
Diagnosing performance changes

in distributed systems

by comparing request °ows
CMU-PDL-13-105

Submitted in partial ful�llment for the requirements for
the degreee of

Doctor of Philosophy
in

Electrical & Computer Engineering

Raja Raman Sambasivan
B.S., Electrical & Computer Engineering, Carnegie Mellon University
M.S., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May 2013

Copyright © 2013 Raja Raman Sambasivan

To my parents and sister.

Keywords: distributed systems, performance diagnosis, request-�ow comparison

Abstract
Diagnosing performance problems in modern datacenters and distributed

systems is challenging, as the root cause could be contained in any one of the
system’s numerous components or, worse, could be a result of interactions
among them. As distributed systems continue to increase in complexity, di-
agnosis tasks will only become more challenging. �ere is a need for a new
class of diagnosis techniques capable of helping developers address problems
in these distributed environments.

As a step toward satisfying this need, this dissertation proposes a novel tech-
nique, called request-�ow comparison, for automatically localizing the sources
of performance changes from the myriad potential culprits in a distributed sys-
tem to just a few potential ones. Request-�ow comparison works by contrasting
the work�ow of how individual requests are serviced within and among every
component of the distributed system between two periods: a non-problem pe-
riod and a problem period. By identifying and ranking performance-a�ecting
changes, request-�ow comparison provides developers with promising starting
points for their diagnosis e�orts. Request work�ows are obtained with less
than 1% overhead via use of recently developed end-to-end tracing techniques.

To demonstrate the utility of request-�ow comparison in various distributed
systems, this dissertation describes its implementation in a tool called Spectro-
scope and describes how Spectroscope was used to diagnose real, previously
unsolved problems in the Ursa Minor distributed storage service and in select
Google services. It also explores request-�ow comparison’s applicability to the
Hadoop File System. Via a 26-person user study, it identi�es e�ective visualiza-
tions for presenting request-�ow comparison’s results and further demonstrates
that request-�ow comparison helps developers quickly identify starting points
for diagnosis.�is dissertation also distills design choices that will maximize
an end-to-end tracing infrastructure’s utility for diagnosis tasks and other use
cases.

v

vi

Acknowledgments
Many people have helped me throughout my academic career and I owe

my success in obtaining a Ph.D. to them. Most notably, I would like to thank
my advisor, Greg Ganger, for his unwavering support, especially during the
long (and frequent) stretches during which I was unsure whether my research
ideas would ever come to fruition. His willingness to let me explore my own
ideas, regardless of whether they ultimately failed or succeeded, and his ability
to provide just the right amount of guidance when needed, have been the key
driving forces behind my growth as a researcher.

I would also like to thank the members of my thesis committee for their
time and support. My committee consisted of Greg Ganger (Chair), Christos
Faloutsos, and Priya Narasimhan from Carnegie Mellon University, Rodrigo
Fonseca from Brown University, and Ion Stoica from the University of Califor-
nia, Berkeley. Rodrigo’s insights (o�en conveyed over late-night discussions)
on tracing distributed-system activities have proven invaluable and helped
shape the latter chapters of this dissertation. Christos’s insights on machine
learning and mechanisms for visualizing graph di�erences have also been in-
valuable. Priya and Ion’s detailed feedback during my proposal and defense
helped greatly improve the presentation of this dissertation.

Of course, I am greatly indebted to mymany friends and collaborators with
whom I shared many long hours, both at CMU and at internships. At CMU,
Andrew Klosterman, Mike Mesnier, and Eno�ereska’s guidance when I was
a new graduate student was especially helpful. I learned how to rigorously
de�ne a research problem, break the problem down into manageable pieces,
and make progress on solving those pieces from them. I o�en �nd myself
looking back fondly on the 3 A.M. Eat & Park dinners Mike and I would go on
to celebrate successful paper submissions—never have I been so exhausted and
so happy at the same time. Alice Zheng helpedme realize the tremendous value
of inter-disciplinary research. Working with her convinced me to strengthen
my background in statistics and machine learning, a decision I am grateful
for today. At Google, Michael De Rosa and Brian McBarron spent long hours
helping me understand the intricacies of various Google services in the span

vii

of a few short months.
Elie Krevat, Michelle Mazurek and Ilari Shafer have been constant compan-

ions during my last few years of graduate school, and I am happy to say that
we have collaborated on multiple research projects. �eir friendship helped
me stay sane during the most stressful periods of graduate school. I have also
greatly valued the friendship and research discussions I shared with James
Hendricks, Matthew Wachs, Brandon Salmon, Alexey Tumanov, Jim Cipar,
Michael Abd-El-Malek, Chuck Cranor, and Terrence Wong. Of course, any
list of my Parallel Data Lab cohorts would not be complete without mention
of Karen Lindenfelser and Joan Digney. Joan was invaluable in helping im-
prove the presentation of my work and Karen provided everything I needed
to be happy while in the lab, including pizza, administrative help, and good
conversations.

�ough I have been interested in science and engineering as far back as
I can remember, it was my high school physics teacher, Howard Myers, who
gave my interests substance. His obvious love for physics and his enthusiastic
teaching methods are qualities I strive to emulate with my own research and
teaching.

I am especially grateful to my parents and sister for their unconditional
help and support throughout my life.�eir unwavering con�dence in me has
given me the strength to tackle challenging and daunting tasks.

My research would not have been possible without the gracious support
of the members and companies of the Parallel Data Laboratory consortium
(including Acti�o, APC, EMC, Emulex, Facebook, Fusion-io, Google, Hewlett-
Packard Labs, Hitachi, Intel, Microso� Research, NEC Laboratories, NetApp,
Oracle, Panasas, Riverbed, Samsung, Seagate, STEC, Symantec, VMware, and
Western Digital). My research was also sponsored in part by two Google
research awards, by the National Science Foundation, under grants #CCF-
0621508, #CNS-0326453, and #CNS-1117567, by the Air Force Research Lab-
oratory, under agreement #F49620-01-1-0433, by the Army Research O�ce,
under agreements #DAAD19-02-1-0389 and #W911NF-09-1-0273, by the De-
partment of Energy, under award #DE-FC02-06ER25767, and by Intel via the
Intel Science and Technology Center for Cloud Computing.

viii

Contents

1 Introduction 1

1.1 �esis statement and key results . 4
1.2 Goals & non-goals . 5
1.3 Assumptions . 6
1.4 Dissertation organization . 7

2 Request-�ow comparison 9

2.1 Overview . 9
2.2 End-to-end tracing . 10
2.3 Requirements from end-to-end tracing . 11
2.4 Work�ow . 12
2.5 Limitations . 14
2.6 Implementation in Spectroscope . 16

2.6.1 Categorization . 16
2.6.2 Identifying response-time mutations 17
2.6.3 Identifying structural mutations and their precursors 18
2.6.4 Ranking . 21
2.6.5 Visualization . 22
2.6.6 Identifying low-level di�erences . 23
2.6.7 Limitations of current algorithms & heuristics 24

3 Evaluation & case studies 25

3.1 Overview of Ursa Minor & Google services 25
3.2 Do requests w/the same structure have similar costs? 28
3.3 Ursa Minor case studies . 31

3.3.1 MDS con�guration change . 31

ix

3.3.2 Read-modify-writes . 33
3.3.3 MDS prefetching . 34
3.3.4 Create behaviour . 35
3.3.5 Slowdown due to code changes . 36
3.3.6 Periodic spikes . 37

3.4 Google case studies . 38
3.4.1 Inter-cluster performance . 38
3.4.2 Performance change in a large service 39

3.5 Extending Spectroscope to HDFS . 39
3.5.1 HDFS & workloads applied . 39
3.5.2 Handling very large request-�ow graphs 40
3.5.3 Handling category explosion . 42

3.6 Summary & future work . 44

4 Advanced visualizations for Spectroscope 47

4.1 Related work . 48
4.2 Interface design . 50

4.2.1 Correspondence determination . 51
4.2.2 Common features . 53
4.2.3 Interface Example . 54

4.3 User study overview & methodology . 54
4.3.1 Participants . 54
4.3.2 Creating before/a�er graphs . 55
4.3.3 User study procedure . 56
4.3.4 Scoring criteria . 58
4.3.5 Limitations . 59

4.4 User study results . 59
4.4.1 Quantitative results . 60
4.4.2 Side-by-side . 62
4.4.3 Di� . 63
4.4.4 Animation . 64

4.5 Future work . 66
4.6 Summary . 68

x

5 �e importance of predictability 69

5.1 How to improve distributed system predictability? 69
5.2 Diagnosis tools & variance . 70

5.2.1 How real tools are a�ected by variance 71
5.3 �e three I’s of variance . 73
5.4 VarianceFinder . 74

5.4.1 Id’ing functionality & �rst-tier output 75
5.4.2 Second-tier output & resulting actions 75

5.5 Discussion . 76
5.6 Conclusion . 77

6 Related work on performance diagnosis 79

6.1 Problem-localization tools . 80
6.1.1 Anomaly detection . 81
6.1.2 Behavioural-change detection . 83
6.1.3 Dissenter detection . 85
6.1.4 Exploring & �nding problematic behaviours 85
6.1.5 Distributed pro�ling & debugging 86
6.1.6 Visualization . 86

6.2 Root-cause identi�cation tools . 87
6.3 Problem-recti�cation tools . 88
6.4 Performance-optimization tools . 88
6.5 Single-process tools . 89

7 Systemizing end-to-end tracing knowledge 91

7.1 Background . 92
7.1.1 Use cases . 92
7.1.2 Approaches to end-to-end tracing . 94
7.1.3 Anatomy of end-to-end tracing . 95

7.2 Sampling techniques . 97
7.3 Causal relationship preservation . 98

7.3.1 �e submitter-preserving slice . 100
7.3.2 �e trigger-preserving slice . 101
7.3.3 Is anything gained by preserving both? 102

xi

7.3.4 Preserving concurrency, forks, and joins 102
7.3.5 Preserving inter-request slices . 103

7.4 Causal tracking . 103
7.4.1 What to propagate as metadata? . 104
7.4.2 How to preserve forks and joins . 105

7.5 Trace visualization . 106
7.6 Putting it all together . 108

7.6.1 Suggested choices . 109
7.6.2 Existing tracing implementations’ choices 111

7.7 Challenges & opportunities . 112
7.8 Conclusion . 113

8 Conclusion 115

8.1 Contributions . 115
8.2 �oughts on future work . 116

8.2.1 Generalizing request-�ow comparison to more systems 116
8.2.2 Improving request-�ow comparison’s presentation layer 118
8.2.3 Building more predictable systems 119
8.2.4 Improving end-to-end tracing . 120

Bibliography 121

xii

List of Figures

1.1 �e problem diagnosis work�ow . 2
1.2 Request-�ow comparison . 3

2.1 A request-�ow graph . 12
2.2 �e request-�ow comparison work�ow . 13
2.3 How the precursor categories of a structural-mutation category are identi�ed 20
2.4 Contribution to the overall performance change by a category containing

mutations of a given type . 21
2.5 Example of how initial versions of Spectroscope visualized categories con-

taining mutations . 22

3.1 5-component Ursa Minor constellation used during nightly regression tests 26
3.2 CDF of C2 for large categories induced by three workloads run on Ursa Minor 30
3.3 CDF ofC2 for large categories induced by Bigtable instances in three Google

datacenters . 30
3.4 Visualization of create behaviour . 36
3.5 Timeline of inter-arrival times of requests at the NFS Server 38
3.6 Graph of a small 320KB write operation in HDFS 41
3.7 Expected number of categories that will be generated for di�erent-sized

HDFS clusters . 43

4.1 �ree visualization interfaces . 52
4.2 Completion times for all participants . 60
4.3 Precision/recall scores . 61
4.4 Likert responses, by condition . 62

xiii

5.1 Example of how a VarianceFinder implementation might categorize re-
quests to identify functionality with high variance 76

7.1 Anatomy of end-to-end tracing . 96
7.2 Traces for two storage system write requests when preserving di�erent

slices of causality . 101
7.3 Comparison of various approaches for visualizing traces 107

xiv

List of Tables

3.1 Requests sampled and average request-�ow graph sizes for Ursa Minor
workloads . 27

3.2 Distribution of requests in the categories induced by three Ursa Minor
workloads . 30

3.3 Distribution of requests in the categories induced by three instances of
Bigtable over a 1-day period . 30

3.4 Overview of the Ursa Minor case studies . 32
3.5 �e three workloads used for my HDFS explorations 40
3.6 Request-�ow graph sizes for the HDFS workloads 41
3.7 Category sizes and average requests per category for the workloads when

run on the test HDFS cluster . 44

4.1 Participant demographics . 55
4.2 Before/a�er graph-pair assignments . 57
4.3 Most useful approaches for aiding overall comprehension and helping

identify the various types of graph di�erences contained in the user study
assignments . 65

5.1 How the predictions made by automated performance diagnosis tools are
a�ected by high variance . 72

6.1 Localization tools that identify anomalies . 82
6.2 Localization tools that identify behavioural changes 83
6.3 Localization tools that identify dissenters in tightly coupled systems 85
6.4 Localization tools that explore potential system behaviours to �nd problems 86
6.5 Localization tools that pro�le distributed system performance 86
6.6 Localization tools that visualize important metrics 87

xv

7.1 Main uses of end-to-end tracing . 93
7.2 Suggested intra-�ow slices to preserve for various intended uses 100
7.3 Tradeo�s between trace visualizations . 106
7.4 Suggested design choices for various use cases and choices made by existing

tracing implementations . 110

xvi

Chapter 1

Introduction

Modern clouds and datacenters are rapidly growing in scale and complexity. Datacenters
o�en contain an eclectic set of hardware and networks, on which they run many diverse
applications. Distributed applications are increasingly built upon other distributed services,
which they share with other clients. All of these factors cause problem diagnosis in these
environments to be especially challenging. For example, Google engineers diagnosing a
distributed application’s performance o�en must have intricate knowledge of the applica-
tion’s components, the many services it depends upon (e.g., Bigtable [28], GFS [55], and
the authentication mechanism), its con�guration (e.g., the machines on which it’s running
and its resource allocations), its critical paths, the network topology, and the many co-
located applications that might be interfering with it. Many researchers believe increased
automation is necessary to keep management tasks in these environments from becoming
untenable [38, 49, 50, 80, 95, 120, 127].

�e di�culty of diagnosis in cloud computing environments is borne out by the many
examples of failures observed in them over the past few years and engineers’ herculean
e�orts to diagnose these failures [11, 107, 133]. In some cases, outages were exacerbated
because of unaccounted for dependencies between a problematic service and other services.
For example, in 2011, a network miscon�guration in a single Amazon Elastic Block Store
(EBS) cluster resulted in an outage of all EBS clusters. Analysis eventually revealed that the
thread pool responsible for routing user requests to individual EBS clusters used an in�nite
timeout and thus transformed a local problem into a global outage [129].

1

�ough completely automated diagnosis is the eventual goal, many intermediary steps—
each requiring less diagnostician1 (or engineer) involvement—lie on the path to achieving it
for most modern applications and services. Expert diagnosticians possess vast amounts of
knowledge and insight, which they synthesize to diagnose complex problems, so attempting
to replace them immediately with automation is not a feasible approach. Instead, a logical
�rst step is to create techniques that use systems knowledge, machine learning, statistics,
and visualization to help diagnosticians with their e�orts—for example, by automatically
localizing the root cause of a new problem from the myriad components and dependencies
in the system to just a few potential culprits. As Figure 1.1 shows, problem localization is
one of the three key steps of diagnosis, so automating it can vastly reduce the e�ort needed
to diagnose new problems. Once shown to be e�ective, these localization techniques can
serve as excellent building blocks on which to layer further automation.

�e main contribution of this dissertation is a problem localization technique, called
request-�ow comparison, for automatically localizing the root cause of unexpected perfor-
mance changes (i.e., degradations), an important problem-type for which better diagnosis
techniques are needed. Such changes are common in both traditional dedicated-machine
environments and shared-machine environments, such as modern datacenters.�ey arise
due to issues including (but not limited to) code regressions, miscon�gurations, resource
contention, hardware problems, and other external changes. An analysis of bugs reported
for the Ursa Minor distributed storage service [1], running in a dedicated-machine envi-
ronment, shows that more than half the reported problems were unexpected performance
changes [117]. I observed similar ratios for shared-machine environments by analyzing

1In this dissertation, the term diagnostician refers to so�ware developers, �rst-response teams (e.g., Google’s
site-reliability engineers), and any other group tasked with diagnosing complex problems in distributed
systems and datacenters.

1. Problem
localization

2. Root-cause
identi!cation

3. Problem
recti!cation

Figure 1.1: �e problem diagnosis work�ow. �is diagram illustrates the three key steps of diag-
nosing problems in distributed systems. First, diagnosticians must localize the source of the problem
from the numerous components in the system and its dependencies to just a few potential culprits.
Second, they must identify the speci�c root cause.�ird, they must a�ect a �x.�is dissertation
describes a novel technique for automating the �rst step: problem localization.

2

Hadoop File System (HDFS) [134] bug reports, obtained from the JIRA [135] and conversa-
tions with developers.

Request-�ow comparison works by comparing how a distributed service processes client
and system-initiated requests (e.g., “read a �le”) between two periods of operation: one
where performance was acceptable (the non-problem period) and one where performance
has degraded (the problem period). Each request has a corresponding work�ow represent-
ing the execution order and timing of the application’s components, sub-components (e.g.,
functions within a component), and dependencies involved in processing the request.�ese
request work�ows (also called request �ows) can be represented as graphs and compar-
ing corresponding ones between both periods to identify performance-a�ecting changes
focuses diagnosis e�orts to just the changed areas. Figure 1.2 illustrates the request-�ow
comparison process.

To obtain request work�ows, request-�ow comparison builds on end-to-end tracing,
a powerful mechanism for e�ciently (i.e., with less than 1% runtime overhead [117, 125])
capturing causally-related activity within and among the components of a distributed
system [3, 15, 27, 29, 47, 48, 66, 78, 110, 111, 117, 125, 130, 131, 141, 142, 152]. End-to-end
tracing’s work�ow-centric approach contrasts with machine-centric approaches to tracing
and monitoring, such as DTrace [26] and Ganglia [92], which cannot be used to obtain a
complete and coherent view of a service’s activity. As distributed services grow in complexity
and continue to be layered upon other services, such coherent tracing methods will become
increasingly important for helping developers understand their end-to-end behaviour.

Figure 1.2: Request-�ow comparison.�is technique takes as input request work�ows that show
how individual requests were processed during two periods: a non-problem period and a problem
period. Since even small distributed systems can process hundreds of requests per second, the
number of input work�ows can be very large. Request-�ow comparison localizes the source of
the problem by comparing corresponding request work�ows between both periods to identify
performance-a�ecting changes, which represent good starting points for diagnosis.

3

Indeed, there are already a growing number of industry implementations, includingGoogle’s
Dapper [125], Cloudera’s HTrace [33], Twitter’s Zipkin [147], and others [36, 143]. Looking
forward, end-to-end tracing has the potential to become the fundamental substrate for
providing a global view of intra- and inter-datacenter activity in cloud environments.

1.1 Thesis statement and key results

�is dissertation explores the following thesis statement:

Request-�ow comparison is an e�ective technique for helping developers localize the source of
performance changes in many request-based distributed services.

To evaluate this thesis statement, I developed Spectroscope [117], a tool that implements
request-�ow comparison, and used it to diagnose real, previously undiagnosed performance
changes in the Ursa Minor distributed storage service [1] and select Google services. I
also explored Spectroscope’s applicability to the Hadoop File System [134] and identi�ed
needed extensions. Since problem localization techniques like request-�ow comparison
do not directly identify the root cause of a problem, but rather help diagnosticians in their
e�orts, their e�ectiveness depends on how well they present their results. To identify good
presentations, I explored three approaches for visualizing Spectroscope’s results and ran
a 26-person user study to identify which ones are best for di�erent problem types [116].
Finally, based on my experiences, I conducted a design study illustrating the properties
needed from end-to-end tracing for it to be useful for various use cases, including diagnosis.
My thesis statement is supported by the following:

1. I demonstrated the usefulness of request-�ow comparison by using Spectroscope to
diagnose six performance changes in a 6-component con�guration of Ursa Minor,
running in a dedicated-machine environment. Four of these problems were real and
previously undiagnosed—the root cause was not known a priori. One problem had
been previously diagnosed and was re-injected into the system.�e last problem was
synthetic and was injected into the system to evaluate a broader spectrum of problem
types diagnosable by request-�ow comparison. �e problems diagnosed included
those due to code regressions, miscon�gurations, resource contention, and external
changes.

2. I demonstrated that request-�ow comparison is useful in other environments by using
4

a version of Spectroscope to diagnose two real, previously undiagnosed performance
changes within select Google services, running in a shared-machine environment.
�e Google version of Spectroscope was implemented as an addition to Dapper [125],
Google’s end-to-end tracing infrastructure. I also explored Spectroscope’s applicability
to HDFS and identi�ed extensions needed to the algorithms and heuristics it uses for
it to be useful in this system.

3. I further demonstrated that diagnosticians can successfully use request-�ow compar-
ison to identify starting points for diagnosis via a 26-person user study that included
Google and Ursa Minor developers. I also used this user study to identify the visual-
ization approaches that best convey request-�ow comparison’s results for di�erent
problem types and users.

4. Via a design study, I determined how to design end-to-end tracing infrastructures
so that they are maximally e�ective for supporting diagnosis tasks. In the study, I
distilled the key design axes that dictate an end-to-end tracing infrastructure’s utility
for di�erent use cases, such as diagnosis and resource attribution. I identi�ed good
design choices for di�erent use cases and showedwhere prior tracing implementations
fall short.

1.2 Goals & non-goals

�e key goal of this dissertation is to develop and show the e�ectiveness of a technique for
automating one key part of the problem diagnosis work�ow: localization of problems that
manifest as steady-state-performance changes (e.g., changes to the 50th or 60th percentile of
some important performance metric’s distribution). In doing so, it aims to address three
facets of developing an automation tool that helps developers perform management tasks.
First, it describes algorithms and heuristics for the proposed automation and evaluates
them. Second, it presents a user study evaluating three approaches for e�ectively presenting
the automation tool’s results to diagnosticians. �ird, it describes the properties needed
from the underlying data source (end-to-end tracing) for success.

By describing an additional application for which end-to-end tracing is useful (diagnos-
ing performance changes), this dissertation also aims to further strengthen the argument
for implementing this powerful data source in datacenters and distributed systems.�ough
end-to-end tracing has already been shown to be useful for a variety of use cases, includ-

5

ing diagnosis of certain correctness and performance problems [29, 47, 48, 110, 117, 125],
anomaly detection [15, 29], pro�ling [27, 125], and resource usage attribution [15, 141], addi-
tional evidence showing its utility is important so as to prove the signi�cant e�ort required
to implement and maintain it is warranted.

A signi�cant non-goal of this dissertation is localizing performance problems that
manifest as anomalies (e.g., requests that show up in the 99th percentile of some important
performance metric’s distribution). Other techniques exist for localizing such problems [15].
�is dissertation also does not aim to help diagnose correctness problems, though request-
�ow comparison could be extended to do so.

Another important non-goal of this dissertation is complete automation. Request-�ow
comparison automatically localizes the root cause of an performance change; it does not
automatically identify the root cause or automatically perform corrective actions. Much
additional research is needed to understand how to automate other other phases of the
diagnosis work�ow.

�is dissertation also does not attempt to quantitatively show that request-�ow compar-
ison is better than other automated problem localization techniques. Such an evaluation
would require a user study in which many expert diagnosticians are asked to diagnose real
problems observed in a common system using di�erent localization techniques. But, it is
extraordinarily di�cult to obtain a large enough pool of expert diagnosticians for the length
of time needed to complete such a study. Instead, this dissertation demonstrates request-
�ow comparison’s e�ectiveness by illustrating how it helped diagnosticians identify the root
causes of real, previously undiagnosed problems. It also qualitatively argues that request-�ow
comparison is more useful than many other localization techniques because it uses a data
source (end-to-end traces) that provides a coherent, complete view of a distributed system’s
activity.

A �nal non-goal is this dissertation is online diagnosis. Instead, this dissertation focuses
on demonstrating the e�ectiveness of request-�ow comparison and leaves implementing
online versions of it to future work.

1.3 Assumptions

To work, request-�ow comparison relies on four key assumptions. First, it assumes that
diagnosticians can identify two distinct periods of activity, one where performance was
acceptable (the non-problem period) and another where performance has degraded (the

6

problem period). Doing so is usually easy for steady-state-performance changes. Since
request-�ow comparison simply identi�es changes in request work�ows, it is indi�erent to
the number of distinct problems observed in the problem period, as long as they do not exist
in the non-problem period. Also, the problem period need not be a tight bound around
the performance degradation being diagnosed, but simply needs to contain it. However,
for many implementations, the e�ectiveness of request-�ow comparison will increase with
tighter problem-period bounds.

Second, request-�ow comparison assumes that theworkload (e.g., percentage of di�erent
request types) observed in both the non-problem and problem periods are similar. If they
are signi�cantly di�erent, there is no basis for comparison, and request-�ow comparison
may identify request work�ow changes that are a result of the di�ering workloads rather
than problems internal to the distributed system. To avoid such scenarios, diagnosticians
could use change-point detection algorithms [31, 99] to determine whether the non-problem
and problem period workloads di�er signi�cantly before applying request-�ow comparison.

�ird, request-�ow comparison assumes that users possess the domain expertise nec-
essary to identify a problem’s root cause given evidence showing how it a�ects request
work�ows. As such, request-�ow comparison is targeted toward distributed systems devel-
opers and �rst-response teams, not end users or most system administrators. Chapters 3.6
and 8.2.2 suggest that future work should consider how to incorporate more domain knowl-
edge into request-�ow comparison tools, so as to reduce the amount of domain knowledge
users must possess to make use of their results.

Fourth, request-�ow comparison assumes the availability of end-to-end traces (i.e.,
traces that show the work�ow of how individual requests are serviced within and among
the components of the distributed system being diagnosed). Request-�ow comparison will
work best when these traces exhibit certain properties (e.g., they distinguish concurrent
activity from sequential activity), but will work with degraded e�ectiveness when some are
not met.

1.4 Dissertation organization

�is dissertation contains eight chapters. Chapter 2 introduces request-�ow comparison,
provides a high-level overview of it, and describes the algorithms and heuristics used to
implement request-�ow comparison in Spectroscope. Chapter 3 describes case studies of
using Spectroscope to diagnose real, previously undiagnosed changes in Ursa Minor [1]

7

and in select Google services. It also describes extensions needed to Spectroscope for it to
be useful for diagnosing problems in HDFS [134]. Most of the content of these chapters was
published in NSDI in 2011 [117], WilliamWang’s Master’s thesis in 2011 [150], and HotAC in
2007 [118].

Chapter 4 describes the user study I ran to identify promising approaches for visualizing
request-�ow comparison’s results. Most of this chapter was previously published in a
technical report (CMU-PDL-13-104) in 2011. [116].

Chapter 5 highlights a stumbling block on the path to automated diagnosis: lack of
predictability in distributed systems (i.e., high variance in key metrics). It shows how Spec-
troscope and other diagnosis tools are limited by high variance and suggests a framework for
helping developers localize high variance sources in their systems. In addition to increasing
the e�ectiveness of automation, eliminating unintended variance will increase distributed
system performance [16]. Most of this chapter was published in HotCloud in 2012 [115].

Chapter 6 presents related work about performance diagnosis tools. Chapter 7 describes
properties needed from end-to-end tracing for it to be useful for various use cases, such as
diagnosis and resource attribution. Finally, chapter 8 concludes.

8

Chapter 2

Request-°ow comparison

�is chapter presents request-�ow comparison and its implementation in a diagnosis tool I
built called Spectroscope. Section 2.1 presents a high-level overview of request-�ow com-
parison and the types of performance problems for which it is useful. Section 2.2 provides
relevant background about end-to-end tracing and describes the properties request-�ow
comparison needs from it. Section 2.4 describes the work�ow that any tool that imple-
ments request-�ow comparison will likely have to incorporate. Di�erent tools may choose
di�erent algorithms to implement the work�ow, depending on their goals. Section 2.5
discusses request-�ow comparison’s key limitations. Section 2.6 describes the algorithms
and heuristics used by Spectroscope, which were chosen for their simplicity and ability to
limit false positives.

2.1 Overview

Request-�ow comparison helps diagnosticians localize performance changes that manifest
asmutations or changes in the work�ow of how client requests and system-initiated activities
are processed. It is most useful in work-evident distributed systems, for which the work
necessary to service a request, as measured by its response time or aggregate throughput,
is evident from properties of the request itself. Examples of such systems include most
distributed storage systems (e.g., traditional �lesystems, key/value stores, and table stores)
and three-tier web applications.

Request-�ow comparison, as described in this dissertation, focuses on helping diagnose
steady-state-performance changes (also known as behavioural changes). Such changes
di�er from performance problems caused by anomalies. Whereas anomalies are a small

9

number of requests that di�er greatly from others with respect to some important metric
distribution, steady-state changes o�en a�ect many requests, but perhaps only slightly. More
formally, anomalies a�ect only the tail (e.g., 99th percentile) of some important metric’s
distribution, whereas steady-state changes a�ect the entire distribution (e.g., they change
the 50th or 60th percentile). Both anomalies and steady-state performance changes are
important problem types for which advanced diagnosis tools are needed. However, most
existing diagnosis tools that use end-to-end traces focus only on anomaly detection for
performance problems [15] or correctness problems [29, 78].

Since request-�ow comparison only aims to identify performance-a�ectingmutations, it
is indi�erent to the actual root cause. A such, many types of problems can be localized using
request-�ow comparison, including performance changes due to con�guration changes,
code changes, resource contention, and failovers to slower backup machines. Request-�ow
comparison can also be used to understand why a distributed application performs di�er-
ently in di�erent environments (e.g., di�erent datacenters) and to rule out the distributed
system as the cause of an observed problem (i.e., by showing request work�ows have not
changed).�ough request-�ow comparison can be used in both production and testing
environments, it is exceptionally suited to regression testing, since such tests always yield
well-de�ned periods for comparison.

2.2 End-to-end tracing

To obtain graphs showing the work�ow of individual requests, request-�ow comparison
uses end-to-end tracing, which identi�es the �ow of causally-related activity (e.g., a request’s
processing) within and among the components of a distributed system. Many approaches
exist, but the most common ismetadata-propagation-based tracing [27, 29, 46, 47, 48, 110,
117, 125, 141]. With this approach, trace points, which are similar to log statements, are
automatically or manually inserted in key areas of the distributed system’s so�ware. Usually,
they are automatically inserted in commonly-used libraries, such as RPC libraries, and
manually inserted in other important areas. During runtime, the tracing mechanism
propagates an unique ID with each causal �ow and uses it to stitch together executed trace
points, yielding end-to-end traces. �e runtime overhead of end-to-end tracing can be
limited to less than 1% by using head-based sampling, in which a random decision is made
at the start of a causal �ow whether or not to collect any trace points for it [117, 125].

Other approaches to end-to-end tracing include black-box-based tracing [3, 21, 78, 83, 111,

10

130, 131, 152] and schema-based tracing [15, 66].�e �rst is used in un-instrumented systems,
in which causally-related activity is inferred based on externally observable events (e.g.,
network activity). With the second, IDs are not propagated. Instead, an external schema
dictates how to stitch together causally-related trace points. Chapter 7 further describes
di�erent end-to-end tracing approaches and discusses design decisions that a�ect a tracing
infrastructure’s utility for di�erent use cases.�e rest of this section focuses on properties
needed from end-to-end tracing for request-�ow comparison.

2.3 Requirements from end-to-end tracing

Any end-to-end tracing approach can be used with request-�ow comparison, as long as
the resulting traces can be represented as graphs annotated with detailed (per-component,
per-function, or between trace point) timing information. �e most meaningful results
will be obtained if request-�ow graphs—directed acyclic graphs that show the true structure
of individual requests (i.e., components or functions accessed, concurrency, forks. and
joins)—are used. Figure 2.1 shows an example of a request-�ow graph obtained for the
Ursa Minor distributed storage service [1]. Call graphs or other types of graphs that do not
preserve true request structure can also be used with degraded e�ectiveness. Request-�ow
graphs can be constructed from end-to-end traces if they satisfy the two properties listed
below:

1. �e traces distinguish concurrent activity from sequential activity: Doing so is
necessary to di�erentiate requests with truly di�erent structures from those that di�er
only because of non-determinism in service order.�is requirement can be satis�ed
by including information necessary to establish happens-before relationships [85].

2. �e traces capture forks and joins: Without trace points indicating forks, traces
would not be able to identify the thread responsible for initiating a set of concurrent
activity. Without trace points indicating joins, traces would not be able to distinguish
requests that wait for a speci�c thread or RPC versus those that wait for a subset.

Additionally, to be useful for diagnosis, traces should show trace points executed on the
critical path of individual requests. To allow graphs to be annotated with timing information,
traces should include timestamps that are comparable across machines or should include
information necessary to establish happens-before relationships for inter-machine accesses.
Finally, the amount of instrumentation a�ects the utility of request-�ow comparison. At a

11

Figure 2.1: A request-�ow graph. Nodes of such graphs show trace points executed by individual
requests and edges show latencies between successive trace points. Fan-outs represent the start of
concurrent activity and fan-ins represent synchronization points. �e graph shown depicts how
one read request was serviced by the Ursa Minor distributed storage service [1] and was obtained
using the Stardust tracing infrastructure [141]. For this system, nodes names are constructed by
concatenating the machine name (e.g., e10), the component name (e.g., NFS), the trace-point name
(e.g., READ_CALL_TYPE) and an optional semantic label. Ellipses indicate omitted trace points,
some of which execute on di�erent components or machines.

minimum, traces should show the components or machines accessed by individual requests.

2.4 Work°ow

Figure 2.2 shows request-�ow comparison’s work�ow. In the �rst step, it takes as input
request-�ow graphs from a non-problem period and a problem period. In most cases,
graphs from two periods of actual system execution are used. For example, graphs from two
executions of a benchmark could be compared when diagnosing performance regressions
for a system under test. Alternatively, graphs from di�erent parts of the same benchmark
execution could be compared. For live production systems, graphs from two distinct time
ranges could be used, with the problem period representing an interval during which clients
complained, a pager alert was received, or a service-level agreement violation occurred.
For example, at Google, I o�en used daylong non-problem and problem periods, which I
selected based on a Google dashboard that shows per-day average response times for major
services.�ough graphs obtained from a model describing expected performance could
be used for the non-problem period, these are hard to create and not widely available for

12

Categorization

Response-time
mutation identi!cation

Structural mutation
identi!cation

Problem
period grap

Problem period
graphs

Ranking

Visualization

Non-problem
period graphs

Problem period
graphs

Ranked list of categories
with mutations

1. Structural
2. Response time

Optional extensions

Low-level
difference

identification

Diagnostician interface

Figure 2.2: �e request-�ow comparison work�ow. Request-�ow graphs from a non-problem
period and a problem period serve as the inputs to the work�ow. Similar requests from both periods
are grouped into the same category and those that contain performance-a�ecting mutations are
identi�ed. Categories with mutations are ranked according to their e�ect on the overall performance
change. Ranked categories are presented to the diagnostician for further analysis.

complex distributed systems [132].

