
Distributed Algorithm Design for Constrained
Multi-robot Task Assignment

Lingzhi Luo

CMU-RI-TR-14-17

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Katia Sycara, Chair

Stephen Smith
Anthony Stentz

Edmund Durfee, University of Michigan

Submitted in partial fulfillment of the requirements
for PhD’s degree.

Copyright c© 2014 Lingzhi Luo

Thesis

Distributed Algorithm Design for Constrained
Multi-robot Task Assignment

Lingzhi Luo

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the field of Robotics

ACCEPTED:

Katia Sycara June, 11, 2014
Thesis Committee Chair Date

Reid G. Simmons June 25, 2014
Program Chair Date

APPROVED:

Randal E. Bryant June 27, 2014
Dean Date

Keywords: Multi-robot Task Assignment, Task Allocation, Multi-robot Coordination, Dis-
tributed Algorithm, Online Algorithm, Competitive Analysis, Linear Assignment Problem, Gen-
eralized Assignment Problem

Abstract
The task assignment problem is one of the fundamental combinatorial optimiza-

tion problems. It has been extensively studied in operation research, management
science, computer science and robotics. Task assignment problems arise in vari-
ous applications of multi-robot systems (MRS), such as environmental monitoring,
disaster response, extraterrestrial exploration, sensing data collection and collabo-
rative autonomous manufacturing. In these MRS applications, there are realistic
constraints on robots and tasks that must be taken into account both from the mod-
eling perspective and the algorithmic perspective. From the modeling aspect, such
constraints include (a) Task group constraints: where tasks form disjoint groups and
each robot can be assigned to at most one task in each group. One example of
the group constraints comes from tightly-coupled tasks, where multiple micro tasks
form one tightly-coupled macro task and need multiple robots to perform each si-
multaneously. (b) Task deadline constraints: where tasks must be assigned to meet
their deadlines. (c) Dynamically-arising tasks: where tasks arrive dynamically and
the payoffs of future tasks are unknown. Such tasks arise in scenarios like search-
rescue, where new victims are found dynamically. (d) Robot budget constraints:
where the number of tasks each robot can perform is bounded according to the re-
source it possesses (e.g., energy). From the solution aspect, there is often a need for
decentralized solution that are implemented on individual robots, especially when no
powerful centralized controller exists or when the system needs to avoid single-point
failure or be adaptive to environmental changes.

Most existing algorithms either do not consider the above constraints in problem
modeling, are centralized or do not provide formal performance guarantees. In this
thesis, I propose methods to address these issues for two classes of problems, namely,
the constrained linear assignment problem and constrained generalized assignment
problem. Constrained linear assignment problem belongs to P, while constrained
generalized assignment problem is NP-hard. I develop decomposition-based dis-
tributed auction algorithms with performance guarantees for both problem classes.
The multi-robot assignment problem is decomposed into an optimization problem
for each robot and each robot iteratively solving its own optimization problem leads
to a provably good solution to the overall problem. For constrained linear assign-
ment problem, my approaches provides an almost optimal solution. For constrained
generalized assignment problem, I present a distributed algorithm that provides a so-
lution within a constant factor of the optimal solution. I also study the online version
of the task allocation problem with task group constraints. For the online problem,
I prove that a repeated greedy version of my algorithm gives solution with constant
factor competitive ratio. I include simulation results to evaluate the average-case
performance of the proposed algorithms. I also include results on multi-robot coop-
erative package transport to illustrate the approach.

iv

Acknowledgments
First, I would like to thank my advisor Katia Sycara for her guidance and support

on my research. She has given me freedom to explore the field while keeping me
on the right track. Her passion and enthusiasm for work, well-organization of busy
schedule, and clear insight of big picture will continue to inspire me in the future.

I would also like to thank my thesis committee member Steve Smith, Tony
Stentz, and Ed Durfee for sharing with me their valuable insight on my thesis re-
search and providing helpful feedbacks and suggestions. Steve always provides me
great encouragement along the journey, and valuable insight of my research from a
different perspective. Tony is an expert and pioneer in my thesis topic. His insight of
big picture as well deep understanding of the details benefit me a lot, and enlighten
me to pursue the second part of my thesis. Ed has always been helpful and provides
detailed feedbacks on my thesis. Discussions with him encourage me to study more
challenging problems in second part of my thesis, and think about my research more
deeply.

I am also grateful to my previous advisors Mingguo Zhao and Zenqi Sun in
Tsinghua University, and Srinivas Akella in Rensselaer Polytechnic Institute, who
got me interested in robotics research and contributes to my decision of pursuing
PhD.

Over the past several years, I have been fortunate to be in a wonderful lab.
Thanks also to my lab mates, Nilanjan Chakraborty, Yuqing Tang, Sasanka Na-
gavalli, Yulong Pei, Praveen Paruchuri, Ying Xu, Ronghuo Zheng, Yonghong Wang,
Tinglong Dai, Noam Hazon, and Pras Velagapudi. Specially I am thankful to Nilan-
jan for lots of discussions. He is always willing to listen to my new progress, and is
helpful for me to reorganize my initial thoughts. I also owe much to Suzanne Muth,
and Marliese Bonk for their great support.

Finally, I sincerely thank my family for giving me unconditional and endless love
that I cherish most. I would not be here without your support and encouragement.

vi

Contents

1 Introduction 1
1.1 Work Accomplished and Contributions . 3
1.2 Outline . 6

2 Related Work 7

3 Distributed Algorithm Framework for Multi-robot Task Assignment 13
3.1 Decomposition-based Approach . 13
3.2 Iterative Distributed Procedure . 14

3.2.1 Auxiliary Variable Design: Updating Task Price 14
3.2.2 Distributed Implementation: Message Passing Mechanism 15

3.3 Summary . 15

4 Multi-Robot Linear Task Assignment with Task Group Constraints 17
4.1 Introduction . 17
4.2 Related Work . 19
4.3 Problem Statement . 22

4.3.1 Motivation . 23
4.4 Algorithm Design and Performance Analysis 24

4.4.1 Centralized Solution: Reduction to network flow problem 24
4.4.2 Distributed Solution: Auction-based Algorithm Design 26

4.5 Totally Distributed Assignment Algorithm . 35
4.6 Extensions . 36

4.6.1 Relaxation of budget constraint . 36
4.6.2 Relaxation of task group constraint . 37
4.6.3 Dynamically Arising Tasks . 38
4.6.4 Uncertainty Analysis . 39

4.7 Simulation Results . 40
4.7.1 Example: Multi-robot Cooperative Package Transport 40
4.7.2 Simulation with Randomly Generated Samples 40
4.7.3 Comparison with centralized solution 43
4.7.4 Comparison to Best-first Heuristics for distributed algorithm design . . . 47

4.8 Summary . 48

vii

5 Multi-robot Linear Task Assignment with Task Deadline Constraints 51
5.1 Introduction . 51
5.2 Problem Formulation . 53
5.3 Algorithm Design and Performance Analysis 54

5.3.1 Centralized Solution: Reduction to Network Flow Problem 55
5.3.2 Basic Idea and Concepts of Auction Algorithm 56
5.3.3 Auction-based Distributed Algorithm Design 58
5.3.4 Performance Analysis . 59

5.4 Simulation Results . 62
5.5 Summary . 63

6 Multi-robot Linear Task Assignment with General Task Group Constraints 65
6.1 Introduction . 65
6.2 Problem Formulation . 65
6.3 Algorithm Framework and Performance Analysis 66

6.3.1 Preliminary . 66
6.3.2 Distributed Algorithm Framework . 68
6.3.3 Performance Guarantee . 71

6.4 Summary . 73

7 Generalized Multi-robot Task Assignment 75
7.1 Introduction . 75
7.2 Problem Formulation . 77

7.2.1 Motivation . 78
7.3 Algorithm Design and Performance Analysis 78

7.3.1 Preliminary Concepts . 78
7.3.2 Auction-based Decentralized Algorithm Design 80
7.3.3 Performance Analysis . 82
7.3.4 Distributed Implementation . 84

7.4 Simulation Results . 86
7.5 Summary . 87

8 Multi-robot Constrained Generalized Task Assignment 89
8.1 Generalized Assignment with Task Group Constraints 89

8.1.1 Problem Formulation . 89
8.1.2 Algorithm Design and Performance Analysis 90

8.2 Task Assignment with Deadline Constraints and Different Task Durations 94
8.2.1 Problem Formulation . 94
8.2.2 Algorithm Design and Performance Analysis 95

8.3 Simulation Results . 96
8.4 Summary . 97

viii

9 Online Multi-Robot Task Assignment with Task Group Constraints 101
9.1 Introduction . 101
9.2 Problem Formulation . 103

9.2.1 Definition of the Problem OTA . 103
9.3 Greedy Auction Online Algorithm . 105
9.4 Highest Budget Heuristic for OTA . 109
9.5 Simulation Results . 110
9.6 Summary . 111

10 Conclusion 113

Bibliography 115

ix

x

List of Figures

4.1 . 18
4.2 . 25
4.3 . 41
4.4 . 42
4.5 . 42
4.6 . 43
4.7 . 43
4.8 . 44
4.9 . 44
4.10 . 45
4.11 . 45
4.12 . 46
4.13 . 46
4.14 . 47
4.15 . 48

5.1 . 56
5.2 . 63
5.3 . 63

6.1 . 67

7.1 . 87
7.2 . 88

8.1 . 98
8.2 . 99

9.1 . 105
9.2 . 111
9.3 . 112

xi

xii

List of Tables

1.1 Thesis Roadmap . 4

2.1 Characterization of the literature I . 10
2.2 Characterization of the literature II . 11

4.1 Payoff parameters ai j for a simple example of best-first heuristic failure. 48
4.2 Payoff parameters ai j for a simple example of best-first heuristic sub-optimality. . 48

7.1 Payoff parameters ai j and consumed resource parameters wi j in Example 1 . . . 84
7.2 Payoff parameters ai j and consumed resource parameters wi j in Example 2 . . . 85
7.3 Payoff parameters ai j distributions in Figure 7.2 87

xiii

xiv

Chapter 1

Introduction

The task assignment problem is one of the fundamental combinatorial optimization problems. It
has been extensively studied in operation research, management science, computer science and
robotics. The basic version of the task assignment problem (also known as linear assignment
problem in combinatorial optimization) is the following: Given a set of agents and a set of
tasks, with each agent obtaining some payoff (or incurring some cost) for each task, find a one-
to-one assignment of agents to tasks so that the overall payoff of all the agents is maximized
(or cost incurred is minimized). Centralized algorithms [15, 27, 36] have been developed to
achieve the optimal solution of the basic task assignment problem, while distributed algorithms
(with shared memory [8] or without shared memory [17, 65]) have been developed to achieve
an almost optimal solution. The basic task assignment problem can further be generalized to
more complicated versions, such as transportation problem, min-cost network flow problem,
generalized assignment problem, and quadratic assignment problem [15].

In multi-robot systems (MRS), task assignment is an important component for autonomous
operations of robots [26, 46]. Various applications of task assignment in MRS include envi-
ronmental monitoring, search and rescue, disaster response, extraterrestrial exploration, sensing
data collection and collaborative autonomous manufacturing. In these multi-robot systems, there
are realistic features that must be taken into account. First, constraints on robots as well as
constraints among tasks naturally arise for the assignment problem in multi-robot applications.
For example, robots might have budget constraints so that the number of tasks each robot can
perform is bounded according to the resource it possesses (e.g., energy/battery level); task group
constraints might exist among tightly-coupled tasks, where tasks are forming disjoint groups and
tasks in each group have to be performed simultaneously, so that each robot can be assigned to
at most one task in each task group; task deadline constraints might exist so that the assignment
must guarantee that all the tasks could be fit into robots’ schedule and finished before its dead-
line. Second, tasks might arise dynamically, and robots might not know the payoffs of future
tasks beforehand. Third, payoffs between tasks and robots might be uncertain due to incomplete
knowledge, sensing noises or execution inaccuracy. On the other hand, there usually exist some
requirements from the algorithmic perspective. For example, there is often a need for distributed
algorithms that are implemented on individual robots, when there does not exist a centralized
controller. Moreover, distributed solutions for the multi-robot applications have the advantage
to (a) deploy large number of robots in the field without a centralized controller; (b) avoid the

1

vulnerability of a centralized controller; (c) fast response to local changes in real time, such as
failure of robots, updated payoff information. Additionally, there is need for these algorithms
to have formal performance guarantees, especially in the scenarios with low tolerance of bad
instances.

Existing algorithms that provide performance guarantees do not consider any constraints on
the tasks or robots. Algorithms that consider more realistic features of constraints among tasks
or on robots do not provide any performance guarantees. Furthermore, most of the algorithms
are either fully centralized or partially centralized (e.g., in auction-based algorithms, they assume
the presence of a shared memory or an auctioneer). The goal of this thesis is to design distributed
algorithms with provable performance guarantees for multi-robot task assignment problems with
characteristics such as constraints on robots and tasks, where the tasks may arise dynamically,
and payoffs may be uncertain.

In our model, we consider a group of robots that have to perform a set of tasks. Each robot
has limited resources (e.g., battery level) so that the tasks it can perform are restricted. Each task
is non-decomposable and needs one robot to perform. The objective is to maximize the total pay-
offs (or minimize the overall costs) of assignments subject to the constraints mentioned above.
In this thesis, we consider two classes of assignment problems depending on how the tasks each
robot can perform are restricted: one is constrained linear assignment problem, and the other
is constrained generalized assignment problem. In constrained linear assignment problem, the
number of tasks each robot can perform is bounded by a fixed number. In constrained general-
ized assignment problem, the total resource consumed by the assigned tasks is bounded by the
resource of each robot. The constrained linear assignment problem is polynomial solvable, while
constrained generalized assignment problem is NP-hard.

In our current work, we consider two specific task constraints separately, including task group
constraints and task deadline constraints. Task group constraints (or TAG), means that tasks
are assumed to form disjoint groups such that each robot can perform at most one task from
each group. Task deadline constraints (or TAD), means that each task must be assigned to
one robot’s schedule and be finished before its deadline. TAG arise in two different kinds of
scenarios: (a) each task group consists of tightly-coupled tasks, i.e., tasks which robots must
perform simultaneously, and thus each robot can only be assigned to at most one of them; (b)
there exist group precedence constraints among tasks, i.e., only after all tasks in one group are
finished by robots, the subsequent group of tasks can get started. To fully explore the parallelism
and increase the efficiency, each robot can be assigned to at most one task in each group. These
constraints were motivated by a combination of the following tasks in multi-robot systems:
• Go-and-return tasks: In such tasks, the robots have to repeatedly visit a given site and

return to base location. Such tasks arise in a variety of application scenarios including
transportation of packages in automated warehouse, collection of sensing information us-
ing mobile sensors, where the locations to be visited are spatially clustered. The spatial
clustering gives a natural grouping of the tasks. Each robot has to return to some base lo-
cation to unload the products (e.g., a package the robot has picked up or collected sensing
information) before moving to another task location. Thus each robot can be assumed to
be doing at most one task at a time from a group. The costs of different tasks to one robot
are independent of each other, and can be defined as twice the distance from the robot

2

base location to the task location. The objective is to minimize the total costs (traveling
distance) of the assignments while satisfying all the constraints.

• Tightly-coupled tasks: In such tasks, multiple robots must simultaneously work on a given
task to perform it successfully. Examples of such task include multi-robot collaborative
manipulation/assembly tasks. Since, for any task, robots must simultaneously perform the
atomic tasks, each robot can only be assigned to at most one atomic task from each task set.
If we assume that the robots are designed to be heterogeneous and each robot has a certain
degree of generality and specialty for tasks, the payoffs for the different robots for a task
will be different. The objective here is to maximize the overall payoff of the assignment.

In the above problems, the fact that the robots have limited battery life imposes a limit on the
number of tasks that a robot can perform. Furthermore, the features of dynamic tasks as well as
payoff uncertainty can be added to such problems.

1.1 Work Accomplished and Contributions
For this thesis, I have accomplished the following works including (1) decomposition-based dis-
tributed algorithm framework design and performance guarantee proof for the static constrained
multi-robot linear task assignment with task group constraints or task deadline constraints; (2)
decomposition-based distributed algorithm framework design and approximation performance
guarantee proof for the static unconstrained multi-robot generalized task assignment, and static
constrained multi-robot generalized task assignment with task group constraints or task deadline
constraints; (3) competitive analysis for the online problem with task group constraints, where
the performance of online greedy algorithm is proved to be within certain ratio of the optimal of-
fline solution performance; (4) uncertainty analysis of our distributed algorithms when the payoff
parameter is given by a probabilistic distribution.

This thesis work could be organized in a road map along two axes as shown in Table 1.1.
One axis is for the basic assignment models. We consider both linear assignment model and
generalized assignment model as described before. The linear assignment model belongs to P.
We have shown by reduction that existing centralized algorithm could solve them in polynomial
time. Furthermore, we designed distributed algorithm to show that we could achieve almost
optimal solution within pseudo-polynomial time. The generalized assignment model is NP-hard.
We have shown that distributed algorithm could be design with approximation ratio guarantee.
The other axis is for the realistic constraints arising from applications. Two examples we consider
are task group constraints and task deadline constraints. Along this axis, we also generalize
the two specific constraints to a class of general constraints which could be solved using our
distributed algorithm framework. We also consider other features motivated by real applications,
e.g., the dynamic problem setting where the distributed algorithm has to assign robots to tasks
in an online fashion for dynamically arising tasks, without preemption of previous assignments.
As a sample, we analyze the dynamic problem in the linear assignment model with task group
constraints. The other issue is when the payoffs of assigning robots to tasks might not be given
accurately, instead, might be given as a probabilistic distribution. Given the special structure of
objective function for both the linear assignment and the generalized assignment problem, the
uncertainty analysis could be applied to all the problem domains listed in the road map table.

3

Table 1.1: Thesis Roadmap

Linear Assignment Generalized Assignment
Task Group Constraints TAG-MRAP TAG-GMRAP
Task Deadline Constraints TAD-MRAP TAD-GMRAP
General Constraints GTAG-MRAP G-GMRAP

Below we give a brief summary of the thesis contributions for these problems.
The first part of this thesis is on the static constrained multi-robot linear task assignment

problems. We design provably-good decomposition-based distributed algorithm for problems
with task group constraints or task deadline constraints. Then, we generalize our specific algo-
rithm design to a distributed algorithm framework. Using this framework, we prove that a class of
constrained linear assignment problem could be solved with almost optimal performance guaran-
tee. For static constrained linear task assignment problem, we present both centralized solutions
with optimal performance guarantee and a distributed algorithm that provides an almost optimal
solution. First, we show how to reduce the constrained task assignment problem to a network
flow problem, which can be solved in polynomial time using centralized network flow algorithm.
Second, we develop a distributed algorithm with almost optimal performance guarantee. Our dis-
tributed algorithm is an extension of Bertsekas’ algorithm [8] for the linear assignment problem
where tasks are assumed to be independent. We first present the algorithm for a shared memory
model and then indicate how it can be combined with consensus algorithms to give a totally
distributed algorithm. We prove that our algorithm gives a solution that is within O(ntε) of the
optimal solution where nt is the number of tasks and ε is a parameter to be chosen. So given any
performance requirement, we can set corresponding ε beforehand and ensure that the solution
will satisfy the performance requirement. We can adjust the control parameter ε to arbitrarily
approach the optimal solution, but at the cost of increasing computational time, which is inverse
proportional to ε .

The second part of this thesis is on the static unconstrained multi-robot generalized task as-
signment problem, and constrained multi-robot generalized task assignment problems with task
group constraints and task deadline constraints. These problems are generalizations of two clas-
sical NP-hard problem, including knapsack problems and multiple knapsack problem. For the
static unconstrained multi-robot generalized task assignment problem, we design provably-good
decomposition-based distributed algorithm for these problems with task group constraints or task
deadline constraints. In our distributed auction-based algorithms, each robot can bid for its own
tasks by solving a knapsack sub-problem as subroutine. We show that our algorithm provides an
1+α approximate solution assuming that the knapsack problem is solved by an algorithm with
approximation ratio α ∈ [1,+∞). Thus, our distributed algorithm has an approximation ratio
of 2 (or 3), when the algorithm used for knapsack is optimal (or 2-approximate). Unlike other
approximation algorithms for generalized assignment problem, our auction-based new algorithm
is designed specifically for distributed multi-robot systems with limited range communication.
Furthermore, our algorithm can achieve a similar approximation ratio with a competitive running
time. Our proof also presents a new perspective showing that best-response assignment update
rule of individual robots would lead to an assignment at equilibrium with guaranteed approxima-

4

tion ratio. For the constrained multi-robot generalized task assignment problems with task group
constraints and task deadline constraints, we show that the same distributed algorithm design
framework with the same task price update rule could be applied. The only difference is that the
single robot optimization algorithm changes from knapsack problem to knapsack problem with
extra task constraints, e.g., task group or deadline constraints. We designed dynamic program-
ming based algorithms for both constraints to get optimal solution for single robot problems. We
prove that it would lead to an approximate solution for the constrained multi-robot generalized
assignment with approximation ratio 2, together with the task price update rule. We first present
our auction-based iterative algorithm assuming that the robots have access to a shared memory
(or there is a centralized auctioneer). Each robot obtains the information of highest bid for each
task among all robots from the shared memory, and then uses a knapsack algorithm as a sub-
routine to iteratively maximize its own objective (using a modified payoff function based on an
auxiliary variable called price of a task). The assignment update rule of our iterative algorithm
can be viewed as (approximate) best response of each robot to the temporary assignment of other
robots at that iteration. We prove that our algorithm would eventually converge to an assignment
at (approximate) equilibrium with an approximation ratio. We also make our algorithm totally
distributed by combining it with a message passing mechanism to remove the requirement of a
shared memory (at the cost of slower convergence and more local communication), assuming the
robots’ communication network is connected.

The third part of this thesis is on the dynamic task assignment with task group constraints.
For dynamic tasks with group constraints, we present the competitive analysis of the repeated
greedy version of our algorithm, and prove its competitive ratio (which is defined as the online
algorithm solution performance divided by the optimal offline solution performance). Our re-
sults are a combination of positive and negative results. We first study the performance of the
repeated greedy auction algorithm, where for each group of tasks, the robots are allocated to
the tasks using a (distributed) auction algorithm. We prove that under the same assumptions on
payoff as for the online assignment problem assuming task independency and an assumption on
the number of tasks in each task subset, the repeated greedy auction algorithm has a competitive
ratio of 1

1+max(2,α) . The problem data dependent parameter α is defined as the minimum of the
maximum budget of the robots and the maximum number of tasks in a group. Note that the com-
petitive ratio is independent of the number of robots or the number of tasks. Furthermore, when
either the size of the task groups or the maximum budget of a robot is constant, α is constant, and
hence the competitive ratio is constant. For example, when the number of tasks in each group is
2 and/or each robot can perform at most 2 tasks, the competitive ratio of the algorithm becomes
1
3 . This generalization of the results of online unconstrained task assignment problem is one of
our key contributions. We also prove that if there are no restrictions on the payoffs, it is im-
possible to design a randomized/deterministic algorithm with provable performance guarantees.
If the assumption on the task profile is violated then all algorithms (which are guaranteed to be
complete) would have arbitrarily bad performance.

5

1.2 Outline
This thesis is organized as follows: In Chapter 2, we present the related work. In Chapter 4
and 5, we present our results for the static task assignment problem with task group constraints,
or task deadline constraints, respectively. In Chapter 6, we extend our distributed algorithm de-
sign framework to a task assignment problem with more general task constraints with TAG and
TAD as its special cases. In Chapter 7, we present our results for the static unconstrained gen-
eralized task assignment problem, and in Chapter 8, we generalize the results to the constrained
generalized assignment problem with task group constraints, and task deadline constraints. In
Chapter 9, we present our results for the online task assignment problem with task group con-
straints. Finally, in Chapter 10, we present the summary of our current work.

6

Chapter 2

Related Work

Task allocation for known tasks where each task can be performed by one agent only is a well
studied problem in Operations Research (OR) as well as in multi-robot systems. Since the main
objective of this thesis proposal is to design distributed algorithms with performance guaran-
tees that respect the constraints of multi-robot systems, we will restrict our discussions to the
multi-robot systems literature and OR techniques that have been found to be relevant in mul-
tirobot/multiagent task allocation literature. We will first discuss the key algorithms that have
performance guarantees (but are limited to simplistic settings) and then discuss multi-robot task
allocation systems (e.g., Traderbot [20, 61], Hoplites [30], MURDOCH [25], ALLIANCE [54])
that build on these algorithms and consider some physical aspects of the problems, however, at
the cost of losing performance guarantees.

The basic version of the task allocation problem (also known as linear assignment problem in
combinatorial optimization) can be solved optimally in polynomial time by finding a maximum
weight perfect matching on a bipartite graph using the Hungarian algorithm [15, 27, 36]. The
matching algorithm is centralized. Bertsekas [8] gave a decentralized algorithm (assuming a
shared memory model of computation, i.e., each processor can access a common memory) that
can solve the linear assignment problem almost optimally. Thus, there is inefficiency in moving
from the centralized to the decentralized solution even for the basic linear assignment problem. In
subsequent papers, the basic algorithm was extended to more general task assignment problems
with different number of tasks and robots and each robot capable of doing multiple tasks [9, 10].
Recently, [17, 65] have combined the algorithm of Bertsekas with consensus algorithms in order
to remove the shared memory assumption. Thus there is a totally distributed version of the task
allocation algorithm, for independent tasks, assuming that when agents are allocated to multiple
tasks, their payoffs are not history dependent.

If the assumption of history-independent payoffs is relaxed, as is the case in multi-robot
routing, prior work [37] has given different auction algorithms with performance guarantees for
different team objectives, but only for situations where neither the tasks nor the robots have any
constraints among them. When the objective is to minimize the total distance traveled by all
the robots they provide a 2-approximation algorithm. For all other objectives the performance
guarantees are linear in the number of robots and/or tasks. For example, when allocating m
spatially distributed tasks to n robots, for minimizing the maximum distance traveled by a robot,
their algorithm gives a performance guarantee of O(n).

7

In summary, distributed algorithms with guaranteed almost-optimal performance exist for
multi-robot task allocation for known independent tasks with known payoffs and no constraints
between the agents. In contrast, we are interested in solving the assignment problem for tasks
where the presence of constraints (on the agents and/or between the tasks) present additional
challenges.

Although it is the particular assumptions and formulation that makes an allocation problem
more or less challenging, in general static problems, where the tasks to be allocated are known in
advance, are easier than problems where the tasks arrive dynamically. Even the simplest version
of the online task allocation problem, which is (a variation of) the online linear assignment
problem is NP-hard [26, 31]. In [31], the authors showed that a greedy algorithm (that can
be distributed), where the task is assigned to the available robot with the highest payoff, has a
worst case competitive ratio of 3. Moreover, this is the best that can be achieved by any online
algorithm. Note that the greedy algorithm gives a solution that is exponentially worse in the
number of robots, when the objective is to minimize the total payoff [31]. On the other hand, if
the objective is to minimize the total costs, then [31] gives an algorithm approximation ratio 1

2n−1 ,
where n is the total number of agents. For more general versions of the assignment problem, even
without constraints, where one robot can be assigned to multiple tasks, there are no known worst
case guarantees. Since, worst case guarantees are hard to come by, there are studies that design
algorithms for task allocation with expected case guarantees [2]. However, these approaches do
not consider any task constraints or history-dependent payoffs.

As is evident from the earlier discussion, most useful variations of online task allocation
problems are NP-hard. Different task allocation algorithms [5, 23, 51, 62, 64] and systems, e.g.,
Traderbot [20, 61], Hoplites [30], MURDOCH [25], ALLIANCE [54], that use the greedy heuris-
tic in [31] for an initial assignment and then perform re-assignment of tasks during execution have
been developed. These systems primarily address allocation for tasks that arise from motivations
of path-dependent payoffs (e.g., in multi-robot routing), uncertain payoffs [30, 39, 62], failure of
robots in executing tasks [50, 52, 58], and in some cases complex tasks specified by an AND/OR
tree of simple tasks [68], or other task-dependent coordination requirements [30]. However, there
are no performance guarantees given. Furthermore, many of these systems have an inherent as-
sumption of a centralized agent (like auctioneer in the market-based approaches [23]), or that
any agent can communicate with any other agent [23, 51].

There are different variations of the multi-robot assignment problem that have been studied in
the literature depending on the features of the targeted problems, such as how each individual as-
signment is defined related to the number of tasks and robots, (either single or multiple), and how
the objective is defined related to the individual assignment payoff. In [23, 26, 49], the authors
provides detailed surveys of multi-robot task allocations from different aspects. In [26], a formal
taxonomy of task allocation problems is defined to categorize the different problems in multi-
robot task allocation, where three axes are proposed including single-task robot vs multi-task
robots; single-robot tasks vs multi-robot tasks; instantaneous assignment vs time-extended as-
signment. In [23], the authors use a similar taxonomy with emphasis on market-based approach.
We will now summarize the related literature according to problem features and properties of
algorithmic approaches that are more relevant to this thesis.

The related literature can be summarized in Tables 2.1 and 2.2. As is evident from the two
tables, even in the static setting, where tasks and payoffs are known beforehand, the literature is

8

quite sparse on solutions that are applicable to multi-robot systems with constraints on tasks or
robots while having some performance guarantee. When we consider the online setting only [42]
considers task and robot constraints while giving performance guarantees.

In Table 2.1, we characterize the literature according to the following problem features: (a)
assumptions made about the constraints on robots and/or tasks, (b) type of the objective function
used, (c) assumptions made about the knowledge of the payoffs, i.e., whether they are determin-
istic or uncertain, and (d) whether the tasks are known in advance or are dynamic in nature. There
are different types of objective function that have been considered in the literature. A common
overall objective is sum of payoffs (or costs) of individual agents, where the payoff of each agent
is also the sum of individual agent-task assignment (which we denote by ”Sum” in the table).
When the payoff of an agent is dependent on the sequence in which it performs its tasks (and not
only on the individual assignments), we use ”TSP” in the table to denote it. This type of payoff is
useful in multi-robot task allocation settings when the robots have to visit a set of sites, and thus
the payoff depends on the order in which the points are visited. The use of ”TSP” is motivated by
the fact that the payoffs are usually dependent on the cost of the traveling salesman tour through
a point set. Some studies have used time as the payoff and in those cases, we have denoted the
overall objective as ”Scheduling”. Another type of objective is ”Coalition” payoff, where mul-
tiple robots perform a task and the payoff depends on the combination of robots performing a
task.

In Table 2.2, we have considered the algorithmic properties of the various approaches in
the literature. Two properties of interest to us is the assumptions made on the presence of a
centralized coordinator and whether the algorithms have any provable performance guarantee.
We have classified the approaches in the literature as centralized, decentralized, and distributed.
In the centralized setting all information about the task and robot payoffs are available with
a centralized controller that solves the allocation problem and distributes the solutions to the
agents. In the decentralized setting, there is a shared memory (or auctioneer in market based
systems) that knows the current bids of agents for tasks and allocates the tasks to the robots
accordingly. In the distributed approach, there is no assumption of any centralized controller
or any auctioneer. The robots have a communication network and they perform task allocation
by communicating with their neighbors only. Please note that work that has assumed all-to-
all communication, i.e., any robot can communicate with any other robot in one hop has been
classified as a centralized procedure.

The related literature can be summarized in the tables 2.1 and 2.2.

9

Table 2.1: Characterization of the literature I

Constraints Payoff Static
Robot Task Robot- Known Objective vs

On Between On Between or
robot robots task tasks Task Uncertain function dynamic

[8] Yes No No No Yes Known Sum Static
[65] Yes No No No Yes Known Sum Static
[17] Yes No No No Yes Known Sum Static
[31, 35] No No No No Yes Known Sum Dynamic
[35] No No No No Yes Known Sum Dynamic
[13, 14] No No No No No Uncertain TSP Static
[20, 21, 61, 69] No No No No No Both TSP Static
[68] No No No Yes No Both TSP Static
[30] No No No Yes No Both TSP Static
[3, 4] No No No No No Uncertain N/A Static
[28, 29] No No No No No Uncertain Sum Static
[64] No No No Yes No Known Sum Static
[37] No No No No No Known TSP Static
[67] No No No Yes No Known TSP Static
[25] No No No No No Known TSP Static
[19] No No Yes Yes No Known Scheduling Static
[38] No No No No No Known Scheduling dynamic
[54] No No Yes No No both Scheduling dynamic
[41] Yes No No Yes Yes Known Sum Static
[42] Yes No No Yes Yes Known Sum Dynamic

10

Table 2.2: Characterization of the literature II
Distributed/Centralized Performance

[8] Decentralized Almost Optimal
[65] Distributed Almost Optimal
[17] Distributed Almost Optimal
[31, 35] Centralized Competitive ratio
[35] Centralized Competitive ratio
[13, 14] Centralized No
[20, 21, 61, 69] Decentralized No
[68] Decentralized No
[30] Decentralized No
[3, 4] N/A Yes
[28, 29] Distributed Yes
[64] Distributed No
[37] Decentralized Yes
[67] Distributed No
[25] Distributed No
[19] Distributed(no comm) No
[38] Distributed(no comm) No
[54] Distributed No
[41] Both Almost optimal
[42] Both Competitive Ratio

11

12

Chapter 3

Distributed Algorithm Framework for
Multi-robot Task Assignment

In this chapter, we present the high-level structure of the distributed algorithm design framework
in this thesis. Our approach is a decomposition-based iterative approach with carefully designed
distributed message passing in the connected robot network. First, we decompose the multi-
robot assignment problem into each individual robot’s assignment problem. In multi-robot task
assignment problem, some constraints are defined among different robots, and cannot directly be
decomposed into single robot’s optimization problem. These constraints are left out during our
decomposition step. Second, we design an iterative procedure where each robot iteratively solves
its own individual assignment problem defined in the first step with a modified objective. An
auxiliary variable task price is introduced to bias the objective of each individual robot. Instead
of maximizing the total payoff, each robot maximizes the total task value, which is defined as
the payoff minus task price. During each iteration, each robot communicates task price with its
neighbors, solves the individual problem, and then updates the price of its assigned tasks. We
show that the iterative procedure of updating task price and solving individual robot’s assignment
optimization problem would eventually converge to a feasible solution satisfying all constraints
(including those defined among different robots), with performance guarantee compared to the
optimal solution.

