 

FE simulator and benchmarking it against the developed FD simulator. Although the FD method 

was previously optimized on the CPU, there are other more suitable platforms to perform the 

computation on. The current study implements the algorithm on the GPU and is able to achieve 

significant speedups. For completeness of presentation, the mathematical formulation of the FD 

method is presented in Section 3.1.1. 

 

3.1.1 Mathematical Formulation 

 Bioheat transfer in this study is modeled with the classic bioheat equation [34]: 

𝐶𝐶
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝑘𝑘∇𝑇𝑇) + 𝑤̇𝑤𝑏𝑏𝐶𝐶𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝑇𝑇) + 𝑞̇𝑞𝑚𝑚𝑚𝑚𝑚𝑚 (3-1) 

where C is the volumetric specific heat of tissue, T the temperature, t the time, k the thermal 

conductivity of the tissue, 𝑤̇𝑤𝑏𝑏 the blood perfusion rate (mlblood/mltissue per second), 𝐶𝐶𝑏𝑏 the specific 

heat of blood, 𝑇𝑇𝑏𝑏 the blood temperature entering the treated area, and 𝑞̇𝑞𝑚𝑚𝑚𝑚𝑚𝑚 is the metabolic heat 

generation. Table 3-1 lists values of the thermophysical properties used for benchmarking in the 

current computerized investigation. Note that the functional behavior of the specific heat 

presented in Table 3-1 follows the enthalpy approach [34], where the latent heat effect is 

implicitly expressed in the form of an effective specific heat within the phase transition 

temperature range. 
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Table 3-1: Representative thermophysical properties of biological tissues used in the current 
study, where T is given in degrees Kelvin [25] 

Thermophysical Property Value 

Thermal conductivity k, (W/m K) 

0.5 273 K < T 

15.98 - 0.0567 × T 251 K < T < 273 K 

1005 × T-1.15 T < 251 K 
 

Volumetric specific heat, C (MJ/m3 K) 

3.6 273 K < T 

880 - 3.21 × T 265 K < T < 273 K 

2.017 × T - 505.3 251 K < T < 265 K 

0.00415 × T T < 251 K 
 

Blood perfusion, wbCb (kW/m3 K) 
40 273 K < T 

0 T < 273 K 
 

Metabolic heat generation, 𝑞̇𝑞𝑚𝑚𝑚𝑚𝑚𝑚 (kW/m3 K) 0 

 
 

The validity and mathematical consistency of the classical bioheat equation has drawn a lot 

of attention in the literature of the past six decades, with greater interest around the 1970s and 

1980s [35,36]. Despite the above controversy, the classical bioheat equation is deemed adequate 

for the current study, whereas more sophisticated mathematical models may not warrant higher 

accuracy for cryosurgery computation but will involve greater mathematical complications 

[37,38]. Typical to bioheat transfer simulations of cryosurgery, the heating effect resulting from 

blood perfusion is far more significant than the metabolic heat generation, with the latter 

neglected in the current study [39].  

Further note that the dependency of blood perfusion on temperature may represent a more 

complex behavior than the step-like change described in Table 3-1. While the specific behavior 
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may be unknown for the case of freezing in the prostate, Rabin and Shitzer [39] have already 

demonstrated that the overall effect of blood perfusion on the size of the frozen region is 

measured in only a few percent in the absence of major blood vessels, and as a result of an 

extremely high blood perfusion rate. Given these prior findings, the simplistic temperature-

dependent blood perfusion selected is assumed adequate to predict the size of the frozen region 

in the current study, which is the monitored parameter via medical imaging during prostate 

cryosurgery.  

An efficient numerical scheme to solve Equation 3-1 has been published previously [25], 

and is presented here in brief for the completeness of presentation. The numerical scheme is 

based on a finite differences (FD) approach, using a variable grid size and grid-dependent time 

intervals, which is well suited for parallel computation [32]. The variable grid size is used in 

order to reduce the computational cost, where a fine grid is only necessary in regions with steep 

thermal gradients, such as those around the urethral warmer and cryoprobes, while a coarse grid 

is used in the rest of the domain. Since the time interval to ensure stability is proportional to the 

typical grid size to the second power, an area with a coarse grid permits a much larger time step. 

The characteristic FD equation for solving Equation 3-1 is shown below in Equation 3-2 

[39]:  

𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑝𝑝+1 =

∆𝑡𝑡
∆𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘�𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘 + (𝑤̇𝑤𝑏𝑏𝐶𝐶𝑏𝑏)𝑖𝑖,𝑗𝑗,𝑘𝑘∆𝑡𝑡�

�
𝑇𝑇𝑙𝑙,𝑚𝑚,𝑛𝑛
𝑝𝑝 − 𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑝𝑝

𝑅𝑅𝑙𝑙,𝑚𝑚,𝑛𝑛−𝑖𝑖,𝑗𝑗,𝑘𝑘𝑙𝑙,𝑚𝑚,𝑛𝑛

+
∆𝑡𝑡�(𝑤̇𝑤𝑏𝑏𝐶𝐶𝑏𝑏)𝑖𝑖,𝑗𝑗,𝑘𝑘𝑇𝑇𝑏𝑏 + (𝑞̇𝑞𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝑉𝑉⁄ � + 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑝𝑝

𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘 + (𝑤̇𝑤𝑏𝑏𝐶𝐶𝑏𝑏)𝑖𝑖,𝑗𝑗,𝑘𝑘∆𝑡𝑡
 

(3-2) 

where i, j, k are the indices of the grid point under consideration, the indices l, m, n represent its 

neighboring grid points, p is the time level, V is the element volume associated with the grid 

point under consideration, and R is the thermal resistance to heat transfer by conduction between 
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grid point i, j, k and its neighbor l, m, n. The thermal resistance to heat transfer by conduction in 

a Cartesian geometry is given by Equation 3-3: 

𝑅𝑅𝑙𝑙,𝑚𝑚,𝑛𝑛−𝑖𝑖,𝑗𝑗,𝑘𝑘 = �
𝐿𝐿

2𝑘𝑘𝑘𝑘
�
𝑙𝑙,𝑚𝑚,𝑛𝑛

+ �
𝐿𝐿

2𝑘𝑘𝑘𝑘
�
𝑖𝑖,𝑗𝑗,𝑘𝑘

 (3-3) 

where L is the space interval in the direction of heat flow, and A is the representative cross-

sectional area perpendicular to the same direction.  

Figure 3-1 schematically illustrates a 2D domain, representative of a cross-section during 

prostate cryosurgery—the focus of the current line of research. For demonstration purposes, 

Figure 3-1 includes two grid sizes: a general coarse grid and a fine grid around the cryoprobes 

and the urethra; the urethra runs through the prostate and is warmed by a special heater during 

cryosurgery. Figure 3-1 also illustrates the thermal resistance network around a fine grid point 

and at a transition area between fine and coarse grid. Figure 3-1 presents a coarse-to-fine grid 

ratio of 1:3, which corresponds to a grid point ratio of 1:9 in 2D. These ratios illustrate the 

potential run time reduction by varying grid size. Consistent with [25], the simulated domain is 

assumed much bigger than the frozen region, such that the boundary condition represent constant 

temperature throughout the simulation—equal to the core-body temperature. 
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Figure 3-1: Schematic illustration of a variable grid of 1:3 ratio in the 2D case, representative of 
a prostate cryosurgery, and the thermal resistance network used for numerical simulations 
(adopted with permission from [25]). 

 

The stability criterion for applying Equation 3-2 is given by Equation 3-4 [25]: 

∆𝑡𝑡 ≤ �
(𝐶𝐶∆𝑉𝑉)𝑖𝑖,𝑗𝑗,𝑘𝑘

∑ 1 𝑅𝑅𝑙𝑙,𝑚𝑚,𝑛𝑛−𝑖𝑖,𝑗𝑗,𝑘𝑘⁄𝑙𝑙,𝑚𝑚,𝑛𝑛
� (3-4) 

In the current study, the maximum allowable time interval for the finest grid, ∆tfine, is evaluated 

first, to be used in the finest grid regions. Next, the maximum allowable time interval for the 

coarse grid is calculated, ∆tmax, where the time interval for the coarse grid, ∆tcoarse, is selected as 

the product of the truncated ratio ∆tmax/∆tfine and ∆tfine. 

 With reference to Figure 3-2, the cryosurgical simulation is composed of a main loop that 

marches in time subject to six key operations: (i) field-properties update, where the boundary 

conditions and material properties are recalculated during each computation cycle, based on the 

corresponding temperature field; (ii) fine-grid temperature calculations subject to small time step 

intervals (calculated every loop cycle); (iii) coarse-grid temperature calculations subject to a 
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corresponding larger time step intervals (in practice calculated only every m loop cycles, where 

m is the ratio of time step intervals); (iv) interpolation of the irregular simulation grid into a 

regular fine grid in preparation for the next step; (v) calculation of the defect field and its 

integrated value; and, (vi) periodic data to disk for logging and further thermal analyses. Only 

operations (i) and (ii) are executed every time main loop cycle, where the other operations are 

performed periodically, based on numerical stability criteria and operational parameters. For this 

purpose, special tests are scheduled to indicate whether the execution of operation (iii) through 

(vi) is due in the current time step. 
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Figure 3-2: A flow chart representing the cryosurgery simulation framework [34] 
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3.2 Finite Element Cryosurgical Simulator 

 Conceptually, at least two approaches could be applied for bioheat simulations, using 

either finite-elements (FE) analysis or finite-difference (FD) scheme, where discussions about 

the preferred approach attract significant attention in professional meetings [40,41,42]. When an 

FE approach is taken, one could use a commercial code which may guarantee robustness and 

user friendliness [43]. Equally important is efficiency in calculations and short runtime, where an 

FD scheme may be of superior performance. While the application of a particular numerical 

scheme may simply be a matter of personal preference, the application of commercial software 

versus a proprietary code may carry further implications on the cost and complexity of 

development. From considerations of cost, efficiency, availability, development time, user 

friendliness, and robustness, it appears to the author that a commercial code would be a better 

choice for the current development, should the FE approach be taken. By contrast, developing a 

proprietary code would be required should the FD approach be taken. Of course, the opinion of 

other developers in the field may vary based on their own experience and record of 

achievements, and they may wish to explore additional methods, should they be challenged with 

the task of developing competitive computerized platforms. It was therefore warranted that both 

simulation approaches be investigated in the current study. 

For the purpose of development in the current study, two bioheat transfer simulation cores 

were benchmarked, using the FE commercial code ANSYS [43] and a proprietary FD code 

presented previously [25]. Table 3-2 lists key comparison points for those alternatives, where 

more discussion on the pros and cons of these applications is provided in the Discussion section. 

While some of the comparison criteria are unique to the current selection, many others are quite 

general. It is acknowledged that other FE commercial codes could be used, but comparison of the 

various commercial codes is beyond the scope of the current study. Nevertheless, based on the 
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author’s experience and the literature, ANSYS would serve the objectives of this comparison 

adequately. It is further acknowledged that other FD schemes could also be used for heat transfer 

simulations [44]. Nevertheless, the scheme presented by Rossi et al. [25] has already been 

demonstrated superior for the purpose of cryosurgery simulations. This FD scheme has been 

further verified against experimental data on gelatin solution [24,26], based on 24 independent 

experiments in eight representative cryoprobe layouts (n=3). Results of that study indicated an 

average uncertainty of 0.4 mm in freezing front location, and a mismatch of less than 5% 

between the simulated and the measured frozen region areas (average mismatch value of 2.9% 

from all experiments). By comparison, identifying the freezing front location by means of 

medical imaging is estimated to be not better than 1 mm. More information about the expected 

level of certainty during a clinical procedure is included in Results and Discussion.  

With the above acknowledgements in mind, it appears that the selection between the FE 

and the FD approaches to develop the bioheat transfer simulation core is not a trivial decision. 

This decision calls for benchmarking the two schemes as discussed below. 
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Table 3-2: Comparison of a FE simulator based on ANSYS [43] and a proprietary FD simulator 
[25]. As presented in [34]. 

Comparison 
Criteria  

FE-Based Simulator FD-Based Simulator 
Pros Cons Pros Cons 

Geometrical 
representation of 
complex shapes 

Natural conformity 
of grid points to 
curved surfaces 

  

Difficult with the 
more intuitive 
orthogonal grid 
system 

Simulation of the 
classical bioheat 
equation 

 

Requires a special 
operations to account 
for the heating effect 
due to blood perfusion  

Similar difficulty to the 
ordinary conduction 
problem; blood 
perfusion increases 
system stability [15] 

 

Computation cost 
at each time step  

High, requires matrix 
solvers and high 
number of operations 

Low for an explicit 
scheme, straightforward 
calculations 

 

Memory resources  

High demand, 
matrices size is orders 
of magnitude larger 
than the number of 
grid points 

Low demand, matrices 
size and number of grid 
points are of the same 
order  

 

Defect region 
calculations   Very high cost Low, can be calculated 

simultaneously  

Time step interval 
for bioheat 
simulation 

Relatively long 

Stability does not 
guaranty convergence 
nor consistency; have 
to be evaluated 
iteratively  

Stability is a necessary 
and sufficient condition 
for convergence and 
consistency 

Explicit formulation 
requires very small 
time steps to ensure 
stability  

Computational 
Complexity  

Linear with 
numerical grid points  Linear with numerical 

grid points   

Pre-processing  & 
Post-processing  Complex due to grid 

points registration 
Trivial with an 
orthogonal grid system  

Scalability Parallel kernels 
possible 

Bottlenecks due to 
matrices operation 

Trivial for an explicit 
scheme, no bottlenecks  

Availability of 
commercial codes 
for heat transfer 
simulations 

A selection is 
available   None 

User friendliness 

High when an FE 
commercial code is 
used by a proficient 
user with technical 
background 

Low when a 
commercial code is 
used by a novice user 
with no technical 
background 

High when a 
proprietary code is 
tailored for a novice 
user from a medical 
background 

Impractical without 
developing a 
tailored system 
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3.2.1 Finite Element Simulator Structure 

The simulator framework must be modular in nature, to enable data transfer with the other 

components of the training software package Figure 3-2, and to integrate alternative heat transfer 

simulation cores. As a requirement, the simulator must be able to evaluate defect values through 

the process of simulation. A schematic illustration of the heat transfer simulation framework is 

presented in Figure 3-3. The description below highlights the FE implementation with ANSYS, 

where source code of the simulation core is unavailable. With reference to Figure 3-3, the 

simulating core is naturally subdivided into: pre-processing, computing, post-processing, and a 

main control loop. In the pre-processing phase, three input files are read into the simulator: (i) 

“.sim” which contains the simulation settings, such as material properties, operational 

parameters, and cryoprobe layout; (ii) “.csv” which contains the numerical grid; and (iii) “.agf” 

which contains the 3D surface data of the target region—the prostate and urethra in the current 

study. 

