
Discovering Compact and Informative
Structures through Data Partitioning

Madalina Fiterau

September 2015
CMU-ML-15-105

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Artur Dubrawski, Chair

Geoff Gordon
Alex Smola

Andreas Krause, ETH Zürich

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2015 Madalina Fiterau

This work supported by: National Science Foundation grant numbers IIS0911032 and IIS1320347; National Insti-
tutes of Health grant number R01391201; Air Force Research Laboratory contract numbers FA875010C0210 and
FA87501220324; Department of Energy contract number DEAC5207NA27344; Department of the Treasury contract
number TIRNO-06-D-00020; Department of the Interior contract number GS35F0273L; Department of the Navy con-
tract numbers N6600107D0015 and N6600112D0048; the University of Pittsburgh contract numbers 0026043 and
0038431; and a Highmark Research Award.

Keywords: informative projection recovery, cost-based feature selection, ensemble methods,
data partitioning, active learning, clinical data analysis, artifact adjudication, nuclear threat detec-
tion

Abstract
In many practical scenarios, prediction for high-dimensional observations can be

accurately performed using only a fraction of the existing features. However, the set
of relevant predictive features, known as the sparsity pattern, varies across data. For
instance, features that are informative for a subset of observations might be useless for
the rest. In fact, in such cases, the dataset can be seen as an aggregation of samples be-
longing to several low-dimensional sub-models, potentially due to different generative
processes. My thesis introduces several techniques for identifying sparse predictive
structures and the areas of the feature space where these structures are effective. This
information allows the training of models which perform better than those obtained
through traditional feature selection.

We formalize Informative Projection Recovery, the problem of extracting a set
of low-dimensional projections of data which jointly form an accurate solution to a
given learning task. Our solution to this problem is a regression-based algorithm that
identifies informative projections by optimizing over a matrix of point-wise loss esti-
mators. It generalizes to a number of machine learning problems, offering solutions to
classification, clustering and regression tasks. Experiments show that our method can
discover and leverage low-dimensional structure, yielding accurate and compact mod-
els. Our method is particularly useful in applications involving multivariate numeric
data in which expert assessment of the results is of the essence. Additionally, we de-
veloped an active learning framework which works with the obtained compact models
in finding unlabeled data deemed to be worth expert evaluation. For this purpose, we
enhance standard active selection criteria using the information encapsulated by the
trained model. The advantage of our approach is that the labeling effort is expended
mainly on samples which benefit models from the hypothesis class we are consid-
ering. Additionally, the domain experts benefit from the availability of informative
axis aligned projections at the time of labeling. Experiments show that this results in
an improved learning rate over standard selection criteria, both for synthetic data and
real-world data from the clinical domain, while the comprehensible view of the data
supports the labeling process and helps preempt labeling errors.

iii

Acknowledgments
This research was done in collaboration with:

Karen Chen, CMU, Auton Lab
Gilles Clermont, University of Pittsburgh

Artur Dubrawski, CMU, Auton Lab
Nick Gisolfi, CMU, Robotics
Geoff Gordon, CMU, MLD

Mathieu Guillaume-Bert, CMU, Auton Lab
Marilyn Hravnak, University of Pittsburgh
Michael R. Pinsky, University of Pittsburgh

Alex Smola, CMU, MLD
Donghan Wang, CMU, Auton Lab

iv

Contents

1 Introduction 1
1.1 Thesis overview . 1
1.2 Motivation and application requirements . 7
1.3 Scope and novelty of proposed approach . 8
1.4 Challenges in learning data partitioning ensembles 9
1.5 Related work . 9

2 Informative Projection Ensembles (IPEs) 11
2.1 Model class . 12
2.2 Construction of Informative Projection Ensembles 13

2.2.1 Formulation of IPE learning . 14
2.2.2 Classifier selection as a combinatorial problem 15

2.3 Learning the selection matrix . 16
2.3.1 Optimal submodel selection through an Integer Linear Program 16
2.3.2 Convex formulations for submodel selection 18
2.3.3 Greedy submodel selection . 20
2.3.4 Query handling . 22

2.4 Customized IPE construction for different learning tasks 22
2.4.1 Classification IPEs using conditional entropy 22
2.4.2 Generalized IPE models . 25
2.4.3 Semi-supervised classification IPEs . 27
2.4.4 Clustering IPEs . 28
2.4.5 Regression IPEs . 28

2.5 Properties of Informative Projection Ensembles 29
2.5.1 VC Dimension of classification IPEs . 30
2.5.2 Consistency of ensembles using nearest-neighbor classifiers 32

2.6 Experiments . 35
2.6.1 Comparison of classification IPEs . 35
2.6.2 RIPR framework applied to clustering . 36
2.6.3 RIPR framework applied to regression . 37

2.7 Discussion of IPE learning efficiency . 39
2.7.1 Computational complexity of IPE learning 39
2.7.2 Comparison of methods in terms of running time 40

v

3 Extensions to the RIPR Framework 42
3.1 Learning IPEs in an active learning setting . 42

3.1.1 Overview of active learning with dimensionality reduction 42
3.1.2 Active informative projection recovery framework 44
3.1.3 Active sample selection . 44

3.2 Informative Projection learning for feature hierarchies 46
3.2.1 Cost-sensitive feature selection . 46
3.2.2 Exploiting the feature dependency graphs through `1 and `2 penalties . . . 47
3.2.3 Leveraging feature hierarchies in vital sign monitoring 47

3.3 Projection-based gap-finding for data engineering 48
3.3.1 Guided data acquisition . 48
3.3.2 Finding meaningful gaps with RIPR . 49
3.3.3 Experimental Results . 50

4 Detection of artifacts in clinical alerts from vital sign data 52
4.1 Clinical alert adjudication . 52
4.2 Description of SDU patient vital sign data . 53
4.3 Performance of classification IPEs for artifact adjudication 54
4.4 Clustering IPEs for identifying artifact archetypes 58
4.5 Annotation framework for the classification of clinical alerts 59
4.6 Studies of expert labeling using time series and informative projections 60

5 Ensembles for Large-scale Data Partitioning 66
5.1 Optimizing tree ensembles . 66
5.2 Backpropagation forests . 66

5.2.1 Related work . 68
5.2.2 Decision trees with stochastic routing . 69
5.2.3 Learning backpropagation trees . 71
5.2.4 Learning backpropagation forests (BPFs) 73
5.2.5 Comparison of BPFs to conventional forest classifiers 75

5.3 Deep Convolutional Neural Decision Forests . 77
5.3.1 Improving performance using DNNs + BPFs 77
5.3.2 ImageNet experiments . 77

6 Summary 79

Bibliography 80

Appendix A 88
6.1 RIPR results on artificial data for supervised classification 88
6.2 RIPR results on artificial data for semi-supervised classification 88
6.3 Active RIPR case study: Artifact Detection from Partially-Observed Vital Signals

of Intensive Care Unit Patients . 89

vi

Appendix B 95
6.4 Summary of SDU data . 95
6.5 Features derived from vital sign time-series . 95

Appendix C 98
6.6 Derivation for the gradient term in (5.8) . 98
6.7 Details of ImageNet experiment . 99

6.7.1 ImageNet Dataset . 99
6.7.2 The BeefNet Architecture . 99
6.7.3 Evaluation of split nodes . 100
6.7.4 Evaluation of model performance . 101
6.7.5 Evaluations of leaf nodes . 101

6.8 Proof of update rule for π . 101

vii

List of Figures

2.1 Using the loss matrix for projection selection. 16
2.2 The sample labeling procedure. 22
2.3 Estimating entropy through distance ratios. 23
2.4 Projections of k-means clusters on the informative features and RIPR low-dimensional

clusters induced from synthetic data.. Each cluster determined by the algorithm is
shown in a different color. 29

2.5 Clusters from the Seeds dataset . 38
2.6 Clusters induced from the Concrete dataset. 38

3.1 Example projections retrieved using direct (top left), and diagnostic nonparametric
(top right) and parametric (bottom) approaches. Features names were obscured as
the dataset is classifier. 51

4.1 2-D informative projections (top, middle) and sample vital signs (bottom) for RR
(Respiratory Rate) alerts. Artifacts are represented with blue circles, while the true
alerts are red triangles. 55

4.2 2-D (top) and 3-D (bottom) informative projections for BP (Blood Pressure) alerts.
Artifacts are represented with blue circles, while the true alerts are red triangles. . . 56

4.3 2-D (top) and 3-D (bottom) informative projections for Oxygen Saturation (SPO2)
alerts. Artifacts are represented with blue circles, while the true alerts are red
triangles. 57

4.4 Artifact Archetypes. 64
4.5 Example of projection-assisted annotation. Original vital sign chart (top) and in-

formative projection (bottom). The test point that needs to be labeled is identified
with a star symbol. 65

5.1 Online data shift, in terms of both features and samples, across ensemble submodels. 67
5.2 Before shift . 67
5.3 After shift . 67
5.4 Exemplary routing of a sample x along a tree to reach `4, using fn(x; Θ) = x>θn.

Here, µ`4 = d1(x>θ1)d̄2(x>θ2)d̄5(x>θ5) . 70
5.5 Schematic illustration of building blocks for representation learning (left Figure,

taken from [66]) and proposed, differentiable decision tree. In the example the
fully connected layers (+softmax) are replaced by a tree. Please note that split
nodes can be attached to any part of the network. 73

viii

6.1 RIPR for Respiratory Rate alerts. Artifacts: Blue circles. True instability: Red
triangles. 91

6.2 ActiveRIPR on artificial data with uniform noise. 91
6.3 ActiveRIPR on artificial data with compact noise. 92
6.4 ActiveRIPR comparison significance for Information Gain scoring against other

contenders. Significant wins/losses are above/below the red dash coresponding to
a p-value of 0.05. Artificial data with compact noise. 93

6.5 ActiveRIPR comparison significance for the baseline (top left), uncertainty (top
right), query-by-committee (bottom left) and conditional entropy (bottom right)
scoring against their respective contenders. Significant wins/losses are above/below
the red dash coresponding to a p-value of 0.05. Artificial data with compact noise. . 94

6.6 Left: Original GoogLeNet architecture proposed in [102]. Right: The modifica-
tions we brought to the GoogLeNet architecture resulting in BeefNet – our pro-
posed model using BPFs as final classifiers. Best viewed with digital zoom. 104

6.7 Histograms over all split node responses of all three forests in BeefNet on valida-
tion data after accomplishing 100 (left), 500 (middle) and 1000 (right) epochs over
training data. As training progresses, the split node outputs approach 0 or 1 which
corresponds to eliminating routing uncertainty of samples when being propagated
through the trees. 105

6.8 Top5-Error plots for individual BPFs used in BeefNet as well as their ensemble
errors. Left: Plot over all 1000 training epochs. Right: Zoomed version of left
plot, showing Top5-Errors from 0–12% between training epochs 500-1000 105

6.9 Exemplary leaf node distributions that are obtained by solving the convex opti-
mization problem defined in Equation (9) of the main submission. 105

6.10 Average leaf entropy development as a function of training epochs. 106

ix

List of Tables

2.1 Accuracy of K-NN and K-NN IPEs . 36
2.2 Accuracy (%) of k-NN models on letter data. 36
2.3 Results of clustering on real-world datasets. 37
2.4 RIPR SVM and standard SVM compared on synthetic data 39
2.5 Running time (seconds) of selection matrix learning procedures. 41

3.1 Comparison of our procedure against the lasso on the clinical data. 48

4.1 Classification accuracy of RIPR models. Precision and recall in recovering the
genuine alerts. 58

4.2 Percentage of samples needed by ActiveRIPR and ActiveRIPRssc to achieve ac-
curacies of 0.85 and 0.88 in oxygen saturation alert adjudication. 59

4.3 Active learning for blood pressure alerts . 60
4.4 Annotation scoring matrix. Category and label assignment based on reviewer

scores. 61
4.5 Categories of Projection-assisted labeling and VS-based labeling. 62
4.6 Success of Informative Projection-assisted labeling compared to the ground-truth

obtained by VS-based labeling. 62
4.7 Comparison of first stage and second stage annotations. 63
4.8 Comparison of first stage and second stage annotations. 63

5.1 Performance improvement of tree ensembles through the use of query-specific se-
lection. For each of the experiments, we report the number of features in the dataset
a, the number of samples n, the number of classes |Y|, the error of the tree ensem-
ble and the error of the optimized ensemble. 66

5.2 Comparison to other forest-based classifiers . 76

6.1 Projection Recovery for Artificial Datasets with 1 . . . 7 informative features and
noise level 0 . . . 0.2 in terms of mean and variance of Precision and Recall. Mean/var
obtained for each setting by repeating the experiment with datasets with different
informative projections. 89

6.2 RECIP Classification Accuracy on Artificial Data 90
6.3 Accuracy of semi-supervised RIPR on synthetic data compared to a k-NN model

on all features and projection recovery. 90

6.4 Summary of step-down unit (SDU) patients, monitoring and annotation outcome
of alerts. 96

x

6.5 List of feature categories, the aspect of the vital signs signals those features were
meant to capture, and the feature names and descriptions. 97

xi

Chapter 1

Introduction

As we all know, the past decade has brought incredible advancements in terms of data acquisition.
Despite its immense benefits, Big Data is complex, noisy and utterly unusable by the general
public in its original form. The ML community has brought in a plethora of powerful, complex
and highly accurate models to handle the data. Sadly, while ML experts have a keen understanding
of the models, they are, too often, not accessible to regular users. Thus, the gap between users and
data is compounded by an ever increasing gap between users and models.

In this context, my research focuses on finding important aspects of the data and make them
accessible to many more users than currently possible. The methods we introduce build compact,
interpretable models that, through simple visualizations, put the data back in the hands of the users.
There are a number of applications where this is useful, in particular, for decision support systems,
where interpretability is key. In applications such as border control and medical diagnostics, a
design requirement is that the models should be understood by users, in order to aid them in
everyday decision making. The thesis which we put forth states that it is possible to identify low
dimensional structures in complex high-dimensional data, if such structures exist, and leverage
them to construct compact interpretable models for various machine learning tasks.

1.1 Thesis overview

The first part of the thesis focuses on Informative Projection Ensembles (IPEs), their construction
and their applicability to several practical problems. IPEs are compact models designed to obtain
high performance for a learning task such as classification or clustering, while ensuring that users
gain an understanding of the data. IPEs consist of several low-dimensional models obtained by
leveraging data partitioning and use query-specific information to handle samples. Next, we show
that query-specific handling of data can improve the accuracy of tree ensembles. Finally, we
introduce a tree structure which allows the dynamic re-allocation of samples and features, through
the use of back-propagation. The resulting ensemble, Back-Propagation Forests, uses both feature
bagging, subset selection and data partitioning, illustrating how the same concepts used to extract
informative projections can be leveraged toward improving the state of the art when combined with
a powerful representation learning mechanism.

Assume we have a heterogeneous dataset that is an aggregation of samples from a multitude of
sources. For instance clinical data coming from different patients. The typical approach to deter-

1

Sample	
Par**oning	

Feature	
Bagging	

Back-‐
Propaga+on	

Forests	
(5.2)	

Op+mized	
Ensembles	

(5.1)	

Query-‐specific	
Models	

Random	
Forests	

BeefNet	
(5.3.1)	 	

Classifica+on	 for	
Computer	 Vision	

(5.3.2)	

Informa+ve	
Projec+on	
Ensembles	
(Ch.	 2)	

RIPR	
(2.3.2)	

ILP	
(2.3.3)	

Loss	 Matrix	
Selec+on	
(2.3)	

IPEs	 for	
Clustering	
(2.4.4)	

IPEs	 for	
Classifica+on	

(2.4.1)	

IPEs	 for	
Regression	
(2.4.5)	

Gap-‐Finding	 for	
Data	 Engineering	

(3.3)	

Ac+ve	
RIPR	
(3.1)	

Ar+fact	 Detec+on	
from	 Vital	 Sign	 Data	

(Ch.	 4,	 6.3)	

IPEs	 with	
parametric	
classifiers	

IPEs	 with	 	
k-‐NN	

classifiers	

Risk	
bound	
(2.5.2)	

Complexity	
bound	
(2.5.1)	

Greedy	
(2.3.1)	

Hierarchy	
Feature	
Selec+on	
(3.2)	

Discovering	 Compact	 and	 Informa*ve	 Structures	 through	 Data	 Par**oning	

Legend	

A	 B	

A	 B	

Contribu*on	

Fundamental	
Concept	

Theore*cal	
Result	

Applica*on	

A	 extends	 B	

A	 uses	 B	

mining sparse predictive structures is to learn a set of features that are globally informative. This
could be difficult because the sparsity pattern can change across the input space. At the other end
of the spectrum, there are local models which estimate the relevant features in the neighborhood
of different samples. However, there might be insufficient training data in the neighborhood of the
sample. We propose a tradeoff between the two: compact data partitioning models. The meth-
ods that we introduce automatically split the data into several groups based on the existence of
low-dimensional structure. The application requirements for compact, interpretable models led to
our formulation of the Informative Projection Retrieval (IPR) problem, which is used to train what
we call Informative Projection Ensembles, presented in Chapter 2. The IPR problem is relevant
to applications where both the model and its handling of queries need to be understood by users.
Given a learning task, informative projection retrieval is the problem of selecting a few subspaces
in which queries can be confidently resolved while maintaining low expected risk. Our methods
focus on axis-aligned projections, or sets of features. The methods presented are applicable to

2

other low-dimensional models, but making use of the informative features makes the models more
interpretable. In general, the datasets we are targeting have a multitude of redundant features,
which contain little useful information. We work under the assumption that one or several sets of
features, however, do contain structure. For each of these informative projections, the structure
may span only part of the samples. Jointly, the informative projections provide structure for all the
data.

The framework we introduce fulfills the design requirements for a broad range of learning tasks
semi-supervised classification, regression and clustering. The framework accepts a query point,
selects a low-dimensional subspace of the features on which to project the point, then applies a
task solver on the subspace. Finally, the outcome is shown in the context of the low-dimensional
projection. Given the structure we are attempting to learn, the training process needs to resolve
two issues. First, the samples are split across the informative projections. This of course includes
the task of narrowing down the set of projections. Second, there is the training of solvers on each
projection. There are of course many ways to assign the points to the projections, so determining
the best k set of projections by considering all possible point assignments is very difficult. Once the
set of projections and solvers is selected, they will be used to handle queries. There is a limit to the
number of projections we can pick, the difficulty being that there are many possible combinations
of projections. To keep the model simple, we keep the number of projections small. Clearly, an
ensemble of low loss projections guarantees good performance. We may include a projection using
all features for the difficult-to-classify points.

We express the problem of learning Informative Projection Ensembles as a combinatorial prob-
lem over elements of a loss matrix, as explained in Section 2.2. The loss matrix L quantifies how
well the solver on each projection handles every sample point. One element Lij is the loss esti-
mator of projection j for point i. These estimators are specific to the learning task. The point is
that we need to decrease the loss while selecting one projection for every sample point. We could
select the best k projections by using the marginal loss for the decisions. However, this solution
might be very far from the optimum. Instead, our optimization procedures find a set of projections
for which the loss estimators are as close to the optimum as possible. To indicate the point-to-
projection assignment, we introduce B, a binary selection matrix of the same dimensionality as L.
Bij is 1 iff projection j is to be used to handle point i. Given L, B induces a loss over the training
data. We learn B to minimize the difference between the induced loss and the optimal loss, putting
a constraint on the number of non-zero columns. While the selection matrix indicates how training
points are assigned to submodels, determining the appropriate submodel for testing data is done
by either training a selection function based on the selection matrix or by selecting, for each test
point the submodel with the lowest estimated loss.

We present three solutions to learning the selection matrix. The first one, presented in Sec-
tion 2.3.1, relies on an integer linear program which directly minimizes the induced loss. The
column constraints of the ILP ensure that the selection matrix has up to k non-zero columns. The
ILP finds the best k sub-models for the training data, however, it has the highest computational cost.
The second method, called Regression for Informative Projection Recovery (RIPR), presented in
2.3.2, uses a convex optimization procedure, related to the adaptive lasso. Through regularization,
it provides a solution that trades-off between getting close to the minimum loss and using a small
number of submodels. The third solution, introduced in Section 2.3.3 is a greedy procedure which
iteratively adds submodels to the ensemble such that the loss decrease is maximal at each iteration.
The greedy procedure offers a guarantee on how close the loss is to the optimal k-submodel loss

3

obtained through the ILP.
We can apply either of the three procedures for classification, clustering, regression and other

tasks by simply replacing the loss function and appropriately computing the loss matrix. For k-
NN classification, presented in Section 2.4.1 we use a local estimator for conditional entropy,
which quantifies the heterogeneity of the output in the neighborhood of a point i on the projection
cj . If there are unlabeled samples in the dataset, we’ll select the lowest loss value across all
possible label assignments. We similarly devise losses for parametric classification, for instance,
in the case of SVM classifiers we use the hinge loss. Tests on the three selection procedures for
k-NN classification have shown that in terms of accuracy, the ILP performs the best, RIPR second-
best, Greedy version, though fast, yields least-accurate models. Performance is close to (or better
than) that of a global model although the Informative Projection Ensembles use considerably fewer
features.

For clustering, described in Section 2.4.4 we use a loss that is lower for densely-packed regions,
namely the negative KL divergence between the current data distribution and a uniform distribu-
tion over the same space. This loss function has the advantage that dimensionality issues due to
the different subspace sizes are eliminated. Our experiments show that, while standard k-means
fails to discover the low-d structure, applying the RIPR procedure reveals the hidden structure
in data and the clusters are clearly visible and homogeneous in the low-dimensional projections.
Presenting clusters that are clearly distinct in low-dimensions facilitates understanding by human
users. We evaluate the clusters by computing the distortion (mean distance to cluster centers) and
log-cluster-volume, which measures compactness in the fully dimensional feature space. Tested
on UCI data, RIPR clearly outperforms k-means in terms of compactness, obtaining drastic com-
pression according to both metrics.

The loss function for regression is the MSE of the regressor computed in the neighborhood of
the sample point, as shown in Section 2.4.5. We compared the MSE of SVMs with the MSE of IPEs
using SVM regressors which were obtained with RIPR. In many cases, the low-d model performed
better. Low-d structures are less apparent when data is more noisy, however, for low-noise settings,
the underlying patterns are detected.

Regardless of the learning task or the selection matrix learning procedure, once the optimal set
of projections projections is determined, test samples are assigned to the appropriate projection by
selecting the submodel in the ensemble that has the best chance of succeeding in classifying the
point. The query handling process is shown in Section 2.3.4. This means we pick the submodel
which yields the lowest possible estimated loss for the point.

We have also extended the IPE learning framework to work in an active learning setting, as
described in Section 3.1. We typically use RIPR to learn the selection matrix in this case, calling
the resulting procedure ActiveRIPR, as it provides the best trade-off between speed and accuracy,
though the ILP or the Greedy method can also be used. As far as the sample selection is concerned,
any of the popular scoring functions can be used, although we found Information Gain to be the best
performing in practice. Empirical results show faster convergence rates when compared to random
forests with active learning as only the relevant dimensions of the feature space are explored. In
addition, informative projections make adjudications easier and intuitive for users.

The theoretical results we obtained for IPE models are presented in Section 2.5. For IPEs
using parametric classifiers from hypothesis classes with finite VC dimensions, using selection
functions of finite complexity are also upper bounded in complexity. The growth function of the
ensemble class is upper bounded by the product of the growth functions of the hypothesis classes

4

for the submodels. Since the latter are low-dimensional, the complexity of the ensemble is, in
many cases, lower than that of a single classifier using all the dimensions. In addition, IPEs using
k-NN classifiers are consistent under certain assumptions concerning the existence of a predictive
sparsity pattern. The risk of the ensemble converges at faster rates compared to that of a k-NN
classifier trained on the entire feature space.

In addition to learning informative projections, we have also enhanced out framework to take
into account feature hierarchies in order to decrease the feature acquisition cost. For several of
our applications, complex features are designed and derived from base features, with the cost of
a complex feature depending on the cost of the features it was derived from. In Section 3.2, we
introduce special penalties generated based on hierarchical structures, which result in the selection
of informative projections composed of features that have low acquisition cost overall.

We have applied several of the techniques, including classification IPEs, clustering IPEs and
the active learning framework to a medical application. These case studies are the focus of Chap-
ter 4. Consider a vital sign monitoring system which issues healthcare alerts whenever one of the
patient’s vital signs is out of its normal range. The alerts are quite frequent, with a typical SDU
having one alert go off every 90 seconds. Luckily, some of them are false alerts, due to limitations
of the monitoring equipment. We have computed features from the vital signal time series and,
based on these, we attempted to find models that adjudicate the true alerts and that characterize
the artifacts. We trained classification models for each type of alerts, obtaining high accuracy. At
the same time the models can be visualized and were used by domain experts to derive artifact
filtering rules. Moreover, by applying RIPR with k-means to clustering artifactual alerts, we iden-
tified human interpretable archetypes (patterns) of false alerts as a preliminary step to corrective
action plans. In a separate experiment, two experts independently annotated 80 alerts (40 due to
the respiratory rate and 40 due to the oxygen saturation levels) which were automatically selected
by our ML system. Then these experts adjudicated the same alerts using the available chart time
series. We summarized the results to observe the consistency of adjudication.

We have applied our Informative Projection Retrieval framework to the problem of identifying
discrepancies between training and test data that are responsible for the reduced performance of a
classification system. Intended for use when data acquisition is an iterative process controlled by
domain experts, our method exposes insufficiencies of training data and presents them in a user-
friendly manner, through low-dimensional projections of data. The proposed process, introduced
in Section 3.3 begins with the construction of a classifier. Any plausible type of a classification
model can be used, though we employ the random forest method primarily due to its scalability to
high-dimensional feature spaces and the computable on-the-fly metrics that diagnose the reliability
of predictions being made. We use two metrics that characterize reliability of predictions made
by our random forest classifier: Dot-Product-Sum (DPS) and In-Bounds Score (IBS). The Gap-
Finding Module identifies where the original classification model experiences considerably low
accuracy. We extended the RIPR algorithm to facilitate improvements in training data generation,
primarily by leveraging its ability to detect low-dimensional patterns of low performance areas. As
a result of executing the Gap-Finding, the resulting low-dimensional subspaces are visualized. The
domain experts and data engineers gain intuition as to what data may be missing from the training
set and decide which parts of the feature space would most benefit from additional samples. We
have applied Gap-Finding to a radiation threat detection system, parts of which contain signatures
of threats that were synthesized by domain experts and injected into non-threat data. The data
is subject to iterative refinements in order to ensure that the training set is shaped into a faithful

5

reflection of the test set, optimizing the performance of the threat adjudication system.

So far, we presented the concept of using query-specific classifiers selected from a predefined
pool to handle individual data points in classification tasks. We leveraged this concept for en-
sembles of generic classifiers, rather than just IPEs. The idea is rather straightforward: to train
meta-classifiers which determine which submodels should be used for each data point. We apply
this idea to improve the performance of existing forest ensembles, without modifying the actual
ensemble, in Section 5.1.

The informative projection models as well as the optimized ensembles show that query specific
handling and subspace selection can be leveraged to improve the performance of classification sys-
tems. We aim to allow data shift across submodels in the ensemble. Allowing flexible assignment
of both features and samples can be done by training tree ensembles which admit a differentiable
global loss. To achieve this goal, we introduce a new structure called Back-Propagation Trees
(Section 5.2, which makes the the random forest ensemble amenable to back-propagation. Back-
propagation (BP) trees use soft splits, such that a sample is probabilistically assigned to all the
leaves. Also, the leaves assign a distribution across the labels. A BP tree has two types of parame-
ters: the splitting parameters θ which determine how a sample is routed in each non-leaf node, and
the leaf parameters π which specify the label distribution in each leaf. The θs are obtained through
SGD. Θ optimizes the log loss over the entire tree, which is differentiable but non-convex. After
each update of the θs the optimal πs are computed exactly as the maximizers of a log concave pro-
cedure. Results on public vision datasets show that back-propagation forests improve over random
forests and other tree ensembles.

We used BackPropagation Forests to develop Deep Convolutional Neural Decision Forests,
as illustrated in Section 5.3. Our novel approach unifies classification trees with the representa-
tion learning functionality known from deep convolutional networks by training them in a joint
manner. To combine these two worlds, we introduce a stochastic and differentiable decision tree
model, which steers the representation learning usually conducted in lower level layers of a (deep)
convolutional network. Our model differs from conventional deep networks because a decision
forest provides the final predictions and it differs from conventional decision forests because we
propose a principled, joint and global optimization of split and leaf node parameters. We show
experimental results on benchmark machine learning datasets like MNIST and ImageNet and find
on-par or superior results when compared to state-of-the-art deep models. Most remarkably, we
obtain a Top5-Error of only 7.84% on ImageNet challenge data when integrating our forest in a
single-model GoogLeNet architecture, without any form of training data set augmentation. The
resulting BeefNet architecture is described in Section 5.3.2.

My thesis introduces methods that extract intelligible models from data, thus helping turn ma-
chine learning models into an extension of human knowledge. The compact models extracted by
RIPR were useful in practical application such as artifact detection in clinical alerts. The low di-
mensional views facilitate decision support and can make data annotation faster. In addition, the
framework presented can be easily used for any learning task, such as the data acquisition guidance
system for nuclear threat detection. Finally, the compact models presented fulfill our objective of
making data accessible to human users.

6

1.2 Motivation and application requirements
Feature selection is an essential part of model learning for high-dimensional data, especially when
few samples are available. Standard approaches to feature selection do not always yield concise
models which accurately reflect the underlying structure of the data, mainly because they target the
selection of a globally-useful set of features without accounting for the characteristics of individual
samples. At the other end of the spectrum, recent advances into query-specific models with feature
selection such as localized feature selection and locally-linear embeddings leverage neighborhood
information in order to generate a plethora of models, each tailored to a diminutive portion of the
feature space.

There are cases in which neither of these two extremes provides a satisfactory solution. On
one hand, shoehorning the entire dataset into the same low-dimensional model through techniques
such as the lasso runs the risk of bringing unnecessary features into the prediction process for
some of the samples, which could hurt accuracy. On the other hand, local models are prone to
overfitting, have limited applicability and risk introducing needless complexity. All the while,
neither captures a compact but comprehensive picture of the dataset, as sought by domain experts.
My thesis explores the idea of building small ensembles of low-dimensional components (sub-
models) which are applicable to significant subsets of data.

To exemplify, consider a medical application where existing vital sign readings, signals derived
from them and a number of other contextual features are used to predict a potentially multivari-
ate output signal such as diagnostics or health-status change alerts. The input space is extensive,
containing, at the very least, the readings computed within a window of a few minutes with their
corresponding statistics. Each event of interest needs to be manually labeled by clinicians, which
requires considerable time and effort, yielding a short supply of labeled data. Given the high
feature-to-sample ratio (the problem could even be underdetermined), feature selection is nec-
essary. However, we expect that patients suffer from different underlying conditions and have
different characteristics, which is why having several sparse models which are used alternatively,
rather than a single generic one, makes more sense. Standard feature selection could pinpoint that
blood sugar level is relevant to predicting heart failures. In contrast, a small ensemble model can
also identify the conditions under which the feature affects the prediction. For instance, we might
find that blood sugar level is only a factor in heart failure prediction when an affine combination
of the blood pressure, heart rate and risk of diabetes is above a certain threshold.