Even small distributed systems can service hundreds to thousands of requests per second,
so comparing all of them individually is not feasible. As such, the second step of request-
�ow comparison’s work�ow involves grouping the input request-�ow graphs from both
periods into categories, which are used as the fundamental unit for comparing request �ows.
Categories should contain requests that are expected to perform similarly, the choice of
which may di�er depending on the distributed system under analysis. A basic expectation,
valid in many work-evident systems, is that similarly-structured or identically-structured
requests (i.e., those that visit the same components and functions and exhibit the same
amount of concurrency) should perform similarly. However, additional information may
be useful. For example, for web servers, the URL could help guide categorization. For
distributed storage systems in which the amount of data retrieved can vary greatly (e.g.,
GFS [55]), the size of data requested could be used. Sometimes additional aggregation is
useful to reduce the number of categories. For example, in load-balanced systems, requests

13

that exhibit di�erent structures only because they visit di�erent replicas should be grouped
into the same category.

�e third step of request-�ow comparison’s work�ow involves identifying which cate-
gories contain mutations and precursors. Mutations are expensive requests observed in the
problem period that have mutated or changed from less expensive requests observed in
the non-problem period. Conversely, precursors are requests from the non-problem period
that have mutated into more expensive requests in the problem period. Two very common
types of mutations are response-time mutations and structural mutations. Response-time
mutations are requests whose structure remains identical between both periods, but whose
response times have increased. Comparing them to their precursors localizes the problem
to the components or functions responsible for the slowdown and focuses diagnosis e�orts.
Structural mutations are requests whose performance has decreased because their structure
or work�ow through the distributed system has changed. Comparing them to their pre-
cursors identi�es the changed substructures, which are good locations to start diagnosis
e�orts.

�e fourth step of request-�ow comparison’s work�ow is to focus diagnosticians’ e�ort
on the most performance-a�ecting mutations by ranking them according to their contri-
bution to the performance change. In the ��h and �nal �nal step, ranked categories are
presented to the diagnostician for further analysis.

Many additional work�ow steps are possible. For example, additional localization may
be possible by identifying the low-level parameters (e.g., function variables, client-sent
parameters) that best di�erentiate mutations and their precursors. As such, Spectroscope
includes an optional work�ow step for such identi�cation. For two case studies, this
additional step immediately revealed the root cause (see the case studies described in
Chapter 3.3.1 and 3.3.2). Also, Spectroscope could be extended to detect anomalies by
identifying requests in the tails of intra-category, intra-period, response-time distributions.

2.5 Limitations

Despite its usefulness, there are �ve key limitations to request-�ow comparison’s work�ow.
Most notably, request-�ow comparison’s method of localizing performance changes by
identifying mutations may not identify the most direct problem sources. For example, in
one case study, described in Chapter 3.3.1, my implementation of request-�ow comparison,
Spectroscope, was used to help diagnose a performance degradation whose root cause was

14

a miscon�guration.�ough Spectroscope was able to localize the problem to a change in
the storage node used by one component of the service and to speci�c variables used in the
codebase, it did not localize the problem to the problematic con�guration �le. Similarly,
when diagnosing problems such as contention, request-�ow comparison may localize the
problem by identifying a change in per-component timing, but will not localize it to the
speci�c competing process or request. I believe additional work�ow steps could be used to
increase the directness of localization.�is is exempli�ed by Spectroscope’s additional work-
�ow step, which seeks to localize performance changes to low-level parameter di�erences
between mutations and precursors.

�e number of categories identi�ed by request-�ow comparison as containing muta-
tions will likely greatly exceed the number of problems present in the system.�is is partly
because a single problem will o�en a�ect many di�erent request types, each with di�erent
performance expectations. For example, a single performance problem may a�ect both
attribute requests and write requests. Since these two request types are expected to exhibit
fundamentally di�erent performance characteristics, they will be assigned to di�erent cate-
gories and identi�ed as separate mutations, even though both show the same underlying
problem. To cope, a�er �xing the problem identi�ed by a highly-ranked mutation cate-
gory, diagnosticians should always re-run the request-�ow comparison tool to see if other
mutations were caused by the same problem. If so, they will not appear in the new results.

�e granularity at which request-�ow comparison can localize problems is limited by
the granularity of tracing. For example, if the traces only show inter-component activity
(e.g., RPCs or messages passed between components), then request-�ow comparison will be
limited to localizing problems to entire components. Component-level localization is also
possible for black-box components (i.e., components that export no trace data whatsoever)
if traces in surrounding components document accesses to them.

Request-�ow comparison, as presented in this dissertation, will be of limited value
in dynamic environments (i.e., ones in which applications can be moved while they are
executing or between comparable executions). To be useful in such environments, extra
work�ow steps would be needed to determine whether an observed performance change
is the expected result of an infrastructure-level change or is representative of a real prob-
lem [119].

Finally, many distributed systems mask performance problems by diverting additional
resources to the problematic application or job. For example, many map-reduce imple-
mentations, such as Hadoop [8], limit the performance impact of stragglers by aggressively

15

duplicating or restarting slow-to-complete tasks [6, 155]. Request-�ow comparison will be
less useful in these systems, since they may exhibit no discernible performance slowdown
in some cases.

2.6 Implementation in Spectroscope

I implemented request-�ow comparison in two versions of Spectroscope. �e �rst was
used to diagnose problems in Ursa Minor [1] and to explore the utility of Spectroscope’s
algorithms and heuristics in HDFS [134]. It was written using a combination of Perl, Matlab,
and C.�e secondwas used to diagnose select Google services andwas implemented in C++
as an extension to Google’s end-to-end tracing infrastructure, Dapper [125]. Speci�cally,
the Google version of Spectroscope uses Dapper’s aggregation pipeline to obtain call graphs.
Both versions implement request-�ow comparison’s work�ow using the same algorithms
and heuristics, which were chosen for their simplicity, ability to use unlabeled data, and
ability to regulate false positives. As such, they are not di�erentiated in this dissertation
unless necessary.�e second constraint is necessary because labels indicating whether indi-
vidual requests performed well or poorly are uncommon in many systems.�e period label
(problem or non-problem) is not su�cient because both periods may contain both types of
requests. I included the third constraint because Facebook and Google engineers indicated
that false positives are the worst failure mode of an automated diagnosis tool because of
the amount of diagnostician e�ort wasted [107]. However, when running user studies to
evaluate visualizations for Spectroscope (see Chapter 4), I found that false negatives are just
as troublesome, because they reduce diagnosticians’ con�dence in automation.

In addition to comparing request �ows between two periods, Spectroscope can also
be used to categorize requests observed in a single period. In such cases, Spectroscope
will output the list of categories observed, each annotated with relevant metrics, such as
average response time and response time variance. Categories can be ranked by any metric
computed for them.�e remainder of this section describes the algorithms and heuristics
used by Spectroscope for request-�ow comparison.

2.6.1 Categorization

Spectroscope creates categories composed of identically-structured requests. It uses a string
representation of individual request-�ow graphs, as determined by a depth-�rst traversal,
to identify which category to assign a given request.�ough this method will incorrectly

16

assign requests with di�erent structures, yet identical string representations, to the same
category, I have found it works well in practice. For requests with parallel substructures,
Spectroscope computes all possible string representations when determining the category
in which to bin them.�e exponential cost is mitigated by imposing an order on parallel
substructures (i.e., by always traversing children in lexographic order) and by the fact that
most requests we observed in Ursa Minor and Google exhibited limited parallelism.

Creating categories that consist of identically-structured requests may result in a large
number of categories. To reduce the number, I explored using unsupervised clustering
algorithms, such as those used in Magpie [15], to group similar, but not identical, requests
into the same category [118]. But, I found that o�-the-shelf clustering algorithms created
categories that were too coarse-grained and unpredictable. O�en, they would assign re-
quests with important di�erences into the same category, masking their existence.�ough
there is potential for improving Spectroscope’s categorizing step by using clustering algo-
rithms, improvements are needed, such as specialized distance metrics that better align
with diagnosticians’ notions of request similarity.

2.6.2 Identifying response-time mutations

Since response-time mutations and their precursors have identical structures, they will be
assigned to the same category, but will have di�erent period labels. As such, categories that
contain them will have signi�cantly di�erent non-problem and problem-period response
times. To limit false positives, which result in wasted diagnostician e�ort, Spectroscope
uses the Kolmogorov-Smirnov two-sample hypothesis test [91] instead of raw thresholds to
identify such categories.

�e Kolmogorov-Smirnov test takes as input two empirical distributions and determines
whether there is enough evidence to reject the null hypothesis that both represent the same
underlying distribution (i.e., they di�er only due to chance or natural variance).�e null hy-
pothesis is rejected only if the expected false-positive rate of declaring the two distributions
as di�erent—i.e., the p-value—is less than a pre-set value, almost always 5%. Spectroscope
runs the Kolmogorov-Smirnov hypothesis test on a category’s observed non-problem and
problem-period response-time distributions and marks it as containing response-time mu-
tations if the test rejects the null hypothesis. Since the test will yield inaccurate results if the
following condition is true: non−probl em period requests ⋅ probl em period requests

non−probl em period requests + probl em period requests ≤ 4, such categories
are summarily declared not to contain mutations.�e Kolmogorov-Smirnov test’s runtime

17

is O(N), where N is the number samples in the distributions being compared (i.e., the
number of non-problem and problem-period requests).

�e Kolmogorov-Smirnov test is non-parametric, which means it does not assume a
speci�c distribution type, but yields increased false negatives compared to tests that operate
on known distributions. I chose a non-parametric test because I observed per-category
response-time distributions are not governed by well-known distributions. For example,
inadequate instrumentation might result in requests with truly di�erent structures and
behaviours being grouped into the same category, yielding multi-modal response-time
distributions.

Once categories containing response-timemutations have been identi�ed, Spectroscope
runs the Kolmogorov-Smirnov test on the category’s edge latency distributions to localize
the problem to the speci�c areas responsible for the overall response time change.

2.6.3 Identifying structural mutations and their precursors

Since structural mutations are requests that have changed in structure, they will be assigned
to di�erent categories than their precursors during the problem period. Spectroscope uses
two steps to identify structural mutations and their precursors. First, Spectroscope identi�es
all categories that contain structural mutations and precursors. Second, it determines a
mapping showing which precursor categories are likely to have donated requests to which
structural-mutation category during the problem period.

Step 1: Identifying categories containing mutations and precursors

To identify categories containing structural mutations and their precursors, Spectroscope
assumes that the loads observed in both the non-problem and problem periods were similar
(but not necessarily identical). As such, structural-mutation categories can be identi�ed
as those that are assigned signi�cantlymore problem-period requests than non-problem-
period ones. Conversely, categories containing precursors can be identi�ed as those that
are assigned signi�cantly fewer problem-period requests than non-problem ones.

Since workload �uctuations and non-determinism in service order dictate that per-
category counts will always vary slightly between periods, Spectroscope uses a raw threshold
to identify categories that contain structural mutations and their precursors. Categories
that contain SM_P_THRESHOLDmore requests from the problem period than from the non-
problemperiod are labeled as containingmutations and those that containSM_P_THRESHOLD

18

fewer are labeled as containing precursors. Unlike for response-time mutations, Spec-
troscope does not use non-parametric hypothesis tests to identify categories containing
structural mutations because multiple runs of the non-problem and problem period would
be needed to obtain the required input distributions of category counts. Also, Google
engineers indicated that request structures change frequently at Google due to frequent
so�ware changes from independent teams, discouraging the use of approaches that require
long-lived models.

Choosing a good threshold for a workload may require some experimentation, as it is
sensitive to both the number of requests issued and the sampling rate. Fortunately, it is
easy to run Spectroscope multiple times, and it is not necessary to get the threshold exactly
right. Choosing a value that is too small will result in more false positives, but the ranking
scheme will assign them a low rank, and so will not mislead diagnosticians.

Mapping structural mutations to precursors

�ree heuristics are used to identify possible precursor categories for each structural-
mutation category. Algorithm 1 shows pseudocode for these heuristics. Figure 2.3 shows
how they are applied.

�e �rst heuristic involves pruning the total list of precursor categories to eliminate
ones with a di�erent root node than requests in the structural-mutation category under con-
sideration.�e root node describes the overall type of a request, for example read, write,
or readdir, and requests of di�erent high-level types should not be precursor/mutation
pairs.

�e second heuristic removes from consideration precursor categories that have de-
creased in request count less than the increase in request count of the structural-mutation
category. �is “1:unique N” assumption re�ects the common case that one problem will
likely generate many di�erent mutations due to the way various resources will be a�ected.
For example, a problem that causes extra requests to miss in one cache may also a�ect the
next level cache, causing more requests to miss in it too. Since this assumption will not
alway hold, it can be optionally disabled. However, I have found it to work su�ciently well
in practice.

�e third heuristic ranks the remaining precursor categories according to their likeli-
hood of having donated requests to the structural-mutation category under consideration. It
assumes that precursor categories that are structurally similar to the structural-mutation cat-
egory are more likely to have donated requests. As such, the precursor categories are ranked

19

Input : List of precursor categories and structural-mutation categories
Output :Ranked list of candidate precursor categories for each structural-mutation category
for i ← 1 to length(sm_list) do

candidates [i]← find_same_root_node_precursors(precursor_list, sm_list [i]);
if apply_1_n_heuristic then

candidates [i]← prune_unlikely_precursors(candidates [i], sm_list [i]);
end

// Re-arrange in order of inverse normalized string-edit distance
candidates [i]← rank_by_inverse_nsed(candidates [i], sm_list [i]);

end

Algorithm 1: Heuristics used to identify and rank precursor categories that could have do-

nated requests to a structural-mutation category. �e “1:unique N” heuristic assumes that one
precursor category will likely donate requests to many structural-mutation categories and elimi-
nates precursor categories that cannot satisfy this assumption.�e �nal output list is ranked by
inverse normalized string-edit distance, which is used to approximate the probability that a given
precursor category donated requests.�e cost of these heuristics is dominated by the string-edit
distance calculation, which costs O(N2), where N is the length of each string.

Read

Mutation Precursor categories
Read Read Read

Lookup

NP: 700
P: 1,000

NP: 300
P: 200

NP: 550
P: 150

NP: 650
P: 100

ReadDir

NP: 200
P: 100

NP: 1,100
P: 600

Figure 2.3: How the precursor categories of a structural-mutation category are identi�ed. One
structural-mutation category and �ve precursor categories are shown, each with their corresponding
request counts from the non-problem (NP) and problem (P) periods. For this case, the shaded
precursor categories will be identi�ed as those that could have donated requests to the structural-
mutation category. �e precursor categories that contain lookup and readdir requests cannot
have donated requests, because their constituent requests are not reads.�e top le�-most precursor
category contains reads, but the 1:N heuristic eliminates it. Due to space constraints, mocked-up
graphs are shown in which di�erent node shapes represent the types of components accessed.

20

by the inverse of their normalized Levenshtein string-edit distance from the structural-
mutation category.�e string-edit distance implementation used by the Ursa Minor/HDFS
version of Spectroscope has runtime O(N2

) in the number of graph nodes. As such, it
dominates runtime when input request-�ow graphs do not exhibit much concurrency.
Runtime could be reduced by using more advanced edit-distance algorithms, such as the
O(ND) algorithm described by Berghel and Roach [19], where N is the number of graph
nodes and D is the edit distance computed. Sub-polynomial approximation algorithms for
computing edit distance also exist [7].

2.6.4 Ranking

Spectroscope ranks categories containing mutations according to their contribution to
the overall performance change. �e contribution for a category containing response-
time mutations is calculated as the number of non-problem-period requests assigned to it
multiplied by the change in average response time between both periods.�e contribution
for a category containing structural mutations is calculated as the number of extra problem-
period requests assigned to it times the average change in response time between it and
its precursor category. If more than one candidate precursor category exists, an average
of their response times are used, weighted by structural similarity. Figure 2.4 shows the
equations used for ranking.

Spectroscope will split categories containing structural mutations and response-time

Response timei = (NPrequests i)(̇Presponse time i − NPresponse time i)

Structural mutationi = (Prequests i − NPrequests i)
C
∑
j=1

Presponse time i −
1

nsed(i , j)
∑C

j=1
1

nsed(i , j)
Presponse time j

Figure 2.4: Contribution to the overall performance change by a category containingmutations

of a given type.�e contribution for a category containing response-time mutations is calculated
as the number of non-problem-period requests it contains times the category’s change in average
response time between both periods.�e contribution for a category containing structural mutations
is calculated as the number of extra problem-period requests it contains times the change in average
response time between it and its precursor category. If multiple candidate precursor categories
exist, an average weighted by structural similarity is used. For the equations above, NP refers to the
non-problem period, P refers to the problem period, nsed refers to normalized string-edit distance,
and C refers to the number of candidate precursor categories.

21

mutations into separate virtual categories and rank each separately. I also explored ranking
such categories based on the combined contribution from both mutation types. Note
that category ranks are not independent of each other. For example, precursor categories
of a structural-mutation category may themselves contain response-time mutations, so
�xing the root cause of the response-time mutation will a�ect the rank assigned to the
structural-mutation category.

2.6.5 Visualization

When used to diagnose problems in Ursa Minor and Google services, Spectroscope showed
categories containing mutations using PDF �les created via Graphviz’s dot program [61],
which uses a ranked layout [51] to draw directed graphs. For structural-mutation categories,
Spectroscope showed both themutation’s graph structure and the precursor’s graph structure
side-by-side, allowing diagnosticians to identify changed substructures. For response-time
mutations, one graph was shown with the edges responsible for the overall response-time
change highlighted in red. For both types of mutations, aggregate statistics, such as average
response time, average edge latencies, contribution to performance change, and number
of requests assigned to the category from both periods were overlaid on top of the output
graphs. Figure 2.5 shows a mocked-up example of this visualization for two mutated
categories. Spectroscope also allows diagnosticians to view categories using a train-schedule

Cache
hit

Reply

Read

Cache
miss

Start

Reply

Read
20 μs

10 μs

5,000 μs

20 μs

100 μs

Precursor Mutation Precursor

End

100 μs

Reply

Write

Start Start

End End

10 μs

Rank: 1
Requests: 7,000
Type: Structural

Rank: 2
Requests: 5,000
Type: Response time

5,000 μs

Reply

Write

Start Start

End End

10 μs

10 μs

5,000 μs

Mutation

2,000 μs

10 μs

Figure 2.5: Example of how initial versions of Spectroscope visualized categories containing

mutations. Structural-mutation categories and their precursor categories were shown side-by-side
so that diagnosticians could manually identify where their structures started to di�er. Response-
time-mutation categories were shown with the interactions responsible for the overall timing change
highlighted in red.

22

visualization (also called a swimlane visualization) [146].
For Spectroscope to be useful to diagnosticians, it must present its results as clearly

as possible. My experiences using Spectroscope’s initial visualizations convinced me they
are not su�cient. Chapter 4 describes a user study I ran with real distributed systems
developers comparing three advanced approaches for presenting Spectroscope’s results.

2.6.6 Identifying low-level diªerences

Identifying the di�erences in low-level parameters between a mutation and precursor can
o�en help developers further localize the source of the problem. For example, the root
cause of a response-time mutation might be further localized by identifying that it is caused
by a component that is sending more data in its RPCs than during the non-problem period.

Spectroscope allows developers to pick a mutation category and candidate precursor
category for which to identify low-level di�erences. Given these categories, Spectroscope
induces a regression tree [20] showing the low-level parameters that best separate requests
in these categories. Each path from root to leaf represents an independent explanation of
why the mutation occurred. Since developers may already possess some intuition about
what di�erences are important, the process is meant to be interactive. If the developer does
not like the explanations, he can select a new set by removing the root parameter from
consideration and re-running the algorithm.

�e regression tree is induced as follows. First, a depth-�rst traversal is used to extract a
template describing the parts of request structures that are common between both categories,
up until the �rst observed di�erence. Portions that are not common are excluded, since
low-level parameters cannot be compared for them.

Second, a table in which rows represent requests and columns represent parameters
is created by iterating through each of the categories’ requests and extracting parameters
from the parts that fall within the template. Each row is labeled as precursor or mutation
depending on the category to which the corresponding request was assigned. Certain
parameter values, such as the thread ID and timestamp, must always be ignored, as
they are not expected to be similar across requests. Finally, the table is fed as input to
the C4.5 algorithm [108], which creates the regression tree and has worst-case runtime of
O(MN2

), where M is the number of problem and non-problem requests in the precursor
and mutations categories and N is the number of parameters extracted. To reduce runtime,
only parameters from a randomly sampled subset of requests are extracted from the database,

23

currently a minimum of 100 and a maximum of 10% of the total number of input requests.
Parameters only need to be extracted the �rst time the algorithm is run; subsequent iterations
can modify the table directly.

2.6.7 Limitations of current algorithms & heuristics

�is section describes some current limitations with the algorithms and heuristics imple-
mented in Spectroscope.

Load observed in both periods must be similar: �ough request-�ow comparison
expects that the workloads (i.e., percentage of request types) observed in both periods will
be similar, Spectroscope’s algorithms could be improved to better tolerate di�erences in
load. For example, Spectroscope could be extended to use queuing theory to predict when
a latency increase is the expected result of a load change.

Utility is limited when diagnosing problems due to contention: Such problems will
result in increased variance, limiting the Kolmogorov-Smirnov’s tests to identify distribution
changes and, hence, Spectroscope’s ability to identify response-time mutations. Chapter 3.2
further describes how Spectroscope is a�ected by variance.

Utility is limited for systems that generate very large graphs and those that generate

many unique graph structures: Spectroscope’s algorithms, especially theO(N2
) algorithm

it uses for calculating structural similarity between structural mutations and precursors,
will not scale to extremely large graphs. Also, systems that generate many unique request
structures may result in too many categories with too few requests in each to accurately
identify mutations. Chapter 3.5 describes how these two problems occur for HDFS [134]
and describes the two extensions to Spectroscope’s algorithms that address them.

Requests that exhibit a large amount of parallelism will result in slow runtimes:
Spectroscope must determine which request-�ow graphs (i.e., directed acyclic graphs)
are isomorphic during its categorization phase. Doing so is trivial for purely sequential
graphs, but can require exponential time for graphs that contain fan-outs due to parallelism.
Unless the cost of categorization can be reduced for them (e.g., by traversing children in
lexographic order), Spectroscope will be of limited use for workloads that generate such
graphs.

24

Chapter 3

Evaluation & case studies

�is chapter evaluates Spectroscope in three ways. First, using workloads run on Ursa
Minor [1] and Google’s Bigtable [28], it evaluates the validity of Spectroscope’s expectation
that requests with the same structure should perform similarly. Second, it presents case
studies of using Spectroscope to diagnose real and synthetic problems in Ursa Minor and
select Google services. Not only do these case studies illustrate real experiences of using
Spectroscope to diagnose real problems, they also illustrate how Spectroscope �ts into
diagnosticians’ work�ows when debugging problems. �ird, it explores Spectroscope’s
applicability to even more distributed systems by describing extensions necessary for it’s
algorithms to be useful in helping diagnose problems in HDFS [134]. Section 3.1 describes
Ursa Minor, the Google services used for the evaluation, and the workloads run on them.
Section 3.2 evaluates the validity of Spectroscope’s same structures/similar performance
expectation. Section 3.3 describes the Ursa Minor case studies, and Section 3.4 describes
the Google ones. Section 3.5 describes extensions needed for Spectroscope to be useful for
HDFS and Section 3.6 concludes.

3.1 Overview of Ursa Minor & Google services

�eUrsaMinor distributed storage service: UrsaMinor is an object-based storage service
and is based on the network attached secure disk architecture (NASD) [57]. An Ursa Minor
instance (called a “constellation”) consists of potentially many NFS servers (which serve as
proxies for unmodi�edNFS clients and, as such, are responsible for translating NFS requests
to native Ursa Minor client ones), storage nodes (SNs), metadata servers (MDSs), and end-
to-end trace servers. To access data, the NFS server (or a native UrsaMinor client) must �rst

25

send a request to the metadata server to obtain the appropriate permissions and the names
of the storage nodes that contain the data. Once the NFS server knows the names of the
storage nodes, it is free to access them directly. Ursa Minor was actively developed between
2004 and 2011 and contains about 230,000 lines of code. More than 20 graduate students
and sta� have contributed to it over its lifetime. More details about its implementation can
be found in Abd-El-Malek et al. [1]. It is normally run in a dedicated-machine environment,
with di�erent components run on di�erent machines.

Ursa Minor’s tracing services are provided by a version of Stardust [141] revised to be
useful for diagnosis. Stardust’s architecture is similar to other metadata propagation-based
tracing infrastructures [27, 29, 46, 47, 48, 110, 117, 125, 141]. �e revised version outputs
request-�ow graphs, which are the type of graphs Spectrocope works best with. Stardust’s
default head-based sampling percentage is 10% and Ursa Minor itself contains about 200
trace points, 124 manually inserted as well as automatically generated ones for each send
and receive RPC.

Figure 3.1 shows the 5-component Ursa Minor constellation used to evaluate Spectro-
scope. It consists of one NFS server, one metadata server, two storage nodes, and one
end-to-end tracing server. Each component runs on its own dedicated machine in a ho-
mogeneous cluster, which consists of machines with 3.0GhZ processors and 2GB of RAM.
�ough Ursa Minor could be run with an arbitrary number of components in either shared
machine or dedicated machine environments, the con�guration listed above is the one
used during its nightly regression tests, during which all of the case study problems were

Client request

Application

N
FS

 s
er

ve
r

SN

Metadata server

Trace server

Data request

NFS client

Metadata request

Ursa Minor constellation

Figure 3.1: 5-component Ursa Minor constellation used during nightly regression tests. �e
constellation consists of one NFS server, one metadata server, two storage nodes (one reserved for
data and one for metadata), and one end-to-end tracing server.

26

observed.�e workloads used for the regression tests are listed below.�e maximum size
of the request-�ow graphs generated for these workloads on the 5-component instance
of Ursa Minor was a few hundred nodes. Table 3.1 further describes these workloads and
request-�ow graph sizes.

Postmark-large: �is synthetic workload evaluates the small �le performance of
storage systems [77]. It utilizes 448 subdirectories, 50,000 transactions, and 200,000 �les
and runs for 80 minutes.

Linux-build: and ursa minor-build: �ese workloads consist of two phases: a
copy phase, in which the source tree is tarred and copied to Ursa Minor and then untarred,
and a build phase, in which the source �les are compiled. Linux-build (of 2.6.32 kernel)
runs for 26 minutes. Ursa Minor-build runs for 10 minutes.

SPEC SFS 97 V3.0 (SFS97): �is synthetic workload is the industry standard for
measuring NFS server scalability and performance [126]. It applies a periodically increasing
load of NFS operations to a storage system’s NFS server and measures the average response
time. It was con�gured to generate load between 50 and 350 operations/second in increments
of 50 ops/second and runs for 90 minutes.

IoZone:�is workload [100] sequentially writes, re-writes, reads, and re-reads a 5GB
�le in 20 minutes.

Google services: At Google, Spectroscope was applied to an internal-facing service

Graph size (# of nodes)
Individual Per-category

Workload Sampled Categories Avg. SD Avg. SD

Postmark 131,113 716 66 65 190 81
Linux-build 145,167 315 12 40 160 500
Ursa Minor-build 16,073 63 9 20 96 100
SFS 97 210,669 1,602 30 51 206 200
IoZone 134,509 6 6 6 61 82

Table 3.1: Requests sampled and average request-�ow graph sizes for Ursa Minor workloads.

10% of observed requests were sampled when obtaining traces for these workloads, yielding a few
hundred thousand samples for each.�e category counts and graph sizes shown represent results for
one run of the corresponding workload. Multiple identical runs of the same workload will all vary
slightly in category counts and graph sizes; non-problem and problem runs can di�er signi�cantly
in them.�e di�erence between the average request-�ow graph size and the average graph size of
each category occurs because most graphs are small, but a few are very large.

27

(used by Google employees to maintain Google’s infrastructure), an external-facing service
(representing a major Google product), and Bigtable [28]. �e names of the internal-
and external-facing services are anonymized. All the services run in a shared-machine
environment. �e workloads applied to the internal-facing service and Bigtable were
generated by load tests that applied a constant rate of incoming requests.�e workloads
applied to the external-facing service and Bigtable were the result of real user requests.

Unlike Stardust [141], Dapper’s aggregation pipeline does not generate request-�ow
graphs, but only call graphs that are aggressively collapsed so as to merge identical sibling
and descendant nodes whenever possible. Also, many Google applications only contain
enough instrumentation to show inter-component activity (e.g., RPCs between machines).
As such, the maximum graph size observed for Google workloads was very small and never
more than a hundred nodes. Since the workloads seen within Google are much larger than
Ursa Minor’s workloads, Dapper uses a head-based sampling percentage of less than 0.1%.

3.2 Do requests w/the same structurehave similarcosts?

To group requests that should perform similarly into the same category, Spectroscope
relies on the common expectation that requests with the same structure (i.e., those that
visit the same components and functions and exhibit the same amount of concurrency)
should exhibit similar performance costs (e.g., response times). Categories that exhibit high
intra-period variance in response times and edge latencies contain requests that do not
satisfy this expectation. Such high-variance categories will increase the number of false
negatives Spectroscope outputs, as they will decay the Kolmogorov-Smirnov’s test to identify
response-time mutations and edge latency changes. Spectroscope’s ability to e�ectively
rank mutations will also be a�ected. Chapter 5 further explores how high variance (i.e.,
unpredictability) a�ects Spectroscope and automation tools in general.

�ough categories may exhibit high intra-period variance intentionally (for example,
due to a scheduling algorithm thatminimizesmean response time at the expense of variance),
many do so unintentionally, as a result of unexpected resource contention or poorly written
code. For example, workloads run on early versions of Ursa Minor always yielded several
high-variance categories because one of its hash tables always binned items into the same
bucket, resulting in unneeded contention and slowly increasing access times.

Figures 3.2 and 3.3 quantify how well categories meet the same structure/similar costs
expectation.�ey show CDFs of the squared coe�cient of variation (C2) in response time

28

for large categories output by Spectroscope when run on graphs generated by three Ursa
Minor workloads and three Bigtable [28] workloads. Each Bigtable workload represents
requests sent to an instance of Bigtable over a 1-day period. Each instance runs in its
own datacenter and is shared among all applications running in that datacenter. C2 is a
normalized measure of variance and is de�ned as (σµ)2. Distributions with C2 less than
one exhibit low variance, whereas those with C2 greater than one exhibit high variance.
Large categories contain more than 10 requests; Tables 3.2 and 3.3 show that they account
for only 15–45% of all categories, but contain more than 98% of all requests. Categories
containing fewer requests are not included, since their smaller sample size makes the C2

statistic unreliable for them.
For the workloads run on Ursa Minor, at least 88% of the large categories exhibit low

variance. C2 for all the categories generated by postmark-large is small. More than 99%
of its categories exhibit low variance and the maximum C2 value observed is 6.88. �e
results for linux-build and SFS97 are slightly more heavy-tailed. For linux-build, 96%
of its categories exhibit low variance, and the maximum C2 value is 394. For SFS97, 88%
exhibit C2 less than 1, and the maximum C2 value is 50.3. Analysis of categories in the large
tail of these workloads show that part of the observed variance is a result of contention for
locks in the metadata server.

Unlike Ursa Minor, Bigtable is run within a shared-machine environment, which of-
ten results in increased performance variance compared to dedicated-machine environ-
ments. Also, the call graphs created for Bigtable by Dapper’s aggregation pipeline show
only inter-component activities (e.g., RPCs) and are heavily collapsed. As such, they can-
not di�erentiate many unique request structures and arti�cially increase C2 for categories
created using them. However, even with these issues, 47–69% of categories created for the
workloads run on Bigtable exhibit low variance. Increased performance isolation [63, 148],
using request-�ow graphs instead of call graphs, adding more instrumentation to better
disambiguate di�erent request structures, and using more sophisticated graph collapsing
techniques (e.g., ones that aim to preserve one-to-one mappings between unique request
structures and collapsed graphs or ones that collapse graph substructures only when their
performance is similar) would all serve to considerably reduce C2.

29

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
2
 for large categories induced by each benchmark

C
D

F

Postmark−large

Linux−build

SFS97

Figure 3.2: CDF of C2 for large categories in-

duced by three workloads run on Ursa Minor.

At least 88% of the categories induced by each
benchmark exhibit low variance (C2 < 1). �e
results for linux-build and SFS are more heavy-
tailed than postmark-large, partly due to extra
lock contention in the metadata server.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
2
 for large categories induced by Bigtable

C
D

F

Datacenter A

Datacenter B

Datacenter C

Figure 3.3: CDF of C2 for large categories in-

duced byBigtable instances in threeGoogle dat-

acenters. Bigtable is run in a shared-machine en-
vironment, which o�en results in increased perfor-
mance variance. Also, the call graphs generated
for Bigtable by Dapper’s aggregation pipeline are
relatively sparse and heavily collapsed. As such,
many unique request structures cannot be disam-
biguated and have been merged together in the
observed categories. Despite these issues, 47–69%
of large categories exhibit low variance.

Workload

P L S

Categories 716 351 1,602
Large categories (%) 29.9 25.3 14.7

Requests sampled 131,113 145,167 210,669
In large categories (%) 99.2 99.7 98.9

Table 3.2: Distribution of requests in the cat-

egories induced by three Ursa Minor work-

loads. Here, P refers to Postmark-large, L to
Linux-build, and S to SFS97. Large categories,
which contain more than 10 requests, account for
between 15–29% of all categories generated, but
contain over 99% of all requests.

Google datacenter

A B C

Categories 29 24 17
Large categories (%) 32.6 45.2 26.9

Requests sampled 7,088 5,556 2,079
In large categories (%) 97.7 98.8 93.1

Table 3.3: Distribution of requests in the cat-

egories induced by three instances of Bigtable

over a 1-day period. Fewer categories and re-
quests are observed than for Ursa Minor, because
Dapper samples less than 0.1% of all requests.�e
distribution of requests within categories is similar
to Ursa Minor.