The simulator core encapsulates two time cycles, the first is the sequence of time steps for 

progression of the numerical simulation, and the second is the periodic evaluation of the defect 

value. While the cost of defect evaluation is negligible for an FD scheme, and can be done in 

parallel, a FE scheme necessitates a post-processing phase for defect evaluation, which may 

create a bottleneck in calculations. Using ANSYS, the second cycle is performed by analyzing 

the results file “.rst” at the end of the cycle, following the execution of the commands listed in 

“.lgw”. In either simulator, heat transfer simulation progresses until a minimum defect is 

identified. Once the simulation terminates a “.srt” results file is generated, containing the 

temperature and defect history of the simulation domain, to be used by the Trainer and stored in 

the Database Figure 3-2. While the above process of file sharing and data transfer may appear 

cumbersome and computationally expensive, it is necessary in the development of the post-
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processor functionality when integrating a commercial code structure.  

 

 

Figure 3-3: Implementation of the FE bioheat transfer simulation core with ANSYS. Data 
transfer scheme is made identical for the FD simulator for the purpose of benchmarking [34]. 

 

3.2.2 Finite Element Simulator Optimization 

Before benchmarking, the FE simulation core must be optimized for runtime while 

maintaining acceptable accuracy. Due to the large number of parameters, a sequential 

optimization process was performed for: (1) mesh size, (2) time step size, and (3) solver type and 

associated convergence tolerance. An acceptable accuracy level in all optimization steps was 

considered to be 2 mm in the location of the freezing front, which corresponds to about 3% 

change in frozen region volume in most cases. Such an error in freezing front location coincides 

with the uncertainty range with medical imaging—the sum of imaging resolution of 1 mm and 1 

mm positional error in the process of shape reconstruction. The accuracy in freezing front 

location was evaluated by a comparison with a base case, which was selected as a converged 
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solution that matched the results of the FD simulation core (discussed in [25] and compared with 

experimental results in [24]). In addition, the average temperature difference within the frozen 

region was also investigated to ensure the convergence of the temperature-field. The 

optimization test cases were based on fourteen cryoprobes in a layout optimized with bubble 

packing, for a realistic cancerous prostate geometry. The test case was run until minimum defect 

had occurred for each parameter choice for identical cryoprobe layouts.  

FE optimization for mesh size: In order to select the optimal mesh distribution, mesh sizes 

are set on various control surfaces within the model, then the mesh size is interpolated within the 

volume between the surfaces. Selected mesh surfaces include the active cooling portion of the 

cryoprobes (1 mm), the heated area of the urethral warmer (3 mm), the prostate contour (5 mm), 

and the external boundary of the simulated domain (10 mm); those numerical values are scaled 

with the respective temperature gradients. The mesh convergence study was carried out by 

proportionally increasing the mesh on all of the above surfaces, until the maximum difference in 

the location of the lethal temperature isotherm exceeded one millimeter from the converged 

solution. This convergence criteria was chosen because it is the most clinically relevant metric 

for prostate cryosurgery. A tetrahedral mesh was found to best populate the domain defined by 

those surfaces.  

FE optimization for time step: One minute is deemed the largest allowable interval between 

simulation results for effective planning from defect-calculation considerations. As specified 

above, the thermal history of the cryoprobes consists of a rapid cooling stage and cryogenic 

temperature hold stage. Consistently, the freezing front grows at a faster rate at the beginning of 

the procedure. The two-stage cooling protocol was matched with a simulation scheme based on 

two time step intervals. Figure 3-4 displays selected results of the time step convergence study, 

where the average temperature difference within the frozen region (temperatures below 0°C) is 
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calculated with reference to the FD solution. It can be seen from Figure 3-4 that the average 

temperature difference is initially large, due to the small volume of the frozen region and the 

high temperature gradients surrounding the cryoprobes; that temperature difference 

monotonically decays as the simulated process approaches steady state. Since the early stage of 

freezing plays a lesser role in evaluating the effects of the cryoprocedure, time step intervals of 

10 sec during cryoprobe cooling and 60 sec during cryogenic temperature hold period are found 

acceptable for the purpose of the current study. While the 60 sec interval is deemed adequate for 

the numerical solution, the parallel search for minimum defect necessitated intermediate values, 

which eventually led the investigation to also include 30 sec intervals. This illustrates a difficulty 

in integrating a commercial code for heat transfer simulations with parallel calculations for the 

quality of simulation.  
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Figure 3-4: Average temperature difference in the frozen region (T<0°C) between the FE and 
FD simulation results, for a FD time step of 0.02 sec and various FE time intervals: ∆tc is the 
time step during cryoprobe cooling from 37°C to -145°C, and ∆th is the time step size when the 
cryoprobe temperature is held at -145°C [34]. 

 

FE optimization for numerical solver and convergence tolerance: For the above mesh 

selection and time intervals, the following solvers were tested: Sparse Solver, an Advanced 

Multigrid Solver, a proprietary preconditioned solver (conjugate gradient), a Jacobi Solver 

(conjugate gradient), and an Incomplete Cholesky Conjugate Gradient Solver (ICCGS). Most 

effective was found the ICCGS, running at least 8% faster than any other tested solver (infinity 

norm=10-6 for Newton-Raphson tolerance).  
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Computational Complexity: As could be expected from theoretical analysis of the FE 

scheme, Figure 3-5 displays almost linear increase in complexity with the increased number of 

nodes and, independently, with the increased number of cryoprobes (i.e., increased surface area 

of fine mesh). The deviation from linearity is resulted from changes in the cryoprobe layout 

when the number of cryoprobes varies in the same selected domain. A linear computational 

complexity for the FD scheme has been demonstrated previously with the increasing cryoprobes 

number [25]. 

 

 

Figure 3-5: Computation time of the FE simulator as a function of the number of cryoprobes 
NP, and for the corresponding number of nodes NN using optimal mesh sizes, for cryoprobe 
layouts determined using bubble packing [34]. 
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Scalability: For the case of 30 sec FE time step, the FD simulator is about 6.7 to 8.3 times 

faster than the FE simulator Table 3-3. Given the fact that the FD simulator actually advances in 

time steps in the order of 10-2 sec, this result is extraordinary. The reason for the superiority of 

the FD runtime is in its explicit formulation, where the short time interval is traded with 

simplicity in calculation. With regard to defect calculations, the 30 sec intervals of the FE 

simulator may lead to unnecessary simulation time, whereas the small time intervals of the FD 

simulator provide continues information of the defect region progression.  

Multi-Core Processing: While one could expect the simulation runtime to be inversely 

proportional to the number of computation cores in parallel processing, increasing the number of 

computation cores from 1 to 4 reduces simulation runtime by a factor of 2 for both the FD and 

FE schemes Table 3-3, but from different reasons (both codes are specifically written for parallel 

processing). For the FD simulator, suboptimal acceleration is primarily due to the i7 chip 

architecture, where all the cores share the same amount of L3 cache in parallel computing as one 

core would use in a single core run. For the FE simulator, the suboptimal acceleration is 

primarily due to the sequential steps necessary for the complex pre- and post-processing. Due to 

the explicit nature of the FD scheme, it is an excellent candidate for parallel computing, 

providing that the amount of L3 cache is large enough. It is concluded that with increased cache 

size, the FD scheme runtime will become inversely scaled with the number of cores, which 

represents a significant advantage with the current trend of increased number of computation 

cores on personal computers (six and eight cores are already widely available on mid-range 

machines). 

Geometry representation: An area in which the FE simulator is superior to the FD 

simulator is that of geometrical modeling fidelity. The FD simulator is restricted to placing nodes 

on a rectilinear grid, which necessitates a finer discretization to represent the non-rectangular 
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geometry of the prostate. By contrast, the FE method has fewer restrictions on node placement 

and, thereby, the pre-processor of the commercial code is able to represent a complex shape with 

fewer nodes. For the current test case, approximately 95,000 nodes were needed for the FD 

simulator as opposed to 80,000 nodes for the FE simulator to obtain an accurate solution. Despite 

the apparent superior geometrical representation in the FE simulations, the FD simulator 

displayed a higher accuracy in temperature field calculations, which was obtained in a shorter 

runtime.  

Key development objectives for the cryosurgery trainer are short runtime on a personal 

computer and user friendliness in operation, in order to make the trainer application practical for 

a large community of novice users. Given the computation cost of the bioheat transfer simulation 

with phase change, meeting this objective requires innovation in code writing and selection of an 

efficient computer framework. Given the computation cost and recent developments in computer 

hardware, it appears that we are currently at the verge of meeting those development objectives 

with the FD simulation core.  
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3.2.3 Finite Element Simulator Benchmark 

Benchmarking studies were performed on a cancerous prostate model created previously 

Figure 3-6, using 14 cryoprobes at a uniform insertion depth, with optimal layout generated by 

bubble packing [30]. The probe layout is further detailed in Figure 3-7 All simulations were 

performed on an Intel® i7-950 (four-core) machine, running at 3.07GHz, with 9GB of RAM. All 

heat transfer simulations were run for 255 seconds of simulated runtime, which coincides with 

the point of minimum defect for the FD-based code.  

 

 

Figure 3-6: Illustration of a fourteen-cryoprobe layout in the cancerous prostate model used in 
the current study for benchmarking. The urethral warmer—a cylindrical heater in the form of a 
catheter— is designed to protect the urethra from cryoinjury and is modeled as a heated tube 
[34]. 
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Figure 3-7: Temperature regions of interest for the purpose benchmarking in the current study 
[34]. 

 

It can be seen from Table 3-3 that the FD and FE schemes identify different values for the 

time to minimum defect. This difference is due to the way that the phase-transition temperature 

range is handled in each scheme. Note that for both selected schemes, the freezing front location 

is interpolated from temperature data and it is not a parameter of the solution. It is also noted that 

the optimal cryoprobe layout has shown to be insensitive to the simulated time to minimum 

defect—computationally [25] and experimentally [24]. Based on the high certainty in predicting 

the freezing from location with the FD solution (0.4 mm, see Bioheat Simulation Technique, 

above), and given the fact that stability is a necessary and sufficient condition for convergence in 

the particular FD scheme [44]. Figure 3-8 displays the resulting temperature field at the point of 

minimum defect, where Figure 3-9 displays the evolution of the defect for the same simulation. 

Comparison of advantages and disadvantages in using the FE and FD simulators is listed in 

Table 3-2, based on the specifics of benchmarking. Furthermore, Table 3-3 lists simulation 
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results for parallel computation on a number of cores ranging from one to four, for the same 

cryosurgery case displayed in Figure 3-6. 

 

Table 3-3: Benchmarking results of the FE and FD simulators on a representative case of a 
cancerous prostate model. Cryoprobe layout is based on a bubble packing method (illustrated in 
Fig. 4). For the FE simulator, a time step of the 60 sec represents an upper limit for convergence, 
whereas the 30 sec time step is deemed practical for concurrent defect region calculations. Time 
step for the FD simulator is taken at the stability limit [34]. 

Simulator FE FD 
Time step 60 sec 30 sec .02 sec 

Minimum defect value 24.5% 24.7% 24.3% 
Total simulated time 255 sec 255 sec 255 sec 

Simulated time to minimum defect 180 sec 199 sec 255 sec 

Actual runtime 
1 core 613 sec 966 sec 144 sec 
2 cores 423 sec 689 sec 83 sec 
4 cores 304 sec 521 sec 67 sec 

Simulated time ratio = 
comp. runtime / procedure 

duration 

1 core 236% 379% 56% 
2 cores 165% 270% 32% 
4 cores 119% 204% 26% 

 

 

  

Figure 3-8: Temperature field at the point of minimum defect: (left) temperature field 
superimposed on the prostate outer surface; (right) cross section passing through the center of the 
active surface of the cryoprobes [34]. 
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Figure 3-9: Evolution of total defect for the simulated case displayed in Figure 3-6 [34]. 

 

3.3 GPU Based Finite Difference Implementation  

The numerical scheme previously presented was parallelized and optimized for the CPU 

[32]. However, significant changes to the implementation were necessary to achieve optimal 

results on the GPU. The following sub-sections will give the necessary background for today’s 

GPU architecture as well as explain the structure and optimization process of the numerical 

scheme. The GPU implementation and optimization have been conducted in an iterative manner. 

Below, the key elements of GPU implementation are presented first, the key optimization steps 

and their relative impact on run-time acceleration are presented next, and benchmarking results 

against an optimized CPU implementation on selected machines are presented last. 

Implementation results, optimization analyses, and benchmarking in this study are based on a 
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cancerous prostate model created previously, using a urethral warmer and 12 cryoprobes at a 

uniform insertion depth, with optimal layout of the probes generated by bubble packing [30]. 

Figure 3-11(a) displays typical results obtained with the simulation code [32] at the point of 

minimum defect, presented at the largest prostate cross section. The C++ AMP language was 

selected for GPU implementation as a choice of practice, based on its user friendliness as well as 

its advantage of future graphics interoperability with DirectX. 

Conceptually, the current study represents an advanced-stage development, where 

validation with experimental data is established in two consecutive steps. The first step has been 

completed in previous studies, where the applied FD numerical scheme [25] has been validated 

against experimental results [24]. That previous study demonstrated mismatch between the 

predicted freezing front location and the simulated freezing front location of less than 4.8%, with 

an average mismatch of 2.9% (n=24). Note that the freezing front location is the monitored 

parameter during minimally invasive cryosurgery. That 2.9% mismatch has been translated to 

0.3 mm of disagreement in the actual freezing front location [24], which is much smaller than the 

resolution in medical imaging for minimally invasive cryosurgery (in the range of 1 to 2 mm for 

ultrasound). The second step of comparison with experimental data is presented here, where any 

new computational development in the current study is validated against the established FD 

scheme and CPU-based implementation. For example, Figure 3-11(b) displays a mismatch of up 

to 0.4ºC between GPU-based and CPU-based simulations of the same case, with a negligible 

difference in the freezing front location (less than 0.01 mm, which has no clinical meaning). A 

wider discussion on the propagation of uncertainty in measurements into cryosurgery simulations 

has been presented by Rabin [45]. 
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3.3.1 GPU Background 

CPUs and GPUs are two of the most common processor types used in computers. The 

CPU usually contains a few very powerful cores. CPU cores typically have a large instruction set 

and are optimized to perform a single task very quickly. GPUs are made up of many (tens to 

thousands) cores. Each core is relatively simple, has a smaller instruction set, and is much less 

powerful compared to a single CPU core. The primary purpose of GPUs is to calculate the color 

of each pixel on the screen. To perform this task, the same set of calculations must be repeated 

for every pixel. As a result, GPUs are optimized for computationally intensive work flows that 

require the same independent calculation to be performed on a large amount of data (data 

parallel). Despite the fact that each GPU core is much less powerful than a CPU core, the 

combined computational power of all of the cores on a GPU is much higher than that of a CPU. 

