
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF Doctor of Philosophy

TITLE Discrete Dynamics in Chemical Process Control and Automation

PRESENTED BY Blake Rawlings

ACCEPTED BY THE DEPARTMENT OF

 Chemical Engineering

 B. ERIK YDSTIE 4/25/16
 __ ________________________
 B. ERIK YDSTIE, ADVISOR DATE

 L. BIEGLER 4/25/16
 __ ________________________
 LORENZ BIEGLER, DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 VIJAYAKUMAR BHAGAVATULA 4/25/16

 __ ________________________

 DEAN DATE

Discrete Dynamics in Chemical

Process Control and Automation

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Chemical Engineering

Blake C. Rawlings
B.S., Chemical Engineering, The University of Texas at Austin

Carnegie Mellon University
Pittsburgh, PA

May, 2016

Acknowledgements

First, I would like to thank my advisor, Prof. Erik Ydstie, for making this

project possible, and for making sure that it was interesting both intellectually

and practically. I recall many stimulating conversations with Erik that guided

my thoughts on a variety of topics, not limited to research. In addition, I

appreciate Erik’s willingness to work in an area that has largely been neglected

by the academic community in chemical engineering, despite its industrial

significance. I would also like to thank the members of my doctoral committee,

Prof. Ignacio Grossmann, Prof. John Kitchin, Prof. Bruce Krogh, and Dr. John

Wassick, for their feedback and guidance.

Funding for the project was provided by The Dow Chemical Company.

Early in the project, Ben Christenson was very helpful in defining a specific

problem on the industrial side to motivate the academic research. Later in the

project, Joe Bucci was very helpful in applying the results of the research to

actual control systems. Throughout the course of the project, John Wassick

provided the oversight and coordination to make it successful within Dow.

I would also like to thank my friends in Pittsburgh for making my time

here enjoyable. In particular, the grad student softball league in the summers

and pick-up soccer on Sundays gave me something to look forward to when

research was not enough.

Finally, I would like to thank my family for their continued support and

encouragement. Nothing I’ve done would have been possible without them.

Most importantly, thank you Soraya.

Abstract

Formal verification has previously been applied to chemical plant control and

automation systems to ensure that they operate as intended. This dissertation

examines the related objective of proving that a particular control system does

not operate as intended. To this end, we present a set of specifications that

address certain aspects of the correct operation of a general control system.

Some of those specifications, which relate to invariance and reachability of

states that satisfy given logical constraints, do not fall within the classes

of specifications that have been addressed in previous work related to the

falsification of hybrid systems. For a specification from this class, a sound

falsification algorithm is presented which can guarantee that a hybrid system

does not meet the specification. The algorithm involves abstraction, as a

finite-state discrete system, of the infinite-state hybrid dynamical system that

arises when discrete control is applied to a continuous process. The falsification

result relies on new results that we present which concern the supervisory

control of discrete event systems subject to specifications that involve multiple

reachability requirements. The methods we present are applied to two industrial

case studies, which were provided by The Dow Chemical Company.

We also present two software tools which apply the methods that we have

developed. The first tool, SynthSMV, is an extension of the model checking

solver NuSMV that can solve some supervisory control problems. NuSMV

was chosen as the basis for our work in falsification because previous work

has shown that its symbolic model checking algorithms can handle models

of industrial-scale control systems in the context of verification. The second

tool, st2smv, translates industrial control code to a formal model that can

be solved using SynthSMV. The approach is similar to what has been done

in previous work that focused on model checking and verification, with some

extensions to enable the application of our work concerning supervisory control

and falsification.

Contents

1 Introduction 1

1.1 Control and Automation . 1

1.2 Design . 3

1.3 Analysis . 3

1.4 Outline . 5

2 Modeling a Plant: Process, Control, and Automation 8

2.1 Comparison of Modeling Frameworks 8

2.2 Sample-and-Hold Control Systems 10

2.3 Example: Liquid Holding Tank 13

2.4 Summary . 15

3 Supervisory Control with Multiple Reachability Specifications 17

3.1 Control of Discrete Systems . 17

3.2 Finite Transition Systems . 19

3.3 Supervisor Synthesis via Model Checking 20

3.3.1 Individual CTL Operators 20

3.3.2 Multiple CTL Operators 22

3.4 Labeled Transition Systems . 27

3.5 Example . 30

3.6 Summary . 34

i

4 SynthSMV v0.1.0 35

4.1 Related Software . 35

4.2 Changes from NuSMV . 36

4.2.1 Input Language . 36

4.2.2 Modeling . 38

4.3 Implementation . 40

4.4 Examples . 41

4.4.1 The Cat and Mouse Problem 41

4.4.2 The Dining Philosophers Problem 41

4.5 Summary . 44

5 Falsification of Invariance and Reachability Specifications 45

5.1 Falsification of Hybrid Systems 45

5.2 Discrete Logic in Sample-and-Hold Control Systems 47

5.2.1 Discrete Jump System 47

5.2.2 SHCSs and CIR Specifications 48

5.2.3 Initial Abstraction . 49

5.3 Falsifying CIR Specifications 50

5.3.1 Computing a Restricted Abstraction 51

5.3.2 Refining the Initial Abstraction 55

5.4 Examples . 55

5.4.1 Reduction to Reachability Verification 55

5.4.2 Multiple Reachability Requirements 56

5.4.3 Liquid Holding Tank 58

5.5 Summary . 60

6 Formal Analysis of Large-Scale Control Systems 62

6.1 Analysis of Logical Control Systems 62

ii

6.2 Discrete Logic in Chemical Plants 66

6.2.1 Dynamics . 66

6.2.2 Process-Independent Tests 67

6.3 Modeling PLC Programs . 69

6.3.1 Translation to a Formal Model 70

6.3.2 Function Blocks . 71

6.4 Formal Analysis . 72

6.4.1 Abstraction as a Labeled Transition System 72

6.4.2 Verification . 74

6.4.3 Falsification . 79

6.5 Mitigating the State-Explosion Problem 84

6.5.1 Example: CIR Falsified after Simplification 85

6.6 Case Study . 86

6.7 Summary . 88

7 st2smv v0.1.0 90

7.1 Modeling Logical Control Systems 90

7.2 Translating Structured Text Control Code to a Model 91

7.3 Example . 93

7.4 Summary . 96

8 Conclusions 97

8.1 Contributions . 97

8.2 Recommendations for Future Work 99

A Mathematical Background 108

A.1 Hybrid Dynamical Systems . 108

A.2 Transition Systems . 109

A.3 Computation Tree Logic . 111

iii

A.3.1 Other Temporal Logics 113

A.4 Model Checking . 113

A.5 Supervisory Control . 115

iv

List of Figures

2.1 The structure of a chemical plant control and automation system. 12

2.2 A liquid holding tank with high- and low-level indicators. . . . 13

2.3 A simulation of the liquid holding tank, with overflow. 16

3.1 A specification with no optimal solution. 23

3.2 The maze from the cat and mouse problem. 31

3.3 Disabled transitions in the cat and mouse problem. 32

3.4 States that satisfy the specification in the cat and mouse problem. 33

4.1 Implementation of the cat and mouse problem in SynthSMV. . 42

4.2 Implementation of the dining philosophers problem in SynthSMV. 43

5.1 A simulation of the modified liquid holding tank, without overflow. 61

6.1 Sequence between operating modes. 75

6.2 Operating mode sequence logic. 76

6.3 Operating mode sequence diagram for a batch reaction. 81

7.1 Structured Text program for the liquid holding tank example. 93

7.2 SynthSMV model of the Structured Text program in Figure 7.1. 94

v

List of Tables

2.1 Variables in the liquid holding tank example. 15

3.1 Notation for transition systems. 19

3.2 Computing an optimal control policy for a single CTL operator. 21

6.1 Process-independent tests. 68

6.2 Mapping between model and Structured Text variable names. 83

6.3 Overview of the case study problem size. 86

6.4 Abstraction and runtime information from the case study. . . . 87

6.5 PIT results from the case study. 88

7.1 Falsification results for the liquid holding tank example. . . . 95

A.1 A subset of the CTL operators. 112

vi

Chapter 1

Introduction

1.1 Control and Automation

Operation of a modern chemical plant involves a computer control system

that performs control and automation tasks. The control system consists

of all the logic that is required to operate the plant from startup, through

operation, to shutdown. It also serves as the interface between the process

and the operators, who monitor and guide the behavior of the plant to carry

out tasks that cannot be automated. With modern control and automation

systems, operators can complete complex tasks by providing relatively simple

inputs, in a way that would otherwise be impossible. The control system then

becomes a mission-critical component of the overall plant behavior, and if it

fails, or its limitations are not respected, then the system will fail [Ste03]. A

similar issue is discussed in a recent perspective, which advocates the viewpoint

that the various elements that make up the overall system in a chemical plant

are inextricably linked [LS13]. In light of these observations, any complete

analysis of the operation of a chemical plant must address the interaction of

the control system, the physical process, and the operators.

1

The physical phenomena that drive chemical processes produce systems in

which the variables evolve continuously as time passes. The implementation

of a control system using digital computers produces a system in which the

variables change instantaneously at discrete moments in time. The closed-loop

system produced by applying discrete control to a continuous process is a

hybrid (continuous/discrete) dynamical system, or hybrid system for short.

Analysis of the overall behavior of a chemical plant, therefore, requires the

analysis of the resulting hybrid system [Eng+00].

There are many (often competing) notions of correct operation of a chemical

plant, ranging from operational constraints on the acceptable ranges of variables,

to economic optimality conditions, and beyond. Any statement about the

required, desired, intended, or expected behavior of the plant, including the

process and the control system, can be seen as a (partial) specification of the

overall correct behavior. From this point of view, if the system meets the

specification, then it is (at least partially) correct, and if it does not meet the

specification, then it is (again, at least partially) incorrect.

The continuous process dynamics in a chemical plant are essentially never

known exactly; there is always uncertainty in the model or unmodeled distur-

bance. The discrete dynamics of the controller, on the other hand, are known

exactly; it does what it was programmed to do. Even so, the complexity of

a plant-wide control system, and the fact that its behavior is determined in

part by its interaction with the (uncertain) process dynamics, makes the task

of analyzing these known discrete dynamics difficult. This is an important

problem when it comes to determining whether or not a given chemical plant

will operate correctly.

2

1.2 Design

The obvious goal, given a model of the process dynamics and a specification

of the desired closed-loop plant behavior, is to design a control system that

enforces the specification. The development of algorithms to produce such

correct-by-design control systems is an important research objective [GW00].

Unfortunately, the scale of a chemical plant (let alone an integrated chem-

ical processing site) is beyond the reach of existing hybrid control design

approaches [Eng+00]. Furthermore, it is not even clear how to specify every-

thing that the system should (and should not) do, which is a prerequisite for

designing the control logic. A control system that satisfies a partial specification

of the overall desired plant behavior may not meet additional requirements

that were not included in the partial specification.

1.3 Analysis

Because the full hybrid control system design problem is currently intractable

for a chemical processing plant, much of the previous research in this area has

focused on the associated analysis problem. In this problem, given an existing

control system and a (partial) specification of the desired closed-loop behavior,

the objective is to determine whether or not the system meets the specification.

The analysis problem can be divided further into verification and falsification.

In verification, the goal is to prove that the system meets the specification.

Conversely, in falsification, the goal is to prove that the system does not meet

the specification.

The analysis of hybrid systems amounts to solving the hybrid systems

reachability problem. Given an initial state, a target state, and a model

of the hybrid dynamics, the problem is to determine whether or not the

3

system can reach the target state from the initial state. In general, the hybrid

systems reachability problem is undecidable [Hen+98]. For certain classes

of systems with restrictions placed on the form of the continuous dynamics,

it is possible to either compute or approximate the set of reachable states.

Some of these classes of hybrid systems (in order of increasing generality) are

timed automata [LPY97; Yov97], linear hybrid automata[HHW97; Fre05],

and piecewise-affine hybrid automata [Fre+11]; each class severely limits the

direct application of the corresponding method to real systems. For systems

with unrestricted continuous dynamics, the reachable set is approximated

conservatively by solving a more restricted problem exactly [CK03; Col11].

These reachability approximations can be expensive to compute, so they are

typically coupled with abstraction-based techniques. This gives rise to methods

such as counterexample-guided abstraction refinement [Cla+03], in which

a finite approximation of the hybrid system is iteratively refined to avoid

unnecessary reachability approximations. For systems with complex discrete

dynamics, such as plant control and automation systems, it is particularly

important to only consider hybrid reachability problems when the discrete

options have been exhausted [Seg07].

Much of the previous work in analyzing hybrid control systems in chemical

plants has focused on verification [DSP97; Dim+96; Sri+98; Kow+99; KSB01;

Bal+05]. The main issue with this approach is that currently it is not reasonable

to require that every control system be verifiably correct, precisely because

the design problem is intractable. Instead, systems are designed with the

best available methods, including simulation and best practices, and put into

operation. Thus, the implicit assumption is already that the system is correct,

and verifying this correctness does not have any practical impact. Actionable

results instead come from falsifying a specification; if the system is proven to

4

not meet a given specification, then the control system should be modified.

This is not a formal design algorithm, but is a step toward designing correct

systems; first, any behavior that can be considered incorrect should be removed

from existing systems.

Approaching the analysis problem in terms of falsification, instead of

verification, necessitates identifying which classes of systems and specifications

can be addressed algorithmically, and how those algorithms can be applied

to large-scale systems like chemical plants. At a high level, falsification can

be viewed as the opposite of verification. In this way, given a system and

a specification that can be verified for that system, the negated form of

the specification can be falsified. For obvious reasons, previous research in

verification of hybrid systems focuses on classes of specifications of the desired

system behavior that can be verified algorithmically. It is not necessarily true

that those classes of specifications can be falsified efficiently. Therefore, at a

lower level, it is important to treat falsification not only as the opposite of

verification, but as a different technique, which applies to different types of

specifications. Exploring the class of specifications that can be falsified can

lead to specifications which address different aspects of plant operation than

in previous work.

1.4 Outline

Chapter 2 introduces a model of the dynamics of a chemical process and its

control system. The model is intended to be general enough to encompass

the wide range of physical phenomena, and the common implementations of

control systems, that appear in the chemical processing industry. At the same

time, it should be specialized enough that there is an obvious correspondence

5

between the model and the various components of the process and control

system. The model is presented in the form of a hybrid dynamical system,

and an example is used to demonstrate the modeling procedure. The model

presented in Chapter 2 is the target of the analysis presented in the later

chapters.

Chapter 3 presents results concerning supervisory control of discrete dy-

namical systems. The results relate to computing optimal supervisory control

policies to enforce a class of specifications that includes multiple reachability

requirements. Similar results have recently been reported in the literature for

a single reachability requirement. Our results expand the previous results to

multiple reachability requirements, which have also appeared in the literature

in the context of supervisory control theory as multitasking supervisory control.

We also show that the optimal control policy can be computed by solving

a sequence of symbolic model checking problems. Chapter 4 describes the

implementation of the methods presented in Chapter 3 in SynthSMV, which is

an extension of the symbolic model checking solver NuSMV.

Chapter 5 describes a method for falsifying a class of specifications in hybrid

systems. The systems of interest are represented by the model from Chapter 2,

and the class of specifications is the same as in Chapter 3. An algorithm is

presented and applied to a series of examples, including the example system

from Chapter 2. The algorithm relies on the results from Chapter 3 to guarantee

that the falsification results are sound.

Chapter 6 demonstrates how the results developed in the earlier chapters

apply to chemical plant control and automation systems. This involves model-

ing the system as in Chapter 2, creating specifications of the desired system

behavior that fit in the class of specifications from Chapter 3, and attempting

to falsify those specifications by applying the algorithm from Chapter 5. In

6

addition, the application of existing verification methods is explored in the

context of falsification. A series of illustrative examples is presented, followed

by computational results from an industrial case study which was provided by

The Dow Chemical Company. Chapter 7 gives an overview of st2smv, which is

a tool to apply the methods from Chapter 6 to control systems written in the

Structured Text programming language for programmable logic controllers.

7

Chapter 2

Modeling a Plant: Process,

Control, and Automation

2.1 Comparison of Modeling Frameworks

Many frameworks exist that can be used to model hybrid dynamical systems,

which combine continuous and discrete dynamics. Two notable examples are

mixed logical dynamical (MLD) systems [BM99] and hybrid automata [Hen00].

MLD systems (and the equivalent classes of systems covered in [HDB01])

model discrete-time systems that involve linear dynamics and logical con-

straints. This modeling framework is notable because it has been successfully

applied to a range of problems in the chemical processing industry, including

verification [BTM01], control [DSL07], and supply chain optimization [MTA06].

In general, however, MLD systems do not capture the classes of systems

that arise in the chemical processing industry. These systems usually involve

continuous-time nonlinear dynamics, which are only approximated by MLD

systems.

Hybrid automata provide a very general modeling framework for hybrid

8

systems. Informally, a hybrid automaton consists of a finite set of continuous

variables and a finite set of logical modes, each of which describes the continuous

dynamics of the system when it is in that mode, the conditions under which

the system switches to a different mode, and the effect that switch has on

the variables. One shortcoming of hybrid automata is that the logical modes

are defined explicitly [BL02]. In a plant control system, the discrete mode is

defined by the value assigned to each of a set of discrete variables. The discrete

variables represent conditions such as whether or not a particular alarm is

turned on in the control room, or which recipe is being executed in a reactor.

The number of logical modes in the hybrid automaton model of such a system

grows exponentially with the number of discrete variables, which is often on

the order of hundreds to thousands in a chemical plant [Eng+00]; this makes

it impractical to model the hybrid systems that arise in chemical plants as

hybrid automata.

The modeling framework described in Section A.1 has rich enough descrip-

tive capabilities to subsume MLD systems and hybrid automata [GST12]. In

addition, it does not require the explicit enumeration of logical modes as in the

case of hybrid automata, instead allowing the discrete state to be defined by a

set of discrete state variables. For these reasons, we use systems that have the

form (A.1) to model the dynamics of chemical plants.

In this chapter, we develop a model in the framework of (A.1) that is

general enough to capture a large subset of the dynamical systems that arise in

the control and automation of chemical plants. The model allows for nonlinear

(and possibly uncertain) continuous process dynamics, and sample-and-hold

control systems with both continuous and discrete variables.

9

2.2 Sample-and-Hold Control Systems

In a sample-and-hold control system (SHCS), a controller repeatedly (usually

at a fixed frequency) performs the following steps:

1. The state of the plant is sampled.

2. Continuous and discrete control inputs are calculated.

3. The new inputs are applied to the plant.

4. The system evolves according to the process dynamics until the next

sample.

In step 2, the continuous control inputs include values like valve positions, and

discrete control inputs are logical values such as whether or not to activate a

particular piece of equipment.

The system produced by an SHCS controlling a continuous chemical process

is a hybrid dynamical system that can be modeled in the framework (A.1) as:

x =




z
u
s
τ


 ∈ Rnz × Rnu × {0, 1}ns × [0, T] =: X

F (x) =




Fz(z, u)
0

0

1




G(x) =




z{(
u+

s+

) ∣∣∣∣∣ ∃r ∈ ρ(z) :
u+ ∈ Gu(z, s+)
s+ = gs(r, s)

}

0




D = {x ∈ X | τ = T }

C = X \D

(2.1)

10

where:

• z is a vector of continuous process state variables.

• u is a vector of continuous control inputs.

• s is a vector of discrete variables that describe the logical state of the

system.

• τ is a timer variable that tracks the amount of time that has passed since

the previous sample was taken.

• Fz : Rnz × Rnu ⇒ Rnz represents the process dynamics.

• u̇ and ṡ are both 0 because the control variables only change value in

discrete jumps when samples are taken.

• z+ = z because the plant is continuous.

• Gu : Rnz ×{0, 1}ns ⇒ Rnu is the feedback law, which may depend on the

logical state of the system.

• gs : {0, 1}nr × {0, 1}ns → {0, 1}ns is the discrete automation logic.

• ρ : Rnz ⇒ {0, 1}nr returns discrete readings from the plant.

• τ̇ = 1 and τ+ = 0 cause samples to occur every T time units.

• T is the sample time.

The elements in (2.1) fit into the layout of a plant as shown in Figure 2.1.

The set of possible initial states is restricted by X0 ⊆ {x ∈ X | τ = 0}.

Because the underlying process is continuous, the jump set D is the set of

points where the process state is sampled and the control inputs are updated

(when τ = T). The flow set C is the remainder of the state space. When

11

Discrete
Signals

Continuous
Signals

Process

Continuous
Control

Discrete Automation Logic

Manual
Inputs Alarms

ρ(z)

z u

s

ρ(z) s

Figure 2.1: The structure of a chemical plant control and automation system.

x ∈ C, the continuous state of the plant evolves subject to ż ∈ Fz(z, u), the

timer increases subject to τ̇ = 1, and u and s are held constant. When x ∈ D,

the logical state of the control system is updated to s+, new control inputs

u+ are computed, and the timer is reset to 0. The actions of sampling the

plant, computing s+ and u+, applying the new values, and resetting the timer

are modeled as instantaneous events, so the fact that the plant is continuous

means that z+ = z.

Modeling the process dynamics as a differential inclusion rather than a

differential equation allows for uncertainty in the dynamics. If the process

dynamics are known exactly, then the relationship reduces to the differential

equation ż = fz(z, u). Similarly, modeling the continuous feedback law as a

difference inclusion allows for uncertainty or indifference concerning the actual

values computed by the controller. We do assume that the discrete logic is

known exactly, so gs is a function, not a set-valued map. The discrete jumps in

the logical state of the plant, s, are still governed by a difference inclusion (not

a difference equation), however, because there may be external inputs to the

control logic that do not depend on the state. This behavior is contained in ρ.

12

For example, an operator may send a particular discrete signal (by pressing a

button in the control room) at any time, regardless of the state of the plant,

and the control system reacts accordingly.

Without loss of generality, we assume that all discrete variables are binary.

To simplify notation involving discrete variables, we use ‘‘0’’ and ‘‘1’’ to

represent the integer values 0 and 1 as well as the Boolean constants false and

true, respectively. That is, for s ∈ {0, 1}2, we treat the expressions s1 + s2 ≥ 1

and s1 ∨ s2 as being equivalent.

For set-valued maps and functions, we use uppercase letters to denote

set-valued maps, and lowercase letters to denote functions. In the definition of

a set-valued map, we will omit the bracket notation around sets that consist

of a single element, i.e., the z that appears in the definition of G(x) in (2.1) is

the set {z}.

2.3 Example: Liquid Holding Tank

To demonstrate the model developed in this chapter, we now present an

example of a simple process and control system. In the example, the process is

a liquid holding tank, with inlet and outlet flows determined by upstream and

downstream requirements. The tank is shown in Figure 2.2.

ρ1(z)

ρ2(z)
u1 u2

z

Figure 2.2: A liquid holding tank with high- and low-level indicators.