30

3.3 Ursa Minor case studies

I used Spectroscope to diagnose �ve real performance problems and one synthetic problem
in UrsaMinor. All of the real problems were observed during nightly regression tests, which
perhaps represent the best use case for Spectroscope due to the well-de�ned problem and
non-problem periods they create. Four of the real problems were previously undiagnosed,
so the root cause was not known a priori.�e remaining real problem had been diagnosed
previously using traditional diagnosismethods andwas re-injected intoUrsaMinor to gauge
Spectroscope’s usefulness for it.�e sole synthetic problem was injected into Ursa Minor
to explore a wider range of problems diagnosable using Spectroscope.�ree quantitative
metrics were used to evaluate the quality of the ranked list of categories containingmutations
that Spectroscope outputs:

�e percentage of the 10 highest-ranked categories that are relevant: �is is the
most important metric, since diagnosticians will naturally investigate the highest-ranked
categories �rst. Relevant categories are ones that were useful in helping diagnose the
problem.

�e percentage of false-positive categories: �is metric evaluates the quality of the
entire ranked list by identifying the percentage of all results that are not relevant.

Request coverage:�is metric provides an alternate means for evaluating ranked list
quality. It shows the percentage of all requests a�ected by the problem contained in the
ranked list’s categories.

Table 3.4 summarizes Spectroscope’s performance using thesemetrics.1 Unless otherwise
noted, I used a default value of 50 as the threshold at which a category was deemed to contain
structural mutations or associated precursors (SM_P_THRESHOLD). When necessary, I
lowered it to further explore the space of possible structural mutations. For all of the case
studies, I used the default sampling percentage of 10%.

3.3.1 MDS con®guration change

A�er a particular large code check-in, performance of postmark-large decayed signif-
icantly, from 46tps to 28tps. To diagnose this problem, I used Spectroscope to compare
request �ows between two runs of postmark-large, one from before the check-in and
one from a�er. �e results showed many categories that contained structural mutations.

1�e results shown in Table 3.4 have been slightly revised from those presented in my NSDI’11 paper due
to a minor bug I found in Spectroscope a�er the paper’s publication.

31

Quality of results

Name Manifestation Root # of Top 10 FPs (%) Cov. (%)

cause results rel. (%)

3.3.1 MDS con�g. Structural Con�g. 96 100 3 77
3.3.2 RMWs Structural Env. 1 100 0 97
3.3.3 MDS Prefetch. 50 Structural Internal 7 29 71 93

MDS Prefetch. 10 14 70 50 96
3.3.4 Create behaviour Structural Design 11 40 64 N/A
3.3.5 100µs delay Response time Internal 17 0 100 0

500µs delay 166 100 6 92
1ms delay 178 100 7 94

3.3.6 Periodic spikes No change Env. N/A N/A N/A N/A

Table 3.4: Overview of the Ursa Minor case studies.�is table shows information about each of
six problems diagnosed using Spectroscope. For most of the case studies, quantitative metrics that
evaluate the quality of Spectroscope’s results are included.�e problems described in Sections 3.3.1,
3.3.2, 3.3.3, 3.3.4, and 3.3.6 were real problems observed in Ursa Minor.�e problem described in
Section 3.3.5 was synthetic and injected into Ursa Minor to more thoroughly explore the range of
problems for which Spectroscope is useful.

Comparing them to their most-likely precursor categories (as identi�ed by Spectroscope)
revealed that the storage node utilized by the metadata server had changed. Before the
check-in, the metadata server wrote metadata only to its dedicated storage node. A�er the
check-in, it issued most writes to the data storage node instead. I also used Spectroscope to
identify the low-level parameter di�erences between a few structural-mutation categories
and their corresponding precursor categories. �e regression tree found di�erences in
elements of the data distribution scheme (e.g., type of fault tolerance used).

I presented this information to the developer of the metadata server, who told me
the root cause was a change in an infrequently-modi�ed con�guration �le. Along with
the check-in, he had mistakenly removed a few lines that pre-allocated the �le used to
store metadata and specify the data distribution. Without this, Ursa Minor used its default
distribution scheme and sent all writes to the data storage node.�e developer was surprised
to learn that the default distribution scheme di�ered from the one he had chosen in the
con�guration �le.

Summary: For this real problem, comparing request �ows helped diagnose a perfor-
mance change caused by modi�cations to the system con�guration. Many distributed
systems contain large con�guration �les with esoteric parameters (e.g., hadoop-site.xml)

32

that, if modi�ed, can result in perplexing performance changes. Spectroscope can pro-
vide guidance in such cases by showing how modi�ed con�guration options a�ect system
behaviour.

Quantitative analysis: For the evaluation in Table 3.4, results in the ranked list were
deemed relevant if they included metadata accesses to the data storage node and their
most-likely precursor category included metadata accesses to the metadata storage node.

3.3.2 Read-modify-writes

�is problem was observed and diagnosed before development on Spectroscope began; I
re-injected it in Ursa Minor to show how Spectroscope could have helped diagnosticians
easily debug it.

A few years ago, performance of IoZone declined from22MB/s to 9MB/s a�er upgrading
the Linux kernel from 2.4.22 to 2.6.16.11. I originally discovered the root cause by manually
examining Stardust traces. I found that the new kernel’s NFS client was no longer honouring
the NFS server’s preferred read and write I/O sizes, which were set to 16KB.�e smaller
I/O sizes used by the new kernel forced the NFS server to performmany read-modify-writes
(RMWs), which severely a�ected performance. To remedy this issue, support for smaller
I/O sizes was added to the NFS server and counters were added to track the frequency of
RMWs.

To show how comparing request �ows and identifying low-level parameter di�erences
could have helped developers quickly identify the root cause, I used Spectroscope to compare
request �ows between a run of IoZone in which the Linux client’s I/O size was set to 16KB
and another during which the Linux client’s I/O size was set to 4KB. All of the categories
output by Spectroscope in its ranked list were structural-mutation categories that contained
RMWs.

I next used Spectroscope to identify the low-level parameter di�erences between the
highest-ranked result and its most-likely precursor category.�e resulting regression tree
showed that the count parameter perfectly separated precursors andmutations. Speci�cally,
requests with count parameter values less than or equal to 4KBwere classi�ed as precursors.

Summary: Diagnosis of this problem demonstrates how comparing request �ows can
help diagnosticians identify performance problems that arise due to a workload change. It
also showcases the utility of highlighting relevant low-level parameter di�erences.

33

Quantitative analysis: For Table 3.4, results in the ranked list were deemed relevant if
they contained RMWs and their most-likely precursor category did not.

3.3.3 MDS prefetching

A few years ago, several Ursa Minor developers and I tried to add server-driven metadata
prefetching [67] to Ursa Minor. �is feature was supposed to improve performance by
prefetching metadata to clients on every metadata server access, in hopes of minimizing
the total number of accesses necessary. However, when implemented, this feature actually
reduced overall performance. �e developers spent a few weeks (o� and on) trying to
understand the reason for this unexpected result but eventually moved on to other projects
without an answer.

To diagnose this problem, I compared two runs of linux-build, one with prefetching
disabled and another with it enabled. I chose linux-build, because it is more likely to see
performance improvements due to prefetching than the other workloads.

When I ran Spectroscope with SM_P_THRESHOLD set to 50, several categories were
identi�ed as containing mutations. �e two highest-ranked results immediately piqued
my interest, as they containedwrites that exhibited an abnormally large number of lock
acquire/release accesses within the metadata server. All of the remaining results contained
response-time mutations from regressions in the metadata prefetching code path, which
had not been properly maintained. To further explore the space of structural mutations, I
decreased SM_P_THRESHOLD to 10 and re-ran Spectroscope.�is time, many more results
were identi�ed; most of the highest-ranked ones now exhibited an abnormally high number
of lock accesses and di�ered only in the exact number.

Analysis revealed that the additional lock/unlock calls re�ected extra work performed
by requests that accessed the metadata server to prefetch metadata to clients. To verify
this as the root cause, I added instrumentation around the prefetching function to con�rm
that it was causing the database accesses. Altogether, this information provided me with
the intuition necessary to determine why server-driven metadata prefetching decreased
performance: the extra time spent in the DB calls by metadata server accesses outweighed
the time savings generated by the increase in client cache hits.

Summary:�is problem demonstrates how comparing request �ows can help develop-
ers account for unexpected performance loss when adding new features. In this case, the
problem was due to unanticipated contention several layers of abstraction below the feature

34

addition. Note that diagnosis with Spectroscope is interactive—for example, in this case, I
had to iteratively modify SM_P_THRESHOLD to gain additional insight.

Quantitative analysis: For Table 3.4, results in the ranked list were deemed relevant if
they contained at least 30 LOCK_ACQUIRE→ LOCK_RELEASE edges. Results for the output
when SM_P_THRESHOLD was set to 10 and 50 are reported. In both cases, response-time
mutations caused by decay of the prefetching code path are conservatively considered false
positives, since these regressions were not the focus of this diagnosis e�ort.

3.3.4 Create behaviour

Performance graphs of postmark-large showed that the response times of creates were
increasing signi�cantly during its execution. To diagnose this performance degradation, I
used Spectroscope to compare request �ows between the �rst 1,000 creates issued and the
last 1,000. Due to the small number of requests compared, I set SM_P_THRESHOLD to 10.

Spectroscope’s results showed categories that contained both structural and response-
time mutations, with the highest-ranked one containing the former. �e response-time
mutations were the expected result of data structures in the NFS server and metadata server
whose performance decreased linearly with load. Analysis of the structural mutations,
however, revealed two architectural issues, which accounted for the degradation.

First, to serve a create, the metadata server executed a tight inter-component loop
with a storage node. Each iteration of the loop required a few milliseconds, greatly a�ecting
response times. Second, categories containing structural mutations executed this loop
more times than their precursor categories.�is inter-component loop can be seen easily
if the categories are zoomed out to show only component traversals and plotted in a train
schedule, as in Figure 3.4.

Conversations with the metadata server’s developer led me to the root cause: recursive
B-Tree page splits needed to insert the new item’s metadata. To ameliorate this problem, the
developer increased the page size and changed the scheme used to pick the created item’s
key.

Summary:�is problem demonstrates how request-�ow comparison can be used to
diagnose performance degradations, in this case due to a long-lived design problem.�ough
simple counters could have shown that creates were very expensive, they would not have
shown that the root cause was excessive metadata server/storage node interaction.

Quantitative analysis: For Table 3.4, results in the ranked list were deemed relevant if

35

A

B

C

D

Time Time0ms 4ms 0ms 13ms

: Metadata insertion

Figure 3.4: Visualization of create behaviour. Two train-schedule visualizations are shown, the
�rst one a fast early create during postmark-large and the other a slower create issued later in the
benchmark. Messages are exchanged between the NFS server (A), metadata server (B), metadata
storage node (C), and data storage node (D).�e �rst phase of the create procedure is metadata
insertion, which is shown to be responsible for the majority of the delay.

they contained structural mutations and showed more interactions between the NFS server
and metadata server than their most-likely precursor category. Response-time mutations
that showed expected performance di�erences due to load are considered false positives.
Coverage is not reported as it is not clear how to de�ne problematic creates.

3.3.5 Slowdown due to code changes

I injected this synthetic problem into Ursa Minor to show how request-�ow comparison
can be used to diagnose slowdowns due to feature additions or regressions and to assess
Spectroscope’s sensitivity to changes in response time.

For this case study, I used Spectroscope to compare request �ows between two runs of
SFS97. Problem period runs included a spin loop injected into the storage nodes’write
code path. Any write request that accessed a storage node incurred this extra delay, which
manifested in edges of the form ⋆→ STORAGE_NODE_RPC_REPLY. Normally, these edges
exhibit a latency of 100µs.

Table 3.4 shows results from injecting 100µs, 500µs, and 1ms spin loops. Results were
deemed relevant if they contained response-time mutations and correctly identi�ed the
a�ected edges as those responsible. For the latter two cases, Spectroscope was able to
identify the resulting response-time mutations and localize them to the a�ected edges. Of
the categories identi�ed, only 6–7% are false positives and 100% of the 10 highest-ranked
ones are relevant.�e coverage is 92% and 94%.

Variance in response times and the edge latencies in which the delay manifests pre-
vent Spectroscope from properly identifying the a�ected categories for the 100µs case. It
identi�es 11 categories that contain requests that traverse the a�ected edges multiple times

36

as containing response-time mutations, but is unable to assign those edges as the ones
responsible for the slowdown.

3.3.6 Periodic spikes

Ursa minor-build, which is run as part of the nightly regression test suite, periodically
shows a spike in the time required for its copy phase to complete. For example, from one
particular night to another, copy time increased from 111 seconds to 150 seconds, an increase
of 35%. Ursa Minor’s developers initially suspected that the problem was due to an external
process that periodically ran on the same machines as Ursa Minor’s components. To verify
this assumption, I compared request �ows between a run in which the spike was observed
and another in which it was not.

Surprisingly, Spectroscope’s output contained only one result: getattrs, which were
issued more frequently during the problem period, but which had not increased in average
response time. I ruled this result out as the cause of the problem, as NFS’s cache coherence
policy suggests that an increase in the frequency of getattrs is the result of a performance
change, not its cause. I probed the issue further by reducing SM_P_THRESHOLD to see if
the problem was due to requests that had changed only a small amount in frequency, but
greatly in response time, but did not �nd any such cases. Finally, to rule out the improbable
case that the problem was caused by an increase in variance of response times that did not
a�ect the mean, I compared distributions of intra-category variance between two periods
using the Kolmogorov-Smirnov test; the resulting p-value was 0.72, so the null hypothesis
was not rejected.�ese observations convinced me that the problem was not due to Ursa
Minor or processes running on its machines.

I next suspected the client machine as the cause of the problem and veri�ed this to be the
case by plotting a timeline of request arrivals and response times as seen by the NFS server
(see Figure 3.5).�e visualization shows that during the problem period, response times
stay constant but the arrival rate of requests decreases.�e other Ursa Minor developers
and I now suspect the problem to be backup activity initiated from the facilities department
(i.e., outside of our system).

Summary:�is problem demonstrates how comparing request �ows can help diagnose
problems that are not caused by internal changes. Informing developers that nothing within
the distributed system has changed frees them to focus their e�orts on external factors.

37

Time0s 5s

...

...

A:

B:

Figure 3.5: Timeline of inter-arrival times of requests at the NFS Server. A 5s sample of requests,
where each rectangle represents the process time of a request, reveals long periods of inactivity due
to lack of requests from the client during spiked copy times (B) compared to periods of normal
activity (A).

3.4 Google case studies

I used the Google version of Spectroscope to diagnose two real problems observed in two
services. Unlike for the Ursa Minor case studies, my experiences diagnosing problems at
Google are purely qualitative.

3.4.1 Inter-cluster performance

A team responsible for an internal-facing service at Google observed that load tests run
on their so�ware in two di�erent datacenters exhibited signi�cantly di�erent performance.
However, they believed that performance should be similar because the machines con�gu-
rations they were using in both datacenters were almost the same.�ey wanted to know
if the performance di�erence was an artifact of their so�ware or was due to some other
problem.

I used Spectroscope to compare request �ows between the two load test instances.�e
results showed many categories that contained response-time mutations; many were caused
by latency changes not only within the service itself, but also within RPCs and within several
dependencies, such as the shared Bigtable instance running in the lower-performing cluster.
�is led me to hypothesize that the performance di�erence was due to a pervasive problem
in the slower load test’s datacenter and that the team’s so�ware was not at fault. Google
engineers con�rmed this hypothesis by determining that the Bigtable instance in the slower
load test’s datacenter was not working properly.�is experience is a further example of how
comparing request �ows can help developers rule out the distributed system (in this case, a
speci�c Google service) as the cause of the problem.

38

3.4.2 Performance change in a large service

To help identify performance problems, Google keeps per-day records of average request
latencies for major services. I used Spectroscope to compare two day-long periods for one
such external-facing service, which exhibited a signi�cant performance deviation, but only a
small di�erence in load, between the periods compared.�oughmany interestingmutations
were identi�ed, I was unable to identify the root cause due to my limited knowledge of the
service, highlighting the importance of domain knowledge in interpreting Spectroscope’s
results.

3.5 Extending Spectroscope to HDFS

To understand how the algorithms and heuristics used by Spectroscope would have to
change for di�erent distributed systems, I also tried applying Spectroscope to HDFS [134].
�e traces obtained forHDFS fromX-Trace [47] aremuchmore detailed than those obtained
for GFS [55] from Dapper’s aggregation pipeline. As such, they capture more of the unique
semantics of HDFS/GFS-like �lesystems. HDFS’s write semantics, in particular, cause two
problems for Spectroscope’s algorithms: very large request-�ow graphs and an extremely
large number of categories. Section 3.5.1 describes HDFS, its write semantics, and the
workloads used for this exploration. Section 3.5.2 describes the large graph problem and
how their size can be reduced by collapsing them. Section 3.5.3 describes the category
explosion problem and presents ways Spectroscope could be extended to handle it.

3.5.1 HDFS & workloads applied

HDFS is the �lesystem used by the open source implementation of Map Reduce [40],
Hadoop [8]. It is modeled a�er the Google File System (GFS) [55], which is itself based on
theNASD [57] architecture. As such, it consists of ametadata server (called a namenode) and
many storage nodes (called datanodes). HDFS is usually run in both shared and dedicated-
machine environments. Unlike Ursa Minor, whose block size—i.e., the granularity at
which data is read and written—is relatively small, HDFS’s block size is 64MB. Larger sizes
are possible via a con�guration parameter. When writing a block (i.e., when servicing a
new_block or append_block request), HDFS ensures reliability by using a pipeline to
replicate each 64KB portion to a con�gurable number of datanodes. �e �rst datanode
in the pipeline is the one that receives the write operation and the remaining ones are

39

randomly chosen.
To obtain request-�ow graphs, I instrumented HDFS using a modi�ed version of X-

Trace [150]. I added about 60 trace points, including send/receive tracepoints for all commu-
nication between clients, namenodes, and datanodes.�e test HDFS cluster I used for this
exploration uses a homogeneous set of 10machines running in a dedicated environment. All
of them are con�gured with dual Intel 3.0GhZ processors and 2GB of RAM. Each machine
runs a datanode, and one of them runs both the namenode and a backup namenode.�e
replication factor was set to three and the block size was 64MB. Table 3.5 describes the
workloads used. A head-based sampling percentage of 10% was used.

3.5.2 Handling very large request-°ow graphs

As a result of HDFS’s large block size and the pipeline used to replicate data in 64KB portions,
request-�ow graphs of HDFS write operations are o�en extremely large. Table 3.6 shows
request-�ow graphs of write operations o�en contain 15,000 or more nodes. Such gargan-
tuan graphs are almost impossible for diagnosticians to understand. Also, Spectroscope’s
heuristics for mapping structural mutations to precursors, which currently costs O(N2

)

time in number of nodes, cannot scale enough to handle them.
Figure 3.6a shows a request-�ow graph for a small 320KB append_block request. Each

staggered column in the middle of the graph represents the �ow of a single 64KB portion
through the replication pipeline. Edges between columns represent dependencies between
when a portion can be sent and received by datanodes (e.g., the second portion cannot be
sent to the next datanode in the pipeline until it has acknowledged receipt for the �rst).
Note that the replication pipeline’s structure depends only on the amount of data written.
Its structure for any write operation of the same size will be identical. Also, its structure for
write operations of di�erent sizes will di�er only in the number of fan-outs present.

�e above insight implies that HDFS write graphs can be e�ectively collapsed before

Benchmark Description

Rand sort Sorts 10GB/datanode of random data generated by RandomTextWriter
Word count Counts 10GB/datanode of random data generated by RandomTextWriter
Grep Searches for a non-existent word in 10GB/datanode of random data

Table 3.5: �e three workloads used for my HDFS explorations.�ese workloads are distributed
with Apache Hadoop [8].

40

Benchmark Graph Write Collapsed Collapsed write

size graph size graph size graph size

Avg. # of nodes/standard deviation

Rand sort 1390/4400 15,200/1,920 10.2/9.77 41.0/0.00
Word count 128/1370 15,500/0.00 7.52/3.12 41.0/0.00
Grep 7.42/2.42 56.0/21.2 7.39/1.75 41.0/0.00

Table 3.6: Request-�ow graph sizes for the HDFS workloads. �e le�most data columns show
that most request-�ow graphs are small, except for write graphs, which o�en contain more than
15,000 nodes. Because grep does not write much data, its write graphs are smaller than the other
two workloads.�e rightmost column show that collapsing write request-�ow graphs’ �ows through
the replication pipeline into logical �ows reduces their sizes from 15,000 nodes to only 41 nodes.

SS70_DFSCLIENT_NEW_BLOCK

SS70_DFSCLIENT_ADDBLOCK_START

R: 0.000 us

SS70_RPC_CALL

R: 1000.166 us

SS70_NAMENODE_ADDBLOCK_START

R: 999.928 us

SS70_NAMENODE_ADDBLOCK_END

R: 1999.855 us

SS70_RPC_REPLY

R: 1000.166 us

SS70_DFSCLIENT_ADDBLOCK_END

R: 4999.876 us

SS70_DFSCLIENT_OP_WRITE_BLOCK_REQUEST

R: 49000.025 us

SS70_DATANODE_OP_WRITE_BLOCK_RECEIVE

R: 6999.969 us

SS70_DATANODE_NEWBLOCKRECEIVER_START

R: 0.000 us

SS70_DATANODE_NEWBLOCKRECEIVER_END

R: 2000.093 us

SS70_DATANODE_OP_WRITE_BLOCK_REQUEST

R: 999.928 us

SS74_DATANODE_OP_WRITE_BLOCK_RECEIVE

R: 1999.974 us

SS74_DATANODE_NEWBLOCKRECEIVER_START

R: 999.928 us

SS74_DATANODE_NEWBLOCKRECEIVER_END

R: 2000.093 us

SS74_DATANODE_OP_WRITE_BLOCK_REPLY

R: 0.000 us

SS70_DATANODE_OP_WRITE_BLOCK_SUCCESS

R: 1999.974 us

SS70_DATANODE_OP_WRITE_BLOCK_REPLY

R: 1000.166 us

SS70_DFSCLIENT_OP_WRITE_BLOCK_SUCCESS

R: 1999.855 us

SS70_DFSCLIENT_SEND_PACKET_0

R: 3000.021 us

SS70_DFSCLIENT_SEND_PACKET_1

R: 16000.032 us

SS70_DATANODE_RECEIVE_PACKET_0

R: 16000.032 us

SS70_DFSCLIENT_SEND_PACKET_2

R: 999.928 us

SS70_DATANODE_RECEIVE_PACKET_1

R: 3999.949 us

SS70_DFSCLIENT_SEND_PACKET_3

R: 1000.166 us

SS70_DATANODE_RECEIVE_PACKET_2

R: 5000.114 us

SS70_DFSCLIENT_SEND_PACKET_4

R: 33999.920 us

SS70_DATANODE_RECEIVE_PACKET_3

R: 5999.804 us

SS70_DATANODE_RECEIVE_PACKET_4

R: 999.928 us

SS70_DATANODE_ACCEPT_PACKET_4

R: 1000.166 us

SS70_DATANODE_SEND_PACKET_4

R: 0.000 us

SS74_DATANODE_RECEIVE_PACKET_4

R: 999.928 us

SS74_DATANODE_ACCEPT_PACKET_4

R: 1000.166 us

SS74_DATANODE_SEND_ACK_4

R: 1999.855 us

SS70_DATANODE_RECEIVE_ACK_4

R: 1500.010 us

SS70_DATANODE_ACCEPT_ACK_4

R: 999.928 us

SS70_DATANODE_SEND_ACK_4

R: 7000.208 us

SS70_DFSCLIENT_RECEIVE_ACK_4

R: 7999.897 us

SS70_DFSCLIENT_ACCEPT_ACK_4

R: 999.928 us

SS70_DFSCLIENT_END_BLOCK

R: 0.000 us

SS70_DATANODE_ACCEPT_PACKET_3

R: 0.000 us

R: 30000.210 us

SS70_DATANODE_SEND_PACKET_3

R: 1000.166 us

R: 29000.044 us

SS74_DATANODE_RECEIVE_PACKET_3

R: 2500.057 us

SS74_DATANODE_ACCEPT_PACKET_3

R: 999.928 us

R: 26000.023 us

SS74_DATANODE_SEND_ACK_3

R: 4999.876 us

R: 23000.002 us

SS70_DATANODE_RECEIVE_ACK_3

R: 4999.995 us

SS70_DATANODE_ACCEPT_ACK_3

R: 1000.166 us

R: 15999.794 us

SS70_DATANODE_SEND_ACK_3

R: 0.000 us

R: 23000.002 us

SS70_DFSCLIENT_RECEIVE_ACK_3

R: 5999.804 us

SS70_DFSCLIENT_ACCEPT_ACK_3

R: 1000.166 us

R: 24999.857 us

SS70_DATANODE_ACCEPT_PACKET_2

R: 0.000 us

R: 1999.855 us

SS70_DATANODE_SEND_PACKET_2

R: 999.928 us

R: 2000.093 us

SS74_DATANODE_RECEIVE_PACKET_2

R: 5500.078 us

SS74_DATANODE_ACCEPT_PACKET_2

R: 999.928 us

R: 2000.093 us

SS74_DATANODE_SEND_ACK_2

R: 6000.042 us

R: 999.928 us

SS70_DATANODE_RECEIVE_ACK_2

R: 4500.031 us

SS70_DATANODE_ACCEPT_ACK_2

R: 0.000 us

R: 3000.021 us

SS70_DATANODE_SEND_ACK_2

R: 999.928 us

R: 2000.093 us

SS70_DFSCLIENT_RECEIVE_ACK_2

R: 6999.969 us

SS70_DFSCLIENT_ACCEPT_ACK_2

R: 999.928 us

R: 1000.166 us

SS70_DATANODE_ACCEPT_PACKET_1

R: 0.000 us

R: 2000.093 us

SS70_DATANODE_SEND_PACKET_1

R: 1000.166 us

R: 1999.855 us

SS74_DATANODE_RECEIVE_PACKET_1

R: 4499.912 us

SS74_DATANODE_ACCEPT_PACKET_1

R: 0.000 us

R: 3000.021 us

SS74_DATANODE_SEND_ACK_1

R: 8000.135 us

R: 999.928 us

SS70_DATANODE_RECEIVE_ACK_1

R: 3499.985 us

SS70_DATANODE_ACCEPT_ACK_1

R: 999.928 us

R: 2000.093 us

SS70_DATANODE_SEND_ACK_1

R: 999.928 us

R: 2000.093 us

SS70_DFSCLIENT_RECEIVE_ACK_1

R: 8000.135 us

SS70_DFSCLIENT_ACCEPT_ACK_1

R: 0.000 us

R: 1999.855 us

SS70_DATANODE_ACCEPT_PACKET_0

R: 999.928 us

R: 3000.021 us

SS70_DATANODE_SEND_PACKET_0

R: 1000.166 us

R: 3000.021 us

SS74_DATANODE_RECEIVE_PACKET_0

R: 3000.021 us

SS74_DATANODE_ACCEPT_PACKET_0

R: 999.928 us

R: 3999.949 us

SS74_DATANODE_SEND_ACK_0

R: 9999.990 us

R: 2000.093 us

SS70_DATANODE_RECEIVE_ACK_0

R: 3000.021 us

SS70_DATANODE_ACCEPT_ACK_0

R: 0.000 us

R: 3999.949 us

SS70_DATANODE_SEND_ACK_0

R: 999.928 us

R: 3999.949 us

SS70_DFSCLIENT_RECEIVE_ACK_0

R: 10999.918 us

SS70_DFSCLIENT_ACCEPT_ACK_0

R: 0.000 us

R: 1000.166 us

(a) Request-�ow graph of a
320KB new_block request

SS74_DFSCLIENT_NEW_BLOCK

SS74_DFSCLIENT_ADDBLOCK_START

R: 0.000 us

SS74_RPC_CALL

R: 999.928 us

SS70_NAMENODE_ADDBLOCK_START

R: 2444999.933 us

SS70_NAMENODE_ADDBLOCK_END

R: 2000.093 us

SS74_RPC_REPLY

R: 2444999.933 us

SS74_DFSCLIENT_ADDBLOCK_END

R: 9000.063 us

SS74_DFSCLIENT_OP_WRITE_BLOCK_REQUEST

R: 82999.945 us

SS74_DATANODE_OP_WRITE_BLOCK_RECEIVE

R: 24000.168 us

SS74_DATANODE_NEWBLOCKRECEIVER_START

R: 999.928 us

SS74_DATANODE_NEWBLOCKRECEIVER_END

R: 28000.116 us

SS74_DATANODE_OP_WRITE_BLOCK_REQUEST

R: 999.928 us

SS70_DATANODE_OP_WRITE_BLOCK_RECEIVE

R: 12500.048 us

SS70_DATANODE_NEWBLOCKRECEIVER_START

R: 999.928 us

SS70_DATANODE_NEWBLOCKRECEIVER_END

R: 108000.040 us

SS70_DATANODE_OP_WRITE_BLOCK_REPLY

R: 999.928 us

SS74_DATANODE_OP_WRITE_BLOCK_SUCCESS

R: 12500.048 us

SS74_DATANODE_OP_WRITE_BLOCK_REPLY

R: 999.928 us

SS74_DFSCLIENT_OP_WRITE_BLOCK_SUCCESS

R: 999.928 us

SS74_DFSCLIENT_SEND_PACKET

R: 6000.042 us

F: 18.dat

SS74_DATANODE_RECEIVE_PACKET

F: 0.dat

SS74_DATANODE_ACCEPT_PACKET

F: 1.dat

F: 2.dat

SS74_DATANODE_SEND_PACKET

F: 3.dat

F: 17.dat

SS70_DATANODE_RECEIVE_PACKET

F: 4.dat

SS70_DATANODE_ACCEPT_PACKET

F: 5.dat

F: 16.dat

SS70_DATANODE_SEND_ACK

F: 6.dat

F: 15.dat

SS74_DATANODE_RECEIVE_ACK

F: 7.dat

SS74_DATANODE_ACCEPT_ACK

F: 8.dat

F: 9.dat

SS74_DATANODE_SEND_ACK

F: 10.dat

F: 14.dat

SS74_DFSCLIENT_RECEIVE_ACK

F: 11.dat

SS74_DFSCLIENT_ACCEPT_ACK

F: 12.dat

F: 13.dat

SS74_DFSCLIENT_END_BLOCK

R: 0.000 us

(b) Collapsed graph
of a 320KB new_block request

Figure 3.6: Graph of a small 320KB write operation in HDFS.�e le�-most graph (Figure 3.6a)
shows how a new_block request is serviced. Each staggered column of nodes near the middle of
the graph represents the �ow of 64KB of data through the replication pipeline. Since this graph
writes only 320KB of data, its maximum breadth is only �ve. A full 64MB write would generate a
graph with breadth 1,024.�e graph on the right (Figure 3.6b) is a collapsed version of the graph
on the le�. Every �ow through the replication pipeline has been collapsed into a single logical �ow,
with �lenames of �les containing edge latency distributions listed on the edges.

41

being input into Spectroscope’s categorization phase. Speci�cally, individual �ows through
the replication pipeline can be collapsed into a single logical �ow. A one-to-one correspon-
dence between the collapsed graphs and unique request structures can be maintained by
adding the write size to the collapsed versions’ root node labels. Figure 3.6b shows the
collapsed version of the 320KB append_bock request. Edges of the replication pipeline’s
logical �ow show distributions of the edge latencies observed for individual 64KB portions,
so no latency information is lost. Table 3.6 shows that collapsing write graphs in his manner
reduces their size from upwards of 15,000 nodes to 41 nodes.

3.5.3 Handling category explosion

Since the datanodes to which replicas are written during write operations are chosen
randomly, HDFS will generate an extremely large number of categories, each with too few
requests to properly identify mutations.�e maximum number of write categories that
can be generated using a HDFS cluster with N datanodes and a replication factor of R is a
permutation of all the possible orderings of datanodes in the replication pipeline: NPR. In
practice, the expected number of write categories generated by a workload will depend on
the number of write requests issued. A workload that issues k such requests will generate
approximately C − C(1 − 1

C)
k categories, where C = NPR. Figure 3.7 shows a graph of the

number of write categories expected as a function of write requests issued for various HDFS
cluster sizes.

Experiments conducted on the test HDFS cluster (N=10, R=3) bear out this category
explosion problem.�e results are shown in Table 3.7. Rand sort is write heavy; of the 259
categories it generates, 132 are write categories that contain an average of 1.05 requests—to
few for identifying those that contain mutations. Since they are less write heavy, word
count and grep generate few write categories, but each of these categories also contain too
few requests for identifying mutations.

To reduce the number of categories, Spectroscope must be extended to group similar,
but not identical, requests into the same category while keeping intra-period response-time
variance low. �e latter constraint is needed because high intra-period variance within
categories will reduce Spectroscope’s ability to both rank mutations and identify response-
time mutations. I previously explored using unsupervised clustering algorithms to group
similar, but not identical requests into the same category, but found them unsatisfactory [117,
118].�e remainder of this section discusses two alternate categorization policies.

42

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of requests

E
x
p
e
c
te

d
 n

u
m

b
e
r

o
f
c
a
te

g
o
ri
e
s

N = 100

N = 20

N = 10

Max = 720

Max = 6,840

Max = 970,200

Figure 3.7: Expected number of categories that will be generated for di�erent-sized HDFS clus-

ters.�e formulaC−C(̇1− 1
C)

k describes the expected number of write categories. C is themaximum
possible number of write categories that can be generated given the machine set con�guration, and k
is the number of write requests observed. In general, C =N PR , where N is the number of datanodes
and R is the replication factor. For the graphs shown in this �gure, N was varied, while R was �xed
at three. �ey show that the expected number of categories grows with number of requests at an
almost imperceptibly decreasing rate, until a saturation point equal to the maximum number of
categories is reached.

Categorizing by omitting machine names from node labels: Creating categories by
using request-�ow graphs withmachine names omitted from their node labels would greatly
reduce the number of categories. �is simple policy may be adequate for HDFS clusters
comprised solely of homogeneous machines running in a dedicated environment. For
example, for the test HDFS cluster, omitting machine names from the graphs generated by
rand sort reduces the number of write categories generated from 132 to 16. Almost all
write requests are assigned to a single category, which exhibits a low C2 value of 0.45.

