Discovering and Leveraging Visual Structure
for Large-scale Recognition

Abhinav Shrivastava

CMU-RI-TR-17-63

Submitted in partial fulfillment
of the requirements of the degree of
Doctor of Philosophy in Robotics

The Robotics Institute
School of Computer Science
Carnegie Mellon University

August 2017

Thesis Committee:

Abhinav Gupta, Chair
Martial Hebert
Deva Ramanan
Alexei A. Efros, University of California, Berkeley
Jitendra Malik, University of California, Berkeley

Copyright © 2017 by Abhinav Shrivastava. All rights reserved.

Abstract

Our visual world is extraordinarily varied and complex, but despite its rich-
ness, the space of visual data may not be that astronomically large. We live in a
well-structured, predictable world, where cars almost always drive on roads, sky is
always above the ground, and so on. As humans, the ability to learn this structure
from prior experiences is essential to our visual perception. In fact, we effortlessly
(and often unconsciously) employ this structure for perceiving and responding to
our surroundings; a feat that still eludes our computational systems. In this dis-
sertation, we propose to discover and harness this structure to improve large-scale
visual recognition systems.

In Part I, we present supervised recognition algorithms that can leverage these
underlying regularities in our visual world. We propose effective models for object
recognition that incorporate top-down contextual feedback and models that can
leverage geometric-structure of objects. We also develop supervised learning and
inference methods that exploit the structure offered by visual data and by a wide
range of recognition tasks.

These supervised systems, limited by our ability to collect annotations, are
confined to curated datasets. Therefore, in Part II, we propose to overcome this
limitation by automatically discovering structure in large amounts of visual data and
incorporating it as constraints in large-scale semi-supervised learning algorithms to
improve visual recognition systems.

Acknowledgments

There are many people, including advisors, collaborators, friends, and family,
who have supported and guided me throughout, and to whom I owe deep gratitude.

First and foremost, I thank my advisor, Abhinav Gupta, for always providing
me with the right balance of guidance and freedom, at the right time. I appreciate
his consistent support, the time and energy he put in, and above all his patience,
during both successes and failures. Though it is impossible to justify his impact on
my growth in a few lines without being reductive; put simply, he has been a close
friend and a fantastic advisor over the last 7 years, and for that, I am immensely
and sincerely grateful.

I’d also like to thank my Masters’ advisors, Alyosha Efros and Martial Hebert,
for taking a chance on a young and inexperienced student. They have, generously
and selflessly, continued to serve as shadow advisors during my Ph.D. I cannot
summarize all that they have done for me; but I especially thank Alyosha for giving
me my first break in the field, teaching me never to give up, always pushing me
and insisting on excellence, spending long hours late at night helping me with talks,
coining my alias ‘A2’, and introducing me to fine spirits; and Martial for teaching
me the importance of putting ideas in broader research perspective, exposing me to
hands-on real-world applications, trusting me to give demos and presentations to
senior leadership, and making sure that my scotch is without ice!

I cannot overstate the continued impact of Abhinav, Alyosha, and Martial in
shaping my research career and outlook since the day I stepped into Carnegie Mellon.
I cannot imagine my academic fate had I not been part of their labs, for which I
consider myself undeservingly fortunate.

Thank you to my thesis committee members, Deva Ramanan and Jitendra Ma-
lik, for enlightening discussions, valuable feedback, kind words of encouragement,
and flexibility throughout the entire process. I thank David Forsyth for his support,
critical insights into my work, and thoughtful suggestions. I am deeply grateful to
Rahul Sukthankar for his support and guidance all these years which have had a
remarkable influence on my career.

It was a pleasure learning from a diverse group of faculty in Smith Hall. I'd
especially like to thank Kayvon Fatahalian, Takeo Kanade, Kris Kitani, Srinivas
Narasimhan, Yaser Sheikh, and Fernando De la Torre for their time, guidance and
encouragement. Thanks to Microsoft Research and Google Research for excellent
internship opportunities; especially Rahul Sukthankar, Mark Segal, Ross Girshick,
and Larry Zitnick, for their incredible mentorship.

I owe much to the awesome atmosphere of Smith Hall and the vision and
graphics group members, for whom I have great respect and admiration. Thanks
to Aayush Bansal, Nadine Chang, Xinlei Chen, Alvaro Collet, Shreyansh Dalftry,
Carl Doersch, Santosh Divvala, Ali Farhadi, David Fouhey, Dhiraj Gandhi, Rohit
Girdhar, Ed Hsiao, Eakta Jain, Hongwen Kang, Abhijeet Khanna, Natasha Khol-
gade, Jean-Frangois Lalonde, Yong-Jae Lee, Aravindh Mahendran, Tomasz Mal-
isiewicz, Kenneth Marino, Narek Melik-Barkhudarov, Ishan Misra, Lekha Mohan,
Yair Movshovitz-Attias, Dan Munoz, Adithya Murali, Ben Newman, Devi Parikh,
Lerrel Pinto, Sentil Purushwalkam, Varun Ramakrishna, Olga Russakovsky, Scott
Satkin, Gunnar Sigurdsson, Krishna Kumar Singh, Saurabh Singh, Anish Sinha,
Ekaterina Taralova, Yuandong Tian, Jack Valmadre, Jacob Walker, Jiuguang Wang,
Xiaolong Wang, Yuxiong Wang, Andreas Wendel, Tinghui Zhou, and Jun-Yan Zhu,
for discussions, feedback, and friendship. Sincere thanks to my co-authors Ishan,
Saurabh, Aayush, Chen, Xiaolong, Tomasz, Elissa, Xinlei, and Carl for their efforts
and all those fun all-nighters. I’ve learned a lot from each of you.

Special thanks to: Jean-Frangois, Tomasz, and Alvaro for their instruction dur-
ing my early days; Derek, Jean-Francgois, and Yuandong for their advice during
fellowship and job applications; Chen, Ishan, Saurabh, and Sean for a great in-
ternship experience; Abhinav, David, Saurabh, and Ishan for making conferences
memorable; David and Ishan for helping with talks and proof-reading; Abhinav,
Bhavna, Dan, David, Dev, Dey, Ermine, Govind, Hatem, Ishan, Jack, Natasha,
Nandita, Ravi, Saloni, Saurabh, Shannon, Shaurya, Swati, Varun, Varuni, and Zeel
for some unforgettable parties. Shout-out to the coffee gang (Abhinav, David, and
Ishan) and movie knights (Jiuguang, Dey, Natasha, Saurabh) for a great time!

The Robotics Institute and CMU provides an incredibly nurturing environment
for a graduate student. Particular thanks to Rachel Burchin for being a friend
and advisor and helping navigate the immigration maze, Suzanne Lyons Muth for
keeping me on track, Lynnetta Miller, Christine Downey, and Jessica Butterbaugh
for all their help and patience, Byron Spice for helping with media outreach, SCS
Computing Facilities (especially Ed Walter and Bill Love) for maintaining the servers
and keeping up with my untimely requests and unannounced meetings.

I am also indebted to my late uncle, Abhay Shrivastava, without whose guidance
I would not have pursued a research career, and to my undergraduate mentor, Sanjay
Goel, for motivating me to pursue my passion. Thanks to all my teachers for their
kind words, encouragement, and support.

I’'ve been incredibly lucky to be surrounded by many supportive friends, who
have kept me sane during some insane times. For being my family away from home,
I’d like to thank: Ashima, Shannon, & Dey; Sambhita, Harshita, & Saurabh; Saloni
& Ishan; Skip, Swati, & Abhinav; Zeel & Ravi; Manali, Anubha, Akshat, Anurag,
& Varun Saxena. Thanks to: Saurabh and Harshita for hosting and feeding me
during my Bay Area visits; David for hosting me at Berkeley; Virag Mama for
Laphroaig 30, and much more, which made Bay Area visits particularly fun; friends
and colleagues in Bay Area (especially Varun Somani, Ridhima, Rashmi, Ashwath,
Rishabh, Amrita, Sean, and Himanshu) for always finding time for me; dear friends
elsewhere (Anubhav, Neha Kumar, Aparna, Kripi, Robin, Shalini, Adit, Ashmita,
Saurabh Aswani, Sonal, and everyone else), for always being a phone call away, no
matter for how long we haven’t talked. Thanks to everyone who has ever served me
caffeine, wine, and scotch, for this dissertation was written in between sips. Special
thanks to Ishan, Dey, Saurabh, and Anubhav for always being there.

Finally, I’d like to thank my family and extended family, without whose support
I could not have finished this thesis. I thank my parents and sister for their never-
ending love and support throughout all these years. Thank you, Mom and Dad,
for your sacrifices and encouragement which enabled me to follow my dreams. And
last, but certainly not the least, I thank my wife, Varuni, for selfless sacrifice, quiet
patience, unwavering support, and unconditional love. Thank you, Varuni, for being
my partner in crime, bearing with my erratic schedules, sticking with me through
thick and thin, and constantly motivating me to achieve more.

Thank you all for believing in me, even when I did not.

Credits. This work has been partially supported by a Microsoft Research PhD Fel-
lowship, ONR grants: N000141010766, MURI N000141612007, MURI N000141010934,
and MURI N000141612007, NSF grants 1IS-1320083 and I1S-1065336, ARL grant
CTA W911NF-10-2-0016, and gifts from Google and Bosch. We’d also like to thank
Yahoo! and NVIDIA for hardware donations. Image credits (Chapter 7): Char-
alampos Laskaris, Carol Williams, Claudio Conforti, Eddie Wong, Edson Campos,
Prof. Hall Groat II, Kathleen Brodeur, Moira Munro, Matt Wyatt, Keith Horn-
blower, Don Amadio (Scrambled Eggz Productions), The Stephen Wilthsire Gallery,
www.daydaypaint.com, The Art Renewal Center and Bundesarchiv. We thank the
Flickr users who placed their work under Creative Commons License, researchers
who collected and released datasets and made their code available online.

Vi

www.daydaypaint.com

Traveler, there is no path.
The path is made by walking.
— Antonio Machado

For my friends and family,
who offered their unconditional love and support
whatever path I took.

Vi

Contents

List of Figures
List of Tables

1 Introduction
1.1 Overview o o o

I Supervised Visual Recognition

2 Contextual Priming & Feedback

2.1 Related Work
2.2 Preliminaries: Faster R-CNN
2.3 Our Approach
2.4 Design and Ablation Analysis
25 Results. e

3 Top-Down Modulation

3.1 Related Work
3.2 Top-Down Modulation (TDM)
3.3 Approach Details
3.4 Results. e
3.5 Design and Ablation Analysis

4 Online Hard Example Mining

4.1 Related Work
4.2 Preliminaries: Fast R-CNN
4.3 Our Approach.
4.4 Design and Ablation Analysis
4.5 Results. e
4.6 Adding Bells and Whistles

xi

XV

11
13
14
16
21
25

29
31
33
36
39
45

5 Geometric-structure from Multi-modal Data 65
5.1 Related Work L Lo 66
5.2 OVErviewo 68
5.3 Technical Approach 68
5.4 Experiments. 75

6 Cross-stitch Networks for Multi-task Learning 79
6.1 Related Work Lo 82
6.2 Cross-stitch Networks L. 82
6.3 Design decisions for cross-stitching 85
6.4 Ablative analysis 86
6.5 Experiments. 89

IT Recognition Beyond Extensive Supervision 95

7 Learning Visual Similarity: Approach and Applications 97
7.1 Related Work 100
7.2 Our Approach 102
7.3 Experimental Validation on Cross-domain Matching 106
7.4 Applications of Data-driven Similarity 111

Al Improved Image Matching and its Applications 111
A2 Exploring Large, Un-ordered Visual Data 114
A3 Object Discovery and Segmentation 115

8 Structure-constrained Semi-Supervised Learning: A Case Study 125
8.1 Related Work 127
8.2 Constrained Bootstrapping Framework 129
8.3 Mathematical Formulation: Putting it together 131
8.4 Experiments. 135

9 Discovering and Employing Constraints in the Wild 141
9.1 Constraints from Weakly-supervised Web-data 142
9.2 Constraints from Sparsely-supervised Videos 153

Conclusion and Discussion 169

Bibliography 173

1.1
1.2
1.3

2.1
2.2

2.3

2.4

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

List of Figures

Qualitative results for object recognition from Chapters 2 and 3.
Qualitative result from Chapter 5.

Qualitative results from Part II.

Overview of the Faster R-CNN architecture.
(a) Overview of the ParseNet architecture; (b) Overview of the Faster R-
CNN + ParseNet multi-task architecture.
Overview of the proposed architectures with top-down feedback: (a) Con-
textual Priming via Segmentation; (b) Iterative Feedback; (c) Joint Model.

Recall-to-IoU for region proposals on multiple datasets.

Examples of small objects that are challenging for object detection.
Mlustration of the proposed Top-down Modulation (TDM) network.
Basic building blocks of the TDM network.
Detailed examples of the top-down and lateral modules.
AP improvements of the TDM network over baselines.
Qualitative results of the TDM network.

Overview of the Fast R-CNN architecture.
Overview of the proposed Online Hard Example Mining architecture. . . .

Training loss for various training procedures.

Object detection and surface normal prediction by the our G-DPM model.
Samples from the initial dictionary of elements.
Tllustration of the refinement procedure.
Samples from the dictionary after refinement.
Localization of discovered dictionary elements in surface normal space.

From 3D Parts to object hypothesis.
Learned G-DPM models. o000
Qualitative results of the proposed G-DPM model.

Xi

15

17

18
26

29
31
34
35
42
43

93
95
99

5.9

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1

Example false positives of G-DPM detector. 77
Example of multiple related tasks often available in datasets. 79
Split ConvNet architectures used for multi-task learning. 80
A Cross-stitch unit used for learning shared representation. 83
Example of cross-stitching two AlexNet networks. 84
Change in performance for attributes. 92
Change in performance for segmentation. 93
Example of cross-domain image matching. 97
Iustration of the learned visual similarity and matching results. 99
Example of image matching using the SIFT descriptor. 100
Synthetic example of learned visual similarity. 104
Example of using the proposed learned visual similarity. 106
Quantitative evaluation on predicting saliency. 107

Qualitative comparison for Sketch-to-Image and Painting-to-Image matching. 109

Qualitative results for Sketch-to-Image and Painting-to-Image matching. . 109
Qualitative comparison with Google’s ‘Search-by—-Image’. 110
Quantitative evaluation on Sketch-to-Image matching. 111
Qualitative examples of scene completion 112
Qualitative results of Internet Re-photography. 112
Qualitative examples of Painting2GPS. 113
Examples of typical failure cases. L. 113
Exploring large, un-ordered visual dataset. 114
Results of our visual sub-category discovery and segmentation algorithm. . 115
Overview of our visual sub-category discovery and segmentation algorithm. 117
Examples of initial clusters and co-segmentation. 118
Examples of the discovered visual subcategories. 121
Qualitative results of our approach. 122
Qualitative results of our approach on web images. 123
Illustration of standard ws. constrained bootsrapping. 126
Overview of the proposed constrained bootstrapping framework. 132
Qualitative comparison with baseline. 137
Quantitative evaluation on different metrics. 138
Qualitative results across iterations. L. 139
Comparing selected candidates at different iterations. 139
Quantitative comparison on different metrics. 140

Examples of visual instances and relationships discovered by our approach. 143

Xii

9.2
9.3
9.4
9.5
9.6
9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14

Overview of the proposed approach.
Example of how we handle polysemy, intra-class variation, and outliers. . .
Qualitative examples of labeled instances.
Qualitative examples of extracted relationships.
Examples of extracted relationships. oL
Overview of the proposed semi-supervised approach for learning object de-
tectors from sparsely labeled videos.o oL L.
Detailed overview of our approach.
Examples of sparsely labeled video frames.
Quantitative evaluation of the learned object detectors.
Labeled bounding boxes by different methods across iterations.
Detection performance of the labeled boxes.
Labeled bounding boxes by different methods across iterations.

Comparison of pose variation of labeled boxes.

xiii

153

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1

6.1
6.2
6.3
6.4

List of Tables

Ablation analysis of modifying ParseNet training method
Detection results on the VOC 2012 segmentation val set
Segmentation results on the VOC 2012 segmentation val set
Ablation analysis of our method on the VOC 12S val set
Detection results on the VOC 2007 detection test set
Detection results on the VOC 2012 detection test set
Segmentation results on the VOC 2012 segmentation test set
Detection results on the MS COCO 2015 test-devset

Architecture details for VGG16, ResNet101 and InceptionResNetv2
Architecture details for the proposed Top-Down Modulation network

Detection results on the MS COCO benchmark
Detection results on the MS COCO 2015 test-devset
Ablation analysis on the MS COCO benchmark
Importance of lateral modules in the proposed TDM network

Impact of Pre-training

Impact of hyperparameters on FRCN training
Computational statistics of training FRCN
Detection results on the VOC 2007 test set
Detection results on the VOC 2012 test set
Detection results on the MS COCO 2015 test-devset

Impact of multi-scale and iterative bbox regression.
Detection results on the NYUv2 dataset

Impact of initialization on the proposed cross-stitch units
Scaling learning rate of the proposed cross-stitch units
Impact of initialization on the proposed Cross-stitch Network

Visualizing the proposed cross-stitch units

XV

6.5

6.6

7.1
7.2
7.3

8.1
8.2
8.3
8.4

9.1
9.2
9.3

Surface normal prediction and semantic segmentation results on the NYU-
v2dataset oL oL

Detection and attribute prediction results on the aPascal 2008 dataset

Instance retrieval in Holidays dataset + Flickr1M.

Evaluation on the entire Internet dataset

Evaluation on the 100 images per class subset of the Internet dataset

Scene vocabulary (with shorthand notation)
Binary Class-Attribute vocabulary 0.
Comparative-Attribute vocabularyo 000

Quantitative results on large-scale semi-supervised learning

Scene classification results Lo L Lo

Object detection resultso

Comparison of detection results on a held-out, fully annotated test set

XVi

94

108
123
123

134
135
136
140

150
151
162

Chapter 1

Introduction

Problems worthy
of attack

prove their worth
by fighting back.

Piet Hein

We humans have the remarkable ability to perceive and operate in the visual
world around us. For example, recognizing our favorite cookie on a heavily cluttered
dinner table is hardly a challenge for us. However, the same task is herculean for
a robot, despite tremendous advancement in artificial intelligence over the years.
This dissertation is about bringing computational systems closer to operating in
such real-world scenarios. Our primary focus is developing computation models
and algorithms for Visual Recognition, the problem of identifying and reasoning
about concepts within an image, which is one of the key challenges in computer
vision and artificial intelligence.

Our visual world is extraordinarily varied and complex, but despite its rich-
ness, the space of visual data may not be that astronomically large. We live in a
well-structured, predictable visual world, where cars almost always drive on roads,
plates are kept on dining-tables, sky is always above the ground, televisions and
paintings usually have rectangular fronts, beds and tables have horizontal surfaces,
and so on. As humans, the ability to learn these regularities, or structure, from
prior experiences is essential to our visual perception [294]. This structure not only
acts as top-down contextual feedback in our visual system, but also facilitates rea-
soning when visual information is insufficient. In fact, we effortlessly (and often
unconsciously [294]) employ this structure for perceiving and responding to our sur-
roundings; a feat that still eludes our artificial systems. I firmly believe the better a
system s at discovering, learning, and exploiting this inherent structure, the better

1. Introduction

it will be at understanding and reacting to the visual world.

Driven by this hypothesis, this dissertation proposes to discover and harness
this structure in the visual data to enable large-scale visual recognition.

The last decade has seen tremendous advances in visual recognition algorithms.
This progress has been primarily fueled by massive efforts by researchers in the
field to collect human-annotations (in terms of labeled instances of scenes, objects,
actions, attributes etc.) for large amounts of visual data available online (images,
videos, etc.). This supervised learning paradigm is the backbone of today’s visual
recognition algorithms. Therefore, the first part of this dissertation is on:

I. Supervised Visual Recognition, where we propose computational models
and learning algorithms that enable these supervised recognition systems to
leverage the underlying regularities in our visual world. This includes:

(a) Models for object recognition; such as models that can incorpo-
rate the visual structure using top-down contextual feedback and achieve
state-of-the-art results on challenging benchmarks (Chapters 2 and 3),
and models that leverage the 3D structure and provide a geometric un-
derstanding of objects from 2D images (Chapter 5).

(b) Optimization and inference methodologies that utilize the struc-
ture in visual data; such as algorithms that can effectively leverage task-
specific problem structure (Chapter 4), underlying 3D structure of objects
(Chapter 5), shared structure between multiple tasks (Chapter 6).

The two ingredients required by these supervised learning algorithms, visual
data and human-annotations, vary greatly in their availability and cost. While visual
data is abundant and cheap (due to increasingly inexpensive sensors, computation,
and storage), human-provided labels, in comparison, are scant and expensive. For
example, annotating one of the largest vision dataset (ImageNet), which contains
~1 million images with bounding-box labels, took over 5 years (using 19 man-
years). This might seem impressive if it were not for the fact that ~350 million
new images are uploaded to Facebook daily and 300 hours of video are uploaded
to YouTube every minute. In all likelihood, manual labeling cannot possibly scale
to the ever increasing amounts of visual data. Therefore, limited by our ability to
collect annotations, current systems are confined to curated datasets.

An obvious solution is to circumvent this labeling bottleneck and do the follow-
ing: a) train supervised models using the already labeled data, b) use these models to
find similar concepts in unlabeled data and label it, and c) continue doing this until
everything is labeled. This is the classic semi-supervised learning paradigm, which

1.1 Overview

has been quite promising in several domains. However, semi-supervised approaches
are often not reliable when applied to visual data. The primary reason is that our
supervised visual models are not perfect. Hence, the notion of similarity as captured
by these visual models (i.e., deciding if two images depict visually similar informa-
tion or concept), which is a critical requirement for any semi-supervised method, is
not very reliable for visual data. This often leads to newly labeled examples straying
away from the original meaning of the concept (semantic drift).

So, the key question is: how do we reduce the reliance of our recognition systems
on carefully annotated datasets and enable them to harness the sea of unlabeled
visual data? To answer this, the second part of this dissertation focuses on:

II. Recognition beyond Extensive Supervision. We propose systems that
leverage the underlying structure in our visual data to overcome the limita-
tions highlighted above and capitalize on large-scale unlabeled visual data.
This includes learning frameworks (Chapters 7 and 8) that incorporate this
structure as constraints, and systems that discover and learn this structure
continuously from millions of images and videos (Chapter 9).

1.1 Overview

Most of the complex structures found in the
world are enormously redundant, and we can
use this redundancy to simplify their description.
But to use it, to achieve the simplification,

we must find the right representation.

Herbert A. Simon

The organization of this thesis follows the two-pronged strategy for discovering
and leveraging the regularities in our visual data. In Part I, we present supervised
recognition models and learning algorithms, with various flavors of labeled data and
target tasks. In Part II, we show how to reduce the reliance on extensive human-
provided annotations and leverage large amounts of unlabeled data to improve visual
recognition systems. We describe the problem setup for each Chapter in both Parts
and their key insights below.

Identifying and localizing objects in a scene, or Object Recognition, is at the
heart of visual perception; and representations from bottom-up, feedforward Convo-
lutional Networks (ConvNets) are the backbone of recent object recognition systems.
However, studies in human perception suggest the importance of top-down informa-
tion, context, and feedback for object recognition [154]. Drawing inspiration from
this, in Chapters 2 and 3, we propose novel ConvNet representations with top-down

1.1 Overview

Figure 1.1 — Qualitative results from Chapter 2 (top row) and Chapter 3 (bottom row).

feedback that enable recognition systems to leverage contextual structure in visual
data. These models, originally introduced in [250, 254], are one of the first to report
significant quantitative improvements on various recognition tasks by incorporating
top-down evidence.

In Chapter 2, we show how semantic segmentation outputs (per-pixel likeli-
hood of objects) can be used as a proxy for top-down information. We argue that a
segmentation output captures contextual relationships between objects (such as rel-
ative likelihood, location, and size) and use it for contextual priming and providing
feedback. Our results indicate that such top-down priming improves the perfor-
mance on object detection, semantic segmentation, and region proposal generation.
Qualitative results on semantic segmentation are shown in Figure 1.1 (top row).
Current recognition systems, including Chapter 2, rely on the high-level semantic
representations from ConvNets, which, by design, are invariant to low-level details.
These fine details are often essential to recognize many objects; e.g., finding the
‘remote’ in cluttered ‘livingroom’ in Figure 1.1 (bottom row). To address this, we
introduce top-down modulation network in Chapter 3, which utilizes top-down con-
textual structure to modulate and select low-level finer details, and integrates them
with the high-level semantic representation for object recognition. The proposed
network provides substantial gains in recognition rates for various ConvNet archi-
tectures, yielding state-of-the-art results on the challenging COCO object detection
dataset (Qualitative detection results are shown in Figure 1.1 (bottom row)).

The object detection frameworks discussed in Chapters 2 and 3 are trained
using techniques developed for object classification, where the goal is to identify the
presence of objects in an image, and not localize them. To adapt these techniques
for localization, several heuristics and hyperparameters are used which are sub-
optimal and costly to tune. These heuristics are primarily used to address the issue
that detection datasets contain an overwhelming number of easy examples and a
small number of hard examples. Instead of using costly heuristics, in Chapter 4, we

1.1 Overview

Input Image G-DPM Detection Predicted Geometry

Figure 1.2 — Qualitative result from Chapter 5.

present a simple and intuitive online hard example mining algorithm that leverages
the detection-specific problem structure when training ConvNet-based models in
a principled way and enables automatic selection of these hard examples. This
not only simplifies the training procedure, but also makes it more effective and
efficient. More importantly, it yields consistent and significant boosts in detection
performance on benchmarks like PASCAL VOC 2007, 2012 and MS COCO. This
work, originally introduced in [253], is being used by the community for training
state-of-the-art systems for object detection, semantic and instance segmentation.

Next, we look at how we can use the underlying geometry of objects to impose
structure while training detection models in Chapter 5. The standard output of
object recognition systems discussed so far is either a box around the localized object
(detection) or per-pixel labels (segmentation). Though critical building blocks, these
outputs offer a rather shallow understanding of the recognized object. In Chapter 5,
we propose a system to infer 3D properties of objects from 2D images. Our model
first automatically discovers the geometric structure of an object and its parts using
multi-model input (images + depth). During training, we enforce that the model
follows this geometric structure. The model is trained only for 2D images, and
depth is only used to provide geometric constraints. Therefore, during inference, the
model only needs images (and no depth). These geometry-constrained deformable
part-based models (G-DPM), originally introduced in [249], provide state-of-the-art
performance on the NYUv2 dataset (Figure 1.2).

In Chapter 5, we proposed a model to better utilize images and depth data
during training. Next, we look at a more generic setup of multi-task learning,
where we jointly utilize multiple supervisory labels for training recognition models
(e.g., labels for scenes, objects, attributes, depth, etc.). ConvNets trained using
multi-task learning have been widely successful in the field of recognition, primarily
because having multiple tasks forces the model to learn shared representation suit-
able for both tasks. However, existing multi-task approaches rely on enumerating
multiple ConvNet architectures, which are specific to the tasks at hand and do not
generalize. In Chapter 6, we propose a principled approach to learn such shared
representation, which automatically discovers optimal combination of shared and

1.1 Overview

task-specific representations via “cross-stitch” units. Our method generalizes across
multiple tasks and shows dramatically improved performance for categories with
few training examples. This work, originally presented in [193], highlights the im-
portance of leveraging structure between tasks for learning shared representations.

So far, in Part I, we have seen how to improve supervised recognition models by
leveraging the structure in visual data. In Part II, we present methods for discovering
this structure automatically from large-amounts of visual data, and leveraging it to
improve recognition algorithms. Towards this, we develop systems that utilize data
with varying granularity of labeling, such as weak and noisy labels (Chapter 9),
sparse and partial labels (Chapters 8 and 9), or no labels at all (Chapter 7).

In Chapter 7, we start with the simplest setting, where we are given only a single
labeled instance of a concept, without any explicit negatives (or images without any
concepts labeled), and the goal is to learn a good visual similarity metric. A critical
component of finding recurring patterns in ‘big visual data’ is matching images, or
parts thereof, with each other. However, this is surprisingly challenging because the
notion of similarity, required for matching, is ill-defined. We present a simple visual
similarity metric based on notion of “data-driven uniqueness,” which estimates the
relative importance of different features of an image based on what best distinguishes
it from the statistical structure of millions of images. This visual similarity shows
good performance on a number difficult cross-domain visual tasks, e.g., matching
paintings or sketches to real photographs.

In Section 7.4, we briefly discuss applications of this improved visual similarity,
such as Internet Re-photography and Painting2GPS in Section A1, organization and
exploration of unordered large-scale visual data in Section A2, and finally discovering
object instances and their segmentation masks from weakly-supervised and noisy
web data in Section A3. These works were originally presented in [42, 186, 251].

Finally, in Chapters 8 and 9, we tackle the problem of effectively utilizing large
amounts of unlabeled data along with a small amount of labeled data, i.e., the
semi-supervised learning (SSL) paradigm. We present recognition algorithms that
discover the visual structure from labeled data and use it as constraints in an SSL
framework, to capitalize on large amounts of unlabeled visual data. These works
were originally presented in [41, 192, 252].

In Chapter 8, we begin with a case study of a proof-of-concept system, where
we study how to incorporate different types of constraints, and their importance, in
an SSL framework. We start with a small list of scene categories and manually pro-
vide annotated instances and associated constraints. The constraints are provided
in the form of attribute and comparative attribute labels for the scenes. To incor-

1.1 Overview

(b)

is-part-of ‘Baby’ ‘Antler’ is-part-of ‘Antelope’
N —

Figure 1.3 — Qualitative results from Part Il. (a) Image retrieval results using similarity metric (Chap-
ter 7); (b) Painting2GPS (Chapter 7 Section Al); (c) Learned object recognition priors from weakly-
supervised and noisy web data (Chapter 7 Section A3); (d) Learned visual relationships (Chapter 9).

porate these constraints, we propose a mathematical framework ‘constrained-SSL,’
which can train good recognition models even when starting from just two labeled
instances; while the standard SSL approaches suffer severe semantic drift. This
work, presented in [252], was one of the first to reliably utilize SSL for large-scale
recognition (with an unlabeled dataset of millions of images).

In Chapter 9, we propose to apply the ideas from this case study to real world
scenarios. In Section 9.1, we propose a system that can learn these constraints from
weakly-supervised, noisy web-data. We extend the list of concepts to scenes, objects
and attributes, and type of constraints to scene-object, object-object, scene-attribute
and object-attribute relationships. We show that these automatically discovered
relationships are good for constrained SSL. We only provided relevant details in
Section 9.1, other details can be found in [41]. In Section 9.2, we demonstrate
how constraints can be discovered and harnessed in large-scale videos, where only
a handful of frames are sparsely labeled with concepts. The proposed technique
handles detection of multiple objects without assuming exhaustive labeling of object
instances on any input frame; and starting with a handful of labeled examples, it
can label hundreds of thousands of new examples. The models trained with these
discovered examples result in much better recognition rates, across multiple video
datasets. Again, we only provided relevant details in Section 9.2, other details can
be found in [192].

Finally, we summarize the contributions of this thesis, include a discussion on
future directions it enables, and put this dissertation in the broader context of the
fast-paced field of Visual Recognition.

Part 1

Supervised Visual Recognition

Chapter 2

Contextual Priming & Feedback

The situation has provided a cue; this cue has given
the expert access to information stored in memory,
and the information provides the answer. Intuition
is nothing more and nothing less than recognition.

Herbert A. Simon

The field of object recognition has changed drastically over the past few years.
We have moved from manually designed features [54, 79] to learned ConvNet fea-
tures [96, 119, 155, 258]; from the original sliding window approaches [79, 292] to
region proposals [95, 96, 103, 223, 298]; and from pipeline based frameworks such as
Region-based CNN (R-CNN) [96] to more end-to-end learning frameworks such as
Fast [95] and Faster R-CNN [223]. The performance has continued to soar higher,
and things have never looked better. There seems to be a growing consensus — pow-
erful representations learned by ConvNets are well suited for this task, and designing
and learning deeper networks lead to better performance.

Most recent gains in the field have come from bottom-up, feedforward frame-
work of ConvNets. On the other hand, in the case of human visual system, the
number of feedback connections significantly outnumber the feedforward connec-
tions. In fact, many behavioral studies have shown the importance of context and
top-down information for the task of object detection. This raises a few important
questions — Are we on the right path as we try to develop deeper and deeper, but
only feedforward networks? Is there a way we can bridge the gap between empirical
results and theory, when it comes to incorporating top-down information, feedback
and/or contextual reasoning in object detection?

This Chapter investigates how we can break the feedforward mold in current
detection pipelines and incorporate context, feedback and top-down information.

11

2. Contextual Priming & Feedback

Current detection frameworks have two components: the first component generates
region proposals and the second classifies them as an object category or background.
These region proposals seem to be beneficial because (a) they reduce the search
space; and (b) they reduce false positives by focusing the ‘attention’ in right areas.
In fact, this is in line with the psychological experiments that support the idea of
priming (although note that while region proposals mostly use bottom-up segmen-
tation [7, 103], top-down context provides the priming in humans [190, 287, 304]).
So, as a first attempt, we propose to use top-down information in generating region
proposals. Specifically, we add segmentation as a complementary task and use it to
provide top-down information to guide region proposal generation and object detec-
tion. The intuition is that semantic segmentation captures contextual relationships
between objects (e.g., support, likelihood, size etc. [19]), and can guide the region
proposal module to focus attention in the right areas and learn detectors from them.

But contextual priming using top-down attention mechanism is only part of the
story. In case of humans, the top-down information provides feedback to the whole
visual pathway (as early as V1 [130, 154]). Therefore, we further explore providing
top-down feedback to the entire network in order to modulate feature extraction
in all layers. This is accomplished by providing the semantic segmentation output
as input to different parts of the network and training another stage of our model.
The hypothesis is that equipping the network with this top-down semantic feedback
would guide the visual attention of feature extractors to the regions relevant for the
task at hand.

To summarize, we propose to revisit the architecture of a current state-of-the-
art detector (Faster R-CNN [223]) to incorporate top-down information, feedback
and contextual information. Our new architecture includes:

o Semantic Segmentation Network: We augment Faster R-CNN with a
semantic segmentation network. We believe this segmentation can be used to
provide top-down feedback to Faster R-CNN (as discussed below).

e Contextual Priming via Semantic Segmentation: In Faster R-CNN,
both region proposal and object detection modules are feedforward. We pro-
pose to use semantic segmentation to provide top-down feedback to these
modules. This is analogous to contextual priming; in this case top-down se-
mantic feedback helps propose better regions and learn better detectors.

e Iterative Top-Down Feedback: We also propose to use semantic segmen-
tation to provide top-down feedback to low-level filters, so that they become
better suited for the detection problem. In particular, we use segmentation as
an additional input to lower layers of a second round of Faster R-CNN.

12

2.1 Related Work

2.1 Related Work

Object detection was once dominated by the sliding window search paradigm [79,
292]. Soon after the resurgence of ConvNets for image classification [58, 155, 167],
there were attempts at using this sliding window machinery with ConvNets [71, 243,
270]; but a key limitation was the computational complexity of brute-force search.

As a consequence, there was major paradigm shift in detection which com-
pletely bypassed the exhaustive search in favor of region-based methods and object
proposals [4, 4, 7, 32, 69, 103, 288, 329]. By reducing the search space, it al-
lowed us to use sophisticated (both manually designed [48, 83, 298] and learned
ConvNet [16, 96, 115, 116, 120, 180, 223]) features. Moreover, this also helped fo-
cus the attention of detectors to regions well supported by perceptual structures in
the image. However, recently, Faster R-CNN [223] showed that even these region
proposals can be generated by using ConvNet features. It removed segmentation
from proposal pipeline by training a small network on top of ConvNet features that
proposes a few object candidates. This raises an important question: Do ConvNet
features already capture the structure that was earlier given by segmentation or
does segmentation provide complementary information?

To answer this, we study the impact of using semantic segmentation in the
region proposal and object detection modules of Faster R-CNN [223]. In fact, there
has been a lot of interest in using segmentation in tandem with detection [42, 48,
64, 83]; e.g., Fidler et al. [83] proposed to use segmentation proposals as additional
features for DPM detection hypothesis. In contrast, we propose to use semantic
segmentation to guide/prime the region proposal generation itself. There is ample
evidence of the importance of similar top-down contextual priming in the human
visual system [57, 190], and its utility in reducing areas to focus our attention on
for recognizing objects [287, 304].

This prevalence and success of region proposals is only part of the story. An-
other key ingredient is the powerful ConvNet features [119, 155, 258]. ConvNets
are multi-layered hierarchical feature extractors, inspired by visual pathways in hu-
mans [78, 154]. But so far, our focus has been on designing deeper [119, 258]
feedforward architectures, even when there is a broad agreement on the importance
of feedback connections [47, 94, 130] and limitations of purely feedforward recogni-
tion [161, 307] in human visual systems. Inspired by this, we investigate how can
we start incorporating top-down feedback in our current object detection architec-
tures. There have been attempts earlier at exploiting feedback mechanisms; some
well known examples are auto-context [286] and inference machines [228]. These
iteratively use predictions from a previous iteration to provide contextual features

13

2.2 Preliminaries: Faster R-CNN

to the next round of processing; however they do not trivially extend to ConvNet
architectures. Closest to our goal are the contemporary works on using feedback to
learn selective attention [194, 265] and using top-down iterative feedback to improve
at a task at hand [33, 89, 170]. In this work, we additionally explore using top-down
feedback from one task to another.

The discussion on using global top-down feedback to contextually prime object
recognition is incomplete without relating it to ‘context’ in general, which has a
long history in cognitive neuroscience [19, 124, 127, 190, 203, 204, 287, 304] and
computer vision [59, 88, 197, 219, 280, 281, 282, 314]. It is widely accepted that
human visual inference of objects is heavily influenced by ‘context’, be it contextual
relationships [19, 124], priming for focusing attention [190, 287, 304] or importance
of scene context [57, 127, 203, 204]. These ideas have inspired lot of computer
vision research (see [59, 88] for survey). However, these approaches seldom lead to
strong empirical gains. Moreover, they are mostly confined to weaker visual features
(e.g., [54]) and have not been explored much in ConvNet-based object detectors.

For region-based ConvNet object detectors, simple contextual features are slowly
becoming popular; e.g., computing local context features by expanding the re-
gion [93, 195, 196, 328], using other objects (e.g., people) as context [110] and using
other regions [98]. In comparison, the use of context has been much more popular
for semantic segmentation. F.g., CRFs are commonly used to incorporate context
and post-process segmentation outputs [39, 241, 323] or to jointly reason about re-
gions, segmentation and detection [158, 328]. More recently, RNNs have also been
employed to either integrate intuitions from CRFs [174, 212, 323] in end-to-end
learning systems or to capture context outside the region [16]. But empirically, at
least for detection, such uses of context have mostly given feeble gains.

2.2 Preliminaries: Faster R-CNN

We first describe the two core modules of the Faster R-CNN [223] framework (Fig-
ure 2.1). The first module takes an image as input and proposes rectangular regions
of interest (Rols). The second module is the Fast R-CNN [95] (FRCN) detector that
classifies these proposed regions. In this Chapter, both modules use the VGG16 [258]
network, which has 13 convolutional (conv) and 2 fully connected (fc) layers. Both
modules share all conv layers and branch out at convs_3. Given an arbitrary sized
image, the last conv feature map (conv5_3) is used as input to both the modules
as described below.

Region Proposal Network (RPN). The region proposal module (Figure 2.1(left)
in green) is a small fully convolutional network that operates on the last feature

14

2.2 Preliminaries: Faster R-CNN

Faster R-CNN Module

‘ Rol Proposal Network (RPN) ’ Rol Classification & Regression Network ‘

fg-bg Bbox
Classification ~ Regression

Rol
Sampler

k Anchors —— 2k Scores 4k Coordinates

.

A
e
>+

1-convs_3)

=3
Convolutional Filters
convl_1 - convd_3

Figure 2.1 — Faster R-CNN. (left) Overview of Region Proposal Network (RPN) and Rol classification
and box regression. (right) Shorthand diagram of Faster R-CNN.

map and outputs a set of rectangular object proposals, each with a score. RPN is
composed of a conv layer and 2 sibling fc layers. The conv layer operates on the
input feature map to produce a D-dim. output at every spatial location; which is then
fed to two fc layers — classification (cls) and box-regression (breg). At each spatial
location, RPN considers k candidate boxes (anchors) and learns to classify them as
either foreground or background based on their IOU overlap with the ground-truth
boxes. For foreground boxes, breg layer learns to regress to the closest ground-
truth box. A typical setting is D =512 and k =9 (3 scales, 3 aspect-ratios) (details
in [223] for details).

Using RPN regions in FRCN. For training the Fast R-CNN (FRCN) module,
a mini-batch is constructed using the regions from RPN. Each region in the mini-
batch is projected onto the last conv feature map and a fixed-length feature vector
is extracted using Rol-pooling [95, 120]. Each feature is then fed to two fc layers,
which finally give two outputs: (1) a probability distribution over object classes and
background; and (2) regressed coordinates for box re-localization. An illustration is
shown in Figure 2.1(left) in blue.

Training Faster R-CNN. Both RPN and FRCN modules of Faster R-CNN are
trained by minimizing the multi-task loss (for classification and box-regression)
from [95, 223] using mini-batch SGD. To construct a mini-batch for RPN, 256 an-
chors are randomly sampled with 1 : 1 foreground to background ratio; and for
FRCN, 128 proposals are sampled with 1 : 3 ratio. We train both modules jointly
using the ‘approximate joint training’. For more details, refer to [95, 96, 223, 253].

Given an image during training, a forward pass through all the conv layers
produces conv5_3 feature map. RPN operates on this feature to propose two sets
of regions, one each for training RPN and FRCN. Independent forward-backward

15

2.3 Our Approach

passes are computed for RPN and FRCN using their region sets, gradients are
accumulated at convb5_3 and back-propagated through the conv layers.

Why Faster R-CINN? Apart from being the current state-of-the-art object de-
tector, Faster R-CNN is also the first framework that learns where to guide the
‘attention’ of an object detector along with the detector itself. This end-to-end
learning of proposal generation and object detection provides a principled testbed
for studying the proposed top-down contextual feedback mechanisms.

In the following Sections, we first describe how we add a segmentation module
to Faster R-CNN (Section 2.3.1) and then present how we use segmentation for
top-down contextual priming (Section 2.3.2) and iterative feedback (Section 2.3.3).

2.3 Our Approach

We propose to use semantic segmentation as a top-down feedback to the RPN and
FRCN modules in Faster R-CNN, and iteratively to the entire network. We argue
that a raw segmentation output is a compact signal that captures the desired contex-
tual information, such as relationships between objects, along with global structures
in the image; and hence is a good representation for top-down feedback.

2.3.1 Augmenting Faster R-CNN with Segmentation

The first step is to augment Faster R-CNN framework with an additional seg-
mentation module. This module should ideally: 1) be fast, so that we do not give
up the speed advantages of [95, 223]; 2) closely follow the network used by Faster
R-CNN (VGGI16 in this Chapter), for easy integration; and 3) use minimal (prefer-
ably no) post-processing, so that we can train it jointly with Faster R-CNN. Out
of several possible architectures [12, 39, 178, 180, 323|, we choose the ParseNet
architecture [178] because of the simplicity.

ParseNet [178] is a fully convolutional network [180] for segmentation. It is
fast because it uses filter rarefication technique (a-trous algorithm) from [39]. Its
architecture is similar to VGG16. Moreover, it uses no post-processing; and instead
adds an average pooling layer to incorporate global context; which is shown to have
similar benefits to using CRFs [39, 174].

Architecture details. An overview is shown in Figure 2.2(a). The key difference
from standard VGG16 is that the pooling after conv4_3 (pool4se) does no down-
sampling, as opposed to the standard pool4 which down-samples by a factor of 2.
After the convb block, it has two 1x1 conv layers with 1024 channels applied with
a filter stride [39, 178|. Finally, it has a global average pooling step which given

16

2.3 Our Approach

Unpool
Prediction

Rol Cls
& BReg
L2nor RPN
2nomm s
) De-conv & Output Module [
avg-feT,, | : DD
’ 7 vom [T I
Global =
- Average ¢
Conv Filters Pooling] ! 6 convs
convl_1-convd_3 . block
AP
U \]
Pool% 1 ﬁl‘hm
/1 - Pool4, /2
. "
11/ Prediction -
convs,, [, k7., L2norm % convl_1 - conv4d 3 |
block
(a) ParseNet Segmentation Framework (b) Faster R-CNN with Segmentation

Figure 2.2 — (a) Overview of ParseNet. (b) Shorthand diagram of our multi-task setup (Faster R-CNN
+ Segmentation). Refer to Section 2.3.1 and 2.4.2 for details.

the feature map of after any layer (Hx W xD) computes its spatial average (1x1xD)
and ‘unpools’ the features. Both source and its average feature maps are normalized
and used to predict per-pixel labels. These outputs are then fused and a 8 x deconv
layer is used to produce the final output.

Faster R-CNN with Segmentation — A Multi-task setup

In the joint network (Figure 2.2(b)), both the Faster R-CNN modules and the
segmentation module share the first 10 conv layers (convl_1 - conv4_3) and differ
pool4 onwards. For the segmentation module, we branch out poolé4ge, layer with
stride of 1 and add the remaining ParseNet layers (conv5_1 to deconv)(Figure 2.2).
The final architecture is a multi-task setup [193], which produces both semantic
segmentation and object detection outputs simultaneously.

Training details. Now that we have a joint architecture, we can train segmenta-
tion, RPN and detection modules by minimizing a multi-task loss. However, there
are some key issues: 1) Faster R-CNN can operate on an arbitrary sized input im-
age, whereas ParseNet requires a fixed 500x500 image. In this joint framework, our
segmentation module is adapted to handle arbitrary sized images; 2) Faster R-CNN
and ParseNet are trained using very different set of hyperparameters (e.g., learning
rate schedule, batch-size etc.); and neither set of parameters is optimal for the other.
So for joint training, we modify the hyperparameters of segmentation module and
shared layers. Details on these design decisions and analysis of their impact will be
presented in Section 2.4.2.

This Faster R-CNN + Segmentation framework serves as the base model on top
of which we add top-down contextual feedback. We will also use this multi-task
model as our primary baseline (Base-MT) as it is trained using both segmentation

17

2.3 Our Approach

Stage 1 Stage 2

Segmentation

Segmentation Rol Cls. & BReg. vy
. Pools
fc6 o o

R DD = R T e I R v
{ Segmentation
L= D Segmentation Module
Segmentation Seg. Pools| Module

Module
SO convgiock convi Flock
conv1 block convl_1 - convd_3

(a) Contextual Priming Model (b) Iterative Feedback Model
Stage 1 Stage 2

Rol Cls Feedback Connections

& BReg

i

{ Rol Cls
3 e f| RPN & BReg

= Module
Segmentation

Segmentation O\ DD
Module 0] ¢ Module
:]
convl_1- convd_3 N

-~ convl_1 - convd_3

(c) Joint Model: Contextual Priming and Iterative Feedback

Filter dimensions
different from VGG16

L2 normalize and
adaptive max-pool

Append inputs in
depth,/channel dim.

Figure 2.3 — Overview of the proposed models. (a) Contextual Priming via Segmentation (Sec-
tion 2.3.2) uses segmentation as top-down feedback signal to guide the RPN and FRCN modules of
Faster R-CNN. (b) Iterative Feedback (Section 2.3.3) is a 2-unit model, where the Stage-1 provides
top-down feedback for Stage-2 filters. (c) Joint Model (Section 2.3.4) uses (a) as the base unit in (b).

and detection labels but does not have contextual feedback.

2.3.2 Contextual Priming via Segmentation

We propose to use semantic segmentation as top-down feedback to the region
proposal and object detection modules of our base model. We argue that segmen-
tation captures contextual information which will ‘prime’ the region proposal and
object detection modules to propose better regions and learn better detectors.