The state and dynamics are modeled by the system:

13

x = (z, u1, u2, s1, s2, s3, s4, s5, s6, τ)T ∈ R × R2 × {0, 1}6 × [0, 1] =: X

f(x) =




u1 − u2

0

0

1




G(x) =




z



(
u+

s+

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃r ∈ ρ(z) :

u1
+ ∈ [0, 0.12(1− s1

+)(1− s3
+)]

u2
+ ∈ [0, 0.10(1− s2

+)(1− s4
+)]

s1
+ = ¬s5 ∧ r1

s2
+ = ¬s6 ∧ r2

s3
+ = s1

+ ∨ (s3 ∧ r1)
s4

+ = s2
+ ∨ (s4 ∧ r2)

s5
+ = (s1

+ ∧ r3) ∨ s5

s6
+ = (s2

+ ∧ r4) ∨ (s6 ∧ r2)





0




ρ(z) =




z > 8
z < 2
{0, 1}
{0, 1}




D = {x ∈ X | τ = 1}

C = X \D

with the variables and parameters listed in Table 2.1. The initial state is

x0 =
(
5,0T,0T, 0

)
T

. Note that even in this small example, the 6 discrete state

variables would produce 64 discrete locations in a hybrid automaton model.

The minimum and maximum liquid levels that the tank can accommodate

are 0 and 10, respectively; if the level reaches 0, then underflow occurs, and if

it reaches 10, then overflow occurs. The flow rates into and out of the tank

(inputs u1 and u2) are dictated by (unmodeled) upstream and downstream

requirements, so u+ ∈ Gu is left as a difference inclusion. In order to prevent

overflow or underflow, the controller includes alarms and logic to set the

appropriate input to 0 in response to high or low level measurements. The

14

Table 2.1: Variables in the liquid holding tank example.
Variable Description

z Liquid level
u1 Inlet flow rate
u2 Outlet flow rate
s1 High-level alarm
s2 Low-level alarm
s3 Inlet flow lock
s4 Outlet flow lock
s5 High-level acknowledgement
s6 Low-level acknowledgement
ρ1 High-level indicator
ρ2 Low-level indicator
ρ3 Operator: acknowledge s1

ρ4 Operator: acknowledge s2

objective is that the tank can be filled and emptied as necessary, subject to the

requirement that the liquid level stay within the acceptable operating range.

A simulation of the system dynamics is shown in Figure 2.3. In the

simulation, the tank overflows before t = 700. While the simulation does

indicate that the control system contains a flaw, it does not indicate what the

flaw is. Furthermore, there is no guarantee that simulating a finite number

of different trajectories would have uncovered this behavior. Analysis of the

system dynamics is required to determine what led to overflow.

2.4 Summary

In this chapter, we have introduced a model that captures the dynamics of

a continuous process interacting with a sample-and-hold control system that

includes discrete logic. The modeling framework, taken from [GST12], avoids

some of the shortcomings of other popular approaches, including MLD systems

and hybrid automata, while still allowing for a compact representation of the

dynamics. An example was included to demonstrate the class of systems that

15

0 100 200 300 400 500 600 700 800

t

0

2

4

6

8

10

12

z

s1

s5

Figure 2.3: A simulation of the liquid holding tank, with overflow.

can be modeled as (2.1), and to motivate the formal analysis of such systems

to uncover flaws in the control logic.

16

Chapter 3

Supervisory Control with

Multiple Reachability

Specifications

3.1 Control of Discrete Systems

The classical development of supervisory control theory for discrete event

systems is based on automata and formal languages, as described in Section A.5.

In particular, the system is modeled as a deterministic finite automaton, a

superset of the desired system behavior is specified as a formal language, and

a single set of states (the so-called marked states) is designated that should

always remain reachable. One issue with this approach is that it is often more

convenient to specify the behavior of a system using temporal logic such as

computation tree logic (CTL), which is described in Section A.3. Another (more

fundamental) issue is that only allowing a single set of marked states precludes

enforcing the reachability of multiple (disjoint) sets of states simultaneously.

The use of temporal logic specifications has been investigated as an alter-

17

native to formal languages [ZS05; JK06; GPT06; Ehl+16]. The most general

methods address supervisory control subject to CTL∗ specifications, but they

do not address whether or not the supervisors are maximally permissive or

unique [ZS05; JK06]. The work that addresses permissiveness of the controller

only applies to more restricted classes of specifications, such as invariance

specifications [GPT06] or specifications with a single set of states that should

be reachable [Ehl+16].

Other work has focused on the problem of specifying multiple reachability

requirements. It has been shown that a system with multiple sets of marked

states (modeled by a ‘‘colored marking generator’’) can be addressed by an

extension of the classical theory to compute a maximally-permissive supervisor

that enforces multiple reachability requirements. This is called multitasking

supervisory control [dCW05]. The downside is that the results are limited to

automata-based models and formal language specifications.

In addition to work concerning how the desired system behavior is specified,

the way in which supervisors are implemented has also been investigated. It has

been shown that instead of dynamic supervisors (as described in Section A.5),

it suffices to consider control policies that only depend on the current state of

the system [Len+14; Ehl+16]. Work in this area has also focused on formal

language specifications.

In this chapter, we show how to compute a maximally-permissive state-

based control policy for a finite transition systems to enforce a class of CTL

specifications with combined invariance and reachability requirements. We

address multiple reachability requirements, which is similar to the strong

nonblocking requirement of multitasking supervisory control. The algorithm

we develop relies on symbolic model checking for the computation.

18

3.2 Finite Transition Systems

The systems we consider are modeled by finite transition systems, T = (Q,∆),

as in (A.2). See Table 3.1 for a description of the notation used. A system T

begins in an initial state q0 ∈ Q0, where Q0 ⊆ Q. The system evolves by making

a sequence of transitions, where each transition has the form (q, q+) ∈ ∆, which

indicates that the system moves from state q to state q+. These discrete changes

in the system state occur instantaneously, with the only concept of time being

the order in which the transitions occur.

Table 3.1: Notation for transition systems.
Symbol Meaning
T = (Q,∆) Finite transition system
Q Set of states
∆ ⊆ Q×Q Set of transitions
∆c ⊆ ∆ Set of controllable transitions
∆d ⊆ ∆c Set of disabled transitions
θ CTL specification
JθKT The set of states in T that satisfy θ

Specifications about a transition system describe its behavior as it moves

from state to state. We address specifications written in computation tree

logic (CTL). These specifications involve properties such as invariance (AG)

and reachability (EF) of particular sets of states in the system. The most basic

properties of states are given by atomic propositions. Without loss of generality,

we assume that the state is defined by a vector of state variables, and that the

atomic propositions are relational expressions involving those state variables,

as in Section A.3. The atomic propositions are intrinsic properties of the

individual states, and therefore are not affected by the transition relation, ∆.

The CTL operators listed in Table A.1 are, however, affected by the transitions

and paths that exist in the system.

Analysis of transition systems using model checking is described in Sec-

19

tion A.4. The model checking algorithm accepts the model of a system

T = (Q,∆) and a specification θ, and returns the set of states in T that

satisfy θ, written JθKT as in Table 3.1. Given a set of initial states Q0 ⊆ Q, if

Q0 ⊆ JθKT , then T itself satisfies θ. For CTL specifications (including those

we consider in this chapter), symbolic model checking algorithms exist to

efficiently solve model checking problems for large systems.

3.3 Supervisor Synthesis via Model Checking

If some subset of a system’s transitions, ∆c ⊆ ∆, can be disabled, then it may be

possible to alter the system’s behavior (by disabling some of those transitions)

so that it satisfies a specification. This gives rise to a control problem for

transition systems. Given a system T = (Q,∆) with controllable transitions

∆c ⊆ ∆ and a specification θ, the control problem is to determine which of the

controllable transitions in ∆c need to be disabled so that Td satisfies θ, where

Td := (Q,∆ \∆d) and ∆d ⊆ ∆c is the set of disabled transitions.

Certain types of solutions to the control problem are particularly interesting.

First, it is usually important to maximize (in terms of set inclusion) the set

of states that satisfy the specification in the controlled system, JθKTd
. As a

secondary objective, it is also desirable to minimize (in terms of set inclusion)

the set of disabled transitions, ∆d. In this section, we address both objectives.

3.3.1 Individual CTL Operators

For a CTL specification that consists of a single CTL operator (along with

arbitrary atomic propositions and Boolean operators), the approaches listed

in Table 3.2 can be used to calculate a control policy that maximizes JθKTd
.

No transitions should be disabled to satisfy a specification that only involves

20

reachability (EF). In fact, disabling transitions may remove states from JθKTd

that would otherwise be included in JθKT . For specifications involving invari-

ance (AG), some transitions may need to be disabled so that all the remaining

reachable states satisfy the invariant property. These strategies are supported

by Lemmas 3.1 and 3.2.

Table 3.2: Computing an optimal control policy for a single CTL operator.
Operator Strategy

EF Do not disable any transitions.
AG Initially, disable all controllable transitions (∆d = ∆c).

After calculating JθK(Q,∆\∆d), enable all transitions except{
(q, q+) ∈ ∆c

∣∣∣ q ∈ JθK(Q,∆\∆d) ∧ q
+ /∈ JθK(Q,∆\∆d)

}
.

Lemma 3.1 (disabled transitions and reachability). If ∆ ⊆ ∆′, then JEF(p)KT ⊆

JEF(p)KT ′, where T = (Q,∆) and T ′ = (Q,∆′).

Proof. The more transitions there are available, the more paths there will

be leading to a state that satisfies p. JEF(p)KT is the least fixed point of

the monotonic function f(Z) = JpKT ∪ JEX(Z)KT , where JEX(Z)K(Q,∆) :=

{q ∈ Q | ∃(q, q+) ∈ ∆ : q+ ∈ Z }. Let f ′ be a similar function that depends

on ∆′ instead of ∆, so that JEF(p)KT ′ is the least fixed point of f ′.

∆ ⊆ ∆′ =⇒ JEX(Z)KT ⊆ JEX(Z)KT ′, therefore f(Z) ⊆ f ′(Z). Both least

fixed point calculations are initiated at Z0 = Z0
′ = ∅, so f(Z0) ⊆ f ′(Z0

′).

From the monotonicity of f and f ′, Zi ⊆ Zi
′ =⇒ f(Zi) ⊆ f(Zi

′), and because

f(Zi
′) ⊆ f ′(Zi

′), it follows that f(Zi) ⊆ f ′(Zi
′).

In the fixed point calculations, Zi+1 = f(Zi) and Zi+1
′ = f ′(Zi

′), so

Zi ⊆ Zi
′ =⇒ Zi+1 ⊆ Zi+1

′. This means Zi ⊆ Zi
′ ∀i, therefore JEF(Z)KT ⊆

JEF(Z)KT ′ .

Lemma 3.2 (disabled transitions and invariance). If ∆ ⊆ ∆′, then JAG(p)KT ⊇

JAG(p)KT ′, where T = (Q,∆) and T ′ = (Q,∆′).

21

Proof. AG and EF are logical duals, i.e., AG(p) ⇐⇒ ¬EF(¬p). Therefore,

JAG(p)KT ≡ Q \ JEF(p)KT and JAG(p)KT ′ ≡ Q \ JEF(p)KT ′. From Lemma 3.1,

∆ ⊆ ∆′ =⇒ JEF(p)KT ⊆ JEF(p)KT ′ , so JAG(p)KT ⊇ JAG(p)KT ′ .

In addition to maximizing JθKTd
, the strategies in Table 3.2 return the

minimal set of disabled transitions, ∆d, that achieves this primary objective.

In the case of reachability (EF) this is obviously true, because no transitions

are disabled. The case of invariance (AG) is addressed in Theorem 3.3. Because

the strategies meet both objectives regarding the control policy, we say they

compute optimal solutions to the supervisory control problem, or optimal

control policies. In both cases, the existence of an optimal control policy

depends only on the form of the specification, not on the system to be controlled.

Theorem 3.3 (optimal control with invariance requirements). The strategy

listed in Table 3.2 computes the minimal set of disabled transitions required to

maximize the set of states that satisfy a specification of the form AG(p), where

p does not include any additional CTL operators.

Proof. From Lemma 3.2, initially disabling all transitions in ∆c will maximize

the set of states included in JAG(p)KTd
. Enabling any transition (q, q+) ∈ ∆c,

where q ∈ JθKTd
and q+ /∈ JθKTd

, would exclude q from JAG(p)KTd
. Therefore,

those transitions must remain disabled to maximize the set. All other transitions

in ∆c can be enabled without excluding any states from that satisfying set,

which results in the minimal set of disabled transitions that yields the maximal

set of states satisfying the specification.

3.3.2 Multiple CTL Operators

When multiple CTL operators appear in the specification, they are linked

through the set of disabled transitions, and this interaction needs to be ac-

22

counted for. For example, from Table 3.2, the CTL operators AG and EF

require opposite control strategies to maximize the respective sets of satisfying

states. The opposing strategies come from the opposite effect of disabling a

transition, described in Lemmas 3.1 and 3.2.

Simply fixing ∆d and calculating JθKTd
as an ordinary model checking

problem for each of the 2|∆c| possible control policies is one way to address the

interaction, but this approach is not useful for any but the smallest systems.

More importantly, whether or not an optimal control policy even exists depends

on the specification, θ. For example, Figure 3.1 shows a system with a single

state variable q ∈ {1, 2, 3} in which the specification

EF(AG((q = 1) ∨ (q = 2))) ∧ EF(q = 3)

does not have an optimal solution. Either of the states (q = 1) or (q = 2), but

not both, can be made to satisfy the specification, depending on the control

policy. Without additional information or requirements, it is impossible to

determine which solution (if either) is better. In light of this difficulty, it is

important to determine (for a given specification and system) whether or not

there exists an optimal solution.

3

1 2

3

1 2

3

1 2

Figure 3.1: The specification θ = EF(AG((q = 1) ∨ (q = 2))) ∧ EF(q = 3) does
not have an optimal solution. The first diagram shows the uncontrolled system,
where dashed edges represent controllable transitions. In the two potential
solutions, states shown in black satisfy the specification, while those shown in
gray do not. Gray edges are disabled transitions, and black edges are enabled
transitions.

23

A specification AG(EF(p)), where p does not contain any CTL operators, can

express the controllability and nonblocking requirements of classical supervisory

control theory, and therefore corresponds to an optimal control policy [Ehl+16].

In light of multitasking supervisory control [dCW05], with multiple sets that

should always be reachable, we consider specifications of the form:

AG

(
∧

I

pi ∧
∧

J

EF (pj)

)
(3.1)

where the pi and pj do not contain any CTL operators. We refer to speci-

fications that can be written in the form (3.1) as combined invariance and

reachability (CIR) specifications. Because these specifications combine multiple

CTL operators, the methods in Table 3.2 do not apply directly, and it is

necessary to determine whether or not such a specification admits an optimal

control policy.

In a formula that involves multiple CTL operators, the interaction between

those CTL operators might be managed by first disabling transitions as in

Table 3.2 for each subformula, and then checking what effect that has on the

other subformulas. This idea leads to the following approach:

1. For each CTL operator, starting with the innermost subformula and

working outward, follow the approach in Table 3.2, and record the sets

of satisfying states and disabled transitions.

2. After the outermost formula, remove from the system every transition

that was disabled while processing any of the subformulas.

3. Using the updated system, return to the innermost subformula and repeat

the process until no further transitions are disabled.

Algorithm 3.1 applies this approach for CIR specifications.

24

Algorithm 3.1: Optimal control for CIR specifications.
Input : Finite transition system T = (Q,∆) with controllable

transitions ∆c ⊆ ∆ and CIR specification

θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

Output: ∆d ⊆ ∆c, the minimal set of disabled transitions that
maximizes JθK(Q,∆\∆d)

θin ←
∧
I
pi ∧

∧
J

EF (pj)

∆d
0 ← ∅

∆0 ← ∆
T 0 ← T
k ← 0
repeat

k ← k + 1
Zin

k ← JθinKT k−1

Zk ← JAG(Zin
k)K(Q,∆\∆c)

∆d
k ←

{
(q, q+) ∈ ∆c

∣∣∣ q ∈ Zk ∧ q+ 6∈ Zk
}

∆k ← ∆k−1 \∆d
k

T k ← (Q,∆k)
until ∆k = ∆k−1

∆d ← ∆d
k

return ∆d

25

Theorem 3.4 (optimal control with invariance and reachability requirements).

Algorithm 3.1 computes the minimal set of disabled transitions that maximizes

the set of states that satisfy the specification if the pi and pj do not include

any additional CTL operators.

Proof. Let Z∗ be the maximal set of states (if it exists) that can satisfy θ in

the controlled system, let ∆d
∗ ⊆ ∆c be the minimal set of disabled transitions

(if it exists) such that JθKT ∗ = Z∗, where T ∗ := (Q,∆ \∆d
∗), and let Zin

∗ be

JθinKT ∗ . Because ∆d
∗ is the minimal set of disabled transitions, Zin

∗ is the

maximal set of states (from Lemma 3.1) that can satisfy θin, subject to the

requirement that Z∗ be maximized.

First, show (by induction on k) that Zin
k ⊇ Zin

∗ in Algorithm 3.1. For the

base case (k = 1), Zin
1 = JθinK(Q,∆) ⊇ JθinK(Q,∆\∆d

∗) = Zin
∗, from Lemma 3.1.

For the inductive step, assume that, in iteration k, Zin
k ⊇ Zin

∗. From the

monotonicity of AG, Zk = JAG(Zin
k)K(Q,∆\∆c) ⊇ JAG(Zin

∗)K(Q,∆\∆c). From

Lemma 3.2, JAG(Zin
∗)K(Q,∆\∆c) ⊇ JAG(Zin

∗)KT ∗ = Z∗. Therefore, Zk ⊇ Z∗, so

∀(q, q+) ∈ ∆d
k : q+ 6∈ Z∗. As a result, (Zin

k \ Zin
k+1) ∩ Zin

∗ = ∅. Consider

qin ∈ (Zin
k\Zin

k+1); qin was prevented from satisfying θin because a controllable

transition (q, q+) was disabled, where q+ 6∈ Z∗. If qin ∈ Zin
∗, then q is reachable

from qin in T ∗, so the transition (q, q+) must be disabled to maximize Z∗

(because otherwise q 6∈ Z∗). However, disabling (q, q+) causes qin to not satisfy

θin, so qin 6∈ Zin
∗, a contradiction. Therefore, ∀qin ∈ (Zin

k \Zin
k+1) : qin 6∈ Zin

∗.

Thus, Zin
k+1 ⊇ Zin

∗. This concludes the proof by induction.

Then, from Zin
k ⊇ Zin

∗, along with the monotonicity of AG and Lemma 3.2

(as before, in the inductive step), Zk ⊇ Z∗ in Algorithm 3.1. In the final

iteration, K, no new transitions are disabled, so ZK = JθKT K . Therefore, the

upper bound is indeed realized, and ZK ≡ Z∗. From Theorem 3.3, ∆d
K ≡

∆d
∗.

26

Corollary 3.5 (termination). Algorithm 3.1 terminates after no more than

min {|Q|, |∆c|} iterations.

Proof. Both Zk and ∆k are finite sets that decrease monotonically from one

iteration to the next, and the algorithm terminates when they stop decreasing.

At most |∆c| transitions can be removed from ∆k, and at most |Q| states can be

removed from Zk, so Algorithm 3.1 will terminate after at most min {|Q|, |∆c|}

iterations.

These results show that a CIR specification (3.1), that combines multiple

invariance and reachability requirements, corresponds to an optimal control

policy, regardless of the system. This makes it possible to check whether or not

a given system can be made to satisfy such a specification by first computing

the optimal control policy, and then checking whether or not Q0 ⊆ JθKT ∗ .

As the iterations in Algorithm 3.1 are carried out, the ‘‘largest’’ model (in

terms of the number of states and transitions) that is checked is the uncontrolled

system itself. After each iteration, transitions are removed from ∆, so that in

future iterations model checking is applied to a system which is ‘‘smaller’’ than

the uncontrolled system. These notions of system size only apply directly to the

explicit representation of the system; a symbolic representation using binary

decision diagrams (BDDs) may decrease or increase in size as transitions are

disabled, depending on the structure of the system and the variable ordering.

3.4 Labeled Transition Systems

We now show how the results in Section 3.3 apply to discrete event systems

with controllable events, modeled as deterministic finite labeled transitions

systems (LTSs) as in (A.3). In [Ehl+16], the authors show that the standard

supervisory control problem can be reduced to a simpler problem that only

27

involves reachability (a nonblocking requirement). Furthermore, they show

that the simpler problem has a solution in the form of a unique, maximally-

permissive, state-based supervisor (if any solution exists).

Definition 3.6 (state-based supervisor). Given an LTS L = (Q,Σ,∆) with

controllable events Σc ⊆ Σ, then a state-based supervisor is a set-valued map

Γ : Q⇒ Σ

where Γ(q) is the set of events which are enabled in state q. Γ cannot disable

uncontrollable events, so ∀q ∈ Q : (Σ \ Σc) ⊆ Γ(q).

The closed-loop system produced by a state-based supervisor Γ controlling

an LTS L is

Γ/L = (Q,Σ,∆′)

where

∆′ :=
{
(q, σ, q+) ∈ ∆ | σ ∈ Γ(q)

}

That is, the supervisor removes the transitions that are caused by disabled

events, and the system is otherwise unchanged.

Definition 3.7 (permissiveness). Given the state-based supervisors Γ : Q⇒ Σ

and Γ′ : Q⇒ Σ, Γ is not less permissive than Γ′ if ∀q ∈ Q : Γ(q) ⊇ Γ′(q). If Γ

is not less permissive than Γ′ and, in addition, ∃q ∈ Q : Γ(q) ⊃ Γ′(q), then Γ is

more permissive than Γ′.

Definition 3.8 (maximally-permissive supervisor). For an LTS L and a

specification θ, Γ : Q⇒ Σ is the maximally-permissive supervisor that enforces

θ in L if and only if Γ/L satisfies θ, and there does not exist a more permissive

supervisor Γ′ : Q⇒ Σ such that Γ′/L satisfies θ.

28

To convert from an LTS L = (Q,Σ,∆L) with controllable events Σc ⊆ Σ

to a TS T = (Q,∆) with controllable transitions ∆c ⊆ ∆, apply the following:

∆ = {(q, q+) | ∃σ ∈ Σ : (q, σ, q+) ∈ ∆L}

∆c = {(q, q+) | ∀σ ∈ Σ : (q, σ, q+) ∈ ∆L =⇒ σ ∈ Σc}

The sets of states and initial states are the same in both systems. The set of

unlabeled transitions, ∆, is the set of all labeled transitions that exist in L,

with the label removed. The set of controllable transitions, ∆c, is the subset

of ∆ for which every corresponding labeled transition in L is labeled by a

controllable event. Because the states are the same in both systems, the atomic

propositions (which are relational expressions involving the state variables) are

also the same.

To convert from a set of disabled transitions ∆d ⊆ ∆c to a state-based

supervisor Γ : Q⇒ Σ, apply the following:

Γ = q 7→
{
σ ∈ Σ

∣∣∣ ∄q+ ∈ Q : (q, q+) ∈ ∆d ∧ (q, σ, q+) ∈ ∆L

}

The enabled events in each state are all the events such that the corresponding

transition in T is not in the set of disabled transitions, ∆d.

The key result we take from Section 3.3 is that, given a finite deterministic

LTS L = (Q,Σ,∆L) with controllable events Σc ⊆ Σ and a CIR specification

θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

as in (3.1), it is possible to compute the maximally-

permissive state-based supervisor that maximizes the set of states in L that

satisfy θ. This is done by first converting L to the TS T , then applying

Algorithm 3.1 to compute the minimal set of disabled transitions to enforce

θ in T , and finally converting the result back to a state-based supervisor Γ.