The problem of simulating heat transfer during cryosurgery is also a data parallel computation as 

the same independent calculation must be performed for every node in the domain within each 

time step [46]. 

As a result of the different class of problems for which CPUs and GPUs have been 

developed, the way in which they address memory latency, the largest bottleneck in computing, 

has diverged. Memory latency is the time it takes between a request for and a delivery of data 

from the processor’s memory (RAM). Memory fetches are extremely expensive operations to 

perform on both the CPU and GPU, typically taking in the range of one hundred cycles. During 

this time the processor is idle waiting for the data due to the long latency. CPUs are designed to 

perform a single task very quickly. What results is a processor with a lot of fast local cache to 

store frequently used data and large complicated cores that can predict what memory and 

instructions to pre-fetch to reduce the amount of idle time. Only a relatively small percentage of 

the total transistors are dedicated to performing numeric computation. Because GPUs are 
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designed for large independent data parallel computation, chip designers were able to take a 

different approach to the memory latency problem. Instead of using extensive caches or 

complicated cores, GPUs hide memory latency with other work. While a processor is waiting for 

a memory fetch request to complete, there is other data parallel work to perform as the number of 

independent calculations to complete is orders of magnitude higher than the number of cores. 

The GPU is able to switch back and forth between many different calculations every time a long 

memory request is issued, effectively hiding it with computation. By using this strategy GPU 

chip designers were able to improve performance by adding more computational cores, but not 

necessarily by making each core more complicated. Many simplifications are made from an 

architectural standpoint to allow more transistors to be dedicated to computing [47]. A depiction 

of the difference between GPU and CPU architectures is shown below in Figure 3-10. 

 

 

Figure 3-10: Comparison between CPU and GPU architecture. The portions of the figures 
labeled ALU (algebraic logic units) are the parts of the chips responsible for computation [50].  

  

GPUs are composed of groups of processors called multiprocessors. Each multiprocessor 

typically contains a group of cores (typically 32) that all operate in lock-step. These cores all 

execute the same instruction synchronously. If there are conditional statements in the code all of 
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the cores will need to traverse all of the code paths taken by the cores within the multiprocessor. 

For example, if a multiprocessor is executing an “if else” statement and 31 of the 32 cores 

executes the “if” branch then the one remaining core waits for those instructions to execute. 

While the “else” executes, the final core performs work while the 31 cores that executed the “if” 

branch wait. As a result conditional statements in GPU computing are relatively expensive and 

should be minimized [48]. 

Each multiprocessor shares a memory controller that aggregates memory requests from 

the individual cores. These memory controllers are extremely efficient at fetching a contiguous 

chunk of memory. Despite the fact that memory fetches typically overlap with other 

computation, many applications are still memory bound. Therefore, care should be taken in 

designing the data layout in order to maximize the number of contiguous memory fetches a 

group of processors make [49]. 

To further address the issues of memory latency, each multiprocessor has a small amount of 

shared memory cache, which can be accessed by all of the cores within the multiprocessor. It is 

much quicker to access this shared memory cache than it is to get the data from GPU memory. 

Therefore,   algorithms should be designed to have cores in a multiprocessor cooperatively load 

and unload frequently used shared data into this cache [47]. 

  

3.3.2 GPU Implementation 

The GPU simulation algorithm stores temperature and thermal conductivity data for each 

node in the simulation. Other thermal properties, like heat generation and specific heat, are 

calculated ad-hoc based on the nodal temperature. In addition, two matrices are used to store the 

nodal connectivity and thermal resistance data. The iterative optimization process in this study 

starts with a GPU implementation base-case, designated as naïve, and then progresses through 
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various optimizations stages to improve runtime performance.  

Since most of the simulation algorithm can be modeled as a sparse-matrix vector operation 

(SPMV), the naïve implementation is based on a compressed sparse row (CSR) matrix format for 

both the matrices of nodal connectivity, thermal resistance, and interpolation. The access pattern 

for both of these matrices follows the scalar SPMV algorithm [47], where each thread is 

responsible for a row in the matrix-vector multiplication operation. In order to calculate the 

defect value, a reduction operation is applied to the sum of defect values from all interpolation 

nodes. A cascade algorithm [46] is used for the reduction, where each thread sums a fixed 

number of elements from the interpolation grid, each processor group sums up an intermediate 

defect value from all of its individual threads, and finally each processor group copies its partial 

sum to the CPU where the final reduction occurs. Only one of the above steps were run at a time 

in the naïve implementation. 

  

3.3.3 GPU Optimization 

Optimization of the GPU-based simulation scheme progressed based on a prioritized list of 

expected improvements in terms of runtime, with the outcome displayed in Figure 3-12: 

1. Float precision: Converting from double-precision in the naïve implementation to float-

precision for all applicable parameters dramatically reduced runtime by 44%. No 

significant degradation of the quality of calculated temperature field (Figure 3-11(b)), the 

defect field, or the time to minimum defect, was identified due to the decrease in numerical 

precision. As can be seen from Figure 3-11(b), the maximum mismatch between the float 

precision and the CPU-based implementation is 0.4ºC, which is negligible in the great 

majority of the field. Reducing the amount of data transferred from the global memory by 

half speeds up all of the steps in the heat transfer simulation. Most significantly, this 
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change speeds up the defect value calculation, which is the most global memory-intensive 

process. It should be noted that, in the case of bioheat-transfer simulations for cryosurgical 

training the additional resolution of the double-precision floating point representation is 

unnecessary. However, if one were to solve the bioheat equation with the previously 

described scheme with a smaller time-step size and smaller grid size, double-precision may 

be needed in order to prevent the buildup of numerical error. 

 

 

Figure 3-11: A typical simulated temperature field at the largest prostate cross section, subject to 
the operation of a urethral warmer and 12 cryoprobes: (top) temperature field results obtained 
with a CPU-based parallel computation, using double precision; (bottom) temperature difference 
between the CPU-based parallel simulation and the optimized GPU-based simulation. All 
temperature values are given in Celsius degrees [53] 
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2. Asynchronous I/O: Since file I/O can be performed in a separate thread on the CPU, in 

parallel to GPU operations, asynchronous file operations were tested in the next step of 

optimization, shifting this costly step to the background. Asynchronous I/O saved an 

additional 14% in terms of run time with reference to the float-precision implementation.  

3. Defect calculation: Defect calculations are based on a tri-linear interpolation scheme, 

where each interpolated grid point is calculated based on eight neighboring nodes. This 

allows the use of an ELLPACK (ELL) matrix representation instead of CSR. The 

ELLPACK matrix more efficiently represents the sparse matrix, as it saves only the non-

zero entries (eight in this case). Anytime that the ELL representation is used to store a 

matrix on the GPU, the non-zero entries are arranged so that the first non-zero entry in each 

row are laid out sequentially in the ELL array, with the pattern continuing for each 

additional non-zero per row. This layout significantly improves global memory coherency. 

In the third step of optimization, temperature interpolations and defect calculations were 

further combined into a single kernel, which dramatically reduced the number of global 

memory operations. Unfortunately, the current optimization effort did not significantly 

shorten runtime Figure 3-12 since the current effort covered only a small portion of the 

total time spent within this kernel. In practice, the majority of the computation time is 

devoted the scheme of defect calculations, which could not be accelerated any further. 

Interestingly, because of the asynchronous I/O operations, modifying this kernel actually 

had an adverse effect on the runtime of the field property update kernel.   

4. Texture memory: Texture memory is a specially mapped location of global memory, which 

reduces lookup time and writing time. To take advantage of this special GPU feature, f 

such as temperature and thermal properties, was stored in texture memory. Applying 

texture memory directions reduced the runtime of all kernels by 28% compared to the 
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previous optimization stage, and overall reduction of 12% compared with the naïve 

implementation. In order to use texture memory with C++ AMP, one needs a 2D texture 

structure to contain the large data structures typical to cryosurgery simulations. 

5. Network connectivity: While any node within a uniform grid, either fine or coarse, has 

connections with six neighboring nodes, more connections may develop at the interface 

between the fine and coarse regions. To calculate this connection network more effectively, 

a hybrid matrix representation was formulated as follows. The six connections within 

uniform grid areas are stored in the memory efficient ELLPACK matrix representation. For 

interface nodes (more than six neighbors), these connections are stored in a permutated 

CSR (PCSR) format, with rows in descending order based on the number of non-zero 

elements. This hybrid representation is similar to the one presented in [47], except for the 

non-zero entries that do not fit into the ELLPACK representation, which in turn are saved 

in a PCSR format rather than the coordinate (COO) format suggested in [47]. In general, 

the COO format saves a row number, a column number, and a value for each non-zero 

entry. The PCSR representation has less memory coherency than the COO format when 

performing sparse matrix vector-like operations. However, for the application of 

cryosurgery, the PCSR format significantly reduces the amount of computation compared 

to the COO format, since calculations of the temperature-dependent terms in the update 

step only need to occur once per row rather than once per non-zero element. The PCSR 

format does, however decrease code divergence within a processor group compared to the 

original CSR format, by processing rows with a similar number of non-zeroes within one 

group. The real acceleration due to the improved connectivity comes about by storing the 

majority of the connections in the network in the more efficient ELLPACK representation. 

Improved network connectivity as described above reduced runtime by 10% compared with 
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the naïve implementation.  

 

 

Figure 3-12: Typical runtime results of successive optimization steps for the GPU 
implementation, where Naïve represents the non-optimized base-case GPU implementation [53]. 
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3.3.4 GPU Benchmark   

Keeping in mind the above optimization steps, the optimized GPU-based code was benchmarked 

against a CPU-based parallel computation code [32] on the selected computation platforms as 

listed in Table 3-4. . These machines were selected to represent the typical performance of a 

midrange laptop, a high-end home PC, a gaming PC, and a workstation PC. All heat transfer 

simulations were run for 201 seconds of simulated runtime, which coincides with the point at 

which the minimum defect was identified. The grid size used in this study is 1 mm × 1 mm × 1 

mm for the fine grid and 3 mm × 3 mm × 1 mm for the course grid, resulting in a total of about 

80,000 grid points in the entire 3D domain. These grid sizes were chosen in a previous study in 

order to reduce computational cost [24].  
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Table 3-4: Computer platform specifications used for benchmarking in the current study 
where the results are displayed in Figure 3-13 [53]. 
 

System CPU Memory 
CPU 

Cores/Threads 
GPU Video Memory 

GPU 

Cores 

Laptop 

Intel 

Core i7 

M620 

4 GB 

DDR2 
2/4 

AMD 

Mobility 

Radeon HD 

5450 

512 MB 

dedicated 2202 

MB Total 

DDR3 

80 

High-end 

home PC 

Intel 

Core i7 

950 

9 GB 

DDR3 
4/8 

AMD HD 

Radeon 5570 
1 GB DDR3 400 

Gaming PC 

Intel 

Core i7 

960 

9 GB 

DDR3 
4/8 

Nvidia 

GeForce 

GTX 580 

1.5 GB GDDR5 512 

Workstation 

Intel 

Core i7 

870 

8 GB 

DDR3 
4/8 

Nvidia 

Quadro 600 
1GB DDR3 96 

 

In all tested cases, the GPU-based implementation significantly outperformed the 

optimized CPU implementation. Simulation speed increases ranged from 3× on the laptop and up 

to 13× on the gaming PC, which contained the most powerful GPU. Note that the CPU-based 

computation has already been optimized for multi-processors [32], where the implementation of 

the applied FD scheme is trivial using parallel for loops with OpenMP. In the un-optimized CPU 

implementation, every node was represented as an object that contained all of the material 

properties and connectivity information with the surrounding nodes. This data structure was 

optimized by rearranging the more commonly used properties, such as conductivity, volume and 

specific heat together. This Data Separation allowed the implementation to more effectively 
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cache frequently used data and reduce the system memory load. For example, this CPU-based 

optimization resulted in 3.9× faster runtime than the non-optimized serial CPU implementation, 

when using Hyper-Threading on all 4 cores of an Intel Core i7 960. This makes the runtime of 

the most sophisticated GPU-based simulation about 50 times faster than the serial CPU 

simulation. Figure 3-11(b) displays very good agreement between the two simulation 

approaches.  

Parametric investigation using Nvidia GeForce GTX 580 (512 GPU cores) reveals that 

simulation runtime is linearly proportional to the number of numerical nodes for larger problems, 

like the one used in the current benchmark study (about 80,000 nodes). This linear relationship 

holds as long as the problem is big enough to effectively use the entire GPU memory bandwidth. 

If additional computations are performed while memory fetches occur, much of the work can be 

fully hidden [46]. However, there is a problem-size threshold below which the computational 

performance will start to degrade, because the large number of cores will become underutilized 

during memory fetches. This occurs when the problem becomes smaller than about 30,000 

numerical nodes for the current numerical scheme and the above computation unit.  

A full-scale GPU-based simulation of cryosurgery can already be achieved in less than 2 

seconds Figure 3-13. Such a short time can be considered instantaneous for the purpose of 

providing an early prediction of the cryoprocedures outcome when compared with the actual 

cryosurgical procedure, which is measured in several minutes or longer. This capability of rapid 

simulations advances the discussion about cryosurgery computation from merely analyzing a 

special case to analyzing a battery of cases in effort to improve decision making, which is an 

integral part of any computerized planning [27,23,50], computerized training [32,31], or an 

intelligent approach to control of the procedure. Such a battery of cases may contain a varying 

set of problems in the search for an optimum, or a set of “what-if” scenarios for the benefit of 
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training and medical education. 

 

 

Figure 3-13: Simulated to actual cryoprocedure runtime ratio, for GPU-based (optimized) and 
CPU-based (optimized) simulations on various platforms, with platform specification listed in 
Table 3-4 [53]. 

 

3.4 Results and Discussion 

 While developing a computerized training tool for cryosurgery, two fundamentally 

different approaches were considered for the cryosurgery simulator; integration with either an FE 

commercial code (ANSYS) or a proprietary FD code. While a wide selection of FE commercial 

codes could be selected and, independently, a wide range of FD schemes could be adopted, the 

significance of the current study is in the comparison of these two approaches. Nonetheless, each 

alternative is an excellent (and maybe the best) candidate for the task in its own category.  

Benchmarking studies were performed on a cancerous prostate model created previously, 

using 14 cryoprobes at a uniform insertion depth, with optimal layout suggested by the bubble-

packing method. Benchmarking data were developed on a mid-range, four-core machine, which 

is commonly available in hospitals and medical clinics. Results of this study indicate that the FE 
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simulator is superior for geometric modeling, but the FD simulator is superior for runtime. 

Benchmarking results further indicate that the FD simulator is also superior in the areas of 

memory resources, defect region calculations, pre-processing, post-processing, and multi-core 

processing. Both the FE and FD simulators operate on an identical computation framework. 

However, the FD simulator is a tailor-made code, which makes it more user-friendly and more 

efficient during operation.   