As an added incentive, small ensembles of low-dimensional models are also amenable to vi-
sualization. This is particularly appealing for applications where human operators have to gain
an understanding of the data, and/or quickly validate the system-made predictions. An example
of such an application is the detection of nuclear threats at border control points based on vehicle
characteristics and measured characteristics of emitted radiation. The automated threat detection
system assigns a threat/non-threat label to each vehicle, but it is ultimately up to the border control
agents to permit/deny entry or submit the vehicle to further verification. Establishing confidence in
the system’s decision, if possible, is an important aspect of this application, and can be achieved by
providing a visual representation of the classification process. To our ensemble-building methods,
this translates as an upper bound on the dimensionality of the components.

Our proposed family of methods works under the assumption that groups of samples can be
classified with different small subsets of features. The aim is to uncover the informative spar-
sity patterns across the feature space, provided that the changes in feature relevance can also be

7

characterized through sparse functions. We propose to achieve this by training ensembles of low-
dimensional components such that every sample can be handled using one of these sub-models
or using a sparse mixture of them. We assume no prior knowledge of the sample groups, which
could overlap. The assignment of samples to sub-models and the dimensionality reduction for the
learners on the sub-models are performed jointly, avoiding the pitfalls of EM-like approaches.

1.3 Scope and novelty of proposed approach
To address the demand for concise, interpretable and visualizable models, we develop a framework
which recovers compact ensembles, consisting of solvers (which can be regressors or classifiers)
trained on what we call ‘informative projections’ [34, 35]. An Informative Projection is a low-
dimensional transformation of the features, where the learning task can be accurately and reliably
solved for a group of samples. We obtain these models through convex procedures, avoiding the
issues typically encountered with mixture formulations by estimating the performance of low-
dimensional solvers on the training data. The low-dimensional projections responsible for each
part of the feature space are selected through an optimization which factors in the appropriate
sparsity, smoothness and cost constraints over the parameters. Conceptually, we are combining
the flexibility of hierarchical latent variable models [11] and sparse mixture models [54] with the
convex formulations and the theoretical guarantees inherent to sparse structured learning [2, 56].

One of the novel aspects of our approach to building compact ensembles is the computation of
a matrix which estimates the performance of the low-dimensional solvers at each sample, typically
using some non-parametric divergence-based estimator. Once this loss matrix is obtained, it is
used in a convex program which optimizes the empirical risk given the established model class.
The procedure is detailed in the following chapter. A prerequisite for this type of method is that
the learning task admits risk-consistent loss estimators. The only other established methods which
learn models resembling those we seek involve non-convex learning procedures to obtain sparse
mixtures, such as the method introduced by Larsson and Ugander [68] for MAP inference with a
sparsity-inducing generalization of the Dirichlet prior.

Since the overall objective is to obtain a compact representation of the data, the size of the
ensemble should be constrained. Determining the number of sub-models intrinsic to a dataset is
a key model-selection challenge, which we address through regularization by adding component-
wise sparsity penalties. To further compress the model, each component in the ensemble will be
low-dimensional, with sparsity being the most favorable option. Regularization is also used to re-
duce component dimensionality, with the caveat that, in some scenarios, additional restrictions will
be imposed. For instance, if human-interpretable visualization is desired, each component would
only use up to three features. The components learned with our method will differ significantly ei-
ther in terms of their sparsity patterns or their parameters, with the discrepancies increasing as the
number of sub-models becomes more limited. The range varies between ensembles with few, very
different components and larger ensembles where some characteristics (features) can be shared
across the components.

During the ensemble learning process, samples are assigned to the components as the sub-
models are being built. Each sample can be allocated to one sub-model, thus achieving a parti-
tioning of the feature space, or to a very small number of them, similar to sparse mixture models.
Conceptually, the partitioning variant makes it easier for human users to understand the trained

8

model and to follow the handling of test queries. However, enforcing a hard division of samples
across sub-models could be contrary to the realities of the data. We explore and compare these two
design options, choosing the appropriate one depending on the application and dataset characteris-
tics.

1.4 Challenges in learning data partitioning ensembles
One of the main computational issues characteristic to this type of model is the ‘chicken and egg’
problem associated with assigning training samples to sub-models. This happens because the sub-
models themselves are built based on their assigned samples. While traditional methods would
rely on expectation-maximization, our methods avert this complication by formulating the learn-
ing problem as a convex program. The constants in the program are non-parametric estimates that
assess the benefit of different candidate models in the neighborhood of each sample of the dataset.
The parameters that need to be learned are the assignments of the samples to sub-models. A con-
sensus across the samples is reached concerning which set of models is most useful overall. The
benefit of this procedure is that it evaluates whole models rather than individual features. This
technique is inherently robust in that, in the neighborhood of any sample point, the model is less
sensitive to changes elsewhere in the feature space. The process of finding the models we are
targeting raises some issues, a notable one being identifiability. Namely, there could be several
very different, albeit accurate, alternatives which solve the learning problem under the settings de-
scribed above. While our methods work by formulating an objective function and selecting the best
performing one, we also take steps to ensure robustness of the selected model and derive necessary
conditions for identifiability. A related issue is the use of regularization and the trade-offs between
ensemble size and component complexity, which we investigate (so far, only empirically) in order
to determine how to best set the parameters (and constraints) to obtain optimal performance for a
given dataset.

Our method of learning ensembles of compact solvers improve on existing non-specialized
models, at least for data which complies with the assumption that any given query can be handled
using only a subset of the initial features. We primarily target classification, although the basic
concepts also apply to regression and clustering. We showed experimentally and are we looking to
prove that the models obtain faster learning rates, in terms of sample size, than (1) non-specialized
models with solvers from the same hypothesis space using all the features and (2) non-specialized
models with solvers from the same hypothesis space using the same number of features as the
ensemble. In the latter case, we also expect to obtain higher limiting accuracy (3).1

1.5 Related work
Extensive research in dimensionality reduction has resulted in a number of techniques which we
use in the development and analysis of our algorithms. The problem we address is related to
structured sparse learning [57] and compressed sensing [17]. Our method has an advantage over

1Points (2) and (3) are straightforward to show since, for partitions, the ensemble is a more generic class, implying
that it will fit the data better, but will take longer to train. The elimination of spurious features reduces the amount of
needed training samples.

9

them as it partitions the data, as opposed to building a universal model. Specifically, the analysis
of our methods relies on existing theoretical results in structured sparsity [49, 77, 87, 110, 111],
as well as the optimization methods that make this type of learning possible [3, 4, 76]. Also, low-
dimensional ensemble components can be learned under the assumption that subsets of the given
samples can be written as sparse signals in some basis and thus admit a compressed representation
(in the form of basis/matching pursuit), which can be determined through existing techniques [6,
44].

We also note some conceptual similarities to hierarchical latent variable models [11, 70] and
sparse mixture models [32, 98] – the notion of several underlying processes that determine the
output signal. However, our methodology remains very different from standard algorithms on
these topics, as we avoid non-convexity by directly operating on the feature space, without the use
of intermediaries such as latent variables or mixture components.

Currently, our approaches use axis-aligned subspaces (through lasso penalties) or linear com-
binations of features (via compressed sensing), but if these fail to deliver the required compact
ensemble, we will approach the problem from a nonlinear perspective [69, 92]. Given the multi-
model characteristics of the data we target, we use techniques which explicitly learn several mani-
folds before training the set of solvers [107] or, alternatively, employ multiple kernel learning [48].
Either way, these techniques assume that all data falls under the same model and extra mechanisms
are required to assign groups of samples to manifolds/kernels.

Currently, there exist several ensemble-based methods to which we can relate our work [26,
28, 50, 103]. Most of these are, however, purely empirical and not accommodating of theoretical
analysis. Our approach not only provides a model which is more representative of the underlying
processes and more communicative to the domain experts, but it does so in a manner that makes it
possible to obtain theoretical guarantees.

10

Chapter 2

Informative Projection Ensembles (IPEs)

Intelligent decision support systems often require human involvement because of data limitations,
such as the absence of contextual information, as well as due to the need for accountability. The
stringency of the requirement usually escalates with the stakes of decisions being made. Notable
examples include medical diagnosis or nuclear threat detection, but the benefits of explainable
analytics are universal. To meet these requirements, the output of a regression, clustering, or a
classification system must therefore be presented in a form that is comprehensible and intuitive to
humans, while offering the users insight into how the learning task was accomplished. A desirable
solution consists of a small number of low-dimensional (not higher than 3D) projections of data,
selected from among the original dimensions, that jointly provide good accuracy while exposing
the processes of inference and prediction to visual inspection by humans.

Extracting compact and communicative models is fundamental to decision support systems.
Specifically, the use of Informative Projections has been shown to facilitate the decision process,
making automatic classification transparent and providing domain experts useful views of the data.
In this chapter, we provide guarantees for the previously introduced ensembles of classifiers trained
on low-dimensional Informative Projections. We analyze the theoretical properties of such ensem-
bles, presenting three methods of training them. We provide optimality guarantees for our algo-
rithms, under the assumption that the sample-specific information dictates the use of the classifiers
in the ensembles. Our experiments demonstrate that high classification accuracy can be obtained
using low-dimensional models extracted by our methods. Finally, we show how the query-specific
solver selection procedure can be applied to other ensembles, improving the performance of ran-
dom forest classifiers.

Predictive systems designed to keep human operators in the loop rely on the existence of com-
prehensible classification models, which present an interpretable view of the data [40, 81, 91].
Often, the domain experts require that the test data be represented using a small number of the
original features, which serves to validate the classification outcome by highlighting the similar-
ities to relevant training data [108]. The user typically interacts with the system by providing a
query (test) point that needs to be labeled; the system then selects a submodel which can accu-
rately classify the query using a small subset of the features; finally, the decision is presented to
the user together with a representation of how the classification label was assigned in the projected
subspace.

Informative Projection Ensembles (IPEs), first introduced in [34], alternatively use one of sev-
eral compact submodels that ensure compliance with the stringent requirement on model size,

11

while also attaining high performance through the use of specialized models. This concept is re-
lated to mixtures of experts [10, 59, 63], with the notable difference that the final outcome for
any given query is due to only one of the ‘experts’, making it easier for users to understand and
validate.

2.1 Model class
Assume we are given a dataset X ∈ Ra×n, Y ∈ Y , typically, Y = {0, 1}n, where a is the number
of features and n is the sample size. Let Hr represent hypothesis classes for classifiers on Rr, for
some r ∈ N. We now introduceMd,k, the model class for Informative Projection Ensembles of k
axis-aligned projections that have up to d features.
Definition 2.1.1. Given d, k ∈ N, an Informative Projection Ensemble belongs to the following
class

Md,k = {M = (C,H, g) | C = {ci|ci ⊆ {1 . . . a}, ai
def
= |ci|, ai ≤ d, i ∈ {1 . . . k}},

H = {hi|hi ∈ Hai , h : Rai → {0, 1}, i ∈ {1 . . . k}}, (2.1)
g : Ra → {1 . . . k}}

Above, for an informative projection model M , C is the set which determines the features used
by the submodels in the ensemble. Each set ci for i ∈ {1 . . . k}, represents the indices of the ai
features which constitute the informative projection of the ith submodel. Each discriminator hi ∈
H classifies the samples assigned to it based on the features in the set ci. The model uses g, which
we will refer to as the selection function, to determine which discriminator needs to be applied to
a given sample. Under the IPE model M , the assigned label of a sample x is ŷ = hg(x)(xcg(x)).

IPEs have proven useful for applications where data is heterogeneous in nature. In such cases,
the vast amount of data available belies the relatively small percentage of it which is actually useful
in learning, as the samples typically come from several distributions and are affected by noise [35].

For instance, consider a patient monitoring system built for the classification of health alerts.
As the risk of false negatives is high, the predictions have to be ultimately validated by clinicians,
requiring comprehensible models. Moreover, this is a typical example of multi-source data as it
was collected under different circumstances, from different patients and using multiple sensing
modalities [36]. In such cases, frequently encountered in the medical domain, the iid assumption
rarely holds, and nor do other typical suppositions concerning the sample distribution or noise.
However, there exist groups of samples which exhibit similarities, with the outcome that models
tuned to one group will behave poorly on samples from other groups. The use of Informative Pro-
jection Ensembles constitutes a solution to both of these issues (i.e. the requirement for simplicity
and the heterogeneous nature of the data) because the model partitions the data and uses different
low-dimensional projections to classify the points within the context of their group [38].

The clear utility of IPEs in many practical instances, including the clinical alert classification
[37] and nuclear threat detection [46, 47], prompts us to analyze the theoretical characteristics of
such models in order to highlight their discriminative capabilities and illustrate scenarios in which
they are superior to contending models. We also present several ways of learning them from data,
with different guarantees in terms of optimality and sample complexity, essentially showing that,
under a set of non-stringent assumptions, it is possible to efficiently train near-optimal models.

12

We make two assertions: (1) that IPEs are the right choice of model in many cases; (2) that
informative IPE models can be learned successfully through several techniques. To make an anal-
ogy to statistical machine learning: (1) is the ’modeling’ error; we show that this model class is
rich enough to capture most aspects of data; (2) is the ’approximation’ error; we ’approximate’ the
optimal model training through a greedy/suboptimal procedure.

One could apply decision trees or rule learning to the IPE problem [15]. However, while these
models make interpretable classification possible, visualization is difficult without a hard constraint
on the number of features to be used. Standard feature selection techniques could also be used
[12, 78] though visualization could be difficult for any set of data with more than 3-5 features.
It is also unlikely that the same set of features will be relevant for different groups of samples.
Instead, our model accounts for the possible existence of several underlying patterns in data. Our
approach partitions the data using a specific and dedicated low-dimensional projection to classify
each point. This does not only facilitate comprehension, but it can also increase classification
accuracy compared to standard feature selection due to reduced model complexity. The solution,
be it exact – if finding it is feasible – or approximate, is applicable without the need for post-
processing.

In addition to the theoretical findings, our experiments show that the methods we introduce can
discover and leverage low-dimensional structure in data, if it exists, yielding accurate and compact
models. Our method is particularly useful in applications involving multivariate numeric data in
which expert assessment of the results is of the essence.

2.2 Construction of Informative Projection Ensembles
This section describes how the ensemble construction can be reduced to a combinatorial problem
by optimizing over a matrix of loss estimators computed for every data point. We introduce three
ways of solving this combinatorial problem. First, we formulate an integer linear program which
computes the optimal point-to-projection allocation for the training sample given a limited number
of projections. An alternative is a two-step procedure, similar to the adaptive lasso, which replaces
the constraint on the number of projections with a `1 penalty with adaptive weights. Finally, we
consider greedy projection selection, which is a great option in this case because of the super-
modularity of the loss.

We formulate Informative Projection Recovery (IPR) as the problem of identifying IPEs which
encapsulate enough information to allow learning of well-performing models. Each such feature
group, equivalent to a low-dimensional axis-aligned projection, handles a different subset of data
with a specific model. The resulting set of projections, jointly with their corresponding models,
form a solution to the IPR problem. We have previously proposed such a solution tailored to
non-parametric classification. Our RIPR algorithm [33] employs point estimators for conditional
entropy to recover a set of low-dimensional projections that classify queries using non-parametric
discriminators in an alternate fashion – each query is classified using one specific projection from
the retrieved set.

Solving the IPR problem is relevant in many practical applications. For instance, consider a
nuclear threat detection system installed at a border check point. Vehicles crossing the border
are scanned with sensors so that a large array of measurements of radioactivity and secondary
contextual information is being collected. These observations are fed into a classification system

13

that determines whether the scanned vehicle may carry a threat. Given the potentially devastating
consequences of a false negative, a border control agent is requested to validate the prediction and
decide whether to submit the vehicle for a costly further inspection. With the positive classification
rate of the system under strict bounds because of limitations in the control process, the risk of false
negatives is increased. Despite its crucial role, human intervention should only be withheld for
cases in which there is reason to doubt the validity of classification. In order for a user to attest
the validity of the decision, the user must have a good understanding of the classification process,
which happens more readily when the classifier only uses the original dataset features rather than
combinations of them and when the discrimination models are low-dimensional.

2.2.1 Formulation of IPE learning
Intuitively, the aim is to minimize the expected classification error overMd, however, a notable
modification is that the projection and, implicitly, the discriminator, are chosen according to the
data point that needs to be classified. Given a query x in the space X , g(x) will yield the subspace
cg(x) onto which the query is projected and the discriminator hg(x) for it. Distinct test points can be
handled using different combinations of subspaces and discriminators. We consider models that
minimize the loss function `. For a sample x, the label is ŷ = hg(x)(xcg(x)), which we can use to
express the risk for a loss `(ŷ, y).

R(M) = E`(ŷ, y) = E`(hg(x)(xcg(x)), y)

=
k∑
i=1

E`(hi(xci), y)

The estimated risk can be expressed in terms of the losses of the individual solvers, evaluated
at the data points assigned to them. Below, x.,i is a vector representing the ith sample in the dataset,
while xi,cj represents the projection of this sample on the set of variables cj .

R̂(M) =
1

n

k∑
j=1

n∑
i=1

I(g(xi) = j)`(hj(xi,cj), yi)

Trivially, if ∀j, R̂(hj)→ 0, then R̂(M)→ 0, since

R̂(M) ≤
k∑
j=1

1

n

n∑
i=1

`(hj(xi,cj), yi) ≤
k∑
j=1

R̂(hj)

Hence, the IPR problem for learning classification IPEs can be stated as follows:

M∗ = arg min
M∈Md

EX ,Y`(hg(x)(cg(x)(x)), y) (2.2)

There are limitations on the type of selection function g that can be learned. A simple example
for which g can be recovered is a set of signal readings x for which, if one of the readings xi
exceeds a threshold ti, the label can be predicted just based on xi. A more complex one is a dataset
containing regulatory variables, that is, for xi in the interval [ar, br] the label only depends on
(x1

r . . . x
nr
r). Datasets that fall into the latter category fulfill what we call the Subspace-Separability

Assumption.

14

2.2.2 Classifier selection as a combinatorial problem
There are several problems which need to be addressed in order to learn the IPE models. First, a set
of candidate models need to be established, then, k of them are selected and assigned to individual
data points. Typically, the set of projections is limited by utility requirements. For instance, in the
case of visualization, combinations of 2 or 3 features are considered, so d ≤ 3. If larger submodels
are acceptable, then informative projections can be built through more traditional techniques such
as forward or backward feature selection or separate feature evaluation. Although determining the
projections of the candidate models is relatively straightforward, there is the additional requirement
of estimating their classification performance in order to select the appropriate k-subset. This can
be done by either training classifiers and evaluating their performance or computing how much
information the projection encodes about the output in the neighborhood of each training data
point.

We consider the existence of m candidate submodels, out of which k will be selected. We can
re-write the estimated risk in terms of two matrices, the loss matrix L ∈ Rn×m and the selection
matrix B ∈ {0, 1}n×m. The loss matrix quantifies the loss of each candidate submodel for each
of the data points. The selection matrix represents the assignment of data points to submodels,
Bi,j = 1 if point i is assigned to submodel j and 0 otherwise.

Bi,j
def
= I(g(xi) = j) ∀i ∈ {1 . . . n}, j ∈ {1 . . .m} (2.3)

Li,j
def
= `(h(xi,cj), yi) (2.4)

The loss matrix can be computed whereas B needs to be learned. We propose several methods to
learnB, and thus determine the best set of submodels, as well as the training points assignment. For
the test data, we select the classifier in the model with the lowest estimated loss. The procedure
to estimate loss depends on the hypothesis classes being considered. For SVM classifiers, for
instance, the margin is an appropriate estimator, whereas for nearest-neighbor classification, it
could be a ratio between distances to data points of different classes. Since submodel selection
is typically not problematic once an informative set of submodels is captured, we first focus on
learning the selection matrix B.

For each training point, we compute the best loss amid all the projections, which is simply
Ti = minj∈[m] Lij .

The objective can be then further rewritten as a function of the elements of the loss matrix:

min
M∈Md

n∑
i=1

m∑
j=1

I[g(xi) = j]Lij (2.5)

From the definition of T , it is also clear that

min
M∈Md

n∑
i=1

m∑
j=1

I[g(xi) = j]Lij ≥
n∑
i=1

Ti . (2.6)

Considering form (2.5) of the objective, and given that the estimates Lij are constants, de-
pending only on the training set, the projection retrieval problem is reduced to finding g for all
training points, which will implicitly select the subset of projections to be contained by the model.

15

Naturally, one might assume the best-performing classification model is the one containing all the
axis-aligned subspaces. This model achieves the lower bound (2.6) for the training set. However,
the larger the set of projections, the more values the function g takes, and thus the problem of
selecting the correct projection becomes more difficult. It becomes apparent that the number of
projections should be somehow restricted to allow generalization. Assuming a hard threshold of at
most k projections, the optimization (2.5) becomes an entry selection problem over matrix Lwhere
one value must be picked from each row under a limitation on the number of columns that can be
used. This problem cannot be solved exactly in polynomial time. Instead, it can be formulated as
an optimization problem under `1 constraints.

Points	 reassigned	 to	
subop0mal	 projec0ons	

Projec0ons	

Penalty	 –	 limits	
#	 of	 projec0ons	

1	
2	
3	
4	
5	
6	
7	

Da
ta
	 P
oi
nt
s	

Projec0ons	

Selec0on	 of	 Es0mators	 from	 Loss	 Matrix	

Low	 	 	 	 	 	 	 	 	 High	

Loss	

Figure 2.1: Using the loss matrix for projection selection.

Figure 2.1 shows how the projection selection works using the loss matrix. Without regular-
ization, the minimum over each row would be selected. However, by imposing a constraint on the
number of columns used, some points have to be re-assigned to sub-optimal projections, though
still maintaining the loss as small as possible.

2.3 Learning the selection matrix

2.3.1 Optimal submodel selection through an Integer Linear Program
Learning B is simply a combinatorial problem of selecting an element from each row of the

loss matrix and only from at most k of the columns, while minimizing the sum of the losses over

16

Algorithm 2.3.1 Learning IPEs through an Integer Linear Program

maximize −
n∑
i=1

bT
i,.`i,.

subject to
m∑
j=1

bi,j = 1, ∀i ∈ {1 . . . n},

n∑
i=1

bi,j ≤ npj, ∀j ∈ {1 . . .m},

m∑
j=1

pj ≤ k,

0 ≤ bi,j ≤ pj ≤ 1, ∀i ∈ {1 . . . n}, ∀j ∈ {1 . . .m},
and pj,bi,j ∈ Z

Algorithm 2.3.2 Learning IPEs through an Integer Linear Program which determines k

maximize −
kmax∑
k=1

n∑
i=1

bT
i,.,k`i,.

subject to
m∑
j=1

bi,j,k = 1, ∀i ∈ {1 . . . n}, ∀k ∈ {1 . . . kmax}

n∑
i=1

bi,j,k ≤ npj,k, ∀j ∈ {1 . . .m},

m∑
j=1

pj,k ≤ k, ∀k ∈ {1 . . . kmax}

0 ≤ bi,j,k ≤ pj,k ≤ sk ≤ 1, ∀i ∈ {1 . . . n}, ∀j ∈ {1 . . .m},
kmax∑
k=1

sk = 1,

and pj,k,bi,j,k, sk ∈ Z

the selected elements. We formulate an ILP, shown in Algorithm 2.3.1, that finds the optimal
matrix B for a computed matrix L, given that the final IPE can have at most k submodels. For
the purpose of the ILP, `i,j , the elements of L, are constant. The variables of the LP are bi,j, the
elements of the selection function, and pj, which specifies whether the j th candidate submodel is
used in the IPE.

The ILP ensures that the optimal loss is obtained for an ensemble with k submodels. Setting
an appropriate value for k is not always straightforward, and one potential solution is to run the

17

ILP for different values of k and select the best tradeoff between loss and model size. On the
other hand, we can ensure that, if there are several models with the same value of the objective
function, the model with the smallest number of projections is selected. We slightly modify the
ILP as presented in Algorithm 2.3.2, by maintaining one set of variables b and p for each k and
introducing the binary variables sk, ∀k ∈ {1 . . . kmax}. kmax ≤ m is the maximum number of
projections in the IPE.

We will refer to the solution B∗ of the ILP (whichever of the two suits the problem) as the
k-optimal selection matrix given the dataset X and it will serve as a point of comparison with the
other methods of learning the selection matrix.

2.3.2 Convex formulations for submodel selection

The problem of learning the selection matrix, and implicitly the informative projection ensemble,
can be transformed to a regression problem. We consider T, the minimum obtainable value of the
entropy estimator for each data point, as the output which a egress ion model needs to predict. We
typically use an entropy estimator as the loss function L, with each row i of the parameter matrix
B representing whether the entropy estimates on each projection contribute to the total entropy
estimator for the data point xi. The regression model that selects the optimal submodel for each
data point, given the matrix of loss estimates, is

B̂ = arg min
B

||T − (B. ∗ L)1||22, where Ti
def
= min

1≤j≤m
Bi,j, and (B. ∗ L)i,j = Bi,jLi,j. (2.7)

Typically, only one element in each row of B is 1, corresponding to the submodel that is
assigned to the data point. Clearly, the regression procedure above, used without regularization
would select all the submodels that are optimal for at least one data point. The appropriate reg-
ularization term to be used would be a penalty on the total number of non-zero columns in B
under the constraint that the sum over each row of B is 1. The sum of `0 norms of each column is
λ`0(B) = λ

∑m
j=1 ||B.,j||0.

B̂ = arg min
B

||T − (B. ∗ L)1||22 + λ`0(B) subject to ||Bi,.||1 = 1,∀1 ≤ i ≤ n (2.8)

The challenge with this optimization problem is that it is not convex. A typical work-around
for this issue is to use a convex relaxation, the `1 norm. This would transform the penalized term:

λ`1(B) =
m∑
j=1

||B.,j||1.

However, under the row constraints,

m∑
j=1

||B.,j||1 =
n∑
i=1

||Bi,.||1 = n,

which means that the penalty has no effect when the row constraints are enforced.

18

Two-step convex submodel selection

An alternative is to bias the non-zero elements in B towards a small number of columns, such
that fewer submodels are used overall. The mechanism we propose to achieve this is similar to
the adaptive lasso. Adding a penalty of the form Bδ, where δ is an m-sized column vector with
each element representing the penalty for a column in B. The penalty is lower for submodels
that are useful for a large subset of data, which correspond to denser columns in B, and higher
for less useful submodels. To determine submodel usefullness, we get an initial estimator for B
using only the row constraints, which themselves ensure a bound on the `1 norm. Next, we refine
the selection by adapting the regularization weights for each of the submodels according to the
previously determined B. The results in this section refer to the 2-step procedure presented in
Algorithm 2.3.3.

Algorithm 2.3.3 Two-Stage IPE learning (Regression for Informative Projection Recovery [35])

B̃ = arg min
B

||T − (B. ∗ L)1||22 subject to ||Bi,.||1 = 1,∀1 ≤ i ≤ n (2.9)

B̂ = arg min
B

||T − (B. ∗ L)1||22 + λ||Bδ||1 (2.10)

where δj =
1

||B̃.,j||1
(2.11)

Iterative convex submodel selection – the RIPR framework

The process could be iterated until the convergence of δ. With no prior information about which
subspaces are more informative, δ starts as an all-1 vector. An initial value for B is obtained
through the optimization (2.9). Since our goal is to handle data using a small number of projec-
tions, δ is then updated such that its value is lower for the denser columns in B. The matrix B
itself is updated, and this 2-step process continues until convergence of δ. Once δ converges, the
projections corresponding to the non-zero columns of B are added to the model. The procedure
is shown in Algorithm 2.3.4. In theory, there are no guarantees so far with respect to whether the
process converges or the time to convergence. In practice, however, the method has converged for
every dataset on which we tested it.

19

Algorithm 2.3.4 Framework for Informative Projection Recovery
δ = [1 . . . 1]
repeat
B=arg minB ||T−(L. ∗B)1||22+λ1

∑m
j=1 |B.,j|1+λ2|Bδ|1

subject to |Bi,.|1 = 1, ∀i ∈ {1 . . . n}
Bi,j ≥ 0

δj = |B.,j|1 j = 1 . . . d∗ (update multiplier)
δ = (|δ|1 − δ)/|δ|1

until δ converges
return C = {cj; |B.,j|1 > 0 ∀j = 1 . . . d∗}

2.3.3 Greedy submodel selection

For a model M = (C,H, g), the simplest selection function is the one which assigns a sample x
the projection with the lowest estimated loss for it.

gmin(x)
def
= arg min

j∈{1...k}
ˆ̀(hj, x) (2.12)

ˆ̀(M,x) = ˆ̀(H, x)
def
= min

hj∈H
ˆ̀(hj, x) (2.13)

ˆ̀(M,X)
def
=
∑
x∈X

ˆ̀(M,x) =
∑
x∈X

min
hi∈H

ˆ̀(hi, x) (2.14)

Below, we show that the loss we are minimizing under gmin is supermodular. This, in turn,
means that greedy selection can be applied to construct an ensemble, resulting in a near-optimal
ensemble.

As a reminder, a set function F is submodular if, ∀ sets A,B s.t. A ⊆ B and for every set
element x

F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B). (2.15)

Let M1 = (C1, H1, gm), M2 = (C2, H2, gm) with C1 ⊆ C2 and H1 ⊆ H2. Since there are more
sub models inH2, we have that, for any sample x ∈ X

min
hi∈H2

ˆ̀(hi, x) ≤ min
hi∈H1

ˆ̀(hi, x) and (2.16)

I[ˆ̀(h, x) < min
hi∈H2

ˆ̀(hi, x)] ≤ I[ˆ̀(h, x) < min
hi∈H1

ˆ̀(hi, x)]. (2.17)

We now study the behavior of the loss function when a new classifier h is added to the ensem-
ble. First, we show that the min function over a set is supermodular.
Proposition 2.3.1 (Supermodularity of min function). For all sets A,B with A ⊆ B and elements
x

min(A ∪ {x})−min(A) ≤ min(B ∪ {x})−min(B). (2.18)

20

Proof. From A ⊆ B, we have that min(B) ≤ min(A). We show that the proposition holds for all
values of x. If x ≤ min(B) ≤ min(A), then

min(A ∪ {x})−min(A) = x−min(A) ≤ x−min(B) = min(B ∪ {x})−min(B).

If min(B) ≤ x ≤ min(A), then

min(A ∪ {x})−min(A) = x−min(A) ≤ 0 = min(B ∪ {x})−min(B).

If min(B) ≤ min(A) ≤ x, then

min(A ∪ {x})−min(A) = 0 = min(B ∪ {x})−min(B).

Adding a classifier h to an ensemble H1 yields the following loss difference

ˆ̀(H1 ∪ {h}, x)− ˆ̀(H1, x) = min
hi∈H1∪{h}

ˆ̀(hi, x)− min
hi∈H1

ˆ̀(hi, x), (2.19)

for which, by applying Proposition 2.3.1 we get the following lemma:
Lemma 2.3.2 (Supermodularity of ensemble loss). Given a model class for which the selection
function assigns each sample to the submodel with the lowest loss, the loss over the IPEs is super
modular for any dataset X , in other words, for any M1 = (C1, H1, gm), M2 = (C2, H2, gm) with
C1 ⊆ C2 and H1 ⊆ H2, we have that

Ŝ(H1 ∪ {h}, X)− Ŝ(H1, X) ≥ Ŝ(H2 ∪ {h}, X)− Ŝ(H2, X). (2.20)

Proof. The proof follows by simply applying the proposition to the loss function, given its equiv-
alence to a min function over a set expressed in (2.19), to obtain

ˆ̀(H1 ∪ {h}, x)− ˆ̀(H1, x) ≤ ˆ̀(H2 ∪ {h}, x)− ˆ̀(H2, x). (2.21)

The result follows since the loss is additive w.r.t the samples in X , according to (2.14).

