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Abstract

We study a fundamental question in pose estimation from vision-only video data: should
the pose of a camera be determined from fixed and known correspondences? Or should
correspondences be simultaneously estimated alongside the pose?

Determining pose from fixed correspondences is known as feature-based, where well-
established tools from projective geometry are utilized to formulate and solve a plethora of
pose estimation problems. Nonetheless, in degraded imaging conditions such as low light
and blur, reliably detecting and precisely localizing interest points becomes challenging.

Conversely, estimating correspondences alongside motion is known as the direct approach,
where image data are used directly to determine geometric quantities without relying on
sparse interest points as an intermediate representation. The approach is in general more
precise by virtue of redundancy as many measurements are used to estimate a few degrees-
of-freedom. However, direct methods are more sensitive to changes in illumination.

In this work, we combine the best of the feature-based approaches with the precision of
direct methods. Namely, we make use of densely and sparsely evaluated local feature
descriptors in a direct image alignment framework to address pose estimation in challeng-
ing conditions. Applications include tracking planar targets under sudden and drastic
changes in illumination as well as visual odometry in poorly-lit subterranean mines.

Motivated by the success of the proposed approach, we introduce a novel formulation
for the joint refinement of pose and structure across multiple views akin to feature-based
bundle adjustment (BA). In contrast to minimizing the reprojection error using BA, initial
estimates are refined such that the photometric consistency of their image projections is
maximized without the need for correspondences. The fundamentally different technique
is evaluated on a range of datasets and is shown to improve upon the accuracy of the
state-of-the-art in vision-based simultaneous localization and mapping (VSLAM).
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CHAPTER 1

Introduction

1.1 Problem and Motivation

The motivating problem of this research is:

How to perform vision-only pose estimation from challenging data?

Challenging data, in this work, is characterized by images captured under poor illumina-
tion conditions, such as low light. Pose estimation, or tracking, is used in a broad sense,
where we demonstrate results on problems including: (i) tracking the eight degrees-of-
freedom of a planar target, (ii) estimating the six degrees-of-freedom between two rigidly
moving cameras sharing a common field of view (visual odometry), and (iii) vision-based
Simultaneous Localization and Mapping (VSLAM), where we refine initial estimates of the
viewing parameters of multiple cameras jointly with the scene structure.

Why vision-only? Why challenging data?

Vision-only pose estimation has advanced immensely in the past few years. It is now
possible to perform pose estimation tasks with high precision and high fidelity [132, 322,
327]. Applications of robust and accurate pose estimation from vision data are also broad,
especially when interactions with the world are required, which range from intelligent
homes [68] and virtual reality [194] to autonomous driving [365, 379] and space explo-
ration [251].

It is not unusual for robotic systems to rely solely on vision. After all, cameras are inex-
pensive, have low power requirements, and — most important of all — provide a rich

1



1.1. Problem and Motivation

Figure 1.1: Overview of challenging datasets characterized by sudden and drastic illumination changes
as well as ambiguously textured objects. These forms of appearance variations remain challenging for the
current state-of-the-art pose estimation algorithms. The datasets are available online at http://www.cs.
cmu.edu/~halismai/bitplanes/.

Figure 1.2: Challenging data in poorly lit underground mines. As mines are pitch dark, the robot must
supply its own source of lighting, which is often insufficient to illuminate the scene. In addition, there are
persistent changes in appearance due to the camera auto exposure settings, especially when the robot drives
in proximity to the mine walls.

2
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Chapter 1. Introduction

view of the visual world. By pushing the limits of robustness using nothing but imagery,
vision-only and vision-assisted systems would benefit alike.

By the same token, enabling vision to work in challenging environments is desired for
wide spread and reliable use of vision in robotic application domains [69, 80, 262, 282, 298].
Defining what constitutes “challenging data” is in itself a challenging task. As a matter of
course, as research is ever advancing, the frontier of what constitutes challenging advances
as well.

We illustrate the term challenging by example. For instance, Fig. 1.2 shows an example
of images collected using an underground mining robot. As mines are pitch dark, the
robot must supply its own source of illumination. However, due to power and other re-
quirements, the illumination is often insufficient. In addition, there are various nonlinear
deformations of image appearance due to the camera auto settings especially when the
robot drives in proximity to the mine walls. Consequently, imagery is characterized by a
low signal-to-noise ratio causing the state-of-the-art techniques to fail too frequently. This
type of data is in fact too challenging at times as images are often over/under saturated —
a consequence of the geometry of mines — such that no viable information can be gleaned
(as we show in Chapter 6). Nonetheless, the techniques we develop in this work improve
robustness measurably.

Another example of challenging imagery includes sudden and drastic illumination changes
as shown in Fig. 1.1, where the task is to track paintings across every frame starting from
a known template location. The dataset was collected using a hand-held mobile phone
during the night, where lights were flicked to create a transition from a sufficiently illu-
minated environment to near darkness. This sudden and drastic change in appearance
remains difficult to address using the current state-of-the-art algorithms. Addressing this
type of illumination change is the topic of Chapter 5 and Chapter 6, where we demon-
strate not only robust results, but faster than real-time performance on consumer laptops
and mobile devices.

The example data in Fig. 1.1 is unconfined to indoor environments. A similar situation is
often observed due to automatic camera controls, which require a few seconds to adjust
when illumination changes rapidly as illustrated in Fig. 1.3. Similar illumination condi-
tions also arise upon entering and leaving traffic tunnels, for instance.

Finally, an additional form of challenging data is characterized by imaging non-Lambertian
surfaces. In particular, specular and shiny objects as shown in Fig. 1.4, which are also chal-
lenging and typically treated with special algorithms [175, 283].
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Figure 1.3: Illumination changes due to camera auto gain and auto white balance settings.

Figure 1.4: Illumination changes due to specular reflections causing over saturation at large parts of the
object as well as shadows causing under saturation.

1.2 The Correspondence Problem

At the heart of pose estimation, and computer vision, is the correspondence problem. Given a
collection of images with overlapping fields of view, the goal of the correspondence prob-
lem is to determine which parts of the images correspond to which parts.

In geometric estimation problems, such as the ones considered in this work, merely estab-
lishing correspondences is insufficient; correspondences must be established with high ac-
curacy for precise results. To this end, there are two major paradigms for pose estimation
distinguished by the way correspondences are established between imagery. One is the
feature-based approach, where the image is abstracted into a few keypoint positions [369].
The features, or keypoints, are usually matched using local feature descriptors. Feature
matches are then used to estimate the pose using geometry and robust fitting [123, 160].
The other is the direct approach, where image intensities are used directly to determine
the desired quantities [181]. In the direct approach, correspondences are automatically
determined as a byproduct of the pose estimation procedure.

Both methods have their strengths and weaknesses, which have been previously discussed
in the literature [181, 369]. Features — used in the sense of keypoint positions — have
proven powerful due to the viewpoint and photometric invariances they afford. In addi-
tion, once the image is abstracted away as a collection of keypoint positions, reasoning
about the geometry of the 3D world can be simplified with well established tools from
projective geometry [119, 160].
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Chapter 1. Introduction

On the other hand, direct methods — also known as image-based, intensity-based, model-
based, Lucas-Kanade-like, or photometric — keep the image in the loop. Their traditional
uses have been focused on estimating dense correspondences, such as the estimation of
the optical flow [171, 352] and stereo [235, 324], but they can be used semi-densely [109],
or even sparsely [10, 97]. Recently, however, with the increasing availability of high frame-
rate video and the improved computational power, the popularity of direct tracking has
been on the rise as a tool for robust camera pose tracking and VSLAM [107, 110, 198].

What makes feature-based methods powerful?

Key to the wide success of feature-based algorithms is the development of feature descrip-
tors, which encode image information in a way that provides invariance to a range of ge-
ometric and photometric deformations. For instance, the development of the SIFT [234]
and the HOG [89] descriptors have made possible challenging correspondence estimation
problems, such as Structure-from-Motion (SFM) from unorganized images [5, 339] and
large-scale multi-view stereopsis [132, 366].

In addition to the photometric and geometric invariances, feature correspondences play
an important role in batch geometric estimations problems. For instance, minimizing the
reprojection error across multiple views using bundle adjustment is the most widely used
approach to wide-baseline SFM [160, 372] and VSLAM applications. Using fixed corre-
spondences in bundle adjustment is attractive for two reasons. Firstly, the reprojection
error, though nonlinear, corresponds to a physical quantity in the world whose minimiza-
tion is the Gold Standard [160] in contrast to algebraic linear alternatives. Secondly, it can
be shown — at the least theoretically — that errors in feature tracking and localization over
a long sequence tend to be normally distributed. Hence, minimizing the reprojection error
provides the maximum likelihood solution [368, 369].

Nonetheless, feature descriptors have been designed to solve sparse correspondence prob-
lems, where the computational effort is fixated on two steps: (1) detecting locations of in-
terest in the image characterized as salient [228, 323], and (2) extracting descriptors at these
locations [373]. Interest point detection and descriptor extraction usually go hand in hand
as the end goal is to maximize the distinctiveness of the extracted descriptors [260, 261].
When working with challenging data, the reliance on only a sparse collection of feature
matches reduces the robustness as we demonstrate next.
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(a) Template (b) Blur (c) Blur and noise (d) Motion blur

Figure 1.5: Example of synthetically degraded imagery and extracted interest points.

(a) Matching with original image (b) Matching with blur

(c) Matching with blur and noise (d) Matching with motion blur

Figure 1.6: Matching features with degraded imagery.

Limitations of sparse features

In degraded imaging conditions, the difficulty of detecting and precisely localizing key-
points increases markedly. This is because the process of interest point detection examines
only local areas in the image in isolation from the big picture. Consequently, keypoint
detection algorithms make implicit assumptions about the adequacy of the signal-to-noise
ratio in the local neighborhood for reliable for interest point detection [310, 323]. This is
illustrated in Fig. 1.5, where the number and quality of the extracted interest point drops
dramatically as the frequency content in the image degrades. In addition to degradations
in the imaging quality, highly textured areas in the image such as corners and edges may
not be readily available. In fact, in the majority of applications, most of the image is com-
posed of areas of low texture while distinctive image points are improbable [228].

The quality of correspondences using standard sparse feature matching methods [37, 234]
is shown in Fig. 1.6. The figure displays only “reliable” matches based on the descriptor
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(a) σ = 3 (b) σ = 5 (c) σ = 7 (d) σ = 8

Figure 1.7: Comparison of alignment performance between feature-based matching and direct intensity-based
alignment as a function of Gaussian image blur. The image is rotated in-plane with 5◦ and translated along
the u- and v-axis by (1.9, 2.1) pixels respectively. Top row shows the matched SURF features [37]. Middle
row shows the alignment error using MLESAC [367] with the matched features as input, where darker pixels
indicate larger error. Bottom row is the performance of intensity-based direct alignment using the Lucas and
Kanade algorithm [235]. By σ = 7, feature extraction and matching becomes unreliable and pose estimation
fails. However, direct methods maintain a good accuracy.

matching ratio test [37]. At a first glance, it appears that some matches are correct indicat-
ing that feature descriptors are distinctive enough despite the considerable degradation in
image quality. This in fact is true. However, estimating the geometry relies on the pixel
coordinates of the interest points, and not the feature descriptors. As we can see in Fig. 1.7,
the accuracy of interest point localization deteriorates rapidly as a function of image degra-
dations and quickly becomes insufficient for precise pose estimation tasks.

Direct pose estimation

By not restricting ourselves to a sparse selection of keypoints and instead using the whole
image data directly, a robust solution for the correspondence problem is possible. As
demonstrated at the bottom row of Fig. 1.7, using all pixels in the image pulls the esti-
mation to the correct solution even though the frequency content in the image is reduced.
This behavior has been described as the “locking property” in the literature [181].

Although it is possible to improve the robustness of correspondence estimation by sim-
ply using all image data, the approach is not without limitations. The main limitation of
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the direct approach is the assumption of brightness conservation, or brightness constancy1

between the matched images. This failure mode is illustrated in Fig. 1.8 and it is a great
obstacle to a wide spread use of direct methods in many applications.

Due to the importance of handling appearance variations, several methods have been pro-
posed [18, 42, 81, 83, 130, 139, 164, 266, 304, 326, 334, 383], which we will review in detail
in this dissertation. Most approaches to handling illumination variations, however, rely
on implicit or explicit assumptions about the content of the scene or the type of illumi-
nation change. These modeling assumptions are by definition difficult to craft correctly
and are not always satisfied, thereby limiting applications to specific instances where the
assumptions can be met.

Improving direct methods using feature-based techniques

At least conceptually, the use of direct methods for pose estimation in challenging imaging
conditions such as the ones shown in Figs. 1.1 and 1.2 appears to be a better solution
than relying on sparse feature matches, especially under small motions. This is for two
reasons: (i) the sheer redundancy possible when using the image data directly makes direct
algorithms naturally more robust, and (ii) erroneous correspondences have less effect on
the precision of estimates due to the iterative nature of the estimation process. Put simply,
there is a chance to correct the correspondences during the coarse of the optimization.

Notwithstanding, there are two main limitations that we must first address for direct meth-
ods to compete with the feature-based pipeline in robotic application domains. The first is
enhancing robustness against violations of the brightness constancy assumption that are
commonly and frequently encountered in real data. The second is enabling direct meth-
ods to use multiple views for drift reduction without stringent assumptions on the scene
structure or the type of camera motion.

In this work, we address the limitations of direct methods using well-established tech-
niques from the feature-based pipeline. Firstly, we make use of local feature descriptors as
a nonparametric means to handle violations of the brightness constancy assumption. The
use of feature descriptors in direct alignment is not only robust, but makes little assump-
tions about the environment and lighting conditions.

1The term brightness (lightness constancy) was first coined in Psychology research and defined as the
invariance of the perception of brightness of a constant reflectance surface as a function of varying illumina-
tion [131]. The canonical experiment establishing the existence of brightness constancy in the human visual
system was conducted by Katz [197] in 1911 (as cited in [131]). This hypothesis has been verified in biology
and has been shown to manifest at the early stages of processing in the visual cortex [178, 237, 308].
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Figure 1.8: Limitations of direct methods for establishing correspondences due to changes in brightness.
Images are augmented with a nonlinear form of appearance variations (radial point light source with contrast
stretching). Intensity of appearance changes increases from left–right. Even at moderate nonlinear intensity
change shown at the leftmost column direct alignment error is noticeable. Although intensity change at the
leftmost column appears small, a closer look at the distribution of intensities shown in Fig. 1.9 indicates
otherwise. For this example, we use a Lucas and Kanade algorithm with an affine motion model.

Secondly, we adapt the powerful bundle adjustment framework to the photometric do-
main, where instead of minimizing the reprojection error, we maximize the photometric
consistency while jointly refining the parameters of the structure and motion.

In summary, this work aims to answer the following two main research questions:

1. If feature descriptors are powerful tools for correspondence estimation, can we still
utilize their power without limiting their application to sparse interest points?

2. Can we go beyond local frame–frame estimation and use information from multi-
ple images for geometric estimation directly similar to the state-of-the-art geometric
estimation methods based on feature correspondences? Namely, can we perform a
joint optimization akin to bundle adjustment with applications to VSLAM in uncon-
strained environments?

1.3 Thesis Statement

In this dissertation, we advocate the following statements
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Figure 1.9: Variations in appearance may appear negligible at a first glance. Nonetheless, a closer inspection
of the distribution of intensities indicates significant differences that cannot be accounted for by relying on
the brightness constancy only.

(S1) Using as much of the image directly is a robust and efficient approach to
pose estimation.

(S2) The approach can be made more robust by using densely evaluated feature
descriptors in lieu of raw intensities.

(S3) The approach can be extended to work with multiple frames for tasks such
as the simultaneous refinement of motion and structure (without imposing
special requirements on the scene structure or camera motion), which to
date has been limited to sparse keypoints.

The first statement, S1, will be demonstrated throughout this dissertation, particularly in
Chapter 3. The second, S2, will be shown in Chapters 5 and 6. Finally, S3, will be shown
in Chapter 7.

1.4 Contributions & Organization

This dissertation is organized as follows:

• In Chapter 2 (Page 13), we provide a review of preliminaries, background and some
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related literature. Chapter 2 also introduces notations used throughout this disserta-
tion.

• Chapter 3 (Page 59) details the development and evaluation of a direct visual odom-
etry approach from stereo data. The work verifies that using image data directly is a
feasible and a robust approach to obtaining accurate pose information from a stream
of video. In contrast to the state-of-the-art, our formulation makes use of dispari-
ties, which avoids the difficulties associated with using triangulated 3D points from
stereo. This is akin to using inverse depth in vision-based SLAM [70].

• Chapter 4 (Page 75) is a continuation of the previous chapter, where we study im-
portant implementation details common to most direct visual odometry algorithms.
These include the regularity of image interpolation, the numerical scheme used to es-
timate image gradients, as well as the effect of the number and distribution of pixels
on the solution’s accuracy. The evaluation is carried about using a range of synthetic
and real benchmarks.

• Chapter 5 (Page 105) introduces our novel binary descriptor suitable for direct non-
linear least-squares optimization. The experimental portion of this chapter answers
questions of theoretical nature. Hence, synthetic data, with known ground truth is
used to understand the performance and limitations of the descriptor in comparison
to other developments in the literature.

• Chapter 6 (Page 121) evaluates the idea of using densely extracted feature descrip-
tors to tackle pose estimation tasks in challenging environments. Performance is
demonstrated on two pose estimation problems: (1) planar template tracking under
sudden and drastic changes in illumination, and (2) visual odometry in poorly lit
subterranean mines. For planar template tracking, we augment a multi-channel for-
mulation of LK with our bit-planes descriptor to demonstrate robust and faster than
real-time performance. The novel visual odometry algorithm developed in this chap-
ter is based on the one presented in Chapter 3, but uses bit-planes (and other local
descriptors) to enhance robustness. In addition to using bit-planes, we also demon-
strate the performance of several descriptors for a fair comparison.

• Chapter 7 (Page 151) goes beyond frame–frame local pose estimation and tackles
the challenging problem of VSLAM. Here, we develop a correspondence-free multi-
view pose and structure refinement framework using image data directly. We call
our framework bundle adjustment without correspondences as it shares many aspects of
the well-known minimization of the reprojection error using geometric bundle ad-
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justment. In contrast to previous work, — where the parameters of motion and struc-
ture are refined in an alternating fashion — the proposed framework demonstrates
the feasibility of refining the parameters of pose and structure simultaneously. We
also show that our framework is capable of improving on VSLAM results obtained
with geometric bundle adjustment and loop closure combined.

• Finally, in Chapter 8 (Page 175) we present the conclusions of this dissertation, and
in Chapter 9 (Page 179) we provide a summary of future research directions.
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CHAPTER 2

Background and Related Work

The farther backward you can look, the
farther forward you are likely to see.

Winston Churchill
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This chapter provides a high-level overview of background materials and introduces the
notations used in this dissertation.

2.1 Notation

Scalars will be denoted by unadorned symbols (e.g. s), vectors will be denoted with lower-
case bold typeface (e.g. v), while matrices will be denoted with an uppercase bold typeface
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(e.g. M). Vectors are assumed to be column-vectors, their transpose is denoted with v⊤.

The Euclidean norm (L2 norm) of a vector will be denoted by∥v∥ =
√∑d

i=1 vi, where vi

denotes the ith element of the vector whose dimension is d, i.e. v ∈ Rd.

The parameters we seek to estimate will be denoted with the Greek alphabet. They are
usually p-vectors (e.g. θ ∈ Rp).

Function will be denoted similar to vectors, for example the notation:

f : Rm × Rn → Rk

f(a,b) = c

denotes a function f whose domain is the Cartesian product of an m-dimensional space
with an n-dimensional space, and whose range (output) is k-dimensional. An exception
is the camera projection function, which will be denote with π (·) as is commonly used in
the literature. The inverse of the camera projection will be denoted with π−1 (·, ·), which in
general depends on the intrinsic parameters of the camera and the scene depth.

The symbol K will be reserved for the 3× 3 upper-triangular camera intrinsic matrix.

2.2 Lie Groups

Lie groups, and their algebras, are a large field with many applications in the mathemat-
ics and physics. They also play an important role in geometric optimization problems in
Robotics and Computer Vision. Most relevant to this work is the use of the exponential
map to represent the parameters of camera motion. Which we use to represent the 6DOF
rigid-body pose in Chapters 3, 6 and 7 as well as the 8DOF parameters of a planar homog-
raphy warp in Chapters 5 and 6.

We start by defining what a Lie group is, then provide examples and intuition.1

Definition 2.2.1 (Lie group). A Lie group G is a continuous and smooth manifold.
Multiplication and inverse maps are also smooth.

To understand the definition of Lie group, we must first define what a group is, and what
a manifold is.

1The topic of Lie groups and their algebra is expansive and has applications in many areas of mathematics.
We will present simplified definitions for ease of presentation and relevance to our application. Additional
references are provided for a more rigorous treatment.
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Definition 2.2.2 (Group). A group is composed of two entities, a nonempty set G and
an operator • such that for a, b, c ∈ G the following group axioms are satisfied:

(G1) Associativity
The group action must be associative a • (b • c) = (a • b) • c ;

(G2) Identity element
There exists a unique e ∈ G such that e • a = a • e = a ;

(G3) Inverse element
There exists a−1 ∈ G such that a • a−1 = a−1 • a = e, where e is the identity ;

(G4) Closure
The group action must remain in the group, i.e. a • b ∈ G is also in G.

Commutativity is a not a group requirement, but if the group action (operator) commutes,
then the group may be called abelian.

Groups are commonly encountered in physics and mathematics. For instance, the set of
integers Z under addition is a group denoted by (Z,+). Its identity element is 0. As
addition commutes, it is also an abelian group. The set of integers excluding zero (Z/ {0})
under multiplication, however, is not a group because the inverse element is not part of
the integers set.

Beyond numbers, the set of all n×n invertible matrices using real (or complex) coefficients
under multiplication is also a group. Its identity element is the n × n identity matrix, In.
The group is called the general linear group and is denoted by GL(n,R) (or GL(n,C)). Since
we work with matrices of real coefficients, we will simply use GL(n) to mean GL(n,R).2

Formally, the set of matrices in the general linear group is defined by

GL(n) :=
{
G ∈ Rn×n : det(G) ̸= 0

}
. (2.1)

A subset of matrices in GL(n) whose determinant is unity is called the special linear group
of dimension n and denoted with SL(n), i.e.

SL(n) :=
{
S ∈ Rn×n : det(S) = 1

}
. (2.2)

As we shall see later, SL(n) is of particular interest to us where we use it to represent
2Lie groups of complex vs. real coefficients behave similarly, but their dimensionality differs. This distinc-

tion is irrelevant to our use of Lie Groups and their Algebras.
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Figure 2.1: Relationship between the rotation group SO(n) and other Lie groups.

plane-induced homographies.

Another subset of GL(n) is the set of orthogonal matrices called the orthogonal group and
denoted with O(n). Matrices in this set must obey

O(n) :=
{
O ∈ Rn×n : OO⊤ = O⊤O = In×n

}
, (2.3)

where In×n is the n×n identity matrix. The definition of the orthogonal group of matrices
implies matrices with unit determinant, but has no restriction on the sign of the determi-
nant. Hence, the group contains both: rotation and reflection transforms in n-space.

The intersection of SL(n) and O(n) gives rise to the special orthogonal group SO(n). This
is set of orthogonal matrices whose determinate is +1. In other words, the set of rotation
matrices in n-dimensions. The relationship between these groups is illustrated in Fig. 2.1.3

The second part of a Lie Group’s definition is the requirement of being a smooth manifold.
A mathematical manifold is defined as follows:

Definition 2.2.3 (Manifold). An n-dimensional manifold is a topological space that
locally behaves as an n-dimensional Euclidean space.

Informally, a manifold is a nonlinear structure, but it behaves locally as if it was linear as
illustrated in Fig. 2.3. The linearity part is due to the Euclidean structure as every element
in the Euclidean space is a linear combination of a set of finite basis. This local linearity is
particularly important for optimization problems.

The most intuitive example of a manifold is the surface of the Earth, which for the purpose
3The analog to SL(n) and O(n) with complex coefficients is UL(n) and U(n) with transposition replaced

with complex conjugation, where U is a short for unitary.
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Figure 2.2: The shortest distance between New York and Tokyo is a great arc. Information was obtained from
https://www.freemaptools.com/ and Google. Interestingly, most of the flight path is above land.

of this discussion, we approximate as a large sphere. For most day-to-day activities, say
a trip to the grocery store, the shortest distance between two points is a straight line.4

However, if one is to travel a longer distance, the straight line approximation of the shortest
distance becomes poor. Instead, the shortest distance is now measured with a great arc as
shown in Fig. 2.2. This generalization of the notion of a straight line to curved spaces is
commonly known as the geodesic distance.

2.2.1 Lie Algebra

Every Lie group has associated a Lie algebra defined as:

Definition 2.2.4 (Lie algebra). A Lie algebra is a vector space with an operator called
the bracket, or the matrix commutator, and is denoted by [·, ·]. Given a,b, c in the vector
space, the following must hold:

• Skew-symmetry [a,a] = 0, which also implies [a,b] = − [b,a]

• Jacobi identity
[
a, [b, c]

]
=
[
b, [c,a]

]
=
[
c [a,b]

]
It is common to denote the Lie algebra with lower case Fraktur, e.g. the Lie algebra ofGL(n)
is denoted gl(n).

The basis of the Lie algebra are commonly known as the generators. For example, consider

4If one is not restricted by the topology of road networks.
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SO(3) the group of rotations in 3-space. Its generators are given by:

G1 =


0 0 0

0 0 −1

0 1 0

 , G2 =


0 0 1

0 0 0

−1 0 0

 , and G3 =


0 −1 0

1 0 0

0 0 0

 . (2.4)

In fact, the generators of so(3) in Eq. (2.4) are derivatives of the infinitesimal rotations of
3-space about the basis vector. Given any vector ω ∈ R3, we have

3∑
i=1

ωGi ∈ so(3). (2.5)

A Lie algebra is the tangent space of its associated group at the identity element. For so(3),
they are the skew-symmetric matrices generated from 3-vectors, i.e. [ω]× ∈ so(3), where
for ω =

(
ωx, ωy, ωz

)⊤,

[ω]× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ∈ so(3). (2.6)

For convenience, however, we will simply say ω ∈ so(3).

An important concept is the exponential map (and its inverse: the log map), which allows
us to transition from the group to its algebra (the tangent space about the identity). The
exponential map is reviewed in the next section.

2.2.2 The exponential map

The exponential map is the tool to map elements from the tangent space (the Lie algebra)
to the Lie group. For instance, consider 3-space, for ω ∈ R3 we have

exp
(
[ω]×

)
∈ SO(3). (2.7)
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Figure 2.3: Illustration of a manifoldM and its tangent space TxM at a point x. The line (vector) through
x approximates an arc on the sphere only locally.

The matrix exponential of an n× n real (or complex) matrix M is defined—analogously to
the usual scalars—via the power series given by:

exp (M) =

∞∑
i=0

1

i!
Mi (2.8)

and follows the usual exponentiation rules. In general, however, the power series in
Eq. (2.8) is divergent and must be approximated. Padé approximation is usually the method
of choice [31].5

Of particular interest to us are two Lie gruops: the first is the Special Euclidean group
in three dimensions SE(3), or the group of rigid-body transformations. The second is
the special linear group SL(3), which we used to represent plane-induced homographies.
Both groups are briefly reviewed next.

5This is implemented in MATLAB using the function expm.

19



2.2. Lie Groups

Figure 2.4: Action of the exponential and log maps

2.2.3 The group of rigid-body transformations SE(3)

A rigid-body transformation (pose) in 3-space is composed of a rotation matrix and a trans-
lation vector and takes the form

T =

R t

0⊤ 1

 ∈ SE(3). (2.9)

The translation part of the pose matrix bears no difficulty in optimization problems as it is
Euclidean, i.e. linear. Metrics on the rotation space are, however, nonlinear, and their use
in optimization must be approached with care [162, 179].

Rotations in 3-space have three degrees-of-freedom. Yet, their matrix representation is
composed of nine entries. We could optimize over rotations using the nine elements of
the rotation matrix. But, this is impractical and inadvisable as: (1) it increases the dimen-
sionality of the state vector, thus making the problem more difficult, and (2) enforcing the
rotation matrix constraints (orthogonality with positive unit determinant) is a nonlinear
operation; normalization after the fact usually does not produce good results.

Quaternions are a popular tool to represent rotations in robotics [142], but care must be
taken to ensure that the quaternion maintains a unit norm for it to be a valid representation
of a 3D rotation.6

The Lie group SE(3) and its algebra se(3) provide a convenient way to represent rigid-
body transformations. For instance, commonly performed operations such as composition

6When normalized to unit vectors, quaternions can be represented using the 3-sphere Lie Group: the Spe-
cial Unitary Group SU(2) which is isomorphic to unit quaternion.
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of transformations, interpolation, inversion and uncertainty estimation can be elegantly
performed using SE(3) and its algebra.

Formally, SE(3) is the product of two manifolds SO(3) and R3, usually denoted with

SE(3) := SO(3)× R3.

The generators of se(3) are the following six 4× 4 matrices:

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

 , G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

 , G3 =


0 −1 0 0

1 0 0 0

0 0 0 0

 (2.10)

G4 =



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


, G5 =



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


, and G6 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


, (2.11)

such that any rigid-body transformation may be represented as:

T(θ) = exp

 6∑
i=1

θiGi

 , (2.12)

where θ ∈ R6.

Closed-form solution of the exponential and log maps for SE(3)

Given the vector θ = (ω, ν)⊤ ∈ R6, we first define the hat-operator as

θ̂ =



0 −ω3 ω2 ν1

ω3 0 −ω1 ν2

−ω2 ω1 0 ν3

0 0 0 0


=

[ω]× ν

0⊤ 0

 . (2.13)
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The matrix exponential to map from the vectorial representation to a rigid-body pose is
given by

exp
(
θ̂
)
=

exp
(
[ω]×

)
Vν

0⊤ 1

 , (2.14)

where

exp
(
[ω]×

)
= I+

sinϕ

ϕ
[ω]× +

1− cosϕ

ϕ2
[ω]2× , (2.15)

with

ϕ = ∥ω∥ (2.16)

and I denotes the 3× 3 identity matrix. The matrix V ∈ R3×3 takes the form

V = I+
1− cosϕ

ϕ2
[ω]× +

ϕ− sinϕ

ϕ3
[ω]2× (2.17)

We note, however, if ϕ is near zero then the rotation axis is undefined. Hence, this case
must be handled specially such that exp

(
[ω]×

)
= I.

Similarly, the log map has a closed-form. Given a rigid-body transformation matrix of the
form

T =

R t

0⊤ 0

 , (2.18)

let

θ = cos−1((traceR− 1) /2), (2.19)

then

logT =

logR V−1t

0⊤ 0

 , (2.20)
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where

logR =
θ

2 sin θ

(
R−R⊤

)
, (2.21)

and

V−1 = I− 1

2
logR+

1

θ2

(
1− a

b

)
logR2, (2.22)

with

a =
sin θ

θ
, and b = 2

1− cos θ

θ2
. (2.23)

Finally, extracting the 6-vector from the log map is performed using the vee-operator,
which is the inverse of the hat-operator defined in Eq. (2.13). Similar to the exponential
map, if θ is near zero, then V−1 = I and the rotation part—ω—is the zero 3-vector.