Because L is finite, T is also finite, and Algorithm 3.1 can be applied. Because

29

L is deterministic, the resulting set of disabled transitions can be implemented

as a state-based supervisor. This procedure is formalized in Algorithm 3.2.

Algorithm 3.2: Optimal state-based supervisor synthesis.
Input : LTS L = (Q,Σ,∆L), controllable events Σc ⊆ Σ, and CIR

specification θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

Output: Γ, the maximally-permissive state-based supervisor that
maximizes the set of states in L that satisfy θ

∆← {(q, q+) | ∃σ ∈ Σ : (q, σ, q+) ∈ ∆L}
T ← (Q,∆)
∆c ← {(q, q+) | ∀σ ∈ Σ : (q, σ, q+) ∈ ∆L =⇒ σ ∈ Σc}
∆d ← Apply Algorithm 3.1 to (T ,∆c, θ)
Γ← q 7→ {σ ∈ Σ | ∄q+ ∈ Q : (q, q+) ∈ ∆d ∧ (q, σ, q+) ∈ ∆L}
return Γ

3.5 Example

The classic cat and mouse problem [RW89] is an example of a system with a

single reachability requirement. In the problem, a cat and mouse are placed in

a maze, shown in Figure 3.2. The cat and mouse are initially placed in separate

rooms (2 and 4, respectively). Adjacent rooms are connected by doors through

which the cat or mouse can move. The cat and mouse can pass through the

doors only in the directions indicated in Figure 3.2. Each door can be opened

or closed depending on the current rooms occupied by the cat and mouse,

except the cat’s door between rooms 1 and 3, which is always open. Either

the cat or the mouse may move in a given turn, but not both. The invariance

requirement is that the cat and mouse should never be in the same room, and

the reachability requirement is that they should always be able to return to

their original rooms. The control policy is a set of disabled transitions, which

corresponds to a mapping from the current rooms occupied by the cat and

mouse to a set of closed doors.

30

c l

c−⇀↽−
m

m−⇀↽−
c

m ↿⇂ c

c ↿⇂ m

m−⇀↽−
c

c−⇀↽−
m

1

2

0

4

3

Figure 3.2: The maze from the cat and mouse problem. Arrows represent doors
that the cat and mouse can pass through in the indicated direction.

The state space of the system is Q = {0 . . . 4} × {0 . . . 4}, and each state in

the system has the form q = (c,m) ∈ Q, where c and m are the rooms occupied

by the cat and mouse, respectively. The set of initial states is Q0 = {(2, 4)},

which contains the single initial state mentioned previously. The atomic

propositions are numeric (equality or inequality) comparisons involving the

state variables c and m; for example, (2, 4) ∈ J(c 6= m)K. Transitions have the

form ((c,m), (c+,m+)), subject to the constraint (c+ = c) ∨ (m+ = m) (i.e.,

the cat and mouse do not both move simultaneously). The transitions are, of

course, also restricted to those that are feasible given the layout of the maze

in Figure 3.2. All of the transitions are controllable except those such that

(c ∈ {1, 3}) ∧ (c+ ∈ {1, 3}) ∧ (c+ 6= c) (the cat moves between rooms 1 and 3)

or (c+ = c) ∧ (m+ = m) (neither the cat nor mouse moves). In terms of this

model, the overall specification is:

AG((c 6= m) ∧ EF((c = 2) ∧ (m = 4)))

31

Algorithm 3.1 was applied to solve the problem. The disabled transitions

and the states that satisfy the specification in the controlled system are shown

in Figures 3.3 and 3.4. Note that, in this example, the number of iterations (3)

is much lower than the upper limit given by min {|Q|, |∆c|} = |Q| = 25.

� 00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44
00 ∗ · ∗ · ∗ ∗ · · · · · · · · · ∗ · · · · · · · · ·
01 1 ∗ · · · · 1 · · · · · · · · · 1 · · · · · · · ·
02 · ∗ ∗ · · · · ∗ · · · · · · · · · ∗ · · · · · · ·
03 1 · · ∗ · · · · 1 · · · · · · · · · 1 · · · · · ·
04 · · · 2 ∗ · · · · ∗ · · · · · · · · · ∗ · · · · ·
10 · · · · · ∗ · 2 · ∗ ∗ · · · · ∗ · · · · · · · · ·
11 · · · · · ∗ ∗ · · · · ∗ · · · · ∗ · · · · · · · ·
12 · · · · · · 1 ∗ · · · · 1 · · · · ∗ · · · · · · ·
13 · · · · · ∗ · · ∗ · · · · ∗ · · · · ∗ · · · · · ·
14 · · · · · · · · 1 ∗ · · · · ∗ · · · · ∗ · · · · ·
20 1 · · · · · · · · · ∗ · 1 · ∗ · · · · · · · · · ·
21 · 2 · · · · · · · · ∗ ∗ · · · · · · · · · · · · ·
22 · · ∗ · · · · · · · · ∗ ∗ · · · · · · · · · · · ·
23 · · · 2 · · · · · · ∗ · · ∗ · · · · · · · · · · ·
24 · · · · ∗ · · · · · · · · ∗ ∗ · · · · · · · · · ·
30 · · · · · ∗ · · · · · · · · · ∗ · 2 · ∗ 2 · · · ·
31 · · · · · · ∗ · · · · · · · · ∗ ∗ · · · · ∗ · · ·
32 · · · · · · · ∗ · · · · · · · · 1 ∗ · · · · ∗ · ·
33 · · · · · · · · ∗ · · · · · · ∗ · · ∗ · · · · ∗ ·
34 · · · · · · · · · ∗ · · · · · · · · 1 ∗ · · · · 1
40 1 · · · · · · · · · · · · · · · · · · · ∗ · ∗ · 1
41 · ∗ · · · · · · · · · · · · · · · · · · ∗ ∗ · · ·
42 · · ∗ · · · · · · · · · · · · · · · · · · ∗ ∗ · ·
43 · · · ∗ · · · · · · · · · · · · · · · · ∗ · · ∗ ·
44 · · · · ∗ · · · · · · · · · · · · · · · · · · ∗ ∗

Figure 3.3: Disabled transitions in the cat and mouse problem.

In Figure 3.3, each row corresponds to the initial state of a transition, and

the column gives the final state. The first number is the room occupied by the

cat, and the second number is the room occupied by the mouse. Transitions

marked with · are infeasible given the system definition, those marked with

a number k are disabled after the kth iteration, and transitions that remain

enabled are marked with ∗.

In Figure 3.4, the row and column correspond to the rooms occupied by the

32

� 0 1 2 3 4
0 1 2 2 2 ∗
1 ∗ 1 2 1 ∗
2 ∗ ∗ 1 ∗ ∗
3 ∗ 1 2 1 ∗
4 2 2 2 2 1

Figure 3.4: States that satisfy the specification in the cat and mouse problem.

cat and mouse, respectively. The states marked with ∗ satisfy the specification

subject to the disabled transitions shown in Figure 3.3. The states that do

not satisfy the specification are marked with a number k, where k indicates

the iteration in which that state was removed from the intermediate solution.

From the state (2, 4), if either the cat or mouse leaves its initial room, the

other one is no longer allowed to leave its room. Whichever one left its initial

room first is then allowed to travel to any room it can reach, except the other

one’s initial room.

Note that Figure 3.4 shows the maximal set of states that satisfy the speci-

fication, not only those that are reachable (according to the model definition)

from the initial state. In particular, states (1, 0), (3, 0), and (2, 1) are not reach-

able from the initial state (2, 4), but they satisfy the specification subject to the

solved-for optimal control policy. This demonstrates the fact that the optimal

control policy does not depend on the initial state of the system; instead, it

determines the set of all initial conditions that satisfy the specification. If the

cat and mouse were to start in a state that is not included in this set, then no

control policy can guarantee that the specification is satisfied. If they happen

to move to a state in the satisfying set, then the controller could take over

again and enforce the specification.

33

3.6 Summary

In this chapter, an algorithm was developed to compute the maximally-

permissive control policy for a discrete event system that maximizes the set of

states in the system that satisfy a specification that involves invariance and

reachability requirements. This is called the optimal control policy, and it was

proven to exist for such a specification, regardless of the particular system that

is to be controlled. The class of specifications involves multiple reachability

requirements, as in multitasking supervisory control. The algorithm uses CTL

model checking to perform the intermediate calculations.

34

Chapter 4

SynthSMV v0.1.0

4.1 Related Software

Significant work in the fields of model checking and supervisory control has

produced useful software tools that provide features such as efficient/high-

performance solution techniques, expressive modeling languages, verification

algorithms, controller synthesis algorithms, software freedom/availability of

source code, compatibility with commercial use, etc. In model checking, the

resulting tools include SMV [McM93], SPIN [Hol97], NuSMV [Cim+02], and

LTSmin [BvW10]. SMV is the original BDD-based symbolic model checking

solver, and NuSMV, which implements CTL and LTL model checking, is

its successor. SPIN is a widely-used LTL model checker; it does not sup-

port CTL specifications. LTSmin is a newer tool that aims to provide a

wide variety of modeling front ends and back end solvers for general model

checking. NuSMV, SPIN, and LTSmin are all open source software projects

under active development. In supervisory control, the resulting tools include

Supremica [Åke+06], UMDES/DESUMA [RLG06], STSLib [MW08], and lib-

FAUDES [MSP08]. Supremica and STSLib implement BDD-based symbolic

35

supervisor synthesis for standard supervisory control problems in terms of finite

automata, formal language specifications, and marked states. UMDES and

libFAUDES are libraries of routines that implement many of the algorithms

from the fields of supervisory control and discrete event systems using explicit

(i.e., not BDD-based) system representations.

SynthSMV1 implements supervisor synthesis as an extension of the model

checking solver NuSMV (SynthSMV v0.1.0 is based on NuSMV 2.6.0). Because

of this, SynthSMV benefits from the familiar modeling language, the efficient

BDD-based symbolic algorithms for building and analyzing finite-state machines

(FSMs), and the model checking and verification capabilities present in NuSMV.

To this, it adds the ability to define discrete event systems with controllable

and uncontrollable events, and to compute a maximally-permissive state-based

supervisor to enforce a specification in such a system. In this chapter, we

describe how SynthSMV extends NuSMV, and present some small examples

to demonstrate its use. We assume that the reader is already familiar with

NuSMV.

4.2 Changes from NuSMV

4.2.1 Input Language

The first change to the input language is the addition of the CTRBL keyword,

which is used to declare the set of state/input pairs that are controllable (i.e.,

that can be prevented from occurring). In model checking, all of the inputs that

satisfy the model’s overall state/input constraints are assumed to be enabled at

all times. In supervisory control, some of the inputs (the controllable inputs)

can be disabled by a supervisor in order to enforce a specification. Declarations

1Available at https://bitbucket.org/blakecraw/synthsmv/.

36

https://bitbucket.org/blakecraw/synthsmv/

of the controllable inputs have the form:

CTRBL state_input_constraint;

where state_input_constraint is a Boolean formula that must be satisfied by

the current (i.e., the next operator cannot appear in state_input_constraint)

state/input pair for it to be controllable. Multiple CTRBL declarations are

combined via conjunction, so that

CTRBL event in {1, 2};

CTRBL event in {2, 3};

and

CTRBL event = 2;

are equivalent. In the absence of CTRBL declarations, all state/input pairs are

assumed to be controllable.

The second change to the input language is the addition of the SYNTH

specification type. Similar to how CTL model checking is applied to CTLSPEC

specifications, and LTL model checking is applied to LTLSPEC specifications,

supervisor synthesis is attempted for SYNTH specifications. A SYNTH specification

is assumed to be a valid CTL specification θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

as in (3.1),

where none of the pi or pj contains any additional temporal operators. For such

a specification, it is possible to compute a maximally-permissive state-based

supervisor that enforces θ, if any such supervisor exists; refer to Chapter 3,

where these are referred to as combined invariance and reachability (CIR)

specifications.

Due to the way the CTRBL and SYNTH keywords are implemented in SynthSMV

v0.1.0, they must be used carefully to obtain correct results. The CTRBL

declaration accepts the same class of constraints as NuSMV’s TRANS keyword.

37

This includes constraints that involve the next value of the state variables,

which will not function correctly as CTRBL constraints. Similarly, a SYNTH

specification only has to be valid as a CTLSPEC specification for SynthSMV to

accept it, but the algorithm that is implemented is only intended to work

correctly for specifications that have the form (3.1). In addition, all CTRBL

and SYNTH declarations must be made in the main MODULE. For now, it is the

modeler’s responsibility to ensure that these requirements are met; SynthSMV

will likely produce undesired or incorrect results if they are not.

4.2.2 Modeling

In general, the same types of FSMs that can be defined in NuSMV can also be

defined in SynthSMV. In fact, given a model that does not contain any CTRBL

or SYNTH declarations, SynthSMV should produce exactly the same results as

NuSMV. For more information, refer to the NuSMV documentation.

To apply supervisor synthesis, the events that can occur in the system

must be modeled as inputs to the FSM, using NuSMV’s IVAR (input variable)

declaration. The input variables are the ones whose values are restricted by the

supervisor, so it is important that all events are modeled as inputs; otherwise,

they cannot be disabled. For example, consider the two modules:

MODULE events_as_states

VAR state : boolean;

VAR event : boolean;

INIT !state;

TRANS next(state) = (state | event);

and

38

MODULE events_as_inputs

VAR state : boolean;

IVAR event : boolean;

INIT !state;

TRANS next(state) = (state | event);

where the only difference is that in the first, event is modeled as a free state

variable, and in the second, it is modeled as a free input variable. The model

MODULE main

VAR eas : events_as_states;

VAR eai : events_as_inputs;

TRANS eas.event = eai.event;

CTLSPEC AG(eas.state = eai.state);

CTLSPEC AG(EF(!eas.state));

CTLSPEC AG(EF(!eai.state));

confirms that the two systems produce the same result in response to the same

sequence of events (the first specification is satisfied). Thus, the modules are

equivalent when it comes to model checking, and either modeling strategy will

work; for example, the second and third specifications are both false. However,

the model

MODULE main

VAR eas : events_as_states;

VAR eai : events_as_inputs;

SYNTH AG(EF(!eas.state));

SYNTH AG(EF(!eai.state));

demonstrates the difference, as the first specification is false (i.e., cannot

be satisfied by any supervisor), while the second is true (with the input

39

eai.event = TRUE disabled by the supervisor). This difference in how events

have to be modeled for supervisory control (where events really do need to

be modeled as inputs to the FSM) compared to model checking (where an

equivalent model can be produced by treating events as free state variables) will

be the most visible difference between SynthSMV and NuSMV for somebody

who is already familiar with modeling and analyzing discrete event systems in

NuSMV.

4.3 Implementation

SynthSMV applies Algorithm 3.1 to solve supervisory control problems. Thus, it

computes state-based supervisors, as in Chapter 3. For a CIR specification and

a deterministic finite labeled transition system as in Section 3.4, this approach

is guaranteed to produce the maximally-permissive supervisor that enforces

the specification.

One of the main reasons to use SynthSMV is to take advantage of NuSMV’s

well-established and efficient implementation of symbolic model checking to

perform the intermediate computations in the state-based supervisor synthesis

algorithm. The techniques that carry over from NuSMV to SynthSMV include

symbolic representation of the FSM (including the definition of the controllable

events) via binary decision diagrams (BDDs), dynamic reordering of the BDD

variables, and cone-of-influence (COI) reduction. For more information about

how these are implemented in NuSMV, and how to best take advantage of

them, refer to the NuSMV documentation.

The major limitation of SynthSMV v0.1.0 is that, while the maximally-

permissive state-based supervisor is computed, it is not returned in a usable

form. The simple explanation for this is that SynthSMV was developed as part

40

of the work in Chapter 5, where the result of interest is whether or not any

supervisor can enforce the specification, not necessarily what the supervisor

(if it exists) actually does. There is no technical reason that the supervisor

couldn’t be returned, for example, as the BDD that describes the disabled

state/input pairs.

4.4 Examples

4.4.1 The Cat and Mouse Problem

Recall the cat and mouse problem from Section 3.5. The problem can be

modeled in SynthSMV as shown in Figure 4.1.

Applying SynthSMV shows that while the CTLSPEC specification is false, the

SYNTH specification is true. This means that there is a (non-trivial) supervisor

that enforces the specification, as expected. Further analysis indicates that

while all 25 states are reachable in the uncontrolled system, only 6 remain

reachable in the (most permissively) controlled system; these are the same

reachable states described in Section 3.5.

4.4.2 The Dining Philosophers Problem

In the well-known dining philosophers problem, a group of philosophers sits

around a table, with a shared fork between each pair of philosophers. When a

philosopher has no forks, it can think. Once a philosopher picks up the fork on

its left, it then waits until the fork on its right is available, and picks up that

fork when it wants to eat. When a philosopher has both forks, it can eat, after

which it puts down both forks. The desired outcome is that each philosopher

is always able to think at some point in the future, and is always able to eat

at some point in the future. This is to be achieved by enforcing a set of rules

41

MODULE cat

VAR room : 0..4;

IVAR move : {01, 03, 12, 13, 20,

31, 34, 40, wait};

ASSIGN next(room) :=

case

room = 0 :

case

move = 03 : 3;

move = 01 : 1;

TRUE : room;

esac;

room = 1 :

case

move = 12 : 2;

move = 13 : 3;

TRUE : room;

esac;

room = 2 :

case

move = 20 : 0;

TRUE : room;

esac;

room = 3 :

case

move = 31 : 1;

move = 34 : 4;

TRUE : room;

esac;

room = 4 :

case

move = 40 : 0;

TRUE : room;

esac;

esac;

MODULE mouse

VAR room : 0..4;

IVAR move : {02, 04, 10, 21,

30, 43, wait};

ASSIGN next(room) :=

case

room = 0 :

case

move = 02 : 2;

move = 04 : 4;

TRUE : room;

esac;

room = 1 :

case

move = 10 : 0;

TRUE : room;

esac;

room = 2 :

case

move = 21 : 1;

TRUE : room;

esac;

room = 3 :

case

move = 30 : 0;

TRUE : room;

esac;

room = 4 :

case

move = 43 : 3;

TRUE : 4;

esac;

esac;

MODULE main

VAR c : cat;

VAR m : mouse;

INIT c.room = 2;

INIT m.room = 4;

TRANS (c.move = wait) | (m.move = wait);

CTRBL !(c.move in {13, 31, wait}) | !(m.move in {wait});

CTLSPEC AG((c.room != m.room) & EF((c.room = 2) & (m.room = 4)));

SYNTH AG((c.room != m.room) & EF((c.room = 2) & (m.room = 4)));

Figure 4.1: Implementation of the cat and mouse problem in SynthSMV.

42

that define when each philosopher is allowed to pick up the fork on its left (the

controllable events). The problem can be modeled in SynthSMV as shown in

Figure 4.2. Note that this example includes multiple reachability requirements

that must all be satisfied.

MODULE philosopher_ii()

VAR state : {think, up, eat};

IVAR event : {take, put, wait};

INIT state = think;

ASSIGN next(state) :=

case

state = think :

case

event = take : up;

TRUE : state;

esac;

state = up :

case

event = take : eat;

TRUE : state;

esac;

state = eat :

case

event = put : think;

TRUE : state;

esac;

esac;

MODULE philosopher_oi(left)

VAR state : {think, up, eat};

IVAR event : {take, put, wait};

INIT state = think;

ASSIGN next(state) :=

case

state = think :

case

event = take : up;

TRUE : state;

esac;

state = up :

case

event = take : eat;

TRUE : state;

esac;

state = eat :

case

event = put : think;

TRUE : state;

esac;

esac;

INVAR !((state in {eat, up})

& (left.state = eat));

MODULE philosopher_oo(left, right)

VAR state : {think, up, eat};

IVAR event : {take, put, wait};

INIT state = think;

ASSIGN next(state) :=

case

state = think :

case

event = take : up;

TRUE : state;

esac;

state = up :

case

event = take : eat;

TRUE : state;

esac;

state = eat :

case

event = put : think;

TRUE : state;

esac;

esac;

INVAR !((state in {eat, up})

& (left.state = eat));

INVAR !((right.state in {eat, up})

& (state = eat));

MODULE main

VAR p1 : philosopher_ii;

VAR p2 : philosopher_oi(p1);

VAR p3 : philosopher_oi(p2);

VAR p4 : philosopher_oo(p3, p1);

TRANS count(p1.event != wait, p2.event != wait, p3.event != wait, p4.event != wait) <= 1;

CTRBL count(p1.event = take, p2.event = take, p3.event = take, p4.event = take) > 0;

CTLSPEC AG(EF(p1.state = think) & EF(p1.state = eat) &

EF(p2.state = think) & EF(p2.state = eat) &

EF(p3.state = think) & EF(p3.state = eat) &

EF(p4.state = think) & EF(p4.state = eat));

SYNTH AG(EF(p1.state = think) & EF(p1.state = eat) &

EF(p2.state = think) & EF(p2.state = eat) &

EF(p3.state = think) & EF(p3.state = eat) &

EF(p4.state = think) & EF(p4.state = eat));

Figure 4.2: Implementation of the dining philosophers problem in SynthSMV.
A circle of philosophers starts with a philosopher_ii, extends to the right of
that philosopher with zero or more philosopher_oi, and terminates with a
philosopher_oo, who sits to the left of the original philosopher_ii. In this
case, there are 4 philosophers.

As with the cat and mouse problem, the CTLSPEC specification is false, and

the SYNTH specification is true. The output from SynthSMV indicates that, of

43

the 81 states (4 philosophers, 3 states each), 34 are reachable in the uncontrolled

system, while only 33 are reachable in the controlled system. The single state

that is excluded is the deadlock state in which each of the philosophers is

holding the left fork. This results in the state-based supervisor that forbids a

philosopher from picking up the fork on its left if each of the other philosophers

is holding a fork in its left hand.

4.5 Summary

This chapter has provided an overview of SynthSMV, and the advantages that

come with using NuSMV as the basis for solving supervisory control problems.

These include access to NuSMV’s modeling language and efficient symbolic

algorithms, along with the ability to synthesize control strategies for discrete

event systems, which is not possible in NuSMV itself. The major limitation that

users are likely to encounter is that the computed supervisor is not returned

by SynthSMV; as such, it is currently useful primarily to check whether or not

a supervisory control problem has a solution. SynthSMV is available under the

same open source/free software license as NuSMV (the GNU Lesser General

Public License, version 2.1 or later), ensuring that users are free to extend it

further, or use it commercially.

44

Chapter 5

Falsification of Invariance and

Reachability Specifications

5.1 Falsification of Hybrid Systems

As described in Chapter 1, existing verification techniques typically address

specifications written in the temporal logic ACTL∗, which is the subset of CTL∗

obtained by allowing only the universal path quantifier, A. This limitation

includes verification of invariance (reach-avoid) properties given by the ACTL∗

formula AG(p) [Tab09]. The reason for the limitation is that a specification

written in ACTL∗ can be verified if it holds in a finite-state abstraction of the

original (infinite-state) system [Tiw07].