In our base multi-task model, the Faster R-CNN modules operate on the conv
feature map from the shared network. To contextually prime these modules, their
input is modified to be a combination of aforementioned conv features and the seg-
mentation output. Both modules can now learn to guide their operations based on
the semantic segmentation of an image — it can learn to ignore background regions,
find smaller objects or find large occluded objects (e.g., tables) etc. Specifically,
we take the raw segmentation output and append it to the conv4_3 feature. The
convb block of filters operate on this new input (‘seg+conv4_3’) and their output is
input to the individual Faster R-CNN modules. Hence, a top-down feedback signal
from segmentation ‘primes’ both Faster R-CNN modules. However, because of the
Rol-pooling operation, the detection module only sees the segmentation signal local
to a particular region. To provide a global context to each region, we also append
segmentation to the fixed-length feature vector (‘seg+pool5’) before feeding it to

18

2.3 Our Approach

fc6. Overview in Figure 2.3(a).

This entire system (three modules with connections between them) is trained
jointly. After a forward pass through the shared conv layers and the segmentation
module, their outputs are used as input to both Faster R-CNN modules. A forward-
backward pass is performed for both RPN and FRCN. Next, the segmentation
module does a backward pass using the gradients from its loss and from the other
modules. Finally, gradients are accumulated at conv4_3 from all three modules and
backward pass is performed for the shared conv layers.

Architecture details. Given an (Hy X Wy x 3) input, the conv4_3 produces a
(He X We x 512) feature map, where (H¢, W) =~ (Hy/8,Wr/8). Using this feature map,
the segmentation module produces a (Hr X Wy x (K+ 1)) output, which is a pixel-
wise probability distribution over K + 1 classes. We ignore the background class
and only use (Hr x Wi x K) output, which we refer to as S. Now, S needs to be
combined with conv4_3 feature for the Faster R-CNN modules and each region’s
(7 X 7 x K)-dim. poolb feature map for FRCN, but there are 2 issues: 1) spatial
dimensions of S does not match either, and 2) feature values from different layers
are at drastically different scales [178]. To deal with the spatial dimension mis-
match, we utilize the Rol/spatial-pooling layer from [95, 120]: We maxpool S using
an adaptive grid to produce two outputs S. and Sy, which have the same spatial
dimensions as conv4_3 and poolb respectively. Now, we normalize and scale S to
Scy and Sp to Spy, such that their L2-norm [178] is of the same scale as the per-
channel L2-norm of their corresponding features (conv4_3 and pool5 respectively).
Now, we append Scy to conv4_3 and the resulting (He x We x (512 4 K)) feature is
the input for Faster R-CNN. Finally, we append Spy with each region’s pool5 and
the resulting (7 x 7 x (512 4 K)) feature is the input for £c6 of FRCN. This network
architecture is trained from a VGG16 initialized base model; and the additional K
channels in conv5_3 and fc6 are initialized randomly using [100, 258]. Refer to
Figure 2.3(a) for an overview.

2.3.3 lterative Feedback via Segmentation

The architecture proposed in the previous Section provides top-down semantic
feedback and modulates only the Faster R-CNN module. We also propose to provide
top-down information to the whole network, especially the shared conv layers, to
modulate low-level filters. The hypothesis is that this feedback will help the earlier
conv layers to focus on areas likely to have objects. We again build from the Base-
MT model (Section 2.3.1).

This top-down feedback is iterative in nature and will pass from one instanti-

19

2.3 Our Approach

ation of our base model to another. To provide this top-down feedback, we take
the raw segmentation output of our base model (Stage-1) and append it to the in-
put of the conv layer to be modulated in the second model instance (Stage-2) (see
Figure 2.3(b)). E.g., to modulate the first conv layer of Stage-2, we append the
Stage-1 segmentation signal to the input image, and use this combination as the
new input to convl_1. This feedback mechanism is trained stage-wise: the Stage-1
model (Base-MT) is trained first; and then it is frozen and only the Stage-2 model
is trained. This iterative feedback is similar to [33, 170]; the key difference being
that they only focus on iteratively improving the same task, whereas in this work,
we also use feedback from one task to improve another.

Architecture details. Given the pixel-wise probability output of the Stage-1 seg-
mentation module, the background class is ignored and the remaining output (8) is
used as the semantic feedback signal. Again, S needs to be resized, rescaled and/or
normalized to match the spatial dimensions and the feature values scale of the input
to various conv layers. To append with the input image, S is re-scaled and centered
element-wise to lie in [—127,128]. This results in a new (H; X Wy x (3 4+K)) input
for convl_1. To modulate conv2_1, conv3_1 and conv4_1, we maxpool and L2-
normalize S to match the spatial dimensions and the feature value scales of pooll,
pool2 and pool3 features respectively (similar to Section 2.3.2). The filters corre-
sponding to additional K channels in convl_1, conv2_1, conv3_1 and conv4_1 are
initialized using [100].

2.3.4 Joint Model

So far, given our multi-task base model, we have proposed a top-down feedback
for contextual priming of region proposal and object detection modules and an
iterative top-down feedback mechanism to the entire architecture. Next, we put
these two pieces together in a single joint framework. Our final model is a 2-unit
model: each individual unit being the contextual priming model (from Section 2.3.2),
and both units being connected for iterative top-down feedback (Section 2.3.3). We
train this 2-unit model stage-wise (Section 2.3.3). Architecture details of the joint
model follow from Section 2.3.2 and 2.3.3 (see Figure 2.3(c)).

Through extensive evaluation, presented in the following Sections, we show that:
1) individually, both contextual priming and iterative feedback models are effective
and improve performance; and 2) the joint model is better than both individual
models, indicating their complementary nature. We would like to highlight that
our method is fairly general — both segmentation and detection modules can easily
utilize newer network architectures (e.g., [12, 119]).

20

2.4 Design and Ablation Analysis

Table 2.1 — Ablation analysis of modifying ParseNet training methodology (Section 2.4.2)

Input Learning Rates (LR) Batch- Normalize mIOU

Notes dim. Base LR Layer LR LR Policy size Hiter Loss? (128 val)
1) [178] (Original ParseNet) 500x500 107® 1 poly 8 20k N 69.6
2) Reproducing [178]* (ParseNet) 500500 1078 1 poly 8 20k N 68.2
3) Faster R-CNN LR-policy, Norm. Loss 500x500 1072 1 step 8 20k Y 68.5
4) Faster R-CNN batch-size, new LR 500x500 2.5%x107* 1 step 2 80k Y 67.8
5) Faster R-CNN Base-LR 500x500 1072 0.25 step 2 80k Y 67.8
6) Faster R-CNN input dim. (ParseNet*) [600x1000]" 1073 0.25 step 2 80k Y 66

Tmin dim. is 600, max dim. capped at 1000.%https: //github.con/weiliug9/catfe/tree/fcn

2.4 Design and Ablation Analysis

We conduct experiments to better understand the impact of contextual priming and
iterative feedback; and provide ablation analysis of various design decisions. Our
implementation uses the Caffe [135] library.

2.4.1 Experimental setup

For ablation studies, we use the multi-task setup from Section 2.3.1 as our
baseline (Base-MT). We also compare our method to Faster R-CNN [223] and
ParseNet [178] frameworks. For quantitative evaluation, we use the standard mean
average precision (mAP) [72] metric for object detection and mean intersection-over-
union metric (mIOU) [72, 95] for segmentation.

Datasets. All models in this Section are trained on the PASCAL VOC12 [72]
segmentation set (12S), augmented with the extra annotations (A) from [113] as
is standard practice. Results are analyzed on VOC12 segmentation val set. For
analysis, we chose the segmentation set, and not detection, because all images have
both segmentation and bounding-box annotations; this helps us isolate the effects of
using segmentation as top-down semantic feedback without worrying about missing
segmentation labels in the standard detection split. Results on the standard splits
will be presented in Section 2.5.

2.4.2 Base Model — Augmenting Faster R-CNN with Segmentation

Faster R-CNN and ParseNet both use mini-batch SGD for training, however,
they follow different training methodologies. We first describe the implementation
details and design decisions adopted to augment the segmentation module to Faster

R-~-CNN and report baseline performances.

ParseNet Optimization. ParseNet is trained for 20k SGD iterations using an
effective mini-batch of 8 images, an initial learning rate (LR) of 10~® and polynomial
LR decay policy. Compare this to Faster R-CNN, which is trained for 70k SGD

21

https://github.com/weiliu89/caffe/tree/fcn

2.4 Design and Ablation Analysis

Table 2.2 — Detection results on VOC 2012 segmentation val set. All methods use VOC125+A
training set (Section 2.4.1). Legend: S: uses segmentation labels (Section 2.3.1), P: contextual priming
(Section 2.3.2), F: iterative feedback (Section 2.3.3)

method S P F |mAP |acro bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
Fast R-CNN [95] 71.6 (882 79.7 83.6 62.8 423 840 694 8.5 41.5 73.7 574 847 777 858 758 353 73.1 67.7 85.0 76.3
Faster R-CNN [223] 75.3 1923 809 86.7 65.4 493 87.1 782 89.7 427 T9.8 614 874 828 894 822 46.1 782 646 868 7T5.6

Base-MT (sec. 2.3.1)
Ours (priming, sec. 2.3.2)
Ours (feedback, sec. 2.3.3)
Ours (joint, sec. 2.3.4)

75.6 [93.0 82.5 881 70.2 47.2 86.5 76.5 89.3 47.7 78.3 56.4 88.0 80.2 88.9 80.7 43.6 8L5 67.9 894 75.2

77.0 |91.1 823 853 70.8 475 90.3 752 90.9 46.0 82.3 65.6 88.0 83.3 912 810 49.6 810 69.8 92.1 76.0

v | T7.3 |90.7 829 904 70.3 51.2 89.7 77.0 91.7 49.9 814 66.9 87.8 811 90.3 822 504 792 70.2 85.9 76.9

ENENENIEN
N

vV V| T7.8 808 83.8 84.0 721 542 920 755 912 53.6 821 69.8 85.7 817 924 825 499 762 725 89.3 784

Table 2.3 — Segmentation results on VOC 2012 segmentation val set. All methods use VOC125+A
training set (Section 2.4.1). Legend: S: uses segmentation labels, P: contextual priming, F: iterative
feedback

method

ParseNet (Table 2.1(2))
ParseNet* (Table 2.1(6))
Base-MT (sec. 2.3.1)
Ours (priming, sec. 2.3.2)
Ours (feedback, sec. 2.3.3)
Ours (joint, sec. 2.3.4)

P F mIOU| bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

68.2 923 869 384 77.1 66.4 66.5 83.0 80.9 82.5 31.0 729 49.5 714 73.9 76.7 79.3 47.9 733 40.3 78.3 63.6
66.0 |91.7 852 36.8 73.2 64.0 60.8 824 769 81.8 304 654 513 69.6 73.5 754 78.2 439 713 389 79.3 56.2

65.8 |91.6 84.3 37.1 71.5 63.8 60.8 82.3 74.8 80.3 30.8 68.7 488 714 757 738 77.7 428 70.1 39.1 79.9 56.4

v 65.3 |91.5 85.1 364 73.3 64.0 60.4 814 751 81.8 31.7 64.8 488 69.0 737 734 771 416 69.9 384 781 555
v | 69.5 928 87.3 394 769 66.7 68.1 869 80.6 864 334 681 50.9 718 80.1 773 813 486 733 420 828 655

ANENENEN ENENE)

Vv v | 69.6 |929 885 394 781 669 69.1 845 798 849 378 69.2 50.5 714 797 775 813 471 742 434 80.1 65.0

iterations with a mini-batch size of 2, 10~3 initial LR and step LR decay policy
(step at 50k). Since we are augmenting Faster R-CNN, we try to adapt ParseNet’s
optimization. On the 12S val set, [178] reports 69.6% (we achieved 68.2% using the
released code, Table 2.1(1-2)). We will refer to the latter as ParseNet throughout.
Similar to [180], ParseNet does not normalize the Softmax loss by number of valid
pixels. But to train with Faster R-CNN in a multi-task setup, all losses need to
have similar magnitude; so, we normalize the loss of ParseNet and modify the LR
accordingly. Next, we change the LR decay policy from polynomial to step (step at
12.5k) to match that of Faster R-CNN. These changes result in similar performance
(40.3 points, Table 2.1(2-3)). We now reduce the batch size to 2 and adjust the LR
appropriately (Table 2.1(4)). To keep the base LR of Faster R-CNN and ParseNet
same, we change it to 1073 and modify the LR associated with each ParseNet layer
to 0.25, thus keeping the same effective LR for ParseNet (Table 2.1(4-5)).

Training data. ParseNet re-scales the input images and their segmentation labels
to a fixed size (500x500), thus ignoring the aspect-ratio. On the other hand, Faster
R-CNN maintains the aspect-ratio and re-scales the input images such that their
shorter side is 600 pixels (and the max dim. is capped at 1000). We found that
ignoring the aspect-ratio drops Faster R-CNN performance and maintaining it drops
the performance of ParseNet (—1.8 points, Table 2.1(5-6)). Because our main task
is detection, we opted to use Faster R-CNN strategy, and treat the new ParseNet
(ParseNet*) as the baseline for our base model.

22

2.4 Design and Ablation Analysis

Table 2.4 — Ablation analysis of Contextual Priming and Iterative Feedback on VOC 12S val set. All
methods use VOC 12S+A train set for training. (left) Evaluating Priming different layers; (right)
Evaluating Iterative Feedback design decisions

mAP mIOU Stage-2 Init. mAP mIOU

Base-MT 75.6 65.8 Base-MT - 75.6 65.8

imi ImageNet 76.5 69.3
Priming convb_1 76.6 65.8 pioative Feedback to convl 1 Hagese °

Priming conv5_ 1, each £c6 77.0 65.3 Stage-1 76.3 693

ImageNet 76.3 69.1
Stage-1 77.3 69.5

TIterative Feedback to conv{1,2,3,4} 1

Base Model Optimization. Following the changes mentioned above, our base
model uses these standardized parameters: batch size of 2, 1072 base LR, step
decay policy (step at 50k), LR of 0.25 for segmentation and shared conv layers, and
80k SGD iterations. This model serves as our multi-task baseline (Base-MT).

Baselines. For comparison, we re-train Fast [95] and Faster R-CNN [223] on VOC
125+4A training set. We use ‘approximate joint training’ for Faster R-CNN, same
as our method [223]. Results of the Base-MT model for detection and segmentation
are reported in Table 2.2 and 2.3 respectively. Performance increases by 0.3 mAP
on detection and drops by 0.1 mIOU on segmentation. These results show that just
adding another task for training does not effect either modules by much. This will
be our primary baseline, on top of which we will add contextual and feedback.

2.4.3 Contextual Priming

We evaluate the effects of using segmentation as top-down semantic feedback
to the region proposal generation and object detection modules. We follow the
same optimization hyperparameters as the Base-MT model, and report the results
in Table 2.2 and 2.3. Table 2.2 shows that providing top-down feedback via priming
to the Faster R-CNN modules improves its detection performance by 1.4 points over
the Base-MT model and 1.7 points over Faster R-CNN. Results in Table 2.3 show
that performance of segmentation drops slightly when it is used for priming.

Design Evaluation. In Table 2.4(left), we report the impact of providing seg-
mentation signal to different modules. We see that just priming conv5_1 gives a 1
point boost over Bast-MT and adding the segmentation signal to each individual
region (‘seg+poolb’ to fc6) gives another 0.4 points boost. It is interesting that
the segmentation performance is not affected when priming conv5_1, but it drops
by 0.5 mIOU when we prime each region. Our hypothesis is that gradients accu-
mulated from all regions in the mini-batch start overpowering the gradients from

23

2.4 Design and Ablation Analysis

Table 2.5 — Detection results on VOC 2007 detection test set. All methods are trained on union of
VOCO7 trainval and VOC12 trainval

method S |mAP | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
Fast R-CNN [95] 70.0 |77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 847 82.0 76.6 69.9 31.8 70.1 748 80.4 70.4
Faster 73.2 |76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
R-CNN [223]

Base-MT V| TAT | 784 79.3 759 632 56.8 85.9 85.4 88.4 54.9 83.9 68.6 84.6 85.6 78.5 781 41.3 74.6 74.8 84.0 724
Ours (joint) v | 76.4 793 80.5 76.8 72.0 58.2 85.1 86.5 89.3 60.6 82.2 69.2 87.0 87.2 81.6 78.2 44.6 779 76.7 82.4 719

Table 2.6 — Detection results on VOC 2012 detection test set. All methods are trained on union of
VOCO7 trainval, VOCO07 test and VOC12 trainval

method S | MAP |aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
Fast R-CNN [95] 68.4 823 784 70.8 52.3 38.7 77.8 TL6 89.3 44.2 73.0 550 87.5 80.5 80.8 720 35.1 68.3 65.7 80.4 64.2
Faster 70.4 849 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
R-CNN [223]

Base MT v | 711" 1842 80.9 73.1 55.1 50.6 78.2 75.6 89.0 48.6 76.7 54.8 87.6 82.5 83.0 80.0 41.7 742 60.7 81.4 63.1
Ours (jOth) v mo 84.0 81.2 759 60.4 51.8 81.2 77.4 90.9 50.2 77.6 58.7 884 83.6 82.0 804 41.5 750 64.2 82.9 65.1

Ahttp://host.robots.ox.ac.uk:8080/anonymous/RUZFQC. html, <>http://hostJrc;bots,o)LacAuk:8080/ancmymc'us/‘{FSUQA,html
segmentation. To deal with this, methods like [193] can be used in the future.

2.4.4 Ilterative Feedback

Next we study the impact of giving iterative top-down semantic feedback to
the entire network. In this 2-unit setup, the first unit (Stage-1) is a trained Base-
MT model and the second unit (Stage-2) is a Stage-1 initialized Base-MT model
(new filters are initialized randomly, see Section 2.4.4). During inference, we have
the option of using the outputs from both units or just the Stage-2 unit. Given
that segmentation is used as feedback, it is supposed to self-improve across units,
therefore we use the Stage-2 output as our final output (similar to [33, 170]). For
detection, we combine the outputs from both units; because the Stage-2 unit is
modulated by segmentation, and the first unit is not, hence both might focus on
different regions.

This iterative feedback improves the segmentation performance (Table 2.3) by
3.7 points over Base-MT (3.5 points over ParseNet*). For detection, it improves
over the Base-MT model by 1.7 points (2 points over Faster R-CNN) (Table 2.2).

Design Evaluation. We study the impact of: (1) varying the degree of feedback to
the Stage-2 unit, and (2) different Stage-2 initializations. In Table 2.4(right), we see
that when initializing the Stage-2 unit with an ImageNet trained network, varying
iterative feedback does not have much impact; however, when initializing with a
Stage-1 model, providing more feedback leads to better performance. Specifically,
iterative feedback to all shared conv layers improves both detection and segmenta-

24

http://host.robots.ox.ac.uk:8080/anonymous/RUZFQC.html
http://host.robots.ox.ac.uk:8080/anonymous/YFSUQA.html

2.5 Results

Table 2.7 — Segmentation results on VOC 2012 segmentation test set. All methods are trained on
union of VOCO7 trainval, VOCO07 test and VOC12 trainval

method S 'mIOU | bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Base MT v | 66.4" 91.3 820 37.7 77.6 588 58.8 84.0 75.6 83.1 25.1 70.9 57.8 74.0 74.6 76.4 750 488 T3.7 45.6 72.3 52.0

Ours (joint) V1 71.4° (930 89.3 414 841 638 65.2 88.1 80.9 88.6 284 754 60.6 80.3 80.9 83.1 79.7 554 7T7.9 48.2 758 58.8

http://host.robots.ox.ac.uk:8080/anonymous/RUZFQC. html, <>http ://host.robots.ox.ac.uk:8080/anonymous/YFSUQA.html

tion by 1.7 mAP and 3.7 mIOU respectively, as opposed to feedback to just convi_1
(as in [33, 170]) which results in lower gains (Table 2.4,right). Our hypothesis is
that iterative feedback to a Stage-1 initialized unit allows the network to correct its
mistakes and/or refine its predictions; therefore, providing more feedback leads to
better performance.

2.4.5 Joint Model

Finally, we evaluate our joint 2-unit model, where each unit is a model with
contextual priming, and both units are connected via segmentation feedback. In
this setup, a trained contextual priming model is used as the Stage-1 unit as well as
the initialization for the Stage-2 unit. We remove the dropout layers from Stage-2
unit. Inference follows the procedure described in Section 2.4.4.

As shown in Table 2.2, for detection, the joint model achieves 77.8% mAP
(42.2 points over Base-MT and +2.5 points over Faster R-CNN), which is better
than both priming only and feedback only models. This suggests that both forms
of top-down feedback are complementary for object detection. The segmentation
performance (Table 2.3) is similar to the feedback only model, which is expected
since in both cases, the segmentation module receives similar feedback.

2.5 Results
We now report results on the PASCAL VOC and MS COCO [175] datasets. We

also evaluate the region proposal generation on the proxy metric of average recall.

Experimental Setup. When training on the VOC datasets with extra data (Ta-
ble 2.5, 2.6 and 2.7), we use 100k SGD iterations (other hyperparameters follow
Section 2.4); and for MS COCO, we use 490k SGD iterations with an initial LR of
1072 and decay step size of 200k, owing to a larger epoch size.

VOCO07 and VOC12 Results. Table 2.5 shows that on VOCO07, our joint prim-
ing and feedback model improves the detection mAP by 1.7 points over Base-MT
and 3.2 points over Faster R-CNN. Similarly, on VOC12 (Table 2.6), priming and
feedback lead to 1.5 points boost over Bast-MT (2.2 over Faster R-CNN). For

25

http://host.robots.ox.ac.uk:8080/anonymous/RUZFQC.html
http://host.robots.ox.ac.uk:8080/anonymous/YFSUQA.html

2.5 Results

g
8
XN

—e—SS (65.7 @ 2000) 08 .]
- --RPN (60.4 @ 2000) S

—=—SS (60.6 @ 2000)

W
A}

B 3 -#-Feedback (65.7 @ 2000)| & D Priming (61.1 @ 2000)
& A\ 6 Joint (66.1 @ 2000) &oa ‘ - Joint (66.3 @ 2000)
Y Feedback (66.3 @ 4000) %) -w-Joint (66.7 @ 4000)
02 \\\ -<-Joint (66.6 @ 4000) 02 N
) \{i\

Priming (60.7 @ 2000)

Figure 2.4 — Recall-to-loU

viewed digitally).

0.8 0.9
loU —

g
1

---RPN (60.4 @ 2000)

0.6

0.7 0.8

loU —

0.9 1

on VOC12 Segmentation val set (left) and VOCO7 test set (right) (best

Table 2.8 — Detection results on MS COCO 2015 test-dev set. All methods use COCO trainval35k
for training and results were obtained from the online 2015 test-dev server. Legend: F: using iterative
feedback, P: using contextual priming, S: uses segmentation labels

AP, ToU: AP, Area: AR, # Dets:| AR, Area:
Method S P F
0.5:0.95 0.50 0.75 Small Med. Large| 1 10 100 | Small Med. Large
Faster R-CNN 24.5 46.0 23.7| 8.2 264 369 24.0 34.8 35.5| 13.4 39.2 54.3
Base-MT v 25.0 47.0 242 81 271 381 [24.3 35.1 35.8 13.2 39.8 55.0
Ours (priming) v v 25.8 48.2 25.3| 83 27.8 38.6 |24.5 35.7 36.5 13.6 40.6 54.7
Ours (joint) v Vv Vv | 275 492 278 89 295 41.5 [25.5 37.4 38.3| 14.6 425 574

segmentation on VOC12 (Table 2.7), we see a huge 5 point boost in mIOU over
Base-MT. We would like highlight that both Base-MT and our joint model use ex-
actly the same annotations and hyperparameters; therefore the performance boosts
are because of contextual priming and iterative feedback in our model.

Recall-to-IOU. Since our hypothesis is that priming and feedback lead to better
proposal generation, we also evaluate the recall of region proposals by the RPN
module from various models, at different IOU thresholds. In Figure 2.4, we show
the results of using 2000 proposal per RPN module. Since feedback models have
2 units, we report their number with both 4000 and top 2000 proposals (sorted by
cls score). As can be seen priming, feedback and joint models all lead to higher
average recall (shown in legend) over the baseline RPN module.

MS COCO Results. We also perform additional analysis of contextual priming
on the COCO [175] dataset and report AP (averaged over classes, recall, and IoU
levels) in Table 2.8. Our priming model results in +1.2 AP points (+2.1 AP50)
over Faster R-CNN and +0.8 AP points (+1.1 AP50) over Base-MT on the COCO
test-dev set [175]. On further analysis, we notice that the most performance gains
are for objects where context should intuitively help; e.g., +12.4 for ‘parking-meter’,
+8.7 for ‘suitcase’, +8.3 for ‘umbrella’ etc. on AP50 wrt. to Faster R-CNN. Finally,
our joint model achieves 27.5 AP points (+3 AP points over Faster R-CNN and

26

2.5 Results

+2.5 over Base-MT), further highlighting effectiveness of the proposed method.

Conclusion. We presented and investigated how we can incorporate top-down
semantic feedback in the state-of-the-art Faster R-CNN framework. We proposed
to augment a segmentation network to Faster R-CNN, which is then used to provide
top-down contextual feedback to the region proposal generation and object detection
modules. We also use this segmentation network to provide top-down feedback to the
entire Faster R-CNN network iteratively. Our results demonstrate the effectiveness
of these top-down feedback mechanisms for the tasks of region proposal generation,
object detection and semantic segmentation.

27

Chapter 3

Top-Down Modulation

Details are confusing. It is only by selection, by elimination,
by emphasis, that we get at the real meaning of things.

Georgia O’Keeffe

Figure 3.1 — Detecting objects such as the bottle or remote shown above requires low-level finer details
as well as high-level contextual information. In this Chapter, we propose a top-down modulation (TDM)
network, which can be used with any bottom-up, feedforward ConvNet. We show that the features
learnt by our approach lead to significantly improved object detection.

As we saw in the previous Chapter, ConvNet representations have revolutionized
the field of object detection [16, 93, 95, 96, 223, 253, 270]. Most of these ConvNets
are bottom-up, feedforward architectures constructed using repeated convolutional
layers (with non-linearities) and pooling operations [119, 155, 258, 271, 272]. These
convolutional layers learn invariances and the spatial pooling increases the receptive
field of subsequent layers; thus resulting in a coarse, highly semantic representation
at the final layer.

However, consider the images shown in Figure 3.1. Detecting and recognizing

29

3. Top-Down Modulation

an object like the bottle in the left image or remote in the right image requires
extraction of very fine details such as the vertical and horizontal parallel edges. But
these are exactly the type of edges ConvNets try to gain invariance against in early
convolutional layers. One can argue that ConvNets can learn not to ignore such
edges when in context of other objects like table. However, objects such as table do
not emerge until very late in feed-forward architecture. So, how can we incorporate
these fine details in object detection?

A popular solution is to use variants of ‘skip’ connections [16, 75, 116, 180,
242, 310], that capture these finer details from lower convolutional layers with local
receptive fields. But simply incorporating high-dimensional skip features into de-
tection does not yield significant improvements due to overfitting caused by curse of
dimensionality. What we need is a selection/attention mechanism that selects the
relevant features from lower convolutional layers.

We believe the answer lies in the process of top-down modulation. In the
human visual pathway, once receptive field properties are tuned using feedfor-
ward processing, top-down modulations are evoked by feedback and horizontal con-
nections [154, 162]. These connections modulate representations at multiple lev-
els [90, 94, 211, 317, 318] and are responsible for their selective combination [47, 128].
We argue that the use of skip connections is a special case of this process, where the
modulation is relegated to the final classifier, which directly tries to influence lower
layer features and/or learn how to combine them.

In this Chapter, we propose to incorporate the top-down modulation process in
the ConvNet itself. Our approach supplements the standard bottom-up, feedforward
ConvNet with a top-down network, connected using lateral connections. These
connections are responsible for the modulation and selection of the lower layer filters,
and the top-down network handles the integration of features.

Specifically, after a bottom-up ConvNet pass, the final high-level semantic fea-
tures are transmitted back by the top-down network. Bottom-up features at inter-
mediate depths, after lateral processing, are combined with the top-down features,
and this combination is further transmitted down by the top-down network. Capac-
ity of the new representation is determined by lateral and top-down connections, and
optionally, the top-down connections can increase the spatial resolution of features.
These final, possibly high-res, top-down features inherently have a combination of
local and larger receptive fields.

The proposed Top-Down Modulation (TDM) network is trained end-to-end
and can be readily applied to any base ConvNet architecture (e.g., VGG [258],
ResNet [119], Inception-Resnet [272] etc.). To demonstrate its effectiveness, we use

30

3.1 Related Work

Bottom-up Path

“---- “----
— C, — — C,

o 150 %250 x k,
300500 ky PR, . 1

Object Detector

e [e1ee]

i

ROI Proposal ¢, :
i it
T

ROI Classifier

el o 150x250 x

Top-down Path

Figure 3.2 — The illustration shows an example of Top-Down Modulation (TDM) Network, which is
integrated with the bottom-up network with lateral connections. C; are bottom-up, feedforward feature
blocks, L; are the lateral modules which transform low level features for the top-down contextual
pathway. Finally, T;;, which represent flow of top-down information from index j to ¢. Individual
components are explained in Figure 3.3 and 3.4.

the proposed network in the standard Faster R-CNN detection method [223] and
evaluate on the challenging COCO benchmark [175]. We report a consistent and
significant boost in performance on all metrics across network architectures. TDM
network increases the performance of vanilla Faster R-CNN with: (a) VGG16 from
23.3 AP to 28.6 AP, (b) ResNet101 from 31.5 AP to 35.2 AP, and (c) InceptionRes-
Netv2 from 34.7 AP to 37.2 AP. These are the best performances reported to-date
for these architectures without any bells and whistles (e.g., multi-scale features, it-
erative box-refinement). Furthermore, we see drastic improvements in small objects
(e.g., +4.5 AP) and in objects where selection of fine details using top-down context

is important.

Apart from how the architecture is designed, a difference from the previous
Chapter is that in TDM, we do not rely of semantic segmentation of an image to
act as a proxy that provides this top-down contextual feedback.

3.1 Related Work

After the resurgence of ConvNets for image classification [58, 155], they have been
successfully adopted for a variety of computer vision tasks such as object detec-
tion [95, 96, 223, 270], semantic segmentation [12, 39, 178, 180], instance segmen-
tation [115, 116, 212], pose estimation [279, 285], depth estimation [67, 299], edge
detection [310], optical flow predictions [84, 220] etc. However, by construction, fi-
nal ConvNet features lack the finer details that are captured by lower convolutional
layers. These finer details are considered necessary for a variety of recognition tasks,
such as accurate object localization and segmentation.

31

3.1 Related Work

To counter this, ‘skip’ connections have been widely used with ConvNets. Though
the specifics of methods vary widely, the underlying principle is same: using or com-
bining finer features from lower layers and coarse semantic features for higher layers.
For example, [16, 75, 116, 242] combine features from multiple layers for the final
classifier; while [16, 242] use subsampled features from finer scales, [75, 116] upsam-
ple the features to the finest scale and use their combination. Instead of combining
features, [178, 180, 310] do independent predictions at multiple layers and average
the results. In our proposed framework, such upsampling, subsampling and fusion
operations can be easily controlled by the lateral and top-down connections.

The proposed TDM network is conceptually similar to the strategies explored
in other contemporary works [12, 176, 213, 220, 226]. All methods, including ours,
propose architectures that go beyond the standard skip-connection paradigm and/or
follow a coarse-to-fine strategy when using features from multiple levels of the
bottom-up feature hierarchy. However, different methods focus on different tasks
which guide their architectural design and training methodology.

Conv-deconv [198] and encoder-decoder style networks [12, 226] have been used
for image segmentation to utilize finer features via lateral connections. These con-
nections generally use the ‘unpool’ operation [319], which merely inverts the spatial
pooling operation. Moreover, there is no modulation of bottom-up network. In com-
parison, our formulation is more generic and is responsible for the flow of high-level
context features [211].

Pinheiro et al. [213] focus on refining class-agnostic object proposals by first
selecting proposals purely based on bottom-up feedforward features [212], and then
post-hoc learning how to refine each proposal independently using top-down and lat-
eral connections (due to the computational complexity, only a few proposals can be
selected to be refined). We argue that this use of top-down and lateral connections
for refinement is sub-optimal for detection because it relies on the proposals selected
based on feedforward features, which are insufficient to represent small and difficult
objects. This training methodology also limits the ability to update the feedforward
network through lateral connections. In contrast to this, we propose to learn better
features for recognition tasks in an end-to-end trained system, and these features
are used for both proposal generation and object detection. Similar to the idea of
coarse-to-fine refinement, Ranjan and Black [220] propose a coarse-to-fine spatial
pyramid network, which computes a low resolution residual optical flow and itera-
tively improves predictions with finer pyramid levels. This is akin to only using a
specialized top-down network, which is suited for low-level tasks (like optical flow)
but not for recognition tasks. Moreover, such purely coarse-to-fine networks cannot

32

3.2 Top-Down Modulation (TDM)

utilize models pre-trained on large-scale datasets [58], which is important for recog-
nition tasks [96]. Therefore, our approach learns representation using bottom-up
(fine-to-coarse), top-down (coarse-to-fine) and lateral networks simultaneously, and
can use different pre-trained modules.

The proposed top-down network is closest to the recent work of Lin et al. [176],
developed concurrently to ours, on feature pyramid network for object detection.
Lin et al. [176] use bottom-up, top-down and lateral connections to learn a feature
pyramid, and require multiple proposal generators and region classifiers on each
level of the pyramid. In comparison, the proposed top-down modulation focuses on
using these connections to learn a single final feature map that is used by a single
proposal generator and region classifier.

There is strong evidence of such top-down context, feedback and lateral pro-
cessing in the human visual pathway [47, 90, 94, 128, 154, 161, 162, 211, 317,
318]; wherein, the top-down signals are responsible for modulating low-level fea-
tures [90, 94, 211, 317, 318] as well as act as attentional mechanism for selection
of features [47, 128]. In this Chapter, we propose a computation model that cap-
tures some of these intuitions and incorporates them in a standard ConvNets, giving
substantial performance improvements.

Our top-down framework is also related to the process of contextual feed-
back [11]. To incorporate top-down feedback loop in ConvNets, contemporary
works [33, 89, 170, 250], have used ‘unrolled’ networks (trained stage-wise). Even
in Chapter 6, we used semantic segmentation as a proxy for top-down feedback.
The proposed top-down network with lateral connections explores a complemen-
tary paradigm and can be readily combined with them. Contextual features have
also been used for ConvNets based object detectors; e.g., using other objects [110]
or regions [98] as context. We believe the proposed top-down path can naturally
transmit these contextual features.

3.2 Top-Down Modulation (TDM)

Our goal is to incorporate top-down modulation into current object detection frame-
works. The key idea is to select/attend to fine details from lower level feature
maps based on top-down contextual features and select top-down contextual fea-
tures based on the fine low-level details. We formalize this by proposing a simple
top-down modulation (TDM) network as shown in Figure 3.2.

The TDM network starts from the last layer of bottom-up feedforward net-
work. For example, in the case of VGG16, the input to the first layer of the TDM

33

3.2 Top-Down Modulation (TDM)

HxWxk

T
j
2H x2Wx f, T.. HxWxt,

Figure 3.3 — The basic building blocks of Top-Down Modulation Network (detailed Section 3.2.1).

network is the conv5_3 output. Every layer of TDM network also gets the bottom-
up features as inputs via lateral connections. Thus, the TDM network learns to:
(a) transmit high-level contextual features that guide the learning and selection of
relevant low-level features, and (b) use the bottom-up features to select the contex-
tual information to transmit. The output of the proposed network captures both
pertinent finer details and high-level information.

3.2.1 Proposed Architecture

An overview of the proposed framework is illustrated in Figure 3.2. The stan-
dard bottom-up network is represented by blocks of layers, where each block C; has
multiple operations. The TDM network hinges on two key components: a lateral
module L, and a top-down module T (see Figure 3.3). Each lateral module L; takes
in a bottom-up feature :Ef: (output of C;) and produces the corresponding lateral

feature 2. These lateral features 2 and top-down features l‘;r are combined, and

optionally upsampled, by the T;; module to produce the top-down features x;r
These modules, T;; and L;, control the capacity of the modulation network by

changing their output feature dimensions.

The feature from the last top-down module T$" is used for the task of object
detection. For example, in Figure 3.2, instead of :U5C, we use T9" as input to ROI
proposal and ROI classifier networks of the Faster R-CNN [223] detection system
(discussed in Section 3.3.1). During training, gradient updates from the object detec-
tor backpropagate via top-down and lateral modules to the C; blocks. The lateral
modules L, learn how to transform low-level features and the top-down modules
T, learn what semantic or context information to preserve in the top-down feature
transmission as well as the selection of relevant low-level lateral features. Ultimately,
the bottom-up features are modulated to adapt for this new representation.

34

3.2 Top-Down Modulation (TDM)

Bottom-up Feature

150x 250 x k,
3x3
L2 Conv
Tout i T3,2
! 2 v Top-down
i X 1
Output ! [—) «— 2x — = <— Feature
Feature el 150 | T5x 125X b4
150 250 X fyy, | 2 s ’ ’
ou [50 3.2

Figure 3.4 — An example with details of top-down modules and lateral connections. Please see Sec-
tion 3.2.1 for details of the architecture.

Architecture details. The top-down and lateral modules described above are
essentially small ConvNets, which can vary from a single or a hierarchy of convo-
lutional layers to more involved blocks with Residual [119] or Inception [272] units.
In this Chapter, we limit our study by using modules with a single convolutional
layer and non-linearity to analyze the impact of top-down modulation.

A detailed example of lateral and top-down modules is illustrated in Figure 3.4.
The lateral module L; is a 3 x 3 convolutional layer with ReLLU non-linearity, which
transforms an (H; X W; x k;) input xic, to (H; x W; x [;) lateral feature xZL The top-
down module T ; is also a 3 x 3 convolutional layer with ReLU, that combines this
lateral feature with (H; x W; X t;) top-down feature az'jr, to produce an intermediate
output (H; X W; X ¢;). If the resolution of next lateral feature 931111 is higher than the
previous lateral feature (e.g., Hi—1 = 2 x H;), then T;; also upsamples the interme-
diate output to produce (H;—1 X W;—1 X t;) top-down feature x;r In Figure 3.2, we
denote a; = t; + I; for simplicity. The final T¢" module can additionally have a
1 x 1 convolutional layer with ReLU to output a (H; X W; X koyt) feature, which is
used by the detection system.

Varying I;, t; and koyt controls the capacity of the top-down modulation system
and dimension of the output features. These hyperparameters are governed by
the base network design, detection system and hardware constraints (discussed in
Section 3.3.3). Notice that the upsampling step is optional and depends on the
content and arrangement of C blocks (e.g., no upsampling by T, in Figure 3.2).
Also, the first top-down module (T in the illustration) only operates on z$ (the
final output of the bottom-up network).

Training methodology. Integrating top-down modulation framework into a bottom-
up ConvNet is only meaningful when the latter can represent high-level concepts in
higher layers. Thus, we typically start with a pre-trained bottom-up network (see

35

3.3 Approach Details

Table 3.1 — Base networks architecture details for VGG16, ResNet101 and InceptionResNetv2. Legend:
C,;: bottom-up block id, N: number of convolutional filters, NR: number of residual units, NI: number
of inception-resnet units, dim (:z:,c) Resolution and dimensions of the output feature. Refer to [119,

129, 258, 272] for details

VGG16 ResNet101 InceptionResNetv2

name C; N dim (c) name C; NB N dim (t,c) name C; NI N dim ($',3)

convl_x C; 2 (300,500,64) convl C; 1 1 (300,500,64) conv_x C. -5 (71,246,192)
conv2 x Cs 2 (150,250,128) comv2 x Cs 3 (150,250,256) Mixed 5b Ms 1 7 (35,122, 320)
conv3_x Cs 3 (75 125, 206) conv3_x Cs 4 12 (75,125,512) Block 10x By 10 70 (35,122,320)
3)
3)

©

convd_x Cy convd_x Cy 23 69 (75,125,1024) Mixed 6a Mqq 1 3 (33,120,1088)
convb x Cj Block 20x Bz 20 100 (33,120,1088)

Section 3.5.4 for discussion). Starting with this pre-trained network, we find that
progressively building the top-down network performs better in general. Therefore,
we add one new pair of lateral and top-down modules at a time. For example, for
the illustration in Figure 3.2, we will begin by adding (L4, T54) and use T" to
get features for object detection. After training (L4, T 4) modules, we will add the
next pair (Lg, T43) and use a new T3" module to get features for detection; and
we will repeat this process. With each new pair, the entire network, top-down and
bottom-up along with lateral connections, is trained end-to-end. Implementation
details of this training methodology depends on the base network architecture, and
will be discussed in Section 3.3.3.

To better understand the impact of the proposed TDM network, we conduct
extensive experimental evaluation; and provide ablation analysis of various design
decisions. We describe our approach in detail (including preliminaries and imple-
mentation details) in Section 3.3 and present our results in Section 3.4. We also
report ablation analysis in Section 3.5. We would like to highlight that the proposed
framework leads to substantial performance gains across different base network ar-
chitectures, indicating its wide applicability.

3.3 Approach Details

In this Section, we describe the preliminaries and provide implementation details of
our top-down modulation (TDM) network under various settings. We first give a a
brief overview of the object detection system and the ConvNet architectures used
throughout this Chapter.

3.3.1 Preliminaries: Faster R-CNN

We use the Faster R-CNN [223] framework as our base object detection system
(we only recap relevant terminology here; please refer to Section 2.2 for details).
Faster R-CNN consists of two core modules: 1) ROI Proposal Network (RPN),

36

3.3 Approach Details

which takes an image as input and proposes rectangular regions of interests (ROIs);
and 2) ROI Classifier Network (RCN), which is a Fast R-CNN [95] detector that
classifies these proposed regions and learns to refine ROI coordinates. Given an
image, Faster R-CNN first uses a ConvNet to extract features that are shared by
both RPN and RCN. RPN uses these features to propose candidate ROIs, which are
then classified by RCN. The RCN network projects each ROI onto the shared feature
map and performs the ‘ROI Pooling’ [95, 120] operation to extract a fixed length
representation. Finally, this feature is used for classification and box regression.
See [95, 120, 129, 223] for details.

Due to lack of support for recent ConvNet architectures [119, 272] in the Faster
R-CNN framework, we use our implementation in Tensorflow [1]. We follow the
design choices outlined in [129]. In Section 3.4, we will provide performance numbers
using both the released code [223] as well as our implementation (which tends to
generally perform better). We use the end-to-end training paradigm for Faster R-
CNN for all experiments [223]. Unless specified otherwise, all methods start with
models that were pre-trained on ImageNet classification [58, 96].

3.3.2 Preliminaries: Base Network Architectures

In this Chapter, we use three standard ConvNet architectures: VGG16 [258],
ResNet101 [119] and InceptionResNetv2 [272]. We briefly explain how they are
incorporated in the Faster R-CNN framework (see [119, 129, 223] for details), and
give a quick overview of these architectures with reference to the bottom-up blocks
C from Section 3.2.1.

We use the term ‘Base Network’ to refer to the part of ConvNet that is shared
by both RPN and RCN; and ‘Classifier Network’ to refer to the part that is used
as RCN. For VGG16 [223, 258], ConvNet till conv5_3 is used as the base network,
and the following two fc layers are used as the classifier network. Similarly, for
ResNet101 [119, 223], base network is the ConvNet till conv4_x, and classifier net-
work is the conv5_x block (with 3 residual units or 9 convolutional layers). For
InceptionResNet101v2 [129, 272], ConvNet till the ‘Block 20x’ is used as the base
network, and the remaining layers (‘Mixed_7a’ and ‘Block_9x’, with a total of
11 inception-resnet units or 48 convolutional layers) are used as the classifier net-
work. Following [129], we change the pooling stride of the penultimate convolutional
block in ResNet101 and InceptionResNetv2 to 1 to maintain spatial resolution, and
use atrous [39, 178] convolution to recover the original field-of-view. Properties of
bottom-up blocks C;, including number of layers, the output feature resolution and
feature dimension etc. are given in Table 3.1.

37

3.3 Approach Details

Table 3.2 — Top-Down Modulation network design for VGG16, ResNet101 and InceptionResNetv2.
Notice that toue VGG16 is much smaller than 512, thus requiring fewer parameters in RPN and RCN
modules. Also note that it is important to keep tout fixed for ResNet101 and InceptionResNetv2 in order
to utilize pre-trained RPN and RCN modules

VGG16 ResNet101 InceptionResNetv2

Ti; L; & lj tour Tij; L tij l; tour Tij L, ty I tout

Ts4 L4 128 128 256 Tsz Lz 128 128 1024 Tgs,p6a Lea 576 512 1088
T4z L3 64 64 128 Ts3o Lo 128 128 1024 Teasb Ls, 512 256 1088
Tz2 Lo 64 64 128 T Ly 32 32 1024
To1 Ly 64 64 128

Table 3.3 — Object detection results on the COCO benchmark. Different methods use different networks
for region proposal generation (ROINet) and for region classification (ClsNet). Results for the top
block (except Faster R-CNNx*) were directly obtained from their respective publications [119, 213, 223,
250]. Faster R-CNN* was reproduced by us. Middle block shows our implementation of Faster R-CNN
framework, which is our primary baseline. Bottom block presents the main results of TDM network,
with the state-of-the-art single-model performance (when [254] was published) highlighted

Method train test ROINet ClsNet AP AP AP APS APM APY|AR! AR! AR'9 | ARS ARM ARV
Faster R-CNN [223] train val VGG16 VGG16 21.2 415

Faster R-CNN [119] train val ResNet101 ResNet101 272 484

SharpMask [213] train testdev ResNet50 VGGI16 25.2 434

f:‘C‘:‘N 223+ trainval testdev VGG16 VGG16 24.5 46.0 23.7| 82 264 369 240 348 355 134 39.2 543
Chapter 2 [250] trainval testdev VGG16++ VGG16++ 275 492 278 | 89 295 415|255 374 383 |14.6 425 574
Faster R-CNN trainval* testdev VGG16 VGGI16 233 44.7 215 94 271 320227 368 394 |183 44.0 56.2
Faster R-CNN trainval* testdev ResNet101 ResNet101 31.5 528 33.3|13.6 354 44.5|28.0 43.6 458 |22.7 51.2 64.1
Faster R-CNN trainval* testdev IRNv2 IRNv2 34.7 555 36.7 | 13.5 38.1 520|298 46.2 489 |232 543 708
TDM [ours] trainval* testdev VGGI6 + TDM VGGI6 + TDM | 28.6 48.1 30.4 | 142 31.8 36.9 | 262 42.2 44.2 | 23.7 483 59.3
TDM [ours] trainval* testdev ResNet101 + TDM ResNet101 + TDM | 35.2 55.3 38.1 | 16.6 38.4 479|304 47.8 50.3 |27.8 549 67.6
TDM [ours] trainval* testdev IRNv2 + TDM IRNv2 + TDM 37.3 57.8 39.8 17.1 40.3 52.1 31.6 49.3 51.9 [28.1 56.6 71.1

3.3.3 Top-Down Modulation

To add the proposed TDM network to the ConvNet architectures described
above, we need to decide the extent of top-down modulation, the frequency of lateral
connections and the capacity of T, L and T°% modules. We try to follow these
principles when making design decisions: (a) coarse semantic modules need larger
capacity; (b) lateral and top-down connections should reduce feature dimensionality
in order to force selection; and (c) the capacity of T°" should be informed by
the Proposal (RPN) and Classifier (RCN) Network design. Finally, the hardware
constraint that a TDM augmented ConvNet should fit on a standard GPU.

To build a TDM network, we start with a standard bottom-up model trained
on the detection task, and add (T;;,L;) progressively. The capacity for different
T, L, and T°" modules is given in Table 3.2. For the VGG16 network, we add top-
down and lateral modules all the way to the convl_x feature. Notice that the input

38

3.4 Results

feature dimension to RPN and RCN networks changes from 512 (for conv5_x) to
256 (for T9"), therefore we initialize the fc layers in RPN and RCN randomly [100].
However, since tqy; is same for the last three T°" modules, we re-use the RPN and
RCN layers for these modules.