2.2.4 The Special Linear Group for Parameterizing Homography SL(3)

The imaging model of planes under perspective can be described by a 3 × 3 projective
transformation known as a homography [82]. The homography encodes the eight degrees-
of-freedom describing the plane motion and its decomposition can be used to estimate the
pose of the camera given known calibration parameters [242]. Homography estimation
is not only important for describing the motion of planar targets, it also arises when the
motion of the camera is purely rotational about its center of projection. Applications of ho-
mography estimation also include rectification [163, 229] and visual reconstruction using
mosiacs [214, 354].

Due to common applications of homographies in geometric estimation problems, several
parameterizations have been proposed [30]. An elegant parametrization, however, is using
the SL(3) group. Recall that the Homography is defined up to scale, and if this scale is
chosen such that the determinant of the matrix is unity, then the SL(3) parameterization
naturally arises.
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2.3. Camera Projection

The generators for SL(3) are the following eight 3× 3 matrices:

G1 =


0 0 1

0 0 0

0 0 0

 , G2 =


0 0 0

0 0 1

0 0 0

 , G3 =


0 0 0

0 0 0

0 0 1

 , G4 =


0 1 0

0 0 0

0 0 0

 , (2.24)

G5 =


0 0 0

1 0 0

0 0 0

 , G6 =


0 0 0

0 0 0

1 0 0

 , G7 =


1 0 0

0 −1 0

0 0 0

 , G8 =


0 0 0

0 −1 0

0 0 0

 . (2.25)

Unlike the group of rigid-body transformations, the exponential map from sl(3) to the
group elements of homographies SL(3) (and its inverse: the logarithm map) has no closed-
form and must be approximated [267].

2.2.5 Additional details

Gallier [134] provides an in-depth treatment of Lie Groups and their applications in dif-
ferential geometry. In compute vision, Lee [218] presents solutions to geometric problems
using the Lie Group theory. In particular, they present solutions for pose estimation and
simultaneous registration of multiple three-dimensional point clouds. Bregler and Malik
[54] demonstrate the utility of Lie Groups for tracking high DOF objects.

Grassia [142] convincingly argues the benefits of the exponential map to represent rota-
tions in computer graphics. In robotics, Murray et al. [277] provide a concise summary
and closed-form formulae for commonly used exponential maps.

The topic is in fact very useful and there exists many well-written notes and books, which
this summary derives from [45, 183, 204]

2.3 Camera Projection

A simple definition of a camera is a device that captures the projection of the light field
onto a 2D plane. A more rigorous definition was recently provided by Ponce [302]. In this
work, we are interested in the most commonly used camera, the pinhole camera illustrated
in Fig. 2.5.
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Figure 2.5: Pinhole projection model.

The pinhole projection, assuming square pixels, is characterized by the 3 × 3 projection
matrix which takes the form

K =


fu 0 cu

0 fv cv

0 0 1

 , (2.26)

where fu and fv are the focal lengths of the u- and v-axis respectively, and the principle
point is denoted with (cu, cv). The camera is placed in a right-handed coordinate system as
shown in Fig. 2.5, where the action of projection of a 3D scene point onto the image plane
is given by the projection function

π : R3 → R2 (2.27)

π(P) = n(KP), (2.28)

where n(·) denotes de-homogeneouzing by dividing the first two coordinates of the input
by the third, i.e.: n([a, b, c]⊤) =

[
a/c, b/c

]⊤.

When K is known, the camera is said to be calibrated. In which case, the camera behaves
as an angle measurement device. Every point on the image plane u = [u, v, 1]⊤ makes
an angle with the center of projection. The ray emitting from the center of projection and
piercing throw the pixel u is given by

û = K−1u. (2.29)

This ray intersects the image plane at distance f (focal length) from the center of projection.
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2.4. Nonlinear Least-Squares

Given a depth measurement d associated with û, we may obtain the Euclidean position of
the point in space using

P = dû. (2.30)

This action defines the inverse camera projection given by

π−1 : P2 × R→ R3 (2.31)

π−1(u, d) = dK−1u, (2.32)

where K−1 can be explicitly obtained as

K−1 =


1/fu 0 −cu/fu

0 1/fv −cv/fv

0 0 1

 . (2.33)

Faugeras et al. [119, ch. 4], and Hartley and Zisserman [160, ch. 6] provide an in-depth
treatment and discussion of the pinhole projection model as well as other commonly en-
countered projection models and nonlinear distortion due to optical lenses.

2.4 Nonlinear Least-Squares

Given an objective, and some limited information, optimization answers the question:
what is the best action to take?

For all, but a subset of problems known as convex, general optimization remains a difficult
problem [52, 289]. A subset of convex optimization problems is known as (nonlinear) least-
squares. Least-squares problem posses a special structure that makes their solution easier
and more reliable than general purpose optimization problems.

Formally, given m smooth vector-valued functions ri : Rn → R, parameterized by the
vector θ ∈ Rn, we seek to find a local minimum7 of the sum of the residuals

f(θ) =
1

2

m∑
i=1

r2i (θ). (2.34)

7If one seeks a maximum, we simply negate the objective
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It is easier to proceed by stacking the residuals in a vector r : Rn → Rm, which takes the
form

r =
(
r1(θ), r2(θ), . . . , rn(θ)

)⊤ ∈ Rm×1 . (2.35)

The least-squares optimization objective in Eq. (2.34) can now be written in matrix form as

f(θ) =
1

2
∥r∥22 . (2.36)

The derivative of f is the m× n Jacobian matrix given by:

J(θ)i=1,. . . ,m
j=1,. . . ,n

=



∇r1(θ)⊤

∇r2(θ)⊤
...

∇rm(θ)⊤


, (2.37)

where∇rj is the gradient of the jth residual. As for the objective f , its gradient and Hessian
at θ take the form:

∇f(θ) =
m∑
i=1

ri(θ)∇ri(θ) (2.38)

= J(θ)⊤r(θ) (2.39)

∇2f(θ) =
m∑
i=1

∇ri(θ)∇ri(θ)⊤ +
m∑
i=1

ri(θ)∇2ri(θ) (2.40)

= J(θ)⊤J(θ) +
m∑
i=1

∇2ri(θ). (2.41)

In contrast to computing second-order partial derivatives, computing the first-order partial
derivatives (the Jacobian) is relatively easy and inexpensive to perform. When an initializa-
tion close to the local minima is provided, the second order terms (∇2ri(θ)) are relatively
small. Hence, the Jacobian term has a more significant contribution to the objective. The
same situation arises when the residuals — ri(θ) — are relatively small. Thus, the first-
order approximation to the Hessian — J(θ)J(θ)⊤ — provides a good estimate to the full
Hessian without having to perform difficult to compute second-order derivatives. This
unique property to least-squares problems make their solution attractive in practice [289].

While relying only on first-order derivative is attractive (more efficient and better numer-
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ical conditioning [371]) there is one caveat. The solution of the linear system of equations
required to obtain a parameter update is now sensitive to scaling. For instance, if the mag-
nitude of some elements of the parameter vector significantly differ (larger or smaller) than
the rest, then the solution may be biased towards element with the higher magnitude. If
this is the case, appropriate pre-scaling schemes must be performed to ensure a good and
a numerically stable solution [372].

When residuals are distributed according to a Normal distribution, the solution is known
as the Maximum Likelihood Estimate (MLE). If a prior on the parameters is known, a
Bayesian approach may be used. Under a Bayesian formulation, the optimal estimate of
parameters is obtained such that posteriori known probability distribution of the parame-
ters is maximized, i.e.:

θ∗ = argmax
θ

f
(
θ | z

)
, (2.42)

where f
(
·|·
)

is the probability distribution of the parameter vector given a vector of mea-
surements z = (z1, . . . , zm)⊤.

The probability of the parameters given the measurements is often hard to compute, or
unknown. Conversely, the probability of measurements given the parameters is easier to
model. Using Bayes rule we may write the objective in Eq. (2.42) as

θ∗ = argmax
θ

f(z | θ)f(θ)
f(z)

. (2.43)

The probability of the measurements f(z) is often called the marginal distribution and does
not depend on the parameters we seek to estimate. Hence, it may be neglected. Similarly,
the probability of the parameters f(θ) is constant and usually known (this is the prior).
If we assume that the distribution of the parameters is uniform, the objective can now be
written as

θ∗ = argmax
θ

f(z | θ). (2.44)

If we assume that the measurements are independent and identically distributed (iid), then
Eq. (2.44) is equivalent to the more tractable form given by

θ∗ = argmax
θ

m∏
i=1

f(zi |θ). (2.45)

Finally, for even moderate values of m, the multiplication of probabilities vanishes quickly.
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A mathematically equivalent form, but numerically stable is to minimize the negative log-
likelihood given by

θ∗ = argmin
θ

m∑
i=1

− log f
(
zi | θ

)
. (2.46)

Now, given a form of the probability distribution of the measurements given the param-
eters. A common assumption is using a Gaussian distribution. Let f(zi | θ) ∼ N (µ, σ),
with µ = zi− f(θ), where fi(θ) is a function that predicates the ith measurements given the
parameters. Then, minimizing the log-likelihood in Eq. (2.46) becomes:

θ∗ = argmin
θ

1

2

m∑
i=1

1

σ2
(
zi − fi(θ)

)2 (2.47)

= argmin
θ

1

2
ri(θ)

2, (2.48)

where ri(θ) is the ith residual.

If a prior is known on the distribution of parameters, it can be easily integrated in to the
optimization. For instance, in the case of camera pose estimation, the prior may enforce a
smoothness or continuity of the estimation based on the previous estimates of the param-
eters (e.g. constant acceleration). Let this prior be also normally distributed, i.e.

f(θ) ∼ N (µθ, σθ), (2.49)

then the MAP estimate takes the form

θ∗ = argmin
θ

1

2

m∑
i=1

(
ri(θ)

σ

)2

+
1

2σ2θ
|µθ − θ|2 . (2.50)

Inspecting the form of Eq. (2.50), the optimal estimate of the parameters not only mini-
mizes the sum of squared residuals, but in addition penalizes deviation from the known
prior of the parameters.

Finally, the normal equations are formulated akin to how we formulated them previously
in Eq. (2.52), but additionally take into account the prior information. The normal equa-
tions under the Bayesian formulation take the form:

J(θ)⊤J(θ)∆θ = −J(θ)⊤r(θ) + σ−2
θ (µθ − θ) . (2.51)
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In the next section we discuss the two most common algorithms to solving least-squares
problem: Gauss-Newton and Levenberg-Marquardt.

2.4.1 Solving nonlinear least-squares problems

The two main stream algorithms to solving nonlinear least-squares problems are the Gauss-
Newton algorithm (GN) and the Levenberg-Marquardt algorithm (LM) [222, 245]8.

Both GN and LM perform three common steps repeatedly until convergence:

• Linearization, where the first-order partial derivatives (the Jacobian) are computed at
the current estimate of the parameter vector.

• Solving a linear system using an appropriate linear solver (such as QR, or Cholesky
decomposition), and

• Updating the parameters, where the incremental update obtained by solving the linear
system is added to the parameter vector prior to repeating the process.

The main difference between GN and LM is how the linearized system of equations is
constructed. In GN, the parameter update are obtained by solving what is commonly
known as the normal equations, which at the kth iteration are given by

J
⊤
kJk∆θGN = −J⊤

k rk. (2.52)

Advantages of GN include:

1. No need to compute second-order derivatives;

2. If the GN approximation to the Hessian (J⊤
kJk) is a good approximation of the true

Hessian, then convergence is quadratic; and

3. When the gradient ∇f is non vanishing, and J is full rank, the GN solution is the
descent direction for the objective f .

Advantages of GN come with strong conditions such as accuracy of the first-order approx-
imation to the Hessian (small residual problem) and the Jacobian is full rank (not always

8Powell’s Doglog is another trust-region based method that is gaining popularity in Robotics [309] and
Computer Vision [231], but we did not find a measurable advantage of employing DogLog it over either GN
(for image alignment and direct visual odometry) and LM (for geometric and photometric bundle adjustment
problems). In fact, LM was shown to be superior in other optimization fields [331].
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possible due to measurement noise and roundoff errors). The LM algorithm addresses
some of these issues by solving an augmented version of the normal equations, which is
given by (

J
⊤
kJ+ λkI

)
∆θLM = −J⊤

k rk, (2.53)

where λk > 0 is adjusted at every iteration to ensure a reduction in the objective [239, 289].

Least-squares problems are known to be sensitives to outliers. The breakdown point of an
estimator is percentage of outlier data points it can handle before giving incorrect results.
In the case of ordinary least-squares, the breakdown point is 0%. In other words, a single
outlier measurement throws off the estimate.

An approach to addressing outliers based on M-Estimators from robust statistics is sum-
marized in the next section.

2.4.2 Robust Estimation

There are multiple methods to address outlier and obtain more robust estimators [177, 404],
of particular interest is the class of M-Estimators. According to Huber [177], the M- stands
for maximum likelihood type.9

The idea of M-Estimators is conceptually simple. The reason that ordinary least-squares
is so sensitive to outliers is the high influence outliers bring to the objective. If instead we
use an influence function that does not quadratically increase as a function of the residuals
absolute magnitude, we can down weight the influence of large residuals on the solution.
The rationale is that unusually large residuals are most likely gross outlier measurements.

While one may use any nonnegative function as an influence function, influence functions
are usually symmetric,10 positive definite, with a unique minimum at zero. They of course
must grow at a rate less than the quadratic. Given a vector of residuals r = (r1, . . . , rm)⊤,
M-estimators reduce the influence of outliers by minimizing the following objective, or

9Other robust estimators in statistics include [153]: A-estimators (asymptotic variance), D-estimators (mini-
mum distance), P-estimators (Pitman), L-estimators (linear combination of order statistics), S-estimators (scale
statistic), R-estimator (rank test) and W-estimator (weighted mean).

10The requirements here are not strict. For instance, asymmetric M-Estimators have been proposed by Al-
lende et al. [16] designed to work with asymmetric distributions.
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loss function

m∑
i=1

ρ(ri), (2.54)

where the function ρ is chosen such that it grows at rate slower than least-squares. The
M-estimator of a parameter vector θ based on the function ρ is the solution to

m∑
i=1

ψ(ri)
∂ri
∂θ

, (2.55)

where the function ψ is the known as the influence function and is given by the derivative:

ψ(x) =
∂ρ(x)

∂x
. (2.56)

If we let the w(x) be the weight function given by

w(x) =
ψ(x)

x
, (2.57)

then Eq. (2.56) may be written as:

m∑
i=1

w(r
(k−1)
i )r2i , (2.58)

where r(k−1)
i indicates the value of the residuals at the previous iteration (k− 1). The form

of Eq. (2.56) is identical to ordinary least-squares, but is now weighted using the function
w accounting for large residuals that are most likely outliers.

Multiple ρ functions have been proposed in the literature. There is, however, no single
best function as the performance of the estimator is tied to the data, type of noise and the
closeness of the initial estimates to the optimal value.

Two popular functions are the Huber and the Tukey influence functions. The Huber func-
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tion, given a tuning constant k, takes the form

ρ(x) =


x2

2 if |x| ≤ k;

k
(
|x| − k/2

)
otherwise.

(2.59)

ψ(x) =

x if |x| ≤ k;

k signum(x) otherwise.
(2.60)

w(x) =

1 if |x| ≤ k;
k
|x| otherwise.

(2.61)

The tunning constant is usually selected to be k = 1.345 to achieve 95% asymptotic effi-
ciency of the normal distribution.11 Tukey’s function, on the other hand, also known as
Tukey bi-weight takes the form

ρ(x) =


t2

6

(
1−

(
x/t
)2)3 if |x| ≤ t;

t2

6 otherwise.
(2.62)

ψ(x) =

x
(
1−

(
x/t
)2)2 if |x| ≤ t;

0 otherwise.
(2.63)

w(x) =


(
1−

(
x/t
)2)2 if |x| ≤ t;

0 otherwise.
(2.64)

The tunning constant for Tukey’s function is usually selected to be t = 4.6851 to achieve
95% asymptotic efficiency of the normal distribution.

Huber’s function is smoother than Tukey’s as shown in Fig. 2.6, which usually implies a
faster convergence. However, Tukey’s function provides a more aggressive treatment of
outliers. A good strategy as recommend by Huber [177] is start the optimization with a
smoother influence function and then perform a final pass with a more aggressive function
such as Tukey’s.

An in-depth treatment of robust statistics can be found in the book by Huber [177]. Theo-
retical considerations and history of the development of influence functions is provided

11Statistical efficiency is measure of estimators optimality. A more efficient an estimator is, the fewer mea-
surements it needs.
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Figure 2.6: Illustration of commonly used M-estimators in comparison to ordinary least-squares. The y-axis
for least-squares has been truncated for a better visualization.

by Hampel et al. [153]. A well-written summary covering the different robust estima-
tion methods commonly used in Computer Vision is provided by Stewart [348]. Finally,
an excellent tutorial on robust estimation with a thorough treatment of M-estimators for
Computer Vision application is provided by Zhang [404], which also discusses how to
robustly estimate the scale (standard deviation) of the residuals. When using robust M-
estimators, the optimization procedure is commonly referred to as Iteratively Re-Weighted
Least-Squares (IRLS). Some implementation details for IRLS optimization can be found in
the works of Holland and Welsch [169] and Street et al. [350].

A practical example of nonlinear optimization is the original Lucas and Kanade algorithm
(LK) for parametric image alignment [235], which is one of the most widely used algo-
rithms in Computer Vision. LK and its variants are summarized in the next section.
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2.5 Parametric Image Alignment

The goal of image alignment is to compute the deformations between one, or more, input
images with respect to a fixed template/reference image such that a measure of dissimilar-
ity between the template and the input images is minimized.

When the form of deformation between the template and input images is known, the prob-
lem is often referred to as parametric image alignment. Examples of applications of para-
metric image alignment include template tracking [248], corner localization [329], image
registration, as well as direct Visual Odometry (VO).

In the sequel, we will provide a summary of the Lucas-Kanade (LK) algorithm [235] for
parametric image alignment. It is important to note that the original LK formulation is an
application of nonlinear least-squares. Some of LK’s variants, however, perform “tricks”
specific to the form of warps that do not lend themselves to standard nonlinear program-
ming. For a complete exposition of LK and its variants we refer the reader to the excellent
series of publications by Baker and Matthews [25] and Baker et al. [26, 27, 28, 29].

2.5.1 Original LK (Forward Additive)

Given two images, a template/reference I0 and an input/current image I1 related via a
parametric transform/warp, we desire to estimate the parameters of the warp such that a
function of intensity dissimilarity between the template and input is minimized.

The warp is a geometric transform that transfers pixel coordinate from the reference image
x to the coordinate frame of the input image x′. We will denote this warp with

w : Rm × Rp → Rn (2.65)

x′ = w (x;θ) , (2.66)

where θ ∈ Rp is the vector of parameters we desire to estimate, x ∈ Rm is a pixel coordinate
in the frame of the template image, and x′ ∈ Rn is a pixel coordinate in the coordinate
frame of the input image. Typically, pixel coordinates belong to the 2D image plane, i.e.
m = n = 2, but other forms of warps can operate on higher dimensions depending on the
problem formulation. A summary of commonly used warps is shown in Table 2.1.
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The goal of LK is to estimate the vector of parameters θ such that

I0(x) ≡ I1(x
′). (2.67)

Exact equality, however, is unattainable due to noise and outliers. If we assume equality up
to an additive Gaussian noise, then minimizing the sum of squared residuals corresponds
to maximizing the likelihood, which is the optimal choice given no prior knowledge. Un-
der least-squares, the minimization problem is of the form

min
θ

∑
x∈Ω0

∥I0(x)− I1(w(x;θ))∥22, (2.68)

where Ω0 denotes a subset of pixel coordinates in the reference frame. This relationship is
also known as the brightness constancy assumption, or brightness conservation [173].

Since the intensity value of a pixel, in general, is unrelated to the form of the warp, the
optimization problem in Eq. (2.68) is nonlinear. Any nonlinear solver could be used to
solve Eq. (2.68). In practice, Gauss-Newton (GN), or Levenberg-Marquardt (LM) are the
algorithms of choice.

The solution proceeds by iteratively estimating a small parameter update ∆θ in the vicinity
of a given initialization θ. A first-order Taylor series expansion about ∆θ = 0 yields the
following linear system of equations

min
∆θ

∑
x∈Ω0

∥I0(x)− I1(x
′)− ∂I1

∂θ
∆θ∥22. (2.69)

Differentiating Eq. (2.69) with respect to ∆θ results in the expression

∑
x∈Ω0

(
∂I1
∂θ

)⊤ ∣∣∣∣I0(x)− I1(x
′)− ∂I1

∂θ
∆θ

∣∣∣∣. (2.70)

The optimal solution for ∆θ is the critical point of the derivative (Eq. (2.70)) and obtained
as the solution to the normal equations given by

∑
x∈Ω0

(
∂I1
∂θ

)⊤(∂I1
∂θ

)
∆θ = −

∑
x∈Ω0

(
∂I1
∂θ

)⊤ (
I0(x)− I1(x

′)
)
. (2.71)

At the next iteration of the optimizer, parameters are updated additively:

θ ← θ +∆θ. (2.72)
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In the terminology of Baker and Matthews [25], the algorithm is called “Forward Additive.”
Forward, because the transformation maps pixel coordinates from the coordinate frame
of the template to the coordinate frame of the input. Additive, because of the vector of
parameters is updated additively after each iteration of the optimization algorithm.

The LK algorithm was invented early on in Computer Vision [235] for the purpose of esti-
mating correspondences between the images of a stereo pair. Applications of LK now are
numerous. The algorithm was also independently developed in Photogrammetry under
the name: Least-Squares-Matching [144, 397]. An example implementation for the case of
transitional shifts between the template and input images is shown in Algorithm 1.

Algorithm 1 The Lucas and Kanade algorithm

function t = lk(T, I)
t = zeros(1, 2);
[Ix, Iy] = gradient(I);

it = 1;
done = false;
while ~done
Ixw = imtranslate(Ix, t);
Iyw = imtranslate(Iy, t);
Ie = T(:) - reshape(imtranslate(I, t), [], 1);
J = [Ixw(:) Iyw(:)];
dt = - J \ Ie;
t = t + dt’;

done = norm(dt) < 1e-6 || norm(J’*Ie, Inf) < 1e-8 || it > 50;
it = it + 1;

end

end

2.5.2 Inverse Compositional (IC)

The original LK algorithm is versatile and applicable to a variety of problems and warps.
However, when the Jacobian of the warp is not constant, LK becomes computationally
expensive. This is because the linearization step happens at the coordinate frame of the
input image, which is warped (changes) at every iteration.

For a special set of warps, Baker and Matthews [25] devise an efficient algorithm by (con-
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ceptually) interchanging the roles of the template and input images. The warps must form
a group to allow for a compositional update of the parameters. Instead of the original LK
objective, Baker and Matthews [25] propose:

argmin
∆θ

∑
x∈Ω0

∥I0(w(x;∆θ))− I1(w(x;θ))∥2, (2.73)

with a parameter update performed using “inverse” composition:

θ ← θ ◦ (∆θ)−1 . (2.74)

Inverting the estimated parameters after every iterations is necessary because the lineariza-
tion is carried out at the coordinate frame of the template.

Performing a first-order expansion of Eq. (2.73), we obtain:

∑
x∈Ω0

∥I0(w(x;0))− I1(w(x;θ)) +
∂I0
∂θ

∆θ∥2 (2.75)

=
∑
x∈Ω0

∥I0(x)− I1(x
′) +

∂I0
∂θ

∆θ∥2, (2.76)

where we assume that, without loss of generality, w(x;0) is the identity warp. The optimal
update is obtained as the stationary point of the gradient and is given by the solution to
the normal equations:

∑
x∈Ω0

(
∂I0
∂θ

)⊤(∂I0
∂θ

)
∆θ =

∑
x∈Ω0

(
∂I0
∂θ

)⊤ (
I0(x)− I1(x

′)
)
. (2.77)

In IC, the Jacobian of the warp is evaluated at x = w(x;θ), with θ = 0:

J(y;θ) =
∂I0(y)

∂θ

∣∣∣∣y=x0
θ=0

. (2.78)

The computational saving of the IC algorithm are significant. The Jacobian of the warp,
and the inverse of the (Gauss-Newton approximation to the) Hessian need only be com-
puted once at the beginning of the algorithm. The rest of the algorithm becomes a repeated
application of image differences and matrix multiplication; operations that are efficient and
amenable to parallelization.

The group requirement on the set of warps is not limiting. A large majority of warps
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commonly used in Computer Vision form a group, such as Perspective transformations
(and their subgroups, cf . Table 2.1). Finally, IC, up to a first-order analysis, is equivalent to
the original LK formulation [25].

Finally, we note that IC is not only more efficient, but its implementation is also simpler.
However, given that the Jacobian is pre-computed and the warp is updated composition-
ally, it is not readily suited to commonly available nonlinear optimization packages (such
as MINPACK [270] and others [48]). An implementation of the IC algorithm for transla-
tional warps is shown in Algorithm 2.

Algorithm 2 Baker and Matthews Inverse Compositional algorithm

function t = ic(T, I)
t = zeros(1, 2);
[Ix, Iy] = gradient(T);
J = [Ix(:) Iy(:)];

it = 1;
done = false;
while ~done
Ie = T(:) - reshape(imtranslate(I,t), [], 1);
dt = J \ Ie;
t = t - dt’;

done = norm(dt) < 1e-6 || norm(J’*Ie, Inf) < 1e-8 || it > 50;
it = it + 1;

end

end

2.5.3 Other Variations

In addition to the IC algorithm, there are two more major variations. Firstly, is the forward
compositional (FC) algorithm [332], where it is possible to pre-compute the geometric part
of the Jacobian. Secondly, is the Efficient Second order Minimization (ESM) algorithm
[40, 241]. The ESM algorithm obtains a second-order approximation of the Hessian effi-
ciently by exploiting gradients from both the template and the input images. ESM has
been claimed to have a wider basin of convergence [40], but it depends on the warp [110].
Mei et al. [253] develop further computational enhancements to the ESM method, and
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argue that ESM is more efficient than IC, even though each iteration of ESM is more com-
putationally expensive. This is attributed to ESM’s wider basin of convergence, hence
requiring fewer iterations for convergence. A recent review of LK variations can be found
in the work of Crivellaro et al. [84].

An important problem shared across all image alignment methods is the need to compute
image gradients and interpolate the image intensities at subpixel locations, which we re-
view briefly in the next section.

2.6 Image gradients and interpolation

The notion of image gradients is often taking for granted. It is however a rather involved
topic. A digital image is often thought of as a discretized sampling of a continuous signal,
but involves additional steps summarized in Fig. 2.7. Its gradient can thus be approxi-
mated using the method of finite-differences [79, ch. 7].

Forward, or backward finite-differences are insufficient when estimating the image gradi-
ent as they provide inconsistent results [124]. Due to the quantization step in the image
acquisition pipeline, smoothing the image is often useful, which can be part of the deriva-
tive filter as well.

The gradient of a function is rotation-invariant. Farid and Simoncelli [117] make use of
this rotation invariance requirement to develop constraints for optimal gradient estimation
filter design and integrates smoothing as well. Another view on gradient estimation is
based on the minimization of the quadratic energy functional as proposed by Weickert
et al. [393].

We found the filters proposed by Farid and Simoncelli [117] to produce good results. A
more efficient filter is the 5-point stencil used by Wedel et al. [391] for optical and scene flow
estimation, and is given by 1

12 [−1, 8, 0, −8, 1]. It also produces good results. Notwith-
standing, parametric image alignment problems studied in this work do not make non-
linear and nonlocal use of image coordinates, such as enforcing smoothing or other con-
straints. During our work, we found that in practice, a central difference operator to pro-
duce the best balance of accuracy and efficiency.

Interpolation is another important detail when working with subpixel positions. In gen-
eral, projected image coordinates are real-valued and their exact value cannot be deter-
mined from a discrete image and hence must be interpolated. In fact, interpolation is
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Figure 2.7: Simplified view of the image acquisition step. Figure adapted from [187].

so important that its use in the science can be traced back to the ancient Babylonian and
Greek [254].

Thévenaz et al. [363] define interpolation concisely as the “recovery of continuous data
from discrete data within a known range of abscissa.” Interpolation differs from approxi-
mation by the requirement that an interpolated value at a known data point must match
the value of known point.

Linear algorithms for interpolation represent the value of an interpolated function as a
linear combination of known samples at integer locations as

f(x) =
∑
k∈Z

fkϕ (x− k) , (2.79)

where k the integer locations of the known samples denoted with fk, f(x) is the interpo-
lated value of the function f at the desired location x, the function ϕ (·) is the basis function,
or the interpolation kernel.

For ϕ to be a valid interpolation kernel it must satisfy the interpolation constraint. Namely,
when evaluated at integer location ϕ must be zero except at the origin where it takes one,
i.e., for k ∈ Z,

f(k) =

1 if k = 0;

0 otherwise.
(2.80)

Popular interpolation functions include: nearest-neighbor, linear, and cubic. Nearest-neighbor
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(a) Nearest-neighbor (b) Linear (c) Cubic

Figure 2.8: Different interpolation kernels applied to the same grid.

interpolation is a piecewise constant function (see Fig. 2.8a), its kernel is given by

ϕnearest(x) =

1 if 1
2 ≤ x <

1
2

0 otherwise.
(2.81)

Linear interpolation provides a smoother results (Fig. 2.8b) with the kernel

ϕlinear(x) =
(
1− |x|

)+
, (2.82)

where (·)+ denotes taking the positive part only.

Finally, the cubic interpolation kernel, due to Keys [201], takes the form

ϕcubic(x, a) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1 0 < |x| ≤ 1;

a|x|3 − 5a|s|2 + 8a|x| − 4a 1 < |x| < 2;

0 2 ≤ |x|,

(2.83)

where a is usually −1, −3/4, or −1/2 depending on the smoothness requirements. Cubic
interpolation results are depicted in Fig. 2.8c.

An excellent discussion on different kernels for image interpolation and their accuracy is
provided by [378], where splines are shown to be a convenient tool capable of representing
a range of smooth interpolation kernels. Implementation of common schemes is provided
by Getreuer [140].

In the optical flow literature, interpolation artifacts have shown to affect accuracy. Cubic
interpolation (either using Keys’ formula Eq. (2.83), or using cubic B-splines) is a popular
choice to reduce interpolation artifacts [352].

In the work presented in this document, we make use linear interpolation throughout for
computational efficiency.
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2.7 Visual Odometry and Vision-based SLAM

Visual odometry (VO) is the problem of estimating the pose of two, or more, cameras shar-
ing a common field of view (FOV). Vision-based motion estimation is attractive because of
the richness of visual information. A typical camera provide dense sampling of the scene,
which in addition to pose estimation, can be used to carry out important tasks such as ob-
ject recognition, and classification. In addition, cameras are relatively cheap, lightweight
and require little power in comparison to other sensors such as lasers.

Vision-based SLAM (VSLAM) is a closely related problem. Some might even argue that
both problems are the same. The trend, however, is to reserve the use of VO term to
frame-frame motion estimation, while use the term VSLAM for a more complete system
integrating multi-frame refinement (bundle adjustment), or loop closure.

Both, VO and VSLAM derive their name from robotics techniques for pose estimation [364].
Odometry is the process by which a robot estimate its position using sensory data. The
term is associated with wheel odometry. The simplest case is perhaps a differential drive
robot in the plane, which is equipped with two wheels. Given a known distance between
the two wheels (the wheel base), the radius of each wheel, and the number of revolutions
recorded from encoders, an estimate of the distance travelled can be obtained [49]. Inte-
grating the odometry estimates over time provides us with a cumulative position of the
robot. The process is known as dead reckoning.