Recently, there has been growing interest in falsification of temporal logic

properties in hybrid systems. This has been motivated by the fact that

industrial application of formal methods is often motivated by a search for errors

in existing systems. Similar to how verification is mostly limited to ACTL∗

specifications, previous research concerning falsification of hybrid systems

has focused on limited classes of specifications, including invariance [BF04;

45

Ler+08; PKV09; Zut+13], metric temporal logic (MTL) [Ngh+10; SF12], and

signal temporal logic (STL) [Dre+15]. What these classes of specifications

have in common is that they are either LTL specifications (invariance) or

extensions of LTL (MTL and STL), which means that they can be falsified by

showing the existence of a single violating trajectory. Thus, each of the various

techniques amounts to evaluating a finite number of trajectories in search of

a counterexample to the specification. One issue with this approach is that

it requires either exact knowledge of the hybrid dynamics, or a conservative

approximation thereof. Such a dynamic model would be difficult to obtain

for a chemical plant, and even if it were available, it would be expensive to

simulate. Another issue is that only LTL (and similar) specifications can be

falsified in this way. This excludes specifications that combine invariance and

reachability, such as the CIR specifications from Chapter 3.

In this chapter, we address the following problem: given an existing control

and automation system, and a specification of the desired closed loop behavior

that involves combined invariance and reachability requirements, show that

the closed-loop behavior violates the specification. We develop an abstraction-

based algorithm that can be applied to falsify a class of CTL specifications in

sample-and-hold control systems. The key differences between this and related

work are the class of specifications we consider (which combine invariance and

reachability requirements), and the fact that our analysis does not depend on

simulating the hybrid dynamics.

46

5.2 Discrete Logic in Sample-and-Hold Con-

trol Systems

In this chapter, we focus on continuous plants controlled by sample-and-hold

control systems (SHCSs). Such systems, which have the form (2.1), often

contain complex discrete automation logic that tracks the logical state of the

plant during operation. We now describe the behavior of such systems with

respect to CIR specifications.

5.2.1 Discrete Jump System

To address specifications related to the discrete state s of an SHCS H as

in (2.1), we use the concept of a corresponding discrete jump system, which is

a labeled transition system (LTS).

Definition 5.1 (discrete jump system). For an SHCS H, with initial states

X0 ⊆ X in which τ0 = 0, the corresponding discrete jump system (DJS) is the

LTS J = (Q,Σ,∆) with initial states Q0, where:

• Q := {x ∈ X | τ = 0}

• Σ :=
{
σ ∈ {0, 1}nr

∣∣∣ ∃(zT, uT, sT, τ)T ∈ X : σ ∈ ρ(z)
}

• ∆ ⊆ Q × Σ × Q is the set of all transitions (q, σ, q+) such that there

47

exists a solution to H, φ : E → X, and some (t, k) ∈ E, for which:

q =
(
zT, uT, sT, 0

)
T

= φ(t, k)

(z′T, uT, sT, T)T = φ(t+ T , k)

σ ∈ ρ(z′)

s+ = gs(σ, s)

u+ ∈ Gu(z′, s+)

q+ =
(
z′T, u+T

, s+T
, 0
)

T

= φ(t+ T , k + 1)

• Q0 := X0

The trajectories ψ = q0, q1, . . . that can occur in J correspond to the

sequences of states that occur along solutions to H immediately after jumps.

Because the discrete state s only changes in discrete jumps, these trajectories

ψ capture the sequences of discrete states that can occur along solutions to H.

Definition 5.2 (implicit supervisor). Given DJS J = (Q,Σ,∆), the implicit

supervisor Γ : Q⇒ Σ is the set-valued map:

Γ(q) :=
{
σ ∈ Σ

∣∣∣ ∃q+ ∈ Q : (q, σ, q+) ∈ ∆
}

The implicit supervisor Γ for a DJS J , which is a state-based supervisor as

in Definition 3.6, represents which events do not occur in a given state along

any solution to the hybrid system. The name refers to the idea that the events

are disabled implicitly by the hybrid system’s dynamics.

5.2.2 SHCSs and CIR Specifications

We now describe the relationship between a SHCS H and its corresponding

DJS J with respect to satisfying specifications. Consider an SHCS H and a

48

CIR specification θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

as in (3.1), in which the pi and

pj only involve the discrete state of the system, s. In this case, H satisfies

θ if and only if, for every hybrid arc φ : E → X that is a solution to H, the

following conditions hold:

1. For every e ∈ E,
∧
I
pi holds in φ(e).

2. For every e ∈ E, and for every j ∈ J , there exists a solution φ̂ : Ê ⊇

E → X such that, for all ê � e, φ̂(ê) = φ(ê), and there exists ê′ � e such

that pj holds in φ̂(ê′).

Similarly, J satisfies θ if and only if, for every trajectory ψ : K → X that can

occur in J :

1. For every k ∈ K,
∧
I
pi holds in ψ[k].

2. For every k ∈ K, and for every j ∈ J , there exists a solution ψ̂ : K̂ ⊇

K → X such that, for all k̂ ≤ k, ψ̂[k̂] = ψ[k̂], and there exists k̂′ ≥ k

such that pj holds in ψ̂[k̂′].

Because θ only involves the discrete state of H, the above sets of conditions are

equivalent. Intuitively, whether or not H satisfies a CIR specification related

to the discrete state of the system depends on the possible sequences of jumps

that can occur along solutions to H. As a result, H satisfies θ if and only if

the corresponding DJS J satisfies θ.

5.2.3 Initial Abstraction

Consider an SHCS H with corresponding DJS J = (Q,Σ,∆), with initial

states Q0, and the following LTS:

J̃ =
(
Q̃,Σ, ∆̃

)
(5.1)

49

with initial states Q̃0, where

Q̃ :=
{
q̃ ∈ {0, 1}ns

∣∣∣ ∃(zT, uT, sT, τ)T ∈ Q : s = q̃
}

Q̃0 :=
{
q̃ ∈ Q̃

∣∣∣ ∃(zT, uT, sT, τ)T ∈ Q0 : s = q̃
}

∆̃ :=
{
(q̃, σ, q̃+) ∈ Q̃× Σ× Q̃ | q̃+ = gs(σ, q̃)

}

and Σ is the same as in J . Because Q̃ and Σ are finite and gs is a function, J̃

is a finite deterministic LTS.

Lemma 5.3 (initial abstraction). J̃ in (5.1) is an abstraction of J , i.e.,

J̃ � J , with the abstraction function α(q) = s.

Proof. Show that J̃ meets both of the requirements in Definition A.2 with

abstraction function α. The set of initial states meets the first require-

ment, that Q̃0 = α(Q0), by definition. For any transition (q, σ, q+) ∈ ∆,

where q = (zT, uT, sT, τ)T and q+ = (z+T
, u+T

, s+T
, τ+)T, s+ = gs(σ, s)

holds (from Definition 5.1). Therefore, the corresponding abstract transi-

tion (α(q), σ, α(q+)) ≡ (s, σ, s+) is an element of ∆̃, so the second requirement,

that ∆̃ ⊇ ∆, is also met. Thus, J̃ � J .

5.3 Falsifying CIR Specifications

Consider an SHCS H with corresponding DJS J , the abstraction J̃ � J as

in (5.1), and a CIR specification θ of the form (3.1). We wish to falsify the

specification, that is, to prove that H does not satisfy θ. To accomplish this,

we seek a state-based supervisor Γ̃ such that the closed-loop behavior of Γ̃/J̃

satisfies the specification. Given an appropriate definition of which events are

controllable in J̃ , Σc ⊆ Σ, we can guarantee that if no such Γ̃ exists, then H

does not satisfy θ.

50

5.3.1 Computing a Restricted Abstraction

First, we note that instead of attempting to produce a supervisor that will be

implemented in the plant, we view the continuous dynamics as a supervisor

that disables events according to the feasible system trajectories, φ. This is

the implicit supervisor in Definition 5.2. We now show that if H satisfies θ,

then the implicit supervisor of J can act as a supervisor that enforces θ in the

initial abstraction.

Definition 5.4 (abstract supervisor). Consider the LTSs L and L̃ � L with

abstraction function α : Q → Q̃, and state-based supervisor Γ for L. The

abstract supervisor Γ̃ : Q̃⇒ Σ is the set-valued map defined by:

Γ̃(q̃) := {σ ∈ Σ | ∃q ∈ Q : α(q) = q̃ ∧ σ ∈ Γ(q)}

and we (further) extend the definition of an abstraction function from Sec-

tion A.2 to state-based supervisors, so that α(Γ) := Γ̃.

Lemma 5.5 (abstract supervisor preserves abstraction). Let J be a DJS with

implicit supervisor Γ, let J̃ be an abstraction of J as in (5.1) with abstraction

function α, and let Γ̃ = α(Γ). Γ̃/J̃ � J .

Proof. The only transitions that Γ̃ removes from J̃ are those that correspond

to concrete transitions which do not exist in J , so the result is still an

abstraction.

Theorem 5.6 (existence of an abstract supervisor that enforces a specification).

Let J be a DJS with implicit supervisor Γ, let J̃ be an abstraction of J as

in (5.1) with abstraction function α, and let Γ̃ = α(Γ). If J satisfies a CIR

specification θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

in which the pi and pj only involve the

discrete state of the system, then Γ̃/J̃ satisfies θ.

51

Proof. Consider any trajectory ψ that exists in J , and the corresponding

abstract trajectory ψ̃ = α(ψ). Because the pi only involve the discrete state s,
∧
I
pi holds in a state q ∈ Q if and only if

∧
I
pi holds in α(q). Therefore, for any

state q on ψ that meets the invariance requirement, the corresponding q̃ on ψ̃

also meets the invariance requirement. Similarly, because the pj only involve

the discrete state, and Γ̃/J̃ � J (from Lemma 5.5), for any state q on ψ that

meets the reachability requirement, the corresponding q̃ on ψ̃ also meets the

reachability requirement. Because J satisfies θ, every state q on ψ satisfies

the invariance and reachability requirements. Therefore, for any trajectory ψ

that exists in J , the abstract trajectory ψ̃ meets the conditions to satisfy θ, so

Γ̃/J̃ satisfies θ.

Theorem 5.6 guarantees that if H satisfies θ, then there exists a state-based

supervisor that enforces θ in J̃ . Because the state space of J is infinite, Γ is

not easy to compute, but it motivates what follows.

Theorem 5.7 (upper bound on the reachable states if a specification is met).

Let H be an SHCS with DJS J and abstraction J̃ � J as in (5.1) with

abstraction function α(q) = s, and let Σc = Σ. For a CIR specification θ

of the form AG

(∧
I
pi ∧

∧
J

EF (pj)
)

, where pi and pj only involve the discrete

state of the system, compute the maximally-permissive state-based supervisor,

Γ̃, that enforces θ in J̃ , by applying Algorithm 3.2. If H satisfies θ, then

Reach(Γ̃/J̃) ⊇ α(Reach(J)).

Proof. Assume that H satisfies θ, and let Γ′ : Q⇒ Σ be the implicit supervisor

of J . Then α(Γ′) = Γ̃′ : Q̃ ⇒ Σ is a state-based supervisor such that Γ̃′/J̃

satisfies θ (from Theorem 5.6) and Γ̃′/J̃ � J (from Lemma 5.5).

The initial state of an LTS is always reachable, so Q̃0 ⊆ Reach(Γ̃/J̃).

Because J̃ � J , Q̃0 ⊇ α(Q0). Therefore, any trajectory ψ in Reach(J) that

52

leaves
{
q ∈ Q

∣∣∣ α(q) ∈ Reach(Γ̃/J̃)
}

contains a transition (q, σ, q+) such that

α(q) ∈ Reach(Γ̃/J̃) and α(q+) 6∈ Reach(Γ̃/J̃). If (q, σ, q+) ∈ ∆, then σ ∈

Γ̃′(α(q)). However, σ 6∈ Γ̃(α(q)), because α(q+) 6∈ Reach(Γ̃/J̃). This would

only be possible if Γ̃ were not the maximally-permissive supervisor (which it

is), so no such trajectory ψ can exist. Thus, α(Reach(J)) ⊆ Reach(Γ̃/J̃).

The supervisor Γ̃ obtained in Theorem 5.7 represents an optimistic re-

striction on the events that can occur in the hybrid system H based on its

current state. This restriction may not actually be imposed by the continuous

dynamics of H. Overapproximating the set of controllable events in J̃ and

applying Algorithm 3.2 produces an upper bound on the set of abstract states

that can be made to satisfy the θ by disabling events. If H satisfies θ, this in

turn provides an upper bound on the set of reachable states in J . These upper

bounds lead to the following results:

Corollary 5.8 (falsification due to discrete dynamics). Consider H, θ, J̃ ,

and Γ̃ as in Theorem 5.7. If Γ̃/J̃ does not satisfy θ, then H does not satisfy θ.

Proof. If Γ̃/J̃ does not satisfy θ, then there are initial states Q̃0 that cannot

be made to satisfy θ. Therefore, the corresponding initial states in X0 also do

not satisfy θ, so H does not satisfy θ.

Corollary 5.9 (falsification due to hybrid dynamics). Consider H, θ, J̃ , and

Γ̃ as in Theorem 5.7. If any solution to H contains a jump (x, x+) such that

α(x+) 6∈ Reach(Γ̃/J̃), then H does not satisfy θ.

Proof. If the jump (x, x+) occurs in a solution to H, then x+ ∈ Reach(J).

If α(x+) 6∈ Reach(Γ̃/J̃), then α(Reach(J)) 6⊆ Reach(Γ̃/J̃), so H does not

satisfy θ.

Corollaries 5.8 and 5.9 lead to slightly different conclusions regarding why

H does not satisfy θ. Corollary 5.8 implies that there is an error in the discrete

53

automation logic that causes θ to fail. This is because there does not exist any

restriction on the enabled events that the continuous dynamics might impose

in order to satisfy θ. Corollary 5.9 implies that the interaction between the

discrete and continuous dynamics causes H to violate θ. In this case, the error

may lie in the continuous dynamics, the discrete dynamics, or both.

The results in this section combine to form Algorithm 5.1, which can be

applied to falsify CIR specifications in SHCS. It is important to note that

checking whether or not QB ∩ Reach(J) 6= ∅ in the algorithm may not

terminate in finite time, as it involves solving the hybrid systems reachability

problem. This step can be replaced with a conservative approximation (or

skipped altogether) to avoid this issue, at the expense of returning ‘‘Unknown’’

in some cases when it could be shown that ‘‘H does not satisfy θ’’.

Algorithm 5.1: Falsification of CIR specifications.
Input : SHCS H, DJS J = (Q,Σ,∆), LTS abstraction

J̃ = (Q̃,Σ, ∆̃) � J with abstraction function α(q) = s, CIR

specification θ = AG

(∧
I
pi ∧

∧
J

EF (pj)
)

Output: ‘‘H does not satisfy θ’’ or ‘‘Unknown’’
Σc ← Σ
Γ̃← Apply Algorithm 3.2 to (J̃ ,Σc, θ)
if Γ̃/J̃ does not satisfy θ then

return ‘‘H does not satisfy θ’’
end

Q̃B ← Q̃ \Reach(Γ̃/J̃)
QB ←

{
q ∈ Q

∣∣∣ α(q) ∈ Q̃B

}

if QB ∩Reach(J) 6= ∅ then
return ‘‘H does not satisfy θ’’

else
return ‘‘Unknown’’

end

54

5.3.2 Refining the Initial Abstraction

If Algorithm 5.1 returns ‘‘Unknown’’, it may be possible to falsify θ by reap-

plying Algorithm 5.1 with a refined abstraction J̃ ′ such that J̃ � J̃ ′ � J . If

partial information is known about the implicit supervisor Γ for J , i.e., that

σd 6∈ Γ(qd) for some qd ∈ Q, this can be used to refine the abstraction. Consider

a supervisor Γ′ which is not less permissive than Γ, meaning that Γ′ represents

partial information about which events are actually disabled by Γ in J . Then

J̃ � α(Γ′)/J̃ =: J̃ ′ � J . Applying Algorithm 5.1 with J̃ ′ (instead of J̃)

results in Q̃B
′ ⊇ Q̃B, so that QB

′ ⊇ QB, therefore it is possible to change the

conclusion from ‘‘Unknown’’ to ‘‘H does not satisfy θ’’.

5.4 Examples

5.4.1 Reduction to Reachability Verification

For an invariance specification AG(p), which lies in the intersection of CIR and

ACTL∗, applying the methods presented in this chapter reduces to checking

for reachability of a state in which ¬p holds. Consider the hybrid system:

x = (z, s, τ)T ∈ R × {0, 1} × [0, 1] =: X

f(x) = (z, 0, 1)T

g(x) = (z, ρ(z), 0)T

ρ(z) = z ≤ 10

D = {x | τ = 1}

C = X \D

55

and the initial state x0 = (4, 0, 0)T. The initial abstraction J̃ = (Q̃,Σ, ∆̃) has

two states and two events, with:

Q̃ = {0, 1}

Σ = {0, 1}

∆̃ = {(q̃, σ, q̃+) | q̃+ = σ}

Q̃0 = {0}

H does not satisfy the specification AG(¬s). Applying Algorithm 3.2 with

Σc = Σ returns the supervisor Γ̃ such that σ = 1 6∈ Γ̃(q̃ = 0), which results in

Reach(Γ̃/J̃) = {0}. From the continuous flow dynamics, z clearly increases

to +∞ from x0. Therefore, there exists some jump (x, x+) for which z > 10,

so that s+ = 1, and α(x+) 6∈ Reach(Γ̃/J̃). From Corollary 5.9, H does not

satisfy θ.

5.4.2 Multiple Reachability Requirements

We now present an example in which multiple reachability requirements are

to be enforced. Consider the system:

56

x = (z, u, s1, s2, s3, τ)T ∈ R × R × {0, 1}3 × [0, 1] =: X

f(x) =




z + u
0
0

1




G(x) =




z



(
u+

s+

)
∣∣∣∣∣∣∣∣∣
∃r ∈ ρ(z) :

u+ = s1
+ − s2

+ + s3
+

s1
+ = r1

s2
+ = r2

s3
+ = r3 ∧ ¬(r1 ∨ r2)





0




ρ(z) =



z < 0
z > 0
{0, 1}




D = {x | τ = 1}

C = X \D

with initial state x0 = 0, and the specification AG(EF(s1)∧EF(s2)). The initial

abstraction J̃ has eight states and six possible events:

Q̃ = {0, 1}3

Σ =
{
σ ∈ {0, 1}3 | ¬(σ1 ∧ σ2)

}

∆̃ = {(q̃, σ, q̃+) | (q̃1
+ = σ1) ∧ (q̃2

+ = σ2) ∧ (q̃3
+ = (σ3 ∧ ¬(σ1 ∨ σ2)))}

Q̃0 =
{
(0, 0, 0)T

}

Applying Algorithm 3.2 with Σc = Σ returns the supervisor Γ̃ such that

Γ̃(q̃) = Σ for all q̃ ∈ Q̃, for which Reach(Γ̃/J̃) = Q̃. As a result, Algorithm 5.1

returns ‘‘Unknown’’.

We now attempt to refine the abstraction as outlined in Section 5.3.2. The

only way H can leave the set {q ∈ Q | z = 0}, and therefore satisfy either of

the reachability requirements, is by an event such that σ3 = 1. This causes a

57

jump to x = (0, 1, 0, 0, 1, 0)T, after which z increases to ∼ 1.7 before the next

sample is taken. After this point, ż > 0, because u ∈ [−1, 2]. Therefore, for

any state x that is reachable in J such that z > 0, no event with σ1 = 1 can

occur. For any reachable state in J , (s2 = 1) =⇒ (z > 0), so this partial

information about the implicit supervisor yields Γ′ : Q⇒ Σ given by:

Γ′(q) :=





{σ ∈ Σ | ¬σ1} s2 = 1 holds in q

Σ otherwise

Algorithm 3.2 fails to compute a supervisor that enforces the θ in α(Γ′)/J̃ , so

Algorithm 5.1 returns ‘‘H does not satisfy θ’’. Furthermore, because applying

Algorithm 5.1 with the initial abstraction returned ‘‘Unknown’’, we conclude

that the specification fails due to the hybrid dynamics, and not purely because

of the discrete dynamics; see the discussion in Section 5.3.2.

5.4.3 Liquid Holding Tank

The intended application of Algorithm 5.1 is to industrial control and automa-

tion systems with non-trivial discrete dynamics. In this case, some errors

in the discrete logic can be uncovered without having to resort to expensive

hybrid system reachability approximations. Consider the tank example from

Section 2.3. The initial abstraction J̃ has 64 states and 12 possible events:

58

Q̃ = {0, 1}6

Σ =
{
σ ∈ {0, 1}4 | ¬(σ1 ∧ σ2)

}

∆̃ =





(q̃, σ, q̃+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃1
+ = ¬q̃5 ∧ σ1

q̃2
+ = ¬q̃6 ∧ σ2

q̃3
+ = q̃1

+ ∨ (q̃3 ∧ σ1)
q̃4

+ = q̃2
+ ∨ (q̃4 ∧ σ2)

q̃5
+ = (q̃1

+ ∧ σ3) ∨ q̃5

q̃6
+ = (q̃2

+ ∧ σ4) ∨ (q̃6 ∧ σ2)





Q̃0 = {0}

The specification we wish to test is that each of the discrete variables can

reach both values, 0 and 1:

AG


 ∧

{1...6}

(EF(q̃j) ∧ EF(¬q̃j))




The specification is falsified, as Algorithm 3.2 fails to compute a supervisor

that enforces θ when applied to J̃ in Algorithm 5.1; this indicates that there

is an error strictly in the discrete logic, based on the discussion at the end of

Section 5.3.1 regarding Corollary 5.8. In this example, the specification fails

for the following reasons:

• The logic for the high-level acknowledgement is

q̃5
+ = (q̃1

+ ∧ σ3) ∨ q̃5

so that once the alarm is acknowledged a single time, the acknowledge-

ment remains in place; this violates AG(EF(¬q̃5)).

• The only way to prevent this is to disable all events such that σ3 = 1 in

every state such that q̃1
+ = 1; this clearly violates AG(EF(q̃5)).

As a result, even the relaxed specification AG(EF(q̃5) ∧ EF(¬q̃5)) fails. Note,

59

however, that each of the specifications AG(EF(q̃j) and AG(EF(¬q̃j) can be

satisfied on its own in J̃ , so Algorithm 5.1 returns ‘‘Unknown’’ in those cases.

This highlights the need for multiple reachability requirements.

A simulation showing the impact of the faulty logic was shown previously

in Figure 2.3, in which the tank overflowed. The alarm works as intended and

prevents overflow until it is acknowledged shortly before t = 400. After this,

the level eventually increases past z = 8 without activating the alarm and

shutting off the inlet flow, until finally overflowing the tank before t = 700. The

specification AG(EF(q̃6) ∧ EF(¬q̃6)) (related to the low-level acknowledgement)

is not proven to fail by applying Algorithm 5.1. Using the logic for s6
+ as a

template to redefine the faulty s5
+ logic in (2.3) to

gs5
(r, s) := (s1

+ ∧ r3) ∨ (s5 ∧ r1)

(where s5 was changed to s5 ∧ r1) yields the simulation shown in Figure 5.1,

with no overflow. After redefining the logic, Algorithm 5.1 no longer falsifies

the specification AG(EF(q̃5) ∧ EF(¬q̃5)).

This example shows how some errors in SHCSs that cause CIR specifications

to fail can be uncovered by applying the methods described in this chapter.