Since the loss is supermodular, the opposite of the loss, which we call the score Ŝ def
= 1− ˆ̀ is

submodular.

Ŝ(H1 ∪ {h}, x)− Ŝ(H1, x) ≥ Ŝ(H2 ∪ {h}, x)− Ŝ(H2, x) (2.22)

According to the result of Nemhauser et al. [82], by applying a greedy selection procedure to
obtain k submodels from m candidates, we have that

Ŝ(M greedy
k , X) ≥ (1− 1/e) max

{M∗k=(C,H,gmin)||H|<k}
Ŝ(M∗

k , X). (2.23)

21

2.3.4 Query handling
Once the projections are selected, the second stage of the algorithm deals with assigning the pro-
jection with which to classify a particular query point. An immediate way of selecting the correct
projection starts by computing the local entropy estimator for each subspace with each class as-
signment. Then, we may select the label/subspace combination that minimizes the loss.

(j∗, y∗) = arg min
j,y

(νk(cj(x), cj(Xy))

νk(cj(x), cj(X¬y))

)|cj |(1−α)

j = 1 . . .m , α ≈ 1 (2.24)

Figure 2.2 shows the procedure of labeling a test sample given a RIPR model with k def
= |C|

projections. The framework accepts a query point x, selects the low-dimensional subspace of the
features cg(x) on which to project the point, then applies the classifier hg(x) of the subspace. Finally,
the classification outcome is shown in the context of the low-dimensional projection, highlighting
the projection cg(x)(x) of the test point as well as its neighbors.

x	 g(X)	

c1(x)	

cg(x)(x)	

ck(x)	

h1(c1(x))	

hg(x)	 (cg(x)	 (x))	

hk(ck(x))	
c	 g(x)(x)	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

Figure 2.2: The sample labeling procedure.

2.4 Customized IPE construction for different learning tasks

2.4.1 Classification IPEs using conditional entropy
To solve the IPR problem for classification, we need means by which to ascertain which projections
are useful in terms of discriminating data from the two classes. Since our model allows the use
of distinct projections depending on the query point, it is expected that each projection would
potentially benefit different areas of the feature space. Ai refers to the area of the feature space
where the projection ci is selected.

Ai = {x ∈ X : g(x) = i} (2.25)

The objective becomes

min
M∈Md

EX ,Y

[
y 6= hg(x)(cg(x)(x))

]
= min

M∈Md

∑
ci∈C

p(Ai)Ex∈Ai
[
y 6= hg(x)(cg(x)(x))

]
. (2.26)

22

The expected classification error over Ai is linked to the conditional entropy of Y |X . Fano’s
inequality provides a lower bound on the error while Feder and Merhav [30] derive a tight upper
bound on the minimal error probability in terms of the entropy. This means that conditional en-
tropy characterizes the potential of a subset of the feature space to separate data, which is more
generic than simply quantifying classification accuracy for a specific discriminator. In view of this
connection between classification accuracy and entropy, we adapt the objective to

min
M∈Md

∑
ci∈C

p(Ai)H(Y |ci(X);X ∈ Ai). (2.27)

The method we propose optimizes an empirical analog of (2.27) which we develop below and
for which we will need the following result.
Proposition 2.4.1. Given a continuous variable X ∈ X and a binary variable Y , where X is
sampled from the mixture model.

f(x) = p(y = 0)f0(x) + p(y = 1)f1(x) = p0f0(x) + p1f1(x) ,

then H(Y |X) = −p0 log p0 − p1 log p1 −DKL(f0||f)−DKL(f1||f)

Next, we will use the nonparametric estimator presented in [83] for Tsallis α-divergence. Given
samples ui ∼ U , with i = 1 . . . n and vj ∼ V with j = 1 . . .m, the divergence is estimated as
follows:

T̂α(u||v) =
1

1− α

[1

n

n∑
i=1

((n− 1)νk(ui, U \ ui)d

mνk(ui, V)d

)1−α
Bk,α − 1

]
, (2.28)

where d is the dimensionality of the variables U and V and νk(z, Z) represents the distance from z
to its kth nearest neighbor of the set of points Z. For α ≈ 1 and n→∞, T̂α(u||v) ≈ DKL(u||v).

Projection with low loss for sample x Projection with high loss for sample x

x x

H1(y|x) ~ β (ν1/µ1) α

ν1
µ1

H2(y|x) ~ β (ν2/µ2) α

ν2
µ2

<

Figure 2.3: Estimating entropy through distance ratios.

We use the divergence estimator to estimate the conditional entropy at every sample point. The
entropy estimation is based on the ratio of the distances to the k-nearest point of the same class
and the k-nearest point of the opposite class. An illustration of this is presented in Figure 2.3.
Intuitively, the smaller the ratio, the closer the point is to other samples of the same class, which

23

means that the neighborhood is homogeneous. If the ratio is close to or higher than 1, it means that
the points of different classes are about the same distance with respect to the sample considered,
so the neighborhood is heterogeneous.

We will now plug (2.28) in the formula obtained by Proposition 2.4.1 to estimate the quantity
(2.27). We use the notationX0 to represent the n0 samples from X which have the labels Y equal to
0, and X1 to represent the n1 samples from X which have the labels set to 1. Also, Xy(x) represents
the set of samples that have labels equal to the label of x and X¬y(x) the data that have labels
opposite to the label of x.

Ĥ(Y |X;X ∈ A) = −C(p0)− C(p1)− T̂ (fx0 ||fx)− T̂ (fx1 ||fx) α ≈ 1 (2.29)

Ĥ(Y |X;X ∈ A) ∝ 1

n0

n0∑
i=1

I[xi ∈ A]
((n0 − 1)νk(xi, X0 \ xi)d

nνk(xi, X \ xi)d
)1−α

+
1

n1

n1∑
i=1

I[xi ∈ A]
((n1 − 1)νk(xi, X1 \ xi)d

nνk(xi, X \ xi)d
)1−α

∝ 1

n0

n0∑
i=1

I[xi ∈ A]
((n0 − 1)νk(xi, X0 \ xi)d

nνk(xi, X1 \ xi)d
)1−α

+
1

n1

n1∑
i=1

I[xi ∈ A]
((n1 − 1)νk(xi, X1 \ xi)d

nνk(xi, X0 \ xi)d
)1−α

∝ 1

n

n∑
i=1

I[xi ∈ A]
((n− 1)νk(xi, Xy(xi) \ xi)d

nνk(xi, X¬y(xi) \ xi)d
)1−α

As expected, an important aspect of the Informative Projection model is the selection of the
area of applicability for each projection. Clearly, the risk increases drastically if the projection
allocated to a certain neighborhood of the feature space does does not contain all the relevant
features for accurate classification in that neighborhood. The active projection is chosen separately
for each point in the training set, thus yielding the empirical area of applicability. There are several
possible ways to generalize the selection for test data. A first option is to estimate the loss of each
submodel for the sample, then select the projection/classifier pair that corresponds to the lowest
loss, as shown in Section 2.3.4. An alternative is use the training set assignment in order to build an
additional classifier that determines, for each sample, the submodel to which it should be assigned.
Such a strategy is used in Section ??.

By applying the previous estimator to all activation areas, we obtain an estimator for the entropy
of the data classified with submodel j (projection cj , classifier hj):

Ĥ(Y |cj(X);X ∈ Aj) ∝
1

n

n∑
i=1

I[xi ∈ Aj]
((n− 1)νk(cj(xi), cj(Xy(xi)) \ cj(xi))d

nνk(cj(xi), cj(X¬y(xi) \ xi))d
)1−α

(2.30)

From (2.30) and using the fact that I[xi ∈ Aj] = I[g(xi) = j], we estimate the objective as

min
M∈Md

∑
cj∈C

1

n

n∑
i=1

I[g(xi) = j]
((n− 1)νk(cj(xi), π(Xy(xi)) \ cj(xi))d

nνk(cj(xi), cj(X¬y(xi) \ xi))d
)1−α

(2.31)

24

Therefore, the contribution of each data point x to the objective corresponds to a distance ratio
on the projection cg(x) where the class of the point is obtained with the highest confidence (data is
separable in the neighborhood of the point). We start by computing the distance-based metric of
each point on each projection of size up to d - there are d∗ such projections.

This procedure yields an extended set of features L, which we name local entropy estimates:

Lij =
(νk(cj(xi), cj(Xy(xi)) \ cj(xi))
νk(cj(xi), cj(X¬y(xi) \ xi))

)d(1−α)

α ≈ 1 j ∈ {1 . . . d∗} (2.32)

2.4.2 Generalized IPE models

We now substantially extend the Informative Projection Recovery (IPR) problem using a formal-
ization applicable to any learning task for which a consistent estimator of the loss function exists.
To solve the generalized IPR problem, we introduce the Regression-based Informative Projection
Recovery (RIPR) algorithm. It is applicable to a broad variety of machine learning tasks such
as semi-supervised classification, clustering, or regression, as well as to various generic machine
learning algorithms that can be tailored to fit the problem framework. RIPR is useful when (1)
There exist low-dimensional embeddings of data for which accurate models for the target tasks
can be learned; (2) It is feasible to identify a low-dimensional model that can correctly process
given queries. We formulate loss functions that can be used to implement IPR solutions for com-
mon learning problems, and we introduce additive estimators for them. We empirically show that
RIPR can succeed in recovering the underlying structures. For synthetic data, it yields a very good
recall of known informative projections. For real-world data, it reveals groups of features con-
firmed to be relevant by domain experts. We observe that low-dimensional RIPR can perform at
least as well as models using learners from the same class, trained using all features in the data.

Assume we are given a dataset X = {x1 . . . xn} ∈ X n where each sample xi ∈ X ⊆ Ra

and a learning task on the space X with output in a space Y such as classification, clustering or
regression. The learner for the task is selected from a class T = {f : X → Y}, where the risk for
the class T is defined in terms of the loss ` as

R(t,X) = EX `(x, t) ∀t ∈ T . (2.33)

The optimal learner for the task is t∗ def= arg mint∈T R(t,X). We indicate by t{X} the learner from
class T obtained by minimizing the empirical risk over the training set X .

t{X}
def
= arg min

t∈T
R̂(T , X) = arg min

t∈T

1

n

n∑
i=1

`(xi, t) (2.34)

The classM of models constructed by our IPR framework is formalized as having a set C of
projections with dimension at most d, a set T of learners and a selection function g:

M = {C = {ci : ci ⊆ {1 . . . a}, |ci| ≤ d},
T = {ti : ti ∈ Tai , t : ci → Y , ∀i ∈ {1 . . . |C|}}, (2.35)
g ∈ {f : X → {1 . . . |C|}} } .

25

2{1...a} contains all axis-aligned projections; the subset C ⊆ 2{1...a} inM contains only projections
with at most d features. The value d is application-specific; usually 2 or 3, to permit users to view
the projections. Function g selects the adequate projection cj and its corresponding learner tj to
handle a given query x.

Based on this model, we derive a composite learner which combines the learners operating on
the individual low-dimensional projections. The loss of this learner can be expressed in terms of the
component losses: tM(x) = tj(cj(x)), `(x, tM) = `(cj(x), tj), where g(x) = j represents the
index of the learner which handles data point x and cj(x) is the projection of x onto cj . Optimizing
over the model classM, the IPR problem for learning task T can be formulated as a minimization
of the expected loss:

M∗ = arg min
M

EX `(cg(x)(x), tg(x)) (2.36)

Thus, every sample data xi can be dealt with by just one projection cj . Recall that g(xi) = j.
We model this as a binary matrix B: Bij = I[g(xi) = j].
The minimizers of the risk and empirical risk are:

M∗ = arg min
M

EX
|C|∑
j=1

I[g(x) = j]`(cj(x), tj)

M̂∗ = arg min
M

1

n

n∑
i=1

|C|∑
j=1

I[g(xi) = j]`(cj(xi), tj) (2.37)

Assume now that we can consistently estimate the loss of a task learner τ at each available sample,
that is

∃ˆ̀s.t. ∀x ∈ X , t ∈ T plimn→∞ ˆ̀(x, τ) = `(x, t) (2.38)

Plugging (2.38) into (2.37) yields the final form used to obtain the estimated model:

M̂ = arg min
M

n∑
i=1

|C|∑
j=1

I[g(xi) = j]ˆ̀(cj(xi), ti)

= arg min
M,|C|≤m

n∑
i=1

m∑
j=1

BijLij, Lij = ˆ̀(cj(xi), tj)

The loss estimators Lij are computed for every data point on every subspace of up to the user-
specified dimensionality d. B is learned through a regularized regression procedure that penalizes
the number of projections |C| used in the model. This translates to an `0 penalty on the number of
non-zero columns in B, relaxed to `1. The `0 penalty is written as I[|B·,j| 6= 0], while its relaxation
is ||B||1,1.

B̂ = arg min
B

||T − L�B||22 + λ
m∑
j=1

I[B·,j 6= 0] (2.39)

26

where m is the number of candidate projections, Ti
def
= minj Lij and the operator � is defined as

� : Rn,m × Rn,m → Rn, (L�B)i =
m∑
j=1

LijBij

The basic optimization procedure remains the same one shown in Algorithm 2.3.4 for all learn-
ing tasks, the key difference here is in the computation of the loss matrix L. The technique re-
sembles the adaptive lasso. It gradually reduces the number of non-zero columns in B until con-
vergence to a stable set of projections. As illustrated in Algorithm 2.3.4, the procedure uses the
multiplier δ to gradually bias selection towards projections that not only perform well but also suit
a large number of data points.

Next, we show how to compute the loss function for different learning tasks. When the aim
is to find informative projections without knowing the class of learners to be used, we employ
nonparametric estimators of loss. The performance of the algorithm will depend on their rates of
convergence.

2.4.3 Semi-supervised classification IPEs

While the case of classification has been handled in the previous section, RIPR does allow an ex-
tension to semi-supervised classification. Consider a problem with labeled samples X+ and X−
and unlabeled samples Xu, where each sample belongs to Ra. The objective is to find a discrim-
inator in a low-dimensional sub-space of features that correctly classifies the labeled samples and
simultaneously allows substantial separation for unlabeled data, i.e., very few unlabeled data points
remain between the clusters of data from different classes. We choose a loss function that penal-
izes unlabeled data according to how ambivalent they are to the label assigned. This is equivalent
to considering all possible label assignments and assuming the most ‘confident’ one – the label
with the lowest loss – for unlabeled data. The estimator for labeled data is the same as for super-
vised classification. The estimators use distances to the kth nearest neighbors of each sample. The
score for a projection is computed by using the same estimator for KL divergence between class
distributions, to which we add a metric for unlabeled data which penalizes samples that are about
equidistant from the point-clouds of each class: R̂(Xu, t

k
c). We use the notation c(X) to represent

the projections of a set of data points X:

R̂(X, tkc) =
∑
x∈X+

(νk+1(c(x), c(X+))

νk(c(x), c(X−))

)(1−α)|c|

+
∑
x∈X−

(νk+1(c(x), c(X−))

νk(c(x), c(X+))

)(1−α)|c|

+
∑
x∈Xu

min
(νk(c(x), c(X−))
νk(c(x), c(X+))

,
νk(c(x), c(X+))

νk(c(x), c(X−))

)(1−α)|c|

In these learning tasks, typical convergence issues encountered with nearest-neighbor estima-
tors can often be remedied thanks to low dimensionality of the projections.

27

2.4.4 Clustering IPEs
It is not always straightforward to devise additive point estimators of loss for clustering since
some methods rely on global as well as local information. Distribution-based and centroid-based
clustering fit models on the entire sets of data. This is an issue for the IPR problem because it
is not known upfront how data should be assigned to the submodels. To go around this, we first
learn a RIPR model for density-based clustering, and then cluster each projection using only data
assignment provided by it. Of course, that is not required if density-based clustering is the method
of choice. To solve IPR for density-based clustering, we consider the negative divergence, in the
neighborhood of each sample, between the distribution from which the sample X is drawn and the
uniform distribution on X . Let U be the size n sample drawn uniformly from X . Again, we use
the nearest-neighbor estimator converging to the KL divergence. tclui is some clustering technique
such as k-means.

R̂clu(ci(x), tclui)→−KL(ci(X)‖|ci(U))

ˆ̀
clu(ci(x), tclui) ≈

(d(ci(x), ci(X))

d(ci(x), U)

)|ci|(1−α)

We now illustrate how RIPR clustering with k-means can improve over applying k-means to the
entire set of features. Synthetic data used has 20 numeric features, and contains three Gaussian
clusters on each of its informative projections. The informative projections comprise the following
sets of feature indices: {17, 12}, {10, 20, 1} and {4, 6, 9}. Clusterings obtained by k-means shown
in those projections are depicted in the left part of Figure 2.4. The right part of it shows results
obtained with RIPR. Every cluster is colored differently, with black representing data not assigned
to that projection. The number of clusters is selected with cross-validation for both k-means and
RIPR. The clustering obtained with k-means on all dimensions looks very noisy when projected on
the actual informative features. The explanation is that the clustering might look correct in the 20-
dimensional space, but when projected, it no longer makes sense. On the other hand, RIPR recovers
the underlying model enabling the correct identification of the clusters. Naturally, recovery is only
possible as long as the number of incoherent data points (that do not respect the low-dimensional
model) stays below a certain level.

2.4.5 Regression IPEs
Our intent is to enable projection retrieval independently of the type of a regressor used, so the
natural choice for a loss metric is a non-parametric estimator. We consider k-NN regression -
computing the value at a query point by averaging the values at the k-nearest neighbors of the
query. To factor in spatial placement, we weigh the values by their inverse distance from query,
then estimate predicted value as normalized weighted average of the neighbor values.

ˆ̀
reg(ci(x), ti(ci(x))) = (t̂(ci(x))− y)2 ˆ̀

reg → 0

t̂i(ci(x)) =

∑k
i=1w(i)y(i)∑k
i=1 w(i)

, where w(i) =
1

||x− x(i)||2

Concerning the selection function, we identify two possible approaches. The first is to label each
training data point according to the projections in the set used to solve it, then train a classifier using

28

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Feature 17

F
ea

tu
re

 1
2

0
5

10
15

20
25

30

0

10

20

30
0

5

10

15

20

25

30

Feature 2
Feature 12

F
ea

tu
re

 1
7

0
10

20

30

0

10

20

30
0

5

10

15

20

25

30

Feature 10
Feature 20

F
ea

tu
re

 1

0
0.5

1
1.5

2
2.5

0
0.5

1
1.5

2
2.5

0

0.5

1

1.5

2

2.5

Feature 1Feature 10

F
ea

tu
re

 2
0

0
5

10
15

20
25

30

0

10

20

30
0

5

10

15

20

25

30

Feature 4
Feature 6

F
ea

tu
re

 9

0
0.5

1
1.5

2
2.5

0
0.5

1
1.5

2
2.5

0

0.5

1

1.5

2

2.5

Feature 4
Feature 6

F
ea

tu
re

 9

Figure 2.4: Projections of k-means clusters on the informative features and RIPR low-dimensional
clusters induced from synthetic data.. Each cluster determined by the algorithm is shown in a
different color.

these labels. The second is to simply estimate, based on the regressor accuracy at neighboring data,
the probability that the regressor is appropriate for this data point. We opt for the latter because it
avoids the issues with an additional training step and it is consistent with the regressors themselves
in the usage of neighborhood information.

ĝ(x) = arg min
j∈{1...|C|}

∑k
i=1w(i)B(i)j∑k

i=1 w(i)

, w(i) =
1

||x− x(i)||2

Interestingly, because of the consistency properties of the nearest-neighbor methods [25], the com-
posite regressor is also consistent under the assumption of existence of embedding.

2.5 Properties of Informative Projection Ensembles

The flexibility of IPEs stems from the choice of the hypothesis class H, as well as from the prop-
erties of the selection function. We first analyze the VC dimension and Rademacher complexity
of the informative projection ensemble model class. These results apply in the case when the hy-
pothesis classes considered for the classifiers and the selection function have finite VC dimension,
for instance, for parametric models such as half-spaces. Next, we provide consistency results for
IPEs which use kNN classifiers. In both cases (parametric and non-parametric), we compare the
ensemble to a single classifier of that type and show that: (1) the complexity of the ensemble can
be controlled as easily as the complexity of a single predictor; (2) an ensemble using sparse linear
solvers has comparable sample complexity bounds to a single sparse linear solver; (3) an ensem-
ble using kNN classifiers preserves the consistency properties of a single kNN classifier using all
features.

29

2.5.1 VC Dimension of classification IPEs
In order to obtain bounds on the VC dimension of the informative projection ensemble, the VC
dimension of the submodel classifiers as well as that of the selection function needs to be fi-
nite. To argue why the latter is required, assume that there were no bounds on the complexity
of the selection function and k, the number of submodels, was greater or equal to |Y|, the num-
ber of classes. Under these conditions, we could construct a model with |Y| classifiers such that
hi(z) = vi, ∀z ∈ Rai , where vi ∈ Y , in other words, each submodel assigns a specific label
to its corresponding samples. Since there is no constraint on the complexity of g, any given set
{(x1, y1) . . . (xn, yn)}, where n can be infinitely large, can be shattered by setting g(xj) = i, where
yj = vi. Thus, one cannot bound the VC dimension of IPEs without assuming a complexity bound
on g.

We will impose a restriction that the selection function splits the feature space into convex
subsets. We refer to the set of all the functions that fulfill this requirement as the Convex Partition
class, formally introduced in Def. 2.5.1. Examples of selection functions that fulfill this criterion
are linear classifiers, rectangular bounding boxes and Voronoi diagrams based on the Euclidean
distance.
Definition 2.5.1. The Convex Partition class corresponding toMd,k is defined as

G = {g : X ⊆ Ra → {1 . . . k} s.t. ∀X ⊆ X ,∀i, j ∈ {1 . . . k}, i 6= j, (2.40)
C({x ∈ X; g(x) = i}) ∩ C({x ∈ Xs.t. g(x) = j}) = ∅},

where C(A) represents the convex hull of the set A.
Lemma 2.5.2. Under the following assumptions for a model from the classMd,k, which has base
classifiers on Rai , with

(A1) The classifiers and the selection functions are limited in complexity, so for vi
def
= V C(Hai) <

∞, vg
def
= V C(g) <∞

(A2) The base classifiers, from the hypothesis classesHr, are affine invariant
(A3) The selection function is a convex partition, in other words g ∈ G
It can be shown that V C(M) ≥

∑k
i=1 V C(Hai) and

V C(Mk) ≤ (
k∑
i=1

V C(Hai) + vg)
2(k−1) (2.41)

Proof. First, we need to show that there exists a set of size v def
=
∑k

i=1 vk that can be shattered by
functions from the model classMd,k. From (A1), we know that there exist sets X1 . . .Xk, of size
v1 . . . vk respectively, which can be shattered by solvers from the base classes. These sets can be
translated such that their convex hull do not overlap and according to (A2), base classifiers with
the same shape as the original ones can be constructed. Since the sets are non-overlapping, the
partition function simply assigns data points from each set to its corresponding classifier.

To prove the second part, let us first consider the case when k = 2. We will consider the
growth function, that is the number of ways (configurations) in which the model assigns the n
point sample set. Since h1 has the VC dimension v1, according to Sauer’s Lemma [90], it can
provide up to

(
en
v1

)v1
configurations, where n is the number of samples and e is the base of the

30

natural logarithm. Similarly, h2 provides
(
en
v2

)v2
configurations. Now, we consider g and the

placement of samples in either of the sets corresponding to h1 or h2. Since g also has a finite
VC dimension and it is capable of fully splitting only vg points, and, the set of n points can be

split into, at most,
(
en
vg

)vg
configurations. By combining these ways of splitting the samples, we

have an upper bound on the splitting capability of a 2-classifier model in terms of the number of
configurations as

ΠM2 ≤
(en
v1

)v1(en
v2

)v2(en
vg

)vg
(2.42)

Since this is an upper bound growth function, we then obtain an upper bound on the VC di-
mension of the 2-classifier model by using the definition of the VC dimension:

V C(M2) = max
{
n > 0|ΠM2(n) = 2n

}
(2.43)

≤ max
{
n > 0|ΠM2(n) = 2n

}
(2.44)

≤ max
{
n > 0|

(en
v1

)v1(en
v2

)v2(en
vg

)vg
= 2n

}
(2.45)

≤ max
{
n > 0|v1 log2

(en
v1

)
+ v2 log2

(en
v2

)
+ vg log2

(en
vg

)
= n

}
(2.46)

≤ max
{
n > 0|(v1 + v2 + vg) log2(en)− log2(v1)− log2(v2)− log2(vg) = n

}
(2.47)

≤ max
{
n > 0|B ln(n) + A ≥ n

}
(2.48)

≤ max
{
n > 0|Bq(n1/q − 1) + A ≥ n

}
(2.49)

≤ max
{
n > 0|2B(

√
n− 1) + A ≥ n

}
(2.50)

≤ A− 2B + 2B2 (2.51)

≤ v2

ln2 2
− v

ln 2
where v = v1 + v2 + vg (2.52)

≤
(v

ln 2
− 1/4

)2

≤
(v

ln 2

)2

≤ (v1 + v2 + vg)
2 (2.53)

whereM2 is the 2-classifier IPE model class and Π is its growth function.
For a model using more than k classifiers, we can consider a multi-stage selection process,

working as a decision list. At each stage i, the selection function g′i picks either the current classifier
hi or an alternative model consisting of classifiers h1 . . . hi−1. Because g′i(x) = 1 iff g(x) = i and
g′i(x) = 0 otherwise, we have that V C(g′i) < V C(g). An upper bound on the VC dimension of
such a multi-stage selection model would be an upper bound on the VC dimension of the original
model. By applying 2.53, we have that V C(Mk) ≤ (vg + vk + V C(Mk−1))2. We can use this
formula recursively, which yields the result.

Additionally, we can use the growth function as an upper bound for the Rademacher complexity

31

by applying the formula in (2.42).

R(Md,k) ≤ ΠMd,k
≤ Πk−1

G

k∏
i=1

ΠHai ≤
(en
vg

)kvg k∏
i=1

(en
vi

)vi
(2.54)

The bound in Lemma 2.5.2 is not tight, at least in the case of linear classifiers and rectangular
bounding-box classifiers. However, when the submodels are associated with interval classifiers and
the partitioning of the samples can be done based on a single dimension, the upper bound matches
the lower bound and we have that V C(M) =

∑k
i=1 V C(Hai).

2.5.2 Consistency of ensembles using nearest-neighbor classifiers
An alternative to ensembles of parametric classifiers, such as linear separators, is to use nearest-
neighbor predictors. Asymptotic consistency of nearest-neighbor classification has been studied
in [20, 24, 39, 99]. Rates of convergence and finite sample guarantees have been introduced in
[19, 43, 67, 101, 106].

In order to study the consistency of neighbor-based IPE models, we start with a result obtained
by Kulkarni et al. [67]. Assume that our samples x1 . . . xn are iid from a distribution µ, with
X ∈ Ra. The result requires that (X , ρ) be a metric space with totally bounded support K(µ). We
also assume that the output y is conditionally independent of all other outputs, given the sample x:

∀i,∀S ⊆ Y P(yi ∈ S|x1 . . . xn, y1 . . . yi, yi+1 . . . yn) = P (yi ∈ S|xi). (2.55)

Given X = x, Y is drawn from a conditional distribution F (y|X = x). The risk bounds we
provide are based on squared error loss, with the conditional Bayes risk r∗B and Bayes risk R∗B
defined as

r∗B(x) = E[||Y − Y ∗(x)||2|X = x] (2.56)

R∗B,µ =

∫
r∗(x)µ(x)dx (2.57)

We introduce the conditional mean and conditional variance of Y given X = x as

m(x) = E[Y |X = x] (2.58)
σ2(x) = E[||Y ||2|X = x]− ||m(x)||2 (2.59)

The Bayes estimator is actually the conditional mean, Y ∗(x) = m(x), which yields

r∗B = σ(x)2 and R∗B = Eσ(x)2.

An additional assumption is that F (y|x) satisfies the following Lipschitz conditions: there exist
C1, C2 > 0 and 0 < α < 1 such that ∀x1, x2 ∈ X ,

||m(x1)−m(x2)|| ≤
√
C1ρ(x1, x2)α, |σ2(x1)− σ2(x2)| ≤ C2ρ(x1, x2)2α. (2.60)

For a sample x0 with label y0, x(κ) is the κ-nearest neighbor of x0, selected from the set
{x1 . . . xn} with label y(κ). We refer to the loss and the risk of the nearest-neighbor predictor
as

rn(x0) = Ex(κ) [||y0 − y(κ)||2|x0] and Rn = Ern(x0) (2.61)

32

The limiting value of the risk is defined as R∞
def
= limn→∞Rn.

The risk also depends on the total volume of the support or, more specifically, on how easily
it can be covered with ε-balls. To quantify this concept, we need the metric covering radius,
N−1(p,K), which is the smallest radius such that there exist p balls of this radius which cover the
set.

N−1(p,K) = inf{ε : ∃ b1 . . . bp ∈ X s.t. K ⊆
p⋃
i=1

B(bi, ε)}, (2.62)

where B(b, ε) is the ε-ball centered at b.
Theorem 2.5.3 (Kulkarni and Posner). Under the assumptions (2.55) and (2.60), for α < a/2, we
have that

Rn ≤ R∞ + (C1 + C2)
8α

n

n−1∑
i=1

[N−1(i,K(µ))]2α (2.63)

Rn ≤ R∞ + (C1 + C2)
a(8N−1(1,K(µ)))α

a− 2α
n−2α/a (2.64)

R∞ = 2R∗B (2.65)

It is possible to provide a finite sample bound, in terms of the Bayes optimal risk, on the risk of
IPE models which use nearest-neighbor predictors. We will first define the activation support of a
sub model as the subset of the input space where the sub model is used for classification.
Definition 2.5.4. The activation support of a submodel i of an ensembleMd,k, is defined as

Ai
def
= {x : x ∈ X , g(x) = i} (2.66)

We introduce the quantities ni which specify the number of samples in each submodel i. Given
the selection function gn,i, learned based on a finite sample, we have the corresponding activation
support An,i. Thus, the loss and the risk for the submodel i with support An,i are

rn,i(x0) = Ex(κ) [||y0 − y(κ)||2|x0] and Rn,i =

∫
x∈An,i

rn,i(x)dµx, (2.67)

where submodel i uses a κ-nearest-neighbor classifier and x(k) is the neighbor of x0 on the pro-
jection ci of the IPE model, while y(k) is its label. The risk of a model M ∈ Md,k will then
be

Rn =
k∑
i=1

V ol(Ai)
V ol(X)

Rn,i =
k∑
i=1

V ol(Ai)
V ol(X)

∫
x∈An,i

rn,i(x)dµx (2.68)

In order to obtain bounds on the risk we have to consider the predictive capabilities of the in-
formative projection of a submodel on its activation support. Specifically, we introduce the notions
of predictive feature subset and sparsity pattern which delineate the features that are required to
appropriately predict the output variable Y when X belongs to a compact set or neighborhood.