Categorizing by clustering similar-performing HDFS nodes: Despite the simplicity
of the above policy, it is insu�cient for HDFS clusters running in heterogeneous envi-
ronments or shared-machine environments, for which di�erent HDFS nodes will o�en
exhibit di�erent performance characteristics. Problematic machines may also increase
performance variance.�is policy accounts for such environments by clustering datanodes
into equivalence classes of similar-performing ones and using equivalence class names in-

43

Benchmark # of # of Avg. # of # of write # of write Avg. # of

requests categories requests requests categories requests

Rand sort 1,530 259 5.90 139 132 (126) 1.05
Wordcount 1,025 116 8.84 8 7 (8) 1.14
Grep 1,041 116 8.97 2 2 (2) 1.00

Table 3.7: Category sizes and average requests per category for the workloads when run on the

test HDFS cluster. HDFS’s write semantics, which speci�es that data be replicated to three randomly
chosen datanodes, generates a large number of write categories.�ese categories contain too few
requests to accurately identify response-time or structural mutations. For example, rand sort, the
most write intensive of the benchmarks above generates 132 write categories with an average of 1.05
requests in each. Numbers listed in parentheses indicate the expected number of write categories for
the given benchmark.

stead of machine names in individual request-�ow graphs.�e speci�c clustering algorithm
used for this approach will depend on the amount of performance variance that is expected.
For clusters that exhibit only a small amount of variance, perhaps due to a small number
of problematic machines in a homogeneous dedicated-machine environment, simple ap-
proaches, such as peer comparison [75, 76] may be su�cient. For clusters that exhibit more
variance, such as those running within Amazon’s EC2, more advanced techniques may
be necessary. One promising technique is semi-supervised learning, in which developer
feedback is incorporated in choosing what category to assign a request.

3.6 Summary & future work

By showing how real problems were diagnosed using Spectroscope in both Ursa Minor and
select Google services, this chapter demonstrates the utility of request-�ow comparison and
the e�cacy of the algorithms and heuristics Spectroscope uses to implement it. By exploring
how Spectroscope could be extended to work with HDFS, this chapter also demonstrates
how graph collapsing, applied carefully, can be e�ective in reducing the graph sizes input to
Spectroscope so as to reduce its runtime overhead.

�e experiences described in this chapter also reveal promising avenues for future work.
Most the Google case studies show that even with Spectroscope’s automation, domain
knowledge is still an important factor when diagnosing problems. However, for distributed
services built upon many other distributed services, each owned by a di�erent set of devel-
opers, no single person may possess the required knowledge. To help, future work should

44

focus on incorporating more domain knowledge into diagnosis tools, such as Spectroscope
For example, machine learning techniques could be used to learn the semantic meaning
of request-�ow graphs and such meanings could be displayed along with Spectroscope’s
output. My HDFS explorations also reveal the need for future work to mitigate category
explosion in systems that can generate many unique request-�ow graphs.

45

46

Chapter 4

Advanced visualizations for
Spectroscope

Myexperiences diagnosing performance problems using Spectroscope’s [117] initial Graphviz-
based [61] visualizations convinced me that they were inadequate. For example, the
Graphviz-based visualizations required diagnosticians to manually and painstakingly com-
pare structuralmutations and corresponding precursors to identify di�erences. For response-
time mutations and general timing changes, dot’s ranked layout could not be easily used
to draw edges proportional to observed latencies, complicating analyses of where time is
spent. Unfortunately, existing literature does not provide guidance on how to improve
Spectroscope’s visualizations.�ough much systems research has focused on techniques
for automated problem localization [14, 15, 29, 72, 76, 88, 98, 103, 117, 122, 144], apart from
a few select instances [86, 90], little research has focused on how best to present their
results. Likewise, in the visualization community, little research has focused on identifying
visualizations that are useful for distributed systems developers and diagnosticians.

To address the need for more research on visualizations for distributed systems diag-
nosis tasks, this chapter describes a 26-person user study that compares three promising
approaches for helping developers compare graphs of precursor categories (called “before
graphs” in this chapter) and graphs of mutation categories (called “a�er graphs” in this
chapter). �e user study comprises 13 professionals (i.e., developers of Ursa Minor and
so�ware engineers fromGoogle) and 13 graduate students taking distributed systems classes.
I did not expect a single approach to be best for every user study task, so my goal with
this study was to identify which approaches work best for di�erent usage modes and for
diagnosing di�erent types of problems.

�e approaches compared in this chapter were chosen based on my intuition and the

47

recommendations of those developers who helped me diagnose problems in Ursa Minor [1]
and Google services.�e side-by-side approach is nearly a “juxtaposition,” which presents
independent layouts of both before and a�er graphs. Di� is an “explicit encoding,” which
highlights the di�erences between the two graphs. Animation is closest to a “superposition”
design that guides attention to changes that “blink.” All of the approaches automatically iden-
tify correspondences between matching nodes in both graphs so as to focus diagnosticians
on relevant structural di�erence—i.e., those without correspondences.

Despite the large body of work on comparing graphs [9, 10, 44], I found no existing
implementations of side-by-side, di�, and animation suitable for request-�ow comparison’s
domain-speci�c needs. For example, since correspondences between nodes of before-and-
a�er graphs are not known a priori, they must be identi�ed algorithmically.�erefore, I
built my own interfaces. For this study, categories containing both structural mutations
and response-time mutations were not split into multiple virtual categories. Rather, the
resulting edge latency and structural changes are displayed together in the same graph.

Overall, the user study results show that side-by-side is the best approach for helping
diagnosticians obtain an overall understanding of an observed performance change. Anima-
tion is best for helping diagnose problems that are caused by structural mutations alone (e.g.,
by a change in the amount of concurrent activity or by a slower thread of activity replacing a
faster thread). Di� is best for helping diagnose problems caused by response-timemutations
alone.

�e rest of this chapter is organized as follows. Section 4.1 describes related work.
Section 4.2 describes the interfaces. Section 4.3 describes the user study methodology and
Section 4.4 presents results. Based on my experiences with this study, Section 4.5 describes
lessons learned and opportunities for future work. Finally, Section 4.6 concludes.

4.1 Related work

Recent research has explored a number of approaches, including some akin to side-by-side,
di�, and animation, to help users identify di�erences in graphs, but no single one has
emerged as the clear winner [9, 10, 113].�e choice depends on the domain, the types of
graphs being compared, and the di�erences of interest, thus motivating the need for the
study presented in this chapter.

Archambault et al. [9] suggest that animation may be more e�ective for helping users
understand the evolution of nodes and edges in a graph, whereas small multiples (akin to

48

the side-by-side approach) may be more useful for tasks that require reading node or edge
labels. In contrast, Farrugia et al. [44] �nd that static approaches outperform animation
for identifying how connections evolve in social networks. Both evolution-related and
label-related comparisons are necessary to understand di�erences in request-�ow graphs.
Robertson et al. [113] compare animation’s e�ectiveness to that of small multiples and one
other static approach for identifying trends in the evolution of Gapminder Trendalyzer [53]
plots (3-dimensional data plotted on 2-D axes).�ey �nd that animation is more e�ective
and engaging for presenting trends, while static approaches are more e�ective for helping
users identify them. For unweighted, undirected graphs, Archambault et al. [10] �nd that
a “di�erence map” (akin to the di� view) is signi�cantly preferred, but is not more useful.
Melville et al. develop a set of general graph-comparison questions and �nd that for small
graphs represented as adjacency matrices, a superimposed (akin to di�) view is superior to
a juxtaposed (side-by-side) view [93].

In addition to user studies comparing di�erent approaches, many tools have been built
to identify graph di�erences. Many use domain-speci�c algorithms or are built to analyze
speci�c graph structures. For example, TreeJuxtaposer [97] uses domain knowledge to
identify node correspondences between trees that show evolutionary relationships among
di�erent species. TreeVersity [60] uses a di�-based technique to identify di�erences in node
attributes and structure for trees with unweighted edges and known correspondences. G-
PARE [121] presents overlays to compare predictions made by machine-learning algorithms
on graph-based data. Visual Pivot [114] helps identify relationships between two trees by
using a layout that co-locates a selected common node. Donatien [64] uses a layering
model to allow interactive matching and comparison of graphs of document collections
(i.e., results from two search engines for the same query). Beck and Diehl [17] use a matrix
representation to compare so�ware architectures based on code dependencies.

In contrast, in this study, I attempt to identify good graph comparison techniques
for helping developers identify performance-a�ecting di�erences in distributed system
activities.�ese are intuitively represented as directed, acyclic, weighted graphs, o�en with
fan-ins and fan-outs, and for which node correspondences are not known.�ese graphs
may di�er in structure and edge weight. I also believe the intended audience—those familiar
with distributed systems development—will exhibit unique preferences distinct from the
general population.

In the systems community, there has been relatively little research conducted on visual
methods for diagnosis. Indeed, a recent survey of important directions for log analysis

49

concludes that because humans will remain in the diagnosis loop for the foreseeable fea-
ture, visualization research is an important next step [102]. One project in this vein is
NetClinic, which considers root-cause diagnosis of network faults [86].�e authors �nd
that visualization in conjunction with automated analysis [72] is helpful for diagnosis. As
in this study, the tool uses automated processes to direct users’ attention, and the authors
observe that automation failures inhibit users’ understanding. In another system targeted at
network diagnosis, Mansmann et al. observe that automated tools alone are limited in utility
without e�ective presentation of results [90]. Campbell et al. [25] conduct an in-situ study
of Hadoop [8] users to identify ine�ciencies in their manual diagnosis work�ows.�ey �nd
that many ine�ciencies occur because users must o�en switch betweenmultiple monitoring
tools (e.g., Ganglia [92] and the Hadoop job management interface) and because important
data is presented poorly, thus giving them the insight necessary to design an improved
diagnosis interface. Along these lines, Tan et al. [131] describe simple visualizations for
helping Hadoop users diagnose problems.

4.2 Interface design

Figure 4.1 shows the side-by-side, di�, and animation interfaces used for the user study.
�eir implementations were guided by an initial pilot study that helped eliminate obvious
de�ciencies.�e interfaces are implemented in JavaScript, and use modi�ed libraries from
the JavaScript InfoVis Toolkit [18].�is section further describes them.

Side-by-side:�e side-by-side interface (illus-
trated with a simpli�ed diagram at right and in Fig-
ure 4.1(a,d)) computes independent layered layouts
for the before and a�er graphs and displays them
beside each other. Nodes in the before graph are
linked to corresponding nodes in the a�er graph
by dashed lines. �is interface is analogous to a parallel coordinates visualization [69],
with coordinates given by the locations of the nodes in the before and a�er graphs. Using
this interface, latency changes can be identi�ed by examining the relative slope of adjacent
dashed lines: parallel lines indicate no change in latency, while increasing skew is indicative
of longer response time. Structural changes can be identi�ed by the presence of nodes in
the before or a�er graph with no corresponding node in the other graph.

50

Di� :�e di� interface (shown at right and in Figure 4.1(b,e))
shows a single static image in an explicit encoding of the di�er-
ences between the before and a�er graphs, which are associated
with the colors orange and blue respectively.�e layout contains
all nodes from both the before and a�er graphs. Nodes that exist
only in the before graph are outlined in orange and annotated
with a minus sign; those that exist only in the a�er graph are
outlined in blue and annotated with a plus sign. �is approach is akin to the output of a
contextual di� tool [87] emphasizing insertions and deletions.

I use the same orange and blue scheme to show latency changes, with edges that exist in
only one graph shown in the appropriate color. Edges existing in both graphs produce a
per-edge latency di�: orange and blue lines are inset together with di�erent lengths.�e
ratio of the lengths is computed from the ratio of the edge latencies in before and a�er
graphs, and the next node is attached at the end of the longer line.

Animation:�e animation interface (at right and in Fig-
ure 4.1(c,f)) switches automatically between the before and
a�er graphs. To provide a smooth transition, it interpolates
the positions of nodes between the two graphs. Nodes that
exist in only one graph appear only on the appropriate termi-
nal of the animation.�ey become steadilymore transparent
as the animation advances, and vanish completely by the
other terminal. Independent layouts are calculated for each graph, but non-corresponding
nodes are not allowed to occupy the same position. Users can start and stop the animation,
as well as manually switch between terminal or intermediate points, via the provided slider.

4.2.1 Correspondence determination

All of the interfaces described above require determining correspondences between the
before and a�er graphs, which are not known a priori.�ey must determine which nodes
in the before graph map to which matching nodes in the a�er graph, and by extension
which nodes in each graph have no match in the other.�is problem is not feasible using
graph structure and node names alone, because many di�erent nodes can be labeled with
the same name (e.g., due to so�ware loops). Fortunately, the converse is guaranteed to be
true—if a node in the before graph matches a node in the a�er graph, their node names will

51

(a)Side-by-sidetraining
(b)D

i�
training

(c)A
nim

ation
training

(d)Side-by-siderealproblem
(e)D

i�
realproblem

(f)A
nim

ation
realproblem

F
ig
u
re

4
.1:

�
ree

v
isu

a
lizatio

n
in
terfa

ces.�
isdiagram

illustratesthethreeinterfacesto
visualizing

di�erencesin
request-�ow

graphsused
in

thisstudy.Figuresa,b,and
cshow

theinterfacesapplied
to

am
ocked-up

problem
thatw

asused
to

train
participants(slightly

m
odi�ed

forclarity
on

paper).Figuresd,e,and
fshow

the
interfacesapplied

to
a
portion

ofone
ofthe

real-w
orld

problem
sthatw

aspresented
to

participants.

52

be the same.�e interfaces exploit this property to obtain approximate correspondences.
�e approximation technique runs in O(N2

) time in the number of nodes. First, it
uses a lexically-ordered depth-�rst traversal to transform both graphs into strings. Next,
it keeps track of the insertions, deletions, and mutations made by a string-edit distance
transformation of one string into another. Finally, it maps these edits back onto the appro-
priate interface. Items that were not inserted, deleted, or removed are ones that correspond
in both graphs. Despite the limitations of this approach, I have found it to work well in
practice. Gao et al. survey a variety of related algorithms [52]; because the problem is hard
(in the formal sense), these algorithms are limited in applicability, approximate, or both.
�ough this approximation technique was implemented independently of Spectroscope’s
heuristics for identifying corresponding mutations and precursors, both could be combined
to reduce overall runtime.

4.2.2 Common features

All three of the interfaces incorporate some common features, tailored speci�cally for
request-�ow graphs. All graphs are drawn with a layered layout based on the technique
by Sugiyama et al [128]; layouts that modify this underlying approach enjoy widespread
use [42].

To navigate the interface, users can pan the graph view by clicking and dragging or by
using a vertical scroll bar. In large graphs, this allows for movement in the neighborhood of
the current view or rapid traversal across the entire graph. By using the wheel on a mouse,
users can zoom in and out, up to a limit.�e interfaces employ rubber-banding for both the
traversal and zoom features to prevent the graphs from moving o� the screen or becoming
smaller than the viewing window.

For all of the interfaces, edge lengths are drawn using a sigmoid-based scaling function
that allows both large and small edge latencies to be visible on the same graph. Statistically
signi�cant edge latency changes are highlighted with a bold red outline. To distinguish wait
time from actual latency for threads involved in join operations, the interfaces use thinner
lines for the former and thicker lines for the latter (see the “write in cache” to “MDSCLIENT
lookup call” edge in Figures 4.1(a-c) for an example).

Each interface also has an annotation mechanism that allows users to add marks and
comments to a graph comparison.�ese annotations are saved as an additional layer on
the interface and can be restored for later examination.

53

4.2.3 Interface Example

To better illustrate how these interfaces show di�erences, the example of di� shown in
Figure 4.1(b) is annotated with the three key di�erences it is meant to reveal. First, the a�er
graph contains an extra thread of concurrent activity (outlined in blue and marked with
a plus sign). Second, there is a statistically signi�cant change in metadata lookup latency
(highlighted in red).�ird, there is a large latency change between the lookup of metadata
and the request’s reply that is not identi�ed as statistically signi�cant (perhaps because
of high variance). �ese observations localize the problem to those system components
involved in the changes and thus provide starting points for diagnosticians’ diagnosis
e�orts.

4.3 User study overview & methodology

I compared the three approaches via a between-subjects user study, in which I asked
participants to complete �ve assignments using the interfaces. Each assignment asked
participants to �nd key performance-a�ecting di�erences for a before/a�er request-�ow
graph pair obtained from Ursa Minor [1].�ree of the �ve assignments used graphs derived
from real problems (see Chapter 3.3) observed in the system.

4.3.1 Participants

�e interfaces’ target users are developers and diagnosticians of the distributed system being
diagnosed. As the performance problems used for the user study come from Ursa Minor,
I recruited the seven Ursa Minor developers to whom I had access as expert participants.
In addition, I recruited six professional distributed-system developers from Google.�is
chapter refers to the Ursa Minor and Google developers collectively as professionals.

Many of the professional participants are intimately familiar with more traditional
diagnosis techniques, perhaps biasing their responses to the user-study questions somewhat.
To obtain a wider perspective, I also recruited additional participants by advertising in
undergraduate and graduate classes on distributed systems and posting �iers on and around
Carnegie Mellon University’s campus. Potential participants were required to demonstrate
(via a pre-screening questionnaire) knowledge of key undergraduate-level distributed sys-
tems concepts. Of the 33 volunteers who completed the questionnaire, 29 were deemed
eligible; I selected the �rst 13 to respond as participants. Because all of the selected partici-

54

pants were graduate students in computer science, electrical and computer engineering, or
information networking, this chapter refers to them as student participants.

During the user study, each participant was assigned, round-robin, to evaluate one of
the three approaches. Table 4.1 lists the participants, their demographic information, and
the interface they were assigned. I paid each participant $20 for the approximately 1.5-hour
study.

4.3.2 Creating before/after graphs

Each assignment required participants to identify salient di�erences in a before/a�er graph
pair. To limit the length of the study, I modi�ed the real-problem graph pairs slightly
to remove a few di�erences that were repeated many times. One before/a�er pair was
obtained from Spectroscope’s output for the “slowdown due to code changes” case study,
which involved arti�cially injecting a 1ms delay into Ursa Minor to gauge Spectroscope’s
e�cacy in helping diagnose such changes (see Chapter 3.3.5). To further explore the range of
di�erences that could be observed, one assignment used a synthetic before/a�er graph pair.

ID G
en
d
er

A
g
e

In
te
rf
a
ce

PS01 M 26 S
PS02 M 33 S
PS03 M 38 S
PS04 M 44 S
PS05 M 30 S
PD06 M 37 D
PD07 M 44 D
PD08 M 37 D
PD09 M 28 D
PA10 M 33 A
PA11 M 26 A
PA12 M 40 A
PA13 M 34 A

(a) Professionals

ID G
en
d
er

A
g
e

In
te
rf
a
ce

SS01 F 23 S
SS02 M 21 S
SS03 M 28 S
SS04 M 29 S
SD05 M 35 D
SD06 M 22 D
SD07 M 23 D
SD08 M 23 D
SD09 M 25 D
SA10 F 26 A
SA11 M 23 A
SA12 M 22 A
SA13 M 23 A

(b) Students

Table 4.1: Participant demographics. Our 26 participants included 13 professional distributed
systems developers and 13 graduate students familiar with distributed systems.�e ID encodes the
participant group (P=professional, S=student) and the assigned interface (S=side-by-side, D=di�,
A=animation). Average ages were 35 (professionals) and 25 (students).

55

It was created by modifying a real request-�ow graph observed in Ursa Minor. Table 4.2
describes the various assignments and their properties.

To make the before/a�er graphs easier for participants to understand, I changed node
labels, which describe events observed during request processing, to more human-readable
versions. For example, I changed the label “e10__t3__NFS_CACHE_READ_HIT” to “Read
that hit in the NFS server’s cache.”�e original labels were written by UrsaMinor developers
and only have meaning to them. Finally, I omitted numbers indicating edge lengths from
the graphs to ensure participants used visual properties of the interfaces to �nd important
di�erences.

4.3.3 User study procedure

�e study consisted of four parts: training, guided questions, emulation of real diagnoses,
and interface comparison. Participants were encouraged to think aloud throughout the
study.

Training

In the training phase, participants were shown an Ursa Minor architecture diagram (similar
to the one in Figure 3.1).�ey were only required to understand that the system consists of
�ve components that can communicate over the network. I also provided a sample request-
�ow graph and described themeaning of nodes and edges. Finally, I trained each participant
on her assigned interface by showing her a sample/before a�er graph (identical to those
shown in Figures 4.1(a-c)) and guiding her through tasks she would have to complete in
latter parts of the study. Participants were given ample time to ask questions and were told
I would be unable to answer further questions a�er the training portion.

Finding diªerences via guided questions

In this phase of the study, I guided participants through the process of identifying di�erences,
asking them to complete �ve focused tasks for each of three assignments. Rows 1–3 of
Table 4.2 describe the graphs used for this part of the study.

Task 1: Find any edges with statistically signi�cant latency changes.�is task required par-
ticipants to �nd all of the graph edges highlighted in red (i.e., those automatically identi�ed
by the Spectroscope as having statistically signi�cant changes in latency distribution).

Task 2: Find any other edges with latency changes worth investigating. Spectroscope will

56

Phase Assignment Ursa Minor problem Di�erences Before/a�er

and type graph sizes (nodes)

G 1/Injected Slowdown: code changes 4 statistically sig. 122/122
(Chapter 3.3.5) 5 other edge latency

2/Real Read-modify-writes 1 structural 3/16
(Chapter 3.3.2)

3/Synth. 4 statistically sig. 94/128
2 other edge latency
3 structural

E 4/Real MDS con�guration change 4 structural 52/77
(Chapter 3.3.1)

5/Real MDS prefectching 2 structural 82/226
(Chapter 3.3.3)

Table 4.2: Before/a�er graph-pair assignments. Assignments 1–3 were used in the guided ques-
tions phase (G); 4 and 5 were used to emulate real diagnoses (E).�ree of the �ve assignments were
the output of request-�ow comparison for real problems seen in Ursa Minor. Assignments were
ordered so as to introduce di�erent types of di�erences gradually.

not identify all edges worth investigating. For example, edges with large changes in average
latency that also exhibit high variance will not be identi�ed.�is task required participants
to �nd edges with notable latency changes not highlighted in red.

Task 3: Find any groups of structural changes. Participants were asked to identify added
or deleted nodes. To reduce e�ort, I asked them to identify these changes in contiguous
groups, rather than noting each changed node individually.

Task 4: Describe in a sentence or two what the changes you identi�ed in the previous
tasks represent. �is task examines whether the interface enables participants to quickly
develop an intuition about the problem in question. For example, many of the edge latency
changes presented in assignment 1 indicate a slowdown in network communication between
machines. Identifying these themes is a crucial step toward understanding the root cause of
the problem.

Task 5: Of the changes you identi�ed in the previous tasks, identify which onemost impacts
request response time.�e di�erence that most a�ects response time is likely the one that
should be investigated �rst when attempting to �nd the root cause. �is task evaluates
whether the interface allows participants to quickly identify this key change.

57

Emulating real diagnoses

In the next phase, participants completed two additional assignments.�ese assignments
were intended to emulate how the interfaces might be used in the wild, when diagnosing a
new problem for the �rst time. For each assignment, the participant was asked to complete
tasks 4 and 5 only (as described above). I selected these two tasks because they most closely
align with the questions a developer would ask when diagnosing an unknown problem.

A�er this part of the study, participants were asked to agree or disagree with two
statements using a �ve-point Likert scale: “I am con�dent my answers are correct” and
“�is interface was useful for solving these problems.” I also asked them to comment on
which features of the interface they liked or disliked, and to suggest improvements.

Interface comparison

Finally, to get a more direct sense of what aspects of each approach were useful, I showed
participants an alternate interface. To avoid fatiguing participants and training e�ects, I
did not ask them to complete the assignments and tasks again; instead I asked them to
brie�y consider (using assignments 1 and 3 as examples) whether the tasks would be easier
or harder to complete with the second interface, and to explain which features of both
approaches they liked or disliked. Because the pilot study suggested animation was most
di�cult to use, I focused this part of the study on comparing side-by-side and di�.

4.3.4 Scoring criteria

I evaluated participants’ responses by comparing them to an “answer key” that I created.
Tasks 1–3, which asked for multiple answers, were scored using precision/recall. Precision
measures the fraction of a participant’s answers that were also in the key. Recallmeasures
the fraction of all answers in the key identi�ed by the participant. Note that is possible to
have high precision and low recall—for example, by identifying only one change out of ten
possible ones. For task 3, participants who marked any part of a correct group were given
credit.

Tasks 4 and 5 were graded as correct or incorrect. For both, I accepted multiple possible
answers. For example, for task 4 (“identify what changes represent”), I accepted an answer
as correct if it was close to one of several possibilities, corresponding to di�erent levels
of background knowledge. In one assignment, several students identi�ed the changes as
representing extra cache misses in the a�er graph, which I accepted. Some participants

58

with more experience explicitly identi�ed that the a�er graph showed a read-modify write,
a well-known bane of distributed storage system performance.

I also captured completion times for the �ve quantitative tasks. For completion times
as well as precision/recall, I used the Kruskal-Wallis test to establish di�erences among all
three interfaces, then pairwise Wilcoxon Rank Sum tests (chosen a priori) to separately
compare the animation interface to each of side-by-side and di�. I recorded and analyzed
participants’ comments from each phase as a means to better understand the strengths and
weaknesses of each approach.

4.3.5 Limitations

My user study methodology has several limitations. Most importantly, it is di�cult to fully
evaluate visualization approaches for helping developers diagnose problems without asking
them to go through the entire process of debugging a real, complex problem. However, such
problems are o�en unwieldy and can take hours or days to diagnose. As a compromise, I
designed the user study tasks to test whether the interfaces enable participants to understand
the gist of the problem and identify starting points for diagnosis.

De�ciencies in the interface implementations may skew participants’ notions of which
approaches work best for various scenarios. I explicitly identify such cases in the evaluation
and suggest ways for improving the interfaces so as to avoid them in the future.

I stopped recruiting participants for the study when their qualitative comments con-
verged, leading me to believe I had enough information to identify the useful aspects of
each interface. However, the study’s small sample size may limit the generalizability of our
quantitative results.

Many of the participants were not familiar with statistical signi�cance and, as such,
were confused by the wording of some of the tasks (especially tasks 1 and 2). I discuss this
in more detail in the Future Work section.

�e participants skewed young and male. To some extent this re�ects the population
of distributed-systems developers and students, but it may limit the generalizability of the
results somewhat.

4.4 User study results

No single approach was best for all participants and types of graph di�erences. For example,
side-by-side was preferred by novices, and di� was preferred by advanced users and experts.

59

Similarly, where side-by-side and di� provedmost useful for most types of graph di�erences,
animation proved better than side-by-side and di� for two very common types. When one
of the participants (PD06) was asked to pick his preferred interface, he said, “If I had to
choose between one and the other without being able to �ip, I would be sad.” When asked
to contrast side-by-side with di�, SS01 said, “�is is more clear, but also more confusing.”
Section 4.4.1 compares the approaches based on participants’ quantitative performance
on the user study tasks. Sections 4.4.2 to 4.4.4 describe my observations and participants’
comments about the various interfaces and, based on this data, distill the approaches best
suited for speci�c graph di�erence types and usage modes.

4.4.1 Quantitative results

Figure 4.2: Completion times for all partici-

pants.�e boxplots show completion times for
individual tasks, aggregated across all assign-
ments.

Figure 4.2 shows completion times for each
of the three interfaces. Results for individual
tasks, aggregated over all assignments, are
shown (note that assignments, as shown in
Table 4.2, may contain one or multiple types
of di�erences). Participants who used anima-
tion took longer to complete all tasks com-
pared to those who used side-by-side or di�,
corroborating the results of several previous
studies [9, 44, 113]. Median completion times
for side-by-side and di� are similar for most
tasks.�e observed di�erences between an-
imation and the other interfaces are statisti-
cally signi�cant for task 1 (“identify statistically signi�cant changes”)1 and task 4 (“what
changes represent”).2 �e observed trends are similar when students and professionals
are considered separately, except that the di�erences between animation and the other
interfaces are less pronounced for the latter.

Figure 4.3a shows the precision, recall, and accuracy results for each of the three inter-
faces.�e results are not statistically signi�cant, but do contain artifacts worth describing.
Overall, both side-by-side and di� fared well, and their median scores for most tasks are

1p-value=0.03 (side-by-side vs. anim), p-value=0.02 (di� vs. anim)
2p-value=0.003 (side-by-side vs. anim), p-value=0.03 (di� vs. anim)

60

(a) Precision, recall, and accuracy scores for all participants

(b) Precision, recall, and accuracy scores
for professionals

(c) Precision, recall, and accuracy scores
for students

Figure 4.3: Precision/recall scores. �e boxplots show precision, recall, and accuracy scores for
individual tasks, aggregated across all assignments.

similar for precision, recall, and accuracy. Notable exceptions include recall for task 2 (“�nd
other latency changes”) and recall for task 3 (“identify structural changes”), for which di�
performed better. Overall, both di� and animation exhibit much higher variation in scores
than side-by-side.�ough animation’s median scores are better than or comparable to the
other interfaces for tasks 3, 4, and 5, its scores are worse for precision for task 1 and recall
for task 2.

Figures 4.3b and 4.3c show the results broken down by participant type. No single
interface yielded consistently higher median scores for either group.�ough professionals
performed equally well with di� and side-by-side for many tasks, their scores with di� are
higher for tasks 2 and 3 and higher with side-by-side for task 4. Students’ median scores were
higher with side-by-side for task 2 and task 5 and higher for recall with di� for task 1 and task
3. Also, students’ di� scores exhibit signi�cantly more variation than side-by-side, perhaps
because not all of them were familiar with text-based di� tools, which are o�en used by
professionals for source code-revision control. For professionals, animation’s median scores
are almost never higher than side-by-side. Students had an easier time with animation. For

61

them, animation’s median scores are higher than di� and side-by-side for task 2 (precision),
task 4, and task 5. Animation’s median score is higher than side-by-side for task 3 (recall).

Figure 4.4 shows likert-scale responses to the questions “I am con�dent my answers are
correct” and “�is interface was useful for answering these questions.” Di� and side-by-
side were tied in the number of participants that strongly agreed or agreed that they were
con�dent in their answers (5 of 9, or 56%). However, where one side-by-side user strongly
agreed, no di� users did so. Only one animation user (of eight; 12.5%) was con�dent in his
answers, so it is curious that animation was selected as the most useful interface. I postulate
this is because participants found animation more engaging and interactive than the other
interfaces, an e�ect also noted by other studies [44, 113].

4.4.2 Side-by-side

Participants liked the side-by-side interface because it was the most straightforward of
the three interfaces. It showed the true response times (i.e., overall latencies) of both
graphs, enabling participants to quickly get a sense of how much performance had changed.
Correspondence lines clearly showed matching nodes in each graph. Also, this interface
allowed independent analyses of both graphs, which the professional participants said was
important. Comparing di� to side-by-side, PD08 said “it’s [side-by-side] a lot easier to tell
what the overall latency is for each operation. . . . [the nodes are] all put together without
any gaps in the middle.” SD09 said, “With [side-by-side], I can more easily see this is

0%	 20%	 40%	 60%	 80%	 100%	

Anima&on	

Diff	

Side-‐by-‐side	

Confident	 my	 answers	 are	 correct	

Strongly	 agree	 Agree	 Neutral	 Disagree	 Strongly	 disagree	

0%	 20%	 40%	 60%	 80%	 100%	

Anima&on	

Diff	

Side-‐by-‐side	

Useful	 for	 answering	 these	 ques&ons	

Strongly	 agree	 Agree	 Neutral	 Disagree	 Strongly	 disagree	

Figure 4.4: Likert responses, by condition. Each participant was asked to respond to the statements
“I am con�dent my answers are correct” and “�e interface was useful for answering these questions.”

62

happening here before and a�er. Without the dashed lines, you can’t see which event in the
previous trace corresponds to the a�er trace.”�ese sentiments were echoed by many other
participants (e.g., SD06, SD07, PD07).

�e side-by-side interface su�ers from two key drawbacks. First, it is di�cult to identify
di�erences when before/a�er graphs di�er signi�cantly because corresponding ones become
further apart. PS01 complained that “the points that should be lining up are getting farther
and farther away, so it’s getting more di�cult to compare the two.” PD06 complained that it
was more di�cult to match up large changes since the other one could be o� the screen.
Similar complaints were voiced by other participants (e.g., PS02, SS02, PS04). Adding the
ability to pin one graph relative to another to my side-by-side implementation would limit
vertical distance between di�erences. However, horizontal distance, which increases with
the number of concurrent threads in each request, would remain.

Second, when nodes are very close to another, correspondence lines became too cluttered
and di�cult to use.�is led to complaints from several participants (e.g., PS03, SS01, SS03,
PA13). To cope, SS03 and PS05 gave up trying to identify corresponding nodes between
the graphs and instead identi�ed structural di�erences by determining if the number of
correspondence lines on the screen matched the number of nodes visible in both the before
and a�er graph. Modifying the side-by-side interface to draw correspondence lines only at
the start of a contiguous run of corresponding nodes would help reduce clutter, but would
complicate edge latency comparisons.

Based on participants’ comments above and my observations, Table 4.3 shows the use
cases for which I believe side-by-side is the best of the three approaches. As shown in
Table 4.3, side-by-side’s simple approach works best for aiding comprehension. However,
due to potential for horizontal skew and clutter, it is not the best approach for identifying
any type of di�erence.

4.4.3 Diª

Participants’ comments about the di� interface were polarized. Professionals and more
advanced students preferred di� ’s compactness, whereas others were less decisive. For
example, PS03 claimed di� ’s compact representation made it easier for him to draw deduc-
tions. Indeed, unlike side-by-side, di� always shows di�erences right next to each other,
making it easier to �nd di�erences when before and a�er graphs have diverged signi�cantly.
Also, by placing di�erences right next to each other, di� allows for easier identi�cation of

63

smaller structural and edge latency changes. In contrast, SS04 said, “[Side-by-side] may be
more helpful than [di�], because this is not so obvious, especially for structural changes.”

�ough participants rarely made explicit comments about �nding di� di�cult to use,
I found that it encouraged incorrect mental models in student participants. For example,
SD08 and SD09 confused structural di�erences within a single thread of activity with a
change in the amount of concurrency. It is easy to see why participants might confuse the
two, as both are represented by fan-outs in the graph.

I believe that participants’ comments about di� vary greatly because its compact repre-
sentation requires more knowledge about so�ware development and distributed systems
than that required by the more straightforward side-by-side interface. Additionally, many
of the professionals are familiar with di� tools for text, which would help them understand
my graph-based di� technique more easily.

Since it places di�erences close together, Table 4.3 lists di� as the best approach for
showing edge latency changes. However, because it encourages poor mental models for
many structural di�erences, it is not the best approach for showing concurrency changes
and intra-thread event changes.