Wheel odometry and dead reckoning are inaccurate due several factors such as wheel slip-
page. A spinning wheel does not always imply a moving robot. Wheels often slip, and in
the extreme case, the robot may be stuck. To remedy this issue, exteroceptive sensing can
be of great help. In particular, the use of cameras for position estimation and its demon-
stration on Mars [240].

Simultaneous Localization And Mapping (SLAM) is another fundamental problem in robotics
[105, 219]. Given sensor measurements of an unknown environment, the SLAM problem
is to use the measurements (and possibly control inputs) to simultaneously build a map
of the environment and localize the robot to the map. Traditional sensors for SLAM prob-
lems in robotics include radar [102], sonar [362], and perhaps most accurate of all is li-
dar [12, 72, 268].

Using vision for SLAM is a natural progression. In Computer Vision, the problem is usu-
ally referred to a Structure-from-Motion (SFM) [38, 44, 300, 301], which predates the use
of vision in SLAM, and can be traced back to early work in Photogrammetry. Central to

44



Chapter 2. Background and Related Work

SFM accuracy in Computer Vision is the joint refinement of motion and structure in what
is known as bundle adjustment (BA) [372]. The issue, however, was that BA is computa-
tionally demanding, and it was infeasible to perform for robotic applications demanding
localization and mapping results in real-time.

Pioneering work in VSLAM [91] adapted commonly used and efficient filtering techniques
in robotics to demonstrate the feasibility of real-time VSLAM. The map, however, consisted
of only a few landmarks. This was later improved, also via filtering techniques, to a larger
scale map [106]. The application of BA limited to two-views pose refinement was demon-
strated by Nister et al. [288], where the term visual odometry was popularized.12 Nister
et al. [288] work is based on the feature-based pipeline [369]. Key to the real time applica-
tion of the approach is the use of Single Instruction Multiple Data (SIMD) to quickly extract
Harris corners [158].

Another key development in feature extraction is the introduction of the FAST keypoint de-
tector [311], which demonstrates efficient keypoint extraction using a decision tree. FAST,
was then used as the keypoint detector for an influential VSLAM system by Klein and Mur-
ray [205] and called PTAM. The key idea in PTAM (Parallel Tracking And Mapping) is to
offload the task of accurate refinement using BA to a background thread. This means that
real-time VO estimates can be obtained, while refinement is running simultaneously in a
separate thread. The development of PTAM and other systems [111, 273] demonstrated
the feasibility of BA in real-time systems. Advantages of BA in comparison to filtering was
then established by Strasdat et al. [349], where it was concluded that BA is more efficient
per unit of computation.

A summary of key developments over the past three decades is provided in Table 2.2.
Fraundorfer and Scaramuzza [129], Scaramuzza and Fraundorfer [320] provide an addi-
tional discussion and review of different approaches to VO. To date, there are three main-
stream approaches to VO and VSLAM. One, is the feature-based approach where the im-
age is abstracted away in a few keypoints, or features [369]. Two, is the direct approach,
where image data are used directly to estimate pose without the need for an intermediate
representation [181]. Three, is the volumetric approach where range data are fused in 3D
space [286]. The three methods are reviewed next.

12The term visual odometry appears in Biology, prior to its use in Vision and Robots, to describe the naviga-
tional abilities of honeybees [341].
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Table 2.2: Overview of key developments in VO and VSLAM. Other things we should have is image re-
trieval advances in robotics [85] and Computer Vision [338]. Biologically inspired systems for large scale
topological SLAM [264]. Adaptation of bundle adjustment for online applications [189, 190]. BA is better
than EKF [349]. The KITTI benchmark, which had a big influence on improving accuracy [138].

BEGINNINGS

1979 Moravec’s [269] pioneering work in visual navigation

1987 Stereo navigation [249]

1988 Horn and Weldon’s [171] direct motion estimation

REAL-TIME

2002 Davison and Murray’s [93] active vision approach

2003 Davison et al.’s [91], Davison’s [92] mono SLAM

2004 Nister et al.’s [288] real-time mono VO, coins the term “visual odometry”

2005 Visual odometry success on Mars [240, 251]

2006 Klein and Murray [205] (PTAM) and Mouragnon et al. [273] show the
feasibility of real-time bundle adjustment.

2007 Comport et al.’s [74, 75] direct/dense

DENSE

2010 Newcombe et al. [285] introduce a dense mapping system

2011 Izadi et al. [184], Newcombe et al. [286] adapt laser-based volumetric
methods [86] to dense depth data from the Kinect

2012 Whelan et al. [395] introduce a moving volume to map larger spaces

QUALITY OPEN SOURCE SYSTEMS

2014 Engel et al. [110] present a semi-dense full VSLAM

2015 Mur-Artal et al. [276] present a feature-based full VSLAM

FUTURE

Event based cameras [202, 274], beyond geometry and integrating se-
mantics [71, 126, 305, 315, 386], and Chapter 7
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2.7.1 Volumetric VO

Volumetric methods were developed for 3D surface reconstruction from laser data [86]
where a signed distance function is used to fuse 3D measurements. The signed distance
function is an implicit representation of the surface, where points off the surface are as-
signed a positive value, points inside the surface are assigned a negative value, while
points at the surface are assigned a constant value, usually a zero. The surface can then be
obtained as the level set of the signed distance function [296].

Newcombe et al. [286] presented the first real-time volumetric fusion system (KinectFu-
sion) making use of high framerate depth measurements from the Kinect. The fused
surface is continuously updated and refined by registering newly acquired data. The ap-
proach is commonly known as registration to a global model.

KinectFusion produces high quality reconstruction in small work areas [184, 286]. When
the environment is small and static, the approach is virtually drift-free. This is because
the world model can be maintained in memory. To map larger spaces, Whelan et al. [395,
396] introduced Kintinuous, a moving volume allowing larger space to be reconstructed
densely.

Multiple real-time volumetric fusions systems exist currently with focus on object mod-
eling from mobile devices in real-time [192, 295, 303, 360, 407]. While the volumetric ap-
proach can produce high quality reconstruction, it is in general limited to bounded envi-
ronments. In particular, a bounding volume is needed to construct the signed distance
function. Volumetric methods are also sensitive to the quality and accuracy of depth and
normals [113].

2.7.2 Feature-based Visual Odometry

The feature-based pipeline to visual odometry has a well established research record dat-
ing to early work in Photogrammetry [146] for determining the pose of a calibrated camera
from 3D–2D correspondences, or what is commonly known at the Perspective-N-Points
(PnP) algorithm [156], or space resection [145].

The minimal solver for the PnP is obtained when the intrinsic parameters of the camera and
the 3D coordinates of the world points are known using 3 points, or P3P [157]. Determining
the pose using P3P and ransac [123]13 has been shown to be accurate for visual odometry

13While the seminal paper by Fischler and Bolles [123] is well known for the introduction of RANSAC in
Computer Vision, its main motivation was a solution to the P3P problem.
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from stereo [11, 288].

An efficient extension of the P3P algorithms to the general case of n points was proposed
by Lepetit et al. [220], Moreno-Noguer et al. [271], which has found various applications
in Computer Vision, especially for object pose determination [73].

Due to the importance of pose estimation from 3D–2D correspondences, the different so-
lutions have been studied at length by [17, 120, 135, 157]. However, as the camera cal-
ibration and the coordinates of the scene points are not always available several exten-
sions to the problem have been developed in the literature [141, 147, 212, 358, 406], with
extensions to multi-cameras [208, 217, 385] and rolling shutter pose estimation [8, 317].
A collection of these methods is maintained by Pajdla and Kukelova on the web http:

//cmp.felk.cvut.cz/mini/. Implementations of commonly used algorithms is pro-
vided by Moulon et al. [272] and Kneip and Furgale [207].

Applications of feature-based methods for visual odometry are also well-established and
reviewed by Fraundorfer and Scaramuzza [129], Scaramuzza and Fraundorfer [320]. The
first application to visual odometry on a mobile robot was presented by Moravec [269],
where the Moravec interest point operator was introduced [269, ch. 5]. A monocular al-
gorithm to visual odometry was presented by Harris and Pike [159] and followed by the
introduction of the Harris interest point detector [158], which remains popular to date.

2.7.3 Direct Visual Odometry

Recently, with the introduction of the Kinect [403], direct methods [181] have resurfaced
to produce robust, (semi-)dense and real-time algorithms for Visual Odometry (VO) [21,
74, 75, 110, 128, 199, 232, 256, 257, 345, 374, 375]. At their core, direct VO algorithms are
an application of the Lucas-Kanade [235] (LK) algorithm with a nonlinear warp. The non-
linearity of the warp is the result of the reliance on depth as well as the perspective pro-
jections required to obtain the image of a 3D point onto a rigidly moving camera. The LK
algorithm, development, and variations are rich and versatile. In this review, we will focus
on applications of LK to VO and VSLAM.

Amongst the first approaches to direct VO is the Quadrifocal warping algorithm by Com-
port et al. [74, 75]. The authors avoid the reliance on depth by exploiting the quadrifocal
tensor between the four view of a rigidly moving stereo rig. Working with the quadrifocal
tensor is complicated due to the high number of degrees of freedom. Comport et al. [75]
rely on the quadrifocal tensor decomposition as two fundamental matrices and a trifocal
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tensor as their core warp. Recent work, however, has shown that non-linear warping with
inaccurate depth can be used [21, 110, 199]. In fact, depth estimates need not be dense [10].
Even when the number of pixels used is sparse, the accumulated point cloud generates a
densely populated 3D representation of the scene with enough fidelity for various robotic
perception tasks as shown in Figs. 3.1, 6.25 and 6.26.

The Microsoft Kinect has been influential in the re-introduction of direct methods for VO.
This is due to the availability of dense depth estimates along with RGB imagery in real-time.
While using intensity-only constraints provide sufficiently accurate VO, one can also incor-
porate depth constraints. When using depth, however, one is presented with the challenge
of having to compute a depth gradient, which may not be possible if depth estimates are
sparse or compromised with large noise. A summary of the different constraints used in
Direct VO is provided in Table 2.3.

Also, it is possible to use other sensors besides RGB-D in the versatile direct framework. A
summary of different sensors used in direct VO is shown Table 2.4.

Table 2.3: Summary of the different constraints used in Direct VO

Constraint type

Intensity only Alismail and Browning [10], Audras et al. [21], Comport et al.
[74, 75], Klose et al. [206], Lovegrove et al. [232], Meilland
et al. [257], Newcombe et al. [285], Scandaroli et al. [319], Stein-
brucker et al. [345]

Depth only Bylow et al. [62], Canelhas et al. [64], Fang and Scherer [114],
Fang et al. [116], Jaimez and Gonzalez-Jimenez [185]

Intensity and depth Engel et al. [109, 110], Gutierrez-Gomez et al. [148], Kerl et al.
[198, 199], Meilland et al. [256, 257], Tykkälä et al. [374, 375]

Table 2.4: Summary of sensor type

Sensor type

RGB-D Fang et al. [116], Klose et al. [206], Steinbrucker et al. [345]

Monocular Daftry et al. [87], Engel et al. [109, 110], Lovegrove et al. [232],
Newcombe et al. [285]

Stereo Alismail and Browning [10], Comport et al. [74, 75], Engel et al.
[107], Omari et al. [294]

Omnidirectional Caruso et al. [66], Mei et al. [253], Meilland et al. [256]
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This direct approach to VO has the following advantages in contrast to feature-based: (i)
More robustness in degraded scenes, (ii) virtually parameter free, and (iii) the ability to pro-
duce richer 3D reconstruction of the scene without additional computational cost. How-
ever, limitations include (i) the need for small motion between frames, as the core part of
the algorithm relies on linearizing the cost function, and (ii) consistent appearance between
frames, or brightness constancy.

The first limitation, namely the need for small motions, is readily addressed with mod-
ern hardware. Modern cameras operate at frame rates in excess of 60fps which produces
densely sampled video for most robotic tasks. Even when inter-frame motion is not suffi-
ciently small, one can resort to scale-space [224], which improves the basin of convergence
and provides a sound method to address large motions. However, the second limitation,
brightness constancy, is more challenging. In fact, illumination change is a major obstacle
in efforts to extend direct methods over multiple views with real data.

In the following section we present a summary of previous work that attempts to tackle the
issue of multiple view direct optimization and the problem of violations of the brightness
constancy assumption in an LK-based framework.

2.7.4 Direct Estimation of Structure & Motion from Multiple Views

The power of feature-based BA arises from the ability to refine the estimate of camera
position and scene structure over multiple views [372]. In this work, we aim at attaining
the same level of accuracy using image data without relying on keypoint processing. Our
goal is to increase the robustness of VSLAM and allow vision-only algorithms to perform
in challenging environments where keypoint extraction and accurate localization are not
always possible.

Previous work on the estimation of the camera motion and scene structure over multiple
views in a direct framework can be categorized into four main methods: (1) Alternating
optimization of the state vector [], (2) Filtering framework [165, 166], (3) Simplifying as-
sumptions [155, 213, 243, 291, 292], and (4) Reduction to keypoint-based geometric BA.

Alternating optimization

By alternating optimization we mean estimating a group of the desired variables sepa-
rately while holding constant the rest. In the context of VSLAM, parameter groups include:
rotation, translation and scene structure. The process is repeated for each of the parame-
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ters in turn until convergence. Examples of (direct) alternating minimization algorithms
include the work of Mandelbaum et al. [243], Stein and Shashua [344], as well as Hanna
[155], Oliensis [291, 292].

The use of alternating optimization is motivated by computational efficiency. When a
depth estimate is required per pixel, simultaneous estimation of all variables becomes com-
putationally prohibitive due to the sheer number of pixels in an image.

While an alternating framework can be shown to work in some scenarios, it is difficult to
examine the optimality of the solution. Also, it is challenging to characterize the conver-
gence properties of the algorithm. In visual structure-from-motion (SFM) tasks the optimal
solution is attained by joint optimization of the state vector [372]. If accuracy of the algo-
rithm is the most important, then slightly reducing the density of reconstruction in favor
of an optimal solution is recommended. In fact, this joint optimization (when performed
correctly) is more efficient than other heuristics [372]. Hence, we avoid alternating frame-
works due to their limitations and focus on joint estimation algorithms.

Filtering/recursive estimation

Filtering is a common and useful technique in Robotics and Computer Vision. In filtering
approaches, previous estimates are “marginalized out” and information is summarized
with a probability distribution [349].

The filtering approach (also called recursive, or casual) to direct VSLAM has been pre-
viously adopted by various researchers including Heel [165, 166] as well as Barron and
Eagleson [34]. The approach is also common in the context of multiple view stereo re-
construction, where the optimization objective is to estimate the depth per visible pixel
assuming known camera motion [250, 382, 389].

Recent work by Strasdat et al. [349], however, have shown that BA is a more profitable
strategy for VSLAM per unit of computation. In addition, optimality conditions in BA
framework are easier to satisfy than a nonlinear filtering framework.

Simplifying assumptions

If one can assume the existence of certain structures in the scene, then it is possible to
perform direct, joint multiple view VSLAM efficiently. The most common assumption
is the existence of planar structures. The use of the planar world assumption has a rich
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history in Robotics and has been applied early on for robot navigation tasks [281]. Recent
work by Silveira et al. [335] and Mei et al. [253] demonstrate methods using multiple views
to improve direct VSLAM using planes. When the scene is composed of planes, the warp
becomes linear and more efficient to implement. Furthermore, planar patches can cover
a large surface in the world that typically projects onto a large area in the image. When
the world is mostly planar, it is also possible to perform Bundle Adjustment over multiple
views as shown by Kaess [188],Ataer-Cansizoglu et al. [19], Taguchi et al. [357] and Salas-
Moreno et al. [316]. One can also include blur and fold-in image degradations terms as
part of the optimization [252]. Subsequently, one can process a large number pixels in the
image in one go.

Of course, this assumption breaks down when the world is not composed of planar seg-
ments. Addressing general scenes with the planarity assumption becomes a challenging
problem.

Another common use of planes in direct SFM is planar-parallax. If the motion of a plane
(or a selection of planes) in the world has been compensated for, then we can estimate
the depth of non-planar points by their parallax to a reference plane. Irani et al. [182]
have demonstrated a multi-view direct method that improves on the two-frame case [213,
318]. Nonetheless, planar-parallax is not suitable for VSLAM as it relies heavily on the
existence of sufficiently large planar surfaces in the world. Furthermore, the main goal of
planar-parallax algorithms is the estimation of 3D structure, which is only a sub-problem
of VSLAM.

Another closely related approach to direct VSLAM is the Volumetric method [184, 286,
395, 396]. Volumetric methods have shown excellent results for real-time dense VSLAM,
albeit requiring sophisticated GPUs. Volumetric methods fundamentally rely on impos-
ing a working volume in 3D space. This limits their applications to indoor environments,
or scenes with a known range of depth. For instance, it would be challenging to apply
a purely volumetric approach to unstructured outdoor scenes where many of the strong
rotation constraints are located on the plane at infinity. Meilland et al. [257] provide an
excellent summary of the benefits and limitation of volumetric methods as well as an ap-
proach to integrate some advantages of volumetric methods alongside a direct framework.

Reduction to geometric BA

Finally, one can combine the benefits of direct methods with the power of geometric Bun-
dle Adjustment as demonstrated by Forster et al. [128]. Direct VO can be used to obtain
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precise estimates of camera pose in real-time. In a parallel thread, a selection of geomet-
ric keypoints are tracked, and keyframed over time in order to be used later in a sliding
window geometric BA. However, this approach does not provide a solution to VSLAM in
challenging environments that lack distinctive keypoints. Hence, the drift reducing prop-
erties of multiple views can only be used in scenes were keypoint processing is possible.

2.7.5 Violations of the Brightness Constancy Assumption

Since the seminal work of Lucas and Kanade [235] and Horn and Schunck [173] various
algorithms have been developed to address the limitations of the brightness constancy as-
sumption, especially in optical flow estimation [352]. In this section, we briefly review
methods in the literature that address violations of the brightness constancy assumption.
Algorithms can be categorized into the following: (1) Not relying on the brightness con-
stancy assumption by using illumination insensitive objective functions, (2) estimating
illumination variations as part of the optimization problem, (3) eliminating illumination
artifacts using an image preprocessing step (pre-filtering).

Illumination insensitive objective

Perhaps the most intuitive solution to the brightness constancy assumption is to use an
illumination insensitive objective. Such objective functions include the normalized cross
correlation (NCC), and the Mutual Information (MI) [307].

Mutual Information has been successfully applied to register images form different modal-
ities in the Lucas-Kanade framework [90, 103] as well as tracking of known 3D models [81,
297]. Similarly, maximizing the correlation coefficient has been applied to multi-modal
image alignment [180], template tracking [112, 319] as well as structure-from-motion [243].

While robust cost metrics with intrinsic independence on illumination can handle challeng-
ing scenarios, their main limitations are twofold. One, accuracy of results relies heavily on
an accurate approximation of the Jacobian (and Hessian) of the cost function. In many
instances, the closed-form derivation of the Hessian yields a numerically non-positive def-
inite matrix, which is not suitable for optimization. The other limitation is that we can
no longer rely on least-squares optimization. Instead, one must solve the problem with a
general nonlinear optimization method. In template tracking problems, the number of
variables is small and hence a general purpose optimizer provides satisfactory results.
However, in the context of VSLAM the dimensionality of state-vector is large. In such
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scenarios, general purpose optimizers become slow and convergence is typically harder to
attain when far from the optima.

More precisely, for large nonlinear optimization problems, we desire to formulate the prob-
lem as least-squares if possible. Least-squares problems are characterized by the small resid-
ual property. During linearization higher order derivatives of the objective vanish in com-
parison to the first order term (J⊤J). This implies a “free” and good estimate of the Hessian
by only evaluating first-order partial derivatives. There exists a number of algorithms that
take advantage of the special structure of least-squares problem to provide good time and
convergence guarantees. In fact, solving least-squares problem can be considered a mature
technology that we would like to exploit [289, ch. 10].

Estimating illumination variations

The most common approach to handle appearance variations is to model them explic-
itly as a multiplicative and an additive term. This is commonly known as gain + bias
model [26, 36, 150]. In the context of VSLAM, the (global) gain + bias model can account
for illumination changes arising from the camera exposure control. This has been shown
to perform well in a frame-frame direct VO from Kinect data [206]. However, in order to
address more complicated appearance variations, we need to estimate the gain per pixel,
or per region in the image. Hence, the main disadvantage of the gain and bias model is
the explosion of the dimensionality of the state vector due to the additional photometric
parameters.

Consider, for example, a multiple view optimization problem with 5000 3D points seen
by 5 views. If we represent each camera with 6-vector, and each 3D point by a 3-vector,
then the state vector is in R15030×1. In order to make use of the gain and bias model, and
without any prior assumptions on the scene, we may need to estimate a gain variable per
3D point per view and a bias term per image. This increases the state vector dimension by
5× 5000+ 5 variables (assuming a gain variable per pixel and image) to become R400035×1.
This larger problem is now more difficult and more computationally demanding to solve.

Alternatively, one could estimate the illumination of the scene given a surface model. How-
ever, this is a “chicken-and-egg” problem as surface reconstruction is not a priori avail-
able. Other methods can be used to estimate illumination without a surface reconstruc-
tion [35, 65, 104, 215, 377] but typically rely on certain assumptions on scene, the material
types, or require RGB data. Such requirements restrict the utility of a general VSLAM
algorithm.
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Image pre-processing techniques

Pre-processing the input images to eliminate illumination artifacts is another alternative to
illumination insensitive image alignment. For example, pre-normalizing the image to be of
zero mean and unit standard deviation is equivalent to a global gain and bias estimation
step. However, this form of normalization can only address changes to due to camera
shutter control, and fails to address other complicated variations arising from shadows
and specular reflections.

Other approaches augment the registration with higher order information from the image
such as first- and second-order gradient information [61, 279, 336] (or other filters [236]).
Additional higher-order information improve robustness against illumination artifacts, but
require fine tuning and selecting appropriate balancing weights for the intensity terms ver-
sus the other terms. Moreover, extraction of higher order information from the image may
exaggerate the sensor noise if the imagery is of low quality.

Another approach to illumination robust image alignment is using phase instead of in-
tensity [125]. Phase is amplitude invariant. Hence, its robustness to changes in gain and
bias. Nonetheless, spatial support near discontinues and occlusions is a limitation of phase-
based methods [124].

Other techniques aim at applying simple filters to the image [80, 238]. However, they typ-
ically require RGB data and designed to work under natural sunlight illumination. They
also “wash out” many of the useful frequencies in the image.

In optical flow estimation, Wedel et al. [390] propose the application of structure-texture de-
composition to eliminate illumination artifacts from the image. The decomposition, how-
ever, is an iterative process that may not be suitable for online applications. Another risk
of applying pre-filtering operations is that the filter might eliminate frequencies required
to estimate certain degrees of freedom [180].

2.8 Geometric (Keypoint-based) Bundle Adjustment

Bundle adjustment (BA) [372] is a well-established and mature optimization framework.
Triggs et al. [372] provides an excellent mathematical coverage of the topic. Dellaert [96],
and Hartley and Zisserman [160] provide a tutorial aimed for implementers. Due to its
popularity in Robotics and Computer Vision, several software packages are available [6,
230]. Variations on BA with emphasis on efficiency and handling large scale problems can
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be found in papers by Agarwal et al. [4], Kaess et al. [189, 190], Sibley et al. [333].

In the next section we present our completed work. The first part is the development of
a direct VO algorithm for stereo data using disparity space warp function. The second
is using (binary) feature descriptors to address illumination change in template tracking
problems under arbitrary illumination variations.

In the next two chapter we present our approach to direct VO from stereo data (Chapter 3)
and formulation of direct multiple view VSLAM (Chapter 7).

2.9 Vision in Challenging Environments

There is no shortage of challenging problems in robot vision. Many of the difficult chal-
lenges are due to illumination. For instance, something as seemingly insignificant to a
human, such as shadows, can wreak havoc on many applications [216]. Removing shad-
ows has been shown to improve the performance of image-based localization Corke et al.
[80], but shadows are only a part of a bigger issues related to inconsistent illumination.

Maddern et al. [238] develop an illumination invariant representation from RGB images,
with focus on eliminating shadows. The approach is demonstrated as a fall back option to
improve the robustness of a visual odometry algorithm, when illumination artifacts hinder
the feature-based pipeline. Nonetheless, research in visual odometry and vision-based
SLAM in poorly lit environment has received little attention in the literature. Work by
Milford et al. [262] proposes the use of low resolution images in combination with place
recognition to improve vision-based SLAM in outdoor environments. According to the
authors, robustness of the approach has been attributed to the use of image patches in lieu
of keypoints [263]. Closely related to vision-based SLAM is optical flow and stereo, where
Meister et al. [259] develop a benchmark dataset that closely resembles real world driving
conditions. The dataset demonstrates the need for more robust correspondence estimation
method sin vision as the current state-of-the-art remains sensitive to inconsistent inter-
frame appearance.

It is often possible to pre-map an environment using a variety of sensors, such as a robot
can the map for localization and place recognition purposes. Localization problems from
vision-only data are arguably challenging as the mapped environments are constantly
changing. In particular, the problem of localization across seasons has received a consider-
able attention in the literature [22, 33, 69, 280, 284, 353, 387].
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Challenging situations in robot vision are very prevalent especially for dull, dirty and dan-
gerous tasks [347]. Pose estimation in such environments has been traditionally performed
with a suite of sensors. Recent work, however, has shown a good performance of pose esti-
mation in smoke occluded environments [3]. Robustness to smoke was achieved by relying
on depth measurements from an RGB-D sensor and “dehazing” the images [118] prior to
feature extraction.

One of the goals of our work is to enable vision-only pose estimation in challenging data
with minimal assumptions on the type of illumination as possible. Hence, the algorithms
developed herein do not rely on pre-preprocessing as determining the appropriate filters
is usually tightly coupled to the application domain.
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CHAPTER 3

Direct Visual Odometry in Disparity
Space
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3.1 Summary of Contributions

• We develop a robust approach to visual odometry by using disparities directly.

• Numerically the approach is more stable than 3D points triangulated from stereo.
This is particularly useful when working with distal observations.

• The approach is demonstrated on a range of datasets and is shown to be robust even
when working with thumbnail-sized stereo.

• The implementation of the proposed method works faster than real-time.

• Essential to the speed of the runtime is a simple pixel selection procedure demon-
strating that direct VO could perform well without the need for (semi-)dense data.
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Figure 3.1: Example of dense 3D reconstruction of our indoor dataset.

In this chapter we provide a summary of our Direct Disparity Space (DDS) algorithm. Ad-
ditional detailed analysis and experimental results are available in a separate publication
[10].

3.2 Disparity space

Consider a rectified stereo image with baseline B and an upper triangular camera intrin-
sic matrix composed of the camera focal length f and the principle point c = (cu, cv)

⊤.
Without loss of generality, let the left image be the origin of the coordinate system. A
point x = (x, y, d, 1)⊤ is an element of disparity space, where x = u − cu, y = v − cv and
d = u − ur is the disparity; the difference between the u-coordinate in the left image and
its corresponding coordinate in the right image. Given this rectified stereo, the depth of an
image point can be obtained with Z = Bf/d.

Consider two stereo pairs related via a rigid body transformation T(θ) ∈ SE(3) parameter-
ized by θ ∈ Rp, where p is typically 6, such that a 3D point X = (X,Y, Z, 1)⊤ is transformed
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into X′ = T(θ)X. This rigid-body motion relationship may be expressed in disparity space
as

x′ ≡ ΓT(θ)Γ−1x, (3.1)

where ≡ denotes projective equality up-to-scale, and Γ is a 4 × 4 matrix that depends on
the known stereo calibration and is given by

Γ =



f 0 0 0

0 f 0 0

0 0 0 fB

0 0 1 0


. (3.2)

Demirdjian and Darrell [100] analyze the disparity space and show that it is a projective
space ⊆ P3 with the important property that the measurement noise of the coordinates x is
well-approximated with a Gaussian distribution.

3.3 Direct Visual Odometry

Let the intensity of a point x at the reference frame be given with I(x̃) ∈ R, where x̃ =

(x+ cu = u, y + cv = v)⊤. With an abuse of notation, we will use I(x) := I(x̃).

After a rigid-body motion with T(θ), we obtain the input image I′(x′). Given an initializa-
tion θ, we seek to estimate a ∆θ — a small increment of pose parameters relating the two
cameras — such that we minimize the sum of squared intensity error, or the photometric
error given by

∆θ∗ = argmin
∆θ

∑
x∈Ω

∥∥∥I′ (w(x;θ +∆θ)
)
− I (x)

∥∥∥2, (3.3)

where Ω is a subset of pixel coordinates of interest in the reference frame, and w (·) is a
warping function that depends on the parameter vector we seek to estimate. After every
iteration, the current estimate of parameters is updated via an additive rule (i.e. θ ← θ +

∆θ). This process repeats until convergence, or some termination criteria have been met.

This formulation is the standard Lucas-Kanade (forward additive) algorithm [235] (see
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Section 2.5.1). An efficient variation on the Lucas-Kanade algorithm is Baker & Matthews’
Inverse Compositional (IC) algorithm (see Section 2.5.2). The IC algorithm makes two
modifications to the error function that significantly improve efficiency. First, is to inter-
change the roles of I (the reference/template image) with I′ (the input/current image). The
other, is to compound incremental estimates using a compositional update rule instead of
an additive one. Under the IC formulation we seek an update of the parameters ∆θ such
that

∆θ∗ = argmin
∆θ

∑
x∈I
∥I
(
w(x;∆θ)

)
− I′

(
w(x;θ)

)
∥2. (3.4)

The optimization problem in Eq. (3.4) is nonlinear irrespective of the form of the warping
function or the parameters. To obtain a solution, we perform a first-order Taylor expansion
and arrive at the following closed form (normal equations):

∆θ =
(
J⊤J

)−1
J⊤e, (3.5)

where J =
(
g(x1)

⊤, . . . ,g(xm)⊤
)
∈ Rm×p. Here, m is the number of pixels and p = |θ| is

the number of parameters. Each g is ∈ R1×p and is given by

g(x) = ∇I(x)∂w
∂θ

, (3.6)

where∇I = (Iu, Iv) ∈ R1×2 is the image gradient along the u- and v-directions. Finally,

e(x) = I′(w(x;θ))− I(w(x;∆θ)) (3.7)

is the error image.

At the next iteration of the optimization algorithm, parameters of the motion model are
updated via the IC rule given by

w (x,θ)← w (x,θ) ◦w (x,∆θ)−1 . (3.8)

We refer the reader to the excellent series by Baker & Matthews [25, 26] for a detailed
treatment.
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3.3.1 Algorithm

Given a reference image I with an associated disparity map and an input image after cam-
era motion I′, we seek to estimate the parameters of motion such that the expression in
Eq. (3.4) is minimized. The warping function is given by:

w :
(
P3 × R6

)
→ R2 (3.9)

w(x,θ) = π
(
ΓT(θ)Γ−1x

)
+

c

0

 , (3.10)

where π (·) performs homogeneous division to bring back the point to Euclidean space.
Finally, we add back the principle point c to obtain 2D pixel coordinates in the image
plane.

In order to use a direct approach, we need to compute an analytic expression of the Ja-
cobian with respect to the parameters around the identity θ = 0. Using the Lie algebra
parameterization of rigid transformations, i.e. a twist, θ =

(
ωx, ωy, ωz, νx, νy, νz

)⊤ ∈ R6, we
obtain the Jacobian of the warping function in Eq. (3.10) per point x as [170]:

∇I∂w
∂θ

∣∣∣∣
θ=0

= g(x) =



−fIy + αy/f

fIx − αx/f

yIx − xIy

βIx

βIy

αβ/f



⊤

∈ R1×6, (3.11)

where∇I =
(
Ix, Iy

)
is the image gradient, x = cu − u, y = cv − v, d = u− ur, with

α = xIx + yIy, and β = d/B. (3.12)

For m pixels, we stack the values of Eq. (3.11) into an m×6 matrix and obtain an update of
parameters ∆θ by solving the normal equations in Eq. (3.5). After every iteration the pose
estimate is updated using the inverse compositional update rule given by Eq. (3.8).
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3.3.2 Robustness

The least-squares optimization (Eq. (3.5)) is sensitive to outliers. In order to obtain a robust
estimate we replace the squared error with a robust cost function. Choice of the robust
function is rather arbitrary and can only be determined experimentally [404].