33

Definition 2.5.5. For a given input X with features {1 . . . a}, drawn from a set A ∈ X , a set
c ⊆ {1 . . . a} is a predictive feature subset for the output variable Y if the variables Xc contain
all the predictive information for Y . Let X¬c be all the features of X that are not in c. If c is a
predictive feature subset, then Y is independent of X¬c given Xc and that X takes values in A.

Y ⊥ X¬c|Xc, X ∈ A (2.69)
∀i,∀V ⊆ Y P (Y ∈ V |X,X ∈ A) = P (yi ∈ V |Xc, X ∈ A). (2.70)

Definition 2.5.6. The sparsity pattern for the prediction of a variable Y based on a variable X
taking values in a set A is defined as the predictive feature subset of minimal size.

spA
def
= arg min

c⊆{1...a}
|c| s.t. Y ⊥ X¬c|Xc, X ∈ A (2.71)

In order for the risk of the IPE modelM = (C,H, g) to approach the Bayes risk, the submodels
must jointly encapsulate all the predictive information. For each neighborhood in the feature set,
at least one of the submodels contains all the variables that encapsulate information about the
samples in that neighborhood. In order words, the sparsity pattern of each neighborhood needs to
be included in at least one of the projections of the model.

∀B = {(xc, ε)|0 < ε, ε is small} ⊂ X , ∃ c ∈ C s.t. spB ⊆ c (2.72)

This assumption can be easily fulfilled by including a classifier that uses all the features as one of
the candidate sub models, though a higher submodel dimensionality will result in a lower rate.
Lemma 2.5.7 (Consistency of IPE models using nearest-neighbor predictors). Assume that (2.72)
holds for IPE models using nearest-neighbor classifiers, with a selection function that always picks
the submodel with the lowest estimated risk also computed based on nearest-neighbors.

If the Lipschitz conditions over F (y|x) hold for each of the submodels with constants C1,i, C2,i,
then, for a sufficiently large n, where |An,i| = ni and

∑k
i=1 ni = n we have that

Rn ≤ R∞ +
k∑
i=1

(V ol(Ai)
V ol(X)

(C1,i + C2,i)
ai(8N−1(1,An,i))α

ai − 2α
|An,i|−2α/ai

)
. (2.73)

Proof. The risk of the IPE model depends on the risks of the individual classifiers on their respec-
tive activation supports. In some neighborhoods within the activation support of the submodel i,
the set ci is a predictive subset for Y . In other words, over these neighborhoods, the Bayes risk of
only the features in ci, R∗B,ci , is the same as the Bayes risk of all the features, R∗B.

Bi
def
= {B ⊆ Ai;Y ⊥ X¬ci |Xci , X ∈ B} (2.74)

Bi
def
=
⋃
B∈Bi

B B̄i = Ai \ Bi (2.75)

R∗B(Bi) = R∗B,ci(Bi) (ci is a predictive subset over Bi) (2.76)

The set Bi covers the neighborhoods of Ai where ci is a predictive subset, while B̄i covers every-
thing else in Ai. Clearly, the risk of submodel i decomposes over the two sets.

Rn,i =
V ol(Bi)
V ol(Ai)

Rn,i(Bi) +
V ol(B̄i)
V ol(Ai)

Rn,i(B̄i) (2.77)

34

We now point out that if F (y|x) is Lipschitz continuous with constants C1,i and C2,i over Bi, the
conditions for Theorem 2.5.3 are met. Thus, we can apply the bound in equation (2.64) as follows

Rn,i(Bi)−R∗B,ci(Bi) = Rn,i(Bi)−R∗B(Bi) ≤ (C1,i + C2,i)
ai(8N−1(1,Bi))α

ai − 2α
|Bi|−2α/ai (2.78)

This leaves the risk on the part of Ai for which ci is not a predictive subset, Rn,i(B̄i). However,
according to assumption (2.72), for each neighborhood in B̄i, there exists a least one classifier j in
the model for which ci is a predictive subset. For classifier j, the risk converges to the Bayesian
risk at the rate in (2.64). Function g selects the submodel based on the minimum risk estimator,
which means that, for each neighborhood, the selection risk (and thus the risk of misclassification)
is also subject to the bound. Let B̄i be some disjoint set of neighborhoods of B̄i. Then for each
B ∈ B̄i, we have that

Rn(B)−R∗B(B) ≤ min
j∈{1...k}

(C1,j + C2,j)
aj(8N−1(1, B))α

aj − 2α
|B|−2α/aj (2.79)

≤ (C1,i + C2,i)
ai(8N−1(1, B))α

ai − 2α
|B|−2α/ai (2.80)

Summing over the previous equation yields the risk bound over B̄i

Rn,i(B̄i)−R∗B(B̄i) ≤
∑
B∈B̄i

(C1,i + C2,i)
ai(8N−1(1, B))α

ai − 2α
|B|−2α/ai (2.81)

≤ (C1,i + C2,i)
ai8

α

ai − 2α

(∑
B∈B̄i

N−1(1, B)α|B|−2α/ai
)

(2.82)

≤ (C1,i + C2,i)
ai8

α

ai − 2α

(
N−1(1, |B̄i|)

)α(∑
B∈Bi

|B|−2α/ai
)

(2.83)

≤ (C1,i + C2,i)
ai8

α

ai − 2α

(
N−1(1, |B̄i|)

)α(∑
B∈Bi

|B|−2α/ai
)

(2.84)

≤ (C1,i + C2,i)
ai8

α

ai − 2α

(
N−1(1, |B̄i|)

)α
|B̄i|−2α/ai (2.85)

The last equation holds since (2.84) is true for every partition B̄i of B̄i, is is also true for the case
when Bi contains a single set. By combining (2.78) and (2.85), which offer bounds of the risk over
subsets of Ai, we obtain (2.73).

2.6 Experiments

2.6.1 Comparison of classification IPEs
Table 2.1 shows the performance of IPEs using K-NN classifiers and standard K-NN on UCI
datasets. We present the performance of IPEs trained through each of the three techniques. We also
test the methods on a Cell dataset containing a set of measurements such as the area and perimeter
of the cell and a label which specifies whether the cell has been subjected to treatment or not. In the

35

Vowel dataset, a nearest-neighbor approach works exceptionally well, even beating random forests
(0.94 accuracy), which is an indication that all features are jointly relevant. For some d lower than
the number of features, our models pick projections of only one feature, but if there is no such
limitation, the space of all the features is selected as informative. For the MiniBOONE dataset,
also from the UCI repository, none of the IPE learning methods were able to extract an ensemble
of low-dimensional k-NN classifiers that performs as well as the fully dimensional k-NN. This is
mainly because we explored models with a very small number of features and, on the other hand,
the dataset contains sufficient samples for k-NN to achieve high accuracy.

Table 2.1: Accuracy of K-NN and K-NN IPEs

Dataset KNN IPE (optimal) IPE (2-stage) IPE (greedy)
Breast Cancer Wis 0.8415 0.8415 0.8275 0.8275

Breast Tissue 1.0000 1.0000 1.0000 1.0000
Cell 0.7072 0.7640 0.7640 0.7260

MiniBOONE 0.7896 0.7728 0.7396 0.7268
Spam 0.7680 0.7680 0.7680 0.7680
Vowel 0.9839 0.9839 0.9839 0.9839

We also compared the performance IPEs with k-NN on larger datasets, with multi-class out-
puts. The results are reported in Table 2.2. We also compared against other feature selection
methods (PCA, lasso, forward feature selection and backward feature selection). For each dataset,
we only report the top performing result in the column titled FS + k-NN .

Experiments on artificial data, showing that our procedures are effective are recovering infor-
mative projections, are shown in the Appendix. This essentially shows that, when low-dimensional
structures exist, our procedures will recover them, which means that the conditions necessary for
Lemma 2.5.3 are satisfied and accuracy can be improved.

Table 2.2: Accuracy (%) of k-NN models on letter data.

Dataset Features Samples Classes k-NN FS + IPE
k-NN Greedy

Chars74k 85 3410 62 34.31 35.2 35.78
G50C 50 550 2 70 76 84
Letter 16 16000 26 94.37 95.08 95.55

MNIST 784 60000 10 60.11 60.11 62.36
USPS 256 11000 10 96.2 86.4 96.8

2.6.2 RIPR framework applied to clustering
RIPR can be wrapped around virtually any existing clustering, regression, or classification algo-
rithm, maintaining their high performance while satisfying the requirement of working with only
a few dimensions of data at a time. Below we show that RIPR combined with k-means, which

36

we informally call Ripped k-means, performs better than the standard k-means by leveraging the
low-dimensional structure in data.

We trained RIPR and k-means models and evaluated their performance on datasets from the
UCI repository. Meta-parameters for both methods were optimized via cross-validation. The data
was scaled to [0, 1) before clustering. We used distortion as the evaluation metric as it is native to
k-means. We opt against using Rand index since in its standard form it requires the actual labels
that are unavailable in most real-world clustering data sets. As shown in Table 2.3, the distortion
results for the RIPR model are better than for plain k-means.

Table 2.3: Results of clustering on real-world datasets.
UCI Avg Dist Avg Dist LogVol LogVol

RIPR k-means RIPR k-means
Seeds 16 107 7.68 9.70

Libras 9 265 -5.80 7.26
Boone 125 1.15e6 240.00 248.15

Cell 40,877 8.18e6 54.69 67.68
Concrete 1,370 55,594 49.24 52.75

The resulting cluster dimensionalities vary as well, which is why we also considered another
metric of success: the volume of the resulting clusters measured in full feature space. This com-
parison is fair because the volumes are computed in the same dimensionality. For k-means, we
approximated the volume of each cluster by its enclosing hyper-ellipsoid. For RIPR, the approxi-
mation for each cluster used its enclosing cylinder, the base of which was the ellipsoid correspond-
ing to the actual identified low-dimensional cluster. This comparison is also provided in Table 2.3.
It is apparent that RIPR obtains slightly more compact models than k-means, but has the advantage
that only a fraction of the features are used by it. The total number of centroids is roughly the same
for k-means and RIPR, so the difference in volume is genuinely due to the improvement fidelity of
clustering.

We present the RIPR clustering models obtained from two datasets from the UCI repository to
demonstrate how patterns in data can be mined with our approach. Figure 2.5 shows the model
recovered from the Seeds dataset. The clustering that RIPR constructs uses the size and shape of
seeds to achieve their placement into three categories, clearly visually separated in the figure. The
separation according to their aspect ratio is something that one might intuitively expect.

Figure 2.6 shows the two informative projections mined from the Concrete dataset. Here, dif-
ferent concrete mixtures are grouped by their content. While the first projection generates clusters
according to the high/low contents of cement and high/low contents furnace residue, the second
projection singles out the mixtures that have (1) No fly ash, (2) No furnace residue or (3) Equal
amounts of each. The clusters seem to capture what an experimenter might manually label.

2.6.3 RIPR framework applied to regression
As with clustering, RIPR regression is meant to complement existing regression algorithms. We
exemplify by enhancing SVM and comparing it with the standard SVM. The synthetic data we use
contains 20 features generated uniformly with Gaussian noise. The first feature and q pairs of other

37

10

15

20

25

12
13

14
15

16
17

18
2.5

3

3.5

4

4.5

area
perimeter

w
id

th
−o

f−
ke

rn
el

Figure 2.5: Clusters from the Seeds dataset

100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300

350

400

Fu
rn

ac
e

R
es

id
ue

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

Furnace Residue

Figure 2.6: Clusters induced from the Concrete dataset.

features (j1, j2) determine the regression function as follows:

f(x) =

q∑
j=1

I[j <= x1 < j + 1]fj(xj1 , xj2) + ε ∀j ∈ 1 . . . q

Table 2.4 shows that ‘Ripped Kernel SVM’ achieves better accuracy that Kernel SVM trained
on all features. The explanation is that RIPR actively identifies and ignores noisy features and
useless data while learning each submodel. Additionally, we tested whether the underlying pro-
jections are correctly recovered by computing precision and recall metrics. Recall is always high,
while precision is high as long as the projections do not overlap significantly in the feature space.
It is because partially-informative projections can also be recovered if feature overlaps exist. This
behavior can be controlled by adjusting the extent of regularization.

38

Table 2.4: RIPR SVM and standard SVM compared on synthetic data
IP # 2 3 5 7 10 2 3 5 7 10

MSE RIPR MSE SVM
0 0.05 0.27 0.05 0.02 0.23 0.27 1.16 0.11 0.1 0.43

100 0.42 1.26 0.34 1.45 0.52 0.8 1.02 0.6 2.99 0.94
200 0.5 0.86 0.8 0.33 0.99 0.97 1.27 0.29 0.68 1.44
400 0.63 1.47 1.34 1.61 0.11 0.4 1.26 1.64 1.71 0.08
800 0.69 0.38 1.12 0.68 1.1 0.52 0.06 0.91 0.9 1.16

RIPR Precision for IPR RIPR Recall for IPR
0 1 1 0.4 0.43 0.3 0.67 1 0.67 1 1

100 1 0.67 0.6 0.43 0.2 0.67 0.67 1 1 0.67
200 1 1 0.6 0.43 0.3 0.67 1 1 1 1
400 1 1 0.6 0.43 0.1 0.67 1 1 1 0.33
800 1 0.67 0.4 0.29 0.3 0.67 0.67 0.67 0.67 1

2.7 Discussion of IPE learning efficiency

2.7.1 Computational complexity of IPE learning

The IPE learning methods rely on the construction of the loss matrix, that is estimating the loss
for every data point, for every combination of features. For nonparametric loss functions, this
requires finding the kth nearest neighbors. We use k-d trees [42] for every projection of size d. The
time required to build the tree is O(dn log n), where n is number of training samples. The time
needed to find the neighbors of one sample point is O(log n). Thus, for all m = O(ad) candidate
projections of up to size d, the total time required to compute the loss matrix isO(m(d+1)n log n),
or, in terms of the number of features a, O(dadn log n).

The ILP uses m(n + 1) variables, one integer variable for each element in the matrix and an
additional variable for each column in the matrix. It contains n equality constraints, each summing
over m variables. There are also m inequality constraints over n+1 variables each, one inequality
constraint summing over m variables, m ∗ n inequality constraints over two variables each and
m ∗ (n + 1) inequality constraints over one variable each. Overall, the ILP is quite complex and,
since it yields an exact solution, in the worst case scenario it must consider all possible assignments.
In total, there are

(
m
k

)
ways of selecting the sub-models. For each configuration, each of the n

samples can be assigned to one of k projections, which yields on the order of kn possibilities.
Therefore, there are

(
m
k

)
kn assignments to be considered in the worst case. While the average

run time encountered in practice is a lot more reasonable, as shown in the experiments, the ILP
remains the slowest of the methods, albeit conferring the best solution. To reduce runtime, it is
possible to relax the ILP into an LP and then apply rounding. However, we have observed that, for
artificial data, the solutions obtained in this way are less precise (i.e. further from the underlying
low-dimensional patterns) than the ones obtained with the two-step convex procedure.

For the complexity of Algorithm 2.3.4, we use the bounds in [5]. The optimization is over
a matrix of size N = mn. Computing the values and derivatives of the objective and the con-
straints requires M = O(mn) operations. The upper and lower bound on the number of operations
needed to obtain a solution ε away from the optimum are O(NM)ln(1

ε
) and O(N(N3 +M))ln(1

ε
)

39

respectively. Thus, the worst case runtime for the optimization is O
(
a4dn4

)
ln
(

1
ε

)
. Although

the complexity increases exponentially with d, for the applications we consider d is typically 2,
resulting in a worst case runtime of

O
(
a8n4

)
ln
(1

ε

)
+O

(
a2n log n

)
. (2.86)

In the adaptive lasso procedure, we can discount projections that are not informative for any of
the sample data points so the dimensionality of the optimization problem is reduced from n ×m
to n × min (m,n). When ad > n, the runtime depends largely on n (2.87), which is beneficial
for datasets that are underdetermined (small sample size but large number of features) – a frequent
case in computational biology, for instance. In this case, the worst case runtime is

O
(
n8
)

ln
(1

ε

)
+O

(
dn2 log n

)
. (2.87)

The greedy selection procedure is the fastest and most scalable. At each of k iterations, we
must compute the loss decrease due to each projection, which can be done in O(mn). Therefore,
the runtime of the greedy method is just O(mnk), making it the most advantageous procedure to
use when the sample size is high. This is the case because, if there are enough training samples,
the greedy procedure

2.7.2 Comparison of methods in terms of running time
We have evaluated the running time of each of the three procedures, varying the number of features
and the number of samples. The data was generated artificially, to allow control of the experiment.
There are two underlying informative projections, each affecting roughly half of the data. The IPE
learning procedures we used for this experiment are Matlab prototypes. We used the cvx package
for the convex optimization. We also used a python script to generate the ILP from the loss matrix.
The ILP was then solved using the publicly available tool Lpsolve. We trained IPE models, timing
each matrix selection procedure. The experiments were ran on a MacBook with 2.6 GHz Intel i5
and 8 GB 1600 MHz DDR3 and the times, averaged over 5 runs, are reported in Table 2.5. It must
be noted that the purpose of this experiment is to provide a comparison between the three methods,
rather than to establish a baseline on the size/complexity of the datasets for which these techniques
can be applied. Providing a faster implementation and running the experiments on a machine with
more computational power is conceptually possible, but outside the scope of the thesis.

According to the table, the greedy method is fast enough for all cases and, in fact, scales up
to much larger datasets. The precision and recall of the greedy method for this simulated data
are perfect as long as the noisy samples represents less than 50% of the data. To compare, the
ILP recovers the low-dimensional patterns even when the noise represents 75% of the data. The
RIPR method provides a more robust solution that the greedy version and faster than the ILP. The
ILP method only works for tiny datasets, or in the case that feature selection and/or subsampling
have already been performed. RIPR only works for small datasets on the order of tens/hundreds of
features and up to thousands of samples. The applicability of RIPR can be widened by combining
it with other feature selection methods and by reducing the set of candidate projections to only the
ones using informative features. We have applied such optimizations to obtain the 3-D projections
presented in Chapter 4.

40

Table 2.5: Running time (seconds) of selection matrix learning procedures.

Features 100 samples 1000 samples
ILP RIPR greedy ILP RIPR greedy

5 0.2955 2.4443 0.0051 13.2807 16.1068 0.0405
10 1.4064 3.0487 0.0084 233.6535 21.6976 0.0589
20 10.74 6.0532 0.0155 1637.5 56.0764 0.1217
50 2299.8 36.1182 0.0630 > 2hrs 587.5157 0.6433
100 > 2hrs 281.103 0.2317 > 2hrs 3926 2.3132

41

Chapter 3

Extensions to the RIPR Framework

3.1 Learning IPEs in an active learning setting
We adapt standard active learning sample selection heuristics to work directly with the RIPR mod-
els and introduce new heuristics that find unlabeled data worth expert evaluation based on their
appearance in low-dimensional subspaces. We also modify the RIPR optimization to find contra-
dictory patterns in data, which is useful in the active learning context when the intent is to prompt
the domain experts into disambiguating samples which are difficult to classify automatically. This
method is part of the annotation system which doctors used to label a subset of alerts as real or
artifactual.

3.1.1 Overview of active learning with dimensionality reduction

We introduce an approach which recovers informative projections in the more challenging active
learning setting. Our framework selects samples to be labeled based on the relevant dimensions of
the current classification model, trained on previously annotated data. The effort is thus shifted to
labeling samples that specifically target performance improvement for the class of low-dimensional
models we are considering. An important outcome is that high accuracy is achieved faster than
with standard sampling techniques, reducing the data annotation effort exerted by domain experts.
An added benefit is that the compact models are available to experts during labeling, in addition
to the full-featured data. The informative projections1 highlight structure that experts should be
aware of during the labeling process, which helps prevent user errors, as illustrated in a case study.
Moreover, our active learning framework selects the most controversial, most informative and/or
most uncertain data yet unlabeled (depending on the selected sampling technique), presenting it to
the human experts in an intuitive and comprehensible manner, typically using 2 or 3-dimensional
projections, which further simplifies the annotation process.

We have previously formulated Informative Projection Retrieval (IPR) as the problem of find-
ing query-specific models using ensembles of classifiers trained on small subsets of features. The
Regression for Informative Projection Retrieval (RIPR) algorithm [35] provides a solution to this
problem in the form of compact models consisting of low-dimensional projections. We will call

1In this chapter, the focus is exclusively on axis aligned projections (sets of features), since domain experts have
no difficulty interpreting them.

42

them RIPR models. This chapter presents a framework, called ActiveRIPR, which enables active
selection of yet unlabeled data which specifically targets the construction of accurate RIPR mod-
els. For this purpose, we adapt established active learning query criteria to the IPR task. Our
contributions are: (i) we solve the Informative Projection Retrieval problem in the active learning
setting; (ii) we compare various querying strategies under different noise models; (iii) we apply
ActiveRIPR to alert adjudication leading to considerable reduction of labeling effort.

Active learning is an intensely-studied branch of machine learning, with many successful sam-
pling methods currently available [94]. Adding to established methods such as uncertainty sam-
pling, information gain and query by committee, are recent developments such as the Kernel Query
by Committee [45], sampling based on mutual information [51] and the use of importance weight-
ing in a scheme which works with general loss functions to correct sampling bias [7]. Our sample
selection criteria take into account the utility of the samples for each of the projections in our en-
semble. Previous work considering ensembles include the approach of Körner and Wrobel [65],
who compare different approaches that use ensemble disagreement adapted to the problem of mul-
ticlass learning and show that margins are the best performing for the purpose. Donmez et al. [27]
consider the existence of an ensemble of labeling sources and investigate how to jointly learn
their accuracy and obtain the most informative labels while minimizing labeling effort. Examples
of structured prediction being enhanced by active learning include the work by Culotta and Mc-
Callum [22], introducing a selective sampling framework which considers not just the number of
samples requested for active learning in structured prediction, but also the effort required in label-
ing them. Liang et al. [74] also investigate the interplay between structured learning and model
enhancement using contextual features, using unlabeled data to shift predictive power between
models. The algorithm they present interleaves labeling features and samples, which improves the
active learning performance. Bilgic proposes dynamic dimensionality reduction for active learn-
ing [8], a method which, during the query selection process, performs PCA on the data, selecting
the features with the largest eigenvalues and performing L2 regularization on them. There are
some notable differences to their approach, the most important of which is that, in their setup, the
allowed number of features is increased as more samples become available. The method of Ragha-
van et al. [84] directly incorporates human feedback in the feature selection procedure through
feature weighting, while Rashidi and Cook [85] introduce a method that reduces the effort needed
for labeling by requesting, in each iteration, labels for all samples matching a rule.

A notable method focused on improving models from a specific class is Tong and Koller’s
approach [104] to Bayesian Network structure learning. Their interventional active learning setup
is different from the one we are considering in that the learner has the freedom of requesting
samples rather than selecting them from a batch.

Our main improvement over related work is that our framework is designed to train accurate
intelligible models which domain experts can use during the labeling process. ActiveRIPR not
only queries the samples which improve model accuracy, but also considers human involvement
and targets compact, user-friendly models, such that, at every step in the active learning procedure,
the experts can consult the current informative model. Access to this visualizable model can make
expert adjudication faster and more reliable. Also, clinicians can observe the classification model
in action and be better prepared to decide whether it is mature enough for deployment.

43

3.1.2 Active informative projection recovery framework
Active learning iteratively selects samples for labeling until the model meets some accuracy cri-
teria. Assume now that, at iteration k, the samples Xk

` are labeled as Y k
` and the samples Xk

u

are available for labeling. Also let the RIPR model built so far be Mk, with its components Ck,
T k and gk. The problem of selecting samples for IPR is reduced to finding a scoring function
s :M×X → R, used to select the next sample to be labeled:

xk+1 = arg min
x∈Xk

u

s(Mk, x)

The expected error of a model Mk = {Ck, T k, gk} is

Err(Mk) = Ex∈X [I(tkgk(x)(c
k
gk(x)(x)) 6= y)]

We use the notationMk
s to refer to a model obtained after k iterations of labeling, using the scoring

function s. If the labeled samples are picked adequately, the training error will decrease (or at least
not increase) with each iteration: Err(Mk+1

s) ≤ Err(Mk
s). Given the maximum acceptable error

ε, and a set S of scoring functions, selecting the optimal strategy can be expressed as follows:

s∗ = arg min
s∈S

min
k
{k s.t. Err(Mk

s) ≤ ε} (3.1)

ActiveRIPR starts by requesting the labels of a set of r0 randomly selected samples. It then
builds a RIPR model from these samples. Using a function which scores yet-unlabeled data con-
sidering the current model, ActiveRIPR selects the next set of samples to be labeled. The next
section describes several such scoring functions. New models are trained as additional samples
are added to the pool. While it is possible to efficiently update the current model using the new
samples, we currently re-train from scratch, both for simplicity and to avoid any possibility of bias.
The Active RIPR procedure is shown in Algorithm 3.1.1. Xu are the unlabeled samples, X` are the
samples for which labels have been requested and Y` are their provided labels. Xt and Yt represent
a separate set of samples used for testing. Mk

s is the model trained at iteration k, based on samples
queried using scoring function s. Errks is the error of model Mk

s .

3.1.3 Active sample selection
Extensive research in the domain of active learning has led to a variety of algorithms which de-
termine which points should be labeled next. We do not seek to supplant these, but rather adapt a
subset of them to work with the class of model we target. The intuition is that, for data where most
of the features are spurious, adapting the scoring function to consider only the significant features
for each sample has the potential to improve the learning rate.

Uncertainty sampling

This score is used to pick the unlabeled data for which the label is the most uncertain, typically
this translates to selecting the samples with the highest conditional entropy of the output given
the features. Under the RIPR assumption, the label of a sample depends only on the projection to

44

Algorithm 3.1.1 Active RIPR with scoring function s
Xu (unlabeled samples), Xt (test samples), Yt (test labels), k = 0 (iterations)
X` = SelectRandom(Xu)
Y` = LabelSamples(X`)
repeat
k = k + 1
Mk

s = TrainRiprModel(X`, Y`, Xu)
Errks = EvaluateRiprModel(Mk

s , Xt, Yt)
xi = arg minxi∈Xu s(M

k
s , xi)

yi = LabelSample(xi)
Xu = Xu \ {xi}, X` = X` ∪ {xi}, Y` = Y` ∪ {yi}

until Errks ≤ ε or |Xu| = 0
return Mk

s

which the point is assigned. Using a RIPR model Mk = {Πk, τk}, the corresponding projection
for a sample x and its label ŷ(x) are determined as follows:

gk(x) := arg min
(c,t)∈(Πk,τk)

ĥ(t(c(x))|c(x))

ŷ(x) := tkgk(x)(x),

where ĥ denotes the conditional entropy estimator for a label given a subset of the features and
ŷ(x) is the prediction made for a sample x. The score for ActiveRIPR using uncertainty sampling
simply considers the lowest conditional entropy on the projections of the model Mk

uncrt:

suncrt(x) = min
c∈Ckuncrt,t∈Tk

ĥ(t(c(x))|c(x)) (3.2)

Query by committee

Query by committee selects the samples on which the classifiers in an ensemble disagree. For
a RIPR model Mk

qbc, this is simply obtained by comparing the labels assigned by each of the
classifiers in T kqbc.

sqbc(x) = max
ti,tj∈Tkqbc

I(ti(ci(x)) 6= tj(cj(x))) (3.3)

Information gain

The information gain criterion sorts unlabeled data according to the expected reduction in condi-
tional entropy upon labeling each point. We use the notation Ĥk

X0,Y0
(X1) to represent the estimated

conditional entropy of the samples X1 given the samples X0 and their labels Y0. Assuming that, at
iteration k, ActiveRIPR based on Information Gain has selected samples Xk

`,ig while samples Xk
u,ig

45

are available for labeling, the information gain score can be expressed as follows:

∀x ∈ Xk
u,ig, sig(x) =Ĥk

X`,Y`
(Xk

u,ig)

− p(y = 0)Ĥk
X`∪{x},Y`∪{0}(X

k
u,ig)

− p(y = 1)Ĥk
X`∪{x},Y`∪{1}(X

k
u,ig)

Low conditional entropy

Selecting samples with high uncertainty makes sense when there are aspects of the model not yet
discovered – in the case of RIPR models, there might be projections that are informative, but are
only relevant for a small subset of the data. However, once the informative projections have been
discovered, selecting samples with high uncertainty often leads to the selection of purely noisy
samples. In this case, selecting the data for which the classification is the most confident improves
the model, as it is more likely that these points satisfy the model assumptions and can be used in
the classification of their neighboring samples. This claim is verified experimentally, and the score
for this query selection criteria is simply the opposite of the uncertainty sampling score:

smc(x) = 1− min
c∈Ckmc,t∈Tkmc

ĥ(t(c(x))|c(x))

3.2 Informative Projection learning for feature hierarchies
We improve budget-constrained feature selection by leveraging the structure of the feature depen-
dency graph and information about the cost required to compute each feature. We consider the
process used to generate the features, as well as their cost, reliability and interdependence. Typ-
ically, our applications rely on a core set of features obtained through expensive measurements,
enhanced using transformations derived (cheaply) from one or several core features. Also, some
measurements can be obtained through more than one procedure. This structure, which is not con-
sidered in our previous work, could make our classifiers more powerful for the same total cost.
Our proposed method works by generating, based on the feature dependencies, a regularizer which
ensures that, once the cost for a feature is paid, all the features it depends on add no extra penalty.
Thus, we leverage the cost and the redundancy of the features by generating penalties according
to the structure of the dependency graph. This improves accuracy compared to a model obtained
using the lasso at no increase in cost.

3.2.1 Cost-sensitive feature selection
We are given a dataset (X ∈ Rn×m, Y ∈ Rn) with features A = {a1 . . . am}, a cost function
c : A → R and information about feature dependencies in the form of the directed graph (A,D),
where (ai, aj) ∈ D iff feature j depends on feature i. Learning the set of parameters w ∈ Rm

involves minimizing a convex loss function f with a regularizer g which penalizes according to the
feature cost.

w∗ = arg min
w

n∑
i=1

f(w, xi, yi) + g(w) (3.4)

46

A standard way of using the cost in performing feature selection is the weighted lasso g`1(w) =
m∑
i=1

c(ai)|wi|. The issue with this procedure is that it considers only the total cost for each feature

ignoring the manner in which the cost decomposes across the dependency graph, which results in
a potentially suboptimal selection of the sparsity pattern for a fixed cost in terms of accuracy, since
some features that are virtually free are ignored.

3.2.2 Exploiting the feature dependency graphs through `1 and `2 penalties
Our procedure links each feature to their children in a dependency graph through `2 norms instead
of penalizing them separately. Define the index set of children of a feature ai as

φ(ai) = {1 ≤ j ≤ m|(ai, aj) ∈ D} . (3.5)

The modified regularizer becomes gc,D(w) =
m∑
i=1

c(ai)||wi,φ(i)||2 .

For features that have no children, the term simply equals the `1 norm. For the rest, however,
the `2 penalty decreases the weight magnitude, but only actually encourages sparsity on the parent
feature to be 0 when the weights of all child features are 0. In this case, the `2 norm simply becomes
an `1 norm and the feature is penalized as in the standard lasso case.