In this example, the error is detected without performing any reachability

approximations with the full hybrid system.

5.5 Summary

In this chapter, we have presented an algorithm that can be used to detect

errors in the automation logic of sample-and-hold control systems, subject to

combined invariance and reachability specifications. The algorithm relies on

the application of supervisory control to a finite abstraction of an infinite-state

60

0 100 200 300 400 500 600 700 800

t

0

2

4

6

8

10

12

z

s1

s5

Figure 5.1: A simulation of the modified liquid holding tank, without overflow;
the same random input sequence was applied as in Figure 2.3.

hybrid system to guarantee that a specification fails. The main advantage of

the method is that it can detect some classes of errors without relying on costly

hybrid system reachability computations. In the case that analyzing the discrete

logic alone does not show an error, existing techniques for approximating

reachable sets in hybrid systems can be applied as part of the algorithm.

Much of the previous work in the analysis of general hybrid systems has

focused on verification rather than falsification, and the work in both directions

typically focuses on invariance or reachability alone. The small examples we

provided show how invariance and reachability can be treated simultaneously.

They also demonstrate how it can be useful to falsify such properties when

analyzing the behavior of hybrid control systems.

61

Chapter 6

Formal Analysis of Large-Scale

Control Systems

6.1 Analysis of Logical Control Systems

A significant body of research has focused on verifying the correctness of logical

control systems. This includes modeling programmable logic controllers (PLCs)

so that a formal specification of the desired behavior can be verified [Moo94;

RK98; Can+00; GdF08; BBK10; DBF13]. The basic approach consists of the

following steps:

1. Model the (discrete) dynamical behavior of the PLC as a (finite) state

transition system.

2. Specify the desired behavior as a temporal logic formula.

3. Apply model checking to determine whether or not the model fulfills the

specification.

One of the main limitations of this approach is the state-explosion prob-

lem [CG87], which refers to the fact that the problem size increases rapidly as

62

the number of discrete variables increases.

To overcome the state-explosion problem, an implicit Boolean state-space

model was proposed that describes the discrete logic [PB97]. The implicit model

represents the constraints on the values of the current state of the system, the

inputs, and a potential next state of the system that must be satisfied for that

transition (from the current state, to the next state, in response to the input)

to occur. The implicit model is converted to an integer programming problem,

which is checked for feasibility. Some of the specifications to which implicit

model checking is applied are invariance specifications, AG(p), which require

that the system never leaves a particular fixed set of good states. Indeed, if there

does not exist a transition from any state that leads to a bad state, then the

bad states are all unreachable, and the specification is verified. This reasoning,

however, does not capture the fact that such a transition is only problematic if

it starts in a reachable state. The result is that the verification results are overly

conservative, and may fail to verify invariance specifications in systems that are

actually correct. More importantly, the approach is not sufficient for verifying

reachability specifications (equivalently, falsifying invariance specifications).

This is because checking for the existence of a transition that leads into a

target set is not the same as checking for a sequence of transitions, starting

in the initial state, that leads to the target set. The dramatic performance

improvement that is observed when applying implicit model checking instead

of symbolic model checking results from approximating the solution to the

verification problem, not from the fact that an integer-programming-based

formulation is somehow more efficient. For this reason, the standard approach

based on symbolic model checking remains the most widely used method for

analyzing logical control systems.

Bounded model checking (BMC) was developed around the same time as

63

implicit model checking, and has been applied as an alternative to traditional

model checking to overcome the state-explosion problem [Bie+03]. The idea

is to check for the existence of a path, up to a fixed (bounded) length, that

violates the given property; this is done by encoding the search for such a

path as a Boolean satisfiability problem, then solving that problem. The

important difference between BMC and implicit model checking is that BMC

checks for the existence of a finite sequence of transitions, starting in the initial

state, that can verify (or falsify) a specification. This approach can be applied

to falsify invariance specifications, by proving the existence of a path that

violates the specifications. BMC can be very efficient for similar reasons to

those described in [PB97], but the fact that it is mainly limited to falsifying

invariance specifications (more generally, the same types of specifications that

have been targeted for falsification in hybrid systems, as in Section 5.1) prevents

it from being applied as broadly as symbolic model checking.

The standard verification approach based on model checking has previously

been applied in the chemical processing industry [Moo+92; Pro+97; Bau+04;

KM11]. In each case, if the verification process succeeds, then the control

system is deemed to be correct, and if it fails, then the system is analyzed

further (including using the counterexample trace from the model checking tool)

to determine the reason for failure. However, the authors of these works do not

directly account for the fact that the closed-loop system is a hybrid system,

and that the discrete model is therefore only an abstraction of the system (not

an exact model). The theoretical restrictions on the class of specifications

that can be verified using such an abstraction of a hybrid system is described

in [CK01].

While many of the results in each of these works are from the class of spec-

ifications outlined in [CK01], they also report results that are not guaranteed.

64

Notably, in [Moo+92], the authors claim to verify reachability requirements,

in [Pro+97], the authors claim to falsify invariance requirements (and rely on

manually interpreting counterexamples to support the claim), in [Bau+04], the

authors claim to verify reachability requirements, and in [KM11], the authors

claim to falsify invariance specifications; none of these results can be guaranteed

by applying model checking to an abstract model, without analyzing the hybrid

dynamics.

Similar approaches that also attempt to address the hybrid dynamics have

been applied [Kow+99; Bal+05; LTS06]. In [Kow+99] and [LTS06], the authors

approximate hybrid systems as timed automata and claim that the verifica-

tion/falsification results hold in the actual system. For this to be true, they

require that the timed automata are conservative approximations of the hybrid

dynamics, but they do not provide a rigorous method to show conservativeness.

In [Bal+05], the authors apply an approach described in [Cla+03] to a batch

reactor system. The approach does yield correct verification results for the

class of specifications outlined in [CK01], but requires detailed knowledge of

the continuous process dynamics.

The main contribution of this chapter is to demonstrate the application

of both verification and falsification to analyze the behavior of large-scale

chemical plant automation systems. In addition, we address the limitations

(imposed by the hybrid dynamical nature of the systems) on the classes of

specifications that can be verified or falsified. The verification methods are

the same as those that have been applied previously; the difference is the

particular specifications we verify, and what the result indicates about the

system. The falsification methods we apply were developed in Chapter 5, and

allow a broader class of specifications to be addressed than in previous work.

For both verification and falsification, we use a model-reduction technique to

65

mitigate the state-explosion problem; the validity of the results is maintained,

and the approach allows us to address industrial-scale systems. We also provide

a set of specifications that can be used with the approach we describe to analyze

a general automation system. We demonstrate our results through a series of

illustrative examples, and report computational results from test cases provided

by The Dow Chemical Company.

In Section 6.2, we introduce discrete automation systems and some specifica-

tions that they should satisfy. In Section 6.3, we show how to model standard

control and automation code (written in the PLC programming language Struc-

tured Text). In Section 6.4, we describe the formal analysis methods that are

applied to determine whether or not a system meets the specifications. In

Section 6.5, we introduce a way to approximate large systems to avoid the

state-explosion problem. In Section 6.6, we apply the methods to an industrial

case study.

6.2 Discrete Logic in Chemical Plants

6.2.1 Dynamics

We consider the hybrid systems of the form (2.1) produced by applying sample-

and-hold control to continuous chemical processes, as in Chapter 2. In such a

system, the discrete control and automation logic is contained in the function

gs : {0, 1}nr × {0, 1}ns → {0, 1}ns , which updates logical state of the control

system in response to a sequence of discrete readings during operation. The

discrete readings come from the process (for example, by checking whether

or not a continuous state variable is within a desired operating range) and

the operators (in the form of discrete toggles on the operator’s control panel).

Because the discrete logic interacts with all the pieces of a chemical plant

66

(the process, the continuous control system, and the operators), it is a critical

component of the overall control system.

The dynamics introduced by the discrete logic in a control system are

fundamentally different than those introduced by the continuous control logic.

A poorly-tuned PID controller will result in degraded performance of the control

system, but that performance is usually qualitatively similar to the performance

that would be achieved using a well-tuned controller (i.e., the system is still

stable, but converges to the set point more slowly). Minor changes in the

discrete logic, however, can produce qualitatively different behavior in the plant

(i.e., a piece of equipment no longer turns on under the correct conditions).

6.2.2 Process-Independent Tests

When checking the discrete automation logic in an SHCS, the specifications

are in terms of the discrete state variables s. The atomic propositions from

Section A.3 are then relational expressions involving those variables. Using

these atomic propositions, temporal logic formulas can be constructed to

describe certain properties of the desired system behavior.

Specifying the entire desired behavior of the closed-loop system is difficult

for the same reasons that defining the control logic correctly is difficult. This

leads to the goal of automatically generating specifications that describe part of

the overall requirements that a control system must meet. We refer to these as

process-independent tests (PITs), because they do not relate to the underlying

chemical process (and can therefore be generated without knowledge of the

process). Some PITs are listed in Table 6.1.

A variable lock is the situation in which one of the discrete state variables

becomes stuck in either value, 0 or 1, without the possibility of ever changing.

The requirement to avoid variable locks specifies that none of the output

67

Table 6.1: Process-independent tests.
Property to test Specification
Avoid variable locks. AG(EF(si = 0) ∧ EF(si = 1)) i ∈ 1 . . . ns

All operating modes are reachable. AG(EF(sj = 1)) j ∈ J
Operating modes are mutually exclusive. AG(

∑
j∈J

sj = 1)

Relevant logic. EF(si 6= si
′) i ∈ 1 . . . ns

variables should ever become locked. This specification does not require that

the variable ever changes value, only that the logic does not strictly prevent

that from happening. For example, in the ideal case that a threshold alarm is

never tripped, the corresponding discrete state variable is always 0. This is

not a variable lock unless there is no way the alarm would ever turn on (even

in response to the threshold being violated).

Automation logic often involves explicitly defined operating modes, such as

startup, react, and shutdown. This is described in detail in [PB00]. The system

must always be in one (and only one) operating mode, which is specified by

the requirement that the corresponding variables sum to 1. In addition to this,

the control system should always be capable of reaching each of the operating

modes, which is similar to the variable lock specification. As in the case of

variable locks, the requirement that the operating modes remain reachable

does not mean that any of them is actually reached, only that it is always

possible to reach each of them. This specification is similar to the reachability

requirement in [PB00] (feasibility of a sequence).

The test for irrelevant logic is slightly different than the other specifications.

The expected outcome is that removing part of the automation logic should

affect the behavior of the system in some way. This is done on a per-variable

basis by introducing a new variable si
′ with the same assignment logic as si,

then removing part of the assignment logic for si
′. The reachability specification

EF(si 6= si
′) specifies that there should be some reachable state in which the

68

original and modified variables have different values. If the specification is

satisfied, then the logic that was removed is relevant (to the behavior of the

system). If the specification is not satisfied, then the logic that was removed is

irrelevant, and can be removed without modifying the system’s behavior. It

is common practice to intentionally include redundant (irrelevant) terms to

clarify the logic, but sometimes this behavior is not intended.

6.3 Modeling PLC Programs

The methods we describe in this chapter apply to any control system of

the form (2.1). PLCs are often used in the chemical processing industry to

implement the discrete logic of SHCSs. For this reason, we focus on PLC

programs as the target of our analysis, and to give concrete examples. This

topic has been studied extensively in the past; the key departure from previous

work is that we account for the fact that the PLC forms part of a larger hybrid

system which restricts the sequence of inputs that the PLC may receive.

PLCs operate by repeating the following steps in a non-terminating loop:

1. Input scan: inputs to the PLC program (continuous and discrete values)

are read from the plant.

2. Evaluate logic: the PLC logic is executed with the new inputs to update

the outputs.

3. Output scan: the new outputs are applied to the plant.

In relation to the model (2.1), step 1 corresponds to ρ, step 2 corresponds to

G, and step 3 corresponds to the jump x+ ∈ G(x).

Standard IEC 61131-3 [IEC13] defines the programming interface to PLCs.

It describes two graphical languages (Ladder Diagram and Function Block

69

Diagram), along with two textual languages (Instruction List, and Structured

Text). Structured Text (ST) is the high-level text-based programming language

defined in the standard, and is the one that we focus on.

6.3.1 Translation to a Formal Model

We address PLC programs defined using a restricted subset of the ST language,

similar to previous work [RK98; GdF08]. We assume the following restrictions:

• All assignments are to elementary Boolean or numeric variables.

• Only certain function blocks are used.

• There are no loops (other than the PLC’s loop over the entire program).

• There are no jumps (i.e., the program is a single routine).

That is, the ST program is a sequence of assignments, along with conditional

branching.

Every variable that is assigned a value is an output of the program. Any

variable that is not assigned a value anywhere in the program is an input. The

output variables are the values that the control logic sets in order to influence

the behavior of the plant. Variables that are not assigned values anywhere in

the program are assumed to be readings from the plant, and therefore act as

inputs to the PLC logic.

Consider the ST program:

s1 := ABS(z1 - z2) > 0;

s2 := s3 OR r1;

s3 := s2 AND r2;

which produces the model:

70

x = (z1, z2, s1, s2, s3, τ)T ∈ R2 × {0, 1}3 × [0, T] =: X

F (x) =



Fz(z)

0

1




G(x) =




z


s+

∣∣∣∣∣∣∣
∃r ∈ ρ(z) :

s1
+ = r3

s2
+ = s3 ∨ r1

s3
+ = s2

+ ∧ r2





0




ρ(z) =




{0, 1}
{0, 1}

|z1 − z2| > 0




D = {x | τ = T }

C = X \D

The expressions ρ1 = {0, 1} and ρ1 = {0, 1} indicate the ρ1 and ρ2 are external

inputs to the program, and might either be 0 or 1, regardless of the continuous

state z. We have not explicitly defined the continuous dynamics Fz, and

there are no continuous control variables u. Note that the implicit definition

of gs that arises when the assignment of one variable depends on a previous

assignment in the program (as shown above for s3
+, which depends on s2

+)

can always be converted to an explicit definition; this is described in more

detail in [RK98; PB00]. In this example, the term s3
+ = s2

+ ∧ r2 would be

replaced with s3
+ = (s3 ∨ r1) ∧ r2.

6.3.2 Function Blocks

An important function block to handle is the delay timer, due to its frequent

use in industrial control logic. Delay timers are used to prevent a variable

from switching value unless a measurement has returned the same value for

a certain number of consecutive sample intervals. We handle a delay timer

71

function:

value := DT(reading, delay, default);

where delay is the number of samples to wait (integer), default is the base

value (Boolean), reading is the measurement being monitored (Boolean), and

value is the value returned by the timer (Boolean). The timer behaves in

the following way: if (reading <> default) (‘‘<>’’ is the inequality operator

in Structured Text) held for the last delay samples (including the current

sample), then the timer returns reading; otherwise, the timer returns default.

If default is FALSE, then it is a ‘‘delay-on timer’’, and if default is TRUE, then

it is a ‘‘delay-off timer’’.

A delay timer keeps track of an internal state, duration, which is the

number of consecutive preceding samples in which (reading <> default).

Instead of modeling this behavior, we add an additional input to the model,

which represents whether or not (duration >= delay). This abstraction is

similar to the approach in [PB97] of treating all delay timers as unit delays;

we give a detailed justification in Section 6.4.1.

6.4 Formal Analysis

6.4.1 Abstraction as a Labeled Transition System

In order to analyze the automation logic of an SHCS H as in (2.1), we rely on

the finite deterministic LTS model:

(S,R,∆) (6.1)

72

where:

S := {0, 1}ns

R := {0, 1}nr

∆ := {(s, r, s+) | s+ = gs(r, s)}

As described in Section 5.2, the LTS (6.1) is an abstraction of the discrete

jump system that corresponds to H. The abstraction models the response of

the discrete logic to any of the possible sequences of inputs. The result is that

the abstraction overapproximates the behavior of the closed-loop system; in

the actual system, whether or not a particular sequence of inputs can occur

depends on the continuous dynamics.

The continuous dynamics and unmodeled discrete dynamics (such as the

internal duration state of a delay timer from Section 6.3.2) impact the sequences

of inputs that can occur in the same way that a supervisor disables events

in supervisory control theory. An event r is disabled in state s of the LTS

abstraction if there is no solution to the original SHCS that produces r ∈ ρ(z)

while the discrete part of the state is equal to s. This is the idea of an implicit

supervisor in Definition 5.2. To account for this, we treat each of the input

readings r ∈ R in the LTS abstraction as a controllable event, meaning it is

possible that r is prevented from occurring in a state s by some unmodeled

behavior of the original SHCS. The result is that we set Rc = R when analyzing

the LTS in order to explore not only all possible sequences of inputs that might

occur, but also all possible restrictions thereupon that the hybrid dynamics

might impose. Treating the discrete values produced by unmodeled dynamics

as inputs (rather than unrestricted state variables) is what allows for falsifying

a broader class of specifications than in previous work, which is described in

Section 6.4.3.

73

6.4.2 Verification

Given an SHCS and its LTS abstraction, it is possible to directly verify certain

classes of specifications by analyzing the LTS. One such class of specifications

is ACTL, which is described in Section A.3.1. For a specification that is not

contained in this class, such as a CTL specification that includes E, verification

of the LTS abstraction does not necessarily imply verification of the SHCS.

This includes even simple reachability requirements such as EF(p).

Of the PITs defined in Table 6.1, the requirement of mutual exclusivity

of the operating modes is an ACTL specification. Therefore, it is eligible for

verification using the abstraction. In addition, the negation of a relevant logic

specification, ¬EF(si 6= si
′) ≡ AG(si = si

′), is an ACTL specification. Verifying

AG(si = si
′) guarantees that the logic removed from si

′ is irrelevant. The

other specifications all include both invariance and reachability, so they cannot

directly be verified by applying model checking to the LTS abstraction.

Algorithm 6.1 is a simplified version of the standard abstraction-based

approach for verifying ACTL specifications in SHCSs [CK01; Cla+03]. If the

verification fails, we do not attempt to refine the abstraction, as in [CK01;

Cla+03], or interpret the counterexample, as in [Pro+97]. Refinement of the

model requires a detailed model of the hybrid dynamics, which is often difficult

to obtain and computationally costly to analyze for large industrial systems.

Manual inspection of the counterexample amounts to informal abstraction

refinement, which is difficult for the same reasons, and does not have the

benefit of being algorithmically sound. The set of controllable events is not

used because model checking alone (not supervisory control) is sufficient for

verification; in the abstraction, all events are enabled, which guarantees that

it is indeed an abstraction.

74

Algorithm 6.1: Verification of ACTL specifications.
Input : SHCS H and ACTL specification θ
Output: ‘‘H satisfies θ’’ or ‘‘Unknown’’
(S,R,∆)← LTS abstraction of H as in (6.1)
if (S,R,∆) satisfies θ then

return ‘‘H satisfies θ’’
else

return ‘‘Unknown’’
end

Example: ACTL Specification Verified

Consider the automation logic depicted in Figure 6.1, which shows the desired

paths through a set of operating modes. The desired behavior is enforced by

s1

s2a s2b

s3a s3b

s4

r1 ∧ a r1 ∧ b

r1 ∧ a

r1 ∧ b

r1 ∧ b

r1 ∧ a

r1 r1

r1

Figure 6.1: Sequence between operating modes.

the PLC program in Figure 6.2. In the initial state, s1 = 1 and all of the other

state variables are equal to 0. In this simple example, the inputs do not relate

to the continuous state of the plant (r1 and ra are operator inputs to advance

to the next operating mode and select ‘‘recipe a’’, respectively), so the discrete

part of the automation system is decoupled from any continuous dynamics.

The program corresponds to the following LTS:

75

reset := s_4 and r_1;

a := (not reset)

and ((s_1 and r_1 and recipe_a) or a);

b := (not reset)

and ((s_1 and r_1 and (not recipe_a)) or b);

s_4 := (s_4 and not r_1)

or ((s_3a or s_3b) and r_1);

s_3a := (s_3a and not r_1)

or ((s_2a or s_2b) and r_1 and a);

s_3b := (s_3b and not r_1)

or ((s_2a or s_2b) and r_1 and b);

s_2a := (s_2a and not r_1)

or (s_1 and r_1 and a);

s_2b := (s_2b and not r_1)

or (s_1 and r_1 and b);

s_1 := (s_1 and not r_1)

or reset;

Figure 6.2: Operating mode sequence logic.

s = (s1, s2a, s2b, s3a, s3b, s4, sa, sb, sr)
T

r =

(
r1

ra

)

∆ =





(s, r, s+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
+ = (s1 ∧ ¬r1) ∨ sr

+

s2a
+ = (s2a ∧ ¬r1) ∨ (s1 ∧ r1 ∧ sa

+)
s2b

+ = (s2b ∧ ¬r1) ∨ (s1 ∧ r1 ∧ sb
+)

s3a
+ = (s3a ∧ ¬r1) ∨ ((s2a ∨ s2b) ∧ r1 ∧ sa

+)
s3b

+ = (s3b ∧ ¬r1) ∨ ((s2a ∨ s2b) ∧ r1 ∧ sb
+)

s4
+ = (s4 ∧ ¬r1) ∨ ((s3a ∨ s3b) ∧ r1)

sa
+ = (¬sr

+) ∧ ((s1 ∧ r1 ∧ ra) ∨ sa)
sb

+ = (¬sr
+) ∧ ((s1 ∧ r1 ∧ ¬ra) ∨ sb)

sr
+ = s4 ∧ r1





s0 = (1, 0, 0, 0, 0, 0, 0, 0, 0)T

The PIT for mutually exclusive operating modes in this example is the speci-

fication AG(
∑

J(sj) = 1), where J = {1, 2a, 2b, 3a, 3b, 4}, which is verified by

76

Algorithm 6.1.

The states described by ((s2a ∨ s2b) ∧ sa ∧ sb) are stable according to the

definition in [PB97], but lead to states in which (s3a ∧ s3b), which violates

mutual exclusivity. As a result, implicit model checking does not verify the

specification, even though it is satisfied. This is not caused by any hybrid

dynamics, because the discrete system is decoupled from any continuous

dynamics. The problem is that implicit model checking does not examine

paths, starting in the initial state, consisting only of reachable states. The

states in which ((s2a ∨ s2b) ∧ sa ∧ sb) holds are not reachable, so the fact that

they lead to bad states does not actually impact the specification. Note that

if sb is replaced by ¬sa in the assignment logic for variables s2b and s3b in

the control program, then the system’s behavior is unchanged, but implicit

model checking correctly verifies the specification. This highlights the over-

conservative nature of implicit model checking, which is what allows for the

reduction in computational effort required.