We experimented with several cost functions and found Tukey’s bi-weight [39] to perform
the best. This is possibly due to suppressing high residuals instead of only reducing their
influence. The bi-weight function for a residual ri ∈ R and parameter/cutoff threshold
τ ∈ R is given by

ρ(ri; τ) =


(
1−

(
ri/τ

)2)2 if |ri| ≤ τ ;

0 otherwise.
(3.13)

The cutoff threshold τ is set to 4.6851 to obtain a 95% asymptotic efficiency of the nor-
mal distribution. The threshold assumes normalized residuals with unit deviations. For
this purpose, we use a robust estimator of standard deviation. For m observations and p

parameters, the robust standard deviation is given by:

σ̂ = 1.4826
[
1 + 5/(m− p)

]
median

i
|ri|. (3.14)

The constant 1.4826 is used to obtain the same efficiency of least-squares under Gaussian
noise, while

[
1 + 5/(m− p)

]
is used to compensate for small data [404]. In practice, m≫ p

and the small data constant vanishes.

In summary, given a list of residuals r = (r1, . . . , rm)⊤, where each residual is given by:

ri = I′
(
w(xi;θ)

)
− I

(
w(xi; ∆θ)

)
, (3.15)

we compute a robust estimate of the standard deviation σ̂r using Eq. (3.14) and compute
the weight per residual as wi = ρ

(
ri/σ̂r

)
. By concatenating the weights into an m × m

diagonal matrix W, we may obtain an estimate of the parameters at every iteration by
solving with the following weighted normal equations:(

J⊤WJ
)
∆θ = J⊤We. (3.16)
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3.3.3 Pixel selection

Traditionally, direct methods are associated with the concept of dense, or semi-dense, al-
gorithms that make use of all possible pixel information. Intuitively, the use of as many as
possible data points could increase robustness. However, the large number pixels typically
used in direct algorithms incur a high computational cost necessitating implementation on
parallel architectures such as high-end GPUs.

The literature on pixel selection for direct pose tracking is sparse. In the case of optical
flow, the seminal work of Shi & Tomasi [329] introduced a feature selection method based
on the “textureness” of the patch surrounding the pixel. The textureness score is obtained
by analyzing the Eigenvalues of the design matrix, which is composed of image gradients.

For pose tracking applications, Dellaert & Collins [97] propose a method that selects pixels
that constrain each degree-of-freedom (DOF) the most. A known motion prior is required,
however. Meilland et al. [256] propose an alternative based on recursively sorting each
dimension of the Jacobians and greedily keeping elements with the highest magnitude.
Simpler methods include discarding pixels with a gradient magnitude smaller than a fixed
threshold [206].

In this work, we show that direct camera tracking need not be dense. By reducing the num-
ber of pixels, the algorithm runs in real-time on a single CPU core without compromising
accuracy or robustness. Our pixel selection is based on the feature “binning/bucketing”
idea common to feature-based methods [288], where the image is virtually split into a
grid/buckets, and a certain number of pixels with strong cornerness score is kept in each
bucket.

In our case, the influence of a pixel correlates, to an extent, with its gradient magnitude.
For example, a pixel with no gradient does not contribute to the optimization as its contri-
bution to the Jacobian in Eq. (3.11) vanishes. Hence, we perform our pixel selection using
the gradient magnitude as a substitute for the cornerness map. Pixels with a local gradi-
ent magnitude maxima in a neighborhood of 3 × 3 pixels are used for pose estimation. In
contrast to feature-based methods, we do not enforce a maximum number of features per
grid cell.

This choice of pixel selection (and others) will be evaluated thoroughly in Chapter 4, where
we show that the non-maxima suppression strategy is beneficial for estimating the rotation
of the camera.
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3.3.4 Additional implementation details

Our algorithm does not require elaborate parameter tuning or specialized heuristics. The
only tunable parameters are the stereo algorithm parameters, which depend on the dataset.
We use a basic block matching stereo (as implemented in OpenCV1). Stereo parameters in-
clude, SAD window size and disparity range. To address large motions (and speed up the
convergence rate) the algorithm is implemented in a scale space pyramid. We do not scale
down the disparity image to avoid interpolation across occlusion boundaries. Instead,
disparities for coarser levels of the pyramid are interpolated from the disparity map com-
puted at the finest level using nearest-neighbor interpolation. Each level of the pyramid
is scaled by a factor of 1/2 of the previous image size and smoothed with a Gaussian filter
prior to downsampling with bilinear interpolation. Convergence is determined if the norm
of the estimated parameters is less than 1×10−6, change in parameters is less than 1×10−8

or a maximum number of iterations is reached. The maximum number of iterations was
set to 300 on the finest level, and 50 for all other levels.

Image gradients are computed using the usual central differences. There are different
methods to compute image gradient, which we will evaluate in Chapter 4.

3.4 Experiments and Results

In this section, we evaluate the performance of our algorithm on different datasets includ-
ing outdoor and indoor environments. For the outdoor datasets we process all frames.
That is, we do not perform any keyframing, even when the robot is stationary. We also do
not perform any global optimization/bundle adjustment or make use of other sensors. In
the following, we will call our algorithm DDS: Direct Disparity Space.

3.4.1 KITTI data

We evaluate the performance of our algorithm on the KITTI odometry benchmark [138]
in comparison to two open source algorithms targeted for robotic applications: (1) VISO2
[137] and (2) FOVIS [176]. We use both algorithms with the authors’ default parameters,
which perform well.

Results on KITTI data are summarized in Fig. 3.2. Our algorithm’s average translation

1Using MATLAB R2013b http://www.mathworks.com/help/vision/ref/disparity.html
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Figure 3.2: Results for the 11 training sequences of the KITTI odometry benchmark.

error is 2.35% and the average rotation error is 0.0058◦/m, which are accurate for a frame–
frame method without pose initialization. In particular, our rotation error is close to, and
sometimes better, than some multi-frame methods on the KITTI benchmark. The main
sources of error appear in estimating the translation of the camera at high vehicle speeds.
High speed driving produces larger baseline between images and violates the small mo-
tion assumption.

Interestingly, rotation error for both FOVIS and ours (DDS) are better than VISO2. This is
potentially due to more accurate rotation estimation results when using image intensities
directly. In fact, most of VISO2’s rotation drift appears to be in roll estimates and conse-
quently camera height. We hypothesize that this is related to the small vertical FOV of
the camera. In contrast, direct methods are able to better exploit this reduced FOV by not
relying on the accuracy subpixel feature localization.

3.4.2 Wean hall (indoor data)

This dataset was collected with a Bumblebee2 stereo color camera of resolution 640 ×
480 px2 at ≈ 30Hz [11] and is available online http://www.cs.cmu.edu/~halismai/
wean. A summary of the data is shown in Table 3.1. The camera was mounted on a LAGR
robot.2 For ground truth, we use a 2D estimate of robot pose using calibrated wheel odom-

2See http://www.nrec.ri.cmu.edu/projects/lagr/. Our robot is slightly modified to use a single
stereo camera titled towards the ground, and equipped with an accurate fiber optic gyro from KVH, model #
DSP-3000.
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Table 3.1: Wean hall dataset summary

focal length ≈ 3.88mm baseline 0.12m

# frames 6510 distance ≈ 294m

Figure 3.3: Example images from the Wean hall dataset.

etry combined with an accurate gyroscope. This is an approximate ground truth, but it
is reasonable as the indoor environment is flat. The camera’s raw output is a Bayer pat-
tern, which we interpolate to a color image prior to use for motion estimation. The Bayer
pattern causes a reduction in resolution in comparison to native grayscale output.

The dataset features strong specular reflections on the ground, lack of texture in some areas
as well as high frequency repetitive texture in others. An example is shown in Fig. 3.3. The
robot was driven at an average speed of ≈ 0.7m s−1.

Due to the high framerate of the camera, we implement a keyframing strategy based on the
magnitude of the estimated motion. The pose of each non-keyframe is initialized with the
current estimate of pose until the motion magnitude is large enough. Upon keyframing,
we reset the pose initialization to the identity. For the results shown here, we keyframe
when the estimated translation magnitude is 30 cm, or when any of the estimated rotation
angles exceeds 5◦. Results are shown in Fig. 3.3 and Fig. 3.4.
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Figure 3.4: Top view of estimated path for ground truth ( ), VISO2 ( ) and DDS ( ).

3.4.3 Dense 3D reconstruction

We demonstrate a simple scheme to obtain sufficiently dense 3D reconstruction using our
algorithm. The output of our algorithm after every keyframe consists of an estimate of
the camera pose, as well as the set of disparity space point and their IRLS weights upon
convergence.

After every keyframe, we select points with Tukey weights from the third quartile (75
percentile) and with range of at most 30 m. We triangulate the points, and project them
to the world coordinates using the current estimate of the keyframe’s pose. As the pixel
selection scheme is not based on features, the selected points over multiple frames do not
correspond to a single 3D point space. Hence, the overlap between frames will consist of
mostly distinct 3D points that produce a dense reconstruction of the environment.

Examples of our reconstruction are shown in Fig. 3.1, and Fig. 3.5. Note, disparity maps
were obtained via block matching and include a large amount of noise and outliers. The
3D reconstruction results indicate the accuracy of the method over a short sequence of
frames as well as robustness against outliers.

3.4.4 Visual odometry from stereo thumbnails

We also evaluate the robustness of the algorithm using low resolution images (178 × 54)
and compare it against VISO2 using full resolution images (1241×376). Results are shown
in Fig. 3.6. Even with the low stereo resolution our algorithm out performs VISO2 and
remains accurate and robust.
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Figure 3.5: First row shows a top view from our indoor dataset. Images along the corridor are shown in
the second row. The first image shows that floor of the model is flat as expected. The last row shows a side
view of the corridor. The 3D points are obtained automatically from the algorithm without post-processing
or filtering. The corridor length is ≈ 40m.

3.4.5 Pixel selection

Not all pixels contribute equally to the cost function; only a few pixels contribute towards
the error function [97]. The simplest approach to pixel selection is to discard pixels with
gradient magnitude less than a pre-specified fixed threshold. The rational is that a pixel
with zero gradient does not contribute to the error function. However, the mere magnitude
of the gradient is not a sufficient predictor of a pixel’s performance. For instance, restrict-
ing the optimization to pixels with a high gradient magnitude might bias the solution in
undesirable ways.

To illustrate this, we run our algorithm using all available pixels with an absolute gradient
magnitude greater than a threshold. The average performance on the KITTI benchmark
training data is illustrated in Fig. 3.7.

As shown in the figure, including all possible pixels is suboptimal. Similarly, selecting
pixels with a very high gradient magnitude is suboptimal as well. A good threshold for
the tested optics and the benchmark environment is within 10% of the image dynamic
range.
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Figure 3.6: Result from KITTI Seq. 02. Ground truth is shown in ( ), VISO2 path is in ( ), and
DDS is in ( ). The ( ) indicates the start of the sequence, and ( ) indicates the final location. Our results
are generated from an image of size 178 × 54, while VISO2 results are generated from the full resolution
1241× 376.
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Figure 3.7: Average performance on KITTI training data with different absolute gradient magnitude cutoff
thresholds. The input images are converted to floating point prior to computing the gradients, and their
range is kept ∈ [0, 255]. Detailed evaluation plots are shown in Fig. 3.8
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Figure 3.8: Detailed performance on KITTI benchmark for various absolute gradient magnitude cutoff thresh-
olds. See Fig. 3.7 for a summary.
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3.5 Discussion & Summary

Scene points on the plane at infinity are independent of camera translation and can be used
for rotation estimation and calibration. In contrast to other work, our algorithm can make
use of points at infinity without special handling. This is particularly useful for outdoor
applications and we believe leads to improved rotation estimates.

We did not observe a need to use sophisticated stereo matching algorithms. Indeed, our
stereo matching is very straightforward SAD block matching with limited disparity range
resolution. Enhanced stereo may improve the accuracy and/or convergence speed at the
expense of more computation time for stereo. Improvements are not guaranteed as (semi)
global stereo methods may over smooth the estimated disparities. This issues remains to
be experimentally validated.

In this work we dealt with the problem of pose estimation only (camera tracking). Two
important improvements are possible. The first would be structure/disparity refinement.
We can include disparity refinement in the same pose tracking framework by using ob-
servations from the right image. Another possibility is modeling disparities with some
surface representation (cf . [335]). The second important improvement is integrating infor-
mation from multiple frames in a bundle adjustment/filtering framework. This, in fact, is
necessary to reduce drift over long sequences as we will show in Chapter 7.

In this chapter, we presented a direct framework for visual odometry using a warping
function in disparity space (DDS). The algorithm is shown to be efficient, robust and accurate
even with low resolution images. Experiments illustrate the applicability of the algorithm
to various environments with little to no manual parameter tuning. Finally, we have also
shown that direct camera tracking can achieve accurate and robust performance while
using only a fraction of the image data via a simple pixel selection strategy.

In the next chapter we study the effect of the different implementation details on the ac-
curacy of direct visual odometry. In particular, we study the effect of the image gradient
estimation scheme, smoothness of interpolation for image warping, and the effect of pixel
selection on accuracy.
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CHAPTER 4

Evaluation of Direct Visual Odometry
Details

Contents
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4.1 Summary of Contributions

• We evaluate important details at the core of direct visual odometry algorithms. Namely,
we evaluate the effect of interpolation, the numerical scheme used for the estimation
of image gradients as well as the density of pixels (measurements) contributing to
the optimization.

• The evaluation is carried out on a number of synthetic and real datasets.

• Surprisingly, there is little to no effect of the quality of interpolation on results.

• The effect of pixel selection and gradient estimation is more pronounced.
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• Interestingly, when using Iteratively Re-weighted Least-Squares (IRLS) optimization,
the minima of the photometric error does not coincide with maximizing the accuracy
of parameters even in the absence of photometric variations.

• Based on the analysis presented in this Chapter, it is possible to devise more accurate
direct visual odometry algorithms if the application domain is known beforehand.

4.2 Introduction

Visual odometry (VO) is the problem of determining the relative motion between two
rigidly moving cameras sharing a common field-of-view. Due to its importance and wide
array of applications, VO has received much attention in the literature [320]. The classi-
cal pipeline to VO is commonly referred to as the feature-based approach [276, 288, 369],
where sparse interest points are matched between frames and used to estimate the camera
motion in a robust estimation framework [123, 348].

Recently, however, with the increasing availability of high framerate cameras, direct meth-
ods for motion estimation [171, 181] have been shown as a viable alternative due to their
robustness and speed [75, 107, 110, 198]. Unlike feature-based algorithms, direct methods
can use much of the image to estimate a few degrees-of-freedom. Hence, they have been
also called dense [199, 255], or semi-dense in the literature [109] depending on the number
of pixels contributing to pose estimation.

Most direct VO algorithms are an adaption of the Lucas-Kanade (LK) algorithm [235] to
nonlinear warps. The LK algorithm and its variants [25] aim to establish an approximate
linear relationship between appearance and geometric displacements. The relationship
between appearance and geometric displacement is seldom linear, so the linearization pro-
cess is typically repeated until convergence.

Central to LK, and its variants, are two steps: (i) linearization: where the image gradient is
stochastically estimated over the image lattice to achieve a first-order linearization about
the current estimate of parameters; (ii) warping: where a suitable interpolation scheme
is employed to evaluate image intensities at subpixel positions to compute the vector of
residuals at the current iteration.

The two steps are important to accuracy and rate of convergence. In the optical flow liter-
ature [124, 173], for instance, it is well-known that bicubic interpolation is more accurate
than its linear counterpart [61, 352]. Similarly, a direct link between the accuracy of gradi-
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ent estimation and the accuracy of the estimated parameters has been established in other
image-based optimization algorithms [117, 393, 393].

Yet, virtually all current LK-based direct VO algorithms rely on central differences to esti-
mate the gradient of the image and bilinear interpolation for warping. These two choices
are usually motivated by their computational efficiency (and ease of implementation).
However, are they accurate enough? Or, are we missing additional accuracy by not ex-
ploiting more sophisticated schemes?

4.2.1 Contributions

In this work, we evaluate the different implementation details at the core of direct VO,
which are often overlooked in favor of computational efficiency. In particular, we focus on
the effect of the gradient estimation scheme as well as the smoothness of the interpolation
kernel used for warping.

Additionally, we evaluate the effect of pixels sub-sampling, or pixel selection, on the accu-
racy of the system. Unlike dense motion estimation tasks, such as optical and scene flow,
displacement vectors for all pixels are not requires as the goal of direct VO is to estimate
the motion of the camera. Hence, we may focus the computational effort on a subset of
pixels to achieve two gaols: (i) computational efficiency, and (ii) enhanced accuracy. This
hypothesize has been partially validated for parametric image alignment tasks [59, 97] and
feature tracking [329], but has received little attention in the context of direct VO [256].

4.3 Related Work

Estimating motion directly from images, without the need for an intermediate represen-
tation such as interest points, can be tracked back to the seminal works of Lucas and
Kanade [235] and Horn and Schuck [173]. Its application to determining parametric im-
age alignment tasks had been demonstrated for various applications [41, 181]. The direct
approach is attractive due to its enhance precision, which is attributed to using numerous
measurements to estimate a few degrees-of-freedom [181]. This additional redundancy is
also useful to enhancing robustness in degraded imaging conditions such as motion blur.

A fundamental assumption in most direct methods is the need for small pixel displace-
ments for the linearization step to be valid. Although the framerate of consumer cameras is
ever increasing, motion induced displacements in the image are seldom fractional. Hence,
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the approach is usually implemented in scale-space [224] to enhance robustness and widen
the basin of convergence when a suitable initialization is far from the local minima.

Recently, however, the use of direct VO for accurate and robust motion estimation has been
on the rise with application to stereo [75, 107], mono [110], omni-directional [66], and RGB-
D sensors [199, 346]. Applications of direct VO are not only limited to vision-only pose
estimation, but has also have been demonstrated in visual-inertial navigation [47, 294] as
well as rolling shutter rectification [200, 258]. Since the work we present here evaluates the
core implementation details of direct VO, we expect that conclusions could be transfered
to other application domains.

Optimization details of the LK algorithm and its variants have been studied in the liter-
ature, where it was shown that the Gauss-Newton, and the Levenberg-Marquardt algo-
rithms, outperform the Netwon method for image alignment [25]. Due to image noise and
outliers, robust estimation frameworks are essential for most applications [26, 43].

Estimating the image gradient is a crucial step in direct VO. To data, however, the dom-
inant gradient estimation methods are: central-differences (first-order accurate 3–point
stencil), the Sobel, and the Scharr operators. Gradient estimation has received more at-
tention for optical flow estimation. For instance, it well-known that merely using forward-
or, backward- differences is insufficient for accurate results [173], as the asymmetry pro-
vides inconstant results [117]. Central-difference filters are usually performed on Gaussian-
smoothed images to eliminate some image noise. Nonetheless, the effect of this smoothing
on the accuracy of the estimation has not been established. This issue will be examined in
the experimental portion of this work.

There exists several recent research papers evaluating various aspects of direct VO, or di-
rect camera tracking as it is sometimes called [285]. Fang and Scherer [115] evaluate several
algorithms for motion estimation from RGB-D data in the context of autonomous micro
air vehicles (MAV) navigation. The work demonstrates that direct methods are favorable
when appearance variations are minimal.

The work by Klose et al. [206] studies the performance of direct tracking using RGB-D
imagery as well. The work focuses on the different variations of the LK algorithm [25] and
the effect of the M-estimator [404] on the precision and robustness of the system. We will
make use of Klose et al.’s results [206] to guide the experiments conducted in this chapter.

Handa et al. [154] study the effect of the camera framerate on direct tracking performance.
Under synthetically ideal conditions (infinite SNR), the work demonstrates increased accu-
racy as a function of framerate and image resolution. However, under realistic scenarios,
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increasing the framerate reduces the exposure time, which results in low quality imagery.
Hence, as expected, there is a trade-off between framerate and accuracy.

Zia et al. [407] evaluate dense and semi-dense tracking from a system-level perspective.
The work studies issues such as energy consumption as well as the choice of the computing
platform (mobile versus desktop) and their effect on accuracy.

In the next section we provide a summary of the direct VO pipeline and a brief exposition
of the different implementation details evaluated in this work.

4.4 Direct Visual Odometry Pipeline

Let the intensity of a pixel coordinate p = (u, v)⊤ in the reference image be given by I(p) ∈
R. After camera motion, a new image is obtained I′(p′). The goal of direct tracking is
to estimate the camera motion parameters ∆θ ∈ Rd such that the photometric error is
minimized

∆θ∗ = argmin
∆θ

∑
p∈Ω

∥∥∥I′ (w(p;θ ⊞∆θ)
)
− I (p)

∥∥∥2, (4.1)

where Ω is a subset of pixel coordinates of interest in the reference frame, w (·) is a warping
function that depends on the parameter vector we seek to estimate, and θ is an initial esti-
mate of the motion parameters. After every iteration, the current estimate of parameters is
updated additively (i.e. θ ← θ ⊞∆θ), where ⊞ generalizes the addition operator over the
optimization manifold. The process is repeated until convergence, or some termination
criteria have been met [25, 235]. The warping function for direct VO used in this work is
given by:

w(p;θ) = π
(
T(θ)P(p; d)

)
, (4.2)

where P(·; ·) denotes the back-projected 3D point at pixel location p = (u, v, 1)⊤ with an
estimated depth value d. This point can be obtained as:

P(p, d) = d
(
K−1p

)
∈ R3, (4.3)
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with K =


fu 0 cu

0 fv cv

0 0 1

 . (4.4)

Finally, the expression T(θ) denotes a rigid-body transformation matrix. In this work,
similar to the literature [198, 206, 346] we parameterize the rigid-body pose using the se(3)

Lie Algebra such that for θ ∈ R6, the pose can be obtained using the exponential map as:

T(θ) = exp(

6∑
j=1

θjGj) = exp(θ̂) ∈ SE(3), (4.5)

where Gi ∈ R4×4 is the ith generator of SE(3) Lie Group. In general, the exponential map
must be approximated, however for se(3), it a has a closed-form [277].

4.4.1 Linearization Algorithm

According to the terminology of Baker and Matthews [25], the optimization problem in
Eq. (4.1) is the Forward Additive form of LK. Since computational efficiency is important
for VO, the Inverse Compositional (IC) formulation [25] is often used. The IC objective takes
the form

∆θ∗ = argmin
∆θ

∑
p∈Ω

∥∥∥I′ (w(p;θ)
)
− I

(
w(p;∆θ)

)∥∥∥2. (4.6)

Under the IC formulation, the parameter update is given by θ ← θ◦∆θ−1, where ◦ denotes
composition. When using se(3) to represent the motion of the camera, the update rule for
the k + 1 iteration takes the form

θk+1 = log
(
exp(θk) exp(−∆θ)

)
∈ se(3). (4.7)

Image intensities are, in general, unrelated to their pixel coordinates. Hence, Eq. (4.6) is
nonlinear irrespective of the warp. A solution proceeds by linearizing the objective using
a 1st-order expansion about the current estimate and computing the update as the criti-
cal point of the derivative of the linearized form. The derivative of the 1st-order Taylor
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expansion of Eq. (4.6) takes the form

∑
p∈Ω

∂I

∂θ

⊤ ∣∣∣∣I′ (w(p;θ)
)
− I

(
w(p;0)

)
− ∂I

∂θ
∆θ

∣∣∣∣ . (4.8)

Letting J ∈ Rn×6 be the Jacobian of the objective, obtained by stacking the partial deriva-
tives of the image with respect to the warp from n observations, i.e.

J =

(
∂I(p1)

∂θ

⊤

, · · · , ∂I(pn)

∂θ

⊤
)
. (4.9)

And letting e ∈ Rn×1 be the vector of residuals at the current iteration given by I′(w(p;θ))−
I(p), then the parameter update can be obtained by solving the normal equations

J⊤J∆θ = −J⊤e. (4.10)

Equation (4.8) reveals the vast computational savings when using the IC formulation.
Since the partial derivatives of the image with respect to the parameters (∂I/∂θ) is evalu-
ated at the (fixed) template, it needs computed only once.

Other variations on the original LK objective in Eq. (7.8) include the Forward Composi-
tional [150], which allows part of the Jacobian to be pre-computed and the Efficient Second-
order Minimization (ESM) [40], where a 2nd-order approximation to Hessian is obtained
by averaging image gradients from both the template and input images.

The effect of LK variations in direct VO has been previously evaluated in the literature [110,
206], where it was shown that IC performs equally well and often better than other variants.
Hence, we will use the IC formulation as the linearization method in our framework.

4.4.2 Image Gradients

Using the chain-rule, we may write the partial derivatives of the image with respect to the
parameters as:

∂I

∂θ
= ∇I∂w

∂θ
, (4.11)

where ∂w/∂θ ∈ R2×6 is the Jacobian of the warp. When using the IC formulation, the
Jacobian must be computed at θ = 0, and P = (x, y, z)⊤, which takes the following closed-
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form:

∂w

∂θ
=
∂π

∂P

∂T(θ)P

∂θ
∈ R2×6 (4.12)

=
1

z

fu 0 −xfu
z

0 fv −yfv
z

([P]× I3×3

)
(4.13)

=
1

z

 fu
xy
z −fu x2+z2

z fuy fu 0 −fu x
z

fv
y2+z2

z −fv xy
z −fvx 0 fv −fv y

z

 (4.14)

where [P]× denotes the 3 × 3 skew-symmetric matrix obtained from the elements of P.
Here, we assumed that the first three elements of θ correspond to the rotational part.

Letting expression∇I = (Iu, Iv) be the image gradient along the u- and v-axis respectively,
we obtain the Jacobian of the objective in Eq. (4.11) as

∂I

∂θ
= ∇I∂w

∂θ
=



Fvy2+Fuxy+Fvz2

z2

−(Fux2+Fvxy+Fuz2)
z2

−(Fvx−Fuy)
z

Fu/z

Fv/z

−(Fux+Fvy)
z2


∈ R6×1, (4.15)

where Fu = Iufu, and Fv = Ivfv.

In general, the image gradient cannot be obtained deterministically in closed-form, and
must be estimated. The accuracy of gradient estimation is important to many image-based
optimization problems [117]. In this work, we evaluate the following choices:

• Central-differences (CD). CD are derived from the definition of the derivative [79].
When applied to images, they can be computed as a convolution with the separable
kernel 1

2 [1, 0,−1]. The kernel is often referred to as the 3-point stencil.

• Central-differences with smoothing (CD-s). To attenuate the effect of image noise,
the image is often smoothed with a Gaussian prior to estimating the derivative. We
use a 3× 3 Gaussian kernel with σ = 1.

• Sobel (SB.) A popular method to estimate image gradients proposed by Sobel and
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Feldman [340]. The Sobel kernel to estimate the derivative along the x-axis of the
image is given by

1

8


1 0 −1

4 0 −4

1 0 −1

 . (4.16)

The filter is separable into (12 [−1, 0, 1]) ∗ (
1
4 [1, 2, 1]). The operator was originally in-

tended for edge detection. Its popularity in gradient estimation possibly stems from
the availability of high performance implementation in most image processing li-
braries.

• Scharr (SH). Proposed by Scharr [321] to produce more accurate gradient estimates
from images. In this work, we use the 3× 3 kernel given by

1

32


3 0 −3

10 0 −10

3 0 −3

 . (4.17)

The kernel is separable and can be obtained by a convolution with 1
2 [−1, 0, 1]∗

1
16 [3, 10, 3].

• Five-point Stencil (S5). This is the 5-point stencil version of the CD filter, which is
more accurate as demonstrated in the optical flow literature [352, 390]. The filter is
given by:

1

18
[−1, 8, 0,−8, 1] . (4.18)

In numerical analysis, the filter coefficients are determined to minimize the approx-
imation error of the derivative in terms of the Taylor series expansion. However,
we found that making the coefficient sum up to one results in faster convergence as
first-order gradient-based optimization is sensitive to scaling.

• Farid & Simoncelli 5-tap optimal (FS-5). Proposed by Farid & Simoncelli [117] such
that the kernel preserves the rotational invariance of the gradient operator. The ap-
proach relies on two 5-tap kernels, one is for interpolation while the other is for dif-
ferentiation.

• Farid & Simoncelli 7-tap optimal (FS-7). This is the 7-tap version, which achieves
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higher approximation accuracy of the gradient.

4.4.3 Interpolation for Image Warping

At every iteration of direct VO, we must evaluate the input image at sub-pixel coordinates
to compute the error image with respect to the template. In this work, we consider “linear”
methods of interpolation [363] due to there efficiency. Linear algorithms for interpolation
represent the value of an interpolated function as a linear combination of known abscissas
as

f(x) =
∑
k∈Z

fkϕ (x− k) , (4.19)

where fk is the known value of the function at the kth integer location, f(x) is the interpo-
lated value of the function at the desired location x, and ϕ (·) is the basis function.

For ϕ to be a valid interpolation kernel it must satisfy the interpolation constraint. Namely,
when evaluated at integer location, it must be zero except at the origin where it takes unity,
i.e., for k ∈ Z,

f(k) =

1 if k = 0;

0 otherwise.
(4.20)

In this work, we evaluate the effect of the following kernels:

• Linear, where the interpolation kernel is given by

ϕlinear(x) =
(
1− |x|

)+
, (4.21)

where (·)+ denotes taking the positive part only. This is the most commonly em-
ployed interpolation method in direct VO due to its efficiency as it requires only two
samples per dimension. Linear interpolation is continuous, but not differentiable.
Hence, its C0-continuous.
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• Cubic interpolation, where the kernel is given by [201]

ϕcubic(x, α) =


(α+ 2)|x|3 − (α+ 3)|x|2 + 1 0 < |x| ≤ 1;

a|x|3 − 5α|s|2 + 8α|x| − 4α 1 < |x| < 2;

0 2 ≤ |x|.

(4.22)

Choice of α depends on the smoothness requirements. We use α = −1/2, which yields
C1-continuous results. The kernel requires four samples per dimension, and hence
is slightly more computationally expensive than the linear kernel.

4.4.4 Pixel Selection

Not all pixels contribute equally to the objective function in Eq. (4.6) as each pixel’s contri-
bution is “weighted” by its gradient magnitude. This, in fact, is a good in the sense that no
special handling for edges is required [172]. However, vast computational savings could
be obtained by reducing the number of pixels. For instance, Dellaert and Collins propose a
method that selects the best pixels for image alignment [97]. However, the method requires
prior knowledge about the camera motion, which may not be available.

Meilland et al. [256] propose a method for pixel selection based on magnitude of the Jaco-
bian per degree-of-freedom. The method can be used to reduce the number of pixels, but
it has been found to have little effect on the precision of th estimated parameters [21, 206].

In this work, we experiment with three schemes based on the absolute magnitude of the
gradient:

• None (dense). Use all pixels with non-zero gradient.

• Threshold (semi-dense). Select pixels with an absolute gradient magnitude value
greater than a fixed threshold. The threshold is selected so that 30% of the image
data are used.