In some applications, the information can be relayed through several different sources, resulting
in highly correlated – or even identical – features in the dataset. An example when this situation
may occur is health monitoring. For many vital signs, there exist multiple means of obtaining
measurements: invasive, non-invasive and computed indirectly from other vitals. Such correlated
features are also present in data which holds responses to queries sent to several servers. Although
features in the same series are all informative, it is clear that only one of them is needed at a time,
including in the construction of child features. This leads to an ’OR’ constraint – the presence of
one of the features is necessary and sufficient to derive child features.

We enforce this constraint through a penalty which distributes the weight across the redundant
features. Assume that a1

i . . . a
r
i is a series of features, either of which can be used to obtain ai. The

parameter wi corresponding to ai decomposes into the auxiliary components w1
i . . . w

r
i , only one

of which is non-zero. Let φ(i) denote any child features of ai. The additional penalty for wi is

gOR(wi) = c(ai)||wi,φ(i)||2 +
r∑
j=1

r∑
k 6=j

c(aji)||w̄
j
i , w

k
i ||2 , where w̄ji = max (

1

wji + 0.5
− 0.5, 0) ,

(3.6)

with the following constraint added to the optimization procedure:
r∑
j=1

wji = wi.

3.2.3 Leveraging feature hierarchies in vital sign monitoring
We applied our method to a classification problem involving clinical data obtained from a cardio-
respiratory monitoring system. The system is designed to process multiple vital signs indicative of

47

the current health status of a critical care patient and issue an alert whenever some form of instabil-
ity requires medical attention. In practice, a substantial fraction of these alerts are not due to real
emergencies (true alerts), but instead are triggered by malfunctions or inaccuracies of the sensing
equipment (artifacts). Each system-generated alert is associated with the vital sign that initiated it:
heart rate (HR), respiratory rate (RR), blood pressure (BP), or peripheral arterial oxygen saturation
(SpO2). We extracted multiple temporal features independently for each vital sign over the dura-
tion of each alert and a window of 4 minutes preceding its onset. The 150 interdependent features
included metrics of data density, as well as common moving-window statistics computed for each
of the vital timeseries. Here, the cost of all base features is a unit, and one cost unit is added for
each additional operation which needs to be performed to obtained derived features. The dataset
has a total of 812 samples (alerts). Our type of regularization increases performance for the same
cost when compared to the lasso.

Table 3.1: Comparison of our procedure against the lasso on the clinical data.
Cost MSE (CFS) MSE (lasso) Cost MSE (CFS) MSE (lasso)

0 0.777094 0.777094 4 0.244362 0.250995
1 0.343564 0.435285 6 0.244267 0.250995
2 0.245647 0.250995 12 0.243772 0.243772

3.3 Projection-based gap-finding for data engineering

3.3.1 Guided data acquisition
We consider the problem of identifying discrepancies between training and test data which are
responsible for the reduced performance of a classification system. Intended for use when data
acquisition is an iterative process controlled by domain experts, our method exposes insufficiencies
of training data and presents them in a user-friendly manner. The system is capable of working
with any classification system which admits diagnostics on test data. We illustrate the usefulness
of our approach in recovering compact representations of the revealed gaps in training data and
show that predictive accuracy of the resulting models is improved once the gaps are filled through
collection of additional training samples.

Consider an incident classification task in a radiation threat detection and adjudication system.
As vehicles travel across international borders, they may be scanned for sources of harmful radia-
tion, such as improperly contained medical or industrial isotopes, or nuclear devices. A substantial
number of potential threats flagged by radiation measurement devices that may be used in such
applications are actually non-threatening artifacts due to naturally occurring radioactive materials
(e.g. ceramics, marble or cat litter). We have been using machine learning methodology to dismiss
alerts that are confidently explainable by non-threatening natural causes, without increasing the
risk of neglecting actual threat [29].

A robust alert adjudication system must be trained and validated on data that includes the actual
threats. However, such data is (luckily) hard to come by. Therefore, it is practical and common to
place the bulk of the available empirically gathered positive incident examples into a testing data
set, and create training data using benign measurements mixed with a carefully chosen selection of

48

simulated threat. Nonetheless, the volumes and complexities of the feature space in data typically
encountered in radiation measurement applications makes synthesizing a robust, sufficiently large,
and (most importantly) comprehensive set of training data difficult and prone to omissions.

3.3.2 Finding meaningful gaps with RIPR

We present an engineering framework that facilitates data quality audits by automatically detecting
gaps in training data coverage. These gaps denote differences in distributions of select variables
between training and testing samples or point to areas of the feature space where the observed
performance of the threat adjudication system appears suboptimal. The findings are presented in
the form of human-readable, low-dimensional projections of data, in order to ensure interpretability
of results and to simplify planning of corrective actions. The resulting iterative data improvement
procedure boosts threat adjudication accuracy while reducing the workload of data engineers and
application domain experts, when compared to using uninformed data gathering process.

The proposed process involves: (1) Building a threat classifier (any plausible type of a clas-
sification model can be used, we employ the random forest method primarily due to its scalabil-
ity to highly-dimensional feature spaces, but also because of the computable on-the-fly metrics
that diagnose reliability of predictions being made, which it provides), (2) Gap Retrieval Module
(GRM), and (3) Human-driven procedure of addressing the identified gaps. Of particular rele-
vance are two metrics that attempt to characterize reliability of predictions made by our random
forest classifier: Dot-Product-Sum (DPS) and In-Bounds Score (IBS). DPS measures consistency
of predictions made independently by the individual trees in the forest. IBS is perfect if for each
node of a classification tree, the query fits within the range of the bounding box of the training
data. Otherwise, it returns the value proportional to the fraction of nodes where the query was
in-bounds. The GRM identifies where the original threat classification model performs well and
where it performs poorly. It does this in one of two ways: (a) By finding low-dimensional pro-
jections where the testing and training data distributions differ significantly, and (b) By finding
low-dimensional regions of data space where the original classifier experiences considerably low
accuracy. The GRM leverages a previously published algorithm called Regression for Informative
Projection Retrieval (RIPR) [35]. This algorithm discovers a small set of low-dimensional projec-
tions of possibly highly multivariate data which reveal specific low-dimensional structures in data,
if such structures exist. RIPR’s primary application is to improve understandability of classifica-
tion, regression, or clustering tasks by explaining their results in a human-readable form. Here we
extend the algorithm to facilitate improvements in training data generation, primarily by leveraging
its ability to detect low-dimensional patterns of unexpected discrepancy between training and test-
ing data, as well as low-dimensional structures of low performance areas. As a result of executing
the GRM, the resulting low-dimensional subspaces are visualized and the domain experts and data
engineers gain intuition as to what data may be missing from the training set and decide which
parts of the feature space would most benefit from additional samples. The expanded training data
will reflect these changes in the next machine learning iteration, and the process can continue until
the training set is shaped into a faithful reflection of the test set, and the performance of the threat
adjudication system is optimized.

49

3.3.3 Experimental Results

To find data gaps directly, our algorithm simply looks for mismatches between the training and test-
ing data distributions in all 2 or 3 dimensional projections of data, to enable visually interpretable
output. In this scenario, the algorithm returns the most prominent gap, even if it is located in a
projection that yields relatively little information to support model predictions. Our results show
that GRM is able to identify potentially irregularly shaped areas of mismatch between the training
and test sets. The set up of our experiments involves the selection of two random samples: one of
an arbitrary number of data points in the training set composed of semi-synthetic data and another
similarly sized sample of data from the testing set. By taking these uniformly random samples, any
mismatch we find is representative of the entire dataset with high probability, as the process does
not change the training and testing data distributions. The leftmost graph in Figure 3.1 shows an
overlay mismatch where the test set seems to simply be a shifted version of the training set. After
conferring with the data engineers who built the data, we determined that the cause of the over-
lap is actually a single scalar parameter that was changed between two successive artificial data
builds. Visualization provided by our framework allows data engineers to easily gather succinct
information about the variations of the underlying structure of data.

Next, we tied in a cost function that determines which gaps are more meaningful in terms
of the impact they may have on the threat classification performance. We can achieve this by
incorporating diagnostic measures resulting from the original classifier performance evaluation, as
observed on the test samples. The middle graph in Figure 3.1 shows a projection retrieved using a
nonparametric loss estimator. We see that our random forest makes the most confident predictions
(high DPS) for blue points which occupy a densely packed T-shaped space in the projection. Red
points, which correspond to predictions which were not fully consistent among the trees in the
forest (low DPS), indicate test data which may benefit from additional nearby training samples.
They are far more spread out within the projection, and often reside near the edges of the gray
point cloud which represents all of the training data.

Humans are good at understanding how to fill in gaps in low dimensional projections that
retain some sort of a regular structure (i.e. a box or triangle), which is why we also devised a
parametric loss estimator. It enables extraction of projections that contain regularly-shaped gaps
which may cause considerable loss of threat classification performance. In the rightmost graph in
Figure 3.1, we use linear Support Vector Machine model to separate high- and low-performance
areas. Our goal here is to find projections of data where misclassified queries occupy one side of
the classification boundary, while correctly classified queries occupy the other side. This is a useful
type of a gap to look at because it identifies sets of features that jointly emphasize a controversy
on how test data should be classified.

To show our framework increases model accuracy, we train random forest models using differ-
ent subsets of training data. We start by taking our original data set and removing samples which
fall within a certain region of a 2D projection, thus creating an artificial hole in the data. The
random forest trained from this data set achieves 75.0% classification accuracy. We then run RIPR
which identifies this gap and we add excluded samples back to the training set, which fills the gap
that RIPR identified. Now training a new random forest, we achieve 75.7% accuracy. This shows
we are able to improve model performance by filling in gaps that the GRM identifies. Additionally,
we trained a model with a random subset of the original training set and obtain 75.2% accuracy.
This shows us that filling in gaps in the training set is more efficient at improving model accuracy

50

than just adding more samples which may or may not help fill the gap.

Figure 3.1: Example projections retrieved using direct (top left), and diagnostic nonparametric
(top right) and parametric (bottom) approaches. Features names were obscured as the dataset is
classifier.

51

Chapter 4

Detection of artifacts in clinical alerts from
vital sign data

We outline a novel approach to distinguish correct alerts from artifacts in multivariate non-invasive
vital signs data collected at the bedside of critical care patients. The framework selects informative
low-dimensional projections of data that allow easy identification and interpretation of artifacts by
humans. The results enable the construction of reliable decision rules which can be used to identify
and ignore false alerts in real time. The proposed approach aims at reducing the tedious effort
of expert clinicians who must annotate training data to support development of decision support
systems. Using our method, the expert intervention is reduced to simply validating the outcome
produced by an automated system using a small part of the available data. The bulk of the data can
then be labeled automatically. The framework we present makes the decision process to aid the
expert adjudication transparent and comprehensible. The projections jointly form a solution to the
learning task. The method works under the assumption that each projection addresses a different
subset of the feature space. The purpose is to determine which of the subsets of data correspond
to genuine clinical alerts and which are artifacts due to particularities of the monitoring devices or
data acquisition processes. We show how artifacts can be separated from real alerts in feature space
using a small amount of labeled samples and present our system’s utility in identifying patterns in
data that are informative to clinicians.

4.1 Clinical alert adjudication

Clinical monitoring systems are designed to process multiple sources of information about the cur-
rent health condition of a patient and issue an alert whenever a change of status, typically an onset
of some form of instability, requires the attention of medical personnel. In practice, a substantial
fraction of these alerts are not truly reflective of the important health events, but instead they are
triggered by malfunctions or inaccuracies of the monitoring equipment. Accidentally disconnected
ECG electrodes, poorly positioned blood oxygenation probe, and many other such problems un-
related to the patient’s clinical condition may in practice yield instability alerts. Frequency of
such false detections may cause the ”alert fatigue” syndrome, pervasive among medical personnel,
particularly in critical care environments. Alert fatigue may have adverse effects on the quality of
care and patient outcomes. To maintain and enhance effectiveness of care, it is important to reliably

52

identify and explain these non-consequential artifacts. We outline a novel approach to distinguish
correct alerts from artifacts in multivariate non-invasive vital signs data collected at the bedside of
critical care patients. The approach selects informative low-dimensional projections of data that
allow easy identification and interpretation of artifacts by humans. The results enable designing
reliable decision rules that can be used to identify and ignore false alerts on-the-fly. They can also
reduce data review and annotation efforts by expert clinicians.

The outlined problem can be generalized to any system designed to provide decision support
to human users. Typically, this involves automating tasks such as grouping or classification while
offering the experts insight into how the learning task was solved and how the model is applied to
new data. An ideal scenario for a multitude of practical applications is the following: a domain
expert provides the system with preliminary training data for some learning task; the system learns
a model for the task (which uses only simple projections); the user provides queries (test points);
for a given query point, the system selects the projection that is expected to be the most informative
for this point; the system displays the outcome as well as a representation of how the task was
performed within the selected projection.

We have previously formalized the problem of recovering simple projections for classification.
The RIPR algorithm proposed there uses point estimators for conditional entropy and recovers a
set of low-dimensional projections that classify queries using non-parametric discriminators in an
alternate fashion - each query point is classified using one of the projections in the retrieved set.
It can retrieve projections for any task that can be expressed in terms of a consistent loss function.
RIPR is designed to work with any type of model or algorithm suitable to the particular task. For
the application discussed here, we consider linear classifiers (SVM) and nonparametric clustering
models (K-means). A classifier or a clustering model is trained for every recovered projection and
used for the subset of data assigned to that projection.

The focus of this chapter is the application of RIPR to artifact identification. We illustrate the
projections recovered for the task of discriminating artifacts from genuine clinical alerts. Since
the types of alerts we focus on are triggered by excessive values of one of the vital signals at a
time, we build separate artifact discrimination models for alerts on respiratory rate, blood pressure,
and oxygen saturation. We evaluate the performance of these models at annotating unlabeled data.
We also show, through case studies, how the models can help physicians identify outliers and
abnormalities in the vital sign signals. Finally, we outline an active learning procedure meant to
reduce the effort of clinicians in adjudicating vital sign data as healthy signal, artifact or genuine
alarm.

4.2 Description of SDU patient vital sign data
A prospective longitudinal study recruited admissions across 8 weeks to a 24-bed trauma and
vascular surgery stepdown unit. Non-invasive vital sign (VS) monitoring consisted of 5-lead elec-
trocardiogram to determine heart rate (HR) and respiratory rate (RR; bioimpedance), non-invasive
blood pressure (oscillometric) to determine systolic (SBP) and diastolic (DBP) blood pressure, and
peripheral arterial oxygen saturation by finger plethysmography (SpO2). Noninvasive continuous
monitoring data were downloaded from bedside monitors and analyzed for vital signs beyond local
stability criteria: HR ≤ 40 or ≥140 beatsmin-1, RR≤ 8 or ≥ 36 breathsmin-1, systolic BP ≤ 80
or ≥ 200, diastolic BP ≥ 110 mmHg, SpO2 ≤ 85% persisting for at least 4 out of 5 minutes of

53

continuous data. Each alert is active for the duration of the signal abnormality. The alert is asso-
ciated with the first VS that is out of the normal range. VS time plots of patients whose vital sign
parameters crossed the instability thresholds for any reason were visually assessed to judge them as
patterns consistent with physiologically plausible instability, or as physiologically implausible and
therefore artifactual. Artifact adjudication is challenging, even ground truth elicitation requiring
the input of several expert clinicians.

Each alert is associated with a category indicating the type of the chronologically first VS signal
that exceeds its stability limits. As a result, an alert with labeled as ‘respiratory rate’ may also
include other VS outside of the bounds that have escalated shortly after the abnormal respiratory
rate is recognized. We extracted a number of features to characterize each of the 813 alert events
found in our data. The features are computed for each VS signal independently during the duration
of each alert and a short window (of 4 minutes) preceding its onset. The list of features includes
common statistics of each VS signal such as mean, standard deviation, minimum, maximum and
range of values. It also includes features that are thought to be relevant (by domain experts) in
discriminating between artifacts and true alerts.

There are a total of 147 features, shown in Table 6.5 derived from all VS as follows: The
data density or duty cycle is the normalized count of signal readings during the alert period. A
low value of this metric indicates the temporal sparseness of the data, while a value of zero simply
means there was no data captured in that period. We also record the minimum and maximum of the
first order difference of VS value during alert window. Extreme values of these statistics typically
indicate a sharp increase/decrease of the VS value. The difference of means of VS values for the
4-minute window before and after the alert is also used, as is the value of the slope which results
from fitting linear regression to the VS values versus the time index.

4.3 Performance of classification IPEs for artifact adjudication
We now show the classification models obtained to distinguish between artifacts and alerts corre-
sponding to different VS. A description of the collected data, including hours of monitoring and
number of patients is shown in Table 6.4. We considered alerts associated with different VS as sep-
arate classification tasks. Out of the 813 labeled alert samples, expert clinicians have identified 181
artifacts. The artifacts were adjudicated separately by two expert clinicians and a consensus was
reached with respect to the labeling. Aside from the 813 labeled samples, there is a large amount
of data, roughly 8000 samples, that remain unlabeled. The goal now is to train a separate model
for each alert type such that other potential artifacts can be detected in the unlabeled data. Since
domain experts will review the classification results, we rely on the RIPR framework to extract
simple and intuitive projections, which will make it easy for clinicians to validate the results.

The majority of labeled alerts in our data are associated with the respiratory rate (RR). There
are 362 such cases and a significant proportion of these (132 samples) are actually artifacts. Fig-
ure 4.1 shows the set of 2-dimensional projections retrieved by RIPR for the true alarm vs. artifact
classification task. All the data points are represented in the plot as dots - the true alerts are shown
in blue while the artifacts are shown in red. Recall that each point is only classified using one
projection. To illustrate this, we plotted the data assigned for each projection with red circles (for
artifacts) and blue triangles (for true alerts).

We apply the same procedure for alerts related to BP signals. There are 96 labeled examples

54

Figure 4.1: 2-D informative projections (top, middle) and sample vital signs (bottom) for RR
(Respiratory Rate) alerts. Artifacts are represented with blue circles, while the true alerts are red
triangles.

55

of such alerts out of which 24 are artifacts. The 2-D projections are displayed in Figure 4.2. Since
in this case using two-dimensional projections appears insufficient to provide a convincing model,
we also identified informative 3-dimensional projections. The figure shows the model resulting
from this procedure. Only the alerts assigned to the specific projection were shown, in order to
avoid overloading the figure.

0

0.5

1

1.5

00.20.40.60.811.21.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

value−HR−data−−den

value−RR−data−−den

va
lu

e−
S

P
O

2−
d

at
a−

−d
en

0 10 20 30 40 50 60 70 80
−40

−20

0

−14

−12

−10

−8

−6

−4

−2

value−HR−diff1−−minvalue−HR−diff1−−max

va
lu

e−
R

R
−d

if
f1

−−
m

in

Figure 4.2: 2-D (top) and 3-D (bottom) informative projections for BP (Blood Pressure) alerts.
Artifacts are represented with blue circles, while the true alerts are red triangles.

The training set for SpO2 consists of 259 samples out of which only 24 are labeled as artifacts.
Figure 4.3 shows the 2-dimensional projections recovered for this problem. As there is substantial
class overlap, we also trained 3-D models.

The remaining 96 alarms are associated with the HR, though the reviewers adjudicated only one
of these an artifact. Predictive accuracy of the presented RIPR models is summarized in Table 4.1.
The results are obtained through leave-one-out cross-validation.

The plots in Figure 4.1 show a good separation between artifacts and true alerts, which was one
of our objectives. Also, the projections retrieved use data density features for the RR, SpO2 and
HR signals as well as the minimum value RR. The use of these features is consistent with human
intuition about what may constitute a respiratory rate artifact. For instance, a lot of missing data
often signifies that the probe was removed from the patient for a period of time. The same can

56

0

0.5

1

1.5

0
0.2

0.4
0.6

0.8
1

1.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

value−HR−data−−denvalue−RR−data−−den

va
lu

e−
S

P
O

2−
d

at
a−

−d
en

0

0.5

1

1.5

00.20.40.60.811.21.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

value−RR−data−−den
e−HR−data−−den

va
lu

e−
S

ys
B

P
−d

at
a−

−d
en

Figure 4.3: 2-D (top) and 3-D (bottom) informative projections for Oxygen Saturation (SPO2)
alerts. Artifacts are represented with blue circles, while the true alerts are red triangles.

be said about minimum values for a VS - the measuring device could have been disconnected or
misplaced. A good indication of the invalidity of a RR alert is the lack of HR data. So a simple
decision rule - as stated by the clinicians - would be just to see whether there is HR data, if there is
HR data, then the RR alert is an artifact, otherwise, it could be real. In classifying RR-based alerts,
the algorithm correctly picked HR data density as the most important dimension.

The top right of the second graph in Figure 4.1 contains two blue circles representing samples

57

Table 4.1: Classification accuracy of RIPR models. Precision and recall in recovering the genuine
alerts.

Alarm Type RR BP SPO2
2D 2D 3D 2D 3D

Accuracy 0.98 0.833 0.885 0.911 0.9151
Precision 0.979 0.858 0.896 0.929 0.9176

Recall 0.991 0.93 0.958 0.945 0.9957

that would be classified as non-artifact according to the projection. Both of them have continuous
stream of data, but the RR signals are irregular. This is a different type of artifact. Because
there are very few alerts with this type of artifact, and the algorithm is designed to retrieve a
small set of projections, they end up being misclassified. The vital signs corresponding to these
two samples are presented in the bottom graph as Figure 4.1. Further investigation showed that
variance of the signal values provides a reliable way to detect these outliers. Thus, expert attention
was focused on this more problematic type of artifact rather than on the type that represents the
majority of cases and is relatively easy to handle automatically. On the other hand, some samples
were classified by the system as artifacts while the domain experts considered them true alerts. On
closer inspection, they seemed to exhibit artifact-like features - with little or no recorded values in
the HR signal. When we drilled down to look at the data, we found that the samples were actually
labeled incorrectly in the training set. Therefore, the RIPR approach can also be useful in detecting
inconsistencies due to human error.

For BP alert classification, for which the model is shown in Figure 4.2, though the features
used are known to be informative, the class separation is not very clear. This is visible especially
in the top right corner of the first plot, where we can observe a substantial overlap between artifacts
and true alerts. In some cases, the algorithm provides two-dimensional projections, as required,
but only one of the features is informative. This happens because that single feature has more
discriminative capacity than other 2-dimensional projections where features might be correlated.
Such occurrences are represented in plots the second and third plots of Figure 4.2. It is also
noticeable from Figure 4.2 that the addition of the third dimension greatly improves the class
separation. Again, the sparsity of data readings is an important feature, though this time the data
density of three different VS needs to be considered for the subset of data presented in the first
projection of Figure 4.2. The second 3-D projection uses the maximum and minimum values of
HR and RR to classify artifacts and there exists a hyperplane separating the two classes.

The alerts based on SpO2 are more difficult to classify. Figure 4.3 confirms this, since both
3-D projections of the model use data sparsity features to isolate artifacts, though we must note
that the separation is still somewhat noisy.

4.4 Clustering IPEs for identifying artifact archetypes

Additionally, by applying RIPR with K-means to clustering artifactual alerts, we identified human
interpretable archetypes of false alerts as a preliminary step to corrective action plans. The intuition
derived from these patterns is presented in the Discussion section.

58

4.5 Annotation framework for the classification of clinical alerts
Recovery of meaningful, explainable models is fundamental for the clinical decision-making pro-
cess. We work with cardio-respiratory monitoring systems designed to process multiple vital signs
indicative of the current health status of a critical care patient. The Step Down Unit (SDU) pa-
tients are connected to monitors, which continuously track the variability of multiple vital signs
over time. The system issues an alert whenever some form of instability requires attention, that is,
when any of the vitals exceeds pre-set control limits. Typically, such deviations indicate serious
decline in patient health status. In practice, a substantial fraction of the issued alerts are not due
to real emergencies (true alerts), but instead are triggered by malfunctions such as probe disloca-
tion or inaccuracies of the sensing equipment (artifacts). Each system-generated alert is associated
with the vital sign that initiated it: heart rate (HR), respiratory rate (RR), blood pressure (BP), or
peripheral arterial oxygen saturation (SpO2).

In order to reduce alarm fatigue in clinical staff, the ideal monitoring system would dismiss
artifactual alerts on-the-fly and allow interpretable validation of true alerts by human experts when
they are issued. As expected, the preparation of a high-quality and comprehensive sample of
data needed to train an effective artifact adjudication system could be a tedious process in which
important parts of the feature space are easy to neglect. This strenuous effort is often compounded
by the sheer complexity of the involved feature space. Without a framework similar to the one
presented here, precious expert time would be spent primarily navigating the dimensions of the
data to establish grounds for labeling specific instances. We propose to not only select the minimal
set of unlabeled data for human adjudication, but to also concurrently determine and present the
informative small projections of this otherwise high-dimensional data.

We use ActiveRIPR to predict oxygen saturation alerts, treating the existing labeled data as
the pool of samples available for active learning. There are 50 features in total. Roughly 10% of
the data has been manually labeled and the aim is to use that subset to determine which of of the
unlabeled samples are worth the experts’ attention. We performed 10-fold cross validation, train-
ing the ActiveRIPR model on 90% of the labeled samples and using the remainder to calculate
the learning curve. Table 4.2 shows the number of samples required to reach an accuracy of 0.85
(a value deemed acceptable by clinicians) and 0.88 (the maximum achievable accuracy). Infor-
mation Gain performs considerably better than the rest and uncertainty sampling, despite having
performed poorly in simulations, is also competitive. The results indicate that an accuracy of 0.88
can be achieved by labeling less than 25% of the total samples using the InfoGain scoring function.

Table 4.2: Percentage of samples needed by ActiveRIPR and ActiveRIPRssc to achieve accuracies
of 0.85 and 0.88 in oxygen saturation alert adjudication.

ActiveRIPR ActiveRIPRssc
Target Accuracy 0.85 0.88 0.85 0.88

Score Function
Uncertainty 18.33 18.33 36.67 50.00

QbC 46.67 46.67 86.67 86.67
InfoGain 21.67 25.00 25.00 51.67

CondEntropy 43.33 46.67 48.33 63.33

Table 4.2 summarizes the proportion of samples needed by ActiveRIPR and ActiveRIPRssc to

59

achieve 0.85 or 0.88 accuracy on the hold out test data of the oxygen saturation alert dataset.
Given the success of ActiveRIPR using the InfoGain selection criterion for the oxygen satura-

tion alert adjudication, we proceeded to apply it to detecting blood pressure alerts. This time, we
compared it against other classification methods using uncertainty sampling. This type of sampling
differs from the uncertainty score used by ActiveRIPR in that it considers the entire feature space
as opposed to only low-dimensional projections when making the selection. Also, the classifiers
are trained on all features as opposed to only a subset, so it is expected that they would perform
well. Random Forests and KernelSVM are some of the well-performing classifiers, which we se-
lected because we aim to assess how accurate the system can be when there are no restrictions on
model dimensionality.

Samples K-nn K-SVM RF ActiveRIPR
20 0.61 0.64 0.65 0.65
50 0.58 0.66 0.71 0.70
75 0.6 0.63 0.71 0.75

Table 4.3: Active learning for blood pressure alerts

Table 4.5 presents the mean leave-one-out accuracy of after 20, 50 and 75 labels. ActiveRIPR’s
performance approaches that of Random Forests and, at times, outperforms KernelSVM, while
maintaining compactness of representation and performing drastic feature reduction. The RIPR
models used, at any time, at most two 3-dimensional projections, so 6 features in total. ActiveRIPR
wins by a sizeable margin over K-NN which we tested because of its potential for interpretability.

Applying clustering on Informative Projections has yielded the archetypes presented in Fig-
ure 4.4. Clinician review of the patterns aided the clinicians in formulating the following conjec-
tures. A cluster of RR artifacts on features RR mean (0,4) and RR standard deviation (2,5) likely
suggests a loose ECG lead, while a pattern RR mean (33,40) and RR standard deviation of (0,10) is
likely due to insufficient bioimpedance. For SpO2 artifacts, features SpO2 min and SpO2 slope ex-
pose patterns suggesting motion, sensor reattachment and loose lead or low perfusion. The patterns
identified for RR artifacts (HR-DD =0, SPO2-DD bimodal with peaks at 0.1 and 0.01) suggest the
lack of ECG electrode integrity. For SpO2, decreases in both HR-DD and RR-DD appear associ-
ated with artifact and suggest an overall problem with signal pickup in both SpO2 and the ECG/RR
sensors. These artifact archetypes agree with clinical intuition and can potentially be used to guide
corrective actions in practice.

4.6 Studies of expert labeling using time series and informative
projections

In order to ascertain the effectiveness of the informative projection models in assisting domain
experts, we have performed a user study in which two expert clinicians were asked to adjudicate
alerts based on the projection models and, separately, based on vital signals. The experiment was
performed in two stages, each of the stages dealing with 20 RR alerts and 20 SpO2 alerts. In the
first stage, the projections display each query against the background of the entire sample space.
In the second stage, the projection provides a zoomed-in view of the area close to the query. In

60

total, 80 samples were labeled, each sample being assigned four scores, two by each clinician, one
based on the projection as well as one the vital sign time series for the alert. The scores range
from -3, indicating high reviewer confidence that the alert constitutes an artifact, to 3, indicating
high reviewer confidence that the alert is real. Based on the scores assigned by each reviewer, the
alert falls into one of three confidence categories, represented in Table 4.4. If there is disagreement
between reviewers, or a reviewer is uncertain, the sample is marked as ambiguous and no label can
be assigned.

Table 4.4: Annotation scoring matrix. Category and label assignment based on reviewer scores.

Category

C1 Strong agreement
C2 Weak agreement, need 3rd reviewer
C3 Disagreement

Label

A Artifact
R Real alert
- Ambiguous artifact. No label assigned.

Category
Reviewer 1 Confidence

3 2 1 0 -1 -2 -3

Reviewer 2 Confidence

3 R R R - - - -
2 R R R - - - -
1 R R R - - - -
0 - - - - - - -
-1 - - - - A A A
-2 - - - - A A A
-3 - - - - A A A

An example of the visual representations shown to clinicians for adjudication is in Figure 4.5.
The RR alert that needs to be adjudicated, identified with a star symbol, is projected on the features
value RR max and value RR median, amid previously labeled data. It is located in a cluster of data
that were labeled as artifacts. Based on this informative projection, it was labeled as a real alert
by both clinicians. Based on the time series corresponding to this alert, which is also represented
at the top of Figure 4.5, the alert was also labeled as real. In this case, the outcome of using the
compact representation using Informative Projection is the same as that of using the full time series
representation with the added benefit that adjudication can be performed faster/easier by domain
experts and that the labels can be automatically assigned by the system.

By merging the reviewer scores as shown in Table 4.4., each of the samples is assigned a
label and confidence category from the projection-assisted annotation, and a separate one from the
adjudication based on vital signs. The latter is considered the ground truth. Table 4.5 shows the
extent of overlap between the confidence categories. Out of the 80 samples, 36 are labeled with
the same confidence (and label) irrespective of the manner of annotation, 3 samples that could not
be annotated based on the trace were annotated by analyzing the projections, 10 of the samples
were annotated with more confidence based on the VS, while the remaining 31 (38.75% of total)
could not be annotated based on the projected representation, but could be adjudicated using VS.
This experiment points out that projection-assisted annotation was useful in obtained labels for
35 samples, 53.03% of the non-ambiguous cases, reducing the need for VS adjudication to 31

61

samples, 46.97% of the non-ambiguous cases.