Example: ACTL Specification Not Verified

Consider a batch reaction, A+B → C. The PLC program

s_1 := N_c >= 0.99 * N_a0;

s_2 := N_a <= 0.05 * N_a0;

s_3 := s_1 and s_2;

s_3p := s_1;

monitors the extent of the reaction, and signals completion via discrete state

variable s3. The program corresponds to the following SHCS:

77

x =




NA

NB

NC

s1

s2

s3

s3
′

τ




∈ R3 × {0, 1}4 × [0, T] =: X

f(x) =




− k
V
NANB

− k
V
NANB

k
V
NANB

0

1




g(x) =




NA

NB

NC

ρ1(z)
ρ2(z)

s1
+ ∧ s2

+ ≡ ρ1(z) ∧ ρ2(z)
s1

+ ≡ ρ1(z)
0




ρ =

(
NC ≥ 0.99NA(0)
NA ≤ 0.05NA(0)

)

D = {x ∈ X | τ = T }

C = X \D

where f(x) and g(x) are functions (not set-valued maps), T , k, and V are fixed

parameters, and the initial state is x0 =
(
NA(0), NB(0), NC(0),0T, 0

)
T

. The

SHCS has the LTS abstraction:

78

s =




s1

s2

s3

s3
′




r =

(
r1

r2

)

∆ =





(s, r, s+)

∣∣∣∣∣∣∣∣∣

s1
+ = r1

s2
+ = r2

s3
+ = s1

+ ∧ s2
+

s3
′+ = s1

+





s0 = 0

The variable s3
′ has been added to the program to test whether or not

s2 is relevant when it comes to checking for completion of the reaction. If

the specification AG(s3 = s3
′) is satisfied by the abstraction (i.e., the ACTL

specification is verified in the hybrid system), then s2 is irrelevant. The

specification is not satisfied, which means s2 is not proven to be irrelevant by

examining the abstraction. However, this does not guarantee that the hybrid

system violates the specification, i.e., that s2 is relevant. In fact, given the

initial state NA(0) = 1, NB(0) = 1, NC(0) = 0, a simple mass balance shows

that ∀t > 0 : (NC(t) ≥ 0.99NA(0)) =⇒ (NA(t) ≤ 0.05NA(0)), so ρ1 =⇒ ρ2,

which means s2 is irrelevant in the assignment logic for s3
+. There are other

initial conditions for which s2 is relevant. This demonstrates that while ACTL

specifications can be verified in hybrid control systems, they cannot be falsified

directly by analyzing the LTS abstraction.

6.4.3 Falsification

Falsification of combined invariance and reachability (CIR) specifications in

SHCSs was described in Chapter 5. In addition to CIR specifications, any

specification that is the negation of an ACTL specification can be falsified by

79

verifying the ACTL specification. Consider the specification EF(p), which is

equivalent to ¬AG(¬p); falsifying EF(p) is equivalent to verifying AG(¬p) using

Algorithm 6.1.

The PITs in Table 6.1 that are CIR specifications are the requirement

to avoid variable locks, and the requirement that all operating modes re-

main reachable. In addition, negating the relevant logic specification results

in AG(si = si
′), which is also a CIR specification. Falsifying AG(si = si

′)

amounts to verifying the original relevant logic specification. Each of these

CIR specifications can be falsified by applying the results from Chapter 5.

Algorithm 6.2 is a simplified version of Algorithm 5.1 that does not include

any reachability search in the hybrid system. As with Algorithm 6.1, we

omit the further analysis that involves the continuous dynamics, which was

described in Chapter 5.

Algorithm 6.2: Falsification of CIR specifications (simplified).
Input : SHCS H and CIR specification θ
Output: ‘‘H does not satisfy θ’’ or ‘‘Unknown’’
(S,R,∆)← LTS abstraction of H as in (6.1)
Rc ← R
Γ← Apply Algorithm 3.2 to ((S,R,∆), Rc, θ)
if Γ/(S,R,∆) does not satisfy θ then

return ‘‘H does not satisfy θ’’
else

return ‘‘Unknown’’
end

Example: CIR Specification Falsified

Consider a batch reactor with a simple sequence of four operating modes shown

in Figure 6.3:

1. Reset:

• Product is removed from the reactor.

80

Reset

Heat

React

Cool

NA ≥ NA0

T ≥ Th

NC ≥ 0.99NA0

T ≤ Tc

Figure 6.3: Operating mode sequence diagram for a batch reaction.

• New reactant is charged to the reactor.

2. Heat:

• The reactor contents are heated to the required reaction temperature.

3. React:

• The temperature is maintained at the required reaction temperature

while the reaction takes place.

4. Cool:

• The product is cooled for transfer.

and the same reaction as in Section 6.4.2, A+B → C. The PLC program:

81

condition_cooled := mode_cool

and DT(T_reactor <= T_cold, 10, false);

condition_reacted := mode_react

and DT(N_C >= 0.99 * N_A0, 10, false);

condition_heated := mode_heat

and DT(T_reactor >= T_hot, 10, false);

condition_reset := mode_reset

and DT(N_A >= N_A0, 10, false);

mode_cool := (mode_cool and not (input_proceed and condition_cooled))

or (mode_react and condition_reacted and input_proceed);

mode_react := (mode_react and not (input_proceed and condition_reacted))

or (mode_heat and condition_heated and input_proceed);

mode_heat := (mode_heat and not (input_proceed and condition_heated))

or (mode_reset and condition_reset and input_proceed);

mode_reset := (mode_reset and not (input_proceed and condition_reset))

or (mode_react

and condition_cooled

and input_proceed and condition_reacted);

is designed to implement the sequence. The program corresponds to an SHCS

with LTS abstraction:

s = (s1, s2, s3, s4, s5, s6, s7, s8)
T

r = (r1, r2, r3, r4, r5)
T

∆ =





(s, r, s+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
+ = s5 ∧ (r6 ∧ r1)

s2
+ = s2 ∧ (r7 ∧ r2)

s3
+ = s3 ∧ (r8 ∧ r3)

s4
+ = s4 ∧ (r9 ∧ r4)

s5
+ = (s5 ∧ ¬(r5 ∧ s1

+)) ∨ (s2
+ ∧ r5)

s6
+ = (s2 ∧ ¬(r5 ∧ s2

+)) ∨ (s3
+ ∧ r5)

s7
+ = (s3 ∧ ¬(r5 ∧ s3

+)) ∨ (s4
+ ∧ r5)

s8
+ = (s4 ∧ ¬(r5 ∧ s4

+)) ∨ (s1
+ ∧ r5 ∧ s2

+)





s0 = (0, 0, 0, 0, 0, 0, 0, 1)T

where the LTS variables relate to the ST variables according to Table 6.2.

The specification AG(EF(s1)∧EF(s2)∧EF(s3)∧EF(s4)) comes from the PIT

82

Table 6.2: Mapping between model and Structured Text variable names.
DES ST
s1 condition_cooled

s2 condition_reacted

s3 condition_heated

s4 condition_reset

s5 mode_cool

s6 mode_react

s7 mode_heat

s8 mode_reset

r1 (T_reactor <= T_cold)

r2 (N_C >= 0.99 * N_A0)

r3 (T_reactor >= T_hot)

r4 (N_A >= N_A0)

r5 proceed

r6 duration_1 >= 10

r7 duration_2 >= 10

r8 duration_3 >= 10

r9 duration_4 >= 10

that each of the operating modes should always be reachable. The specification

is a CIR specification, so Algorithm 6.2 can be applied to check if the SHCS

violates it. Applying Algorithm 6.2 indicates that the specification is violated.

This is explained by the condition to move from s4 to s1, which requires that

s7 = 1 (i.e., that the reactant is fully reacted). The variable s7 is only set

in the ‘‘React’’ mode, so it is always 0 in the ‘‘Cool’’ mode; this prevent the

system from returning to the ‘‘Reset’’ mode after completing the reaction. Note

that all the operating modes are reachable from the initial state, s0, and the

problem is that they do not always remain reachable. Thus, detecting this

behavior requires analyzing a CIR specification that combines invariance and

reachability. Finally, the result from Algorithm 6.2 guarantees that the SHCS

does not meet the specification, regardless of the continuous dynamics.

83

6.5 Mitigating the State-Explosion Problem

To gain the performance benefit of cone-of-influence (COI) reduction (described

in Section A.4) when analyzing systems in which all of the model variables

appear in the COI, abstraction can be applied. Removing the transition logic

of a variable, and replacing it with a free input to the model, results in an

abstraction. More importantly, the variable influences that appeared in the

removed transition logic are also removed from the model, potentially allowing

for COI reduction. Because the reduced model is an abstraction, the same

theoretical results apply as discussed in Section 6.4: ACTL specifications can

be verified, and CIR specifications can be falsified, assuming that the abstracted-

away variables are replaced with controllable inputs, as in Section 6.4.1.

There are many approaches for computing efficient abstractions of both

discrete and hybrid systems, which are beyond the scope of this work. We

apply the following abstraction procedure:

1. Set a limit on the number of state variables to include in the model.

2. Starting at 0, increment the COI search depth until the number of

variables included in the COI exceeds the limit.

3. Replace each state variable that entered the COI in the previous level

with an input variable.

In this way, the size of the abstract model to evaluate for each specification

can be approximately set to the desired limit. The COI limit may not be

enforced exactly, for two main reasons: step 3 may remove more variables than

necessary, resulting in a COI that is strictly smaller than the chosen limit, or

there may be too many input variables in the COI (which cannot be abstracted

away) to achieve the limit.

84

6.5.1 Example: CIR Falsified after Simplification

Consider the system from Section 6.4.3, and the simplified PLC program (lines

that begin with ‘‘//’’ are comments):

// condition_cooled := mode_cool

// and DT(T_reactor <= T_cold, 10, false);

condition_reacted := mode_react

and DT(N_C >= 0.99 * N_A0, 10, false);

// condition_heated := mode_heat

// and DT(T_reactor >= T_hot, 10, false);

condition_reset := mode_reset

and DT(N_A >= N_A0, 10, false);

mode_cool := (mode_cool and not (input_proceed and condition_cooled))

or (mode_react and condition_reacted and input_proceed);

mode_react := (mode_react and not (input_proceed and condition_reacted))

or (mode_heat and condition_heated and input_proceed);

mode_heat := (mode_heat and not (input_proceed and condition_heated))

or (mode_reset and condition_reset and input_proceed);

mode_reset := (mode_reset and not (input_proceed and condition_reset))

or (mode_react

and condition_cooled

and input_proceed and condition_reacted);

In the simplified program, condition_cooled and condition_heated are no

longer set, and are instead treated as external values that act as readings.

When this program is converted to a model, input variables are introduced

in place of the assignment logic for condition_cooled and condition_heated,

and are allowed to take any value; the result is an abstraction of the model in

Section 6.4.3. This further abstraction of the model reduces the computational

effort required for analysis. More importantly, the same result (that the

specification AG(EF(s1) ∧ EF(s2) ∧ EF(s3) ∧ EF(s4)) is violated) is still proven

by applying Algorithm 6.2 to the abstraction.

85

6.6 Case Study

We now apply the methods that were developed in this chapter to two control

systems provided by The Dow Chemical Company. Table 6.3 provides some

basic details related to the size and complexity of the two systems. The first

system, ‘‘Unit A’’, is a batch wash tank, and the second, ‘‘Unit B’’, is a batch

reactor. The large number of discrete variables, in comparison to the relatively

simple continuous control design (exhibited by the small number of PID loops),

demonstrates the complexity of the discrete logic in a typical industrial plant

control system.

Table 6.3: Overview of the case study problem size. The columns list the
number of PID loops in the process, the number of discrete state variables in
the control system, the number of delay timers, the number of variables that
represent operating modes, and the average size of the cone of influence of the
variables.

Name PIDs Variables Timers Modes COI
Unit A 5 236 46 22 570
Unit B 8 752 162 53 2462

The variable lock and relevant logic PITs were applied for each of the

discrete control variables in each system for various COI size targets. For each

variable, a set of simplifications (abstractions) is computed as in Section 6.5 to

enforce the desired COI limit. Table 6.4 shows the number of variables which

were removed to enforce the COI limit, the COI size in the resulting abstract

model, and the time taken to analyze the abstract model. The state-explosion

problem appears as the rapid increase in solution time as the COI size is allowed

to increase. For each of the two systems, the largest target COI size listed

represents roughly the largest value for which the methods in this chapter

could be applied. Comparing this limit (150) to the average original COI size in

the two systems in Table 6.3, it is clear that COI reduction, made possible by

analyzing abstract models, is critically important when it comes to analyzing

86

the closed-loop behavior.

Table 6.4: Abstraction and runtime information when applying the PITs to
the case study. Each column lists the average value computed over the system
variables. The columns list the target COI size when computing simplifying
abstractions, the number of variables that were abstracted away, the resulting
COI size after abstraction, and the time taken to analyze the PITs for each
variable.

Name COI Target Abstr. var. COI Time/var. (s)
Unit A 25 8.7 16.2 5.9
Unit A 50 16.4 37.0 7.8
Unit A 100 22.3 83.5 17.2
Unit A 150 27.1 125.9 43.8
Unit B 25 16.3 27.1 16.4
Unit B 50 16.4 28.7 15.7
Unit B 100 36.2 69.4 21.3
Unit B 150 42.2 111.5 56.0

The result of applying the PITs to the sample systems are shown in Table 6.5.

As expected, increasing the allowed COI size produces more conclusive results,

at the expense of the increased execution time shown in Table 6.4. In both

systems, each type of specification successfully detects the corresponding

behavior, which supports the claim that the PITs described in Section 6.2.2

are relevant to industrial chemical plant automation systems. In addition,

because the tests were produced automatically from the control logic itself, this

method requires minimal effort or expert knowledge to analyze a system. The

trend of being able to prove more results about the system behavior as the

COI limit increases is expected to continue past the current COI limit of 150.

Simply increasing the COI limit leads to increased computational effort due to

the state-explosion problem; on the other hand, applying more sophisticated

abstraction techniques than the one described in Section 6.5 might allow for

capturing more of the important dynamics while meeting the same COI target.

The 5 variable locks detected in Unit A with the COI target set to 25 and

87

Table 6.5: PIT results from the case study. The columns list the number of
results detected of each type.

Name COI Target Lock Irrelevant Relevant
Unit A 25 5 2 0
Unit A 50 8 12 0
Unit A 100 15 41 1
Unit A 150 15 44 2
Unit B 25 10 6 1
Unit B 50 10 8 1
Unit B 100 10 31 3
Unit B 150 10 50 4

the 10 in Unit B were the result of variables with assignment logic consisting

of a single Boolean literal (TRUE or FALSE); this behavior was intended. These

results could, in principal, have been detected by simply checking for Boolean

literals in each variable’s assignment logic. The additional variable locks

detected in Unit A for larger COI values, on the other hand, were not caused

by such trivial dynamics. Instead, they resulted from the interaction of the

earlier variable locks with the rest of the discrete logic. The resulting behavior

did not represent an error in the system, but this does indicate that detecting

certain behavior in the system requires a more detailed model of the system

dynamics. The irrelevant and relevant logic results were all the result of

restrictions on the reachable values of the variables, so detecting them also

required analysis of the system dynamics. Similar to the variable locks, a more

detailed model yields a larger set of results. Due to the proprietary nature of

the control code, we have omitted the actual control logic.

6.7 Summary

In this chapter, we have demonstrated the application of formal methods to

analyze chemical plant automation systems. These systems are characterized

by complex discrete logic which, coupled with continuous plant dynamics,

88

creates a large-scale hybrid dynamical system. Such systems are currently

beyond the reach of systematic design tools, so instead we settled for proving

certain aspects of the closed-loop behavior. To achieve this, we relied on

automatically-generated process-independent tests (PITs) that involve both

invariance and reachability requirements to obtain a high-level summary of a

given control system. These PITs yielded positive results when applied to a

case study consisting of two industrial automation systems, each from a batch

process.

We determined whether or not an automation system satisfies the various

PITs by applying a combination of abstraction and cone-of-influence reduction

with either symbolic model checking or supervisory control theory. In contrast

to existing techniques such as bounded model checking and implicit model

checking, the methods we applied yield guaranteed verification and falsification

results for the PITs. This is critically important for the method to be accepted

in industry, where a tool that either reports speculative results that require

further investigation (such as manually inspecting counterexamples) or fails

to report obvious results (by being too conservative) is quickly discarded.

Finally, the methods we presented provide the same theoretical guarantees on

the results (i.e., no false positives) when applied to simplified models, which

allowed us to handle an industrial-scale case study.

The techniques we applied do not depend on the form of the continuous

process dynamics (e.g. linear, piecewise-affine). This feature is important when

it comes to applying them to the broad range of processes that exist in the

chemical industry. Not only do general chemical processes fail to fit in these

classes of systems, but the continuous dynamics are never known with exact

certainty, so general methods are required.

89

Chapter 7

st2smv v0.1.0

7.1 Modeling Logical Control Systems

The class of hybrid systems that arises in industrial plant automation is an

important target for formal analysis and verification. A defining feature of these

systems is that the discrete part of the hybrid system is defined in the control

and automation logic. This makes it possible, in principle, to obtain a perfect

model of the discrete dynamics. The difficulty in analyzing these systems

without a formal model comes from the complexity of a typical industrial

control system, which also necessitates an automated conversion process from

existing logic to model. We address SHCSs of the form (2.1), implemented

using programmable logic controllers (PLCs) as described in Section 6.3.

Previous work toward modeling the hybrid dynamics of PLC-controlled

plants has focused in two directions; the theoretical aspects of accurately

representing the logic are covered in [Moo94; RK98; Can+00; Bau+04; GdF08;

Dar+14], and software tools to achieve the task are described in [BBK12;

Fer+15]. In both areas, the work has focused on analyzing properties of the

infinite-state hybrid system that can be verified directly using a finite-state

90

discrete abstraction.

7.2 Translating Structured Text Control Code

to a Model

Currently, st2smv1 accepts PLC programs defined in the restricted subset of

the Structured Text (ST) language from Section 6.3. Every variable that is

assigned a value is an output of the program. Any variable that is not assigned

a value anywhere in the program is an input.

The PLC program is transformed to a formal model in a static single

assignment intermediate representation (IR). Each variable assignment that

appears in the ST program results in a new internal variable in the model.

For an output variable that is assigned a value multiple times during one

loop through the program, the actual output that is visible after the PLC

loop is the final internal value that was calculated. In this way, multiple

assignments to the same variable produce additional internal state variables in

the model. An output variable that is only assigned a value at a single location

in the ST program is simply equal to the internal state value produced by that

assignment. The input variables to the ST program only appear explicitly in

the model on the right-hand side of assignments to internal state variables,

or in the guards of conditional assignments to internal state variables. The

result is a deterministic map from input values to output values, along with

the necessary internal state values, that represents a single loop through the

PLC program. This can be modeled as a deterministic finite labeled transition

system.

The final step before analyzing the model is to translate the IR to the input

1Available at: https://pypi.python.org/pypi/st2smv/.

91

https://pypi.python.org/pypi/st2smv/

language of a solver. SynthSMV is chosen to allow not only model checking,

but also falsification of CIR specifications as in Chapters 6. The input language

of SynthSMV defines a finite state machine (FSM). To model the discrete logic

of a PLC program, the state of the FSM consists of the value assigned to each

of the output and internal state variables during a PLC cycle, and the (labeled)

inputs to the FSM are the readings from the plant. The Boolean inputs and

state/output variables in the IR model are translated directly to Boolean inputs

and variables in the SynthSMV model. The numeric variables only appear in

the assignment logic for Boolean variables in the form of comparisons, so each

comparison (using the current internal state of the numeric variables being

compared) is replaced with a Boolean (input) variable. This is an abstraction,

which overapproximates the possible set of readings that the discrete logic can

receive, to ensure that the output model has a finite state space.

The approach described here is similar what is done by Arcade.PLC [BBK12]

and PLCverif [Fer+15]. Arcade.PLC applies more general software analysis,

using its own model checking algorithm. PLCverif is more similar to st2smv,

including producing a NuSMV model as output; however, it is not yet avail-

able [Fer+15], and seems to focus exclusively on model checking to verify

specifications. As described in Chapter 6, using model checking alone limits

the class of specifications that can be verified (or falsified).

A plugin interface to st2smv is provided so that it can be extended in the

future. To demonstrate this interface, we have implemented a plugin that

automatically produces the variable lock, irrelevant logic, and relevant logic

specifications described in Table 6.1.

92

7.3 Example

To demonstrate st2smv, we apply it to the liquid holding tank example problem

from Section 2.3. The ST code for the controller is shown in Figure 7.1. As

h_high := 8; // high level

h_low := 2; // low level

alarm_high := (NOT acknowledged_high) AND h > h_high;

lockout_high := alarm_high OR (lockout_high AND h > h_high);

acknowledged_high := (alarm_high AND acknowledge_high)

OR acknowledged_high;

IF (NOT (alarm_high OR lockout_high)) THEN

flow_in := flow_in_requested;

ELSE

flow_in := 0;

END_IF;

alarm_low := (NOT acknowledged_low) AND h < h_low;

lockout_low := alarm_low OR (lockout_low AND h < h_low);

acknowledged_low := (alarm_low AND acknowledge_low)

OR (acknowledged_low AND h < h_low);

IF (NOT (alarm_low OR lockout_low)) THEN

flow_out := flow_out_requested;

ELSE

flow_out := 0;

END_IF;

Figure 7.1: Structured Text program for the liquid holding tank example.

described in Section 7.2, the variables acknowledge_high and acknowledge_low,

along with the inequality comparisons h > h_high and h < h_low, are converted

to Boolean inputs to the FSM. The generated SynthSMV model is shown in

Figure 7.2.

Applying SynthSMV to the model with the CTLSPEC form of the variable

lock specifications (i.e., model checking, not supervisor synthesis, specifications)

reports the potential variable locks in Table 7.1. This means that in the

93

MODULE main

VAR initializing : boolean;

ASSIGN init(initializing) := TRUE;

ASSIGN next(initializing) := FALSE;

IVAR ivar_acknowledge_high_0 : boolean;

VAR acknowledge_high_0 : boolean;

ASSIGN next(acknowledge_high_0) := ivar_acknowledge_high_0;

IVAR ivar_acknowledge_low_0 : boolean;

VAR acknowledge_low_0 : boolean;

ASSIGN next(acknowledge_low_0) := ivar_acknowledge_low_0;

VAR alarm_high_1 : boolean;

ASSIGN alarm_high_1 := ((! acknowledged_high_0) & h_0__gt__h_high_1);

VAR lockout_high_1 : boolean;

ASSIGN lockout_high_1 := (alarm_high_1 | (lockout_high_0 & h_0__gt__h_high_1));

VAR acknowledged_high_1 : boolean;

ASSIGN acknowledged_high_1 := ((alarm_high_1 & acknowledge_high_0) | acknowledged_high_0);

VAR alarm_low_1 : boolean;

ASSIGN alarm_low_1 := ((! acknowledged_low_0) & h_0__lt__h_low_1);

VAR lockout_low_1 : boolean;

ASSIGN lockout_low_1 := (alarm_low_1 | (lockout_low_0 & h_0__lt__h_low_1));

VAR acknowledged_low_1 : boolean;

ASSIGN acknowledged_low_1 := ((alarm_low_1 & acknowledge_low_0) | (acknowledged_low_0 & h_0__lt__h_low_1));

DEFINE acknowledged_high := acknowledged_high_1;

DEFINE acknowledged_low := acknowledged_low_1;

DEFINE alarm_high := alarm_high_1;

DEFINE alarm_low := alarm_low_1;

DEFINE lockout_high := lockout_high_1;

DEFINE lockout_low := lockout_low_1;

VAR acknowledged_high_0 : boolean;

ASSIGN next(acknowledged_high_0) := acknowledged_high;

VAR acknowledged_low_0 : boolean;

ASSIGN next(acknowledged_low_0) := acknowledged_low;

VAR lockout_high_0 : boolean;

ASSIGN next(lockout_high_0) := lockout_high;

VAR lockout_low_0 : boolean;

ASSIGN next(lockout_low_0) := lockout_low;

IVAR ivar_h_0__gt__h_high_1 : boolean;

VAR h_0__gt__h_high_1 : boolean;

TRANS next(h_0__gt__h_high_1) = ivar_h_0__gt__h_high_1;

IVAR ivar_h_0__lt__h_low_1 : boolean;

VAR h_0__lt__h_low_1 : boolean;

TRANS next(h_0__lt__h_low_1) = ivar_h_0__lt__h_low_1;

INIT acknowledge_high_0 = FALSE;

INIT acknowledged_high_0 = FALSE;

INIT lockout_high_0 = FALSE;

INIT acknowledge_low_0 = FALSE;

INIT acknowledged_low_0 = FALSE;

INIT lockout_low_0 = FALSE;

Figure 7.2: SynthSMV model of the Structured Text program in Figure 7.1.