3.1 Decomposition-based Approach

The constrained assignment problems we consider in this thesis have the following general form.
Suppose that there are nr robots and nt tasks. Let ai j ∈R be the payoff for assigning robot ri to
task t j. Let fi j be the binary assignment variable that takes a value 1 if task, t j, is assigned to
robot, ri, and 0 otherwise.

max
nr

∑
i=1

nt

∑
j=1

ai j fi j

13

s.t. F(fi j) ≤ 0, ∀ j = 1, . . . ,nt , (3.1)
L(fi j) ≤ 0, ∀i = 1, . . . ,nr, (3.2)

fi j ∈ {0,1}, ∀i, j. (3.3)

The objective function of multi-robot assignment problem we consider here is a linear sum of all
assignment payoffs. Each constraint with function F(fi j) in (3.1) is defined on the same task and
among different robots, including assignment variables from different robots, called the complex
constraints. Each constraint with function L(fi j) in (3.2) is defined on the same robot and among
different tasks, called the simple constraints. The collective objective can be decomposed into
each robot’s total assignment payoffs due to the linearity of the objective function. Simple con-
straints (3.2) can also be decomposed into each robot’s constraints since they are defined on the
same robot’s assignment variables. However, complex constraints (3.1) are defined among dif-
ferent robots, and cannot directly be decomposed into single robot’s assignment problem since
it would involve other robots’ assignment variables. During the decomposition step, we leave
the complex constraints (3.1) out, and only decompose the objective function as well as simple
constraints. So robot ri’s assignment problem is listed as following.

max
nt

∑
j=1

ai j fi j

L(fi j) ≤ 0, (3.4)
fi j ∈ {0,1}, ∀ j. (3.5)

In the later chapters, we will give details of different forms of Constraints (3.1) and (3.2). Com-
plex constraints we consider are the exclusive assignment of tasks, which means each task can
be assigned to at most one robot. Depending on the applications, we either require that all tasks
must be finished or not. Examples of simple constraints include task group constraints defined in
Chapter 4, and task deadline constraints in Chapter 5, which impose constraints on each single
robot’s assignment variables in different forms.

3.2 Iterative Distributed Procedure

3.2.1 Auxiliary Variable Design: Updating Task Price
After the decomposition step in Section 3.1, each robot could solve its own problem. However,
since the complex constraints of exclusive assignment of tasks are left out in the decomposition,
different robots might be assigned to the same tasks and thus violate the constraints. To resolve
the potential assignment conflicts, we introduce auxiliary variables p j, called task price for task
t j, to bias the original assignment payoffs. Instead of maximizing the assignment payoffs, each
robot maximizes the assignment values, which is defined as the payoff minus task price. So the
single robot optimization problem becomes the following.

max
nt

∑
j=1

(ai j− p j) fi j

14

L(fi j) ≤ 0, (3.6)
fi j ∈ {0,1}, ∀ j. (3.7)

In our iterative procedure, each robot solves the above assignment problem based on current task
price, and then update the price of its assigned tasks. Based on different problems, we designed
two different task price update rules: for constrained linear assignment problem, the task price is
designed based on primal-dual methods, and can be regarded as the dual variables of the complex
constraints; for constrained generalized assignment problem, the task price is designed to be the
payoff between the robot and the task. In the following chapters, we prove that in the context of
different problems, our iterative procedure would gradually update the assignment as well as task
price till convergence to feasible solutions, and meanwhile have formal performance guarantee.

3.2.2 Distributed Implementation: Message Passing Mechanism
In a decentralized setting, each robot could communicate with a shared memory to update the task
price. However, in a totally distributed setting, such shared memory does not exist. Instead, each
robot has to maintain and update task price locally by communicating with its neighboring robots
(i.e., the robots within its communication range). We assume that the robot communication
network is connected. Depending on different problem setting, we have designed two forms
of message passing mechanism to update the task price in a distributed way. For one of our
task price update rule, it is guaranteed that the task price would be non-decreasing, we use the
maximum consensus message passing mechanism as described in Chapter 4. In the maximum
consensus mechanism, each robot would collect all its neighbors’ task price information, and use
the local maximum to update its current task price list. In the other task price update rule, the
task price might increase sometimes and then reset to zero in other time. We design a different
message passing mechanism to achieve synchronization of task price among different robots as
described in Chapter 7. In both case, we prove that the performance guarantee still holds true
with the distributed task price update.

3.3 Summary
We presented the structure of our decomposition-based distributed algorithm design framework.
Depending on different assignment problems, we have different single robot optimization prob-
lems, task price updating rule, and message passing mechanism as detailed in later chapters.
Based on the problem properties, we have different performance guarantee. For polynomial time
solvable constrained linear assignment problems, our distributed solution leads to an almost op-
timal solution; for NP-hard generalized assignment problems, our solutions have approximation
guarantee; for NP-hard online constrained assignment problem, our solutions achieve a compet-
itive ratio compared to offline optimal solution.

15

16

Chapter 4

Multi-Robot Linear Task Assignment with
Task Group Constraints

4.1 Introduction

For autonomous operations of multiple robot systems, task allocation is a basic problem that
needs to be solved efficiently [26, 46]. The basic version of the task allocation problem (also
known as linear assignment problem in combinatorial optimization) is the following: Given a
set of agents (or robots) and a set of tasks, with each robot obtaining some payoff (or incurring
some cost) for each task, find a one-to-one assignment of agents to tasks so that the overall
payoff of all the agents is maximized (or cost incurred is minimized). The basic task assignment
problem can be solved (almost) optimally in polynomial time by centralized algorithms [15, 36]
and distributed algorithms with a shared memory1 [8]. Generalizations of the linear assignment
problem where the number of tasks and agents are different and each agent is capable of doing
multiple tasks can also be solved optimally by both centralized and distributed algorithms [9, 10,
15]. However, in all of these works, it is assumed that the tasks are independent of each other
and an agent can do any number of tasks. In practice, robots have limited battery life and thus
there is a limit on the number of tasks that a robot can do. Furthermore, the tasks may not be
independent and may occur in groups, where there is a constraint on the number of tasks that a
robot can do from each group. Therefore, in this chapter, we introduce and study the multi-robot
task allocation problem with group constraints, where robots have constraints on the number of
tasks they can perform (both within the whole mission and within each task group).

More specifically, the multi-robot (task) assignment problem with task group constraints
(TAG−MRAP) that we study can be stated as follows: Given nr robots and nt tasks, where
(a) the tasks are organized into ns disjoint groups, (b) each robot has an upper bound on the
number of tasks that it can perform within the whole mission and also within a group, and (c)
each robot, ri, has a payoff, ai j for each task, t j, find the assignment of the robots to tasks such
that the sum of the payoffs of all the robots is maximized. For concreteness, a task group can
be thought of as a compound task composed of more than one atomic task where one robot is

1In a shared memory model of distributed computation, it is assumed that there is a memory accessible to all
agents where the results of computation can be stored.

17

required for each atomic task. As an illustrative example, consider the problem of transporting
objects from a start location to a goal location where an object needs to be carried by multiple
robots (as shown in Figure 4.1). Such pick and place tasks are common in many application
scenarios like automated warehouse (e.g., Kiva robot for warehouse automation), automated
package delivery (e.g., Amazon’s newly launched drones delivery), automated ports, and factory
floors. If three robots are required to carry an object then the overall task of carrying the object
can be decomposed into three atomic tasks of robots holding the object at three different places
and moving with it. Thus, the three atomic tasks form a task group where each task in a group
has to be performed by one robot and the robots have to execute the tasks simultaneously. In
these scenarios, although robots could be assigned to multiple atomic tasks from different task
groups of carrying different objects, they cannot be assigned to multiple atomic tasks within the
same task group of carrying one object. The energy costs incurred by the robots in transporting
an object may be different because the weights and load carrying capabilities of the robots may
be different and the force transmitted from the object to the robots may be different depending on
the holding location. Thus, the problem of assigning robots to tasks for pick and place operations
for object transport to minimize total energy cost can be modeled as a TAG−MRAP with each
robot constrained to do at most one task within each task group. Our work here focuses on the
design and theoretical analysis of algorithms (both centralized and distributed) for multi-robot
task assignment for grouped tasks.

Figure 4.1: Snapshot of multi-robot cooperative transportation of packages from a pick-up region
to a drop-off region.

We first show that the multi-robot assignment problem for grouped tasks can be reduced
to a minimum cost network flow problem. Thus, TAG−MRAP can be solved optimally in
polynomial time by using standard algorithms for solving network flow problems [15]. We then
present a distributed iterative algorithm for solving TAG−MRAP where it is assumed that the
robots have access to a shared memory (or there is a centralized auctioneer). Our algorithm is a
generalization of the auction algorithm developed by Bertsekas [8] for solving linear assignment
problems. We prove that by appropriately designing and updating an auxiliary variable for each

18

task, called the price of each task, each robot optimizing its own objective function leads to a
solution where the overall objective of all the robots is maximized. Mathematically, the price of
a task is the Lagrange multiplier (or dual variable) corresponding to the constraint that each
task can be done by exactly one robot. The shared memory maintains the global values of the
price of each task. However, assumption of the availability of such a shared memory may be
unrealistic for many deployments of multi-robot systems. Therefore, we also present a totally
distributed algorithm, where each robot maintains a local value of the global price and updates
it using a maximum consensus algorithm. In our distributed algorithm, each robot iteratively
assigns itself (and informs its neighbors) to the tasks that is most valuable to it based on her
payoff and local price information. We prove that this algorithm converges to the same solution
as the algorithm with the shared memory assumption. This is analogous to the work in [65],
where the distributed algorithm with a shared memory by [8] for linear assignment problem was
made totally distributed by combining it with a maximum consensus algorithm.

Our algorithm for TAG−MRAP provides a solution that is almost-optimal, namely, within
a factor of O(ntε) of the optimal solution where nt is the number of tasks and ε is a parameter
to be chosen. This approximation guarantee is called almost-optimal, since we can choose ε to
make the solution arbitrarily close to the optimal solution. The running time of our algorithm for
the shared memory model is O(nrn2

t
max{ai j}−min{ai j}

ε
). For the totally distributed model, we will

need to multiply the complexity by the diameter of the communication network of the robots,
which is at most nr. Thus, our algorithm is polynomial in the number of robots and number of
tasks. However, it is pseudo-polynomial in the payoff values.

This chapter is organized as follows: In Section 4.2, we discuss the related literature on
multi-robot task allocation. In Section 4.3, we give a formal definition of the multi-robot assign-
ment problem with task group constraints on the number of tasks that a robot can do from a task
group. In Section 4.4, we present the assignment algorithm with shared-memory model and in
Section 4.5, we discuss how to extend the algorithm to a totally distributed algorithm with con-
sensus techniques. In Section 4.6, we present a few extensions to our model. First, we consider a
more general model to relax both robots’ budget constraints and task group constraints as stated
in Section 4.2, and modify our algorithms to solve the general model; second, we consider the
case when tasks dynamically arise during robots’ bidding procedure, and present an approach of
setting task price to handle the issue without restarting the whole bidding procedure; third, we
consider the case when the payoffs are not accurate but are given as a probabilistic distribution.
In Section 4.7, we provide extensive simulation results to demonstrate the performance of our
algorithms with regarding to different model parameters, different algorithm parameters, as well
as different robot communication networks; additionally, we implement our algorithm in ROS
and generate simulation results for a scenario of cooperative package transport. Finally, in Sec-
tion 4.8, we present our summary. This work is an extension of our previous work that appeared
in [41, 45].

4.2 Related Work
Task allocation is important in many applications of multi-robot systems, e.g., multi-robot rout-
ing [37], multi-robot decision making [7], and other multi-robot coordination problems (see [17,

19

23]). There are different variations of the multi-robot assignment problem that have been studied
in the literature depending on the assumptions about the tasks and the robots (see [23, 26, 49]
for surveys), and there also exist multi-robot task allocation systems (e.g., Traderbot [20, 61],
Hoplites [30], MURDOCH [25], ALLIANCE [54]) that build on different algorithms. One axis
of dividing the task assignment problem is as online versus offline. In offline task allocation the
set of tasks are known beforehand, whereas in online problems the tasks arise dynamically. In
this chapter, we will consider the offline task allocation problem and therefore we will divide
our discussion of the relevant literature here into the offline and online task allocation problems.
Moreover, our objective is to design algorithms for task allocation with provable performance
guarantees. Therefore, we will elaborate on algorithms that provide performance guarantees.

Offline Task Allocation: In offline task allocation, the payoff of a robot for each task is as-
sumed to be known beforehand. In the simplest version of the offline task allocation problem
(also known as the linear assignment problem), each robot can perform at most one task and the
robots are to be assigned to tasks such that the overall payoff is maximized. The linear assign-
ment problem is essentially a maximum weighted matching problem for bipartite graphs. This
problem can be solved in a centralized manner using the Hungarian algorithm ([15, 36]). Bert-
sekas [8] gave a distributed algorithm (assuming a shared memory model of computation, i.e.,
each processor can access a common memory) that can solve the linear assignment problem al-
most optimally. In subsequent papers, the basic auction algorithm was extended to more general
task assignment problems with different number of tasks and robots and each robot capable of
doing multiple tasks [8, 9]. Recently, [65] have combined the auction algorithm with consensus
algorithms in order to remove the shared memory assumption and obtain a totally distributed
algorithm for the basic task assignment problem. Different from the dual-based approach above,
primal approach has also been proposed for task assignment [6], which has recently been adapted
to multi-robot domain [40]. However, all of this work assumes that the tasks are independent of
each other. For the more general case, where the tasks are forming disjoint groups such that each
robot can be assigned to at most one task from each group and there is a bound on the number
of tasks that a robot can do, [41] generalized the auction algorithm of [8] to give an algorithm
with almost optimal solution. [43] studied the multi-robot task assignment with task deadline
constraints, which extends the problem in [41] in the sense that the task groups can overlap, and
each robot can be assigned to multiple tasks in each group.

In the above discussion, the total payoff of a robot depends on the individual tasks assigned
to a robot, but it does not depend on the sequence in which the tasks should be done or the com-
bination of tasks that the robots perform. For multi-robot routing problems, where the individual
robot payoffs depend on the sequence in which the tasks are performed, [37] has given different
auction algorithms with performance guarantees for different team objectives. When the objec-
tive is to minimize the total distance traveled by all the robots, they provide a 2-approximation
algorithm2. For all other objectives the performance guarantees are linear in the number of robots
and/or tasks. For example, when allocating m spatially distributed tasks to n robots, for mini-
mizing the maximum distance traveled by a robot, their algorithm gives a performance guarantee
of O(n). In [17], the task allocation problem considered is path-dependent (e.g., the payoffs of
assigning multiple tasks to one robot depend on the order of assigning tasks to the robot), and

2The algorithm’s solution has at most twice the total traveling distance of the optimal solution.

20

a distributed Consensus-Based Bundle Algorithm (CBBA), is designed by combining consensus
techniques with auction and bundle algorithms to achieve a conflict-free assignment solution.
In [28] and [29], CBBA was extended to the situation with asynchronous communication chan-
nel among agents and large changes in local situational awareness so that each agent can build
bundles and perform consensus locally. However, constraints among tasks are not considered in
the work. In [64], a distributed algorithm was designed to solve the task allocation problem with
coupled constraints among tasks (e.g., assignment relationship, where the value of a task depends
on whether other tasks have been assigned or not, and temporal relationship, where the value of a
task depends on when it is performed relative to other tasks). However, no performance guaran-
tee is achieved in the work. The problem of forming coalition of robots to perform each task has
been studied to optimize the total payoffs of all tasks ([59, 63, 66]). [63] has provided heuristics
to balance the task allocation of robots and avoid disproportionate task load compared to robots’
capacity. It is assumed that every robot can communicate with every other robot, which might not
be a realistic assumption in some operating scenarios. [66] presented a few efficient heuristics
for the problem with inter-task resource constraints, and analyzed their performance bounds.

Market-based approaches [23] have been proposed for multi-robot task allocation based on
the inspiration of real trading markets and their distributed nature, where any robot can keep
exchanging/subcontracting its assigned tasks to maximize profits. The market-based approach
has shown good experimental results in practise, however, there is no general provable perfor-
mance guarantee of its solution. Although there exists an auction procedure in this approach, the
market-based method is very different from primal-dual based auction algorithm [8] in how to
iteratively set the bidding price for tasks.

Online Task Allocation: Even the simplest version of the online task allocation problem,
which is (a variation of) the online linear assignment problem is NP-hard [26]. This is the online
Maximum Weighted Bipartite Matching Problem, where the edge weights are revealed randomly
one at a time, i.e., the tasks arrive randomly and a robot already assigned to a task cannot be re-
assigned. Greedy algorithms for task allocation, wherein the task is assigned to the best available
robot have been used in a number of multi-robot task allocation systems (e.g., MURDOCH [25],
ALLIANCE [54]) and therefore, have the same competitive ratio3 of 1

3 as [31], if the payoffs
are non-negative and satisfy some technical assumptions. Note that the greedy algorithm gives a
solution that is exponentially worse in the number of robots, when the objective is to minimize
the total payoff [31]. This is different from the offline linear assignment problem where both the
maximization and minimization problems can be solved optimally in polynomial time. For the
general case of online task assignment with grouped tasks, [42] provided competitive analysis
of greedy auction algorithm developed in [41], and proved a competitive ratio of the algorithm.

There are other variations of the task allocation problem studied in the multi-robot task allo-
cation community, as well as operation research community that have been shown to be NP-hard,
and for many of them, there are no algorithms with worst case approximation guarantees [26].
Therefore, a substantial amount of effort has been invested in developing and testing heuristics
for dynamic task allocation ([50, 52, 58]). These algorithms are based on distributed constraint
optimization (DCOP). Auction-based heuristics for multi-robot task allocation in dynamic envi-

3Competitive ratio is defined as the performance ratio between the online algorithm solution and the optimal
offline solution, which is used to evaluate the performance of online algorithm.

21

ronments have also been proposed, where the robots may fail during task execution and the tasks
need to be reassigned ([22, 51]).

4.3 Problem Statement
In this section, we give the formal definition of our multi-robot task assignment problem with
grouped tasks. We will first introduce some notations. Suppose that there are nr robots, R =
{r1, . . . ,rnr}, and nt tasks, T = {t1, . . . , tnt}, for the robots. Let ai j ∈ R be the payoff4 for the
assignment pair (ri, t j), i.e., for assigning robot ri to task t j. Without loss of generality, we assume
that any robot can be assigned to any task. Each task must be performed by exactly one robot.
Each robot can perform at most Ni tasks (we call, Ni, the budget of robot ri). Since, performing
each task needs a single robot, we should have ∑

nr
i=1 Ni ≥ nt , for all tasks to be performed. Let

fi j be the variable that takes a value 1 if task, t j, is assigned to robot, ri, and 0 otherwise. The
task set T forms ns disjoint groups/subsets {T1, . . . ,Tns} so that ∪ns

k=1Tk = T . We assume that
each robot, ri, can perform at most Nk,i tasks from task group Tk, which we call the task group
constraints (TAG). Mathematically, TAG can be written as

∑
j: t j∈Tk

fi j ≤ Nk,i, ∀i = 1, . . . ,nr, k = 1, . . . ,ns (4.1)

The overall objective is to assign all tasks to robots so that the total payoff from the assignment is
maximized. The multi-robot task assignment problem with grouped tasks can formally be stated
as follows:
Problem 1 Given nr robots and nt tasks with the tasks forming ns disjoint groups, maximize
the total payoffs of robot-task assignment such that each task is performed by exactly one robot,
each robot ri performs at most Ni tasks in the overall mission and at most Nk,i tasks from a task
group Tk.

Problem 2 can be written as an integer linear program (ILP) given below

max
nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt , (4.2)

nt

∑
j=1

fi j ≤ Ni, ∀i = 1, . . . ,nr, (4.3)

∑
j: t j∈Tk

fi j ≤ Nk,i, ∀i = 1, . . . ,nr,k = 1, . . . ,ns, (4.4)

fi j ∈ {0,1}, ∀i, j. (4.5)

In the above formulation, the optimization variables are the binary assignment variables, fi j.
Equation (4.2) states that each task must be assigned to exactly one robot. Equation (4.3) gives

4In Section 4.7, we give an example of how to calculate the payoffs in multi-robot cooperative package transport.

22

the budget constraints of each robot. Note that the above problem is a generalization of the linear
assignment problem (LAP). In LAP, Equation (4.4) is not present and in Equation (4.3), Ni = 1.

Remark 1 Generally speaking, the assignment payoff ai j can be considered as the difference
between assignment benefit bi j and the assignment cost ci j, i.e., ai j = bi j− ci j. Thus, if cost ci j
is the only component to be considered, (i.e., bi j = 0), Problem 2 would become an assignment
problem in the form of cost minimization. Note that some papers use the term payoff for the
benefit bi j and the term utility for ai j. In the context of this chapter, we will use the terms payoff
and utility interchangeably.

The TAG−MRAP problem defined above can be solved in polynomial time in the number of
tasks and number of robots by a centralized algorithm by reducing it to a network flow problem.
We will then use a dual decomposition-based method to design a distributed algorithm for TAG−
MRAP and also show that the algorithm can be made totally distributed. For clarity of exposition,
we will first present the solutions to TAG−MRAP under the following assumptions: (a) Nk,i = 1
for all task groups, i.e., each robot can do at most one task from each group and (b) each robot
has to perform exactly Ni tasks during the mission. In Section 4.6, we will show how these
assumptions can be removed. Thus TAG−MRAP problem with assumptions (a) and (b) above
can be written as:

max
nr

∑
i=1

nt

∑
j=1

ai j fi j (4.6)

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (4.7)

nt

∑
j=1

fi j = Ni, ∀i = 1, . . . ,nr (4.8)

∑
j: t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr,k = 1, . . . ,ns (4.9)

fi j ∈ {0,1}, ∀i, j (4.10)

Note that the constraints above implicitly imply that (a) the number of tasks in any subset must be
no more than the number of robots (otherwise at least one task in the subset cannot be performed),
i.e., maxns

k=1 |Tk| ≤ nr, and (b) the number of subsets must be no less than any Ni (otherwise ri
cannot be assigned to Ni tasks), i.e., ns ≥maxnr

i=1 Ni.

4.3.1 Motivation
TAG can arise in two different kinds of scenarios: (a) the tasks to be performed are different
groups of tightly-coupled tasks, i.e., tasks in one tightly-coupled group must be performed by
different robots simultaneously, and thus each robot can only be assigned to at most one task
from each task group; (b) there exist group precedence constraints among tasks, i.e., only after
all tasks in one group are finished by robots, the subsequent group of tasks can get started. To
fully explore the parallelism and increase the efficiency, each robot cannot be assigned to too

23

many tasks in each group, i.e., the number of tasks that each robot can be assigned to in each
task group is bounded to balance robots’ workload.

One example scenario is the multiple synchronous sensing information collection by multi-
robot systems, where multiple types of sensing information must be synchronously collected
from each spatially distributed task region by a group of robots. This scenario exists in applica-
tions of military reconnaissance operations, such as multi-robot battlefield damage assessment,
region monitoring or surveillance. In this scenario, tasks are naturally forming groups due to
the spatial distribution of regions and each robot can be assigned to at most one task location
inside each region. If one robot was assigned to more than one task in one region, it can only
collect sensing information from different locations with different time stamps, which violates
the mission requirement of sensing information synchronization. Assume that the sensing infor-
mation collection tasks are go-and-return style (each robot has to return to its own base station
to unload the collected sensing information before moving to next task region), and the payoff of
assigning one robot to one task locations depends on the traveling distance as well as the value
of the sensing information. The objective here is to assign robots to all task locations in different
regions so that the total payoffs are maximized while the mission requirements are met.

4.4 Algorithm Design and Performance Analysis
In this section, we design algorithms to get the optimal (or almost-optimal) solution for multi-
robot task assignment with grouped tasks in both centralized and distributed way. First, we
show how to reduce the problem to a min-cost network flow problem, which can be solved in
polynomial time using centralized network flow algorithm. Second, we look at a distributed way
to find the optimal solution, where a centralized controller is not required, and instead each robot
can make decisions on its own in a distributed way.

4.4.1 Centralized Solution: Reduction to network flow problem
For any TAG−MRAP problem, we can construct a corresponding minimum-cost network flow
problem, whose solution would lead to the solution of the TAG−MRAP problem in polynomial
time. A minimum cost network flow problem is defined as follows: Given a flow network, which
is a directed graph G = (V,E) with (a) some nodes in V acting as source nodes and sink nodes
respectively, and (b) each edge in E having a positive capacity, some cost and some non-negative
flow amount, find a route of the flows from the source to sink nodes such that the total flow cost
is minimized, where the cost of sending a flow along each edge is defined as the product of flow
amount and edge cost, while the flows satisfy the capacity constraints of edges, and conservation
constraints for all nodes except source and sink nodes [27].

The TAG−MRAP problem can be reduced to a network flow problem by the following
construction (shown in Figure 4.2). We form a directed graph G = (V,E), with a set of nodes
V = R

⋃
T
⋃

S, and edges E = E1
⋃

E2, where
• Nodes: R = {ri|i = 1, . . . ,nr} represent robots, T = {t j| j = 1, . . . ,nt} represent tasks, S =
{Ti,k|i = 1, . . . ,nr,k = 1, . . . ,ns} are introduced as auxiliary nodes to represent each task
subset Tk for each robot ri.

24

• Edges: E1 = {(ri,Ti,k)|i = 1, . . . ,nr,k = 1, . . . ,ns}, and E2 = {(Ti,k, t j)|∀i, j,k, s.t., t j ∈ Tk}.
• Source and sink nodes: All nodes in R are source nodes with supply Ni (i.e., the total

amount of flow out from a source node ri), and all nodes in T are sink nodes with demand
1 (i.e., the total amount of flow into a sink node).

• Capacity and cost of edges: The capacity of all edges in E is 1. The cost for edges in E1 is
0, while for edges (Ti,k, t j) in E2 is −ai j.

• Flow: the variable fi j, associated with each edge in E2 between Ti,k and t j, represents
the flow from node Ti,k to node t j, where t j ∈ Tk. Amount of other flows along edges in
E1 can be determined from { fi j}, according to the flow conservation and edge capacity
constraints, but they do not change the objective since the cost of edges in E1 is set to be
zero.

Figure 4.2: Reduction to the minimum-cost network flow problem. For display purpose, just
robot r1, its corresponding nodes T1,k and edges are shown. For each other robot ri, there are
another set of nodes {Ti,k|k = 1, . . . ,ns}, edges {(ri,Ti,k)|k = 1, . . . ,ns} and {(Ti,k, t j)|∀t j ∈ Tk},
which are omitted. +N1 and −1 represent nodes’ supply and demand; [0,1] shows that the
capacity of flow along the edges is 1.

The optimal solution for TAG−MRAP can be obtained by solving the minimum-cost network
flow problem for the network constructed above. This can be seen by noting the following facts:
• Constraint (4.7) gives the demand constraint at each sink node, which is equal to 1 and

Constraint (4.8) gives the supply constraint at each source node, which is Ni.
• The capacity constraints on the edges in E1 are identical to constraints (4.9) that state that

the maximum flow from any ri to any task group subset Ti,k is 1.
• The objective function of the network flow problem, namely, min∑i ∑ j ci j fi j is equal to the

objective function max∑i ∑ j ai j fi j, since ci j = −ai j for edges in E2 and the cost of edges
in E1 is 0.

• The constraints of minimum-cost flow problem yield a totally unimodular coefficient ma-
trix5 [27]. Besides, all the edge capacities in our constructed flow problem are bounded

5A unimodular matrix is a square integer matrix whose determinant’s absolute value is 1. A totally unimodular

25

by integers. Thus, according to [27], the minimum-cost flow problem constructed above
must have an integral optimal solution. So the optimal solution of the minimum-cost flow
problem must satisfy the list of constraints in (4.10), which require the variables fi j to be
integers.

Thus our assignment problem can be equivalently expressed as a network flow problem. In
the solution of the minimum-cost network flow problem, the non-zero (value 1) flow in E2 corre-
sponds to the optimal assignment of TAG−MRAP problem in Section 4.3, i.e., if in the optimal
solution of minimum-cost flow problem, fi j = 1, then we construct the optimal assignment by
assigning task t j to robot ri. The minimum-cost network flow problem is a classical problem that
has been studied extensively. Centralized polynomial-time algorithms exist that can be used to
compute the optimal solution [27]. Therefore, we can directly use the off-the-shelf algorithms to
solve TAG−MRAP in a centralized way.

To solve the TAG−MRAP problem as a network flow problem, a centralized controller is
required that knows the payoffs and budgets of all the robots. The controller solves the prob-
lem, and then sends back commands to robots prescribing their task assignments. However, in
applications of multi-robot systems, where a centralized controller is usually vulnerable if not
infeasible, there is often need for distributed algorithms so that robots can make decisions by
themselves in the field according to the information they possess. For ease of exposition we first
present the distributed algorithm assuming a shared memory model. We call this an auction-
based algorithm following the use of the terminology in [8] for LAP. We then present the totally
distributed version of our algorithm.

4.4.2 Distributed Solution: Auction-based Algorithm Design
In this section we present a distributed solution with a shared memory for TAG-MRAP. Generally
speaking, our solution approach falls within the class of methods known as dual decomposition
methods in the optimization literature [12]. The intuition for our solution approach can be under-
stood by looking at the dual of the optimization problem given by Equations (4.6) - (4.9). Note
that Equation (4.7) states that each task can be assigned to one robot and hence gives a constraint
among the robots, i.e., these are the complicating constraints. All the other constraints are con-
straints belonging to each robot. The dual function, q(p) obtained by dualizing the complicating
constraints is

q(p) = max fi j

nr

∑
i=1

nt

∑
j=1

ai j fi j +
nt

∑
j=1

p j(1−
nr

∑
i=1

fi j)

s.t.
nt

∑
j=1

fi j = Ni, ∀i = 1, . . . ,nr

∑
j:t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr,k = 1, . . . ,ns

(4.11)

where p j is the dual variable corresponding to the constraint that task t j can be done by exactly
one robot, given by Equation (4.7). The variable p j is called the price of task t j. The variable

matrix is a matrix for which every square non-singular submatrix is unimodular.

26

p is the nt ×1 vector consisting of the price of all the tasks. The dual optimization problem can
then be written as

minp jmax fi j

nr

∑
i=1

nt

∑
j=1

ai j fi j +
nt

∑
j=1

p j(1−
nr

∑
i=1

fi j)

s.t.
nt

∑
j=1

fi j = Ni, ∀i = 1, . . . ,nr

∑
j:t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr,k = 1, . . . ,ns

(4.12)

From the dual problem given by Equation (4.12), we can deduce that if the price vector of all
tasks, p, is fixed, the objective can be maximized by each individual robot, ri, solving the fol-
lowing problem:

max fi j

nt

∑
j=1

(ai j− p j) fi j

s.t.
nt

∑
j=1

fi j = Ni

∑
j:t j∈Tk

fi j ≤ 1, ∀k = 1, . . . ,ns.

(4.13)

This suggests the following iterative approach that we use in this chapter. Our solution ap-
proach is an extension of the auction algorithm [8] developed for linear assignment problems.
In each iteration, for a given price vector, each robot solves the optimization problem given by
Equation (4.13) and bids for the tasks for which it has the most value (subject to the budget con-
straints and task group constraints). In the bid, the price each robot sets for the tasks it selects
is according to a certain rule. The price vector (or dual variable) gets updated by a centralized
coordinator by setting the price of each task to the maximum price in the received bids. Then the
biding process repeats until the bids do not change. The primary challenge in designing such an
iterative algorithm is the design of the price update rule such that it is guaranteed that each robot
trying to maximize its own value of assignment converges to an assignment that satisfies all the
constraints and maximizes the overall objective. Note that, in the above iterative scheme, the
budget constraints and the task group constraints are always satisfied during the iterations. The
bidding process also ensures that the assignments are always integral (or fi j ∈ {0,1}, i.e., a robot
is not assigned to a fraction of a task). However, multiple robots may want the same tasks (i.e.,
there may be conflicts in the assignment). The price update rule has to ensure that the bidding
process converges and there are no assignment conflicts at the end.

We will now introduce some notation to rewrite Equation (4.13) compactly and also introduce
some terminology that we will be using in the proofs of convergence and (almost) optimality of
our method. In the discussion below we will use the terms time and iteration interchangeably.
Let the price for task t j at time (or iteration) τ be p j(τ). The net value of a task t j to robot ri at
time τ is vi j(τ) = ai j− p j(τ). The iterative bidding from robots leads to the evolution of p j(τ).

27

For robot ri, let j∗k be the index of the task with maximum value from task group Tk and vi j∗k
be the value of this task, i.e.,

j∗k = argmax j: t j∈Tk
{ai j− p j(τ)}

vi j∗k
= maxt j∈Tk{ai j− p j(τ)}

Let J∗i be the index set { j∗k}k=1,...,ns . Let Ji ⊆ J∗i be the index set of the tasks assigned to robot
ri at any time (we omit the explicit dependence of J∗i and Ji on τ for notational simplicity). From
Equation (4.13), every robot ri wants to be assigned to a task set TJi = {t j| j ∈ Ji} with maximum
value while satisfying its constraints |Ji|= Ni and TJi

⋂
Tk ≤ 1,∀k = 1, . . . ,ns. Mathematically,

∑
j∈Ji

(ai j− p j(τ)) = ∑(
(Ni)
max)k=1,...,ns

{vi j∗k
} (4.14)

where the operator max(Ni) takes in a collection of numbers as an argument and returns the Ni
biggest values of the collection and we abuse notation slightly so that

(
(Ni)
max)k=1,...,ns{vi j∗k

}, (
(Ni)
max){vi j∗k

|k = 1, . . . ,ns}

Therefore, the right hand side of Equation (5.10) gives the sum of the Ni biggest values of the
tasks from each group (for robot ri). When Equation (5.10) is satisfied, we say robot ri is happy.
If all robots are happy, we say the whole assignment and the prices at iteration τ are at equilib-
rium.

Suppose we fix a positive scalar ε . When each assigned task for robot ri is within ε of being
in the set of ri’s maximum values, that is,

{ai j− p j(τ)| j ∈ Ji} ≥ (
(Ni)
max)k=1,...,ns

(max
t j∈Tk

(ai j− p j(τ))− ε) (4.15)

(after sorting both the left and right sets of (4.15) above, any value in the left set is no less than
its corresponding value in the right set), we say robot ri is almost happy. If all robots are almost
happy, we say the whole assignment and the prices at iteration τ are almost at equilibrium.

Price Update Rule In the discussion above, we have described the procedure by which each
robot computes the set of tasks Ji for which it bids. We will now describe the price update
procedure for the tasks for which robot ri bids. Let j′k be the index of the task with second best
value from task group Tk, i.e.,

j′k = argmaxt j∈Tk, j 6= j∗k
vi j.

Let j∗m be the index of the (Ni + 1)-th highest value task in J∗i , where m is the index of its task
group. The new price of each task j∗k ∈ Ji is

p j∗k
(τ +1) = p j∗k

(τ)+(v j∗k
(τ)−max{v j∗m(τ),v j′k

(τ)})+ ε (4.16)

In words, the new price of a task is the old price plus the value that would have been lost if the
robot could not be assigned to a task in Ji but were instead assigned to the next best candidate

28

task. The new task price guarantees that even after price update in the iteration, the selected tasks
still have almost the most value for the robot with relaxation value ε . The term ε is a parameter
of choice and it needs to be added to ensure that the value of a task whose price has changed
increases by at least ε . This parameter is introduced to avoid the algorithm from cycling when
the value of a task is equal for two robots.