4.4.4 Animation

My user study participants o�en struggled when using the animation interface. With this
interface, all di�erences between the two graphs appear and disappear at the same time.�is
combined movement confused participants when multiple types of changes were present
in the same thread of activity, an e�ect also noticed by Ghani et al. [54]. In such cases,
edge latency changes would cause existing nodes to move down and, as they were doing so,
trample over nodes that were fading in or out due to structural changes. PA11 complained,
“Portions of graphs where calls are not being made in the a�er trace are fading away while
other nodes move on top of it and then above it . . . it is confusing.”�ese sentiments were
echoed by many other participants (e.g., SA11, PA12, SA10, PA13).

�e combined movement of nodes and edges also prevented participants from estab-
lishing static reference points for gauging the impact of a given di�erence. SA10 told us:
“I want to. . .pick one node and switch it between before and a�er. [But the same node] in
before/a�er is in a di�erent location completely.” SA12 said he did not like the animation
interface because of the lack of consistent reference points. “If I want to measure the size of
an edge, if it was in the same position as before. . . then it’d be easy to see change in position

64

or length.” Staged animation, in which individual di�erences are animated in one at a time,
could reduce the trampling e�ect mentioned above and allow users to establish reference
points [65]. However, signi�cant research is needed to understand how to e�ectively stage
animations for graphs that exhibit both structural and edge length changes. Many graph
animation visualizations do not use staging and only recent work has begun to explore
where such basic approaches fail [54].

Another negative aspect of animation (staged or not) is that it suggests false intermediate
states. As a result, SA13 interpreted the interface’s animation sequence as a timeline of
changes and listed this as a feature he really liked. PA13 told me I should present a toggle
instead of a slider so as to clarify that there are only two states.

Despite the above drawbacks, animation excels at showing structural di�erences—i.e.,
a change in concurrency or change in intra-thread activity—in graphs without nearby
edge latency changes. Such changes do not create the trampling e�ect stated above. In-
stead, when animated, distinct portions of the graph appear and disappear, allowing users
to identify changes easily. For one such assignment, both PA11 and PA12 told me the
structural di�erence was very clear with animation. Other studies have also noted that
animation’s e�ectiveness increases with separation of changed items and simultaneous
appearance/disappearance (e.g., [9, 54]).

Due to the blinking e�ect it creates, Table 4.3 lists animation as the best approach

Comprehension Di�erence identi�cation

Shows overall
latency change

Supports
indep. analyses

Conc. change Intra-thread
event change

Edge latency
change

Intra-thread
mixed

Side 3 3

Di� 5 3

Anim 3 3 3 5

Table 4.3: Most useful approaches for aiding overall comprehension and helping identify the

various types of graph di�erences contained in the user study assignments. �ese results are
based on my qualitative observations and participants’ comments. A 3 indicates the best approach
for a particular category, whereas a 5 indicates an approach poorly suited to a particular category.
Side-by-side is best for aiding overall comprehension because of its straightforward presentation.
Di� is best for showing edge latency changes because it places such changes right next to one another.
Animation is best for showing structural di�erences due to extra concurrency and event changes
within a single thread due to the blinking e�ect it creates. Due to their various drawbacks, no single
approach is best for showing mixed di�erences within a single thread of activity.

65

for showing di�erences due to concurrency changes and intra-thread event changes.�e
potential for trampling means it is the worst of the three for showing both latency and
structural di�erences within a single thread of activity.

4.5 Future work

Comparing these three interfaces has yielded insights about which approaches are useful
for di�erent circumstances. Performing this study also produced a number of directions for
improving each of the interfaces. Here I highlight a few that participants found important
and that are complex enough to warrant further research.

Addressing skew, horizontal layout, and trampling: Many users struggled with the
increasing skew in the side-by-side layout, as well as the inability to quickly trace a corre-
spondence from one graph to another (e.g., PS02, SA10, and PS05).�e animation interface,
which produces a trampling e�ect as all changes are animated together, also made it di�cult
to focus on individual di�erences. A future interface might anchor the comparison in
multiple or user-selectable locations to mitigate this problem. However, there are subtleties
involved in choosing and using anchor points.

One option, as requested by most participants (e.g., PA12 and PD08), is to anchor
the comparison at a user-selectable location. Another is to re-center the graph as users
scroll through it. However, both techniques distort the notion that time �ows downward,
and neither would reduce horizontal distance or clutter. Approaches that restructure the
comparison to minimize the horizontal distance between corresponding nodes are an
interesting opportunity.

For the animation technique, anchoring in multiple locations could be achieved by
staging changes. Questions of ordering immediately arise: structural changes might be
presented before, a�er, or between latency changes.�e choice is non-obvious. For example,
it is not clear whether to animate structural and latency changes together when the structural
change causes the latency change or even how to algorithmically determine such cases.

Exploring semantic zooming: Participants found the larger graphs used for this study,
which were about 200 nodes in size, unwieldy and di�cult to understand. �ough the
straightforward zooming approach used by my interfaces allowed entire graphs to be seen,
zooming out resulted in nodes, edges, and correspondence lines that were too small to
be interpreted. As a result, participants needed to scroll through graphs while zoomed in,
making it di�cult for them to obtain a high-level understanding of the problem. Several

66

participants complained about this issue (e.g., SD05, SA10). Further work is needed to
investigate ways to semantically zoom the graphs being compared so as to preserve inter-
pretability. One option is to always coalesce portions of the comparison that are the same
in both graphs and progressively coalesce portions that contain di�erences.

Exploiting annotation: Annotation was used in this study to record answers. But, it
also has the potential to be a valuable tool for collaborative debugging, especially in large
distributed systems with components developed by independent teams. In such systems,
it is likely that no single person will have the end-to-end knowledge required to diagnose
a complex problem that a�ects several components. For this reason, several professional
participants from Google listed the interfaces’ annotation mechanism as a strength of the
interfaces (e.g., PA13, PS04, and PD08). PS04 said “[I] really like the way you added the
annotation. . . .So other people who are later looking at it can get the bene�t of your analysis.”
Supporting cooperative diagnosis work with an annotation interface, such as used that used
in Rietveld [112] for code reviews, is an interesting avenue of future work.

Matching automation to users’ expectations: Like many other diagnosis tools [72, 88,
98], Spectroscope uses statistical tests to automatically identify di�erences, since they limit
expensive false positives. However, many of the user study participants did not have a
strong background in statistics and so mistook “statistically signi�cant” to mean “large
changes in latency.”�ey did not know that variance a�ects whether an edge latency change
is deemed statistically signi�cant.�is generated confusion and accounted for lower than
expected scores for some tasks. For example, some participants (usually students) failed
to di�erentiate between task 1 and task 2, and a few students and professionals refused to
mark a change as having the most impact unless it was highlighted in red (as statistically
signi�cant). Trying to account for why one particularly large latency change was not
highlighted, SA10 said, “I don’t know what you mean by statistically signi�cant. Maybe
it’s signi�cant to me.” �ese concerns were echoed by almost all of the participants, and
demonstrate that automationmustmatch users’mentalmodels and that diagnosis toolsmust
limit both false positives and false negatives. Statistics and machine learning techniques can
provide powerful automation tools, but to take full advantage of this power—which becomes
increasingly important as distributed systems become more complex—diagnosticians must
have the right expectations about how theywork. Both better techniques andmore advanced
training may be needed to achieve this goal.

67

4.6 Summary

For tools that automate aspects of problem diagnosis to be useful, they must present their
results in a manner developers �nd clear and intuitive.�is chapter investigates improved
visualizations for Spectroscope, one particular automated problem localization tool. It
contrasts three approaches for presenting Spectroscope’s results through a 26-participant
user study, and �nd thats each approach has unique strengths for di�erent usage modes,
graph di�erence types, and users. Moving forward, I expect that these strengths and the
research directions inspired by their weaknesses will inform the presentation of future
request-�ow comparison tools and other diagnosis tools.

68

Chapter 5

The importance of predictability

�ough Spectroscope has proven useful for automatically localizing performance changes, it
has been unable to reach its full potential because most distributed systems do not satisfy a
key property needed for automation—predictability (i.e., low variance in key metrics).�is
chapter highlights this important stumbling block toward increased automation. Section 5.1
describes how high variance a�ects predictability and discusses potential solutions for
lowering variance. Section 5.2 describes how existing automated diagnosis tools are a�ected
by high variance. Section 5.3 describes a nomenclature for helping system builders disam-
biguate wanted and unwanted variance sources in their distributed systems, and Section 5.4
describes a tool for helping system builders �nd such variance sources. Section 5.5 discusses
open questions, and Section 5.6 concludes.

5.1 How to improve distributed system predictability?

�e predictability of a distributed system is a�ected by variance in the metrics used to make
determinations about it. As variance increases, predictability decreases, and it becomes
harder for automation tools to make con�dent, or worse, correct determinations.�ough
variance cannot be eliminated completely due to fundamental non-determinism (e.g.,
actions of a remote system and bit errors), it can be reduced, improving predictability.

To aid automation, system builders could be encouraged to always minimize variance in
keymetrics.�is policy dovetails nicely with areas in which predictability is paramount. For
example, in the early 1990s, the US Postal Service slowed down mail delivery because they
decided consistency of delivery times was more important than raw speed. When asked
why this tradeo� was made, the postmaster general responded: “I began to hear complaints

69

frommailers and customers about inconsistent �rst-class mail delivery. . . .We learned how
important consistent, reliable delivery is to our customers” [24]. In scienti�c computing,
inter-node variance can drastically limit performance due to frequent synchronization
barriers. In real-time systems, it is more important for programs to meet each deadline
than run faster on average. Google has recently identi�ed low response-time variance as
crucial to achieving high performance in warehouse-scale computing [16].

Of course, inmany cases, variance is a side e�ect of desirable performance enhancements.
Caches, amainstay ofmost distributed systems, intentionally trade variance for performance.
Many scheduling algorithms do the same. Also, reducing variance blindly may lead to
synchronized “bad states,” which may result in failures or drastic performance problems.
For example, Patil et al. describe an emergent property in which load-balancing in GIGA+,
a distributed directory service, leads to a large performance dropo� as compute-intensive
hash bucket splits on various nodes naturally become synchronized [105].

Some variance is intrinsic to distributed systems and cannot be reduced without whole-
sale architectural changes. For example, identical components, such as disks from the
same vendor, can di�er signi�cantly in performance due to fault-masking techniques and
manufacturing e�ects [12, 84]. Also, it may be di�cult to design complex systems to exhibit
low variance because it is hard to predict their precise operating conditions [62, 94].

In practice, there is no easy answer in deciding how to address variance to aid automation.
�ere is, however, a wrong answer—ignoring it, as is too o�en being done today. Instead,
for the highly touted goal of automation to become a reality, system builders must treat
variance as a �rst-class metric. �ey should strive to localize the sources of variance in
their systems and make conscious decisions about which ones should be reduced. Such
explicit decisions about variance properties will result in more robust systems and will
vastly improve the utility of automation tools that rely on low variance to work.

5.2 Diagnosis tools & variance

Tools that automate aspects of performance diagnosis each assume a unique model of
system behaviour and use deviations from it to predict diagnoses. Most do not identify the
root cause directly, but rather automatically localize the source of the problem from any
of the numerous components in the system to just the speci�c components or functions
responsible. Di�erent tools exhibit di�erent failure modes when variance is high, depending
on the underlying techniques they use.

70

Tools that rely on thresholds make predictions when important metrics chosen by
experts exceed pre-determined values. �eir failure mode is the most unpredictable, as
they will return more false positives (inaccurate diagnoses) or false negatives (diagnoses
not made when they should have been), depending on the value of the threshold. A low
threshold will result in more false positives, whereas increasing it to accommodate the
high variance will mask problems, resulting in more false negatives. My conversations
with Facebook and Google engineers indicate that false positives are perhaps the worst
failure mode, due to the amount of developer e�ort wasted [107]. However, my experiences
running the visualization user study presented in Chapter 4 indicate that false negatives
may be just as nefarious because they decay developers’ con�dence in the tool’s ability.

To avoid false positives, some tools use statistical techniques to avoid predicting when
the expected false positive rate exceeds a pre-set one (e.g., 5%).�e cost of high variance
for them is an increase in false negatives. Some statistical tools use adaptive techniques to
increase their con�dence before making predictions—e.g., by collecting more data samples.
�e cost of high variance for them is increased storage/processing cost and an increase in
time required before predictions can be made.

Many tools use machine learning to automatically learn the model (e.g., metrics and
values) that best predicts performance. �e false positive rate and false negative rate are
controlled by selecting the model that best trades generality (which usually results in
more false negatives) with speci�city (which results in either more false positives or false
negatives).

5.2.1 How real tools are aªected by variance

Real tools use a combination of the techniques described above to make predictions.�is
section lists four such tools and how they are a�ected by variance. Table 5.1 provides a
summary and lists additional tools.

Magpie [15]:�is tool uses an unsupervised machine learning algorithm (clustering)
to identify anomalous requests in a distributed system. Requests are grouped together
based on similarity in request structure, performance metrics, and resource usage. Magpie
expects that most requests will fall into one of several “main” clusters of behaviour, so it
identi�es small ones as anomalies. A threshold is used to decide whether to place a request
in the cluster deemed most similar to it or whether to create a new one. High variance in
the values of the features used and use of a low threshold will yield many small clusters,

71

Tool FPs / FNs Tool FPs / FNs

Magpie [15] ⇑ / ⇑ DARC [144] - / ⇑
Spectroscope [117] ⇑ / ⇑ Distalyzer [98] - / ⇑
Peer comparison. [75, 76,
104]

⇑ / ⇑ Pinpoint [29] - / ⇑

NetMedic [72] - / ⇑ Shen [122] - / ⇑
Oliner et al. [103] - / ⇑ Sherlock [14] - / ⇑

Table 5.1: How the predictions made by automated performance diagnosis tools are a�ected by

high variance. As a result of high variance, diagnosis tools will yield more false positives (FPs), false
negatives (FNs), or both, depending on the techniques they use to make predictions. Note that the
choice of failure mode attributed to each tool was made conservatively.

resulting in an increase in false positives. Increasing the threshold will result in more false
negatives.

Spectroscope [117]:�is tool uses a combination of statistical techniques and thresholds
to identify the changes in request processing most responsible for an observed performance
change. It relies on the expectation that requests with identical structures (i.e., those
that visit the same components and show the same amount of parallelism) should incur
similar performance costs and that the request structures observed should be similar across
executions of the same workload. High variance in these metrics will increase the number
of false positives and false negatives. Experiments run on Bigtable [28] in three di�erent
Google datacenters show that 47–69% of all unique call graphs observed satisfy the similar
structures expectation, leaving much room for improvement [117]. �ose requests that
do not satisfy it su�er from a lack of enough instrumentation to tease out truly unique
structures and high contention with co-located processes.

Peer comparison [75, 76, 104]:�ese diagnosis tools are intended to be used on tightly
coupled distributed systems, such as Hadoop [8] and PVFS [137].�ey rely on the expec-
tation that every machine in a given cluster should exhibit the same behaviour. As such,
they indict a machine as exhibiting a problem if its performance metrics di�er signi�cantly
from others. �resholds are used to determine the degree of di�erence tolerated. High
variance in metric distributions between machines will result in more false positives, or
false negatives, depending on the threshold chosen. Recent trends that result in increased
performance variance from same-batch, same-model devices [84] negatively a�ect this
peer-comparison expectation.

Tool described by Oliner et al. [103]: �is tool identi�es correlations in anomalies

72

across components of a distributed system. To do so, it �rst calculates an anomaly score
for discrete time intervals by comparing the distribution of some signal—e.g., average
latency—during the interval to the overall distribution.�e strength of this calculation is
dependent on low variance in the signal. High variance will yield lower scores, resulting in
more false negatives.�e authors themselves state this fact: “�e [anomaly] signal should
usually take values close to the mean of its distribution—this is an obvious consequence of
its intended semantics” [103].

5.3 The three I’s of variance

Variance in distributed systems is an important metric that directly a�ects potential for
automated diagnosis. To reduce it, two complementary courses of action are necessary.
During the design phase, system builders should make conscious decisions about which
areas of the distributed system should be more predictable (exhibit low variance with regard
to important metrics). Since the complexity of distributed systems makes it unlikely they
will be able to identify all of the sources of variance during design [12, 62, 94], they must
also work to identify sources of variance during development and testing. To help with
the latter, this section describes a nomenclature for variance sources that can help system
builders reason about them and understand for which ones’ variance should be reduced.

Intentional variance sources:�ese are a result of a conscious tradeo�made by system
builders. For example, such variance may emanate from a scheduling algorithm that lowers
mean response time at the expense of variance. Alternatively, it may result from explicit
anti-correlation added to a component to prevent it from entering synchronized, stuck states
(e.g., Microreboots [106]). Labeling a source as intentional indicates the system builder will
not try to reduce its variance.

Inadvertent variance sources:�ese are o�en the result of poorly designed or imple-
mented code; as such, their variance should be reduced or eliminated. For example, such
variance sources may include functions that exhibit extraordinarily varied response times
because they contain many di�erent control paths (spaghetti code). In a recent paper [75],
Kasick et al. describe how such high variance functions were problematic for an automated
diagnosis tool developed for PVFS [137]. Such variance can also emanate from unforeseen
interactions between components, or may be the result of extreme contention for a so�-
ware resource (e.g., locks).�e latter suggests that certain contention-related performance
problems can be diagnosed directly by localizing variance. In fact, while developing Spec-

73

troscope [117], I found that high variance was o�en a good predictor of such problems (see
Chapter 3.2).

Intrinsic variance sources:�ese sources are o�en a result of fundamental properties
of the distributed system or datacenter—for example, the hardware in use. Short of archi-
tectural changes, their variance cannot be reduced. Examples include non-�at topologies
within a datacenter or disks that exhibit high variance in bandwidth between their inner
and outer zones [12].

Variance from intentional and intrinsic sources may be a given, so the quality of pre-
dictions made by automation tools in these areas will su�er. However, it is important to
guarantee their variance does not impact predictions made for other areas of the system.
�is may be the case if the data granularity used by an automation tool to make predic-
tions is not high enough to distinguish between a high-variance source and surrounding
areas. For example, problems in the so�ware stack of a component may go unnoticed
if an automation tool does not distinguish it from a high-variance disk. To avoid such
scenarios, system builders should help automation tools account for high-variance sources
directly—for example, by adding markers around them that are used by automation tools
to increase their data granularity.

5.4 VarianceFinder

To illustrate a variance-oriented mindset, this section proposes one potential mechanism,
called VarianceFinder, for helping system builders identify the main sources of variance in
their systems during development and testing.�e relatively simple design outlined here
focuses on reducing variance in response times for distributed storage systems such as Ursa
Minor [1], Bigtable [28], and GFS [55]. However, I believe this basic approach could be
extended to include other performance metrics and systems.

VarianceFinder utilizes request-�ow graphs obtained from end-to-end tracing (see
Chapter 2.2) and follows a two-tiered approach. First, it shows the variance associated
with aspects of the system’s overall functionality that should exhibit similar performance
(Section 5.4.1). Second, it allows system builders to select functionality with high variance
and identi�es the components, functions, or RPCs responsible, allowing them to take
appropriate action (Section 5.4.2). I believe this tiered approach will allow system builders
to expend e�ort where it is most needed.

74

5.4.1 Id’ing functionality & ®rst-tier output

To identify functionality that should exhibit similar performance, VarianceFinder employs
the expectation that requests with identical structures should incur similar performance
costs. Like Spectroscope, VarianceFinder groups request-�ow graphs that exhibit the same
structure—i.e., those that represent identical activities and execute the same trace points—
into categories and calculates average response times, variances, and squared coe�cients of
variation (C2) for each. C2, which is measured as (σµ)2, is a normalized measure of variance.
It captures the intuition that categories whose standard deviation is much greater than the
mean are worse o�enders than those whose standard deviation is less than or close to the
mean. In practice, categories with C2

> 1 are said to have high variance around the mean,
whereas those with C2

< 1 exhibit low variance around the mean.
�e �rst-tier output from VarianceFinder consists of the list of categories ranked by C2

value. System builders can click through highly-ranked categories to see a graph view of
the request structure, allowing them to determine whether it is important. For example,
a highly-ranked category that contains read requests likely will be deemed important,
whereas one that contains rare requests for the names of mounted volumes likely will not.

5.4.2 Second-tier output & resulting actions

Once the system builder has selected an important highly-ranked category, he can use
VarianceFinder to localize its main sources of variance. �is is done by highlighting the
highest-variance edges along the critical path of the category’s requests. Figure 5.1 illustrates
the overall process. In some cases, an edge may exhibit high variance, because of another
edge—for example, an edge spanning a queue might display high variance because the
component to which it sends data also does so. To help system builders understand these
dependencies, clicking on a highlighted edge will reveal other edges that have non-zero
covariance with it.

Knowing the edges responsible for the high variance allows the system builder to
investigate the relevant areas of the system. Variance from sources that he deems inadvertent
should be reduced or eliminated. Alternatively, he might decide that variance from certain
sources should not or cannot be reduced because they are intentional or intrinsic. In such
cases, he should add tight instrumentation points around the source to serve as markers.
Automation tools that use these markers to increase their data granularity—especially those,
like Spectroscope [117], that use end-to-end traces directly [15, 29, 117, 125]—will be able to

75

Write
3 ms

Write
4 ms

Write
3 ms1 ms

Read
36 ms

1 msRead
4 ms

Read
8 ms

1 ms

Read Avg: 16 ms

Var: 304 ms2

C2: 1.2

Write Avg: 3.3 ms

Var: 0.25 ms2

C2: 0.02

Avg: 5 ms

Var: 200 ms2

Write
3 ms

Input request-!ow graphs:

Output categories:

Figure 5.1: Example of how aVarianceFinder implementationmight categorize requests to iden-

tify functionality with high variance. VarianceFinder assumes that requests with identical struc-
tures should incur similar costs. It groups request-�ow graphs that exhibit the same structure into
categories and calculates statistical metrics for them. Categories are ranked by the squared coe�cient
of variation (C2) and high-variance edges along their critical path are automatically highlighted (as
indicated by the magnifying glass).

make better predictions about areas surrounding the high-variance source.
Adding instrumentation can also help reveal previously unknown interesting behaviour.

�e system builder might decide that an edge exhibits high variance because it encompasses
too large of an area of the system, merging many dissimilar behaviours (e.g., cache hits and
cache misses). In such cases, extra instrumentation should be added to disambiguate them.

5.5 Discussion

�is chapter argues that variance in key performance metrics needs to be addressed ex-
plicitly during design and implementation of distributed systems, if automated diagnosis
is to become a reality. But, much additional research is needed to understand how much
variance can and should be reduced, the di�culty of doing so, and the resulting reduction
in management e�ort.

76

To answer the above questions, it is important that we work to identify the breakdown
of intentional, inadvertent, and intrinsic variance sources in distributed systems and data-
centers. To understand if the e�ort required to reduce variance is worthwhile, the bene�ts
of better automation must be quanti�ed by how real people utilize and react to automation
tools, not via simulated experiments or fault injection. If this tradeo� falls strongly in favour
of automation, and intrinsic variance sources are the largest contributers, architectural
changes to datacenter and hardware design may be necessary. For example, system builders
may need to increase the rate at which they adopt and develop strong performance isola-
tion [63] or insulation [148] techniques. Also, hardware manufacturers, such as disk drive
vendors, may need to incorporate performance variance as a �rst-class metric and strive to
minimize it.

Similarly, if (currently) intentional sources are the largest contributors, system builders
may need to re-visit key design tradeo�s. For example, they may need to consider using
datacenter schedulers that emphasize predictability and low variance in job completion
times [45] instead of ones that dynamically maximize resource utilization at the cost of
predictability and low variance [56].

Finally, automated performance diagnosis is just one of many reasons why low variance
is important in distributed systems and datacenters. For example, strong service-level
agreements are di�cult to support without expectations of low variance. As such, many of
the arguments posed in this chapter are applicable in a much broader sense.

5.6 Conclusion

�ough automation in large distributed systems is a desirable goal, it cannot be achieved
when variance is high.�is chapter presents a framework for understanding and reducing
variance in performance metrics so as to improve the quality of automated performance
diagnosis tools. I imagine that there are many other tools and design patterns for reducing
variance and enhancing predictability. In the interim, those building automation tools must
consider whether the underlying system is predictable enough for their tools to be e�ective.

77

78

Chapter 6

Related work on performance
diagnosis

�ere has been a proliferation of research in the past several years on how to diagnose
distributed systems problems. Due to the many di�erent types of systems (e.g., distributed
storage, dynamic hash tables, those for high-performance computing, those for cloud
computing), available data sources (e.g., end-to-end traces, logs, performance counters),
and potential problems (e.g., performance anomalies, behavioural changes, correctness
issues), it is likely that there is no single “magic bullet” solution. Rather, the likely outcome
of these research e�orts is a toolbox of diagnosis techniques, each serving their own unique
and useful purpose.�is chapter samples the constituents of this toolbox for performance
diagnosis.

Tools for performance diagnosis can be categorized on many axes. For example, they
could be categorized according to the type of instrumentation they use (see Oliner’s dis-
sertation [101]) or the techniques they use to diagnose relevant problems (e.g., statistics,
machine learning, mathematical modeling). In this related work chapter, tools are catego-
rized according to their intended functionality. Viewed through this lens, most diagnosis
tools are designed to help diagnosticians with a speci�c phase of the diagnosis work�ow:
problem localization, root-cause identi�cation, or problem recti�cation (see Figure 1.1).
Most research has focused on tools for helping diagnosticians localize the source of a new
problem; they are described in Section 6.1. Some tools are designed to help identify the
root cause directly and are described in Section 6.2. Tools in this category are limited to
suggesting previously observed root causes, but doing so allows diagnosticians to skip the
problem localization step. A few tools attempt to automatically �x an observed problem by
applying simple actions, such as rebooting or re-imaging an o�ending machine; examples

79

are described in Section 6.3.
Recent research has also focused on tools for helping optimize distributed system

performance when no “problem” has been explicitly identi�ed—for example, tools that
help administrators with decisions about con�guration choices. Such tools are described
in Section 6.4. A signi�cant amount of research has also focused on diagnosis tools for
single-process systems; examples of such tools are described in Section 6.5.

6.1 Problem-localization tools

Tools that localize performance problems can be divided into six main categories: tools
that automatically identify anomalies, tools that automatically identify behavioural changes
(i.e., steady-state changes), tools that automatically identify dissenting nodes in tightly
coupled distributed systems (e.g., PVFS [137]), tools that aid in distributed pro�ling, tools
that exhaustively explore potential behaviours to �nd potential problems, and tools that help
localize problems by visualizing trends amongst important metrics. Tables 6.1, 6.2, 6.3, 6.4,
6.5, and 6.6 summarize these tools in terms of their functionality, the comparative approach
they use to identify problems, and their building blocks (i.e., the fundamental techniques
and data source they use). End-to-end traces are the most detailed and comprehensive
data source, but require distributed systems to be modi�ed to generate them. To work with
unmodi�ed systems, many tools use more commonly available data sources, such as logs.
However, in practice, the potential of these tools is o�en limited because the data sources
they use are not speci�cally designed to support their intended use cases. To help, some
research e�orts focus on mechanisms to automatically retro�t existing distributed systems
with the instrumentation necessary to support speci�c diagnosis tasks [154].

Many tools that localize performance problems work by comparing expected distributed
system behaviour to poorly-performing runtime behaviour. Expected behaviour can be
expressed in a variety of ways, including via:

Current runtime behaviour: When determining whether a problem should be lo-
calized to a given distributed system component or request, expected behaviour can be
expressed in terms of that of other nodes, components, or requests observed during the
same execution.�is comparison approach is most commonly used for anomaly detection
or for detecting dissenters in tightly coupled distributed systems in which all nodes are
expected to perform similarly.

Previous runtimebehaviour: In systems inwhich all nodes are not expected to perform

80

similarly, behaviour from previous time periods during which performance was acceptable
can be stored and used as expected behaviour. Such tools may use machine learning to
learn a model from previous behaviour or may use previous behaviour directly.

Look-back window: �is approach is similar to the previous one, except instead of
using a distinct speci�c period or execution as expected behaviour, a look-back window of
the previous N minutes is used. Look-back windows are most commonly used by tools that
operate on time-series data built from performance counters or other key metrics.

Mathematical models: Some tools use models derived from �rst principles, such as
queuing theory, as expected behaviour. Compared to using runtime behaviour directly,
as in the approaches described above, mathematical models can more completely and
correctly express desired behaviour. For example, expected behaviour derived from a
previous execution may itself contain latent performance problems and is limited in scope
to what was observed. Despite these advantages, many tools do not use mathematical
models because they are very di�cult to create and scale [132].

Expectations: Another approach involves asking diagnosticians to explicitly specify
expected behaviour, for example via a custom language [110]. Manually written expectations
are di�cult to specify for large systems that exhibit many complex behaviours.

Diagnostician’s intuition: In some cases, especially for distributed pro�ling and vi-
sualization, expected behaviour is not explicitly speci�ed; rather, these tools rely on the
diagnostician’s intuition to judge where the problem lies. For example, a diagnostician
using a pro�ling tool, such as Whodunit [27], must himself decide whether a large latency
observed for a function is acceptable, whereas this decision can be made automatically by
tools that use explicit models.

�e rest of this section describes various localization tools.

6.1.1 Anomaly detection

Table 6.1 summarizes tools intended to help diagnosticians localize problems that manifest
as anomalies—components, requests, or other behaviours that show up in the tail of some
important performance metric’s distribution. More generally, anomalies are rare and ex-
tremely di�erent from what has been observed before. Mapgie [15] uses end-to-end traces
and unsupervised machine learning to identify request �ows that exhibit very di�erent
structures or resource utilizations compared to other requests. Xu et al. [152] attempt to
replicate Magpie’s functionality for systems without native end-to-end tracing support by

81

Tool Function Comparison method Data source

Magpie [15] Find anomalous �ows Current runtime E-e traces
Xu et al. [152] Find anomalous paths ” Logs
Oliner et al. [103] Show anomaly propagation Look-back window Counters
PAL [99] ” ” ”

Table 6.1: Localization tools that identify anomalies.

mining logs to identify causally-related activity. �e resulting request-path graphs are
not as expressive or comprehensive as the request-�ow graphs created by Magpie’s tracing
infrastructure, limiting the types of anomalies Xu et al.’s approach can identify. For exam-
ple, request paths cannot be used to identify anomalous requests that exhibit excessive or
too little parallelism. Xu et al. also describe a way to compare ratios of observed system
states across time windows of execution to identify anomalous windows. System states are
extracted from log entries.

Performance anomalies o�en originate on particular components or nodes of a system,
but, due to inter-component in�uences, can quickly propagate to other components or
nodes. �is makes it di�cult to localize the problem to the true culprit. For example,
an upstream component that sends requests slower than usual to a downstream one will
cause the throughput of both to appear slower, even though the upstream component
is the true culprit. Conversely, slow response times from a downstream component will
quickly increase queuing times on an upstream one. Oliner et al. [103] infer such inter-
component in�uences using time series data constructed from a chosen performance
counter (e.g., running average latency).�eir approach involves creating per-component
anomaly signals describing how abnormal a current time series window is to past windows
and then correlating time-shi�ed versions of these signals with each other to determine
in�uences. PAL [99] identi�es in�uences by identifying per-component change points in
time series data and then ordering ones that occur on di�erent components by timestamp.

Note that end-to-end traces could be used by by both tools above to lower false positives
(i.e., in�uences identi�ed between components that never directly or indirectly communi-
cate with each other). However, end-to-end traces are not su�cient to identify in�uences
by themselves because most do not capture this form of causality.

82

6.1.2 Behavioural-change detection

Table 6.2 shows tools intended to help diagnosticians localize problems that manifest as
steady-state changes in the distribution of important performance metrics (e.g., response
times or request structures). Unlike anomalies, which a�ect only a distribution’s tail, be-
havioural changes are not as rare (i.e., they a�ect the 50th or 75th percentile) and are not
necessarily as extreme. �ey are o�en identi�ed and localized using statistical methods,
such as hypothesis testing, thresholds on key metrics, and machine learning.

Spectroscope [117], the localization tool discussed in this dissertation, uses end-to-end
traces, statistical hypothesis tests, and thresholds to help identify the most performance-
a�ecting changes in the timing and structure of observed request �ows between a period of
acceptable performance and one of poor performance. Doing so allows diagnosticians to
use the changed areas as starting points in their diagnosis e�orts. Spectroscope also uses
machine learning to further localize the problem to the low-level parameters (e.g., function
parameters, con�guration values or client-sent parameters) that best distinguish changed
and original �ows. Distalyzer [98] uses similar techniques to identify performance-a�ecting
di�erences between two periods of log data collected from individual machines. Since
it uses logs instead of end-to-end traces, Distalyzer is restricted to showing per-machine
di�erences instead of that in the end-to-end work�ow of servicing client requests. Portions
of Pinpoint [29] uses statistical tests to determine performance regressions in request �ows.

IRONModel [140], uses runtime behaviour derived from end-to-end traces to evolve
mathematics models of expected behaviour built from queuing theory. As such, it di�ers
from many of the tools described above, which use a period of runtime data as expected
behaviour. Observing how the model is evolved shows how expected behaviour di�ers from

Tool Function Comparison method Data source

Spectroscope [117] Find perf. a�ecting changes in �ows Previous runtime E-e traces
Distalyzer [98] Find perf. a�ecting changes in logs ” Logs
Pinpoint [29] Find latency changes in �ows ” E-e traces
IronModel [140] Find model/runtime deviations Mathematical model ”
Pip [110] Find expectation/runtime deviations Expectations ”
NetMedic [72] Find in�uencing components Current runtime Counters
Sherlock [14] ” ” & traceroute
Giza [88] Find problematic node & in�uencers ” Counters

Table 6.2: Localization tools that identify behavioural changes.

83

actual behaviour and can sometimes serve to localize performance problems. Pip [110]
requires developers to write expectations of expected behaviour and compares them to
end-to-end traces showing runtime behaviour. Due to the e�ort required to manually write
expectations, Pip is best used to debug small, yet complex, areas of a system’s codebase.
To ameliorate the e�ort necessary, Pip can generate expectations automatically, but these
are o�en too restrictive and must be manually examined and re�ned. �ough detecting
behavioural di�erences is perhaps Pip’s best application, the �exibility of its expectation lan-
guage allows it to be used for many purposes, including anomaly detection and correctness
debugging.

Similar to the anomaly propagation case, some tools are designed to identify what
other distributed system components or events might have in�uenced a behavioural change
observed in a problematic component. NetMedic [72] identi�es the most likely path of
in�uence using a dependency diagram speci�ed by diagnosticians and past inter-node
performance correlations. Sherlock [14] models a distributed system’s components as a state
vector in which each element is a tuple that indicates the probability a given component
is up, down, or problematic. It uses a probabilistic dependency diagram to gauge how a
particular assignment of statesmight in�uence that of a known problematic component.�e
assignment that yields the best match to the observed component’s behaviour is identi�ed
and problematic/non-working components in this best assignment are selected as those
in�uencing the observed component’s problematic behaviour.