• Non-maxima suppression (semi-sparse). Pixels are selected such that their absolute
gradient magnitude is a local maxima in a 3×3 neighborhood. The advantage of this
strategy is that it ensures an even distribution of pixels across the field-of-view, and
does not require hand-tuned thresholds.

For coarser levels of the pyramid, we found no benefit from performing pixel selection.
In fact, it is more efficient to process all pixels and avoid the branching logic required for
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(a) None, dense.
(123800 pixels, 78%)

(b) Threshold, semi-dense.
(44640 pixels, 28%)

(c) Non-max suppression.
(7650 pixels, 4.9%)

Figure 4.1: Illustration of the different pixel selection methods. Highlighted areas indicate selected pixels,
whose number is shown in parentheses and as percentage of the total number of pixels.

pixel selection as coarser levels of the pyramid are small enough to fit in higher cache
levels. Hence, pixel selection is only applied when the image size is equal to or greater
than 320 × 240. An example of the selected pixels from each the pixel selection method is
visualized in Fig. 4.1.

4.4.5 Robust Estimation

To make the objective robust, we rely on Iteratively Re-weighted Least-Squares (IRLS) opti-
mization using an M-Estimator framework [404]. The IRLS procedure has two steps. First,
given a vector of residuals r ∈ Rn×1, we determine an estimate of its scale using a robust
estimate of the standard deviation given by

σ̂ = 1.4826

(
1 +

5

n− 6

)
mediani |ri| . (4.23)

The constant 1.4826 is selected to achieve the same efficiency of least-squares under Gaus-
sian noise [404]. The correction factor 5/(n − 6) is used to account for the effect of small
data. In direct VO, the number of residuals n is usually large, on the order of tens of thou-
sands, hence, the term vanishes. It is also possible to use other estimators of scale, such as
the Median Absolute Deviation (MAD) [152]. A variety of different robust scale estimates
can be found in books by Huber [177] and Maronna et al. [244] and the work by Rousseeuw
and Croux [312].

Given the estimate of scale, we now work with normalized residuals given by xi = ri/σ̂.
The second step is determining the weights given a choice of the M-Estimator influence
function as summarized next.

Given a residual value x, and an influence function ρ : R → R+, the weighting function
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takes the form

w(x) =
ψ(x)

x
, with ψ(x) =

∂ρ

∂x
. (4.24)

The two most commonly used influence functions are Huber and Tukey. Huber weights
take the form

whuber(x; k) =


k
|x| if |x| ≥ k;

1 otherwise,
(4.25)

where k is a tuning constant. Tukey’s bi-weight function takes the form

wtukey(x; τ) =


(
1−

(
x
τ

)2)2 if |x| ≤ τ ;

0 otherwise,
(4.26)

where τ is a tuning constant. Tukey’s bi-weight treats outliers more aggressively than
Huber’s and it has been shown to work well in VO [206]. However, it is less smooth
and requires more iterations to converge. The two functions are visualized in Fig. 2.6 on
Page 34.

In this work, we follow Huber’s recommendation [177] and use Eq. (4.25) for weighting
across all iteration. Upon convergence at the finest pyramid octave, we repeat the optimiza-
tion, but this time using Tukey’s robust function Eq. (4.26). We found this combination to
work well as the optimization takes fewer iterations to converge, and outliers can be re-
jected entirely. Typically, the optimization will converge after 2–3 additional iterations.

The tuning constants for Huber’s and Tukey’s functions are respectively k = 1.345, and
τ = 4.6851 and selected to attain a 95% asymptotic efficiency of the Normal distribution.
We refer the reader to the excellent treatment by Zhang [404] for additional details. Finally,
the minimizattion of the weighted IC objective is carried out with Gauss-Newton.

4.4.6 Summary

In summary, given a template/reference image I, and an input/moving image I′, the direct
VO pipeline consists of the following steps:

• Construct scale-space pyramids from the template and input images. The number of
levels is determined such that the minimum image dimension at the coarsest level is
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at least 40 pixels.

• Pre-compute the Jacobian of the objective (Eq. (4.11)). This may be performed on a
subset of pixels given a choice of the pixel selection scheme from Section 4.4.4. Pixel
selection is performed when the image size is greater than or equal to 320× 240.

• Warp the input image given the current estimate of the parameters θ using an inter-
polation scheme from Section 4.4.3 to compute the residuals I′(w(p;θ))− I(p).

• Compute the IRLS weights according to Eqs. (4.25) and (4.26) and solve the weighted
system to obtain a small update ∆θ. The update is inverse composed with the current
estimate according to Eq. (4.7).

• Repeat the last two steps until convergence. Convergence is determined if the num-
ber of iterations exceeds 100, norm of the estimated parameters, or the relative change
in the estimates falls below 10−6, the change in the objective function falls below 10−6,
or the L∞-norm of the gradient falls below 10−8.

4.5 Experiments

We conduct our experiments on the synthetically generated New Tsukuba dataset [299] as
well as a subset of the KITTI benchmark [138]. The synthetic data allows us to isolate the
effect of depth estimation errors and focus on the implementation details. Hence, we use
the ground-truth disparity maps to initialize the framework.

For the KITTI benchmark, we provide detailed evaluations for the used datasets instead
of only reporting average statistics. In the context of this evaluation, detailed statistics in
terms of the Absolute Trajectory Error (ATE) and Relative Trajectory Error (RPE) are more
informative. Depth estimates are obtained using block matching stereo as implemented in
the OpenCV library [53]. We use a window size of 9× 9 and a disparity range 0–128.

The framework is implemented in Matlab with some parts accelerated with C++. We use
double floating-point precision for all operations, which reduces the effect of roundoff er-
rors. However, as the implementation is in Matlab, an absolute runtime comparison would
be biased. Hence, runtime/efficiency is reported in terms of the number of iterations re-
quired for convergence. We note that all operations could be optimized to run in real-time
by making use of data and instruction level (SIMD) parallelism. In fact, our Matlab imple-
mentation runs in excess of 10Hz.
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Most VO systems, direct or otherwise, employ a keyframing strategy for computational
efficiency and drift reduction. In this work, we use all frames without sub-sampling as
we aim to scrutinize the implementation details and observe their effect. Equipping the
system with an appropriate keyframing strategy would increase the precision of estimates
from each of the design choices.

The direct VO implementation details we evaluate are detailed in Section 4.4. In summary,
they are:

• Pixel selection: (1) None, (2) Threshold (Th), (3) Non-maxima Suppression (NMS).

• Image gradient estimation: (1) Central-differences (CD), (2) Central-differences on
smoothed images (CD-s), (3) Sobel (SB), (4) Scharr (SC), (5) 5-point stencil (S5), (6)
Farid and Simoncelli 5-point kernel (FS-5), and finally (7) Farid and Simoncelli 7-
point kernel [117] (FS-7).

• Interpolation: (1) Linear (Lin), and (2) Cubic (Cu).

In total, there are 42 different permutations of the design choices evaluated in this work.
First, we evaluate the accuracy of each of the gradient estimation algorithms in combina-
tion with the different interpolation kernels. This is performed with sub-pixel pixel shifts
in isolation of the warp parameters.

4.5.1 Accuracy of Linearization

Fundamental to direct VO, and image-based optimization, is the process of linearizing
the image in a small neighborhood. Here, we study the accuracy of the different gradient
estimation schemes in combination with the different interpolation methods. The 1st-order
expansion of an image about small pixel shift δp is given by

I(p+ δp) ≈ I(p) +
∂I

∂p
δp. (4.27)

When the magnitude of the sub-pixel shift δp is known, the linearization error can be
defined as

E(δp) =
∥∥I(p+ δp)− I(p)−∇Iδp

∥∥2 , (4.28)

where ∇I := ∂I/∂p. The accuracy of this approximation depends on two aspects: (1) the
interpolation quality, which is required to computed I(p + δp), and (2) the accuracy of
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the gradient estimation numerical scheme used to compute ∇I. Results from the different
interpolation and gradient estimation schemes are shown in Fig. 4.2.

As expected, the linearization accuracy is inversely proportional to the magnitude of dis-
placement. Interestingly, for small pixel displacements (≤ 0.5 px), cubic interpolation per-
forms better than linear. However, as the displacement increases, the additional regularity
of the cubic interpolation kernel reduces the approximation accuracy. Thus, it may be ben-
eficial for a direct VO system to use linear interpolation at the start of the optimization
(and over coarse levels of the pyramid), then apply cubic interpolation for the last few
iterations.

The accuracy of the gradient estimation scheme also depends on the magnitude of dis-
placement. For small sub-pixel displacements, central-differences (CD) performs the best.
As the displacement increases we see a benefit from smoothing the image prior to differen-
tiation with CD. The benefit of FS-5 and FS-7 starts to appear at larger displacements, but
it performs poorly for displacements less than 1/2 a pixel.

Sobel (SB) and Scharr (SC) kernels appear to not have any advantage over central-differences
(CD). The 5-point stencil for finite differences (S5) performs better than SB and SC, but not
as good as CD.

The evaluation presented here uses translational pixel shifts, which are known to cause
systematic biases [330]. In direct VO, pixel displacements are also due to the rotational
part of the estimate camera pose, and in fact, the conclusions differ slightly as we show
next.

4.5.2 Synthetic Data with Known Depth

To isolate the effect of depth estimation errors and focus on the implementation details,
we use the synthetic New Tsukuba dataset, where we initialize the direct VO framework
using the provided ground truth disparity maps. We also include baseline results from
the excellent feature-based method FOVIS [176], which we also initialize with the ground
truth disparity map.

We evaluate performance using the following criteria:

• Trajectory Root Mean Squared Error (RMS), defined as

cRMSE =

√
1

n

∥∥c̄i − ĉ2i
∥∥, (4.29)
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Figure 4.2: Effect of interpolation quality and gradient estimation on the accuracy of linearization. See text
for details. Results averaged on many natural images [293].
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where c̄i is the ground truth cumulative position of the camera, and ĉi is the esti-
mated camera position from direct VO. The camera position in the world depends
on both the rotation and the translation and is given by

ĉi = −R̂⊤
i t̂i, (4.30)

where R̂i and t̂i are respectively the rotation and translation estimates at the ith

frame.

• Number of iterations required for convergence computed at the finest pyramid
level. We report the mean and the standard deviation in parentheses.

• Photometric error at convergence. Since the synthetic dataset does not contain ap-
pearance variations, the photometric error is a direct measure of the quality of the
optimization. We also show the mean and standard deviation in parentheses. Note,
the photometric is not displayed when evaluating on real data as it is not necessarily
a good indication of the optimization performance. This is because of the appear-
ance variations and more challenging lighting conditions when working with real
datasets.

Referring to Table 4.1, we observe a consistently higher estimation accuracy in the dense
setting, where all pixels with non-vanishing gradients are used. We also observe consis-
tently better accuracy with cubic interpolation. The most accurate results are also obtained
using the 5-point stencil. The smallest photometric error is achieved using CD. Surpris-
ingly, however, while the photometric error is at its minima, this does not correspond
to enhanced estimation accuracy of the camera path. The differentiation filters by Farid
and Simoncelli (FS-5, and FS-7) appear to improve the accuracy in the semi-sparse setting.
Nonetheless, they lag in performance in comparison to the 5-point stencil. Finally, similar
to conclusions in Section 4.5.1, we observe no advantage from using Sobel, or Scharr filters.
A graphical depiction of the different methods using cubic interpolation is also shown in
Fig. 4.3.

4.5.3 High Frame-Rate Data

We use the high frame-rate dataset by Handa et al. [154] to evaluate the different details in
the presence of realistic image noise and as a function of inter-frame displacement.

Translational errors are shown in Figs. 4.4 and 4.7 for the noise-free and realistic noise
scenarios respectively. Rotational errors are shown in Figs. 4.5 and 4.6 Conclusions are
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Table 4.1: Evaluation of direct VO details on synthetic data. See Section 4.5.2 for details.

No pixel selection (dense)

RMSE Iterations Error

Lin Cu Lin Cu Lin Cu

CD 8.12 7.39 5.94± 0.91 4.99± 0.77 47.71± 21.83 47.42± 22.11

CD-S 8.17 7.46 5.55± 0.83 4.62± 0.71 48.68± 22.28 48.40± 22.56

SB 8.21 7.51 5.70± 0.80 4.75± 0.70 48.44± 22.16 48.15± 22.44

SC 8.17 7.46 5.74± 0.83 4.80± 0.69 48.48± 22.18 48.20± 22.46

S5 7.98 7.25 6.80± 1.10 5.72± 0.91 48.57± 22.22 48.27± 22.53

FS-5 8.41 7.74 5.18± 0.80 4.29± 0.66 48.68± 22.28 48.38± 22.60

FS-7 8.62 7.96 5.14± 0.89 4.29± 0.79 48.72± 22.31 48.41± 22.62

Pixel selection with Threshold (semi-dense)

CD 9.58 8.42 5.22± 0.86 4.34± 0.62 31.82± 13.78 31.42± 14.11

CD-S 9.63 8.54 4.80± 0.92 4.06± 0.70 32.17± 13.81 31.79± 14.15

SB 9.75 8.62 5.01± 0.89 4.20± 0.65 31.82± 13.73 31.43± 14.07

SC 9.62 8.51 5.04± 0.88 4.21± 0.62 32.01± 13.81 31.62± 14.16

S5 9.33 8.20 6.02± 0.93 5.06± 0.65 32.02± 13.95 31.60± 14.29

FS-5 10.06 9.00 4.50± 1.06 4.00± 1.01 31.87± 13.54 31.51± 13.92

FS-7 10.40 9.35 4.58± 1.66 4.15± 1.75 32.17± 13.60 31.83± 13.98

Pixel selection with Non-maxima Suppression (semi-sparse)

CD 11.40 10.88 6.06± 2.08 5.16± 1.95 10.42± 4.78 10.51± 4.80

CD-S 9.61 9.22 5.02± 1.21 4.36± 1.14 11.64± 5.51 11.72± 5.52

SB 10.98 10.49 5.38± 1.53 4.51± 1.43 10.67± 5.01 10.75± 5.01

SC 10.08 9.67 5.45± 1.34 4.59± 1.23 11.65± 5.46 11.74± 5.47

S5 9.31 8.96 7.18± 3.66 6.16± 1.52 12.64± 6.01 12.74± 6.02

FS-5 10.23 9.73 4.33± 1.87 5.24± 3.73 10.68± 5.11 10.75± 5.12

FS-7 9.72 9.00 6.10± 8.15 8.83± 13.50 9.52± 4.53 9.69± 4.73
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Figure 4.3: Trajectory RMSE on synthetic data shown as a function of Pixel Selection and Gradient Estima-
tion method. Cubic interpolation for image warping. See Table 4.1 for detailed evaluation.

similar in both cases, where we the best accuracy is attained using the dense setting com-
bined with CD, CD-s, or S5 for gradient estimation. All plots share the same color scaling
for easy comparison.

Number of iterations required for convergence with statistics computed over all pixel selec-
tion methods per dataset FPS. For the noise-free case results are shown in Figs. 4.8 and 4.9.
Statistics for the realistic noise datasets are shown in Figs. 4.10 and 4.11

4.5.4 Real Data

Evaluation on a subset of the KITTI benchmark is shown in Tables 4.2 and 4.3. We show the
translation RPE (t-RPE) reported in cm and the rotation RPE (r-RPE), which we compute at
the geodesic distance [179]. The units are degrees, multiplied by 10 for additional details.

Interestingly, results on real data differ from the synthetic data. In general, using all pixels
appears to improve the estimates of translation, while selecting a subset of pixels using
NMS provides better rotation estimates. Additionally, gradient estimation using FS-5 and
FS-7 appear to be better than the alternatives in terms of accuracy. However, FS-7 consis-
tently requires additional iterations for convergence.

The SB and SC methods for gradient estimation appear to not have any advantage over
CD. However, due to noise in real data, smoothing the image prior to estimating gradients
using CD provides good results. Contrary to the noise-free experiments with synthetic
data, S5 is consistently worse.

The effect of interpolation on accuracy agree with results form the synthetic experiments.
Due to the large baseline in the KITTI dataset, linear interpolation appears to provide better
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Figure 4.4: Evaluation of translational error on high frame-rate data without image noise.
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Figure 4.5: Evaluation of rotational error on high frame-rate data without image noise.
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Figure 4.6: Evaluation of translational error on high frame-rate data with realistic image noise.
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Figure 4.7: Evaluation of rotational error on high frame-rate data with realistic image noise.
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Figure 4.8: Linear interpolation no noise
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Figure 4.9: Cubic interpolation no noise
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Figure 4.10: Linear interpolation with noise

99



4.5. Experiments

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 40

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 60

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 80

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 100

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 120

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 140

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 160

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 180

CD CD-s SB SC S5 FS-5 FS-7

0

20

40

FPS = 200

Figure 4.11: Cubic interpolation with noise
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results most of the time.

4.6 Summary & Discussion

In this chapter we presented an evaluated of several implementation details at the core of
direct VO algorithms. We evaluated the effect of gradient estimation, interpolation and
pixel selection. When working with noise-free data with relatively high framerate, the best
combination of parameters is: gradient estimation method with the 5-point stencil, using
all pixels densly, and cubic interpolation for warping. In addition, when using IRLS, the
photometric error in itself is an insufficient metric for estimation quality.

However, when working with noisy real data (with relatively large inter-frame displace-
ment) there is no single best combination. Nonetheless, the optimal filters proposed by
Farid & Simoncelli [117] provide the most accurate results. Interestingly, there is no clear
benefit from using cubic interpolation to outweigh its computational cost.

Direct VO can produce accurate rotation estimates, but this accuracy is related to the num-
ber and distribution of pixels used. A possible cause for this effect is bias towards trans-
lation as most of the usable pixels are close to the camera. One could use of this fact to
rely on direct VO for rotation estimation and relegating translation estimates to feature-
based methods. Or, by separating rotation from translation estimates, possibly based on
the estimated depth.

A limitation of direct methods is the reliance on the brightness constancy assumption. The
next section presents our work on using feature descriptors to address appearance varia-
tions in a direct image alignment framework.
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Table 4.2: Results on KITTI sequence 0

t-RMSE r-RMSE Iter

Lin Cu Lin Cu Lin Cu

none

CD 3.76 3.71 2.37 2.64 8.6± 5.1 7.8± 4.2

CD-s 3.65 3.44 2.12 1.62 7.8± 4.1 7.2± 4.1

SB 3.70 3.22 2.12 1.87 8.0± 4.3 7.4± 4.8

SC 4.16 3.85 2.25 2.58 7.9± 3.9 7.3± 3.7

S5 5.13 3.88 1.85 2.55 9.3± 4.6 8.5± 4.3

FS-5 1.80 3.22 1.19 1.52 7.5± 4.7 7.0± 4.1

FS-7 1.99 3.49 1.21 1.37 7.5± 4.4 7.1± 4.2

threshold

CD 3.75 2.39 2.15 1.90 8.1± 4.7 7.5± 4.4

CD-s 4.01 3.81 2.50 2.57 7.5± 5.1 6.9± 4.4

SB 4.02 2.94 2.64 2.64 7.7± 4.9 7.0± 4.7

SC 3.95 4.43 2.23 2.38 7.8± 5.5 7.0± 4.5

S5 7.71 4.25 1.99 2.41 9.0± 5.4 8.2± 4.6

FS-5 4.44 3.90 1.71 2.43 7.1± 4.7 6.8± 5.3

FS-7 4.08 1.85 1.73 1.18 7.2± 5.2 6.8± 3.7

nms

CD 3.69 3.26 2.26 1.70 8.7± 5.8 7.7± 5.4

CD-s 3.58 2.88 2.25 1.98 7.2± 5.1 6.5± 5.3

SB 3.05 3.77 1.63 3.01 7.4± 5.6 6.6± 5.6

SC 3.78 3.36 1.86 1.98 7.7± 6.4 6.7± 5.6

S5 4.43 4.15 2.50 2.17 10.1± 7.2 8.9± 5.3

FS-5 3.93 3.54 1.86 1.84 6.4± 5.8 7.3± 6.2

FS-7 4.06 3.68 1.23 1.24 8.0± 7.3 10.8± 9.9
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Table 4.3: Results on KITTI sequence 5

t-RMSE r-RMSE Iter

Lin Cu Lin Cu Lin Cu

none

CD 4.82 5.19 4.47 4.40 8.5± 5.7 7.8± 5.5

CD-S 3.22 4.48 3.13 3.21 7.8± 5.5 7.2± 5.2

SB 5.23 4.73 3.19 4.33 7.9± 5.5 7.3± 5.3

SC 5.36 5.33 3.23 3.22 7.9± 5.6 7.2± 4.3

S5 5.53 5.53 4.29 4.43 9.6± 6.4 8.5± 4.9

FS-5 2.76 2.82 2.36 3.87 7.3± 4.7 6.7± 4.5

FS-7 2.82 2.76 2.36 2.47 7.3± 5.0 6.8± 4.4

threshold

CD 5.61 5.47 3.34 3.34 8.4± 6.4 7.6± 5.3

CD-S 3.51 3.22 3.38 3.34 7.7± 6.4 7.0± 6.1

SB 5.82 5.07 4.57 3.32 8.0± 7.1 7.2± 5.9

SC 5.15 5.68 3.45 4.52 7.9± 6.2 7.2± 6.3

S5 6.22 5.76 4.61 4.43 9.4± 7.0 8.5± 6.3

FS-5 2.94 2.86 2.42 2.42 7.2± 6.1 6.7± 5.6

FS-7 2.95 2.90 2.42 2.43 7.2± 6.0 6.8± 5.9

nms

CD 4.52 5.36 3.28 3.38 8.8± 6.9 7.8± 6.8

CD-S 3.42 4.94 2.14 3.37 7.3± 6.9 6.5± 6.5

SB 5.39 5.04 2.34 3.62 7.3± 6.2 6.7± 7.2

SC 5.16 5.63 2.46 2.39 7.6± 7.1 6.8± 7.3

S5 6.02 5.78 3.62 3.41 10.1± 8.1 8.9± 6.9

FS-5 2.89 2.77 0.27 2.51 6.3± 4.3 7.6± 6.4

FS-7 2.84 2.80 0.25 0.26 8.0± 7.4 11.2± 9.6
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CHAPTER 5

Bit-Planes: Binary Descriptor for
Robust Dense Image Alignment
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5.1 Summary of Contributions

• We study the problem of camera tracking (pose estimation) under sudden and drastic
illumination changes.

• We propose an illumination invariant feature descriptor suitable for dense image
alignment.

• The descriptor is experimentally shown to be suitable for gradient estimation re-
quired by direct methods.

• The descriptor is an adaption of the binary LBP/Census transform to work with the
multi-channel Lucas & Kanade algorithm
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• The adaption allows minimizing an equivalent form of the Hamming distance in
a standard least-squares optimization framework without the need for approxima-
tions.

• Due to the compactness of the descriptor, we demonstrate tracking results faster than
real-time on mobile devices.

• Code and challenging template tracking datasets are release in open source and can
be found at https://www.cs.cmu.edu/~halismai/bitplanes.

• Video demonstrations of the approach can be found at https://goo.gl/fjDzWZ
and https://goo.gl/nriV2b.

5.2 Introduction

Binary descriptors are powerful tools for solving sparse image alignment problems due
to their discriminative power, robustness to illumination change, and low complexity [63,
121, 149, 167, 221, 388]. Matching binary descriptors is typically performed by exhaustive
search [51, 196] using binary norms, such as the Hamming distance. Exhaustive search,
however, is inefficient when dense correspondences are required in real-time [143, 275]
and its accuracy is limited to pixel resolution.

A classical way of speeding up the task of image alignment is to linearize pixel intensi-
ties of with respect to geometric displacement. The most notable example of this strategy
can be found in the seminal work of Lucas & Kanade (LK) [235]. The LK algorithm aims
to establish an approximate linear relationship between appearance and geometric dis-
placements. Efficient linear solvers can then be employed for finding the best alignment
parameters with respect to a known template. The relationship between appearance and
geometric displacement is seldom linear, so the linearization process is typically repeated
until convergence.

At the heart of LK is the notion that an approximate linear relationship between pixel
appearance and geometric displacement can be established reliably. Pixel intensities are
not deterministically differentiable with respect to geometric displacements. Instead, the
linear relationship is established stochastically through spatial finite differences whose out-
puts we refer to as image gradients. Estimating stochastic gradients on image intensities
has a long and rich history dating back to seminal works of computer vision [246]. Fur-
thermore, it has been well documented that pixel intensities of natural images are strongly
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correlated over small spatial areas further validating the assumed approximate linear rela-
tionship between pixel intensities and geometric displacements [337].

Another important requirement in the original LK algorithm is a satisfied brightness con-
stancy assumption (BCA). The BCA states that a pixel’s appearance must remain constant
after motion. Relying on raw pixel intensities, however, does not always preserve the BCA
in most image alignment tasks. This is either due to non-Lambertian scenes, or sudden
changes in illumination.

In this work we explore the validity of a descriptor constancy assumption using photomet-
rically invariant descriptors in lieu of the commonly employed BCA. In particular, we ex-
plore the effectiveness of one of the simplest and most efficient binary descriptors: the orig-
inal form of Local Binary Patterns (LBP) [290], also known as the Census Transform [400],
for robust and efficient dense correspondence estimation problems. The concept of lineariz-
ing feature descriptors with respect to geometric displacement within the LK framework
is an emerging topic [18, 57, 326]. To date, the descriptors employed in LK have a consid-
erable computational footprint such as HOG [89] and dense SIFT [50, 225] making them
unsuitable for in vision applications requiring dense correspondences in real-time under
stringent computational requirements.

An important contribution we make in this chapter is to explain, and characterize theoret-
ically, why a naive implementation of the LBP/Census achieves poor performance within
the LK algorithm (Section 5.6.2). We argue that a new descriptor must be devised, tak-
ing into account the theoretical requirements of the LK algorithm while maintaining the
computational advantages of the LBP/Census descriptor. We refer to this LK inspired
descriptor herein as bit-planes.

In addition, in order to maintain the invariance properties of binary descriptors, they must
be matched under binary norms (e.g. the Hamming distance), which are usually neither
convex nor continuous. Common strategies to addressing this challenge is to either ap-
proximate the binary descriptor with a continuous function [149], or to approximate the
binary distance with a smooth form [388], neither of which fully maintain the invariance
properties of the descriptor [99]. In contrast, the squared distance between the proposed
representation is equivalent to the Hamming distance. Hence, the proposed descriptor
retains the illumination invariance properties of whilst using standard least-squares opti-
mization. In the following sections we will:

• Introduce bit-planes, a binary descriptor that can be seemingly used within the LK
image alignment framework. Our formulation of the descriptor allows us to mini-
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mize the Hamming distance using standard least-squares minimization without re-
sorting to any approximations. Thereby maintaining the illumination invariance of
the descriptor.

• Explore the suitability of our descriptor for linearization as a function of geometric
displacement. We demonstrate that even though the dense bit-planes descriptor is
inherently discontinuous it shares the same critical properties enjoyed by pixel inten-
sities, which make them suitable for efficient gradient-based optimization.

• Discuss the issue of whether pre-computing a binary descriptor in order improve
efficiency is viable.

• Evaluate the performance of bit-planes on synthetic image alignment problems to an-
swer fundamental questions about the Descriptor’s behavior, such as: suitability of
linearization and converges basin. Additional evaluation on real-data and extension
to nonlinear warps (visual odometry) is presented in Chapter 6.

We start with a brief summary of the LK algorithm. A more detailed exposition can be
found in Section 2.5 of this document and in the excellent series by Baker and Matthews
[25], Baker et al. [26, 27, 28, 29].

5.3 The Lucas & Kanade Algorithm

Let I0 : R2 → R be the template/reference image. After camera motion with parameter
vector θ ∈ Rp, we obtain an input/moving image I1. We desire to estimate the parameters
of motion such that the following objective is minimized

E(x;θ) =
∑
x∈Ω0

∥I0(x)− I1(x
′(θ))∥22, (5.1)

where Ω0 is a subset of pixels in the template, θ is an initial estimate of the motion param-
eters and x′(θ) describes the transformed pixel coordinates given the motion parameters,
commonly known as the warping function. By performing a 1st Taylor expansion of Eq. (5.1)
in the vicinity of θ, taking the partial derivatives with respect to the parameters, and equat-
ing it to zero, we arrive at the normal equations given by

J(x;θ)⊤J(x;θ)∆θ = J(x;θ)⊤e(x;θ), (5.2)
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where J(x;θ) is the matrix of partial derivatives of the warped image intensities with re-
spect to the motion parameters evaluated at the current estimate of parameters θ, and

e(x;θ) = I0(x)− I1(x
′(θ)). (5.3)

Using the chain rule, the Jacobian takes the form

J(x;θ) =
∂I1(x)

∂θ
=

∂I

∂x′
∂x′

∂θ
, (5.4)

where ∂I1/∂x′ is estimated stochastically through x- and y- finite differences, while ∂x′/∂θ is
usually obtained deterministically using the closed-form of the warping function (cf . Sec-
tion 2.2.3). The original formulation of LK is applicable to a variety of problems. For spe-
cial warps that satisfy a group requirement, however, a more efficient variant is Baker and
Matthews’ Inverse Compositional algorithm (IC) [25] which we will use in the experimen-
tal portion of this paper. A detailed review of the IC algorithm can be found in Section 2.5.2
on Page 38 of this document.

5.3.1 Brightness constancy and photometric variations

The classical formulation of LK relies on the brightness constancy assumption [235], which
is seldom satisfied in real life applications. The effect of violations of the brightness con-
stancy are demonstrated in Fig. 5.1, where a nonlinear form of intensity variation is applied
to the template image. Although it would seem that the variations are minimal, inspecting
the intensity distribution of each of the images indicate otherwise. In contrast, the distribu-
tion of our proposed descriptor remain close to its original shape prior to the application
of nonlinear intensity deformations.

Techniques to address illumination change are discussed Section 2.7.5 and include: (i) esti-
mating illumination parameters alongside the motion parameters (either jointly [36] or in
an alternating fashion [376]), (ii) using intrinsically robust similarity measures, such as Mu-
tual Information [90, 103], or the normalized correlation [112, 180], and (iii) preprocessing
the images to obtain an illumination robust representation [18, 236, 390].

On the one hand, estimating illumination is sensitive to the modeling assumptions and is
difficult to craft correctly. On the other hand, optimizing robust metrics is sensitive to the
initial conditions and requires general purpose optimizers that cannot exploit the special
structure of least-squares problems [289] (see Section 2.4 for an explanation of the special
structure of least-squares problems, and [289, ch. 10]).
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(e) Proposed descriptor histogram
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(f) Proposed descriptor histogram

Figure 5.1: Although nonlinear variations in appearance may appear subtle, a closer lock at the distribution
of intensities indicate otherwise. The shape of the distribution of the proposed descriptor remain close to its
distribution prior to intensity deformation.
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Preprocessing the image does not typically require restrictive assumptions. Traditionally,
preprocessing an image is done by convolving with filters, or other simple operations such
as whitening the signal [124, 352]. Densely sampled feature descriptors are another form
of preprocessing, which we adopt in this work. In particular, we propose the use of the bit-
planes descriptor. During evaluation, we show that our approach exceeds the robustness
of algorithms that explicitly model illumination as well as methods that rely on robust cost
metrics. Furthermore, our method is more efficient, and simpler to implement. Central to
our work is the extension of LK to multi-channel images, which we review next.