We will now present the overall auction-based algorithm for task allocation for grouped tasks.
We denote by pi

j(τ), the price for task t j held by robot ri. During any given iteration, any subset
of robots may take part in the bidding (one extreme being that one robot bids in every iteration
and the other extreme being that all robots bid in every iteration). For ease of exposition, we will
present the algorithm and proofs of performance of the algorithm assuming that the robots bid
sequentially in a pre-specified order (with one robot bidding in every iteration). The algorithm
consists of the following steps:

1. Initialization: Set τ = 0, and initialize the price variables, p j(τ) = 0 for each task t j.

2. Bidding step: Robot, ri, using the price vector p j(τ), computes the set of tasks Ji that it will
bid for and computes the updated prices pi

j(τ + 1),∀ j ∈ Ji, if required. It communicates
pi

j to the auctioneer.

3. Price Agglomeration Step: Set p j(τ+1) =maxi{pi
j(τ+1)}, ∀ j = 1, . . . ,nt . Communicate

p j(τ +1) to all robots.

4. Convergence Condition: If p j(τ + 1) = p j(τ), ∀ j = 1, . . . ,nt , stop; otherwise, τ = τ + 1
and go to step 2.

The key step in the above algorithm is the bidding step for each robot which is described in
Algorithm 1. In the above discussion, for ease of exposition, we have assumed that robots bid
sequentially during any iteration round. This is known as Gauss-Seidel iteration [9]. However,
for convergence we do not need the robots to bid sequentially. In fact, as we will discuss later,
the robots can bid simultaneously (Jacobi iteration) or asynchronously and can converge to an
(almost) optimal solution as long as there is a bound on the number of iterations within which a
robot makes a bid. We compare the performance of the Jacobi iteration versus the Gauss-Seidel
iteration in Section 4.7.

Algorithm 1 describes in detail the bidding procedure that each robot uses to compute its own
bids. As before, in Algorithm 1, let Ji(τ) be the index set of tasks that robot i bids for at time τ .
Let Ki(τ) be the index of the task groups (or subsets) from which the tasks have been assigned
to the robot ri at time τ . The bid prices for robot ri at time τ before agglomeration is denoted
by pi(τ) (pi is a nt × 1 vector) and p is a nt × 1 vector denoting the prices of all the tasks after
agglomeration. As before, we will use p j to denote the j-th component of p, i.e., the price of the
task j after agglomeration.

During the first part of Algorithm 1 (from Lines 3 to 9), robot ri updates its assignment
information from its previous iteration. The price of tasks that ri had bid for may have changed
since the last time it placed a bid. So robot ri first checks for those tasks whose current price is
greater than ri’s previous bid (Line 5). For tasks whose current price is greater than ri’s previous
bid, the previous assignments are canceled since other robots have outbid ri. On the other hand,
if none of the previously assigned tasks have higher bids than the bids of robot ri, robot ri does
not compute any new bids.

29

During the bidding part of Algorithm 1 (from Lines 11 to 33), robot ri keeps the N′i assigned
tasks since its previous iteration, and computes the Ni−N′i tasks (Line 21) with the best values
from different subsets (which do not contain any of N′i already assigned tasks). Lines 15 to 17
and line 21 guarantee that after the iteration, all constraints for robot ri are satisfied, namely, (a)
robot ri is assigned to exactly Ni tasks (N′i previously assigned tasks plus Ni−N′i newly assigned
tasks); (b) ri is assigned to at most one task in each subset. The price for each newly assigned task
is updated, using the price update rule in Equation (4.16) in Lines 26 to 31 using the information
in Line 18.

Remark 2 At the end of every iteration a task may be assigned or unassigned and further, a
task may be assigned to multiple robots. However, if a task is assigned at the beginning of
the iteration, it never becomes unassigned at the end of the iteration. This is because a robot
potentially removes a task from its list only when the task price is higher than the price it bid
for. Thus, there is another robot that is also assigned to the task and removing the task from one
robot’s list does not change the assignment status. Also, there has to be at least one robot that
is the highest bidder, so, it does not remove the task from its task list if no other robot placed a
higher bid.

Remark 3 The price of an assigned task is strictly positive and non-decreasing. In other words,
at the end of every iteration, either the price of a task remains the same or it increases. This is
evident from the price update rule in Equation (4.16) which ensures that the price increases by
at least ε , whenever a robot submits a new bid on the task. Mathematically,

p j∗k
(τ +1)− p j∗k

(τ) = v j∗k
(τ)−max{v j∗m(τ),v j′k

(τ)}+ ε ≥ ε.

Thus if a task receives infinite number of bids, its price will become +∞. The price of an unas-
signed task is zero.

Remark 4 In the sequential (Gauss-Seidel) implementation, two robots cannot possibly bid the
same price for a task. The reason is that the robot, which bid later for the same task, must strictly
increase the bidding price by at least ε . However, in the simultaneous (Jacobi) implementation,
multiple robots might bid the same highest price for a task at certain iteration. In this situation,
when those robots receive task price from the auctioneer at the end of the iteration, any of them
would think that the task has been assigned to itself since the price is the same as its own bidding
price, which could potentially cause assignment conflicts. One easy way to resolve this issue is
to add a robot identifier to the bidding price for any task. When the auctioneer receives same
bids for a task from different robots, it can assign the task to one robot according to certain rule,
e.g., giving robots with larger identifier higher priority, and communicate the new price as well
as the assigned robot identifier to all robots. In this way, a robot can know whether the task has
been assigned to it or not even when multiple robots bid the same price for that task. Besides,
in the distributed setting without a centralized auctioneer, when robots update their maintained
local task price list and associated robot identifiers, they can use a consistent predefined rule to
determine the robots’ priority to break bid ties. In the following chapters, the same rule could be
used to break such ties for the distributed setting.

We will now answer the following questions about the performance of the task allocation
algorithm presented above:(a) Will the algorithm terminate with a feasible assignment solution

30

in a finite number of iterations? (b) How good is the solution when the task allocation algorithm
terminates? For question (a) above, we will first show that when the task allocation algorithm
terminates, the solution will be a feasible solution. We will then show that the algorithm will
terminate in a finite number of iterations.

Lemma 1 When the task allocation algorithm terminates, the achieved assignment must be a
feasible solution for Problem 2.

Proof : During every iteration, when each robot computes its bids by Algorithm 1 it is ensured
that each robot bids for Ni tasks and there is at most one task from each task group (i.e., Equa-
tions (4.8), (4.9), and (4.10) are always satisfied after every iteration). When the algorithm
terminates, it implies that a robot, ri, has been assigned to Ni tasks and no other robot has bid
higher for ri’s assigned tasks. Furthermore, since the total number of tasks and the sum of the
budget of the robots are same, all tasks are assigned (i.e., there can be no task with price zero)
and each task is assigned to exactly one robot. Therefore, Equation (4.7) is also satisfied. �

Lemma 3 implies Algorithm 1 is sound, i.e., when it outputs a solution, the solution is fea-
sible. The next result asserts that Algorithm 1 always terminates in finite number of iterations
assuming the existence of at least one feasible assignment for the problem. The proof relies on
the conclusions in Remarks 3, 4 and the following lemma.
Lemma 2 If a robot ri keeps bidding without termination, all tasks in the task groups where ri
only has temporarily assigned tasks, will have positive infinite price.
Proof : Since there are finite number of tasks, at least one task t j should receive infinite number
of bids for any robot ri to bid infinite times. In any task group, Tk, where ri only has temporarily
assigned tasks, if there exists one task, t ′j, which receives finite number of bids, its price would
be finite, and its value for ri must be bigger than task t j receiving infinite number of bids. Since
ri only has temporarily assigned tasks in Tk, this would imply that t ′j, having more value than
t j, should have received more bids before t j receives infinite number of bids, which leads to the
contradiction that t j should not have received infinite number of bids. So all tasks in Tk where
ri only has temporarily assigned tasks, receive infinite number of bids and thus have the price of
+∞ (according to Remark 4). �

Theorem 1 If there is at least one feasible solution for Problem 1, Algorithm 1 for all robots
will terminate in a finite number of iterations.
Proof: (By contradiction) Assume the algorithm continues without termination. Then there must
be some task groups, in which all tasks have +∞ price according to Lemma 2 above. We denote
the robots which keep bidding for these tasks as R∞ = {ri|i ∈ I∞}, where I∞ represents the index
set of such robots. Denote these task groups as {Tk|k ∈ K∞}, where K∞ represents the index
set of such task groups. Denote all tasks in such task groups with +∞ price as T ∞ =

⋃
k∈K∞ Tk.

Robots in R∞ have already been assigned to N∗i tasks from T \T ∞, and still keep bidding for their
remaining N∞

i tasks from T ∞ (please note, here N∞
i = Ni−N∗i does not necessarily equal to N′i in

Algorithm 1 since all those tasks in T ∞ are only temporarily assigned to robots).
Each task ti ∈ T ∞ remains assigned to a robot at each iteration (according to Remark 3).

However, as robots increase their bids in subsequent iterations, the tasks could be assigned to
different robots. Each robot ri ∈ R∞ needs to be stably assigned to N∞

i extra tasks. However,

31

there must be at least one robot ri ∈ R∞ that has remaining tasks unassigned (otherwise the
algorithm terminates). Thus, the number of all tasks in T ∞ is strictly smaller than the remaining
tasks that must be assigned to robots in R∞ to satisfy Equation 4.8.

|T ∞|< ∑
i∈I∞

N∞
i

On the other hand, each robot must already be assigned to exactly one task in each subset
Tk,k 6∈ K∞ (according to Lemma 2 above). Thus, N∗i equals to the number of such task subsets.

N∗i = ns−|K∞|

We have
∑

i∈I∞

Ni = ∑
i∈I∞

N∗i + ∑
i∈I∞

N∞
i .

Suppose in any feasible assignment, N̂∗i and N̂∞
i are the number of assigned tasks for ri in T \T ∞

and T ∞, respectively. Ni = N̂∗i + N̂∞
i . N̂∗i cannot exceed the number of task subsets for T \T ∞

due to task group constraints, N̂∗i ≤ ns−|K∞|, so

∑
i∈I∞

N∗i = ∑
i∈I∞

(ns−|K∞|)≥ ∑
i∈I∞

N̂∗i

Thus,
∑

i∈I∞

N̂∞
i ≥ ∑

i∈I∞

N∞
i > |T ∞|.

This means that in any feasible assignment, the number of assigned tasks in T ∞ to robots in R∞

is bigger than T ∞’s total number of tasks, which leads to an obvious contradiction. Therefore,
Algorithm 1 must terminate in a finite number of iterations if there exists a feasible solution for
Problem 2. �

According to the proof of Theorem 4, the running time of our algorithm for the shared mem-
ory model is O(nrn2

t
max{ai j}−min{ai j}

ε
), where O(nt) is the running time of Algorithm 1 for each

robot, and nt
max{ai j}−min{ai j}

ε
is the maximum number of rounds for all robots to run Algorithm 1

(since the upper bound of total task price increase is nt(max{ai j}−min{ai j}). Lemma 3 and
Theorem 4 together prove that Algorithm 1 is both sound and complete.

Infeasibility check: In the case when there does not exist any feasible solution, the robots can
detect this situation in a distributed way during the bidding procedure. The bidding procedure
itself would guarantee that task group constraint (4.9) is always satisfied since each robot would
bid for at most one task from each group. Constraint (4.7) might be violated due to the fact that
∑i Ni < nt . In that case, Algorithm 1 would output an almost-optimal solution given the budget
constraints of robots, and leave some tasks unassigned. Moreover, the robots can detect that
situation after the algorithm terminates by checking whether there still exist tasks with initial
zero price.

The infeasibility caused by budget constraint (4.8) can be detected whenever a robot starts
continuing bidding for a task with negative values to it. At that time, the robot can check the
price of other tasks: if all tasks have non-zero price, the robot can detect that there does not exist

32

any feasible solution since it implies that ∑i Ni > nt ; if the number of tasks with zero price (tasks
which have not received any bids) is np0 , the robot can detect the infeasibility if it continues
bidding for tasks with negative values for np0 rounds since it implies that the structure of task
groups prevents a feasible solution satisfying task group constraint as well as budget constraint.
In this case, the robot detecting the infeasibility could send out a message to its neighbors to stop
the bidding procedure. Please note that this infeasibility mainly comes from the strict budget
constraint that each robot ri must be assigned to exactly Ni tasks. When we relax this budget
constraint in Section 4.6 so that each robot can perform at most Ni tasks, this infeasibility would
not exist.

We now want to prove the performance of Algorithm 1. The result relies on the following
theorem.
Theorem 2 After each iteration τ of robot ri, ri’s newly assigned tasks together with the task
prices p j(τ +1) keep ri almost happy, i.e., (4.15) is satisfied.
Proof : First, let us prove it holds true for the first iteration. At the beginning of the first iteration,
ri does not have any assigned tasks. According to Algorithm 1, ri bids for task set tK = {t j∗k

|k ∈
K∗} (using the task prices at the beginning of the iteration) that makes ri happy, i.e.,

{ai j∗k
− p j∗k

(τ)|k ∈ K∗}= (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j− p j(τ))).

Now, p j∗k
(τ+1) = p j∗k

(τ)+v j∗k
(τ)−max{v j∗m(τ),v j′k

(τ)}+ε , and v j(τ+1) = v j(τ),∀ j 6∈ { j∗k |k∈
K∗}, so

ai j∗k
− p j∗k

(τ +1) = max{v j∗m(τ),v j′k
(τ)}− ε

= max{v j∗m(τ +1),v j′k
(τ +1)}− ε.

So the value of any task in tK to robot ri is within ε of the maximum value of any task in its own
subset and other subsets {Tk|k 6∈ K∗}, so

{ai j∗k
− p j∗k

(τ +1)|k ∈ K∗} ≥ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j− p j(τ))− ε),

which means (6) is satisfied.
Second, we prove that the unchanged tasks assigned to ri since ri’s previous iteration, must

still be in the new assignment of ri. That is, those tasks are still in the task set which makes ri
almost happy after the iteration. Denote the index set of those tasks as t ′K . Since these tasks did
not receive any bid from other robots since ri’s previous iteration, their prices (and hence their
values) to ri do not change. Meanwhile any other tasks’ price either remain the same or increase
after receiving bids, so their values to ri reduce. So tasks in t ′K must still be in the new assignment
to make ri almost happy. Since the bidding process to get newly assigned tasks is the same, the
newly assigned tasks must also be in the new assignment to make ri almost happy. The proof of
this is similar to the proof (given above) for the first iteration.

So the conclusion is true for each iteration t of ri, i.e., after each iteration t of ri, ri’s newly
assigned tasks together with the task prices p j(τ +1) keep ri almost happy.�

Since Theorem 5 holds true for all robots, we get the corollary below.

33

Corollary 1 When Algorithm 1 for all robots terminates, the achieved assignment and price are
almost at equilibrium.
Theorem 3 below gives performance guarantee for Algorithm 1.
Theorem 3 When Algorithm 1 for all robots terminates, the achieved assignment {(i,(li1, . . . , liNi))|i=
1, . . . ,nr} must be within ∑

nr
i=1 Niε of an optimal solution.

Proof: Denote ({(i,(li1, . . . , liNi))|i= 1, . . . ,nr}) as any feasible assignment, where {lik|k= 1, . . . ,Ni}
are the tasks assigned to robot ri, i.e.,

(
Ni⋃

k=1

tlik)
⋂

Tm ≤ 1,∀i,m : i = 1, . . . ,nr;m = 1, . . . ,ns

(
Ni⋃

k=1

tlik)
⋂

(

N j⋃
k=1

tl jk) = /0 if i 6= j (4.17)

Denote {p j| j = 1, . . . ,nt} as the set of task prices when Algorithm 1 terminates for all robots and
{p j| j = 1, . . . ,nt} as any set of task prices.

First, we want to give an upper bound for the optimal solution.
Ni

∑
k=1

(ailik− plik)≤ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j− p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ailik− plik)≤
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j− p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ailik)≤
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j− p j))

Since it holds true for any set of price and any feasible assignment, we have A∗ ≤ B∗, where A∗

is the optimal total payoffs of any feasible assignment.

A∗ = max
lik satisfy (5.12)

nr

∑
i=1

Ni

∑
k=1

(ailik)

B∗ = min
p j: j=1,...,nt

B

= min
p j: j=1,...,nt

(
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j− p j)))

On the other hand, according to Corollary 2, we have
nr

∑
i=1

Ni

∑
k=1

(ailik
− plik

)≥
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j− p j))−

nr

∑
i=1

Niε

nr

∑
i=1

Ni

∑
k=1

ailik
≥

nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j− p j))−

nr

∑
i=1

Niε

≥ B∗−
nr

∑
i=1

Niε ≥ A∗−
nr

∑
i=1

Niε

34

∑
nr
i=1 ∑

Ni
k=1 ailik

is the total payoffs of the achieved assignment by Algorithm 1, and

A∗ ≥
nr

∑
i=1

Ni

∑
k=1

ailik
≥ A∗−

nr

∑
i=1

Niε

So it is within ∑
nr
i=1 Niε of an optimal solution.�

Please note, if all the payoffs are integers, and we set ε < 1
∑

nr
i=1 Ni

, the achieved assignment will
be optimal.

4.5 Totally Distributed Assignment Algorithm
In this Section, we combine our algorithm with distributed algorithms for maximum consensus
in multiagent systems to make the algorithm totally distributed. In Algorithm 1, each robot ri can
compute its own bid, however, it needs to obtain the global price information p(τ) from an agent
that has access to the price information of all the other agents. For linear assignment problems,
the auction algorithm in [8] that required a shared memory has been combined with distributed
maximum consensus algorithm in [65] so that the algorithm is totally distributed. We follow a
similar procedure.

Consider a connected network, G, where the nodes of the network represent the robots and
there exists a link between two robots if they can communicate with each other. In maximum-
consensus [53], each robot ri ∈ R has a price for task t j as pi

j, and the goal is to obtain the highest
price of task held among all robots for each task, i.e., p j = maxri∈R pi

j (denote r∗ the robot which
has the price p j). The maximum initial value p j can propagate to the whole connected network,
if every robot keeps updating its value using the local maximum value among its neighbors.

Suppose that at iteration τ , each robot ri has the value of task j as pi
j(τ). Starting from initial

value pi
j(0), the robot needs to update its value:

pi
j(τ +1) = max

k∈N +
i

pk
j(τ) (4.18)

where N +
i = {i}∪Ni, and Ni is the set of ri’s neighbors in network G. Eventually, each robot

can get the true maximum value of task t j, and the number of iterations taken for robot ri to get
the true price p j is the length of the shortest path from ri to r∗, which is at most the number
of robots nr. Thus, each robot can obtain the global price information, based on repeated local
interaction with its neighbors.

Modification of Algorithm 1 to form a distributed algorithm: As stated before, suppose at it-
eration τ , the price of task t j that ri maintains is pi

j(τ), then the vector of prices that ri maintains
is that [pi

1(τ), pi
2(τ), . . . , pi

nt
(τ)], where nt is the number of tasks. At the beginning of Algo-

rithm 1, we can add a part where ri updates its price information of each task t j, pi
j(τ), using

Equation 7.13. A robot, ri, may use underestimated price for bidding during some iterations
due to two factors: (a) ri maintains the price of all tasks using local maximum instead of global
maximum; (b) the price of each task at each iteration may increase (due to new bids). However,
the current true price information will eventually propagate to ri in at most nr iterations (given

35

the network is connected). So after combining with consensus techniques, the performance of
Algorithm 1 does not change except that the convergence time may be delayed by a factor of ∆,
where ∆≤ nr is the diameter of the robot network.

The price update and bidding procedure can be implemented either in synchronous or asyn-
chronous way. During each bidding iteration, each robot needs to communicate with its direct
neighbors to update the local maximum task price. The size of a message that each robot needs
to communicate with its neighbor is O(nt), the order of the number of tasks.

Almost-optimality of the modified algorithm: Similar proof as for Theorem 4 can be used to
prove that the new algorithm with consensus technique would also terminate in finite number of
iterations at a feasible solution if there exist at least one such solution. Theorem 5 also holds true
if we change the price in the theorem from true values to robots’ estimate from local maximum,
i.e., each robot is almost happy with respect to its maintained task price each time after its
bidding iterations; since we assume the robots form a connected network, the accurate task price
information at iteration τ (i.e., the global highest bid price of the tasks at that time), would
eventually propagate to the whole network within at most ∆ iterations. When the algorithm
terminates, the price information stored by all robots does not change and must reach the true
values due to propagation, so Theorem 5 holds true for the true price values. Thus Theorem 3
also holds true.

Thus in the distributed algorithm, a near-optimal task allocation can be performed by the
robots with private knowledge about their own payoffs and budgets without sharing it with other
robots. Each robot in a connected network can make decisions based on updated local price
information from its own neighbors. The task allocation algorithm becomes totally distributed
for both the decision process and the information collecting process.

4.6 Extensions

4.6.1 Relaxation of budget constraint

In the basic problem we assumed that the number of tasks robot ri can perform is exactly Ni. In
this subsection, we relax this constraint so that each robot can do at most Ni tasks as indicated in
Equation (4.3).

To solve the extended problem in a centralized or distributed way, we modify the input in-
stances in the following way: since the total budgets of robots must be no less than the number
of tasks, i.e., ∑i Ni ≥ nt , we add ∑i Ni−nt virtual tasks (denote the set of virtual tasks as TV) to
the original tasks. Every single virtual task forms a separate task group. The payoffs between
any virtual task and any robot is set to be zero, i.e., ai j = 0, ∀i, j : t j ∈ TV . After adding the
virtual tasks, the budget constraints would have the same form as in Equation (4.8). Then we
can directly apply the same algorithms described in Section 4.4.1 and 4.4.2 to the new modified
input instances. The virtual tasks are auxiliary and only exist in the input to the algorithm, and
get removed in the output assignment solution, i.e., if a robot is assigned to z virtual tasks after
the algorithms terminate, the robot would have z remaining unused budgets.

The soundness and completeness of the method above comes directly from the soundness
and completeness of the algorithms in Section 4.4. Removing virtual tasks from the output as-

36

signment solution would guarantee that any feasible solution for constraints in Equation (4.8) is
still feasible for constraints in Equation (4.3), which leads to the soundness of the method. Any
feasible solution for the problem with constraints in Equation (4.3) could lead to a feasible solu-
tion for the original problem with constraints in Equation 4.8, which leads to the completeness
of the method.

Optimality of the Solution: According to Theorem 3, for the new input instance with virtual
tasks, we have

A′ = ∑
i

∑
j∈J′i

ai j ≥ A∗′−∑
i

Niε,

where J′i is the set of tasks assigned to robot ri, including the possibly assigned virtual tasks.
Since the virtual tasks have zero payoffs for any robot, we can remove their payoffs in our
assignment from solution A′ and the optimal solution A∗′, which leads to

A = ∑
i

∑
j∈Ji

ai j ≥ A∗−∑
i

Niε,

where Ji is the set of tasks assigned to robot ri, excluding the possibly assigned virtual tasks.
However, in a totally distributed setting without shared memory, each robot might not know

other robots’ budget, and thus can not compute the total number of virtual tasks (∑i Ni− nt)
in the modified input instance. In this case, we would need robots to first communicate their
budgets through the network so that each robot would know how many virtual tasks to be added
to the bidding procedure. This is achieved by each robot communicating with its neighbors and
updating the list of robots’ budget information until the whole list is obtained.

4.6.2 Relaxation of task group constraint
In the basic problem we assumed that each robot can be assigned to at most one task from each
group. In this subsection, we relax this constraint so that each robot ri can be assigned to multiple
tasks in each group Tk, but the number of tasks it can be assigned to in each group is bounded
by Nk,i, as indicated in Equation (4.4). This extension could be combined with the previous
extension to solve Problem 2.

To address this extension, we need to modify the procedure for selecting tasks that should
be bid upon (line 16 and 18), in the bidding procedure of Algorithm 1, so that each robot would
solve the following individual optimization problem

max fi j

nt

∑
j=1

(ai j− p j) fi j

s.t.
nt

∑
j=1

fi j = Ni

∑
j:t j∈Tk

fi j ≤ Nk,i, ∀k = 1, . . . ,ns.

(4.19)

During robot ri’s first bidding iteration, first, instead of selecting the best candidate task from
each subset Tk, ri selects the best Nk,i tasks from Tk to form a candidate task set J∗k , and then select

37

the best Ni tasks from ∪kJ∗k ; second, instead of storing the index of the second best candidate task
from each group Tk, robot ri stores the index of the next best candidate task from Tk, j′k, for future
bid price update. j′k is the task with highest value from Tk except tasks in the best Ni tasks from
∪kJ∗k . The (Ni +1)-th best candidate tasks could be selected using the same form as in Line 23
of Algorithm 1, which achieves the index of (Ni +1)-th best candidate tasks from ∪kJ∗k . During
each following iteration of ri’s bidding procedure, if N′k,i tasks from Tk have been outbid by other
robots, only the best N′k,i tasks from Tk can be selected to form a new candidate task set J∗k . The
price updating step of the algorithm remains the same.

The proof of soundness, completeness, and optimality of the modified algorithm is similar to
the proof for Algorithm 1. The way each robot selects candidate tasks to bid on guarantees that
at most Nk,i tasks would be assigned to robot ri from task group Tk, which leads to the soundness
of the method. Based on the same contradiction proof as in Theorem 4, if there exists a feasible
solution for the problem, the modified algorithm would terminate in finite number of iterations,
which leads to the completeness of the method. In the optimality proof, instead of showing that
the best Ni candidate tasks are selected from different task groups to satisfy the basic task group
constraint (4.9) as stated in the individual optimization problem in Equation 4.13, we need to
show that the selected Ni tasks are the best candidate tasks satisfying the extended task group
constraint (4.4) as in the optimization problem stated in Equation 4.19. The price updating rule
together with the optimization of individual problems leads to the almost-optimal performance
guarantee applying the same proof technique as in Theorem 3.

4.6.3 Dynamically Arising Tasks

In the previous discussion, we assume that robots know all task information at the beginning
of running the algorithms. However, in some cases, tasks might arise dynamically so that after
robots start bidding for tasks, some new tasks might arise and related information are revealed
to robots. Depending on when the tasks arrive, there exist two cases: (a) tasks arrive after robots
start bidding but before the assignment algorithm terminates; (b) tasks arrive after the algorithm
terminates and starts execution. In this section, we discuss the first case, and the second case will
be discussed in Chapter 9.

During the middle of bidding procedure, consider some new tasks suddenly arriving. If we
set their initial price to be zero, then it is possible that a new task’s value is more than ε plus
the value of the task currently assigned to robot ri. In this case, the new tasks should have
been assigned to ri. Thus Theorem 5 does not hold true any more, which would further make
Theorem 3 invalid. One possible way to handle the situation is to restart the whole bidding
procedure with the new task information included. However, depending on when the new task
arrives during the bidding procedure, restarting from scratch might waste the time of previous
bidding. In this section, we propose a way of setting the new task initial price so that the new
task could join the bidding procedure seamlessly. When a new task arrives, first, we remove
the current assignment of virtual tasks, reduce the number of virtual tasks by one, and reset the
virtual task price to be zero; second, we set the initial price of the new task to be

p j = max
ri∈Rv

ai j (4.20)

38

where Rv is the set of robots which have been assigned to non-virtual tasks when the new task
arrives.

The key purpose of setting the initial price of a new task as above is to make sure that any
robot’s currently assigned tasks are still among tasks which make the robot almost happy ac-
cording to (4.15). This is achieved by setting the value of a new task for robot ri to be no more
than ε plus the value of ri’s currently assigned task. According to (4.20), the value of the new
task to every robot in Rv is at most zero. Besides, the value of other non-virtual tasks could not
be smaller than −ε (otherwise, the robot would have first bid for virtual tasks before the task
value was reduced to be smaller than −ε). Thus, any robot’s currently assigned tasks are still
among tasks which make the robot almost happy. In this case, every robot is still almost happy
with their current assignment of non-virtual tasks under current price setting, which maintains
the optimality of the approach. In Section 4.7, we show the simulation results to compare the
approach of restarting the whole bidding procedure with the approach proposed here.

4.6.4 Uncertainty Analysis

In some robotics application, the payoffs between robots and tasks might not be fixed, instead
they are given as a probabilistic distribution. Let µi be a nt × 1 vector of concatenated mean
payoffs for all the tasks for robot ri with µi j as the expected payoff for task t j for robot ri. Since
in this case, payoff between robot ri and task t j, ai j, is a random variable. We could change
the objective to maximize the expected total payoffs while satisfying the constraints. Hence the
objective function of an individual robot is

max fi jE[
nt

∑
j=1

ai j fi j]⇔max fi j

nt

∑
j=1

E[ai j] fi j, i = 1, . . . ,nr. (4.21)

The objective function for all the robots is then

max fi j

nr

∑
i=1

nt

∑
j=1

E[ai j] fi j⇔max fi j

nr

∑
i=1

nt

∑
j=1

µi j fi j (4.22)

In the above equations, the expectation is on the random variable ai j. Note that in the assignment
problems that we study the payoffs enter the optimization problem only through the objective.
Therefore, the optimization problems remain the same if we replace ai j by µi j. Thus the tech-
niques developed in the literature for solving the deterministic problem near-optimally can also
be used for solving the expected payoff problem near-optimally. This problem is important when
we just have information about the first moment (i.e., mean) of the payoff distribution.

Please note that the reason why we could replace the payoff ai j with its mean values µi j to
maximize the expected total payoff is due to the fact that our objective function is a linear com-
bination of the payoff variables. So in the following chapters with the same objective function
structure, we could use the same approach to handle the uncertainty analysis.

39

4.7 Simulation Results

4.7.1 Example: Multi-robot Cooperative Package Transport
We first give an example of multi-robot cooperative package transport. As shown in Figure 4.3,
six robots are planning to move four packages from specified package pick-up region to drop-
off region. The packages are different from each other in properties such as size, value, weight
and fragility. So the robots are also designed to have heterogeneous capabilities, e.g., some are
suitable to move big and heavy packages, while others are suitable to move valuable but frangible
packages. The payoff ai j of assigning a robot ri to hold a position t j of a package Tk is specified
based on a few parameters. The parameters include the value of the package (vk), the uneven
share of the package’s weight among the assigned robots (w j), the traveling distance (di j), as
well as the suitability si j of using ri to carry Tk at t j. The suitability si j is a general measurement,
and could be defined differently depending on different application scenarios. In our application
scenario, we define si j as the matching degree of robot ri’s carrying capability with w j, i.e.,
si j =

1
1+|ci−w j| , where ci is the ideal weight that robot ri should carry. Assume that vk, si j, di j and

w j are all given, and the package needs Nk robots to carry, then we can compute ai j as follows:

ai j =
vk

Nk
+ si j−di j ∗ (mi +w j), t j ∈ Tk

where di j ∗ (mi +w j) represents the cost of assigning robot ri to hold t j of package Tk and carry
it.

An example video demonstrating the application scenario and our algorithm implementation
can be found at https://www.youtube.com/watch?v=WRT05nlz2Sk. In the video, we first show
a visualization of the bidding procedure of task assignment, and then illustrate how Turtlebots[1]
would move packages after the assignment is finished.

4.7.2 Simulation with Randomly Generated Samples
We use simulations with randomly generated test cases to check the influence of the control
parameter ε and robot network diameter δ on the algorithm’s solution quality and running time.
According to Theorem 3, we know that ε is a key control parameter of the algorithm, which
directly influences its solution quality. According to the complexity analysis, we know that the
convergence time of the algorithm depends on ε as well as the robot network diameter. We will
use the number of rounds as a measure of the convergence time. One round is completed when
all robots have bid once. Thus for sequential bidding, each round consists of nr iterations.

Consider nr = 20 robots, where each robot ri performs Ni = 3 tasks from a set of nt = 60 tasks.
The task set T forms ns = 20 disjoint subsets, with 3 tasks in each subset. We randomly generate
payoffs ai j from a uniform distribution in (0,20). We tested different values of ε varying between
0.1 and 10. Initially, we assume that each robot can communicate with all other robots, i.e., δ = 1.
Later we perform simulations for various network diameters ∆. For each ε , we generated 100
samples with different payoffs drawn from the uniform distribution, and we compared the mean
and standard deviation of performance ratio of our solution to the optimal solution, as well as the
convergence time of the algorithm.

40

Figure 4.3: Snapshot of the bidding procedure for multi-robot cooperative package transport. On
the bottom left, there are 4 packages (in grey color, i.e., task groups) with 12 different holding
positions (or tasks t1 to t12). On the bottom middle, there are 6 robots located on their own bases,
each with budget 2. The robots need to be assigned to different holding positions to move the
packages. During the bidding procedure, the column on top of each holding position shows its
bidding price, and the color of the column shows which robot the holding position is currently
assigned to. The plot on the top of the figure shows how the current total payoff changes with
the bidding procedure.

Figure 4.4 shows the change in solution performance with the control parameter ε . When ε

is as small as 0.1, the total assignment payoffs achieved by our algorithm is almost equal to the
optimal solution. When ε increases, the difference between our solution and the optimal solution
is increased, but our solution is still very close to the optimal solution (within 95% of the optimal
solution). Figure 4.5 shows the change in the number of bidding rounds till convergence of our
algorithm as ε increases. The number of rounds decreases with increasing ε , which means with
higher ε , Algorithm 1 converges faster. In Figure 4.4 and Figure 4.5, we show the results of both
sequential implementation (Gauss-Seidel iteration) and simultaneous implementation (Jacobi it-
eration). As shown in Figure 4.4, although the two implementations might converge to different
assignments, their solution quality is close. As shown in Figure 4.5, simultaneous implemen-
tation needs higher number of rounds to converge, however, since robots bid simultaneously in
each round, its actual convergence time is shorter than sequential implementation.

From Figures 4.4 and 4.5, we see that there is a tradeoff between the solution quality and the
convergence time, which can be adjusted by ε . With bigger ε , the algorithm converges faster
but solution quality degrades while with smaller ε , the algorithm solution is better at the cost of
slower convergence time. In this example, ε = 1 can achieve a good balance between the above
two performance indicators.

To test the effect of maxai j−minai j, we fixed ε , and adjusted the payoff distribution bounds,
i.e., we draw payoff values from a uniform distribution over (0,a), where a is adjustable for
different samples. Figure 4.6 and 4.7 show the results of performance ratio as well as the conver-
gence time. Actually the effect of adjusting a is equivalent to adjusting ε , i.e., when we increase

41

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Control Parameter ε

P
er

fo
rm

an
ce

 R
at

io

of
 o

ur
 s

ol
ut

io
n

to
 o

pt
im

al
 s

ol
ut

io
ns

Sequential implementation

Simultaneous implementation

Figure 4.4: Total payoffs of assignment by our algorithm as a function of parameter ε , which is
the minimum possible price increase during the bidding procedure. The optimal solution can be
achieved when we set ε < min di f f

∑
nr
i=1 Ni

where min di f f is the minimum difference between any two
individual payoffs ai j.

a by β times, it is equivalent to decreasing ε by β times, because it is just the scale change of a
and ε .