For the ResNet101 and InceptionResNetv2, we add top-down and lateral mod-
ules for till convl and ‘Mixed_5b’ respectively. Similar to VGG16, their base
networks are initialized with a model pre-trained on the detection task. However,
as opposed to VGG16, where the RCN has just 2 fc layers, ResNet101 and Incep-
tionResNetv2 models have an RCN with 9 and 48 convolutional layers respectively.
This makes training RCN from random initialization difficult. To counter this, we
ensure that all T°" output feature dimensions (fou) are same, so that we can be
readily use pre-trained RPN and RCN. This is implemented using an additional
1 x 1 convolutional layer wherever (¢; ; + [;) differs from oy (e.g., all T modules
in ResNet101, and the final T°** module in InceptionResNetv2).

We would like to highlight an issue with training of RPN at high-resolution
feature maps. RPN is a fully convolutional module of Faster R-CNN, that generates
an intermediate 512 dimension representation which is of the same resolution as
input; and losses are computed at all pixel locations. This is efficient for coarse
features (e.g., last row in Table 3.1), but the training becomes prohibitively slow
for finer resolution features. To counter this, we apply RPN at a stride which
ensures that computation remains exactly the same (e.g., using stride of 8 for T{"* in
VGG16). Because of ‘ROI Pooling’ operations, RCN module still efficiently utilizes
the finer resolution features.

3.4 Results

In this Section, we evaluate our method on the task of object detection, and demon-
strate consistent and significant improvement in performance when using features
from the proposed TDM network.

Dataset and metrics. All experiments and analysis in this Chapter are per-
formed on the COCO dataset [175]. All models were trained on 40k train and 32k
val images (which we refer to as ‘trainval*’ set). All ablation evaluations were per-
formed on 8k val images (‘minival*’ set) held out from the val set. We also report
quantitative results on the standard testdev2015 split. For quantitative evaluation,
we use the AP averaged over classes, recall, and IoU levels.

39

3.4 Results

Experimental Setup. We conduct experiments with three standard ConvNet
architectures: VGG16 [258], ResNet101 [119] and InceptionResNetv2 [272]. All
models (‘Baseline’ Faster R-CNN and ours) were trained with SGD for 1.5M mini-
batch iterations, with batch size of 256 and 128 ROIs for RPN and RCN respectively.
We start with an initial learning rate of 0.001 and decay it by 0.1 at 800k and 900k
iterations.

Baselines. Our primary baseline is using vanilla VGG16, ResNet101 and Incep-
tionResNetv2 features in the Faster R-CNN framework. However, due to lack of
implementations supporting all three ConvNets, we opted to re-implement Faster
R-CNN in Tensorflow [1]. The baseline numbers reported in Table 3.3(middle) are
using our implementation and training schedule and are generally higher than the
ones reported in [223, 250]. Faster R-CNN* was reproduced by us using the official
implementation [223]. All other results in Table 3.3(top) were obtained from the
original papers.

We also compare against models which use a single region proposal genera-
tor and a single region classifier network. In particular, we compare with Sharp-
Mask [213], because of its refinement modules with top-down and lateral connec-
tions, and [250] because they also augment the standard VGG16 network with top-
down information. Note that different methods use different networks and train/test
splits (see Table 3.3), making it difficult to do a comprehensive comparison. There-
fore, for discussion, we will directly compare against our Faster R-CNN baseline
(Table 3.3(middle)), and highlight that the improvements obtained by our approach
are much bigger than the boosts by other methods.

3.4.1 COCO Results

In Table 3.3(bottom), we report results of the proposed TDM network on the
testdev2015 split of the COCO dataset. We see that the TDM network leads to
a 5.3 AP point boost over the vanilla VGG16 network (28.6 AP wvs. 23.3 AP),
indicating that TDM learns much better features for object detection. Note that
even though our algorithm is trained on less data (trainvalx), we outperform all
methods with VGG16 architecture. For ResNet101, we improve the performance by
3.7 points to 35.2 AP. InceptionResNetv2 [272] architecture was the cornerstone of
the winning entry to COCO 2016 detection challenge [129]. The best single model
performance used by this entry achieves 34.7 AP on the testdev split ([129]). Using
InceptionResNetv2 as base, our TDM network achieves 37.3 AP, which is currently
the state-of-the-art single model performance on the testdev split without any
bells and whistles (e.g., multi-scale, iterative box refinement, etc.). In fact, the

40

3.4 Results

TDM network outperforms the baselines (with same base networks) on almost all
AP and AR metrics. Similarly, in Table 3.5, we observe that TDM achieves similar
boosts across all network architectures on the minival* split as well.

Figure 3.5 shows change in AP from Faster R-CNN baseline to the TDM net-
work (for the testdev split). When using VGG16, for all but one category, TDM
features improve the performance on object detection. In fact, more than 50% of
the categories improve by 5 AP points or more, highlighting that the features are
good for small and big objects alike. Similar trends hold for ResNet101 and Incep-
tionResNetv2.

In Table 3.4, we report AP results on the COCO testdev split for all classes.
Results are reported for baseline Faster R-CNN and our TDM network with differ-
ent base network architectures. The proposed TDM network results in substantial
improvement in AP across all network architectures and object categories. In partic-
ular, we see significant improvements for small objects and on stricter AP7® metric.

Improved localization. In Table 3.3, we also notice that for VGG16, our method
performs exceptionally well on the AP™ metric, improving the baseline Faster R-
CNN by 8.9 AP points, which is much higher than the 3.5 point AP° boost. We
believe that using contextual features to select and integrate low-level finer details
is they key reason for this improvement. Similarly for ResNet101 and InceptionRes-
Netv2, we see 4.8 AP™ and 3.1 AP™ boost respectively.

Improvement for small objects. In Table 3.3, for VGG16, ResNet101 and In-
ceptionResNetv2), we see 4.8, 3 and 3.6 point boost respectively for small objects
(APS) highlighting the effectiveness of features with TDM. Moreover, small objects
are often on top of the list in Figure 3.5 (e.g., sportsball +13 AP point, mouse +10
AP for VGG16). This is in line with other studies [110], which show that context
is particularly helpful for some objects. Similar trends hold for the minival*x split
as well: 5.6, 7.4 and 8.5 APS boost for VGG16, ResNet101 and InceptionRes-
Netv2 respectively. Also refer to Table 3.4 for per-category results for all network
architectures.

Qualitative Results. In Figure 3.6, we display qualitative results of the Top-
down Modulation Network. Notice that the network can find small objects like
remote (second row, last column; fourth row, first column) and sportsball (second
row, third and fourth column). Also notice the detection results in the presence of
heavy clutter.

41

3.4 Results

sportsball-
us—
mouse—

elephant—
refrigerator—
car-
cow—
train-
giraffe-
sheep—
trafficlight-
horse-
wineglass—
airplane—
frishee—
stopsign—
clock-
skateboard-
person—
bottle-
cup-
motorcycle-
keyboard-
toilet—
couch-
remote-
teddybear—
fork-

microwave—
vase—
snowboard -
baseballglove-
ird-

oven-—
sandwich-
bed-
surfboard-
chair—
diningtable-
umbrella
firehydrant-

toaster—
cellphone-
pottedplant-
parkingmeter—
sink-
bench-
oat—
suitcase-
bear—
backpack-
scissors—
knife-
broccoli-
baseballbat—
handbag-
carrot-
banana-
Spoon-—
orange-
apple-
hotdog-
toothbrush-

Figure 3.5 — Improvement in AP over Faster R-CNN baseline. Base Networks: (left) VGG16, (middle)

<
Q
)
=
[=2)

kite-

baseballbat—
snowboard -
couch-
sportsball -
baseballglove—
keyboard-
stopsign-
fork-
skateboard-
suitcase-
laptop-
wineglass—
firehydrant-
frisbee-
elephant—
trafficlight—
surfboard-
refrigerator—
mouse—

tie-

COW—

bottle-

car-

cup-

pizza—

knife-

tennisracket—

person—

tv-
umbrella—
skis—
diningtable-
sheep-
microwave—

SpooN—

bicycle-
horse-
giraffe-
zebra—

clock-
toothbrush-
carrot-
handbag-
toilet-

bed-

oven-—
backpack-
c:}t—
apple-
donut-
parkingmeter—
boat—
sandwich-
hotdog-
cake—
broccoli-
book-
pottedplant-
bird-
tcdd%/bcar—
ench-
banana-
orange-
dog-
bear-
cellphone—
hairdrier-

=}
o]
12}
-z
@
o+
=
o
=

toaster— IEEEG—_—

4

o-

i
—4

Change in AP —

InceptionResNetv2

sportsball -
car—
wineglass—

trafficlight—
baseballglove-
skis—

cup-

person—

COW—
tennisracket—

stopsign-
suitcase-
clock-
baseballbat—
airplane-
bicycle-
skateboard-
bird-
handbag-
frisbee-
keyboard-
mouse—
surfboard -
parkingmeter—
sink—
boat-
zebra—
owl-
diningtable-
pottedplant-
vase—
donut-
elephant-
chair—
couch-
toothbrush-
umbrella—
snowboard -
bed-
oven-

hotdog-

backpack-
bus-
motorcycle-
cellphone-
laptop-
carrot-
firehydrant-
giraffe-
SCISSOrs—
banana-
horse-

tv-
orange—
cake-
refrigerator—
bench-
bear -
microwave—
pizza—

dog-
teddybear—
train—
apple-
sandwich-
broccoli-
cat—

toilet—
toaster—

hairdrier— m——
| | |
—4 0 4

Change in AP —

ResNet101, and (right) InceptionResNetv2. Improved performance for almost all categories emphasize
the effectiveness of Top-Down Modulation for object detection. (best viewed digitally)

42

3.4 Results

Figure 3.6 — Qualitative results of the proposed TDM network on randomly selected images from the
minival* set (best viewed digitally).

43

3.4 Results

Table 3.4 — COCO testdev detection AP results for all classes using different network architectures.
Results are reported for baseline Faster R-CNN (B) and our method (+TDM). All methods use trainval*
for training

Network — VGG16 Resnet101 | InceptionResNet Network — VGG16 Resnet101 | InceptionResNet
B +TDM| B +TDM| B +TDM B 4+TDM B +TDM| 6 B +TDM
AP 233 286 |31.5 352 |34.7 37.3 surfboard 185 226 266 315 |30.7 33.8
AP0 44.7 481 |52.8 553 |555 57.8 tennis racket | 30.4 357 392 435 411 45.1
AP™ 21.6 304 |333 381 |36.7 39.8 bottle 196 269 261 306 |25.9 30.3
APS 9.4 14.2 13.6 16.6 13.5 17.1 wine glass 206 29.0 269 32.6 28.2 33.7
APM 27.1 318 |354 384 |38.1 40.3 cup 23.8 31.0 |30.1 345 |31.3 35.4
APt 32.0 36.9 |445 479 |52.0 52.1 fork 09.7 157 |19.3 253 |23.1 27.9
person 35.7 43.1 |44.3 485 | 44.7 48.8 knife 048 07.1 [109 152 |13.4 17.3
bicycle 16.6 225 239 278 |25.6 29.1 spoon 044 06.1 |082 123 |11.7 13.9
car 235 328 [30.7 351 |295 35.1 bowl 253 309 |30.6 339 |32.1 35.0
motorcycle 251 322 [339 379 |374 39.5 banana 126 144 177 194 |20.0 21.5
airplane 34.5 427 482 516 |51.3 54.8 apple 136 152 175 20.0 |19.6 19.6
bus 421 542 |581 622 |61.6 63.8 sandwich 186 229 275 295 |33.3 32.9
train 38.7 479 |55.2 585 |62.2 62.3 orange 178 19.5 233 247 [26.0 27.3
truck 19.2 251 279 314 [295 33.3 broccoli 16.7 188 222 242 |26.0 25.4
boat 11.9 149 174 19.7 |18.9 21.9 carrot 07.8 09.8 |12.5 15.6 |14.9 16.8
traffic light 13.3 219 [19.7 247 199 24.3 hot dog 156 17.0 [22.0 240 |244 26.6
fire hydrant 43.0 46.6 |53.3 588 |57.8 59.6 pizza 39.1 443 |47.7 521 |51.6 52.5
stop sign 51.3 59.1 |58.1 64.3 |60.5 64.2 donut 311 36.6 |40.3 42.7 |44.1 46.8
parking meter | 26.0 29.4 |334 357 |33.7 36.8 cake 188 19.7 246 26.6 |28.2 29.4
bench 11.0 14.2 17.3 19.1 20.1 21.2 chair 14.1 18.1 19.0 225 21.9 24.5
bird 21.0 253 |287 30.6 |30.3 33.7 couch 214 276 |32.0 384 |384 41.0
cat 40.0 45.1 |55.3 58.0 |63.0 62.3 potted plant |13.5 169 |189 20.8 |19.9 22.6
dog 36.2 39.8 |51.7 527 |57.7 58.6 bed 27.8 320 |37.0 40.0 |44.0 46.5
horse 369 454 499 53.8 |545 55.9 dining table |18.0 21.9 [23.2 274 |26.0 28.9
sheep 31.5 404 |40.1 443 429 48.0 toilet 40.8 472 |52.2 552 |57.5 56.8
cow 30.1 394 |41.6 46.1 |45.0 49.0 tv 37.7 429 [46.3 505 |51.4 52.8
elephant 46.5 56.4 |59.7 65.1 |64.4 67.1 laptop 382 440 |494 552 |56.0 58.0
bear 49.5 524 |66.3 66.7 |7L5 72.6 mouse 309 41.6 |41.4 46.0 |43.1 46.3
zebra 44.6 55.0 |56.7 60.5 |59.0 61.9 remote 11.1 173 199 234 [19.3 24.6
giraffe 50.7 59.7 639 67.7 |67.9 69.6 keyboard 304 369 |[38.7 450 |45.4 48.6
backpack 8.0 105 |11.4 142 124 14.6 cell phone 15.7 19.1 234 236 |23.8 25.8
umbrella 20.8 246 |26.3 30.5 |30.0 32.5 microwave 36.5 41.5 |46.0 50.1 |51.8 52.8
handbag 043 064 |07.1 10.1 |08.2 11.5 oven 206 249 290 31.8 |338 36.1
tie 13.6 19.1 220 26.5 |23.5 27.3 toaster 08.5 12.0 |19.8 134 208 17.0
suitcase 16.1 19.1 225 284 [30.1 33.7 sink 246 279 |285 326 |31.7 34.7
frisbee 31.8 39.8 428 483 |44.1 47.4 refrigerator 19.7 295 [37.6 424 469 48.0
skis 9.5 131 |15.0 19.2 |17.0 21.2 book 04.7 052 |06.5 085 |07.0 09.2
snowboard 16.2 21.0 234 302 |28.4 30.9 clock 343 420 |42.1 453 |420 45.6
sports ball 20.8 342 |31.5 378 |29.7 36.9 vase 225 275 |30.3 340 |34.3 37.0
kite 23.5 338 |306 381 |34.2 39.4 scissors 09.1 114 |17.6 21.7 |255 27.0
baseball bat | 14.7 16.8 |17.2 246 |23.8 27.3 teddy bear 223 284 [340 359 [394 40.0
baseball glove | 20.3 24.6 |25.1 314 |26.1 30.4 hair drier 01.7 00.1 |01.3 00.8 |06.2 01.6
skateboard 27.0 345 [36.2 4211 |39.3 42.7 toothbrush 041 053 |10.1 132 |12.3 14.9

44

3.5 Design and Ablation Analysis

Table 3.5 — Ablation analysis on the COCO benchmark using the Faster R-CNN detection framework.
All methods are trained on trainval* and evaluated on minival* set (Section 3.4). Methods are grouped
based on their base network, best results are highlighted in each group.

Method Net E‘ii:res AP AP AP™ | APS APM AP" | AR! AR AR!®|ARS ARM ARP
Baseline VGG16 Cs 255 46.7 24.6 | 6.1 233 370|239 382 407 | 141 395 55.3
Skip-pool VGG16 Cs,Cs,Cy,Cs | 253 463 259 | 9.1 240 360|246 400 424 | 186 41.8 54.1
TDM [ours] VGGI16 + TDM T 26.2 457 27.2 | 94 251 348 250 40.7 43.0 | 187 43.1 547
TDM [ours] VGGI16 + TDM Tg™ 288 486 30.7 | 11.0 27.1 37.3 | 265 427 450 211 44.2 56.4
TDM [ours] VGG16 + TDM T 20.9 50.3 31.6 | 114 28.1 386 27.3 43.7 46.0 228 447 57.1
TDM [ours] VGGI16 + TDM TS 208 49.9 31.7 |11.7 28.0 39.3| 27.1 435 459 23.9 45.4 56.8
Bascline ResNet101 Cs 321 532 338 | 94 207 457 | 283 443 46.7 | 193 463 60.9
TDM [ours] ~ ResNet101 + TDM Tgut 344 544 371 | 109 318 482 | 30.1 475 498 217 49.1 64.0
TDM [ours] ~ ResNet101 + TDM T 353 551 383 112 33.0 482 |30.7 480 505 | 225 50.1 63.6
TDM [ours] ResNet101 + TDM 9% 35.7 56.0 38.5 |16.8 39.2 49.0 30.9 48.5 50.9 28.1 55.6 68.5
Baseline TRNv2 Bao 357 56.5 380 | 89 32.0 525308 47.8 503 | 19.6 49.9 66.9
TDM [ours] IRNv2 + TDM it 37.3 579 305 114 333 533 |32.8 49.1 515 | 227 50.6 67.5
TDM [ours] IRNv2 + TDM T 38.1 58.6 40.7 |17.4 41.1 54.7 324 50.1 52.6 28.9 57.2 72.3

3.5 Design and Ablation Analysis

In this Section, we perform control and ablative experiments to study the importance
of top-down and lateral modules in the proposed TDM network.

3.5.1 How low should the Top-Down Modulation go?

In Section 3.3.3, we discussed the principles that we follow to add top-down and
lateral modules. We connected these modules till the lowest layer choosing design
decisions that hardware constraints would permit. However, is that overkill? Is
there an optimal layer, after which this modulation does not help or starts hurting?
To answer these questions, we limit the layer till which the modulation process
happens, and use those features for Faster R-CNN.

Recall that the TDN network is built progressively, i.e., we add one pair of
lateral and top-down module at a time. So for this control study, we simply let
each subsequent pair train for the entire learning schedule, treating the T°% as the
final output. We report the results on minival* set in Table 3.5. As we can see,
adding more top-down modulation helps in general. However, for VGG16, we see
that the performance saturates at T$", and adding modules till T"* do not seem to
help much. Deciding the endpoint criteria for top-down modulation is an interesting
future direction.

3.5.2 No lateral modules

To analyze the importance of lateral modules, and to control for the extra pa-
rameters added by the TDM network (Table 3.2), we train additional baselines with

45

3.5 Design and Ablation Analysis

Table 3.6 — Importance of lateral modules. (top block) ~ T; ; is a modified top-down module to
account for more parameters in the TDM network. (bottom block) (T ;,L;) is the proposed top-down
modulation network. All methods use the VGG16 network

with L | AP AP°C AP | APS APM APY| AR! AR!® AR! AR® ARM ARE
~Ts.4 248 44.3 249 | 6.2 233 348|237 383 405 |14.3 40.1 53.7
~Tys 25.1 43.8 25.8 | 6.8 24.0 345|243 389 41.0 | 152 40.5 53.9
~ T3 26.5 46.1 274 | 8.0 252 358|246 399 422 |164 41.6 54.9
~ Ty, 21.4 383 21.6 | 56 203 285/220 359 377 |134 37.2 49.0
(Tsa,La) v 262 457 27.2 | 94 251 348 250 40.7 43.0 187 43.1 54.7
(Tas,Ls) v | 288 486 30.7 11.0 27.1 373|265 427 450 |21.1 442 56.4
(Ts2,Le) v 29.9 50.3 31.6 11.4 28.1 386 27.3 43.7 46.0 |22.8 44.7 57.1
(To1,L1) v 296 49.8 31.1 11.8 272 388 27.1 432 455 | 223 443 56.5

variants of VGG16 + TDM network. In particular, we remove the lateral modules
and use convolutional and upsampling operations from the top-down modules T to
train ‘deeper’ variants of VGG16 as baseline. To control for the extra parameters
from lateral modules, we also increase the parameters in the convolutional layers.
Note that for this baseline, we follow training methodology and design decisions
used for training TDM networks.

As shown in Table 3.6, even though using more depth increases the performance
slightly, the performance boost due to lateral modules is much higher. This high-
lights the importance of dividing the capacity of TDM network amongst lateral and
top-down modules.

3.5.3 No top-down modules

Next we want to study the importance of the top-down path introduced by our
TDM network. We believe that this path is responsible for transmitting contextual
features and for selection of relevant finer details. Removing the top-down path
exposes the ‘skip’-connections from bottom-up features, which can be used for object
detection. We follow the strategy from [16], where they ROI-pool features from
different layers, L2-normalize and concatenate these features and finally scale them
back to the original conv5_3 magnitude and dimension.

We tried many variants of the Skip-pooling baseline, and report the best results
in Table 3.5 (Skip-pool). We see that performance for small objects (AP®) increases
slightly, but overall the AP does not change much. This highlights the importance
of using high-level contextual features in the top-down path for the selection of
low-level features.

46

3.5 Design and Ablation Analysis

Table 3.7 — Impact of Pre-training. All methods use Resnet101 as the base network

pre-trained
on:

AP AP® AP™ AP® APM AP" AR' AR' AR'" AR® ARM AR"

Tas Imagenet 34.0 549 36.2 103 319 472294 46.1 48.8 |21.3 484 624
Tazs +COCO 344 544 37.1 109 31.8 482 30.1 47.5 49.8 |21.7 49.1 64.0
T32 Imagenet 34.1 55.8 36.3 104 323 472294 459 48.6 |21.2 481 62.2
Ts,2 +COCO 35.3 55.1 38.3 11.2 33.0 482 30.7 48.0 50.5 |22.5 50.1 63.6

3.5.4 Impact of Pre-training

Finally, we study the impact of using a model pre-trained on the detection
task to initialize our base networks and ResNet101/InceptionResNetv2’s RPN and
RCN networks vs. using only an image classification [58] pre-trained model. In
Table 3.7, we see that initialization does not impact the performance by a huge
margin. However, pre-training on the detection task is consistently better than
using the classification initialization.

Conclusion. This Chapter introduces the Top-Down Modulation (TDM) net-
work, which leverages top-down contextual features and lateral connections to bottom-
up features for object detection. The TDM network uses top-down context to select
low-level finer details, and learns to integrate them together. Through extensive
experiments on the challenging COCO dataset, we demonstrate the effectiveness
and importance of features from the TDM network. We show empirically that the
proposed representation benefits all objects, big and small, and is helpful for accu-
rate localization. Even though we focused on the object detection, we believe these
top-down modulated features will be helpful in a wide variety of computer vision
tasks.

47

Chapter 4

Online Hard Example Mining

If you would only recognize that life is hard,
things would be so much easier for you.

Louis Brandeis

The Object detection systems, including the ones discussed in the last two
Chapters, are trained through a reduction that converts object detection into an
image classification problem. This reduction introduces a new challenge that is
not found in natural image classification tasks: the training set is distinguished
by a large imbalance between the number of annotated objects and the number of
background examples (image regions not belonging to any object class of interest).
In the case of sliding-window object detectors, such as the deformable parts model
(DPM) [79], this imbalance may be as extreme as 100,000 background examples to
every one object. The recent trend towards object-proposal-based detectors [96, 288]
mitigates this issue to an extent, but the imbalance ratio may still be high (e.g.,
70:1). This challenge opens space for learning techniques that cope with imbalance
and yield faster training, higher accuracy, or both.

Unsurprisingly, this is not a new challenge and a standard solution, originally
called bootstrapping (and now often called hard negative mining), has existed for at
least 20 years. Bootstrapping was introduced in the work of Sung and Poggio [268]
in the mid-1990’s (if not earlier) for training face detection models. Their key idea
was to gradually grow, or bootstrap, the set of background examples by selecting
those examples for which the detector triggers a false alarm. This strategy leads
to an iterative training algorithm that alternates between updating the detection
model given the current set of examples, and then using the updated model to find
new false positives to add to the bootstrapped training set. The process typically
commences with a training set consisting of all object examples and a small, random

49

4. Online Hard Example Mining

set of background examples.

Bootstrapping has seen widespread use in the intervening decades of object
detection research. Dalal and Triggs [54] used it when training SVMs for pedes-
trian detection. Felzenszwalb et al. [79] later proved that a form of bootstrapping
for SVMs converges to the global optimal solution defined on the entire dataset.
Their algorithm is often referred to as hard negative mining and is frequently used
when training SVMs for object detection [96, 120, 288]. Bootstrapping was also
successfully applied to a variety of other learning models, including shallow neu-
ral networks [230] and boosted decision trees [62]. Even modern detection methods
based on deep convolutional neural networks (ConvNets) [155, 166], such as R-CNN
[96] and sppnet [120], still employ SVMs trained with hard negative mining.

It may seem odd then that the current state-of-the-art object detectors, embod-
ied by Fast R-CNN [95] and its descendants [223], do not use bootstrapping. The
underlying reason is a technical difficulty brought on by the shift towards purely
online learning algorithms, particularly in the context of deep ConvNets trained
with stochastic gradient descent (SGD) on millions of examples. Bootstrapping,
and its variants in the literature, rely on the aforementioned alternation template:
(a) for some period of time a fized model is used to find new examples to add to
the active training set; (b) then, for some period of time the model is trained on
the fized active training set. Training deep ConvNet detectors with SGD typically
requires hundreds of thousands of SGD steps and freezing the model for even a few
iterations at a time would dramatically slow progress. What is needed, instead, is
a purely online form of hard example selection.

In this Chapter, we propose a novel bootstrapping technique called online hard
ezample mining' (OHEM) for training state-of-the-art detection models based on
deep ConvNets. The algorithm is a simple modification to SGD in which training
examples are sampled according to a non-uniform, non-stationary distribution that
depends on the current loss of each example under consideration. The method
takes advantage of detection-specific problem structure in which each SGD mini-
batch consists of only one or two images, but thousands of candidate examples. The
candidate examples are subsampled according to a distribution that favors diverse,
high loss instances. Gradient computation (backpropagation) is still efficient because
it only uses a small subset of all candidates. We apply OHEM to the standard Fast
R-CNN detection method and show three benefits compared to the baseline training
algorithm:

"We use the term hard ezample mining, rather than hard negative mining, because our method
is applied in a multi-class setting to all classes, not just a “negative” class.

50

4.1 Related Work

e It removes the need for several heuristics and hyperparameters commonly used
in region-based ConvNets.

e It yields a consistent and significant boosts in mean average precision.

o Its effectiveness increases as the training set becomes larger and more difficult,
as demonstrated by results on the MS COCO dataset.

Moreover, the gains from OHEM are complementary to recent improvements
in object detection, such as multi-scale testing [120] and iterative bounding-box
regression [93]. Combined with these tricks, OHEM gives state-of-the-art results of
78.9% and 76.3% mAP on PASCAL VOC 2007 and 2012, respectively.

4.1 Related Work

Object detection is one of the oldest and most fundamental problems in computer
vision. The idea of dataset bootstrapping [230, 268], typically called hard negative
mining in recent work [79], appears in the training of most successful object detec-
tors [54, 62, 79, 93, 96, 120, 185, 230, 260]. Many of these approaches use SVMs as
the detection scoring function, even after training a deep convolutional neural net-
work (ConvNet) [155, 166] for feature extraction. One notable exception is the Fast
R-CNN detector [95] and its descendants, such as Faster R-CNN [223]. Since these
models do not use SVMs, and are trained purely online with SGD, existing hard ex-
ample mining techniques cannot be immediately applied. This work addresses that
problem by introducing an online hard example mining algorithm that improves op-
timization and detection accuracy. We briefly review hard example mining, modern
ConvNet-based object detection, and relationships to concurrent works using hard
example selection for training deep networks.

Hard example mining. There are two hard example mining algorithms in com-
mon use. The first is used when optimizing SVMs. In this case, the training al-
gorithm maintains a working set of examples and alternates between training an
SVM to convergence on the working set, and updating the working set by removing
some examples and adding others according to a specific rule [79]. The rule removes
examples that are “easy” in the sense that they are correctly classified beyond the
current model’s margin. Conversely, the rule adds new examples that are hard in
the sense that they violate the current model’s margin. Applying this rule leads to
the global SVM solution. Importantly, the working set is usually a small subset of
the entire training set.

The second method is used for non-SVMs and has been applied to a variety of

51

4.2 Preliminaries: Fast R-CNN

models including shallow neural networks [230] and boosted decision trees [62]. This
algorithm usually starts with a dataset of positive examples and a random set of
negative examples. The machine learning model is then trained to convergence on
that dataset and subsequently applied to a larger dataset to harvest false positives.
The false positives are then added to the training set and then the model is trained
again. This process is usually iterated only once and does not have any convergence
proofs.

ConvNet-based object detection. In the last three years significant gains have
been made in object detection. These improvements were made possible by the
successful application of deep ConvNets [155] to ImageNet classification [58]. The
R-CNN [96] and OverFeat [243] detectors lead this wave with impressive results
on PASCAL VOC [72] and ImageNet detection. OverFeat is based on the sliding-
window detection method, which is perhaps the most intuitive and oldest search
method for detection. R-CNN; in contrast, uses region proposals [4, 7, 32, 43, 69,
153, 288, 329], a method that was made popular by the selective search algorithm
[288]. Since R-CNN, there has been rapid progress in region-based ConvNets, in-
cluding sppnet [120], MR-CNN [93], and Fast R-CNN [95], which our work builds
on.

Hard example selection in deep learning. There is recent work [181, 257, 297]
concurrent to our own that selects hard examples for training deep networks. Similar
to our approach, all these methods base their selection on the current loss for each
datapoint. [257] independently selects hard positive and negative example from
a larger set of random examples based on their loss to learn image descriptors.
Given a positive pair of patches, [297] finds hard negative patches from a large set
using triplet loss. Akin to our approach, [181] investigates online selection of hard
examples for mini-batch SGD methods. Their selection is also based on loss, but
the focus is on ConvNets for image classification. Complementary to [181], we focus
on online hard example selection strategy for region-based object detectors.

4.2 Preliminaries: Fast R-CNN

We first summarize the Fast R-CNN [95] (FRCN) framework. FRCN takes as input
an image and a set of object proposal regions of interest (Rols). The FRCN network
itself can be divided into two sequential parts: a convolutional (conv) network with
several convolution and max-pooling layers (Figure 4.1, “Convolutional Network”);
and an Rol network with an Rol-pooling layer, several fully-connected (fc) layers
and two loss layers (Figure 4.1, “Rol Network”).

52

4.2 Preliminaries: Fast R-CNN

Convolutional Network Rol Network

Convolution Feature Maps Fully Softmax

Connected Classification
Layers Loss

Soft-L1
Bbox Reg.
Loss

Selective-Search

Rols (R) Mini-batch or each Ryq

[R| = 2000 Sampler | [Rsell = Batch Size

Figure 4.1 — Architecture of the Fast R-CNN approach (see Section 4.2 for details).

During inference, the conv network is applied to the given image to produce
a conv feature map, size of which depends on the input image dimensions. Then,
for each object proposal, the Rol-pooling layer projects the proposal onto the conv
feature map and extracts a fixed-length feature vector. Each feature vector is fed into
the fc layers, which finally give two outputs: (1) a softmax probability distribution
over the object classes and background; and (2) regressed coordinates for bounding-
box relocalization.

There are several reasons for choosing FRCN as our base object detector, apart
from it being a fast end-to-end system. Firstly, the basic two network setup (conv
and Rol) is also used by other recent detectors like sppnet and MR-CNN; therefore,
our proposed algorithm is more broadly applicable. Secondly, though the basic setup
is similar, FRCN also allows for training the entire conv network, as opposed to both
sppnet and MR-CNN which keep the conv network fixed. And finally, both sppnet
and MR-CNN require features from the Rol network to be cached for training a
separate SVM classifier (using hard negative mining). FRCN uses the Rol network
itself to train the desired classifiers. In fact, [95] shows that in the unified system
using the SVM classifiers at later stages was unnecessary.

4.2.1 Training

Like most deep networks, FRCN is trained using stochastic gradient descent
(SGD). The loss per example Rol is the sum of a classification log loss that encour-
ages predicting the correct object (or background) label and a localization loss that
encourages predicting an accurate bounding box (see [95] for details).

To share conv network computation between Rols, SGD mini-batches are cre-
ated hierarchically. For each mini-batch, N images are first sampled from the
dataset, and then B/N Rols are sampled from each image. Setting N = 2 and
B = 128 works well in practice [95]. The Rol sampling procedure uses several
heuristics, which we describe briefly below. One contribution of this Chapter is to

53

4.3 Our Approach

eliminate some of these heuristics and their hyperparameters.

Foreground Rols. For an example Rol to be labeled as foreground (fg), its
intersection over union (IoU) overlap with a ground-truth bounding box should be
at least 0.5. This is a fairly standard design choice, in part inspired by the evaluation
protocol of the PASCAL VOC object detection benchmark. The same criterion is
used in the SVM hard mining procedures of R-CNN, sppnet, and MR-CNN. We use
the same setting.

Background Rols. A region is labeled background (bg) if its maximum IoU with
ground truth is in the interval [bg_lo,0.5). A lower threshold of bg_lo = 0.1 is used
by both FRCN and sppnet, and is hypothesized in [95] to crudely approximate hard
negative mining; the assumption is that regions with some overlap with the ground
truth are more likely to be the confusing or hard ones. We show in Section 4.4.4 that
although this heuristic helps convergence and detection accuracy, it is suboptimal
because it ignores some infrequent, but important, difficult background regions. Our
method removes the bg_lo threshold.

Balancing fg-bg Rols: To handle the data imbalance described in the beginning
of this Chapter, [95] designed heuristics to rebalance the foreground-to-background
ratio in each mini-batch to a target of 1 : 3 by undersampling the background patches
at random, thus ensuring that 25% of a mini-batch is fg Rols. We found that this
is an important design decision for the training FRCN. Removing this ratio (i.e.
randomly sampling Rols), or increasing it, decreases accuracy by ~3 points mAP.
With our proposed method, we can remove this ratio hyperparameter with no ill
effect.

4.3 Our Approach

We propose a simple yet effective online hard example mining algorithm for training
Fast R-CNN (or any Fast R-CNN style object detector). We argue that the current
way of creating mini-batches for SGD (Section 4.2.1) is inefficient and suboptimal,
and we demonstrate that our approach leads to better training (lower training loss)
and higher testing performance (mAP).

4.3.1 Online Hard Example Mining

Recall the alternating steps that define a hard example mining algorithm: (a)
for some period of time a fixzed model is used to find new examples to add to the

54

4.3 Our Approach

Convolutional Network Rol Network

@ For each R
Rol Pooling Read-only Layer

Layer

Softmax
Classification
Loss

Fully
Connected
Layers

| Diverse &
(x)——— Hard Rol

J%R»Ll Sampler

Bhox Reg. Loss

Selective-Search
Rols (R)
|R| = 2000

0
Rhard-sel

|Rhard-sel] = Batch Size
Order of Computation:
1. Forward for Conv. Network Backward Computation for:
2. Forward for each R' (—) 1. Bach Rharg—ser () Softmax
3. Selection of Rpard-sel 2. Gradient Accumulation by Classification
4. Forward-Backward for each Riarq—sel (—) Rol Pooling Layer Loss
5. Backward for Conv. Network 3. Conv. Network (-)
Soft-L1
Bbox Reg
Shared Weights ——— Forward-Backward each R! Fully Loss
Forward for each RE ~ ===---= Forward-Backward for each Image Comnected

) Layers For each Rpard-se

Figure 4.2 — Architecture of the proposed training algorithm. Given an image, and selective search
Rols, the conv network computes a conv feature map. In (a), the readonly Rol network runs a forward
pass on the feature map and all Rols (shown in green arrows). Then the Hard Rol module uses these
Rol losses to select B examples. In (b), these hard examples are used by the Rol network to compute
forward and backward passes (shown in red arrows).

active training set; (b) then, for some period of time the model is trained on the
fized active training set. In the context of SVM-based object detectors, such as the
SVMs trained in R-CNN or sppnet, step (a) inspects a variable number of images
(often 10’s or 100’s) until the active training set reaches a threshold size, and then
in step (b) the SVM is trained to convergence on the active training set. This
process repeats until the active training set contains all support vectors. Applying
an analogous strategy to FRCN ConvNet training slows learning because no model
updates are made while selecting examples from the 10’s or 100’s of images.

Our main observation is that these alternating steps can be combined with how
FRCN is trained using online SGD. The key is that although each SGD iteration
samples only a small number of images, each image contains thousands of example
Rols from which we can select the hard examples rather than a heuristically sampled
subset. This strategy fits the alternation template to SGD by “freezing” the model
for only one mini-batch. Thus the model is updated exactly as frequently as with
the baseline SGD approach and therefore learning is not delayed.

More specifically, the online hard example mining algorithm (OHEM) proceeds
as follows. For an input image at SGD iteration t, we first compute a conv feature
map using the conv network. Then the Rol network uses this feature map and the all
the input Rols (R), instead of a sampled mini-batch [95], to do a forward pass. Recall
that this step only involves Rol pooling, a few fc layers, and loss computation for each

55

4.3 Our Approach

Rol. The loss represents how well the current network performs on each Rol. Hard
examples are selected by sorting the input Rols by loss and taking the B/N examples
for which the current network performs worst. Most of the forward computation is
shared between Rols via the conv feature map, so the extra computation needed to
forward all Rols is relatively small. Moreover, because only a small number of Rols
are selected for updating the model, the backward pass is no more expensive than
before.

However, there is a small caveat: co-located Rols with high overlap are likely
to have correlated losses. Moreover, these overlapping Rols can project onto the
same region in the conv feature map, because of resolution disparity, thus lead-
ing to loss double counting. To deal with these redundant and correlated regions,
we use standard non-maximum suppression (NMS) to perform deduplication (the
implementation from [95]). Given a list of Rols and their losses, NMS works by
iteratively selecting the Rol with the highest loss, and then removing all lower loss
Rols that have high overlap with the selected region. We use a relaxed IoU threshold
of 0.7 to suppress only highly overlapping Rols.

We note that the procedure described above does not need a fg-bg ratio for
data balancing. If any class were neglected, its loss would increase until it has a
high probability of being sampled. There can be images where the £g Rols are easy
(e.g. canonical view of a car), so the network is free to use only bg regions in a
mini-batch; and vice-versa when bg is trivial (e.g. sky, grass etc.), the mini-batch
can be entirely fg regions.

4.3.2 Implementation details

There are many ways to implement OHEM in the FRCN detector, each with
different trade-offs. An obvious way is to modify the loss layers to do the hard
example selection. The loss layer can compute loss for all Rols, sort them based
on this loss to select hard Rols, and finally set the loss of all non-hard Rols to O.
Though straightforward, this implementation is inefficient as the Rol network still
allocates memory and performs backward pass for all Rols, even though most Rols
have 0 loss and hence no gradient updates (a limitation of current deep learning
toolboxes).

To overcome this, we propose the architecture presented in Figure 4.2. Our
implementation maintains two copies of the Rol network, one of which is readonly.
This implies that the readonly Rol network (Figure 4.2(a)) allocates memory only
for forward pass of all Rols as opposed to the standard Rol network, which allocates
memory for both forward and backward passes. For an SGD iteration, given the

56

4.4 Design and Ablation Analysis

Table 4.1 — Impact of hyperparameters on FRCN training

Experiment Model N LR B bg_lo 07 mAP
1 VGGM 59.6
9 Fast R-CNN [95] VGG16 2 0.001 128 0.1 67.9
3 Removing hard mining VGGM 57.2
A heuristic (Section 4.4.2) VGG16 2 0001 128 0 67.5
5 Fewer images per batch 0.1 66.3
6 (Section 4.4.3) VGGI6 1 0.001 128 0 66.3
7 1 57.7
8 Bigger batch, High VGGM 2 0.004 2048 0 60.4
! i (Bection 144) VGG16 . 0.003 2048 0 67.5
10 2 ’ 68.7
11 VGG16 1 0.001 128 0 69.7
19 Our Approach VGGM 2 000l 1o . 62.0
13 VGG16 ’ 69.9

conv feature map, the readonly Rol network performs a forward pass and computes
loss for all input Rols (R) (Figure 4.2, arrows). Then the hard Rol sam-
pling module uses the procedure described in Section 4.3.1 to select hard examples
(Rhard-se1), which are input to the regular Rol network (Figure 4.2(b), red arrows)).
This network computes forward and backward passes only for Ryard.sel, accumulates
the gradients and passes them to the conv network. In practice, we use all Rols from
all N images as R, therefore the effective batch size for the readonly Rol network
is |R| and for the regular Rol network is the standard B from Section 4.2.1.

We implement both options described above using the Caffe [135] framework
(see [95]). Our implementation uses gradient accumulation with N forward-backward
passes of single image mini-batches. Following FRCN [95], we use N = 2 (which
results in |R| ~ 4000) and B = 128. Under these settings, the proposed architecture
(Figure 4.2) has similar memory footprint as the first option, but is > 2x faster.
Unless specified otherwise, the architecture and settings described above will be
used throughout this Chapter.

4.4 Design and Ablation Analysis

This Section compares FRCN training with online hard example mining (OHEM)
to the baseline heuristic sampling approach. We also compare FRCN with OHEM
to a less efficient approach that uses all available example Rols in each mini-batch,
not just the B hardest examples.

57

4.4 Design and Ablation Analysis

4.4.1 Experimental Setup

We conduct experiments with two standard ConvNet architectures: VGG_CNN_M_ 1024

(VGGM, for short) from [36], which is a wider version of alexnet [155], and VGG16
from [258]. All experiments in this Section are performed on the PASCAL VOCO07
dataset. Training is done on the trainval set and testing on the test set. Unless
specified otherwise, we will use the default settings from FRCN [95]. We train all
methods with SGD for 80k mini-batch iterations, with an initial learning rate of
0.001 and we decay the learning rate by 0.1 every 30k iterations. The baseline num-
bers reported in Table 4.1 (row 1-2) were reproduced using our training schedule
and are slightly higher than the ones reported in [95].

4.4.2 OHEM vs. Heuristic Sampling

Standard FRCN, reported in Table 4.1 (rows 1 — 2), uses bg_lo = 0.1 as a
heuristic for hard mining (Section 4.2.1). To test the importance of this heuristic,
we ran FRCN with bg_lo = 0. Table 4.1 (rows 3 — 4) shows that for VGGM,
mAP drops by 2.4 points, whereas for VGG16 it remains roughly the same. Now
compare this to training FRCN with OHEM (rows 11 — 13). OHEM improves mAP
by 2.4 points compared to FRCN with the bg_lo = 0.1 heuristic for VGGM, and 4.8
points without the heuristic. This result demonstrates the sub-optimality of these
heuristics and the effectiveness of our hard mining approach.

4.4.3 Robust Gradient Estimates

One concern over using only N = 2 images per batch is that it may cause
unstable gradients and slow convergence because Rols from an image may be highly
correlated [273]. FRCN [95] reports that this was not a practical issue for their
training. But this detail might raise concerns over our training procedure because
we use examples with high loss from the same image and as a result they may be
more highly correlated. To address this concern, we experiment with N = 1 in order
to increase correlation in an effort to break our method. As seen in Table 4.1 (rows
5 — 6,11), performance of the original FRCN drops by ~1 point with N = 1, but
when using our training procedure, mAP remains approximately the same. This
shows that OHEM is robust in case one needs fewer images per batch in order to
reduce GPU memory usage.

4.4.4 Why just hard examples, when you can use all?

Online hard example mining is based on the hypothesis that it is important to
consider all Rols in an image and then select hard examples for training. But what if

58

4.4 Design and Ablation Analysis

e FRCN = FRCN (N=1)
=———FRCN (bg_10=0) ———TFRCN (N=1, bg_lo=1)
FRCN (bg-lo=0, B=2048, LR=4e-3) FRCN (N=1, bg-1o=0, B=2048, LR=4e-3)
e Qur Approach (bg-lo=0) s Qur Approach (N=1, bg_lo=0)
T 0.14 T 0.14
= 0.12 = 0.12
~ ~
Z 01 8 01
o ¥ A |
B ook & 008 |
= g
< =
g G,OG\ S 006
= | =3
0.04 . - j 0.04
20k 40k 60k 80k 20k 40k 60k 80k
Iterations — Iterations —

Figure 4.3 — Training loss is computed for various training procedures using VGG16 networks discussed
in Section 4.4. We report mean loss per Rol. These results indicate that using hard mining for training
leads to lower training loss than any of the other heuristics.

we train with all the Rols, not just the hard ones? The easy examples will have low
loss, and won’t contribute much to the gradient; training will automatically focus
on the hard examples. To compare this option, we ran standard FRCN training
with a large mini-batch size of B = 2048, using bg_lo = 0, N € {1,2} and with
other hyperparameters fixed. Because this experiment uses a large mini-batch, it’s
important to tune the learning rate to adjust for this change. We found optimal
results by increasing it to 0.003 for VGG16 and 0.004 for VGGM. The outcomes are
reported in Table 4.1 (rows 7 —10). Using these settings, mAP of both VGG16 and
VGGM increased by ~1 point compared to B = 128, but the improvement from
our approach is still > 1 points over using all Rols. Moreover, because we compute
gradients with a smaller mini-batch size training is faster.

4.4.5 Better Optimization

Finally, we analyze the training loss for the various FRCN training methods
discussed above. It’s important to measure training loss in a way that does not
depend on the sampling procedure and thus results in a valid comparison between
methods. To achieve this goal, we take model snapshots from each method every 20k
steps of optimization and run them over the entire VOCO07 trainval set to compute
the average loss over all Rols. This measures the training set loss in a way that
does not depend on the example sampling scheme.

Figure 4.3 shows the average loss per Rol for VGG16 with the various hyperpa-
rameter settings discussed above and presented in Table 4.1. We see that bg_lo =0
results in the highest training loss, while using the heuristic bg_lo = 0.1 results in a

59

4.5 Results

Table 4.2 — Computational statistics of training FRCN [95] and FRCN with OHEM (using an Nvidia
Titan X GPU)

VGGM VGG16
FRCN Ours FRCN FRCN* Ours*
time (sec/iter) 013 022 060 057 1.00
max. memory (G) 2.6 3.6 11.2 6.4 8.7

*: uses gradient accumulation over two forward/backward passes

much lower training loss. Increasing the mini-batch size to B = 2048 and increasing
the learning rate lowers the training loss below the bg_lo = 0.1 heuristic. Our
proposed online hard example mining method achieves the lowest training loss of
all methods, validating our claims that OHEM leads to better training for FRCN.

4.4.6 Computational Cost

OHEM adds reasonable computational and memory overhead, as reported in
Table 4.2. OHEM costs 0.09s per training iteration for VGGM network (0.43s for
VGG16) and requires 1G more memory (2.3G for VGG16). Given that FRCN [95] is
a fast detector to train, the increase in training time is acceptable for most scenarios.

4.5 Results

In this Section, we evaluate our method on VOC 2012 [72] as well as the more
challenging MS COCO [175] dataset. We demonstrate consistent and significant
improvement in FRCN performance when using the proposed OHEM approach.
Per-class results are also presented on VOC 2007 for comparison with prior work.

Experimental Setup. We use VGG16 for all experiments. When training on
VOCO7 trainval, we use the SGD parameters as in Section 4.4 and when using extra
data (07412 and 07++12, see Table 4.3 and 4.4), we use 200k mini-batch iterations,
with an initial learning rate of 0.001 and decay step size of 40k. When training on
MS COCO [175], we use 240k mini-batch iterations, with an initial learning rate of
0.001 and decay step size of 160k, owing to a larger epoch size.