5.3.2 Multi-channel LK

Extending LK to multi-channel images is straightforward, it is presented here to introduce
notation. Let ϕ0 : R2 → Rd be the d-channel representation of the template/reference
image. Employing a similar notation to the classical LK algorithm, after camera motion
with parameter vector θ ∈ Rp, we obtain an input/moving d-channel representation ϕ1.
To align descriptors using LK we seek to minimize:

Eϕ(x;θ) =
∑
x∈Ω0

∥ϕ0(x)− ϕ1(x
′(θ))∥2. (5.5)

To linearize Eq. (5.5) we must obtain an estimate of the Jacobian

Jϕ(x;θ) = ∂ϕ/∂θ ∈ Rd×p. (5.6)

Let the value of the j-th channel, as illustrated in Fig. 5.2, of the multi-channel representa-
tion be denoted as ϕj(x), where

ϕ(x) = [ϕ1(x) . . .ϕd(x)]⊤. (5.7)

The sought Jacobian for each channel in Eq. (5.5) can be obtained using the chain rule

∂ϕj
1(x)

∂θ
=
∂ϕj

1

∂x′
∂x′

∂θ
for j = 1, . . . , d (5.8)

where ∂ϕj
1/∂x′ is estimated stochastically through x- and y- finite difference filters on ϕj

1,
and ∂x′/∂θ is obtained deterministically from the closed-form of warping function. The
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multi-channel d× p Jacobian matrix can then be formed as

Jϕ(x;θ) =
∂ϕ1(x)

∂θ
=

[
∂ϕ1

1(x)/∂θ . . . ∂ϕd
1(x)/∂θ

]⊤
(5.9)

Using this multi-channel linearization all extensions and variations of the LK algorithm
can be used with different multi-channel descriptors. Recent work has demonstrated the
utility of multi-channel LK using classical dense descriptors such as dense SIFT, HOG LBP,
and variations on LBP [18, 57].

5.4 Dense Binary Descriptors

Local Binary Patterns (LBP) [290] were among the first binary descriptors proposed in
vision. An identical representation was independently developed by Zabih & Woodfill
under the name: Census Transform (CT) [400], which remains popular in stereo and optical
flow [149, 278, 342, 388] due to its efficiency and illumination invariance properties.

LBP is based on the predicate of pixel comparisons in a small neighborhood as illustrated
in Fig. 5.3. By definition, the LBP descriptor is invariant to monotonic illumination changes
given that it is matched under a binary norm. Recently, binary descriptor research has
progressed significantly with the development of several high performance descriptors
such as ORB [63] and BRISK [221] among others [32, 63, 223, 356]. All such descriptors
may be used as bit-planes, but we chose a LBP evaluated in a 3 × 3 neighborhood for its
efficiency and locality.

Figure 5.2: An example of the LBP descriptor evaluated on a 3 × 3 neighborhood, which results in an 8-
channel bit-planes descriptor.
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8 12 200

56 42 55

128 16 11

(a)

8<42 12<42 200<42

56<42 55<42

128<42 16<42 11<42

(b)

1 1 0

0 0

0 1 1

(c)

Figure 5.3: The canonical LBP descriptor is obtained by performing pixel comparisons in a fixed order and
converting the binary string to a decimal value. In Fig. 5.3a the center pixel is compared to its neighbors as
shown in Fig. 5.3b. The descriptor is obtained by combining the results of each comparison in Fig. 5.3c into
a single scalar signature.

5.4.1 Single channel LBP descriptor

When extracting LBP about a pixel position x one obtains,

ϕ(x) =

8∑
i=1

2i−1
[
I(x) ▷◁ I(x+∆xi)

]
, (5.10)

where {∆xi}8i=1 is the set of the eight relative coordinate displacements possible within
a 3 × 3 neighborhood around the center pixel location x. Other neighborhood sizes and
sampling locations can be used, but we found a 3× 3 region to perform best. The operator
▷◁∈ {>,≥, <,≤} is a pixel comparison/binary test, and the bracket denotes the indicator
function. We refer to the LBP descriptor described in Eq. (5.10) as single-channel since its
output is a scalar at every pixel position x. A visual depiction of the single-channel LBP
descriptor estimation process is shown in Fig. 5.3.

5.4.2 Bit-planes descriptor

When matching binary descriptors, such as LBP, it is common practice to employ the Ham-
ming distance. This is important because the Hamming distance is invariant to the or-
dering of pixel comparisons within the neighborhood used to compute the descriptor. In
contrast, the sum or squared distances (SSD) lacks this desirable property and is depen-
dent on the ordering specified by {∆xi}8i=1. This becomes problematic when employing
dense binary descriptors within the multi-channel LK framework due to its inherent de-
pendence on the SSD. To make dense binary descriptors compatible with LK we propose
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the bit-planes descriptor given by:

ϕ(x) =

[
I(x) ▷◁ I(x+∆x1) . . . I(x) ▷◁ I(x+∆x8)

]⊤
∈ R8×1 . (5.11)

For each pixel coordinate x in the image, this descriptor produces an 8-channel binary
valued vector. Notably, using the SSD with the multi-channel representation in Eq. (5.11)
between two bit-planes descriptors is equivalent to the Hamming distance between single-
channel LBP descriptors. Specifically, the ordering of the pixel comparisons within the 3×3
neighborhood of the bit-planes descriptor has no effect on the SSD.

The Hamming distance is defined as the sum of mismatched bits between two binary
strings [151]. To illustrate the equivalence between the Hamming distance and the sum
of squared errors using bit-planes we use an example composed of three bits. Let a =

{1, 0, 1}, and b = {0, 1, 1}. The Hamming distance between a and b is 2 as the bit strings
differ at two locations. The sum of squared differences between a and b is given by
(1− 0)2 + (0− 1)2 + (1− 1)2, which is the same as the Hamming distance.

5.5 Linearizing Bit-Planes

In order for the bit-planes descriptor to be effective within a multi-channel LK frame-
work we first need to ensure existence an approximate linear relationship between the
bit-planes and geometric displacements. Inspecting a visualization of the bit-planes de-
scriptor in Fig. 5.2, one could be doubtful about the existence of such relationship as each
channel of the descriptor is highly discontinuous. In addition, estimating stochastic gradi-
ents per binary channel seems strange as they can take on only a handful of possibilities
(e.g. using central differences, and excluding the image border, the gradient values can be
either 0 or ±1/2).

The news is not all gloomy. In Fig. 5.4b we see the SSD cost surface between a patch
within a natural image and shifted versions of itself in the x- and y- directions averaged
over a subset of natural images. As expected, we observe the quasi-convex cost surface
for raw pixel intensities. The shape of the cost surface is important to the effectiveness
of the LK algorithm — as the LK objective relies on a graceful reduction of the SSD cost
as a function of geometric displacement. Interestingly, when inspecting Fig. 5.4a we see a
similar quasi-convex cost surface, albeit not as wide, which indicates that bit-planes have
similar properties to raw pixel intensities when using the SSD as a measure of dissimilarity.
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(a) Bit-planes. (b) Raw intensity.

Figure 5.4: Cost surface of our bit-planes descriptor Fig. 5.4a computed over a subset of natural images [399]
in comparison to the SSD over raw intensity Fig. 5.4b. Both cost surfaces are suitable for LK.

(a) Bit-planes. (b) Raw intensity.

Figure 5.5: Assessment of the linearization properties of the bit-planes descriptor in terms of the signal-to-
noise-ratio (SNR) as a function of translational displacement. Even though raw pixels are superior in this
context, bit-planes offer a sufficient approximation to be used within a gradient-based optimization frame-
work.
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Consider a translational displacement warp ∆θ ∈ R2 where we attempt to linearly predict
an image representation R (raw pixels I, or bit-planes ϕ) in the x- and y- directions,

R(x(0)) +
∂R(0)

∂θ
∆θ ≈ R(x(∆θ)). (5.12)

The error of this linear approximation is given by

ϵ(∆θ) =
∑
x∈Ω
∥R(x(0)) +

∂R(0)

∂θ
∆θ −R(x(∆θ))∥22 , (5.13)

and its signal-to-noise-ratio (SNR) can be computed using

SNR(∆θ) = 10 ·

log
∑
x∈Ω
∥R(x(0))∥22 − log ϵ(∆θ)

 . (5.14)

In Fig. 5.5 we depict the SNR of the linearized objective as a function of increasing transla-
tional shifts from the true minima for both raw intensities, and bit-planes. The experiments
were carried out similarly through the use of a subset of natural images and aggregated to
form the results in Fig. 5.5. As expected, the SNR when using binary features is lower than
using raw intensities due to the additional quantization when using binary data. However,
it seems that — at least qualitatively — bit-planes gradient estimates provide a good local
linear approximation of the objective. Hence, further justifying the use of the bit-planes
descriptor within the LK framework.

5.6 Experiments

In this section we answer a number of important questions regarding the validity of the
dense bit-planes descriptor for robust and efficient image alignment.

5.6.1 Pre-computing descriptors

An obvious question to ask when considering the application of multi-channel descriptors
within the LK framework is: whether we can pre-compute the descriptors before warping?
Specifically, due to the iterative nature of the LK algorithm it becomes computationally
expensive to re-compute the descriptor after each image warping step. Substantial effi-
ciencies can be integrated into any LK-based image alignment if one can pre-compute the
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descriptor before warping. This is illustrated in Fig. 5.6.

We answer this question in Fig. 5.8 where we evaluated a number of LK variants [25]:
forward additive (FA), forward compositional (FC), and inverse compositional (IC) for the
task of image alignment on natural images using random warps and including nonlinear
appearance variations of the form

I1(x) = 255

(
αI0(θa(x)) + β

255

)1+γ

, (5.15)

where θa (·) are the 6DOF parameters of an affine warp, α and β are multiplicative and
additive lighting change terms, and |γ| < 1 is used for gamma correction. As expected, we
observe that warping feature channels is less accurate than re-computing the descriptor on
the warped image as shown in Fig. 5.8.

The degree to which warping the feature channels vs. re-computing them affects accuracy
depends on the application and the type of warp. For simple warps such as 2D transla-
tion, the relationship between intensity deformation as a function of warp parameters is
linear. Hence, approximating multi-channel LK by warping the feature channels is equiv-
alent to re-computing the features on warped images as shown in Fig. 5.9. However, for
more complicated warps where deformation of image intensities is nonlinearly dependent
on the warp parameters we expect a pronounced difference in alignment accuracy. This
is because the value of each descriptor channel might significantly differ after a nonlinear
warp. Overall, it is possible to approximate the multi-channel objective in Eq. (5.5) with
warping feature channels depending on the type and accuracy requirements of the applica-
tion at hand. In our experiments, we chose to recompute descriptors after every iteration
of image warping.

5.6.2 Single Channel LBP within LK

Employing bit-planes requires the alignment of eight separate channels as opposed to a
single channel when working with raw intensities. In Section 6.6 we discussed the prob-
lems of using a LBP descriptor within the LK framework. In particular, the representation
is inherently sensitive to the ordering of pixel comparisons when using a SSD measure of
dissimilarity. Using LBP descriptors within a LK framework as been reported to perform
well [149, 388] given small displacements. However, under moderate displacements, the
use of the LBP descriptor in LK introduces biases due to choices of the binary test and
neighborhood ordering. In Fig. 5.11 we show the effect of differing binary comparison
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(a) Template (b) Template Bit-planes

(c) Warped template (d) Warped Bit-planes

Figure 5.6: A synthetic image to demonstrate the difference between warping the descriptors vs. re-
computing it. Simply warping a pre-computed descriptor does not match the expected output. Alignment
error for this example is show in Fig. 5.7. Bit-planes is visualized by summing the eight channels.
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Figure 5.7: Histogram of error corresponding to warping pre-computed descriptors (absolute mean error
0.25 ± 0.2, absolute median error 0.19) vs. re-computing the descriptors on warped image (absolute mean
0.02± 0.11 absolute median 0).
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Figure 5.8: Recomputing descriptors after image
warping shows (indicated with the suffix ‘-1‘) is
more accurate than warping the descriptors.
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Figure 5.9: No significant difference between re-
computing the descriptors vs. warp the channels
when the warp is linear (2d translation).
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Figure 5.10: Histogram of intensity errors when using our bit-
planes (BP) vs. classical single-channel LBP descriptors with dif-
ferent comparison operators. The RMS is shown in parentheses.

Template BP result

▷◁:=> ▷◁:=≥ ▷◁:=< ▷◁:=≤

Figure 5.11: Drift when using LBP vs. bit-
planes. The bottom row shows the result
of template tracking using LBP. Images
are magnified for better visualization (com-
pare with BP result). Best viewed in color.

operators ▷◁∈ {>,≥, <,≤} compared to our proposed bit-planes descriptor. The evalu-
ation is performed on a benchmark dataset by Gauglitz et al. [136], where we see that
the bit-planes descriptor is unaffected by the ordering. In our experiments we noticed
indistinguishable differences in performance between binary comparison operators when
employing the bit-planes descriptor. As a result, we chose to use the > operator for the
rest of our experiments.

5.7 Summary

In this chapter, we presented the bit-planes descriptor; an adaption of the LBP/Census
transform suitable for nonlinear gradient-based optimization. Not only that bit-planes
maintains the invariance to monotonic changes enjoyed by binary descriptors, but also is
suitable for dense alignment with subpixel accuracy.
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5.7. Summary

The main limitation of the bit-planes descriptor is the narrow basin of convergence in com-
parison to using raw pixel intensities. This, however, is expected as there is a natural trade
off between robustness and other performance aspects.

In the next chapter, we extend the idea of multi-channel alignment of feature descriptors
to different local descriptors. We will also evaluate the performance of the descriptor on
challenging pose estimation problems that include: robust and real-time planar template
tracking under sudden and drastic illumination change, as well as robust visual odometry
with difficult illumination.
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CHAPTER 6

Robust Pose Estimation with Densely
Evaluated Descriptors

Contents
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6.1 Summary of Contributions

• We evaluate the performance of pose estimation (image alignment) using densely
evaluated feature descriptors using our proposed descriptor (bit-planes) as well as a
number of other suitable feature descriptors for direct camera tracking.

• Suitability of descriptors for dense alignment is established as a function of the de-
scriptor’s spatial locality.

• Performance of image alignment using feature descriptors is evaluated on a two
problems: Affine and planar template tracking, as well as visual odometry.
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Figure 6.1: Shown at the top row are two consecutive images collected from an underground mine. The
bottom row shows a histogram equalization of the images for better visualization. The equalized images
may appear noiseless due to its smooth appearance in the document (due to resizing). The data has a low
signal-to-noise ratio due to the poor illumination of the scene.

• For template tracking, we demonstrate robust performance in face of sudden and
drastic illumination changes, where we outperform the state-of-the-art in terms of ro-
bustness and run-time. A video demonstration is available at https://www.youtube.
com/watch?v=6d5_IGAoKW0.

• The bit-planes descriptor is shown to run faster than real-time (400+ fps on a laptop,
and 100+ fps on mobile devices).

• Open source implementation of the visual odometry system is available in open
source at https://github.com/halismai/bpvo, which includes optimized im-
plementations of bit-planes and the rest of the descriptors compared in this chapter.

• A video demonstration of the robust VO algorithm using bit-planes in underground
mines is available at https://www.youtube.com/watch?v=fEddznFo3aY.

6.2 Introduction

With the increasing availability of high frame rate cameras, direct tracking is becoming
a more popular tool in myriad applications such as visual odometry [75, 199], visual
SLAM [110, 154], augmented and virtual reality [316] and dense reconstruction [285]. Ad-
vantages of direct tracking include:
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Figure 6.2: An example of the nonlinear intensity deformation caused by the automatic camera settings. A
common problem with outdoor applications of robot vision.

(i) Increased precision as much of the image could be used to estimate a few degrees of
freedom [181].

(ii) Enhanced tracking robustness in feature-poor environments, where high frequency
image content (corners and edges) are not readily available.

(iii) Improved ability in handling ambiguously textured scenes [128].

(iv) Improved running time by exploiting the trivially parallel nature of direct tracking [285].

However, as discussed in Chapter 5, the main limitation of direct tracking is the reliance
on the brightness constancy assumption [173, 235], which is seldom satisfied in the real
world. Since the seminal works of Lucas and Kanade [235] and Horn and Schunk [173], re-
searchers have been actively seeking more robust tracking systems [36, 43, 61, 103, 112, 278].
Nevertheless, the majority of research efforts have been focused on two ideas: One, is to
rely on intrinsically robust objectives, such as maximizing normalized correlation [180], or
the Mutual Information [103], which are inefficient to optimize and more sensitive to the
initialization point [289]. The other, is to attempt to model the illumination parameters of
the scene as part of the problem formulation [36], which is usually limited by the modeling
assumptions.

In this chapter, we study the use of densely evaluated local feature descriptor as a non-
parametric means to achieving illumination invariant dense tracking. We will show that
while feature descriptors are inherently discontinuous, they are suitable for gradient-based
optimization when used in a multi-channel framework. We will also show that, depend-
ing on the feature descriptor, it is possible to tackle challenging illumination conditions
without resorting to illumination modeling assumptions, which are difficult to craft cor-
rectly. Finally, we show that the changes required to make use of local feature descriptors
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in current tracking systems are minimal. Furthermore, the additional computational cost
is not a significant barrier.

There exists a multitude of previous work dedicated to evaluating direct tracking. For in-
stance, Baker and Matthews [25] evaluate a range of linearization and optimization strate-
gies along with the effects of parameterization and illumination conditions. Handa et
al. [154] characterize direct tracking performance in terms of the frame rate of the camera.
Klose et al. [206] examine the effect of different linearization and optimization strategies on
the precision of RGB-D direct mapping. Zeeshan et al. [407] explore the parameter space
of direct tracking considering power consumption and frame rate on desktop and mobile
devices. Sun et al. [352] evaluate different algorithms and optimization strategies for opti-
cal flow estimation. While Vogel et al. [388] evaluate different data costs for optical flow.
Nonetheless, the fundamental question of the quantity being optimized, especially the use
feature descriptors in direct tracking, has not yet been fully explored.

Feature descriptors, whether hand crafted [260], or learned [211], have a long and rich
history in Computer Vision and have been instrumental to the success of many vision ap-
plications such as Structure-from-Motion (SFM) [369], Multi-View Stereo (MVS) [132] and
object recognition [338]. Notwithstanding, their use in direct tracking has been limited and
is only beginning to be explored [18, 56]. One could argue that this line of investigation
has been hampered by the false assumption that feature descriptors, unlike pixel intensi-
ties, are non-differentiable due to their discontinuous nature. Hence, the use of feature
descriptors in direct tracking has been neglected from the onset.

Among the first application of descriptors in direct tracking is the “distribution fields”
work [325, 326], which focused on preserving small image details that are usually lost
in coarse octaves of the scale space. Application of classical feature descriptors such as
SIFT [234] and HOG [89] to Active Appearance Models have been also explored in the
literature demonstrating more robust alignment results [18]. The suitability of discrete fea-
ture descriptors for the linearization required by direct tracking has also been investigated
in recent work [57], where it was shown that if feature coordinates are independent, then
gradient estimation of feature channels can be obtained deterministically using finite dif-
ference filters. This is advantageous as gradient-based optimization is more efficient and
more precise than discrete optimization [225]. Recent work have applied local descriptors
to template tracking [83] in an effort to track non-Lambertian surfaces more robustly.

This chapter serves as a generalization of the bit-planes descriptor presented in Chapter 5,
where we experiment with different feature descriptors and evaluate the method on real
datasets with ground truth.
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6.3 Robust Parametric Image Alignment

In Section 2.5 (Page 35) of this document we provide additional details on image alignment
and associated algorithm. In the following, however, we reintroduce the important parts.

Let the intensity of a pixel coordinate p = (u, v)⊤ in the reference image be given by I(p) ∈
R. After camera motion, a new image is obtained I′(p′). The goal of direct tracking is to
estimate an increment of the camera motion parameters ∆θ ∈ Rd such that the photometric
error is minimized

∆θ∗ = argmin
∆θ

∑
p∈Ω

∥∥∥I′ (w(p;θ ⊞∆θ)
)
− I (p)

∥∥∥2, (6.1)

where Ω is a subset of pixel coordinates of interest in the reference frame, w (·) is a warp-
ing function that depends on the parameter vector we seek to estimate, and θ is an initial
estimate of the motion parameters. After every iteration, the current estimate of param-
eters is updated (i.e. θ ← θ ⊞ ∆θ), where ⊞ generalizes the addition operator over the
optimization manifold. The process is repeated until convergence, or some termination
criteria have been satisfied [25, 235].

By (conceptually) interchanging the roles of the template and input images, Baker & Matthews
devise a more efficient alignment techniques known as the Inverse Compositional (IC) al-
gorithm [25]. Under the IC formulation we seek an update ∆θ that satisfies

∆θ∗ = argmin
∆θ

∑
p∈Ω
∥I′
(
w(p;θ)

)
− I

(
w(p;∆θ)

)
∥2. (6.2)

The optimization problem in Eq. (3.4) is nonlinear irrespective of the form of the warping
function or the parameters, as — in general — there is no linear relationship between
pixel coordinates and their intensities. By equating the partial derivatives of the first-order
Taylor expansion of Eq. (3.4) to zero, we reach at solution given by the following closed-
form (normal equations)

∆θ =
(
J⊤J

)−1
J⊤e, (6.3)

where J =
(
g(p1)

⊤, . . . , g(pm)⊤
)
∈ Rm×d is the matrix of first-order partial derivatives of

the objective function, m is the number of pixels, and d = |θ| is the number of parameters.
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Each g is ∈ R1×d and is given by the chain rule as

g(p)⊤ = ∇I(p)∂w
∂θ

, (6.4)

where ∇I =
(
∂I/∂u, ∂I/∂v

)
∈ R1×2 is the image gradient along the u- and v- directions

respectively. The quantity

e(p) = I′(w(p;θ))− I(p) (6.5)

is the vector of residuals. Finally, the parameters are updated via the IC rule given by

w (p,θ)← w (p,θ) ◦w (p,∆θ)−1. (6.6)

6.3.1 Direct Tracking with Feature Descriptors

Direct tracking using image intensities (the brightness constraint in Eq. (7.8)) is known to
be sensitive to illumination change. To address this limitation, we propose the use of a
descriptor constancy assumption. Namely, we seek an update to the parameters such that

∆θ∗ = argmin
∆θ

∥∥∥ϕ(I′ (w(p;θ ⊞∆θ)
)
)− ϕ(I (p))

∥∥∥2, (6.7)

where ϕ(·) is a multi-dimensional feature descriptor applied to the reference and the
warped input images.

The descriptor constancy objective in Eq. (6.7) is more complicated than its brightness coun-
terpart in Eq. (6.1) as feature descriptors are high dimensional and the suitability of their
linearization remains unclear. In the sequel, we will show that various descriptors linearize
well and are suitable for direct tracking.

6.3.2 Desiderata

The usual goal of direct tracking is to maximize the precision of the estimated parameters.
The linearization required in direct tracking implicitly assumes that we are close enough to
the local minima. This fact is usually expressed by assuming small displacements between
the input images. In order to maximize precision, it is important to balance the complex-
ity of the descriptor as a function of its sampling density. Namely, descriptors with long
range spatial connections such as SIFT [234] and HOG [89], while robust to a range of

126



Chapter 6. Robust Pose Estimation with Densely Evaluated Descriptors

deformations in the image, they contribute little to tracking precision. This is due to the
increased dependencies between pixels contributing to the linear system. We will experi-
mentally validate this hypothesis in the experimental section. Hence, good descriptors for
illumination invariant tracking must be:

(1) locally limited with respect to their spatial extent, and

(2) efficient to compute, which is desired for practical reasons as the estimation process is
iterative.

Both requirements, locality and efficiency, are closely related as most local descriptors are
efficient to compute as well.

6.3.3 Pre-computing descriptors for efficiency

Descriptor constancy as stated in Eq. (6.7) requires re-computing the descriptors after every
iteration of image warping. In Chapter 5, we established that our binary descriptor (bit-
planes) performance is more accurate when the descriptors are re-computed post image
warping. When using bit-planes, however, re-computing the descriptor is computationally
cheap.

Nonetheless, re-computing descriptors is undesirable in situations where

• The descriptor requires a non-trivial computational time.

• Warping individual pixels is challenging due to their dependence on extraneous,
potentially sparse, depth information, e.g. vision-based SLAM. The difficulty arises
from the lack of a 3D model that could be used to reason about occlusions, and dis-
continuities in the image.

Due to the computational and technical limitations of re-computing the descriptor, it is
desirable to warp the feature-channels instead of re-computing them after every itera-
tion. Hence, an approximation to the descriptor constancy objective in Eq. (6.7) is to pre-
compute the descriptors and minimize the following expression instead:

min
∆θ

∑
p∈Ω

Nc∑
i=1

∥Φ′
i(w(p;θ ⊞∆θ))−Φi(p)∥2, (6.8)
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where Φi indicates the i-th coordinate of the pre-computed descriptor and Nc is the num-
ber of channels. An illustration of this concept is show in Fig. 5.6.

Although this approximation is less accurate, we found that the loss of accuracy induced
when using Eq. (6.8) instead of Eq. (6.7) insignificant in comparison to the computational
savings and simplicity of implementation.

To this end, we will consider various feature descriptors in the literature that are suitable
for high-precision illumination invariant tracking. Dense feature descriptors used in this
work are evaluated in the next section.

6.4 Densely Evaluated Descriptors

We evaluate a number of descriptors suitable for dense tracking as summarized in Table 6.1.
Below, we include a brief description of each of the descriptors. A visualization of each of
the descriptors is shown in Fig. 6.3.

• Raw intensity: this is the trivial form of a feature descriptor, which uses the raw
image intensities. We work with grayscale images, and hence it is a single channel,
Φ(I) = {I}.

• Gradient constancy: the image gradient measures the rate of change of intensity
and hence it is invariant to additive changes [61]. We found that including the raw
image intensities in the optimization with the gradient constraint to work better. The
descriptor is composed of three channels and is given by: ϕ = {I, ∇uI, ∇vI}

• Laplacian: the Laplacian is based on the 2nd order derivatives of the image and,
similar to the gradient constraint, it provides invariance to additive change, but using
only a single channel. We found that including the raw intensities to improve results.
The descriptor is given by: Φ =

{
I, |∇2I|

}
.

• Descriptor Fields (DF) [83] where the idea is to separate the image gradients into
different channels based on their sign. After that, a smoothing step is performed.
Using first-order image gradients, denoted by DF-1, is composed of four channels
and is given by: ΦDF-1(I) =

{
[∇uI]

+, [∇uI]
−, [∇vI]

+, [∇vI]
−}. The 2nd order DF,

denoted by DF-2, includes 2-nd order gradient information and is composed of 10
channels. Note, the DF approach is not a binary/octal representation.
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Figure 6.3: Visualization of the different descriptors. Best viewed on a screen. Note, the Descriptor Fields is
not binary.
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Table 6.1: Descriptors evaluated in this work.

Name Acronym channels

Raw Intensity RI 1

Gradient Constraint GC 3

Laplacian LP 2

1st order DF [83] DF-1 4

2nd order DF [83] DF-2 10

Bit-Planes [14] BP 8

Figure 6.4: Example illumination change according to Eq. (6.11).

• Bit-Planes: the descriptor we introduced in Chapter 5, where channels are constructed
by performing local pixel comparisons. When evaluated in a 3×3 neighborhood, the
descriptor results in eight channels given by: Φ(I) =

{
I(x) ≥ I(x+∆xj)

}8
i=1

, where
I(x+∆xj) indicates the image sampled at the j-th neighbor location in the neighbor-
hood.

The descriptors we evaluate here are efficient and simple to implement. A MATLAB im-
plementation of each is available in Appendix A. Hence, it is easy to integrate them into
existing image alignment systems.

6.5 Evaluation under Controlled Settings

We experiment with the different feature descriptors summarized in Table 6.1 on two di-
rect tracking problems. The first is parametric motion estimation using an Affine motion
model, which we use to illustrate performance on synthetically controlled illumination
variations. The second is a direct visual odometry approach, which is more challenging as

130



Chapter 6. Robust Pose Estimation with Densely Evaluated Descriptors

−10
−5

0
5

10

−10

−5

0

5
10

·109

Intensity

−10
−5

0
5

10

−10

−5

0

5
10

·109

Gradient Constraint

−10
−5

0
5

10

−10

−5

0

5
10

·109

Laplacian

−10
−5

0
5

10

−10

−5

0

5
10

DF-1

−10
−5

0
5

10

−10

−5

0

5
10

DF-2

−10
−5

0
5

10

−10

−5

0

5
10

·105

BitPlanes

Figure 6.5: Cost surfaces for each of the descriptors corresponding to the input pair shown in Fig. 6.4. The
correct minima located at (0, 0). Raw intensity and the gradient constraint fail to capture the correct minima.
The Laplacian correctly localizes the minima, albeit a narrow basin of convergence. Descriptors at the bottom
row correctly identify the minima with an adequate basin of convergence.
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the nonlinear warping function depends on possibly sparse depth.

6.5.1 Affine Template Alignment

Using the notation introduced in Section 6.3, we desire to estimate the parameters of mo-
tion between a dense descriptor designated as the template ΦDESC and a dense descriptor
evaluated on an input image Φ′

DESC, where DESC is one of the descriptors in Table 6.1. Un-
der affine motion θ ∈ R6, the image coordinates of the two descriptors are related via an
affine warp of the form

p′ ≡ w(p;θ) = A(θ)p, (6.9)

where A(θ) ∈ R2×3 represents a 2D affine transform. Namely,
x′

y′

1

 =

1 + θ1 θ3 θ5

θ2 1 + θ4 θ6



x

y

1

 . (6.10)

Performance under ideal conditions

While ideal imaging conditions are challenging outside of the laboratory and controlled
imaging applications (such as factory inspection), it is important to study the effect of
any form of image deformation on the system’s accuracy. Ideal conditions in this context
are understood to mean a satisfied brightness constancy without appearance variations
between the template and input images.

The question we answer in the following experiments is: How does nonlinear deformations
of the image (feature descriptors) affect estimation accuracy under ideal conditions? Especially
under the additional quantization effects caused by descriptors. The answer to question
is shown in Fig. 6.6, where all descriptors are evaluated without additional illumination
change. We added randomly generated Gaussian noise to obtain meaningful statistics.
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RI GC LP DF-1 DF-2 BP

0.2

0.4

0.6

0.8

1

1.2

·10−3

Figure 6.6: Performance of dense descriptor under ideal conditions. Except for the Laplacian, there appears to
be no significant loss of precision in comparison to working with image data directly (raw intensity values).

RI GC L DF-1 DF-2 BP
0

2

4

DF-1 DF-2 BP
0

2

4

6

8

·10−2

Figure 6.7: Accuracy under illumination change. On the left RMSE is shown for all compared descriptors.
On the right, we show only the top three for better comparison.

6.5.2 Performance under varying illumination

To generate illumination variations we synthesise the input image from the template using
a nonlinear intensity change model of the form

I′(p) = floor

(
255

(
αI(w(p;θ))) + β

255

)1+γ
)
, (6.11)

where θ is a randomly generated vector of warp parameters, α and β are respectively
multiplicative and additive terms, while |γ| < 1 adds a nonlinear gamma correction term.
An example of this type of illumination change is illustrated in Fig. 6.4.

Results are shown in Fig. 6.7 using the end-point RMSE metric [25]. A expected, we ob-
serve a large RMSE when using raw intensities. No significant improvement is obtained
using the gradient constraint. The Laplacian improves results only slightly. The top per-
forming algorithms are DF, and Bit-Planes. As we shall see later, however, Bit-Planes’ per-
formance is more robust under more challenging illumination variations.

133



6.6. Robust Planar Template Tracking
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Figure 6.8: Comparison with BRIEF using 128 channels (B-128) and 16 channels (B-16).

Table 6.2: Planar template tracking runtime until convergence in frames per second (FPS) on a single core
Intel i7-2460M @ 2.8 Ghz.