�e dependency diagrams used by NetMedic can be more granular, but those used by
Sherlock are automatically inferred via network messages; end-to-end traces could be used
instead in systemswith support for them. Unlike the anomaly propagation tools discussed in
the previous section, NetMedic and Sherlock do not account for in�uences in the direction
opposite normal component-wise dependencies (e.g., a downstream component a�ecting
an upstream one).

Giza [88] uses statistical tests that exploit the hierarchical structure of IPTV networks
to identify nodes with a larger than expected number of problematic events. Other event
streams observed on such nodes that correlate highly with the problematic event stream
are identi�ed and an in�uence graph is created to identify how these streams depend on
each other.

84

6.1.3 Dissenter detection

Table 6.3 shows tools designed to localize performance problems by identifying nodes whose
current performance di�ers signi�cantly than the majority.�ey are designed to be used in
tightly-coupled distributed systems, such as PVFS [137], Lustre [136], and HDFS [134], in
which every node is expected to exhibit identical (or very similar) behaviour. For example,
in PVFS, every node is included in the stripe set of every �le, so all reads should induce the
same amount of work on each node. In HDFS, data is replicated on datanodes randomly, so
all of them should exhibit similar performance over a large enough time period (assuming
they use similar hardware and so�ware).

For PVFS and Lustre, Kasick et al. [74, 76] describe a tool that localizes problems
by comparing distributions of expert-selected performance counter values across nodes;
problematic nodes are identi�ed as those that exhibit performance counter distributions
that di�er signi�cantly from more than half their peers.�is peer comparison approach
is also used by Ganesha [104] to diagnose problems in Hadoop [8] and HDFS, except
with modi�cations to better allow inter-node performance to vary over small time scales.
Both of these previous tools operate on raw counter values, so they will not work properly
with nodes that use di�erent hardware. PeerWatch [73] addresses this limitation by using
statistical techniques to extract correlations between time series descriptions of counters
on di�erent nodes and performing comparisons on the correlations instead.

6.1.4 Exploring & ®nding problematic behaviours

Table 6.4 shows tools designed to identify and localize performance problems by exhaustively
exploring possible distributed system behaviours; they are useful for identifying latent
problems that have not yet been observed during regular use. MacePC [81] identi�es
latent performance problems in event-driven systems built using the MACE programming
language [82]. To do so, it �rst learns latency distributions of event processing on various

Tool Function Comparison method Data source

Kasick et al. [74, 76] Find dissenting nodes Current runtime Counters
Gensesha [104] ” Current runtime Counters
PeerWatch [73] Find dissenting VMs Current runtime Counters

Table 6.3: Localization tools that identify dissenters in tightly coupled systems.

85

Tool Function Comparison method Data source

MacePC [81] Find latent perf. bugs Previous runtime State-changing events
HangWiz [151] Find so� hang bugs Static analysis Source code

Table 6.4: Localization tools that explore potential system behaviours to �nd problems.

nodes during real executions of the system. It then explores previously unseen system
executions in a simulator, in which event completion times are determined from the learned
distributions. Simulations that exhibit poor performance are further examined to identify
the speci�c events responsible. HangWiz [151] uses static analysis to identify source code
locations that may trigger responsiveness problems (e.g., those problems that result in the
Mac OS X beach ball appearing temporarily).

6.1.5 Distributed pro®ling & debugging

Table 6.5 shows tools intended to help pro�le distributed system performance. Who-
dunit [27] uses end-to-end traces to generate calling context trees [5], in which each node
represents a function or component and is annotated with the percentage of total CPU time
spent within it. Calling context trees di�er from regular call graphs in that every unique
path from root to leaf is guaranteed to be a real path taken by at least one observed request.
Dapper [125], ETE [66], and NetLogger [142] can also help diagnosticians pro�le individual
requests by showing them in a Gantt chart.

6.1.6 Visualization

Several diagnosis tools help diagnosticians localize performance problems by visualizing
important metrics so as to show trends amongst them; Table 6.6 shows some of these tools.
Maya [22] visualizes a social graph of component dependencies, culled from analysis of a

Tool Function Comparison method Data source

Whodunit [27] Pro�le workload perf. Diagnostician’s intuition E-e traces
Dapper [125] Pro�le individual requests ” ”
ETE [66] ” ” ”
NetLogger [142] ” ” ”

Table 6.5: Localization tools that pro�le distributed system performance.

86

Tool Function Comparison method Data source

Maya [22] Visualize dependencies & metrics Diagnostician’s intuition Counters
Artemis [37] Visualize metric correlations ” ”
Otus [109] ” ” ”
Tan et al. [131] Visualize map-reduce �ows ” Logs

Table 6.6: Localization tools that visualize important metrics.

common middleware framework. Deployed at Amazon, diagnosticians can zoom into any
component to view performance metrics and understand how problems propagate across
nodes. Artemis [37] and Otus [109] are log collection and analysis frameworks that allow
diagnosticians to plot and compare arbitrary performance metrics collected from di�erent
nodes. For example, Otus can be used to show memory usage across all Hadoop nodes,
memory used by each mapper running on a single node, or memory used by a particular
job on every node. Tan et al. [131] describe a tool for Hadoop that mines Hadoop logs to
extract very low granularity �ows that show causality between individual mappers, reducers,
and HDFS.�ese �ows can be visualized in swimlanes to identify outliers and can be sliced
in various ways to show other types of anomalous behaviour.

�ough useful, tools that rely on visualization alone are likely to be less useful than
those that automatically localize problems and use strong visualizations to present their
results e�ectively. NetClinic [86], the visualization layer for NetMedic [72], allows diagnos-
ticians to browse NetMedic’s results and explore other alternatives when the automated
localization results are incorrect. Spectroscope includes a visualization layer [116] that helps
diagnosticians identify relevant di�erences between the problematic and corresponding
non-problematic requests identi�ed by its algorithms [117].

6.2 Root-cause identi®cation tools

Unlike problem localization tools, which only reduce the amount of e�ect necessary to
identify the root cause of a problem, tools in this category attempt to identify the root
cause automatically. �is extra power comes at the cost of generality: most root-cause
identi�cation tools can only identify the root cause if the current problem matches or is
similar to a previously diagnosed one. �e tools presented in this section mainly di�er
based on how they construct signatures for representing unique problems and the machine
learning techniques they to detect recurrences.

87

SLIC [35] constructs signatures of past problems using bit vectors in which the ith

element indicates whether some observed performance counter’s running average value
was more likely to come from a period of service-level objective violation or compliance.
Probabilities are learned from past behaviour using a tree-augmented Bayesian network [34].
Since the same problemmay manifest as many similar, yet distinct signatures, unsupervised
clustering is used to group similar signatures and a new problem is identi�ed as a recurrence
of the cluster to which it is assigned. Bodik et al. [23] improve upon SLIC’s technique by
using more robust data (e.g., quantiles instead of averages) and more e�ective machine
learning techniques. Finally, instead of using performance counters, Yuan et al. [153] use
signatures constructed from n-grams of system-call invocations observed during a problem
occurrence. Support vector machines, each trained to detect whether a new signature is
representative of a previously observed problem, are used to detect recurrences.

6.3 Problem-recti®cation tools

A small number of tools explore how to automatically take corrective actions to �x an
observed problem. For example, Autopilot [59, 70] uses data from past automated actions
to compute a survivor function describing how long a failed machine or device will last
given a certain recovery action is performed. Given a desired survival time, it picks the best
action and performs it. Only simple recovery actions, such as rebooting or re-imaging are
considered. Netprints [2] crowdsources problem instances and network con�guration data
and uses both to create regression trees that identify potential �xes for a given problem. If
possible, these �xes are applied automatically.

6.4 Performance-optimization tools

Many of the tools described in the previous section are meant to be used to �x an observed
problem. Some tools help developers understand how to improve performance even when
no overt problem has been identi�ed. “What-if analysis” [132, 138, 139, 141] allows developers
to explore the e�ect on performance of con�guration changes (e.g., “What would the
response time be if I upgraded the hard disks on one server?”). Where many of these tools
use mathematical models derived from queuing theory [138, 141], WISE [132], designed
to answer what-if questions about large-scale CDNs, eschews models derived from �rst
principles for easier to specify ones derived from machine learning. Another class of tools

88

allows users to explore con�guration changes in sandboxed environments [156] or via
speculative execution that can be rolled back [13]. Note that the pro�ling tools, discussed in
Section 6.1.5, could also be included in this category.

6.5 Single-process tools

�ere are also many single-process diagnosis tools that inform diagnosis techniques for
distributed systems. For example, conceptually similar to Spectroscope [117], OptiScope [96]
compares the code transformations made by di�erent compilers to help developers identify
important performance-a�ecting di�erences. Delta analysis [145] compares multiple failing
and non-failing runs to identify di�erences responsible for failures.�e tool described by
Shen et al. [122] compares two executions of Linux workloads using statistical techniques
to identify unexpected performance changes. In another paper, Shen et al. [123] describe a
tool that identi�es performance problems in I/O subsystems by comparing an analytical
model of the subsystem to observed runtime behaviour. DARC [144] creates histograms of
Linux system call latencies and automatically pro�les selected peaks to identify the most
dominant latency contributors.

89

90

Chapter 7

Systemizing end-to-end tracing
knowledge

�is dissertation focuses primarily on request-�ow comparison, a diagnosis technique
that uses end-to-end traces as its data source. However, in the process of developing and
evaluating this technique, I had to design, engineer, and maintain two of the most well-
known tracing infrastructures (i.e., Stardust [117, 141] and the version of X-Trace [47] I
used for my HDFS explorations [150]). I also worked on Google’s end-to-end tracing
infrastructure, Dapper [125], in the context of building Spectroscope [117] and other tools
as extensions to it.�ese experiences have given me considerable insight into end-to-end
tracing.

Most notably, I have learned that end-to-end tracing is not a one-size-�ts-all solution.
For example, when developing Spectroscope, my collaborators and I initially thought that
the original version of Stardust [141], which had been designed for resource attribution (i.e.,
to charge work done deep in the distributed system to the client responsible for submitting
it), would also be useful for diagnosis. However, I quickly found that the traces it yielded
were of little value for most diagnosis tasks, leadingme to create a revised version of Stardust
useful speci�cally for diagnosis [117]. More generally, I have found that key design axes
dictate a tracing infrastructure’s utility for each of the various use cases generally attributed
to end-to-end tracing. Since e�ciency concerns make it impractical to support all use cases,
designers of a tracing infrastructure must be careful to choose options for these axes that
are best suited to the infrastructure’s intended purposes. Otherwise, it will fail to satisfy
expectations.

Unfortunately, despite the strong interest in end-to-end tracing from both the research
community [3, 15, 27, 29, 47, 48, 66, 78, 110, 111, 117, 130, 131, 141, 142, 152] and industry [36,

91

125, 143, 147], there exists little information to help designers make informed choices about
end-to-end tracing’s design axes. Since these axes are not well understand, somewell-known
tracing infrastructures have indeed failed to live up to expectations.

�is dissertation chapter seeks to help. Based on my experiences and the previous
ten years of research on end-to-end tracing, it distills the key design axes and explains
trade-o�s associated with the options for each. Beyond describing the degrees of freedom, it
suggests speci�c design points for each of several key tracing use cases and identi�es which
previous tracing infrastructures do and do not match up. Overall, I believe this chapter
represents the �rst attempt to bring together a coherent view of the range of end-to-end
tracing implementations and provide system designers a roadmap for integrating it.

�e remainder of this chapter is organized as follows. Section 7.1 discusses use cases for
and the basic anatomy of end-to-end tracing. Sections 7.2 to 7.5 describe key design axes and
tradeo�s for them.�ese axes include the sampling strategy, which causal relationships are
captured, how causal relationships are tracked, and how end-to-end traces are visualized.
Section 7.6 applies these insights to suggest speci�c design choices for each of several
use cases. It also compares my suggestions to that of existing tracing infrastructures to
show where prior infrastructures fall short. Section 7.7 discusses some challenges and
opportunities that remain in realizing the full potential of end-to-end tracing, and Section 7.8
concludes.

7.1 Background

�is section describes relevant background about end-to-end tracing. Section 7.1.1 describes
its key use cases from the literature. Section 7.1.2 lists the three commonly used approaches
to end-to-end tracing, and Section 7.1.3 describes the architecture of the approach advocated
in this paper.

7.1.1 Use cases

Table 7.1 summarizes the key use cases of end-to-end tracing.�ey are described below.
Anomaly detection:�is diagnosis-related use case involves detecting rare �ows that

incur signi�cant latency and/or have extremely di�erent structures than other �ows and
understanding why they occur. Anomalies may be related to correctness (e.g., timeouts or
component failures) or performance (e.g., slow requests that fall in the 99.9th percentile
of observed response times). Magpie [15] identi�es both types by �nding requests that

92

Intended use Implementations

Anomaly detection Magpie [15] Pinpoint [29]

Diagnosing steady-state problems Dapper [125]
Pip [110]

Pinpoint [29]
Stardust‡ [117]

X-Trace [48]
X-Trace‡ [47]

Distributed pro�ling ETE [66] Dapper [125] Whodunit [27]

Resource attribution Stardust [141] Quanto [46]

Workload modeling Magpie [15] Stardust [141]

Table 7.1: Main uses of end-to-end tracing.�is table lists the key use cases for end-to-end tracing
and corresponding implementations. Some implementations appear for multiple use cases. �e
revised versions of Stardust and X-Trace are denoted by Stardust‡ and X-Trace‡.

are anomalous in request structure and resource usage. Pinpoint’s [29] anomaly detection
component focuses on correctness problems and so identi�es requests with anomalous
structures only.

Diagnosing steady-state problems (i.e., behaviourial changes):�is is another diagnosis-
related use case and involves identifying and debugging problems that manifest in many
requests and so are not anomalies. Such problems a�ect the 50th or 75th percentile of some
important metric, not the 99th. �ey are generally not correctness related, but related to
performance—for example, a con�guration change that modi�es the work�ow of a set
of requests and increases their response times. Pip [110], the latest version of Stardust
(Stardust‡) [117], both versions of X-Trace [47, 48], Dapper [125], and parts of Pinpoint [29]
all help diagnose steady-state problems that manifest in the structure of requests or their
timing.

Distributedpro�ling:�e goal of distributed pro�ling is to identify slow components or
functions. Since the time a function takes to execute may di�er based on how it is invoked,
pro�lers o�en maintain separate bins for every unique calling stack. Whodunit [27] is
explicitly designed for this purpose and can be used to pro�le entire workloads. Dapper [125]
and ETE [66] show visualizations designed to help pro�le individual requests.

Resource attribution:�is use case is designed to answer questions of the form “Who
should be charged for this piece of work executed deep in the stack of my distributed
system’s components?” It involves tying work done at an arbitrary component of the
distributed system to the client or request that originally submitted it.�e original version
of Stardust [141] and Quanto [46] are designed for resource attribution; the former answers

93

“what-if ” questions (e.g., “What would happen to the performance of workload A if I
replaced the CPU on a certain distributed system component with a faster one?”) and the
latter tracks energy usage in distributed embedded systems. Note that resource attribution-
based tracing can be especially useful for accounting and billing purposes, especially in
distributed services shared by many clients, such as HDFS or Amazon’s EC2 [149].

Workload modeling: End-to-end tracing can also be used to model workloads. For
example, Magpie [15] clusters its traces to identify those that are representative of the entire
workload. Stardust [141] can be used to create queuing models that served to answer its
“what-if ” analyses.

7.1.2 Approaches to end-to-end tracing

Most end-to-end tracing infrastructures use one of three approaches to identify causally-
related �ows: metadata propagation, schemas, or black-box inference.�is paper focuses
on design decisions for tracing infrastructures that use the �rst, as they are more scalable
and produce more accurate traces than those that use the other two. However, many of my
analyses are also applicable to the other approaches.

Metadata propagation: Like security, end-to-end tracingworks best when it is designed
as part of the distributed system. As such, many implementations are designed for use
with white-box systems, for which the distributed system’s components can be modi�ed to
propagate metadata (e.g., an ID) delineating causally-related �ows [27, 29, 46, 47, 48, 110,
117, 125, 141]. All of them identify causality between individual functions or trace points,
which resemble log messages and record the fact that a �ow reached a particular point
in the system. However, Dapper [125] chooses to emphasize causality between individual
RPCs. To keep runtime overhead (e.g., slowdown in response time and throughput) to a
minimum so that tracing can be “always on,” most tracing infrastructures in this category
use sampling to collect only a small number of trace points or �ows.

Schema-based: A few implementations, such as ETE [66] and Magpie [15] do not prop-
agate metadata, but rather require developers to write temporal join-schemas that establish
causal relationships among variables exposed in individual log messages. Developers must
modify the distributed system to expose appropriate variables. A temporal join de�nes a
valid time interval during which trace-point records that store speci�c identical variable
values should be considered causally-related. For example, in most systems, a worker thread
pulling an item o� of a queue de�nes the start of a valid time interval during which all

94

log messages that store the same thread ID should be considered causally related. Schema-
based approaches are not compatible with sampling, since they delay determining what
is causally related until a�er all logs are collected. �erefore, they are less scalable than
metadata-propagation approaches.

Black-box inference: Several implementations try to create traces for black-box systems—
i.e., systems for which source code cannot or will not be modi�ed [3, 21, 78, 83, 111, 130, 131,
152]. Some try to infer causality by correlating variables exposed in pre-existing log state-
ments [21, 78, 131, 152]. Others use simplifying assumptions. For example, Tak et al. [130]
assume synchronous behaviour between components and, within components, that a single
worker thread will be responsible for synchronously performing all work for a given request,
including sending/receiving sub-requests and responding to the original client. Aguilera et
al. [3] and Reynolds et al. [111] observe only send/receive events between components and
use models of expected delay between causally-related events to infer causality.�ough the
promise of obtaining end-to-end traces without so�ware modi�cation is appealing, these
approaches cannot properly attribute causality in the face of asynchronous behaviour (e.g.,
caching, event-driven systems), concurrency, aggregation, or code-speci�c design patterns
(e.g., 2-of-3 storage encodings), all of which are common in distributed systems.

7.1.3 Anatomy of end-to-end tracing

Figure 7.1 shows the anatomy of most end-to-end tracing infrastructures that use metadata
propagation. Two conceptual design choices dictate its functionality and the design of its
physical components: how to decide what �ows or trace points to sample and what observed
causal relationships to preserve. Section 7.2 describes the tradeo�s between various sampling
techniques, and Section 7.3 describes what causal relationships should be preserved for
various end-to-end tracing use cases. �e sampling technique used a�ects the types of
causal relationships that can be preserved with low overhead, so care must be taken to
choose compatible ones.

�e so�ware components of the tracing infrastructure work to implement the chosen
sampling technique, preserve desired causal relationships, optionally store this information,
and create traces.�ey include individual trace points, the causal-tracking mechanism, the
storage component, trace construction code, and the presentation layer.

Individual trace points record locations in the codebase accessed by individual �ows.
�ey are o�en embedded in commonly used libraries (e.g., RPC libraries) and manu-

95

Figure 7.1: Anatomy of end-to-end tracing.�e elements of a typical metadata-propagation-based
tracing infrastructure are shown.

ally added by developers in areas of the distributed system’s so�ware they deem impor-
tant [47, 117, 125]. Alternatively, binary re-writing or interposition techniques can be used
to automatically add them at function boundaries [27, 43]. Design decisions for where to
add trace points are similar to those for logging and are not discussed in detail here.

�e causal-tracking mechanism propagates metadata with �ows to identify causally-
related activity. It is critical to end-to-end tracing and key design decisions for it are
described in Section 7.4.

�e storage component stores records of sampled trace points and its associated meta-
data. Such trace-point records may also include additional useful information, such as
the current call stack. �e trace construction code joins trace-point records that have
related metadata to construct traces of causally-related activity. �ese components are
optional—trace points need not be stored if the desired analysis can be performed online
and trace construction is not necessary if the analyses do not need full traces. For example,
for some analyses, it is su�cient to propagate important data with causally-related activity
and read it at executed trace points.

Several good engineering choices, as implemented by Dapper [125], can minimize the
performance impact of storing trace points. First, on individual components, sampled
trace points should be logged asynchronously (i.e., o� the critical path of the distributed
system). For example, this can be done by copying them to a in-memory circular bu�er

96

(or discarding them if the bu�er is full) and using a separate thread to write trace points
from this bu�er to local disk or to a table store. A map-reduce job can then be used to
construct traces. Both Stardust [141] and Dapper [125] suggest storing traces for two weeks
for post-hoc analyses before discarding them.

�e �nal aspect of an end-to-end tracing infrastructure is the presentation layer. It
is is responsible for showing constructed traces to users and is important for diagnosis-
related tasks. Various ways to visualize traces and tradeo�s between them are discussed in
Section 7.5.

7.2 Sampling techniques

Sampling determines what trace points are collected by the tracing infrastructure. It is
the most important technique used by end-to-end tracing infrastructures to limit runtime
and storage overhead [27, 47, 117, 125, 141]. For example, even though Dapper writes trace
points records to stable storage asynchronously (i.e., o� the critical path of the distributed
system), it still imposes a 1.5% throughput and 16% response time overhead when capturing
all trace points executed by a web search workload [125]. When using sampling to capture
just 0.01% of all trace points, the slowdown in response times is reduced to 0.20% and in
throughput to 0.06% [125]. Even when trace points need not be stored because the required
analyses can be performed online, sampling is useful to limit the sizes of analysis-speci�c
data structures [27].

�ere are three commonly-used options with regards to deciding what trace points
to sample.�e �rst two are necessary if traces showing causally-related activity are to be
constructed.

Head-based coherent sampling: In order to construct a trace of causally-related activity,
all trace points executed on its behalf must be sampled. Coherent sampling satis�es this
requirement by sampling all or none of the trace points executed on behalf of a �ow.
With head-based sampling, the decision to collect a �ow is made at its start (e.g., when a
request enters the system) and metadata is propagated along with the the �ow indicating
whether to collect its trace points. �is method of coherent sampling is used by several
implementations [47, 117, 125]. Using this method to preserve certain causality slices will
result in high overheads (see Section 7.3).

Tail-based coherent sampling:�is method is similar to the previous one, except that
the sampling decision is made at the end of causally-related �ows, instead of at their start.

97

Delaying the sampling decision allows for more intelligent sampling—for example, the
tracing infrastructure can examine a �ow’s properties (e.g., response time) and choose
only to collect anomalous ones. But, trace point records for every �ow must be cached
somewhere until the sampling decision is made for it. Since many requests can execute
concurrently and because each request can execute many trace points, such temporary
collection is not always feasible. Whodunit [27], the only tracing implementation that uses
tail-based sampling, caches trace points by propagating them as metadata with individual
�ows.

Unitary sampling: With this method, the sampling decision is made at the level of
individual trace points. No attempt is made at coherence (i.e., capturing all trace points
associated with a given �ow), so traces cannot be constructed using this approach. �is
method is best used when coherent sampling is unnecessary or infeasible. For example, for
some use cases, the information needed for analysis can be propagated with casual �ows
and retrieved at individual trace points without having to having to construct traces.

In addition to deciding how to sample trace points, developers must decide howmany of
them to sample. Many infrastructures choose to randomly sample a small, set percentage—
o�en between 0.01% and 10%—of trace points or causal �ows [27, 47, 117, 125, 141]. However,
this approach will capture only a few trace points for small workloads, limiting its use for
them. Using per-workload sampling percentages can help, but requires knowing workload
sizes a priori. A more robust solution, proposed by Sigelman at al. [125], is an adaptive
scheme, in which the tracing infrastructure aims to always capture a set rate of trace points
or causal �ows (e.g., 500 trace points/second or 100 causal �ows/second) and dynamically
adjusts the sampling percentage to accomplish this set goal.�ough promising, care must
be taken to avoid biased results when the captured data is used for statistical purposes. For
distributed services built on top of shared services, the adaptive sampling rate should be
based on the tracing overhead the lowest-tier shared service can support (e.g., Bigtable [28])
and proportionately propagated backward to top-tier services.

7.3 Causal relationship preservation

Since preserving causality is the ultimate goal of end-to-end tracing, the ultimate tracing
infrastructure would preserve all true or necessary causal relationships. It would preserve
the work�ow of servicing individual requests and background activities, read a�er write
accesses to memory, caches, �les, and registers, provenance of stored data, inter-request

98

causal relationships due to resource contention (e.g., for caches) or built-up state, and so on.
Lamport’s happens-before relationship (→) [85], states that if a and b are events and a → b,
then a may have in�uenced b.�us, b might be causally dependent on a, and capturing all
such relationships allows one to create a happens-before graph, showing all possible channels
of in�uence.

Unfortunately, the general happens-before graph is not su�cient for two reasons. First,
it may be infeasible to capture all possible relations—even the most e�cient so�ware taint
tracking mechanisms yield a 2x to 8x slowdown [79]. It may also be impossible to know all
possible channels of in�uence [30]. Second, it is too indiscriminate: in most cases, we are
interested in a stronger, ‘is necessary for’, or ‘cannot happen without’ relationship, which
is a subset of the full happens-before relationship. To help alleviate the �rst issue, tracing
infrastructures o�en ask developers to explicitly instrument parts of the distributed system
they know to be important. To account for the second, most tracing infrastructures use
knowledge about the system to remove spurious edges in the happens-before graph. For
example, by assuming a memory protection model the system may exclude edges between
events in di�erent processes, or even between di�erent events in a single-threaded event-
based system. By removing selected edges from this graph, one creates slices of the full
relation that can be more useful for speci�c purposes. A tracing infrastructure chooses
slices that are most useful for how its output will be used and works to preserve them.�is
section describes slices that have proven useful for various use cases.

When choosing slices, developers must �rst identify one that de�nes the work�ow
of a request as it is being serviced by a distributed system. �ough any request will in-
duce a certain set of activities that must be performed eventually, latent ones need not
be considered part of its �ow, but rather part of the request that forces that work to be
executed.�is observation forms the basis for two potential intra-request slices—submitter
and trigger preserving—that preserve di�erent information and are useful for di�erent use
cases. Section 7.3.1 and Section 7.3.2 describe the tradeo�s involved in preserving these slices
in more detail. Section 7.3.3 lists the advantages of preserving both submitter causality and
trigger causality. Section 7.3.4 discusses the bene�ts of delineating concurrent behaviour
from sequential behaviour and preserving forks and joins in individual traces. Table 7.2
shows intra-request slices most useful for the key uses of end-to-end tracing.

Developers may also want to preserve important dependencies between individual
requests. Two such inter-request slices are discussed in Section 7.3.5.

99

Intended use Slice Preserve

forks/joins/concurrency?

Anomaly detection Trigger Y

Diagnosing
steady-state problems

” ”

Distributed pro�ling Either N

Resource attribution Submitter ”

Workload modeling Depends Depends

Table 7.2: Suggested intra-�ow slices to preserve for various intended uses. Since the same nec-
essary work is simply attributed di�erently for both trigger and submitter preserving slices, either
can be used for pro�ling.�e causality choice for workload modeling depends on what aspects of
the workload are being modeled.

7.3.1 The submitter-preserving slice

Preserving this slice means that individual end-to-end traces will show causality between
the original submitter of a request and work done to process it through every component
of the system. It is most useful for resource attribution and perhaps workload modeling,
since these usage modes require that end-to-end traces tie the work done at a component
several levels deep in the system to the client, workload, or request responsible for originally
submitting it. Quanto [46], Whodunit [27], and the original version of Stardust [141]
preserve this slice of causality. �e two le�-most diagrams in Figure 7.2 show submitter-
preserving traces for twowrite requests in a distributed storage system. Request one writes
data to the system’s cache and immediately replies. Sometime later, request two enters the
system and must evict request one’s data to place its data in the cache. To preserve submitter
causality, the tracing infrastructure attributes the work done for the eviction to request one,
not request two. Request two’s trace only shows the latency of the eviction.

Submitter causality cannot be preserved with low overhead when head-based coherent
sampling is used. To understand why, consider that preserving this causality slice means
latent work must be attributed to the original submitter. So, when latent work is aggregated
by another request or background activity, trace points executed by the aggregator must be
captured if any one of the aggregated set was inserted into the system by a sampled request.
In many systems, this process will resemble a funnel and will result in capturing almost
all trace points deep in the system. For example, if head-based sampling is used to sample

100

Figure 7.2: Traces for two storage system write requests when preserving di�erent slices of

causality. Request one places its data in a write-back cache and returns immediately to the client.
Sometime later, request two enters the system and must perform an on-demand eviction of request
one’s data to place its data in the cache. �is latent work (highlighted in dotted green) may be
attributed to request one (if submitter causality is preserved) or request two (if trigger causality is
preserved).�e one minute latency for the le�most trace is an artifact of the fact that the traces show
latencies between trace-point executions. It would not appear if they showed latencies of function
call executions instead, as is the case for Whodunit [27].

trace points for only 0.1% of requests, the probability of logging an individual trace point
will also be 0.1%. However, a�er aggregating 32 items, this probability will increase to 3.2%
and a�er two such levels of aggregation, the trace-point sampling percentage will increase
to 65%. Tail-based coherent sampling avoids this problem, as the sampling decision is not
made until a �ow’s end. But, it is not o�en used because it requires temporarily caching all
trace points. An alternative is to use unitary sampling. Since traces cannot be constructed
with this approach, information needed for analysis (e.g., the submitter or client ID) should
be embedded directly in each trace point.

7.3.2 The trigger-preserving slice

In addition to requiring a large percentage of trace points to be logged due to aggregation
events, the submitter-preserving trace for request one shown in Figure 7.2 is unintuitive
and hard to understand when visualized because it attributes work done to the request

101

a�er the client reply has been sent. Also, latent work attributed to this request (i.e., trace
points executed a�er the reply is sent) is performed in the critical path of request two. In
contrast, trigger causality guarantees that a trace of a request will show all work that must
be performed before a client response can be sent, including another client’s latent work
if it is in its critical path.�e right two traces in Figure 7.2 show the same two requests as
in the submitter-preserving example, with trigger causality preserved instead. Since these
traces are easier to understand when visualized (they always end with a client reply) and
always show all work done on requests’ critical paths, trigger causality should be preserved
for diagnosis tasks, which o�en involve answering questions of the form “Why is this
request so slow?” Indeed, trigger causality is explicitly preserved by the revised version
of Stardust [117]. Since it takes less e�ort to preserve than submitter causality, many other
tracing implementations implicitly preserve this slice of causality [15, 29, 47, 110, 125]. Trigger
causality can be used with head-based coherent sampling without in�ating the trace-point
sampling percentage, since only the sampling decision made for the request that forces
latent work to be executed determines whether trace points a�er aggregation points are
sampled.

7.3.3 Is anything gained by preserving both?

�e slices suggested above are the most important ones that should be preserved for various
use cases, not the only ones that should be preserved. Indeed, preserving both submitter
causality and trigger causality will enable a deeper understanding of the distributed system
than what is possible by preserving only one of them. For example, for diagnosis, preserving
submitter causality in addition to trigger causality will allow the tracing infrastructure to
answer questions such as “Who was responsible for evicting my client’s cached data?” or,
more generally, “Which clients tend to interfere with each other most?”

7.3.4 Preserving concurrency, forks, and joins

For both submitter-preserving causality and trigger-preserving causality, delineating con-
current activity from sequential activity and preserving forks and joins is optional. Doing
so o�en requires more e�ort on the part of developers (e.g., �nding forks and joins in the
system and instrumenting them) and additional metadata, but enables developers to view
actual request structure, and diagnose problems that arise as a result of excessive paral-
lelism, not enough parallelism, or excessive waiting at synchronization points. It also allows

102

for easier automated critical-path identi�cation. As such, diagnosis tasks bene�t greatly
from preserving these causal relationships.�e revised versions of both Stardust [117] and
X-Trace [47] explicitly delineate concurrency and explicitly identify forks and joins. For
other use cases, such as pro�ling and resource attribution, delineating concurrency is not
necessary, and most pro�lers (including Whodunit [27] and gprof [58]) do not do so.

7.3.5 Preserving inter-request slices

In addition to relationships within a request, many types of causal relationships may exist
between requests.�is section describes the two most common ones.

�e contention-preserving slice: Requests may compete with each other for resources,
such as access to a shared variable. Preserving causality between requests holding a resource
lock and those waiting for it can help explain unexpected performance slowdowns or
timeouts. Only Whodunit [27] preserves this slice.

�e read a�er write-preserving slice: Requests that read data (e.g., from a cache or
�le) written by others may be causally a�ected by the contents. For example, a request that
performs work dictated by the contents of a �le—e.g., a map-reduce job [40]—may depend
on that �le’s original writer. Preserving read-a�er-write dependencies can help explain such
requests’ behaviour.

7.4 Causal tracking

All end-to-end tracing infrastructures must employ a mechanism to track the slices of
intra-request and inter-request causality most relevant to their intended use cases. To
avoid capturing super�uous relationships, tracing infrastructures “thread” metadata along
with individual �ows and establish happens-before relationships only to items with the
same (or related) metadata [27, 29, 47, 48, 110, 117, 125, 141, 142]. Section 7.4.1 describes
di�erent options for what to propagate as metadata and tradeo�s between them. In general,
metadata can be propagated by storing them in thread-local variables when a single thread
is performing causally-related work and encoding logic to propagate metadata across
boundaries (e.g., across threads or components) in commonly used libraries.

�ough any of the approaches discussed below can preserve concurrency by establishing
happens-before relationships, additional instrumentation is needed to capture forks and
joins, which are needed to properly order concurrency-related causal relationships. For
example, if joins are not preserved, a trace point may erroneously be deemed causally

103

dependent on the last thread to synchronize, rather than on multiple concurrent activities.
Section 7.4.2 further discusses how to preserve forks and joins.

7.4.1 What to propagate as metadata?

Most tracing infrastructures propagate one of the options listed below. �ey di�er in
size, whether they are �xed or variable width, and how they establish happens-before
relationships to order causally-related activity and distinguish concurrent behaviour from
sequential behaviour. Perhaps surprisingly, all of them are equivalent in functionality, except
for the case of event-based systems, for which mutable breadcrumbs are needed.

An immutable, �xed-width trace ID (TID):�e trace ID identi�es causally-related
work and could be a unique value chosen at the start of such activity (e.g., when a request
is received or at the start of background activity). Tracing implementations that use this
method must rely on visible clues to establish happens-before relationships between trace
points. For example, since network messages must always be sent by a client before being
received by a server, tracing infrastructures that do not rely on synchronized clocks might
establish happens-before relationships between client and server work using network send
and receive trace points on bothmachines. Similarly, to order causally-related activity within
a single thread, they must rely on an external clock. To identify concurrent work within
components, they might establish happens-before relationship via thread IDs. Pip [110],
Pinpoint [29], and Quanto [46] use an immutable �xed-width trace ID as metadata.