4.5.1 VOC 2007 and 2012 Results

Table 4.3 shows that on VOC07, OHEM improves the mAP of FRCN from
67.2% to 69.9% (and 70.0% to 74.6% with extra data). On VOC12, OHEM leads to
an improvement of 4.1 points in mAP (from 65.7% to 69.8%). With extra data, we
achieve an mAP of 71.9% as compared to 68.4% mAP of FRCN, an improvement

60

4.6 Adding Bells and Whistles

Table 4.3 — VOC 2007 test detection average precision (%). All methods use VGG16. Training
set key: 07: VOCO7 trainval, 07+12: union of 07 and VOCI12 trainval. All methods use bounding-
box regression. Legend: M: using multi-scale for training and testing, B: multi-stage bbox regression.
FRCN* refers to FRCN [95] with our training schedule

method M B | train set mAP | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN [95] 07 66.9 | 74.5 783 69.2 532 366 77.3 782 820 40.7 727 67.9 79.6 79.2 73.0 69.0 30.1 654 702 758 65.8
FRCN* 07 67.2 | 746 76.8 67.6 529 378 787 788 81.6 422 736 670 794 79.6 741 683 334 659 68.7 754 68.1
Ours 07 69.9 | 71.2 783 69.2 57.9 465 81.8 79.1 832 479 762 68.9 832 80.8 758 727 399 67.5 662 756 75.9
FRCN* v v o7 724 | 778 813 714 604 483 85.0 84.6 86.2 494 80.7 681 84.1 86.7 802 753 387 719 715 779 67.8
I(\‘Ilf;;] 93] v |07 74.9 | 78.7 818 76.7 66.6 61.8 81.7 85.3 82.7 57.0 81.9 732 84.6 86.0 80.5 749 449 7.7 69.7 787 79.9
Ours v ovo7 75.1 | 77.7 819 76.0 649 558 86.3 86.0 86.8 53.2 829 70.3 85.0 863 787 780 46.8 761 72.7 80.9 75.5
FRCN [95] 07+12 70.0 | 77.0 781 69.3 59.4 383 81.6 78.6 86.7 42.8 78.8 689 84.7 820 76. 69.9 31.8 70.1 748 80.4 704
Ours 07+12 74.6 | 77.7 812 741 642 50.2 86.2 83.8 88.1 552 80.9 738 85.1 826 778 749 437 761 742 823 T79.6
2115;] 93] v |07T+12 78.2 | 80.3 84.1 785 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 485 76.3 755 85.0 81.0
Ours v v 07412 78.9 |80.6 85.7 79.8 69.9 60.8 88.3 87.9 89.6 59.7 85.1 76.5 87.1 87.3 824 8.8 53.7 80.5 78.7 84.5 80.7

of 3.5 points. Interestingly the improvements are not uniform across categories.
Bottle, chair, and tvmonitor show larger improvements that are consistent across
the different PASCAL splits. Why these classes benefit the most is an interesting
and open question.

4.5.2 MS COCO Results

To test the benefit of using OHEM on a larger and more challenging dataset,
we conduct experiments on MS COCO [175] and report numbers from test-dev 2015
evaluation server (Table 4.5). On the standard COCO evaluation metric, FRCN [95]
scores 19.7% AP, and OHEM improves it to 22.6% AP.? Using the VOC overlap
metric of IoU > 0.5, OHEM gives a 6.6 points boost in AP?°. It is also interesting
to note that OHEM helps improve the AP of medium sized objects by 4.9 points
on the strict COCO AP evaluation metric, which indicates that the proposed hard
example mining approach is helpful when dealing with smaller sized objects. Note
that FRCN with and without OHEM were trained on MS COCO train set.

4.6 Adding Bells and Whistles

We’ve demonstrated consistent gains in detection accuracy by applying OHEM to
FRCN training. In this Section, we show that these improvements are orthogonal
to recent bells and whistles that enhance object detection accuracy. OHEM with
the following two additions yields state-of-the-art results on VOC and competitive
results on MS COCO.

2COCO AP averages over classes, recall, and IoU levels. See http://mscoco.org/dataset/
#detections-eval for details.

61

http://mscoco.org/dataset/#detections-eval
http://mscoco.org/dataset/#detections-eval

4.6 Adding Bells and Whistles

Table 4.4 — VOC 2012 test detection average precision (%). All methods use VGG16. Training
set key: 12: VOCI12 trainval, 07++12: union of VOCO07 trainval, VOCOQ7 test, and VOC12 trainval,
+COCO: a model trained on COCO trainval and fine-tuned on 07++12. Legend: M: using multi-scale
for training and testing, B: iterative bbox regression

method M B | train set mAP | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
FRCN [95] 12 65.7 | 80.3 74.7 669 469 37.7 739 686 87.7 41.7 711 51.1 86.0 77.8 798 69.8 321 655 638 764 617
Ours! 12 69.8 | 81.5 78.9 69.6 523 465 774 721 882 488 738 583 869 79.7 814 750 43.0 69.5 648 785 68.9
2115;1 93] vo|12 70.7 | 85.0 79.6 71.5 553 57.7 76.0 73.9 84.6 50.5 743 61.7 8.5 79.9 8L7 764 41.0 69.0 61.2 77.7 T2.1
Ours? v v |12 72.9 | 85.8 823 74.1 558 551 795 77.7 904 521 755 584 886 824 831 783 470 772 651 79.3 704
FRCN [95] 07++12 68.4 | 823 784 708 523 387 778 716 89.3 442 73.0 550 87.5 80.5 80.8 720 351 683 657 804 64.2
Ours?® 074412 71.9 | 83.0 81.3 725 55.6 49.0 789 747 895 523 750 61.0 87.9 80.9 824 763 471 725 67.3 80.6 T1.2
MR-

(‘I\FI{\I 93] vV 0T4++12 73.9 | 85.5 829 76.6 57.8 62.7 794 77.2 86.6 55.0 79.1 622 87.0 834 847 789 453 734 658 80.3 T4.0
Ours! vV 0T++12 76.3 | 86.3 85.0 77.0 60.9 59.3 81.9 81.1 91.9 558 80.6 63.0 90.8 85.1 853 80.7 549 783 70.8 828 749
Ours® v v |+COCO 80.1 |/90.1 87.4 79.9 65.8 66.3 86.1 85.0 92.9 62.4 83.4 69.5 90.6 88.9 88.9 83.6 59.0 82.0 74.7 88.2 77.3

Nink1, 2link2, 3link3, *link4, ®link5

Table 4.5 — MS COCO 2015 test—dev detection average precision (%). All methods use VGG16.
Legend: M: using multi-scale for training and testing

AP@IoU area FRCN' Ours Ours [+M] Ours* [+M]

0.50 : 0.95] all 197 226 24.4 25.5
0.50 all 359 425 44.4 45.9
0.75 all 199 222 24.8 26.1
(0.50:0.95] small 35 5.0 7.1 7.4
[0.50:0.95] med. 188 23.7 26.4 27.7
[0.50:0.95] large 34.6 37.9 38.5 40.3

Tfrom the leaderboard, *trained on trainval set

Multi-scale (M). We adopt the multi-scale strategy from sppnet [120] (and
used by both FRCN [95] and MR-CNN [93]). Scale is defined as the size of the
shortest side (s) of an image. During training, one scale is chosen at random,
whereas at test time inference is run on all scales. For VGG16 networks, we use
s € {480,576, 688,864,900} for training, and s € {480,576, 688, 864,1000} during
testing, with the max dimension capped at 1000. The scales and caps were chosen
because of GPU memory constraints.

Iterative bounding-box regression (B). We adopt the iterative localization
and bounding-box (bbox) voting scheme from [93]. The network evaluates each
proposal Rol to get scores and relocalized boxes R;. High-scoring R; boxes are the
rescored and relocalized, yielding boxes Ro. Union of Ry and Re is used as the final
set Ry for post-processing, where R%IMS is obtained using NMS on Rr with an IoU
threshold of 0.3 and weighted voting is performed on each box r; in REMS
boxes in Rp with an IoU of >0.5 with r; (see [93] for details).

using

62

http://host.robots.ox.ac.uk:8080/anonymous/XNDVK7.html
http://host.robots.ox.ac.uk:8080/anonymous/H49PTT.html
http://host.robots.ox.ac.uk:8080/anonymous/LSANTB.html
http://host.robots.ox.ac.uk:8080/anonymous/R7EAMX.html
http://host.robots.ox.ac.uk:8080/anonymous/WOG8VX.html

4.6 Adding Bells and Whistles

Table 4.6 — Impact of multi-scale and iterative bbox reg.

Multi-scale (M) Iterative bbox VOC07 mAP

Train Test reg. (B) FRCN Ours
67.2 69.9
v 68.4 71.1
v 70.8 T72.7
v Ve 71.9 74.1
v 67.7 70.7
v v 68.6 71.9
v v 71.2 72.9
v v v 724 75.1

4.6.1 VOC 2007 and 2012 Results

We report the results on VOC benchmarks in Table 4.3 and 4.4. On VOCO07,
FRCN with the above mentioned additions achieves 72.4% mAP and OHEM im-
proves it to 75.1%, which is currently the highest reported score under this setting
(07 data). When using extra data (07+12), OHEM achieves 78.9% mAP, surpass-
ing the current state-of-the-art MR-CNN (78.2% mAP). We note that MR-CNN
uses selective search and edge boxes during training, whereas we only use selective
search boxes. Our multi-scale implementation is also different, using fewer scales
than MR-CNN. On VOC12 (Table 4.4), we consistently perform better than MR-
CNN. When using extra data, we achieve state-of-the-art mAP of 76.3% (vs. 73.9%
mAP of MR-CNN).

Ablation Analysis. We now study in detail the impact of these two additions
and whether OHEM is complementary to them, and report the analysis in Table 4.6.
Baseline FRCN mAP improves from 67.2% to 68.6% when using multi-scale during
both training and testing (we refer to this as M). However, note that there is only a
marginal benefit of using it at training time. Iterative bbox regression (B) further
improves the FRCN mAP to 72.4%. But more importantly, using OHEM improves
it to 75.1% mAP, which is state-of-the-art for methods trained on VOC07 data (see
Table 4.3). In fact, using OHEM consistently results in higher mAP for all variants
of these two additions (see Table 4.6).

4.6.2 MS COCO Results

MS COCO [175] test-dev 2015 evaluation server results are reported in Table 4.5.
Using multi-scale improves the performance of our method to 24.4% AP on the
standard COCO metric and to 44.4% AP®? on the VOC metric. This again shows

63

4.6 Adding Bells and Whistles

the complementary nature of using multi-scale and OHEM. Finally, we train our
method using the entire MS COCO trainval set, which further improves performance
to 25.5% AP (and 45.9% AP50). In the 2015 MS COCO Detection Challenge, a

4th

variant of this approach finished place overall.

Conclusion We presented an online hard example mining (OHEM) algorithm,
a simple and effective method to train region-based ConvNet detectors. OHEM
eliminates several heuristics and hyperparameters in common use by automatically
selecting hard examples, thus simplifying training. We conducted extensive exper-
imental analysis to demonstrate the effectiveness of the proposed algorithm, which
leads to better training convergence and consistent improvements in detection accu-
racy on standard benchmarks. We also reported state-of-the-art results on PASCAL
VOC 2007 and 2012 when using OHEM with other orthogonal additions. Though
we used Fast R-CNN throughout this Chapter, OHEM can be used for training any
region-based ConvNet detector.

Our experimental analysis was based on the overall detection accuracy, however
it will be an interesting future direction to study the impact of various training
methodologies on individual category performance.

64

Chapter 5

Geometric-structure from
Multi-modal Data

You can’t criticize geometry.
It’s never wrong.

Paul Rand

Iput G-DPM Detections

Predicted Geometry

Figure 5.1 — Examples of object detection and surface normal prediction using the proposed G-DPM
model. Our G-DPM not only improves the state of the art performance in object detection but it also
predicts the surface normals with the detection. Legend for normals: blue: X; green: Y, red: Z.

The standard output of an object recognition systems discussed so far is either
a box around the localized object (detection) or per-pixel labels (segmentation).
Though critical building blocks for perception, these outputs offer a rather shallow
understanding of the recognized object. For example, they have no geometric un-
derstanding that augmented reality and robotics applications might need. In this
Chapter, we present a system to infer 3D properties of objects from 2D images.

We propose a geometry-driven deformable part-based model (G-DPM) that

65

5.1 Related Work

can be learned from a set of labeled RGBD images. In a G-DPM, object parts are
defined based on their physical properties (i.e., their geometry) rather than just
their appearance. Our key hypothesis is that while the arrangement of parts might
vary across the instances of object categories, the constituent parts will still have
consistent underlying 3D geometry. For example, every sofa has a L-shaped part
that is the intersection of a vertical surface and a horizontal surface for sitting.
Therefore, the underlying 3D geometry can provide weak supervision to define and
initialize the parts. While the learning objective in case of G-DPM is still non-convex
(similar to [79]), we show how the depth data can be used as weak supervision to
impose geometric constraints and guide latent updates at each step. Empirically this
leads to faster convergence, and a better model in terms of detection performance.
But more importantly, because our parts have a 3D geometrical representation they
can be used to jointly detect objects and infer 3D properties from a single 2D image.
Figure 5.1 shows two examples of objects detected by our G-DPM model and the
predicted surface normal geometry by the G-DPM. Notice how our approach predicts
nicely aligned flat horizontal surface of the table within the bounding box and how
the approach predicts the horizontal and vertical surfaces of the couch.

Contributions. Our key contributions include: (1) We propose to marry de-
formable part-based model with the geometric representation of objects by defining
parts based on consistent underlying 3D geometry. (2) We demonstrate how the geo-
metric representation can help us leverage depth data during training and constrain
the latent model learning problem. The underlying 3D geometry during training
helps us guide the latent steps in the right direction. (3) Most importantly, a joint
geometric and appearance based representation not only allows us to achieve state-
of-the results on object detection but also allows us to tackle the grand challenge of
understanding 3D objects from 2D images.

5.1 Related Work

The idea of using geometric and physical representation for objects and their cate-
gories has a rich history in computer vision [27, 182, 187]. While these approaches
resulted in some impressive demos such as ACRONYM [28], these systems failed
to generalize. That led us to the modern era in computer vision where instead of
representing objects in 3D, the focus changed to representing objects using low-level
image features such as HOG [54] and using machine learning to learn an appearance
model of the object. The most successful approaches in this line of work are the
deformable part-based models [79] that extend the rigid template from [54] to a
latent part-based model that is trained discriminatively. While there has been a lot

66

5.1 Related Work

of progress made over the last decade, the performance of these appearance based
approaches seems to have been stagnated.

Therefore, recent research has now focused on developing richer representations
for objects and effective ways of learning these representations. Most of the recent
work on improving deformable part models can be broadly divided in two main
categories:

(a) Better 2D Representations and Learning: The first and the most com-
mon way is to design better representations using 2D image features. In this area,
researchers have looked into using strongly-supervised models for parts [10, 26, 70,
313], using key point annotations to search for parts [25] or discovering mid-level
parts in a completely unsupervised manner [260]. Other directions include using
sharing to increase data-size across categories [173] or finding visual subcategories
based on appearances before learning a part-based model [41, 60].

(b) Using 3D Geometry: The second direction that has been explored is to bring
back the flavor of the past and develop rich models by representing 3D geometry
explicitly. One of the most common ways to encode viewpoint information is to
train a mixture of templates for different viewpoints [102]. An alternative approach
is to explicitly consider the 3D nature of the problem and model objects as a col-
lection of local parts that are connected across views [99, 237, 263, 309]. Another
way to account for 3D representation is to explicitly model the 3D object in terms
of planes [44, 82, 237, 308] or parts [209], and use a rigid template [121], spring
model [82] or a CRF [44].

Our approach lies at the intersection of two these directions. Unlike other ap-
proaches which incorporate geometry in DPM via CAD models [209] or manually-
labeled 3D cuboids [82, 121], our approach uses noisy depth data for training (similar
to [85]). This allows us to access more and diverse data (hundreds of images com-
pared to 40 or so CAD models). The scale at which we build 3D priors and do
geometric reasoning during latent learning allows us to obtain improvements of as
much as 11% in some categories (previous approaches performed at-par or below
DPM). We would also like to point out that even though our approach uses depth
information during training, it is used as a weak supervisory signal (and not as an
extra input feature) to guide the training in the right direction. The discriminative
model is only learned in the appearance space. Therefore, we do not require depth
at test time and can use G-DPM to detect objects in RGB images. Most other work
in object detection/recognition using RGBD [21, 159, 160] uses depth as an extra
input feature to learn an object model and therefore, also requires depth information
at test time.

67

5.2 Overview

5.2 Overview

As input to the system, at training, we use RGB images of object instances along
with their underlying geometry in terms of depth data. We convert the depth data
into surface normals using the standard procedure from [256]. Our goal is to learn
a deformable part-based model where the parts are defined based on their appear-
ance and underlying geometry. We argue that using a geometric representation in
conjunction with appearance based deformable parts model not only allows us to
have a better initialization but also provides additional constraints during the latent
update steps. Specifically, our learning procedure ensures not only that the latent
updates are consistent in the appearance space but also that the geometry predicted
by underlying parts is consistent with the ground truth geometry. Hence, the depth
data is not used as an extra feature, but instead provides weak supervision during
the latent update steps.

In this Chapter, we present a proof-of-concept system for building G-DPM. We
limit our focus on man-made indoor rigid objects, such as bed, sofa etc., for three rea-
sons: (1) These classes are primarily defined based on their physical properties, and
therefore learning a geometric model for these categories makes intuitive sense; (2)
These classes have high intra-class variation and are challenging for any deformable
parts model. We would like to demonstrate that a joint geometric and appearance
based representation gives us a powerful tool to model intra-class variations; (3)
Finally, due to the availability of Kinect, data collection for these categories has
become simpler and efficient. In our case, we use the NYU v2 dataset [256], which
has 1449 RGBD images.

5.3 Technical Approach

Given a large set of training object instances in the form of RGBD data, our goal
is to discover a set of candidate parts based on consistent underlying geometry, and
use these parts to learn a geometry-driven deformable part-based model (G-DPM).
To obtain such a set of candidate parts, we first discover a dictionary of geometric
elements based on their depth information (Section 5.3.1) in a category-free manner
(pooling the data from all categories). A category-free dictionary allows us to share
the elements across multiple object categories.

We use this dictionary to choose a set of parts for every object category based
on frequency of occurrence and consistency in the relative location with respect to
the object bounding-boxes. Finally, we use these parts to initialize and learn our
G-DPM using latent updates and hard mining. We exploit the geometric nature of
our parts and use them to enforce additional geometrical constraints at the latent

68

5.3 Technical Approach

| AR
el "L
SPTT R

=
dail” B

Figure 5.2 — A few elements from the dictionary after the initialization step. They are ordered to
highlight the over-completeness of our initial dictionary.

update steps (Section 5.3.3).

5.3.1 Geometry-driven Dictionary of 3D Elements

Given a set of labeled training images and their corresponding surface normal
data, our goal is to discover a dictionary of elements capturing 3D information that
can act as parts in DPM. Our elements should be: 1) representative: frequent among
the object categories in question; 2) spatially consistent with respect to the object.
(e.g., a horizontal surface always occurs on the top of a table and bed, while it occurs
at center of a chair and a sofa). To obtain a dictionary of candidate elements which
satisfy these properties, we use a two step process: first we initialize our dictionary
by an over-complete set of elements, each satisfying the representativeness property;
and then we refine the dictionary elements based on their relative spatial location
with respect to the object.

Initializing the dictionary. We sample hundreds of thousands of patches, in 3
different aspect-ratios (AR), from the object bounding boxes in the training images
(100 — 500 patches per object bounding box). We represent these patches in terms of
their raw surface normal maps. To extract a representative set of elements for each
AR, we perform clustering using simple k-means (with & ~ 1000), in raw surface
normal space. This clustering process leads to an over-complete set of geometric
elements. We remove any cluster with less than N members, for not satisfying the
frequency property. We represent every remaining cluster by an element which is the
pixel-wise median of the nearest N patches to the cluster center. A few examples of
this set of elements is shown in Figure 5.2. In practice, we use N = 25. As one can
notice from the figure, the dictionary is over-complete. To reject the clusters with

69

5.3 Technical Approach

Rejected
.,
* *

R -
* T o, % |
Lt
o, % el
. .&”0
.o,t. .

.

Good Clusters n 2 Bad Clusters
Increasing min(o, o)

Figure 5.3 — Refinement: After creating an initial dictionary we do the refinement procedure where we
find the set of elements that occur at a consistently occur at same spatial location with respect to the

object center.
"!" L ~ r‘ = ¥ -
wal IER"
SLLCTT,
- |

EZrNEND

Figure 5.4 — A few examples of resulting elements in dictionary after the refinement procedure.

bad (non-homogenous) members and to remove redundancy we follow this clustering
step with a refinement procedure.

Refinement. Given the clusters from the initialization step, we first check each
cluster for spatial consistency, i.e., how consistent the cluster is with respect to
the center of the object. For this, we record the location of each member in the
cluster relative to the object center as: (da?,dy’) = ((p;iw;opg), (p;’h—_opz)>, where p°,
w® and h° are the object center, width and height respectively, and p’ is the center
of element i. Examples of this voting scheme are given in Figure 5.3, where each
blue dot represents a vote from the cluster’s member, and red dot represents object
center. To capture consistency in relative locations, we sort the clusters based on
min(ag(dx),ag(dy)) (minimum variance of their relative z, y locations). Clusters
like the legs of furniture (consistently below the object and closer to the center) and
sides of a bed (consistently near the center of object) rank much higher than noisy
cluster shown at the right. After pruning bad clusters by thresholding, we perform
a step of agglomerative clustering to merge good clusters which are close in feature
space (raw surface normals) as well as have consistent distribution of (dx,dy). This
gives us a dictionary D of 3D elements. A few examples of resulting elements are

shown in Figure 5.4.

70

5.3 Technical Approach

Figure 5.5 — An example of detection/localization of discovered dictionary elements in surface normal
space.

5.3.2 From 3D Parts to Object Hypothesis

Given a dictionary of geometric elements D, we would like to discover which
geometric elements can act as parts for which object categories. Since our categories
share the geometric elements, every element in the dictionary can act as a part for
any number of object categories. We represent a part p/ for an object category
with three aspects: (a) the geometric element e; € D; (b) the relative location
IV : (dx?,dy’) of the part with respect to object center (in normalized coordinates);
(c) the spring model (or variance in (dx, dy)) for the part, which defines how spatially
consistent a part is with respect to the object. Note that an object part is different
from the geometric element and a geometric element can act as different parts based
on the location (e.g., two armrests for the chair; an armrest is a geometric element
but two different parts). The goal is to find set of parts (or an object hypothesis)
p= [pl, - ,pN], where p/ : (e;,17), that occur consistently in the labeled images.

Similar to DPM [79], we represent each object category as a mixture of compo-
nents and each component is loosely treated as a category of its own. Therefore, our
goal is to find a set of parts for each component of all object categories. Given a set
of training images for a component, we first localize each element e in the surface
normal map. For example, Figure 5.5 shows the elements detected in the case of
a sofa. We then pool the element localizations from all images and find the most
frequent elements at different locations in an object. These frequent elements act as
candidate parts for representing an object. Figure 5.6(b) shows the candidate parts
for one component of three categories: bed, sofa and table.

We now use a greedy approach to select the final parts with the constraints that
we have 6-12 parts per object component and that these parts cover at least 60%
of the object area. At each step, we select the top-most part hypothesis based on
the frequency of occurrence and consistency in the relative location with respect to

71

5.3 Technical Approach

-
Sl |

(c) Selected Consistent Parts

(a) Sample Objects (b) Frequent Parts

Figure 5.6 — From 3D Parts to object hypothesis: (a) few examples images in the cluster; (b) all the
geometrically consistent candidate parts selected (before greedy selection); (c) final part hypothesis for
initializing G-DPM (after greedy selection)

the object. Therefore, if a geometric element occurs quite frequently at a particular
location, then it is selected as a part for the object. Once we have selected a part,
the next part is selected based on frequency and consistency of occurrence, and
its overlap with the already selected parts (a part that overlaps a lot with already
selected parts is rejected).

5.3.3 Learning G-DPM

Once we have obtained a set of parts for a given object category, we can now use
it to initialize the learning of our proposed G-DPM model. Following the general
framework of deformable part models [10, 70, 79, 313], we model an object by a
mixture of M components, each of which is a non-rigid star-shaped constellation of
parts. The key difference between learning the G-DPM and the original DPM lies
in the scoring function. Unlike the original model which only captures appearance
and location of parts, we explicitly include a geometric consistency term in the
scoring function used at the latent update step. This allows us to enforce geometric
consistency across the latent update steps and guide the latent updates in the right
direction. We will now first discuss a few preliminaries about DPM and then discuss

72

5.3 Technical Approach

Aok

Bed gDPM Model 1

=y 1} s

Sofa gDPM Model 1

Table gDPM Model 1 Table gDPM Model 2

Table gDPM Model 3

Figure 5.7 — Learned G-DPM models for classes bed, sofa and table. The first visualization in each
template represents the learned appearance root filter, the second visualization contains learned part
filters super-imposed on the root filter, the third visualization is the surface normal map corresponding
to each part and the fourth visualization is of the learned deformation penalty.

how we add the geometric consistency term to the scoring function.

DPM Preliminaries. For each mixture component, indexed by ¢ € {1,..., M},
the object hypothesis is specified by z = (lg, 11, . . ., ln.), where [; = (u;, v;, s;) denotes
the (u,v)-position of i-th filter (every part acts a filter) at level s; in the feature
pyramid (root is indexed at 0, and Iy corresponds to its bounding-box) and n. is
number of parts in component c. Following [79], we enforce that each part is at
twice the resolution of the root.

The score of a mixture component ¢, with model parameter ., at any given z
(root and part locations) in an image [is given by

S, %8 =S F- 6L 1) — S di -l — lo) +b (5.1)
=0 =1

where the first term scores appearance using image features ¢(I,l;) (HOG fea-
tures in this case) and model’s appearance parameters (Fp,...,F,,). The second
term enforces the deformation penalty using v(l; — lp) = {dz, dy, dz?,dy*} where
(dz,dy) = (I7,17) — (2(13,18) — v;) and v; is the anchor position of the part. Thus,
each component’s model parameter is . = {Fo, ..., Fn.,d1,...,dp,,b}.

The final score of a DPM model for an object category on an image I at any z
is given by

S(I,z) = ce?ll.&.‘.}iw} S(I, z,B.), (5.2)

which is the maximum over scores of all the components. Thus, the final object
model parameter is 5 = (31, ..., Sar) which encapsulates all M mixture components.

73

5.3 Technical Approach

Enforcing Geometric Constraints & Learning

Given the training data {(z;,y;)}1,.. ~, we aim to learn a discriminative G-
DPM. In our case, x = {I,I%,1}, where I denotes an RGB image, I¢ denotes the
surface normal map and [is location of the bounding box, and y € {—1,1}. Similar
to [10, 70, 79, 313], we minimize the objective function:

N
Lo(8) = I +C 3 max(0,1 ~ yi () (53)

i=1
falz) = max S(I,z) = max S(1,z,Be). (5.4)

The latent variables, z (root and part locations) and ¢ (mixture memberships),
make (5.3) non-convex. [79] solves this optimization problem using a coordinate-
descent based approach, which iterates between a latent update step and a parameter
learning step. In the latent update step, they estimate the latent variables, z and
¢, by relabeling each positive example. In the parameter learning step, they fix
the latent variables and estimate the model parameter § using stochastic gradient
descent (SGD).

The latent updates in [79] are made based on image appearance only. However,
in our case, we also have a geometric representation of our parts and the underlying
depth data for training images. We exploit this and constrain the latent update
step such that the part geometry should match the underlying depth data. Intu-
itively, depth data provides part-level geometric supervision to the latent update
step. Thus, enforcing this constraint only affects the latent update step in the above
optimization. This is achieved by augmenting the scoring function S(I, z, 8.) with
a geometric consistency term:

_ 2 i el
fa(z) = ce{rll.l.%]\)f[},z S(I,z,B:) +)\; Sg(e',w(I¥, 1)) (5.5)

where €’ is the geometric element (raw surface normal) corresponding to i-th part,
w(I9,1;) is the raw surface normal map extracted at location I;, Sg(+) is the geomet-
ric similarity function between two raw surface normal maps and A is the trade-off
parameter, controlling how much we want the optimization to focus on geometric
consistency. We train our G-DPM models using a modified version of the Latent
SVM solver from [79]. In our coordinate-descent approach, the latent update step
on positives uses fg from (5.5) to estimate the latent variables; then we apply SGD
to solve for 8 by using standard fz (5.4) and hard-negative mining. At test time,
we only use the standard scoring function (5.2) (which is also equivalent to setting
A =0in (5.5)).

74

5.4 Experiments

Table 5.1 — AP performance on the task of object detection

Bed Chair M.+TV Sofa Table

DPM (No Parts) 2094 10.69 6.38 5.51 2.73
DPM 2239 14.44 8.10 7.16 3.53
DPM (Our Parts, No Latent) 26.59 5.71 2.35 6.82 3.41
DPM (Our Parts) 29.15 11.43 4.17 8.30 1.76
G-DPM 33.39 13.72 9.28 11.04 4.05

5.4 Experiments

We now present experimental results to demonstrate the effectiveness of adding
geometric representation and constraints to a deformable part-based model. We
will show how adding 3D parts and geometric constraints not only help improve the
performance of our object detector but also help us to develop 3D understanding of
the object (in terms of surface normals). We perform our experimental evaluation
on the NYU Depth v2 dataset [256]. We learn a G-DPM model for five object
categories: bed, chair, monitor+TV (M.+TV), sofa and table. We use 3 components
for each object category and some of the learned models are shown in Figure 5.7.
This dataset has 1,449 images; we use the train-test splits from [256] (795 training
and 654 test images). We convert the object instance segmentation masks (provided
by [256]) to bounding boxes for training and testing object detectors. For surface
normal prediction for the object, we superimpose the surface normals corresponding
to each part and take the pixel-wise median. We also use colorization from [256] to
in-paint missing regions in the object for visualization.

Qualitative. Figure 5.8 shows the performance of G-DPM detector on a few ex-
amples. Our G-DPM model not only localizes the object better but is also able to
predict the surface normals for the detected objects. For example, in the first row,
G-DPM not only predicts the flat sittable surface of the couch but it also predicts
the vertical backrest and the horizontal surface on the top of it. Similarly, in the
second row, our approach is able to predict the horizontal surface of the small table.
Figure 5.9 shows one of the false positives of our approach. In this case, a chair is
predicted as a sofa by G-DPM but notice the predicted surface normals by G-DPM.
Even in the case of wrong category prediction, G-DPM does a reasonable job on the
task of predicting surface normals including the horizontal support surface of the
chair.

75

5.4 Experiments

Input Image DPM Detection gDPM Detection Predicted Geometry

Figure 5.8 — Qualitative Results: Our G-DPM not only localizes the object but also predicts the surface
normals of the objects.

76

5.4 Experiments

Input Image DPM Detection gDPM Detection Predicted Geometry

Figure 5.9 — False Positives: Our sofa detector detecting chair. Notice that the geometry still looks
plausible.

Quantitative. We now evaluate G-DPM quantitatively on the task of 2D object
detection. As a baseline, we compare our approach against the standard DPM model
with and without parts. We also evaluate the performance of DPM by treating our
initial part hypothesis as strong supervision (ground truth parts) and not doing
any latent updates. Finally, we also evaluate the performance of our parts with the
standard latent updates which do not consider the geometric constraint based on
depth data. Table 5.1 shows the average precision (AP). Our approach improves
over the standard DPM by approximately 3.2% mean AP over 5 categories; and for
categories like bed and sofa, the improvement is as much as 11% and 4% respectively.
We also evaluate our surface normal prediction accuracy in a small quantitative
experiment. Against Geometric Context [126], our surface normal prediction is 2°
better, in terms of median per-pixel error.

Conclusions. We proposed a novel part-based representation, geometry-driven
deformable part-based model (G-DPM), where the parts are defined based on their
3D properties. G-DPM effectively leverages depth data to combine the power of
DPMs with the richness of geometric representation. We demonstrate how depth
data can be used to define parts and provide weak supervision during the latent
update steps. This leads to a better model in terms of detection performance. But
more importantly, a joint geometric and appearance based representation allows
us to jointly tackle the grand challenge of object detection and understanding 3D
objects from 2D images.

7

Chapter 6

Cross-stitch Networks
for Multi-task Learning

The miracle is this: the more we share,
the more we have.

Leonard Nimoy

Has saddle Four legs Object location Surface orientation Pixel labels

Figure 6.1 — Given an input image, one can leverage multiple related properties to improve performance
by using a multi-task learning framework. In this Chapter, we propose cross-stitch units, a principled
way to use such a multi-task framework for ConvNets.

Visual data often has multiple supervisory labels for recognition tasks (e.g., la-
bels for scenes, objects, attributes, depth, etc.). Jointly training models for related
tasks, or multi-task learning, has been widely successful. One of the reasons for
this success is attributed to the inbuilt sharing mechanism, which allows ConvNets

79

6. Cross-stitch Networks for Multi-task Learning

Generic Network Reducing sharing between tasks — Specific Network
All Parameters Shared No Parameters Shared

(a) - -> > - - - - -

Split fc8 Split fe7 Split fc6 Split convs Split conv4 Split conv3 Split conv2

Attributes Classification (mAP) Object Detection (mAP)
.37 0.24 1

0.16 -0.06 -0.09 . r
12 0.8 1 0.4 034

Difference
between
Split
Network
and Specific
Network

(Ssptit = Sspecific)

5.7
(b) Surface Normal (Median Error) Semantic Segmentation (mean IU)
0.1 028 022
04 -0.28

-1.32

Figure 6.2 — We train a variety of multi-task (two-task) architectures by splitting at different layers in
a ConvNet [155] for two pairs of tasks. For each of these networks, we plot their performance on each
task relative to the task-specific network. We notice that the best performing multi-task architecture
depends on the individual tasks and does not transfer across different pairs of tasks.

to learn representations shared across different categories. This insight naturally
extends to sharing between tasks (see Figure 6.1) and leads to further performance
improvements, e.g., the gains in segmentation [115] and detection [93, 95]. A key
takeaway from these works is that multiple tasks, and thus multiple types of super-
vision, helps achieve better performance with the same input. But unfortunately,
the network architectures used by them for multi-task learning notably differ. There
are no insights or principles for how one should choose ConvNet architectures for
multi-task learning.

6.0.1 Multi-task sharing: an empirical study

How should one pick the right architecture for multi-task learning? Does it de-
pend on the final tasks? Should we have a completely shared representation between
tasks? Or should we have a combination of shared and task-specific representations?
Is there a principled way of answering these questions?

To investigate these questions, we first perform extensive experimental analysis
to understand the performance trade-offs amongst different combinations of shared
and task-specific representations. Consider a simple experiment where we train
a ConvNet on two related tasks (e.g., semantic segmentation and surface normal
estimation). Depending on the amount of sharing one wants to enforce, there is
a spectrum of possible network architectures. Figure 6.2(a) shows different ways
of creating such network architectures based on AlexNet [155]. On one end of the
spectrum is a fully shared representation where all layers, from the first convolution

80

6. Cross-stitch Networks for Multi-task Learning

(conv2) to the last fully-connected (£c7), are shared and only the last layers (two
fc8s) are task specific. An example of such sharing is [95] where separate fc8 layers
are used for classification and bounding box regression. On the other end of the
sharing spectrum, we can train two networks separately for each task and there is
no cross-talk between them. In practice, different amount of sharing tends to work
best for different tasks.

So given a pair of tasks, how should one pick a network architecture? To
empirically study this question, we pick two varied pairs of tasks:

o We first pair semantic segmentation (SemSeg) and surface normal prediction
(SN). We believe the two tasks are closely related to each other since segmentation
boundaries also correspond to surface normal boundaries. For this pair of tasks,
we use NYU-v2 [256] dataset.

o For our second pair of tasks we use detection (Det) and Attribute prediction
(Attr). Again we believe that two tasks are related: for example, a box labeled
as “car” would also be a positive example of “has wheel” attribute. For this
experiment, we use the attribute PASCAL dataset [72, 76].

We exhaustively enumerate all the possible Split architectures as shown in Fig-
ure 6.2(a) for these two pairs of tasks and show their respective performance in
Figure 6.2(b). The best performance for both the SemSeg and SN tasks is using the
“Split conv4” architecture (splitting at conv4), while for the Det task it is using
the Split conv2, and for Attr with Split £c6. These results indicate two things — 1)
Networks learned in a multi-task fashion have an edge over networks trained with
one task; and 2) The best Split architecture for multi-task learning depends on the
tasks at hand.

While the gain from multi-task learning is encouraging, getting the most out of
it is still cumbersome in practice. This is largely due to the task dependent nature
of picking architectures and the lack of a principled way of exploring them. Addi-
tionally, enumerating all possible architectures for each set of tasks is impractical.
This Chapter proposes cross-stitch units, using which a single network can capture
all these Split-architectures (and more). It automatically learns an optimal com-
bination of shared and task-specific representations. We demonstrate that such a
cross-stitched network can achieve better performance than the networks found by
brute-force enumeration and search.

81

6.1 Related Work

6.1 Related Work

Generic Multi-task learning [34, 264] has a rich history in machine learning. The
term multi-task learning (MTL) itself has been broadly used [5, 74, 132, 225, 311,
312] as an umbrella term to include representation learning and selection [8, 73,
147, 199], transfer learning [205, 222, 315] etc. and their widespread applications in
other fields, such as genomics [200], natural language processing [49, 50, 179] and
computer vision [6, 63, 142, 147, 218, 283, 306, 321]. In fact, many times multi-
task learning is implicitly used without reference; a good example being fine-tuning
or transfer learning [222], now a mainstay in computer vision, can be viewed as
sequential multi-task learning [34]. Given the broad scope, in this Section we focus
only on multi-task learning in the context of ConvNets used in computer vision.

Multi-task learning is generally used with ConvNets in computer vision to model
related tasks jointly, e.g. pose estimation and action recognition [97], surface nor-
mals and edge labels [299], face landmark detection and face detection [320, 322],
auxiliary tasks in detection [95], related classes for image classification [276] etc.
Usually these methods share some features (layers in ConvNets) amongst tasks and
have some task-specific features. This sharing or split-architecture (as explained
in Section 6.0.1) is decided after experimenting with splits at multiple layers and
picking the best one. Of course, depending on the task at hand, a different Split
architecture tends to work best, and thus given new tasks, new split architectures
need to be explored. In this Chapter, we propose cross-stitch units as a principled
approach to explore and embody such Split architectures, without having to train
all of them.

In order to demonstrate the robustness and effectiveness of cross-stitch units in
multi-task learning, we choose varied tasks on multiple datasets. In particular, we
select four well established and diverse tasks on different types of image datasets: 1)
We pair semantic segmentation [122, 247, 248] and surface normal estimation [67,
85, 299], both of which require predictions over all pixels, on the NYU-v2 indoor
dataset [256]. These two tasks capture both semantic and geometric information
about the scene. 2) We choose the task of object detection [79, 95, 96, 238] and
attribute prediction [2, 77, 163] on web-images from the PASCAL dataset [72, 76].
These tasks make predictions about localized regions of an image.

6.2 Cross-stitch Networks

In this Chapter, we present a novel approach to multi-task learning for ConvNets
by proposing cross-stitch units. Cross-stitch units try to find the best shared repre-
sentations for multi-task learning. They model these shared representations using

82

6.2 Cross-stitch Networks

Output
Activation Maps

Input

Activation Maps Cross-stitch unit

as Shared

Task A QAA OBA > Task A
ap
ap

Shared

Task B s QBB A B> Task B

Figure 6.3 — We model shared representations by learning a linear combination of input activation maps.
At each layer of the network, we learn such a linear combination of the activation maps from both the
tasks. The next layers’ filters operate on this shared representation.

linear combinations, and learn the optimal linear combinations for a given set of
tasks. We integrate these cross-stitch units into a ConvNet and provide an end-
to-end learning framework. We use detailed ablative studies to better understand
these units and their training procedure. Further, we demonstrate the effectiveness
of these units for two different pairs of tasks. To limit the scope of this Chapter, we
only consider tasks which take the same single input, e.g., an image as opposed to
say an image and a depth-map [109].

6.2.1 Split Architectures

Given a single input image with multiple labels, one can design “Split architec-
tures” as shown in Figure 6.2. These architectures have both a shared representation
and a task specific representation. ‘Splitting’ a network at a lower layer allows for
more task-specific and fewer shared layers. One extreme of Split architectures is
splitting at the lowest convolution layer which results in two separate networks al-
together, and thus only task-specific representations. The other extreme is using
“sibling” prediction layers (as in [95]), which allows for a more shared representa-
tion. Thus, Split architectures allow for a varying amount of shared and task-specific
representations.

6.2.2 Unifying Split Architectures

Given that Split architectures hold promise for multi-task learning, an obvious
question is — At which layer of the network should one split? This decision is highly
dependent on the input data and tasks at hand. Rather than enumerating the
possibilities of Split architectures for every new input task, we propose a simple

83

6.2 Cross-stitch Networks

convl, pooll conv2, pool2 conv3d conv4d convj, pools fc6 fe7 fc8

Z,
) &
z - - — 2
~ >
o

g ’@/ / Cross-stitch ’@/ ’@/ ’@/

g .

»@\ \ »@\ \ »@\

g .
7 5
3 —_ - — Z
= w
s3]

Figure 6.4 — Using cross-stitch units to stitch two AlexNet [155] networks. In this case, we apply
cross-stitch units only after pooling layers and fully connected layers. Cross-stitch units can model
shared representations as a linear combination of input activation maps. This network tries to learn
representations that can help with both tasks A and B. We call the sub-network that gets direct
supervision from task A as network A (top) and the other as network B (bottom).

architecture that can learn how much shared and task specific representation to use.

6.2.3 Cross-stitch units

Consider a case of multi task learning with two tasks A and B on the same
input image. For the sake of explanation, consider two networks that have been
trained separately for these tasks. We propose a new unit, cross-stitch unit, that
combines these two networks into a multi-task network in a way such that the tasks
supervise how much sharing is needed, as illustrated in Figure 6.3. At each layer of
the network, we model sharing of representations by learning a linear combination
of the activation maps [8, 147] using a cross-stitch unit. Given two activation maps
xa,xp from layer [for both the tasks, we learn linear combinations Za,Zp (Eq 6.1)
of both the input activations and feed these combinations as input to the next layers’
filters. This linear combination is parameterized using «. Specifically, at location

(7,7) in the activation map,

79 %

Al |aaa aaB A 6.1)
i QBA QBB U '
Ty Ty

We refer to this the cross-stitch operation, and the unit that models it for each
layer [as the cross-stitch unit. The network can decide to make certain layers task
specific by setting aap or ags to zero, or choose a more shared representation by
assigning a higher value to them.

84

6.3 Design decisions for cross-stitching

Backpropagating through cross-stitch units. Since cross-stitch units are mod-
eled as linear combination, their partial derivatives for loss L with tasks A, B are
computed as

oL oL
8x2 _|aan aBa Bifg (6 2)
oL N aAB OBB oL '
dxyd o7y
oL oL ij oL OL ij
= 5TA = =i TA (6.3)
daxg 01y daxa 0Ty

We denote apap,apa by ap and call them the different-task values because
they weigh the activations of another task. Likewise, aap,app are denoted by
ag, the same-task values, since they weigh the activations of the same task. By
varying ap and ag values, the unit can freely move between shared and task-specific
representations, and choose a middle ground if needed.

6.3 Design decisions for cross-stitching

We use the cross-stitch unit for multi-task learning in ConvNets. For the sake of
simplicity, we assume multi-task learning with two tasks. Figure 6.4 shows this
architecture for two tasks A and B. The sub-network in Figure 6.4(top) gets direct
supervision from task A and indirect supervision (through cross-stitch units) from
task B. We call the sub-network that gets direct supervision from task A as network
A, and correspondingly the other as B. Cross-stitch units help regularize both tasks
by learning and enforcing shared representations by combining activation (feature)
maps. As we show in our experiments, in the case where one task has less labels
than the other, such regularization helps the “data-starved” tasks.

Next, we enumerate the design decisions when using cross-stitch units with
networks, and in later Sections perform ablative studies on each of them.

Cross-stitch units initialization and learning rates: The « values of a cross-
stitch unit model linear combinations of feature maps. Their initialization in the
range [0, 1] is important for stable learning, as it ensures that values in the output
activation map (after cross-stitch unit) are of the same order of magnitude as the
input values before linear combination. We study the impact of different initializa-
tions and learning rates for cross-stitch units in Section 6.4.

85

6.4 Ablative analysis

Network initialization: Cross-stitch units combine together two networks as
shown in Figure 6.4. However, an obvious question is — how should one initial-
ize the networks A and B? We can initialize networks A and B by networks that
were trained on these tasks separately, or have the same initialization and train
them jointly.

6.4 Ablative analysis

We now describe the experimental setup in detail, which is common throughout the
ablation studies.

Datasets and Tasks: For ablative analysis we consider the tasks of semantic
segmentation (SemSeg) and Surface Normal Prediction (SN) on the NYU-v2 [256]
dataset. We use the standard train/test splits from [85]. For semantic segmentation,
we follow the setup from [108] and evaluate on the 40 classes using the standard
metrics from their work

Setup for Surface Normal Prediction: Following [299], we cast the problem of
surface normal prediction as classification into one of 20 categories. For evaluation,
we convert the model predictions to 3D surface normals and apply the Manhattan-
World post-processing following the method in [299]. We evaluate all our methods
using the metrics from [85]. These metrics measure the error in the ground truth
normals and the predicted normals in terms of their angular distance (measured in
degrees). Specifically, they measure the mean and median error in angular distance,
in which case lower error is better (denoted by ‘Mean’ and ‘Median’ error). They
also report percentage of pixels which have their angular distance under a threshold
(denoted by ‘Within ¢°” at a threshold of 11.25°,22.5° 30°), in which case a higher
number indicates better performance.

Networks: For semantic segmentation (SemSeg) and surface normal (SN) predic-
tion, we use the Fully-Convolutional Network (FCN 32-s) architecture from [180]
based on CaffeNet [135] (essentially AlexNet [155]). For both the tasks of SemSeg
and SN, we use RGB images at full resolution, and use mirroring and color data
augmentation. We then finetune the network (referred to as one-task network) from
ImageNet [58] for each task using hyperparameters reported in [180]. We fine-tune
the network for semantic segmentation for 25k iterations using SGD (mini-batch
size 20) and for surface normal prediction for 15k iterations (mini-batch size 20) as
they gave the best performance, and further training (up to 40k iterations) showed
no improvement. These one-task networks serve as our baselines and initializations
for cross-stitching, when applicable.

86

6.4 Ablative analysis

Table 6.1 — Initializing cross-stitch units with different a values, each corresponding to a convex com-
bination. Higher values for ag indicate that we bias the cross-stitch unit to prefer task specific repre-
sentations. The cross-stitched network is robust across different initializations of the units

Surface Normal Segmentation
Angle Distance Within ¢°
(Lower Better) (Higher Better) (Higher Better)
(as,ap) Mean Med. 11.25 22.5 30 pixacc mIU fwlU
(0.1,0.9) 34.6 18.8 38.5 53.7 59.4 47.9 18.2 33.3
(0.5,0.5) 344 18.8 38.5 53.7 59.5 47.2 18.6 33.8
(0.7,0.3) 34.0 18.3 38.9 54.3 60.1 48.0 18.6 33.6
(0.9,0.1) 34.0 18.3 39.0 54.4 60.2 48.2 18.9 34.0

Cross-stitching: We combine two AlexNet architectures using the cross-stitch
units as shown in Figure 6.4. We experimented with applying cross-stitch units
after every convolution activation map and after every pooling activation map, and
found the latter performed better. Thus, the cross-stitch units for AlexNet are
applied on the activation maps for pooll, pool2, pools, fc6 and £c7. We maintain
one cross-stitch unit per ‘channel’ of the activation map, e.g., for pooll we have 96
cross-stitch units.