Template area

75× 57 150× 115 300× 230 640× 460

Intensity 650 360 140 45

Bit-planes 460 170 90 35

6.5.3 Nonlocal descriptors

Another natural question to ask is whether there is any benefit from using nonlocal fea-
ture descriptors in direct tracking? By nonlocal, we mean feature descriptors that make
use of nonlocal spatial information in the image, such as a making use of a large neigh-
borhood during the descriptor’s computation. Examples include SIFT [234], HOG [89],
and BRIEF [63]. As shown in Fig. 6.8, the use of nonlocal descriptor appears to hurt per-
formance rather than simpler local ones. In this experiment, we experiment with two
possibilities of extracting channels from the BREIF [63] descriptor. One, is extracting 128

channels similar to [14]. The other, is extracting only 16 channels, where each channel is
formed of a single byte. We observed similar degradation in performance using densely
evaluated SIFT, and other variations on extracting channels.

6.6 Robust Planar Template Tracking

We evaluate the performance of bit-planes for a template tracking problems using the
benchmark dataset collected by Gauglitz et al. [136]. An example of the dataset is shown in
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Fig. 6.10. Our plane tracker estimates an 8DOF homography using the IC algorithm [25].
The template is extracted from the first frame in each sequence and is kept fixed through-
out as we are interested in tracking robustness overtime. To improve convergence we use
a 3-level pyramid and initialize the tracker for subsequent frames using the most recent
estimate. We use Gauss-Newton as the optimization algorithm, without robust weighting,
and with a maximum of 100 iterations. Tracking terminates early if the relative change in
the estimated parameters drops below 1× 10−6, or the relative change in the cost function
drops below 1 × 10−5. For small motions, the tracker typically converges in less than 10

iterations using bit-planes, or raw intensities. Our implementation runs faster than real
time as shown in Table 6.2. The efficiency is achieved by utilizing SIMD instructions on
the CPU, which allow us to process 16 pixels at once (or 32 pixels with AVX instructions).
Additionally, the operations required to compute the descriptor are limited to bit shifts,
ORs and ANDs, all of which can be performed with high throughput and low latency.

We compare the performance of our algorithm against a variety of template tracking meth-
ods summarized in Table 6.3. The algorithms are: the enhanced correlation coefficient
ECC [112], which serves as an example of an intrinsically robust cost function that is in-
variant up to an affine illumination change. The Dual Inverse Compositional (DIC) algo-
rithm [36], which severs as an example of algorithms that attempt to estimate illumination
parameters. We use two variations of the DIC: (i) the gain+bias model on grayscale images
denoted by DIC-1, and (ii) using a full affine lighting model the makes use of RGB image
data denoted by DIC-2. We also compare the performance against a recently published
descriptor-based method [83] called Descriptor Fields DF. Finally, we include baseline
results from raw intensity LK, improved LK with the Gradient Constraint GC [61], and
alignment with the Gradient Magnitude GM.

We report two quantities in the evaluation. First, is the percentage of successfully tracked
frames. A frame is successfully tracked if the overlap between the estimate and the ground
truth is greater than 90%. The overlap is computed as o = (A ∩ B)/(A ∪ B), where A is
the warped image given each algorithm’s estimate, and B is the warped image given the
ground truth. Second, since we are also interested in subpixel accuracy we show the mean
percentage of overlap across all frames given by m = 1/n

∑n
i=1 oi, where n is the number

of frames in each sequence.

Results are compared for three types of geometric and photometric variations. First is an
out of plane rotation, which induces perspective change as shown in Fig. 6.10b. Second,
is dynamic lighting change where the image is stationary but illuminated with nonlin-
early varying light source. Finally, a static lighting change, where illumination change is
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6.6. Robust Planar Template Tracking

Table 6.3: Algorithms compared in this chapter. The number of parameters indicates the DOF of the state
vector, which is 8 for a homography in addition to any photometric parameters. We use the authors’ code for
ECC and DIC.

# parameters # channels

BP (ours) 8 8

ECC [112] 8 1

DIC-1 [36] 10 1

DIC-2 [36] 20 3

DF [83] 8 5

GC 8 3

GM 8 2

LK 8 1
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Figure 6.9: Fraction of successfully tracked frames as function of the overlap area given the ground truth. Bit-
planes and DF perform better than other methods. However, in Table 6.4 we see that bit-planes’ performance
is better with challenging sequences.

sudden.

Our evaluation results are shown in Table 6.4 and in Fig. 6.9. The top performing methods
are based on a descriptor constancy assumption, namely: BP and DF. However, BP is more
efficient and it performed significantly better for the out of plane rotation data. In fact, all
tested algorithms, except BP, performed poorly with this data. Algorithms that use a robust
function (ECC) and the ones that attempt to estimate illumination (DIC) performed well,
but fell behind in comparison to descriptor constancy and even the gradient constraint.
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Table 6.4: Template tracking evaluation [136]. We show the percentage of successfully tracked frames. In
parentheses we show the average percentage of overlap for all successfully tracked frames. The available
textures are: br (bricks), bu (building), mi (mission), pa (paris), su (sunset), and wd (wood).

br bu mi pa su wd

Out of Plane Rotation

BP 100.0 (99.38) 100.0 (99.51) 87.50 (99.38) 97.92 (99.26) 79.17 (99.57) 93.75 (99.30)

ECC 25.00 (96.16) 33.33 (95.85) 25.00 (95.99) 33.33 (96.65) 20.83 (95.52) 18.75 (95.14)

DIC-1 25.00 (96.20) 33.33 (95.83) 25.00 (95.98) 33.33 (96.73) 20.83 (95.95) 18.75 (95.46)

DIC-2 25.00 (96.22) 35.42 (95.56) 25.00 (95.51) 35.42 (96.42) 25.00 (96.22) 18.75 (95.06)

DF 91.67 (99.51) 93.75 (99.44) 79.17 (99.70) 85.42 (99.75) 70.83 (99.60) 83.33 (99.51)

GC 100.0 (99.24) 95.83 (99.66) 87.50 (99.52) 93.75 (99.51) 62.50 (98.88) 91.67 (99.34)

GM 62.50 (99.86) 83.33 (99.62) 77.08 (99.72) 77.08 (99.81) 58.33 (99.71) 62.50 (99.66)

LK 93.75 (99.68) 91.67 (99.70) 83.33 (99.32) 91.67 (99.63) 37.50 (97.64) 66.67 (99.63)

Dynamic Lighting Change

BP 100.0 (98.97) 100.0 (99.08) 100.0 (99.13) 100.0 (98.91) 100.0 (98.98) 100.0 (99.02)

ECC 16.33 (98.03) 19.39 (99.00) 100.0 (98.64) 100.0 (98.69) 100.0 (97.30) 67.35 (98.55)

DIC-1 100.0 (98.40) 100.0 (99.04) 100.0 (98.77) 100.0 (98.60) 86.87 (96.02) 20.41 (95.36)

DIC-2 100.0 (98.39) 100.0 (98.85) 100.0 (98.61) 100.0 (98.58) 85.86 (96.42) 26.53 (97.73)

DF 100.0 (99.30) 100.0 (99.08) 100.0 (98.35) 100.0 (98.87) 20.41 (99.36) 68.37 (99.02)

GC 17.35 (99.87) 100.0 (99.50) 22.45 (99.84) 18.37 (99.88) 12.24 (99.72) 17.35 (99.84)

GM 17.35 (98.99) 19.39 (99.23) 23.47 (99.10) 19.39 (99.08) 0.00 (0.00) 0.00 (0.00)

LK 13.27 (99.34) 31.63 (98.26) 18.37 (98.82) 18.37 (99.32) 12.24 (99.16) 16.33 (98.96)

Static lighting change

BP 100.0 (99.76) 100.0 (99.85) 100.0 (99.61) 100.0 (99.85) 100.0 (99.63) 100.0 (99.76)

ECC 100.0 (97.33) 100.0 (97.67) 100.0 (97.75) 100.0 (97.41) 100.0 (96.79) 100.0 (97.55)

DIC-1 100.0 (97.70) 100.0 (97.77) 100.0 (97.80) 100.0 (97.20) 98.72 (96.58) 89.74 (96.19)

DIC-2 100.0 (97.58) 79.49 (97.59) 100.0 (97.07) 100.0 (97.13) 89.74 (95.75) 79.49 (96.38)

DF 100.0 (99.68) 100.0 (99.51) 76.92 (99.71) 100.0 (99.77) 74.36 (99.70) 100.0 (99.83)

GC 74.36 (99.73) 74.36 (99.84) 48.72 (99.97) 74.36 (99.76) 48.72 (99.74) 51.28 (99.88)

GM 48.72 (99.88) 74.36 (99.75) 74.36 (99.66) 74.36 (99.81) 48.72 (99.76) 48.72 (99.83)

LK 48.72 (99.80) 74.36 (99.67) 48.72 (99.95) 48.72 (99.93) 48.72 (99.40) 48.72 (99.94)
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6.6. Robust Planar Template Tracking

(a) Lighting change.

(b) Out-of-plane rotation.

Figure 6.10: Tracking results using the Bricks dataset [136]. The top row of each figure shows the perfor-
mance of bit-planes, while the bottom row shows classical intensity-based LK.

(a) Sudden lighting change and ambiguous texture.

(b) Sudden lighting change and perspective distortion with medium texture.

(c) Sudden lighting change and motion blur with high texture.

Figure 6.11: High frame rate data at 120 Hz captured using an iPhone 5s. Dataset contains different
textures under sudden lighting change, low lighting, and motion blur. Data and code are available on
https://www.cs.cmu.edu/~halismai/bitplanes. Additional results demonstraing robustness to specular reflec-
tions are shown in Fig. 6.12
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Table 6.5: Template tracking running time on ARM architecture using a single CPU core in frames per
second (FPS). The bottleneck for bit-planes is image resizing and warping, which could be alleviated using
the GPU. Results are averaged over three videos of challenging data totalling 6446 frames.

iPad Air 2 iPhone 5s

template size BP ORB BRISK BP ORB BRISK

70× 55 123 N/A N/A 50 N/A N/A

150× 115 48 15 15 22 13 13

311× 230 17 12 14 10 8 11

(a) Bit-Planes.

(b) Descriptor Fields [83].

(c) Gradient Constraint

Figure 6.12: Illustration of robustness to specular reflections in comparision to other tracking algorithms
using the “book” dataset [334]. Video demonstration is available on https://goo.gl/sFoVRP
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6.6.1 Results on mobile devices

We further evaluate the work on high frame rate data (Slo-mo) using two smart mobile de-
vices: the iPad Air 2 and the iPhone 5s. In addition to compression artifacts, we made the
data more challenging by turning off the lights multiples times during acquisition to cause
sudden lighting change and low illumination. The videos are recorded with unsteady
hands causing further motion blur. An example of the videos is shown in Fig. 6.11 fea-
turing an ambiguously textured object in Fig. 6.11a, normal levels of texture in Fig. 6.11b
as well as higher amount of texture in Fig. 6.11c. The first image in Fig. 6.11 shows the
selected template, which we hold fixed throughout tracking. The total number of frames
from the videos combined is 6447.

We compare the performance of dense tracking using bit-planes with the RANSAC-based
track by detection using two types of binary descriptors, ORB [313] and BRISK [221]. In
terms of efficiency, even though our mobile device implementation does not make use of
NEON instructions or the GPU, we outperform OpenCV3’s optimized implementations of
ORB and BRISK by a substantial margin. More importantly, our approach is more robust.
Feature-based tracking failed on ≈ 15% of the frames due to either the inability to detect
features under low light, or failure due to imprecise correspondences under motion blur.

Perhaps more interestingly, bit-planes is able to maintain performance with smaller image
resolution. In fact, tracking speed more than doubles when reducing the template size by
half. However, this is not the case with sparse features as memory overhead depends on
the number of extracted keypoints, which we kept fixed at 512. It is possible to improve
the tracking speed of ORB and BRISK by reducing the number of extracted keypoints.
However, lowering the number of keypoints must be done carefully as not to compromise
the robustness of the system. We note that the ability to work with lower resolution is
important on mobile devices to lower power consumption.

Finally, we note that while dense bit-planes tracking produces faster and more accurate
results, its main limitation is the inability to recover if the template is lost due to occlusions
or significant drift. In such cases, track by detection can be of immense value to re-initialize
LK-based methods if needed.
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Figure 6.13: The absolute gradient magnitude of Bit-Planes over all channels, which we use for pixel selection.
Darker values are smaller.
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Figure 6.14: Error as function of pre-smoothing the image with a Gaussian kernel of standard deviation of
σ0 as well as smoothing the Bit-Planes with σ1. The lowest error is associated with smaller kernels.
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Figure 6.15: Number of iterations and runtime on the first 500 frames of the New Tsukuba dataset using raw
intensity only. On average, the algorithm runs at more than 100 Hz.

6.7 Robust Visual Odometry

6.7.1 Effect of smoothing

Fig. 6.14 shows the effect of smoothing the image prior to computing Bit-Planes. The exper-
iment is performed on synthetic data with a small translational shift. Higher smoothing
kernels tend to washout the image details required to estimate small motions. Hence, we
use a 3× 3 kernel with σ = 0.5.

6.7.2 Experiments with synthetic data

We use the “New Tsukuba” dataset [247, 299] to compare the performance of our algorithm
against two representative algorithms from the state-of-the-art. The first is FOVIS [176],
which we use as a representative of feature-based methods. The second is DVO [198] as
representative of direct methods using the brightness constancy assumption. The most
challenging illumination condition provided by the Tsukuba dataset is when the scene is
lit by “lamps” as shown in Fig. 6.19, which we use in our evaluation.

Our goal is this experiment is to assess the utility of our proposed descriptor in handling
the arbitrary change in illumination visible in all frames of the dataset. Hence, we initialize
all algorithms with the ground truth disparity/depth map. In this manner, any pose esti-
mation errors are caused by failures to extract and match features, or failure in minimizing
the photometric error. As shown in Fig. 6.17 and Fig. 6.18 the robustness of our approach
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Figure 6.16: Number of iterations and run time using on the first 500 frames of the New Tsukuba dataset
using the Bit-Planes descriptors. On average, the algorithm runs at 15 Hz.

far exceeds the conventional state-of-the-art. Also, as expected, feature-based methods in
this case (FOVIS) slightly outperforms direct methods (DVO) due to the challenging illu-
mination of the scene.

6.7.3 Evaluation on the KITTI benchmark

The KITTI benchmark [138] presents a challenging dataset for our algorithm, and all direct
methods in general, as the motion between consecutive frames is large. The effect of large
motions can be observed in Fig. 6.22, where the performance of our algorithm noticeably
degrades at higher vehicle speeds. This limitation could be mitigated by using a higher
camera frame rate, or providing a suitable initialization.

6.7.4 Real data from underground mines

We demonstrate the robustness of our algorithm using data collected in underground
mines. Our robot is equipped with a stereo camera with 7cm baseline that outputs grayscale
images of size 1024 × 544 and computes an estimate of disparity using a hardware imple-
mentation of SGM [168]. An example VO result along with a sample of the data is shown
in Fig. 6.23.

Due to lack of lighting in underground mines, the robot carries its own source of LED
light. However, the LEDs are insufficient to uniformly illuminate the scene due to power
constraints in the system. We have attempted to use other open source VSLAM/VO pack-
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Figure 6.17: Evaluation on the synthetic Tsukuba sequence [299] using the illumination provided by “lamps”
in comparison to other VO algorithms. The figure shows a bird’s eye view of the estimated trajectory of the
camera from each algorithm in comparison to the ground truth. The highlighted area is shown with more
details in Fig. 6.18. Example images are in Fig. 6.19.
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Figure 6.18: Estimated camera path details for each of the algorithms shown in Fig. 6.17.
.

Figure 6.19: Example images from the “lamps” sequence.
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Figure 6.20: Trajectory errors using the “lamps” sequence for (RI ), (LP ), (DF-1 ), (DF-2 ),
and (BP ). We truncated the plots for better visualization.
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Figure 6.21: Number of iterations.
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6.7. Robust Visual Odometry

Table 6.6: Summary statistics of errors per positional degree of freedom (RMSE in mm). We use the standard
right-handed coordinate convention system in vision, where the Z-axis points forward and the Y-axis points
downward.

flahslight lamps

X Y Z X Y Z

RI 14.34 8.14 20.94 1.45 1.01 2.16

GC 14.26 7.53 18.86 45.31 30.37 22.76

LP 13.24 6.59 18.16 0.54 0.26 0.46

DF-1 2.03 0.45 0.77 0.42 0.21 0.40

DF-2 2.95 0.83 1.33 2.27 1.09 4.90

BP 2.66 0.33 1.08 0.37 0.18 0.40
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Figure 6.22: Performance on the training data of the KITTI benchmark in comparison to VISO2 [137]. The
large baseline between consecutive frames presents a challenge to direct methods as can be seen by observing
the error as a function of speed. Nonetheless, rotation accuracy of our method remains high.
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Chapter 6. Robust Pose Estimation with Densely Evaluated Descriptors

(a) Long section of ≈ 400 meters of robust VO in a poorly lit underground environments.

Figure 6.23: Example result and representative images from the first mine sequence (top row) and a histogram
equalized version for visualization (bottom row).

ages [137, 176, 276], but they all fail too often due to the severely degraded illumination
conditions.

In Fig. 6.24, we show another result from a different underground environment where the
stereo 3D points are colorized by height. The large empty areas in the generated map is
due to lack of disparity estimates in large portions of the input images. Due to lack of
ground-truth we are unable to assess the accuracy of the system. But, visual inspection of
the created 3D maps indicate minimal drift, which is expected when operating in an open
loop fashion.

6.7.5 Reconstruction density

Density of the reconstructed point cloud is demonstrated in Fig. 6.25 and Fig. 6.26. Denser
output is possible by eliminating the pixel selection step at the expense of increased com-
putational time.

6.7.6 Failure cases

Most failure cases are due to a complete image washout. An example is shown in Fig. 6.27.
Theses cases occur when the robot is navigating a tight turn such that all the LED output
is constrained very closely to the camera. Addressing such cases, form vision-only data, is
a good avenue of future work.
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Figure 6.24: VO map colorized by height showing the robot transitioning between different levels in the
second mine dataset.

Figure 6.25: Reconstruction density using the Weal hall dataset Alismail et al. [11].
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Figure 6.26: Reconstruction density on a section of the KITTI dataset.

Figure 6.27: An example of a failure case where most of the image details are washed out causing complete
loss of stereo.
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6.8. Summary

6.8 Summary

In this work, we presented a VO system capable of operating in challenging environments
where the illumination of the scene is poor and non-uniform. The approach is based on
direct alignment of feature descriptors. In particular, we designed an efficient to compute
binary descriptor that is invariant to monotonic changes in intensity. By using this descrip-
tor constancy, we allow vision-only pose estimation to operate robustly in environments
that lack keypoints and lack the photometric consistency required by direct methods.

Our descriptor, Bit-Planes, is designed for efficiency. However, other descriptors could
be used instead (such ORB and/or SIFT) if computational demands are not an issue. A
comparison of performance between difference descriptors in a direct framework is an
interesting direction of future work as their amenability to linearization may differ.

The approach is simple to implement, and can be readily integrated into existing direct
VSLAM algorithms with a small additional computational overhead.

150



CHAPTER 7

Bundle Adjustment without
Correspondences
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7.1 Summary of Contributions

• We develop a novel formulation for VSLAM using a direct (photometric) approach
where photometric constancy is maximized across multiple views in a sliding win-
dow fashion.

• In contrast to previous work, we show that the joint refinement of motion and struc-
ture is feasible in a direct approach.

• The approach is evaluated on a range of outdoor datasets and is shown to outperform
state-of-the-art methods based on the minimization of the reprojection error using
bundle adjustment.
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• The results obtained in this chapter indicate the minimizing the reprojection error,
while in theory may be optimal there are sources of errors that are not addressed.
Brining back the image in the loop appears to address some of these feature localiza-
tion errors and improve on the accuracy of results.

7.2 Introduction

Photometric, or image-based, minimization is a fundamental tool in a myriad of appli-
cations such as: optical flow [352], scene flow [384], and stereo [132, 324]. Its use in
vision-based 6DOF motion estimation has recently been explored demonstrating good re-
sults [110, 198, 255, 345]. Minimizing the photometric error, however, has been limited to
frame–frame estimation (visual odometry), or as a tool for depth refinement disjoint from
the parameters of motion [285]. Consequently, in unstructured scenes, frame–frame mini-
mization of the photometric error cannot reduce the accumulated drift. When loop closure
and prior knowledge about the motion and structure are not available, one must resort to
the Gold Standard: minimizing the reprojection error using bundle adjustment.

Bundle adjustment (BA) is the problem of jointly refining the parameters of motion and
structure to improve a visual reconstruction [372]. Although BA is a versatile framework,
it has become a synonym to minimizing the reprojection error across multiple views [160,
369]. The advantages of minimizing the reprojection error are abundant and have been
discussed at length in the literature [160, 369]. In practice, however, there are sources of
systematic errors in feature localization that are hard to detect and the value of modeling
their uncertainty remains unclear [58, 195]. For example, slight inaccuracies in calibra-
tion exaggerate errors [133], sensor noise and degraded frequency content of the image
affect feature localization accuracy [101]. Even interpolation artifacts play a non-negligible
role [330]. Although minimizing the reprojection is backed by sound theoretical proper-
ties [160], its use in practice must also take into account the challenges and nuances of
precisely localizing keypoints [372].

Here, we propose a novel method that further improves upon the accuracy of minimizing
the reprojection error and, even state-of-the-art loop closure [276]. The proposed algorithm
brings back the image in the loop, and jointly refines the motion and structure parame-
ters to maximize photometric consistency across multiple views. In addition to improved
accuracy, the algorithm does not require correspondences. In fact, correspondences are
estimated automatically as a byproduct of the proposed formulation.
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Chapter 7. Bundle Adjustment without Correspondences

The ability to perform BA without the need for precise correspondences is attractive be-
cause it can enable VSLAM applications where corner extraction is unreliable [265], as well
as additional modeling capabilities that extend beyond geometric primitives [305, 315].

7.2.1 Preliminaries and Notation

The reprojection error

Given an initial estimate of the scene structure
{
ξj
}N
j=1

, the viewing parameters per camera
{θi}Mi=1, and xij the projection of the jth point onto the ith the reprojection error is given by

ϵij(xij ;θi, ξj) =
∥∥∥xij − π

(
T(θi),X(ξj)

)∥∥∥ , (7.1)

where π(·, ·) is the image projection function. The function T(·) maps the vectorial rep-
resentation of motion to a rigid body transformation matrix. Similarly, X(·) maps the
parameterization of the point to coordinates in the scene.

In this work, we assume known camera calibration parameters as is often the case in
VSLAM and parameterize the scene structure using the usual 3D Euclidean coordinates,
where X(ξ) := ξ, and

ξ
⊤
j =

(
xj yj zj

)
∈ R3. (7.2)

The pose parameters are represented using twists [277], where the rigid body pose is ob-
tained using the exponential map [174], i.e.

θ
⊤
i ∈ R6 and T(θ) := exp(θ̂) ∈ SE(3). (7.3)

Our algorithm, similar to minimizing the reprojection error using BA, does not depend on
the parameterization. Other representations for motion and structure have been studied
in the literature and could be used as well [70, 162, 405].

Geometric bundle adjustment

Given an initialization of the scene points and motion parameters, we may obtain a refined
estimate by minimizing the squared reprojection error in Eq. (7.1) across tracked features,
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i.e.

{
∆θ∗

i ,∆ξ∗j

}
= argmin

θi,ξj

M∑
i=1

N∑
j=1

1

2
δijϵ

2
ij(xij ,∆θi,∆ξj), (7.4)

where δij = 1 if the jth point is visible, or tracked, in the ith camera. We call this formulation
geometric BA.

Minimizing the reprojection error in Eq. (7.4) is a large nonlinear optimization problem.
Particular to BA is the sparsity pattern of its linearized form, which we can exploit for
both large–, and medium–scale problems [160]. A more detailed review is also available
in Section 2.8 of this document.

7.2.2 The Photometric Error

The use of photometric information in computer vision has a long and rich history dating
back to the seminal works of Lucas and Kanade [235] and Horn and Schunk [173]. The
problem is usually formulated as a pairwise alignment of two images. One is the reference
I0, while the other is the input I1. The two images are assumed to be related via a para-
metric transformation. The goal is to estimate the parameters of motion p such that the
squared intensity error is minimized

p∗ = argmin
p

∑
u∈Ω0

1

2

∥∥I0(u)− I1(w(u;p))
∥∥2 , (7.5)

where u ∈ Ω0 denotes a subset of pixel coordinates in the reference image frame, and w (·, ·)
denotes the warping function [25]. Minimizing the photometric error has recently resur-
faced as a robust solution to visual odometry (VO) from high frame rate imagery [107, 198,
345]. Notwithstanding, minimizing the photometric error has not yet been explored for
the joint optimization of the motion and structure parameters for VSLAM in unstructured
scenes.

The proposed approach fills in the gap by providing a photometric formulation for BA,
which we call BA without correspondences.
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7.3 Algorithm

BA is not limited to minimizing the reprojection error [372]. We reformulate the problem
as follows. First, we assume an initial estimate of the camera poses θi as required by
geometric BA. However, we do not require tracking information for the 3D points. Instead,
for every scene point ξj , we assign a reference frame denoted by r(j). The reference frame
is used to extract a fixed square patch denoted by ϕj ∈ RD over a neighborhood/window
denoted byN . In addition, we compute an initial visibility list indicating the frames where
the point may be in view. The visibility list for the jth point excludes the reference frame
and is denoted by:

Vj =
{
k : k ̸= r(j) and ξj is visible in frame k

}
, for k ∈ [1, . . . ,M ]. (7.6)

Given this information and the input images {Ii}Mi=1, we seek to estimate an optimal up-
date to the motion ∆θi

∗ and structure parameters ∆ξj
∗ that satisfy

{
∆θ∗

i ,∆ξ∗j

}
= argmin

∆θi,∆ξj

N∑
j=1

∑
k∈V (j)

E(ϕj , Ik;∆θk,∆ξj), (7.7)

where

E(ϕ, I′;θ, ξ) =
∑
u∈N

1

2

∥∥ϕ(u)− I′(π(θ, ξ) + u)
∥∥2. (7.8)

The notation I′(π(·, ·)+u) indicates sampling the image intensities in a neighborhood about
the current projection of the point. Since image projection results in subpixel coordinates,
the image is sampled using an appropriate interpolation scheme (bilinear in this work).
The algorithm is illustrated schematically in Fig. 7.1.

Linearization and sparsity

The optimization problem in Eq. (7.7) is nonlinear and its solution proceeds with standard
techniques. Let θ and ξ denote the current estimate of the camera and the scene point, and
let the current projected pixel coordinate in the image plane be given by

u′ = π(T(θ),X(ξ)), (7.9)
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? ?

?

Figure 7.1: Schematic of our approach. We seek to optimize the parameters of motion θi and structure ξj
such that the photometric error with respect to a fixed patch at the reference frame is minimized.

then taking the partial derivatives of the 1st-order expansion of the photometric error
in Eq. (7.8) with respect to the parameters we obtain

∂E
∂θ

=
∑
u∈N

J⊤(θ)
∣∣ϕ(u)− I′(u′ + u)− J(θ)∆θ

∣∣ (7.10)

∂E
∂ξ

=
∑
u∈N

J⊤(ξ)
∣∣ϕ(u)− I′(u′ + u)− J(ξ)∆ξ

∣∣ , (7.11)

where J(θ) = ∇I(u′ + u)∂u
′

∂θ , and J(ξ) = ∇I(u′ + u)∂u
′

∂ξ . The partial derivatives of the
projected pixel location with respect to the parameters are identical to those obtained when
minimizing the reprojection error in Eq. (7.1), and ∇I ∈ R1×2 denotes the image gradient.
By equating the partial derivatives in Eqs. (7.10) and (7.11) to zero we arrive at the normal
equations which can be solved using standard methods [289].

We note that the Jacobian involved in solving the photometric error has a higher dimen-
sionality than its counterpart in geometric BA. This is because the dimensionality of inten-
sity patches (D ≥ 3 × 3) is usually higher than the dimensionality of feature projections
(typically 2 for a monocular reconstruction problem). Nonetheless, the Hessian remains
identical to minimizing the reprojection error and the linear system remains sparse and is
efficient to decompose. The sparsity pattern of the photometric BA problem is illustrated
in Fig. 7.2.

Another important note is that since the parameters of motion and structure are refined
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jointly, the location of the patch at the reference frame ϕ(u) in Eq. (7.8) will additionally
depend on the pose parameters of the reference frame. Allowing the reference patch to
“move” during the optimization adds additional terms to the Hessian (additional terms
will appear in the motion parameters blocks of the Hessian, these are shown at left hand
corner of the Hessian in Fig. 7.2). In terms of computational complexity, the additional
runtime from allowing the reference patch to move is minimal as the algorithm is imple-
mented in a sliding window fashion. However, including inter–pose dependencies is un-
desirable as, depending on the initialization quality, the location of the reference patch
might drift. For instance, we might introduce a biased solution where the patches drift to
image regions with brighter absolute intensity values in an attempt to obtain the minimum
energy in low-texture areas.

To address this problem, we fix the patch appearance at the reference frame by storing the
patch values as soon as the reference frame is selected. This is equivalent to assuming a
known patch appearance from an independent source. Under this assumption, the opti-
mization problem now becomes: given a known and fixed patch appearance of a 3D point
in the world, refine the parameters of the structure and motion such that photometric er-
ror between the fixed patch and its projection onto the other frames is minimized. This
assumption has two advantages: (1) the Hessian sparsity pattern remains identical to the
familiar form when minimizing the reprojection error using traditional BA, and (2) we can
refine the three coordinates (or the full four projective coordinates [372]) of the scene points
as opposed to only refining depth along a fixed ray in space.

In addition to improving the accuracy of VSLAM, the algorithm does not require extensive
parameter tuning. This is now possible by allowing the algorithm to determine the correct
correspondences, hence eliminating the many steps required to ensure outlier-free corre-
spondences with traditional BA. The current implementation of the proposed algorithms
is controlled by the three parameters summarized in Table 7.1 and explained next.

The current implementation of our algorithms is controlled by three parameters summa-
rized in Table 7.1 and explained next.

Selecting pixels

While it is possible to select pixel locations at every frame using a standard feature detector,
such as Harris [158] or FAST [311], we opt to use a simpler and more efficient strategy
based on the gradient magnitude of the image. This is performed by selecting pixels with
local maxima in a 3 × 3 neighborhood of the absolute gradient magnitude of the image.
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Figure 7.2: Shown on the left is the form of the Jacobian for a photometric bundle adjustment problem
consisting of 3 cameras, 4 points, and using a 9-dimensional descriptor, with Nc = 6 parameters per camera,
and Np = 3 parameters per point. Form of the normal equations is shown on the right. The illustration is
not to scale across the two figures.

Table 7.1: Configuration parameters for our proposed algorithm shown in Algorithm 3.

Parameter Value

Patch radius 1 or 2

Non max supp. radius 1

Max distance to update Vj 2
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The rationale is that pixels with vanishing intensity gradients do not contribute to the
linear system in Eqs. (7.10) and (7.11). Hence, pixels with larger gradients are preferable
as they indicate a measure of textureness [329]. Other strategies for pixel selection could
be used [98, 256]; however, we found that the current scheme works well as it ensures an
even distribution of coordinates across the field of view of the camera [288].