In the simulation results above, we assume the robot connection network is a complete graph,
i.e., each robot can communicate with all other robots. Next we check how the robot network
diameter ∆ influences the algorithm’s solution quality and convergence time. Figure 4.8 and
Figure 4.9 compare the results of complete network(∆ = 1), line network (∆ = nr− 1), circle
network (∆ = bnr/2c), and network with diameter ∆ = 5. From Figure 4.8, we see that the
solution performance is almost the same for different robot network structures. Figure 4.9 shows
that the convergence time does depend on the robot network diameter ∆. Further examination

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

Control parameter ε

N
um

be
r

of
 b

id
di

ng
 r

ou
nd

s
of

 o
ur

 a
lg

or
ith

m

Sequential implementation
Simultaneous implementation

Figure 4.5: Number of bidding rounds of our algorithm as a function of parameter ε . The solid
(dashed) line shows the number of rounds for the sequential (simultaneous) implementation of
our algorithm to terminate.

42

Figure 4.6: Total payoffs of assignment by our algorithm as a function of parameter a, which is
the upper bound of the uniform distribution where we draw payoffs. We fix ε = 0.5, and generate
100 samples for each different a ∈ {1,2, . . . ,10,20, . . . ,100}.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Payoff distribution upper bound a

N
um

be
r

of
 b

id
di

ng
 r

ou
nd

s
of

 o
ur

 a
lg

or
ith

m

Figure 4.7: Convergence time of our algorithm as a function of parameter a.

reveals that the slower convergence time in networks with larger diameter is mainly due to the
final price propagation even after most robots have converged to their assigned tasks. The total
number of effective bids from all robots do not change too much, as shown in Figure 4.10.

4.7.3 Comparison with centralized solution
In this section, we present simulation results to demonstrate our distributed algorithm’s per-
formance in terms of robustness of single-point failure, adaptivity to newly arising tasks, and
scalability with number of robots and tasks. In the following results, we used the same simula-
tion setting as before except when explicitly stated: the number of robots nr = 20, each robot ri
has budget Ni = 3, the number of tasks nt = 60, forming ns = 20 tasks groups, each with 3 tasks.

Robustness of Single-point Failure

Centralized solutions suffer from the single-point failure problem, i.e., when the centralized con-
troller fails, no assignment would be made for robots. However, in a distributed solution, since
each robot makes its own decision, even when some robots fail, other robots could still be as-
signed to tasks. Figure 4.11 shows how the performance of our algorithm changes with the

43

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Control parameter ε

P
er

fo
rm

an
ce

 r
at

io
 o

f

ou

r
so

lu
tio

n
to

 o
pt

im
al

 s
ol

ut
io

n
Line network (∆ = 19)
Circle network (∆ = 10)
Random network (∆ = 5)
Complete network (∆ = 1)

Figure 4.8: Total payoffs of assignment by our algorithm for different robot network diameter ∆.
We generate 100 samples for each different ε .

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Control parameter ε

N
um

be
r

of
 b

id
di

ng

ro
un

ds
 o

f o
ur

 a
lg

or
ith

m

Line network (∆ = 19)
Circle network (∆ = 10)
Random network (∆ = 5)
Complete network (∆ = 1)

Figure 4.9: Convergence time of our algorithm for different robot network diameter ∆.

number of failing robots. In Figure 4.11, the x axis shows the number of failed robots, which
is increased from 1 to 10 out of total 20 robots. We increase each robot’s budget from 3 to 6
so that the remaining robots have sufficient budget for tasks after some robots fail. When there
are 10 failed robots, the remaining 10 robots (each with budget 6) could still finish all 60 tasks.
However, if we increase the number of failed robots to any number between 11 and 20, then
the remaining robots’ total budget is insufficient to finish all tasks. So the figure only shows
the result when the number of failed robot increases from 1 till 10. For each number of failed
robots, we generate 100 random samples with different payoffs and different failed robots. We
can see that when the number of failed robots increases, the performance would become worse.
However, the distributed property makes sure that tasks are finished when the remaining robots
have sufficient budget for tasks. In this implementation, we need to add virtual tasks since the
total budgets of all robots exceeds the number of tasks (as discussed in Section 4.6.1). Please
note, even with increased robots’ budget, the failure of centralized controller would not be able
to assign tasks to robots.

44

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Control parameter ε

N
um

be
r

of
 to

ta
l b

id
s

of
 o

ur
 a

lg
or

ith
m

Line network (∆ = 19)
Circle network (∆ = 10)
Random network (∆ = 5)
Complete network (∆ = 1)

Figure 4.10: Total number of bids from all robots in our algorithm for different robot network
diameter ∆.

0 1 2 3 4 5 6 7 8 9 10
0.9

0.92

0.94

0.96

0.98

1

1.02

Number of Failing Robots

R
at

io
 o

f t
ot

al
 a

ss
ig

nm
en

t p
ay

of
fs

to
 th

os
e

w
ith

ou
t f

ai
lin

g
ro

bo
ts

Figure 4.11: Total assignment payoffs of our algorithm as a function of number of failing robots.
The x axis shows the number of failed robots out of total 20 robots. The y axis shows the ratio of
total payoffs to the payoffs when there is no failed robot. ε = 1. Each robot ri has budget Ni = 6.

Adaptive to Dynamic Changes of Problem Setting

In a dynamic setting, the problem setting of multi-robot task assignment might change, e.g.,
new tasks arise, robot failures, or payoff parameter update. In a centralized solution, when there
exist such changes, the centralized solution would need to recompute the solution given the new
problem setting, and then send the new assignment results to robots. However, the distributed
algorithm might take advantage of local computing of each robot to avoid restarting the whole
procedure. Below we use the case of new task arising as an example to analyze the adaptivity of
our distributed algorithm.

In Figure 4.12 and 4.13, we compare the two approaches when new tasks arrive during the
bidding procedure as stated in Section 4.6.3. For each ε , we generate 100 random samples with
random payoffs and random arriving time of new tasks. Figure 4.12 shows that both approaches
have good performance ratio compared to the optimal solutions, and Figure 4.13 shows that the
approach of continuing bidding procedure could achieve similar performance as the approach
of restarting from scratch, but generally with less running time. This shows that our distributed
approach is adaptive to dynamic changes of problem setting, and have the advantage of saving
running time when dynamic tasks arise.

45

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Control Parameter ε

P
er

fo
rm

an
ce

 r
at

io

of
 S

ol
ut

io
ns

 to
 o

pt
im

al
 s

ol
ut

io
ns

Restart the bidding procedure
Continue the bidding procedure
by setting new task initial price

Figure 4.12: Performance ratio of our solutions to the optimal solutions as a function of ε for
dynamically arising tasks. The solid line shows the number of iterations for the approach of
restarting the whole procedure. The dashed line shows the number of iterations for the approach
of continuing the bidding procedure with new task initial price set as in Section 4.6.3.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

Control Parameter ε

N
um

be
r

of
 B

id
di

ng
 It

er
at

io
ns

Restart the bidding procedure
Continue the bidding procedure
by setting new task initial price

Figure 4.13: Number of bidding iterations of our algorithm as a function of parameter ε for
dynamically arising tasks. The solid line shows the number of iterations for the approach of
restarting the whole procedure. The dashed line shows the number of iterations for the approach
of continuing the bidding procedure with new task initial price set as in Section 4.6.3.

Scalability

The centralized solutions for linear assignment problem has the complexity of n3 or mn where
n is the number of robots and m is the number of edges in the robot communication network.
Either way, the computation time would increase with the number of robots. However, in a
distributed setting, when robots implement the algorithms simultaneously, the computation time
does not depend on the number of robots, instead, it depends on the network diameter (as shown
in Figure 4.9). Below we show how the computation time of our distributed algorithm changes
with number of robots when the robot network has different random topology but with fixed
network diameter 5. Since our problem can also be solved using centralized linear programming
solver, we compare our algorithm with the centralized linear programming solver linprog in
Matlab. Figure 4.14 shows that when we increase the number of robots while fixing the network
diameter, the number of bidding rounds in our distributed algorithm does not change much. In
contrast, although the centralized simplex algorithm does not have overhead on communication

46

(after all parameters are collected), the computation time depends on the number of robots. When
the number of robots is as many as 100 (each with budget 3), the simplex linear programming
solver cannot work any more due to out of memory since the number of assignment variables
is increased to be 100*300=30000. However, our distributed algorithm could easily handle the
cases since each robot only need to iteratively solve its own problem. Figure 4.14 shows the
result of simplex algorithm option of Matlab solver linprog, and the other options like interior-
point algorithm have similar results. The simulation is run in Matlab on a Intel Core 2 i3 2.13
GHz CPU with 4 GB RAM.

0 50 100 150 200 250 300
0

1

2

3

4

5

Number of Robots

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

Our Distributed Algorithm
Simplex Linear Programming Solver

Figure 4.14: Computation time as a function of number of robots. The linear programming solver
we used here is linprog with simplex algorithm from Matlab optimization toolbox.

4.7.4 Comparison to Best-first Heuristics for distributed algorithm design
Our problem setting has the features that each robot has budget constraints and all tasks must be
finished. These two features distinguish our problem from the problems that each robot can be
assigned to at most one task or each robot can be assigned to do as many tasks as it might require.
Besides, in some situation, due to the heterogeneity of robots and tasks, some robots might not
be capable of performing some tasks. All these features together make some commonly used
heuristics for distributed solution in multi-robot or multi-agent community (e.g., market-based
approach [23], or DCOP approach [47, 48]) unsuitable for our problem. Below we compare
our distributed algorithm to the commonly used best-first heuristics, where each robot bids for
the tasks with highest payoffs and tasks are assigned to robots with highest payoffs. In best-
first heuristics, when one robot is outbid by other robots for a task, it would continue to bid
for the task with highest payoffs in the remaining tasks. Figure 4.15 shows that in many cases,
best-first heuristics (without backtracking) could not even get a feasible solution. For each task,
we randomly generate certain number of robots (1 to 11 robots out of total 20 robots), which
are incapable of doing the task. Meanwhile we guarantee that there exist feasible solution for
each random sample. When the number of robots incapable of doing each task increases, the
percentage of samples where best-first heuristics cannot find feasible assignment also increases.
However, our distributed solution is always able to find a solution. Table 4.1 shows a simple
example of payoff setting that best-first heuristics would lead to unfeasible solution. In the
example, we have 2 robots and a task group of two tasks, and each robot has budget 2. As

47

Table 4.1: Payoff parameters ai j for a simple example of best-first heuristic failure.
ai j t1 t2
r1 19 15
r2 15 X

Table 4.2: Payoff parameters ai j for a simple example of best-first heuristic sub-optimality.
ai j t1 t2 t3 t4
r1 10 9 15 16
r2 9 3 4 15

defined by task group constraints, each robot can be assigned to at most one task from a task
group. “X” means the robot is incapable of doing the task. Best-first heuristics would first assign
robot r1 to task t1. Robot r2 is incapable of doing task t2, and r1 cannot be assigned to t2 due to
task group constraints. So best-first heuristics without backtracking would fail. Even in the cases
where best-first heuristics get feasible solutions (i.e., with backtracking to exhaustively searching
the whole space for completeness), the solutions could be sub-optimal compared to our solution.
Table 4.2 shows such a simple example. In the example, we have 2 robots, and two task groups
{t1, t2} and {t3, t4}. Each robot has budget 2. The optimal solution would achieve total payoff
48 by assigning r1 to t2, t3 and r2 to the other two tasks. The best-first heuristics would lead to a
solution with total payoffs 33 by assigning r1 to t1 and t4.

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

Number of Robots uncapable of doing a task

A
ss

ig
nm

en
t F

ai
lu

re
 R

at
io

 b
y

B
es

t−
fir

st
 h

eu
ris

tic
s

(%
)

Figure 4.15: Assignment failure ratio as a function of number of robots incapable of doing a
task. nr = 20

4.8 Summary
In this chapter we introduced a class of multi-robot task assignment problems called task assign-
ment with grouped tasks, where the tasks form disjoint sets or groups. We presented a distributed
dual-decomposition based task allocation algorithm which is an extension of the auction algo-
rithm proposed by Bertsekas for solving linear assignment problems for unconstrained tasks [8].
In our problem model, the number of tasks each robot can perform is bounded by its budget, and

48

each task must be assigned to exactly one robot. The objective is to find an assignment so that the
total payoffs are maximized while respecting all constraints. We proved that our algorithm al-
ways terminates in a finite number of iterations and we obtain a solution within a factor of O(ntε)
of the optimal solution, where nt is the total number of tasks and ε is a parameter to be chosen.
We first presented our algorithm using a shared memory model of distributed computation and
then indicated how consensus algorithms can be used to make it a totally distributed algorithm.
We also presented simulation results characterizing the performance of our algorithm.

49

Algorithm 1 Bidding Procedure For Robot ri

1: Input: ai j,∀ j; p(τ); Tk,∀k; Ji(τ−1), Ki(τ−1), pi(τ).
2: Output: Ji(τ), Ki(τ), pi(τ +1).
3: // Update the assignment information:
4: for j ∈ Ji(τ−1) do
5: if pi

j(τ)< p j(τ) then
6: // another robot has bid higher than ri’s previous bid
7: Ji(τ−1) = Ji(τ−1)\{ j};

Ki(τ−1) = Ki(τ−1)\{k|t j ∈ Tk};
8: end if
9: end for

10: N′i = |Ji(τ−1)| // Number of tasks still assigned to robot ri.
11: // Collect information for new bids
12: vi j(τ) = ai j− p j(τ) // Value of task, t j, to robot, ri.
13: // Select the best and second best candidate task from each subset Tk
14: for k = 1, . . . ,ns do
15: if k 6∈ Ki then
16: j∗k = argmax j∈Tk vi j(τ) // Best candidate task
17: end if
18: j′k = argmax j∈Tk, j 6= j∗k

vi j(τ) //Second best candidate task
19: end for
20: //Select the Ni−N′i best candidate tasks from task groups not in Ki

21: J̄ = argmax(Ni−N′i)
k 6∈Ki

v j∗k
(τ); K̄ = {k|t j ∈ Tk, j ∈ J̄};

22: // Store the index of (Ni +1)-th best candidate task
23: m = argmaxk 6∈(Ki∪K̄) v j∗k

(τ);
24: // Update price and assignment information
25: Ji(τ) = Ji(τ−1)∪ J̄; Ki(τ) = Ki(τ−1)∪ K̄;
26: for j = 1, . . . ,nt do
27: if j ∈ J̄ then
28: j∗k = j;
29: pi

j∗k
(τ +1) = pi

j∗k
(τ)+ vi j∗k

(τ)−max{vi j∗m(τ),vi j′k
(τ)}+ ε;

30: else
31: pi

j(τ +1) = pi
j(τ);

32: end if
33: end for

50

Chapter 5

Multi-robot Linear Task Assignment with
Task Deadline Constraints

5.1 Introduction

Multi-robot task assignment is a fundamental problem that arises in a wide variety of applica-
tion scenarios like manufacturing, automated transport of goods, environmental monitoring and
surveillance. In some application scenarios the tasks have to be completed within given dead-
lines. Furthermore, the assignment should be good in the sense that it should maximize a payoff
function or minimize a cost function. Assigning tasks to robots to meet the deadline constraints
as well as maximize the overall payoff of assignment is a type of scheduling problem. Scheduling
is a quite mature field and due to its importance in a wide variety of application areas including
manufacturing and computer systems different types of scheduling problems have been stud-
ied [55]. The problem in this chapter is related to deterministic offline scheduling problems with
resource constraints [11] (in contrast to online and/or stochastic scheduling problems). Although
batch scheduling has been well studied, most scheduling algorithms are centralized in nature and
usually there is no limit on the number of jobs that a processor or machine can perform. For
multi-robot application scenarios, energy of the robots is a key constraint and so the number of
tasks that a robot can do in any mission is bounded. Furthermore, distributed algorithms that
enable the robots in the field to divide the tasks among themselves (so that there is no central
point of failure) is desirable. Thus, in this chapter, our goal is to design distributed algorithms
for task allocation with task deadlines and capacity limits on the total number of tasks a robot
can perform.

Task allocation with deadlines is relevant for many multi-robot application scenarios. Con-
sider the situation where a system of robots have to clear up objects from one area and place
them in other areas. This can arise in automated package handling in ports where packages have
to be unloaded from a container (e.g., a ship) and placed in other containers (e.g., trucks). Fur-
thermore, there may be a deadline on the tasks coming from the need to complete the overall task
of unloading within a certain time. Another application area is for removing debris in disaster
recovery scenario where the robots need to move objects from one place to another so that the
paths become usable by other robots that have to reach potential victims. In such cases also there

51

may be a deadline for the robots to clear paths because victims should be found and reached
within some time. In these applications, different robots might have heterogeneous capacities,
which have different fitness for different tasks, so the objective here could be maximizing the
quantitative fitness of robot-task assignment while respecting task deadlines.

The general problem that we consider in this chapter is as follows: We are given a set of tasks
T , with each task t j ∈ T having a deadline d j. Each task has to be done by one robot only and
each robot can do one task at a time. The maximum number of tasks that robot ri can do is Ni
(this is called the budget of the robot). Each robot ri obtains a payoff ai j for doing task t j. The
overall payoff is the sum of the individual robot payoffs. The objective is to assign the tasks to
robots such that the deadline constraints are met and the overall payoff is maximized. We assume
that each task takes unit duration. Note that we could have equivalently stated the problem above
in terms of cost minimization. When we leave task deadlines unspecified, the problem becomes
a linear assignment problem, which can be solved using the Hungarian algorithm [15, 27, 36],
parallel auction algorithm [9, 10], or distributed auction-based algorithm [17, 65]. When we
further allow tasks to have different processing time, the problem becomes the NP-hard gener-
alized assignment problem, where approximation algorithms exist [18, 24]. So our problem is
an extension of the linear assignment problem, a special generalized assignment problem, with
added feature of task deadline constraints. Assigning tasks with deadlines to parallel machines
have been studied in scheduling literature [55]. However, the common objective there is either to
find a feasible solution so that task deadlines are met [11], or to minimize the weight of unsched-
uled late jobs [33], instead of maximizing the total payoff of different machine-task matching
(this feature is a departure of our work from the standard scheduling problems studied in the
literature).

We present a distributed auction-based algorithm, where each robot can bid for its own task,
and show that this algorithm provides an almost optimal solution. We first show that the dead-
line constraints provide a natural grouping of the tasks into overlapping sets and the problem
can be equivalently formulated as a problem of assigning tasks to robots such that there is an
upper bound on the number of tasks that can be performed from each set. This is a natural
variant of the multi-robot assignment problem with set precedence constraints (SPC−MAP)
in [41], where tasks are forming disjoint groups and each robot can perform at most one task
from each group. We show that solving this problem can be reduced to solving a min-cost net-
work flow problem and hence our problem can be solved in polynomial time. Further, we present
an auction-based distributed algorithm that provides an almost-optimal solution (i.e., a solution
that is within O(ntε), where nt is the total number of tasks and ε is a parameter to be chosen).
By appropriately choosing ε , we can make our solution arbitrarily close to the optimal solution
(however at the cost of more computation time). We also present simulation results showing the
performance of our algorithm for understanding the effect of choice of ε .

This chapter is organized as follows: In Section 5.2 we present our problem formulation and
in Section 5.3 we present our distributed algorithm and analyze its performance. In Section 5.4,
we present our simulation results and in Section 5.5, we give the summary. This chapter appeared
in the work of [43].

52

5.2 Problem Formulation
In this section, we give the formal definition of our multi-robot assignment problem with dead-
lines for independent tasks with identical duration, which we call multi-robot task assignment
with task deadline constraints (TAD−MRAP). Here an assignment is not just to determine
which robot performs which tasks, but also to make sure that the robot performs the tasks in
proper time, i.e., any task is assigned to a certain time slot of one robot’ schedule so that its
deadline constraint is satisfied. Since the assignments would be related to the processing time of
tasks, we first give the straightforward formulation of the problem using a time-related parame-
ter, and then derive an equivalent formulation, which removes the time parameter and facilitates
the algorithm design in Section 5.3.

Suppose that there are nr robots, R = {r1, . . . ,rnr}, and nt tasks, T = {t1, . . . , tnt} where the
tasks are independent, and each task t j has a unit duration with a deadline d j, define D = max j d j
as the maximum task deadline, Sk = {t j|d j = k},∀k = 1, . . . ,D, as the set of tasks with deadline k,
SD+1 = {t j|d j is not specified} as tasks with no explicit deadline; each robot ri has Ni available
time slots in its schedule, and thus ri can perform at most Ni tasks, i.e., robot ri’s budget is
Ni. Any robot can be assigned to any task, and performing each task needs a single robot, so
nt ≤∑

nr
i=1 Ni. Let f k

i j be the variable that takes a value 1 if task, t j, is assigned to the k-th time slot
of robot, ri, and 0 otherwise, where i ∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt},k ∈ {1, . . . ,Ni}. Let ai j ∈ R
be the payoff for the assignment pair (ri, t j), i.e., for assigning robot ri to task t j, which does
not depend on the assigned time slot k. The objective is to assign all tasks to robots so that the
total payoffs from the assignment is maximized while the deadlines of tasks are satisfied. The
problem can be formulated as an integer linear program (ILP) below.

max
{ f k

i j}

nr

∑
i=1

nt

∑
j=1

Ni

∑
k=1

ai j f k
i j

s.t.
nr

∑
i=1

Ni

∑
k=1

f k
i j = 1, ∀ j = 1, . . . ,nt (5.1)

nr

∑
i=1

min(Ni,d j)

∑
k=1

f k
i j = 1, ∀ j = 1, . . . ,nt (5.2)

nt

∑
j=1

f k
i j ≤ 1, ∀i = 1, . . . ,nr,k = 1, . . . ,Ni (5.3)

f k
i j ∈ {0,1}, ∀i, j,k (5.4)

where (5.1) means that each task is assigned to exactly one time unit of a robot’s schedule; (5.2)
guarantees that each task is assigned to a time slot before its deadline; (5.3) guarantees that each
time slot of robots is assigned to at most one task and thus each robot ri is assigned to at most Ni
tasks.

The problem formulation above adds a time-related parameter k so that the deadline con-
straints for tasks can easily be represented in (5.2), and its solution will also give a fixed sched-
ule that specifies, which robots perform which tasks during each time step. However, it might
be unnecessary in terms of maximizing the total payoffs, e.g., it does not matter whether robot

53

ri perform task t j at time step k1 or k2 (assuming both satisfy the task deadline d j) since both
would lead to the same payoff ai j. Below we provide another equivalent problem formulation,
showing that we can explore the independency of tasks so that explicit time parameter k can be
removed while all constraints are still satisfied. Let fi j be the variable that takes a value 1 if task,
t j, is assigned to robot, ri, and 0 otherwise. The problem can be formulated as an integer linear
program (ILP) given below.

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (5.5)

∑
j:d j≤l

fi j ≤ l, ∀i = 1, . . . ,nr, l = 1, . . . ,D (5.6)

nt

∑
j=1

fi j ≤ Ni, ∀i = 1, . . . ,nr (5.7)

fi j ∈ {0,1}, ∀i, j (5.8)

where (5.5), corresponding to (5.1), means that each task is assigned to exactly one time slot of
one robot’s schedule; (5.6), corresponding to (5.2), guarantees that each robot is assigned to at
most l tasks from all tasks with deadline no more than l, and thus each task can be performed
before its deadline; (5.7), corresponding to (5.3), guarantees that each robot ri does not exceed
its budget, i.e., is assigned to at most Ni tasks.

The solution for the second problem formulation only determines which robot performs
which tasks without explicitly modeling the assignment of each time slot of robots to tasks.
However, due to (5.6), for all tasks with deadlines no more than l, each robot can be assigned to
l of them. Thus it can be guaranteed that such assignment would satisfy the deadline constraints
for tasks since the number of tasks assigned to each robot is no more than the available time
slots of that robot before the tasks’ deadlines. The second problem formulation is more compact
since it does not explicitly use the time parameter as in the first problem formulation. In next
section, we do not consider the processing time for tasks anymore, and show that this formula-
tion is convenient for our distributed algorithm design. The linear program (LP) relaxation of
TAD−MRAP can be reduced to a min-cost network flow problem, so there is always an optimal
integer solution for its LP relaxation.

5.3 Algorithm Design and Performance Analysis
In this section, we show that the distributed auction algorithm used for multi-robot assignment
with set precedence constraints (SPC−MAP) in [41] can be extended to get an almost-optimal
solution for TAD−MRAP.

The outline of this section is as follows. First, we show TAD−MRAP can be reduced to a
min-cost network flow problem, so centralized polynomial-time algorithms exist that can be used
to compute the optimal solution [27]. Second, we discuss the basic idea of the original auction

54

algorithm and several important concepts (introduced in [9]), e.g., robot is (almost) happy, and
the assignment is (almost) at equilibrium in the context of TAD−MRAP. Third, we design a
new auction-based algorithm for TAD−MRAP, where each robot can use an iterative bidding
procedure on its own to bid for tasks. Finally, we prove that our algorithm is sound, complete
and almost-optimal.

5.3.1 Centralized Solution: Reduction to Network Flow Problem
For any instance of the TAD−MRAP problem introduced in Section 5.2, we can construct a
min-cost network flow problem [27] as follows (shown in Figure 5.1). Consider a directed graph
G = (V,E), with a set of nodes V = R

⋃
T
⋃

A, and edges E = E1
⋃

E2
⋃

E3, where
• Nodes: R = {ri|i = 1, . . . ,nr} represent robots, T = {t j| j = 1, . . . ,nt} represent tasks, A =
{ai,k|i = 1, . . . ,nr,k = 1, . . . ,D+1} is introduced as the set of auxiliary nodes to represent
the constraints of (5.6).

• Edges: E1 = {(ri,ai,D+1)|i = 1, . . . ,nr} connects each robot ri to an auxiliary node ai,D+1,
E2 = {(ai,k,ai,k−1)|∀i= 1, . . . ,nr,k=D+1, . . . ,2} connects nodes in A, and E3 = {(ai,k, t j)|∀ j :
t j ∈ Sk,∀i = 1, . . . ,nr,k = 1, . . . ,D} connects nodes in A to corresponding nodes in T .

• Source and sink nodes: All nodes in R are source nodes with supply Ni, and all nodes in T
are sink nodes with demand 1.

• Capacity and cost of edges: The capacity of edges in E1 is c(ri,ai,D+1) = Ni,∀i; in E2:
c(ai,k,ai,k−1) = k−1,∀i,∀k = D+1, . . . ,2; in E3: 1. The cost for edges in E1 and E2 is 0,
while for edges in E3: b(ai,k, t j) =−ai j.

• Flow: f (m,n), associated with each edge, represents the flow from node m to node n.
Solving the constructed min-cost network flow problem above will lead to the optimal solu-

tion for TAD−MRAP in Section 5.2 due to the following facts:
• The demand and supply constraints of nodes in R and T are equal to the constraints (5.5)

and (5.7). The supply of node ri guarantees that the amount of flow from ri is exactly Ni,
and the flow would end at exactly Ni nodes in T (possibly including some of the constructed
virtual task nodes). So the supply constraints of nodes in R equal to constraints (5.7) that
each robot can be assigned to at most Ni tasks. The demand of node t j guarantees that
the amount of flow to t j is exactly 1. So the demand constraints of nodes in T equal to
constraints (5.5) that each task is assigned to exactly one robot.

• The capacity constraints for flow along edges in E2 are equal to constraints in (5.6). The
capacity for an edge (ai,k,ai,k−1) is k− 1. Since the flow along the edge can only end at
nodes in ∪k−1

`=1S`, the flow from ri would end at no more than k−1 nodes in ∪k−1
`=1S`. So the

capacity constraints for edge flow equal to constraints (5.6) that each robot can be assigned
to at most l tasks with deadline no more than l.

• The objective function min∑m ∑n c(m,n) f (m,n) here is equal to the objective function
max∑i ∑ j ai j fi j, since b(ai,k, t j) =−ai j for edges in E3 and the cost of edges in E1 and E2
is 0.

There always exist integer optimal solution for min-cost flow problem, so after solving the min-
cost flow problem, the non-zero (value 1) flow in E3 corresponds to the optimal assignment of

55

1
r

1, 1D
a

 1,D
a

……

1,3
a

1,2
a

1,1
a

12D

1
N

+ N1

-1

S1

S2

S3

…

…

SD+1

-1

-1

-1

1

1

1

1

Figure 5.1: Reduction to the min-cost flow problem. For display purpose, just robot r1, its
corresponding auxiliary nodes ai,k and related edges are shown. For each other robot ri, there are
another set of nodes {ai,k|k = 1, . . . ,D+1}, edges {(ri,ai,D+1)}, {(ai,k,ai,k−1)|k = D+1, . . . ,2}
and {(ai,k, t j)|∀ j : t j ∈ Sk}, which are omitted. +N1 and −1 below/above nodes in R and T
represent nodes’ supply and demand; the number above each edge represents the capacity of
flow along that edge.

TAD−MRAP in Section 5.2, e.g., if f (ai,k, t j) = 1, it means that task t j is assigned to robot ri.
The min-cost network flow problem is a classical problem that has been studied extensively.

Centralized polynomial-time algorithms exist that can compute the optimal solution [27].

5.3.2 Basic Idea and Concepts of Auction Algorithm

We are trying to match nr robots and nt tasks with constraints (5.5)-(5.8) through a market auction
mechanism as introduced in [8], where each robot is an economic agent acting in its own best
interest. Although each robot ri wants to be assigned to its favorite Ni tasks (with highest payoffs)
while satisfying the deadline constraints for tasks, the different interest of robots will probably
cause conflicts. This can be resolved by introducing auxiliary variables of task price, and making
robots bid for tasks through an iterative auction mechanism. Suppose the price for task t j at
iteration τ is p j(τ), so the net value of task t j to robot ri at iteration τ becomes v j(τ) = ai j− p j(τ)
instead of just ai j. During the bidding procedure, each robot bids for tasks which satisfy the

56

constraints and have highest values to the robot according to certain rule (as shown later in
Section 5.3.3). After winning the bids and assigned to tasks in each iteration, the robot would
then set the new task price as the winning bid, which is the highest bid value for the task among
all robots till then. Thus the iterative bidding from robots leads to the evolution of robot-task
assignment as well as task price p j(τ), which can gradually resolve the interest conflicts among
robots. 1

Please note, since ∑i Ni ≥ nt , we need add ∑i Ni−nt virtual tasks with small equal payoffs to
all robots, and leave their deadlines as unspecified. So the new total number of tasks becomes
n′t = ∑i Ni. Besides, the condition that each robot must know the current price p j(τ) for all task t j
during bidding procedure requires the existence of a centralized auctioneer or a shared memory
for all robots to access. In [17, 41, 65], maximum consensus technique has been introduced to
combine with auction algorithm so that the algorithm becomes totally distributed without cen-
tralized auctioneer to communicate the current price of tasks with robots. Assume that robots are
forming a connected communication network, where each robot is connected to its neighboring
robots within its communication range. The idea is that during each bidding iteration τ , each
robot ri in the connected network locally maintains and updates a list of current highest bids
pi

j(τ)
2 for each tasks t j from its own neighborhood Nri:

pi
j(τ) = maxr`∈Nri

p`j(τ−1)
and uses that highest bid as local price of tasks. Since the network is connected, the global
highest bids would eventually propagate to all robots so that the solution quality remains the
same as that of original auction algorithm. The same technique is applied here to make our new
auction-based algorithm totally distributed.

Below we will discuss some important concepts of auction algorithm. Suppose TJi = {t j| j ∈
Ji} is the task set assigned to robot ri, it must satisfy the constraints below:

|Ji| ≤ Ni, |TJi

⋂
(

k⋃
m=1

Sm)| ≤ k,∀k = 1, . . . ,D (5.9)

where |Ji| ≤ Ni corresponds to constraint (5.7), |TJi

⋂
(
⋃k

m=1 Sm)| ≤ k,∀k = 1, . . . ,D corresponds
to (5.6), and the exclusive assignment would guarantee (5.5). We use Ji ∼ (5.9) to represent that
Ji satisfies (5.9).

During each bidding iteration τ , given any task price set {p j(τ)| j = 1, . . . ,nt}, every robot ri
wants to be exclusively assigned to a task set TJ∗i = {t j| j ∈ J∗i } with maximum net values while
satisfying the constraints:

J∗i = arg max
∀Ji∼(5.9)

∑
j∈Ji

v j(τ) (5.10)

We say robot ri is happy with the assigned task set TJ∗i when (5.10) is satisfied. If all robots
are happy, we say the whole assignment and the prices at iteration τ are at equilibrium.

1Note that p j(τ) is an auxiliary variable, which is used to resolve the conflict that multiple robots share the same
interest of being assigned to the same tasks. When the algorithm terminates, the quality of assignment solution does
not depend on p j(τ), i.e., the output assignment solution is almost-optimal in terms of original payoffs ai j instead
of the net value v j(τ) = ai j− p j(τ).

2Note that each robot just maintains one price for each task, here pi
j(τ) is just used to represent the task price at

iteration τ for convenience.

57

Suppose we fix a positive scalar ε . When each assigned task for robot ri is within ε of being
in the set of ri’s maximum values, that is,

f (J′i)≥ max
∀Ji∼(5.9)

∑
j∈Ji

(v j(τ)− ε) (5.11)

where f (J′i) = ∑ j∈J′i
v j(τ) and J′i ∼ (5.9). We say robot ri is almost happy with the assigned task

set TJ′i
when (5.11) is satisfied. If all robots are almost happy, we say the whole assignment and

the prices at iteration τ are almost at equilibrium.

5.3.3 Auction-based Distributed Algorithm Design
In this section, we design a new auction-based distributed algorithm for TAD-MRAP, which is an
extension of the algorithm used in [41] for multi-robot assignment problem with set precedence
constraints (SPC-MAP). In the distributed algorithm, there is no centralized component, and the
knowledge/information available to each robot ri is {ai j|∀ j}, the payoffs of tasks to ri itself,
as well as {p`j(τ)|∀r` ∈ Nri ∪{ri},∀ j, t}, the local task price maintained and updated in each
neighboring robot r` during each bidding iteration τ .

For each robot ri, a single bidding iteration τ of our auction-based algorithm is described in
Algorithm 2. Each robot could implement the iterative bidding procedure either synchronously
or asynchronously. For the sake of ease of discussion, below we assume that in our auction-based
algorithm, all robots run copies of Algorithm 2 sequentially. Each bidding iteration τ for robot
ri (Algorithm 2) can be summarized as follows.

First, robot ri communicates with its neighbors to get their maintained local task price, up-
dates its own local task price (from Line 2 to 5), computes each task value to itself (Line 7). Then
ri updates its previously assigned task list, and determine how many tasks to bid for during this
iteration (Line 8 to 14). Please note, the updated local task price at robot ri is a local maximum of
each task price among its neighborhood (including itself), which is a lower bound of the real task
price. The real task price is the global highest bid value among all robots, and can be achieved
by maximizing the local task price maintained by all robots. Here we do not explicitly address
the assignment conflict potentially caused by the same bidding price from different robots for the
same task. The same rules of breaking bid tie as discussed in Remark 4 could be applied here.