6.4.1 Initializing parameters of cross-stitch units

Cross-stitch units capture the intuition that shared representations can be mod-
eled by linear combinations [147]. To ensure that values after the cross-stitch opera-
tion are of the same order of magnitude as the input values, an obvious initialization
of the unit is that the a values form a convex linear combination, i.e., the different-
task ap and the same-task ag to sum to one. Note that this convexity is not
enforced on the « values in either Equation 6.1 or 6.2, but serves as a reasonable
initialization. For this experiment, we initialize the networks A and B with one-task
networks that were fine-tuned on the respective tasks. Table 6.1 shows the results
of evaluating cross-stitch networks for different initializations of « values.

6.4.2 Learning rates for cross-stitch units

We initialize the « values of the cross-stitch units in the range [0.1,0.9], which is
about one to two orders of magnitude larger than the typical range of layer parame-
ters in AlexNet [155]. While training, we found that the gradient updates at various
layers had magnitudes which were reasonable for updating the layer parameters,
but too small for the cross-stitch units. Thus, we use higher learning rates for the
cross-stitch units than the base network. In practice, this leads to faster conver-
gence and better performance. To study the impact of different learning rates, we

87

6.4 Ablative analysis

Table 6.2 — Scaling the learning rate of cross-stitch units wrt. the base network. Since the cross-stitch
units are initialized in a different range from the layer parameters, we scale their learning rate for better
training

Surface Normal Segmentation
Angle Distance Within ¢°
(Lower Better) (Higher Better) (Higher Better)
Scale Mean Med. 11.25 22.5 30 pixacc mlU fwlU
1 34.6 189 38.4 53.7 59.4 47.7 18.6 33.5
10 34.5 188 38.5 53.8 59.5 47.8 18.7 33.5
102 34.0 183 39.0 54.4 60.2 48.0 18.9 33.8
103 34.1 18.2 39.2 54.4 60.2 47.2 19.3 34.0

again use a cross-stitched network initialized with two one-task networks. We scale
the learning rates (wrt. the network’s learning rate) of cross-stitch units in powers
of 10 (by setting the 1r_mult layer parameter in Caffe [135]). Table 6.2 shows the
results of using different learning rates for the cross-stitch units after training for
10k iterations. Setting a higher scale for the learning rate improves performance,
with the best range for the scale being 102 — 103. We observed that setting the scale
to an even higher value made the loss diverge.

6.4.3 Initialization of networks A and B

When cross-stitching two networks, how should one initialize the networks A
and B? Should one start with task specific one-task networks (fine-tuned for one
task only) and add cross-stitch units? Or should one start with networks that
have not been fine-tuned for the tasks? We explore the effect of both choices by
initializing using two one-task networks and two networks trained on ImageNet [58,
232]. We train the one-task initialized cross-stitched network for 10k iterations and
the ImageNet initialized cross-stitched network for 30k iterations (to account for
the 20k fine-tuning iterations of the one-task networks), and report the results in
Table 6.3. Task-specific initialization performs better than ImageNet initialization
for both the tasks, which suggests that cross-stitching should be used after training
task-specific networks.

6.4.4 \Visualization of learned combinations

We visualize the weights ag and ap of the cross-stitch units for different initial-
izations in Figure 6.4. For this experiment, we initialize sub-networks A and B using
one-task networks and trained the cross-stitched network till convergence. Each plot
shows (in sorted order) the « values for all the cross-stitch units in a layer (one per

88

6.5 Experiments

Table 6.3 — We initialize the networks A, B (from Figure 6.4) from ImageNet, as well as task-specific
networks. We observe that task-based initialization performs better than task-agnostic ImageNet ini-
tialization

Surface Normal Segmentation
Angle Distance Within ¢°
(Lower Better) (Higher Better) (Higher Better)
Init. Mean Med. 11.25 22.5 30 pixacc mlIU fwlU
ImageNet 34.6 18.8 38.6 53.7 59.4 48.0 17.7 33.4
One-task 34.1 18.2 39.0 54.4 60.2 47.2 19.3 34.0

channel). We show plots for three layers: pooll, pool5 and fc7. The initialization
of cross-stitch units biases the network to start its training preferring a certain type
of shared representation, e.g., (ag,ap) = (0.9,0.1) biases the network to learn more
task-specific features, while (0.5,0.5) biases it to share representations. Figure 6.4
(second row) shows that both the tasks, across all initializations, prefer a more task-
specific representation for pool5, as shown by higher values of ag. This is inline
with the observation from Section 6.0.1 that Split conv4 performs best for these two
tasks. We also notice that the surface normal task prefers shared representations as
can be seen by Figure 6.4(b), where ag and ap values are in similar range.

6.5 Experiments

We now present experiments with cross-stitch networks for two pairs of tasks: se-
mantic segmentation and surface normal prediction on NYU-v2 [256], and object
detection and attribute prediction on PASCAL VOC 2008 [72, 76]. We use the
experimental setup from Section 6.4 for semantic segmentation and surface normal
prediction, and describe the setup for detection and attribute prediction below.

Dataset, Metrics and Network: We consider the PASCAL VOC 20 classes for
object detection, and the 64 attribute categories data from [76]. We use the PASCAL
VOC 2008 [72, 76] dataset for our experiments and report results using the standard
Average Precision (AP) metric. We start with the recent Fast-RCNN [95] method
for object detection using the AlexNet [155] architecture.

Training: For object detection, Fast-RCNN is trained using 21-way 1-vs-all clas-
sification with 20 foreground and 1 background class. However, there is a severe
data imbalance in the foreground and background data points (boxes). To circum-
vent this, Fast-RCNN carefully constructs mini-batches with 1 : 3 foreground-to-
background ratio, i.e., at most 25% of foreground samples in a mini-batch. At-
tribute prediction, on the other hand, is a multi-label classification problem with 64

89

6.5 Experiments

Table 6.4 — We show the sorted « values (increasing left to right) for three layers. A higher value of
as indicates a strong preference towards task specific features, and a higher ap implies preference for
shared representations. More detailed analysis in Section 6.4.4. Note that both ag and ap are sorted
independently, so the channel-index across them do not correspond

Layer (a) as =0.9,ap = 0.1 (b) as = 0.5,ap = 0.5 (¢c) as =0.1,ap = 0.9
Segmentation Surface Normal Segmentation Surface Normal Segmentation Surface Normal
pooll o 0 M% . o W
no//r/ onf// 00 00) on/ nn,r,’/
05 24 48 72 96 -0 24 48 72 96 - 24 48 72 9% 05 24 48 72 96 o 24 48 72 96 0% 24 48 72 96
poold s 0s 0s 0s L7 0s
OUK’—’—/ 0.0 0.0] 0.0] 0.0|
- 64 128 192 256 - 64 128 192 256 o 64 128 192 256 o 64 128 192 256 0% 64 128 192 256
fc7 o’ > CEREESEEY o !
oo,—————'J 00 0] oo nonz—'—,J
03, 1024 2048 3072 4096 o 1024 2048 3072 4096 - 1024 2048 3072 4096 -0 1024 2048 3072 4096 o 1024 2048 3072 4096 05 1024 2048 3072 4096

attributes, which only train using foreground bounding boxes. To implement both
tasks in the Fast R-CNN framework, we use the same mini-batch sampling strategy;
and in every mini-batch only the foreground samples contribute to the attribute loss

(and background samples are ignored).

Scaling losses: Both SemSeg and SN used same classification loss for training,
and hence we were set their loss weights to be equal (= 1). However, since object
detection is formulated as 1-vs-all classification and attribute classification as multi-
label classification, we balance the losses by scaling the attribute loss by 1/64.

Cross-stitching: We combine two AlexNet architectures using the cross-stitch
units after every pooling layer as shown in Figure 6.4. In the case of object detection
and attribute prediction, we use one cross-stitch unit per layer activation map. We
found that maintaining a unit per channel, like in the case of semantic segmentation,
led to unstable learning for these tasks.

6.5.1 Baselines

We compare against four strong baselines for the two pairs of tasks and report
the results in Table 6.5 and 6.6.

Single-task Baselines: These serve as baselines without benefits of multi-task
learning. First we evaluate a single network trained on only one task (denoted
by ‘One-task’) as described in Section 6.4. Since our approach cross-stitches two
networks and therefore uses 2x parameters, we also consider an ensemble of two
one-task networks (denoted by ‘Ensemble’). However, note that the ensemble has

90

6.5 Experiments

Table 6.5 — Surface normal prediction and semantic segmentation results on the NYU-v2 [256] dataset.
Our method outperforms the baselines for both the tasks

Surface Normal Segmentation
Angle Distance Within ¢°
(Lower Better) (Higher Better) (Higher Better)
Method Mean Med. 11.25 22,5 30 pixacc mlU fwIU

34.8 19.0 38.3 53.5 59.2

One-task - - . . 46.6 184 33.1
Ensemble 344 185 387 542 597 - - -
- - . - 48.2 189 338
Split conva 347 19.1 382 534 59.2 478 192 33.8
MTL-shared 347 189 377 535 588 459 166 30.1

Cross-stitch [ours] 34.1 18.2 39.0 54.4 60.2 472 19.3 34.0

2x network parameters for only one task, while the cross-stitch network has roughly
2x parameters for two tasks. So for a pair of tasks, the ensemble baseline uses ~ 2x
the cross-stitch parameters.

Multi-task Baselines: The cross-stitch units enable the network to pick an opti-
mal combination of shared and task-specific representation. We demonstrate that
these units remove the need for finding such a combination by exhaustive brute-force
search (from Section 6.0.1). So as a baseline, we train all possible “Split architec-
tures” for each pair of tasks and report numbers for the best Split for each pair of
tasks.

There has been extensive work in Multi-task learning outside of the computer
vision and deep learning community. However, most of such work, with publicly
available code, formulates multi-task learning in an optimization framework that
requires all data points in memory [38, 74, 104, 164, 266, 324, 325]. Such requirement
is not practical for the vision tasks we consider.

So as our final baseline, we compare to a variant of [2, 326] by adapting their
method to our setting and report this as ‘MTL-shared’ The original method treats
each category as a separate ‘task’, a separate network is required for each category
and all these networks are trained jointly. Directly applied to our setting, this
would require training 100s of ConvNets jointly, which is impractical. Thus, instead
of treating each category as an independent task, we adapt their method to our
two-task setting. We train these two networks jointly, using end-to-end learning, as
opposed to their dual optimization to reduce hyperparameter search.

91

6.5 Experiments

Per class change in performance for attribute prediction and

Per class number of instances 1000

3000

w

1000

No. of instances

Change in performance

Figure 6.5 — Change in performance for attribute categories over the baseline is indicated by blue bars.
We sort the categories in increasing order (from left to right) by the number of instance labels in the
train set, and indicate the number of instance labels by the solid black line. The performance gain for
attributes with lesser data (towards the left) is considerably higher compared to the baseline. We also
notice that the gain for categories with lots of data is smaller.

6.5.2 Semantic Segmentation and Surface Normal Prediction

Table 6.5 shows the results for semantic segmentation and surface normal pre-
diction on the NYUv2 dataset [256]. We compare against two one-task networks, an
ensemble of two networks, and the best Split architecture (found using brute force
enumeration). The sub-networks A, B (Figure 6.4) in our cross-stitched network are
initialized from the one-task networks. We use cross-stitch units after every pool-
ing layer and fully connected layer (one per channel). Our proposed cross-stitched
network improves results over the baseline one-task networks and the ensemble.
Note that even though the ensemble has 2x parameters compared to cross-stitched
network, the latter performs better. Finally, our performance is better than the
best Split architecture network found using brute force search. This shows that the
cross-stitch units can effectively search for optimal amount of sharing in multi-task
networks.

6.5.3 Data-starved categories for segmentation

Multiple tasks are particularly helpful in regularizing the learning of shared
representations[34, 74, 276]. This regularization manifests itself empirically in the
improvement of “data-starved” (few examples) categories and tasks.

For semantic segmentation, there is a high mismatch in the number of labels
per category (see the black line in Figure 6.6). Some classes like wall, floor have
many more instances than other classes like bag, whiteboard etc. Figure 6.6 also
shows the per-class gain in performance using our method over the baseline one-
task network. We see that cross-stitch units considerably improve the performance
of “data-starved” categories (e.g., bag, whiteboard).

92

6.5 Experiments

Per class change in performance for semantic segmentation and 40 7=
&
A Per class number of pixel labels S
30 =
. &
g 3 -
g 20 g
< 2 et
g =
=
31 10 =%
! %
200 = |_|_ |_| 0 «w
o u l 3
o WOTXT Q TESES5LBRBPC YIS SRS VeEZVVOTTEQY 5= 3
?cl 82cESE 2838000 CEReo2a05225820855008808¢ Z,
g 9o QLo Po2rgEE==0Tg=580038=288 " " GCaag®
z 9 22 O #3532 go>53535388gc cogzg= XECcS5 =©
= Sy = o o L9 [Shre) ° v 8ao oszsc [T
= = L o o] o2 o 58 S
O . £ ® o T P F o TP °
-3 2—¢ 2 “ o]
o put £ c
2o
S 0o

-4

Figure 6.6 — Change in performance (meanlU metric) for semantic segmentation categories over the
baseline is indicated by blue bars. We sort the categories (in increasing order from left to right) by the
number of pixel labels in the train set, and indicate the number of pixel labels by a solid black line.
The performance gain for categories with lesser data (towards the left) is more when compared to the
baseline one-task network.

6.5.4 Object detection and attribute prediction

We train a cross-stitch network for the tasks of object detection and attribute
prediction. We compare against baseline one-task networks and the best split ar-
chitectures per task (found after enumeration and search, Section 6.0.1). Table 6.6
shows the results for object detection and attribute prediction on PASCAL VOC
2008 [72, 76]. Our method shows improvements over the baseline for attribute pre-
diction. It is worth noting that because we use a background class for detection,
and not attributes (described in ‘Scaling losses’ in Section 6.5), detection has many
more data points than attribute classification (only 25% of a mini-batch has at-
tribute labels). Thus, we see an improvement for the data-starved task of attribute
prediction. It is also interesting to note that the detection task prefers a shared
representation (best performance by Split £c7), whereas the attribute task prefers
a task-specific network (best performance by Split conv2).

6.5.5 Data-starved categories for attribute prediction

Following a similar analysis to Section 6.5.3, we plot the relative performance
of our cross-stitch approach over the baseline one-task attribute prediction network
in Figure 6.5. The performance gain for attributes with smaller number of training
examples is considerably large compared to the baseline (4.6% and 4.3% mAP for
the top 10 and 20 attributes with the least data respectively). This shows that our
proposed cross-stitch method provides significant gains for data-starved tasks by
learning shared representations.

93

6.5 Experiments

Table 6.6 — Object detection and attribute prediction results on the attribute PASCAL [76] 2008 dataset

. Attributes
Method Detection (mAP) (mAP)

44.9 -
One-task) 60.9

46.1 -
Ensemble - 611
Split conv2 44.6 61.0
Split fc7 44.8 59.7
MTL-shared 42.7 54.1
Cross-stitch [ours] 45.2 63.0

Conclusion. We present cross-stitch units which are a generalized way of learning
shared representations for multi-task learning in ConvNets. Cross-stitch units model
shared representations as linear combinations, and can be learned end-to-end in
a ConvNet. These units generalize across different types of tasks and eliminate
the need to search through several multi-task network architectures on a per task
basis. We show detailed ablative experiments to see effects of hyperparameters,
initialization etc. when using these units. We also show considerable gains over the
baseline methods for data-starved categories. Studying other properties of cross-
stitch units, such as where in the network should they be used and how should their
weights be constrained, is an interesting future direction.

94

Part 11

Recognition Beyond Extensive
Supervision

Chapter 7

Learning Visual Similarity
Approach and Applications

The things that stand out
are often the oddities.

Pierre Salinger

Figure 7.1 — In this Chapter, we are interested in defining visual similarity between images across
different domains, such as photos taken in different seasons, paintings, sketches, etc. What makes this
challenging is that the visual content is only similar on the higher scene level, but quite dissimilar on the
pixel level. Here we present an approach that works well across different visual domains.

Powered by the availability of Internet-scale image and video collections coupled
with greater processing speeds, the last decade has witnessed the rise of data-driven
approaches in computer vision, computer graphics, and computational photography.
Unlike traditional methods, which employ parametric models to capture visual phe-
nomena, the data-driven approaches use visual data directly, without an explicit
intermediate representation. These approaches have shown promising results on a
wide range of challenging computer graphics problems, including super-resolution
and de-noising [29, 86, 111], texture and video synthesis [66, 239], image analo-
gies [123], automatic colorization [284], scene and video completion [117, 302, 303],
photo restoration [55], assembling photo-realistic virtual spaces [40, 145], and even

97

7. Learning Visual Similarity: Approach and Applications

making CG imagery more realistic [136], to give but a few examples.

The central element common to all the above approaches is searching a large
dataset to find visually similar matches to a given query — be it an image patch, a
full image, or a spatio-temporal block. However, defining a good visual similarity
metric to use for matching can often be surprisingly difficult. Granted, in many
situations where the data is reasonably homogeneous (e.g., different patches within
the same texture image [66], or different frames within the same video [239]), a
simple pixel-wise sum-of-squared-differences (L2) matching works quite well. But
what about the cases when the visual content is only similar on the higher scene
level, but quite dissimilar on the pixel level? For instance, methods that use scene
matching e.g., [55, 117] often need to match images across different illuminations,
different seasons, different cameras, etc. Likewise, retexturing an image in the style
of a painting [66, 123] requires making visual correspondence between two very
different domains — photos and paintings. Cross-domain matching is even more
critical for applications such as Sketch2Photo [40] and CG2Real [136], which aim
to bring domains as different as sketches and CG renderings into correspondence
with natural photographs. In all of these cases, pixel-wise matching fares quite
poorly, because small perceptual differences can result in arbitrarily large pixel-
wise differences. What is needed is a visual metric that can capture the important
visual structures that make two images appear similar, yet show robustness to small,
unimportant visual details. This is precisely what makes this problem so difficult —
the visual similarity algorithm somehow needs to know which visual structures are
important for a human observer and which are not.

Currently, the way researchers address this problem is by using various image
feature representations (SIFT [183], GIST [202], HoG [54], wavelets, etc.) that
aim to capture the locally salient (i.e., high gradient and high contrast) parts of
the image, while downplaying the rest. Such representations have certainly been
very helpful in improving image matching accuracy for a number of applications
(e.g., [55, 117, 136, 145]). However, what these features encode are purely local
transformations — mapping pixel patches from one feature space into another, in-
dependent of the global image content. The problem is that the same local feature
might be unimportant in one context but crucially important in another. Consider,
for example, the painting in Figure 7.2. In local appearance, the brush-strokes on
the alleyway on the ground are virtually the same as the brush-strokes on the sky.
Yet, the former are clearly much more informative as to the content of the image
than the latter and should be given a higher importance when matching (Figure 7.2).
To do this algorithmically requires not only considering the local features within the
context of a given query image, but also having a good way of estimating the impor-

98

7. Learning Visual Similarity: Approach and Applications

Uniform Weights Uniform Weight Matches

Learnt Weights Our Matches

Figure 7.2 — In determining visual similarity, the central question is which visual structures are important
for a human observer and which are not. In the painting above, the brush-strokes in the sky are as thick
as those on the ground, yet are perceived as less important. In this Chapter, we propose a simple, data-
driven learning method for determining which parts of a given image are more informative for visual
matching.

tance of each feature with respect to the particular scene’s overall visual impression.

What we present in this Chapter is a very simple, yet surprisingly effective
approach to visual matching which is particularly well-suited for matching images
across different domains. We do not propose any new image descriptors or feature
representations. Instead, given an image represented by some features (we will be
using the spatially-rigid HoG [54] descriptor for most of this Chapter), the aim
is to focus the matching on the features that are the most visually important for
this particular image. The central idea is the notion of “data-driven uniqueness”.
We hypothesize, following [22], that the important parts of the image are those
that are more unique or rare within the visual world (represented here by a large
dataset). For example, in Figure 7.2, the towers of the temple are very unique,
whereas the wispy clouds in the sky are quite common. However, since the same
local features could represent very different visual content depending of context,
unlike [22], our notion of uniqueness is scene-dependenti.e., each query image decides
what is the best way to weight its constituent parts. Figure 7.2 demonstrates the
difference between image matching using a standard uniform feature weighting vs.
our uniqueness-based weighting.

We operationalize this data-driven uniqueness by using ideas from machine
learning — training a discriminative classifier to discover which parts of an image are
most discriminative in relationship to the rest of the dataset. This simple approach
results in visual matching that is surprisingly versatile and robust. By focusing
on the globally salient parts of the image, the approach can be successfully used
for generic cross-domain matching without making any domain-specific changes, as

99

7.1 Related Work

Figure 7.3 — Example of image matching using the SIFT descriptor. While SIFT works very well at
matching fine image structure (left), it fails miserably when there is too much local change, such as a
change of season (right).

shown on Figure 7.1. The rest of the Chapter is organized as follows: we first give
a brief overview of the related work (Section 7.1), then describe our approach in
detail (Section 7.2), present an evaluation on several public datasets (Section 7.3),
and finally show some of the applications that our algorithm makes possible (Sec-
tion 7.4).

7.1 Related Work

In general, visual matching approaches can be divided into three broad classes, with
different techniques tailored for each:

Exact matching: For finding more images of the exact same physical object
(e.g., a Pepsi can) or scene (e.g., another photo of Eiffel Tower under similar illu-
mination), researchers typically use the general bag-of-words paradigm introduced
by the Video Google work [261], where a large histogram of quantized local image
patches (usually encoded with the SIFT descriptor [183]) is used for image retrieval.
This paradigm generally works extremely well (especially for heavily-textured ob-
jects), and has led to many successful applications such as GOOGLE GOGGLES.
However, these methods usually fail when tasked with finding similar, but not iden-
tical objects (e.g., try using GOOGLE GOGGLES app to find a cup, or a chair). This
is because SIFT, being a local descriptor, captures the minute details of a particular
object well, but not its overall global properties (as seen in Figure 7.3).

Approximate matching: The task of finding images that are merely “visu-
ally similar” to a query image is significantly more difficult and none of the current
approaches can claim to be particularly successful. Most focus on employing vari-
ous image representations that aim to capture the important, salient parts of the
image. Some of the popular ones include the GIST [202] descriptor, the Histogram
of Gradients (HoG) descriptor [54], various other wavelet- and gradient-based de-
compositions, or agglomerations, such as the spatial pyramid [165] of visual words.

100

7.1 Related Work

Also related is the vast field of Content-Based Image Retrieval (CBIR) (see [56] for
overview). However, in CBIR the goals are somewhat different: the aim is to re-
trieve semantically-relevant images, even if they do not appear to be visually similar
(e.g., a steam-engine would be considered semantically very similar to a bullet train
even though visually there is little in common). As a result, most modern CBIR
methods combine visual information with textual annotations and user input.

Cross-domain matching: A number of methods exists for matching be-
tween particular domains, such as sketches to photographs (e.g., [40, 68]), draw-
ings/paintings to photographs (e.g., [235]), or photos under different illuminants
(e.g., [46]), etc. However these typically present very domain-specific solutions
that do not easily generalize across multiple domains. Of the general solutions, the
most ambitious is work by Shechtman and Irani [246], which proposes to describe
an image in terms of local self-similarity descriptors that are invariant across vi-
sual domains. This work is complementary to ours since it focuses on the design
of a cross-domain local descriptor, while we consider relative weighting between the
descriptors for a given image, so it might be interesting to combine both.

Within the text retrieval community, the #f-idf normalization [14] used in the
bag-of-words approaches shares the same goals as our work — trying to re-weight the
different features (words in text, or “visual words” in images [261]) based on their
relative frequency. The main difference is that in tf-idf, each word is re-weighted
independently of all the others, whereas our method takes the interactions between
all of the features into account.

Most closely related to ours are approaches that try to learn the statistical
structure of natural images by using large unlabeled image sets, as a way to define
a better visual similarity. In the context of image retrieval, Hoiem et al. [125]
estimate the unconditional probability density of images off-line and use it in a
Bayesian framework to find close matches; Tieu and Viola [277] use boosting at
query-time to discriminatively learn query-specific features. However, these systems
require multiple positive query images and/or user guidance, whereas most visual
matching tasks that we are interested in need to work automatically and with only
a single input image. Fortunately, recent work in visual recognition has shown that
it’s possible to train a discriminative classifier using a single positive instance and
a large body of negatives [185, 305], provided that the negatives do not contain
any images similar to the positive instance. In this Chapter, we adapt this idea to
image retrieval, where one cannot guarantee that the “negative set” will not contain
images similar to the query (on the contrary, it most probably willl). What we show
is that, surprisingly, this assumption can be relaxed without adversely impacting

101

7.2 Our Approach

the performance.

7.2 Our Approach

The problem considered in this Chapter is the following: how to compute visual
similarity between images which would be more consistent with human expectations.
One way to attack this is by designing a new, more powerful image representation.
However, we believe that existing representations are already sufficiently powerful,
but that the main difficulty is in developing the right similarity distance function,
which can “pick” which parts of the representation are most important for matching.
In our view, there are two requirements for a good visual similarity function: 1) It
has to focus on the content of the image (the “what”), rather that the style (the
“how”) e.g., the images on Figure 7.1 should exhibit high visual similarity despite
large pixel-wise differences. 2) It should be scene-dependent, that is, each image
should have its own unique similarity function that depends on its global content.
This is important since the same local feature can represent vastly different visual
content, depending on what else is depicted in the image.

7.2.1 Data-driven Uniqueness

The visual similarity function that we propose is based on the idea of “data-
driven uniqueness”. We hypothesize that what humans find important or salient
about an image is somehow related to how unusual or unique it is. If we could re-
weight the different elements of an image based on how unique they are, the resulting
similarity function would, we argue, answer the requirements of the previous Section.
However, estimating “uniqueness” of a visual signal is not at all an easy task, since it
requires a very detailed model of our entire visual world, since only then we can know
if something is truly unique. Therefore, instead we propose to compute uniqueness
in a data-driven way — against a very large dataset of randomly selected images.

The basic idea behind our approach is that the features of an image that exhibit
high “uniqueness” will also be the features that would best discriminate this image
(the positive sample) against the rest of the data (the negative samples). That is, we
are able to map the highly complex question of visual similarity into a fairly standard
problem in discriminative learning. Given some suitable way of representing an
image as a vector of features, the result of the discriminative learning is a set of
weights on these features that provide for the best discrimination. We can then
use these same weights to compute visual similarity. Given the learned, query-
dependent weight vector wy, the visual similarity between a query image I, and any

102

7.2 Our Approach

other image/sub-image I; can be defined simply as:
S(I, L) = wy'x; (7.1)

where x; is I;’s extracted feature vector.

To learn the feature weight vector which best discriminates an image from a
large “background” dataset, we employ the linear Support Vector Machine (SVM)
framework. We set up the learning problem following [185] which has demonstrated
that a linear SVM can generalize even with a single positive example, provided
that a very large amount of negative data is available to “constrain the solution”.
However, whereas in [185] the negatives are guaranteed not to be members of the
positive class (that is why they are called negatives), here this is not the case.
The “negatives” are just a dataset of images randomly sampled from a large Flickr
collection, and there is no guarantee that some of them might not be very similar to
the “positive” query image. Interestingly, in practice, this does not seem to hurt the
SVM, suggesting that this is yet another new application where the SVM formalism
can be successfully applied.

The procedure described above should work with any sufficiently powerful image
feature representation. For the majority of our experiments in this Chapter, we have
picked the Histogram of Oriented Gradients (HOG) template descriptor [54], due
to its good performance for a variety of tasks, its speed, robustness, adaptability to
sliding window search, and popularity in the community at the time of this work.
We also show how our learning framework can be used with Dense-SIFT (D-SIFT)
template descriptor in Section 7.2.4.

To visualize how the SVM captures the notion of data-driven uniqueness, we
performed a series of experiments with simple, synthetic data. In the first exper-
iment, we use simple synthetic figures (a combination of circles and rectangles)
as visual structures on the query image side. Our negative world consists of just
rectangles of multiple sizes and aspect ratios. If everything works right, using the
SVM-learned weights should downplay the features (gradients in HoG representa-
tion) generated from the rectangle and increase the weights of features generated
by the circle, since they are more unique. We use the HoG visualization introduced
by [54] which displays the learned weight vector as a gradient distribution image.
As Figure 7.4(a) shows, our approach indeed suppresses the gradients generated by
the rectangle.

One of the key requirements of our approach is that it should be able to extract
visually important regions even when the images are from different visual domains.

103

7.2 Our Approach

Learnt Features

Initial Features

I |
| 5
l_Entl_re Vlorﬁof;ma&es 1]
(b)

Figure 7.4 — Synthetic example of learning data-driven “uniqueness”. In each case, our learned similarity
measure boosts the gradients belonging to the circle because they are more unique with respect to a
synthetic world of rectangle images.

We consider this case in our next experiment, shown on Figure 7.4(b). Here the set
of negatives includes two domains — black-on-white rectangles and white-on-black
rectangles. By having the negative set include both domains, our approach should
downplay any domain-dependent idiosyncrasies both from the point of view of the
query and target domains. Indeed, as Figure 7.4(b) shows, our approach is again
able to extract the unique structures corresponding to circles while downplaying the
gradients generated due to rectangles, in a domain-independent way.

We can also observe this effect on real images. The Venice bridge painting
shown in Figure 7.5 initially has high gradients for building boundaries, the bridge
and the boats. However, since similar building boundaries are quite common, they
occur a lot in the randomly sampled negative images and hence, their weights are
reduced.

7.2.2 Algorithm Description

We set up the learning problem using a single positive and a very large negative
set of samples similar to [185]. Each query image (I;) is represented with a rigid
grid-like HoG feature template (x4). We perform binning with sizing heuristics
which attempt to limit the dimensionality of (x4) to roughly 4 — 5K, which amounts
to ~ 150 cells for HoG template. To add robustness to small errors due to image
misalignment, we create a set of extra positive data-points, P, by applying small
transformations (shift, scale and aspect ratio) to the query image I,, and generating

104

7.2 Our Approach

x; for each sample. Therefore, the SVM classifier is learned using I, and P as
positive samples, and a set containing millions of sub-images N (extracted from
10,000 randomly selected Flickr images), as negatives. Learning the weight vector
w, amounts to minimizing the following convex objective function:

L(wg) = > h(wlxi)+ Y h(—=wix;) + Awgl® (7.2)
X, €PUI, x;eN

We use LIBSVM [35] for learning w, with a common regularization parameter A\ =
100 and the standard hinge loss function h(z) = max(0,1 — z). The hinge-loss
allows us to use the hard-negative mining approach [54] to cope with millions of
negative windows because the solution only depends on a small set of negative
support vectors. In hard-negative mining, one first trains an initial classifier using
a small set of training examples, and then uses the trained classifier to search the
full training set exhaustively for false positives (‘hard examples’). Once sufficient
number of hard negatives are found in the training set, one retrains the classifier
w, using this set of hard examples. We alternate between learning w, given a
current set of hard-negative examples, and mining additional negative examples
using the current wy as in [54]. For all experiments in this Chapter, we use 10
iterations of hard-mining procedure; with each iteration requiring more time than
the previous one because it becomes harder to find hard-negatives as the classifier
improves. Empirically, we found that more than 10 iterations did not provide enough
improvement to justify the run-time cost.

The standard sliding window setup [54] is used to evaluate all the sub-windows
of each image. For this, the trained classifier is convolved with the HoG feature
pyramid at multiple scales for each image in the database. The number of pyramid
levels controls the size of possible detected windows in the image. We use simple
non-maxima suppression to remove highly-overlapping redundant matches. While
the use of sub-window search is expensive, we argue that it is crucial to good image
matching for the following reasons. First, it allows us to see millions of negative ex-
amples during training from a relatively small number of images (10,000). But more
importantly, as argued by [125], sub-window search is likely to dramatically increase
the number of good matches over the traditional full-image retrieval techniques.

7.2.3 Relationship to Saliency

We found that our notion of data-driven uniqueness works surprisingly well as a
proxy for predicting image saliency (“where people look”) — a topic of considerable
interest to computer graphics. We ran our algorithm on the human gaze dataset from

105

7.3 Experimental Validation on Cross-domain Matching

Input Image

Learnt Weight Features Top Match

Figure 7.5 — Learning data-driven uniqueness: Our approach down-weighs the gradients on the buildings
since they are not as rare as the circular gradients from the bridge.

Judd et al. [141], using a naive mapping from learned HoG weights to predicted pixel
saliency by spatially summing these weights followed by normalization. Figure 7.6
compares our saliency prediction against standard saliency methods (summarized
in [141]). While our score of 74% (mean area under ROC curve) is below [141] who
are the top performers at 78% (without center prior), we beat most classic saliency
methods such as Itti et al. [131] who only obtained 62%. After incorporating a
simple gaussian center prior, our score raises to 81.9%, which is very close to 83.8%
of [141].

7.2.4 Other Features

Our framework should be able to work with any rigid grid-like image represen-
tation where the template captures feature distribution in some form of histogram of
high-enough dimensionality. We performed preliminary experiments using the dense
SIFT (D-SIFT) template descriptor (similar to [165]) within our framework for the
task of Sketch-to-Image Matching (Section 7.3.2). The query sketch (/;) was repre-
sented with a feature template (x,) of D-SIFT and sizing heuristics (Section 7.2.2)
produced ~ 35 cells for the template (128 dimensions per cell). Figure 7.10 demon-
strates the results of these preliminary experiments, where our learning framework
improves the performance of D-SIFT baseline (without learning) indicating that our
algorithm can be adapted to a different feature representation.

7.3 Experimental Validation on Cross-domain Matching

To demonstrate the effectiveness of our approach, we performed a number of image
matching experiments on different image datasets, comparing against the following

106

7.3 Experimental Validation on Cross-domain Matching

0.916 Humans (0.916)
0.8185 m Our Approach (with Center Prior) (0.8185)
‘ m Our Approach (0.7304)
0.838 [Judd et al. 2009] (0.838)

M [Judd et al. 2009] (without Center Prior) (0.78)
u [Torralba/Rosenholtz] (0.7)
m [Itti and Koch 2000] (0.62)
Center Prior (0.797)
M Color (0.6)
® Chance (0.5)

0.797

o

0.2

o
Y
=
3

0.4
Area under ROC Curve

Figure 7.6 — The concept of data-driven uniqueness can also be used as a proxy to predict saliency
for an image. Our approach performs better than individual features (such as Itti et al. and Tor-
ralba/Rosenholtz, see [141]) and comparable to Judd et al. [141].

popular baseline methods:

Tiny Images: Following [284], we re-size all images to 32x32, stack them into
3072-D vectors, and compare them using Euclidean distance.

GIST: We represent images with the GIST [202] descriptor, and compare them
with the Euclidean distance.

BoW: We compute a Bag-of-Words representation for each image using vector-
quantized SIFT descriptors [183] and compare the visual word histograms (with
tf-idf normalization) as in [261].

Spatial Pyramid: For each image, we compute spatial pyramid [165] repre-
sentation with 3 pyramid levels using Dense-SIFT descriptors of 16x16 pixel patches
computed over a grid with spacing of 8 pixels. We used vocabulary of 200 visual
words. The descriptors are compared using histogram intersection pyramid match-
ing kernels as described in [165].

Normalized-HoG (N-HoG): We represent each image using the same HoG
descriptor as our approach, but instead of learning a query-specific weight vector,
we match images directly in a nearest-neighbor fashion. We experimented with
different similarity metrics and found a simple normalized HoG (N-HoG) to give the
best performance. The N-HoG weight vector is defined as a zero-centered version
of the query’s HoG features w, = x, — mean(x,). Matching is performed using
Equation 7.1, by replacing the learned weight vector with N-HoG weight vector.

In addition, we also compare our algorithm to Google’s recently released Search-
by-Image feature. It should be noted that the retrieval dataset used by Google is
orders of magnitude larger than the tens of thousands of images typically used in

107

7.3 Experimental Validation on Cross-domain Matching

Table 7.1 — Instance retrieval in Holidays dataset + FlickrlM. We report the mean true positive rate
from the top-k image matches as a function of increasing dataset size (averaged across a set of 50
Holidays query images)

Top-5 Top-100
Dataset Size: 1,490 11,490 101,490 1,001,490 Dataset Size 1,490 11,490 101,490 1,001,490
GIST 1.06 1.06 1.06 1.06 GIST 19.21 1417 1417 14.17
Tiny Images 1.06 1.06 1.06 1.06 Tiny Images 7.13 5.18 5.18 5.18

Spatial Pyramid 34.17 30.63 24.71 19.67 Spatial Pyramid 48.88 41.50 34.48 27.92
Our Approach 65.88 63.93 58.90 58.36 Our Approach 68.74 68.74 66.19 61.50

our datasets, so this comparison is not quite fair. But while Google’s algorithm
(at the time of this work) shows a reasonable performance in retrieving landmark
images with similar illumination, season and viewpoint, it does not seem to adapt
well to photos taken under different lighting conditions or photos from different
visual domains such as sketches and paintings (see Figure 7.9).

7.3.1 Image-to-lmage Matching

While image retrieval is not the goal of this Chapter, the CBIR community has
produced a lot of good datasets that we can use for evaluation. Here we consider
the instance retrieval setting using the INRIA Holidays dataset introduced by Jégou
et al. [133] and one million random distractor Flickr images from [117] to evaluate
performance. The goal is to measure the quality of the top matching images when the
exact instances are present in the retrieval dataset. For evaluation, we follow [133]
and measure the quality of rankings as the true positive rate from the list of top
k = 100 matches as a function of increasing dataset size. Since the average number of
true positives is very small for the Holidays dataset, we also perform the evaluation
with smaller k. We compare our approach against GIST, Tiny Images and Spatial
Pyramid baselines described in Section 7.3 on 50 random Holidays query images
and evaluate the top 5 and 100 matches for the same dataset sizes used in [133].

Table 7.1 demonstrates the robustness of our algorithm to adding distractor
images — the true positives rate only drops from 69% to 62% when we add 1M
distractors (which is of similar order as in [133]), outperforming the state-of-art
spatial pyramid matching [165]. It is important to note that even after drastically
reducing the ranks under consideration from the top 100 to just the top 5, our rate
of true positives drops by only 3% (which attests to the quality of our rankings).
For a dataset of one million images and a short-list of 100, [133] return 62% true
positives which is only slightly better than our results; however, their algorithm is
designed for instance recognition, whereas our approach is applicable to a broad
range of cross-domain visual tasks.

108

7.3 Experimental Validation on Cross-domain Matching

Tiny Images

d@@ =

Our Approach

Tlnx Images
Input Painting Our Approach

Figure 7.7 — Qualitative comparison of our approach against baselines for Sketch-to-Image and Painting-
to-Image matching.

Input Sketch
L Input Sketch Our Top Matches

||- -l 7

!II:: [’ll'

Figure 7.8 — A few more qualitative examples of top-matches for sketch and painting queries.

7.3.2 Sketch-to-lmage Matching

Matching sketches to images is a difficult cross-domain visual similarity task.
While most current approaches use specialized methods tailored to sketches, here
we apply exactly the same procedure as before, without any changes. We collected a
dataset of 50 sketches (25 cars and 25 bicycles) to be used as queries (our dataset in-
cludes both amateur sketches from the internet as well as freehand sketches collected
from non-expert users). The sketches were used to query into the PASCAL VOC
dataset [72], which is handy for evaluation since all the car and bicycle instances
have been labeled. Figure 7.8(top) show some example queries and the correspond-
ing top retrieval results for our approach and the baselines. It can be seen that our
approach not only outperforms all of the baselines, but returns images showing the
target object in a very similar pose and viewpoint as the query sketch.

109

7.3 Experimental Validation on Cross-domain Matching

% A : y
. iy i
i

ur Top Matches
Ak 2y RS v

Our Top Matches

Google Top Matches

o R

=

Google Top Matches
—

| ﬁ_E
nput Image ur Top Matches

Figure 7.9 — Qualitative comparison of our approach with Google's ‘Search—by—Image’ feature. While
our approach is robust to illumination changes and performs well across different visual domains, Google
image search fails completely when the exact matches are not in the database.

N - A
Input Painting OulfkT:F Matches

For quantitative evaluation, we compared how many car and bicycle images were
retrieved in the top-K images for car and bicycle sketches respectively. We used the
bounded mean Average Precision (mAP) metric used by [133] 1. We evaluated the
performance of our approach (using HoG and D-SIFT) as a function of dataset size
and compare it with the multiple baselines, showing the robustness of our approach
to the presence of distractors. For each query, we start with all images of the target
class from the dataset, increase the dataset size by adding 1000, 5000 images and
finally the entire PASCAL VOC 2007 dataset. Figure 7.10(a) and (b) show mAP
as a function of dataset size for cars and bicycles, respectively. For the top 150
matches, we achieve a mAP of 67% for cars and 54% for bicycles (for Learnt-HoG).
We also ran our algorithm on the Sketch-Based Image Retrieval (SBIR) Benchmark
Dataset [68]. For the top 20 similar images ranked by users, we retrieve 51% of
images as top 20 matches, compared 63% using a sketch-specific method of [68]

7.3.3 Painting-to-lmage Matching

As another cross-domain image matching evaluation, we measured the perfor-
mance of our system on matching paintings to images. Retrieving images similar to
paintings is an extremely difficult problem because of the presence of strong local
gradients due to brush strokes (even in the regions such as sky). For this experi-
ment, we collected a dataset of 50 paintings of outdoor scenes in a diverse set of
painting styles geographical locations. The retrieval set was sub-sampled from the
6.4M GPS-tagged Flickr images of [118]. For each query, we created a set of 5,000
images randomly sampled within a 50 mile radius of each painting’s location (to

'Maximum recall is bounded by the number of images being retrieved. For example, if we
consider only top-150 matches the maximum true positives would be 150 images

110

7.4 Applications of Data-driven Similarity

4
©

=4
=)

o
>

mAP
(Top-[1:150] Retrievals)

mAP
(Top-[1:150] Retrievals)

o
[N

. . . . 0 . . . I
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Database Size Database Size
(a) mAP for Car Sketches (b) mAP for Bicycle Sketches
Tl.ny Images — & —-Dense-SIFT —a— Our Approach (Learnt D-SIFT)
«— Gist — e.- Normalized-HOG —s— Our Approach (Learnt N-HOG)

SIFT-BoW

Figure 7.10 — Sketch-to-Image evaluation. We match car/bicycle sketches to sub-images in the PASCAL
VOC 2007 dataset and measure performance as the number of distractors increases.

make sure to catch the most meaningful distractors), and 5,000 random images.
Qualitative examples can be seen in Figure 7.7.

7.4 Applications of Data-driven Similarity

Our data-driven visual similarity measure can be used to improve many existing
matching-based application, as well as facilitate new ones. First, we briefly discuss
a few direct applications of improved visual similarity, such as Scene Completion,
Internet Re-photogrpahy and Painting2GPS in Section Al. Next, we will discuss
how a robust visual similarity opens the door to organising unordered, large visual
data. In particular, one can construct a visual memez graph ([184]), whose nodes
are images/sub-images, and edges are various types of associations, such as visual
similarity, context, etc. We will show how this graph facilitates exploring a large
collection of unordered visual data (Section A2); and even enables discovering object
instances and their segmentation masks from weakly-supervised and noisy web data

(Section A3).

Al Improved Image Matching and its Applications
Better Scene Matching for Scene Completion

Data-driven Scene Completion has been introduced by [117]. However, their
scene matching approach (using the GIST descriptor) is not always able to find the
best matches automatically. Their solution is to present the user with the top 20
matches and let him find the best one to be used for completion. Here we propose
to use our approach to automate scene completion, removing the user from the loop.
To evaluate the approach, we used the 78 query images from the scene completion

111

7.4 Applications of Data-driven Similarity

Input Image Top Matches Scene Completions

Hays et al. Our Approach Hays et al.

Our Approach

Figure 7.11 — Qualitative examples of scene completion using our approach and [117].

Paris (1940) Manual Alignment Boston (1900) Top Matches Manual Alignment

Figure 7.12 — Internet Re-photography. Given an old photograph, we harness the power of large Internet
datasets to find visually similar images. For each query we show the top 4 matches, and manually select
one of the top matches and create a manual image alignment.

test set [117] along with the top 160 results retrieved by them. We use our algorithm
to re-rank these 160 images and evaluate both the quality of scene matches and scene
completions against [117].

Figure 7.11 shows a qualitative result for the top match using our approach as
compared to the top match from the GIST+ features used by [117]. To compute
quantitative results, we performed two small user studies. In the first study, for
each query image participants were presented with the best scene match using our
approach, [117] and tiny-images [284]. Participants were asked to select the clos-
est scene match out of the three options. In the second study, participants were
presented with automatically completed scenes using the top matches for all three
algorithms, and were asked to select the most convincing/compelling completion.
The order of presentation of queries as well as the order of the three options were
randomized. Overall, for the first task of scene matching, the participants preferred
our approach in 51.4% cases as opposed 27.6% for [117] and 21% for Tiny-Images.
For the task of automatic scene completion, our approach was found to be more con-
vincing in 47.3% cases as compared to 27.5% for [117] and 25.2% for Tiny-Images.
The standard-deviation of user responses for most of the queries were surprisingly
low.

Internet Re-photography

We were inspired by the recent work on computational re-photography [13],
which allows photographers to take modern photos that match a given historical
photograph. However, the approach is quite time-consuming, requiring the photog-

112

7.4 Applications of Data-driven Similarity

Input Painting Estimated Geo-location
AN D i 3

Figure 7.13 — Painting2GPS Qualitative Examples. In these two painting examples (Tower Bridge in
London and the Sydney Opera House), we display estimated GPS location of the painting as a density
map overlaid onto Google-map, and the top matching image.

A
Gcogle‘T

ot Photogranh P Input Painting Our Top Matches

Figure 7.14 — Typical failure cases. (Left): relatively small dataset size, compared to Google. (Right):
too much clutter in the query image.

rapher to go “on location” to rephotograph a particular scene. What if, instead
of rephotographing ourselves, we could simply find the right modern photograph
online? This seemed like a perfect case for our cross-domain visual matching, since
old and new photographs look quite different and would not be matched well by
existing approaches.

We again use the 6.4M geo-tagged Flickr images of [117], and given an old
photograph as a query, we use our method to find its top matches from a pre-
filtered set of 5,000 images closest to the old photograph’s location (usually at least
the city or region is known). Once we have an ordered set of image matches, the
user can choose one of the top five matches to generate the best old/new collage.
Re-photography examples can be seen in Figure 7.12.

Painting2GPS

Wouldn’t it be useful if one could automatically determine from which loca-
tion a particular painting was painted? Matching paintings to real photos from a
large GPS-tagged collection allows us to estimate the GPS coordinates of the input
painting, similar to the approach of [118]. We call this application painting2GPS.
We use painting-to-image matching as described in Section 7.3.3, and then find the
GPS distribution using the algorithm in [118]. Qualitative painting2GPS examples
overlayed onto Google-map can be seen in Figure 7.13.

113

7.4 Applications of Data-driven Similarity

Average Image of Top-20 NN

Input Image

Figure 7.15 — Visual Scene Exploration. (Top): Given an input image, we show the top matches,
aligned by the retrieved sub-window. The last image shows the average of top 20 matches. (Bottom):
A visualization of the memex-graph tour through the photos of the Medici Fountain.

A2 Exploring Large, Un-ordered Visual Data

Having a robust visual similarity opens the door to interesting ways of ex-
ploring and reasoning about large visual data. In particular, one can construct a
visual memex graph (using the terminology from [184]), whose nodes are images/sub-
images, and edges are various types of associations, such as visual similarity, context,
etc. By visually browsing this memex graph, one can explore the dataset in a way
that makes explicit the ways in which the data is interconnected. Such graph brows-
ing visualizations have been proposed for several types of visual data, such as photos
of a 3D scene [262], large collections of outdoor scenes [145], and faces [150]. Here we
show how our visual similarity can be used to align photos of a scene and construct
a movie. Given a set of 200 images automatically downloaded from Flickr using
keyword search (e.g., “Medici Fountain Paris”), we compute an all-to-all matrix
of visual similarities that represents our visual memex graph. Note that because
we are using scanning window matching on the detection side, a zoomed-in scene
detail can still match to a wide-angle shot as seen on Figure 7.15 (top). Other
side-information can also be added to the graph, such as the relative zoom factor,
or similarity in season and illumination (computed from photo time-stamps). One
can now interactively browse through the graph, or create a visual memex movie
showing a particular path from the data, as shown on Figure 7.15 (bottom), and in
supplementary videos available at the project page.