In image-based (photometric) optimization there is always a distinguished reference frame
providing fixed measurements [182, 285, 344]. Selecting a single reference in photometric
VSLAM is unnecessary, and may be inadvisable. It is unnecessary as the density of re-
construction is not our main goal. It is inadvisable because we need the scene points to
serve as tie points [7] and form a strong network [372]. Given the nature of camera motion
in VSLAM selecting points from every frame ensures the strong network of connections
between the tie points. For instance, typical hand-held, and ground robots motions are
mostly forward without points leaving the field of view quickly.

Selecting new scene points at every frame using the aforementioned non maxima suppres-
sion procedure has one caveat. If we always select pixels with strong gradients between
consecutive frames, then we are likely to track previous scene points rather than finding
new ones. This is because pixels with locally maximum gradient magnitude at the con-
secutive frame are most likely images of previously selected points. Treating projections
of previously initialized scene points as new observations is problematic because it in-
troduces unwanted dependencies in the normal equations and superficially increases the
number of independent measurements in the linearized system of equations.

To address this issue, we assume that the scene and motion initialization is accurate enough
to predict the location of current scenes in the new frame. Prior to initializing new scene
points, we use the provided pose initialization to warp all previously detected scene points
that are active in the optimization sliding window onto the new frame. After that, we mark
a 3 × 3 square area at the projection location of the previous scene points as an invalid lo-
cation for selecting new points. This step is illustrated in Fig. 7.3, and is best summarized
in our pseudo code shown in Algorithm 3.

The number of selected points per frame varies depending on the image resolution and
texture information in the image. In our experiments, this number ranges between ≈
4000–10000 points per image.
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Figure 7.3: Illustration of how we avoid reinitializing the same point at a new frame. Using the pose initial-
ization of the new frame θ, we project previous scene points and reserve a 3× 3 area where new scene points
cannot be initialized.

Determining visibility

Ideally, we would like to assume that newly initialized scene points are visible in all frames
and to rely on the algorithm to reliably determine if this is the case. However, automati-
cally determining the visibility information along with structure and motion parameters
is challenging, as many scene points quickly go out of view, or become occluded. Their
inclusion in the optimization problem incurs an unnecessary computational complexity,
reduces robustness, and increases the uncertainty of the solution.

An efficient and reliable measure to detect occlusions and points that cannot be tracked
reliably is the normalized correlation. For all scene points that are close to the current
frame i, we use the pose initialization Ti to extract a 5 × 5 intensity patch. The patch is
obtained by projecting the scene points to the new frame and its visibility list is updated
if the zero-mean normalized correlation score (ZNCC) is greater than 0.8. We allow ±2
frames for a point to be considered close, i.e. |i − r(j)| ≤ 2. This procedure is similar to
determining the visibility information in multi-view stereo algorithms [132] and is best
summarized in Algorithm 3.

Optimization details

We use the Ceres optimization library [6], designed for BA problems, to optimize the ob-
jective in Eq. (7.7). We use the Levenberg-Marquardt algorithm [222, 245] to minimize a
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Algorithm 3 Summary of image processing in bundle adjustment without correspon-
dences.

1: procedure PROCESSFRAME(Ii,Ti)
2: Step 1: establish connections to the new frame
3: mask = all_valid(rows(I), cols(I))
4: for all scene points Xj in sliding window do
5: if reference frame r(j) is too far from i then
6: continue
7: x := projection of Xj onto image Ii using pose Ti

8: ϕ′ := patch at x and ϕ := reference patch for Xj

9: if zncc(ϕ, ϕ′) > threshold then
10: add frame i to visibility list Vj
11: mask(u) = invalid

12: Step 2: add new scene points
13: G := gradient magnitude of Ii
14: for all pixels u in Ii do
15: if u is a local maxima in G then
16: if location u is valid in mask then
17: initialize a new point X with reference patch at I(u)

Huber loss function instead of squared loss to improve robustness. Termination tolerances
are set to 1× 10−6, and automatic differentiation facilities are used. Image gradients used
in the linearized system in Eqs. (7.10) and (7.11) are computed using a central difference
filter given by 1

2 [−1, 0, 1]. Finally, we make explicit use of the Schur complement to obtain
a more efficient solution [402].

Since scene points do not remain in view for an extended period in most VSLAM datasets,
the photometric refinement step is performed using a sliding window of five frames [355].
The motion parameters of the first frame in the sliding window is held constant to fixate
the Gauge freedom [372]. The 3D parameters of the scene points in the first frame, however,
are included in the optimization.

7.4 Experiments

In this section, we evaluate the performance of the proposed algorithm on two commonly
used VSLAM benchmarks to facilitate comparisons with the state-of-the-art. The first is the
KITTI benchmark [138], which contains imagery from an outdoor stereo camera mounted
on a vehicle. The second is the Malaga dataset [46], which is particularly challenging for
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VSLAM because the baseline of the camera (12cm) is small relative to the scene structure.

7.4.1 The KITTI Benchmark

Initializing with geometric BA

Torr and Zisserman [369] convincingly argue that the estimation of structure and motion
should proceed by feature extraction and matching to provide a good initialization for
BA-based refinement techniques. Here, we use the output of ORB-SLAM [276], a recently
proposed state-of-the-art VSLAM algorithm, to initialize our method. ORB-SLAM not only
performs geometric BA, but also implements loop closure to improve accuracy. The algo-
rithm is currently one of the top performing algorithms on the KITTI benchmark [138].

We only use the pose initialization from ORB-SLAM. We do not make use of the refined 3D
points as they are available at selected keyframes only. This is because images in the KITTI
benchmark are collected at 10 Hz, while the vehicle speed exceeds 80 km/h in some sec-
tions. Subsequently, the views are separated by a large baseline, which violates the small
displacement assumption required for the validity of linearization in Eqs. (7.10) and (7.11).

Hence, to initialize 3D points we use the standard block matching stereo algorithm im-
plemented in OpenCV. This is a winner-takes-all brute force search strategy based on the
sum of absolute intensity differences (SAD). The algorithm is configured to search for 128
disparities using a 7× 7 aggregation window and a left–right consistency check.

The choice of initializing the algorithm with ORB-SLAM is intentional to assess the accu-
racy of the algorithm in comparison to the Gold Standard solution from traditional BA. We
note, however, that we could use LSD-SLAM [110] to obtain a VSLAM system without cor-
respondences at all. In fact, initial pose estimates could be provided by external sensors,
such as low quality GPS.

Performance of the algorithm is shown in Fig. 7.4 and not only does it outperform the
accuracy of (bundle adjusted and loop closed) ORB-SLAM, but also it outperforms other
top performing algorithms, especially in the accuracy of estimating rotations. Compared
algorithms include: ORB-SLAM [276], LSD-SLAM [107, 110], VoBA [361], and MFI [23].

We note that sources of error in our algorithm are correlated with faster vehicle speeds.
This is to be expected as the linearization of the photometric error holds only in a small
neighborhood. This could be mitigated by implementing the algorithm in scale-space [224],
or improving the initialization quality of the scene structure (either by better stereo, or bet-
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Figure 7.4: Comparison to state-of-the-art algorithms on the KITTI benchmark. Our approach performs the
best. Error in our approach correspond to segments of the data when the vehicle is driving at a high speed,
which increases the magnitude of motion between frames and affects the linearization assumptions. No loop
closure, or keyframing is performed using our algorithm. Improvement is shown qualitatively in Fig. 7.5.

ter scene points obtained from a geometric BA refinement step). Interestingly, however, the
rotation error is reduced at high speeds which can be explained by lack of large rotations.
The same behavior can be observed with LSD-SLAM’s performance as both methods rely
on the photometric error, but our rate of error reduction is higher due to the joint refine-
ment of pose and structure parameters.

Initializing with frame–frame VO

Surprisingly, and contrary to other image-based optimization schemes [95, 133], our al-
gorithm does not require an accurate initialization to be useful. Fig. 7.6 demonstrates a
significant improvement in accuracy when the algorithm is initialized using frame–frame
VO estimates with unbounded drift [15].

Interestingly, however, when starting from a poor initialization our algorithm does not at-
tain the same accuracy as when initialized using a better quality starting point as shown
in Fig. 7.4. This leads us to conclude the algorithm may be sensitive to the initialization
conditions. Importantly, however, the algorithm is able to improve upon a poor initializa-
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Figure 7.5: Magnitude of improvement starting from a poor initialization shown on the first sequence of
the KITTI benchmark. Quantitative evaluation is shown in Fig. 7.4. We used a direct (correspondence-free)
frame–frame VO method to initialize the pose parameters [15] (Chapter 6).
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Figure 7.6: Quantitative easement of accuracy improvement in using poor initialization.

−250−200−150−100−50 0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

X [m]

Z
[m

]

Sequence 05

Ground truth
VO
Refined

−180−160−140−120−100−80−60−40−20 0

−80

−60

−40

−20

0

20

40

60

80

100

120

X [m]

Z
[m

]

Sequence 07

Figure 7.7: Improvement on poor initialization shown for KITTI sequences 5 and 7.

tion as shown in Figs. 7.7 to 7.10.

Convergence characteristics and runtime

As shown in Fig. 7.11 most of the photometric error is eliminated in the first five iterations
of the minimization problem. While this is by no means a metric of quality, it is reassuring
as it indicates a well-behaved minimization procedure.

After the first five iterations, the rate of the relative reduction in error slows down. This
may be related to using linear interpolation to evaluate the photometric error, or the use
of central differences to estimates gradients. Higher order interpolation methods [378], or
more accurate image gradients [117] could have an influence on the rate of convergence
and remain to be explored.

The number of iterations and cumulative runtime per sliding window of 5 frames is shown
in Fig. 7.12. The median number of iterations is 34 with a standard deviation of ≈ 6. Statis-
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Figure 7.8: Improvement on poor initialization shown for KITTI sequence 2.
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Figure 7.9: Improvement on poor initialization shown for KITTI sequences 8 and 9.
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Figure 7.10: Improvement on poor initialization shown for KITTI sequence 10.
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frames. The thicker line shows the first bundle, which has the highest error. Most of the error is eliminated
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Figure 7.12: Histogram of the number of iterations (on the left) and runtime (on the right). The median
number of iterations is 34, with a standard deviation of 6.02. The median run time is 1.89, mean 1.98 and
standard deviation of 0.69. The runtime is reported for sliding window of five frames.
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Figure 7.13: Quality of stereo used to initialize our algorithm on the Málaga dataset. The pixels marked in
black indicate missing disparity estimates.

tics are computed on the KITTI dataset frames. The runtime is ≈ 2s per sliding window
(400ms per frame) using a laptop with a dual core processor clocked at 2.8 GHz and 8 GB
of RAM, which limits parallelism. We note that it is possible to improve the runtime of the
proposed method significantly using the CPU, or the GPU. The bottleneck of the proposed
algorithm is image interpolation (which can be done efficiently with SIMD instructions)
and the reliance on automatic differentiation (which limits any code optimization as the
code must remain simple for automatic differentiation to work).

7.4.2 The Málaga Stereo Dataset

The Málaga dataset [23] is a particularly challenging dataset for VSLAM. The dataset fea-
tures driving on city roads using a small baseline stereo camera at resolution 800 × 600.
The baseline of the stereo is 12 cm which provides little parallax for resolving distal scene
points. In addition, the camera is pointed upward toward the sky to avoid imaging the
vehicle, which limits using points on the ground plane and closer to the camera. We use
extracts, 1, 3, and 6 in our evaluation.

Our experimental setup is similar to the KITTI dataset. However, we estimate the stereo
using the SGM algorithm [168], as implemented in OpenCV. The stereo is used to estimate
16 disparities with a SAD block size of 5 × 5. The quality of stereo is low due to the
difficulty of the dataset as shown in Fig. 7.13. We did not observe a significant difference
in performance when using block matching instead of SGM.

The Malaga dataset provides GPS measurements, but they are not accurate enough for
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Figure 7.14: Our algorithm (magenta) compared with ORB-SLAM (dashed) against GPS (yellow) on ex-
tracts 3 and 6 of the Malaga dataset. For extract 3 ORB-SLAM loses the tracking during the roundabout,
where our algorithm continues without an initialization. Results for extract 6 are shown up to frame 3000
as ORB-SLAM looses tracking then. The figure best viewed in color. (Maps courtesy of Google Maps.)

Figure 7.15: Dense map from Malaga dataset extract 1.

quantitative evaluation. The GPS path, however, is sufficient to qualitatively demonstrate
precision. Results are shown in Fig. 7.14 in comparison with ORB-SLAM [276], which we
used its pose estimates to initialize our algorithm. We note that in extract 3 of the Malaga
dataset (shown on the left in Fig. 7.14), ORB-SLAM loses tracking during the turn and our
algorithm continues without initialization.

To assess the quality of pose estimates we demonstrate results on a dense reconstruction
procedure shown in Figs. 7.15 and 7.16. Using the estimated camera trajectory, we chain
the first 6m of the disparity estimates to generate a dense map. As shown in Fig. 7.15, the
quality of pose estimates appears to be good.
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Figure 7.16: Dense map from Malaga dataset extract 3.

7.5 Related Work

Geometric BA

BA has a long and rich history in computer vision, photogrammetry and robotics [372].
BA is a large geometric minimization problem with the important property that variable
interactions result in a sparse system of linear equations. This sparsity is key to enabling
large scale applications [4, 210]. Exploiting this sparsity is also key to obtaining precise
results efficiently [111, 186]. The efficiency of BA has been an important research topic
especially when handling large datasets [287, 398] and in robotics applications [189, 190,
209]. Optimality and convergence properties of BA have been studied at length [160, 161,
191] and remain of interest to date [2]. All the aforementioned research could be integrated
into our framework.

Direct multi-frame alignment

By direct alignment we mean algorithms that estimate the parameters of interest from the
image data directly and without relying on sparse features as an intermediate represen-
tation of the image [181]. The fundamental differences between direct methods (like the
one proposed herein) and the commonly used feature-based pipeline is how the correspon-
dence problem is tackled and is not related to the density of the reconstruction.

In the feature-based pipeline [369], structure and motion parameters are estimated from
known, pre-computed and fixed correspondence. In contrast, the direct pipeline to motion
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estimation does not used fixed correspondences. Instead, the correspondences are esti-
mated as a byproduct of directly estimating the parameters of interest (e.g. structure and
motion).

The use of direct algorithms for SFM applications was studied for small–scale problems [171,
243, 291, 344], but feature-based alignment has proven more successful in handling wide
baseline matching problems [369] as small pixel displacements is an integral assumption
for direct methods. Nonetheless, with the increasing availability of high frame-rate cam-
eras, video applications, and increasing computational power, direct methods are demon-
strating great promise [110, 198, 285]. For instance, direct estimation of motion from RGB-
D data was shown to be robust, precise and efficient [198, 206, 345].

To date, however, the use of direct methods in VSLAM has been limited to frame–frame
motion estimation (commonly referred to as visual odometry). Approaches that make use
of multiple frames are designed for dense depth estimation only and multi-view stereo [132,
285], which assume a correct camera pose and only refine the scene structure. Other al-
gorithms can include measurements from multiple frames, but rely on the presence of
structures with strong planarity in the environment [182, 335] (or equivalently assuming a
rotation only motion such that the motion of the camera can be represented as a homogra-
phy [233]).

In this work, in contrast to previous research in direct image-based alignment [285, 344],
we show that provided good initialization, it is possible to jointly refine the structure and
motion parameters by minimizing the photometric error and without restricting the cam-
era motion or the scene structure.1

The LSD-SLAM algorithm [110] is a well-known recently proposed direct algorithm for
vision-based motion estimation. In comparison to our work, the fundamental difference
is that we refine the parameters of motion and structure jointly in one large optimization
problem. In LSD-SLAM, the photometric error is used to estimate the motion, while scene
(inverse) depth is estimated using small baseline stereo with fixed camera fixed. The joint
optimization of motion and structure proposed herein is important in future work con-
cerning the optimality and convergence properties of photometric structure-from-motion
(SFM) and photometric, or direct, VSLAM. Our work can be regarded as an extension of
LSD-SLAM where the parameters of motion and structure are refined jointly.

1While a conference publication based on this chapter was under peer review [13], Engel et al. [108] pro-
posed a photometric VSLAM approach similar to the work presented in this chapter and our prior thesis
proposal document [9].
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Dense multi-view stereo (MVS)

MVS algorithms aim at recovering a dense depth estimate of objects or scenes using many
images with known pose [132]. To date, however, research on simultaneous refinement
of motion and depth from multiple frames remains sparse. Furukawa and Ponce [133]
were among the first to demonstrate that relying on minimizing the reprojection error is
not always accurate enough. The work demonstrates that calibration errors could have
a large impact on accuracy. Furukawa and Ponce address this problem by refining the
correspondences using photometric information and visibility information from an inter-
mediate dense reconstruction in a guided matching step. The process is then interleaved
with traditional geometric BA using the improved correspondences to obtain a better re-
construction accuracy. In our work, however, we show that interleaving the minimization
of the photometric error with the reprojection error may be unnecessary and solving the
problem directly is feasible.

Recently, Delaunoy and Pollefeys [95] proposed a photometric BA approach for dense
MVS. Starting from a precise initial reconstruction and a mesh model of the object, the
algorithm is demonstrated to enhance MVS accuracy. The imaging conditions, however,
are ideal and brightness constancy is assumed [95]. In our work, we do not require a very
precise initialization and can address challenging illumination conditions. More impor-
tantly, the formulation proposed by Delaunoy and Pollefeys requires the availability of an
accurate dense mesh, which is not possible to obtain in VSLAM scenarios. Furthermore,
initialization requirements appear to be much higher than our approach.

7.6 Summary

In this work, we show how to improve on the accuracy of the state-of-art VSLAM methods
by minimizing the photometric error across multiple views. In particular, we show that it
is possible to improve results obtained by minimizing the reprojection error in a bundle ad-
justment (BA) framework. We also show, contrary to previous image-based minimization
work [107, 110, 285, 344, 345], that the joint refinement of motion and structure is possible
in unconstrained scenes without the need for alternation or disjoint optimization.

The accuracy of minimizing the reprojection using traditional BA is limited by the preci-
sion and accuracy of feature localization and matching. In contrast, our approach — BA
without correspondences — determines the correspondences implicitly such that the pho-
tometric consistency is maximized as a function of the scene structure and camera motion
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parameters.

Finally, we show that accurate solutions to geometric problems in vision are not restricted
to geometric primitives such as corners and edges, or even planes. We look forward to
more sophisticated modeling of the geometry and photometry of the scene beyond the
intensity patches used in our work.
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CHAPTER 8

Summary and Conclusions

Current progress in geometric estimation problems is a testament to the immense research
advances in Computer Vision. Its effect on robotic applications can be readily seen in our
daily lives and is rapidly approaching the ranks of a mature technology in many appli-
cation domains. In this work, we contributed algorithms and representations aimed at
improving the robustness of geometric estimation problems in face of adverse imaging
conditions.

In Vision, there are two main paradigms for estimating geometric quantities from images.
The first is what is commonly known as the feature-based approach [369] exemplified by
minimizing the reprojection error and is commonly employed in structure-from-motion
(SFM) applications. The second is what is known as direct methods [181] exemplified
by the Lucas and Kanade algorithm [235] for iterative image alignment. The distinction
between the two paradigms is how the correspondences problem is tackled.

Feature-based approaches to motion estimation reduce the problem to a purely geomet-
ric perspective. Given a set of fixed and known feature correspondences in the image
plane, pose estimation is formulated using the geometric constraints. The approach is a
natural embodiment of the geometry underlying image formation and optics. Once these
correspondences are known, well-established tools form projective geometry in conjunc-
tion with robust estimation frameworks, such as RANSAC [123], are readily available to
address a range of pose estimation problems [119, 160].

The most challenging part of the feature-based pipeline is the abstraction of the image into
a few keypoint positions that must be matched with high precision. First, interest points
must be detected and localized with high sub-pixel accuracy. Second, the interest points
must be matched despite changes in viewpoint and appearance. The difficulty of this two-
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step approach, especially the detection step, increase measurably with degradations of the
image quality. The matching step, however, is easier to accomplish with the plethora of
distinctive local feature descriptors.

On the other hand, direct methods as exemplified by the Lucas and Kanade algorithm for
parametric image alignment [235], and the Horn and Schunk algorithm for the estimation
of the optical flow [173] were among the first techniques for geometric estimation prob-
lems in Computer Vision. In the direct approach correspondences are unknown and must
be established as a byproduct of pose estimation. As direct method can make use of high-
and low-frequency image content alike, they are generally regarded as more precise than
their sparse feature-based counterparts [181]. Nonetheless, direct methods are highly sus-
ceptible to changes in illumination and thus lose their desirable properties in face of com-
monly accruing photometric variations. Addressing the range of photometric variations
commonly encountered in robotic applications using consumer cameras is a challenging
task when assumptions about the scene and the illumination source cannot be established.

In this work, we combine the best of both feature-based and direct algorithms to improve
the robustness of vision-only pose estimation in face of adverse imaging conditions char-
acterized by poor illumination. We made use of illumination-invariant binary feature de-
scriptors in a direct alignment framework to overcome sudden and drastic changes in il-
lumination. In contrast to current techniques, the proposed method makes little to no
assumptions about the structure of the world or the type of illumination, hence providing
a nonparametric means to handling challenging appearance variations. In addition, due to
the compactness of binary descriptors, the approach is shown to work faster than real-time
when high frame-rate video data are available.

The direct approach using the binary descriptor constancy proposed in this work was
shown to work robustly and efficiently in light of sudden and drastic changes in illumi-
nation as demonstrated on region-based tracking problems, such as template tracking and
more challenging forms of pose estimation such as visual odometry. In other pose esti-
mation problems, such as vision-based simultaneous localization and mapping (VSLAM),
where not only camera pose estimates are required but also the scene structure, direct meth-
ods fall behind in comparison to the feature-based pipeline. This is because, to date, there
has been no demonstration of direct VSLAM that is able to make use of multiple-views
to reduce the accumulated drift without making assumptions about the structure of the
scene, such as planarity, or restricted to the motion of the camera to, for instance, rotation
only.

In this work, we developed a correspondence-free bundle adjustment algorithm based
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on the maximization of the photometric consistency across multiple-views. In contrast to
prior work, our formulation refines the motion and structure parameters jointly without
the need for alternation and without imposing special requirements on the scene or the
camera motion. We evaluated this novel approach on a range of outdoor stereo datasets
and showed that a photometric refinement technique can improve upon results obtained
from the state-of-the-art algorithms, even those obtained using loop closure constraints.

All in all, we demonstrated two main points in this dissertation. First, we established
the utility of dense image alignment techniques in combination with feature descriptors
for robust and efficient pose estimation in challenging environments. Second, and more
interestingly, while state-of-the-art VSLAM have matured, there are still sources of errors
left unmodeled by minimizing the reprojection error and loop closure. We hypothesized
that some sources of error could be attributed to inaccuracies in feature localization as most
commonly used feature detectors are optimized for detection and not accurate sub-pixel
localization required for accurate geometric estimation. To address these limitations we
developed a correspondence-free photometric solution capable of correcting some of these
errors by bringing back the image in the loop.

Methods for direct estimation of pose (except for optical flow estimation) have been rela-
tively understudied in comparison to the feature-based pipeline. In the next chapter, we
outline possible research directions for the future with focus on direct motion estimation
for robotic applications, such as visual odometry and VSLAM. We further discuss some
theoretical considerations pertaining to direct motion estimation which heretofore have
not been answered.
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CHAPTER 9

Future Work

The only reason for time is so that
everything does not happen at once.

Albert Einstein

While vision-only pose estimation has advanced immensely there are several avenues of fu-
ture work with emphasis on photometric, or direct, techniques which have been relatively
understudied in comparison to feature-based methods. Given the continued availability
of massively parallel hardware and the continuous development of specialized hardware
targeting computer vision applications, direct methods for pose estimation will become
more mainstream as they are trivially parallelizable and are potentially more precise as all
image areas with non-vanishing gradients could in principle be used for pose estimation.
In addition, as the community is gravitating towards deep learning and end–end pose
and correspondences estimation [122, 370, 392, 401], gradient-based alignment of feature
descriptors will become more popular [127, 226, 227, 394, 401]. Some avenues of future
research include the following:

• The use of direct methods for motion estimation has been on the rise, especially for
visual odometery. It has been demonstrated on two interesting variations to date.
The first is visual-inertial navigation [47, 294, 380]. The other is motion estimation
under rolling-shutter artifacts [200, 203, 258]. However, a fundamental problem that
has not been studied in a direct alignment framework is the effect and correction of
mis-calibration errors, especially nonlinear lens distortion. In this dissertation, we
assumed that the camera has been intrinsically calibrated with sufficient accuracy.
However, leaving calibration errors unmodeled has a higher impact on the robust-
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ness and the accuracy of direct methods in comparison to the feature-based pipeline.
If the camera calibration is known to be inaccurate, feature-based methods are in
fact superior. This sensitivity to calibration parameters, while undesirable, could be
advantageous as abruptly degraded estimation accuracy using direct methods could
indicate sudden mis-calibration errors. Direct algorithms for offline calibration have
been previously studied [20, 328, 343, 351, 381], but additional research is needed
especially if direct methods are known to be more precise.

• The most common variation of direct methods for visual odometry is Baker and
Matthews Inverse Compositional (IC) algorithm [25] due to its efficiency. However,
as image warping for visual odometry belongs to the class of 2.5D warps, the deriva-
tion of the IC is no longer equivalent to the original formulation of LK. This is because
the linearization in the 2.5D case is only valid on the 2D surface of the object and not
the 3D volume [26]. Nonetheless, the performance of the IC algorithm seems to be
on par or better than the traditional LK formulation and the ESM algorithm [206].
Deeper understanding of the reasons behind the good performance of IC in this con-
text could provide additional insights for developing more accurate algorithms.

• Direct methods for pose estimation have an additional limitation. Namely, the re-
quirement of small inter-frame pixel displacements. In this dissertation, we assumed
that large motion-induced displacements can be adequately handled in scale space.
But, this is not always the case. The issue of large motions has been previously stud-
ied in the optical flow estimation literature where feature-matching constraints were
integrated alongside intensity data terms in a variational refinement framework [60].
Pose estimation problems could benefit from a similar formulation to improve ro-
bustness and convergence for large inter-frame motions.

• In a similar vein, an emerging technique for pose estimation is to combine direct
and feature-based methods in what is sometimes called semi-direct pose estima-
tion [128, 359]. For instance, the frame–frame ego-motion of the camera could be
estimated robustly using direct methods, but since feature coordinates remain avail-
able a multi-frame refinement step is performed via minimizing the reprojection er-
ror using sparse bundle adjustment [128]. While we demonstrated that multi-frame
refinement is possible using image data only without the need for correspondences,
an interesting research direction is to make use of feature matching constraints along-
side the photometric information in a large batch nonlinear optimization problem.
In this manner, low frequency (textureless) areas of the image could still be used in
motion estimation. Most algorithms for pose estimation ignore low-texture areas in
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favor of focusing the computational effort on high-texture areas such as corners and
edges. However, in many applications most of the image is composed of those low-
texture areas. The signal contained in those low-texture areas could provide valuable
information for pose estimation, especially when integrated with high-frequency im-
age content. This area of research is only beginning to be explored for RGB-D local-
ization and mapping and demonstrating good results [88].

• In this work, we relied exclusively on feature descriptor costs as a nonparametric
means to establish illumination-invariant tracking. However, the limitation of this
approach is a narrower basin of convergence, especially when using binary descrip-
tors. Interesting research directions in this area include the integration of both inten-
sity and feature descriptors potentially using a learning-based method, or making
use of exposure information using modern machine-vision cameras to improve the
reliability of the system. For instance, the algorithms could switch to “robust-mode”
given feedback from hardware, or other algorithms that detect degradations in imag-
ing conditions.

• In terms of multi-view refinement for photometric VSLAM, we have only scratched
the surface. We relied exclusively on small image patches of fixed size. However,
other sophisticated techniques could be used to determine the size and shape of
the image region. This could be of immense value to handle foreshortening effects
due to perspective projection. Examples include adaptive windows based on im-
age content [132, 193], mid-level segmentation-based primitives such as super pix-
els [1, 76, 306], or integrating scene constraints from prior knowledge of the environ-
ment [77, 78].

• From a theoretical standpoint, direct techniques for pose estimation introduce addi-
tional challenges in comparison to their feature-based counterparts. In the feature-
based pipeline, minimizing the reprojection error yields the maximum likelihood
estimate under relatively moderate assumptions. In fact, there is evidence to sup-
port that feature reprojection errors tend to be normally distributed [368], or at the
least have zero-mean [23], especially when tracked over a long sequence thereby
bringing comfort in the fact that algorithms are optimal, at least theoretically. On
the other hand, direct techniques rely for the most part on the image gradients to
estimate motion, which are known to be highly correlated [24, 67, 314]. The fact is
further more complicated by the asymmetry present in image registration problems
where a frame is signaled out as a template [94]. Moreover, it is difficult to establish
that photometric errors are normally distributed. In fact, it has been demonstrated
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that for any motion model in the image plane other than translation, errors are het-
eroscedastic [55]. Additional research into the statistical properties of minimizing
the photometric error could be of immense value, especially for large-scale problems
involving not only the camera pose, but also the scene structure. Another interest-
ing line of research to equip direct methods with theoretical guarantees is to design
feature descriptors such that their residuals are endowed with a parametric distribu-
tion.

• Finally, in this work we have shown the feasibility of the joint motion and struc-
ture refinement without relying on geometric feature correspondences, which is use-
ful when feature correspondences cannot be established reliably. An interesting line
of future research is developing VSLAM methods that could make use of different
sources of visual information. For instance, in addition to geometric and photometric
data, VSLAM could benefit from a semantic-level understanding of the scene.
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APPENDIX A

Computer Code for Local Dense
Descriptors Used in this Work

Below, we provide a MATLAB implementation of the descriptors evaluated in Chapter 6

function d = raw_intensity(I)

d{1} = double(I);

end

fucnction d = gc(I)

d{3} = double(I);

[d{1},d{2}] = gradient(d{3});

end

function d = laplacian(I)

d{2} = double(I);

d{1} = abs(imfilter(d{2}, fspecial(‘laplacian’)));

end

function d = df1(I, ks, s)

[Ix,Iy] = gradient(double(I));

ii = Ix > 0; D{4} = ii.*Ix; D{3} = ~ii.*Ix;

ii = Iy > 0; D{2} = ii.*Iy; D{4} = ~ii.*Iy;

h = fspecial(‘gaussian’, ks, s);

for i = 1 : 4

D{i} = imfilter(D{i}, h);

end

end
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function d = df2(I, ks, s)

[G{4},G{3}] = gradient(double(I));

[G{2},G{1}] = gradient(G{1});

G{5} = gradient(G{3});

for i = 5 : -1 : 1

ii = G{i} > 0; d{2*i} = ii.*G{i}; d{2*i-1} = ~ii.*G{i};

end

end

function d = bp(I, ks, s)

C = uint32(census_transform(I));

h = fspecial(‘gaussian’, ks, s);

for i = 8 : -1 : 1

d{i} = imfilter(double(bitshift(bitand(C, 2^(i-1)), -(i-1))), h);

end

end

function D = census_transform(I)

I = imfilter(double(I), fspecial(‘gaussian’));

C = I(2:end-1,2:end-1);

D(2:end-1,2:end-1) = ...

(C >= I(1:end-2, 1:end-2)) .* 1 + (C >= I(1:end-2, 2:end-1)) .* 2 + ...

(C >= I(1:end-2, 3:end )) .* 4 + (C >= I(2:end-1, 1:end-2)) .* 8 + ...

(C >= I(2:end-1, 3:end )) .* 16 + (C >= I(3:end, 1:end-2)) .* 32 + ...

(C >= I(3:end, 2:end-1)) .* 64 + (C >= I(3:end, 3:end )) .* 128;

end
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