Second, given the current local task price {pi
j(τ)|∀ j}, robot ri selects a task set with task

indices Ji(τ), so that it is happy to be assigned to the task set TJ = {t j| j ∈ Ji(τ)}, i.e., (5.10) is
satisfied, (from Line 17 to 25 inside the iterative loop). This part guarantees that all constraints
for robot ri are satisfied (according to the value of k′ from Line 19 to 23): (a) robot ri is assigned
to at most N′i tasks; (b) ri is assigned to at most k′ tasks of all tasks with deadline no more than k.
Meanwhile each task is assigned to at most one robot, because each task either does not change
assignment status (assigned to previous robot or remains unassigned) or switch from the previous
assigned robot to robot ri.

Third, robot ri is assigned to task set TJ , and updates the task price (from Line 36 to 39) so
that ∀ j ∈ Ji(τ), pi

j(τ + 1) = pi
j(τ)+ (vi

j(τ)− vi
J4(j)(τ))+ ε , where vi

J4(j)(τ) is the value of the

task J4(j), which would have been selected to Ji(τ) had we removed task j. For each assigned
task in t j ∈TJ , there is a corresponding task J4(j), which is stored in J4 indexed by j (Line 26

58

to 35 explains how J4 is computed). Roughly speaking, J4(j) is the task with the second value
to ri other than j while satisfying the constraints together with other tasks in Ji(τ) \ { j}. The
bidding price for each task is at least ε bigger than its previous price:
pi

j(τ +1)− pi
j(τ) = vi

j(τ)− vi
J4(j)(τ)+ ε ≥ ε

since the selection of J4 from Line 26 to 35 guarantees that vJ4(j)(τ) ≤ v j(τ). So the tasks
receiving ri’s bids must be assigned to ri at the end of the iteration. The way we set pi

j(τ + 1)
guarantees that ri is almost happy with TJ given the new price pi

j(τ +1) (See Theorem 5), and is
related to the proof of the optimality of the algorithm, which will be discussed in Section 5.3.4.

The algorithm terminates when all robots have been exclusively assigned to their own tasks.
Each robot needs to wait until its task price information does not change for nr rounds, which is
the largest possible diameter of any connect network with nr nodes. In this way, each robot can
make sure the unchanged task price is not due to the delay of price propagation in the network,
and can terminate the algorithm in a distributed way.

5.3.4 Performance Analysis

In this section, we analyze the performance of Algorithm 2 in terms of soundness, completeness
and optimality, i.e., does the output assignment solution satisfy all constraints in (5.5)-(5.8)? Will
Algorithm 2 terminate with a feasible assignment solution in a finite number of iterations? How
good is the solution when Algorithm 2 terminates?
Lemma 3 When Algorithm 2 terminates for all robots, the achieved assignment must be a fea-
sible solution for TAD−MRAP, i.e., (5.5)-(5.8) are satisfied.
Proof: When Algorithm 2 for robot ri terminates, according to the value of k′, (a) ri has already
been assigned to no more than Ni tasks and no other robot would bid higher for ri’s assigned
tasks; (b) ri is assigned to at most l tasks of all tasks with deadline no more than l. So (5.6) and
(5.7) are satisfied. Since the tasks are exclusively assigned in Algorithm 2, (5.5) and (5.8) are
also satisfied. So the achieved assignment is a feasible solution satisfying (5.5)-(5.8).�
Lemma 3 means Algorithm 2 is sound, i.e., when it outputs a solution, the solution is feasible.
The next result asserts that Algorithm 2 always terminates in finite number of iterations assum-
ing the existence of at least one feasible assignment for the problem. The proof relies on the
observations below:

(a) When a task is assigned, it will remain assigned during the whole process of the algorithm.
The reason is: during the bidding and assignment process, one task can either transfer from
unassigned to assigned, or be reassigned from one robot to another, but cannot become
unassigned from assigned. There might exist cases where one task was assigned to more
than one robot before the algorithm terminates due to the local price information.

(b) Each time when a task receives a bid, its new price will increase by at least ε according to
the algorithm. So if one task receives infinite number of bids, its price will become +∞.
Please note, although the real task price might not reach all robots immediately, the +∞

price would eventually propagate to all robots.

(c) If a robot ri bids for infinite number of times, at least one task t j would receive infinite
number of bids. Suppose that t j ∈ Sk, then all tasks in S = Sk

⋃
Sk+1

⋃
. . .
⋃

SD+1 would

59

receive infinite number of bids. The reason is that: (using contradiction) if there exists
one task in S, which does not receive infinite number of bids, its price would be finite, and
its value for ri must be bigger than t j which receives infinite number of bids. So it has
to receive more bids, which leads to the contradiction. So all tasks in S receive infinite
number of bids and thus have the price of +∞ (according to (b)).

Theorem 4 If there is at least one feasible solution for an instance of TAD−MRAP, Algorithm 2
for all robots will terminate in a finite number of iterations.

Proof: If the algorithm continues infinitely, there must exist a smallest k0, s.t. all tasks in S =
Sk0

⋃
Sk0+1

⋃
. . .
⋃

SD+1 have +∞ price according to (c) above. For each robot ri, either Ni < k0,
in this case, robot ri is assigned to tasks in T \S; or Ni ≥ k0, in this case, ri must be assigned to
exactly k0−1 tasks in T \S since all k0−1 tasks selected in the procedure of Algorithm 2 must
have larger value than tasks in S. So the remaining number of unassigned tasks for all robots
are ∑Ni≥k0(Ni− k0 + 1). Since all tasks in S have +∞ price, they must keep the assigned status
although they might be assigned to more than one robot and their assigned robots keep changing
according to (a), so

∑
i:Ni≥k0

(Ni− k0 +1)> |S|

Please note that the above inequality is strict, since there must be at least one robot ri with Ni≥ k0
that has remaining tasks unassigned (otherwise no robot would continue to bid, and the algorithm
would terminate). Since ∑i Ni = n′t(including the additional virtual tasks),

∑
i:Ni<k0

Ni + ∑
i:Ni≥k0

(k0−1)< n′t−|S|

where the left part of the inequality represents the maximum number of tasks, which all robots
can perform within deadline k0− 1, while the right part represents the number of tasks with
deadline smaller than k0. So the inequality means that there exist at least one task with deadline
smaller than k which cannot be performed within its deadline, so there is no feasible solution for
the instance of TAD−MRAP, which leads to the contradiction. So we conclude that Algorithm 2
must terminate in a finite number of iterations if there exists a feasible solution for an instance of
TAD−MRAP. �

Lemma 3 and Theorem 4 together prove that Algorithm 2 is both sound and complete. Next
we want to prove the performance of Algorithm 2, based on the following theorem.
Theorem 5 After each iteration τ of robot ri, ri’s newly assigned tasks together with the local
task prices pi

j(τ +1) keep ri almost happy, i.e., (5.11) is satisfied.
Proof. During each iteration τ , according to the bidding part of Algorithm 2 (from Line 17 to
25), the bid tasks TJ = {t j| j ∈ Ji(τ)} with the price before the iteration can make ri happy:

f (Ji(τ)) = ∑
j∈Ji(τ)

(ai j− pi
j(τ)) = max

∀Ji∼(5.9)
∑
j∈Ji

(ai j− pi
j(τ))

pi
j(τ +1) = pi

j(τ)+ vi
j(τ)− vi

J4(j)(τ)+ ε,∀ j ∈ Ji(τ), and pi
j(τ +1) = pi

j(τ),∀ j 6∈ Ji(τ), so

f ′(Ji(τ)) = ∑
j∈Ji(τ)

(ai j− pi
j(τ +1)) = ∑

j∈Ji(τ)

(vi
J4(j)(τ)− ε)

60

= max
∀Ji∼(5.9)

∑
j∈Ji

(ai j− pi
j(τ +1)− ε)

So after each iteration τ , the values of tasks in Ji(τ) make robot ri almost happy, which means
(5.11) is satisfied. �
Since Theorem 5 holds true for all robots, we get the corollary below.
Corollary 2 When Algorithm 2 for all robots terminates, the achieved assignment and price are
almost at equilibrium.
Theorem 6 below analyzes the optimality and gives performance guarantee for Algorithm 2.
Theorem 6 When Algorithm 2 for all robots terminates, the achieved assignment {(i,J∗i)|i =
1, . . . ,nr} must be within ∑

nr
i=1 Niε of an optimal solution.

Proof: Denote ({(i,Ji)|i = 1, . . . ,nr} as any feasible assignment, i.e., {Ji|∀i} ∼ (5.12):

|Ji
⋂

(
m⋃

n=1

Sn)| ≤ m,∀i,m : i = 1, . . . ,nr;m = 1, . . . ,D

Ji
⋂

J j = /0 if i 6= j, |Ji| ≤ Ni,∀i, |
nr⋃

i=1

Ji|= nt

Denote {p∗j | j = 1, . . . ,nt} as the set of task prices when Algorithm 2 terminates for all robots and
{p j| j = 1, . . . ,nt} as any set of task prices.

First, we give an upper bound for the optimal solution.

nr

∑
i=1

∑
j∈Ji

(ai j− p j)≤ max
∀{J′i |∀i}∼(5.12)

nr

∑
i=1

∑
j∈J′i

(ai j− p j)

⇒
nr

∑
i=1

∑
j∈Ji

ai j ≤
nt

∑
j=1

p j + max
∀{J′i |∀i}∼(5.12)

nr

∑
i=1

∑
j∈J′i

(ai j− p j)

Since it holds true for any set of price {p j|∀ j} and any feasible assignment {(i,Ji)|∀i}, we have
A∗ ≤ D∗, where A∗ is the optimal total payoffs of any feasible assignment.

A∗ = max
∀{Ji|∀i}∼(5.12)

nr

∑
i=1

∑
j∈Ji

ai j

D∗ = min
p j: j=1,...,nt

(
nt

∑
j=1

p j + max
∀{J′i |∀i}∼(5.12)

nr

∑
i=1

∑
j∈J′i

(ai j− p j))

On the other hand, according to Corollary 2, we have

nr

∑
i=1

∑
j∈J∗i

(ai j− p∗j)≥ max
∀{J′i |∀i}∼(5.12)

nr

∑
i=1

∑
j∈J′i

(ai j− p∗j − ε)

nr

∑
i=1

∑
j∈J∗i

ai j ≥
nt

∑
j=1

p∗j + max
∀{J′i |∀i}∼(5.12)

nr

∑
i=1

∑
j∈J′i

(ai j− p∗j)−
nr

∑
i=1

Niε

61

≥ D∗−
nr

∑
i=1

Niε ≥ A∗−
nr

∑
i=1

Niε

∑
nr
i=1 ∑ j∈J∗i

ai j is the total payoffs of the achieved assignment by Algorithm 2, and

A∗ ≥
nr

∑
i=1

∑
j∈J∗i

ai j ≥ A∗−
nr

∑
i=1

Niε

So it is within ∑
nr
i=1 Niε of an optimal solution.�

5.4 Simulation Results
In Section 5.3, we designed Algorithm 2 for TAD−MRAP, and proved the performance guaran-
tee of the designed algorithm. According to Theorem 6, we know that ε is a control parameter
which directly influences the performance of our algorithm. In this section, we run simulations
in a synthetic example to check how the control parameter ε influences the auction algorithm’s
solution quality and convergence time.

Consider nr = 20 robots, each robot ri needs to perform Ni = 5 tasks from nt = 100 tasks.
The deadlines of tasks are randomly set so that there are 15 tasks for each deadline from 1 to 5,
respectively, and 10 tasks without deadline shown as follows:
• Indices of tasks with deadline 1: S1 = {1,2, . . . ,15}
• Indices of tasks with deadline 2: S2 = {16,17, . . . ,30}
• Indices of tasks with deadline 3: S3 = {31,32, . . . ,55}
• Indices of tasks with deadline 4: S4 = {56,57, . . . ,75}
• Indices of tasks with deadline 5: S5 = {76,77, . . . ,90}
• Indices of tasks without deadlines: S6 = {91, . . . ,100}
ε is a control parameter related to the convergence time and performance guarantee of Algo-

rithm 2. In our simulations, we tested different values of ε . For each ε , we generated 100 rounds
of random payoffs ai j from a uniform distribution in (0,20), and we compared the mean and stan-
dard deviation of performance ratio of our solution to the optimal solution, and the convergence
time of the algorithm.

Figure 5.2 shows how the solution of assignment payoffs changes with the control parameter
ε . When ε is as small as 0.1, the assignment payoffs achieved by our algorithm almost equal
the optimal solution. When ε increases, the difference between our solution and the optimal
solution is increased, but bounded by ∑

nr
i=1 Niε , as proven in Theorem 6. Figure 5.3 shows how

the convergence time of our algorithm changes with ε . The number of rounds3 decreases with ε ,
which means with higher ε , Algorithm 2 converges faster.

From Figure 5.2 and 5.3, we can see that, similar as results in [41], there is a tradeoff between
the solution quality and the convergence time, which can be adjusted by ε . With bigger ε , the

3One round is defined as the procedure that all robots finish one bidding iteration sequentially.

62

algorithm converges faster at sacrifice of solution quality; while with smaller ε , the algorithm
solution is better at the cost of slower convergence time. In our simulation, robots are forming
fully connected network. If robot network is not fully connected, the convergence time would be
delayed depending on the diameter of the network.

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Control parameter ε

P
er

fo
rm

an
ce

 r
at

io
 o

f

ou

r
so

lu
tio

ns
 to

 o
pt

im
al

 s
ol

ut
io

n

Figure 5.2: Performance ratio of our solution to the optimal one as a function of ε , which is
the minimum price increase for new bids. The optimal solution can be achieved when we set
ε < min di f f

∑
nr
i=1 Ni

where min di f f is the minimum difference between any two individual payoffs ai j.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Control Parameter ε

N
um

be
r

of
 b

id
di

ng
 it

er
at

io
ns

of
 o

ur
 a

lg
or

ith
m

Figure 5.3: Convergence time of our algorithm as a function of ε . The figure shows the number of
rounds for our algorithm to terminate, where one round means all robots sequentially implement
Algorithm 2 for one iteration.

5.5 Summary
In this chapter we considered the multi-robot task assignment problem with task deadline con-
straints (TAD-MRAP), where the objective is to maximize the total payoff of assigning tasks to
robots while respecting the task deadline constraint and robot budget constraint. This problem
can be reformulated so that tasks are organized in overlapping groups according to their dead-
lines, and each robot has a limit on the number of tasks it can perform in each group. We pre-
sented a distributed auction-based algorithm, and proved that our algorithm are sound, complete
and almost-optimal.

63

Algorithm 2 Auction Iteration τ For Robot ri

1: Input: ai j, Ji(τ−1), p`j(τ), Sk for all j,k,r` ∈Nri ∪{ri},
Output: pi

j(τ +1), Ji(τ) // Ji(τ): indices of ri’s assigned tasks at iteration τ

2: // Update the local highest bid information:
3: for each task t j do
4: pi

j(τ +1) = maxr`∈Nri∪{ri} p`j(τ)
5: end for
6: // Collect information for new bids
7: Denote vi

j(τ) = ai j− pi
j(τ +1) // value of t j to ri

8: for j ∈ Ji(τ−1) do
9: if pi

j(τ)< pi
j(τ +1) then

10: // another robot has bid higher than ri’s previous bid
11: Ji(τ−1) = Ji(τ−1)\{ j};
12: end if
13: end for
14: Ji(τ) = /0, J4 = zeros(nt ,1), N′i = Ni−|Ji(τ−1)|
15: // Iterate over tasks with different deadlines k
16: for k = 1 : D+1 do
17: S′k = Sk \ Ji(τ−1), k′ = k− (∪l≤kSl ∩ Ji(τ−1))
18: J′ = Ji(τ)

⋃
S′k; // J′ :current candidate task set

19: if k ≤ D then
20: k′ = min(k′,N′i); // k′ :number of tasks to be selected
21: else
22: k′ = min(|J′|,N′i);
23: end if
24: Select the best k′ candidate tasks from J′, and store their indices into Ji(τ):
25: Ji(τ) = arg(max(k

′)) j∈J′vi
j(τ) // arg(max(k

′)) is the operator to get indices of the k′ biggest
values

26: Store the index of next best candidate task from J′: j′ = argmax j∈J′\Ji(τ) vi
j(τ)

27: For each selected task in Ji(τ), update the index of its corresponding next candidate task
(with highest value among all next best candidate tasks since the iteration when it is first
selected) into J4:

28: for each task ta: a ∈ Ji(τ) do
29: if a ∈ Sk then
30: J4(a) = j′; // for task with deadline k
31: else
32: J4(a) = argmax(vi

j′(τ),v
i
J4(a)(τ)); // da < k

33: end if
34: end for
35: end for
36: // Start new bids and update price information
37: Bid with price b j for task t j : j ∈ Ji(τ) :
38: b j = pi

j(τ +1)+ vi
j(τ)− vi

J4(j)(τ)+ ε , pi
j(τ +1) = b j;

39: Ji(τ) = Ji(τ)∪ Ji(τ−1)

64

Chapter 6

Multi-robot Linear Task Assignment with
General Task Group Constraints

6.1 Introduction
In Chapter 4 and Chapter 5, we designed distributed algorithms for the task linear assignment
problem with task group constraints and task deadline constraints, respectively. Both problems
share similar structure in the problem formulation as well as our distributed algorithm design. In
the problem formulation, both are multi-robot linear task assignment with extra constraints on
each individual robot’s assignment variables. In task group constraints, tasks are forming disjoint
groups; in task deadline constraints, tasks are forming nested groups, where one group contains
another. In both problems, the number of tasks assigned to one robot from each task group is
bounded. In the distributed algorithm design, both are based on decomposition auction method.
We first decompose the multi-robot assignment problem into each robot’s individual assignment
problem, and then use auction-based local task price update rule to resolve individual robot’s
assignment conflict. In this chapter, we present an abstract form of a class of multi-robot linear
task assignment problems with general task group constraints (GTAG-MRAP), where tasks have
nested formation of disjoint groups or containing groups. We could view task group constraints
and task deadline constraints as specific examples of the class of general task group constraints
we defined. Therefore, the general task group constraints capture the characteristics of both
tightly-coupled tasks as well as tasks with deadlines, and can be used to model the applications
with both task group and task deadline constraints. For this general model with a class of con-
straints, we prove that a distributed algorithm framework could be used to solve this class of
constrained linear assignment problem with almost optimal performance guarantee. This frame-
work extends the applicability of our distributed algorithms to any constrained linear assignment
with constraints satisfying the model formulation.

6.2 Problem Formulation
In this section, we give the formal definition of the constrained multi-robot assignment problem
with general task group constraints (GTAG-MRAP). Please note that we restricted the general

65

task group constraints such that each constraint is a binary combination of task assignment vari-
ables from the same robot.

We have similar variable definitions as before. Suppose that there are nr robots, R= {r1, . . . ,rnr},
and nt tasks, T = {t1, . . . , tnt}, each robot ri can be assigned to at most Ni tasks, i.e., robot ri’s
budget is Ni. Any robot can be assigned to any task, and performing each task needs a single
robot. Let fi j be the variable that takes a value 1 if task, t j, is assigned to robot, ri, and 0 oth-
erwise, where i ∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt}. Let ai j ∈ R be the payoff for the assignment pair
(ri, t j), i.e., for assigning robot ri to task t j. The tasks are forming groups, where the number
of tasks assigned to one robot from each group is bounded. The task groups we consider here
have special structure, i.e., any two task groups are either disjoint, as in task group constraints
or one group contains the other, as in task deadline constraints. The objective is to assign all
tasks to robots so that the total payoffs from the assignment is maximized while the task assign-
ment constraints are satisfied. The problem can be formulated as an integer linear program (ILP)
below.

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (6.1)

nt

∑
j=1

fi j = Ni,∀i = 1, . . . ,nr (6.2)

∑
t j∈Tk

fi j ≤ bk,∀i = 1, . . . ,nr,k = 1, . . . ,nc (6.3)

fi j ∈ {0,1}, ∀i, j (6.4)

where any two task groups Tk and Tk′ are either disjoint groups or one group contains the other,
i.e.,

∀k 6= k′,Tk∩Tk′ = /0 or Tk∩Tk′ ∈ {Tk,Tk′} (6.5)

bk ∈N , nc is the number of constraints in the form of (6.3). (6.1) means that each task is assigned
to exactly one robot; (6.2) guarantees that each robot ri does not exceed its budget, please note
that here we use = instead of ≤, since we could supplement ∑i Ni− nt virtual tasks as before;
(6.3) together with (6.5) represent the general task group constraints (GTAG), each defined over
one robot’s assignment variables for tasks in one task group. Each GTAG gives a bound of the
number of tasks assigned to one robot from one task group. The task group constraints (4.4) in
Chapter 4 and task deadline constraints (5.6) in Chapter 5 can be viewed as special forms of (6.3)
and (6.5). Figure 6.1 shows the task group structures of (6.5).

6.3 Algorithm Framework and Performance Analysis

6.3.1 Preliminary
In this section, we present our distributed algorithm framework for GTAG-MRAP. In a distributed
setting, the robots are forming a connected network, where neighboring robot can communicate

66

Figure 6.1: Examples of TAG, TAD and GTAG constraints

with each other. Each robot ri only knows its budget Ni, its payoff ai j for each task t j, and
general task group constraints (6.3). Inspired by the distributed algorithm design in Chapter 4
and Chapter 5, our distributed algorithm framework for GTAG-MRAP is a decomposition-based
algorithm with distributed auction mechanism of updating task price. Similarly as before, we
want to match the robots and tasks through a market iterative auction mechanism. Each robot
ri want to be assigned to its favorite Ni tasks, while satisfying its budget constraint and the
general task group constraints. However, there might exist interest conflict among robots since
different robots might want to be assigned to the same tasks. To resolve this issue, auxiliary
variables of task price p j are introduced. Robots iteratively bid for tasks to maximize the total
values (∑ j(ai j− p j(τ))) at iteration τ , and update the assigned task price as its winning bids.
We design the task price update rule so that the distributed algorithm would converge. After
convergence, each task would be assigned to exactly one robot, and the assignment solution
is almost optimal for GTAG-MRAP. Since we are designing distributed algorithm, instead of
using a global consistent task price p j(τ), during each bidding iteration τ , each robot ri in the
connected network locally maintains and updates a list of current highest bids pi

j(τ)
1 for each

tasks t j from its own neighborhood Nri:
pi

j(τ) = maxr`∈Nri
p`j(τ−1)

Below we will define some important concept of auction algorithm as before. Suppose TJi =
{t j| j ∈ Ji} is the task set assigned to robot ri, it must satisfy the constraints below:

|Ji|= Ni, |TJi

⋂
Tk| ≤ bk,∀k = 1, . . . ,nc (6.6)

where |Ji| = Ni corresponds to constraint (6.2), |TJi

⋂
Tk| ≤ bk,∀k = 1, . . . ,nc corresponds to

(6.3), and the exclusive assignment would guarantee (6.1). We use Ji ∼ (6.6) to represent that Ji
satisfies (6.6).

1Note that each robot just maintains one price for each task, here pi
j(τ) is just used to represent the task price at

iteration τ for convenience.

67

During each bidding iteration τ , given any task price set {p j(τ)| j = 1, . . . ,nt}, every robot ri
wants to be exclusively assigned to a task set TJ∗i = {t j| j ∈ J∗i } with maximum net values while
satisfying the constraints:

J∗i = arg max
∀Ji∼(6.6)

∑
j∈Ji

v j(τ) (6.7)

We say robot ri is happy with the assigned task set TJ∗i when (6.7) is satisfied. If all robots
are happy, we say the whole assignment and the prices at iteration τ are at equilibrium.

Suppose we fix a positive scalar ε . When each assigned task for robot ri is within ε of being
in the set of ri’s maximum values, that is,

f (J′i)≥ max
∀Ji∼(6.6)

∑
j∈Ji

(v j(τ)− ε) (6.8)

where f (J′i) = ∑ j∈J′i
v j(τ) and J′i ∼ (6.6). We say robot ri is almost happy with the assigned task

set TJ′i
when (6.8) is satisfied. If all robots are almost happy, we say the whole assignment and

the prices at iteration τ are almost at equilibrium.

6.3.2 Distributed Algorithm Framework

Below we show the mathematical intuition for our decomposition-based distributed auction al-
gorithm design. Our solution approach falls within the class of methods known as dual decom-
position methods in the optimization literature [12]. Let’s first see a dual-form mixed-integer
formulation of GTAG-MRAP.

min
p j

max
{ fi j}

(
nr

∑
i=1

nt

∑
j=1

ai j fi j +
nt

∑
j=1

p j(1−
nr

∑
i=1

fi j))

s.t.
nt

∑
j=1

fi j = Ni,∀i = 1, . . . ,nr (6.9)

∑
t j∈Tk

fi j ≤ bk,∀i = 1, . . . ,nr,k = 1, . . . ,nc (6.10)

fi j ∈ {0,1}, ∀i, j (6.11)
p j ≥ 0, ∀ j, (6.12)

After dualizing the complicating task group constraints 6.3 (defined across different robots’
assignment variable in the ILP formulation of GTAG-MRAP), we get the mixed-integer dual
formulation above. In the dual formulation, all the constraints are defined over each single robot’s
assignment variables. Thus this dualization facilitates the design of corresponding distributed
algorithm. And the dual variables p j could be interpreted as an economic concept of task price.
Our distributed algorithm framework is an iterative auction method consisting of two steps. First,
given the current task price p j, we update the assignment variables fi j to optimize the objective
function; second, based on the previous assignment, we update the task price to optimize the
objective function.

68

In the first step, after fixing the current task price p j, the problem becomes:

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

(ai j− p j) fi j

s.t.
nt

∑
j=1

fi j = Ni,∀i = 1, . . . ,nr

∑
t j∈Tk

fi j ≤ bk,∀i = 1, . . . ,nr,k = 1, . . . ,nc

fi j ∈ {0,1}, ∀i, j

since the general constraints are defined for each individual robot’s assignment variables, we
could easily decompose GTAG-MRAP into nr assignment problems for each individual robot ri
as follows:

max
{ fi j}

nt

∑
j=1

(ai j− p j) fi j

s.t.
nt

∑
j=1

fi j = Ni, (6.13)

∑
t j∈Tk

fi j ≤ bk,∀k = 1, . . . ,nc (6.14)

fi j ∈ {0,1}, ∀ j (6.15)

We call the above problem SingleRobotOptimalAssignment({ j},{ai j− p j},Ni,{bk},{Tk}), which
could be solved in polynomial time since the constraint matrix is unimodular. Each robot could
solve their own individual assignment problem based on a modified payoff ai j− p j.

In the second step, we could let the current assignment be a function of task price based on
the first step, and then update the task price p j to optimize the objective.

min
p j

(
nt

∑
j=1

p j(1−
nr

∑
i=1

fi j(p j)))

s.t. p j ≥ 0, ∀ j,

When the task price gets updated, the corresponding assignment would also be changed accord-
ing to the first step. If a task has been assigned to more than 1 robot based on the task price, i.e.,
1−∑

nr
i=1 fi j(p j) < 0, then task price p j should be increased to decrease the objective function

until the task is assigned to only 1 robot. On the other hand, if a task has not been assigned to
any robot, then p j should be set to be zero. The price update rule we used is as follows:

∆p j = (v j− v j′)+ ε

where j′ is the next best candidate task if task t j was not assigned to robot ri, ε > 0. Since
v j ≥ v j′ , ∆p j > ε , i.e., the task price gets increased by at least ε . This task price update rule
would guarantee that at most ε of the task price increase would lead to the degrade of objective

69

function. (Since if ∆p j = (v j− v j′), task t j is still in the optimal assignment of robot ri, so 1−
∑

nr
i=1 fi j(p j)≤ 0, and the portion (v j−v j′) of task price increase would not degrade the objective

function). This concept is called ε-optimality, which is based on a relaxation of complementary
slackness conditions to avoid deadlock of auction due to same payoff among different robots and
tasks.

For each robot ri, a single bidding iteration τ of our auction-based algorithm is described in
Algorithm 3. Each robot could implement the iterative bidding procedure either synchronously
or asynchronously. For the sake of ease of discussion, below we assume that in our auction-based
algorithm, all robots run copies of Algorithm 3 sequentially. Each bidding iteration τ for robot
ri (Algorithm 3) can be summarized as follows.

First, robot ri communicates with its neighbors to get their maintained local task price, up-
dates its own local task price (from Line 3 to 5), and computes each task value to itself (Line
6). Note here we do not explicitly address the assignment conflict, which is potentially caused
by the same bidding price from different robots for the same task. The same rules of breaking
bid tie as discussed in Remark4 could be applied here. From Line 7 to Line 12, robot ri updates
its assignment information from its previous iteration. Since other robots may have bid higher
price for ri’s assigned tasks between current iteration and ri’s previous iteration, robot ri first
checks for those tasks whose current price is greater than the bid by ri itself during its previous
iteration(Line 8). For tasks whose current price is greater than the bid of ri in its previous iter-
ation, the previous assignments are broken since other robots have outbid ri before ri’s current
iteration. On the other hand, if none of the previously assigned tasks have higher bids than the
bids of robot ri, robot ri does not compute any new bids. All tasks remaining in Ji(τ−1) would
still be assigned to robot ri since their values remain unchanged and other task values cannot
increase.

Second, we remove the still assigned tasks in Ji(τ − 1) from the whole task set, update the
bound for related task group constraints, and update the budget (Line 14). Using the updated
parameters, robot ri solves a single robot optimal assignment, and stores task indices of the
optimal solution in Ji(τ) from the remaining tasks, so that it is happy to be assigned to the task
set Ji(τ), i.e.,

Ji(τ) = arg max
∀Ji∼(6.6)

∑
j∈Ji

vi
j(τ +1)

(Line 15). This part guarantees that all constraints for robot ri are satisfied: (a) robot ri is assigned
to Ni tasks (Ji(τ−1)∪Ji(τ)); (b) ri is assigned to at most bk tasks from Tk. Meanwhile each task
is assigned to at most one robot, because each task either does not change assignment status
(assigned to previous robot or remains unassigned) or switch from the previous assigned robot
to robot ri.

Third, robot ri is newly assigned to task set Ji(τ), and updates the task price (from Line 18
to 19) so that ∀ j ∈ Ji(τ), pi

j(τ + 1) = pi
j(τ)+ (vi

j(τ + 1)− vi
j′(τ + 1))+ ε , where vi

j′(τ) is the
value of the task j′, which would have been selected to Ji(τ) had we removed task j. Roughly
speaking, j′ is the task with the second value to ri other than j while satisfying the constraints
together with other tasks in Ji(τ). The bidding price for each task is at least ε bigger than its
previous price:

70

∆pi
j(τ +1) = vi

j(τ +1)− vi
j′(τ +1)+ ε ≥ ε

So the tasks receiving ri’s bids must be assigned to ri at the end of the iteration. The way we
set pi

j(τ +1) guarantees that ri is almost happy with Ji(τ) given the new price pi
j(τ +1), and is

related to the proof of the optimality of the algorithm, which will be discussed in Section 6.3.3. In
Line 20, we combine the newly assigned tasks in Ji(τ) and previously assigned tasks in Ji(τ−1)
to form robot ri’s assigned task set Ji(τ) at iteration τ .

The algorithm terminates when all robots have been exclusively assigned to their own tasks.
Each robot needs to wait until its task price information does not change for nt rounds, which is
the largest possible diameter of any connect network with nt nodes. In this way, each robot can
make sure the unchanged task price is not due to the delay of price propagation in the network,
and can terminate the algorithm in a distributed way.

Algorithm 3 Auction Iteration τ For Robot ri

1: Input: ai j, Ji(τ−1), p`j(τ), Tk, bk, for all j,k,r` ∈Nri ∪{ri},
Output: pi

j(τ +1), Ji(τ) // Ji(τ): indices of ri’s assigned tasks at iteration τ

2: // Update the local highest bid and assignment information:
3: for each task t j do
4: pi

j(τ +1) = maxr`∈Nri∪{ri} p`j(τ)
5: end for
6: Denote vi

j(τ +1) = ai j− pi
j(τ +1) // value of t j to ri

7: for j ∈ Ji(τ−1) do
8: if pi

j(τ)< pi
j(τ +1) then

9: // another robot has bid higher than ri’s previous bid
10: Ji(τ−1) = Ji(τ−1)\{ j};
11: end if
12: end for
13: // Collect information for new bids
14: J = {1, . . . ,nt}\ Ji(τ−1),b′k = bk−|Ji(τ−1)∩Tk|,N′i = Ni−|Ji(τ−1)|
15: Solve SingleRobotOptimalAssignment(J,vi

j(τ +1),N′i ,b
′
k,{Tk}), store the solution in Ji(τ)

16: J′i = /0,∀ j ∈ Ji(τ), compute j′ as its next best candidate task, J′i = J′i ∪{ j′}
17: // Start new bids and update price information
18: Bid with price b j for task t j : j ∈ Ji(τ) :
19: b j = pi

j(τ +1)+ vi
j(τ +1)− vi

j′(τ +1)+ ε , pi
j(τ +1) = b j;

20: Ji(τ) = Ji(τ)∪ Ji(τ−1)

6.3.3 Performance Guarantee
In this section, we analyze the performance of the distributed algorithm, and prove its soundness,
completeness as well as almost optimality.
Lemma 4 When Algorithm 3 terminates for all robots, the achieved assignment must be a fea-
sible solution for GTAG−MRAP, i.e., (6.1)-(6.4) are satisfied.

71

Proof: After each iteration of robot ri, it must be assigned to Ni tasks and at most bk tasks from Tk
according to the SingleRobotOptimalAssignment solution. So (6.2) and (6.3) are satisfied when
Algorithm 3 terminates for all robots. Since each robot ri have been assigned to Ni tasks when
Algorithm 3 terminates, and ∑i Ni = nt , all the tasks must be exclusively assigned. So (6.1) and
(6.4) are also satisfied. So the achieved assignment is a feasible solution satisfying (6.1)-(6.4).�

Theorem 7 If there is at least one feasible solution for an instance of GTAG−MRAP, Algo-
rithm 3 for all robots will terminate in a finite number of iterations.
Proof: Use contradiction. Suppose the algorithm does not terminate in a finite number of it-
erations, we want to prove that there does not exist any feasible solution for the instance of
GTAG−MRAP. If the algorithm does not terminate in a finite number of iterations for all
robots, there must exist infinite number of bids from robots. So at least one task j0 would receive
infinite number of bids from different robots, and thus has +∞ price. Define T = {Tk| j0 ∈ Tk},
which is the set of all task groups containing j0. Define R∞ as the set of robots bidding without
termination. When two robots i and i′ (i, i′ ∈ R∞) keep bidding for j0, j0 must have higher value
than other tasks in T . So any task in T must also have received infinite number of bids, and
thus have +∞ price.