114

http://graphics.cs.cmu.edu/projects/crossDomainMatching/

7.4 Applications of Data-driven Similarity

(a) Images from the Car Internet Dataset

- Average Image
pr—

Average Image

Leamed Prior

Leamed Prlor

Lr‘, l-

Example Images Example Images

Learned Detector Learned Detector

(b) Discovered Visual Subcategories and Learned Priors/Models (c) Our Segmentation Results

Figure 7.16 — We propose an approach to discover objects and perform segmentation in noisy Internet
images (a). Our approach builds upon the advances in discriminative object detection to discover visual
subcategories and build top-down priors for segmentation (b). These top-down priors, discriminative
detectors and bottom-up cues are finally combined to obtain segmentations (c).

A3 Object Discovery and Segmentation

In this Section, we focus on automatically discovering object instance and their
segmentation masks given a large collection of noisy Internet images of some object
class (say “car”). We will only present the details directly relevant to the application
of data-driven visual similarity (other details of this work can be found in the original
manuscript [42]). The central idea behind our method is to learn top-down priors
and use these priors to perform joint segmentation. Approaches such as Class-
cut [3], Collect-cut [168] and [156] develop top-down priors based on semantic classes:

e., they build appearance models for semantic classes such as cars, airplanes etc.
and use them in a graph-based optimization formulation. However, high intra-
class variations within a semantic class leads to weak priors and these priors fail to
significantly improve performance.

Interestingly, similar problems have been faced by object detection community
as well. Due to high-intra class and pose variations, most approaches find it ex-
tremely difficult to learn a single (object vs. background) classifier that can general-
ize. Therefore, to relieve the classifier of this task, many approaches have considered
reorganizing the data into clusters (called visual subcategories) and train a different
classifier for each cluster. While some approaches have clustered the data using ex-
tra ground-truth annotations (e.g., viewpoint, which may not be available for many
large datasets) [102], visual similarity [41, 60] and heuristics (e.g., aspect-ratio [79],
that fail to generalize to a large number of categories). Motivated by these recent ap-

115

7.4 Applications of Data-driven Similarity

proaches, we propose to automatically discover discriminative visual sub-categories
and learn top-down segmentation priors based on these sub-categories.

In particular, we will use the notion of data-driven visual similarity to build
a graph between images or image patches to which will enable us to discover visual
subcategories which have well-aligned instances of objects. These visual subcate-
gories are then exploited to build strong top-down priors which are combined with
image-based likelihoods to perform segmentation on multiple images simultaneously.
Figure 7.16 shows how our approach can extract aligned visual subcategories and
develop strong priors for segmentation. Our experimental results indicate that gen-
erating priors via visual subcategories indeed leads to state-of-the-art performance
in joint segmentation of an object class on standard datasets [231].

This work is closely related to co-segmentation, where the task is to simultane-
ously segment visually similar objects from multiple images at the same time [15,
139, 152, 229, 231, 290]. Most of these approaches assume that all images have
very similar objects with distinct backgrounds, and they try to learn a common ap-
pearance model to segment these images. However, the biggest drawback with these
approaches is that they are either susceptible to noisy data or assume that an object
of interest is present in every image of the dataset. The most relevant related work
to our approach is the work of [231], which proposes to use a pixel correspondence-
based method for object discovery. They model the sparsity and saliency properties
of the common object in images, and construct a large-scale graphical model to
jointly infer an object mask for each image. Instead of using pairwise similarities,
our approach builds upon recent success of discriminative models and exploits vi-
sual subcategories. Our discriminative machinery allows us to localize the object
in the scene and the strong segmentation priors help us achieve state-of-the-art
performance on the benchmark dataset. Finally, we believe our approach is more
scalable than other co-segmentation approaches (including [231]) since we never at-
tempt to solve a global joint segmentation problem, but instead only perform joint
segmentation on subsets of the data.

Approach

Our goal is to extract objects and their segments from large, noisy image col-
lections in an unsupervised? manner. We assume that the collection is obtained as
a query result from search engines, photo albums, etc. and therefore, a majority of
these images contain the object of interest. However, we still want to reject the

2The image collection itself is weakly-supervised. The term ‘unsupervised’ is used to refer to no
human-input for segmentation

116

7.4 Applications of Data-driven Similarity

Exemplars Detections

S e

Average Image

N

Leamed Model

(c) Aligned Homogeneous Clusters (d2) Joint Seed Segmentation (e) Visual Subcategories (f) Segmentation

Figure 7.17 — Overview of our approach.

images which are noisy and do not have the object instance. While one can use
approaches like graph-cut with center prior to discover the object segments, such
an approach fails due to the weak center prior in case of Internet images. What we
need is some top-down information, which can be obtained by jointly segmenting the
whole collection. Most approaches build class-based appearance models from the
entire image collection to guide the segmentation of individual instances. However,
in this work, we argue that due to high intra-class and pose variations such priors
are still weak and do not improve the results significantly. Instead, we build priors
based on visual subcategories where each subcategory corresponds to a ‘visually ho-
mogeneous’ cluster in the data (low intra-class variations) [60]. For example, for an
airplane, some of the visual subcategories could be commercial plane in front view,
passenger plane in side view, fighter plane in front view etc. But how does one seed
segmentations for these visual subcategories before learning segmentation priors?

In this work, instead of directly discovering disjoint visual subcategories, we
first cluster the visual data into overlapping and redundant clusters (an instance
can belong to one or more clusters). The notion of data-driven visual similarity
is used to build these overlapping clusters. In particular, we use faster and improved
version [114] of ideas presented previously in this Section to train instance based
detectors and then using these detectors to find similar instances in the training data.
Because we use sliding-window detectors, our clusters have nicely aligned visual
instances. Exploiting the fact that images in these clusters are well aligned, we run
a joint co-segmentation algorithm on each cluster by introducing an extra constraint
that pixels in the same location should have similar foreground-background labels.
Introducing this extra constraint in conjunction with high-quality clusters leads to

117

7.4 Applications of Data-driven Similarity

Figure 7.18 — (Top) Examples of strongly aligned and visually coherent clusters that we discovered.
(Bottom) We also show the result of our modified co-segmentation approach on these clusters.

clean segmentation labels for the images.

Our clusters are tight (low recall, high precision) with very few instances, and
therefore some of the clusters are noisy, which capture the repetition in the noisy
images. For example, 5 motorbikes in the car collection group together to form a
cluster. To clean-up the noisy clusters, we merge these overlapping and redundant
clusters to form visual sub-categories. The subcategories belonging to the underlying
categories find enough repetition in the data that they can be merged together. On
the other hand, the noisy clusters fail to cluster together and are dropped. Once we
have these large subcategories, we pool in the segmentation results from the previous
step to create top-down segmentation priors. We also train a discriminative Latent-
SVM detector [79] for each of the cluster. These trained detectors are then used to
detect instances of object across all the images. We also generate a segmentation
mask for each detection by simply transferring the average segmentation for each
visual subcategory. Finally, these transferred masks are used as the top-down prior
and a graph-cut algorithm is applied to extract the final segment for each image.
The outline of our approach is shown in Figure 7.17.

Discovering Aligned and Homogeneous Clusters

To build segmentation priors, we first need to initialize and segment a few
images in the collection. We propose to discover strongly coherent and visually
aligned clusters (high precision, low recall). Once we have visually homogeneous
and aligned clusters, we propose to run a co-segmentation approach with strong
co-location constraints and obtain seed segments in the dataset.

To discover visually coherent and aligned clusters, we first build a graph using
each image as a node, and connecting it with other image patches using a visual
similarity metric (similar to the ones presented previous applications). Specifically,
we train an eLDA exemplar detector [114] (which captures the notion of data-driven
visual similarity by training a detector using natural world statistics) based on Color-
HOG (CHOG) features [244]. Once we have an eLDA detector for each cropped
image, we use this detector to detect similar objects on all the images in the collection
and select the top k detections with highest scores. Since CHOG feature focuses on

118

7.4 Applications of Data-driven Similarity

shapes/contours, the resulting clusters are well aligned, which serves as the basis for
the following joint segmentation and subcategory discovery step. Note that since
we develop a cluster for each image and some images are noisy (do not contain any
objects), some of the clusters tend to be noisy as well. Figure 7.18(top) shows some
examples of the well aligned clusters extracted using the above approach.

Generating Seed Segmentations

The discovered visually coherent and overlapping clusters in the previous step
are aligned due to sliding window search, and they are aligned up to the level of a
CHOG grid cell. We can use this strong alignment to constrain the co-segmentation
problem and jointly segment the foreground in all images, in the same cluster, using
a graph-cut based approach. Notice that objects can occur in different environ-
ments and have backgrounds with various conditions. The benefits of segmenting
all the images at once is that some instances can be more easily segmented out (e.g.,
product images with clean, uniformly colored background), and those segmentations
can help in segmenting the hard images (e.g., images taken with a low-resolution
camera, real-world images with multiple objects, overlaps and occlusions). The
mathematical formulation of seed segmentation generation can be found in [42].
Figure 7.18(bottom) shows some examples of segmentations obtained for the visu-
ally coherent clusters.

From Clusters to Visual Subcategories

In the last step, we used a standard co-segmentation approach to segment the
object of interest in strongly aligned clusters. While one can pool-in results from all
such clusters to compute final segmentations, this naive approach will not work be-
cause internet data is noisy, especially for images returned by search engines which
are still mainly dependent on text-based information retrieval. Therefore, some clus-
ters still correspond to noise (e.g., a bike cluster is created from car data). But more
importantly, our initial clustering operates in the high-precision, low-recall regime
to generate very coherent clusters. In this regime, the clustering is strongly discrim-
inative and focuses on using only part of the data. Therefore, as a next step we
create larger clusters which will increase the recall of bounding boxes. Specifically,
we merge these aligned clusters and create visual subcategories which are still visu-
ally homogeneous but avoid over fitting and allow better recall. This clustering step
also helps to get rid of noise in the data as the smaller and less consistent (noisy)
clusters find it difficult to group and create visual subcategories. One way to merge
clusters would be based on similarity of cluster members. However, in our case,
we represent each cluster in terms of the detector and create the signature of the

119

7.4 Applications of Data-driven Similarity

detector based on the detector score on randomly sampled patches (following [191]).
More details on using detection signatures for clustering can be found in [42, 191].
Finally, we learn a LSVM detector for each merged cluster.

Generating Segmentations from Subcategories

In the final step, we bring together the discriminative visual subcategory detec-
tors, the top-down segmentation priors learned for each subcategory and the local
image evidence to create final segmentation per image. Given the discovered visual
subcategories we learn a LSVM detector without the parts [79] for each subcat-
egory. We use these trained detectors to detect objects throughout the dataset.
Finally, we transfer the pooled segmentation mask for each subcategory to initialize
the grab-cut algorithm. The result of the grab-cut algorithm is the final segmenta-
tion of each instance. The experiments demonstrate that this simple combination
is quite powerful and leads to state-of-the-art results on the challenging Internet
Dataset [231].

Experimental Results

We now present experimental results to demonstrate the effectiveness of our ap-
proach on both standard datasets and Internet scale data. Traditional co-segmentation
datasets like [15] are too small and clean; however our algorithm is specifically suited
for large datasets (1000 images or more per-class). Therefore, we use the new chal-
lenging Internet dataset [231] for evaluation. This dataset consists of images auto-
matically downloaded from the Internet with query expansion. It has thousands of
noisy images for three categories: airplane, horse, and car, with large variations on
pose, scale, view angle, etc. Human labeled segmentation masks are also provided
for quantitative evaluation.

Figure 7.20 shows some qualitative results. Notice how our approach can extract
nice segments even from cluttered scenarios such as cars. Also, our approach can
separately detect multiple instances of the categories in the same image. The last
row in each category shows some failure cases which can be attributed to weird poses
and rotations that are not frequent in the dataset.

Quantitative Evaluation

We now quantitatively evaluate the performance of our approach and compare
against the algorithm of [231]. Note that most co-segmentation algorithms cannot
scale to extremely large datasets and hence we focus on comparing against [231].

120

7.4 Applications of Data-driven Similarity

Average Image Learned Model Learned Prior

Figure 7.19 — Examples of visual subcategories obtained after merging clusters. We show few instances,
the average images, learned Latent SVM model and the segmentation prior for each subcategory.

121

7.4 Applications of Data-driven Similarity

iﬁ“-*% Rl el g
A R U =l
e — - 3

Figure 7.20 — Qualitative results on discovering objects and their segments from noisy Internet images.
We show results on three categories: car, horse, and airplane. The last row in each result shows some

failure cases.

122

7.4 Applications of Data-driven Similarity

Table 7.2 — Evaluation on the entire Internet Table 7.3 — Evaluation on the 100 images per
Dataset [231] class subset of Internet Dataset [231]

Car Horse Airplane Car Horse Airplane

P J P J P J P J P J P J

[231] 83.38 63.36 83.60 53.80 86.14 5562 139 9870 3715 6384 3016 49.25 1536

[
[140] 59.20 35.15 64.22 29.53 47.48 11.72
Ours 87.09 64.67 89.00 57.58 90.24 59.97 [152) 68.85 0.04 7512 643 8020 7.90

] 8538 6442 8281 51.65 88.04 55.81
Ours 87.65 64.86 86.16 33.39 90.25 40.33

o E& [' QI é%\.

Mallard Boslon Terrier Nanny Gai
e

-—‘ﬂ w

Gcmdo la

Flying Fish Handbag Oyster Catcher Kayak

o N *Eﬁv - b

Aircraft Blue Groper Bench Mushroom

g*ﬂb

Lawn Mower Teacup Nexus
Gorilla Al]lgalor

Figure 7.21 — Qualitative results on discovering objects and their segments in NEIL [41]. The last
column shows some failure cases.

For our evaluation metric, we use Precision (P) (the average number of pixels cor-
rectly labeled) and Jaccard similarity (J) (average intersection-over-union for the
foreground objects). Table 7.2 shows the result on the entire dataset. Our algo-
rithm substantially outperforms the state-of-the-art algorithm [231] on segmenting

Internet images.

Our algorithm hinges upon the large dataset size and therefore, as our final
experiment, we want to observe the behavior of our experiment as the amount of
data decreases. We would like a graceful degradation in this case. For this we use
a subset of 100 images used in [231]. This experiment also allows us to compare
against the other co-segmentation approaches. Table 7.3 summarizes the perfor-
mance comparison. Our algorithm shows competitive results in terms of precision.
This indicates that our algorithm not only works best with a large amount of data,
but also degrades gracefully. We also outperform most existing approaches for co-
segmentation both in terms of Precision and Jaccard measurement. Finally, we
would like to point out that while our approach improves the performance with

123

7.4 Applications of Data-driven Similarity

increasing size of data, [231] shows almost no improvement with dataset size. This
suggests that the quantitative performance of our approach is more scalable with
respect to the dataset size.

124

Chapter 8

Structure-constrained
Semi-Supervised Learning
A Case Study

Creativity is allowing yourself to make mistakes.
Art is knowing which ones to keep.

Scott Adams

How do we exploit the sea of visual data available online? Most supervised com-
puter vision approaches (including the ones discussed in Part I) are still impeded by
their dependence on manual labeling, which, for rapidly growing datasets, requires
an incredible amount of manpower. The popularity of Amazon Mechanical Turk
and other online collaborative annotation efforts [234, 293] has eased the process of
gathering more labeled data, but it is still unclear whether such an approach can
scale up with the available data. This is exacerbated by the heavy-tailed distribution
of objects in the natural world [284]: a large number of objects occur so sparsely
that it would require significant amount of labeling to build reliable models. In
addition, human-labeling has a practical limitation in that it suffers from semantic
and functional bias. For example, humans might label an image of “Christ”/“Cross”
as “Church” due to high-level semantic connections between the two concepts.

An alternative way to exploit a large amount of unlabeled data is semi-supervised
learning (SSL). A classic example is the “bootstrapping” method: start with a small
number of labeled examples, train initial models using those examples, then use
the initial models to label the unlabeled data. The model is retrained using the
confident self-labeled examples in addition to original examples. However, most
semi-supervised approaches, including bootstrapping, have often exhibit low and

125

8. Structure-constrained Semi-Supervised Learning: A Case Study

Initial Seed Examples . Un!abeled Data
|- =t e gl TR ke
I, RS

Amphltheatre Auditorium '
I Evaluating Constraints I —I Selected Candidates (Bootstrapping) I—

Binary-Attribute Constraints

Indoor

Has
Seat
Rows

Amphltheatre Auditorium

Figure 8.1 — Standard Bootstrapping vs. Constrained Bootstrapping: We propose to learn multiple
classifiers (auditorium and amphitheater) jointly by exploiting similarities (e.g., both are indoor and have
seating) and dissimilarities (e.g, amphitheater has more circular structures than auditorium) between
the two. We show that joint learning constrains the SSL, thus avoiding semantic drift.

unacceptable accuracy because the limited number of initially labeled examples are
insufficient to constrain the learning process. This often leads to the well known
problem of “semantic drift” [51], where newly added examples tend to stray away
from the original meaning of the concept. The problem of semantic drift is more evi-
dent in the field of visual categorization because intra-class variation is often greater
than inter-class variation. For example, “electric trains” resemble “buses” more than
“steam engines” and many “auditoriums” appear very similar to “amphitheaters”.

This Chapter shows that we can avoid semantic drift and significantly improve
performance of bootstrapping approach by imposing additional constraints. We
build upon the recent work in information extraction [30], and propose a novel
semi-supervised image classification framework where instead of each classifier se-
lecting its own set of images, we jointly select images for each classifier by enforcing
different types of constraints. We show that coupling scene categories via attributes
and comparative attributes' provides us with the constraints necessary for a ro-
bust bootstrapping framework. For example, consider the case shown in Figure 8.1.
In the case of the naive bootstrapping approach, the initial “amphitheater” and

!Comparative attributes are special forms of attributes that are used to compare and express
relationships between two nouns. For example, “banquet halls” are bigger than “bedrooms”;
“amphitheaters” are more circular than “auditoriums”.

126

8.1 Related Work

“auditorium” classifiers select self-labeled images independently which leads to in-
correct instances being selected (outlined in red). However, if we couple the scene
categories and jointly label all the images in the dataset, then we can use the audi-
torium images to clean the amphitheater images, since the latter should have more
circular structures compared to the former. We demonstrate that the joint labeling
indeed makes the data selection robust and improves the performance significantly.
While we only explore the application of these new constraints to bootstrapping
approaches, we believe they are generic and can be applied to other semi-supervised
approaches as well.

Contributions. We present a framework for coupled bootstrap learning and ex-
plore its application to the field of image classification. The input to our system is
an ontology which defines the set of target categories to be learned, the relationships
between those categories and a handful of initial labeled examples. We show that
given these initial labeled examples and millions of unlabeled images, our approach
can obtain much higher accuracy by coupling the labeling of all the images using
multiple classifiers. The key contributions of this Chapter are: (a) a semi-supervised
image classification framework which jointly learns multiple classifiers, (b) demon-
strating that sharing information across categories via attributes [76, 163] is crucial
to constrain the semi-supervised learning problem, (c) extending the notion of shar-
ing across categories and showing that information sharing can also be achieved by
capturing dissimilarities between categories. Here we build upon the recent work
on relative attributes [207] and comparative adjectives [107] to capture differences
across categories. As opposed to image-level labeling, specifying attribute and com-
parative attribute relationships are significantly cheaper as they scale with number
of categories (not with number of images). Note that the attributes need not be
semantic at all [221]. However, the general benefit of using semantic attributes is
that they are human-communicable [215] and we can obtain them automatically
using other sources of data such as text [31].

8.1 Related Work

During the past decade, computer vision has seen some major successes due to
the increasing amount of data on the web. Therefore, leveraging more and more
data from the web has received considerable interest in the community. While
using big data is a promising direction, it is still unclear how we should exploit
such a large amount of data. There is a spectrum of approaches based on the
amount of human labeling required to use this data. On one end of the spectrum
are supervised approaches that use as much hand-labeled data as possible. These

127

8.1 Related Work

approaches have focused on using the power of crowds to generate hand-labeled
training data [234, 293]. Recent works have also focused on active learning [138,
148, 215, 217, 255, 291}, to minimize human effort by selecting label requests that are
most informative. On the other end of the spectrum are completely unsupervised
approaches, which use no human supervision and rely on clustering techniques to
discover image categories [146, 233].

In this work, we explore the intermediate range of the spectrum; the domain of
semi-supervised approaches. Semi-supervised learning (SSL) techniques use a small
amount of labeled data in conjunction with a large amount of unlabeled data to learn
reliable and robust visual models. There is a large literature on semi-supervised
techniques. For brevity, we only discuss closely related works and refer the reader
to recent survey on the subject [327]. The most commonly used semi-supervised
approach is the “bootstrapping” method, also known as self-training. However,
bootstrapping typically suffers from semantic drift [51] — that is, after many iter-
ations, errors in labeling tend to accumulate. To avoid semantic drift, researchers
have focused on several approaches such as using multi-class classifiers [224] or using
co-training methods to exploit conditionally independent feature spaces [20]. An-
other alternative is to use graph-based methods, such as the graph Laplacian, for
SSL. These methods capture the manifold structure of the data and encourage sim-
ilar points to share labels [65]. In computer vision, efficient graph based methods
have been used for labeling of images as well [81]. The biggest limitation with graph
based approaches is the need for similarity measures that create graphs with no
inter-class connections. In the visual world, it is very difficult to learn such a good
visual similarity metric. Often, intra-class variations are larger than inter-class vari-
ations, which make pair-wise similarity based methods of little utility. To overcome
this difficulty, researchers have focused on text based features for better estimation
of visual similarity [105].

In this work, we argue that there exists a richer set of constraints in the visual
world that can help us constrain the SSL-based approaches. We present an approach
to combine a variety of such constraints in a standard bootstrapping framework. Our
work is inspired by works from the textual domain [30] that try to couple learning of
category and relation classifiers. However, in our case, we build upon recent advances
in the field of visual attributes [76, 163] and comparative attributes [107, 207] and
propose a set of domain-specific visual constraints to model the coupling between
scene categories.

128

8.2 Constrained Bootstrapping Framework

8.2 Constrained Bootstrapping Framework

Our goal is to use the initial set of labeled seed examples (£) and large unlabeled
dataset (U) to learn robust image classifiers. Our method iteratively trains classifiers
in a self-supervised manner. It starts by training classifiers using a small amount
of labeled data and then uses these classifiers to label unlabeled data. The most
confident new labels are “promoted” and added to the pool of data used to train the
models, and the process repeats. The key difference from the standard bootstrapping
approach is the set of constraints that restrict which data points are promoted to
the pool of labeled data.

In this work, we focus on learning scene classifiers for image classification. We
represent these classifiers as functions (f : X — Y') which, given input image features
x, predict some label y. Instead of learning these classifiers separately, we propose
an approach which learns these classifiers jointly. Our central contribution is the
formulation of constraints in the domain of image classification. Specifically, we
exploit the recently proposed attribute-based approaches [76, 163] to provide another
view of the same data and enforce multi-view agreement constraints. We also build
upon the recent framework of comparative adjectives [107] to formulate pair-wise
labeling constraints. Finally, we use introspection to perform an additional step of
self-refinement to weed out false positives included in the training set. We describe
all the constraints below.

8.2.1 Output Constraint: Mutual Exclusion (ME)

Classification of a single datapoint by multiple scene classifiers is not an inde-
pendent process. We can use this knowledge to enforce certain constraints on the
functions learned for the classifiers. Mathematically, if we know some constraint on
output values of two classifiers f; : X — Yj and f5 : X — Y5 for an input «, then we
can require the learned functions to satisfy these. One such output constraint is the
mutual exclusion constraint (ME). In mutual exclusion, positive classification
by one classifier immediately implies negative classification for the other classifiers.
For example, an image classified as “restaurant” can be used as an negative example
for “barn”, “bridge” etc.

Current semi-supervised approaches enforce mutual exclusion by learning a
multi-class classifier where a positive example of one class is automatically treated
as a negative example for all other classes. However, the multi-class classifier formu-
lation is too rigid for a learning algorithm. Consider, for example, “banquet hall”
and “restaurant”, which are very similar and likely to be confused by the classifier.
For such classes, the initial classifier learned from a few seed examples is not reli-

129

8.2 Constrained Bootstrapping Framework

able enough; hence, adding the mutual exclusion constraint causes the classifier to
overfit.

We propose an adaptive mutual exclusion constraint. The basic idea is that
during initial iterations, we do not want to enforce mutual exclusion between similar
classes (y1 and y9), since this is likely to confuse the classifier. Therefore, we relax
the ME constraint for similar classes — a candidate added to the pool of one is not
used as a negative example for the other. However, after a few iterations, we adapt
our mutual exclusion constraints and enforce these constraints across similar classes
as well.

8.2.2 Sharing Commonalities: Binary-Attribute Constraint (BA)

For the second constraint, we exploit the commonalities shared by scene cat-
egories. For example, both “amphitheaters” and “auditoriums” have large seating
capacity; “bedrooms” and “conference rooms” are indoors and man-made. We pro-
pose to model these shared properties via attributes [76, 163]. Modeling visual
attributes helps us enforce a constraint that the promoted instances must also share
these properties.

Formally, we model this constraint similar to multi-view settings [20]. For a
function f: X — Y, we partition X into views (X,, X;) and learn two classifiers f,
and f; which can both predict Y. In our case, f, : X, — Y is the original classifier
which uses low-level features to predict the scene classes. We model the sharing
between multiple classes via fj. fp is a compositional function (f : Xp =+ A = Y)
which uses low-level features to predict attributes A and then uses them to predict
scene classes. It should be noted that even though we use multi-view settings to
model sharing, it is quite a powerful constraint. In case of sharing, the function
f» updates at each iteration by learning a new attribute classifier, X; — A, which
collects large amounts of data from multiple scene classes (e.g., the indoor attribute
classifier picks up training instances from restaurant, bedroom, conference-room
etc.). Also, note that the mapping from attribute space to scene class, A — Y,
remains fixed in our case.

8.2.3 Pairwise Constraint: Comparative Attributes (CA)

The above two constraints are unary in nature: these constraints still assume
that the labeling procedures for two instances X; and X5 should be completely
independent of each other. Graph-based approaches [81, 327] have focussed on
constraining labels of instances X7, Xo based on similarity — that is, if two images
are similar they should have same labels. However, learning semantic similarity using

130

8.3 Mathematical Formulation: Putting it together

image features is an extremely difficult problem specifically because of high intra-
class variations. In this Chapter, we model stronger and richer pairwise constraints
on labeling of unlabeled images using comparative attributes. For example, if an
image X; is labeled as “auditorium”, then another image X5 can be labeled as
“amphitheater” if and only if it has more circular structures than Xj.

Formally, for a given pair of scene classes, f1 : X1 — Y7 and fy : Xo — Yo,
we model the pairwise constraints using a function f¢: (X1, X9) — Y, and enforce
the constraint that f¢ should produce a consistent triplet (yi1,y2, y.) for a given pair
of images (x1,x2) . Some examples of consistent triplets in our case would include
(field, barn, more open space) and (church, cemetery, has larger structures) which
mean ‘field has more open space than barn’ and ‘church has larger structures than
cemetery’.

8.2.4 Introspection or Self-Cleaning

In iterative semi-supervised approaches, a classifier should ideally become better
and better with each iteration. Empirically, these classifiers tend to make more
mistakes in the earlier iterations as they are trained on very small amount of data.
Based on these two observations, we introduce an additional step of introspection
where after every five iterations, starting at fifteen, we use the full framework to score
already included training data (instead of the unlabeled data) and drop positives
that receive very low scores. This results in further performance improvement of
the learned classifiers.

8.3 Mathematical Formulation: Putting it together

We now describe how we incorporate the constraints described above in a boot-
strapping semi-supervised approach. Figure 8.2 shows the outline of our approach.
We have a set of binary scene classifiers f1...fn, attribute classifiers f{...f% and
comparative attribute classifiers f{...f§,;. Initially, these classifiers are learned us-
ing seed examples but are updated at each iteration using new labeled data. At
each iteration, we would like to label the large unlabeled corpus () and obtain
the confidence of each labeling. Instead of labeling all images separately, we label
them jointly using our constraints. We represent all images in I/ as nodes in a fully
connected graph. The most likely assignment of each image (node) in the graph
can be posed as minimizing the following energy function E(y) over class labels

assignments y = {yi, .., y|u|}3

131

8.3 Mathematical Formulation: Putting it together

Bedroom
o
o
L]
Banquet

f,0 fa0)
Scene Classifiers

Indoor

has grass

Bedroom

fml)
Attribute Classifiers

o
2.0 B @ﬁ

- Unlabeled Data (‘U)

Node
Pruning

¥

] has more space ' ﬁ %
; . 10

more space
rger structures

i)
Comparative
Attribute Classifiers

la

LAt

has larger structures

Training Pairwise Data
—

l‘, o ®oo il A
-y o B

Conference Room

Promoted Instances

Figure 8.2 — Overview of the proposed Constrained Bootstrapping Framework

E(y) = —[Z (I)(l‘i,yi) + A Z \If(xi,xj,yi,yj)] (8.1)

z, €U (z;,m4)EU?

where ®(z;,y;) is the unary node potential for image ¢ with features z; and its
candidate label y; and W(z;, 25,4, y;) is the edge potential for labels y; and y; of
pair of images 7 and j. It should be noted that y; denotes assigned label to image @
which can take {c;....c,,} possible label assignments.

The unary term ®(z;,y;) is the confidence in assigning label y; to image ¢ by
the combination of scene and attribute classifier scores. Specifically, if f;(z;) is the
raw score of j*" scene classifier on x; and f% (x;) is the raw score of k" attribute
classifier on x;, then the unary potential is given by:

B(ai,yi = ¢5) = o (fi(2i) + A Y (1) (o (a7) (8.2)

ap€A

132

8.3 Mathematical Formulation: Putting it together

The first term takes in the raw scene classifier scores and converts these scores
into potentials using the sigmoid function (o(t) = exp(yt)/(1 + exp(~t))) [278].
The second term uses a weighted voting scheme for agreement between scene and
attribute classifiers (A1 is the normalization factor). Here, A is the set of binary
attributes, 1, 4, (ax) is an indicator function which is 1 if the attribute ay, is detected
in the image i but aj is not a property of scene class y; (and vice versa). p() denotes
the confidence in prediction for attribute classifier?. Intuitively, this second term
votes positive if both the attribute classifier and scene classifier agree in terms of
class-attribute relationships. Otherwise, it votes negative where the vote is weighted
in terms of the confidence of prediction.

The binary term W(x;,2;,vs,y;) between images ¢ and j with labels y; and y;
represents comparative-attribute relations between labeled classes.

U(zi, 25,06 05) = Y Loy (Wi y5) log (o (f* (24, 27))) (8.3)
cpeC

where C denotes the set of comparative attributes, 1., (ys,y;) denotes if a given
comparative attribute ¢, exists between pairs of classes y; and y; and f% (x;,x;) is
the score of comparative-attribute classifier for the pair of images x;, x;. Intuitively,
this term boosts the labels y; and y; if a comparative attribute ¢ scores high on
pairwise features. For example, if instances i, j are labeled “conference-room” and
“bedroom”, their scores get boosted if the comparative attribute “has more space”
scores high on pairwise features (since “conference rooms” have more space than
“bedrooms”).

Promoting Instances. Typically in the semi-supervised problem, |I/| varies from
tens of thousand images to millions. Estimating the most likely label for each image
in U necessitates minimizing Eq.(1) which is computationally intractable in general.
Since our goal is to find a few very confident images to add to the labeled set £ we
do not need to minimize Eq.(1) over the entire U. Instead, we follow the standard
practice of pruning the image nodes which have low probability of being classified
as one of the n scene classes. Specifically, we evaluate the unary term (@), that
represents the confidence of assigning label to an image, for the entire U and use
it to prune out and keep only the top-N candidate images for each class. In our
experiments, we set N to 3 times the number of instances to be promoted.

While pruning image nodes reduces the search space, exact inference still re-
mains intractable. However, approximate inference techniques like loopy belief prop-

2The confidence in prediction is defined as: p(f* (x;)) = maz(o(f* (z:)),1 — o (F* (x:)))

133

8.3 Mathematical Formulation: Putting it together

Table 8.1 — Vocabulary of 15 Scene categories used in this Chapter and their shorthand notation

Scene Categories

Amphitheater (Am) Auditorium (Au) Banquet Hall (BH) Barn (Bn)
Bedroom (Be) Bowling Alley (BA) Bridge (Br) Casino Indoor (CI)
Cemetery (Ce) Church Outdoor (CO) Coast (C) Conference Room (CR)

Desert Sand (DS) Field Cultivated (FC) Restaurant (R)

agation or Gibbs sampling can be used to find the most likely assignments. In this
work, we compute the marginals at each node by running one iteration of loopy
belief propagation on the reduced graph. This approximate inference gives us the
confidence of candidate class labeling for each image incorporating scene, attribute
and comparative-attribute constraints. Now we select C' most confidently labeled
images for each class (U'), add them to (LUU') — £ (and remove from (U\U') — U)
and re-train our classifiers.

8.3.1 Scene, Attribute and Comparative Attribute Classifiers

We now describe the classifiers used for scenes, attributes and comparative
attributes.

Scene & Attribute classifier: Our scene category classifiers as well as attribute
classifier are trained using boosted decision trees [126]. We use 20 boosted trees
with 8 internal nodes for scene classifier and 40 boosted trees with 8 internal nodes
for training our attributes. These classifiers were trained on the 2049 dimensional
feature vector from [117]. Our image feature includes 960D GIST [202] features,
75D RGB features (image is resized to 5 x 5) [284], 30D histogram of line lengths,
200D histogram of orientation of lines and 784D 3D-histogram Lab color space
(14 x 14 x 4).

Comparative attribute classifier: Given a pair of images (x;,x;), the goal of
comparative attributes classifier is to predict whether the pair satisfies comparative
relationships such as “more circular” and “has more indoor space”. To model and
incorporate comparative attributes, we follow the approach proposed in [107] and
train classifiers over differential features (x; — ;). We train the comparative at-
tribute classifiers using ground truth pair of images that follow such relationships
and for the negative data we use random pair of images and inverse relationships.
We used the boosted decision tree classifier with 20 trees and 4 internal nodes.

134

8.4 Experiments

Table 8.2 — Binary Class-Attribute constraints (BA) used in this Chapter (e stands for the attribute
being present for a class.)

Am Au BH Bn Be BA Br CI Ce CO C CR DS FC R

Horizon Visible . . .
Indoor ° . .
Has Water . .

Has Building ° ° °

Has Seat Rows .

Has People ° ° ° °

Has Grass . ° .

Has Clutter

Has Chairs & Tables

Is Man Made . .
Eating Place

Fun Place . °

Made of Stone ° ° . .

Formal Meeting Place) °

Livable

Part of House

Relaxing Place

Animal-Related Places °

Crowd-Related Places . ° ° .

8.4 Experiments

We now present experimental results to demonstrate the effectiveness of constraints
in bootstrapping based approach. We first present a detailed experimental analysis
of our approach using the fully labeled SUN dataset [309]. Using a completely
labeled dataset allows us to evaluate the quality of unlabeled images being added
to our classifiers and how it affects the performance of our system. Finally, we
evaluate our complete system on a large scale dataset which uses approximately 1
million unlabeled images to improve the performance of scene classifiers. For all the
experiments we use a fixed vocabulary of scene classes, attributes and comparative
attributes as described below.

Vocabulary: We evaluate the performance of our coupled bootstrapping approach
in learning 15 scene categories randomly chosen from from SUN dataset (see Ta-
ble 8.1. We used 19 attributes and 10 comparative attributes, and the relationship
between scene category and attributes were defined using a human annotator (see
Table 8.2 and 8.3 for the list).

Baselines: The goal of this Chapter is to show the importance of additional con-
straints in semi-supervised domain. We believe these constraints should improve the
performance irrespective of the choice of a particular approach. Therefore, as a base-
line, we compare the performance of our constrained bootstrapping approach with

135

8.4 Experiments

Table 8.3 — Comparative-Attribute constraints (CA) used in our experiments. '>' is an operator that
induces partial ordering using the corresponding comparative attributes. For example, Is more Open —
'Br > Ce’ means that Bridge is more open then Cemetery (some relations are coupled in groups in this
table for compact display)

Is More Open AM>{Bn, CO}, Br>Ce, C>{Am, Bn, Br, CO, Ce},
DS>{Am, Bn, Br, Ce, CO}, FC>{Bn, CO, Ce}
Has More Open Space (Outdoor) FC>{Am, Bn, Ce}, C>{Am, Bn, Br, Ce, FC}, DS>{Am, Bn, Br, Ce, FC}

Has More Open Space (Indoor) Au>{BH, Be, CI, CR, R}, BH>Be, BA>Be, CI>Be, R>Be
Has More Seating Space Au>{BH, Be, CR, R}, CR>Be, BH>{Be, R}

Has Larger Structures {Am, Bn, Br, CO}>Ce, Ce~FC

Has Taller Structures Bn>Ce, CO>Ce

Has Horizontally Longer Structures Br>{Bn, Ce, CO}, Am>{Ce, Bn, CO}

Has more water Br>{Am, Bn, Ce, CO, DS, FC}, C>~{Bn, Br, Ce, DS, FC}
Has more sand DS>{Am, Bn, CO, Ce, C, FC}

Has more greenery Bn>CO, FC>{Am, Bn, Br, Ce, CO, C, DS}

two versions of standard bootstrapping approach: one uses independent multiple
binary classifiers and the other uses multi-class scene classifiers.

For our first set of experiments, we also compare our constrained bootstrapping
framework to the state-of-the-art SSL technique for image classification based on
eigen functions [81]. Following experimental settings from [81], we map the GIST
descriptor for each image down to a 32D space using PCA, use k = 64 eigen functions
with A = 50 and € = 0.2 for computing the Laplacian (see [81] for details).

Evaluation Metric: We evaluate the performance of our approach using two
metrics. Firstly, we evaluate the performance of our trained classifier in terms
of Average-Precision (AP) at each iteration on a held-out test dataset. Secondly,
for the small-scale experiments (Sections 5.1 and 5.2), we also evaluate purity of the
promoted instances in terms of the fraction of correctly labeled images.

8.4.1 Using pre-trained attribute classifiers

We first evaluate the performance of our approach on SUN dataset. We train
the 15 scene classifiers using 2 images each (labeled set). We want to observe the
effect of these constraints when the attribute and comparative attribute classifiers
are not retrained at each iteration. Therefore, in this case, we used fixed pre-trained
attribute classifiers and relative attribute classifiers. These classifiers were trained
on 25 examples each (from a held-out dataset). Our unlabeled dataset consists of
18,000 images from SUN dataset. Out of these 18K images, 8.5K images are from
these 15 categories and the remainder are randomly sampled from the rest of the
dataset. At each iteration, we add 5 images per category from the unlabeled dataset
to the classifier.

Figure 8.3 shows examples of how each constraint helps to select better in-

136

8.4 Experiments

(BA+CA+ME) BA Constraints Bootstrapping

Amphitheatre

Our Approach

Bootstrapping

BA Constraints

Bridge

Our Approach
(BA+CA+ME)

Figure 8.3 — Qualitative Results: We demonstrate how Binary Attribute (middle row) constraints and
Comparative Attribute (bottom row) constraints help us promote better instances as compared to naive
Bootstrapping (top row).

stances that should be added to the classifier. The bootstrapping approach clearly
faces semantic drift, as it adds “bridge”, “coastal” and “park” images to the “am-
phitheater” classifier. It is the presence of binary attributes such as ‘has water’ and
‘has greenery’ that help us to reject these bad candidates. While binary attributes
do help to prune lot of bad instances, they sometimes promote bad instances like
the “cemetery” image (3”’ in 2nd row). However, comparative attributes help us

)

clean such instances. For example, the “cemetery” image is rejected since it has
less circular structure. Similarly, the “church” image is rejected since it does not
have the long horizontal structures compared to other bridge images. Interestingly,
our approach does not overfit to the seed examples and can indeed cover a greater
diversity, thus increasing recall. For example, in Figure 8.5, the seed examples for
banquet hall include close-view of tables but as iterations proceed we incorporate

distant views of banquet hall (eg., 3rd image in iteration 1 and 40).

Next, we quantitatively evaluate the importance of each constraint in terms
of performance on held-out test data. Figure 8.4(a) shows the performance of our
approach with different combinations of constraints. Our system shows significant

137

8.4 Experiments

— Upper-bor 1 — — Self-learning (binary)
7 -z 0. — — Self-learning (multi-class)
l 0. i —— Eigen Functions
° T <08 Our Approach
@ 5o B o7l
s ’ 2" & o7y
o 03,4 — — ME+10BA g 04 E 0.6l
3 / — — ME+19BA s /“.\-\ o 2 05||
s — — ME+19BA+CA (No go R N g il
Loz —— our Approach] S oafll
§ //“‘- ~~~~~~~~~~~~~ 50' S S S R £ o3y \\
= oap— L] AR A SN S S B o
0.1

o 2 60 80 100 0 20

0 40 40 60 80 100 0 2(
Number of Iterations — Number of Iterations —

0 40 60 80 100
Number of Iterations —

(a) Evaluating Constraints (b) Comparisons with Baselines (c) Purity based Comparison

Figure 8.4 — Quantitative Evaluations: (a) We first evaluate importance of each constraint in our system
using control experiments. (b) and (c) Show the comparison of our approach against standard baselines
in terms of performance on held-out test data and purity of added instances respectively.

improvement in performance by adding attribute-based constraints. Infact, using a
randomly chosen set of ten attributes (ME+10BA) seems to provide enough con-
straints to avoid semantic drift. Adding another nine attributes to the system does
provide some improvement during the initial iterations (ME+19BA). However, at
later stages, the effect of these attributes saturate. Finally, we evaluate the impor-
tance of comparative attributes by comparing the performance of our system with
and without CA constraint. Adding CA constraint does provides significant boost
(6-7%) in performance. Figure 8.4(b) shows the comparison of our full system with
other baseline approaches. Our approach shows significant improvement over all
the baselines which include self-learning approaches based on independent binary
classifiers, self-learning based on multi-class classifier and Eigen-functions [81]. We
also show the upper-bound on the performance of our approach, which is achieved
if all the unlabeled data is manually labeled and used to train the scene classifiers.
Since the binary attribute classifiers are pre-trained on some other data, it would be
interesting to analyze the performance of these classifiers alone (and without scene
classifiers). Our approach performs significantly better than just using attributes
alone. This indicates that coupling does provide constraints and help in better la-
beling of unlabeled data. We also compare the performance of our full system in
terms of purity of added instances (See Figure 8.4(c)).

8.4.2 Co-training attributes and comparative attributes

In the previous experiment we showed how each constraint is useful in improving
the performance of the semi-supervised approach. To isolate the reasons behind the
performance boost, we used fixed pre-trained attribute and comparative attribute
classifiers. In this experiment, we train our own attribute and comparative attribute
classifiers. These classifiers are trained using the same 30 images (15 categories
x2 images) which were used to train the initial scene classifiers. Now, we use

138

8.4 Experiments

Banquet Hall

Iteration 90

Iteration 1

Conference Room

Iteration 40
Iteration 90 Iteration 10
] {

Church Outdoor

i n 1
Iteration 90 Iteration 10
'

Figure 8.5 — Qualitative results showing selected candidates for our approach at iteration 1, 10, 40 and
90. Notice that during the final iterations, there are errors such as bedroom images being added to
conference rooms etc.

Initial Seeds

Bedroom

Our Approach

Coast

£
s
H
4
g
g
<
5
<]

Figure 8.6 — Selected candidates for baseline and our approach at iterations 1 and 60.

the co-training setup where we retrain these attribute and comparative attribute
classifiers at each iteration using the new images from unlabeled dataset.

Figure 8.6 shows qualitative results of image instances which are added to the
classifiers at iterations 1 and 60. The qualitative results show how the baseline ap-
proach suffers from semantic drift and adds “auditorium” to “bedrooms” and “field”

0th iter-

to “coast”. On the other hand, our approach is more robust and even at 6
ation adds good instances to the classifier. Figure 8.7 shows the comparison of our
approach against baselines. Notice that our approach outperforms all the baselines
significantly even though in this case we used the same seed examples to train the

attribute classifier. This shows that attribute classifiers can pool information from

139

8.4 Experiments

— — Self-learning (binary) — — Self-learning (binary)
— — Self-learning (multi-class) 1 0.9 : — — Self-learning (multi-class)
—— Eigen Functions I oall —— Eigen Functions
Our Approach - I Our Approach
| :
|
|

4
@

o
S
Label
°
o

°
P
~
-

Mean Average-Precision —
A

14

(

)

{

]

t

]

A

]

!

]

\

{

\

I

rity of

S 9O ¢ € €
PR
/[

80 100

80 100 [} 20 40 60
Number of Iterations —

0 20 40 60
Number of lterations —

Figure 8.7 — Quantitative Evaluations: We evaluate our approach against standard baselines in terms
of (a) mean AP over all scene classes, (b) purity of added instances.

Table 8.4 — Quantitative Results on Large Scale Semi-Supervised Learning (AP Scores)

Amphitheater Auditorium Banquet Barn Bedroom Bowling Bridge Casino Cemetery Church Coast Conference Desert — Field — Restaurant Mean

Hall Alley indoor outdoor Room Sand Cultivated
Iteration-0 0.517 0.317 0.260 0.309 0.481 0.602 0.144 0.647 0.449 0.482 0.539 0.384 0.716 0.700 0.270 0.455
Self (Binary) 0.557 0.269 0.324 0.255 0.458 0.590 0.156 0.644 0.453 0.499 0.466 0.317 0.690 0.572 0.241 0.433
Self (Multi-Class) 0.488 0.254 0.290 0.261 0.443 0.601 0.162 0.655 0.509 0.475 0.548 0.322 0.733 0.657 0.303 0.447
Our Approach 0.587 0.333 0.282 0.347 0.474 0.644 0.209 0.678 0.465 0.506 0.582 0.347 0.762 0.654 0.305 0.478

multiple classes to help avoid semantic drift.

8.4.3 Large scale semi-supervised learning

In the two experiments discussed above, we demonstrated the importance and
effectiveness of adding different constraints to the bootstrapping framework. As a
final experiment, we now demonstrate the utility of such constraints for large scale
learning. We start with 25 seed examples from SUN dataset for each of the 15
categories. Our unlabeled dataset consists of one million images selected from the
imagenet dataset [58]. At each iteration, we add 10 images per category from un-
labeled dataset to the classifier. Table 8.4 shows the performance of learned scene
classifiers after 100 iterations. The constrained bootstrapping approach not only
improves the performance by 2.3% but also outperforms all the baselines signifi-
cantly.

Conclusion. We have presented an approach to constrain semi-supervised learn-
ing and reduce semantic drift using binary attributes and comparative attributes.
We demonstrate the effectiveness of our approach through extensive experiments
including results on a very large dataset of one million images. We believe that
our approach can easily scale with categories and in fact its performance would
be significantly because increasing the number of classes will add more constraints
and enforce extensive sharing which is exactly what our approach exploits. We
demonstrate this behaviour in the following Chapters.

140

Chapter 9

Discovering and Employing
Constraints in the Wild

The true delight is in the finding out
rather than in the knowing.

Isaac Asimov

In the previous Chapter, we demonstrated how constraints can be used in a
semi-supervised learning framework to reduce semantic drift. We confined the case
study to a small list scene categories and manually provided annotated instances
and associated constraints. In this Chapter, we propose to apply the ideas from this
case study to real world scenarios.