After discovering that the FD based code surpasses the FE based code, an optimized FD 

algorithm was implemented on a GPU machine, using C++ AMP. C++ AMP was chosen for the 

current study as a choice of practice. Most significant acceleration was achieved by switching to 

float-precision, implementing asynchronous I/O, saving frequently used data in texture memory, 

and integrating a hybrid ELLPACK matrix structure to store the nodal connectivity grid. Results 

of this study demonstrate runtime acceleration of up to 13× compared with multicore-CPU 

processing, up to 50× compared with sequential CPU processing, up to about 90× compared with 

actual cryosurgery operation runtime, and an actual runtime of about 2 seconds for a single 

procedure [51]. The GPU-based implementation reproduced previously simulated cryosurgery 

cases on a multicore CPU-based implementation within 0.4ºC margins, where results of that 

earlier implementation have been validated experimentally [24]. Additional modifications, like 

the reduction of stair-casing artifacts [52] may further be applied to the proposed GPU 

implementation to improve accuracy and tailor the scheme for other applications. Further 

performance improvements to the proposed algorithm may include modification of the resistance 

matrix storage scheme. This change could make better use of the processors shared memory 

cache [47]. Advanced optimization techniques have been proposed for finite difference methods 

on regular grids in which the calculations are carried out to reduce the processor’s global 

memory load [53]. Similar methods could be envisioned for the irregular grid used in the current 

54 



proposed implementation, and is an option for future work. This level of performance makes 

GPU-based computation ideal for computerized planning and training of cryosurgery. 

The use of this advanced GPU simulator opens up new applications for computationally 

expensive planning algorithms. One such example is the “force-field analogy” [23]. In this 

method, one must run an average of 45 full heat transfer simulations. Each simulation takes 

approximately 30 seconds using the current CPU implementation, which makes total planning 

time over 20 minutes long. The new GPU simulator has a runtime of less than 2 seconds, so the 

total runtime of the planning algorithm will be reduced from 20 minutes to less than 90 seconds. 

In Chapter 5, this simulator will be used in conjunction with an ultrasound artifact simulator in 

order to produce realistic temperature based artifacts in real-time. 

The current trend of increasing the number of cores on modern GPU platforms, combined 

with a relatively fixed problem size, suggest that there will become a point of diminishing 

returns. The GPU may become “too big” for the mathematical problem and further speedups will 

not be realized. However, this would only be true for a single execution of the simulator, a large 

array of simulations run in parallel could fully utilize the available resources (each simulation is 

itself parallelized for GPU execution). Hence, computer-based decision making associated with 

advanced GPU systems does not only call for rapid computation techniques but also for 

advanced decision-making frameworks, where many simulations are concurrently executed on 

the same system. Consistently, it is suggested that the next generation of computational 

cryosurgery research should focus on new ways to utilize the rapid advancing technology of 

GPU-based systems.   
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Chapter 4: Generation of Synthetic Ultrasound Images 

 In order for clinicians to develop the skills necessary to perform cryosurgery, they need 

access to a wide variety of test cases on which they can practice in a virtual training 

environment. There is no existing database of 3D US prostate images, and assembling such a 

database would be prohibitively expensive to create and maintain, since there are almost infinite 

sizes and shapes of tumor morphologies that may exist. The current study addresses this issue by 

implementing an algorithm that generates synthetic ultrasound images from a small library of 

examples. This study is based off of previous work in the field of texture synthesis which allows 

large visual textures to be generated or filled in based on a small example patch. 

 

4.1 Algorithm  

There has been significant work in the field of texture synthesis [54,55,56]; however, 

there has been very little work done toward the generation of synthetic US images for medical 

training [57,58]. Many of the algorithms used for US image synthesis rely on storing blocks of 

textures from image samples for each tissue type to be synthesized. However, this method often 

leads to unwanted visual artifacts; for example distinct discontinuities between different regions 

in the synthesized image. This occurs because of the abrupt change in texture types on region 

boundaries. Methods like radial blurring have been proposed to address this issue, but results are 

often unsatisfactory [57]. To address this need for realistic 3D US image creation, the current 

study proposes a modified version of the “Image Analogies” method [59]. The algorithm, as it 

applies to synthetic prostate US image creation, is described below. 

 To produce the desired synthetic image, portions of an example 3D US image are 

remapped to different locations in the output image. In order to construct a realistic output 
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image, one must maximize the number of input patches that can be used to generate a particular 

region in the output. This intuitively makes sense, because the more input patches the algorithm 

has to choose from, the more likely it is to find a suitable patch to create the next region in the 

output. One problem with sector US images is that the visual texture changes as you move 

further away from the US transducer. To address this, the sector US image was transformed as 

shown in Figure 4-1 to make the texture appear more uniform across the image. 

  

 

Figure 4-1: Transformation of sector shaped US image a) to rectangular representation b). 

 

The Original US image must also be segmented into clinically relevant regions. These 

regions include the prostate, the urethra, and the rectal wall. These segmented regions are also 

transformed into rectangular images. The image below shows a slice from the transformed 3D 

input data which was used to generate the synthetic image. In Figure 4-2, segmented regions are 

depicted by color. Red represents regions enclosed by the urethra, regions in green lie within the 

prostate, blue regions are areas within the rectum, and regions in black represent the other 

surrounding tissue. The transformed 3D US image along with its corresponding transformed 

segmentation will be referred to as an input pair. It is from one of these pairs that new synthetic 

US images can be created. 
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Figure 4-2: Input data pair, consisting of a 3D US image a) and segmented geometry b). 
Segmentation data is generated using the semi-automated method presented in [28]. 

  

For completeness of presentation, the “Image Analogy” algorithm [59] will be explained 

in the context of prostate US image generation. With reference to Figure 4-3, the algorithm 

begins with an input data pair. This input data pair represents the image “analogy”. When an US 

is generated, synthetic region data is given as an additional input. The algorithm uses the 

mapping from region to US texture given by the input data pair to determine how to generate an 

output US from the synthetic region data. The algorithm generates the synthetic US image a 
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pixel at a time on a lower resolution representation of the original data. The synthetic low 

resolution US images are then used to build progressively higher resolution images. 

The algorithm begins with creating image pyramids which consist of progressively lower 

resolution representations of the input data pair. Then a feature vector for every voxel in the 

current level of the image pyramid is created. This feature vector is a concatenated vector 

consisting of region data and US image data for a voxel and its neighbors in the current level in 

the pyramid. This feature vector also contains region and US image data for the corresponding 

voxel at the next lowest resolution. The algorithm then creates an image pyramid for the 

synthetic segmentation data corresponding to the US to be generated. The US image is generated 

one voxel at a time in raster scan order starting at the lowest resolution representation in the 

image pyramid. The process for generating a single voxel begins with the creation of a feature 

vector around the location being generated in the output data pair. Then a search is performed for 

the closest feature vectors from the input data pair. In this work the approximate nearest 

neighbors library FLANN [61] was used to find the nearest feature vector. Once it is found, the 

US image voxel value corresponding to that feature vector is written to the current location in the 

output. There is an additional wrinkle to the Image Analogy algorithm, to maintain coherence in 

the output US image there is a bias to select neighboring voxels in the input image for 

neighboring voxels in the output image. By adding this preference to feature vector selection, the 

output image maintains more of the visual appearance of the input image. 
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Figure 4-3: Depiction of 2D Image Analogies algorithm from which the proposed method is 
based. Input data consists of image pyramids of region and US image data. Output US image 
data is generated a voxel at a time. Highlighted voxels shown in red windows represent voxel 
values that make up feature vectors in input and output. 

 

There are three main differences between the proposed algorithm and the original “Image 

Analogy” algorithm. The first is the extension to produce 3D images. This change consisted of 
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using neighbors from adjacent slices in the image in order to find the best output voxel value. 

This change causes an issue as it dramatically increases the size of the feature vector. For 

example for a 3x3 grid of neighbors in 2D, the feature vector for each point in the input contains 

67 entries. For a 3x3x3 grid, each feature vector contains 202 elements. Additionally, the number 

of feature vectors is two orders of magnitudes higher for a 3D image than a 2D image because 

there are hundreds of 2D slices that make up a 3D image. As a result, the algorithm uses 

excessive amounts of memory to store all of this information. It was noticed that for the 

application of cryosurgery, many voxels in the input image contain neighbors that all lie within 

the same region. As a result, if a voxel and its neighbors all lie within the same region, only the 

US feature vector data will be saved, and it will be placed into a separate list of feature vectors. 

This effectively reduces the amount of data that needs to be saved for each voxel by 

approximately 75%. When an output voxel is to be generated and all of its neighbors lie within 

the same region, the value will be computed from that regions list of feature vectors. If a voxel 

contains neighbors from different regions, then its feature vector is placed into a list of feature 

vectors identical to the original algorithm. Finally, the algorithm was parallelized by using the 

assumption that at any given time during the computation, many voxels are ready to be processed 

because all of their raster scan neighbors have already been calculated. 

 

4.2 Results and Discussion 

 Figure 4-4 shows a slice from the transformed 3D results of the algorithm. What can be 

seen from this data, is that unlike many parametric approaches, the algorithm used does not 

“grow garbage” and it clearly shows the regions of interest to the users with a realistic texture. 
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Figure 4-4: Output data pair, consisting of 3D US image a) and segmented geometry b). This 
example uses the data pair shown in Figure 4-2. as input. 

 

For comparison, a slice from the untransformed input and output image are shown in 

Figure 4-5. Figure 4-6 depicts the transformed input and output US images into their final polar 

representation. The input and output image look qualitatively very similar. The most important 
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result of this study is not the algorithm, as many variants can be imagined, each of which with its 

own tradeoffs between accuracy, speed, and memory usage. What this study showed is that a 

model of the seemingly random background texture that comprise ultrasound images can be 

modeled to capture all of the relevant statistics of the input image. 

 

 

Figure 4-5: Comparison between input a) and output b) transformed US images. 
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Figure 4-6: Comparison of input a) and output b) US images in polar representation. 

 

The algorithm developed in this thesis is capable of generating synthetic trans-rectal prostate 

ultrasounds that contain all of the important physiological structures including; the prostate, the 

urethra, and the rectal wall. To generate the synthetic US image, the algorithm uses a single 

example 3D US and surface model pair. The surface models correspond to the regions generated 

by segmenting the image by various tissue types. What is then given is the surface geometry 
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which corresponds to the shape of the prostate for the desired test case. The algorithm searches 

the input data for regions that match the current portion of the output data. Once the closest 

matching region is found the algorithm uses the value of the corresponding voxel in the input to 

generate the synthetic image one voxel at a time. Memory optimizations were performed to 

allow the algorithm to run on a desktop computer. Additionally, by noticing that each voxel only 

requires the data from the preceding neighbors (using raster-scan ordering) to be generated in 

order for the calculation to begin allowed many voxels to be run in parallel. These optimizations 

greatly reduced the algorithm runtime. Using this algorithm in a computerized tutoring program 

would allow clinicians to practice on almost an infinite number of test cases.  
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Chapter 5: An Efficient Simulation of Ultrasound Imaging 
During Cryosurgery 

In order to have an effective virtual environment for cryosurgical training, the visual 

input used by the clinician to both place the cryoprobes and monitor the extent of the frozen 

region must be accurately reproduced. TRUS imaging is most frequently used to monitor 

prostate cryosurgery. Placement of minimally invasive cryoprobes relies on the imaging artifacts 

created by said cryoprobes. Monitoring the frozen region formation also relies on US imaging 

artifacts, where the tissue becomes opaque upon freezing [60]. In order to make such a virtual 

setup a practical reality in surgical training, simulations of US images must be performed in real-

time and their outcomes must appear realistic [31]. 

  

5.1 Previous Work on Ultrasound Imaging Simulation 

The B-mode ultrasound images typically used in cryosurgery are produced by emitting a 

high frequency sound wave from the TRUS transducer into the tissue. As the ultrasound energy 

propagates through the tissue, portions of it may be transmitted, absorbed, or reflected, 

depending on the local material properties. Inhomogeneity in the local acoustic impedance of the 

tissue may cause some of the acoustic energy to scatter, and some to reflect back to the 

transducer. This reflected portion of the acoustic energy is processed to reconstruct the 

ultrasound image, while the signals are normalized to account for the fainter echoes from tissues 

that are further away from the transducer. This normalization process is called time-gain 

compensation (TGC), which is used to create the final image.  

A significant body of literature exists on ultrasound imaging simulations [61], where 

simulation approaches are conveniently classified as wave-based, interpolation-based, or ray-
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based, but mixed approaches have also been reported [62]. In general, the wave-based approach 

attempts to mimic an acoustic wave as it propagates through the tissue. This can be accomplished 

by either using spatial impulse response rendering, applying a K-space method for acoustic 

propagation, or directly solving the Westervelt equation, with the application of Green’s 

functions as one possibility [63,64,65]. Unfortunately, the computational costs typically 

associated with acoustic-field simulations prohibit the use of regular wave-based approaches for 

real-time applications, and approximation methods must be devised.  

The interpolative-based approach for ultrasound imaging simulations is likely the most 

popular approach for real-time applications [62,66]. Here, prerecorded volumetric images 

obtained from magnetic resonance imaging (MRI), computerized tomography (CT), or US are 

sliced along the desired plane to form a two-dimensional (2D) base image. Next, various 

texturing techniques are used to create the speckle pattern seen in native images. Finally, 

imaging artifacts are typically added ad-hoc, after the speckle pattern has been integrated. As a 

result of this sequential approach, simple artifacts can be quickly generated but complex 

artifacts—such as those originating from multiple reflections—cannot be realistically 

represented.  

Ray-tracing methods have proven very successful in the field of optics, when the 

structures are large in comparison with the wavelength being used for imaging [67]. This is not 

necessarily the case for US imaging, since many small features within the tissue may nonlinearly 

affect ray propagation. While smoothing of the material properties, as is often done for seismic 

simulation, can improve the resulting images under some conditions [68], it is not required for 

nonlinear ray-tracing in biological tissues, as these small scale variations tend to add speckle 

texture to the image rather than changing the direction of the rays. 

 The ray-tracing approach is based on tracking the position of discrete points on a wave 
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front as it propagates, while being reflected and refracted along the path of propagation. Many 

state-of-the-art techniques for ray-tracing simulations require surface models of the geometry to 

define the boundaries between the various sub-regions in the domain [62]. In such techniques, 

each time that a projected ray hits a translucent boundary, the reflected and refracted rays are 

calculated. Unfortunately, these techniques may not be suitable for tissue freezing in 

cryosurgery, due to the non-discrete nature of the medium at the freezing front. An alternative 

technique that can potentially capture the nonlinear effects at the freezing front employs 

volumetric ray-tracing, which does not require definition of an explicit surface model. Reported 

volumetric ray-tracing algorithms [69,70,63] are based on tracing straight rays with uniform 

sampling points, which can only produce basic ultrasound artifacts such as reflection and 

shadowing. The available algorithms cannot represent more complex artifacts typical to 

cryosurgery, such as reverberation by cryoprobes and energy absorption during tissue freezing. 