Table 4.5: Categories of Projection-assisted labeling and VS-based labeling.

Number of samples
Category of vital sign -based labeling

TotalC1 C2 C3

Category of projection-assisted labeling

C1 19 0 1 20
C2 10 3 2 15
C3 24 7 14 45

Total 53 10 17 80

We have evaluated the success of the IP-assisted annotation by comparing the resulting labels
with the ground-truth obtained through the VS analysis. The comparison, shown in Table 4.6, was
performed separately for the sets of labels of the two experts and for the final labels obtained by
combining their scores. 27 of the samples were correctly classified using the projections, 31 could
not be classified due to either expert disagreement or at least one of the experts being uncertain,
4 artifacts could not be filtered out using the projections, while only one alert was missed. The
remaining 17 samples could not be adjudicated even through the use of the time series. As shown
in Table 4.6, combining the predictions of the two experts results in a more conservative estimate
of the label, but it also decreases the number of mistakes compared to single-expert prediction.

Table 4.6: Success of Informative Projection-assisted labeling compared to the ground-truth ob-
tained by VS-based labeling.

Number Correct IP-assisted Inconclusive IP-assisted Incorrect IP-assisted Sample is
of samples classification1 classification classification ambiguous2

Reviewer 1 31 34 10 (4FN 3, 5 FP) 5
Reviewer 2 43 25 11 (1 FN, 7 FP) 1

Final 27 31 5 (1 FN, 4 FP) 17

As previously described, the projections in the second stage of the annotation experiment,
showed a zoomed-in view of the area around a query as opposed to the entire set of samples.
This was done to avoid misleading predictions due to the imbalance of true alerts and artifacts
in the labeled data. Tables 4.7 and 4.8 show the confidence and success statistics for each of the
two stages. The annotation is both more confident and more accurate in the second stage of the
labeling, showing that the change in resolution was effective.

We have presented the use of the RIPR algorithm to support annotation of clinical data. We
have shown the models that our RIPR framework produces for automatic data labeling and how
the retrieved low-dimensional projections make it possible for domain experts to quickly validate
the assigned labels. We also illustrated how RIPR models can be used to find special cases and
incomplete or invalid data. Thus, the proposed framework promises to be useful to clinicians by
partially automating annotation of medical data in a human understandable and intuitive manner.

62

Table 4.7: Comparison of first stage and second stage annotations.
Number Correct IP-assisted Inconclusive IP-assisted Incorrect IP-assisted Sample is

of samples classification classification classification ambiguous
First Stage

Reviewer 1 C 14 21 4 1
Reviewer 2 H 23 11 5 1

Final 11 18 3 8
Second Stage
Reviewer 1 C 17 13 6 4
Reviewer 2 H 20 14 6 0

Final 16 13 2 9

Table 4.8: Comparison of first stage and second stage annotations.
Number of samples Category of vital sign -based labeling

(first stage) C1 C2 C3
Total

Category of projection-assisted labeling

C1 10 0 0
C2 3 1 0 10
C3 15 3 8 4

Total 28 4 8 26
40

(second stage) C1 C2 C3
Total

Category of projection-assisted labeling

C1 9 0 1
C2 7 2 2 10
C3 9 4 6 11

Total 25 6 9 19
40

63

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

 value-HR-data_den

 va
lue

-S
PO

2-d
ata

_d
en

RR Alert
RR Artifact

the lack of ECG electrode
integrity that is impairing
the bioimpedance
capability of the RR signal.

heart	 rate	 'me	 series	 duty	 cycle	

RR	 Alert	
RR	 Ar'fact	

ox
yg
en

	 sa
tu
ra
'o

n	
'm

e	
se
rie

s	 d
ut
y	
cy
cl
e	

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

 value-HR-data_den

 va
lue

-R
R-

da
ta_

de
n

SPO2 Alert
SPO2 Artifact

decreases in both HRdd and
RRdd seems to be more likely
associated with artifact and
might suggest overall problem
with signal pickup in both spo2
and the ecg/rr sensors

heart	 rate	 'me	 series	 duty	 cycle	

re
sp
ira

to
ry
	 ra

te
	 '
m
e	
se
rie

s	 d
ut
y	
cy
cl
e	 SPO2	 Alert	

SPO2	 Ar'fact	

re
sp
ira

to
ry
	 ra

te
	 st
an
da
rd
	 d
ev
ia
.o

n	

0	 	 	 	 	 	 	 	 5	 	 	 	 	 10	 	 	 	 	 	 	 15	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 45	 	 	 	 50	 	 	 	 	 55	 	 	 	 	 60	 	 	

16	

12	

8	

4	

0	

mean	 respiratory	 rate	

RR mean [33,40] and RR sd [0,10] is
likely due to insufficient bioimpedance

RR	 Alert	
RR	 Ar.fact	 RR mean [0,4] and RR sd [0,5]

likely suggests a loose ECG lead

Figure 4.4: Artifact Archetypes.
64

value-‐RR-‐max	

va
lu
e-‐
RR

-‐m
ed

ia
n	

BP	

SpO2	

RR	

HR	

Artifacts	
Real	 alerts	
New	 alert	

Low-‐d	 model	 learned	
by	 our	 system	 	

Vital	 sign	 chart	

The	 new	 alert	 can	 be	 con<idently	
adjudicated	 using	 only	 the	 low-‐d	
projection	 of	 data	 selected	 by	 our	
algorithm,	 without	 the	 need	 to	
conduct	 a	 laborious	 chart	 review.	

Figure 4.5: Example of projection-assisted annotation. Original vital sign chart (top) and informa-
tive projection (bottom). The test point that needs to be labeled is identified with a star symbol.

65

Chapter 5

Ensembles for Large-scale Data Partitioning

5.1 Optimizing tree ensembles
We presented the concept of using query-specific classifiers selected from a predefined pool to
handle individual data points in classification tasks. We leverage this concept for ensembles of
generic classifiers, rather than just IPEs. The idea is rather straightforward: to train meta-classifiers
which determine which submodels should be used for each data point.

In the experiment below, we first train an ensemble of classification trees as described in [15],
using feature bagging. Then, for each tree, we train a meta-classifier which predicts 1 if the tree
is deemed accurate for the data point x and 0 otherwise. When a test query is provided to the
optimized ensemble, we first evaluate each classifier, to determine if it should be used. Finally, we
average over the predictors of the selected classifiers. This simple procedure typically improves
performance of forests, as shown in Table 5.1.

Table 5.1: Performance improvement of tree ensembles through the use of query-specific selection.
For each of the experiments, we report the number of features in the dataset a, the number of
samples n, the number of classes |Y|, the error of the tree ensemble and the error of the optimized
ensemble.

Dataset a n |Y| Ensemble Err (%) Opt Ensemble Err (%)
Chars74k 85 3410 62 48.39 48.09
G50C Avg 50 550 2 7.81 6.18

Letter 16 16000 26 6.75 5.50
USPS 256 11000 10 2.6 2.3

5.2 Backpropagation forests
Up to this point, we have applied the submodel optimization paradigm to projections and random
forests. While successful, the accuracy is limited by the compactness imposted by application-
related restrictions. In some applications, however, there are no constraints on model size, the
single performance metric being accuracy. Even in this case, training models that are specialized

66

for a subset of the samples, using a subset of the features can bring considerable benefits. The
models we previously presented, namely the IPEs and the optimized ensembles, show that query
specific handling and subspace selection can be leveraged to improve the performance of classifi-
cation systems. We aim to allow data shift across submodels in the ensemble. Allowing flexible
assignment of both features and samples, as shown in Figure 5.1, can be done by training tree
ensembles which admit a differentiable global loss.

Figure 5.1: Online data shift, in terms of both features and samples, across ensemble submodels.

Figure 5.2: Before shift

Figure 5.3: After shift

We combine sample partitioning and subspace selection for high performing forest classifiers
with representation learning. Thus, we introduce Deep Convolutional Neural Decision Forests
– a novel approach that unifies classification trees with the representation learning functionality
known from deep convolutional networks, by training them in a joint manner. To combine these
two worlds, we introduce a stochastic and differentiable decision tree model, which steers the rep-
resentation learning usually conducted in lower level layers of a (deep) convolutional network. Our
model differs from conventional deep networks because a decision forest provides the final pre-
dictions and it differs from conventional decision forests since we propose a principled, joint and

67

global optimization of split and leaf node parameters. We show experimental results on benchmark
machine learning datasets like MNIST and ImageNet and find on-par or superior results when com-
pared to state-of-the-art deep models. Most remarkably, we obtain a Top5-Error of only 7.84% on
ImageNet validation data when integrating our forest in a single-model GoogLeNet architecture,
without any form of training data set augmentation.

5.2.1 Related work
Random forests [1, 14, 21] have a rich and successful history in machine learning in general and the
computer vision community in particular. Their performance has been empirically demonstrated
to outperform most state-of-the-art learners when it comes to handling high dimensional data prob-
lems [18], they are inherently able to deal with multi-class problems, are easily distributable on
parallel hardware architectures while being considered to be close to an ideal learner [52]. These
facts and many (computationally) appealing properties made them attractive for various research
areas and commercial products. In such a way, random forests could be used as out-of-the-box
classifiers for many computer vision tasks such as image classification [13] or semantic segmenta-
tion [16, 95], where the input space (and corresponding data representation) they operated on was
typically predefined and left unchanged.

One of the consolidated findings of modern, (very) deep learning approaches [66, 75, 102]
is that their joint and unified way of learning feature representations together with their classi-
fiers greatly outperforms conventional feature descriptor & classifier pipelines, whenever sufficient
amounts of training data and compute capabilities are available. In fact, the recent work in [53]
demonstrated that deep networks could even outperform humans on the task of image classifica-
tion. Similarly, the success of deep networks extends to speech recognition [109] and automated
generation of natural language descriptions of images [31].

Addressing random forests to learn both, proper representations of the input data and the final
classifiers in a joint manner is an open research field which received only little attention in the
literature so far. Notable but limited exceptions are [64, 80] where random forests were trained
in an entangled setting, stacking intermediate classifier outputs with the original input signal. The
approach in [88] introduced a way to integrate multi-layer perceptrons as split functions, however,
representations were learned only locally at split node level and independently among split nodes.
While these attempts can be considered early forms of representation learning in random forests,
they still delivered suboptimal results with prediction accuracies well below the state-of-the-art.

In this work we present Deep Convolutional Neural Decision Forests – a novel approach to
unify appealing properties from representation learning as known from deep architectures with
the divide-and-conquer principle of decision trees. We introduce a stochastic, differentiable, and
therefore back-propagation compatible version of decision trees, guiding the representation learn-
ing in lower layers of deep convolutional networks. Thus, the task for representation learning is
to reduce the uncertainty on the routing decisions of a sample taken at the split nodes, such that a
globally defined loss function is minimized. Additionally, we show how to obtain globally optimal
predictions for all leaves of our trees, which we pose as a convex formulation of a minorization-
maximization problem, without the need for tedious step-size selection. Therefore, at test time we
can take the optimal decision for a sample ending up in the leaves, with respect to all the training
data and the current state of the network.

Our realization of backpropagation trees is modular and we discuss how they can be easily

68

implemented in terms of back-prop-tree - routing and -loss layers in existing deep learning frame-
works such as Caffe [61], MatConvNet [105], Minerva 1, etc., respectively. Of course we also
maintain the ability to use back-propagation trees as (shallow) stand-alone classifiers. We demon-
strate the efficacy of our approach on a range of datasets, including MNIST and ImageNet, showing
superior or on-par performance with state-of-the-art methods.

The main contributions of our work relate to enriching decision trees with the capability of rep-
resentation learning, which requires tree training concepts departing from the prevailing greedy, lo-
cal optimization procedures typically employed in the literature [21]. To this end, we will present
the parameter learning task in the context of empirical risk minimization. Related approaches
of tree training via global loss function minimization were e.g. introduced in [93] where during
training a globally tracked weight distribution guides the optimization, akin to concepts used in
boosting. The work in [60] introduced regression tree fields for the task of image restoration,
where leaf parameters were learned to parametrize Gaussian conditional random fields, providing
different types of interaction. In [100], fuzzy decision trees were presented, including a training
mechanism similar to backpropagation in neural networks. Despite sharing some properties in the
way parent-child relationships are modeled, our work differs as follows: i) We provide a globally
optimal strategy to estimate predictions taken in the leaves (whereas [100] simply uses histograms
for probability estimation). ii) The aspect of representation learning is absent in [100] and iii)
We do not need to specify additional hyper-parameters which they used for their routing functions
(which would potentially account for millions of additional hyper-parameters needed in the Im-
ageNet experiments). The work in [79] investigated the use of sigmoidal functions for the task
of differentiable information gain maximization. In [9], a Bayesian approach using priors over
all parameters is introduced, where also sigmoidal functions are used to model splits, based on
linear functions on the input (the non-Bayesian work from Jordan [62]). Other hierarchical mix-
ture of expert approaches can also be considered as tree-structured models, however, lacking both,
representation learning and ensemble aspects.

5.2.2 Decision trees with stochastic routing

Consider a classification problem with input and (finite) output spaces given by X and Y , respec-
tively. A decision tree is a tree-structured classifier consisting of decision nodes (a.k.a. split
nodes) and prediction nodes. Decision nodes indexed by N are internal nodes of the tree, while
prediction nodes indexed by L are the terminal (a.k.a. leaf) nodes of the tree. Each prediction
node ` ∈ L is assigned a probability distribution π` over Y . Each decision node n ∈ N , instead,
is assigned a decision function dn(·; Θ) : X → [0, 1] parametrized by Θ, which is responsible for
the routing of samples along the tree. When a sample x ∈ X reaches a decision node it will be
routed in the left or right subtree based on the output of dn(x; Θ). In standard decision forests, dn
is binary and the routing is deterministic. Here, we consider rather a probabilistic routing, i.e. the
routing direction is the output of a Bernoulli random variable with mean dn(x; Θ). Once a sample
ends in a leaf node `, the related tree prediction is given by the class-label distribution π`. In the
case of stochastic routings, the leaf predictions will be averaged by the probability of reaching the
leaf. Accordingly, the final prediction for sample x from tree t with decision nodes parametrized

1https://github.com/dmlc/minerva

69

https://github.com/dmlc/minerva

Figure 5.4: Exemplary routing of a sample x along a tree to reach `4, using fn(x; Θ) = x>θn.
Here, µ`4 = d1(x>θ1)d̄2(x>θ2)d̄5(x>θ5)

by Θ is given by

PT [y|x,Θ,π] =
∑
`∈L

π`yµ`(x|Θ) (5.1)

where π = (π`)`∈L and π`y denotes the probability of a sample reaching leaf ` to take on class y,
while µ`(x|Θ) is regarded as the routing function that provides the probability that sample x will
reach leaf `. Clearly, ∑

`

µ`(x|Θ) = 1

for all x ∈ X .
In order to provide an explicit form to the routing function we introduce the following binary

relations that depend on the tree’s structure: `↙ n, which is true if ` belongs to the left subtree of
node n, and n ↘ `, which is true if ` belongs to the right subtree of node n. We can now exploit
these relations to express µ` as follows:

µ`(x|Θ) =
∏
n∈N

dn(x|Θ)1`↙n d̄n(x|Θ)1n↘` , (5.2)

where
d̄n(x|Θ) = 1− dn(x|Θ) ,

and 1P is an indicator function for the truth value of P . Although the product in (5.2) runs over all
nodes, only decision nodes along the path from the root node to the leaf ` contribute to µ`, because
for all other nodes 1`↙n and 1n↘` will be both 0 (see Fig 5.4 for an illustration).2

2we assume 00 = 1.

70

Decision nodes For the remainer of the chapter, We consider decision functions delivering a
stochastic routing with decision functions being defined as follow:

dn(·; Θ) = σ ◦ fn(·; Θ) , (5.3)

where
σ(x) = (1 + e−x)−1

is the sigmoid function, and fn(·; Θ) : X → R is a real-valued function depending on the sample
and the parametrization Θ. Further details about the functions fn can be found in Section 5.2.4,
but intuitively depending on how we choose these functions we can model trees having shallow
decisions (e.g. such as in oblique forests [55]) as well as deep ones.

Forests of decision trees. A forest is an ensemble of decision trees F = {T1, . . . , Tk}, which
delivers a prediction for a sample x by averaging the output of each tree, i.e.

PF [y|x] =
1

k

k∑
k=1

PTk [y|x] , (5.4)

where we omitted the trees’ parameters for notational convenience.

5.2.3 Learning backpropagation trees
Learning a decision tree modeled as in Section 5.2.2 requires estimating both the decision node’s
parametrization Θ and the leaf predictions π. For this estimation we adhere to the minimum
empirical risk principle with respect to a training set T ⊂ X × Y under log-loss, i.e. we search
for the minimizers of the following risk term:

R(Θ,π; T) =
1

|T |
∑

(x,y)∈T

L(Θ,π;x, y) , (5.5)

where L(Θ,π;x, y) is the log-loss term for the training sample (x, y) ∈ T , which given by

L(Θ,π;x, y) = − log(PT [y|x,Θ,π]) ,

and PT is defined as in (5.1).
We consider a two-step optimization strategy, where we alternate updates of Θ with updates

of π in a way to minimize (5.5). The next two subsections describe the two update steps, while
subsection 5.2.4

Learning Decision Nodes

All decision functions depend on a common parameter Θ, which in turn parametrizes each function
fn in (5.3). Since we made no assumption thus far about the very nature of the functions fn, the
optimization of the risk with respect to Θ, assuming π fixed, could be in general a difficult and
large-scale optimization problem. As an example, Θ could absorb all the parameters of a deep
neural network having fn as one of its output units. For this reason, we will employ a Stochastic

71

Gradient Descent (SGD) approach to minimize the risk with respect to Θ, as usually done in the
context of deep neural networks:

Θ(t+1) = Θ(t) − η∂R
∂Θ

(Θ(t),π;B)

= Θ(t) − η

|B|
∑

(x,y)∈B

∂L

∂Θ
(Θ(t),π;x, y)

(5.6)

where 0 < η is the learning rate and B ⊆ T is a random subset (a.k.a. mini-batch) of samples
from the training set. Although we do not show it, we consider also an additional momentum term
to smooth the variations of the gradient term.

The gradient term with respect to L can be decomposed by the chain rule in

∂L

∂Θ
(Θ,π;x, y) =

∑
n∈N

∂L(Θ,π;x, y)

∂fn(x; Θ)

∂fn(x; Θ)

∂Θ
. (5.7)

Here, the gradient term that depends on the decision tree is given by

∂L(Θ,π;x, y)

∂fn(x; Θ)
= dn(x; Θ)Anr − d̄n(x; Θ)Anl , (5.8)

where nl and nr indicate the left and right child of node n, respectively, and

Am =

∑
`∈Lm π`yµ`(x|Θ)

PT [y|x,Θ,π]
,

Here, Lm ⊆ L denotes the subset of leaves of the subtree rooted inm. Detailed derivations of (5.8)
can be found in the Appendix. Moreover, we describe in Section 5.2.4 how it can be efficiently
computed with a single pass through the tree.

As a final remark, we considered also an alternative optimization procedure to SGD, namely
Resilient Back-Propagation [86], which automatically adapts a specific learning rate for each pa-
rameter based on the sign change of its risk partial derivative over the last iteration.

Learning prediction nodes

We consider the problem of minimizing (5.5) with respect to π when Θ is fixed, i.e.

min
π
R(Θ,π; T) . (5.9)

This is a convex optimization problem and a global solution can be easily recovered. A similar
problem has already been encountered in the context of decision trees in [88], but at the level of a
single node. In our case, however, the whole tree is taken into account, for we jointly estimate all
the leaf predictions.

In order to compute a global minimizer of (5.9) we propose the following iterative scheme:

π
(t+1)
`y =

1

Z
(t)
`

∑
(x,y′)∈T

1y=y′ π
(t)
`y µ`(x|Θ)

PT [y|xi,Θ,π(t)]
, (5.10)

72

Figure 5.5: Schematic illustration of building blocks for representation learning (left Figure, taken
from [66]) and proposed, differentiable decision tree. In the example the fully connected layers
(+softmax) are replaced by a tree. Please note that split nodes can be attached to any part of the
network.

for all ` ∈ L and y ∈ Y , where Z(t)
` is a normalizing factor ensuring that

∑
y π`y = 1. The starting

point π(0) can be arbitrary as long as every element is positive. A typical choice is to start from
the uniform distribution in all leaves, i.e. π`y = |Y|−1. It is interesting to note that the update
rule in (5.10) is step-size free and it guarantees a strict decrease of the risk at each update until a
fixed-point is reached (see proof in supplementary material).

As opposed to the update strategy for Θ, which is based on mini-batches, we adopt an offline
learning approach to obtain a more reliable estimate of π, because suboptimal predictions in the
leaves have a strong impact on the final prediction. Moreover, we interleave the update of π with
a whole epoch of stochastic updates of Θ as described in the previous subsection.

5.2.4 Learning backpropagation forests (BPFs)
Thus far we have assumed to deal with a single decision tree. Now, we consider an ensemble of
trees F , where all trees can possibly share the same parameter Θ, but each tree can have a different
structure with a different set of decision functions (yet defined as in (5.3)), and independent leaf
predictions π.

Since each tree in the forest F has its own set of parameters π, we can update the prediction
nodes of each tree independently as described in Subsection 5.2.3, given the actual estimate of Θ.

As for Θ, instead, we randomly select a tree in F for each mini-batch and then we proceed as
detailed in Subsection 5.2.3 for the SGD update. This strategy resembles some similarities with
the way Dropout works [97], where each SGD update is potentially applied to a different network
topology, which is sampled according to a specific distribution.

During test time, as shown in (5.4), the prediction delivered by each tree is averaged to produce
the final outcome.

The BPF learning procedure

The learning procedure is summarized in Algorithm 5.2.1. We start with a random initialization of
the decision nodes’ parameter Θ and iterate the learning procedure for a pre-determined number of

73

epochs, given a training set T . At each epoch, we initially obtain an estimation of the prediction
nodes’ parameters π given the actual value of Θ by running the iterative scheme in (5.10), starting
from the uniform distribution in each leaf, i.e. π(0)

`y = |Y|−1. Then we split the training set into
a random sequence of mini-batches and we perform for each mini-batch a SGD update of Θ as in
(5.6). After each epoch we might eventually change the learning rate according to pre-determined
schedules.

More details about the computation of some tree-specific terms are given in the next section.

Algorithm 5.2.1 Learning DT by backpropagation
Require: T : training set, nEpochs

1: random initialization of Θ

2: for all i ∈ {1, . . . , nEpochs} do

3: Compute π by iterating (5.10)

4: break T into a set of random mini-batches

5: for all B: mini-batch from T do

6: Update Θ by SGD step in (5.6)

7: end for

8: end for

BPF implementation notes

Decision nodes We have defined decision functions dn in terms of real-valued functions fn(·; Θ),
which are not necessarily independent, but coupled through the shared parametrization Θ. Our
intention is to endow the tree with feature learning capabilities by letting the functions fn to be
embedded within a deep convolutional neural network with parameters Θ. In the specific, we
can regard each function fn as a linear, output unit of a deep network that will be turned into a
probabilistic routing decision by the action of dn, which embeds a sigmoid activation to obtain a
response in the [0, 1] range. Figure 5.5 reports a schematic illustration of this idea, where the units
of the output layer of a deep network is connected to the decision functions of a decision tree,
which are arranged into a hierarchy. During the forward pass, the sample produces soft activations
of the routing decisions of the tree that induce via the routing function a mixture of leaf predictions
as per (5.1).

Note finally that by assuming the functions fn(x;θn) = θ>nx linear and independent (by hav-
ing separate parametrizations), we recover a model that resembles an oblique forests [55].

Routing function µ`

The computation of the routing function can be carried out by traversing the tree once. Let> ∈ N
be the root node and for each node n ∈ N let nl and nr denote its left and right child, respectively.
We start from the root by setting µ> = 1 and for each node n ∈ N that we visit in breath-first
order we set

µnl = dn(x; Θ)µn

74

and
µnr = d̄n(x; Θ)µn .

At the end, we can read from the leaves the desired values of the routing function.

Learning Decision Nodes

The forward pass of the backpropagation algorithm precomputes the values of the routing function
µ`(x; Θ) and the value of the tree prediction PT [y|x,Θ,π] for each sample (x, y) in the mini-batch
B. The backward pass requires the computation of the gradient term in (5.8) for each sample (x, y)
in the mini-batch. This can be carried out by a single, bottom-up tree traversal. We start by setting

A` =
π`yµ`(x; Θ)

PT [y|x,Θ,π]

for each ` ∈ L. The we visit the tree in reversed breadth-first order (bottom-up). Once in a node
n ∈ N , we can compute the partial derivative in (5.8) since we can read Anl and Anr from the
children, and we set

An = Anl + Anr ,

which will be required by the parent node.

Learning Prediction Nodes

Before starting the iterations in (5.10), we precomputed µ`(x; Θ) for each ` ∈ L and for each
sample x in the training set, as detailed in Subsection 5.2.4. The iterative scheme requires few
iterations to converge to a solution with an acceptable accuracy (20 iterations were enough for all
our experiments).

5.2.5 Comparison of BPFs to conventional forest classifiers
Our experiments illustrate both the performance of back-propagation forests (BPFs) as standalone
classifiers, as well as their usefulness in improving the classification performance of an end-to-end
classification pipeline on top of a deep, convolutional neural network. To this end, we evaluate our
proposed methods on diverse datasets, covering a broad range of classification tasks (ranging from
simple binary classification of synthetically generated data up to large-scale image recognition on
the 1000-class ImageNet dataset).

We first compared BPFs against the state-of-the-art in terms of stand-alone, off-the-shelf forest
ensembles. We used the 5 datasets in [93] to compare the accuracy of backprop forests to that of
Alternating Decision Forests. For ADF, we provide results reported in their paper and we use their
maximal tree depth and forest size as an upper bound on the size of our models. Essentially, for
each of the datasets, all our trees are less deep and there are fewer of them than in the corresponding
ADF models. We used ensembles of different sizes depending on the size of the dataset and the
complexity of the learning tasks. Though all the trees are allowed to become non-balanced (which
we control via monitoring the loss in the leaves and dub flexible in what follows), the percentage
of nodes that are split at each iteration varies by the dataset - the default is around 5%. In all
cases, we use RPROP and the recommended hyper-parameters of the original publication for split

75

node parameter optimization. We reported the means and standard deviations resulting from 10
repetitions of the experiment. We have not used random subspace selection in the split nodes as
this did not yield considerable performance improvements.

G50C Letter USPS MNIST Char74k
ADF mean 18.71 3.52 5.59 2.71 16.67
ADF stdev 1.27 0.12 0.16 0.1 0.21
BPF mean 17.4 2.92 5.01 2.8 16.04
BPF stdev 1.52 0.17 0.24 0.12 0.2

Num Train Samples 50 16000 7291 60000 66707
Num Test Samples 500 4000 2007 10000 7400

Num Classes 2 26 10 10 62
Num Input dimensions 50 16 256 784 64

Tree input features 10 (random) 8 (random) 10x10 patches 15x15 patches 10 (random)
Depth 5 10 10 10 12

Flexible yes yes yes yes yes
% Increase in nodes 5% 1% 5% 5% 5%

Number of trees 50 70 100 80 200
Regularization rprop rprop rprop rprop rprop

Batch size 25 500 250 1000 1000

Table 5.2: Comparison to other forest-based classifiers

The results of this experiment are summarized in Table 5.2 The G50c dataset, used by [96],
is the smallest and deals with just a two-class problem, so training trees of depth 5 was sufficient
for this task. Each tree uses only a randomly selected set of 10 out of the 50 features. For the
26-class letter data [41] we used an ensemble of 70 trees of depth 10, 8 randomly selected features
per tree and larger batches of 500 samples. We only split 1% of the nodes. For the USPS [58] and
MNIST [71] datasets, we use randomly selected patches of sizes 10x10 and 15x15, trees of depth
10, ensembles of 100 and 80 trees and batches of 250 and 1000, respectively. Finally, since the
Char74k dataset [23] presents a more difficult 62-class problem, we allow a maximum depth of
12. We achieved high performance with a 200 tree ensemble, which is smaller than the 300 tree
ADF ensemble. Overall, we outperform ADF trees, though significant results, with p-values less
than 0.05, were obtained for the Letter, USPS and Char74k datasets.

MNIST

We used the same dataset as described in the previous section, however, this time we used a con-
volutional network architecture in conjunction with our BPF. The baseline architecture implemen-
tation uses a softmax as output layer, yielding an error of 0.9%. Using our proposed BPF on top,
we can reduce the classification error to 0.7%. The ensemble size was fixed to 10 trees, each with
a depth of 5.

76

5.3 Deep Convolutional Neural Decision Forests

5.3.1 Improving performance using DNNs + BPFs

We used the MatConvNet library [105] for building an end-to-end image classification pipeline to
test on MNIST, replacing the conventionally used softmax layer by our back-propagation forests
as classifiers. Our listed baseline results are the scores we obtained from re-running the provided
example architectures including the respective settings for optimization, hyper-parameters, e.t.c. .
Please note the positive effect on MNIST performance compared to Section 5.2.5 when spending
additional layers on representation learning.

5.3.2 ImageNet experiments

We used BackPropagation forests to improve the performance of the GoogLeNet network de-
scribed in [102]. This network has a reported error of 10.07% when using only a single model
and only the center crop for training. The starting point for our experiment was the GoogLeNet
’baseline’, implemented using the Distributed (Deep) Machine Learning Common (DMLC) li-
brary [73]3. We used just one crop and a single model. The data was scaled and centered, but no
augmentation was used. By default, the model uses 3 softmax layers at different stages of the net-
work to encourage the construction of informative features early on. Each of these softmax layers
gets their input from a fully connected (FC) layer, built on top of an Average Pool layer, which in
turn is built on top of a corresponding Concat layer. Let DC0, DC1 and DC2 be the concat layers
preceding each of the softmax layers in GoogLeNet. Let AvgPool0, AvgPool1 and AvgPool2 be
the average pool layers preceding these softmax layers. In order to avoid problems with propa-
gation of gradients given the depth of the network and in order to provide the final classification
layers with the features obtained in the early stages of the pipeline, we have also supplied DC0 as
input to AvgPool1 and AvgPool2 and DC1 as input to AvgPool2. We call this network ’Base2’ and
its Top5 error is 10.02%.

To achieve higher performance, we follow the same procedure as before (and simply replace
all softmax layers with a BPF), obtaining a structure which we call the BeefNet. As in the previous
experiments, the BPF layers have one neuron fused with every node of every tree in the ensemble.
These tree neurons have inputs from all the nodes of the previous layers. For this experiment,
each BPF layer uses an ensemble of 10 trees and each tree is a balanced depth 15 tree. BeefNet
obtained a test performance on the validation data of 7.84%, which is notable since we are using a
single crop and a single model only. Please mind that the only difference to ’Base2’ is installing
our BPF forests. We offer more details concerning the Base2 and BeefNet architecture in the
supplementary material. We have not used regularization, subspace selection of dropout for this
network, this being subject of future research, as is the use of additional crops and models.