In Section 9.1, we propose a system that can learn these constraints from weakly-
supervised, noisy web-data. We extend the list of concepts to scenes, objects and
attributes, and type of constraints to scene-object, object-object, scene-attribute
and object-attribute relationships. Collectively, discovered instances of concepts
and relationships are referred to as Visual Knowledge-base. We show that these
automatically discovered relationships are good for constrained SSL, and the newly
labeled instances lead to better recognition models. We will only provided relevant
details in Section 9.1, other details can be found in the technical report [41].

In Section 9.2, we demonstrate how constraints can be discovered and harnessed
in large-scale videos, where only a handful of frames are sparsely labeled with con-
cepts. We study constraints like decorrelated errors, reliable tracking and diverse
selection, and show that they are effective in arresting semantic drift in videos. The
proposed technique handles detection of multiple objects without assuming exhaus-
tive labeling of object instances on any input frame; and starting with a handful of
labeled examples, it can label hundreds of thousands of new examples which also

141

9.1 Constraints from Weakly-supervised Web-data

improve object detectors. We will only provided relevant details in Section 9.2, other
details can be found in the technical report [192].

9.1 Constraints from Weakly-supervised Web-data

Recent successes in computer vision can be primarily attributed to the ever increas-
ing size of visual knowledge in terms of labeled instances of scenes, objects, actions,
attributes, and the contextual relationships between them. But as we move for-
ward, a key question arises: how will we gather this structured visual knowledge on
a vast scale? Recent efforts such as ImageNet [58] and Visipedia [210] have tried to
harness human intelligence for this task. However, we believe that these approaches
lack both the richness and the scalability required for gathering massive amounts of
visual knowledge.

In this Section, we consider an alternative approach of automatically extracting
visual knowledge from Internet scale data. The feasibility of extracting knowledge
automatically from images and videos will itself depend on the state-of-the-art in
computer vision. While we have witnessed significant progress on the task of detec-
tion and recognition, we still have a long way to go for automatically extracting the
semantic content of a given image. So, is it really possible to use existing approaches
for gathering visual knowledge directly from web data?

NEIL — Never Ending Image Learner. We propose NEIL, a constrained semi-
supervised learning (SSL) system that exploits the big scale of visual data to auto-
matically extract common sense relationships and then uses these relationships to
label visual instances of existing categories. Specifically, NEIL can use web data
to extract: (a) Labeled examples of object categories with bounding boxes; (b) La-
beled examples of scenes; (¢) Labeled examples of attributes; (d) Visual subclasses
for object categories; and (e) Common sense relationships about scenes, objects and
attributes like “Corolla is a kind of/looks similar to Car”, “Wheel is a part of Car”,
etc. (See Figure 9.1). NEIL jointly discovers both labeling of instances as well
as relationships amongst them at a gigantic scale, which provides constraints for

semi-supervised learning.

9.1.1 Related Work

Recent work has only focused on extracting knowledge in the form of large
datasets for recognition and classification [58, 171, 210]. One of the most commonly
used approaches to build datasets is using manual annotations by motivated teams
of people [210] or the power of crowds [58, 293]. To minimize human effort, recent

142

9.1 Constraints from Weakly-supervised Web-data

Hero cycles

0 8%

ﬂé |

(S-0) Pyramid is found in Egypt.

(0-A) Wheel is/has Round shape.
(S-A) Alley is/has Narrow.
(S-A) Bamboo forest is/has Vertical lines.

Parking lot
Round shape
Crowded

(b) Scenes (c) Attributes "
N Y, \(O—A) Sunflower is/has Yellow. Y
g Y
Visual Instances Labeled by NEIL Relationships Extracted by NEIL

Figure 9.1 — NEIL is a computer program that runs 24 hours a day and 7 days a week to gather visual
knowledge from the Internet. Specifically, it simultaneously labels the data and extracts common sense
relationships between categories.

works have also focused on active learning [255, 291] which selects label requests that
are most informative. However, both of these directions have a major limitation:
annotations are expensive, prone to errors, biased and do not scale.

An alternative approach is to use visual recognition for extracting these datasets
automatically from the Internet [171, 240, 252]. A common way of automatically
creating a dataset is to use image search results and rerank them via visual classi-
fiers [80] or some form of joint-clustering in text and visual space [18, 240]. Another
approach is to use a semi-supervised framework [327]. Here, a small amount of
labeled data is used in conjunction with a large amount of unlabeled data to learn
reliable and robust visual models. These seed images can be manually labeled [252]
or the top retrievals of a text-based search [171]. The biggest problem with most of
these automatic approaches is that the small number of labeled examples or image
search results do not provide enough constraints for learning robust visual classi-
fiers. Hence, these approaches suffer from semantic drift [51]. One way to avoid
semantic drift is to exploit additional constraints based on the structure of our vi-
sual data. Researchers have exploited a variety of constraints such as those based
on visual similarity [65, 81], semantic similarity [105] or multiple feature spaces [20].
However, most of these constraints are weak in nature: for example, visual similar-
ity only models the constraint that visually-similar images should receive the same
labels. On the other hand, our visual world is highly structured: object categories
share parts and attributes, objects and scenes have strong contextual relationships,
etc. Therefore, we need a way to capture the rich structure of our visual world and

143

9.1 Constraints from Weakly-supervised Web-data

Desktop Computer Monitor Keyboard Television

1 N { - 1]
(0) Seed Images 3(1'),[-4,\ 3(1);-,.11,
: ‘(2)'_1,_ !) - L 1 -
5 i) B 10 E - 1) ‘s - o) I
E. \ ' ' Desktop Computer (1)
£ (2) Train Detectors Desktop Computer (2)
3 3 Desktop Computer (3)
ol . EEbEEEERERLL
& ¥ FECLEE LR L =
LR —— b Ll L BEL B4 o
: S { 2 .
i ; e
oee s : £ 8
: it - 2
N t it 13 S =
. F i =)
(5) Retrain i T ~
Detectors N ot
,) Aiid N"ew Instances .
o : = g
5! N
2 50 i \
2 2 D E - L i | Learned facts:
M 21 = S : I
! £ S 'a * Monitor is a part of Desktop Computer
H S = a
P (:_ B g % @ % & - * Keyboard 1is akparl of1 Desktop Computer
I = « Television looks similar to Monitor
imm e | W
2 TN

Figure 9.2 — Outline of Iterative Approach

exploit this structure during semi-supervised learning.

In recent years, there have been huge advances in modeling the rich structure
of our visual world via contextual relationships [76, 184, 208, 219, 267]. Some of
these relationships include: Scene-Object [267], Object-Object [184, 219], Object-
Attribute [76, 163, 207], Scene-Attribute [208]. All these relationships can provide
a rich set of constraints which can help us improve SSL [30]. But the big question
is: how do we obtain these relationships? One way to obtain such relationships is
via text analysis [31, 107]. However, as [293] points out that the visual knowledge
we need to obtain is so obvious that no one would take the time to write it down
and put it on web.

In this work, we argue that, at a large-scale, one can jointly discover relation-
ships and constrain the SSL problem for extracting visual knowledge and learning
visual classifiers and detectors. Motivated by a never ending learning algorithm for
text [31], we propose a never ending visual learning algorithm that cycles between
extracting global relationships, labeling data and learning classifiers/detectors for
building visual knowledge from the Internet. Our work is also related to attribute
discovery [221, 245] since these approaches jointly discover the attributes and re-
lationships between objects and attributes simultaneously. However, in our case,
we only focus on semantic attributes and therefore our goal is to discover semantic

relationships and semantically label visual instances.

144

9.1 Constraints from Weakly-supervised Web-data

9.1.2 Technical Approach

Our goal is to extract visual knowledge from the pool of visual data on the web.
We define visual knowledge as any information that can be useful for improving
vision tasks such as image understanding and object/scene recognition. One form
of visual knowledge would be labeled examples of different categories or labeled
segments/boundaries. Labeled examples helps us learn classifiers or detectors and
improve image understanding. Another example of visual knowledge would be re-
lationships. For example, spatial contextual relationships can be used to improve
object recognition. In this Section, we represent visual knowledge in terms of labeled
examples of semantic categories and the relationships between those categories. Our
knowledge base consists of labeled examples of: (1) Objects (e.g., Car, Corolla); (2)
Scenes (e.g., Alley, Church); (3) Attributes (e.g., Blue, Modern). Note that for
objects we learn detectors and for scenes we build classifiers; however for the rest of
this Section we will use the term detector and classifier interchangeably. Our knowl-
edge base also contains relationships of four types: (1) Object-Object (e.g., Wheel
is a part of Car);(2) Object-Attribute (e.g., Sheep is/has White); (3) Scene-Object
(e.g., Car is found in Raceway); (4) Scene-Attribute (e.g., Alley is/has Narrow).

The outline of our approach is shown in Figure 9.2. We use text-based image
search to download thousands of images for each object, scene and attribute cat-
egory. Our method then uses an iterative approach to clean the labels and train
detectors/classifiers in a semi-supervised manner. For a given concept (e.g., car),
we first discover the latent visual sub-categories and bounding boxes for these sub-
categories using an exemplar-based clustering approach similar to the one described
previously in Section A3. We then train multiple detectors for a concept (one for
each sub-category) using the clustering and localization results. These detectors
and classifiers are then used for detections on millions of images to learn relation-
ships based on co-occurrence statistics (Section 9.1.2). Here, we exploit the fact
the we are interested in macro-vision and therefore build co-occurrence statistics
using only confident detections/classifications. Once we have relationships, we use
them in conjunction with our classifiers and detectors to label the large set of noisy
images (Section 9.1.2. The most confidently labeled images are added to the pool
of labeled data and used to retrain the models, and the process repeats itself. At
every iteration, we learn better classifiers and detectors, which in turn help us learn
more relationships and further constrain the semi-supervised learning problem.

Seeding Classifiers via Web-data. The first step in our semi-supervised algo-
rithm is to build classifiers for visual categories. One way to build initial classifiers
is via a few manually labeled seed images. Here, we take an alternative approach

145

9.1 Constraints from Weakly-supervised Web-data

S [6 [
s 352 o

(a) Google Image Search for “tricycle” (b) Sub-category Discovery

Figure 9.3 — An example of how clustering handles polysemy, intra-class variation and outlier removal.
(a) Initial image search results. (b) Clusters discovered by our method.

and use text-based image retrieval systems to provide seed images for training ini-
tial detectors. For scene and attribute classifiers we directly use these retrieved
images as positive data. However, such an approach fails for training object and
attribute detectors because of four reasons (Figure 9.3(a)) — (1) Outliers: Due to
the imperfectness of text-based image retrieval, the downloaded images usually have
irrelevant images/outliers; (2) Polysemy: In many cases, semantic categories might
be overloaded and a single semantic category might have multiple senses (e.g., apple
can mean both the company and the fruit); (3) Visual Diversity: Retrieved images
might have high intra-class variation due to different viewpoint, illumination etc.;
(4) Localization: In many cases the retrieved image might be a scene without a
bounding-box and hence one needs to localize the concept before training a detec-
tor. Therefore, to discover object sub-categories, we propose to use the technique
presented in Section A3. Figure 9.3 shows an example of discovered clusters.

Discovering Relationships

Once we have initialized object detectors, attribute detectors, attribute classi-
fiers and scene classifiers, we can use them to extract relationships automatically
from the data. The key idea is that we do not need to understand each and every
image downloaded from the web but instead understand enough images to learn the
statistical pattern of detections and classifications at a large scale. These patterns
can be used to select the top-N relationships at every iteration. Specifically, we
extract four different kinds of relationships:

Object-Object Relationships. The first kind of relationship we extract are
object-object relationships which include: (1) Partonomy relationships such as “Eye
is a part of Baby”; (2) Taxonomy relationships such as “BMW 320 is a kind of Car”;
and (3) Similarity relationships such as “Swan looks similar to Goose”. To extract
these relationships, we first build a co-detection matrix Og whose elements represent
the probability of simultaneous detection of object categories ¢ and j. Intuitively,

146

9.1 Constraints from Weakly-supervised Web-data

the co-detection matrix has high values when object detector ¢ detects objects inside
the bounding box of object j with high detection scores. To account for detectors

that fire everywhere and images which have lots of detections, we normalize the
matrix Og. The normalized co-detection matrix can be written as: N; %OON; %,
where Nj and Ny are out-degree and in-degree matrix and (i, j) element of Og rep-
resents the average score of top-detections of detector 7 on images of object category
j. Once we have selected a relationship between pair of categories, we learn its
characteristics in terms of mean and variance of relative locations, relative aspect
ratio, relative scores and relative size of the detections, and use these characteristics

to label the type of relationship.

Object-Attribute Relationships. The second type of relationship we extract
is object-attribute relationships such as “Pizza has Round Shape”, "Sunflower is
Yellow” etc. To extract these relationships we use the same methodology where the
attributes are detected in the labeled examples of object categories. These detections
and their scores are then used to build a normalized co-detection matrix which is
used to find the top object-attribute relationships.

Scene-Object Relationships. The third type of relationship extracted by our
algorithm includes scene-object relationships such as “Bus is found in Bus depot”
and “Monitor is found in Control room”. For extracting scene-object relationships,
we use the object detectors on randomly sampled images of different scene classes.
The detections are then used to create the normalized co-presence matrix (similar
to object-object relationships) where the (7,) element represents the likelihood of
detection of instance of object category i and the scene category class j.

Scene-Attribute Relationships. The fourth and final type of relationship ex-
tracted by our algorithm includes scene-attribute relationships such as “Ocean is

)

Blue”, “Alleys are Narrow”, etc. Here, we follow a simple methodology for extract-
ing scene-attribute relationships where we compute co-classification matrix such that
the element (7, j) of the matrix represents average classification scores of attribute
1 on images of scene j. The top entries in this co-classification matrix are used to

extract scene-attribute relationships.

Labeling instances for Constrained SSL

Once we have the initial set of classifiers/detectors and the set of relationships,
we can use them to find new instances of different objects and scene categories.
These new instances are then added to the set of labeled data and we retrain new
classifiers/detectors using the updated set of labeled data. These new classifiers are
then used to extract more relationships which in turn are used to label more data

147

9.1 Constraints from Weakly-supervised Web-data

TZ

Figure 9.4 — Qualitative Examples of Bounding Box Labeling done by NEIL

and so on. One way to find new instances is directly using the detector itself. For
instance, using the car detector to find more cars. However, this approach leads to
semantic drift. Following our case study, to avoid semantic drift, we use the rich
set of relationships we extracted and ensure that the new labeled instances of car
satisfy the extracted relationships (e.g., has wheels, found in raceways etc.)

Mathematically, let R, R 4 and Rs represent the set of object-object, object-
attribute and scene-object relationships at iteration t. If ¢;(-) represents the poten-
tial from object detector 4, wy(-) represents the scene potential, and v; ;(-) represent
the compatibility function between two object categories i, j, then we can find the
new instances of object category i using the contextual scoring function

gile)+ > bz + Y wi(x)

,JERoUR A ,kERs

where z is the window being evaluated and z; is the top-detected window of related
object/attribute category. The above equation has three terms: the first term is
appearance term for the object category itself and is measured by the score of
the SVM detector on the window x. The second term measures the compatibility
between object category i and the object/attribute category j if the relationship
(i,7) is part of the catalogue. For example, if “Wheel is a part of Car” exists in
the catalogue then this term will be the product of the score of wheel detector and
the compatibility function between the wheel window (z;) and the car window (x).
The final term measures the scene-object compatibility. Therefore, if the knowledge
base contains the relationship “Car is found in Raceway”, this term boosts the “Car”
detection scores in the “Raceway” scenes.

At each iteration, we also add new instances of different scene categories. We
find new instances of scene category k using the contextual scoring function

148

9.1 Constraints from Weakly-supervised Web-data

Opera house is found in Sydney

--

Van is a kind of/looks similar to Ambulance Eye is a part of Baby Duck is a kind of/looks similar to Goose Gypsy ‘moth s a kind of looks similar to Butterfly

el I+@

Alrplane nose is a part ot Airbus 330 Monitor is a kind of/looks similar to Desktop computer Sparrow is a kind of/looks similar to bird Basketball net is a part of Backboard

Figure 9.5 — Qualitative Examples of Scene-Object (rows 1-2) and Object-Object (rows 3-4) Relation-
ships Extracted by NEIL.

we(@)+ Y wnl(@) + Y dilm)

m,kERA/ i,k€Rs

where R4/ represents the catalogue of scene-attribute relationships. The above
equation has three terms: the first term is the appearance term for the scene category
itself and is estimated using the scene classifier. The second term is the appearance
term for the attribute category and is estimated using the attribute classifier. This
term ensures that if a scene-attribute relationship exists then the attribute classifier
score should be high. The third and the final term is the appearance term of an
object category and is estimated using the corresponding object detector. This term
ensures that if a scene-object relationship exists then the object detector should
detect objects in the scene.

Implementation Details. To train scene & attribute classifiers, we first extract
a 3912 dimensional feature vector from each image. The feature vector includes
512D GIST [202] features, concatenated with bag of words representations for SIFT
[183], HOG [54], Lab color space, and Texton [189]. The dictionary sizes are 1000,
1000, 400, 1000, respectively. Features of randomly sampled windows from other
categories are used as negative examples for SVM training and hard mining. For
the objects and attributes, we use CHOG [244] features with a bin size of 8. We
train the detectors using latent SVM model (without parts) [79].

9.1.3 Experiments and Results

We demonstrate the quality of visual knowledge by qualitative results, verifica-
tion via human subjects and quantitative results on tasks such as object detection

149

9.1 Constraints from Weakly-supervised Web-data

Table 9.1 — mAP performance for scene classification on 12 categories

mAP
Seed Classifier (15 Google Images) 0.52
Bootstrapping (without relationships) 0.54
NEIL Scene Classifiers 0.57
NEIL (Classifiers + Relationships) 0.62

and scene recognition.

NEIL Statistics. While NEIL’s core algorithm uses a fixed vocabulary, we use
noun phrases from NELL [31] to grow NEIL’s vocabulary. So far, NEIL has down-
loaded more than 2.2 million images, and learned an ontology of 2702 concepts with
8685 visual concepts (including sub-categories). It has labeled more than 1 million
bounding boxes, 517k segmentations and 4695 relationships. For bootstrapping this
system, we used a few seed images from ImageNet [58], SUN [309] or the top-images
from Google image search. The current visual knowledge base can be browsed at

www.neil-kb.com.

Qualitative Results. We first show some qualitative results in terms of extracted
visual knowledge by NEIL. Figure 9.4 shows the extracted visual sub-categories
along with a few labeled instances belonging to each sub-category. It can be seen
from the figure that NEIL effectively handles the intra-class variation and polysemy
via the clustering process. The purity and diversity of the clusters for different con-
cepts indicate that contextual relationships help make our system robust to semantic
drift and ensure diversity.

Figure 9.5 shows some of the qualitative examples of scene-object and object-
object relationships extracted by NEIL. It is effective in using a few confident detec-
tions to extract interesting relationships. Figure 9.6 shows some of the interesting
scene-attribute and object-attribute relationships extracted by NEIL.

Evaluating Quality via Human Subjects Next, we want to evaluate the qual-
ity of extracted visual knowledge by NEIL. It should be noted that an extensive
and comprehensive evaluation for the whole NEIL system is an extremely difficult
task. It is impractical to evaluate each and every labeled instance and each and
every relationship for correctness. Therefore, we randomly sample the 500 visual
instances and 500 relationships, and verify them using human experts. By iteration
6, 79% of the relationships extracted by NEIL are correct, and 98% of the visual

150

http://www.neil-kb.com

9.1 Constraints from Weakly-supervised Web-data

Table 9.2 — mAP performance for object detection on 15 categories

mAP
Latent SVM (50 Google Images) 0.34
Latent SVM (450 Google Images) 0.28
Latent SVM (450, Aspect Ratio Clustering) 0.30
Latent SVM (450, HOG-based Clustering) 0.33
Seed Detector (NEIL Clustering) 0.44
Bootstrapping (without relationships) 0.45
NEIL Detector 0.49
NEIL Detector + Relationships 0.51

data labeled by NEIL has been labeled correctly. We also evaluate the per iteration
correctness of relationships: At iteration 1, more than 96% relationships are correct
and by iteration 3, the system stabilizes and 80% of extracted relationships are cor-
rect. We also evaluate the quality of bounding-boxes generated by NEIL. For this
we sample 100 images randomly and label the ground-truth bounding boxes. On the
standard intersection-over-union metric, NEIL generates bounding boxes with 0.78
overlap on average with ground-truth. To give context to the difficulty of the task,
the standard Objectness algorithm [4] produces bounding boxes with 0.59 overlap
on average.

Using Knowledge for Vision Tasks. Finally, we want to demonstrate the use-
fulness of the visual knowledge learned by NEIL on standard vision tasks such as
object detection and scene classification. Here, we will also compare several aspects
of our approach: (a) We first compare the quality of our automatically labeled
dataset. As baselines, we train classifiers/detectors directly on the seed images
downloaded from Google Image Search. (b) We compare NEIL against a standard
bootstrapping approach which does not extract/use relationships. (c) Finally, we
will demonstrate the usefulness of relationships by detecting and classifying new test
data with and without the learned relationships.

Scene Classification. First we evaluate our visual knowledge for the task of scene
classification. We build a dataset of 600 images (12 scene categories) using Flickr
images. We compare the performance of our scene classifiers against the scene clas-
sifiers trained from top 15 images of Google Image Search (our seed classifier). We
also compare the performance with standard bootstrapping approach without using
any relationship extraction. Table 9.1 shows the results. We use mean average pre-
cision (mAP) as the evaluation metric. As the results show, automatic relationship

151

9.1 Constraints from Weakly-supervised Web-data

Monitor is found in Control room
Washing machine is found in Utility room
Siberian tiger is found in Zoo

Baseball is found in Butters box

Bullet train is found in Train station platform
Cougar looks similar to Cat

Urn looks similar to Goblet

Samsung galaxy is a kind of Cellphone
Computer room is/has Modern

Hallway is/has Narrow

Building facade is/has Check texture
Trading floor is/has Crowded

Umbrella looks similar to Ferris wheel
Bonfire is found in Volcano

Figure 9.6 — Examples of extracted common sense relationships.

extraction can be used for constrained SSL since the learned classifiers give much
better performance.

Object Detection: We also evaluate our extracted visual knowledge for the task
of object detection. We build a dataset of 1000 images (15 object categories) using
Flickr data for testing. We compare the performance against object detectors trained
directly using (top-50 and top-450) images from Google Image Search. We also
compare the performance of detectors trained after aspect-ratio, HOG clustering and
our proposed clustering procedure. Table 9.2 shows the detection results. Using 450
images from Google image search decreases the performance due to noisy retrievals.
While other clustering methods help, the gain by our clustering procedure is much
larger. Finally, our detectors trained perform better than standard bootstrapping.

152

9.2 Constraints from Sparsely-supervised Videos

9.2 Constraints from Sparsely-supervised Videos

Autbmatically labeled examples

Learned Examples

Figure 9.7 — We present a novel formulation of semi-supervised learning for automatically learning
object detectors from videos. Our method works with long video to automatically learn bounding box
level annotations for multiple object instances. It does not assume exhaustive labeling of every object
instance in the input videos, and from a handful of labeled instances can automatically label hundreds
of thousands of instances.

The availability of large labeled image datasets [54, 58] has been one of the
key factors for advances in recognition. These datasets, which have been largely
curated from internet images, have not only helped boost performance [79, 96], but
have also fostered the development of new techniques [96, 155]. However, compared
to images, videos seem like a more natural source of training data because of the
additional temporal continuity they offer for both learning and labeling. So ideally
we should have large labeled internet video datasets.

Consider the scale of internet videos — YouTube has 100 hours of video (10
million frames) uploaded every minute. It seems unlikely that human per-image
labeling will scale to this amount of data. Given this scale of data and the associ-
ated annotation problems [201, 316], which are more pronounced in videos, it is no
surprise that richly annotated large video recognition datasets are hard to find. In
fact, the available video datasets [149, 151, 188, 201] lack the kind of annotations
offered by benchmark image datasets [54, 58, 175].

One way to tackle the labeling problem is using semi-supervised learning (SSL),
as proposed previously in this Chapter. In this Section, we present an approach to
constrain the semi-supervised learning process [252] in videos. Our technique con-
strains the SSL process by using multiple weak cues - appearance, motion, temporal
etc., in video data and automatically learns diverse new examples.

153

9.2 Constraints from Sparsely-supervised Videos

Intuitively, algorithms dealing with videos should use appearance and temporal
cues using detection and tracking, respectively. One would expect a simple com-
bination of detection and tracking to constitute a semi-supervised framework that
would prevent drift since both of these processes would ideally cancel each others’
errors. However, as we show in our experiments (Sec. 9.2.4), a naive combination of
these two techniques performs poorly. In the long run, the errors in both detection
and tracking are amplified in a coupled system. We can also consider pure detection
approaches or pure tracking approaches for this problem. However, pure detection
ignores temporal information while pure tracking tends to stray away over a long
duration.

We present a scalable framework that discovers objects in video using SSL (see
Figure 9.7). It tackles the challenging problem of localizing new object instances
in long videos starting from only a few labeled examples. In addition, we present
our algorithm in a realistic setting of “sparse labels” [201], i.e., in the few initial
“labeled” frames, not all objects are annotated. This setting relaxes the assumption
that in a given frame, all object instances have been exhaustively annotated. It
implies that we do not know if any unannotated region in the frame belongs to the
object category or the background, and thus cannot use any region from our input as
negative data. While much of the past work has ignored this type of sparse labeling
(and lack of explicit negatives), we show ways to overcome this handicap. Figure 9.8
presents an overview of our algorithm. Our proposed algorithm is different from the
rich body of work on tracking-by-detection. Firstly, we do not attempt to solve the
problem of data association. Our framework does not try to identify whether it has
seen a particular instance before. Secondly, since it works in the regime of sparse
annotations, it does not assume that negative data can be sampled from around
the current box. Thirdly, we limit expensive computation to a subset of the input
frames to scale to a million frames.

Contributions. We present an SSL framework that localizes multiple unknown
objects in videos. Starting from few sparsely labeled objects, it iteratively labels
new and useful training examples in the videos. Our key contributions are: 1) We
tackle the SSL problem for discovering multiple objects in sparsely labeled videos;
2) We present an approach to constrain SSL by combining multiple weak cues in
videos and exploiting decorrelated errors by modeling in multiple feature spaces.
We demonstrate its effectiveness as compared to traditional tracking-by-detection
approaches; 3) Given the redundancy in videos, the method needs to automatically
determine the relevance of training examples to the target detection task. We present
a way to include relevance and diversity of the training examples in each iteration
of SSL, leading to a scalable incremental learning algorithm.

154

9.2 Constraints from Sparsely-supervised Videos

Object
Object detection ||

Feature 2
(c) Decorrelated Errors

=

(a) Sparse labeled frames @

(f) Selected Positives (e) New labeled examples

Figure 9.8 — Our approach selects samples by iteratively discovering new boxes by a careful fusion of
detection, robust tracking, relocalization and multi-view modeling of positive data. It shows how an
interplay between these techniques can be used to learn from large scale unlabeled video corpora.

9.2.1 Related Work

The availability of web scale image and video data has made semi-supervised
learning more popular in recent years. In the case of images, many methods [52,
81] rely on image similarity measures, and try to assign similar labels to close-
by unlabeled images. However, in the case of real-world images, obtaining good
image similarity is hard and hence the simple approaches become less applicable.
One major body of work (including previous Sections of this Chapter) [41, 45, 61,
157, 252] tries to overcome this difficulty by leveraging the use of a set of pre-
defined attributes for image classes [45, 252] and additionally web-supervision and
text [41, 61]. While these methods have good performance for images, they are
not well-suited for videos mainly because they treat each image independently and
do not use video constraints. One major reason for the success of attribute based
methods for SSL was the relatively cheap supervision required for attributes (per-
image level tag). In the same spirit, weakly-supervised video approaches use tags
available with internet videos.

Weakly-supervised video algorithms have gained popularity largely due to the
abundance of video level tags on the internet. The input is a set of videos with
video level tags (generally a video belongs to an object category), and the algorithm
discovers the object (if present) in the video. These methods, while effective, assume
a maximum of one dominant object per video [177, 216, 274, 296]. Some of them
additionally assume dominant motion [216] or appearance saliency [169, 177, 216,
274, 296] for the object of interest. The methods of video co-segmentation [37, 87,
106, 137] can be considered a subset of weakly supervised methods. They make a
strong assumption that multiple videos contain the exact same object in majority
of the frames. This assumption of at most one salient object in a video is rarely
satisfied by internet or real world videos. When this assumption does not hold,

155

9.2 Constraints from Sparsely-supervised Videos

methods cannot strongly rely on motion based foreground/background clustering
or on appearance saliency. Our proposed work deals with multiple objects and can
even discover static object instances without strongly relying on motion/appearance
saliency. However, we do require richer bounding box annotations by way of a few
sparsely labeled instances. A concurrent work [172] utilizes weakly labeled video for
improving detection.

A relevant thread of work which also uses bounding box annotations is that of
tracking-by-detection. It has a long and rich history in computer vision and the
reader is referred to [206] for a survey. The tracking-by-detection algorithms start
with bounding box annotation(s) of the object(s) to track the object(s) over a long
period of time. The underlying assumption is that negative data can be sampled
from around the object [9, 101, 112, 143, 236, 269, 275] to distinguish between the
object and background. This is not valid in the case of sparsely labeled videos because
the unmarked regions may contain more instances of the same object, rather than
background.

Other tracking-by-detection methods [17, 92, 214] do not sample negative data
from the input video. They do so at the cost of using a detector trained on additional
training data, e.g., [214] uses a DPM [79] trained on images from PASCAL [54]. In
contrast, we do not use such additional training data for our method. This allows
us to work on object categories which are not in standard datasets.

Multi-object tracking-by-detection approaches also focus on solving the prob-
lem of data association - given object locations across multiple frames, determine
which locations belong to the same object. Data association is critical for long term
tracking, and is also very challenging [17]. In contrast, our goal is not to track over
long periods, but to get short and reliable tracking. Moreover, we do not require
these short tracklets to be associated with each other, and thus have minimal need
for data association.

To summarize, our SSL framework operates in a less restrictive domain com-
pared to existing work in weakly-labeled object discovery and tracking-by-detection.
The key differences are: 1) We localize multiple objects in a single frame as opposed
to zero or one objects. 2) We do not assume strong motion or appearance saliency
of objects, thus discovering static object instances as well. 3) We operate in the
regime of sparsely labeled videos. Thus, in any given frame, all the unmarked re-
gion may contain instances of the object. This does not allow using negative data
from the input frame. 4) We do not need explicit negative data or any pre-trained
object models. 5) Finally, the aim of our approach is very different from tracking
approaches. We do not want to track objects over a long period of time, but want

156

9.2 Constraints from Sparsely-supervised Videos

Figure 9.9 — Sparsely labeled positives (as shown in the top row) are used to train Exemplar detec-
tors [185]. Since we do not assume exhaustive labeling of each instance in the image, we cannot sample
negative data from around the input boxes. When these detectors (trained without domain negatives)
are used, they may learn background features (like the co-occuring yellow stripes or road divider) and
give high confidence false positives (bottom row). We address this issue by exploiting decorrelated errors
(Section 9.2.3).

short reliable tracklets.

9.2.2 Approach Overview

There are two ways to detect objects in videos — either using detection in indi-
vidual frames or tracking across frames. In a semi-supervised framework, detection
plays the role of constraining the system by providing an appearance prior for the
object, while tracking generalizes by providing newer views of the object. So one
could imagine a detection and tracking combination, in which one tracks from confi-
dent detections and then updates the detector using the tracked samples. However,
as we show in our experiments (Section 9.2.4), such a naive combination does not
impose enough constraints for SSL. In contrast, our approach builds on top of this
basic combination of detection and tracking to correct their mistakes.

Our algorithm starts with a few sparsely annotated video frames (£) and it-
eratively discovers new instances in the large unlabeled set of videos (U/). Simply
put, we first train detectors on annotated objects, followed by detection on input
videos. We determine good detections (removing confident false positives) which
serve as starting points for short-term tracking. The short-term tracking aims to
label new and unseen examples reliably. Amongst these newly labeled examples, we
identify good and diverse examples which are used to update the detector without
re-training from scratch. We iteratively repeat this fusion of tracking and detection
to label new examples. We now describe our algorithm and the constraints we use
(illustrated in Figure 9.8).

Sparse Annotations (lack of explicit negatives). We start with a few sparsely
annotated frames in a random subset of /. Sparse labeling implies that unlike other

157

9.2 Constraints from Sparsely-supervised Videos

approaches [143], we do not assume exhaustively annotated input, and thus cannot
sample negatives from the vicinity of labeled positives. We use random images
from the internet as negative data for training object detectors on these sparse
labels [251]. We use these detectors to detect objects on a subset of the video, e.g.,
every 30 frames. Training on a few positives without domain negatives can result in
high confidence false positives as shown in Figure 9.9. Removing such false positives
is important because if we track them, we will add more bad training examples, thus
degrading the detector’s performance over iterations.

Temporally consistent detections. We first remove detections that are tempo-
rally inconsistent using a smoothness prior on the motion of detections.

Decorrelated errors. To remove high confidence false positives (see Figure 9.9),
we rely on the principle of decorrelated errors (similar to multi-view SSL [227, 259]).
The intuition is that the detector makes mistakes that are related to its feature
representation [295], and a different feature representation would lead to different
errors. Thus, if the errors in different feature spaces are decorrelated, one can correct
them and remove false positives. This gives us a filtered set of detections.

Reliable tracking. We track these filtered detections to label new examples. Our
final goal is not to track the object over a long period. Instead, our goal is to track
reliably and label new and hopefully diverse examples for the object detector. To
get such reliable tracks we design a conservative short-term tracking algorithm that
identifies tracking failures. Traditional tracking-by-detection approaches [92, 214]
rely heavily on the detection prior to identify tracking failures. In contrast, the goal
of our tracking is to improve the (weak) detector itself. Thus, heavily relying on
input from the detector defeats the purpose of using tracking in our case.

Selection of diverse positives for updating the detector. The reliable track-
lets give us a large set of automatically labeled boxes which we use to update our
detector. Previous work [216] temporally subsamples boxes from videos, treating
each box with equal importance. However, since these boxes come from videos, a
large number of them are redundant and do not have equal importance for train-
ing our detector. Additionally, the relevance of an example added at the current
iteration ¢ depends on whether similar examples were added in earlier iterations.
One would ideally want to train (make an incremental update) only on new and
diverse examples, rather than re-train from scratch on thousands of largely redun-
dant boxes. We address this issue by selection and show a way of training only on
diverse, new boxes. After training detectors on diverse examples, we repeat the SSL
process to iteratively label more examples.

Stopping criterion of SSL. It is desirable to have SSL algorithms which auto-

158

9.2 Constraints from Sparsely-supervised Videos

matically determine when they should stop. We stop our SSL once our selection
algorithm indicates that it does not have any good candidates to select.

9.2.3 Approach Details

We start with a small sparsely labeled set Ly of bounding boxes and unlabeled
input videos U. At each iteration 4, using models trained on £;_1, we want to label
new boxes in the input videos U, add them to our labeled set £ = £ U L;, and
iteratively repeat this procedure. The two key components of this constrained SSL
algorithm are detecting outliers using decorrelated errors, and performing reliable
tracking. Finally, to we bias our selection to add diverse samples.

Detections with decorrelated errors

We train object detectors on our initial set of examples using random images
from Flickr as negatives [251] (Chapter 7). We detect on a uniformly sampled sub-
set of the video frames and remove the temporally inconsistent detections. Since
the negative data for training the detectors comes from a different domain than
the positives, we still get consistent false positive detections because the detector
learns the wrong concept (see Figures 9.9 and 9.11). To remove such false positives,
we perform outlier removal in a feature space different from that of the detector.
The intuition is that the errors made by learning methods are correlated with their
underlying feature representation, and thus using decorrelated feature spaces might
help correct them. For outlier removal, we use unconstrained Least Squares Impor-
tance Fitting (uL.SIF) [144]. These final filtered detections serve as starting points
for reliable short term tracking.

Reliable Tracking

We formulate a scalable tracking procedure that effectively capitalizes on priors
available from detection, color/texture consistency, objectness [4, 289] and optical
flow. More importantly, our tracking procedure is very good at identifying its own
failures. This property is vital in our semi-supervised framework since any tracking
failure will add wrong examples to the labeled set leading to quick semantic drift
(see Figure 9.11). The short-term tracking produces a set of labeled examples £;.

Our single object tracking computes sparse optical flow using Pyramidal Lucas
Kanade [24] on Harris feature points. Since we start with a small set of labeled
examples, and do not perform expensive per-frame detection, our detection prior is
weak. To prevent tracking drift in such cases we incorporate color/texture consis-
tency by using object proposal bounding boxes [289] obtained from a region around

159

9.2 Constraints from Sparsely-supervised Videos

the tracked box. We address two failure modes of tracking:

Drift due to spurious motion: This occurs while computing optical flow on
feature points which are not on the object, e.g., points on a moving background or
occlusion. To correct this, we first divide each tracked box into four quadrants and
compute the mean flow in each quadrant. We weigh points in each quadrant by
their agreement with the flow in the other quadrants. The final dominant motion
direction for the box is the weighted mean of the flow for each point. This simple
and efficient scheme helps correct the motion of feature points not on the object.

Drift due to appearance change: This is incorporated by object detection boxes
and object proposal bounding boxes in the trellis graph formulation described below.

We formulate the tracking problem as finding the min-cost path in a graph
G. At each frame we incorporate priors in terms of bounding boxes, i.e., detection
bounding boxes, tracked boxes and object proposal bounding boxes. These boxes
are the nodes in our graph and we connect nodes in consecutive frames with edges
forming a trellis graph. The edge weights are a linear combination of the difference
in dominant motions of the boxes (described above), spatial proximity and area
change. Tracking through this trellis graph G is the equivalent of finding the single
min-cost path, and is efficiently computed using Dynamic-Programming [17, 214].
As post-processing, we cut the path as soon as the total cost exceeds a set threshold.

Selection algorithm

After we label thousands of boxes £; for the current iteration, we use them for
improving our object detectors. Since video data is highly redundant, we label few
diverse examples and many redundant ones. Training a category detector on these
thousands of (redundant) boxes, from scratch, in every iteration is suboptimal.
We prefer an incremental training approach that makes incremental updates to
the detector, i.e., trains only on newly added and diverse examples rather than
everything. This is especially important to prevent drift because even if we label
thousands of wrong but redundant boxes, our method picks only a few of them. We
find the exemplar detectors [114, 185] suitable for incremental learning as they are
trained per bounding box.

For each labeled bounding box in £;, we compute a detection signature [134,
191, 301] using our exemplar detectors. Boxes where our current set of detectors
do not give a high response correspond to examples which are not explained well
by the existing set of detectors. Training on these boxes increases the coverage
of our detectors. Thus, we compute similarity in this detection signature space to
greedily select a set of boxes that are neither similar to our current detectors, nor

160

9.2 Constraints from Sparsely-supervised Videos

ESVM Average Purity across iterations ESVM Recall across iterations
0.4 0.4

T — Boot
203) 0.3 e B Sel
5 —— Boot+Se
o =
g 02 g 024 Det+Track
[[
g 01 0.1 O w/o Sel
< .

0 0 —— O w/o Outlier

0 10 20 30 40 5 10 15 20 25 30 35 40 o
Iterations — Iterations — urs

Figure 9.10 — We measure the detection performance of the ESVMs from each ablation method on our
test set by computing (left) Average Purity and (right) Recall.

amongst themselves. At each iteration, we limit the number of boxes selected to 10.
When this selection approach is unable to find new boxes, we conclude that we have
reached the saturation point of our SSL. This serves as our stopping criterion.

9.2.4 Experiments and Results

Our algorithm has a fair number of components interacting with each other
across iterations. It is difficult to characterize the importance of each component
by using the whole system at once. For such component-wise characterization, we
divide our experiments in two sets. Our first set of ablative experiments is on a
small subset of videos from VIRAT [201]. In the second set of experiments, we
demonstrate the scalability of our approach to a million frames from [201]. We also
show the generalization of our method to a different dataset (KITTI [91]). In both
these cases we evaluate the automatically labeled data in terms of quality, coverage
(recall), diversity and relevance to training an object detector. We now describe the
experimental setup which is common across all our experiments.

Datasets: Due to limited availability of large video datasets with bounding box
annotations, we picked car as our object of interest, and two video datasets with a
large number of cars and related objects like trucks, vans etc. We chose the VIRAT
2.0 Ground [201] dataset for its large number of frames, and sparsely annotated
bounding boxes over all the frames. This dataset consists of long hours of surveil-
lance videos (static camera) of roads and parking lots. It has 329 videos (~1 million
frames, and ~6.5 million annotated bounding boxes (partial ground truth) of cars.
We also evaluate on videos from the KITTI [91] dataset which were collected by a
camera mounted on a moving car. We use the set 37 videos (~12,500 frames) which
have partial ground truth boxes (~41,000 boxes, small cars are not annotated).

Dataset characteristics: We chose these datasets with very different character-

161

9.2 Constraints from Sparsely-supervised Videos

Table 9.3 — Comparison of our method with baselines as explained in Section 9.2.4. We train an
LSVM [79] on all the automatically labeled data and compute its detection performance on a held-out,
fully annotated test set (AP for IOU 0.5)

Automatic Labeling (LSVM) Ground Truth
Iteration Boot. Boot.+Sel. Det+Track O w/o Sel O w/o Outlier Ours Pascal LSVM Pascal DPM VIRAT LSVM
10 1.32 9.09 9.09 11.21 7.32 15.39 -
30 1.94 3.03 6.59 10.83 1.41 17.68 2089 29.56 41.38

istics (motion, size of object etc.) to test the generalization of our method. The
VIRAT and KITTI datasets both consist of outdoor scene videos with a static and
moving camera respectively. The VIRAT dataset captures surveillance videos of
multiple cars in parking lots. The cars in this dataset are small compared to the
frame size, tightly packed together and viewed from a distance (thus no drastic per-
spective effects). The KITTI dataset on the other hand, consists of videos taken by
a vehicle mounted camera. It has high motion, large objects, and perspective effects.
Figure 9.9 shows examples from both the datasets demonstrating their differences.

Detectors: We use the Exemplar-SVM (ESVM) [185] detectors with 5000 random
images from Flickr as negatives [251]. Since per frame detection is expensive, we
detect once every 30" frame for VIRAT, and every 10*" frame for KITTI. We
threshold detections at SVM score of —0.75.

Multiple feature spaces for false positive removal: We use the uLSIF [144]
algorithm on Pyramidal HOG (PHOG) [23] and color histogram (LAB color with
32 x 16 x 16 bins) features computed on a resized box of 200 x 300 px. We set
the kernel bandwidth for uLSIF by computing the 75" percentile distance between
random pairs of points.

Object proposal windows: We obtain 2000 windows per image using selective
search [289].

Ablative Analysis of each constraint

To tease apart the contributions of each component described in Section 9.2.2,
we design a set of algorithms using only a subset of the components.

Bootstrapping (Boot): In this vanilla form of SSL, we train object detectors on
the initial labeled set and perform detection. The confident detections are used as
training examples for the next iteration detectors.

Bootstrapping with Selection (Boot+4Sel): This algorithm builds upon the
bootstrapping approach described above. However, diverse examples are selected

162

9.2 Constraints from Sparsely-supervised Videos

Initial Labeled Set Bootstrapping Boot + Selection Detection + Tracking Ours w/o Outlier Ours w/o Selection

S T =StvtidScme fec@d D@ cE I
ERFEEE SIS ROFERETEE PSRN SN e Dt
N e G N ST s o B DA e o BT
ERC LR =Rl TEaE TN = WP s DR

Figure 9.11 — (a) We look at a subset of the bounding boxes used to train ESVMs across iteration.
Each row corresponds to an ablation method. The top row shows the randomly chosen initial positive
bounding boxes (same for each method). The other methods diverge quickly across iterations, thus
showing that constraints are very important for maintaining purity.

(Section 9.2.3) from confident detections to train new detectors.

Detection, Tracking and Clustering (Det+Track): In this algorithm, we use
a basic combination of detection and tracking. We start tracking from the confident
ESVM detections to label new examples. We then use WHO (or ELDA) [114]
clustering [191] on these boxes to select training examples for the new detectors.
For clustering, we use WHO features on labeled boxes after resizing, followed by
k-means. We choose the best k in the range (5, 10).

Ours without outlier (O w/o Outlier): This setup uses our entire algorithm
except outlier removal (Section 9.2.3). It can roughly be thought of as Detec-
tion+Tracking+Selection.

Ours without selection (O w/o Sel): This algorithm uses our algorithm except
selection (Section 9.2.3). It uses WHO clustering for selection like Det+Track.

Ours: We use our full algorithm as detailed in Sections 9.2.2.

Ablation dataset: For these set of experiments we use an input set of 25 videos
(~170,000 frames) and a separate test set of 17 videos (~105,000 frames) which
we fully annotated. All methods start with the same sparse labels (only 21 boxes
spread across different videos). We run them iteratively till 30 iterations.

Qualitative Results. Figure 9.11 shows a random set of boxes labeled by each
ablation method (and used to train ESVMs for that method), along with the initial
set of 21 positive examples. We notice that as iterations proceed, the labeling quality
(especially “tightness” of the boxes) for all methods degrades. More importantly, the
other methods like Boot, Det+Track etc. show semantic drift (Figure 9.11 columns 2-
5 at iteration 20). We also notice the importance of selection, as Ours w/o Selection
loses good localization ability fairly quickly (Figure 9.11 column 6 at iterations
10-30). We believe methods like [53] can be used to further improve the labeling
quality.

163

9.2 Constraints from Sparsely-supervised Videos

ESVM Average Purity across iterations ESVM Recall across iterations ESVM Average Purity across iterations ESVM Recall across iterations
oot 05 p—— 0.5
! 0.4

04
Joa s

7~ 5 oa/

—— Boot - s
° N %
——— Eigen Functions| 202 : : 2 0.2 —— Boot
DetectsTrack s _ ——— Eigen Functions|
ours z 0 0.1 DetectsTrack

ours

o
kS

>
° o

2 s
@

o o
Y

2 T

Recall >

o

Average Purity —
© © o o
o

) 10 20 30 40) 10 20 30 40 ° 5 10 15 20 ° 5 10 15 20
Iterations — Iterations — Iterations — Iterations —

(a) Purity on KITTI (b) Recall on KITTI (c) Purity on VIRAT (d) Recall on VIRAT

Figure 9.12 — We measure the detection performance of the labeled boxes for our large scale experiments.
We test the ESVMs trained at each iteration on the held out test set and compute Average Purity
and Recall. Our method outperforms the baselines by a significant margin. It maintains purity while
substantially increasing recall.

ESVM Detection performance. For the input videos, we cannot measure la-
beling purity because of partial ground truth. Instead, we measure the relevance
of labeled boxes to detection. We consider detection performance on the test set
as a proxy for good labeling. We test the ESVMs selected and trained by each
method across iterations on the held out test set. A good labeling would result in
an increased detection performance. Figure 9.10 shows Average Purity vs. Recall
across iterations for the various methods on the test set. We use Average Purity,
which is same as Average Precision [54] but does not penalize double-detections,
since we are more interested in whether the ESVMs are good detectors individually,
rather than as an ensemble.We consider an instance correctly labeled (or pure) if its
Intersection-Over-Union (IOU) with any ground-truth instance is greater than 0.3.
Our method shows a higher purity and recall, pointing towards meaningful labeling
and selection of the input data. It also shows that every component of our method
is crucial for getting good performance. We stop our method at iteration 40 because
of our stopping criterion (Section 9.2.3). We got a 2 point drop in purity from it-
eration 40 to 45, proving the validity of our stopping criterion. This is important
since our algorithm would rather saturate than label noisy examples.