Employing such approaches would necessitate adding cryoprobes to the image on an ad-hoc 

basis [57].  
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5.2 Methods 

The current study aims at developing means for realistic simulations of US imaging 

artifacts for cryosurgery training. The conceptual design for integrating ultrasound imaging 

simulations with cryosurgery training is schematically illustrated in Figure 5-1. Towards this 

goal, the key building blocks for cryosurgery training have already been developed, including 

procedure planning methods [26,23,27], training strategies for cryoprobe placement [31], and 

bioheat simulations methods for the cryoprocedure [25]. Furthermore, the feasibility of a 

cryosurgery training approach has been presented recently. With reference to Figure 5-1, 

prerecorded ultrasound datasets of five individuals have already been developed in previous 

studies, and used to reconstruct the prostate shape [27,71,30] for computerized training [31,72]. 

Additionally, a realistic ultrasound scanning tool has been recently presented to enable 

intraoperative prostate reconstruction based on partial organ contours [28].  

 

 

Figure 5-1: Schematic illustration of the conceptual approach to integrate ultrasound simulations 
with cryosurgery training, where cryosurgery simulation refers to the full-scale bioheat-transfer 
simulation [76]. 
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A hybrid method is proposed in the current study to produce realistic ultrasound imaging 

artifacts for cryosurgery training in real time, combining features from the interpolative and ray-

tracing approaches. This method is designed to (i) display imaging artifacts resulting from 

cryoprobes insertion, and (ii) display the effects of tissue freezing as the cryoprocedure 

progresses. A general view of the targeted outcome is displayed in Figure 5-2, where the scanned 

prostate region (Figure 5-2(a)) and bioheat simulation results (Figure 5-2(b)) are combined to 

simulate freezing artifacts (Figure 5-2(c)). Figure 5-2(d) displays a hybrid ultrasound-thermal 

field presentation, to provide the trainees with insight into the thermal process affecting imaging 

artifacts. With such a presentation, the trainee can correlate the thermal field with criteria for 

cryosurgery success [31] and the location of cancerous tumors [72]. Figure 5-2 was generated 

using the mathematical formulation and code implementation described in the next two sections.  
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Figure 5-2: Application of ultrasound imaging for cryosurgery planning and training: (a) 
scanning of a prerecorded ultrasound imaging dataset, where the contour of the prostate is 
highlighted with a dashed line; (b) bioheat transfer simulation results of the cryoprocedure, (c) 
simulated frozen region effect based on the bioheat transfer simulation results and the artifacts-
simulation method proposed in the current study, and (d) overlaid of the temperature the field in 
the frozen region on the simulated ultrasound image as a training means to explain cryosurgery 
artifacts [76]. 
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5.2.1 Mathematical Formulation 

With reference to Figure 5-3, the proposed computation scheme for US image generation 

consists of six steps:  

 

I. simulation of bioheat transfer in the target area;  
 

II. determination of the acoustic properties within the domain, based on the local material 
properties and thermal history;  
 

III. simulation of the US-ray paths from the transducer into the domain, Figure 5-3(a);  
 

IV. calculation of acoustic energy propagation along the simulated US rays;  
 

V. TGC evaluation of the energy returning to the transducer; and,  
 

VI. modifications to the brightness of the previously recorded US texture according to account 
for the TGC results.  
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Figure 5-3: Schematic illustration of artifact-calculation process in a tissue of non-uniform 
acoustic impedance: (a) non-linear ray propagation with speed-of-sound dependent sampling in 
the original polar coordinate system, and (b) wave intensity propagation between sample points 
along a single ray over consecutive time steps, based on reflection and transmission properties 
after transformation to a Cartesian coordinate system [76]. 

 

A framework for parallel computation of bioheat transfer during cryosurgery has been 
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established previously, and is adopted here as a choice of practice for Step I of the proposed 

method [51,32]. Results of this simulation are used to evaluate the local material properties in 

Step II. As appropriate, linear interpolation is used to determine the acoustic properties and their 

derivatives at the necessary locations within the domain. 

The simulation of ray propagation from the transducer in Step III requires a set of 

acoustic properties, including echogenicity, speed of sound, acoustic impedance, and the tissue 

absorption of wave energy. In the case of prostate cryosurgery, these properties are further 

dependent upon the presence of cryoprobes and on the thermal history in the tissue. In particular, 

Step III is used to determine the advancement and deflection of the ultrasound wave as it 

propagates through the tissue. The ray’s path of propagation through the domain is calculated by 

solving the Eikonal equation [67]: 
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where l is the distance measured along the ray path, V is the velocity, 𝑟𝑟 points to the direction ray 

propagation, and xj are the principal orthogonal components. Equation 5-1 represents a 

generalization of Snell’s law of refraction for a continuous and non-homogeneous medium, 

which is solved in this study with the application of the non-linear ray-tracing scheme described 

by Seron et al. [67]. In essence, this equation describes the change in ray direction as a function 

of the variation in speed of sound, as it propagates through the domain. Equation 5-1 is solved in 

a Cartesian geometry (Figure 5-3(b)), after transformation of the prerecorded imaging dataset 

from the polar coordinate system typical to TRUS imaging (Figure 5-3(a)). 

Equation 5-1 is solved by using a forward Euler scheme discretization Equation 5-2:   
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where ∆𝑙𝑙 is an incremental distance along the ray, and i is the increment index.  

For convenience in presentation, the change in direction of the ray, 𝑣⃗𝑣𝑖𝑖, is defined as 

Equation 5-3: 

𝑣⃗𝑣𝑖𝑖 ≡
𝑑𝑑𝑥⃗𝑥𝑖𝑖+1

𝑑𝑑𝑑𝑑
 (5-3) 

where the value of 𝑥⃗𝑥𝑖𝑖+1 can also be approximated using a forward Euler scheme (Equation 5-4):  

𝑥⃗𝑥𝑖𝑖+1 = 𝑥⃗𝑥𝑖𝑖 + ∆𝑙𝑙𝑖𝑖+1
𝑣⃗𝑣𝑖𝑖

‖𝑣⃗𝑣𝑖𝑖‖
 (5-4) 

The procedure described by Seron et al. [67] is modified by applying fixed time intervals 

through the simulation, while computing the resulting distance of travel, ∆𝑙𝑙, as the product of the 

variable wave propagation speed, 𝑉𝑉, and the time interval. The selection of the time interval 

length is dictated by the required simulated image resolution. In essence, it is this dependency of 

the propagation distance on the speed of sound that allows the depiction of imaging artifacts, 

where objects may appear farther or closer to the ultrasound transducer [61].  

Energy propagation calculations in Step IV represent one of the new contributions in the 

current study. After identifying the path of each ray, the amount of energy transmitted along the 

ray is calculated—from the simulated transducer into the tissue and back to the transducer. Here, 

the propagation of acoustic wave energy between the sample points (calculated in Step III) along 

each ray is calculated repeatedly, after being emitted from a simulated transducer. This novel 

step allows multiple reflections to be efficiently incorporated into a volumetric ray-tracing US 

simulator. This ability is necessary to simulate both temperature field and cryoprobe artifacts in 

real-time which was previously impossible. The material properties at each of those sampled 
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points are used to determine the portion of the energy transmitted along the ray and the portion 

of it that is reflected back along the same ray. The ratio of energy reflected between two sample 

points is given by Equation 5-5: 

𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 =
(𝑍𝑍𝑖𝑖+1 − 𝑍𝑍𝑖𝑖)2

(𝑍𝑍𝑖𝑖+1 + 𝑍𝑍𝑖𝑖)2
 (5-5) 

where 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑖𝑖+1 are acoustic impedances at sample points i and i+1. The acoustic impedance is 

calculated by Equation 5-6: 

𝑍𝑍 = 𝑉𝑉𝑉𝑉 (5-6) 

where V refers to the local and instantaneous speed of sound, and d is the mass density of the 

tissue at the specific location. 

At every sample point, the amount of energy reflected, Eref, absorbed, Eabs, and 

transmitted, Etrans, along the ray must be calculated from the total acoustic wave energy arriving 

at that particular point, Etot. Only the portion of the energy reflected due to acoustic impedance 

mismatches between sample points will be reflected back along the ray. Qualitatively, this is 

analogous to a reflection off an interface between different media, where the normal to the 

interface and the incident ray direction are not parallel. This reflection is represented in the 

current study by modifying the Lambertian model [63], where the energy reflected along the ray 

is given by Equation 5-7: 
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where 𝜌𝜌𝑒𝑒𝑒𝑒ℎ𝑜𝑜 is the echogenicity reflectance and the reflection angle, θ, is calculated by Equation 

5-8:   
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 (5-8) 
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Equation 5-7 represents a modification of the standard Lambertian reflectance model in 

two ways. The first modification concerns the addition of the echogenicity reflectivity term, 

𝜌𝜌𝑒𝑒𝑒𝑒ℎ𝑜𝑜. This term is designed to account for the portion of energy that is not reflected due to 

Lambertian effects but that is reflected due to small variations within the tissue, which give rise 

to the speckle US image pattern and to the image’s overall brightness. It follows that the total 

reflectivity equals the sum of the Lambertian reflection component and the echogenicity 

component. The second modification is in the use of the gradient vector of the acoustic 

impedance instead of the normal-to-surface vector, as is typically the case for the standard 

reflection model. The gradient application can be viewed as a continuum representation of the 

discrete and ordinary equation. Conservation of energy dictates that the amount of transmitted 

energy must be equal to the difference between the total energy and the sum of the reflected and 

absorbed portions of it (Equation 5-9):  

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 (1 − 𝛼𝛼) �1 − �𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑒𝑒𝑒𝑒ℎ𝑜𝑜�1 − 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖��� (5-9) 

where 𝛼𝛼 is the absorption coefficient.  

The above equations for calculating the transmission and reflection of wave energy 

between sample points are applied repeatedly in order to effectively integrate these quantities 

over time. The repeated calculations of those quantities allow for wave energy to be reflected 

back and forth multiple times along each ray, thereby providing a realistic simulation of both 

single and multiple reflection artifacts. Such multiple reflection artifacts may develop around the 

tissue-embedded cryoprobes, where the wave energy propagates between two highly reflective 

interfaces multiple times. When N samples are taken along a ray, energy propagation 

calculations must be repeated 2N times for each sample point, in order to allow for the simulated 

transmitted energy to travel all the way from the transducer to the furthest sample point and 

back. Figure 5-3(b) depicts the propagation of an initial pulse of energy along a single ray, where 
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the pulses of reflected and transmitted components at each sample point are calculated. 

In Step V of the proposed scheme, the returning ultrasound simulated echoes are 

normalized. This normalization process is performed in order to account for the fainter echoes 

that arrive from distant portions of the tissue, which underlines the TGC process [61], where the 

gain applied to the signal is a function of time. In Step VI, TGC results are blurred using a 

Gaussian filter to take into account the finite ability to focus the waves used to facilitate 

ultrasound imaging. Finally pixel intensity values from the existing ultrasound image are 

modified based on the TGC signal strength compared to a reference value, to allow for a realistic 

representation of imaging artifacts. 

 

5.2.2 Code Implementation 

The most computationally expensive aspect of the ultrasound simulation is the 

calculation of the energy propagated along the rays. For example, for M rays and N sampling 

points along each ray, the number of required operations is proportional to M×N2 (typical values 

applied in the current study: M=500, N=300). Hence, efforts to optimize the number of sampling 

point calculations are highly warranted, in order to achieve real-time ultrasound simulations. 

This challenge is addressed by optimizing code implementation while taking advantage of the 

graphics processing unit (GPU). While various optimization steps were taken in order to speed 

up the simulation, summarized below are the effects of information-flow strategies, field-

decomposition strategies, and memory usage effects, all with reference to a baseline, naïve 

implementation.  

Naïve implementation: A baseline implementation of the proposed scheme consists of: (i) 

storing all the necessary data for each sample point in global memory; (ii) running a kernel for 

each sample point that would read the necessary values from global memory, perform the 
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corresponding calculations, and write the result back to global memory; and, (iii) repeating this 

kernel for 2N cycles, to account for acoustic wave propagation back and forth along a ray 

discretized into N sampling points. In terms of runtime, this naïve implementation performs very 

poorly due to extensive reads and writes to global memory. Furthermore, a considerable amount 

of application programming interface (API) overhead is associated with running the GPU kernel 

2N times, which is inherent to the initialization of a GPU task. Note that it is necessary to call the 

kernel in a loop, since all sample points from a specific iteration must be calculated before the 

next iteration can executed, while there is no effective means to synchronize simultaneously 

running threads on different groups of GPU processors.  

Information-flow strategies:  It can be concluded from Fig. 3 that the propagation of 

information along a specific ray exhibits a finite speed. It follows that any numerical node that is 

farther than the signal-information penetration depth, or that information from it cannot reach the 

transducer in time to contribute to image formation, can be eliminated from calculations with no 

adverse effect. Those numerical points are said to be outside of the signal information envelop in 

the context of the current study. Eliminating numerical points outside of the information envelop 

accelerates runtime by a factor of 2. Further note that the numerical scheme has an even-odd 

information flow pattern, in the sense that energy flow calculations switch between even and odd 

nodes on successive iterations. If follows that energy calculations can alternate between even or 

odd nodes on successive iterations with no adverse effect, which is expected to accelerate 

runtime by another factor of 2. Hence, carefully accounting for information flow during code 

implementation can accelerate simulation runtime by a factor of 4, regardless of the computation 

platform selected for the task.  

 Field-decomposition strategies: For an instantaneous temperature field, energy 

calculations along each ray can be performed independently. It follows that decomposition of the 
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simulation domain, such that a single group of processors on the GPU are responsible for energy 

calculations along a given ray can improve parallel processing. Following this decomposition, 

processors synchronization within a specified group can be straightforwardly done with C++ 

AMP. This strategy further allows for the outer loop, which is used to call the kernel 2N times, to 

move into the kernel itself. Such domain decomposition reduces the API overhead to a single 

kernel invocation. 

Memory usage: Domain decomposition and the need to only call the kernel function a 

single time for a given ray, enables the use of the lower latency shared memory instead of the 

much slower global memory. Once a kernel is invoked, all the necessary data is transferred from 

global to shared memory. Then, as the processor group performs the corresponding 2N 

calculation steps, all read and write operations are performed in the shared memory. It is not until 

the last stage of computation when the calculated results are transferred back to the global 

memory. As a result, all of the intermediate global memory operations are eliminated. Using the 

field-decomposition strategy in combination with the more efficient memory usage has 

accelerated ultrasound simulations by a factor of 5 in the current study. 