Define T̄ = {Tk|k = 1, . . . ,nc}\T , which is the set of task groups not containing tasks with
+∞ price. The assignment of tasks in T̄ must converge, otherwise its task price would become
+∞. ∀ri ∈ R∞, suppose ri have been assigned to Ni,1(Ni,1 < Ni) tasks in T̄ . We can infer that
assigning any extra task from T̄ to ri would violate general task group constraints. (Otherwise
ri would bid for the task instead of tasks from T with +∞ price) Suppose in a feasible solution,
ri is assigned to N′i,1 tasks in T̄ , and Ni−N′i,1 tasks in T . We know Ni,1 ≥ N′i,1, and thus

∑
i∈R∞

Ni,1 ≥ ∑
i∈R∞

N′i,1

∑
i∈R∞

(Ni−Ni,1)≤ ∑
i∈R∞

(Ni−N′i,1)

(Please note ∑i∈R∞
(Ni−Ni,1) > ∑Tk∈T |Tk|: all tasks in T are assigned during iterations, but

robots in R∞ still have remaining budgets to continue bidding) So ∑i∈R∞
(Ni−N′i,1)> ∑Tk∈T |Tk|.

It means in the feasible solution, robots in R∞ are assigned to more tasks than possible from T ,
which leads to contradiction. So we conclude that Algorithm 3 must terminate in a finite number
of iterations if there exists a feasible solution for an instance of GTAG−MRAP. �
During each bidding iteration of all nr robots, at least one task price would increase by at least ε ,
and the task price increase is bounded by C = maxai j−minai j. The delay of price propagation
is bounded by the diameter of the robot network (at most nt). So the number of iterations is at
most nr ∗n2

t ∗ C
ε

.
Theorem 8 When Algorithm 3 for all robots terminates, the achieved assignment {(i,J∗i)|i =
1, . . . ,nr} must be within ∑

nr
i=1 Niε of an optimal solution.

Proof: After algorithm terminates, task price must converge. Denote {p∗j | j = 1, . . . ,nt} as the
set of task prices when Algorithm 3 terminates for all robots and {p j| j = 1, . . . ,nt} as any set of
task prices. Denote ({(i,Ji)|i = 1, . . . ,nr} as any feasible assignment, i.e., {Ji|∀i} ∼ (6.16):

|Ji ∩ Tk| ≤ bk,∀i,k : i = 1, . . . ,nr;k = 1, . . . ,nc

72

Ji ∩ J j = /0 if i 6= j, |Ji|= Ni,∀i, |∪nr
i=1 Ji|= nt

According to the task price update rule in Line 19, after algorithm terminates, any robot ri
must be almost happy with its assignment, i.e.,

∑
j∈J∗i

(ai j− p j)≥ max
∀Ji∼(6.6)

∑
j∈Ji

(ai j− p j− ε)

∑
i

∑
j∈J∗i

(ai j− p j)≥∑
i

max
∀Ji∼(6.6)

∑
j∈Ji

(ai j− p j)−∑
i

Niε

∑
i

∑
j∈J∗i

ai j−∑
j

p j ≥ max
Ji∼(6.16)

∑
i

∑
j∈Ji

ai j−∑
j

p j−∑
i

Niε

Denote A = ∑i ∑ j∈J∗i
ai j, as the solution quality of our algorithm, A∗ = maxJi∼(6.16)∑i ∑ j∈Ji ai j,

as the optimal solution quality. We have

A≥ A∗−∑
i

Niε

So our solution is within ∑
nr
i=1 Niε of an optimal solution.�

6.4 Summary
In this chapter, we analyze a class of constrained multi-robot linear task assignment problem
with general task group constraints, denoted as GTAG−MRAP. In GTAG−MRAP, tasks are
forming groups. For any two groups, either they are disjoint, or one task group contains the
other. The number of tasks assigned to one robot from each task group is bounded. Both task
group constraints and task deadline constraints can be considered as special cases of the general
task group constraint in this chapter. Therefore, the general task group constraints capture the
characteristics of both tighly-coupled tasks as well as tasks with deadlines, and can be used to
model the applications with both task group and task deadline constraints. We generalize the
algorithms proposed in previous chapters for task group constraints and task deadline constraints
to form a distributed algorithm design framework for GTAG-MRAP. We prove that as before,
this algorithm framework would lead to a solution with soundness, completeness and almost
optimality.

73

74

Chapter 7

Generalized Multi-robot Task Assignment

7.1 Introduction

In the basic formulation of multi-robot linear assignment problem, it is assumed that the num-
ber of tasks that one robot can perform is bounded by a pre-defined number, called the robot’s
budget. Viewed from another perspective, it is equivalent to say that each robot has a fixed num-
ber of resource budget, and each task would consume the same unit amount of resource from
each robot’s resource budget. However, in some applications, each task might consume differ-
ent amount of resource from different robots due to the heterogeneity of robots and tasks. Such
applications can be modeled as generalized multi-robot assignment problem (GMRAP). In GM-
RAP, each robot has its own resource budget constraint, and needs to consume a certain amount
of resource to obtain a payoff for each task. The overall objective is to find a maximum payoff
assignment of tasks to robots such that each task is assigned to at most one robot while respecting
robots’ resource budget constraints. Given its wide applicability for real-world problems in vari-
ous areas as well as its computational NP-hardness, generalized assignment problem (GAP) has
been well studied in operations research [56, 57], theoretical computer science [16, 18, 24, 60]
and other related research communities. However, most existing algorithms are centralized in
nature. In multi-robot application scenarios where robots need to autonomously operate in the
field without a powerful centralized controller, it is desirable to have distributed algorithms on
individual robots. Using distributed algorithm, the system is more scalable, and each robot could
make decision based on its own information and wireless peer-to-peer communication with its
neighboring robots. Besides, the system is resilient to single-point failure and is adaptive to envi-
ronmental change. Thus, in this chapter, our goal is to design distributed algorithms for GMRAP
with provable performance guarantee.

Multi-robot generalized task assignment arises in many multi-robot application scenarios.
Especially when tasks and robots are heterogeneous, the amount of resource each task consume
from each robot, as well as the payoff each robot could obtain from each task, might be different.
Depending on the specific application, the resource could be energy, processing time or any
other consumable resource. As a motivation example, consider the application of using electrical
stations to charge UAVs during their mission. Suppose there are multiple UAVS, and each UAV
has a target to move to investigate. However, the distance from each UAV’s original positions

75

to the target might be too far for the UAV to travel to using its current battery level. So it is
necessary for the UAV to visit an electrical station to get charged. In this situation, different
UAVs might consume different amount of electricity of the charging stations depending on their
current battery level as well as the energy required to reach targets. Also consider the situation
in automated warehouse management system where packages have to be picked up from certain
clustered storage locations, and placed in other delivery locations. In this situation, different
robots and objects might be distributed across different spatially clustered locations. Thus, the
energy each robot consume to travel from its original position to the targeted object location
could be different. Another application area is in disaster recovery scenario where the robots
need to remove debris and clear the paths. In such cases different robots with heterogeneous
design might need different processing time to remove different kinds of debris.

More specifically, the general MR-GAP problem that we consider in this chapter is as fol-
lows: We are given a set of robots, and tasks, where each task has to be done by at most one
robot. Each task t j would consume wi j resource for each robot ri to complete, and robot ri
would obtain ai j payoff by completing task t j. The maximum amount of resource that robot ri
can consume is Ni (this is called the budget of the robot). The objective is to assign robots to
tasks such that the sum of individual robot’s payoff is maximized while their resource budget
constraints are satisfied. When wi j = 1, the problem becomes a linear assignment problem [15].
When wi j = w j and ai j = a j, i.e., wi j and ai j do not vary for different robots, the generalized
assignment problem becomes a multiple knapsack problem [34]. Generalized assignment prob-
lem has been extensively studied in both operation research [56, 57] and theoretical computer
science [16, 18, 24, 60]. However, most algorithms are centralized in nature, i.e., a centralized
controller collects all parameter information and then computes the whole assignment. This may
not be suitable for situations where distributed algorithm is required for multi-robot in-field op-
eration. A branch and bound algorithm was presented in [56] to determine the bounds of optimal
solution. A series of 0/1 knapsack problem are solved so that the bound gets refined iteratively.
A branch-and-price algorithm was designed in [57] that employs both column generation and
branch-and-bound to obtain optimal integer solutions. However, these algorithms do not provide
any approximation guarantee. Some approximation algorithms exist for GAP, e.g., LP-based 2-
approximation algorithm in [16, 60]. A combinatorial local search with (2+ ε)-approximation
guarantee, and an LP-based algorithm with (e

e+1 + ε)-approximation guarantee with polynomial
running time are presented in [24]. A (2+ ε)-approximation algorithm with the same guaran-
tee as the combinatorial local search but a better running time is given in [18]. The algorithm
presented in [18] can be viewed as the first round of our iterative algorithm where each robot
sequentially runs the algorithm for one iteration.

In this chapter, we present a distributed auction-based algorithm for GMRAP, where each
robot can bid for tasks by solving a knapsack sub-problem as subroutine. We show that our algo-
rithm provides an 1+α approximate solution assuming that the knapsack problem is solved by an
algorithm with approximation ratio α ∈ [1,+∞). Thus, our distributed algorithm has an approx-
imation ratio of 2 (or 3), when the algorithm used for knapsack is optimal (or 2-approximate).
Unlike other approximation algorithms of GAP, our auction-based new algorithm is designed
specifically for distributed multi-robot systems with limited range communication. Furthermore,
our algorithm can achieve a similar approximation ratio with a competitive running time. Our
proof also presents a new perspective showing that best-response assignment update rule of in-

76

dividual robots would lead to an assignment at equilibrium with guaranteed approximation ratio.
We first present our auction-based iterative algorithm for GMRAP assuming that the robots have
access to a shared memory (or there is a centralized auctioneer). Each robot obtains the infor-
mation of highest bid for each task among all robots from the shared memory, and then uses a
knapsack algorithm as a subroutine to iteratively maximize its own objective (using a modified
payoff function based on an auxiliary variable called price of a task). The assignment update
rule of our iterative algorithm can be viewed as (approximate)1 best response of each robot to
the temporary assignment of other robots at that iteration. We prove that our algorithm would
eventually converge to an assignment at (approximate) equilibrium with an approximation ratio
of 1+α . We also make our algorithm totally distributed by combining it with a message passing
mechanism to remove the requirement of a shared memory (at the cost of slower convergence
and more local communication), assuming the robots’ communication network is connected. Fi-
nally, we present simulation results to depict the performance of our algorithm. This chapter is
an extension of the work in [44].

7.2 Problem Formulation

Suppose that there are nr robots, R = {r1, . . . ,rnr}, and nt tasks, T = {t1, . . . , tnt}. Each robot,
ri, has resource budget Ni, and consumes resource wi j to complete task t j while getting payoff
ai j. Any robot can be assigned to any task, and performing each task needs a single robot. The
objective is to assign tasks to robots so that the sum of the payoffs of the robots is maximized
subject to the resource constraints. Let fi j take a value 1 if task t j is assigned to robot ri and 0
otherwise, where i ∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt}. We study the maximization version of GMRAP,
which can be formulated as an integer linear program (ILP):

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j ≤ 1, ∀ j = 1, . . . ,nt (7.1)

nt

∑
j=1

wi j fi j ≤ Ni, ∀i = 1, . . . ,nr (7.2)

fi j ∈ {0,1}, ∀i, j (7.3)

where (7.1) guarantees that each task is exclusively assigned to at most one robot; (7.2) guaran-
tees that the sum of consumed resources for tasks assigned to each robot ri does not exceed its
budget Ni. When wi j = 1 and Ni = 1, the generalized assignment problem becomes the linear
assignment problem [15]. When wi j = w j and ai j = a j, i.e., wi j and ai j do not vary for different
robots, the generalized assignment problem becomes a multiple knapsack problem [34].

1Approximate best response and at approximate equilibrium will be strictly defined in Definition 3 and 4.

77

7.2.1 Motivation
One motivation example of the model is to use electrical stations for the tasks of charging UAVs.
Consider a group of spatially distributed UAVs, each plans to move from its current positions to
its own target for investigation tasks. Assume that each target visited by each UAV would have
different benefits. However, the moving distance might be too long for each UAV. To move to
the target, each UAV has to visit one of spatially distributed electrical stations to get charged.
Depending on which station a UAV plans to visit, the distance for the UAV to go to the target
t j by the station ri could be different, and thus the required amount of electricity wi j would be
different. The payoff ai j of assigning a UAV t j to a station ri could be the difference of the target
benefits visited by the UAV and the electricity consumption. Each electrical station could charge
multiple UAVs, but has bounded total amount of electricity to provide. The goal here is to assign
UAVs to stations in a distributed way so that the total assignment payoffs are maximized subject
to the constraints that each station’s total amount of electricity would not be exceeded.

7.3 Algorithm Design and Performance Analysis
In this section, we introduce an iterative auction-based algorithm for multi-robot generalized as-
signment problem. We will first introduce a few key concepts such as robot’s (approximate) best
response and the assignment at (approximate) equilibrium. We also recall the definition of knap-
sack problem. We will then present an iterative auction-based algorithm with shared memory,
where given current temporary assignment of other robots, each robot bids for tasks using the
knapsack algorithm as a subroutine. We show the connection of our algorithm to (approximate)
best response update rule, and prove that the algorithm would converge to an assignment at (ap-
proximate) equilibrium with guaranteed approximation ratio. Finally, we discuss the use of a
message passing mechanism to make our algorithm totally distributed.

7.3.1 Preliminary Concepts
Let Ji = { j| fi j = 1} denote the task set assigned to robot ri and J = ∪i{Ji} be a task assignment
solution for GAP.
Definition 1 Define an assignment transform function Gi as a transformation from a given old
assignment J′ to a new assignment J, due to a new assignment component Ji for robot ri: J =
Gi(J′,Ji) = (∪k 6=i{J′k \ Ji})∪{Ji}, i.e.,

Jk =

{
Ji if k = i
J′k \ Ji if k 6= i

Gi modifies the old assignment J′ in two ways: first, the task set assigned to robot i becomes Ji;
second, tasks in Ji are removed from their possible previous assignment to other robots, as shown
in ∪k 6=i{J′k \ Ji}.

We say Ji is a feasible assignment for robot ri if and only if Ji satisfies ri’s budget constraint in
(7.2), denoted as Ji ∼ (7.2); and J is a feasible assignment, if and only if J satisfies all constraints
in (7.1) - (7.2), denoted as J ∼ (7.1)− (7.2).

78

Lemma 5 The assignment transform function Gi is a valid transform, i.e., if both J′ and Ji are
feasible assignments, then J = Gi(J′,Ji) is also feasible.
Proof: For any robot rk 6= ri, its newly assigned task set Jk = J′k \ Ji ⊂ J′k. Since J′k is feasible
for rk, Jk must also be feasible, i.e., the subset of previously assigned tasks must consume less
resource than the budget of rk. Besides, Jk∩ Ji = /0, so J must exclusively assign tasks to at most
one robot. Together with the feasibility of Ji, we know that the new assignment J ∼ (7.1)−(7.2),
i.e., the transform function is valid. �

Denote F(J) = ∑i:Ji∈J ∑ j∈Ji ai j as the total payoff of a feasible assignment J; H(J′,Ji) =
F(Gi(J′,Ji))−F(Gi(J′, /0)) as the total payoff increment due to a new assignment component of
robot ri from /0 to Ji, imposed on J′.
Definition 2 A new assignment component J∗i is robot ri’s best response2 to an old assignment
J′ if and only if

J∗i = argmax
Ji

H(J′,Ji)

which is the best unilateral assignment change of robot ri to increase the total payoff from as-
signing nothing to ri.

Definition 3 A new assignment component J∗i is robot ri’s α-approximate best response to an
old assignment J′ (α ∈ [1,+∞)), if and only if

αH(J′,J∗i)≥max
Ji

H(J′,Ji)

Definition 4 An assignment J∗ is at equilibrium (or at α-approximate equilibrium) if and only
if any assignment component J∗i ∈ J∗ is already robot ri’s best response (or α-approximate best
response) to J∗ itself, i.e.,

∀J∗i ∈ J∗ : J∗i = argmaxJi H(J∗,Ji)
(or αH(J∗,J∗i)≥maxJi H(J∗,Ji))

Note that if we use (α-approximate) best response as the iterative assignment update rule for each
robot, any assignment at (α-approximate) equilibrium would be a fixed point for such update
rule. There might be many different assignments at (α-approximate) equilibrium depending on
the parameters of problem instances.

Since we use algorithms for 0/1 knapsack problem as a subroutine in our iterative algorithm
later, we recall the definition of 0/1 knapsack problem below.
Definition 5 [0/1 Knapsack Problem]: Consider n items, {x1, . . . ,xn}, and a bag to contain
these items. Each xi has a value vi and weight wi. The maximum weight that we can carry in the
bag is W. Assume that all values and weights are nonnegative. The objective is to determine the
items of maximum value such that the total weight is less than or equal to W.

max
{yi∈{0,1}}

n

∑
i=1

viyi s.t.
n

∑
i=1

wiyi ≤W.

where yi = 1 if item xi is in the bag, otherwise yi = 0.

2Note that ri’s best response might not always be unique for some given old assignment J′. In such cases, we
could use any one as the best response.

79

The knapsack optimization problem is NP-hard. There exist a pseudo-polynomial time algorithm
using dynamical programming and a fully polynomial time approximation scheme (FPTAS). The
FPTAS uses the pseudo-polynomial algorithm as a subroutine, and can approximate the optimal
solution to any specified degree in polynomial time [34].

7.3.2 Auction-based Decentralized Algorithm Design
We want to match nr robots and nt tasks with constraints (7.1)-(7.3) through a market auction
mechanism, where each robot is an economic agent acting in its own best interest to bid for tasks.
Each robot ri wants to be assigned to its favorite tasks (with highest payoffs) while satisfying
its budget constraints in (7.2). The different interest of robots will probably cause conflicts
in assignment that violate the constraints in (7.1). This can be resolved by introducing auxiliary
variables called task price, and making robots bid for tasks with highest values (defined as payoffs
minus price) instead of highest payoffs, through an iterative auction mechanism.

At iteration τ , let the price for task t j be p j(τ). The value of task t j to robot ri is vi j(τ) =
ai j− p j(τ) instead of just ai j. Robot ri bids for tasks which satisfy its budget constraints and
have highest values to itself. Formally, in iteration τ , robot ri computes its new bids by solving
the following 0/1 knapsack problem:

max
{ fi j∈{0,1}}

nt

∑
j=1

vi j(τ) fi j s.t.
nt

∑
j=1

wi j fi j ≤ Ni. (7.4)

Let Ji be the task set obtained by robot ri by solving the problem (7.4) using an α-approximation
algorithm for the knapsack problem. Robot ri would then bid for each task t j, j ∈ Ji, with new
price ai j, which would guarantee ri to win the bids since vi j(τ) = ai j− p j(τ) > 0. We assume
that there exists a shared memory (or auctioneer) for all robots to access the current task price,
which is the current highest bid from all robots. The shared memory is also used to guarantee
that at any time, at most one robot can access the task price and provide new bids for tasks. After
winning the bids and assigned to tasks in the iteration, the robot would then set the new task
price as the winning bid, which is the highest bid for the task among all robots till then. Thus the
iterative bidding from robots leads to the evolution of robot-task assignment as well as task price
p j(τ), which can gradually resolve the interest conflicts among robots. 3

Based on the idea described above, we design a new auction-based decentralized algorithm
for the generalized assignment problem. In the decentralized algorithm, there is no centralized
controller to make assignment decisions for robots. Instead each robot are making assignment
decision by itself. For each robot ri, a single bidding iteration τ of our auction-based algorithm
is described in Algorithm 4. Each robot could implement the iterative bidding procedure either
synchronously or asynchronously. However, the shared memory must guarantee that at any time,
at most one robot can access the task price and provide new bids for tasks. For the sake of
ease of discussion, below we assume that in our auction-based algorithm, all robots run copies

3Note that p j(τ) is an auxiliary variable, which is used to resolve the conflict that multiple robots share the same
interest of being assigned to the same tasks. When the algorithm terminates, the quality of assignment solution does
not depend on p j(τ), i.e., the output assignment solution is evaluated in terms of original payoffs ai j instead of the
net value vi j(τ) = ai j− p j(τ).

80

of Algorithm 4 sequentially. The algorithm terminates after the task price information does not
change after all robots bid for one iteration.

As shown in Algorithm 4 (Line 1), the knowledge/information available to each robot ri
during its bidding iteration τ includes two parts: (a) locally maintained information: {ai j|∀ j} and
{wi j|∀ j}, the payoffs of tasks to ri itself and their consumed resource for ri, J′i and {b′j| j ∈ J′i},
indices of tasks assigned to ri during its previous bidding iteration and ri’s bidding price for those
tasks at that iteration; (b) information accessed from the shared memory: {p j(τ)|∀ j}, the task
price maintained and updated in the shared memory during its bidding iteration τ .

First, robot ri goes through tasks in J′i , which is the task set assigned to ri during its previ-
ous bidding iteration. ri compares the current price of those tasks with its previous bids b′j: if
b′j < p j(τ), it means that another robot must have bid higher price for t j, and thus t j has been
reassigned to the robot with that bid; otherwise, b′j = p j(τ), task t j is still assigned to robot ri

since b′j is still the highest bid. In the latter case, ri resets the task price to be zero so that the new
value of the task to ri is still ai j. (Line 2 to 8)

Second, given the current task price {p j(τ)|∀ j}, robot ri selects a task set with task indices
J∗i using any knapsack algorithm with performance guarantee to maximize the total assignment
values ∑ j∈J∗i

vi j(τ) (Line 9 to 11).

Third, robot ri is assigned to task set J∗i , and updates the task price (from Line 12 to 15) so
that ∀ j ∈ J∗i , p j(τ +1) = ai j. The bidding price for each task is ai j bigger than its previous price
p j(τ) (otherwise vi j(τ) = ai j− p j(τ) ≤ 0, t j would not be selected), so the tasks receiving ri’s
bids must be assigned to ri at the end of the iteration.

Algorithm 4 Auction Iteration τ For Robot ri

1: Input: ai j, p j(τ), ∀ j, J′i , {b′j| j ∈ J′i}// J′i : indices of ri’s previously assigned tasks
Output: p j(τ +1), J∗i // J∗i : ri’s newly assigned tasks

2: // Reset the price of still assigned tasks from previous iteration to zero
3: for each task t j: j ∈ J′i do
4: if p j(τ) == b′j then
5: p j(τ) = 0;
6: p j(τ +1) = 0;
7: end if
8: end for
9: // Collect information for new bids

10: Denote vi j(τ) = ai j− p j(τ) // value of t j to ri
11: J∗i = knapsack(vi j(τ),wi j,Ni);
12: // Start new bids and update price information
13: Bid with price b j for task t j : j ∈ J∗i :
14: b j = ai j, p j(τ +1) = b j;
15: for task t j : j 6∈ J∗i , p j(τ +1) = p j(τ)

81

7.3.3 Performance Analysis
In this section, first, we show the connection of Algorithm 4 to robot’s (approximate) best re-
sponse update rule; second, we prove that the algorithm would converge to an assignment at
(approximate) equilibrium; third, we prove that the assignment at (α-approximate) equilibrium
is guaranteed to be a solution for GAP with approximation ratio 1+α . Below we assume that
the subroutine knapsack algorithm in Algorithm 4 has α ∈ [1,+∞) approximation ratio4.
Lemma 6 When robot ri runs Algorithm 4 at iteration τ , its newly assigned task set J∗i is α −
approximate best response to the assignment at the beginning of iteration τ .
Proof: Suppose the assignment at the beginning of iteration τ is J′. ∀ a new feasible assignment Ji
for robot ri, the total value increment due to Ji would be

H(J′,Ji) = F(Gi(J′,Ji))−F(Gi(J′, /0))
= ∑

k 6=i
(∑

j∈J′k

ak j− ∑
j∈Ji∩J′k

ak j)+ ∑
j∈Ji

ai j−F(Gi(J′, /0))

= ∑
k 6=i

∑
j∈J′k

ak j + ∑
j∈Ji

(ai j− p j(τ))−F(Gi(J′, /0))

= ∑
j∈Ji

(ai j− p j(τ))

which is the objective of knapsack problem, solved by ri as a subroutine in Algorithm 4. Since
we assume that the knapsack algorithm leads to α−approximate solution,

α ∑
j∈J∗i

(ai j− p j(τ))≥ max
Ji∼(7.2)

∑
j∈Ji

(ai j− p j(τ))⇒

αH(J′,J∗i)≥ max
Ji∼(7.2)

H(J′,Ji)

According to Definition 3, we get that J∗i is α−approximate best response to J′ at the beginning
of iteration τ . �

Theorem 9 Algorithm 4 for all robots will terminate in a finite number of iterations, and con-
verges to an assignment at α−approximate equilibrium.

Proof: When α = 1, according to Lemma 6, it is easy to see that the new assignment J∗i for robot
ri would make the total assignment payoff non-decreasing. In the case that α > 1, we could
easily incorporate a simple comparison in the knapsack routine so that the output would be the
better of J′i and J∗i , and thus the new total assignment payoff is still non-decreasing with each
iteration of new bids. Besides, the total payoff is bounded. So Algorithm 4 for all robots will
terminate in a finite number of iterations.

When Algorithm 4 for all robots terminates, according to Lemma 6 and Definition 4, it must
converge to an assignment at α−approximate equilibrium. �
When α = 1, Algorithm 4 is actually ri’s best response, and it would converge to an assignment

4Note that there exists pseudo-polynomial time algorithm to achieve optimal solution for knapsack problem. In
that case, α = 1

82

at equilibrium. According to the proof above, the convergence time of Algorithm 4 would be
O(nr · f (nt) ·C) where f (nt) is the running time for knapsack algorithm and C is a constant due
to the number of iterations, depending on the payoff parameters(i.e., the maximum total payoff
divided by the minimum payoff increment).
Theorem 10 An assignment at α−approximate equilibrium is a solution for GAP with approx-
imation ratio 1+α .
Proof: Suppose the assignment at α−approximate equilibrium is J∗ = ∪i{J∗i }, while the opti-
mal assignment is Jopt = ∪i{Jopt

i }. Below we want to compare the total payoff of each robot ri

in two different assignment J∗i and Jopt
i . Since J∗i must be α-approximate best response to J∗,

α ∑
j∈J∗i

(ai j− p j)≥ ∑
j∈Jopt

i

(ai j− p j) (7.5)

There are two cases depending on whether J̄i = Jopt
i ∩ (∪k 6=iJ∗k) = /0 or not:

(a) If J̄i = /0: According to Algorithm 4, ∀ j 6∈ ∪iJ∗i , p j = 0,

∑
j∈J∗i

p j ≥ ∑
j∈Jopt

i

p j (7.6)

Combining Equation (7.5) and (7.6) above, we have that

α ∑
j∈J∗i

ai j ≥ ∑
j∈Jopt

i

ai j (7.7)

If ∀i ∈ {1, . . . ,nr}, J̄i = /0, we have

α ∑
i

∑
j∈J∗i

ai j ≥∑
i

∑
j∈Jopt

i

ai j (7.8)

So J∗ is a solution with approximation ratio α .

(b) If J̄i 6= /0: again since ∀ j 6∈ ∪iJ∗i , p j = 0,

∑
j∈J∗i

p j ≥ ∑
j∈Jopt

i \J̄i

p j = ∑
j∈Jopt

i

p j−∑
j∈J̄i

p j (7.9)

Combining Equation (7.9) and (7.5), we have that

α ∑
j∈J∗i

ai j + ∑
j∈J̄i

p j ≥ ∑
j∈Jopt

i

ai j (7.10)

If ∀i ∈ {1, . . . ,nr}, J̄i 6= /0, we have

α ∑
i

∑
j∈J∗i

ai j +∑
i

∑
j∈J̄i

p j ≥∑
i

∑
j∈Jopt

i

ai j (7.11)

Since ∀i1, i2, Jopt
i1 ∩ Jopt

i2 = /0⇒ J̄i1 ∩ J̄i2 = /0. So

83

Table 7.1: Payoff parameters ai j and consumed resource parameters wi j in Example 1
ai j t1 t2
r1 1 α + ε

r2 1+αε ε

wi j t1 t2
r1 1 1
r2 1 1

∑i ∑ j∈J̄i
p j ≤ ∑i ∑ j∈J∗i

p j = ∑i ∑ j∈J∗i
ai j

Together with Equation (7.11),

(α +1)∑
i

∑
j∈J∗i

ai j ≥∑
i

∑
j∈Jopt

i

ai j (7.12)

So J∗ is a solution with approximation ratio 1+α .
Since ∀i, either J̄i = /0 or J̄i 6= /0, it must belong to one of the two cases above. So it is guaranteed
that the assignment J at α−approximate equilibrium is a solution for GAP with approximation
ratio max(α,1+α) = 1+α .�
According to Theorem 9 and 10, we prove that Algorithm 4 would eventually converge to a
solution for GAP with approximation ratio 1+α . The following example shows that the approx-
imation ratio of assignments at α−approximate equilibrium is actually tight.
Example 1 Consider two robots with budget N1 = N2 = 1, and two tasks, with parameters listed
in Table 7.1, where ε is an arbitrarily small constant. The assignment {J1 = {t1},J2 = {t2}} is
an assignment at α−approximate equilibrium:

α(F(Gi1(J,J1))−F(Gi1(J, /0))) = α((1+ ε)− ε)

≥ (α + ε)− ε = F(Gi1(J,J
∗
1 = {t2}))−F(Gi1(J, /0));

α(F(Gi2(J,J2))−F(Gi2(J, /0))) = α((1+ ε)−1)
≥ (1+αε)−1 = F(Gi2(J,J

∗
2 = {t1}))−F(Gi2(J, /0))

However, it is an (1+α) approximate solution to the optimal assignment {J∗1 = {t2},J∗2 = {t1}}:

(1+α)F(J) = (1+α)(1+ ε) = ((α + ε)+(1+αε)) = F(J∗)

7.3.4 Distributed Implementation

Algorithm 4 is decentralized in the sense that every robot can make assignment decisions by it-
self, based on an iteratively updated common information of task price from the shared memory.
In this section, we discuss how to remove the requirement of the existence of shared memory
to make the algorithm totally distributed assuming the robots’ communication network is con-
nected.

Suppose that there exists a robot communication network G=(V,E), where V =R consists of
robot nodes, and E = {(i1, i2)} consists of connection edges between robots, which can directly
communicate. We assume that G is connected.

84

Table 7.2: Payoff parameters ai j and consumed resource parameters wi j in Example 2
ai j t1 t2 t3 t4
r1 0.9 0.8 1.5 0
r2 0.8 0.9 0 1.5

wi j t1 t2 t3 t4
r1 1 1 2 *
r2 1 1 * 2

In a distributed implementation of Algorithm 4, no shared memory exists to provide task price
p j(τ) during each iteration τ . Each robot ri needs to locally maintain the task price pi

j(τ), and
update them based on the local communication with its direct neighbor in Ni = {i′|(i′, i) ∈ E}.

First, the approach of directly applying maximum consensus technique as in constrained
linear assignment problem[41] does not work here, where each robot ri needs to update its value
during each iteration τ using maximum consensus:

pi
j(τ) = max

k∈Ni∪{ı}
pk

j(τ−1) (7.13)

The reason is that in Algorithm 4, the task price is not non-decreasing, instead, price of some
tasks might be reset to zero during some iterations. When there exists a shared memory, it
can guarantee that during any time there is at most one robot bidding for the tasks, and thus
guarantee that the total payoff values would be non-decreasing, which leads to the convergence of
Algorithm 4 as shown in Theorem 9. However, without shared memory, the maximum consensus
technique can not guarantee that Algorithm 4 would converge in a distributed implementation.
The following example shows a scenario where consensus-based distributed implementation of
Algorithm 4 would have oscillations:
Example 2 Consider two robots with budget N1 = N2 = 2, and four tasks. The payoff parame-
ters ai j and consumed resource parameters wi j are listed in Table 7.2, where ∗ means that the
parameter could be any non-negative value. In the example, robots r1’s bidding tasks could os-
cillate between (t1, t2) and (t3), while r2’s bidding tasks between (t1, t2) and (t4). the assignment
could oscillate between J = {J1 = {(t1)},J2 = {(t2)}} and J′ = {J′1 = {(t3)},J′2 = {(t4)}.

Below, we show that a distributed message passing mechanism could be used for robot to
maintain and update the task price information in a distributed way. During each iteration τ ,
robot ri runs Algorithm 4, where p j(τ) would become the local maintained task price pi

j(τ), to
get the new assignment Ji and new task price pi

j(τ + 1). The message passing mechanism is
described as follows.

First, ri would send out the message in the following format: Mτ+1
i = (P,ri,V,τ +1), where

P = (pi
1(τ + 1), . . . , pi

nt
(τ + 1)) is the new price vector for all tasks maintained in ri, ri is the

identifier of the robot who sends out the message, V = ∑ j∈Ji vi j(τ) is the output total value of the
knapsack subroutine algorithm in Algorithm 4, and τ +1 is time stamp of the message, i.e., the
number of iteration when the message would be used to update the task price. If Ji = J′i , i.e., the
robots’ bidding tasks are the same as before, V is set to be 0 in P.

Second, when ri receives a message Mτ+1
i′ from one of its neighbor i0, it would first send

out the message to its neighbors except i0. Then ri would compare Mτ+1
i′ (V) with its locally

maintained Vmax(τ + 1), which is the maximum value of all messages with time stamp τ + 1
till then. If Mτ+1

i′ (V) > Vmax(τ + 1), ri would store the message with higher value and reset

85

Vmax(τ + 1) = Mτ+1
i′ (V), and get rid of previous message; if Mτ+1

i′ (V) < Vmax(τ + 1), ri would
get rid of the message Mτ+1

i′ . To break the tie when Mτ+1
i′ (V) =Vmax(τ +1), robots could use a

consistent rule, e.g., keep the message with the smaller robot identifier.
Third, ri would keep track of the number of robot identifiers nID(τ + 1) from all messages.

When nID(τ +1) = nr, i.e., ri has received all robots’ messages for iteration τ +1, ri would start
to update its locally maintained task price from the only stored message (e.g., Mτ+1

i′) with the
highest value: pi

j(τ +1) = Mτ+1
i′ (P(j)),∀ j, and then start a new bidding procedure for iteration

τ +1.
From the above message passing mechanism, we know that during each iteration τ , each

robot would start a new bid and send out a new message. Since the robot communication net-
work G is connected, all messages would reach all robots. However, only the message with
highest value from r∗(τ) would be stored and used to update task price for τ + 1, which would
be consistent among all robots. It is equivalent to say that during each iteration τ , only one robot
r∗(τ) starts a new bid, and updates task price, which would be consistently and locally stored
by all robots. Thus we can see that although the shared memory is removed, its two following
functions are still maintained in a distributed way: (a) during any iteration, at most one robot
can start a new bid and update task price; (b) task price are consistently maintained among all
robots. So the conclusions in Section 7.3.3 are valid in the distributed implementation. However,
since the bidding message needs to be propagated in the network G, during each iteration, the
distributed algorithm might be delayed by the product of one-hop message passing time and ∆

(∆≤ nr), which is the diameter of G.