94

abstraction, it is possible to reach a state in which one of those variables can

no longer change value. This does not necessarily mean the same is true of the

hybrid system; additional analysis of the dynamics is required to determine

whether or not a state in the hybrid system that corresponds to one of the

problematic states in the abstraction is, in fact, reachable. This follows directly

from the fact that the variable lock specification is not an ACTL specification.

Applying SynthSMV to the SYNTH form of the specifications confirms the

variable lock involving the acknowledged_high variable; the specifications

involving alarm_high and lockout_high are not confirmed. These results are

shown in Table 7.1. The confirmed variable locks indicate that no restriction

on the sequence of readings received by the discrete logic exists that will make

the specification pass; thus, the control system violates those specifications.

The fact that the remaining variable lock was not confirmed does not indicate

that it is not present in the hybrid dynamics, only that it might not be present.

As in Chapter 5, further analysis of the hybrid dynamics would be required to

strengthen that result.

Table 7.1: Falsification results for the liquid holding tank example. Results
shown in bold are guaranteed to hold in the actual system.

Specification CTLSPEC SYNTH

AG(EF(acknowledged_high) ∧ EF(¬acknowledged_high)) False False

AG(EF(alarm_high) ∧ EF(¬alarm_high)) False True
AG(EF(lockout_high) ∧ EF(¬lockout_high)) False True

Similar to what is proposed in Section 5.4.3, changing the alarm acknowl-

edgement logic to:

// acknowledged_high := (alarm_high AND acknowledge_high)

// OR acknowledged_high;

acknowledged_high := (alarm_high AND acknowledge_high)

OR (acknowledged_high AND h > h_high);

causes the corresponding variable lock specification to no longer be falsified.

95

As described previously, this does not guarantee that it is satisfied; verifying

the specification is beyond the scope of st2smv.

7.4 Summary

This chapter provided an overview of st2smv, a tool for converting PLC logic

(written in a subset of the Structured Text programming language) to a formal

model. In addition to the formal model, st2smv automatically generates a set of

process-independent tests to analyze the general behavior of the logic. The key

functionality that distinguishes st2smv from existing tools is that it correctly

models inputs to the PLC logic, so that techniques for falsifying certain CTL

specifications (from Chapter 5) can be applied. SynthSMV (see Chapter 4) is

used to analyze the models produced by st2smv.

96

Chapter 8

Conclusions

8.1 Contributions

This work has addressed the problem of detecting unintended behavior in

chemical plants which is caused by errors in the discrete control and automation

logic. The motivation for this is that the size and complexity of existing control

systems has outpaced the available design tools. In the absence of effective

design tools, the analysis result that leads directly to improvements in an

existing system is a guarantee that the system does not behave as intended.

Given this information, the system designer can focus on a specific aspect of

the overall behavior that is incorrect, and fix the error.

In Chapter 6, we presented a set of temporal logic specifications that

can be applied to a chemical plant’s control and automation logic to detect

certain classes of unintended behavior. Some of those specifications can be

checked using methods that have been proven to apply to large-scale systems

in previous work that addresses verification of logical control systems. Others,

which involve requirements related to both invariance and reachability, were

analyzed using a new method to falsify specifications in hybrid systems.

97

The key falsification result presented in Chapter 5 is a sound algorithm

to prove that a hybrid system violates a specification written in a subset of

computation tree logic (CTL) which has not been addressed in previous work.

In some cases, the falsification algorithm only requires a model of the discrete

dynamics (which are defined in the control system) to prove the existence of

an error; this allows the algorithm to be applied in a chemical plant setting,

where the discrete dynamics are known, but the continuous dynamics are not

known exactly. If the specification cannot be falsified using only the discrete

dynamics, a hybrid systems reachability verification problem can be solved

in an attempt to falsify the original specification. This verification problem

is simpler than the original falsification problem (which involves combined

invariance and reachability requirements), and can be addressed using various

techniques from the literature.

The falsification algorithm in Chapter 5 relies on new results, presented in

Chapter 3, concerning the supervisory control of discrete systems. In particular,

we show that a specification with multiple invariance and reachability require-

ments corresponds to an optimal state-based supervisor. This result extends

recent work that addressed a single reachability requirement. The algorithm to

compute the optimal supervisor was implemented in SynthSMV, an extension

of the model checking solver NuSMV, as described in Chapter 4. SynthSMV

takes advantage of NuSMV’s efficient symbolic model checking implementation

to handle large problems.

Applying the falsification algorithm to control systems implemented using

programmable logic controllers (PLCs) requires an extension of the modeling

approach used in previous work, which only addresses verification. The main

difference is that readings from the plant are modeled as inputs to the discrete

logic, which allows for the application of supervisory control to the model.

98

Another issue that comes up when modeling industrial control systems (for

either verification or falsification) is that the size of the resulting model is often

beyond the scope of symbolic model checking. To address this, we presented

an abstraction technique that yields a simplified model of an arbitrarily large

control system. The trade-off is that analysis of the abstract model may fail

to falsify (or verify) specifications that could be falsified (or verified) using a

closer approximation of the system dynamics; the soundness of the falsification

and verification algorithms is preserved when they are applied to the simplified

model. The modeling and abstraction details are presented in Chapter 6, and

a software tool to automate the process, st2smv, is described in Chapter 7.

The methods developed in this work were applied to a case study from

The Dow Chemical Company in Chapter 6. The analysis was performed

using st2smv and SynthSMV. The case study results show that the process-

independent tests from Chapter 6 can detect the corresponding behavior in

existing industrial control systems. The results also show that abstraction (to

simplify the model) is a necessary first step before symbolic model checking

and supervisor synthesis can be applied to industrial-scale systems.

8.2 Recommendations for Future Work

The success of the process-independent tests from Chapter 6 depends on their

application to a large number of control systems. Checking for unintended

behavior in existing systems, which have already been tested thoroughly, is not

likely to produce many results. The advantage is that it can be applied to any

system, with minimal effort on the part of the practitioner. This is enabled

by the tool st2smv, which automates the task of modeling the control logic.

Thus, the first direction for future work is to apply the existing work more

99

widely in industry. Similarly, st2smv (and the modeling techniques it is based

on) should be expanded to a wider range of PLC programs, so that it can be

applied more broadly. This includes not only expanding the accepted syntax

beyond the restricted subset of Structured Text presented in this work, but

also addressing different operational semantics, such as asynchronous input

and output.

One of the key limiting factors in the application of this work is the size and

complexity of industrial control systems. In fact, as shown in the case study

from Chapter 6, the use of simplified models is necessary even when symbolic

model checking (and supervisor synthesis) is applied. We applied a very simple

technique to simplify the models, and more sophisticated techniques that aim

to include relevant discrete dynamics (instead of simply limiting the size of the

simplified model) would almost certainly produce more informative results.

Although this work addresses hybrid dynamical systems, we made no

attempt to incorporate knowledge of the continuous dynamics in the models

when working with plant-wide control systems. This was justified by the

observation that the continuous dynamics are difficult to obtain compared to

the discrete dynamics, and computationally expensive to evaluate. However,

this means that the results we reported are a subset of those that we could

produce by incorporating knowledge of the continuous dynamics. Future work

should explore ways to incorporate the hybrid dynamics to strengthen the

results.

The set of PITs we provided in Chapter 6 is by no means an exhaustive list

of all the requirements that a plant automation system should meet. There

remain significant opportunities both to develop more PITs, and to develop

process-dependent tests that target a particular chemical processing unit’s

behavior. This includes producing specifications with the same form as those

100

addressed in this work, namely ACTL specifications (to be verified) and CIR

specification (to be falsified), but also exploring different classes of specifications

which can lead to guaranteed verification or falsification results.

The SHCS model (2.1) is limited to continuous process dynamics, and

systems with a single fixed sampling frequency. It would be useful to expand

the model, and the results developed in this work based on that model, to a

broader class of systems. In the opposite direction, it might be beneficial to

consider more restricted classes of hybrid systems which could lead to more

efficient application of the falsification method in Chapter 5.

Finally, SynthSMV has been shown to be capable of solving supervisor

synthesis problems with large systems, but it was not formally compared to

existing supervisory control tools. It would be interesting to compare it to

the other solvers that implement (BDD-based) symbolic algorithms mentioned

in Chapter 4. Similarly, it would be useful to extend SynthSMV to actually

return the computed supervisor, instead of simply reporting whether or not

the problem had a solution.

101

Bibliography

[Åke+06] K. Åkesson, M. Fabian, H. Flordal, and R. Malik. ‘‘Supremica - An inte-
grated environment for verification, synthesis and simulation of discrete event
systems’’. In: 8th International Workshop on Discrete Event Systems. 2006,
pp. 384–385. doi: 10.1109/wodes.2006.382401.

[Bal+05] A. Balluchi, L. Benvenuti, S. Engell, T. Geyer, K. H. Johansson, F. Lamnabhi-
Lagarrigue, J. Lygeros, M. Morari, G. Papafotiou, A. L. Sangiovanni-Vincentelli,
F. Santucci, and O. Stursberg. ‘‘Hybrid control of networked embedded
systems’’. In: European Journal of Control 11.4 (2005), pp. 478–508. doi:
10.1016/S0947-3580(05)71047-5.

[BL02] P. I. Barton and C. K. Lee. ‘‘Modeling, simulation, sensitivity analysis, and
optimization of hybrid systems’’. In: ACM Transactions on Modeling and
Computer Simulation (TOMACS) 12.4 (Oct. 2002), pp. 256–289. doi: 10.

1145/643120.643122.

[Bau+04] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe, and
O. Stursberg. ‘‘Verification of PLC programs given as sequential function
charts’’. In: Integration of Software Specification Techniques for Applications
in Engineering. Vol. 3147. Lecture Notes in Computer Science. 2004, pp. 517–
540. doi: 10.1007/978-3-540-27863-4_28.

[BTM01] A. Bemporad, F. Torrisi, and M. Morari. ‘‘Discrete-time Hybrid Modeling
and Verification of the Batch Evaporator Process Benchmark’’. In: European
Journal of Control 7.4 (Jan. 2001), pp. 382–399. doi: 10.3166/ejc.7.382-399.

[BM99] A. Bemporad and M. Morari. ‘‘Control of systems integrating logic, dynamics,
and constraints’’. In: Automatica 35 (1999), pp. 407–427. doi: 10.1016/s0005-
1098(98)00178-2.

[BF04] A. Bhatia and E. Frazzoli. ‘‘Incremental Search Methods for Reachability
Analysis of Continuous and Hybrid Systems’’. In: Hybrid Systems: Computation
and Control. 2004, pp. 142–156. doi: 10.1007/978-3-540-24743-2_10.

[BBK12] S. Biallas, J. Brauer, and S. Kowalewski. ‘‘Arcade.PLC: A verification plat-
form for programmable logic controllers’’. In: 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2012. IEEE. 2012,
pp. 338–341. doi: 10.1145/2351676.2351741.

[BBK10] S. Biallas, J. Brauer, and S. Kowalewski. ‘‘Counterexample-guided abstraction
refinement for PLCs’’. In: 5th International Conference on Systems Software
Verification. USENIX Association. 2010.

[Bie+03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. ‘‘Bounded
Model Checking’’. In: Advances in Computers 58 (2003), pp. 118–149. doi:
10.1016/s0065-2458(03)58003-2.

102

http://dx.doi.org/10.1109/wodes.2006.382401
http://dx.doi.org/10.1016/S0947-3580(05)71047-5
http://dx.doi.org/10.1145/643120.643122
http://dx.doi.org/10.1145/643120.643122
http://dx.doi.org/10.1007/978-3-540-27863-4_28
http://dx.doi.org/10.3166/ejc.7.382-399
http://dx.doi.org/10.1016/s0005-1098(98)00178-2
http://dx.doi.org/10.1016/s0005-1098(98)00178-2
http://dx.doi.org/10.1007/978-3-540-24743-2_10
http://dx.doi.org/10.1145/2351676.2351741
http://dx.doi.org/10.1016/s0065-2458(03)58003-2

[BvW10] S. Blom, J. van de Pol, and M. Weber. ‘‘LTSmin: Distributed and Symbolic
Reachability’’. In: Computer Aided Verification. 2010, pp. 354–359. doi:
10.1007/978-3-642-14295-6_31.

[Bry86] R. E. Bryant. ‘‘Graph-Based Algorithms for Boolean Function Manipulation’’.
In: IEEE Transactions on Computers C-35.8 (1986), pp. 677–691. doi: 10.
1109/tc.1986.1676819.

[Can+00] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. ‘‘Towards
the automatic verification of PLC programs written in Instruction List’’. In:
IEEE International Conference on Systems, Man and Cybernetics 4 (2000),
pp. 2449–2454. doi: 10.1109/icsmc.2000.884359.

[CL08] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, 2008. doi: 10.1007/978-0-387-68612-7.

[CK03] A. Chutinan and B. H. Krogh. ‘‘Computational techniques for hybrid system
verification’’. In: IEEE Transactions on Automatic Control 48.1 (2003), pp. 64–
75. doi: 10.1109/TAC.2002.806655.

[CK01] A. Chutinan and B. H. Krogh. ‘‘Verification of infinite-state dynamic systems
using approximate quotient transition systems’’. In: IEEE Transactions on
Automatic Control 46.9 (2001), pp. 1401–1410. doi: 10.1109/9.948467.

[Cim+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. ‘‘NuSMV 2: An OpenSource tool for symbolic
model checking’’. In: Computer Aided Verification. Lecture Notes in Computer
Science. 2002, pp. 359–364. doi: 10.1007/3-540-45657-0_29.

[CG87] E. M. Clarke and O. Grumberg. ‘‘Avoiding the state explosion problem in
temporal logic model checking’’. In: Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing. 1987. doi: 10.1145/41840.
41865.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. ‘‘Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifications’’.
In: Association for Computing Machinery Transactions on Programming
Languages and Systems 8.2 (1986), pp. 244–263. doi: 10.1145/5397.5399.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. ‘‘Model checking and abstraction’’.
In: ACM transactions on Programming Languages and Systems (TOPLAS)
16.5 (1994), pp. 1512–1542. doi: 10.1145/186025.186051.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[Cla+03] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine, O. Stursberg, and
M. Theobald. ‘‘Abstraction and counterexample-guided refinement in model
checking of hybrid systems’’. In: International Journal of Foundations of
Computer Science 14.4 (2003), pp. 583–604. doi: 10.1142/S012905410300190X.

[Col11] P. Collins. ‘‘Semantics and computability of the evolution of hybrid systems’’.
In: SIAM Journal on Control and Optimization 49.2 (2011), pp. 890–925. doi:
10.1137/080716955.

[DBF13] D. Darvas, E. Blanco Viñuela, and B. Fernández Adiego. Transforming PLC
Programs into Formal Models for Verification Purposes. Tech. rep. CERN,
2013. url: http://cds.cern.ch/record/1629275/files/CERN-ACC-NOTE-2013-
0040.pdf.

103

http://dx.doi.org/10.1007/978-3-642-14295-6_31
http://dx.doi.org/10.1109/tc.1986.1676819
http://dx.doi.org/10.1109/tc.1986.1676819
http://dx.doi.org/10.1109/icsmc.2000.884359
http://dx.doi.org/10.1007/978-0-387-68612-7
http://dx.doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/10.1109/9.948467
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1145/41840.41865
http://dx.doi.org/10.1145/41840.41865
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1142/S012905410300190X
http://dx.doi.org/10.1137/080716955
http://cds.cern.ch/record/1629275/files/CERN-ACC-NOTE-2013-0040.pdf
http://cds.cern.ch/record/1629275/files/CERN-ACC-NOTE-2013-0040.pdf

[Dar+14] D. Darvas, B. Fernández Adiego, A. Vörös, T. Bartha, E. Blanco Viñuela, and
V. M. González Suárez. ‘‘Formal verification of complex properties on PLC
programs’’. In: Formal Techniques for Distributed Objects, Components, and
Systems. Vol. 8461. Lecture Notes in Computer Science. 2014, pp. 284–299.
doi: 10.1007/978-3-662-43613-4_18.

[dCW05] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham. ‘‘Multitasking Su-
pervisory Control of Discrete-Event Systems’’. In: Discrete Event Dynamic
Systems 15.4 (Oct. 2005), pp. 375–395. doi: 10.1007/s10626-005-4058-y.

[DSP97] V. D. Dimitriadis, N. Shah, and C. C. Pantelides. ‘‘Modeling and safety
verification of discrete/continuous processing systems’’. In: AIChE Journal
43.4 (Apr. 1997), pp. 1041–1059. doi: 10.1002/aic.690430418.

[Dim+96] V. D. Dimitriadis, J. Hackenberg, N. Shah, and C. C. Pantelides. ‘‘A case study
in hybrid process safety verification’’. In: Computers & Chemical Engineering
20 (1996), S503–S508. doi: 10.1016/0098-1354(96)00093-2.

[Dre+15] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh.
‘‘Efficient Guiding Strategies for Testing of Temporal Properties of Hybrid
Systems’’. In: Lecture Notes in Computer Science. 2015, pp. 127–142. doi:
10.1007/978-3-319-17524-9_10.

[DSL07] J. Du, C. Song, and P. Li. ‘‘Modeling and Control of a Continuous Stirred Tank
Reactor Based on a Mixed Logical Dynamical Model’’. In: Chinese Journal
of Chemical Engineering 15.4 (Aug. 2007), pp. 533–538. doi: 10.1016/s1004-
9541(07)60120-7.

[Ehl+16] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi. ‘‘Supervisory control and
reactive synthesis: a comparative introduction’’. In: Discrete Event Dynamic
Systems (2016), pp. 1–52. issn: 1573-7594. doi: 10.1007/s10626-015-0223-0.

[Eng+00] S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg. ‘‘Continuous-discrete
interactions in chemical processing plants’’. In: Proceedings of the IEEE 88.7
(2000), pp. 1050–1068. doi: 10.1109/5.871308.

[Fer+15] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J.-C. Tournier, S. Bli-
udze, J. O. Blech, and V. M. González Suárez. ‘‘Applying model checking
to industrial-sized PLC programs’’. In: IEEE Transactions on Industrial
Informatics 11.6 (2015), pp. 1400–1410. doi: 10.1109/tii.2015.2489184.

[Fre+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R.
Ripado, A. Girard, T. Dang, and O. Maler. ‘‘SpaceEx: Scalable verification of
hybrid systems’’. In: Computer Aided Verification. Vol. 6806. Lecture Notes
in Computer Science. 2011, pp. 379–395. doi: 10.1007/978-3-642-22110-1_30.

[Fre05] G. Frehse. ‘‘PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech’’.
In: Hybrid Systems: Computation and Control. 2005, pp. 258–273. doi: 10.
1007/978-3-540-31954-2_17.

[GST12] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[GdF08] V. Gourcuff, O. de Smet, and J.-M. Faure. ‘‘Improving large-sized PLC
programs verification using abstractions’’. In: 17th IFAC World Congress.
July 2008. doi: 10.3182/20080706-5-KR-1001.00857.

[GPT06] A. Gromyko, M. Pistore, and P. Traverso. ‘‘A tool for controller synthesis via
symbolic model checking’’. In: 8th International Workshop on Discrete Event
Systems. 2006, pp. 475–476. doi: 10.1109/wodes.2006.382523.

104

http://dx.doi.org/10.1007/978-3-662-43613-4_18
http://dx.doi.org/10.1007/s10626-005-4058-y
http://dx.doi.org/10.1002/aic.690430418
http://dx.doi.org/10.1016/0098-1354(96)00093-2
http://dx.doi.org/10.1007/978-3-319-17524-9_10
http://dx.doi.org/10.1016/s1004-9541(07)60120-7
http://dx.doi.org/10.1016/s1004-9541(07)60120-7
http://dx.doi.org/10.1007/s10626-015-0223-0
http://dx.doi.org/10.1109/5.871308
http://dx.doi.org/10.1109/tii.2015.2489184
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.3182/20080706-5-KR-1001.00857
http://dx.doi.org/10.1109/wodes.2006.382523

[GW00] I. E. Grossmann and A. W. Westerberg. ‘‘Research challenges in process
systems engineering’’. In: AIChE Journal 46.9 (2000), pp. 1700–1703. doi:
10.1002/aic.690460902.

[HDB01] W. Heemels, B. De Schutter, and A. Bemporad. ‘‘Equivalence of hybrid
dynamical models’’. In: Automatica 37.7 (July 2001), pp. 1085–1091. doi:
10.1016/s0005-1098(01)00059-0.

[Hen00] T. A. Henzinger. ‘‘The Theory of Hybrid Automata’’. In: Verification of Digital
and Hybrid Systems. 2000, pp. 265–292. doi: 10.1007/978-3-642-59615-5_13.

[HHW97] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. ‘‘HyTech: A model checker for
hybrid systems’’. In: International Journal on Software Tools for Technology
Transfer 1.1--2 (1997), pp. 110–122. doi: 10.1007/s100090050008.

[Hen+98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. ‘‘What’s Decidable
about Hybrid Automata?’’ In: Journal of Computer and System Sciences 57.1
(1998), pp. 94–124. doi: 10.1006/jcss.1998.1581.

[Hol97] G. Holzmann. ‘‘The model checker SPIN’’. In: IEEE Transactions on Software
Engineering 23.5 (May 1997), pp. 279–295. doi: 10.1109/32.588521.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, Inc., 1979.

[HR04] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University
Press, 2004. doi: 10.1017/cbo9780511810275.

[IEC13] IEC. ‘‘Part 3: Programming languages’’. In: Programmable controllers. IEC
Standard 61131. 2013. url: https://webstore.iec.ch/publication/4552.

[JK06] S. Jiang and R. Kumar. ‘‘Supervisory Control of Discrete Event Systems
with CTL∗ Temporal Logic Specifications’’. In: SIAM Journal on Control and
Optimization 44.6 (2006), pp. 2079–2103. doi: 10.1137/s0363012902409982.

[KM11] J. Kim and I. Moon. ‘‘Model Checking for Automatic Verification of Con-
trol Logics in Chemical Processes’’. In: Industrial & Engineering Chemistry
Research 50.2 (Jan. 2011), pp. 905–915. doi: 10.1021/ie100007w.

[Kow+99] S. Kowalewski, S. Engell, J. Preußig, and O. Stursberg. ‘‘Verification of Logic
Controllers for Continuous Plants Using Timed Condition/Event-System
Models’’. In: Automatica - Special Issue on Hybrid Systems 35.3 (Mar. 1999).
doi: 10.1016/s0005-1098(98)00179-4.