An immutable �xed-width trace ID and a mutable, �xed-width breadcrumb (TID

& BC): Like the previous method, the trace ID allows all causally-related activity to be
identi�ed and quickly extracted. Instead of relying on external clues or trace points, mutable
breadcrumbs are used to encode happens-before relationships. For example, to show that a
given trace point occurs a�er another, the latter will be assigned a new breadcrumb and
a happens-before relationship will be created between it and the previous trace point’s
breadcrumb. Similarly, when sending an RPC, the tracing infrastructure will assign the
server a di�erent breadcrumb than the client and establish “client breadcrumb happens
before server breadcrumb.” In contrast to the previous approach, this metadata-propagation
approach relies less on externally observable clues. For example, if thread IDs are not visible,
the previous approach might not be able to identify concurrent activity within a component.
Also, mutable breadcrumbs are needed to identify di�erent causally-related �ows �ows
in event-based systems, in which a single thread performs all work. Both versions of X-

104

Trace [47, 48] use this metadata-propagation method. Dapper [125] and both versions of
Stardust [117, 141] use a hybrid approach that combines the previous approach and this one.
Stardust uses the same breadcrumb for all causally-related activity within a single thread,
whereas Dapper does the same for all work done on behalf of a request at the client and
server.

An immutable �xed-width trace ID and a mutable, variable-width logical clock

(TID & var clock): Both metadata-propagation methods described above are brittle.�e
trace ID (TID) approach relies on clues to establish happens-before relationships and prop-
erly order trace points.�e breadcrumb approach (TID & BC) will be unable to properly
order a given set of trace points if the happens-before relationship relating one breadcrumb
to the other is lost. One option to avoid such brittleness is to carry vector clocks instead of
breadcrumbs, however, doing so would require a metadata �eld as wide as the number of
threads in the entire distributed system. Instead, interval-tree clocks [4] should be used.
�ey are similar to vector clocks, but only require variable width proportional to the current
number of threads involved in servicing a request. To my knowledge, no existing tracing
infrastructure uses this method of metadata propagation.

�e trace points themselves: A distinct class of options involves carrying trace point
records along with requests as metadata. Since traces are available immediately a�er a �ow
has �nished executing, analyses that require traces can be performed online. For example,
critical paths can be identi�ed and the system’s con�guration changed to lessen their impact.
Whodunit [27] is the only tracing infrastructure that uses trace points (function names) as
metadata. Since Whodunit is designed for pro�ling, it is not concerned with preserving
concurrency, and so maintains trace-point names as a simple vector. Heuristics are used to
reduce the number of propagated trace points, but at the cost of trace �delity.

7.4.2 How to preserve forks and joins

For all of the metadata-propagation approaches discussed above, trace points can be added
to preserve forks and joins. For the single trace ID approach (TID), such trace points
must include clues that uniquely identify the activity being forked or waited on—for ex-
ample, thread IDs. For the breadcrumb approach (TID & BC), such trace points should
include breadcrumbs created by establishing one-to-many or many-to-one happens-before
relationships. Note that Dapper’s hybrid metadata-propagation approach, which keeps
breadcrumbs the same across network activity, requires that it use the single trace ID

105

method for preserving forks and joins.
An alternate approach, explored by Mann et al. [89] involves comparing large volumes

of traces to automatically determine how many concurrent threads a join depends on.�is
approach reduces the developer burden of explicit instrumentation, but is not yet used by
any of the tracing infrastructures discussed in this paper.

7.5 Trace visualization

Good visualizations are important for use cases such as diagnosis and pro�ling. E�ective
visualizations will amplify developers’ e�orts whereas ine�ective ones will hinder their
e�orts and convince them to use other tools and techniques [86, 116]. Indeed, Oliner et
al. identify visualization as one of the key future challenges in diagnosis research [102].
�is section highlights common approaches to visualizing end-to-end traces.�e choices
between them depend on the visualization’s intended use, previous design choices, and
whether precision (i.e., the ability to show forks, joins, and concurrency) is preferred over
volume of data shown. Table 7.3 summarizes the tradeo�s between the various visualizations.
Figure 7.3 shows how some of the visualizations would di�er in showing requests. Instead of
visualizing traces, Pip [110] uses an expectation language to describe traces textually. Formal
user studies are required to compare the relative bene�ts of visualizations and expectations
and I make no attempt to do so here.

Gantt charts:�ese visualizations are most o�en used to show individual traces.�e
Y-axis shows the overall request and resulting sub-requests issued by the distributed system
and the X-axis shows relative time.�e relative start time and latency (measured in wall-

Precision Multiple �ows?

Forks Joins Concurrency Same Di�erent

Gantt charts I I I N N
Flow graphs Y Y Y Y N
Focus graphs N N N Y N
CCTs N N N Y Y

Table 7.3: Tradeo�s between trace visualizations. Di�erent visualizations di�er in precision—i.e.,
if they can show forks, joins and concurrency (“Y”), or if it must be inferred (“I”).�ey also di�er
in their ability to show multiple �ows, and whether those multiple �ows can be di�erent (e.g.,
multiple requests with di�erent work�ows through the distributed system). To our knowledge, these
visualizations have been used to show traces that contain up to a few hundred trace points.

106

Figure 7.3: Comparison of various approaches for visualizing traces. Gantt charts are o�en used
to visualize individual requests. Flow graphs allow multiple requests with identical work�ows to
be visualized at the same time while showing forks, joins, and concurrency. However, they must
show requests with di�erent work�ows separately (as shown by requests one and two). CCTs
trade precision for the ability to visualize multiple requests with di�erent work�ows (e.g., an entire
workload). Call graphs can also show multiple work�ows, but may show infeasible paths that did
not occur in an actual execution. For example, see the a → b → c → d path in the call graph shown,
which does not appear in either request one or two.

clock time) of items shown on the Y-axis are encoded by horizontal bars. Concurrency can
easily be inferred by visually identifying bars that overlap in X-axis values. Forks and joins
must also be identi�ed visually, but it is harder to do so. Both ETE [66] and Dapper [125]
use Gantt charts to visualize individual traces. In addition to showing latencies of the overall
request and sub requests, Dapper also identi�es network time by subtracting time spent at
the server from the observed latency of the request or sub-request.

Flowgraphs (also called request-�owgraphs):�ese directed-acyclic graphs faithfully
show requests’ work�ows as they are executed by the various components of a distributed
system.�ey are o�en used to visualize and show aggregate information about multiple
requests that have identical work�ows. Since such requests are o�en expected to perform

107

similarly, �ow graphs are a good way to preserve precision, while still showing multiple
requests. Fan-outs in the graph represent the start of concurrent activity (forks), events on
di�erent branches are concurrent, and fan-ins represent synchronization points (joins).�e
revised version of Stardust [117] and the revised version of X-Trace [47] visualize traces via
�ow graphs. Note that for �ow graphs to be used, the underlying causal trackingmechanism
must preserve concurrency, forks, and joins. If these properties are not preserved, CCTs
could be used instead.

Call graphs and focus graphs:�ese visualizations are also o�en used to showmultiple
traces, but do not preserve concurrency, forks, or joins, and so are not precise. Call graphs
use fan-outs to show functions accessed by a parent function. Focus graphs show the call
stack to a chosen component or function, called the “focus node,” and the call graph that
results from treating the focus node as its root. In general, focus graphs are best used
for diagnosis tasks for which developers already knows which functions or components
are problematic. Dapper [125] uses focus graphs to show multiple request with identical
work�ows, but owing to its RPC-oriented nature, nodes do not represent components or
functions, but rather all work done to execute an RPC at the client and server. Note that
when used to visualize multiple requests with di�erent work�ows, call graphs can show
infeasible paths [5]. �is is demonstrated by the a → b → c → d path for the call graph
shown in Figure 7.3.

Calling Context Trees (CCTs) [5]:�ese visualizations are best used to show multiple
traces with di�erent workloads, as they guarantee that every path from root to leaf is a valid
path through the distributed system. To do so in a compact way, they use fan-outs to show
function invocations, not forks, and, as such, are not precise. CCTs can be constructed in
amortized constant time and are best used for tasks for which a high-level summary of
system behaviour is desired (e.g., pro�ling). Whodunit [27] uses CCTs to show pro�ling
information for workloads.

7.6 Putting it all together

Based on the tradeo�s described in previous sections and my own experiences, this section
identi�es good design choices for the key uses of end-to-end tracing. I also show previous
implementations’ choices and contrast them to my suggestions.

108

7.6.1 Suggested choices

�e italicized rows of Table 7.4 show suggested design choices for key use cases of end-to-end
tracing. To preserve concurrent behaviour, I suggest the hybrid �xed-width immutable
thread ID and �xed-width mutable breadcrumb (TID & BC) approach used by Stardust [117,
141], because it o�ers the best tradeo�s among the various approaches. Speci�cally, it is of
constant size, does not rely much on external clues (except for a timestamp to order intra-
component trace points), and is less brittle than the straightforward TID & BC approach
(since it only switches breadcrumbs between components). However, the immutable, �xed-
width thread ID (TID) approach is also a good choice if the needed external clues will always
be available. I also suggest developers should consider using variable-width approaches if
feasible. For use cases that require coherent sampling, I conservatively suggest the head-
based version when it is su�cient, but tail-based based coherent sampling should also be
considered since it subsumes the former and allows for a wider range of uses.�e rest of
this section explains design choices for the various use cases.

Anomaly detection: �is use case involves identifying and recording rare �ows that
are extremely di�erent from others so that developers can analyze them. As such, tail-based
coherent sampling should be used so that traces can be constructed and so that the tracing
infrastructure can gauge whether a �ow is anomalous before deciding whether or not to
sample it. Either trigger causality or submitter causality can be preserved with low overhead,
but the former should be preferred since it shows critical paths and because they are easier to
understand when visualized. To identify anomalies that result due to excessive parallelism,
too little parallelism, or excessive waiting for one of many concurrent operations to �nish,
implementations should preserve forks, joins, and concurrent behaviour. Flow graphs are
best for visualizing anomalies because they are precise and because anomaly detection
will, by de�nition, not generate many results. Gantt charts can also be used to visualize
individual �ows.

Diagnosing steady-state problems: �is use case involves diagnosing performance
and correctness problems that can be observed in many requests. Design choices for it are
similar to anomaly detection, except that head-based sampling can be used, since even with
low sampling rates it is unlikely that problems will go unnoticed.

Distributed pro�ling:�is use case involves sampling function (or inter-trace point)
latencies.�e inter- and intra-component call stacks to a function must be preserved so that
sampled times can be grouped together based on context, but complete traces need not be

109

D
esign

axes

U
se

N
a
m
e

S
a
m
p
lin

g
C
au

sa
lity

slices

F
o
rk
s/

jo
in
s/co

n
c.

M
eta

d
ata

V
isu

a
lizatio

n

A
nom

aly
detection

Suggested
C
oherent(T)

Trigger
Yes

TID
&
BC

(H
)

Flow
graphs

M
agpie[15]

N
o

”
”

N
one

G
anttcharts(V

)
Pinpoint[29]

”
”

N
o

TID
Paths

D
iagnosing

steady-state
problem

s

Suggested
C
oherent(H

)
Trigger

Yes
TID

&
BC

(H
)

Flow
graphs

Stardust ‡[117]
”

”
”

”
”

X-Trace ‡[47]
”

”
”

TID
&
BC

”
D
apper[125]

”
”

C
onc.only

TID
&
BC

(H
)

G
anttcharts&

focusgraphs
Pip

[110]
N
o

”
Yes

TID
Expectations

X-Trace[48]
”

Trigger&
TCP

layers
N
o

TID
&
BC

Paths&
netw

ork
layers

Pinpoint[29]
”

Trigger
”

TID
Paths

D
istributed

pro�ling
Suggested

C
oherent(T)

Either
N
o

Tracepoints
C
CTs

W
hodunit[27]

”
Subm

itter
”

”
”

ETE
[66]

N
o

Trigger
”

N
one

G
anttcharts

D
apper[125]

C
oherent(H

)
”

conc.only
TID

&
BC

(H
)

G
anttcharts&

focusgraphs

Resource
attribution

Suggested
U
nitary

Subm
itter

N
o

TID
N
one

Stardust[141]
”

”
Forks/conc.

TID
&
BC

(H
)

Callgraphs
Q
uanto

[46]
N
o

”
N
o

TID
N
one

W
orkload

m
odeling

Suggested
D
epends

D
epends

D
epends

D
epends

Flow
graphsorC

CTs

M
agpie[15]

N
o

Trigger
Yes

N
one

Join-based
charts

Stardust[141]
U
nitary

Subm
itter

Forks/conc.
TID

&
BC

(H
)

Callgraphs

T
a
b
le
7.4

:
S
u
g
g
ested

d
esig

n
ch
o
ices

fo
r
v
a
rio

u
s
u
se

ca
ses

a
n
d
ch
o
ices

m
a
d
e
b
y
ex
istin

g
tra

cin
g
im

p
lem

en
tatio

n
s.Suggested

choicesare
show

n
in

italics.Existing
im

plem
entations’design

choicesareordered
according

to
sim

ilarity
w
ith

thesuggested
choices.M

agpieand
ETE

do
notpropagatem

etadata,butratheruseschem
asto

determ
inecausalrelationships.�

erevised
versionsofStardustand

X-Tracearedenoted
by

Stardust ‡and
X
-Trace ‡.H

ybrid
versionsoftheTID

&
BC

approach
aredenoted

by
TID

&
BC

(H
).C

oherenthead-based
sam

pling
isreferred

to
ascoherent(H

)and
coherenttail-based

sam
pling

isreferred
to

ascoherent(T).(V
)indicatesavariantofthestated

item
isused

110

constructed.�ese requirements align well with tail-based coherent sampling (where “tail”
is de�ned to be the current function being executed) and carrying trace points as metadata.
Together, these options will allow pro�les to be collected online. Call stacks do not need
to preserve forks, joins, or concurrency. CCTs are best for visualizing distributed pro�les,
since they can show entire workloads and infeasible paths do not appear.

Resource attribution:�is use case involves attributing work done at arbitrary levels
of the system to the original submitter, so submitter causality must be preserved. Unitary
sampling is su�cient, since submitter IDs can be propagated with requests and stored with
trace points. It is not important to preserve forks, joins, or concurrency, so the TID approach
to causal tracking is su�cient. Since traces need not be constructed, trace visualization is
not necessary.

Workload modeling:�e design decisions for this use case depend on what properties
of the workload are being modeled. For example, when used to model workloads, Mag-
pie [15] aims to identify a set of �ows and associated resource usages that are representative
of an entire workload. As such, it is useful for Magpie to preserve forks, joins, and concur-
rent behaviour. If traces for this use case are to be visualized, �ow graphs or CCTs should
be used since they allow for visualizing multiple traces at one time.

7.6.2 Existing tracing implementations’ choices

Table 7.4 also shows existing tracing implementations and the choices they make. Existing
implementations are qualitatively ordered by similarity in design choices to my suggested
ones. Inmany cases, the design choicesmade by existing tracing implementations are similar
to my suggestions. However, in cases where di�erences exist, existing implementations
o�en fall short of their intended range of uses or achieve needed functionality via ine�cient
means.

For anomaly detection, I suggest tail-based sampling, but both Magpie [15] and Pin-
point [29] do not use any sampling techniques whatsoever. Collecting and storing trace
points for every request guarantees that both implementations will not miss capturing any
rare events (anomalies), but alsomeans they cannot scale to handle large workloads. Magpie
cannot use sampling, because it does not propagate metadata. Pinpoint is concerned mainly
with correctness anomalies, and so does not bother to preserve concurrency, forks, or joins.

For diagnosing steady-state problems, the design choices made by the revised version of
Stardust [117] and the revised version of X-Trace [47] are identical to my suggested choices.

111

I originally tried to use the original version of Stardust, which was designed for resource
accounting, for diagnosis, but found it insu�cient, motivating the need for the revised
version. X-Trace was originally designed to help with diagnosis tasks by showing causality
within and across network layers, but over time its design was evolved to re�ect my current
choices because they proved to be more useful.

Pip [110] di�ers from many other tracing infrastructures in that it uses an expectation
language to show traces. Pip’s expectation language describes howother components interact
with a component of interest and so is similar in functionality to Dapper’s component-based
graphs. Both are best used when developers already have a component-of-interest in mind,
not for problem localization tasks.

For the most part, for distributed pro�ling and resource attribution, existing infrastruc-
tures either meet or exceed my suggestions.

7.7 Challenges & opportunities

�ough end-to-end tracing has proven useful, many important challenges remain before
it can reach its full potential. Most are a result of the complexity and volume of traces
generated by today’s large-scale distributed systems.�is section summarizes them.

As instrumented systems scale both in size and workload, tracing infrastructures must
accommodate larger, more complex, traces at higher throughput, while maintaining rele-
vance of tracing data.�ough head-based sampling meets the �rst two criteria of this key
challenge, it does not guarantee trace relevance. For example, it complicates diagnostics
on speci�c traces and will not capture rare bugs (i.e., anomalies). Conversely, tail-based
sampling, in which trace points are cached until requests complete, meets the relevance
criteria, but not the �rst two.

An in-between approach, in which all trace points for requests are discarded as soon as
the request is deemed uninteresting, seems a likely solution, but important research into
�nding the trace attributes that best determine when a trace can be discarded is needed
before this approach can be adopted. An alternate approachmay be to collect low-resolution
traces in the common case and to increase resolution only when a given trace is deemed
interesting. However, this approach also requires answering similar research questions as
that required for the in-between approach.

Another challenge, which end-to-end tracing shares with logging, involves trace inter-
pretability. In many cases, the developers responsible for instrumenting a distributed system

112

are not the same as those tasked with using the resulting traces. �is leads to confusion
because of di�erences in context and expertise. For example, in a recent user study, Samba-
sivan et al. had to manually translate the trace-point names within end-to-end traces from
developer-created ones to ones more readily understood by general distributed systems
experts [116]. To help, key research must be conducted on how to de�ne good instrumenta-
tion practices, how to incentivize good instrumentation, and how to educate users on how
to interpret instrumented traces or logs. Research into automatic instrumentation and on
the �y re-instrumentation (e.g., as in DTrace [26]) can also help reduce instrumentation
burden and help interpretability.

A third important challenge lies in the integration of di�erent end-to-end tracing in-
frastructures. Today’s distributed services are composed of many independently-developed
parts, perhaps instrumented with di�erent tracing infrastructures (e.g., Dapper [125], Star-
dust [117, 141], Tracelytics [143], X-Trace [47, 48], or Zipkin [147]). Unless they are modi�ed
to be interoperable, we miss the opportunity to obtain true end-to-end traces of composed
services.�e provenance community has moved forward in this direction by creating the
Open Provenance Model [32], which deserves careful examination.

7.8 Conclusion

End-to-end tracing can be implemented in many ways, and the choices made dictate the
utility of the resulting traces for di�erent development and management tasks. Based on
my experiences developing tracing infrastructures and the past ten years of research on
the topic, this chapter provides guidance to designers of such infrastructures and identi�es
open questions for researchers.

113

114

Chapter 8

Conclusion

Performance diagnosis in distributed systems is extremely challenging, because the problem
could be contained in any of the system’s numerous components or dependencies or may
be an artifact of interactions among them. As distributed services continue to grow in
complexity and in the number of other distributed services upon which they depend,
performance diagnosis will only become more challenging. �is dissertation explores
the use of a novel technique, called request-�ow comparison [117], for helping diagnose
problems in distributed systems. Request-�ow comparison uses end-to-end traces, which
show the entire work�ow of individual requests through the distributed service and its
dependencies, to automatically localize the problem from the many possible culprits to
just a few potential ones.�e results presented in this dissertation show the usefulness of
request-�ow comparison and the e�cacy of the algorithms used to implement it.

8.1 Contributions

�e key contributions of this dissertation are the request-�ow comparison work�ow and
the case studies demonstrating its usefulness in helping diagnose real, previously unsolved
distributed systems problems. To enable these contributions, this dissertation addresses
all aspects of building a request-�ow comparison diagnosis tool. For example, it describes
algorithms and heuristics for implementing request-�ow comparison and where these
algorithms fall short. Also, via a 26-person user study involving real distributed systems
developers, it identi�es promising approaches for visualizing request-�ow comparison.

Another important contribution is the observation that distributed systems’ potential
for automation will always be limited unless they are built to bemore predictable. To demon-

115

strate the validity of this observation, this dissertation shows how existing automation tools
are a�ected by unpredictability, or high variance in key performance metrics. It suggests
that to make systems more predictable, system builders must incorporate performance
variance as an important metric and strive to minimize it where appropriate. To help
system builders lower performance variance, it conceptually describes a tool for identifying
sources of variance in distributed systems and a nomenclature for helping system builders
understand what to do about di�erent variance sources.

�e �nal major contribution of this dissertation is a design study of end-to-end tracing.
It aims to guide designers of tracing infrastructures by distilling key design axes that dictate
a tracing infrastructure’s utility for di�erent use cases, such as resource attribution and
diagnosis. Existing literature [3, 15, 27, 29, 47, 48, 66, 78, 110, 111, 117, 125, 130, 131, 141, 142, 152]
treats end-to-end tracing as a one-size-�ts-all solution and so does not identify these
axes. Since the axes are not well understood, many existing tracing infrastructures do not
e�ectively support some desired use cases.

8.2 Thoughts on future work

I believe my work on request-�ow comparison has helped identify a wealth of future work
opportunities, some of which were described in previous chapters.�is section highlights
the most important ones.

8.2.1 Generalizing request-°ow comparison to more systems

�is dissertation describes algorithms and heuristics for implementing request-�ow com-
parison’s work�ow that proved e�ective for Ursa Minor and select Google services. It also
described modi�cations needed for these algorithms to be useful in HDFS [134]. However,
due to the wide variety of request-based distributed systems in existence, di�erent (or
modi�ed) request-�ow comparison algorithms may be needed for di�erent distributed
systems and problem types.

Before developing request-�ow comparison algorithms for a candidate distributed
system, developers must �rst ensure that end-to-end traces showing request work�ows can
be obtained for it. Developers must carefully consider what constitutes the work�ow of
an “individual request” (i.e., a fundamental unit of work) and guarantee that individual
traces show this information. Doing so may be easy for some systems (e.g., storage systems)
and di�cult for others (e.g., batch-processing systems). Chapter 7.3 provides guidance on

116

what causal relationships to preserve when de�ning the work�ow of individual requests
for diagnosis tasks. Most notably, for request-�ow comparison to be e�ective, request
work�ows must show work done on the critical path of the request. Note that if end-to-end
traces will be obtained via a metadata-propagation-based tracing infrastructure, the design
choices suggested in Chapter 7.6.1 for diagnosing steady-state problems may be of value in
choosing how to de�ne request work�ows, how to avoid high tracing overheads, and how
to present trace data.

When creating a request-�ow-comparison tool for a candidate system, developers
must carefully consider which algorithms to use to implement request-�ow comparison’s
categorization step.�is work�ow step is responsible for grouping requests that are expected
to perform similarly into the same category. I believe Spectroscope’s expectation that
requests with similar or identical structures should perform similarly is fundamental and
valid in many systems. However, additional or looser constraints may be needed for other
systems. For example, Chapter 3.5.3 demonstrated that a straightforward interpretation
of the same structures/similar cost expectation is too strict for HDFS, as using it results
in too many categories with too few requests in each to identify mutations. �e chapter
suggested ways to loosen the expectation by removing certain structural details while still
guaranteeing that categories will contain requests that are expected to perform similarly.
For example, for homogeneous, dedicated-machine environments, in which all machines
are expected to perform similarly, it suggested removing machine names from node labels.
For heterogeneous or shared-machine environments, it suggested grouping individual
machines into equivalence classes of similarly-performing ones and using equivalence class
names instead of machine names in node labels.

In practice, it may be di�cult to know up-front which properties of requests dictate
performance. To help, I believe additional research is needed to investigate semi-supervised
methods for categorization. With such methods, the request-�ow-comparison tool would
use basic expectations (such as the same structures/similar performance one) and observed
performance to present an initial categorization of requests. Diagnosticians could then use
a visual interface to specify which groupings align with their intuition of what requests are
expected to perform similarly.�e comparison tool could then use diagnosticians’ feedback
to, over time, learn what request properties dictate performance and improve the results of
its categorization step. Note that di�erences between automatically-learned groupings and
diagnosticians’ intuition may themselves indicate important performance problems.

I believe the algorithms used by Spectroscope to identify response-time mutations and

117

structural mutations are be applicable to a broad range of distributed systems. However,
there is room for improvement. For response-time mutations, research is needed to identify
whether alternate algorithms exist that are more robust to high variance caused by resource
contention. Opportunities also exist to further reduce diagnostician burden when compar-
ing structural mutations to their precursors—for example, by automating the identi�cation
of changed substructures between mutations and precursors. It remains to be seen whether
algorithms, such as graph kernels [124], frequent-graph mining [71], or advanced structural
anomaly detection [41] can be used to enable such additional automation.

In addition to determining what algorithms will work best when implementing request-
�ow comparison’s basic work�ow for a new distributed system, developers should also
consider whether additional work�ow steps would be useful. For example, additional
work�ow steps that directly identify contending requests or processes would be a valuable
addition for distributed services that operate in shared-machine environments. However,
additional research is needed to identify how best to identify competing activities and
whether modi�cations to the underlying tracing infrastructure are necessary to do so.

In the long term, it is important to consider whether request-�ow comparison (or other
existing diagnosis techniques) can be extended to work in newly emerging adaptive cloud
environments [68]. To increase resource utilization, these environments use schedulers
that dynamically move workloads and change resource allocations. For example, to satisfy
global constraints, they may move a running application to a di�erent set of machines
with very di�erent hardware. If only a few applications are running, they may bless the
running ones with very high resource allocations, only to steal back these resources later.
Unfortunately, such dynamism reduces the e�ectiveness of most existing diagnosis tools,
because they are not built to expect it and because increasing resource utilization o�en
also increases performance variance. I believe that a �rst step toward extending existing
diagnosis techniques to adaptive clouds will involve making them privy to datacenter
scheduler decisions, so that they can determine whether or not an observed performance
change is the expected result of a scheduler decision [119].

8.2.2 Improving request-°ow comparison’s presentation layer

�ough the systems research community has created many problem localization tech-
niques [14, 15, 29, 72, 76, 98, 103, 117, 122, 144], it has performed very little research on how
to e�ectively present their results. �is is unfortunate because the e�ectiveness of such

118

tools is limited by how easily diagnosticians can understand their results.�e user study I
ran comparing three approaches for visualizing Spectroscope’s results (see Chapter 4) is
but a �rst step. Participants’ comments during this study, and my own experiences with
Spectroscope, have revealed many insights that can guide future visualization work.

Most important is the insight that, by themselves, comparisons of full request-�ow
graphs are not su�cient for helping diagnosticians’ interpret request-�ow comparison’s
results. Even though the graphs presented to the user study participants o�en contained
less than 200 nodes, participants o�en complained about their size. Worse, in complex
distributed services—for example, ones built upon other distributed services—it is likely that
no single person will have complete knowledge of the entire system. As such, diagnosticians
of such systems will not possess the expertise to determine whether a performance change
observed deep in the bowels of the systems represents valid behaviour or an an unexpected
performance problem.

Semantic zooming, annotation mechanisms (as suggested by the user study partici-
pants), and graph collapsing (as discussed in Chapter 3.5.2) can somewhat help. But, I
do not believe they are su�cient. Ideally, diagnosis tools should be able to identify the
meaning of an observed problem automatically. For example, request-�ow-comparison
tools, like Spectroscope, could learn the textual meaning of individual graphs, enabling
them to output both observed mutations and what they represent. One promising method
for enabling such learning is crowdsourcing. As a game, developers of individual distributed
systems components could be presented with graph substructures relevant only to their
component and asked to name them. When presenting mutations and precursors, the diag-
nosis tool could display their meanings by combining the names given to their constituent
substructures.

8.2.3 Building more predictable systems

Without increased predictability, automation techniques, such as request-�ow comparison,
will never reach their full potential. But, it is not clear how best to increase predictability
for most distributed systems. Research is needed to identify good techniques for localizing
inadvertent variance sources. Research to understand the dominant sources of variance in
distributed systems would also help.

An alternate approach, suggested by Dean et al. [39], is to treat unpredictability as a
given and build systems that are naturally resilient to it. I believe this approach and that of

119

reducing variance merit comparison, especially with regards to their implications toward
automation and future diagnosis techniques.

8.2.4 Improving end-to-end tracing

Despite end-to-end tracing’s usefulness, many organizations are still wary of it because of
the enormous storage overhead it can impose when head-based sampling is used. Even
for Ursa Minor [1], traces collected for its regression tests were a few gigabytes in size.
For large organizations, such as Google, storage overhead could balloon to petabytes even
with minimal sampling.�ough tail-based sampling reduces storage overhead, it increases
memory cost. A very pertinent area of research involves creating tracing techniques that
can capture interesting traces while minimizing storage-related overhead.

120

Bibliography

[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger,
James Hendricks, Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon
Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen, John Strunk, Eno�ereska,
Matthew Wachs, and Jay Wylie. Ursa minor: versatile cluster-based storage. In
FAST’05: Proceedings of the 4th USENIX Conference on File and Storage Technologies,
2005. Cited on pages 2, 4, 7, 11, 12, 16, 25, 26, 48, 54, 74, and 120.

[2] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddarth Eswaran, Venkata N.
Padmanabhan, and Geo�rey M. Voelker. NetPrints: diagnosing home network mis-
con�gurations using shared knowledge. In NSDI’09: Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, 2009. Cited on page
88.

[3] Marcos K. Aguilera, Je�rey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. Performance debugging for distributed systems of black boxes. In
SOSP’03: Proceedings of the 19th ACM Symposium on Operating Systems Principles,
2003. Cited on pages 3, 10, 91, 95, and 116.

[4] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks. In
OPODIS’08: Proceedings of the 12th International Conference on Principles of Dis-
tributed Systems, 2008. Cited on page 105.

[5] Glenn Ammons,�omas Ball, and James R. Larus. Exploiting hardware performance
counters with �ow and context sensitive pro�ling. In PLDI’97: Proceedings of the 11th

ACM SIGPLAN Conference on Programming Language Design and Implementation,
1997. Cited on pages 86 and 108.

[6] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu,
Bikas Saha, and Edward Harris. Reining in the outliers in Map-Reduce clusters using
Mantri. In OSDI’10: Proceedings of the 9th USENIX Symposium on Operating Systems

121

Design and Implementation, 2010. Cited on page 16.

[7] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear
time. In STOC’09: Proceedings of the 41st Annual ACM Symposium on �eory of
computing, 2009. Cited on page 21.

[8] Apache hadoop. http://hadoop.apache.org. Cited on pages 15, 39, 40, 50, 72,
and 85.

[9] Daniel Archambault, Helen C. Purchase, and Bruno Pinaud. Animation, small
multiples, and the e�ect of mental map preservation in dynamic graphs. IEEE
Transactions on Visualization and Computer Graphics, 17(4):539–552, April 2011. Cited
on pages 48, 60, and 65.

[10] Daniel Archambault, Helen C. Purchase, and Bruno Pinaud. Di�erence map read-
ability for dynamic graphs. In GD’10: Proceedings of the 18th International Conference
on Graph Drawing, 2011. Cited on pages 48 and 49.

[11] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D. Joseph, Randy H. Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Communications of the ACM, 53(4), April 2010.
Cited on page 1.

[12] RemziH. Arpaci-Dusseau andAndrea C. Arpaci-Dusseau. Fail-stutter fault tolerance.
InHotOS’01: Proceedings of the 8th IEEEWorkshop on Hot Topics in Operating Systems,
2001. Cited on pages 70, 73, and 74.

[13] Mona Attariyan and Jason Flinn. Automating con�guration troubleshooting with
dynamic information �ow analysis. In OSDI’10: Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation, 2010. Cited on page
89.

[14] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A.
Maltz, and Ming Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In SIGCOMM’07: Proceedings of the 2007
ACM SIGCOMM Conference on Data Communications, 2007. Cited on pages 47, 72,
83, 84, and 118.

[15] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie
for request extraction and workload modelling. In OSDI’04: Proceedings of the 6th

USENIX Symposium on Operating Systems Design and Implementation, 2004. Cited

122

http://hadoop.apache.org

on pages 3, 6, 10, 11, 17, 47, 71, 72, 75, 81, 82, 91, 92, 93, 94, 102, 110, 111, 116, and 118.

[16] Luiz A. Barroso. Warehouse-scale computing: entering the teenage decade, August
2011. Cited on pages 8 and 70.

[17] Fabian Beck and Stephan Diehl. Visual comparison of so�ware architectures. In
SOFTVIS’10: Proceedings of the 5th International Symposium on So�ware Visualization,
2010. Cited on page 49.

[18] Nicolas Garcia Belmonte.�e Javascript Infovis Toolkit. http://www.thejit.org.
Cited on page 50.

[19] Hal Berghel and David Roach. An extension of Ukkonen’s enhanced dynamic
programming ASM algorithm. Transactions on Information Systems (TOIS, 14(1),
January 1996. Cited on page 21.

[20] Christopher M. Bishop. Pattern recognition and machine learning. Springer Science
+ Business Media, LLC, �rst edition, 2006. Cited on page 23.

[21] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, and Steve Zhang. Optimizing
data analysis with a semi-structured time series database. In SLAML’10: Proceedings
of the 2010 ACMWorkshop onManaging Large-scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques, 2010. Cited on pages 10
and 95.

[22] Peter Bodik, Armando Fox, Michael Jordan, and David Patterson. Advanced tools
for operators at Amazon.com. In HotAC’06: Proceedings of the 1st Workshop on Hot
Topics in Autonomic Computing, 2006. Cited on pages 86 and 87.

[23] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B.Woodard, and Hans Ander-
sen. Fingerprinting the datacenter: automated classi�cation of performance crises.
In EuroSys’10: Proceedings of the 5th ACM SIGOPS European Conference on Computer
Systems, 2010. Cited on page 88.

[24] James Bovard. Slower is better:�e new postal service. Cato Policy Analysis, February
1991. Cited on page 70.

[25] Jason D. Campbell, Arun B. Ganesan, Ben Gotow, Soila P. Kavulya, James Mulhol-
land, Priya Narasimhan, Sriram Ramasubramanian, Mark Shuster, and Jiaqi Tan.
Understanding and improving the diagnostic work�ow of MapReduce users. In
CHIMIT’11: Proceedings of the 5th ACM Symposium on Computer Human Interaction
for Management of Information Technology, 2011. Cited on page 50.