 

5.2.3 Simulation Protocol 

The proposed numerical scheme was analyzed based on a 3D prostate ultrasound dataset 

reported previously [27,71,30]. The 3D shape of the prostate was segmented using a previously 

developed semi-automated method [29]. Once the 3D shape of the prostate was reconstructed, an 

array of cryoprobes was virtually placed at a single insertion depth, using a computer-generated 

optimized layout based on the bubble-packing method [26]. Next, a bioheat transfer simulation 

was executed, using a GPU-based embodiment [73] of an efficient numerical scheme for the 

bioheat transfer process [25]. This combination of a numerical method and a coding framework 
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is characterized by a typical runtime of 2 seconds for a complete procedure [51]. 

Ultrasound image analysis in the current study is based on a typical case study of 12 

identical cryoprobes having a diameter of 1.3 mm and active cooling length of 25 mm. The 

initial temperature in the entire domain is 37°C, and the domain is large enough such that the 

bioheat transfer problem can be considered as taking place in an infinite domain for the duration 

of freezing [25] (in practice, a domain volume three times as large as the prostate size satisfy this 

requirement). A urethral warmer, 6 mm in diameter, was simulated by maintaining the urethra 

wall at a constant temperature of 37°C throughout the simulation. The simulated thermal history 

at the cryoprobes is comprised of an initial cooling from 37°C to -145°C in the first 30 seconds, 

and constant temperature thereafter, until the completion of the simulated cryoprocedure and 

deactivation of the cryoprobes. The bioheat transfer simulation continued after cryoprobe 

deactivation, until the treated region returned to its initial temperature. 

The cryoprobes were deactivated when the frozen region best-matched the prostate 

contour, using the defect-region concept as a measure [23]. In broad terms, a defect region 

represents unfrozen areas internal to the prostate and frozen areas external to the prostate. It 

follows that the entire prostate is considered a defect at the beginning of simulation, but if the 

cryoprobes are activated for long enough and the cryoprobes are powerful enough, most of the 

defect may become external. There is a point in time along this transition from internal to 

external defect that the overall defect value becomes minimum, which is the point of simulation 

termination in the current study. The bubble-packing planning method referenced above aims at 

uniform distribution of the defect along the edge of the target region (i.e., the prostate), which 

also results in a global minimum of the defect when variable cryoprobe layouts are considered. 

The resulting thermal field along the bioheat transfer simulation was used as input for the 

ultrasound simulation method described in the previous section. 
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5.3 Results  

Figure 5-4 and Figure 5-5 display typical artifacts due to the presence of cryoprobes in 

the unfrozen prostate. From a cryosurgery training perspective, these artifacts are associated with 

the challenges typical to cryoprobe placement according the preplanning. Figure 5-4 displays 

reflection and reverberation artifacts along the cryoprobe in a sagittal plane, which is 

perpendicular to the transverse-plane images displayed in Figure 5-2 and Figure 5-3. Figure 5-

4(a) displays an actual ultrasound image of a hypodermic needle in the prostate, having 

comparable dimensions to the cryoprobes specified above [21,26]. Figure 4(b) displays 

simulated cryoprobe artifacts following the mathematical formulation described above. It can be 

seen that the simulated artifacts contain the same features as the actual image. The most notable 

artifact being the periodic hyper-echoic regions extending behind the cryoprobe, with a period 

equals the probe diameter, d. This periodic repetition is marked as reverberation in Figure 5-4. 

Additionally, a brightening of the reflection occurs at twice the distance between the US 

transducer and the cryoprobe, L. The reverberation with the maximum brightness is marked as 

reflection in Figure 5-4, at a distance 2L. This brightening effect is another multiple reflection 

artifact, but this time occurring between the highly reflective surface of the cryoprobe and the 

ultrasound transducer. Note that the overall brightness of the cryoprobe and its reverberations 

may vary among real procedures due to the specific clinical setup and tissue properties, and can 

be adjusted globally between repeated ultrasound simulations. 
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Figure 5-4: Sagittal view of cryoprobe artifacts: (a) ultrasound imaged needle in the prostate, 
and (b) integration of simulated cryoprobe artifacts with an undisturbed image of the prostate 
[19]. As shonw in [76]. 

 

Figure 5-5 displays the corresponding artifacts in a transverse view. Similar to the results 

in Figure 5-4, cryoprobe reverberations are observed, radiating away from the US transducer 

with diminishing amplitude. Another feature displays in Figure 5-5 is the extended width of the 

cryoprobe image and its reverberations. The width of the imaged cryoprobe is 5 times its actual 

size, which is the result of the finite size of the focused ultrasound wave. Nevertheless, the same 

extended width effect is displayed both in the simulated image and the reference image. Note 

that the source ultrasound image used for Figure 5-5(b) is of higher resolution and quality with 

respect to Figure 5-5(a). Further note that the global intensity of each of the figures is adjustable.  
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Figure 5-5: Transverse view of cryoprobe artifacts before the beginning of freezing: (a) 
ultrasound imaged cryoprobes placed within a prostate (with permission [19]), and (b) 
integration of simulated cryoprobe artifacts with an undisturbed image of the prostate [76]. 

 

Probably the most important artifact to simulate for virtual cryosurgery training is the 

shadowing effect due to freezing [74,60]. In practice, this artifact is used to track the progression 

of the freezing front, from the cryoprobes towards the US transducer. This artifact is 

characterized by a hyper-echoic region at the freezing front, where the acoustic wave energy is 

reflected off due to the sharp change in the acoustic impedance between the unfrozen and frozen 

region. This artifact is further characterized by an opaque region behind the freezing front, 

because only a small portion of the wave energy is able to pass through the frozen region. Figure 

5-6 displays the similarity between an actual transverse US image and a simulated image during 

cryosurgery. Note the granularity difference between both images displayed in Figure 5-6, which 

is due to the different US hardware used to create Figure 5-6(a) during cryosurgery, as opposed 

to the base texture created from an untreated tissue in Figure 5-6(b). 

 

84 



 

Figure 5-6: Transverse view of the frozen region during cryosurgery: (a) ultrasound imaged 
frozen region (with permission [19]), and (b) integration of simulated frozen-region artifacts with 
an undisturbed image of the prostate [76]. 

 

Useful information can further be obtained from ultrasound imaging post cryosurgery, 

which is attributed to a reduction in echogenicity in the frozen-thawed region [74]. This artifact 

can help cryosurgeons track the regions of the tissue that have been frozen during the procedure, 

especially when multiple freeze-thaw cycles are performed. Figure 5-7(a)-(b) display this effect 

in a dog-prostate model, while Figure 5-7(c)-(d) display a somewhat similar effect in the current 

study. In order to produce the effect displayed in Figure 5-7(d), the lowest temperature achieved 

by each node during the heat transfer simulation is saved. Next, the localized echogenicity value 

is calculated based on the minimum temperature achieved, where frozen-thawed nodes receive 

an echogenicity value of 20% of that of a material that did not experience freezing at some point 

throughout the procedure.  

Note that Figure 5-7(a)-(b) where created with an earlier US device (late 1980s) and a 

dog-prostate model, while Figure 5-7(c) has been created on a newer-generation device (mid 

2000s) and a human-prostate model. These differences in hardware quality, prostate models, and 
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scanning procedures only permit a qualitative comparison of the post procedure effects on 

imaging. Nevertheless, the capability of the ultrasound simulation to capture the freezing 

thawing effect is important, and calibration of the material properties to create a more realistic 

presentation of this effect can be straightforwardly performed when comparable data becomes 

available. Note that the shadowing effect is not expressed when the entire tissue is unfrozen, in 

between freezing-thawing cycles.  

 

 

Figure 5-7: Transverse view of the prostate: (a) dog prostate before freezing, (b) dog prostate 
after thawing, (c) human prostate before freezing, (d) human prostate after thawing. Images for 
the dog prostate were taken before and after a real cryosurgical procedure (with permission [74]), 
while the human prostate post thawing is synthesized from a simulated thermal history of a 
cryoprocedure and an undisturbed image of the prostate [76]. 
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The benchmark cases described above were performed on a desktop computer (i7 960, 

3.2 GHz, 9.0 GB RAM), housing a dedicated Nvidia GTX 580 GPU in real-time, at a rate of 100 

fps. Between each two consecutive frames at that rate, the following processes where completed: 

(i) a complete 3D bioheat transfer simulation, (ii) imaging artifacts calculation for the entire 

field, and (iii) display of the results on the computer monitor. Toggling between the various 

presentations displayed in Figure 5-2 does not slow down those operations, which were 

performed on the same GPU. This performance makes the proposed mathematical formulation, 

combined with the proposed code implementation, excellent means for computerized training of 

cryosurgery. Furthermore, since the GPU implementation of the bioheat transfer alone is already 

two orders of magnitude faster than real time, with benchmarking data and scaling analysis 

presented previously [51], and since a complete ultrasound imaging artifacts calculations and 

display is done under 10 milliseconds (leading to a presentation rate of 100 fps), there is no 

apparent limitation to speed up the integrated bioheat-US simulation procedure described above 

by two orders of magnitude on the same machine.  

 

5.4 Discussion 

The current study presents a mathematical method for real-time simulations of ultrasound 

imaging artifacts. A six-step scheme is proposed to generate the imaging artifacts, and GPU-

based real-time implementation strategies are discussed. The proposed implementation relies on 

a previously developed scheme for GPU-based bioheat transfer simulations of cryosurgery 

[51,32,31]. The temperature field generated by bioheat transfer simulations is used as an input 

for ultrasound artifacts calculations.  

Simulated ultrasound imaging artifacts include reverberation and reflection of the 

cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by 
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the frozen region, and tissue-property changes in repeated freeze-thaw cycles procedures. The 

intensity, brightness, and granulation of the recorded image may vary between clinical 

procedures, based on the specific ultrasound hardware, tissue properties, and scanning technique. 

Nevertheless, the simulated artifacts in the current study appear to preserve the key features 

observed in a clinical setting, which makes the proposed scheme suitable for cryosurgery 

training. It is proposed here that calibration means may further be developed, to create a wider 

trainee exposure to available ultrasound hardware and clinical conditions. This calibration is 

beyond the scope of the current study, and requires a survey of commonly available imaging 

devices. 

This study displays an example of how training may benefit from toggling between (i) the 

undisturbed ultrasound image, (ii) the simulated temperature field, (iii) the simulated imaging 

artifacts, and (iv) a hybrid presentation of the temperature field superimposed on the ultrasound 

image to explain physical effects. The proposed scheme is demonstrated to simulate ultrasound-

monitored cryoprocedure in real-time, at a rate of 100 fps, on a mid-range personal workstation. 

Simple calculations suggest that simulation runtime can exceed real-time cryosurgery operation 

by two orders of magnitude with no adverse effects.   
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Chapter 6: Computerized Planning for Cryosurgical 
Training 

 There has been significant work done to date on cryosurgical planning algorithms 

[20,21,23,27]. However, these algorithms have not accounted for current surgical practice. As a 

result, they are unsuitable for use in teaching clinicians how to generate more effective 

cryoprobe layouts while adhering to common surgical constraints. Currently surgeons are given 

general guidelines to determine acceptable cryoprobe configurations. An important rule for 

cryosugeons is to maintain a minimum distance between the active length of the cryoprobe and 

clinically relevant structures, like the urethra and the surface of the prostate [73]. Previous, 

heuristic methods of generating cryoprobe layouts such as bubble packing and the force-field 

analogy are able to quickly generate near optimal cryoprobe layouts. These methods are based on 

the premise of applying virtual forces to the cryoprobes and allowing the cryoprobes to move to 

minimize the total energy of the system. The addition of geometric constraints (such as enforcing 

a minimum distance to a surface) onto this force based system produces significant challenges 

that this work addresses. Additionally the integration of this work into an intelligent tutoring 

system prototype will be discussed. 
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6.1 Previous Work on Computerized Planning for Cryosurgery 

The stated goal of most prostate cryosurgery procedures is to freeze and destroy the entire 

prostate gland, while keeping healthy tissue outside the prostate undamaged. In order to quantify 

the quality of a given cryosurgery, the idea of defect value has been previously presented [23],a 

small value of defect correlates to a high quality plan. The defect value shown in Equation 6-1 is 

a weighted sum of the total amount of healthy tissue outside the prostate that has been damaged 

due to freezing plus the amount of diseased tissue within the prostate that has been undamaged; 

  

𝐺𝐺 = 1
𝑉𝑉𝑡𝑡
∫ 𝑤𝑤𝑤𝑤𝑉𝑉𝑠𝑠𝑉𝑉𝑠𝑠

  ;  𝑤𝑤 = �

1   , −22℃ < 𝑇𝑇  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
0   , 𝑇𝑇 ≤ −22℃  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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 (6-1) 

 

where G is the defect volume, w is an associated volume weight, and V is volume. The simplest 

binary weighting function for the defect value is shown. More complicated functions that more 

heavily weight critical tissues can also be imagined. The locations that contain defects are 

essentially the areas in which there is mismatch between the lethal temperature isotherm and the 

prostate contour. Where Figure 6-1 depicts the typical defect regions at a given cross-section and 

described in the following equation. 
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Figure 6-1: Defect area at a given cross-section [78].  

 

It has been previously shown that “bubble packing” is an effective method of generating 

high quality plans for prostate cryosurgery [26]. For completeness of presentation the basic 

algorithm will be presented below. Bubble packing places a number of fixed spherical bubbles 

(boundary bubbles) on the surfaces in which the cryoprobes will be constrained. For prostate 

cryosurgery, the constraint volumes are the areas inside the prostate and outside the urethra. 

Then a number of ellipsoidal bubbles corresponding to the number of cryoprobes are placed 

within the domain. A general depiction of bubble-packing is displayed in the following image 

(Figure 6-2), showing boundary bubbles on the surface of the prostate and urethra shown in 

green, and 8 ellipsoidal bubbles corresponding to a plan for 8 cryoprobes. 
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Figure 6-2: Depiction of bubble packing planning algorithm [78] 

 

 In the beginning of the simulation the ellipsoidal bubbles are placed within the domain. 

Then forces according to the Equation 6-2 and Figure 6-3 are imposed between the ellipsoidal 

bubbles and the boundary bubbles [75].  

 

 

Figure 6-3: Inter-bubble force diagram [79] 
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𝑓𝑓(𝑙𝑙) = �𝑎𝑎𝑙𝑙
3 + 𝑏𝑏𝑙𝑙2 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑, 0 ≤ 𝑙𝑙 ≤ 1.5𝑙𝑙0

0, 1.5𝑙𝑙0 < 𝑙𝑙  

𝑓𝑓(𝑙𝑙0) = 𝑓𝑓(1.5𝑙𝑙0) = 0,   𝑓𝑓′(0) = 0,   𝑓𝑓′(𝑙𝑙0) = −𝑘𝑘0 

(6-2) 

where 𝑙𝑙0 represents the total distance between the centers of the bubbles divided by the sum of 

the radii of the two bubbles. The system behaves as a spring mass damper system according to 

the following equation (Equation 6-3).  