In this chapter we have shown how to model and train stochastic, differentiable decision trees
and enriched them with the ability to account for representation learning, akin to (deep) convo-
lutional neural networks. Prevailing approaches for decision tree training typically operate in a
greedy and local (mostly split node-specific) way, making it impossible to be used for represen-
tation learning. To overcome this problem, we presented a way to support stochastic routing in

3https://github.com/dmlc/cxxnet.git

77

decision trees and performing split node parameter learning via back-propagation. Moreover, we
introduced a globally optimal procedure for learning leaf node prediction parameters, i.e. we
populate leaf nodes with their optimal predictors, given the state of the network and all available
training data. We have successfully validated our new decision forest model as stand-alone classi-
fier on standard machine learning datasets. Finally, integrating our new decision tree/forest model
as classifier in the publicly available implementation of the GoogLeNet deep network architecture
(single model setting) on ImageNet has given a Top5 error of only 7.84% without any form of data
set augmentation. There are several directions to be explored in order to gain further improvements
and more practical insights, such as using multi-network architectures and data augmentation.

78

Chapter 6

Summary
In this thesis, we have shown that it is possible to identify low-dimensional structures in complex
high-dimensional data, if such structures exist. We have leveraged these underlying structures to
construct compact interpretable models for various machine learning tasks.

We have formalized the problem of finding Informative Projections from data and constructing
ensembles of low-dimensional solvers, such that points are assigned to different solvers based on
a selection function. We have studied the properties of such ensembles and shown faster consis-
tency for an ensemble of low-dimensional k-nn classifiers than achievable with the standard k-nn
model. We have phrased informative projection retrieval as a combinatorial problem through the
computation of a matrix of point-wise loss estimators. The result of the optimization problem is
the assignment of points to the projections which can most successfully handle them. We have
also introduced several ways of solving the combinatorial problem and building the ensembles:
first, an ILP which obtains the optimal solution to the combinatorial problem, second, a two-step
convex procedure, which can also be applied iteratively, that obtains a solution through `1 norm
regularization and finally, a greedy solution which comes with optimality guarantees due to the
submodularity of the objective. As shown by our experiments, all three methods yield accurate but
compact models when the subsets of the data are separable in low-dimensional spaces.

Although our main focus is classification, the technique has also proved useful when adapted to
regression problems or clustering. In addition, we have implemented an extension which performs
active learning by leveraging low-dimensional models. We applied the set of informative projection
tools to the clinical problem of adjudicating artifacts from alerts issued by a vital sign monitoring
system. The retrieved patterns were not only deemed informative by clinicians, but also served as a
starting point for rules of filtering artifacts. We have done studies involving expert clinicians which
demonstrate that the low-dimensional models can be used to automatically classify a large part of
the samples, leaving only a handful for human annotation, resulting in a considerable decrease in
labeling effort. Also successful was the use of projections to guide data acquisition for a radiation
classification system. Our method identified several areas where more data was required to improve
the accuracy of random forest classifiers. Once the data was collected, the performance of the
system did increase considerably more than it would have with random collection.

Furthermore, we have leveraged the notion of query-specific models to improve the perfor-
mance of random forests and introduced the notion of back-propagation forests. The latter can be
coupled with deep network architectures, where each tree in the forest is associated with a different
set of learned representations and samples. Thus, we have obtained a highly accurate classification
system, improving over the the state-of-the-art in vision tasks and other ML problems.

79

Bibliography

[1] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. (NC), 9
(7):1545–1588, 1997. 5.2.1

[2] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Structured
sparsity through convex optimization. Statistical Science, 27(4):450–468, 11 2012. doi:
10.1214/12-STS394. URL http://dx.doi.org/10.1214/12-STS394. 1.3

[3] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Structured spar-
sity through convex optimization. Statistical Science, 27(4):450–468, 2012. 1.5

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. 1.5

[5] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. Society
for Industrial and Applied Mathematics (SIAM), 2001. 2.7.1

[6] Radu Berinde, Piotr Indyk, and Milan Ruzic. Practical near-optimal sparse recovery in the l1
norm. In Communication, Control, and Computing, 2008 46th Annual Allerton Conference
on, pages 198–205. IEEE, 2008. 1.5

[7] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learn-
ing. In Proceedings of the 26th Annual International Conference on Machine Learning
(ICML), pages 49–56. ACM, 2009. 3.1.1

[8] Mustafa Bilgic. Combining active learning and dynamic dimensionality reduction. In SDM,
pages 696–707, 2012. 3.1.1

[9] C. M. Bishop and M. Svensén. Bayesian hierarchical mixtures of experts. In Proc. of
Conference on Uncertainty in Artificial Intelligence, page 5764, 2003. 5.2.1

[10] Christopher M Bishop and Markus Svenskn. Bayesian hierarchical mixtures of experts. In
Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages
57–64. Morgan Kaufmann Publishers Inc., 2002. 2

[11] Christopher M Bishop and Michael E Tipping. A hierarchical latent variable model for
data visualization. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20
(3):281–293, 1998. 1.3, 1.5

[12] Avrim L. Blum and Pat Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97(12):245 – 271, 1997. ISSN 0004-3702. doi: http:
//dx.doi.org/10.1016/S0004-3702(97)00063-5. URL http://www.sciencedirect.
com/science/article/pii/S0004370297000635. Relevance. 2.1

[13] A. Bosch, A. Zisserman, and X. Muñoz. Image classification using random forests and

80

http://dx.doi.org/10.1214/12-STS394
http://www.sciencedirect.com/science/article/pii/S0004370297000635
http://www.sciencedirect.com/science/article/pii/S0004370297000635

ferns. In (ICCV), pages 1–8, 2007. 5.2.1

[14] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. 5.2.1

[15] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and
regression trees. CRC press, 1984. 2.1, 5.1

[16] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation and
recognition using structure from motion point clouds. In (ECCV), pages 44–57. 2008. 5.2.1

[17] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from in-
complete and inaccurate measurements. Communications on pure and applied mathematics,
59(8):1207–1223, 2006. 1.5

[18] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of supervised
learning in high dimensions. In (ICML), pages 96–103, 2008. 5.2.1

[19] Thomas Cover. Rates of convergence for nearest neighbor procedures. Proceedings of The
Hawaii International Conference on System Sciences, 1967. 2.5.2

[20] Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21–27, 1967. 2.5.2

[21] A. Criminisi and J. Shotton. Decision Forests in Computer Vision and Medical Image Anal-
ysis. Springer, 2013. 5.2.1

[22] Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction
tasks. In AAAI/IAAI, pages 746–751, 2005. 3.1.1

[23] T. E. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images. In
Proceedings of the International Conference on Computer Vision Theory and Applications,
Lisbon, Portugal, February 2009. 5.2.5

[24] Luc Devroye, Laszlo Gyorfi, Adam Krzyzak, and Gabor Lugosi. On the strong universal
consistency of nearest neighbor regression function estimates. The Annals of Statistics,
pages 1371–1385, 1994. 2.5.2

[25] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recogni-
tion. Springer, 1996. 2.4.5

[26] Pedro Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, 2:
187–202, 1998. 1.5

[27] Pinar Donmez, Jaime G. Carbonell, and Jeff Schneider. Efficiently learning the accuracy of
labeling sources for selective sampling. In Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages 259–268, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-495-9. doi: 10.1145/1557019.1557053.
URL http://doi.acm.org/10.1145/1557019.1557053. 3.1.1

[28] Eulanda M. Dos Santos, Robert Sabourin, and Patrick Maupin. A dynamic overproduce-
and-choose strategy for the selection of classifier ensembles. Pattern Recogn., 41:2993–
3009, October 2008. ISSN 0031-3203. doi: 10.1016/j.patcog.2008.03.027. URL http:
//dl.acm.org/citation.cfm?id=1385702.1385963. 1.5

[29] Artur Dubrawski, Saswati Ray, Peter Huggins, Simon Labov, and K Nelson. Diagnosing
machine learning-based nuclear evaluation system. In Proceedings of the IEEE NSS, 2012.

81

http://doi.acm.org/10.1145/1557019.1557053
http://dl.acm.org/citation.cfm?id=1385702.1385963
http://dl.acm.org/citation.cfm?id=1385702.1385963

3.3.1

[30] Meir Feder and Neri Merhav. Relations between entropy and error probability. IEEE Trans-
actions on Information Theory, 40(1):259–266, January 1994. doi: 10.1109/18.272494.
URL http://dx.doi.org/10.1109/18.272494. 2.4.1

[31] Andrej Karpathy Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In (CVPR), 2015. 5.2.1

[32] Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of finite mixture models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(3):381–396, 2002.
1.5

[33] Madalina Fiterau and Artur Dubrawski. Projection retrieval for classification. In Advances
in Neural Information Processing Systems 25 (NIPS), pages 3032–3040, 2012. 2.2, 6.2

[34] Madalina Fiterau and Artur Dubrawski. Projection retrieval for classification. In Advances
in Neural Information Processing Systems 25, pages 3032–3040, 2012. 1.3, 2

[35] Madalina Fiterau and Artur Dubrawski. Informative projection recovery for classification,
clustering and regression. In International Conference on Machine Learning and Applica-
tions, volume 12, 2013. 1.3, 2.1, 2.3.3, 3.1.1, 3.3.2

[36] Madalina Fiterau, Artur Dubrawski, Lujie Chen, Marilyn Hravnak, Clermont Gilles, and
Michael R. Pinsky. Automatic identification of artifacts in monitoring critically ill patients.
In Annual Congress of the European Society of Intensive Care Medicine, volume 39, page
S470, 2013. 2.1

[37] Madalina Fiterau, Artur Dubrawski, Lujie Chen, Marilyn Hravnak, Clermont Gilles, Eliezer
Bose, and Michael R. Pinsky. Artifact adjudication for vital sign step-down unit data can
be improved using active learning with low-dimensional models. In Annual Congress of the
European Society of Intensive Care Medicine, 2014. 2.1

[38] Madalina Fiterau, Artur Dubrawski, Lujie Chen, Marilyn Hravnak, Eliezer Bose, Clermont
Gilles, and Michael R. Pinsky. Archetyping artifacts in monitored noninvasive vital signs
data. In Society of Critical Care Medicine Annual Congress, 2015. 2.1

[39] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimination:
consistency properties. Technical report, DTIC Document, 1951. 2.5.2

[40] Alex A. Freitas. Comprehensible classification models: A position paper. SIGKDD Explor.
Newsl., 15(1):1–10, March 2014. ISSN 1931-0145. doi: 10.1145/2594473.2594475. URL
http://doi.acm.org/10.1145/2594473.2594475. 2

[41] Peter W. Frey and David J. Slate. Letter recognition using holland-style adaptive clas-
sifiers. Mach. Learn., 6(2):161–182, March 1991. ISSN 0885-6125. doi: 10.1023/A:
1022606404104. URL http://dx.doi.org/10.1023/A:1022606404104. 5.2.5

[42] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3):209–226, September 1977. ISSN 0098-3500. doi: 10.1145/355744.355745. URL
http://doi.acm.org/10.1145/355744.355745. 2.7.1

[43] Jozsef Fritz. Distribution-free exponential error bound for nearest neighbor pattern classifi-
cation. Information Theory, IEEE Transactions on, 21(5):552–557, 1975. 2.5.2

82

http://dx.doi.org/10.1109/18.272494
http://doi.acm.org/10.1145/2594473.2594475
http://dx.doi.org/10.1023/A:1022606404104
http://doi.acm.org/10.1145/355744.355745

[44] Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative al-
gorithm for sparse recovery with restricted isometry property. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 337–344. ACM, 2009. 1.5

[45] Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Query by committee made real. In
Advances in Neural Information Processing Systems 18 (NIPS), 2005. 3.1.1

[46] Nicholas Gisolfi, Madalina Fiterau, and Artur Dubrawski. Finding gaps in data to guide
development of a radiation threat adjudication system. In Symposium on Radiation Mea-
surements and Applications, 2014. 2.1

[47] Nicholas Gisolfi, Madalina Fiterau, and Artur Dubrawski. Finding meaningful gaps to guide
data acquisition for a radiation adjudication system. In Conference of the Association for
the Advancement of Artificial Intelligence, volume 29, 2015. 2.1

[48] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. The Journal of
Machine Learning Research, 999999:2211–2268, 2011. 1.5

[49] Pinghua Gong, Jieping Ye, and Changshui Zhang. Multi-stage multi-task feature learning.
Journal of Machine Learning Research, 14:2979–3010, 2013. 1.5

[50] Quanquan Gu, Zhenhui Li, and Jiawei Han. Joint feature selection and subspace learn-
ing, 2011. URL https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/
paper/view/2910. 1.5

[51] Yuhong Guo and Russell Greiner. Optimistic active-learning using mutual information. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI),
pages 823–829, 2007. 3.1.1

[52] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer,
2009. 5.2.1

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852,
2015. 5.2.1

[54] Xiaofei He, Deng Cai, Yuanlong Shao, Hujun Bao, and Jiawei Han. Laplacian regularized
gaussian mixture model for data clustering. IEEE Transactions on Knowledge and Data
Engineering, 2010. 1.3

[55] David Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees. Jour-
nal of Artificial Intelligence Research, 2(2):1–32, 1993. 5.2.2, 5.2.4

[56] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,
pages 417–424, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/
1553374.1553429. URL http://doi.acm.org/10.1145/1553374.1553429.
1.3

[57] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. The
Journal of Machine Learning Research, 12:3371–3412, 2011. 1.5

[58] Jonathan J. Hull. A database for handwritten text recognition research. (PAMI), 16(5):
550–554, 1994. 5.2.5

83

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/view/2910
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/view/2910
http://doi.acm.org/10.1145/1553374.1553429

[59] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79–87, 1991. 2

[60] Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. Loss-specific training of non-
parametric image restoration models: A new state of the art. In (ECCV), 2012. 5.2.1

[61] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014. 5.2.1

[62] Michael I. Jordan. Hierarchical mixtures of experts and the em algorithm. (NC), 6:181–214,
1994. 5.2.1

[63] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algo-
rithm. Neural computation, 6(2):181–214, 1994. 2

[64] P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. GeoF: Geodesic forests for learning
coupled predictors. In (CVPR), pages 65–72, 2013. 5.2.1

[65] Christine Körner and Stefan Wrobel. Multi-class ensemble-based active learning. In Jo-
hannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Proceedings of the
17th European Conference on Machine Learning (ECML), volume 4212, pages 687–694.
Springer, 2006. 3.1.1

[66] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep con-
volutional neural networks. In (NIPS), 2012. (document), 5.2.1, 5.5

[67] Sanjeev R Kulkarni and Steven E Posner. Rates of convergence of nearest neighbor esti-
mation under arbitrary sampling. Information Theory, IEEE Transactions on, 41(4):1028–
1039, 1995. 2.5.2

[68] Martin O Larsson and Johan Ugander. A concave regularization technique for sparse mix-
ture models. In Advances in Neural Information Processing Systems, pages 1890–1898,
2011. 1.3

[69] Martin HC Law and Anil K Jain. Incremental nonlinear dimensionality reduction by man-
ifold learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(3):
377–391, 2006. 1.5

[70] Neil D. Lawrence. Hierarchical gaussian process latent variable models. In In International
Conference in Machine Learning, 2007. 1.5

[71] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.
5.2.5

[72] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and AJ Smola. Pa-
rameter server for distributed machine learning. In Big Learning NIPS Workshop, 2013.
6.7.2

[73] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 583–598, Broomfield, CO, October 2014.
USENIX Association. ISBN 978-1-931971-16-4. URL https://www.usenix.org/

84

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu

conference/osdi14/technical-sessions/presentation/li_mu. 5.3.2,
6.7.2

[74] Percy Liang, Hal Daumé III, and Dan Klein. Structure compilation: trading structure for
features. In Proceedings of the 25th International Conference on Machine Learning (ICML),
pages 592–599. ACM, 2008. 3.1.1

[75] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400,
2013. 5.2.1

[76] Jun Liu, Lei Yuan, and Jieping Ye. An efficient algorithm for a class of fused lasso problems.
In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 323–332. ACM, 2010. 1.5

[77] Karim Lounici, Massimiliano Pontil, Alexandre B Tsybakov, and Sara van de Geer. Taking
advantage of sparsity in multi-task learning. arXiv preprint arXiv:0903.1468, 2009. 1.5

[78] Luis Carlos Molina, Lluı́s Belanche, and Àngela Nebot. Feature selection algorithms: A
survey and experimental evaluation. In Data Mining, 2002. ICDM 2003. Proceedings. 2002
IEEE International Conference on, pages 306–313. IEEE, 2002. 2.1

[79] A. Montillo, J. Tu, J. Shotton, J. Winn, J. E. Iglesias, D. N. Metaxas, and A. Criminisi.
Entangled forests and differentiable information gain maximization. In Decision Forests in
Computer Vision and Medical Image Analysis. 2013. 5.2.1

[80] Albert Montillo, Jamie Shotton, John Winn, Juan Eugenio Iglesias, Dimitri Metaxas, and
Antonio Criminisi. Entangled decision forests and their application for semantic segmenta-
tion of ct images. In (IPMI), pages 184–196, 2011. 5.2.1

[81] Mark A Musen, Blackford Middleton, and Robert A Greenes. Clinical decision-support
systems. In Biomedical informatics, pages 643–674. Springer, 2014. 2

[82] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for max-
imizing submodular set functionsi. Mathematical Programming, 14(1):265–294, 1978.
ISSN 0025-5610. doi: 10.1007/BF01588971. URL http://dx.doi.org/10.1007/
BF01588971. 2.3.3

[83] Barnabás Poczós and Jeff G. Schneider. On the estimation of alpha-divergences. In Proceed-
ings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 609–617, 2011. 2.4.1

[84] Hema Raghavan, Omid Madani, and Rosie Jones. Active learning with feedback on features
and instances. Journal of Machine Learning Research, 7:1655–1686, 2006. 3.1.1

[85] Parisa Rashidi and Diane J. Cook. Ask me better questions: active learning queries based
on rule induction. In Chid Apt, Joydeep Ghosh, and Padhraic Smyth, editors, KDD, pages
904–912. ACM, 2011. ISBN 978-1-4503-0813-7. 3.1.1

[86] M. Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In IEEE Conf. on Neural Networks, 1993. 5.2.3

[87] Alessandro Rinaldo. Properties and refinements of the fused lasso. The Annals of Statistics,
37(5B):2922–2952, 2009. 1.5

[88] Samuel Rota Bulò and Peter Kontschieder. Neural decision forests for semantic image

85

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/BF01588971

labelling. In (CVPR), 2014. 5.2.1, 5.2.3

[89] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 2014. doi: 10.1007/s11263-015-0816-y. 6.7

[90] Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series
A, 13(1):145–147, 1972. 2.5.1

[91] Vicki L Sauter. Decision Support Systems for business intelligence. John Wiley & Sons,
2014. 2

[92] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal com-
ponent analysis. In Artificial Neural NetworksICANN’97, pages 583–588. Springer, 1997.
1.5

[93] Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saffari, Peter M. Roth, and Horst
Bischof. Alternating decision forests. In (CVPR), 2013. 5.2.1, 5.2.5

[94] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009. 3.1.1

[95] Jamie Shotton, Ross Girshick, Andrew Fitzgibbon, Toby Sharp, Mat Cook, Mark Finocchio,
Richard Moore, Pushmeet Kohli, Antonio Criminisi, Alex Kipman, and Andrew Blake.
Efficient human pose estimation from single depth images. (PAMI), 2013. 5.2.1

[96] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point cloud: From trans-
ductive to semi-supervised learning. In (ICML), pages 824–831. ACM, 2005. 5.2.5

[97] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014. 5.2.4

[98] Nicolas Städler, Peter Bühlmann, and Sara Van De Geer. l 1-penalization for mixture re-
gression models. Test, 19(2):209–256, 2010. 1.5

[99] Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–
620, 1977. 2.5.2

[100] Alberto Suárez and James F. Lutsko. Globally optimal fuzzy decision trees for classification
and regression. (PAMI), 21(12):1297–1311, 1999. 5.2.1

[101] CE Sundberg, T Aulin, N Rydbeck, et al. The rate of convergence of k,-nn regression
estimates and classification rules. IEEE Trans. Commun, 20:429–435, 1972. 2.5.2

[102] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014. (document), 5.2.1, 5.3.2, 6.7, 6.7.1, 6.6

[103] Kai Ming Ting, Jonathan R. Wells, Swee Chuan Tan, Shyh Wei Teng, and Geoffrey I. Webb.
Feature-subspace aggregating: ensembles for stable and unstable learners. Machine Learn-
ing, 82(3):375–397, 2011. ISSN 0885-6125. URL http://dx.doi.org/10.1007/
s10994-010-5224-5. 1.5

[104] Simon Tong and Daphne Koller. Active learning for structure in bayesian networks. In

86

http://dx.doi.org/10.1007/s10994-010-5224-5
http://dx.doi.org/10.1007/s10994-010-5224-5

Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI),
pages 863–869, 2001. 3.1.1

[105] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab. CoRR,
abs/1412.4564, 2014. 5.2.1, 5.3.1

[106] Terry J Wagner. Convergence of the nearest neighbor rule. Information Theory, IEEE
Transactions on, 17(5):566–571, 1971. 2.5.2

[107] Yong Wang, Yuan Jiang, Yi Wu, and Zhi-Hua Zhou. Spectral clustering on multiple mani-
folds. Neural Networks, IEEE Transactions on, 22(7):1149–1161, 2011. 1.5

[108] Liyang Wei, Yongyi Yang, and Robert M. Nishikawa. Microcalcification classifica-
tion assisted by content-based image retrieval for breast cancer diagnosis. Pattern
Recognition, 42(6):1126 – 1132, 2009. ISSN 0031-3203. doi: http://dx.doi.org/10.
1016/j.patcog.2008.08.028. URL http://www.sciencedirect.com/science/
article/pii/S0031320308003415. Digital Image Processing and Pattern Recog-
nition Techniques for the Detection of Cancer. 2

[109] D. Yu and L. Deng. Automatic Speech Recognition: A Deep Learning Approach. Springer,
2014. 5.2.1

[110] Lei Yuan, Jun Liu, and Jieping Ye. Efficient methods for overlapping group lasso. 2013. 1.5

[111] Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization. The Jour-
nal of Machine Learning Research, 11:1081–1107, 2010. 1.5

87

http://www.sciencedirect.com/science/article/pii/S0031320308003415
http://www.sciencedirect.com/science/article/pii/S0031320308003415

Appendix A

6.1 RIPR results on artificial data for supervised classification
Table 6.2 shows the classification accuracy for the standard RECIP method obtained for synthetic
data. As expected, the observed performance is initially high when there are few known informa-
tive projections in data and it decreases noise and ambiguity of the injected patterns increase.

Most types of ensemble learners would use a voting scheme to arrive at final classification of a
testing sample, rather than use a model selection scheme. For this reason, we have also compared
predictive accuracy revealed by RECIP against a method based on majority voting among multiple
candidate subspaces. Table ?? shows that the accuracy of this technique is lower than the accuracy
of RECIP, regardless of whether the informative projections are recovered by the algorithm or
assumed to be known a priori. This confirms the intuition that a selection-based approach can be
more effective than voting for data which satisfies the subspace separability assumption.

For reference, we have also classified the synthetic data using K-Nearest-Neighbors algorithm
using all available features at once. The results of that experiment are shown in Table ??. Since
RECIP uses neighbor information, K-NN is conceptually the closest among the popular alterna-
tives. Compared to RECIP, K-NN performs worse when there are fewer synthetic patterns injected
in data to form informative projections. It is because some features used then by K-NN are noisy.
As more features become informative, the K-NN accuracy improves. This example shows the ben-
efit of a selective approach to feature space and using a subset of the most explanatory projections
to support not only explanatory analyses but also classification tasks in such circumstances.

6.2 RIPR results on artificial data for semi-supervised classifi-
cation

To evaluate RIPR semi-supervised classification, we use the same type of synthetic data as in [33],
but we obscure some labels before training to see if the projection recovery performance is main-
tained. The synthetic data for this section contains P = 2 informative projections and M = 10
features. Every projection has N = 1, 000 data points which it can classify. There are also R noisy
data points that cannot be classified by any projection; this parameter varies between experiments.
Also variable is the proportion of unlabeled data. We start with fully labeled data, then for every u
points in the training set we obscure one label, so for smaller u, the larger proportion of unlabeled
data, and the harder the task.

Table 6.3 summarizes the accuracy of RIPR for semi-supervised classification using k-NN
models on each of the projections. We call this method Ripped k-NN. We have included the

88

Table 6.1: Projection Recovery for Artificial Datasets with 1 . . . 7 informative features and noise
level 0 . . . 0.2 in terms of mean and variance of Precision and Recall. Mean/var obtained for each
setting by repeating the experiment with datasets with different informative projections.

PRECISION
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 1 1 1 0.9286 0.9286 0 0 0 0.0306 0.0306
2 1 1 1 1 1 0 0 0 0 0
3 1 1 1 1 1 0 0 0 0 0
4 1 1 1 1 1 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0

RECALL
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 0 0 0 0 0
3 1 1 0.9524 0.9524 1 0 0 0.0136 0.0136 0
4 0.9643 0.9643 0.9643 0.9643 0.9286 0.0077 0.0077 0.0077 0.0077 0.0128
5 0.7714 0.7429 0.8286 0.8571 0.7714 0.0163 0.0196 0.0049 0.0082 0.0278
6 0.6429 0.6905 0.6905 0.6905 0.6905 0.0113 0.0113 0.0272 0.0113 0.0113
7 0.6327 0.5918 0.5918 0.5714 0.551 0.0225 0.02 0.0258 0.0233 0.02

performance of a k-NN model trained using all features. As expected, RIPR outperforms the high-
dimensional model. Even though noise impacts RIPR performance, our technique performs better
than k-NN even for R = 1, 000. This improvement is not limited to k-NN classifiers: Similar
results are obtained when comparing SVM regressors to their Ripped version. RIPR achieves very
good precision and recall for all values of R, despite the noise and unlabeled data.

6.3 Active RIPR case study: Artifact Detection from Partially-
Observed Vital Signals of Intensive Care Unit Patients

A feature of the RIPR algorithm is its tolerance to missing data. For a data point x, the values of the
loss estimators are set to∞ for all projections that involve missing values for x. This ensures that
data tends to be explained using projections that have a full description for it, while projections with
some missigness are not prefereable though not ignored. This new capability expands practical
applicability of RIPR. The set of relevant examples includes a medical informatics application.

Recovery of meaningful, explainable models is fundamental for the clinical decision-making
process. We work with a cardio-respiratory monitoring system designed to process multiple vital
signs indicative of the current health status of a patient. The system issues an alert whenever
some form of instability requires attention. In practice, a substantial fraction of these alerts are not
due to real emergencies (true alerts), but instead are triggered by malfunctions or inaccuracies of
the sensing equipment (artifacts). Each system-generated alert is associated with a vital sign that

89

Table 6.2: RECIP Classification Accuracy on Artificial Data
CLASSIFICATION ACCURACY

Mean Variance
0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2

1 0.9751 0.9731 0.9686 0.9543 0.9420 0.0000 0.0000 0.0000 0.0008 0.0007
2 0.9333 0.9297 0.9227 0.9067 0.8946 0.0001 0.0001 0.0001 0.0001 0.0001
3 0.9053 0.8967 0.8764 0.8640 0.8618 0.0004 0.0005 0.0016 0.0028 0.0007
4 0.8725 0.8685 0.8589 0.8454 0.8187 0.0020 0.0020 0.0019 0.0025 0.0032
5 0.8113 0.8009 0.8105 0.8105 0.7782 0.0042 0.0044 0.0033 0.0036 0.0044
6 0.7655 0.7739 0.7669 0.7632 0.7511 0.0025 0.0021 0.0026 0.0025 0.0027
7 0.7534 0.7399 0.7347 0.7278 0.7205 0.0034 0.0040 0.0042 0.0042 0.0045

CLASSIFICATION ACCURACY - KNOWN PROJECTIONS
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 0.9751 0.9731 0.9686 0.9637 0.9514 0.0000 0.0000 0.0000 0.0001 0.0000
2 0.9333 0.9297 0.9227 0.9067 0.8946 0.0001 0.0001 0.0001 0.0001 0.0001
3 0.9053 0.8967 0.8914 0.8777 0.8618 0.0004 0.0005 0.0005 0.0007 0.0007
4 0.8820 0.8781 0.8657 0.8541 0.8331 0.0011 0.0011 0.0014 0.0014 0.0020
5 0.8714 0.8641 0.8523 0.8429 0.8209 0.0015 0.0015 0.0018 0.0019 0.0023
6 0.8566 0.8497 0.8377 0.8285 0.8074 0.0014 0.0015 0.0016 0.0023 0.0021
7 0.8429 0.8371 0.8256 0.8122 0.7988 0.0015 0.0018 0.0018 0.0021 0.0020

Table 6.3: Accuracy of semi-supervised RIPR on synthetic data compared to a k-NN model on all
features and projection recovery.

no u u=7 u=5 u=3 no u u=7 u=5 u=3
R Accuracy RIPR SSC Accuracy k-NN
0 0.928 0.931 0.918 0.928 0.722 0.713 0.714 0.707
30 0.923 0.919 0.931 0.928 0.726 0.724 0.717 0.714
50 0.904 0.896 0.898 0.886 0.726 0.701 0.701 0.699
100 0.893 0.882 0.878 0.877 0.717 0.711 0.698 0.715
1000 0.688 0.687 0.693 0.705 0.627 0.621 0.612 0.607

initiated it: either heart rate (HR), respiratory rate (RR), blood pressure (BP), or peripheral arterial
oxygen saturation (SpO2). Here, we show as an example the analysis of respiratory rate alerts, i.e.
we consider episodes when this vital sign was the first to exceed its control limits, triggering an
alert. A modest subset of data was manually reviewed and labeled by clinicians, and true alerts
were distinguished from apparent artifacts. Our aim was to learn an artifact-identification model
and to apply it to data not yet labeled. The objective was to identify artifact alerts that can be
dismissed on-the-fly to reduce the impact of alert fatigue among medical personnel and to enable
improvements of the quality of care. We extracted multiple temporal features for each vital sign
independently over duration of each alert and a window of 4 minutes preceding its onset. These
features included metrics of data density, as well as common moving-window statistics computed
for each of the vital timeseries.

Figure 6.1 shows the RIPR semi-supervised classification model obtained for the RR artifact
detection. The features used are the data densities for HR, RR and SpO2 and the minimum value
of RR over a time window of observation. These retrieved models are consistent with the intuition
of seasoned clinicians. The accuracy of the model is 97.8%, precision and recall for genuine

90

Figure 6.1: RIPR for Respiratory Rate alerts. Artifacts: Blue circles. True instability: Red trian-
gles.

alert recovery are 97.9% and 99.1% respectively, all computed with leave-one-out cross-validation.
Some instances were classified by the system as artifacts while domain experts initially considered
them to be true alerts. Yet, on a closer visual inspection made possible by the low-dimensional
RIPR projections, they were found to exhibit artifact-like characteristics. Further validation shown
these instances to be labeled incorrectly in the original data.