7.4 Simulation Results
Below we present some simulation results to check how our algorithm’s solution quality changes
with iterations till convergence. Consider nr = 20 robots, where each robot ri has budget Ni = 10,
and nt = 40 tasks. In our simulations, we first assume each robot can communicate with all
other robots, i.e., ∆ = 1. The knapsack algorithm used in the simulation is the optimal dynamic
programming algorithm, so α = 1 and the approximation ratio of Algorithm 4 is 2.

Figure 7.1 and Figure 7.2 show that in two different simulation samples how the solution
performance changes with bidding iterations of robots. In both figures, we randomly generate
100 samples with different ai j and wi j, and show the mean and standard deviation of our solution
performance. In all the 100 generated samples, our algorithm converges within 200 iterations.
In Figure 7.1, for each robot ri and task t j, payoffs ai j are drawn from a uniform distribution
in (0,9), and the consumed resource wi j from [1,6]. In Figure 7.2, for each robot ri and task
t j, we set the consumed resource wi j = 5,∀i, j, and ai j are randomly generated according to
the distributions in Table 7.3, where U(xmin,xmax) represents a uniform distribution from xmin to
xmax. From Figure 7.2 and Figure 7.1, we can see that although the total assignment payoffs get
improved until convergence in both cases, the improvement patterns before convergence are very
different in the two cases: in Figure 7.1, the assignment performance after all robots run one
iteration is very close to the performance of assignment at convergence, while Figure 7.2 shows
that in some situations, our algorithm could achieve much better solution than the algorithm
where all robots run one iteration. The reason is that when all robots just run one iteration, robots

86

Table 7.3: Payoff parameters ai j distributions in Figure 7.2
ai j t1 - t20 t21 - t40

r1 - r10 U(8,9) U(6,7)
r11 - r20 U(10,11) U(0,1)

bidding first might lose their assigned tasks to robots bidding later, and do not have chance to be
assigned to other tasks, which could be compensated in our iterative algorithm.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

Assignment Performance Evolution during Iterative Algorithm
number of robots n

r
 = 20; number of tasks n

t
 = 40

Number of Iterations

T
ot

al
 A

ss
ig

nm
en

t P
ay

of
fs

Figure 7.1: Statistics of total assignment payoffs by our algorithm as a function of iterations,
where ai j and wi j are randomly generated in 100 samples.

7.5 Summary
We studied the multi-robot generalized assignment problem, where the objective is to maxi-
mize the total assignment payoffs while respecting robots’ budget constraints. We presented
a distributed auction-based algorithm, where each robot iteratively uses a knapsack algorithm
as subroutine to choose its assigned tasks and maximize the sum of each assigned task value
(defined as a task’s payoff minus its price). Suppose the knapsack subroutine algorithm has an
approximation ratio α ∈ [1,+∞). We show that the iterative bidding procedure of each robot is
actually an α-approximate best response assignment update rule to the current temporary assign-
ment of other robots. We proved that such bidding procedure would eventually converge to an
assignment at α-approximate equilibrium, which is guaranteed to be a solution to GMRAP with
an approximation ratio of 1+α . We also presented simulation results illustrating our algorithm.

87

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

Assignment Performance Evolution during Iterative Algorithm
number of robots n

r
 = 20; number of tasks n

t
 = 40

Number of Iterations

T
ot

al
 A

ss
ig

nm
en

t P
ay

of
fs

Performance after all
robots run one iteration

Performance after convergence

Figure 7.2: Statistics of total assignment payoffs as a function of iterations, where parameters wi j
are randomly generated while ai j are carefully designed according to distributions in Table 7.3.

88

Chapter 8

Multi-robot Constrained Generalized Task
Assignment

In Chapter 7, we study the generalized task assignment problem without constraints. In this chap-
ter, we extend the problem to generalized task assignment with task group constraints(TAG−
GMRAP) and task deadline constraints(TAD−GMRAP), respectively. As for GMRAP in Chap-
ter 7, we decompose the multi-robot task assignment problem into each individual robot’s op-
timization problem, and introduce task price to resolve the assignment conflict among different
robots. In constrained generalized assignment problem, the individual robot’s optimization prob-
lem would be generalization of Knapsack problem in unconstrained generalized assignment, ei-
ther with extra task group constraints or task deadline constraints for single robot. For both
constrained problem, we design dynamic programming based algorithm to get optimal solution
for the single robot optimization, and use similar task price update rule as in Chapter 7 so that
each robot would eventually be assigned to different tasks.

8.1 Generalized Assignment with Task Group Constraints

8.1.1 Problem Formulation

In this section, we give the formal definition of our multi-robot generalized assignment problem
with task group constraints (TAG−MRAP). Suppose that there are nr robots, R = {r1, . . . ,rnr},
and nt tasks, T = {t1, . . . , tnt}, for the robots. Without loss of generality, we assume that any
robot can be assigned to any task. Each task must be performed by exactly one robot. Let
ai j ∈ R be the payoff for the assignment pair (ri, t j), i.e., for assigning robot ri to task t j, wi j
be the energy consumption of the assignment. Each robot ri has energy budget Ni, and the total
energy consumption of tasks assigned to ri should not exceed Ni. Let fi j be the variable that
takes a value 1 if task, t j, is assigned to robot, ri, and 0 otherwise. The task set T forms ns
disjoint groups/subsets {T1, . . . ,Tns} so that ∪ns

k=1Tk = T . We assume that each robot, ri, can
perform at most one tasks from task group Tk, which we call the task group constraints (TAG).

89

Mathematically, TAG can be written as

∑
j: t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr, k = 1, . . . ,ns

The overall objective is to assign all tasks to robots so that the total payoff from the assignment
is maximized. The multi-robot task assignment problem with grouped tasks can be written as an
integer linear program (ILP) given below

max
nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j ≤ 1, ∀ j = 1, . . . ,nt , (8.1)

nt

∑
j=1

fi jwi j ≤ Ni, ∀i = 1, . . . ,nr, (8.2)

∑
j: t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr,k = 1, . . . ,ns, (8.3)

fi j ∈ {0,1}, ∀i, j. (8.4)

In the above formulation, the optimization variables are the binary assignment variables, fi j.
Equation (8.1) states that each task could be assigned to at most one robot. Equation (8.2)
gives the budget constraints of each robot. Equation (8.3) gives the task group constraints for
each robot and each task group. Note that the above problem is a generalization of the linear
assignment problem with task group constraints(TAG−MRAP). In TAG−MRAP, wi j = 1, i.e.,
each task would consume the same unit energy from each robot.

8.1.2 Algorithm Design and Performance Analysis
In this section, we first design algorithm for individual robots to optimize its own total payoffs,
which is a generalization of Knapsack problem with extra task group constraints. The algorithm
is a dynamic programming based approach as shown in Algorithm 6. The auction iteration
algorithm for each robot is almost the same as the algorithm in Chapter 7, except that we replace
the Knapsack algorithm with Algorithm 6 to handle the extra task group constraints.

At iteration τ , robot ri computes its new bids by solving the following knapsack problem
with TAG:

max
nt

∑
j=1

ai j fi j

s.t.
nt

∑
j=1

fi jwi j ≤ Ni,

∑
j: t j∈Tk

fi j ≤ 1, ∀k = 1, . . . ,ns,

90

fi j ∈ {0,1}, ∀ j.

Let Ji be the task set obtained by robot ri by solving the above problem optimally. Robot ri
would then bid for each task t j, j ∈ Ji, with new price ai j, which would guarantee ri to win the
bids since vi j(τ) = ai j− p j(τ)> 0. We assume that there exists a shared memory (or auctioneer)
for all robots to access the current task price, which is the current highest bid from all robots.
The shared memory is also used to guarantee that at any time, at most one robot can access the
task price and provide new bids for tasks. After winning the bids and assigned to tasks in the
iteration, the robot would then set the new task price as the winning bid, which is the highest
bid for the task among all robots till then. Thus the iterative bidding from robots leads to the
evolution of robot-task assignment as well as task price p j(τ), which can gradually resolve the
interest conflicts among robots.

Based on the idea described above, we design an auction-based decentralized algorithm for
the generalized assignment problem. For each robot ri, a single bidding iteration τ of our auction-
based algorithm is described in Algorithm 5. Each robot could implement the iterative bidding
procedure either synchronously or asynchronously. However, the shared memory must guarantee
that at any time, at most one robot can access the task price and provide new bids for tasks. For
the sake of ease of discussion, below we assume that in our auction-based algorithm, all robots
run copies of Algorithm 5 sequentially. The algorithm terminates after the task price information
does not change after all robots bid for one iteration.

As shown in Algorithm 5 (Line 1), the knowledge/information available to each robot ri
during its bidding iteration τ includes two parts: (a) locally maintained information: {ai j|∀ j} and
{wi j|∀ j}, the payoffs of tasks to ri itself and their consumed resource for ri, J′i and {b′j| j ∈ J′i},
indices of tasks assigned to ri during its previous bidding iteration and ri’s bidding price for those
tasks at that iteration; (b) information accessed from the shared memory: {p j(τ)|∀ j}, the task
price maintained and updated in the shared memory during its bidding iteration τ .

First, robot ri goes through tasks in J′i , which is the task set assigned to ri during its previ-
ous bidding iteration. ri compares the current price of those tasks with its previous bids b′j: if
b′j < p j(τ), it means that another robot must have bid higher price for t j, and thus t j has been
reassigned to the robot with that bid; otherwise, b′j = p j(τ), task t j is still assigned to robot
ri since b′j is still the highest bid. In the latter case, ri resets the task price to be zero so that
the new value of the task to ri is still ai j. (Line 2 to 8) Second, given the current task price
{p j(τ)|∀ j}, robot ri selects a task set with task indices J∗i using the optimal knapsack-TAG
algorithm (Algorithm 6) to maximize the total assignment values ∑ j∈J∗i

vi j(τ) (Line 9 to 11).
Third, robot ri is assigned to task set J∗i , and updates the task price (from Line 12 to 15) so that
∀ j ∈ J∗i , p j(τ + 1) = ai j. The bidding price for each task is ai j bigger than its previous price
p j(τ) (otherwise vi j(τ) = ai j− p j(τ) ≤ 0, t j would not be selected), so the tasks receiving ri’s
bids must be assigned to ri at the end of the iteration.
Lemma 7 Algorithm 6 is optimal for knapsack problem with TAG.
Proof: Algorithm 6 is a dynamic programming based approach, so we use mathematical induc-
tion to prove its optimality as follows. We show that F(m,k) store the maximum total assign-
ment value of robot ri using budget m and only consider being assigned to tasks in the first k task
groups. If that is true, then F(Ni,ns) would return the maximum total value of knapsack problem
with task group constraints.

91

Algorithm 5 Auction Iteration τ For Robot ri

1: Input: ai j, p j(τ), wi j ∀ j, Ni, {Tk} ∀k, J′i , {b′j| j ∈ J′i}
// J′i : indices of ri’s previously assigned tasks
Output: p j(τ +1), J∗i // J∗i : ri’s newly assigned tasks

2: // Reset the price of still assigned tasks from previous iteration to zero
3: for each task t j: j ∈ J′i do
4: if p j(τ) == b′j then
5: p j(τ) = 0;
6: p j(τ +1) = 0;
7: end if
8: end for
9: // Collect information for new bids

10: Denote vi j(τ) = ai j− p j(τ) // value of t j to ri
11: J∗i = knapsack-TAG (vi j(τ),wi j,Ni,{Tk});
12: // Start new bids and update price information
13: Bid with price b j for task t j : j ∈ J∗i :
14: b j = ai j, p j(τ +1) = b j;
15: for task t j : j 6∈ J∗i , p j(τ +1) = p j(τ)

Base case: when the budget of robot ri is zero (m = 0) or the number of task groups is zero
(k = 0), F(m,k) = 0 is the maximum total value (Line 3-4).

Inductive step: Suppose ∀0 ≤ m′ < m,0 ≤ k′ < k,F(m′,k′) is optimal. We want to prove
that F(m,k) is also optimal. When we compute F(m,k), there could be two cases depending
on whether it includes assignment value from k-th task groups. If in the optimal solution, ri is
not assigned to any task from k-th task group, then F(m,k) = F(m,k−1). Otherwise, F(m,k) =
max j∈Tk(F(m−wi j,k−1)+vi j). So as in Line 5-10 of Algorithm 6, F(m,k)=max(max j(F(m−
wi j,k− 1)+ vi j),F(m,k− 1)) would guarantee that F(m,k) is also optimal. Algorithm 6 then
tracks back F(Ni,ns) to find the tasks assigned to ri in the optimal solution (Line 11-20). �
Algorithm 6 is a pseudo-polynomial time algorithm with complexity O(Nint).

Lemma 8 Algorithm 5 would converge to a feasible solution for TAG−GMRAP.
Proof: During each iteration of robot ri, since Algorithm 6 optimizes the total values for ri,
∀ j ∈ J∗i ,vi j > 0, which means any task t j switched from its previous assignment to be assigned to
ri could make the total assignment payoffs non-decreasing. Besides, the total assignment payoffs
is bounded by the sum of all payoffs. Thus, Algorithm 5 must converge. Algorithm 6 guarantees
that constraints 8.2 and 8.3 are satisfied. The task price update could guarantee that any task
either remains unassigned or is switched from one robot to another robot with higher payoffs.
So constraints 8.1 are also satisfied. So we can conclude that Algorithm 5 would converge to a
feasible solution for TAG−GMRAP.�
According to Lemma 8, the complexity of the algorithm is O(Ni ∗ nt ∗ nr ∗C), where Ni ∗ nt is
the time for Algorithm 6, and C is a constant due to the number of iterations, depending on the
payoff parameters (the maximum payoff divided by the minimum payoff increment).

Theorem 11 Algorithm 5 has an approximation ratio 2.

92

Algorithm 6 Knapsack-TAG For Robot ri

1: Input: vi j, wi j, ∪k{Tk}, Ni
Output: J∗i // J∗i : ri’s newly assigned tasks

2: // Computing the optimal total values using the first m budgets and first k task groups: F(m,k)

3: F(0,k) = 0,∀k = 1, . . . ,ns
4: F(m,0) = 0,∀m = 1, . . . ,Ni
5: for m = 1 : Ni do
6: for k = 1 : ns do
7: ∀ j : j ∈ Tk and wi j ≤ m
8: F(m,k) = max(max j(F(m−wi j,k−1)+ vi j),F(m,k−1))
9: end for

10: end for
11: // Trace back the optimal assignment
12: m = Ni,k = ns,J∗i = /0
13: while k > 0 do
14: if F(m,k)> F(m,k−1) then
15: Find task j ∈ Tk such that F(m,k) = F(m−wi j,k−1)+ vi j
16: m = m−wi j
17: J∗i = J∗i ∪{ j}
18: end if
19: k = k−1
20: end while

Proof: Suppose the assignment according to Algorithm 5 is J∗ = ∪i{J∗i }, while the optimal
assignment is Jopt = ∪i{Jopt

i }. Below we want to compare the total payoff of each robot ri in
two different assignment J∗i and Jopt

i . Since J∗i must be best response to J∗,

∑
j∈J∗i

ai j ≥ ∑
j∈Jopt

i

(ai j− p j) (8.5)

where

p j =

{
ai′ j if j ∈ J∗i′ , i

′ 6= i
0 otherwise

Define J̄i = Jopt
i ∩ (∪k 6=iJ∗k). Since ∀ j 6∈ ∪iJ∗i , p j = 0,

∑
j∈Jopt

i

p j = ∑
j∈J̄i

p j (8.6)

Combining Equation (8.6) and (8.5), we have that

∑
j∈J∗i

ai j + ∑
j∈J̄i

p j ≥ ∑
j∈Jopt

i

ai j (8.7)

93

If ∀i ∈ {1, . . . ,nr}, J̄i 6= /0, we have

∑
i

∑
j∈J∗i

ai j +∑
i

∑
j∈J̄i

p j ≥∑
i

∑
j∈Jopt

i

ai j (8.8)

Since ∀i1, i2, Jopt
i1 ∩ Jopt

i2 = /0⇒ J̄i1 ∩ J̄i2 = /0. So
∑i ∑ j∈J̄i

p j ≤ ∑i ∑ j∈J∗i
p j = ∑i ∑ j∈J∗i

ai j

Together with Equation (8.8),
2∑

i
∑
j∈J∗i

ai j ≥∑
i

∑
j∈Jopt

i

ai j (8.9)

So we conclude that Algorithm 5 has an approximation ratio 2.�
The above algorithm is decentralized with access to the task price information from a shared
memory. The decentralized algorithm could be made to be distributed according to the same
message passing mechanism as stated in Section 7.3.4.

8.2 Task Assignment with Deadline Constraints and Different
Task Durations

8.2.1 Problem Formulation
In this section, we give the formal definition of our multi-robot assignment problem with dead-
lines for independent tasks with different durations, which we call generalized multi-robot task
assignment problem with task deadline constraints (TAD−GMRAP). Here an assignment is not
just to determine which robot performs which tasks, but also to make sure that the robot performs
the tasks in proper time, i.e., any task is assigned to a certain time range of its duration in one
robot’ schedule so that the task deadline constraint is satisfied.

Suppose that there are nr robots, R = {r1, . . . ,rnr}, and nt tasks, T = {t1, . . . , tnt} where the
tasks are independent, and each task t j has a duration du j with a deadline d j, define D = max j d j
as the maximum task deadline, Sk = {t j|d j = k},∀k = 1, . . . ,D, as the set of tasks with deadline
k, SD+1 = {t j|d j is not specified} as tasks with no explicit deadline; each robot ri has Ni available
time slots in its schedule, i.e., robot ri’s budget is Ni. Any robot can be assigned to any task, and
performing each task needs a single robot. Let fi j be the variable that takes a value 1 if task,
t j, is assigned to robot, ri, and 0 otherwise, where i ∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt}. Let ai j ∈ R
be the payoff for the assignment pair (ri, t j), i.e., for assigning robot ri to task t j. The objective
is to assign all tasks to robots so that the total payoffs from the assignment is maximized while
the deadlines of tasks are satisfied. The problem can be formulated as an integer linear program
(ILP) below.

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j ≤ 1, ∀ j = 1, . . . ,nt (8.10)

94

∑
j:d j≤l

fi jdu j ≤ min(l,Ni), ∀i = 1, . . . ,nr, l = 1, . . . ,D (8.11)

fi j ∈ {0,1}, ∀i, j (8.12)

where (8.10) means that each task is assigned to at most one robot; (8.11) guarantees that the
total durations of tasks assigned to each robot with deadline no more than l is no more than l and
the robot’s budget, and thus each task can be performed before its deadline; it also guarantees
that each robot ri does not exceed its budget.

When du j = 1, the assignment problem with task deadline and different durations becomes
the linear assignment problem with task deadline and identical duration (TAD−MRAP), studied
in Chapter 5.

8.2.2 Algorithm Design and Performance Analysis
The bidding algorithm for each robot at one iteration is described in Algorithm 7. Each robot
would use the same task price update rule, and just replace the single robot optimization problem
from knapsack-TAG to knapsack-TAD (Line 11), which is an extension of knapsack problem
with extra task deadline constraints. The knapsack-TAD problem each robot would solve indi-
vidually during each iteration is as follows:

max
nt

∑
j=1

ai j fi j

s.t. ∑
j:d j≤l

fi jdu j ≤ min(l,Ni), ∀l = 1, . . . ,D

fi j ∈ {0,1}, ∀ j.

Below we prove that Algorithm 8 is optimal for the knapsack problem with extra task dead-
line constraint. We assume that all tasks have been sorted according to their deadline, i.e.,
∀ j ≤ j′,d j ≤ d j′ .
Lemma 9 Algorithm 8 is optimal for knapsack problem with task deadline constraints.
Proof: We use mathematical induction to prove Algorithm 8’s optimality as follows. We want
to show that F(m, j) is the maximum total assignment value of robot ri using budget m and
only consider being assigned to the first j tasks. If that is true, then F(Ni,nt) would return the
maximum total value of knapsack problem with task deadline constraints.

Base case: when the budget of robot ri is zero (m = 0) or the number of tasks is zero (j = 0),
F(m, j) = 0 is the maximum total value (Line 3-4). Inductive step: Suppose ∀0 ≤ m′ < m,0 ≤
j′ < j,F(m′, j′) is optimal. We want to prove that F(m, j) is also optimal. When we compute
F(m, j), we first check whether x = min(m,d j)−du j ≥ 0. If x < 0, it is unfeasible to assign ri to
t j since either the budget m is not sufficient or the task’s duration du j is too long to be finished
before its own deadline d j. In this case, we just get rid of t j, and F(m, j) = F(m, j− 1). If
x≥ 0, there could be two cases depending on whether the j-th task is assigned to ri in the optimal
solution. If in the optimal solution, ri is not assigned to t j, then F(m, j) =F(m, j−1). Otherwise,

95

F(m, j) = F(x−du j, j−1)+vi j. So F(m, j) =max((F(x−du j, j−1)+vi j),F(m, j−1)) would
guarantee that F(m, j) is also optimal (Line 5-14). Algorithm 8 then tracks back F(Ni,nt) to find
the tasks assigned to ri in the optimal solution (Line 15-23). �
Algorithm 8 is a pseudo-polynomial time algorithm with complexity O(Nint) since there are
Ni ∗nt items in F(m, j) to fill in and each item just takes constant time to compute.

Since we use the same task price update rule here in Algorithm 7, it is also sound,complete,
and has an approximation ratio 2 as in Lemma 8, and Theorem 8 for TAG-GMRAP.

Algorithm 7 Auction Iteration τ For Robot ri

1: Input: ai j, Ni, p j(τ), du j, d j, ∀ j, J′i , {b′j| j ∈ J′i}// J′i : indices of ri’s previously assigned tasks
Output: p j(τ +1), J∗i // J∗i : ri’s newly assigned tasks

2: // Reset the price of still assigned tasks from previous iteration to zero
3: for each task t j: j ∈ J′i do
4: if p j(τ) == b′j then
5: p j(τ) = 0;
6: p j(τ +1) = 0;
7: end if
8: end for
9: // Collect information for new bids

10: Denote vi j(τ) = ai j− p j(τ) // value of t j to ri
11: J∗i = knapsack−TAD(vi j(τ),du j,d j,Ni);
12: // Start new bids and update price information
13: Bid with price b j for task t j : j ∈ J∗i :
14: b j = ai j, p j(τ +1) = b j;
15: for task t j : j 6∈ J∗i , p j(τ +1) = p j(τ)

8.3 Simulation Results
Below we use TAG-GMRAP as an example to present some simulation results of constrained
generalized multi-robot task assignment. In the simulation results, we want to check how our
algorithm’s solution quality changes with iterations till convergence, and how the task group
constraints would influence the convergence rate as well as solution quality. Consider nr = 20
robots, where each robot ri has budget Ni = 10, and nt = 100 tasks. In our simulations, we first
assume each robot can communicate with all other robots, i.e., the network diameter ∆ = 1.

Figure 8.1 and Figure 8.2 show that in two different simulation samples how the solution
performance changes with bidding iterations of robots. In both figures, we randomly generate
100 samples with different ai j and wi j, and show the mean and standard deviation of our solution
performance. In all the 100 generated samples, our algorithm converges within 300 iterations.
In Figure 8.1, for each robot ri and task t j, payoffs ai j are drawn from a uniform distribution
in (0,9), and the consumed resource wi j from [1,6]. In Figure 8.2, for each robot ri and task
t j, we randomly the consumed resource wi j from the same uniform distribution [1,6], and ai j
are randomly generated according to the same distributions in Table 7.3, where U(xmin,xmax)

96

Algorithm 8 Knapsack-TAD For Robot ri

1: Input: vi j, du j,d j, ∀ j, Ni
Output: J∗i // J∗i : ri’s newly assigned tasks

2: // Computing the optimal total values using the first m budgets and first j tasks: F(m,j)
3: F(0, j) = 0,∀ j = 1, . . . ,nt
4: F(m,0) = 0,∀m = 1, . . . ,Ni
5: for m = 1 : Ni do
6: for j = 1 : nt do
7: x = min(m,d j)−du j
8: if x≥ 0 then
9: F(m, j) = max(F(x, j−1)+ vi j,F(m, j−1))

10: else
11: F(m, j) = F(m, j−1)
12: end if
13: end for
14: end for
15: // Trace back the optimal assignment
16: m = Ni, j = nt ,J∗i = /0
17: while j > 0 do
18: if F(m, j) 6= F(m, j−1) then
19: m = min(m,d j)−du j
20: J∗i = J∗i ∪{ j}
21: end if
22: j = j−1
23: end while

represents a uniform distribution from xmin to xmax. From Figure 8.2 and Figure 8.1, we can
see that similar as the simulation results in Chapter 7, although the total assignment payoffs
get improved until convergence in both cases, the improvement patterns before convergence are
very different in the two cases: in Figure 8.1, the assignment performance after all robots run
one iteration is very close to the performance of assignment at convergence, while Figure 8.2
shows that in some situations, our algorithm could achieve significant improved solution than
the algorithm where all robots run one iteration. TAD-GMRAP also exhibits the same patterns
of simulation results.

From Figure 8.2 and Figure 8.1, we can also see that for the same parameter setting, when
we increase the number of task groups ns (i.e., decrease the number of tasks in each task group),
the convergence rate becomes slower, while the solution quality gets improved. The reason is
that: when ns increases, the task group constraints become weaker, e.g., when ns = nt , there is
no task group constraints any more; the weaker task group constraints would lead to the increase
the feasible solution space, and thus slow down the convergence rate of our algorithms while
improve the solution quality.

97

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

Assignment Performance Evolution during Iterative Algorithm
number of robots n

r
 = 20; number of tasks n

t
 = 40

Number of Iterations

T
ot

al
 A

ss
ig

nm
en

t P
ay

of
fs

number of task groups n
s
 = 20

n
s
 = 5

n
s
 = 2

Figure 8.1: Statistics of total assignment payoffs by our algorithm as a function of iterations,
where ai j and wi j are randomly generated in 100 samples.

8.4 Summary
In this chapter, we design distributed algorithm for constrained generalized multi-robot task as-
signment problem(C-GMRAP). We use generalized multi-robot task assignment with task group
constraints (TAG−GMRAP) and task deadline constraints (TAD−GMRAP) as examples. First,
we decompose both problems into single robot constrained knapsack optimization problem, one
with extra task group constraints, the other with extra task deadline constraints. Second, we de-
sign dynamic programming based approach to solve the single robot problem optimally. Then
robots use an iterative bidding procedure to update task price so that when the procedure con-
verges, robots would not be assigned to same tasks. We prove that the algorithm is sound,
complete, and has an approximation ratio 2. This distributed algorithm design is quite general,
and can be extended to other constrained generalized assignment problem. The only difference
would be to design different algorithm for single robot optimization problem.

98

0 50 100 150 200
0

200

400

600

800

1000

Assignment Performance Evolution during Iterative Algorithm
number of robots n

r
 = 20; number of tasks n

t
 = 40

Number of Iterations

T
ot

al
 A

ss
ig

nm
en

t P
ay

of
fs

number of task groups n
s
 = 20

n
s
 = 5

n
s
 = 2

Performance when all
robots run one iteration

Figure 8.2: Statistics of total assignment payoffs as a function of iterations, where parameters wi j
are randomly generated while ai j are carefully designed according to distributions in Table 7.3.

99

100

Chapter 9

Online Multi-Robot Task Assignment with
Task Group Constraints

9.1 Introduction

In many multi-robot applications like environmental monitoring, search and rescue, disaster re-
sponse, extraterrestrial exploration, the tasks that the robots need to perform are not known be-
forehand but arise dynamically as the robots are executing their missions. In such scenarios,
robots may be able to do more than one task during a mission depending on their capabilities and
battery life. Since battery life for a robot is limited there will be an upper bound on the number
of tasks that a robot can do during a mission. The problem of allocating tasks to robots when
the tasks are not known beforehand but may arise in an online fashion is called the online task
allocation (OTA) problem or online assignment problem. Depending on the characteristics of the
tasks and the capability of the robots, different versions of the OTA problem can be formulated
(see [26] for a classification and taxonomy of task allocation problems). In the simplest version
of OTA, also known as online maximum weight bipartite matching problem (MWBMP), the
tasks arrive one at a time and each robot can do at most one task in the mission. Each robot-task
pair has a certain payoff and the objective is to maximize the total payoff of the multi-robot sys-
tem [25, 31]. In this chapter we study a generalization of the online MWBMP, where the tasks
can arise dynamically in groups and each robot can do at most one task in each group, but can
do more than one task in the whole mission. The abstract problem is motivated by two different
kinds of scenarios arising in applications: (a) Tasks arise dynamically in groups, where each
group consists of tightly-coupled tasks, i.e., tasks which robots must perform simultaneously,
and thus each robot can only be assigned to one of them; (b) There exist group precedence con-
straints among tasks, i.e., only after the current group of tasks are all completed by robots, the
subsequent group of tasks can get started, and the corresponding (payoff) information is revealed
to robots. To fully explore the parallelism, each robot can be assigned to at most one task in each
group to increase the efficiency.

More formally, the OTA problem studied in this chapter is as follows: We have a set of nr
robots, R, and a set of nt tasks, T , that arrives dynamically in groups over ns rounds. Each robot
has a budget, Ni, i = 1, . . . ,nr, i.e., an upper bound on the maximum number of tasks that it can

101

do. Each robot can do at most one task from each group and the execution of one group of tasks
starts after the previous group has been executed. Find an assignment of the tasks to the robots
such that the total payoff of the system is maximized. Note that when Ni = 1 for each robot, i, and
there is one task in each group, the problem is the online MWBMP. A greedy algorithm where
the incoming task is assigned to the best available robot has a competitive ratio (the ratio of the
payoff obtained from the greedy assignment to the payoff obtained from optimal assignment if
all tasks were known beforehand) of 1

3 under an assumption on the payoffs [31]. The assumption
states that the difference of the payoffs of any two robots for a task is less than the sum of
the payoffs of the same two robots for any other task. Furthermore, this is the best achievable
bound by any online deterministic algorithm. One assumption in this work is that once a robot is
assigned to a task, it cannot be reassigned, or each robot can only do one task during the mission.
We consider a more general setting where a robot can do multiple tasks during its mission.

Our results for the OTA problem are a combination of positive and negative results. We
first study the performance of the repeated greedy auction algorithm, where for each group of
tasks, the robots are allocated to the tasks using a (distributed) auction algorithm. We prove
that under the same assumptions on payoff as for the online MWBMP and an assumption on
the number of tasks in each task subset, the repeated greedy auction algorithm has a competitive
ratio of 1

1+max(2,α) . The problem data dependent parameter α is defined as the minimum of the
maximum budget of the robots and the maximum number of tasks in a group. Note that the
competitive ratio is independent of the number of robots or the number of tasks. Furthermore,
when either the size of the task groups or the maximum budget of a robot is constant, α is
constant, and hence the competitive ratio is constant. For example, when the number of tasks
in each group is 2 and/or each robot can perform at most 2 tasks, the competitive ratio of the
algorithm becomes 1

3 . This generalization of the results in [31] is the key contribution of this
chapter. We also prove that if there are no restrictions on the payoffs, it is impossible to design
a randomized/deterministic algorithm with provable performance guarantees. If the assumption
on the task profile is violated then the algorithms based on highest budget heuristic that can give
a feasible assignment (if one exists) have arbitrarily bad worst case performance. In highest
budget heuristic, when a group containing k tasks arise, they are assigned to the robots with the
top k budgets (where the budget of a robot is the number of remaining tasks that it can perform).
The offline version of the problem that we study here has been studied in [41] and can be solved
(near) optimally in polynomial time. We present simulation results to compare the performance
of our online algorithm to the optimal offline solution on randomly generated instances.

This chapter is organized as follows: In Section 9.2, we give a formal definition of the online
multi-robot assignment problem for groups of tasks. In Section 9.3, we present the repeated
auction algorithm and prove its performance guarantees. Thereafter, in Section 9.4, we present
the highest budget heuristic. In Section 9.5, we demonstrate the performance of our algorithm
with some example simulations. Finally, in Section 9.6, we present the summary. This chapter
appeared in the work of [42].

102

9.2 Problem Formulation
In this section, we give the formal definition of our online multi-robot task assignment problem
(denoted as “OTA”).

9.2.1 Definition of the Problem OTA
Basic Multi-robot Assignment Problem (MRAP): Suppose that there are nr robots, R= {r1, . . . ,rnr},
and nt tasks, T = {t1, . . . , tnt}, for the robots. In MRAP, any robot can be assigned to any task,
and each robot can perform at most Ni tasks. Performing each task needs a single robot, so
nt ≤ ∑

nr
i=1 Ni. Let fi j be the variable that takes a value 1 if task, t j, is assigned to robot, ri, and 0

otherwise. Let ai j ∈ R be the payoff for the assignment pair (ri, t j), i.e., for assigning robot ri to
task t j. The objective in MRAP is to assign all tasks to robots to maximize the total payoff.

Task Group Constraint (TAG): The task set T is divided into ns disjoint groups/subsets
{T1, . . . ,Tns} so that ∪ns

i=1Ti = T , and each robot can perform at most one task from each sub-
set.

Online Multi-robot Assignment Problem with Task Group Constraint Combining the TAG
constraint with MRAP, the online task allocation (OTA) problem is:
Problem 2 Given nr robots, ns disjoint subsets of tasks that arise one at a time, assign robots
to the dynamically-arising subsets of tasks (as they arise with no modification of assignments
later), such that the total payoffs of robot-task assignment is maximized. Each task is performed
by one robot, and each robot ri performs at most one task from each subset and at most Ni tasks
in the whole mission.

Problem 2 can be written as an Integer Linear Programming (ILP) problem:

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (9.1)

∑
t j∈Tk

fi j ≤ 1, ∀i,k : i = 1, . . . ,nr,k = 1, . . . ,ns (9.2)

nt

∑
j=1

fi j ≤ Ni, ∀i = 1, . . . ,nr (9.3)

fi j ∈ {0,1}, ∀i, j (9.4)

The above objective function is the total payoff of all assignments. Constraint (9.1) implies that
each task can be done by exactly one robot and all tasks must be performed. Constraint (9.2) and
(9.3) mean that each robot can perform at most one task from each subset, and at most Ni tasks
in the whole mission.

The problem OTA shares the same ILP formulation as its offline counterpart studied in Chap-
ter 4. However, here the payoffs ai j are not revealed to robots beforehand, and instead, the payoff
information related to tasks in subset Tk, {ai j|t j ∈ Tk}, is revealed to robots only after all preced-
ing subsets of tasks have been performed. In other words, robots get the payoff information

103

{ai j|t j ∈ Tk} for round k (k ∈ {1,2, . . . ,ns}), at the beginning of the round. Note that if ns = nt ,
i.e., each subset contains only one task, constraint (9.2) can be removed since (9.3) would imply
(9.2). Thus, the online MWBMP [31, 35] (where Ni = 1,∀i) and online transportation prob-
lem [32] are special cases of our problem.
Payoff Constraints: Following the online MWBMP literature [31, 35], we assume that the pay-
offs {ai j} are nonnegative:

ai j ≥ 0,∀i, j (9.5)

and satisfy the inequality below:

ai1 j1 +ai2 j1 ≥ |ai1 j2−ai2 j2 |,∀i1, i2, j1, j2, (9.6)

which means that the payoff difference of assigning any two robots to any task, is bounded by
the payoff sum of assigning the same two robots to any task. This condition has an intuitive
geometric interpretation. If we associate a point in a metric space with each robot and each task,
and assume ai j to be the Euclidean distance between robot ri and task t j, then the above inequal-
ity (9.6) can be derived from the triangle inequality in the metric space. We use this intuition later
to generate payoffs that satisfy inequality (9.6) for our simulations in Section 9.5. Note that the
geometric interpretation above unnecessarily means that the payoff equals to physical distance
between robots and tasks, instead it provides an intuitive geometric interpretation of the assumed
payoff constraint (9.6).