𝑚𝑚𝑖𝑖
𝑑𝑑2𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑2

+ 𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑖𝑖(𝑡𝑡),      𝑖𝑖 = 1 …𝑛𝑛 (6-3) 

where, m is the mass of the bubble, c is the damping coefficient, x is the position, and f is the 

external force imposed on the bubble. The damping ratio shown in Equation 6-4: 

𝜁𝜁 =
𝑐𝑐

2√𝑚𝑚𝑚𝑚
≅ .7 (6-4) 

was found to be optimal because it produces quality plans in a reasonable amount of time. The 

system is then allowed to relax and reach its minimum energy state. Once this occurs the size of 

the bubbles are adjusted to optimize the overlap between bubbles. Bubble Overlap is defined by 

the Equation 6-5 and depicted Figure 6-4:  
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Figure 6-4: Overlap of bubbles. The ideal overlap ratio in the 2D case, α = 6.0, Bubbles are 
located too sparsely when α < 6.0, and too densely when α > 6.0.case, α = 6.0 [79], 

 

𝛼𝛼𝑖𝑖 =
2
𝑑𝑑𝑖𝑖
��𝑑𝑑𝑖𝑖 +

𝑑𝑑𝑗𝑗
2
− 𝑥𝑥𝚤𝚤𝑥𝑥𝚥𝚥������

𝑛𝑛

𝑗𝑗=0

 (6-5) 

 
where α is the overlap ratio, d is the diameter of the bubble, i and j are the bubble indices, and x 

is the location of a bubble. The equation used previously to adjust the overlap ratio updates the 

diameter of the bubble such that the resulting overlap is closer to the ideal value. The simple 

update function is shown in the equation below (Equation 6-6).  

𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
𝛼𝛼 · 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (6-6) 

 

This process is repeated until the maximum number of allowable iterations is hit or until an 

acceptable overlap ratio is found. The intuition behind this procedure is that each ellipsoidal 

bubble roughly corresponds to the lethal temperature isotherm which is produced by each 
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cryoprobe. Equally distributing these volumes of destroyed tissue within the prostate will cause 

maximum destruction to the undesired tissue while minimizing collateral damage to healthy 

tissue. 

 

6.2 Addition of Constraints 

 Although the previously developed bubble-packing planner is able to create high quality 

plans in the absence of hard geometric constraints, significant modifications to the numerical 

scheme were needed in order to give satisfactory results. To begin, the simulation boundary 

bubbles are placed on the urethra and the surface of the prostate just as before. Then two 

constraint surfaces are added, one corresponding to the prostate and the other corresponding to 

the urethra. These two surfaces are offsets of the original surface models of the prostate and 

urethra by a user specified amount. Cryoprobe bubbles are placed the same as before as before, 

but with the additional constraint of having to lie between the offset constraint surfaces and not 

just within the original urethra and prostate geometry. A depiction of the constrained bubble 

packing setup is illustrated in Figure 6-5 with a few representative bubbles for clarity. 
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Figure 6-5: Depiction of constrained bubble packing setup 

 

 The simulation begins much the same as in the unconstrained case with the repelling and 

attracting forces being applied to each of the cryoprobe bubbles depending on its distance to 

neighboring bubbles. The bubble positions updated according to the spring mass damper 

equation previously presented, thus relaxing the system. The differences between the constrained 

and non-constrained implementations begin to arise as constraints are applied in the following 

step. First, collisions are detected between the cryoprobe and the constraint surfaces. If a 

collision is found, the cryoprobe is moved a minimum difference in the opposite direction of its 

current velocity until it is just within the constraint surface. This minimum distance is calculated 

using a bisecting line search in the direction opposite to the current velocity. Additionally, an 

inelastic collision velocity constraint is placed on the cryoprobe. With this constraint the 

component of the velocity that is in the normal direction of the surface at the point of contact is 

removed. This prevents the cryoprobe from violating the same constraint on the next iteration 
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while minimizing the numerical instability of the method. These constraints are iteratively 

checked every step in the simulation to ensure that the probe is not moved to a location that 

causes a constraint violation at another location on the surface. These steps of applying forces, 

updating the probe positions, and checking for/satisfying constraints are repeated until the 

minimum energy configuration of the system is reached. 

 Once the minimum energy configuration is reached, the overlap ratios for the bubbles are 

adjusted until they are closer to ideal. However, the additional hard geometric constraints placed 

on the location of the cryoprobes exacerbated a potential problem with the previously described 

bubble diameter update scheme. The issue is that the function for the overlap ratio is not 

continuous. As the size of the bubble increases and decreases, the neighbors that contribute to the 

calculation of the overlap ratio also changes. This can cause the overlap ratio to continually 

oscillate between too large and too small a value and never converge to the ideal solution. This 

problem did not surface previously, perhaps because without hard constraints, when the overlap 

ratio was too large, the bubbles were able to move away from each other and were less likely to 

acquire new neighbors. If no new neighbors are acquired, the function to calculate overlap is 

smooth and it is trivial to provide an update function that will iterate to the correct solution. To 

overcome this problem, the golden section line search was applied. This line search technique is 

advantageous because it maintains the size ratio of its stencil points which makes it well suited to 

finding the optimum value of a function. 
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6.3 Integration into Intelligent Tutoring System Prototype 

 In a collaborated study with Dr. Anjali Sehrawat, a simulation-based intelligent tutoring 

system (ITS) prototype for cryosurgery was developed [74,77]. The overall design and 

implementation of the intelligent tutoring system was the work of Dr. Sehrawat. Additionally Dr. 

Sehrawat also designed the studies to evaluate the effectiveness of the prototype system. This 

author’s unique contribution was the implementation and integration of domain specific 

computerized planning and simulation tools into the intelligent tutoring system. The next 

sections describe the tutoring system created by Dr. Sehrawat, the effectiveness of the 

computational tools, and the outcome of the study. 

 

 6.3.1 ITS Learning Objective 

ITS design is heavily dependent on the problem being represented, in this case 

cryosurgery. The ITS development in the current study focuses on planning of the cryoprobe 

layout for a cryosurgical procedure given a 3D shape of a prostate, while emphasizing thermal 

and geometrical considerations. The goal of this tutoring system is to teach clinicians how to 

create a cryoprobe layout that minimizes defects without violating minimum distance 

considerations between the cryoprobes and urethra, and between the cryoprobes and the surface 

of the prostate. This task consists of very intuitive (difficult to formalize) steps. Due to the very 

large parameter space of the resulting optimization problem it is nearly impossible for a clinician 

to come up with the optimal solution. As a result the clinician must use his or her intuition and 

acquired skill in order to come up with one of many acceptable solutions. For this prototype 

system, it is assumed the simulated patient is a good candidate for the cryosurgery treatment, and 

that the trainee is competent in the relevant medical imaging method. Despite these assumptions, 

it is still challenging to encode some of the highly intuitive concepts into computerized 
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instructions for an ITS. The tutoring in the two conducted studies combines trial-and-error 

interaction with customized ITS feedback. The feedback includes how to move cryoprobes in 

order to provide superior quality plans and to eliminate geometric constraint violations. In order 

to allow this functionality the previously presented planning algorithm was integrated. 

Additionally, the GPU accelerated bio-heat simulation was integrated into the tutoring system in 

order to allow the trainees to rapidly iterate and see the surgical outcomes their plans would 

produce. 

 

6.3.2 ITS Architecture  

The prototype cryosurgery trainer is comprised of two components: the ITS and the 

computerized cryosurgery tools (CCT), Figure 6-6. The CCT is comprised of the cryosurgery 

simulator and the cryoprobe-layout planner. The simulator takes a specific cryoprobe layout as 

input and uses the previously presented numerical scheme and GPU implementation to simulate 

the resulting bioheat transfer process in the treated tissue. The simulator’s outputs are: the 3D 

temperature field at various times during the procedure and at the time of minimum defect, the 

mismatch between the planning isotherm and the shape of the target region, and the minimum 

defect value of the configuration.  The cryoprobe-layout planner is based on the bubble-packing 

method, and is applied to the specific geometry of the target region (prostate and urethra) for a 

given number of cryoprobes. 

 The ITS has three components: a domain module, a student module, and a tutor. The 

domain module contains a set of rules and constraints that govern the cryosurgery planning 

process, combined with means to evaluate the trainee solution against the computer generated 

solution. The student module records the trainee actions throughout the problem solving process, 

including possible violations of rules and constraints. The tutor can be viewed as the 
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administrative portion of a physical instructor. It presents the student with a problem, asks 

relevant questions, passes the trainee-input to the domain module for evaluation, and returns 

feedback to the student based on the evaluator input. The database holds all case-related 

information, including organ geometries, previously solved cases, and student track record. 

 

 

Figure 6-6: ITS prototype architecture [77] 

 

6.3.3 Study Design 

 It is difficult to study the effectiveness of the computerized training concept since 

comparable data from current training methods (non-computerized apprenticeship based) is 

virtually nonexistent. To test the effectiveness of the ITS trainer, two studies were performed. 

The human subject studies were approved by the Allegheny Singer Research Institute, Allegheny 

Health Network (AHN), Pittsburgh, PA (IRB Protocol #14-006). The first study presents a novel 

benchmarking concept, where the ITS system performance is compared against the performance 

of a second but simplified computerized training system that does not contain ITS components. 

The non-ITS trainer is identical to the ITS trainer except it does not give feedback or guidance, 
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and it does not force the trainee to go through a sequence of instructional steps. Both training 

tools gave the users the ability to place probes, evaluate the 3D geometry of the problem, run 

bioheat simulations, inspect the resulting 3D temperature field, and evaluate the defect results 

relative to the computer-generated solution. The ITS tutor has additional functionality. It 

provides instructions on how the user can improve their layout using the constrained planning 

algorithm. Furthermore, the ITS tutor alerts the user when he or she violates geometric 

constraints. Both groups were given six cases for training and three cases for post-training test. 

For each case, the trainee was presented with a prostate and urethra model and was asked to 

place ten cryoprobes of a fixed length at a fixed insertion depth, effectively setting the x and y 

location of all the probes.  

A second study was performed in which all students were given a version of the ITS 

without the iterative probe location feedback. Three pre-test cases were administered, in which 

the user had only a single attempt to complete the test. No feedback was given for these test 

cases. The students were then given 50 minutes to complete as many as 6 practice cases with the 

tutoring system to try and improve their skills. At the end of the 50 minutes, a post-test was 

conducted, consisting of the same three test cases originally given as the pre-test. For this study 

the problems were made more difficult. Here, the users were not constrained to place the probes 

at a fixed depth, now each probe could be placed at its own z depth [73]. 

 

  

101 



6.4 Results and Discussion 

The results of the first study showed that both groups, were able to improve the quality of 

their plans, in terms of reducing the violation of constraints while maintaining acceptable defect 

values. Although the difference in performance between the ITS and non-ITS was negligible, the 

group that performed the exercise with the ITS needed fewer iterations for each test case. A 

reduction in the number of attempts needed to learn a particular skill is by itself a valuable 

contribution. In the second study, individuals were able to significantly improve their 

performance with only 50 minutes of exposure to the training tool. In this study, 80% of 

individuals improved on case one while roughly 67% of individuals improved on cases two and 

three. It is very difficult to baseline these results because as there is no computerized alternative 

to cryosurgical training. Still, the users were able to significantly improve their planning skills in 

a relatively short period of time. using the ITS, the users saw a variety of surgical cases and were 

able to rapidly iterate and receive feedback while improving the quality of their surgical plans 

[73]. A key element in the computerized training experience is the ability to quickly simulate the 

surgical outcome based on a specific configuration of cryoprobes. The work performed in this 

thesis to speed-up simulation run-times greatly improved the user experience and allowed users 

to more quickly iterate to an acceptable solution. The success of the ITS in this collaborated 

study demonstrates the effectiveness of the computational training tools developed in this thesis. 
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Chapter 7: Summary and Conclusion 

The goal of minimally invasive cryosurgery is to maximize destruction to diseased tissue 

within the target region, while minimizing collateral damage to the healthy surrounding tissue. 

Cryodevice manufacturers have designed increasingly advanced tools following trends in 

cryoprobe miniaturization in order to help clinicians control the size and shape of the frozen 

region. Although modern cryoprobes offer the clinician more control, they also add to the 

complexity of the procedure because they require more probes. The positions of these probes 

must be optimally planned and placed, and the cooling power must be monitored during the 

procedure. It is the view of the author that modern cryosurgical devices have advanced far 

beyond current surgical practices. These devices could be used with far greater effectiveness if 

clinical training was more efficient. Currently, clinicians go through an extensive residency 

process in order to learn how to perform this surgery from an experienced surgeon. This process 

is extremely costly and time consuming. Computerized training tools for cryosurgery could make 

this training process more efficient and help clinicians gain the surgical skills necessary to 

perform the surgery in a safe virtual environment. 

 As part of an ongoing effort by the Biothermal Technology Laboratory and 

Computational Engineering and Robotics Laboratory at Carnegie Mellon University, a long term 

goal has been set to develop a computerized trainer for cryosurgery. Toward that goal, the work 

presented in this thesis is focused on the development of the computational tools that would 

enable users to practice performing the surgery in a virtual environment and would provide users 

feedback on their performance. Note that many of these techniques have been previously 

published in greater detail. While these tools have been presented in the context of prostate 
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cryosurgery, they can be applied to any minimally invasive cryosurgical procedure that uses US 

as the primary imaging modality. 

 This work has presented the minimum set of requirements necessary for an effective 

cryosurgical trainer. An effective training tool must be able to select useful test cases based on 

the past performance of the user. Due to the lack of extensive patient libraries, the tool must then 

be able to generate the selected test case from a small library of data. The tutor should allow the 

user to segment the necessary geometry from the synthesized data and should provide feedback 

on their performance. The user generates a surgical plan based on the segmented geometry. The 

user will be given feedback on how to improve their planning technique based on comparisons to 

the computer generated optimal plan. To enable the user to hone their intraoperative skills, the 

system should be able to realistically simulate the procedure. It must take into account the 

important heat-transfer and imaging effects. Finally, the system should be able to score the entire 

procedure based on the expected clinical outcome. This thesis work has presented a software 

structure that would be able to address these many requirements. 

In previous work a heat transfer simulation scheme was presented. It was based on the 

FD method that was specifically designed for cryosurgery. This numerical scheme significantly 

reduced the amount of numerical computation necessary to perform a cryosurgical simulation. 