123

http://www.thejit.org

[26] Bryan M. Cantrill and Michael W. Shapiro. Dynamic instrumentation of production
systems. In ATC’04: Proceedings of the 2004 USENIX Annual Technical Conference,
2004. Cited on pages 3 and 113.

[27] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. Whodunit: transactional
pro�ling for multi-tier applications. In EuroSys’07: Proceedings of the 2nd ACM
SIGOPS European Conference on Computer Systems, 2007. Cited on pages 3, 6, 10, 26,
81, 86, 91, 93, 94, 96, 97, 98, 100, 101, 103, 105, 108, 110, and 116.

[28] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
a distributed storage system for structured data. In OSDI’06: Proceedings of the 7th

USENIX Symposium on Operating Systems Design and Implementation, 2006. Cited
on pages 1, 25, 28, 29, 72, 74, and 98.

[29] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, David Patterson, Ar-
mando Fox, and Eric Brewer. Path-based failure and evolution management. In
NSDI’04: Proceedings of the 1st USENIX Symposium on Networked Systems Design and
Implementation, 2004. Cited on pages 3, 6, 10, 26, 47, 72, 75, 83, 91, 93, 94, 102, 103,
104, 110, 111, 116, and 118.

[30] David R. Cheriton and Dale Skeen. Understanding the limitations of causally and
totally ordered communication. In SOSP’93: Proceedings of the 14th ACM Symposium
on Operating Systems Principles, 1993. Cited on page 99.

[31] Ludmila Cherkasova, KivancOzonat, NingfangMi, Julie Symons, and Evgenia Smirni.
Anomaly? Application change? or Workload change? towards automated detection
of application performance anomaly and change. In DSN’08: Proceedings of the 38th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
2008. Cited on page 7.

[32] Ben Cli�ord, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia Kwas-
nikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan, Eric
Stephan, and Jan Van den Bussche. �e open provenance model core speci�cation
(v1.1). Future Generation Computer Systems, 27(6):743–756, June 2011. Cited on page
113.

[33] Cloudera Htrace. http://github.com/cloudera/htrace. Cited on page 4.

[34] Ira Cohen, Moises Goldszmidt, and Terence Kelly. Correlating instrumentation

124

http://github.com/cloudera/htrace

data to system states: a building block for automated diagnosis and control. In
OSDI’04: Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation, 2004. Cited on page 88.

[35] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Ar-
mando Fox. Capturing, indexing, clustering, and retrieving system history. In
SOSP’05: Proceedings of the 20th ACM Symposium on Operating Systems Principles,
2005. Cited on page 88.

[36] Compuware dynaTrace PurePath. http://www.compuware.com. Cited on pages 4
and 91.

[37] Gabriela F. Creţu-Ciocârlie, Mihai Budiu, and Moises Goldszmidt. Hunting for
problems with Artemis. InWASL’08: Proceedings of the 1st USENIX conference on
Analysis of System Logs, 2008. Cited on page 87.

[38] L. Dailey Paulson. Computer system, heal thyself. Computer, 35(8):20–22, 2002.
Cited on page 1.

[39] Je�rey Dean and Luiz A. Barroso. �e tail at scale. Communications of the ACM,
56(2):74–80, February 2013. Cited on page 119.

[40] Je�rey Dean and Sanjay Ghemawat. MapReduce: simpli�ed data processing on large
clusters. In OSDI’04: Proceedings of the 6th USENIX Symposium on Operating Systems
Design and Implementation, 2004. Cited on pages 39 and 103.

[41] William Eberle and Lawrence B. Holder. Discovering structural anomalies in graph-
based data. In ICDMW’07: Proceedings of the 7th IEEE International Conference on
Data Mining Workshops, 2007. Cited on page 118.

[42] John Ellson, Emden R. Gansner, Ele�herios Koutso�os, Stephen C North, and Gor-
don Woodhull. Graphviz and Dynagraph – static and dynamic graph drawing tools.
In Graph Drawing So�ware. Springer-Verlag, 2003. Cited on page 53.

[43] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. Fay: extensible
distributed tracing from kernels to clusters. In SOSP’11: Proceedings of the 23rd ACM
Symposium on Operating Systems Principles, 2011. Cited on page 96.

[44] Michael Farrugia and Aaron Quigley. E�ective temporal graph layout: a comparative
study of animation versus static display methods. Information Visualization, 10(1):47–
64, January 2011. Cited on pages 48, 49, 60, and 62.

[45] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo

125

http://www.compuware.com

Fonseca. Jockey: guaranteed job latency in data parallel clusters. In EuroSys’12:
Proceedings of the 7th ACM SIGOPS European Conference on Computer Systems, 2012.
Cited on page 77.

[46] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: tracking
energy in networked embedded systems. In OSDI’08: Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation, 2008. Cited on pages
10, 26, 93, 94, 100, 104, and 110.

[47] Rodrigo Fonseca, Michael J. Freedman, and George Porter. Experiences with tracing
causality in networked services. In INM/WREN’10: Proceedings of the 1st Internet
Network Management Workshop/Workshop on Research on Enterprise Monitoring,
2010. Cited on pages 3, 6, 10, 26, 39, 91, 93, 94, 96, 97, 98, 102, 103, 105, 108, 110, 111,
113, and 116.

[48] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-
Trace: a pervasive network tracing framework. In NSDI’07: Proceedings of the 4th

USENIX Symposium on Networked Systems Design and Implementation, 2007. Cited
on pages 3, 6, 10, 26, 91, 93, 94, 103, 105, 110, 113, and 116.

[49] Foundations for future clouds. Intel Labs, August 2011. http://www.istc-cc.

cmu.edu/publications/papers/2011/ISTC-Cloud-Whitepaper.pdf. Cited
on page 1.

[50] Gregory R. Ganger, John D. Strunk, and Andrew J. Klosterman. Self-* Storage: brick-
based storage with automated administration. Technical Report CMU-CS-03-178,
Carnegie Mellon University, September 2003. Cited on page 1.

[51] Emden R. Gansner, Ele�herios E. Koutso�os, Stephen C. North, and Kiem-Phong Vo.
A technique for drawing directed graphs. IEEE Transactions on So�ware Engineering,
19(3):214–230, 1993. Cited on page 22.

[52] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance.
Pattern Analysis and Applications, 13(1):113–129, January 2009. Cited on page 53.

[53] Gapminder. http://www.gapminder.org. Cited on page 49.

[54] Sohaib Ghani, Niklas Elmqvist, and Ji S. Yi. Perception of animated node-link
diagrams for dynamic graphs. Computer Graphics Forum, 31(3), June 2012. Cited on
pages 64 and 65.

[55] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. �e Google �le system.

126

http://www.istc-cc.cmu.edu/publications/papers/2011/ISTC-Cloud-Whitepaper.pdf
http://www.istc-cc.cmu.edu/publications/papers/2011/ISTC-Cloud-Whitepaper.pdf
http://www.gapminder.org

In SOSP’03: Proceedings of the 19th ACM Symposium on Operating Systems Principles,
2003. Cited on pages 1, 13, 39, and 74.

[56] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant resource fairness: fair allocation of multiple resource types.
In NSDI’11: Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation, 2011. Cited on page 77.

[57] Garth A. Gibson, David F. Nagle, Khalil Amiri, Je� Butler, Fay W. Chang, Howard
Gobio�, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. A cost-
e�ective, high-bandwidth storage architecture. In ASPLOS’98: Proceedings of the 8th

ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, 1998. Cited on pages 25 and 39.

[58] GNU gprof. http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.

html. Cited on page 103.

[59] MoisesGoldszmidt,Mihai Budiu, Yue Zhang, andMichael Pechuk. Toward automatic
policy re�nement in repair services for large distributed systems. ACM SIGOPS
Operating Systems Review, 44(2):47–51, April 2010. Cited on page 88.

[60] John Alexis Guerra Gomez, Audra Buck-Coleman, Catherine Plaisant, and Ben
Shneiderman. Interactive visualizations for comparing two trees with structure and
node value changes. Technical Report HCIL-2012-04, University of Maryland, 2012.
Cited on page 49.

[61] Graphviz. http://www.graphviz.org. Cited on pages 22 and 47.

[62] Steven D. Gribble. Robustness in complex systems. In HotOS’01: Proceedings of the
8th IEEE Workshop on Hot Topics in Operating Systems, 2001. Cited on pages 70
and 73.

[63] Ajay Gulati, Arif Merchant, and Peter J. Varman. mClock: handling throughput
variability for hypervisor IO scheduling. In OSDI’10: Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation, 2010. Cited on pages
29 and 77.

[64] Mountaz Hascoët and Pierre Dragicevic. Visual comparison of document collec-
tions using multi-layered graphs. Technical report, Laboratoire d’Informatique, de
Robotique et de Microèlectronique de Montpellier (LIRMM), 2011. Cited on page
49.

127

http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.graphviz.org

[65] Je�rey Heer and George G. Robertson. Animated Transitions in Statistical Data
Graphics. IEEE Transactions on Visualization and Computer Graphics, 13(6):1240–
1247, 2007. Cited on page 65.

[66] Joseph L. Hellerstein, Mark M. Maccabe, W. Nathaniel Mills III, and John J. Turek.
ETE: a customizable approach to measuring end-to-end response times and their
components in distributed systems. In ICDCS’99: Proceedings of the 19th IEEE Inter-
national Conference on Distributed Computing Systems, 1999. Cited on pages 3, 11,
86, 91, 93, 94, 107, 110, and 116.

[67] James Hendricks, Raja R. Sambasivan, Shafeeq Sinnamohideen, and Gregory R.
Ganger. Improving small �le performance in object-based storage. Technical Report
CMU-PDL-06-104, Carnegie Mellon University, 2006. Cited on page 34.

[68] BenjaminHindman, AndyKonwinski, Matei Zaharia, Ali Ghodsi, AnthonyD. Joseph,
Randy H. Katz, Scott Shenker, and Ion Stoica. Mesos: a platform for �ne-grained
resource sharing in the data center. In NSDI’11: Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation, 2011. Cited on page
118.

[69] Alfred Inselberg. Parallel coordinates: Visual multidimensional geometry and its
applications. Springer-Verlag, 2009. Cited on page 50.

[70] Michael Isard. Autopilot: automatic data center management. ACM SIGOPS Operat-
ing Systems Review, 41(2):60–67, April 2007. Cited on page 88.

[71] Ruoming Jin, Chao Wang, Dmitrii Polshakov, Srinivasan Parthasarathy, and Gagan
Agrawal. Discovering frequent topological structures from graph datasets. InKDD’05:
Proceedings of the 11th ACM International Conference on Knowledge Discovery in Data
Mining, 2005. Cited on page 118.

[72] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra Padhye,
and Paramvir Bahl. Detailed diagnosis in enterprise networks. In SIGCOMM’09:
Proceedings of the 2009 ACM SIGCOMM Conference on Data Communications, 2009.
Cited on pages 47, 50, 67, 72, 83, 84, 87, and 118.

[73] Hui Kang, Haifeng Chen, and Guofei Jiang. PeerWatch: a fault detection and diagno-
sis tool for virtualized consolidation systems. In ICAC’10: Proceedings of the 7th IEEE
International Conference on Autonomic Computing, 2010. Cited on page 85.

[74] Michael P. Kasick, Keith A. Bare, Eurene E. Marinelli III, Jiaqi Tan, Rajeev Gandhi,

128

and Priya Narasimhan. System-call based problem diagnosis for PVFS. InHotDep’09:
Proceedings of the 5th USENIXWorkshop on Hot Topics in System Dependability, 2009.
Cited on page 85.

[75] Michael P. Kasick, Rajeev Gandhi, and Priya Narasimhan. Behavior-based problem
localization for parallel �le systems. In HotDep’10: Proceedings of the 6th USENIX
Workshop on Hot Topics in System Dependability, 2010. Cited on pages 44, 72, and 73.

[76] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. Black-box
problem diagnosis in parallel �le systems. In FAST’10: Proceedings of the 8th USENIX
Conference on File and Storage Technologies, 2010. Cited on pages 44, 47, 72, 85,
and 118.

[77] Je�rey Katcher. Postmark: a new �le system benchmark. Technical Report TR3022,
Network Applicance, 1997. Cited on page 27.

[78] Soila P. Kavulya, Scott Daniels, Kaustubh Joshi, Matt Hultunen, Rajeev Gandhi, and
Priya Narasimhan. Draco: statistical diagnosis of chronic problems in distributed
systems. InDSN’12: Proceedings of the 42nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2012. Cited on pages 3, 10, 91, 95, and 116.

[79] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, andAngelosD.Keromytis.
libd�: practical dynamic data �ow tracking for commodity systems. In VEE’12:
Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execution Envi-
ronments, 2012. Cited on page 99.

[80] Je�rey O. Kephart and David M. Chess. �e vision of autonomic computing. Com-
puter, 36(1):41–50, 2003. Cited on page 1.

[81] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. Anderson,
and Ranjit Jhala. Finding latent performance bugs in systems implementations. In
FSE’10: Proceedings of the 18th ACM SIGSOFT Symposium on Foundations of So�ware
Engineering, 2010. Cited on pages 85 and 86.

[82] Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. Mace: language support for building distributed systems. In PLDI’07:
Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2007. Cited on page 85.

[83] Eric Koskinen and John Jannotti. Borderpatrol: isolating events for black-box tracing.
In EuroSys’08: Proceedings of the 3rd ACM SIGOPS European Conference on Computer

129

Systems, 2008. Cited on pages 10 and 95.

[84] Elie Krevat, Joseph Tucek, and Gregory R. Ganger. Disks are like snow�akes: no two
are alike. In HotOS’11: Proceedings of the 13th USENIX Workshop on Hot Topics in
Operating Systems, 2011. Cited on pages 70 and 72.

[85] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), July 1978. Cited on pages 11 and 99.

[86] Zhicheng Liu, Bongshin Lee, Srikanth Kandula, and Ratul Mahajan. NetClinic:
interactive visualization to enhance automated fault diagnosis in enterprise networks.
In VAST’10: Proceedings 2010 IEEE Conference on Visual Analytics Science and Tech-
nology, 2010. Cited on pages 47, 50, 87, and 106.

[87] David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and merging �les
with GNU di� and patch. Network�eory Ltd, 2002. Cited on page 51.

[88] Ajay A. Mahimkar, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates, Yin Zhang,
and Qi Zhao. Towards automated performance diagnosis in a large IPTV network.
In SIGCOMM’09: Proceedings of the 2009 ACM SIGCOMM Conference on Data
Communications, 2009. Cited on pages 47, 67, 83, and 84.

[89] Gideon Mann, Mark Sandler, Darja Krushevskaja, Sudipto Guha, and Eyal Even-dar.
Modeling the parallel execution of black-box services. InHotCloud’11: Proceedings of
the 2011 USENIX Workshop on Hot Topics in Cloud Computing, 2011. Cited on page
106.

[90] Florian Mansmann, Fabian Fischer, Daniel A. Keim, and Stephen C. North. Visual
support for analyzing network tra�c and intrusion detection events using TreeMap
and graph representations. In CHIMIT’09: Proceedings of the 3rd ACM Symposium
on Computer Human Interaction for Management of Information Technology, 2009.
Cited on pages 47 and 50.

[91] Frank J. Massey, Jr. �e Kolmogorov-Smirnov test for goodness of �t. Journal of the
American Statistical Association, 46(253):66–78, 1951. Cited on page 17.

[92] Matthew L. Massie, Brent N. Chun, and David E. Culler. �e Ganglia distributed
monitoring system: design, implementation, and experience. Parallel Computing,
30(7):817–840, July 2004. Cited on pages 3 and 50.

[93] Alan G. Melville, Martin Graham, and Jessie B. Kennedy. Combined vs. separate
views in matrix-based graph analysis and aomparison. In IV’11: Proceedings of the

130

15th International Conference on Information Visualisation, 2011. Cited on page 49.

[94] Je�rey Mogul. Emergent (mis)behavior vs. complex so�ware systems. In EuroSys’06:
Proceedings of the 1st ACM SIGOPS European Conference on Computer Systems, 2006.
Cited on pages 70 and 73.

[95] Hossein Momeni, Omid Kashe�, and Mohsen Shari�. How to realize self-healing
operating systems? In ICTTA’08: Proceedings of the 3rd International Conference on
Information and Communication Technologies, 2008. Cited on page 1.

[96] Tipp Moseley, Dirk Grunwald, and Ramesh Peri. Optiscope: performance account-
ability for optimizing compilers. In CGO’09: Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, 2009. Cited on page
89.

[97] Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yunhong
Zhou. Treejuxtaposer: scalable tree comparison using focus+context with guaranteed
visibility. In SIGGRAPH’03: Proceedings of the 30th International Conference on
Computer Graphics and Interactive Techniques, 2003. Cited on page 49.

[98] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative
analysis of systems logs to diagnose performance problems. In NSDI’12: Proceedings
of the 9th USENIX Symposium on Networked Systems Design and Implementation,
2012. Cited on pages 47, 67, 72, 83, and 118.

[99] Hiep Nguyen, Yongmin Tan, and Xiaohui Gu. PAL: propogation-aware anomaly
localization for cloud hosted distributed applications. In SLAML’11: Proceedings of
the 2011 ACMWorkshop on Managing Large-scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques, 2011. Cited on pages 7
and 82.

[100] William Norcott and Don Capps. Iozone �lesystem benchmark program, 2002.
http://www.iozone.org. Cited on page 27.

[101] Adam J. Oliner. Using In�uence to Understand Complex Systems. PhD thesis, Stanford
University, 2011. Cited on page 79.

[102] Adam J. Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in log
analysis. Communications of the ACM, 55(2), February 2012. Cited on pages 50
and 106.

[103] Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken. Using correlated surprise

131

http://www.iozone.org

to infer shared in�uence. In DSN’10: Proceedings of the 40th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2010. Cited on pages
47, 72, 73, 82, and 118.

[104] Xinghao Pan, Jiaqi Tan, Soila P. Kavulya, Rajeev Gandhi, and Priya Narasimhan.
Ganesha: black-box diagnosis of MapReduce systems. SIGMETRICS Performance
Evaluation Review, 37(3), 2010. Cited on pages 72 and 85.

[105] Swapnil Patil and Garth Gibson. Scale and concurrency of GIGA+: �le system
directories withmillions of �les. In FAST’11: Proceedings of the 9th USENIXConference
on File and Storage Technologies, 2011. Cited on page 70.

[106] David Patterson, Arron Brown, Pete Broadwell, George Candea, Mike Y. Chen,
James Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher,
David Oppenheimer, Naveen Sastry, William Tetzla�, Jonathon Traupman, and Noah
Treuha�. Recovery oriented computing (ROC): motivation, de�nition, techniques,
and case studies. Technical Report UCB/CSD-02-1175, University of California,
Berkeley, 2002. Cited on page 73.

[107] Personal communications with Facebook and Google engineers. Cited on pages 1,
16, and 71.

[108] John R. Quinlan. Bagging, boosting, and C4.5. In ICAI’96: Proceedings of the 13th

National Conference on Arti�cial Intelligence, 1996. Cited on page 23.

[109] Kai Ren, Julio López, and Garth Gibson. Otus: resource attribution in data-intensive
clusters. InMapReduce’11: Proceedings of the 2nd International Workshop on MapRe-
duce and its Applications, 2011. Cited on page 87.

[110] Patrick Reynolds, Charles Killian, Janet L. Wiener, Je�rey C. Mogul, Mehul Shah,
and Amin M. Vahdat. Pip: detecting the unexpected in distributed systems. In
NSDI’06: Proceedings of the 3rd USENIX Symposium on Networked Systems Design
and Implementation, 2006. Cited on pages 3, 6, 10, 26, 81, 83, 84, 91, 93, 94, 102, 103,
104, 106, 110, 112, and 116.

[111] Patrick Reynolds, JanetWiener, Je�reyMogul, Marcos K. Aguilera, andAminM. Vah-
dat. WAP5: black-box performance debugging for wide-area systems. InWWW’06:
Proceedings of the 15th International World Wide Web Conference, 2006. Cited on
pages 3, 10, 91, 95, and 116.

[112] Rietveld code review system. http://code.google.com/p/rietveld/. Cited

132

http://code.google.com/p/rietveld/

on page 67.

[113] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. E�ectiveness of animation
in trend visualization. IEEE Transactions on Visualization and Computer Graphics,
14(6):1325–1332, November 2008. Cited on pages 48, 49, 60, and 62.

[114] George Robertson, Kim Cameron, Mary Czerwinski, and Daniel Robbins. Polyarchy
visualization: visualizing multiple intersecting hierarchies. In CHI’02: Proceedings of
the 2002 ACM SIGCHI Conference on Human Factors in Computing Systems, 2002.
Cited on page 49.

[115] Raja R. Sambasivan andGregory R. Ganger. Automated diagnosis without predictabil-
ity is a recipe for failure. In HotCloud’12: Proceedings of the 2012 USENIX Workshop
on Hot Topics in Cloud Computing, 2012. Cited on page 8.

[116] Raja R. Sambasivan, Ilari Shafer, Michelle L Mazurek, and Gregory R. Ganger. Visu-
alizing request-�ow comparison to aid performance diagnosis in distributed systems.
Technical Report CMU-PDL-13-104, Carnegie Mellon University, 2013. Cited on
pages 4, 8, 87, 106, and 113.

[117] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, SpencerWhitman,
Michael Stroucken, William Wang, Lianghong Xu, and Gregory R. Ganger. Diag-
nosing performance changes by comparing request �ows. In NSDI’11: Proceedings of
the 8th USENIX Symposium on Networked Systems Design and Implementation, 2011.
Cited on pages 2, 3, 4, 6, 8, 10, 26, 42, 47, 72, 74, 75, 83, 87, 89, 91, 93, 94, 96, 97, 98,
102, 103, 105, 108, 109, 110, 111, 113, 115, 116, and 118.

[118] Raja R. Sambasivan, Alice X. Zheng, Eno�ereska, and Gregory R. Ganger. Cate-
gorizing and di�erencing system behaviours. In HotAC’07: Proceedings of the 2nd

Workshop on Hot Topics in Autonomic Computing, 2007. Cited on pages 8, 17, and 42.

[119] Ilari Shafer, Snorri Gylfason, and Gregory R. Ganger. vQuery: a platform for con-
necting con�guration and performance. VMWare Technical Journal, 1:1–8, December
2012. Cited on pages 15 and 118.

[120] Michael W. Shapiro. Self-healing in modern operating systems. ACM Queue, 2(9),
December 2004. Cited on page 1.

[121] Hossam Sharara, Awalin Sopan, Galileo Namata, Lise Getoor, and Lisa Singh. G-
PARE: a visual analytic tool for comparative analysis of uncertain graphs. In VAST’11:
Proceedings 2011 IEEE Conference on Visual Analytics Science and Technology, 2011.

133

Cited on page 49.

[122] Kai Shen, Christopher Stewart, Chuanpeng Li, and Xin Li. Reference-driven perfor-
mance anomaly identi�cation. In SIGMETRICS’09: Proceedings of the 2009 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, 2009. Cited on pages 47, 72, 89, and 118.

[123] Kai Shen, Ming Zhong, and Chuanpeng Li. I/O system performance debugging
using model-driven anomaly characterization. In FAST’05: Proceedings of the 4th

USENIX Conference on File and Storage Technologies, 2005. Cited on page 89.

[124] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-Lehman graph kernels. �e Journal of Machine
Learning Research, 12, feb 2011. Cited on page 118.

[125] Benjamin H. Sigelman, Luiz A. Barroso, Michael Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. Technical Report dapper-2010-1, Google,
2010. Cited on pages 3, 4, 5, 6, 10, 16, 26, 75, 86, 91, 92, 93, 94, 96, 97, 98, 102, 103, 105,
107, 108, 110, 113, and 116.

[126] SPEC SFS97 (2.0). http://www.spec.org/sfs97. Cited on page 27.

[127] Roy Sterritt and Maurice G. Hinchey. Why computer-based systems should be
autonomic. In ECBS’05: Proceedings of the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, 2005. Cited on page 1.

[128] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, 1981. Cited on page 53.

[129] Summary of the Amazon EC2 and Amazon RDS service disruption in the US east
region, April 2011. http://aws.amazon.com/message/65648. Cited on page 1.

[130] Byung Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan, Bhuvan Ur-
gaonkar, and Rong N. Chang. vPath: precise discovery of request processing paths
from black-box observations of thread and network activities. InATC’09: Proceedings
of the 2009 USENIX Annual Technical Conference, 2009. Cited on pages 3, 11, 91, 95,
and 116.

[131] Jiaqi Tan, Soila P. Kavulya, Rajeev Gandhi, and Priya Narasimhan. Visual, log-based
causal tracing for performance debugging of MapReduce systems. In ICDCS’10:

134

http://www.spec.org/sfs97
http://aws.amazon.com/message/65648

Proceedings of the 30th IEEE International Conference on Distributed Computing, 2010.
Cited on pages 3, 11, 50, 87, 91, 95, and 116.

[132] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and Mostafa
Ammar. Answering what-if deployment and con�guration questions with WISE.
In SIGCOMM’08: Proceedings of the 2008 ACM SIGCOMM Conference on Data
Communications, 2008. Cited on pages 13, 81, and 88.

[133] �e 10 worst cloud outages (and what we can learn from them),
June 2011. http://www.infoworld.com/d/cloud-computing/

the-10-worst-cloud-outages-and-what-we-can-learn-them-902. Cited
on page 1.

[134] �e Apache Hadooop File System. http://hadoop.apache.org/hdfs/. Cited
on pages 3, 4, 8, 16, 24, 25, 39, 85, and 116.

[135] �e HDFS JIRA. https://issues.apache.org/jira/browse/HDFS. Cited on
page 3.

[136] �e Lustre �le system. http://wiki.lustre.org. Cited on page 85.

[137] �e Parallel Virtual File System. http://www.pvfs.org. Cited on pages 72, 73, 80,
and 85.

[138] Eno �ereska, Michael Abd-El-Malek, Jay J. Wylie, Dushyanth Narayanan, and
Gregory R. Ganger. Informed data distribution selection in a self-predicting storage
system. In ICAC’06: Proceedings of the 3rd IEEE International Conference onAutonomic
Computing, 2006. Cited on page 88.

[139] Eno�ereska, BjoernDoebel, AliceX. Zheng, andPeterNobel. Practical performance
models for complex, popular applications. In SIGMETRICS’10: Proceedings of the
2010 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, 2010. Cited on page 88.

[140] Eno�ereska and Gregory R. Ganger. IRONModel: robust performance models in
the wild. In SIGMETRICS’08: Proceedings of the 2008 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems, 2008. Cited
on page 83.

[141] Eno �ereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-
Malek, Julio Lopez, andGregory R. Ganger. Stardust: tracking activity in a distributed
storage system. In SIGMETRICS’06: Proceedings of the 2006 ACM SIGMETRICS

135

http://www.infoworld.com/d/cloud-computing/the-10-worst-cloud-outages-and-what-we-can-learn-them-902
http://www.infoworld.com/d/cloud-computing/the-10-worst-cloud-outages-and-what-we-can-learn-them-902
http://hadoop.apache.org/hdfs/
https://issues.apache.org/jira/browse/HDFS
http://wiki.lustre.org
http://www.pvfs.org

International Conference on Measurement and Modeling of Computer Systems, 2006.
Cited on pages 3, 6, 10, 12, 26, 28, 88, 91, 93, 94, 97, 98, 100, 103, 105, 109, 110, 113,
and 116.

[142] Brian Tierney, William Johnston, Brian Crowley, Gary Hoo, Chris Brooks, and Dan
Gunter. �e NetLogger methodology for high performance distributed systems
performance analysis. In HPDC’98: Proceedings of the 7th International Symposium
on High Performance Distributed Computing, 1998. Cited on pages 3, 86, 91, 103,
and 116.

[143] Tracelytics. http://www.tracelytics.com. Cited on pages 4, 92, and 113.

[144] Avishay Traeger, Ivan Deras, and Erez Zadok. DARC: dynamic analysis of root
causes of latency distributions. In SIGMETRICS’08: Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, 2008. Cited on pages 47, 72, 89, and 118.

[145] JosephTucek, Shan Lu, ChengduHuang, Spiros Xanthos, andYuanyuanZhou. Triage:
diagnosing production run failures at the user’s site. In SOSP’07: Proceedings of 21st

ACM Symposium on Operating Systems Principles, 2007. Cited on page 89.

[146] Edward R. Tu�e. �e visual display of quantitative information. Graphics Press,
Cheshire, Connecticut, 1983. Cited on page 23.

[147] Twitter Zipkin. https://github.com/twitter/zipkin. Cited on pages 4, 92,
and 113.

[148] Matthew Wachs, Michael Abd-El-Malek, Eno �ereska, and Gregory R. Ganger.
Argon: performance insulation for shared storage servers. In FAST’07: Proceedings
of the 5th USENIX conference on File and Storage Technologies, 2007. Cited on pages
29 and 77.

[149] MatthewWachs, Lianghong Xu, Arkady Kanevsky, and Gregory R. Ganger. Exertion-
based billing for cloud storage access. InHotCloud’11: Proceedings of the 2011 USENIX
Workshop on Hot Topics in Cloud Computing, 2011. Cited on page 94.

[150] William Wang. End-to-end tracing in HDFS. Master’s thesis, Carnegie Mellon
University, 2011. Cited on pages 8, 40, and 91.

[151] Xi Wang, Zhenyu Guo, Xuezheng Liu, Zhilei Xu, Haoxiang Lin, Xiaoge Wang, and
Zheng Zhang. Hang analysis: �ghting responsiveness bugs. InEuroSys’08: Proceedings
of the 3rd ACM SIGOPS European Conference on Computer Systems, 2008. Cited on

136

http://www.tracelytics.com
https://github.com/twitter/zipkin

page 86.

[152] Wei Xu, Ling Huang, Armando Fox, David Patterson, andMichael Jordan. Detecting
large-scale system problems by mining console logs. In SOSP’09: Proceedings of 22nd

ACM Symposium on Operating Systems Principles, 2009. Cited on pages 3, 11, 81, 82,
91, 95, and 116.

[153] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang, and Wei-
Ying Ma. Automated known problem diagnosis with event traces. In EuroSys’06:
Proceedings of the 1st ACM SIGOPS European Conference on Computer Systems, 2006.
Cited on page 88.

[154] Ding Yuan, Jin Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving
so�ware diagnosability via log enhancement. In ASPLOS’11: Proceedings of the 16th

International Conference on Architectural Support for Programming Languages and
Operating Systems, 2011. Cited on page 80.

[155] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy H. Katz, and Ion Stoica.
Improving MapReduce performance in heterogeneous environments. In OSDI’08:
Proceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation, 2008. Cited on page 16.

[156] Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato Santos, and Yoshio
Turner. JustRunIt: experiment-based management of virtualized data centers. In
ATC’09: Proceedings of the 2009 USENIX Annual Technical Conference, 2009. Cited
on page 89.

137

	1 Introduction
	1.1 Thesis statement and key results
	1.2 Goals & non-goals
	1.3 Assumptions
	1.4 Dissertation organization

	2 Request-flow comparison
	2.1 Overview
	2.2 End-to-end tracing
	2.3 Requirements from end-to-end tracing
	2.4 Workflow
	2.5 Limitations
	2.6 Implementation in Spectroscope
	2.6.1 Categorization
	2.6.2 Identifying response-time mutations
	2.6.3 Identifying structural mutations and their precursors
	2.6.4 Ranking
	2.6.5 Visualization
	2.6.6 Identifying low-level differences
	2.6.7 Limitations of current algorithms & heuristics

	3 Evaluation & case studies
	3.1 Overview of Ursa Minor & Google services
	3.2 Do requests w/the same structure have similar costs?
	3.3 Ursa Minor case studies
	3.3.1 MDS configuration change
	3.3.2 Read-modify-writes
	3.3.3 MDS prefetching
	3.3.4 Create behaviour
	3.3.5 Slowdown due to code changes
	3.3.6 Periodic spikes

	3.4 Google case studies
	3.4.1 Inter-cluster performance
	3.4.2 Performance change in a large service

	3.5 Extending Spectroscope to HDFS
	3.5.1 HDFS & workloads applied
	3.5.2 Handling very large request-flow graphs
	3.5.3 Handling category explosion

	3.6 Summary & future work

	4 Advanced visualizations for Spectroscope
	4.1 Related work
	4.2 Interface design
	4.2.1 Correspondence determination
	4.2.2 Common features
	4.2.3 Interface Example

	4.3 User study overview & methodology
	4.3.1 Participants
	4.3.2 Creating before/after graphs
	4.3.3 User study procedure
	4.3.4 Scoring criteria
	4.3.5 Limitations

	4.4 User study results
	4.4.1 Quantitative results
	4.4.2 Side-by-side
	4.4.3 Diff
	4.4.4 Animation

	4.5 Future work
	4.6 Summary

	5 The importance of predictability
	5.1 How to improve distributed system predictability?
	5.2 Diagnosis tools & variance
	5.2.1 How real tools are affected by variance

	5.3 The three I's of variance
	5.4 VarianceFinder
	5.4.1 Id'ing functionality & first-tier output
	5.4.2 Second-tier output & resulting actions

	5.5 Discussion
	5.6 Conclusion

	6 Related work on performance diagnosis
	6.1 Problem-localization tools
	6.1.1 Anomaly detection
	6.1.2 Behavioural-change detection
	6.1.3 Dissenter detection
	6.1.4 Exploring & finding problematic behaviours
	6.1.5 Distributed profiling & debugging
	6.1.6 Visualization

	6.2 Root-cause identification tools
	6.3 Problem-rectification tools
	6.4 Performance-optimization tools
	6.5 Single-process tools

	7 Systemizing end-to-end tracing knowledge
	7.1 Background
	7.1.1 Use cases
	7.1.2 Approaches to end-to-end tracing
	7.1.3 Anatomy of end-to-end tracing

	7.2 Sampling techniques
	7.3 Causal relationship preservation
	7.3.1 The submitter-preserving slice
	7.3.2 The trigger-preserving slice
	7.3.3 Is anything gained by preserving both?
	7.3.4 Preserving concurrency, forks, and joins
	7.3.5 Preserving inter-request slices

	7.4 Causal tracking
	7.4.1 What to propagate as metadata?
	7.4.2 How to preserve forks and joins

	7.5 Trace visualization
	7.6 Putting it all together
	7.6.1 Suggested choices
	7.6.2 Existing tracing implementations' choices

	7.7 Challenges & opportunities
	7.8 Conclusion

	8 Conclusion
	8.1 Contributions
	8.2 Thoughts on future work
	8.2.1 Generalizing request-flow comparison to more systems
	8.2.2 Improving request-flow comparison's presentation layer
	8.2.3 Building more predictable systems
	8.2.4 Improving end-to-end tracing

	Bibliography