Training on all the automatically labeled data. In this Section, we evaluate
the effectiveness of all our labeled data. For each algorithm, we train an LSVM [79]
(only root filters, mixtures and positive latent updates of DPM [79]) on the data it
labeled, and test it on the held-out test set. Since it is computationally expensive
to train an LSVM on the thousands of boxes, we subsample the labeled boxes (5000
boxes in total for each method using k-means on WHO [114] features). We sample
more boxes from the earlier iterations of each method, because their labeling purity
decreases across iterations (Figure 9.10). We use the same domain independent
negatives [251] for all these LSVMs (left side in Table 9.3). Table 9.3 shows the
detection AP performance of all LSVMs (measured at IOU of 0.5 [54]) for the

164

9.2 Constraints from Sparsely-supervised Videos

Iteration 10 Iteration 20 Iteration 30 Iteration 10 Iteration 20 Iteration 30

morsspei: B 2 B E e amrenn Ml Y@ _m TELSs TIOS EoeSm
paccion e SN RSN B N RR PR SENGEO EEECEESEEERS
e vuncions = g W e = e T TN T gpeSEpe & SR = de
o il e e e i SR DEEISE S s EEES NLV E RESENE

(a) KITTI Dataset (b) VIRAT Dataset

Figure 9.13 — We look at the selected positives for each baseline method across iterations for both
KITTI and VIRAT datasets. We notice that the purity of the labeled set drops significantly as iterations
proceed. This indicates that constraints specific to video are needed to learn meaningfully over iterations.

data labeled at iteration 10 and 30. We see that LSVM trained on our labeled
data outperforms all other LSVMs. Our performance is close to that of an LSVM
trained on the PASCAL VOC 2007 dataset [54]. This validates the high quality of
our automatically labeled data.

We also note that the performance of an LSVM trained on the ground truth
boxes (VIRAT-LSVM) (5000 boxes from ~1 million ground truth boxes using the
same k-means as above) achieves twice the performance. The fact that all LSVMs
(except the ones from PASCAL) are trained with the same domain-independent
negatives, indicates that the lack of domain-negatives is not the major cause of
this limitation. This suggests that automatic labeling has limitations compared to
human annotations. On further scrutiny of the LSVM trained on our automatically
labeled data, we found that the recall saturates after iteration 30. However, the
precision was within a few points of VIRAT-LSVM. Since we work with only the
confident detections/tracklets in the high precision/low recall regime, this behavior
is not unexpected. This is also important since our algorithm would rather saturate
than label noisy positives.

Large scale experiments

In this Section, we evaluate the scalability of our algorithm to millions of frames
and object instances. We also test its generalization on two datasets with widely
different characteristics - VIRAT (static camera, small cars tightly packed) and
KITTI (moving camera, high motion, large cars with perspective effects). We use the
Boot and Ours methods described in Section 9.2.4. As we described in Section 9.2.1,
most of the existing approaches make additional assumptions that are not applicable
in our setting, or do not have publicly available code. To make a fair comparison
against existing methods, we adapt them to our setting.

Baseline - Dense detection and association (Detect + Track): This algo-
rithm is inspired by Geiger et al. [92] which has state-of-the-art results on KITTI.
The original algorithm uses per-frame detections, followed by a Kalman filter and
data association. We make two changes - 1) To have a comparable detector across

165

9.2 Constraints from Sparsely-supervised Videos

270 270 270

(c) Eigen Functions
90 8000
: 0

270 270 270

(d) Detect+Track (e) Ours (f) Ground truth

Figure 9.14 — Pose variation in automatic labeling of the KITTI dataset. For each algorithm, we plot
the 3D pose distribution of all the boxes it labels after 30 iterations. The first and last plots show pose
distribution for the initial labeled boxes and all boxes in ground truth respectively. The distribution of
boxes labeled by our method is close to the ground truth distribution.

methods, we do not use a pre-trained DPM on PASCAL VOC 2007. We substitute
it with the ESVMs we have at the current iteration. 2) We do not use a Kalman
filter and use data association over a short term (maximum 300 frames). We select
positives for the ESVMs by k-means on WHO features [191].

Baseline - Eigen Functions: We modify the Eigen functions [81] method which
was originally designed for image classification. This method uses distances over
manifolds to label unlabeled data. We use basic detection and short term tracking
to get a set of bounding boxes and use eigen functions to classify them as positive
or background. The boxes from previous iterations on which we trained ESVMs
are used as positives and random images from Flickr [251] as negative data. We
use color histogram (32 x 16 x 16 LAB space) and PHOG [23] as input to eigen
functions.

Datasets: Our input set consists of 312 videos (~820,000 frames) from VIRAT. We
take a held out test set of 17 videos (~105,000 frames) which we fully annotated.
As input, all algorithms start with the same sparse labels consisting of 43 randomly
chosen bounding boxes across different videos. For the KITTI dataset we use 30
videos (~10,000 frames) as our input and 7 videos (~2000 frames) for testing. All

166

9.2 Constraints from Sparsely-supervised Videos

methods start with the same sparse labels (25 boxes from different videos).

Qualitative Results: We first present qualitative results in Figure 9.13. We notice
the same trends as we did in the ablation analysis, namely, bounding boxes tend to
get less tight across iterations. For the baseline methods, we notice quick divergence
as an increasing number of background patches are classified as car.

ESVM Detection Performance: Following the approach outlined in Section 9.2.4,
we compute the detection performance of the ESVMs on the held out test set. This
helps us measure the relevance of our labeling to the detection task. Figure 9.12
shows the results of these experiments. We notice that our method outperforms the
baselines on both the metrics (Average Purity and Recall). This reinforces the fact
that our constraints help arrest semantic drift.

Diversity of labeling: The KITTI dataset provides the 3D pose associated with
each labeled car. We use this 3D pose as a proxy for estimating the diversity of our
labeled set. In this experiment, we compute the pose of the examples labeled by
all methods. Figure 9.14 demonstrates that our labeling procedure covers a diverse
range of poses as opposed to baseline methods. The pose distribution of our labeling
is closer to the ground truth distribution, while that of the baselines prefers the more
“popular” poses, i.e., front/back of cars. Combined with the results of Figure 9.12,
this points towards a diverse, and high quality labeling of the data.

167

Conclusion and Discussion

This dissertation follows a two-pronged strategy for discovering and leveraging
the structure in visual data. We demonstrate that it is beneficial to design compu-
tational algorithms for visual recognition from the perspective of what underlying
structure they can capture, and that explicitly utilizing this structure is essential in
leveraging large-scale visual data without large-scale human-annotations.

In Part I of this dissertation, we focus on supervised visual recognition, where
we demonstrate that models and learning algorithms that are better at capturing
and leveraging visual structure are better at recognition. Taking inspiration from
the human visual pathway, Chapters 2 and 3 propose computation models that in-
corporate context, feedback, and top-down information for recognition. These works
are initial attempts at incorporating top-down structure in bottom-up, feedforward
ConvNet-based models, and provide a direction of future inquiry. For training these
ConvNet-based object recognition systems, in Chapter 4, we propose a novel opti-
mization method that leverages recognition-specific problem structure. This method
results in better training convergence and consistent improvements in recognition
rates. We believe that developing supervised learning algorithms, which lead to bet-
ter generalizations or higher accuracy, will remain important in the future. In [300],
we are also exploring adversarial training strategies for such recognition systems
that generalize better to uncommon occlusions and deformations of objects.

Moving beyond the standard setup for object recognition, Chapter 5 looks at
how the underlying geometry of an object can help impose structure while training
recognition models and how this structure can be used for deeper 3D understanding
of objects just from 2D images. We believe that depth, as a source of information,
has been under-appreciated in the current generation of recognition systems, and
future research needs to explore ways of better utilizing depth. An example is
proposed in Chapter 6, which focuses on the generic multi-task learning setup. It
provides a glimpse of how we can design better architectures that can utilize the

169

Conclusion and Discussion

shared structure between multiple tasks (e.g., between semantic understanding and
geometric understanding).

In Part II, we venture beyond the standard supervised recognition regime. We
show that from large amounts of visual data it is possible to discover the underlying
structure automatically, and exploiting this structure is an essential ingredient in
developing large-scale recognition algorithms without requiring large-scale human
annotation efforts. In Chapter 7, we begin with the simplest setting of only having a
single exemplar for each concept and propose a similarity metric induced by the low-
level structure in large amounts of unlabeled images. We show that this metric can
be used for better image matching/retrieval across domains, exploring large image
collections, and discovering object categories from weakly-supervised web images. It
will be interesting to explore more ways of exploiting this low-level structure in the
future (e.g., for improving initializations and training of ConvNet-based models).

Finally, we tackle the problem of effectively utilizing large amounts of unlabeled
data along with a small amount of labeled data, i.e., the semi-supervised learning
(SSL) paradigm. We propose a constrained-SSL framework in Chapter 8, which
uses the semantic structure in visual data as constraints to reliably utilize millions
of unlabeled images. In Chapter 9, we use this framework to develop large-scale
systems for visual recognition that can automatically discover and exploit useful
structure from millions of images (Section 9.1) and videos (Section 9.2). We believe
that videos, as a source for understanding the visual structure, are still underutilized;
and future research should pursue discovery of richer structure (such as actions,
causal relationships) from internet-scale videos, as well as videos from real-world
robotics applications (e.g., self-driving cars, drones).

In general, Part II is only scratching the surface of the potential of utilizing
large-scale, unlabeled visual data. Omne of the major driving forces behind rapid
success on the supervised recognition paradigm (c¢f. Part I) was the availability of
standardized apparatus — datasets, benchmarks, and tools for analysis. Moving
forward, other learning paradigms for recognition (unsupervised, semi-supervised,
weakly-supervised, noisily-supervised, etc.) will also require similar benchmarks and
analysis tools. This will include testbeds for comparing improvements in recognition
systems with varying amounts of unlabeled data and tools to analyze key aspects
of various learning paradigms (e.g., for SSL we studied extent and categorization of
semantic drift, coverage, and diversity in Chapters 8 and 9). We believe this will be
critical for rapid and reproducible advancements in large-scale visual recognition.

170

Conclusion and Discussion

Today the world changes so quickly that in
growing up we take leave not just of youth
but of the world we were young in.

Sir Peter Medawar

Broader Context. It is also important to consider ideas in this dissertation in
the broader context of the field. The field of Visual Recognition has changed dra-
matically and rapidly over the duration of this thesis, a fact that was both exciting
and frustrating. Consider the computational systems used throughout thesis, where
different Chapters use different recognition models each of which was state-of-the-
art when the work was being conducted (DPM [79] in Chapters 5 and 9, Fast
R-CNN [95] in Chapters 4 and 6, Faster R-CNN [223] in Chapters 2 and 3, etc.).
As the field moves forward, these methods will, inevitably, be replaced by newer
and better variants. We believe that the ideas presented in this thesis (such as
incorporating structure via top-down contextual information and feedback, enforc-
ing structure using other modalities, learning and utilizing knowledge) will provide
guidance in developing future generations of recognition systems.

In conclusion, this thesis highlights the importance of consciously leveraging
structure of our visual world while developing computational models for visual recog-
nition. It is our hope that this thesis will inspire others, and provide them with the
insights and tools required to develop better recognition methods.

Now this is not the end.
It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Sir Winston Churchill

171

1]

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. arXiv preprint
arXw:1603.04467, 2016.

A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia. Multi-task CNN model for
attribute prediction. IFEE Multimedia, 17, 2015.

B. Alexe, T. Deselaers, and V. Ferrari. Classcut for unsupervised class seg-
mentation. In European Conference on Computer Vision, 2010.

B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image
windows. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
2012.

Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures
in multiclass classification. In International Conference on Machine Learning,
2007.

V. S. Anastasia Pentina and C. H. Lampert. Curriculum learning of multiple
tasks. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

P. Arbeléez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale
combinatorial grouping. In IEEFE Conference on Computer Vision and Pattern
Recognition, 2014.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning.
Journal of Machine Learning Research, 73, 2008.

S. Avidan. Ensemble tracking. In IEEE Conference on Computer Vision and
Pattern Recognition, 2005.

173

[10]

[11]

[12]

[13]

[20]

[21]

H. Azizpour and I. Laptev. Object detection using strongly-supervised de-
formable part models. In Furopean Conference on Computer Vision, 2012.

T. Bachmann. A hidden ambiguity of the term “feedback” in its use as an
explanatory mechanism for psychophysical visual phenomena. Feedforward
and Feedback Processes in Vision, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation. arXiv preprint
arXiv:1511.00561, 2015.

S. Bae, A. Agarwala, and F. Durand. Computational rephotography. ACM
Trans. Graph., 2010. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/
1805964.1805968.

R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing, 1999.

D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive
co-segmentation with intelligent scribble guidance. In IEEFE Conference on
Computer Vision and Pattern Recognition, 2010.

S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting
objects in context with skip pooling and recurrent neural networks. In IFEFE
Conference on Computer Vision and Pattern Recognition, 2015.

J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking using
k-shortest paths optimization. IEFE Transactions on Pattern Analysis and
Machine Intelligence, 2011.

T. Berg and D. Forsyth. Animals on the web. In IEFEE Conference on Com-
puter Vision and Pattern Recognition, 2006.

I. Biederman. On the semantics of a glance at a scene. Lawrence Erlbaum,
1981.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In COLT, 1998.

L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel
descriptors. In IEEE Conference on Computer Vision and Pattern Recognition,
2011.

174

[22]

[23]

[33]

[34]

O. Boiman and M. Irani. Detecting irregularities in images and in video. In
International Journal of Computer Vision, 2007.

A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial
pyramid kernel. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2007.

J.-Y. Bouget. Pyramidal implementation of the lucas kanade feature tracker:
Description of the algorithm, 2000.

L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D
human pose annotations. In IEEE International Conference on Computer
Vision, 2009.

S. Branson, S. Belongie, and P. Perona. Strong supervision from weak anno-
tation: Interactive training of deformable part models. In IFEFE International

Conference on Computer Vision, 2011.

R. Brooks. Symbolic reasoning among 3D models and 2D images. Artificial
Intelligence, 1981.

R. Brooks, R. Creiner, and T. Binford. The acronym model-based vision
system. IJCAI 1978.

A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image de-
noising. In IEEE Conference on Computer Vision and Pattern Recognition,

2005.

A. Carlson, J. Betteridge, E. R. H. Jr., and T. M. Mitchell. Coupling semi-
supervised learning of categories and relations. In NAACL HLT Workskop on
SSL for NLP, 2009.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell.
Toward an architecture for never-ending language learning. In AAAI 2010.

J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for au-
tomatic object segmentation. In IEEFE Conference on Computer Vision and
Pattern Recognition, 2010.

J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human pose estimation
with iterative error feedback. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

R. Caruana. Multitask learning. Machine learning, 28, 1997.

175

[35]

[36]

[46]

[47]

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2011.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil
in the details: Delving deep into convolutional nets. In British Machine Vision
Conference, 2014.

D.-J. Chen, H.-T. Chen, and L.-W. Chang. Video object cosegmentation. In
ACM MM, 2012.

J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures
for robust multi-task learning. In SIGKDD, 2011.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Se-
mantic image segmentation with deep convolutional nets and fully connected
crfs. In ICLR, 2015.

T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu. Sketch2photo:
internet image montage. ACM Trans. Graph., 28, 2009.

X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting visual knowledge
from web data. In IEEFE International Conference on Computer Vision, 2013.

X. Chen, A. Shrivastava, and A. Gupta. Enriching visual knowledge bases via
object discovery and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2014.

M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. BING: Binarized
normed gradients for objectness estimation at 300fps. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

H. Chiu, L. Kaelbling, and T. Lozano-Perez. Virtual training for multi-view
object class recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

J. Choi, M. Rastegari, A. Farhadi, and L. Davis. Adding unlabeled samples
to categories by learned attributes. In IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

H. Chong, S. Gortler, and T. Zickler. A perception-based color space for
illumination-invariant image processing. In Proceedings of SIGGRAPH, 2008.

M. M. Chun and Y. Jiang. Top-down attentional guidance based on implicit
learning of visual covariation. Psychological Science, 1999.

176

[48]

[49]

[50]

[51]

[52]

[53]

R. G. Cinbis, J. Verbeek, and C. Schmid. Segmentation driven object detection
with Fisher vectors. In IEEFE International Conference on Computer Vision,
2013.

R. Collobert and J. Weston. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In International Con-
ference on Machine Learning, 2008.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learn-
ing Research, 12, 2011.

J. R. Curran, T. Murphy, and B. Scholz. Minimising semantic drift with
mutual exclusion bootstrapping. In Conference of the Pacific Association for
Computational Linguistics, 2007.

D. Dai and L. Van Gool. Ensemble projection for semi-supervised image
classification. In IEEE International Conference on Computer Vision, 2013.

Q. Dai and D. Hoiem. Learning to localize detected objects. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition, 2005.

K. Dale, M. K. Johnson, K. Sunkavalli, W. Matusik, and H. Pfister. Image
restoration using online photo collections. In IEEFE International Conference
on Computer Vision, 2009.

R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences,
and trends of the new age. ACM Comput. Surv., 2008.

J. L. Davenport and M. C. Potter. Scene consistency in object and background
perception. Psychological Science, 2004.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

S. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert. An empirical
study of context in object detection. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

177

[60]

[62]

[63]

[67]

S. Divvala, A. Efros, and M. Hebert. How important are ‘deformable parts’ in
the deformable parts model? In Furopean Conference on Computer Vision,
Parts and Attributes Workshop, 2012.

S. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything:
Webly-supervised visual concept learning. In IEEE Conference on Computer
Vision and Pattern Recognition, 2014.

P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In
British Machine Vision Conference, 20009.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Dar-
rell. Decaf: A deep convolutional activation feature for generic visual recog-
nition. arXiv preprint arXiv:1310.1531, 2013.

J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection
and semantic segmentation. In 2014, 2014.

S. Ebert, D. Larlus, and B. Schiele. Extracting structures in image collections
for object recognition. In European Conference on Computer Vision, 2010.

A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and
transfer. In SIGGRAPH, Computer Graphics Proceedings, Annual Conference
Series, 2001.

D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture. In IFEFE International
Conference on Computer Vision, 2015.

M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. Sketch-based image
retrieval: benchmark and bag-of-features descriptors. IEEE TVCG, 2010.

I. Endres and D. Hoiem. Category independent object proposals. In Furopean
Conference on Computer Vision, 2010.

I. Endres, V. Srikumar, M.-W. Chang, and D. Hoiem. Learning shared body-
plans. In IEEE Conference on Computer Vision and Pattern Recognition,
2012.

D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection
using deep neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, 2014.

178

[72]

[77]

[78]

[79]

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. International Journal
of Computer Vision, 2010.

A. Evgeniou and M. Pontil. Multi-task feature learning. Conference on Neural
Information Processing Systems, 19:41, 2007.

T. Evgeniou and M. Pontil. Regularized multi-task learning. In SIGKDD,
2004.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical fea-
tures for scene labeling. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 2013.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their
attributes. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-
category generalization. In IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in
the primate cerebral cortex. Cerebral cortexr, 1991.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detec-
tion with discriminatively trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2010.

R. Fergus, P. Perona, and A. Zisserman. A visual category filter for Google
images. In European Conference on Computer Vision, 2004.

R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic
image collections. In Conference on Neural Information Processing Systems,
2009.

S. Fidler, S. Dickinson, and R. Urtasun. 3D object detection and viewpoint
estimation with a deformable 3D cuboid model. In Conference on Neural
Information Processing Systems, 2012.

S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun. Bottom-up segmentation
for top-down detection. In IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

179

[84]

[85]

P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow
with convolutional networks. arXiv preprint arXiv:1504.06852, 2015.

D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single
image understanding. In IEEFE International Conference on Computer Vision,

2013.

W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-
resolution. IEEE Computer Graphics Applications, 2002.

H. Fu, D. Xu, B. Zhang, and S. Lin. Object-based multiple foreground video
co-segmentation. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2014.

C. Galleguillos and S. Belongie. Context based object categorization: A critical
survey. CVIU, 2010.

C. Gatta, A. Romero, and J. van de Veijer. Unrolling loopy top-down semantic
feedback in convolutional deep networks. In CVPR Workshops, 2014.

A. Gazzaley and A. C. Nobre. Top-down modulation: bridging selective at-
tention and working memory. Trends in cognitive sciences, 2012.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The
kitti dataset. IJRR, 2013.

S. Gidaris and N. Komodakis. Object detection via a multi-region & semantic
segmentation-aware cnn model. In IEEFE International Conference on Com-
puter Vision, 2015.

C. D. Gilbert and M. Sigman. Brain states: top-down influences in sensory
processing. Neuron, 2007.

R. Girshick. Fast R-CNN. In IEEFE International Conference on Computer
Vision, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

180

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. R-CNNs for pose
estimation and action detection. arXiv preprint arXiv:1406.5212, 2014.

G. Gkioxari, R. Girshick, and J. Malik. Contextual action recognition with
RCNN. In IEEFE International Conference on Computer Vision, 2015.

D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich. Viewpoint-
aware object detection and pose estimation. In IEEFE International Conference
on Computer Vision, 2011.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In AISTATS, 2010.

H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for
robust tracking. In Furopean Conference on Computer Vision, 2008.

C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classi-
fication. In Furopean Conference on Computer Vision, 2010.

C. Gu, J. J. Lim, P. Arbeldez, and J. Malik. Recognition using regions. In
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

Q. Gu and J. Zhou. Learning the shared subspace for multi-task clustering
and transductive transfer classification. In ICDM, 2009.

M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learn-
ing for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

J. Guo, Z. Li, L.-F. Cheong, and S. Z. Zhoul. Video co-segmentation for
meaningful action extraction. In IEEE Conference on Computer Vision and
Pattern Recognition, 2013.

A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and com-
parative adjectives for learning visual classifiers. In Furopean Conference on
Computer Vision, 2008.

S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition
of indoor scenes from rgb-d images. In IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

S. Gupta, R. Girshick, P. Arbeldez, and J. Malik. Learning rich features from
rgb-d images for object detection and segmentation. In European Conference
on Computer Vision, 2014.

181

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

S. Gupta, B. Hariharan, and J. Malik. Exploring person context and local
scene context for object detection. arXiv preprint arXiv:1511.08177, 2015.

Y. HaCohen, R. Fattal, and D. Lischinski. Image upsampling via texture
hallucination. In ICCP, 2010.

S. Hare, A. Saffari, and P. Torr. Struck: Structured output tracking with
kernels. In IEEE International Conference on Computer Vision, 2011.

B. Hariharan, P. Arbeldez, L. Bourdev, S. Maji, and J. Malik. Semantic con-
tours from inverse detectors. In IEEE International Conference on Computer
Vision, 2011.

B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for
clustering and classification. In Furopean Conference on Computer Vision,
2012.

B. Hariharan, P. Arbeldez, R. Girshick, and J. Malik. Simultaneous detection
and segmentation. In European Conference on Computer Vision, 2014.

B. Hariharan, P. Arbeldez, R. Girshick, and J. Malik. Hypercolumns for object
segmentation and fine-grained localization. In IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

J. Hays and A. A. Efros. Scene completion using millions of photographs.
ACM Transactions on Graphics (SIGGRAPH), 2007.

J. Hays and A. A. Efros. im2gps: estimating geographic information from a
single image. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2008.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2015.

V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using appear-
ance models and context based on room geometry. In European Conference

on Computer Vision, 2010.

G. Heitz and D. Koller. Learning spatial context: Using stuff to find things.
In European Conference on Computer Vision, 2008.

182

[123]

[124]

[125]

[126]

[127]

[125]

[129]

[130]

[131]

[132]

[133]

[134]

A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and D. Salesin. Image analo-
gies. In SIGGRAPH, 2001.

H. S. Hock, G. P. Gordon, and R. Whitehurst. Contextual relations: the
influence of familiarity, physical plausibility, and belongingness. Perception &
Psychophysics, 1974.

D. Hoiem, R. Sukthankar, H. Schneiderman, and L. Huston. Object-based
image retrieval using the statistical structure of images. In IEEE Conference
on Computer Vision and Pattern Recognition, 2004.

D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an
image. International Journal of Computer Vision, 2007.

A. Hollingworth. Does consistent scene context facilitate object perception?
Journal of Experimental Psychology: General, 1998.

J. B. Hopfinger, M. H. Buonocore, and G. R. Mangun. The neural mechanisms
of top-down attentional control. Nature neuroscience, 2000.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy. Speed/accuracy trade-
offs for modern convolutional object detectors. IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

J. Hupe, A. James, B. Payne, S. Lomber, P. Girard, and J. Bullier. Cortical
feedback improves discrimination between figure and background by v1, v2
and v3 neurons. Nature, 1998.

L. Ttti and C. Koch. A saliency-based search mechanism for overt and covert
shifts of visual attention. Vision Research, 2000.

A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar. A dirty model for
multi-task learning. In Conference on Neural Information Processing Systems,
2010.

H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric
consistency for large scale image search. In Furopean Conference on Computer
Vision, 2008.

L. Jia, H. Su, E. P. Xing, and L. Fei-fei. Object bank: A high-level image
representation for scene classification & semantic feature sparsification. In
Conference on Neural Information Processing Systems, 2010.

183

[135]

136

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093, 2014.

M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Ma-
tusik. CG2real: Improving the realism of computer generated images using a
large collection of photographs. IEEE TVCG, 2010.

A. L. Jose C. Rubio, Joan Serrat. Video cosegmentation. In ACCV, 2012.

A. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for
image classification. In IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-
segmentation. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2010.

A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation. In IEEFE Con-
ference on Computer Vision and Pattern Recognition, 2012.

T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to predict where
humans look. In IEEE International Conference on Computer Vision, 2009.

J. Jung, H. Yim, B. Yoo, C. Choi, D. Park, and J. Kim. Rotating your
face using multi-task deep neural network. In IEEFE Conference on Computer
Vision and Pattern Recognition, 2015.

Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 2012.

T. Kanamori, S. Hido, and M. Sugiyama. A least-squares approach to direct
importance estimation. Journal of Machine Learning Research, 2009.

B. Kaneva, J. Sivic, A. Torralba, S. Avidan, and W. T. Freeman. Infinite im-
ages: Creating and exploring a large photorealistic virtual space. Proceedings
of the IEEFE, 2010.

H. Kang, M. Hebert, and T. Kanade. Discovering object instances from scenes
of daily living. In IFEFE International Conference on Computer Vision, 2011.

Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task
feature learning. In International Conference on Machine Learning, 2011.

184

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

159

A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning with
gaussian processes for object categorization. In IEEFE International Conference
on Computer Vision, 2007.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classification with convolutional neural networks. In IFEE
Conference on Computer Vision and Pattern Recognition, 2014.

I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, and S. M. Seitz. Explor-
ing photobios. In ACM Transactions on Graphics (SIGGRAPH), 2011.

A. R. Z. Khurram Soomro and M. Shah. Ucfl101: A dataset of 101 human
action classes from videos in the wild. Technical report, CRCV-TR-12-01,
2012.

G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade. Distributed Cosegmentation
via Submodular Optimization on Anisotropic Diffusion. In IEEE International
Conference on Computer Vision, 2011.

P. Krahenbiihl and V. Koltun. Geodesic object proposals. In European Con-
ference on Computer Vision, 2014.

D. J. Kravitz, K. S. Saleem, C. I. Baker, L. G. Ungerleider, and M. Mishkin.
The ventral visual pathway: an expanded neural framework for the processing
of object quality. Trends in cognitive sciences, 2013.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Conference on Neural Information
Processing Systems, 2012.

D. Kuettel, M. Guillaumin, and V. Ferrari. Segmentation propagation in
imagenet. In Furopean Conference on Computer Vision, 2012.

S. Lad and D. Parikh. Interactively guiding semi-supervised clustering via
attribute-based explanations. In Furopean Conference on Computer Vision,
2014.

L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr. What, where
and how many? combining object detectors and crfs. In Furopean Conference
on Computer Vision, 2010.

K. Lai, L. Bo, X. Ren, and D. Fox. A scalable tree-based approach for joint
object and pose recognition. In AAAI 2011.

185

[160]

[161]

[162]

[163]

[164]

[165]

[166]

167]

168

[169]

[170]

[171]

K. Lai, L. Bo, X. Ren, and D. Fox. Sparse distance learning for object recog-
nition combining RGB and depth information. In ICRA, 2011.

V. A. Lamme and P. R. Roelfsema. The distinct modes of vision offered by
feedforward and recurrent processing. Trends in neurosciences, 2000.

V. A. Lamme, H. Super, and H. Spekreijse. Feedforward, horizontal, and
feedback processing in the visual cortex. Current opinion in neurobiology,
1998.

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen
object classes by between-class attribute transfer. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

M. Lapin, B. Schiele, and M. Hein. Scalable multitask representation learning
for scene classification. In IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

S. Lazebnik, C. Schmid, and J. Ponce. Spatial pyramid matching. In Ob-
ject Categorization: Computer and Human Vision Perspectives. Cambridge
University Press, 2009.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. IFEFE, 1998.

Y. J. Lee and K. Grauman. Collect-cut: Segmentation with top-down cues
discovered in multi-object images. In IEEE Conference on Computer Vision
and Pattern Recognition, 2010.

Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and
objects for egocentric video summarization. In IEEFE Conference on Computer
Vision and Pattern Recognition, 2012.

K. Li, B. Hariharan, and J. Malik. Iterative instance segmentation. arXiv
preprint arXiw:1511.08498, 2015.

L.-J. Li, G. Wang, and L. Fei-Fei. OPTIMOL: Automatic object picture
collection via incremental model learning. In IEEE Conference on Computer
Vision and Pattern Recognition, 2007.

186

[172]

[173]

[174]

[175]

176

[177)

[178]

[179]

[180]

[181]

[182]

[183]

X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan. Computational baby
learning. arXiv preprint, 2014.

J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing
examples for multiclass object detection. In Conference on Neural Information
Processing Systems, 2011.

G. Lin, C. Shen, I. Reid, et al. Efficient piecewise training of deep structured
models for semantic segmentation. arXiv preprint arXiv:1504.01013, 2015.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick. Microsoft COCO: Common objects in context. In Furopean
Conference on Computer Vision, 2014.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Fea-
ture pyramid networks for object detection. arXiv preprint arXiv:1612.03144,
2016.

D. Liu, G. Hua, and T. Chen. A hierarchical visual model for video object
summarization. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2010.

W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better.
arXiv preprint arXiw:1506.04579, 2015.

X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y.-Y. Wang. Representation
learning using multi-task deep neural networks for semantic classification and
information retrieval. NAACL, 2015.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-
mantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

I. Loshchilov and F. Hutter. Online batch selection for faster training of neural
networks. arXiv preprint arXiv:1511.06343, 2015.

D. Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial Intelligence, 1987.

D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 2004.

187

[184]

[185]

[186]

187

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

T. Malisiewicz and A. A. Efros. Beyond categories: The visual memex model
for reasoning about object relationships. In Conference on Neural Information
Processing Systems, 2009.

T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for
object detection and beyond. In IEEE International Conference on Computer
Vision, 2011.

T. Malisiewicz, A. Shrivastava, A. Gupta, and A. A. Efros. Exemplar-svims
for visual ob ject detection, label transfer and image retrieval. In International
Conference on Machine Learning (Invited), 2012.

D. Marr and H. Nishihara. Representation and recognition of the spatial
organization of three-dimensional shapes. Proc. Roy. Soc., 1978.

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In IEEFE Con-
ference on Computer Vision and Pattern Recognition, 2009.

D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image bound-
aries using local brightness, color, and texture cues. IFEFE Transactions on
Pattern Analysis and Machine Intelligence, 2004.

Y. Meng, X. Ye, and B. D. Gonsalves. Neural processing of recollection,
familiarity and priming at encoding: Evidence from a forced-choice recognition
paradigm. Brain research, 2014.

I. Misra, A. Shrivastava, and M. Hebert. Data-driven exemplar model se-
lection. In IEEE Winter Conference on Applications of Computer Vision,
2014.

I. Misra, A. Shrivastava, and M. Hebert. Watch and learn: Semi-supervised
learning of object detectors from videos. In IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

I. Misra®, A. Shrivastava*, A. Gupta, and M. Hebert. Cross-stitch Networks
for Multi-task Learning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In
Conference on Neural Information Processing Systems, 2014.

M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward seman-
tic segmentation with zoom-out features. In IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

188

[196]

[197]

[198]

[199]

200]

[201]

[202]

203]

[204]

205]

[206]

207]

R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun,
and A. Yuille. The role of context for object detection and semantic segmen-
tation in the wild. In IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

K. Murphy, A. Torralba, W. Freeman, et al. Using the forest to see the trees:
a graphical model relating features, objects and scenes. Conference on Neural
Information Processing Systems, 2003.

H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In IEEE International Conference on Computer Vision, 2015.

G. Obozinski, B. Taskar, and M. Jordan. Multi-task feature selection. Statis-
tics Department, UC Berkeley, Tech. Rep, 2006.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and
joint subspace selection for multiple classification problems. Statistics and
Computing, 20, 2010.

S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee,
J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy,
M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba,
B. Song, A. Fong, A. Roy-Chowdhury, and M. Desai. A large-scale benchmark
dataset for event recognition in surveillance video. In IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

A. Oliva and A. Torralba. Building the gist of a scene: the role of global image
features in recognition. Progress in Brain Research, 2006.

A. Oliva and A. Torralba. The role of context in object recognition. Trends
in cognitive sciences, 2007.

S. E. Palmer. The effects of contextual scenes on the identification of objects.
Memory & Cognition, 1975.

S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10):1345-1359, 2010.

Y. Pang and H. Ling. Finding the best from the second bests - inhibiting sub-
jective bias in evaluation of visual tracking algorithms. In IEEE International
Conference on Computer Vision, 2013.

D. Parikh and K. Grauman. Relative attributes. In IEEE International Con-
ference on Computer Vision, November 2011.

189

208]

209]

[210]

[211]

[212]

[213]

214]

[215]

216]

[217]

[218]

[219]

G. Patterson and J. Hays. SUN attribute database: Discovering, annotating,
and recognizing scene attributes. In IFEE Conference on Computer Vision
and Pattern Recognition, 2012.

B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3D geometry to
deformable part models. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

P. Perona. Visions of a Visipedia. Proceedings of IEEFE, 2010.

V. Piéch, W. Li, G. N. Reeke, and C. D. Gilbert. Network model of top-
down influences on local gain and contextual interactions in visual cortex.
Proceedings of the National Academy of Sciences, 2013.

P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to segment object can-
didates. In Conference on Neural Information Processing Systems, 2015.

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollar. Learning to refine
object segments. arXiv preprint arXiv:1603.08695, 2016.

H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal greedy
algorithms for tracking a variable number of objects. In IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

A. Prakash and D. Parikh. Attributes for classifier feedback. In Furopean
Conference on Computer Vision, 2012.

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning ob-
ject class detectors from weakly annotated video. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang. Two-dimensional active
learning for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2008.

A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classifica-
tion with sparse prototype representations. In IEEE Conference on Computer
Vision and Pattern Recognition, 2008.

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie.
Objects in context. In IEEE International Conference on Computer Vision,
2007.

190

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

A. Ranjan and M. J. Black. Optical flow estimation using a spatial pyramid
network. arXiv preprint arXiv:1611.00850, 2016.

M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable
discriminative binary codes. In FEuropean Conference on Computer Vision,
2012.

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-
the-shelf: an astounding baseline for recognition. In CVPR Workshop, 2014.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In Conference on Neural
Information Processing Systems, 2015.

E. Riloff and R. Jones. Learning dictionaries for information extraction by
multi-level bootstrapping. In AAAI 1999.

B. Romera-Paredes, A. Argyriou, N. Berthouze, and M. Pontil. Exploiting
unrelated tasks in multi-task learning. In Proceedings of Machine Learning
Research, 2012.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, 2015.

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training
of object detection models. In IEEE Winter Conference on Applications of
Computer Vision, 2005.

S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell. Learning message-passing
inference machines for structured prediction. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2011.

C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image
pairs by histogram matching - incorporating a global constraint into MRFs.
In IEEE Conference on Computer Vision and Pattern Recognition, 2006.

H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998.

M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object dis-
covery and segmentation in internet images. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

191

[232]

233

[234]

[235]

[236]

237]

[238]

[239]

[240]

[241]

[242]

[243]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer
Vision, 115, 2015.

B. Russell, W. Freeman, A. Efros, J. Sivic, and A. Zisserman. Using multiple
segmentations to discover objects and their extent in image collections. In
IEEE Conference on Computer Vision and Pattern Recognition, 2006.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: A
database and web-based tool for image annotation. International Journal of
Computer Vision, 2009.

B. C. Russell, J. Sivic, J. Ponce, and H. Dessales. Automatic alignment of
paintings and photographs depicting a 3d scene. In 38D Representation and
Recognition (3dRR), 2011.

A. Saffari, C. Leistner, M. Godec, and H. Bischof. Robust multi-view boosting
with priors. In Furopean Conference on Computer Vision, 2010.

S. Savarese and L. Fei-Fei. 3D generic object categorization, localization and
pose estimation. In IEEE International Conference on Computer Vision, 2007.

H. Schneiderman and T. Kanade. Object detection using the statistics of
parts. International Journal of Computer Vision, 56, 2004.

A. Schodl, R. Szeliski, D. H. Salesin, and I. Essa. Video textures. In SIG-
GRAPH, 2000.

F. Schroff, A. Criminisi, and A. Zisserman. Harvesting image databases from
the web. In IEEE International Conference on Computer Vision, 2007.

A. G. Schwing and R. Urtasun. Fully connected deep structured networks.
arXiv preprint arXiw:1503.02351, 2015.

P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detec-
tion with unsupervised multi-stage feature learning. In IFEE Conference on
Computer Vision and Pattern Recognition, 2013.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. In ICLR, 2015.

192

[244]

245

[246]

[247]

[248]

[249]

[250]

[251]

[252]

253

[254]

[255]

F. Shahbaz Khan, R. Anwer, J. van de Weijer, A. Bagdanov, M. Vanrell,
and A. Lopez. Color attributes for object detection. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

V. Sharmanska, N. Quadrianto, and C. H. Lampert. Augmented attribute
representations. In European Conference on Computer Vision, 2012.

E. Shechtman and M. Irani. Matching local self-similarities across images and
videos. In IEEE Conference on Computer Vision and Pattern Recognition,
June 2007.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22, 2000.

J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint ap-
pearance, shape and context modeling for multi-class object recognition and
segmentation. In Furopean Conference on Computer Vision, 2006.

A. Shrivastava and A. Gupta. Building Part-based Object Detectors via 3D
Geometry. In IEEFE International Conference on Computer Vision, 2013.

A. Shrivastava and A. Gupta. Contextual priming and feedback for Faster
R-CNN. In Furopean Conference on Computer Vision, 2016.

A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A. Efros. Data-driven visual
similarity for cross-domain image matching. ACM Trans. on Graphics, 2011.

A. Shrivastava, S. Singh, and A. Gupta. Constrained semi-supervised learn-
ing using attributes and comparative attributes. In Furopean Conference on
Computer Vision, 2012.

A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object
detectors with online hard example mining. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Beyond Skip Connec-
tions: Top-Down Modulation for Object Detection. arXiv:1612.06851, 2016.

B. Siddiquie and A. Gupta. Beyond active noun tagging: Modeling contextual
interactions for multi-class active learning. In IEEE Conference on Computer
Vision and Pattern Recognition, 2010.

193

[256]

[257]

[258]

259]

260]

[261]

[262]

[263]

[264]

[265]

266]

267]

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor Segmentation and
Support Inference from RGBD Images. In Furopean Conference on Computer
Vision, 2012.

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and F. Moreno-Noguer. Frack-
ing deep convolutional image descriptors. arXiv preprint arXiv:1412.6537,
2014.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015.

V. Sindhwani and P. Niyogi. A co-regularized approach to semi-supervised
learning with multiple views. In International Conference on Machine Learn-
ing Workshop, 2005.

S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level dis-
criminative patches. In Furopean Conference on Computer Vision, 2012.

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In IEEFE International Conference on Computer Vision,
2003.

N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Finding paths through the
world’s photos. ACM Transactions on Graphics (SIGGRAPH), 2008.

M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape
models from 3D CAD data. In British Machine Vision Conference, 2010.

C. Stein et al. Inadmissibility of the usual estimator for the mean of a multi-
variate normal distribution. In Proceedings of the Third Berkeley symposium
on mathematical statistics and probability, volume 1, 1956.

M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber. Deep networks
with internal selective attention through feedback connections. In Conference
on Neural Information Processing Systems, 2014.

C. Su et al. Multi-task learning with low rank attribute embedding for person
re-identification. In IEEE International Conference on Computer Vision, 2015.

E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky. Learning hierar-
chical models of scenes, objects, and parts. In IEEE International Conference
on Computer Vision, 2005.

194

268

269

270]

[271]

[272]

273]

[274]

[275]

[276]

[277]

278]

[279]

[280]

K.-K. Sung and T. Poggio. Learning and Example Selection for Object and
Pattern Detection. In MIT A.I. Memo No. 1521, 1994.

J. S. Supancic IIT and D. Ramanan. Self-paced learning for long-term tracking.
In IEEE Conference on Computer Vision and Pattern Recognition, 2013.

C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detec-
tion. In Conference on Neural Information Processing Systems, 2013.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IFEFE
Conference on Computer Vision and Pattern Recognition, 2015.

C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the
impact of residual connections on learning. arXiv preprint arXiv:1602.07261,
2016.

M. Takac, A. Bijral, P. Richtarik, and N. Srebro. Mini-batch primal and dual
methods for svms. arXiv preprint arXiv:1308.2314, 2013.

K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei. Discriminative segment
annotation in weakly labeled video. In IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

A. Teichman and S. Thrun. Tracking-based semi-supervised learning. In RSS,
2011.

P. Teterwak and L. Torresani. Shared Roots: Regularizing Deep Neural Net-
works through Multitask Learning. Technical Report TR2014-762, Dartmouth
College, Computer Science, 2014.

K. Tieu and P. Viola. Boosting image retrieval. International Journal of
Computer Vision, 2004.

J. Tighe and S. Lazebnik. Understanding scenes on many levels. In IEFFE
International Conference on Computer Vision, 2011.

J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a con-
volutional network and a graphical model for human pose estimation. In
Conference on Neural Information Processing Systems, 2014.

A. Torralba. Contextual priming for object detection. International Journal
of Computer Vision, 2003.

195

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289)]

[290]

[291]

[292]

A. Torralba and P. Sinha. Statistical context priming for object detection. In
IEEE International Conference on Computer Vision, 2001.

A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin. Context-
based vision system for place and object recognition. In IFEFE International
Conference on Computer Vision, 2003.

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for
multiclass and multiview object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29, 2007.

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large
database for non-parametric object and scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2008.

A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition,
2014.

Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks
and 3d brain image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2010.

E. Tulving and D. L. Schacter. Priming and human memory systems. Science,
1990.

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search
for object recognition. International Journal of Computer Vision, 2013.

K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders.
Segmentation as selective search for object recognition. International Journal
of Computer Vision, 2011.

S. Vicente, C. Rother, and V. Kolmogorov. Object cosegmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2011.

S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Train-
ing object detectors with crawled data and crowds. In IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

P. Viola and M. Jones. Robust real-time object detection. International Jour-
nal of Computer Vision, 2001.

196

293

[204]

295]

296]

297]

298]

299

300]

301]

302]

303]

304]

[305]

L. von Ahn and L. Dabbish. Labeling images with a computer game. In
SIGCHI conference on Human factors in computing systems, 2004.

H. von Helmholtz. Helmholtz’s treatise on physiological optics (1910). Optical
Society of America, 1925.

C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. HOGgles: Visualiz-
ing Object Detection Features. IEEE International Conference on Computer
Vision, 2013.

L. Wang, G. Hua, R. Sukthankar, J. Xue, and N. Zheng. Video object dis-
covery and co-segmentation with extremely weak supervision. In European
Conference on Computer Vision, 2014.

X. Wang and A. Gupta. Unsupervised learning of visual representations using
videos. In IEEFE International Conference on Computer Vision, 2015.

X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection.
In IEEFE International Conference on Computer Vision, 2013.

X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface
normal estimation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

X. Wang, A. Shrivastava, and A. Gupta. A-Fast-RCNN: Hard Positive Gener-
ation via Adversary for Object Detection. In IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

Y .-X. Wang and M. Hebert. Model recommendation: Generating object detec-
tors from few samples. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

Y. Wexler, E. Shechtman, and M. Irani. Space-time completion of video. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 2007.

O. Whyte, J. Sivic, and A. Zisserman. Get out of my picture! internet-based
inpainting. In British Machine Vision Conference, 2009.

G. S. Wig, S. T. Grafton, K. E. Demos, and W. M. Kelley. Reductions in
neural activity underlie behavioral components of repetition priming. Nature
neuroscience, 2005.

L. Wolf, T. Hassner, and Y. Taigman. The one-shot similarity kernel. In IEEE
International Conference on Computer Vision, 2009.

197

306]

[307]

308]

309]

[310]

[311]

[312]

[313]

[314]

[315]

[316]

317]

J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan. Sparse
representation for computer vision and pattern recognition. Proceedings of the
IEEE, 98(6):1031-1044, 2010.

D. Wyatte, T. Curran, and R. O’Reilly. The limits of feedforward vision:
Recurrent processing promotes robust object recognition when objects are
degraded. Journal of Cognitive Neuroscience, 2012.

Y. Xiang and S. Savarese. Estimating the aspect layout of object categories.
In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large
scale scene recognition from abbey to zoo. In IEEE Conference on Computer
Vision and Pattern Recognition, 2010.

S. Xie and Z. Tu. Holistically-nested edge detection. arXiv preprint
arXw:1504.06375, 2015.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for clas-
sification with dirichlet process priors. Journal of Machine Learning Research,
8, 2007.

Y. Yang and T. M. Hospedales. A unified perspective on multi-domain and
multi-task learning. arXiv preprint arXiv:1412.7489, 2014.

Y. Yang and D. Ramanan. Articulated pose estimation with exible mixtures-
of-parts. In IFEE Conference on Computer Vision and Pattern Recognition,
2011.

J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint
object detection, scene classification and semantic segmentation. In IFEFE
Conference on Computer Vision and Pattern Recognition, 2012.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features
in deep neural networks? In Conference on Neural Information Processing
Systems, 2014.

J. Yuen, B. C. Russell, C. Liu, and A. Torralba. Labelme video: Building a
video database with human annotations. In IEFE International Conference
on Computer Vision, 2009.

T. P. Zanto, M. T. Rubens, J. Bollinger, and A. Gazzaley. Top-down mod-
ulation of visual feature processing: the role of the inferior frontal junction.
Neuroimage, 2010.

198

[318]

319]

320

[321]

322]

323

324]

[325]

326]

327]

328]

329]

T. P. Zanto, M. T. Rubens, A. Thangavel, and A. Gazzaley. Causal role of
the prefrontal cortex in top-down modulation of visual processing and working
memory. Nature neuroscience, 2011.

M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional
networks. In IEEE Conference on Computer Vision and Pattern Recognition,
2010.

C. Zhang and Z. Zhang. Improving multiview face detection with multi-task
deep convolutional neural networks. In Applications of Computer Vision ,
2014 IEEE Winter Conference on, pages 1036—1041. IEEE, 2014.

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via struc-
tured multi-task sparse learning. International journal of computer vision, 101
(2):367-383, 2013.

7. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by
deep multi-task learning. In European Conference on Computer Vision, pages
94-108. Springer, 2014.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr. Conditional random fields as recurrent neural
networks. In IEEE International Conference on Computer Vision, 2015.

J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl
Regularization. ASU, 2011.

J. Zhou, J. Liu, V. A. Narayan, and J. Ye. Modeling disease progression via
fused sparse group lasso. In SIGKDD, 2012.

Q. Zhou, G. Wang, K. Jia, and Q. Zhao. Learning to share latent tasks for
action recognition. In IEEE International Conference on Computer Vision,

2013.

X. Zhu. Semi-supervised learning literature survey. Technical report, CS,
UW-Madison, 2005.

Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler. segdeepm: Exploiting
segmentation and context in deep neural networks for object detection. In
IEEFE Conference on Computer Vision and Pattern Recognition, 2015.

C. L. Zitnick and P. Dollar. Edge boxes: Locating object proposals from edges.
In European Conference on Computer Vision, 2014.

199