However, the previous study did not do a direct comparison to the runtime and accuracy 

differences between the FD scheme and more commonly used FE programs. To address this, a 

simulator using the FE program Ansys was created and benchmarked against the FD 

implementation. It was shown that the FD method was able to achieve a comparable level of 

accuracy while significantly decreasing runtimes. This difference in speed is attributed to the fact 

that the FE program has extensive preprocessing operations needed to generate the mesh used for 

the simulation. Additionally, the implicit FE scheme excels at taking large time steps while 
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maintaining accuracy. However, smaller time steps are needed in order for the tool to be 

clinically relevant, thus further increasing the simulation time of the FE scheme. As a result of 

this work an additional study was completed to further enhance the speed of the FD scheme. 

The FD scheme was previously optimized to run on a multi-core CPU. To further 

improve runtime, the numerical technique was implemented on the GPU using C++ AMP. 

Before beginning the study, it was determined that simulation run time would benefit from a 

GPU implementation. The memory access patterns for the FD scheme closely resemble those of 

a sparse matrix vector (SPMV) kernel operation. These SPMV kernels have previously been 

shown to map well onto GPU architecture. After an initial GPU implementation and subsequent 

optimization of the FD scheme a 15x performance improvement was realized over the previous 

implementation. This allowed a full 200s surgical simulation to be run in under 2s. This dramatic 

reduction in simulation run time opens up new applications for surgical simulations. This 

enhanced surgical simulation speed was leveraged in a later study which simulated intraoperative 

US artifacts. Some of the artifacts used by clinicians are temperature field based. As a result, 

heat transfer and ultrasound simulations must occur in real-time in order to be effective. 

Next an algorithm was presented for generating synthetic 3D ultrasound images from 

surface models of relevant geometry and an example segmented 3D US. This method is based on 

a method called “Image Analogies” which was has been shown to generate realistic 2D textures. 

The work in this thesis extended the method into 3D and modified it for US imaging 

applications. Through the use of this method realistic US images can be generated for training 

purposes. 

Once a synthetic US image is generated, there is an additional need to simulate the 

clinically relevant artifacts that the clinicians rely upon during the surgery. Surgeons use “comet 

tail” and reverberation artifacts to place cryoprobes within the tissue. Additionally, shadowing 
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and reflection artifacts are used to help track the progression of the freezing front during the 

surgery. To address this training need, an algorithm was presented that simulates these artifacts 

based on ray tracing. Unlike previous ray-tracing algorithms for US simulations, the presented 

method is able to simulate multiple reflections in a continuous media. This capability is critical 

for cryosurgical applications as the simulation of both cryoprobe and thermal field artifacts 

should be simulated using a single unified method to ensure their accurate interaction.  

Finally, previous surgical planning methods were unable to cope with clinical constraints. 

It is common practice in cryosurgery today to set geometric constraints on the cryoprobes in 

order to ensure that they are a safe distance away from critical healthy tissue. Many of the 

advanced heuristic methods based on the application of virtual forces were not able to cope with 

these geometric constraints on cryprobe placement. To address this issue, the work presented 

changes to the previously developed planning scheme that would allow the integration of these 

forces. First, the method for adaptive size control of cryobubbles was modified to guarantee an 

adequate bubble size could be reached in a finite number of iterations. Finally, the geometric 

constraints were enforced by detecting collisions between cryoprobes and constraint surfaces, 

then moving the cryoprobes a minimum distance to resolve the collision and satisfy the 

constraints. 

A collaborative study was performed with Dr. Sehrawat that employed the improved 

planning and simulation techniques presented in this thesis. These tools were used in a prototype 

training tool and tested on a number of medical residents. The results of the study showed 

improved outcomes to the users who were exposed to these advanced simulation and training 

tools. The work presented in this thesis allowed the users in the study to receive feedback on 

their proposed surgical plans and was able to rapidly simulate the outcome of a surgical 
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procedure. This rapid simulation capability allows users to iteratively improve their surgical 

plans more quickly. 

As cryosurgical devices and techniques continue to advance, the complexity 

of cryosurgical planning will increase. This trend will demand advanced tools for surgical 

training. The work presented in this thesis, combined with other studies at the Biothermal 

Technology Laboratory, has led to the development of many foundational tools necessary for a 

cryosurgical training tool that has a virtual training environment. It is the hope of the author that 

these foundational tools will lead to more efficient and effective training for clinicians. 
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Chapter 8: Proposed Future Work 

 The previous chapters focused on the computerized training tools developed in this work. 

In this chapter the future direction of computerized training for cryosurgery will be discussed, 

including the presentation of a preliminary study. The preliminary study presents an example of 

the kind of tools that can be built off of the foundation presented in this work. The goal of this 

future work is to increase the effectiveness of the previously presented algorithms as well as to 

blur the line between effective training and intraoperative tools. 

 

8.1 Increase Efficiency of Synthetic Ultrasound Generation 

 Future work in the area of synthetic US image generation should focus on creating more 

efficient models for 3D texture synthesis. The method proposed in this thesis relies on saving 

feature vectors for every voxel in the sample images. Similar to the original “Image Analogies” 

algorithm, when a new image is being generated it will be filled in a voxel at a time by finding 

the voxel in the input with the closest feature vector to the current voxel in the output being 

synthesized [76]. In the past many approaches to texture synthesis have been presented that 

attempted to build a model of the sample image through machine learning algorithms [77,78]. 

Typically these algorithms begin with the hand selection of a number of discriminative filters 

these filters are applied to the entire image and a feature vector is formed based on this 

compressed representation provided by the filters. These same filters are then applied around the 

next element in the output image that is being synthesized, and a value for that element is 

calculated using one of the following methods. One method is to use an element value from the 

input image that has the most similar feature vector to the location in the output image [59]. 

Other methods use artificial neural networks, support vector machines to build a model to predict 
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the output element value from the filter values [79,80]. However, these methods have had limited 

success despite their potential due to the inability to learn suitable representations for certain 

textures. Often times, these methods tend to “grow garbage” meaning a few poorly generated 

elements cause a chain reaction that produces a poor quality texture in the rest of the image. 

 As of this writing there has been a large movement toward a field of machine learning 

called deep learning [81]. The process of deep learning is in many ways similar to older machine 

learning techniques. However, deep learning is able to learn much more expressive and compact 

models than previous approaches. Using this technique the statistics of the original problem can 

be more effectively captured. These kinds of models tend to require a lot of data to train and it is 

unclear whether it would be able to generate a sufficient model from the available sample data 

that has been collected. These models also require a significant amount of time and 

computational power to train. However, once they are trained, they can generate data very 

quickly [82]. Future investigations should focus on implementing and training this class of 

potentially more effective texture synthesis methods. 

 

8.2 Experimental Optimization and Validation of Ultrasound Imaging Algorithm 

 The algorithm previously presented for simulating cryosurgical imaging artifacts was 

designed to capture all of the relevant physical effects. As a result it was able to produce images 

that looked qualitatively similar to actual ultrasound images. However, there are a number of 

effective material properties used within the algorithm that require additional tuning. These 

properties include the effective echogenicity, acoustic impedance, speed of sound, and energy 

absorption properties of the frozen tissue and cryoprobes. Consequently, future work should 

include an optimization and validation study to set these physical properties and verify the 

applicability of the algorithm. 

109 



 This optimization and validation study should consist of a physical experiment. A 

diagram of this experiment is shown in Figure 8-1. In this experiment a slab of tissue, or a tissue 

phantom is placed between two clear plastic plates and it will be frozen in much the same way as 

the actual surgery. A regular grid of holes will be drilled in the plate so that cryoprobes (blue) 

and thermocouples (green) can be inserted through the tissue in the same interval as a surgical 

registration grid. In the center, of the grid, a larger hole will be drilled to allow for a larger 

diameter plastic tube to be placed. This platic tube will allow a warm saline solution to circulate, 

to simulate the warming catheter in the actual surgery (yellow). Below the cryoprobes grid an 

additional hole will be drilled for an ultrasound imager to be placed (orange). Finally, some 

distance away a camera will be placed so that it can image the tissue as it is freezing. The 

experiment begins with the entire apparatus at room temperature. The cryoprobes are cooled 

using a protocol as close to the ones used in surgical conditions as possible. While the tissue is 

freezing, it will be imaged simultaneously by the US transducer as well as the color camera. 

Additionally, temperature measurements within the domain should be taken. Once the data is 

collected, a method such as the one developed by [42] can be used to reconstruct the temperature 

at various times throughout the experiment from the temperature measurements taken by the 

thermocouples, as well as the freezing front captured by the color camera. Once the temperature 

field has been reconstructed, it can be fed into the artifact simulation algorithm, then an 

optimization technique such as a quasi- newton method can be used to vary the unknown 

material properties so that the artifacts generated by algorithm match the actual artifacts captured 

by the US imager during the experiment. Once these optimized parameter are found there value 

as well as the validity of the imaging technique can be verified by performing a similar 

experiment in which the cyroprobe layout and the cooling protocols are different from the 

original experiment. If the algorithm still produces results that match those taken by the US 
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imager then we can assume the method and material properties are correct and capable of 

simulating a wide range of cryosurgical applications. 

 

 

Figure 8-1: Experimental setup for the optimization of TRUS simulator 
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8.3 Leverage Efficient Bioheat Simulation Implementation 

 The efficient bioheat simulation implementation on the GPU allows for the development 

of many more practical cryosurgical tools. Now classes of problems such as partial differential 

equation constrained optimizations on the temperature field can be solved more effectively [53]. 

In the case of prostate cryosurgery, the quantity to be minimized could be defect value, and the 

constraints are the equations that govern the behavior of the temperature field. With this class of 

problems, most solution methods are iterative and require the simulation of the PDE to be carried 

out many times. As a result, a fast simulation tool could be invaluable to a training or 

intraoperative cryoprobe protocol planning algorithm. 

 Another application of a fast heat transfer simulation algorithm is that of 

intraoperative temperature field reconstruction. Studies have shown that prostate cryosurgical 

outcomes are dramatically improved by the use of temperature sensors during surgery [14,15,6]. 

These temperature sensors allow the clinician to more accurately determine the location of the 

freezing front in the shadowed regions of the ultrasound created by the frozen tissue. The goal of 

this research is to use the tools developed for surgical training and apply and extend their 

capability to both consolidate and enhance the information presented to the clinician during 

surgery. It is envisioned that this tool could augment intra-operative TRUS images with the best 

estimate of the temperature field and give the clinician a concise view of the current temperature 

state within the domain (See Figure 8-2 for illustration).  
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Figure 8-2: Depiction of augmented TRUS image with temperature field data 

 

Very recently, algorithms been developed to track the location of the lethal isotherm from 

temperature probe readings and ultrasound shadowing [42]. Although these algorithms have been 

effective in some circumstances, they are based on heuristics which can potentially introduce 

inaccuracies into the estimation. 

The proposed solution is to use approximate optimal filtering, specifically the ensemble-

Kalman filter [83]. The ensemble-Kalman filter is similar to the traditional Kalman filter whose 

equations are shown below. The only difference is that the propagation of the Gaussian state 

distribution is calculated from an “ensemble” of sampled possible states instead of being 

explicitly updated through linearized statistical equations. 

The ensemble-Kalman filter is more robust to non-linearities than both the traditional 

Kalman filter and the extended Kalman filter because there is no need to linearize the solution. 

However, the real benefit of the ensemble-Kalman filter is that it often has a much lower 

computational cost than the traditional Kalman filters. In traditional Kalman filtering, a large 

system of equations must be solved in order to propagate the current state estimate forward in 

time. However, with ensemble-Kalman filtering, the state is propagated explicitly and there is no 
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need to solve a large system of equations. However, one needs to perform a state update for each 

of the ensemble members. Still, the number of members of the ensemble is often found to be 

much less than the number of states resulting in less computational cost. 

 The Ensemble-Kalman Filter has been proven to be effective in non-linear high 

dimensional sparse systems similar to the ones used in the simulation of cryosurgery such as 

weather forecasting. The algorithm has the following basic form as shown in Table 8-1. To 

begin, a sample of likely states is initialized, which is called an ensemble. The ensemble is then 

propagated in time according to the state update equation. The mean and covariance of these 

states is then calculated and measurements of the system are taken. Using the current state 

distribution and the measurements, each ensemble member can be updated to reflect the higher 

certainty of the current state based on the measurements. This process repeats as the states are 

propagated to the next time step. A sample of an update step in the ensemble Kalman filter 

Figure 8-3. 
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Table 8-1: Kalman filter equations 

State Update Equation  
Measurement 

Equation  

Prediction Equations  
 

Update Equations 

 
 

 
 

 

Variable Description 

Variable Description 

 Current State 

 State Transition Model 

 Previous State 

 Control Input Model 

,  Control Input 

 Process Noise 

 Current Measurement 

 Measurement Model 

 Measurement Noise 

 Current State Given Previous 

 Updated Previous State Given Previous 

 Current Probability Distribution Given Previous 

 Updated Previous Probability Distribution Given Previous 

 Process Noise Covariance 

 Current Predicted Measurement Error 

 Measurement Model 

 Predicted Current State Given Previous State 

 Innovation Covariance 

 Measurement Noise Covariance 

 Kalman Gain Matrix 

 Updated Current Predicted State 

 Current Predicted State Given Previous State 

 Updated Current Predicted Probability Distribution 
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Figure 8-3: Depiction of Ensemble-Kalman filter 

  

A proof of concept 2D version of the tool has been developed as a class project. This tool 

was developed in Matlab on a smaller system domain than what will be used in the final system 

and only included temperature probe readings and no imaging data. The system consisted of a 

12x12 grid with the same material properties used to model frozen tissue in the previous chapters 

of this thesis. The domain was initialized with a temperature distribution shown in Figure 8-4. 

The system was allowed to naturally equilibrate back to body temperature. Four virtual 

temperature sensors were placed at grid locations (4, 4), (8, 4), (4, 8), and (8, 8). An initial 
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temperature estimate for the filter was set with a negative 10K estimate from the actual 

temperature distribution at the start of the simulation. 

 

 

Figure 8-4: Initial state of experimental Ensemble Kalman Filter system 

 

This work showed that temperature field estimates were improved by 30% over the 

uncorrected simulation estimates given the poor initial conditions. This is very promising as a 

starting point for future work. 
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8.4 Combine Computational Tools into a Virtual Surgical Environment 

 The ultimate goal of this work is to create a computerized tutoring system with the ability 

to provide a realistic 3D environment for clinicians to practice in. Many of the components for 

such a system have been developed by this author [51,32] and others [29]. However, there 

remains a significant amount of work to integrate these components into one cohesive system. A 

proof of concept version of such a system was implemented by Sehrawat [73], however, this 

implementation was a prototype and did not integrate all of the functionality necessary for a full 

virtual environment. For instance, the work done in this thesis in which the user can practice 

performing the surgery using realistic US images and artifacts was not integrated. 

 As of the time of this writing, there has been resurgence in the field of virtual and 

augmented reality. It is the hope of this author that the foundational simulation and rendering 

tools in this thesis can be used in conjunction with these virtual reality technologies in order to 

provide the clinicians with an immersive and realistic environment in which to practice 

performing cryosurgery.  
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