[KSB01] S. Kowalewski, O. Stursberg, and N. Bauer. ‘‘An Experimental Batch Plant
as a Test Case for the Verification of Hybrid Systems’’. In: European Journal
of Control 7.4 (Jan. 2001), pp. 366–381. doi: 10.3166/ejc.7.361-381.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. ‘‘Uppaal in a nutshell’’. In: Inter-
national Journal on Software Tools for Technology Transfer 1.1--2 (1997),
pp. 134–152. doi: 10.1007/s100090050010.

[Len+14] B. Lennartson, F. Basile, S. Miremadi, Z. Fei, M. N. Hosseini, M. Fabian,
and K. Åkesson. ‘‘Supervisory Control for State-Vector Transition Models

— A Unified Approach’’. In: IEEE Transactions on Automation Science and
Engineering 11.1 (2014), pp. 33–47. doi: 10.1109/TASE.2013.2291115.

[Ler+08] F. Lerda, J. Kapinski, H. Maka, E. M. Clarke, and B. H. Krogh. ‘‘Model
checking in-the-loop: Finding counterexamples by systematic simulation’’. In:
American Control Conference. 2008, pp. 2734–2740. doi: 10.1109/acc.2008.
4586906.

105

http://dx.doi.org/10.1002/aic.690460902
http://dx.doi.org/10.1016/s0005-1098(01)00059-0
http://dx.doi.org/10.1007/978-3-642-59615-5_13
http://dx.doi.org/10.1007/s100090050008
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1017/cbo9780511810275
https://webstore.iec.ch/publication/4552
http://dx.doi.org/10.1137/s0363012902409982
http://dx.doi.org/10.1021/ie100007w
http://dx.doi.org/10.1016/s0005-1098(98)00179-4
http://dx.doi.org/10.3166/ejc.7.361-381
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/TASE.2013.2291115
http://dx.doi.org/10.1109/acc.2008.4586906
http://dx.doi.org/10.1109/acc.2008.4586906

[LS13] N. G. Leveson and G. Stephanopoulos. ‘‘A system-theoretic, control-inspired
view and approach to process safety’’. In: AIChE Journal 60.1 (Nov. 2013),
pp. 2–14. doi: 10.1002/aic.14278.

[LTS06] S. Lohmann, L. A. D. Thi, and O. Stursberg. ‘‘Design of verified logic control
programs’’. In: IEEE International Conference on Control Applications. 2006,
pp. 1855–1860. doi: 10.1109/CACSD-CCA-ISIC.2006.4776923.

[MW08] C. Ma and W. M. Wonham. ‘‘STSLib and its application to two benchmarks’’.
In: 9th International Workshop on Discrete Event Systems. 2008. doi: 10.

1109/wodes.2008.4605932.

[McM92] K. L. McMillan. ‘‘Symbolic Model Checking’’. PhD thesis. Carnegie Mellon
University, May 1992.

[McM93] K. L. McMillan. ‘‘The SMV System’’. In: Symbolic Model Checking. 1993,
pp. 61–85. doi: 10.1007/978-1-4615-3190-6_4.

[MTA06] E. Mestan, M. Türkay, and Y. Arkun. ‘‘Optimization of Operations in Supply
Chain Systems Using Hybrid Systems Approach and Model Predictive Con-
trol’’. In: Industrial & Engineering Chemistry Research 45.19 (Sept. 2006),
pp. 6493–6503. doi: 10.1021/ie0511938.

[Moo94] I. Moon. ‘‘Modeling Programmable Logic Controllers for Logic Verification’’.
In: IEEE Control Systems Magazine 14.2 (1994), pp. 53–59. doi: 10.1109/37.
272781.

[Moo+92] I. Moon, G. J. Powers, J. R. Burch, and E. M. Clarke. ‘‘Automatic verification
of sequential control systems using temporal logic’’. In: AIChE Journal 38.1
(1992), pp. 67–75. doi: 10.1002/aic.690380107.

[MSP08] T. Moor, K. Schmidt, and S. Perk. ‘‘libFAUDES — An open source C++
library for discrete event systems’’. In: 9th International Workshop on Discrete
Event Systems. 2008. doi: 10.1109/wodes.2008.4605933.

[Ngh+10] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivančić, A. Gupta, and
G. J. Pappas. ‘‘Monte-Carlo techniques for falsification of temporal properties
of non-linear hybrid systems’’. In: 13th ACM International Conference on
Hybrid Systems: Computation and Control. 2010, pp. 211–220. doi: 10.1145/
1755952.1755983.

[PB00] T. Park and P. I. Barton. ‘‘Formal verification of sequence controllers’’.
In: Computers & Chemical Engineering 23.11 (2000), pp. 1783–1793. doi:
10.1016/s0098-1354(99)00327-0.

[PB97] T. Park and P. I. Barton. ‘‘Implicit model checking of logic-based control
systems’’. In: AIChE Journal 43.9 (1997), pp. 2246–2260. issn: 1547-5905.
doi: 10.1002/aic.690430911.

[PKV09] E. Plaku, L. E. Kavraki, and M. Y. Vardi. ‘‘Hybrid systems: From verification
to falsification by combining motion planning and discrete search’’. In: Formal
Methods in System Design 34.2 (2009), pp. 157–182. doi: 10.1007/s10703-
008-0058-5.

[Pro+97] S. T. Probst, G. J. Powers, D. E. Long, and I. Moon. ‘‘Verification of a Logically
Controlled, Solids Transport System Using Symbolic Model Checking’’. In:
Computers & Chemical Engineering 21.4 (1997), pp. 417–429. doi: 10.1016/
0098-1354(95)00265-0.

[RW87] P. J. Ramadge and W. M. Wonham. ‘‘Supervisory Control of a Class of
Discrete Event Processes’’. In: SIAM Journal on Control and Optimization
25.1 (Jan. 1987), pp. 206–230. doi: 10.1137/0325013.

106

http://dx.doi.org/10.1002/aic.14278
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776923
http://dx.doi.org/10.1109/wodes.2008.4605932
http://dx.doi.org/10.1109/wodes.2008.4605932
http://dx.doi.org/10.1007/978-1-4615-3190-6_4
http://dx.doi.org/10.1021/ie0511938
http://dx.doi.org/10.1109/37.272781
http://dx.doi.org/10.1109/37.272781
http://dx.doi.org/10.1002/aic.690380107
http://dx.doi.org/10.1109/wodes.2008.4605933
http://dx.doi.org/10.1145/1755952.1755983
http://dx.doi.org/10.1145/1755952.1755983
http://dx.doi.org/10.1016/s0098-1354(99)00327-0
http://dx.doi.org/10.1002/aic.690430911
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1016/0098-1354(95)00265-0
http://dx.doi.org/10.1016/0098-1354(95)00265-0
http://dx.doi.org/10.1137/0325013

[RW89] P. J. Ramadge and W. M. Wonham. ‘‘The Control of Discrete Event Systems’’.
In: Proceedings of the IEEE 77.1 (Jan. 1989), pp. 81–98. doi: 10.1109/5.21072.

[RK98] M. Rausch and B. H. Krogh. ‘‘Formal verification of PLC programs’’. In:
American Control Conference. Vol. 1. June 1998, pp. 234–238. doi: 10.1109/
ACC.1998.694666.

[RLG06] L. Ricker, S. Lafortune, and S. Genc. ‘‘DESUMA: A Tool Integrating GIDDES
and UMDES’’. In: 8th International Workshop on Discrete Event Systems.
2006. doi: 10.1109/wodes.2006.382402.

[SF12] S. Sankaranarayanan and G. Fainekos. ‘‘Falsification of temporal properties of
hybrid systems using the cross-entropy method’’. In: 15th ACM International
Conference on Hybrid Systems: Computation and Control. 2012, pp. 125–134.
doi: 10.1145/2185632.2185653.

[Seg07] M. Segelken. ‘‘Abstraction and counterexample-guided construction of ω-
automata for model checking of step-discrete linear hybrid models’’. In: Com-
puter Aided Verification. Vol. 4590. Lecture Notes in Computer Science. 2007,
pp. 433–448. doi: 10.1007/978-3-540-73368-3_46.

[Sri+98] R. Srinivasan, V. D. Dimitriadis, N. Shah, and V. Venkatasubramanian.
‘‘Safety Verification Using a Hybrid Knowledge-Based Mathematical Pro-
gramming Framework’’. In: AIChE Journal 44.2 (1998), pp. 361–370. doi:
10.1002/aic.690440213.

[Ste03] G. Stein. ‘‘Respect the Unstable’’. In: IEEE Control Systems Magazine (Aug.
2003). doi: 10.1109/mcs.2003.1213600.

[Tab09] P. Tabuada. Verification and control of hybrid systems: A symbolic approach.
Springer, 2009. doi: 10.1007/978-1-4419-0224-5.

[Tiw07] A. Tiwari. ‘‘Abstractions for hybrid systems’’. In: Formal Methods in System
Design 32.1 (Dec. 2007), pp. 57–83. doi: 10.1007/s10703-007-0044-3.

[Yov97] S. Yovine. ‘‘Kronos: A verification tool for real-time systems’’. In: Inter-
national Journal on Software Tools for Technology Transfer 1.1--2 (1997),
pp. 123–133. doi: 10.1007/s100090050009.

[ZS05] R. Ziller and K. Schneider. ‘‘Combining supervisor synthesis and model check-
ing’’. In: ACM Transactions on Embedded Computing Systems 4.2 (2005),
pp. 331–362. doi: 10.1145/1067915.1067920.

[Zut+13] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski. ‘‘A tra-
jectory splicing approach to concretizing counterexamples for hybrid sys-
tems’’. In: 52nd IEEE Conference on Decision and Control. Dec. 2013. doi:
10.1109/cdc.2013.6760488.

107

http://dx.doi.org/10.1109/5.21072
http://dx.doi.org/10.1109/ACC.1998.694666
http://dx.doi.org/10.1109/ACC.1998.694666
http://dx.doi.org/10.1109/wodes.2006.382402
http://dx.doi.org/10.1145/2185632.2185653
http://dx.doi.org/10.1007/978-3-540-73368-3_46
http://dx.doi.org/10.1002/aic.690440213
http://dx.doi.org/10.1109/mcs.2003.1213600
http://dx.doi.org/10.1007/978-1-4419-0224-5
http://dx.doi.org/10.1007/s10703-007-0044-3
http://dx.doi.org/10.1007/s100090050009
http://dx.doi.org/10.1145/1067915.1067920
http://dx.doi.org/10.1109/cdc.2013.6760488

Appendix A

Mathematical Background

A.1 Hybrid Dynamical Systems

Systems that combine continuous and discrete dynamics are called hybrid

dynamical systems, or simply hybrid systems. The following model represents

a general hybrid system [GST12]:





x ∈ C ẋ ∈ F (x)

x ∈D x+ ∈G(x)
(A.1)

where x is the state, F is the flow map, G is the jump map, C is the flow

set, and D is the jump set. The state varies continuously (flows) subject to

the differential inclusion ẋ ∈ F (x) when x ∈ C, and changes value discretely

(jumps) subject to the difference inclusion x+ ∈ G(x) when x ∈ D.

The solutions to hybrid systems are parameterized by t ∈ R≥0, the amount

of time that has passed, and k ∈ N, the number of discrete jumps that have

occurred. Only certain subsets E ⊂ R≥0 × N, called hybrid time domains,

correspond to actual solutions to a hybrid system. Points in a hybrid time

domain are ordered such that (t, k) � (t′, k′) ⇐⇒ t+ k ≤ t′ + k′. A solution

108

to a hybrid system (A.1) is a hybrid arc φ : E → X that satisfies the system

dynamics and constraints (starting from an initial state x0), where E is a

hybrid time domain and X is the state space of the hybrid system. It is most

often useful to consider a hybrid arc φ that is a solution to a hybrid system,

and that therefore defines its domain, E.

A.2 Transition Systems

A transition system (TS) has the form:

(Q,∆) (A.2)

where Q is the set of system states, and ∆ ⊆ Q×Q is the set of transitions.

When the system’s state is q ∈ Q, it can make a transition to a new state

q+ ∈ Q if (q, q+) ∈ ∆. Without loss of generality, Q can be defined in terms

of a set of state variables, so that relational expressions in terms of the state

variables (and Boolean combinations thereof) describe fixed subsets of Q.

Adding a set of labels to a transition system results in a labeled transition

system (LTS):

(Q,Σ,∆) (A.3)

where Q is the same as in an unlabeled transition system, Σ is the set of labels,

and ∆ ⊆ Q× Σ×Q is the set of labeled transitions. The system behavior is

similar to that of an unlabeled transition system: a transition δ = (q, σ, q+),

which is a transition from state q to state q+ labeled by σ, can only occur if

δ ∈ ∆. As with unlabeled transition systems, Q and Σ can be defined in terms

of state and label variables.

A labeled transition system (Q,Σ,∆) is finite if Q and Σ are finite, and

109

deterministic if, for each (q, σ) ∈ Q × Σ, there exists a single δ = (q, σ, q+)

such that δ ∈ ∆. Finite and deterministic unlabeled transition systems are

defined similarly.

A path in an LTS is a sequence of states ψ = q0 . . . qn where n ≥ 1 such

that ∀i ∈ 0 . . . n − 1 : ∃σi ∈ Σ : (qi, σi, qi+1) ∈ ∆. If a set of initial states is

defined, then the reachable states are those that the system can arrive at by

following a path from one of the initial states.

Definition A.1 (reachable states). Given a transition system L as in (A.3)

and a set of initial states Q0 ⊆ Q, the set of reachable states, written Reach(L),

is given by:

Reach(L) := {qn ∈ Q | ∃ψ = q0 . . . qn : (q0 ∈ Q0) ∧ (ψ is a path in L)} ∪Q0

It is often useful to consider abstractions of LTSs.

Definition A.2 (abstraction). Given the LTS L = (Q,Σ,∆) with initial states

Q0 and L̃ = (Q̃,Σ, ∆̃) with initial states Q̃0, L̃ is an abstraction of L, written

L̃ � L, if there exists an abstraction function α : Q→ Q̃ such that:

• Q̃0 = {q̃ | ∃q ∈ Q0 : α(q) = q̃}

• ∀(q, σ, q+) ∈ ∆ : (α(q), σ, α(q+)) ∈ ∆̃

Definition A.2 relies on an abstraction function α : Q → Q̃ which maps

states in the concrete system to states in the abstract system. To simplify

notation, α can be extended to sets of states:

α(Q) := {q̃ | ∃q ∈ Q : α(q) = q̃}

110

and sets of (labeled) transitions:

α(∆) :=
{
(q̃, σ, q̃+)

∣∣∣ ∃(q, σ, q+) ∈ ∆ : α(q) = q̃ ∧ α(q+) = q̃+
}

so that the requirements in Definition A.2 can be rewritten as Q̃0 = α(Q0) and

∆̃ ⊇ α(∆). The abstraction function also extends to paths:

α(ψ) := α(ψ[0]), α(ψ[1]), . . .

where ψ is a path q0, q1, . . . in the concrete system.

A.3 Computation Tree Logic

Temporal logic is used to specify properties of the dynamic behavior of state

transition systems. Various temporal logics, including computation tree logic

(CTL), are described in [HR04] and [CGP99].

Some of the CTL operators, which are used to build CTL formulas, are

described in Table A.1. A state formula is a formula that describes a set of

states, i.e., a subset of the state space. The most basic type of state formula is

an atomic proposition, a, that describes a fundamental (atomic) property of

the system’s state. A path formula is a formula that describes a set of paths

along which the system might evolve. Path formulas are formed by applying

one of the temporal operators, F or G, to a state formula. State formulas are

formed by atomic propositions, or by applying one of the path quantifiers, A

or E, to a path formula. State formulas can also be combined and modified

using the Boolean operators ∧, ∨, and ¬, with the result being another state

formula. A CTL specification is a state formula, and the states that satisfy

the specification are those in which the formula holds.

111

Table A.1: A subset of the CTL operators.
Symbol Mnemonic Type Returns

F(p) Finally Temporal operator The set of paths along which
state formula p holds at some
point.

G(p) Globally Temporal operator The set of paths along which
state formula p always holds.

X(p) neXt Temporal operator The set of paths along which
state formula p holds in the next
state.

AΘ All Path quantifier The set of states, from each of
which all paths satisfy path for-
mula Θ.

EΘ Exists Path quantifier The set of states, from each of
which there exists a path that
satisfies path formula Θ.

a atom Atomic proposition The set of states in which the
atomic proposition a holds.

The specification AG(p) is an invariance specification, which requires that

the system never leave the set of states in which p holds. The specification

EF(p) is a reachability specification, which requires that the system can reach

the set of states in which p holds. Invariance and reachability are logical duals,

i.e., AG(p) ⇐⇒ ¬EF(¬p).

For a system in which the state is defined by the value assigned to a set of

state variables (as in Section A.2 for transition systems), relational expressions

involving the state variables can be used as atomic propositions. For example,

if the set of states is defined by Q = {0, 1}2, then the atomic proposition q1 = 1

returns the set {(1, 0), (1, 1)} and the atomic proposition q1 = q2 returns the

set {(0, 0), (1, 1)}. Clearly, these atomic propositions describe fixed sets of

states, and are not affected by the dynamics of the system.

112

A.3.1 Other Temporal Logics

The universal fragment of CTL, called ACTL, is obtained by excluding the

existential path quantifier, E. This assumes that the formulas are in positive

normal form, meaning that the temporal operators are not directly negated

(e.g., ¬AG(p) is first converted to EF(¬p), which is not an ACTL formula).

ACTL is of practical interest primarily because if an ACTL formula is verified

in an abstraction of a system, then it is guaranteed to hold in the actual system

also [CGL94].

Other commonly-used temporal logics include CTL∗ (a superset of CTL)

[CES86], ACTL∗ (defined similarly to ACTL by excluding E from CTL∗), and

linear temporal logic (LTL), which is a subset of ACTL∗. To briefly motivate

the use of CTL, consider the formula AG(EF(p)), which specifies that it is

always possible to reach a state in which p holds. This CTL formula cannot

be expressed in ACTL∗, ACTL, or LTL.

A.4 Model Checking

The objective of model checking is to determine whether or not a given model

meets a temporal logic specification [CGP99]. For CTL specifications, this is

achieved by first computing the set of all states that satisfy the specification,

then checking whether or not every initial state of the system is included in

that set. If the specification holds in every initial state, then the model itself

satisfies the specification; if not, then the model violates the specification.

The CTL model checking algorithm is covered in detail in [CGP99], includ-

ing the correspondence between CTL formulas and fixed points of monotonic

functions. The time complexity of CTL model checking for a specification f

and a (finite) transition system (Q,∆) is O(|f | · (|Q|+ |∆|)), where |f | is the

113

number of subformulas of f , |Q| is the number of states in the system, and

|∆| is the number of transitions in the system.

The state-explosion problem is the fact that the number of states in a

system can grow exponentially with the number of interacting components.

For example, in a typical plant automation system, the number of components

is roughly the number of discrete state variables in the control system, which

is typically on the order of hundreds to thousands [Eng+00]; this leads to very

large models for which the discrete state space cannot reasonably be explicitly

enumerated. One successful technique for overcoming this problem is the use

of binary decision diagrams (BDDs), which allow for efficient representation

of Boolean functions [Bry86], to represent the model symbolically [McM92].

Symbolic model checking enables the analysis of systems with hundreds of

interacting components, for which explicit model checking is intractable.

Another technique to avoid the state-explosion problem is to only consider

variables that influence a given specification. In this way, a reduced model is

built using only the state variables that appear in the specification, and the

variables that (directly or indirectly) influence the value assigned to those state

variables. In systems that contain multiple disconnected groups of variables,

this cone-of-influence (COI) reduction can drastically improve the performance

compared to the naïve approach of always building the full model [CGP99].

However, for systems in which all the variable influence each other, COI

reduction has no effect, because the reduced model is equivalent to the full

model.

114

A.5 Supervisory Control

A system with a discrete state space that evolves by making discrete tran-

sitions in response to a sequence of events is called a discrete event system

(DES) [CL08]. A DES can be modeled by an LTS (Q,Σ,∆), where Q is the

state space, Σ is the set of events that can occur, and ∆ is the set of transitions

that occur in response to events. If, for some (q, σ) ∈ Q×Σ, there is no q+ ∈ Q

such that (q, σ, q+) ∈ ∆, then the event σ does not occur when the system is

in state q.

Supervisory control theory was introduced as a tool to control DESs [RW87;

RW89]. While the objective of model checking is to determine whether or not a

DES meets a requirement, the objective of supervisory control is to modify the

behavior of a DES to ensure that it meets the requirement. Informally, given a

DES, a set of controllable events Σc ⊆ Σ, and a specification, the supervisory

control problem is to compute a strategy for disabling events in Σc such that

the modified DES satisfies the specification. A formal definition can be found

in [CL08].

In the traditional development of supervisory control theory, a specification

is a formal language [HU79] over the set of events, and the controlled system’s

behavior should be restricted to a subset of that language. In addition, a

set of marked states is defined that should always remain reachable in the

controlled system. The controller that restricts the system’s behavior, called

the supervisor, reads the entire string of events that have occurred and maps

that string to a control action (a set of disabled events). Thus, the supervisor

is dynamic, in the sense that it responds to new events by updating its state

and associated control action; this type of dynamic supervisor can be realized

by an automaton.

115

	THESIS
	Introduction
	Control and Automation
	Design
	Analysis
	Outline

	Modeling a Plant: Process, Control, and Automation
	Comparison of Modeling Frameworks
	Sample-and-Hold Control Systems
	Example: Liquid Holding Tank
	Summary

	Supervisory Control with Multiple Reachability Specifications
	Control of Discrete Systems
	Finite Transition Systems
	Supervisor Synthesis via Model Checking
	Individual CTL Operators
	Multiple CTL Operators

	Labeled Transition Systems
	Example
	Summary

	SynthSMV v0.1.0
	Related Software
	Changes from NuSMV
	Input Language
	Modeling

	Implementation
	Examples
	The Cat and Mouse Problem
	The Dining Philosophers Problem

	Summary

	Falsification of Invariance and Reachability Specifications
	Falsification of Hybrid Systems
	Discrete Logic in Sample-and-Hold Control Systems
	Discrete Jump System
	SHCSs and CIR Specifications
	Initial Abstraction

	Falsifying CIR Specifications
	Computing a Restricted Abstraction
	Refining the Initial Abstraction

	Examples
	Reduction to Reachability Verification
	Multiple Reachability Requirements
	Liquid Holding Tank

	Summary

	Formal Analysis of Large-Scale Control Systems
	Analysis of Logical Control Systems
	Discrete Logic in Chemical Plants
	Dynamics
	Process-Independent Tests

	Modeling PLC Programs
	Translation to a Formal Model
	Function Blocks

	Formal Analysis
	Abstraction as a Labeled Transition System
	Verification
	Falsification

	Mitigating the State-Explosion Problem
	Example: CIR Falsified after Simplification

	Case Study
	Summary

	st2smv v0.1.0
	Modeling Logical Control Systems
	Translating Structured Text Control Code to a Model
	Example
	Summary

	Conclusions
	Contributions
	Recommendations for Future Work

	Mathematical Background
	Hybrid Dynamical Systems
	Transition Systems
	Computation Tree Logic
	Other Temporal Logics

	Model Checking
	Supervisory Control