Comparison of ActiveRIPR scoring functions on artificial data

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Percentage of data used in training

A
cc

u
ra

cy
 (

av
er

ag
ed

 o
ve

r
20

 r
u

n
s)

Learning curves for uniform noise

Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy

Figure 6.2: ActiveRIPR on artificial data with uniform noise.

At each iteration, a batch of 30 training data points is selected for expert labeling. We track the
accuracy of the models at each iteration using hold-out test data. For this setup, model-conforming
points will improve the model accuracy when selected for labeling. Each can be classified correctly
using one of the informative projections, and thus the placement of the low losses they incur
pinpoints the appropriate set of projections. On the other hand, non-conforming (noisy) data do
not follow this pattern and tend to confuse the model as their labels are random. In view of this,
we consider a baseline strategy of requesting labels for conforming points first. Clearly, for non-
artificial data we would not be able to apply this since we would have no prior knowledge of which

91

data have noisy labels, but this baseline is an indicator of the upper limits of performance. When
noise is distributed uniformly, this strategy is optimal, since all the samples that are labeled can
actually be useful to the model.

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Percentage of data used in training

A
cc

ur
ac

y
(a

ve
ra

ge
d

ov
er

 2
0

ru
ns

)

Learning curves for compact noise

Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy

Figure 6.3: ActiveRIPR on artificial data with compact noise.

Figure 6.2 shows learning curves for ActiveRIPR using different scoring functions when the
non-conforming points in the artificial data are distributed uniformly. All methods rebuild RIPR
models from scratch after each batch of data is labeled. We do this to mitigate any model bias from
previous iterations. The results confirm our intuition about the noisy samples: we can see that as
long as model-conforming data is available for labeling, the baseline performs, overall, slightly
better than the rest, while its performance saturates once only noisy data is available. Sampling by
low conditional entropy and information gain perform well. Uncertainty sampling seems to pick
out the non-conforming samples, unhelpful to the models.

It is apparent that little improvement can be brought to this type of data if the noise is distributed
randomly. In fact, random sample selection does not perform significantly worse than either of the
sampling methods used by ActiveRIPR. We now turn our attention to the case when the noise
is distributed in more compact areas of the feature space. This time, the scoring functions we
previously introduced prove useful, as shown in Figure 6.3. We keep the same baseline as in the
previous experiment: the model-conforming samples are to be selected first. However, for compact
noise, this strategy is no longer optimal as the model-conforming samples differ in their proximity
to, or overlap with, the noisy part of the feature space. Although using model-conforming data
helps briefly at first, the baseline is soon outperformed by information gain and low conditional
entropy-based selection. On the other hand, uncertainty sampling performs poorly and query by
committee is also not competitive.

These results are averaged over twenty executions of the algorithm with the same generated
data, but with different starting samples. It turns out that the steepness of the curve differs con-
siderably depending on the starting sample. For this reason, it is difficult to establish confidence
bounds on accuracy with respect to data permutations. As a reminder, our algorithm is determin-
istic once the initial sample is set as this best answers the needs of our application. Nevertheless,
we can determine whether the relative performance of the scoring techniques is consistent. We

92

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Percentage of data used in training

−l
o

g
10

(p
va

lu
e)

 q
u

an
ti

fy
in

g
 w

in
/lo

ss

Information Gain vs other contenders

Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy
Significance Threshold

Figure 6.4: ActiveRIPR comparison significance for Information Gain scoring against other con-
tenders. Significant wins/losses are above/below the red dash coresponding to a p-value of 0.05.
Artificial data with compact noise.

perform paired t-tests for pair-wise comparison between alternative methods, after each batch of
training data. Thus, at each active learning iteration, for any scoring function s0 and any of its
competitors s0̄, we obtain a p-value indicating the significance of the win/loss of s0 over s0̄.

For each considered method, we plot the negative decimal logarithm of the p-value in a win/loss
graph, such as the one shown in Figure 6.4 for the InfoGain scoring method. Each line corresponds
to a set of p-values obtained when comparing InfoGain to another contender. The p-value in the
case of a win – i.e. when InfoGain outperforms the contender – is placed in the positive interval
of the y-axis. On the other hand, if the method loses, the p-value is reversed. The two dashed
lines distinguish significant wins/losses from insignificant ones. The top dashed line corresponds
to y = − log10(0.05), whereas the bottom one corresponds to y = log10(0.05). Thus, anything
above the top line is a significant win, anything between the dashed lines is not significant, and
anything below the bottom line shows a significant loss. Also, we are mainly interested in signifi-
cant results in the first and the middle part of the x-axis. In the first few iterations, we do not expect
considerable difference between scoring functions since the initial sample is the same. With more
iterations, the well performing scoring methods may achieve significant wins. Finally, when all
useful data is labeled, all methods begin to converge to the same accuracy, typically with no sig-
nificant wins/losses. The plot for InfoGain scoring in Figure 6.4, for compact noise artificial data,
shows that InfoGain obtains significant wins over all other methods. For conditional entropy-based
scoring this only starts after 50% of the data has been labeled. For all other scoring functions, this
begins to happen after only 20% of the data has been requested for labeling.

Figure 6.5 displays the win/loss graphs for the other scoring functions. We may conclude that
uncertainty scoring loses consistently against other methods until after 60% of the data has been
labeled, that query-by-committee has no significant wins and that the baseline is outperformed by
both InfoGain and LowCondEntropy. In fact, LowCondEntropy seems the second-best perfomer
after InfoGain in terms of significant wins, while being the cheapest to compute.

93

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Percentage of data used in training

−l
o

g
10

(p
va

lu
e)

 q
u

an
ti

fy
in

g
 w

in
/lo

ss

Baseline vs other contenders

 Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy
Significance Threshold

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Percentage of points used in training

−l
o

g
10

(p
va

lu
e)

 q
u

an
ti

fy
in

g
 w

in
/lo

ss

Uncertainty vs other contenders

Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy
Significance Threshold

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Percentage of data used in training

−l
o

g
10

(p
va

lu
e)

 q
u

an
ti

fy
in

g
 w

in
/lo

ss

Query by Committtee vs other contenders

Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy
Significance Threshold

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Percentage of data used in training

−l
o

g
10

(p
va

lu
e)

 q
u

an
ti

fy
in

g
 w

in
/lo

ss

Low Conditional Entropy vs other contenders

Baseline
Uncertainty
Query by Committtee
Information Gain
Low Conditional Entropy
Significance Threshold

Figure 6.5: ActiveRIPR comparison significance for the baseline (top left), uncertainty (top right),
query-by-committee (bottom left) and conditional entropy (bottom right) scoring against their re-
spective contenders. Significant wins/losses are above/below the red dash coresponding to a p-
value of 0.05. Artificial data with compact noise.

The computational efficiency of InfoGain with ActiveRIPR has a linear (not a high-order) de-
pendency on the InfoGain selection because the training and sample selection are performed se-
quentially. Moreover, only features selected by RIPR are used by the InfoGain selection, making
the procedure less time-consuming than computing information gain over the full-dimensional
space.

94

Appendix B

6.4 Summary of SDU data

6.5 Features derived from vital sign time-series

95

Table 6.4: Summary of step-down unit (SDU) patients, monitoring and annotation outcome of
alerts.

Training and Validation Set
N=279 patients; 294 admissions

Patients
Total 279
% male (n %) 180 (58.4%)
Age (mean years ± SD) 57.42 ± 20.2
Race (N %)

White 221 (71.8%)
Black 43(14%)
Other 44(14.3%)

Charlson Deyo Index (mean ± SD) 0.94 + 1.45
SDU length of stay (mean days ± SD) 4.70 ± 4.21
Hospital length of stay (mean days ± SD 9.17 ± 9.8
Monitoring
Total monitoring hours 22,980
Mean hours per patient 82
Median hours per patient 62
Raw VA alerts (Alerts without a continuity or persistence re-
quirement)
Total 271,288
Total by subtype

HR 11,952 (4%)
RR 101,589 (38%)
SpO2 61,242 (23%)
Systolic BP 54,679 (20%)
Diastolic BP 41,826 (15%)

Vital sign alert events (VSAE; at least 2 consecutive alerts 40s of
each other constitute the same event)
Total 38,286
Total by subtype

HR 2,308 (6%)
RR 24,477(63%)
SpO2 11,353(30%)
BP * 148(1%)

Vital sign alert event epochs (VSAE with additional persistence
requirement, length ≥ 180 s, duty cycle ≥ 60%)
Total 1,582
Total by subtype

HR 149(9%)
RR 700 (44%)
SpO2 585 (37%)
BP* 148 (10%)

Vital sign alert events with additional persistence requirement
annotated by experts
Total 576
Total by subtype

Real 418
Artifact 158

Real alerts by subtype
HR 60
RR 132
SpO2 181
BP 45

Artifact by subtype
HR 0
RR 25
SpO2 93
BP 40

96

Table 6.5: List of feature categories, the aspect of the vital signs signals those features were meant
to capture, and the feature names and descriptions.
Feature
Cate-
gory

Aspect of
VS Signals
Features
Meant to
Capture

Feature Name Feature Description

Mean mean
Sd standard deviation
Cv coefficiency of variance (sd /mean)
Mad median of absolute deviation from median [median (abs(x-abs(x))]

Basic Basic profile N number of data points within alert period
statistics of the alert Min min value

Max max value
Median median
Range max-min
range ratio range/median
data den number of valid data points /length of alert period
data den trail trailing data density at the beginning of alert, i.e. for 15 min before the start

of alert [# data points/(timestamp for last data point - timestamp for first
data point)]

Data
density

Sparseness
of signals

data den trail2 trailing data density at the beginning of alert
i.e. for 15 min before the start of alert
[# data points/(15*60)]

delta t time elapsed since the end of last chunk of data before alert start
max gap max gap between data points (also indicator of data density)

Spectrum Frequency spec ratio power of high frequency/lower frequency
features and power max spec max power frequency

delta mean difference of mean (current alert period vs. 4 mins before start of alert)
delta sd difference of sd (current alert period vs. 4 mins before start of alert)
MW stat statistics from Wilcox test to compare distribution within alert period and

those from 4 mins before
Change
of VS
in current

MW pvalue pvalue from wilcox test to compare distribution within alert period and those
from 4 mins before

Change
features

alert period
from period

KS stat statistics from Kolmogorov-Smirnov test to compare distribution within
alert period and those from 4 mins before

immediately
before alert

KS pvalue pvalue from Kolmogorov-Smirnov test to compare distribution within alert
period and those from 4 mins before

t stat statistics from t test to compare mean within alert period and those from
4 mins before

t pvalue pvalue from t test to compare mean within alert period and those from 4 mins
before

F stat statistics from F test to compare sd within alert period and those from 4 mins
before

F pvalue pvalue from F test to compare sd within alert period and those from 4 mins
before

Slope linear slope during alert period
Rslope robust slope during alert period
slope1 slope for the period before change point
slope2 slope for the period after change point
num breakpoint number of break points detected
diff1 max max first order difference
diff1 min min first order difference
max grad max of slope for a series of moving window during alert period

Variance Signal min grad min of slope for a series of moving window during alert period
features smoothness quad rsq rsquared from a quadratic fitting

quad coef1 first order coefficient of quadratic fitting
quad coef2 2nd order coefficient of quadratic fitting
quad resvar variance of residuals from quadratic fitting
osi up number of uptick (subject to certain threshold in both time and variable)

within alert period
osi down number of down tick (subject to certain threshold in both time and variable)

within alert period
osi ratio ratio of osi uTap/(osi up+osi down)

97

Appendix C

6.6 Derivation for the gradient term in (5.8)

∂L(Θ,π;x, y)

∂fn(x; Θ)
=
∑
`∈L

∂L(Θ,π;x, y)

∂µ`(x; Θ)

∂µ`(x; Θ)

∂fn(x; Θ)

= −
∑
`∈L

π`y
PT [y|x,Θ,π]

∂µ`(x; Θ)

∂fn(x; Θ)

= −
∑
`∈L

π`yµ`(x; Θ)

PT [y|x,Θ,π]

∂ log µ`(x; Θ)

∂fn(x; Θ)
,

where

∂ log µ`(x; Θ)

∂fn(x; Θ)
= 1`↙n

∂ log dn(x; Θ)

∂fn(x; Θ)

+ 1n↘`
∂ log d̄n(x; Θ)

∂fn(x; Θ)

= 1`↙nd̄n(x; Θ)− 1n↘`dn(x; Θ) .

By substituting the latter in the previous formula we get

∂L(Θ,π;x, y)

∂fn(x; Θ)
= −

∑
`∈L

1`↙n
π`yµ`(x; Θ)

PT [y|x,Θ,π]
d̄n(x; Θ)

+
∑
`∈L

1n↘`
π`yµ`(x; Θ)

PT [y|x,Θ,π]
dn(x; Θ)

= −
∑
`∈Lnl

π`yµ`(x; Θ)

PT [y|x,Θ,π]
d̄n(x; Θ)

+
∑
`∈Lnr

π`yµ`(x; Θ)

PT [y|x,Θ,π]
dn(x; Θ)

= dn(x; Θ)Anr − d̄n(x; Θ)Anl .

98

6.7 Details of ImageNet experiment
This section provides additional description of the ImageNet dataset [89] and the changes we made
to GoogLeNet [102] to obtain our proposed architecture using back-propagation forests (BPF). In
addition, we provide more detailed analyses about our model by e.g. visualizing statistics about
split node decision evolution or error plots, both as a function of training epochs.

6.7.1 ImageNet Dataset
Originally, ImageNet was designed for large-scale image recognition, i.e. images were annotated
with a single ground truth label and have to be classified into one of 1000 target object categories.
The dataset consists of approximately 1.2M training images, 50.000 validation images and 100.000
test images with average dimensionality of 482x415 pixels. Training and validation data is pub-
licly available and we followed the commonly agreed protocol, using validation data for testing
and therefore as a proxy for the official (but non-available) test data set. Since categorization to
a single ground-truth label might be too restrictive (an image might contain different object cat-
egories resulting in label-ambiguity), the Top5-Error is used as evaluation metric. Consequently,
the classification result for a test image is considered successful if the ground truth label is among
5 possible predictions provided by the classifier. The GoogLeNet architecture we have used as
basis for our experiments (see left illustration in Fig. 6.6) has a reported Top5-Error of 10.07%,
when used in a single-model, single-crop setting (see first row in Table 3 in [102]). We adhere to
this setting, i.e. all further presented scores are produced in a single-model, single-crop setup.

6.7.2 The BeefNet Architecture
Figure 6.6 (right illustration) shows that we have introduced two different modifications with re-
spect to the original GoogLeNet architecture. First, we have connected the outputs of the Depth-
Concat layers to the inputs of the AveragePool layers (as described in the main submission), visu-
alized by red arrows in the plot. The resulting, modified baseline network is dubbed ’Base2’ and
achieves a Top5-Error of 10.02% when using conventional SoftMaxLoss layers as in the original
network. The implementation yielding this score was realized in the Distributed (Deep) Machine
Learning Common (DMLC) library [72, 73]1, using resized images with dimensionality 100x100
as described in [72]. The training used the standard settings for GoogLeNet, stochastic gradient
descent with 0.9 momentum, fixed learning rate schedule, decreasing the learning rate by 4% every
8 epochs. We trained ’Base2’ with minibatches composed of 50 images.

In order to obtain a Deep Convolutional Neural Decision Forest model, we have replaced each
SoftMaxLoss-layer from ’Base2’ with a forest consisting of 10 trees, resulting in a total number of
30 trees. For our architecture, which we implemented in DMLC as well, we trained the network
for 1000 epochs using minibatches composed of 100.000 images. This is feasible due to massive
distribution of the computational load to a cluster of 52 CPUs and 12 hosts, where each host is
equipped with a NVIDIA Tesla K40 GPU.

We term the resulting BackPropagation forests as BPF0, BPF1 and BPF2, where BPF0 is closest
to the input layer and BPF2 is the final (last) layer in the architecture. Each tree is a balanced and

1https://github.com/dmlc/cxxnet.git

99

fixed depth 15 tree, which means that the total number of split nodes is 215 − 1 = 32.767 and the
number of leaf nodes is 215 = 32.768.

The way we have actually realized the individual forests is illustrated in Fig. ?? and described
next: We use a standard fully connected (or inner-product) layer FC to model functions fn(·; Θ)
described in Equation (3) of the main submission. For BeefNet, each fn receives as input 500 ran-
domly selected output dimensions of the respectively preceding layers in Base2 (or GoogLeNet).
In such a way, a single FC layer can be defined that provides all the split node inputs for one
back-propagation forest (a total number of #trees × #split nodes/tree). Next, each of the resulting
split function inputs is passed through a sigmoid layer such that dn(x) = σ(fn(x)). Using only a
randomly selected subset for generating the split node inputs fn reduces computational load and
helps to improve decorrelation of trees. Another strategy aiming for tree decorrelation is related to
bagging and defines how we actually update the individual tree parameters: During training, each
minibatch is only forwarded to a single tree per forest. We keep a simple strategy and update trees
in a sequential fashion, using the randomly compiled minibatches. In such a way, each tree will
only be updated based on a subset of all samples and we only have to compute the gradients for
a single tree at a time, which helps to reduce computational load for both, forward and backward
passes.

At this place we would like to correct the description of the main paper and clarify that dropout
was integrated between the two fully connected layers preceding BPF0 and BPF1 and also before
the fully connected layer of BPF2. Dropout was also present in the two baselines at the same levels
of the network. As a final remark on Fig. ?? we want to mention that the assignment of the FC
output units to the split nodes can be chosen arbitrarily since the actual hierarchy of the trees is
constructed when the µ`(x|·) quantities (Equation (2) of main submission) are computed.

Regarding the posterior learning, we only update the leaf node predictions for the tree where
we also compute the gradients for the split node updates, i.e. the tree which was selected for the
minibatch feedforward-pass. In order to improve computational efficiency, we considered only the
samples of the current minibatch for posterior learning, while all the training data could be used
in principle. However, since each of our minibatches is composed of 100.000 samples, we can
approximate the training set sufficiently well while simultaneously introducing a positive, regular-
izing effect.

6.7.3 Evaluation of split nodes
Next, we provide insights on some of the operational characteristics of our model. Intuitively, a
tree-structured classifier follows the divide-and-conquer principle and aims to produce ’pure’ leaf
node distributions. This means that our training task is to partition the input space such that we
improve on the predictions about the training samples, which happens when the input space is split
in a way that it correlates with classes.

We can partially monitor this behavior by analyzing the split node responses (their outputs),
which inform us about the routing uncertainties for a given sample x as it traverses the tree(s).
In Figure 6.7 we show histograms of all available split node outputs of our three forests for all
samples of the validation set after running for 100, 500 and 1000 epochs over the training data.
The leftmost histogram (after 100 training epochs) shows the highest uncertainty about the routing
direction, i.e. the split decisions are not yet very crisp such that a sample will be routed to many
leaf nodes. As training progresses, (middle and right plots after 500 and 1000 epochs) we can see

100

how the distributions get very peaked at 0 and 1 (i.e. samples are routed either to the left or right
child with low uncertainty), respectively. As a result, the samples will only be routed to a small
subset of available leaf nodes with reasonably high probability. In other words, most available
leaves will never be reached from a sample-centric view and therefore only a small number of
overall paths needs to be evaluated at test time.

6.7.4 Evaluation of model performance
In Figure 6.8 we show the development of Top5-Errors for each backpropagation-forest in BeefNet
as well as their ensemble performance. In particular, we show how the individual errors decrease
as a function of the training epochs. The left plot shows the performance over the entire number
of training epochs (1000) while the right plot shows the error development in a zoomed window
from epochs 500 to 1000 and Top5-Errors 0–12%. As expected, BPF0 (which is closest to the
input layer) performs worse than BPF2, which constitutes the final layer of BeefNet, however, only
by 1.34%. This means, all the computational load between BPF0 and BPF2 can in principle be
traded for a degradation of only 1.34% in accuracy. Conversely, using all three back-propagation
forests as an ensemble yields the lowest Top5-Error of 7.84% after 1000 epochs over training data.
Please note that we observe the lowest Top5-Error on validation data with 7.32% after 953 epochs,
however, to ensure a fair comparison to the baseline networks we evaluated them in a way such
that they have seen the same amount of training data.

6.7.5 Evaluations of leaf nodes
Finally, we show three randomly chosen leaf node distributions in Figure 6.9 as obtained from the
global posterior learning process. As can be seen, the histograms are quite sparsely populated and
therefore show clear preferences for certain object categories.

To get a better idea of the quality of the resulting leaf posterior distributions obtained from the
global optimization procedure, we provide a plot how the mean leaf entropy develops as a function
of training epochs (Fig. 6.10). To this end, we randomly selected 1024 leaves from all available
ones per tree and computed their mean entropy after each epoch. The highest entropy would result
from a uniform distribution and is approximately 9.96 bits for a 1000-class problem. Instead, we
want to obtain highly peaked distributions for the leaf predictors, leading to low entropy values.
The plot in Fig. 6.10 illustrates how the mean entropy gracefully degrades as the number of training
epochs increases and therefore confirms the efficacy of our proposed leaf node parameter learning
approach.

6.8 Proof of update rule for π
Theorem 6.8.1. Consider a tree with parameters Θ and π and let

π̂`y =
1

Z`

∑
(x,y′)∈T

1y=y′
π`yµ`(x; Θ)

PT [y|x; Θ,π]
, for all (`, y) ∈ L × Y , (6.1)

where Z` is the normalizing factor ensuring that π̂` = (π̂`y)y∈Y is a probability distribution. In
other terms, we assume π̂`y to be the result of an update step as per (10) of our ICCV contribution.

101

The following holds:
R(Θ,π; T) ≥ R(Θ, π̂; T)

with equality if and only if π̂ = π, where R is the risk defined in (5) of our ICCV contribution, and
π = (π`)`∈L.

Proof. Consider the following auxiliary function:

φ(π,π) = R(Θ,π; T)− 1

|T |
∑

(x,y)∈T

∑
`∈L

ξ`(π;x, y) log

(
π`y
π`y

)
,

where

ξ`(π;x, y) =
π`yµ`(x; Θ)

PT [y|x; Θ,π]
.

and PT [y|x,Θ,π] is defined as per (1) of our ICCV contribution. Note that φ(π,π) = R(Θ,π; T)
holds for any π, for the logarithm term in φ nullifies. Moreover, φ(π,π) ≥ R(Θ,π; T) holds for
any π and π. This can be seen by applying Jensen’s inequality and with few algebraic manipula-
tions:

R(Θ,π; T) = − 1

|T |
∑

(x,y)∈T

log

(∑
`∈L

π`yµ`(x; Θ)

)

≤ − 1

|T |
∑

(x,y)∈T

∑
`∈L

ξ`(π;x, y) log

(
π`yµ`(x; Θ)

ξ`(π;x, y)

)
(by Jensen’s inequality)

= − 1

|T |
∑

(x,y)∈T

∑
`∈L

ξ`(π;x, y)

[
log

(
π`y
π`y

)
+ logPT [y|x,Θ,π]

]

= R(Θ,π; T)− 1

|T |
∑

(x,y)∈T

∑
`∈L

ξ`(π;x, y) log

(
π`y
π`y

)
= φ(π,π) .

We can now show that π̂ is a global minimizer of φ(·,π) for any value of π. We start rewriting
π̂ in terms of ξ` as follows:

π̂`y =
1

Z`

∑
(x,y′)∈T

1y=y′ξ`(π;x, y) ,

where Z` is the normalizing factor. Then, we have that

φ(π̂,π)− φ(π,π)

= − 1

|T |
∑

(x,y)∈T

∑
`∈L

ξ`(π;x, y) log

(
π̂`y
π`y

)

= − 1

|T |
∑
`∈L

∑
y∈Y

∑
(x,y′)∈T

1y=y′ξ`(π;x, y) log

(
π̂`y
π`y

)

= − 1

|T |
∑
`∈L

∑
y∈Y

Z`π̂`y log

(
π̂`y
π`y

)
= − 1

|T |
∑
`∈L

Z`DKL(π̂`‖π`) ≤ 0 ,

102

holds for all values of π, where DKL(·‖·) is the Kullback-Leibler divergence. Note that the last
inequality yields equality if and only if π̂ = π, for the Kullback-Leibler divergence yields zero if
and only if the two distributions in input coincide. Accordingly, π̂ is a strict global minimizer of
φ(·,π) for any π.

As a consequence of the previous derivations we have

R(Θ,π; T) = φ(π,π) > φ(π̂,π) ≥ R(Θ, π̂; T) ,

where equality holds if and only if we have a fixed point of the update rule (6.1), i.e. if π̂ = π.

103

�����

����
	
	����

��
����
�
�����

�������������

����
�
�����

����
�
�����

�������������

��
����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

��
����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

"����#�����
!
!����

���� ������

����
�
�����

����
!
!����

����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

"����#�����
!
!����

���� ������

����
�
�����

����
!
!����

����
�
�����

��
����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

����
�
�����

����
�
�����

����
�
�����

��
����
�
�����

���� ������

����
�
�����

����
!
!����

����
�
�����

"����#�����
	
	����

$�

����
�
�����

$�

$�

��%���
"���������

��%���
&

����
�
�����

$�

$�

��%���
"���������

��%���
�

��%���
"���������

��%���
�

Figure 3: GoogLeNet network with all the bells and whistles

Figure 6.6: Left: Original GoogLeNet architecture proposed in [102]. Right: The modifications
we brought to the GoogLeNet architecture resulting in BeefNet – our proposed model using BPFs
as final classifiers. Best viewed with digital zoom.

104

Split node output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
is

to
gr

am
 c

ou
nt

s

#108

0

1

2

3

4

5

6

7
Split responses on validation set (100 training epochs)

Split node output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
is

to
gr

am
 c

ou
nt

s

#108

0

2

4

6

8

10

12
Split responses on validation set (500 training epochs)

Split node output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
is

to
gr

am
 c

ou
nt

s

#109

0

0.5

1

1.5

2

2.5
Split responses on validation set (1k training epochs)

Figure 6.7: Histograms over all split node responses of all three forests in BeefNet on validation
data after accomplishing 100 (left), 500 (middle) and 1000 (right) epochs over training data. As
training progresses, the split node outputs approach 0 or 1 which corresponds to eliminating routing
uncertainty of samples when being propagated through the trees.

#Training Epochs
0 100 200 300 400 500 600 700 800 900 1000

T
op

5
E

rr
or

 [%
]

0

10

20

30

40

50

60

70

80

90

100
ImageNet: Top5 Error

Validation Data BPF
0

Validation Data BPF
1

Validation Data BPF
2

Validation Data Ensemble
Training Data Ensemble

#Training Epochs
500 550 600 650 700 750 800 850 900 950 1000

T
op

5
E

rr
or

 [%
]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5
12

ImageNet: Top5 Error

Figure 6.8: Top5-Error plots for individual BPFs used in BeefNet as well as their ensemble errors.
Left: Plot over all 1000 training epochs. Right: Zoomed version of left plot, showing Top5-Errors
from 0–12% between training epochs 500-1000

0 500 1000
0

0.02

0.04

0.06

0.08

0.1

0 500 1000
0

0.05

0.1

0.15

0.2

Examples for learned Leaf Node Distributions (probability vs. class)

0 500 1000
0

0.05

0.1

0.15

0.2

0.25

Figure 6.9: Exemplary leaf node distributions that are obtained by solving the convex optimization
problem defined in Equation (9) of the main submission.

105

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

Training Epochs

A
v
e

ra
g

e
 L

e
a

f
E

n
tr

o
p

y
 [

b
it
s
]

Average Leaf Entropy during Training

Figure 6.10: Average leaf entropy development as a function of training epochs.

106

	1 Introduction
	1.1 Thesis overview
	1.2 Motivation and application requirements
	1.3 Scope and novelty of proposed approach
	1.4 Challenges in learning data partitioning ensembles
	1.5 Related work

	2 Informative Projection Ensembles (IPEs)
	2.1 Model class
	2.2 Construction of Informative Projection Ensembles
	2.2.1 Formulation of IPE learning
	2.2.2 Classifier selection as a combinatorial problem

	2.3 Learning the selection matrix
	2.3.1 Optimal submodel selection through an Integer Linear Program
	2.3.2 Convex formulations for submodel selection
	2.3.3 Greedy submodel selection
	2.3.4 Query handling

	2.4 Customized IPE construction for different learning tasks
	2.4.1 Classification IPEs using conditional entropy
	2.4.2 Generalized IPE models
	2.4.3 Semi-supervised classification IPEs
	2.4.4 Clustering IPEs
	2.4.5 Regression IPEs

	2.5 Properties of Informative Projection Ensembles
	2.5.1 VC Dimension of classification IPEs
	2.5.2 Consistency of ensembles using nearest-neighbor classifiers

	2.6 Experiments
	2.6.1 Comparison of classification IPEs
	2.6.2 RIPR framework applied to clustering
	2.6.3 RIPR framework applied to regression

	2.7 Discussion of IPE learning efficiency
	2.7.1 Computational complexity of IPE learning
	2.7.2 Comparison of methods in terms of running time

	3 Extensions to the RIPR Framework
	3.1 Learning IPEs in an active learning setting
	3.1.1 Overview of active learning with dimensionality reduction
	3.1.2 Active informative projection recovery framework
	3.1.3 Active sample selection

	3.2 Informative Projection learning for feature hierarchies
	3.2.1 Cost-sensitive feature selection
	3.2.2 Exploiting the feature dependency graphs through 1 and 2 penalties
	3.2.3 Leveraging feature hierarchies in vital sign monitoring

	3.3 Projection-based gap-finding for data engineering
	3.3.1 Guided data acquisition
	3.3.2 Finding meaningful gaps with RIPR
	3.3.3 Experimental Results

	4 Detection of artifacts in clinical alerts from vital sign data
	4.1 Clinical alert adjudication
	4.2 Description of SDU patient vital sign data
	4.3 Performance of classification IPEs for artifact adjudication
	4.4 Clustering IPEs for identifying artifact archetypes
	4.5 Annotation framework for the classification of clinical alerts
	4.6 Studies of expert labeling using time series and informative projections

	5 Ensembles for Large-scale Data Partitioning
	5.1 Optimizing tree ensembles
	5.2 Backpropagation forests
	5.2.1 Related work
	5.2.2 Decision trees with stochastic routing
	5.2.3 Learning backpropagation trees
	5.2.4 Learning backpropagation forests (BPFs)
	5.2.5 Comparison of BPFs to conventional forest classifiers

	5.3 Deep Convolutional Neural Decision Forests
	5.3.1 Improving performance using DNNs + BPFs
	5.3.2 ImageNet experiments

	6 Summary
	Bibliography
	Appendix A
	6.1 RIPR results on artificial data for supervised classification
	6.2 RIPR results on artificial data for semi-supervised classification
	6.3 Active RIPR case study: Artifact Detection from Partially-Observed Vital Signals of Intensive Care Unit Patients

	Appendix B
	6.4 Summary of SDU data
	6.5 Features derived from vital sign time-series

	Appendix C
	6.6 Derivation for the gradient term in (5.8)
	6.7 Details of ImageNet experiment
	6.7.1 ImageNet Dataset
	6.7.2 The BeefNet Architecture
	6.7.3 Evaluation of split nodes
	6.7.4 Evaluation of model performance
	6.7.5 Evaluations of leaf nodes

	6.8 Proof of update rule for bold0mu mumu dotted