Note that the inequality (9.6) does not give any bound on the ratio of minimum possible to
maximum possible payoff, which can be arbitrarily high. If the payoff constraints (9.5) and (9.6)
are removed, any online algorithm (either deterministic or randomized algorithms) would lead to
arbitrarily bad solution in the worst case (please see [42] for the proof details).
Constraints of Task Group Size: Depending on the size of Ni and the number of tasks in each
group (or task group size), Problem 1 may not have a feasible solution, i.e., there may be tasks
that remain unassigned. Let the sequence of task group sizes that arise during OTA be called a
task profile. In this chapter, we are interested in task profiles where there is a feasible assignment.
An algorithm that is guaranteed to find a feasible solution if one exists is called a complete
algorithm. As we will show later, for OTA, any algorithm that is complete performs arbitrarily
bad in the worst case. We will now present some sufficient conditions on the task profile under
which we can guarantee feasible task allocation. We call this constraint the Step Constraints of
Task Subset Size (SCTSS).

Suppose that we have sorted the initial budgets of all robots in the ascending order: N1≤ . . .≤
Nnr . The SCTSS is as follows: The size of the kth task subset, |Tk|, should satisfy |Tk| ≤ nr− i
when Ni < k ≤ Ni+1, where N0 = 0.

The SCTSS defined above is consistent with the implicit constraints of Problem 2 that the
size of each subset must be not bigger than the number of robots, i.e.,

|Tk| ≤ nr,∀k = 1, . . . ,ns (9.7)

Furthermore, the step constraints extend the implicit constraint (9.7) to guarantee that when each
subset of tasks Tk arises, there always exist sufficient number of different robots with non-zero
remaining budget to be assigned to tasks in the subset, as proved below.

104

Figure 9.1: Illustration of step constraints of task subset size. If the subset size at each round is
under the step bounds, the step constraints are satisfied.

Lemma 10 Step Constraints of Task Subset Size are sufficient to guarantee that any algorithm
(which assigns different robots to tasks in each subset) would lead to a feasible solution, regard-
less of the task payoff profile.

Proof: Denote n(k)r as the number of robots with non-zero budget when task subset Tk arises.
First, we observe that it is impossible to exhaust robot ri’s budget before TNi+1 arises. So ∀i,
when k ∈ (Ni,Ni+1], robot ri+1,ri+1, . . . ,rnr must still be available to be assigned to one task in
Tk. So n(k)r ≥ nr− i. From definition of SCTSS, |Tk| ≤ nr− i. We get that n(k)r ≥ |Tk|, which means
when each subset of tasks Tk arises, there always exist sufficient number of different robots with
non-zero remaining budget to be assigned to tasks in the subset. So any algorithm, which assigns
different robots to tasks in each subset, would lead to a feasible solution.�

Note that since the size of each subset is 1 in [31, 32, 35], any algorithm gives a feasible
solution. In Problem 2, finding a feasible solution depends on the initial budget of robots and the
size of each task subset, and it is independent of the payoff profile. The SCTSS guarantees that
any algorithm would give a feasible solution. We will now show that using a greedy repeated
auction heuristic to solve the OTA problem gives a solution within certain ratio of the optimal
off-line solution, for any profile of payoffs and subset sizes (satisfying step constraints) in the
worst case.

9.3 Greedy Auction Online Algorithm

In this section, assuming that the constraints on the payoffs and task profiles hold, we present
an online algorithm using greedy auction heuristic, and prove that the algorithm can achieve a
competitive ratio of 1+max(2,α), where α is the minimum of the maximum budget of a robot
and the maximum task group size. Subsequently, in Section 9.4, we prove that if there exist
no constraints of task subset size (except that the size of each subset is less than the number of

105

robots), an online algorithm for OTA is complete, if and only if it uses the highest-budget heuris-
tic. However, in the worst case, such online algorithm can still lead to very bad performance
compared to the optimal offline solution.

The basic idea of the greedy auction heuristic is as follows: for each dynamically arising
group of tasks (i.e., during each round), use auction algorithm to assign robots with non-zero
budgets (the budget of robot ri is the number of remaining tasks that can be assigned to ri) to
tasks. This guarantees that the total payoffs gained by the selected robots would be almost-
optimal among all possible assignments using available robots at that round [41].

The payoff information related to tasks in the kth round, Tk, is revealed to the robots at the
beginning of of round k, and we want to match n(k)r robots (the number of robots with non-zero
remaining budget at step k, n(1)r = nr) to |Tk| tasks through a market auction mechanism, where
each robot is an economic agent acting in its own best interest. Although each robot ri wants to
be assigned to its favorite task, the number of tasks in each subset is not bigger than the number
of robots according to (9.1) and (9.2), and the different interest of robots will probably cause
conflicts. This can be resolved through the auction mechanism of bidding for tasks. In round k,
the robots iteratively bid for the tasks in the set Tk. The price for task t j at iteration t is p j(t),
which is the highest bid from robots at iteration t, and the robot assigned to the task must pay
p j(t). Thus, at iteration t the net value of task t j to robot ri is ai j− p j(t). During each iteration,
every unassigned robot bids for the task with the highest net value to it, which increases the task
price. The iterative bidding from robots leads to the evolution of p j(t), which can gradually
resolve the interest conflicts among robots and lead to almost-optimal solution of the overall
assignment.

So, for each round, k, we can use the auction algorithm for n(k)r robots to be assigned to
|Tk| tasks. Since n(k)r ≥ |Tk| (according to Lemma 10), we need to add n(k)r − |Tk| virtual tasks
with small equal payoffs to all robots. The requirement that each robot must know the current
price p j(t) for all task t j during bidding implies the existence of a centralized auctioneer or a
shared memory for all robots to access. In [17, 41, 65], for a connected multi-robot network, the
auction algorithm has been combined with a maximum consensus technique so that the algorithm
becomes totally distributed without any centralized auctioneer. During each iteration t, each
robot, ri, in the connected network locally maintains and updates a list of current highest bids,
pi

j(t), for each task, t j, from its own neighborhood Nri:

pi
j(t) = max

r`∈Nri

p`j(t−1)

This highest bid is used as local price of tasks. Since the network is connected, the global highest
bids eventually propagates to all robots so that the solution quality remains the same as that of
original auction algorithm.

A single iteration of the auction algorithm for each robot ri at round k is described in Algo-
rithm 9. All robots run copies of Algorithm 1 sequentially. The algorithm terminates when all
robots have been assigned to their tasks (i.e., P = pi

I(t+1) for each robot ri when its turn comes).

Algorithm 9 can be summarized as follows. First, robot ri updates its local price list of all
tasks by maximizing the price of each task in the lists of its neighbors (lines 2 to 5). Then, it

106

Algorithm 9 Auction Iteration for Robot ri with non-zero Budget at Step k
1: Input: Tk, ai j, p`j(t) for all j, ` : t j ∈ Tk,rl ∈Nri ,

< I,P > // I: index of the task assigned to ri during
// ri’s previous iteration;
// P: the corresponding bidding price from ri

2: // Update the local highest bid information:
3: for all t j ∈ Tk do
4: pi

j(t +1) = maxr`∈Nri
p`j(t)

5: end for
6: // Update the assignment information:
7: if P < pi

I(t +1) then
8: // another robot has bid higher than ri’s previous bid
9: Set I and P to be zero

10: // Collect information for new bids
11: Denote v j(t +1) = ai j− pi

j(t +1) // value of t j to ri
12: Select the best candidate task t j∗k

from Tk, where j∗k = argmax j∈Tk v j(t +1)
13: Store the index of second best candidate from Tk:

j′k = argmax j∈Tk, j 6= j∗k
v j(t +1)

14: // Start new bids
15: Bid for t j∗k

with price:
16: b j∗k

= pi
j∗k
(t +1)+ v j∗k

(t +1)− v j′k
(t +1)+ ε

17: // Update assignment information and price information:
18: Set I = j∗k , P = b j∗k
19: Set pi

j∗k
(t +1) = b j∗k

20: end if

updates its assignment information from its previous iteration, since other robots may bid higher
price for its assigned task after its previous iteration (lines 6 to 9). If that is the case, the previous
assignment of task tI for ri will be broken and ri makes a new bid. During the bidding part of
Algorithm 9 (lines 10 to 20), robot ri bids for the task with the best values from the current
subset Tk. This guarantees that after the iteration, all constraints in the problem are satisfied: (a)
robot ri is assigned to one task of the subset since it either switches to a new task or its previous
assignment is unchanged (please note we have introduced some virtual tasks to the subset, ri
is in fact assigned to at most one task of the subset); (b) each task is assigned to at most one
robot, because each task either does not change assignment status (assigned to previous robot or
remains unassigned) or switch from the previous assigned robot to robot ri. The bidding price
for the task is at least ε bigger than its price at the beginning of the iteration: since j∗k is the best
candidate task in Tk, j′k is the second best in Tk,

b j∗k
− p j∗k

(t +1) = v j∗k
(t +1)− v j′k

(t +1)+ ε ≥ ε

. Thus, the task receiving ri’s bids must be assigned to ri at the end of the iteration. The rule for
setting the bidding value of b j∗k

is related to the proof of optimality of the algorithm (please refer
to [8] for details).

107

The auction algorithm during each round, k, guarantees a almost-optimal assignment for that
round. 1 However, repeatedly applying the algorithm for each round of tasks does not guarantee
that the whole assignment is optimal. We now present the competitive ratio of the repeated
auction algorithm. Let α = min(maxi Ni,maxk |Tk|).
Theorem 12 Under the step constraints of task subset size, the online sequential auction algo-
rithm, alg1, will output an assignment solution for OTA with total payoff A ≥ 1

1+max(2,α)A
∗ in

the worst case, where A∗ is the solution by the optimal algorithm O for OTA after all payoff
information has been revealed.
Proof: Suppose that we have relabeled the tasks so that the assignment by alg1 is (ri, ti). Let’s
consider an assignment (ri, ti) at step k. Suppose that algorithm O assigned the task ti to a
different robot ri′ . Below we need prove that the payoff difference between aii and ai′i, by
assignments of alg1 and O, are not too big.

Assume that ri′ is different from ri. When we consider the assignment of task ti by algorithm
alg1, it can be divided into four cases depending on the assignment status of ri′ in the procedure
by alg1 at the time of ti’s assignment:
(a) robot ri′ still has non-zero budgets by alg1 and it is not assigned to any other tasks in Tk by
alg1: in this case, we know that aii ≥ ai′i, otherwise the auction algorithm would have assigned
ri′ to ti. If all assignments of alg1 and O belong to this case, then A = ∑i aii ≥ ∑i′ aii′ = A∗

(b) robot ri′ still has non-zero budgets by alg1 and it is assigned to another task ti′ in Tk by alg1:
in this case, aii + ai′i′ ≥ aii′ + ai′i. Since aii′ ≥ 0, we have ai′i− aii ≤ ai′i′ . If all assignments of
alg1 and O belong to this case, we have that A∗ = ∑i ai′i ≤ ∑i aii +∑i′ ai′i′ = 2∗A. So A≥ 1

2A∗

(c) robot ri′ has exhausted all its budgets by alg1, so it must be assigned to other tasks before the
subset |Tk| arrives. Suppose that ri′ was assigned to a task ti′ in Tk′ , there can be two cases:
(c.1) robot ri is also assigned to a task t j in Tk′; using the metric constraints,

ai′i−aii ≤ min(ai′i′+aii′,ai′ j +ai j)

≤ 1
2
(ai′i′+aii′+ai′ j +ai j)

According to the property of auction algorithm, aii′+ai′ j ≤ ai′i′+ai j, so

ai′i−aii ≤
1
2
(ai′i′+aii′+ai′ j +ai j)

≤ 1
2
(2(ai′i′+ai j))

= ai′i′+ai j

So summing over each task ti on the left would lead to sum over each task ti′ and t j on the right,
corresponding to task ti,

∑
i
(ai′i−aii)≤∑

i′
ai′i′+∑

j
ai j

When i traverses through all tasks, i′ would also traverse all tasks, so ∑i′ ai′i′ = A.

A∗ ≤ 2A+∑
j

ai j

1For simplicity of discussion, we can assume that the assignment is optimal, since it won’t change the following
results.

108

, where each t j corresponds to each task ti. Now consider at most how many times a specific ai j
can repeat in ∑ j ai j, which is bounded by how many times the robot ri′ can be assigned to a task
in |Tk′|: Since each robot i can be assigned for at most Ni− 1 times by alg1 to other tasks than
ti, and this case can be bounded by the largest size of a subset |Tk′| − 1 (recall that ri has been
assigned to t j in Tk′), so a single specific ai j can repeat at most min(maxi(Ni−1),maxk(|Tk|−1))
times in ∑ j ai j. So ∑ j ai j ≤ A∗min(maxi(Ni−1),maxk(|Tk|−1)). So A≥ 1

1+α
A∗

(c.2) robot ri was not assigned to any task in Tk′: using metric constraints, we have that ai′i−aii≤
aii′+ai′i′ . Besides, according to the property of auction algorithm, aii′ ≤ ai′i′ . So ai′i−aii ≤ 2ai′i′ .
If this case is general, then ∑i(ai′i−aii)≤ 2∑i′ ai′i′ , which means A∗=∑i ai′i≤∑i aii+2∑i′ ai′i′ =
3∗A. So A≥ 1

3A∗.
Since ∀ti, at the time of assignment of task ti, it must belong to one case above. We get that

A≥min(1, 1
2 ,

1
1+α

, 1
3)A
∗. So the competitive ratio of the greedy auction algorithm is 1

1+max(2,α) .
�

Note that this result is consistent with the result in [31, 35], where maxi Ni = maxk |Tk|= 1.
The competitive ratio is independent of the number of robots or the number of tasks. Further-
more, when either the size of the task groups or the maximum budget of a robot is constant, the
competitive ratio is constant. For example, when the number of tasks in each group is 2 and/or
each robot can perform at most 2 tasks, the competitive ratio of the algorithm becomes 1

3 .

9.4 Highest Budget Heuristic for OTA

In this section, we present the highest budget heuristic (HBH) and show that when the assump-
tions regarding the task sizes in each group is removed, any online algorithm is complete (i.e.,
the algorithm is guaranteed to find a feasible solution if one exists) iff it uses the HBH. Let Tk
be the task set for round k. In the HBH, during each round k, the tasks are assigned to the robots
with the top |Tk| remaining budgets. As there can be multiple robots with the same remaining
budgets, there can be different variations of HBH heuristic depending on how ties are broken.
For example, if there are more than |Tk| candidate robots, then we can assign the robots randomly
to the task or use an auction algorithm for the assignment.

Theorem 13 Any online algorithm is complete for OTA iff it uses the highest-budget heuristics
(HBH).

Proof: Below we provide a sketch of the proof. For the necessary condition, consider the step k0
when an online algorithm A starts not to use HBH. We can construct an instance so that during
each following step k > k0,the size of task subset equals n(k)r by HBH, i.e., the number of robots
with non-zero budgets. In this instance, HBH can find a feasible solution, while A cannot since
A would exhaust a robot (which A assigns a task to at step k) at certain step ki earlier than HBH,
and thus becomes infeasible at step ki +1.

For the sufficient condition, the key idea here is that HBH online algorithm would maximize
the number of robots with non-zero remaining budgets, n(k)r at each step k. The reason is that
during each step, whenever a robot with lower budget is assigned, HBH would guarantee that the
robots with higher budget must also be assigned. So when a robot ri is exhausted by HBH at step

109

k, modifying previous assignments of HBH cannot transfer the budgets of robots with budgets
bigger than 1 at step k to robot ri and thus cannot increase n(k)r .�

Theorem 14 Without constraints of task subset size, any complete online algorithm (i.e., algo-
rithms using HBH) has arbitrarily bad performance in the worst case.

Proof: We prove this theorem by constructing a worst-case example below. Consider robots
{r1,r2, . . .rn}, where N1 = n+ 1, while N2 = . . . = Nn = 1; task subsets arrive in the order of
{t1},{t2}, . . . ,{t2n}. Suppose ∀t j : j ≤ n, the payoffs a1 j = 0,ai j = 1(∀i 6= 1); ∀t j : j ≥ n+ 1,
the payoffs a1 j = 1,ai j = 0(∀i 6= 1). So HBH would assign tasks t1, t2, tn+1 to r1 and the rest
of tasks to other robots, with total payoffs 1, while the optimal offline solution would assign
tasks t1, t2, tn−1 to r2, . . . ,r2n and the rest of tasks to r1, leading to total payoffs 2n− 1. So the
competitive ratio is 1

2n−1 , which would become very bad with the number of tasks increasing.
Note that the ratio is not bounded by the budget of robot r1, since we can add any number of
robots with same payoffs as r1 to average the total budgets of r1. �

Theorems 13 and 14 together imply that although HBH is complete, there is no worst case
performance guarantee.

9.5 Simulation Results
In Section 9.3, we designed Algorithm 9 for the OTA problem, and proved its performance
guarantee in worst case. In this section, we run simulations on a synthetic example to check
how Algorithm 9’s average solution quality is compared to the almost-optimal off-line solution
achieved in [41] with control parameter ε = 0.1.

Consider nr = 20 robots, each robot needs to perform Ni = 3 tasks from a set of nt = 60 tasks.
The task set T can be divided into ns = 22 disjoint subsets, with 3 tasks in the first 18 subsets,
2 tasks in the following 2 subsets and 1 task in the last 2 subsets. The size of task subsets are
designed so that any algorithm would lead to a feasible solution. To ensure that the payoffs ai j we
generate satisfy constraints (9.5) and (9.6), we first randomly generate some points (representing
robots and tasks) in a two-dimensional 10×10 square, then use the distance between each robot
and each task as the payoff of assigning the robot to the task. The points are generated as shown
in Figure 9.2: the positions of a half robots are randomly generated in square A, while those of
the other half in B, and the positions of a half tasks in earlier subsets are randomly generated
in square C while those of the other half in later subsets in A. The parameter u is designed
here to represent the uniformity of payoff distributions. When we change u from 0.01 to 10,
the uniformity of payoff distribution increases. We generate 100 random samples for each value
of u, and compute the mean and standard deviation of performance ratio of the online greedy
auction algorithm over the optimal offline solution, as shown in Figure 9.3.

In Figure 9.3, we find that if the payoff distribution is uniform (e.g., u = 10), the performance
of greedy auction algorithm would be very close to that of optimal off-line solution. The reason
is that when the payoff distribution is uniform, each robot would have the same expected payoffs
towards dynamically-arising tasks, so the optimal offline algorithm would do almost the same
assignments as the greedy auction algorithm, since there is no need to sacrifice the payoffs of
earlier assignments in hope of gaining more from later assignments. However, when u decreases,

110

Figure 9.2: The illustration of how we generate the payoffs between robots and tasks. The
coordinates of end points of A: a1 = (0,0), a2 = (u,u); B: b1 = (10−u,10−u), b2 = (10,10);
C: c1 = (4.5− 0.45u,4.5− 0.45u), c2 = (4.5+ 0.55u,4.5+ 0.55u). When u = 10, A, B and C
would become the whole 10× 10 square. The arrows represent the expanding directions of the
square A,B,C with parameter u increasing.

(i.e., the payoff distribution becomes more and more nonuniform), the performance ratio rapidly
decreases, and approaches to 1

3 when u is as small as 0.1, which is consistent with the conclusion
of Theorem 12.

To see the effect of the term α = min(maxi Ni,maxk |Tk|) in the performance bound of The-
orem 12, we also test different Ni (or maxk |Tk|) values (for simplicity, we set Ni = maxk |Tk| in
our examples). However, the results do not change with different Ni (or maxk |Tk|) as shown
in Figure 9.3 (three examples Ni = 2,3,5 are shown in the figure, and by Theorem 12 their
corresponding competitive ratio lower bounds are 1

3 , 1
4 , and 1

6 , respectively). There are two pos-
sible reasons: first, the third case (c.1) in the proof of Theorem 12, which leads to the term
min(maxi Ni,maxk |Tk|), might statistically rarely exist if we randomly generate the payoffs as
described above although there might exist few samples in the worst case analysis; second, the
bound we proved in Theorem 12 might not be tight.

9.6 Summary
In this chapter we introduced the online multi-robot task assignment problems (OTA), where
tasks arrive in groups and have group constraints when assigning them to robots (i.e., each robot
ri can perform at most one task from each group and at most Ni tasks in the whole mission). The
task group constraints distinguish our work from, and generalize previous theoretical work in
online weighted bipartite matching [31, 35]. We further assume constraints of payoffs and task
subset sizes, and design online algorithm based on greedy auction heuristic to achieve perfor-

111

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter u

P
er

fo
rm

an
ce

 R
at

io

Ni = 2

Ni = 3

Ni = 5

Figure 9.3: The performance ratio of the solution by online greedy auction algorithm over the
optimal off-line solution changes with the parameter u, representing the uniformity of payoff
distribution.

mance guarantee using competitive analysis. The competitive ratio is independent of the number
of robots and tasks, and becomes a constant, assuming that either the size of each task group or
the budget of each robot is bounded by some constant. Meanwhile we also show two negative
results of OTA problem (a) without the assumptions on the payoffs, it is impossible to design
an online algorithm with any performance guarantee and (b) without the assumption on the task
group size profile, any complete algorithm must use highest budget heuristic, which has arbitrar-
ily bad performance in the worst case. Additionally, we present simulation results depicting the
average case performance of the repeated greedy auction algorithm.

112

Chapter 10

Conclusion

In this thesis we study the constrained multi-robot linear task assignment problems and con-
strained multi-robot generalized task assignment problems. The goal of the work is to design
distributed algorithms with provable performance guarantee for the problems. For constraints
on/among tasks, we have analyzed the specific task group constraints, task deadline constraints,
general task group constraints, where each robot can be assigned to a limited number of tasks
from each task group. For constraints on robots, we have considered the robot budget constraints
in the form of both linear task assignment and generalized assignment. In linear task assign-
ment, the number of tasks each robot can perform is bounded. In generalized assignment, the
total resource consumed by the assigned tasks is bounded by the resource of each robot. The con-
strained linear assignment problem is polynomial solvable, while constrained generalized assign-
ment problem is NP-hard. We have developed distributed algorithms for the static constrained
problem with task group constraints, task deadline constraints, and robot budget constraints in
the form of both linear assignment and generalized assignment. We also developed distributed
algorithms for online linear task assignment with task group constraints.

In the static constrained multi-robot task assignment problems, we have designed a dis-
tributed algorithm framework to achieve almost optimal solutions. We can adjust a control pa-
rameter so that the solution can arbitrarily approach the optimal solution to satisfy predefined
solution performance requirement, but at cost of increasing computational time. This algorithm
is an extension of Bertsekas’ auction algorithm for solving unconstrained linear assignment prob-
lem [8].

In the static generalized multi-robot task assignment problems, we consider both the un-
constrained and constrained version. For the static unconstrained multi-robot generalized task
assignment problem, we design provably-good decomposition-based distributed algorithm for
these problems with task group constraints or task deadline constraints. In our distributed auction-
based algorithms, each robot can bid for its own tasks by solving a knapsack sub-problem as
subroutine. We show that our algorithm provides an 1+α approximate solution assuming that
the knapsack problem is solved by an algorithm with approximation ratio α ∈ [1,+∞). For the
constrained multi-robot generalized task assignment problems with task group constraints and
task deadline constraints, we show that the same distributed algorithm design framework with
the same task price update rule could be applied. The only difference is that the single robot
optimization algorithm changes from knapsack problem to knapsack problem with extra task

113

constraints.
In the online constrained multi-robot task assignment problem with task group constraints,

we did competitive analysis for the online distributed greedy algorithm. The task group con-
straints distinguish our work from, and generalize previous theoretical work in online weighted
bipartite matching [31, 35]. We prove that when the objective is to maximize the total payoffs,
the solution performance of the online greedy algorithm is bounded by an approximate ratio of
the optimal offline solution performance, assuming two technical conditions of payoff structure
and task group size structure. The approximate ratio depends on the task group size and robot
budgets, but is independent of the number of robots or tasks. Meanwhile we also show two
negative results: removing either of the two technical conditions, any algorithm would lead to
arbitrarily bad solution in the worst case.

Future Work: As potential future direction, we will work on other basic assignment models,
such as combinatorial assignment, quadratic assignment problem with traveling salesman prob-
lem as a special case, and design distributed algorithms with provable performance guarantees.
We will extend our work to address the payoff uncertainty using not only the mean value of uncer-
tain payoff distributions, but also considering variance of the distributions. Assignment problem
is a fundamental problems across different research areas, we are also interested in extending the
work to different applications beyond robotics with extra new features.

114

Bibliography

[1] URL http://www.turtlebot.com. 4.7.1

[2] M. Akan and B. Ata. Bid-price controls for network revenue management: Martingale
characterization of optimal bid prices. Mathematics of Operations Research, 34(4):912–
936, 2009. 2

[3] M. Alighanbari and J.P. How. A robust approach to the uav task assignment problem.
International Journal of Robust and Nonlinear Control, 18(2):118–134, 2008. 2.1, 2.2

[4] M. Alighanbari, L.F. Bertuccelli, and J.P. How. A robust approach to the uav task as-
signment problem. In IEEE Conference on Decision and Control (CDC), pages 13–15,
December 2006. 2.1, 2.2

[5] E. M. Arkin and R. Hassin. On local search for weighted k-set packing. Mathematics of
Operations Research, 23(3):640–648, 1998. 2

[6] M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation
problems. Management Science, 10(3):578–593, 1964. 4.2

[7] C. Bererton, G. Gordon, S. Thrun, and P. Khosla. Auction mechanism design for multi-
robot coordination. In NIPS, 2003. 4.2

[8] D. P. Bertsekas. The auction algorithm: A distributed relaxation method for the assignment
problem. Annals of Operations Research, 14:105–123, 1988. 1, 1.1, 2, 2.1, 2.2, 4.1, 4.1,
4.2, 4.4.1, 4.4.2, 4.5, 4.8, 5.3.2, 9.3, 10

[9] D. P. Bertsekas. The auction algorithm for assignment and other network flow problems: A
tutorial. Interfaces, 20(4):133–149, 1990. 2, 4.1, 4.2, 4.4.2, 5.1, 5.3

[10] D. P. Bertsekas and D. A. Castanon. The auction algorithm for transportation problems.
Annals of Operations Research, 20:67–96, 1989. 2, 4.1, 5.1

[11] Jacek Blazewicz. Solving the resource constrained deadline scheduling problem via reduc-
tion to the network flow problem. European Journal of Operational Research, 6(1):75 –
79, 1981. 5.1

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
4.4.2, 6.3.2

[13] B. Brummit and A. Stentz. Dynamic mission planning for multiple mobile robots. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, April 1996.
2.1, 2.2

[14] B. Brummit and A. Stentz. Grammps: A generalized mission planner for multiple mobile

115

http://www.turtlebot.com

robots. In Proceedings of the IEEE International Conference on Robotics and Automation,
May 1998. 2.1, 2.2

[15] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Society for Industrial
and Applied Mathematics, 2009. 1, 2, 4.1, 4.1, 4.2, 5.1, 7.1, 7.2

[16] Chandra Chekuri and Sanjeev Khanna. A ptas for the multiple knapsack problem. In
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, SODA
’00, pages 213–222, 2000. 7.1

[17] H.-L. Choi, L. Brunet, and J. How. Consensus-based decentralized auctions for robust task
allocation. IEEE Transactions on Robotics, 25(4):912–926, 2009. 1, 2, 2.1, 2.2, 4.2, 5.1,
5.3.2, 9.3

[18] Reuven Cohen, Liran Katzir, and Danny Raz. An efficient approximation for the general-
ized assignment problem. Information Processing Letters, 100:162–166, 2006. 5.1, 7.1

[19] T. S. Dahl, M. J Mataric, and G. S. Sukhatme. Multi-robot task allocation through vacancy
chain scheduling. Journal of Robotics and Autonomous Systems, 97(6), 2009. 2.1, 2.2

[20] M. B. Dias and A. Stentz. A free market architecture for distributed control of a multirobot
system. In 6th International Conference on Intelligent Autonomous Systems (IAS-6), pages
115 – 122, July 2000. 2, 2.1, 2.2, 4.2

[21] M. B. Dias and A. Stentz. Opportunistic optimization for market-based multirobot control.
In IROS, pages 2714 – 2720, September 2002. 2.1, 2.2

[22] M. B. Dias, M. Zinck, R. Zlot, and A. Stentz. Robust multirobot coordination in dynamic
environments. In Proceedings of 2004 IEEE International Conference on Robotics and
Automation, volume 4, pages 3435 – 3442, 2004. 4.2

[23] M.B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordination: A
survey and analysis. Proceedings of the IEEE, 94(7):1257 –1270, jul. 2006. 2, 4.2, 4.7.4

[24] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. Tight
approximation algorithms for maximum general assignment problems. In Proc. of ACM-
SIAM SODA, pages 611–620, 2006. 5.1, 7.1

[25] B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for multirobot coordination. IEEE
Transactions on Robotics, 18(5):758–768, October 2002. 2, 2.1, 2.2, 4.2, 9.1

[26] B. P. Gerkey and M. J. Mataric. A formal analysis and taxonomy of task allocation in
multi-robot systems. International Journal of Robotics Research, 23(9):939–954, 2004. 1,
2, 4.1, 4.2, 9.1

[27] A. V. Goldberg, E. Tardos, and R. E. Tarjan. Paths, Flows and VLSI-Design (eds. B. Korte,
L. Lovasz, H.J. Proemel, and A. Schrijver), chapter Network Flow Algorithms, pages 101–
164. Springer Verlag, 2009. 1, 2, 4.4.1, 4.4.1, 5.1, 5.3, 5.3.1, 5.3.1

[28] L. B. Johnson, S. S. Ponda, H. Choi, and J. P. How. Improving the efficiency of a de-
centralized tasking algorithm for uav teams with asynchronous communication. In AIAA
Guidance, Navigation, and Control Conference, August 2010. 2.1, 2.2, 4.2

[29] L. B. Johnson, S. S. Ponda, H. Choi, and J. P. How. Asynchronous decentralized task

116

allocation for dynamic environments. In Proceedings of the AIAA Infotech@Aerospace
Conference, March 2011. 2.1, 2.2, 4.2

[30] N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A market-based framework for planned
tight coordination in multirobot teams. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 1170 – 1177, April 2005. 2, 2.1, 2.2, 4.2

[31] B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms, 14:478–488,
May 1993. 2, 2.1, 2.2, 4.2, 9.1, 9.2.1, 9.2.1, 9.3, 9.6, 10

[32] B. Kalyanasundaram and K. R. Pruhs. The online transportation problem. SIAM J. Discret.
Math., 13:370–383, May 2000. 9.2.1, 9.2.1

[33] David Karger, Cliff Stein, and Joel Wein. Algorithms and theory of computation handbook.
chapter Scheduling Algorithms. 1997. 5.1

[34] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004. 7.1, 7.2,
7.3.1

[35] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science, 127(2):255–267, 1994. 2.1,
2.2, 9.2.1, 9.2.1, 9.3, 9.6, 10

[36] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics,
2(1-2):83–97, March 1955. 1, 2, 4.1, 4.2, 5.1

[37] M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt, S. Koenig, C. Tovey,
A. Meyerson, and S. Jain. Auction-based multi-robot routing. In Robotics Science and
Systems, 2005. 2, 2.1, 2.2, 4.2

[38] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarı́c. Analysis of dynamic task allocation
in multi-robot systems. International Journal of Robotics Research, 25:225–241, March
2006. 2.1, 2.2

[39] L. Liu and D. A. Shell. Assessing optimal assignment under uncertainty: an interval-based
algorithm. International Journal of Robotics Research, 30:936–953, 2011. 2

[40] L. Liu and D. A. Shell. A distributable and computation-flexible assignment algorithm:
From local task swapping to global optimality. In Robotics: Science and Systems, 2013.
4.2

[41] L. Luo, N. Chakraborty, and K. Sycara. Multi-robot assignment algorithms for tasks with
set precedence constraints. In Proceedings of IEEE International Conference on Robotics
and Automation, 2011, May 2011. 2.1, 2.2, 4.1, 4.2, 5.1, 5.3, 5.3.2, 5.3.3, 5.4, 7.3.4, 9.1,
9.3, 9.5

[42] L. Luo, N. Chakraborty, and K. Sycara. Competitive analysis of repeated greedy auction
algorithm for online multi-robot task assignment. In Proceedings of IEEE International
Conference on Robotics and Automation, 2012, May 2012. 2, 2.1, 2.2, 4.2, 9.1, 9.2.1

[43] L. Luo, N. Chakraborty, and K. Sycara. Distributed algorithm design for multi-robot task
assignment with deadlines for tasks. In Proceedings of IEEE International Conference on
Robotics and Automation, 2013, May 2013. 4.2, 5.1

117

[44] L. Luo, N. Chakraborty, and K. Sycara. Distributed algorithm design for multi-robot gen-
eralized task assignment problem. In Proceedings of IEEE International Conference on
Intelligent Robots and Systems, 2013, Nov 2013. 7.1

[45] L. Luo, N. Chakraborty, and K. Sycara. Provably-good distributed algorithm for con-
strained multi-robot task assignment for grouped tasks. IEEE Transactions on Robotics,
2014. conditionally accepted. 4.1

[46] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas. Distributed multi-robot task
assignment and formation control. In Proc. IEEE Intl. Conf on Robotics and Automation,
pages 128–133, 2008. 1, 4.1

[47] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for
distributed constraint optimization. 2003. 4.7.4

[48] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed constraint
optimization with quality guarantees. 161:149–180, 2005. 4.7.4

[49] Alejandro R. Mosteo and Luis Montano. A survey of multi-robot task allocation. Technical
report, Instituto de Investigacin en Ingenierła de Aragn (I3A), 2010. 2, 4.2

[50] R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allocation in the robocup rescue simulation
domain: A short note. In RoboCup 2001: Robot Soccer World Cup V, pages 751–754,
London, UK, 2002. Springer-Verlag. 2, 4.2

[51] M. Nanjanath and M. Gini. Repeated auctions for robust task execution by a robot team.
Robotics and Autonomous Systems, 58:900–909, 2010. 2, 4.2

[52] S. Okamoto, P. Scerri, and K. Sycara. Allocating spatially distributed tasks in large, dy-
namic robot teams. In Submitted to International Conference on Intelligent Agent Technol-
ogy, 2011. 2, 4.2

[53] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–1533,
2004. 4.5

[54] L.E. Parker. Alliance: an architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation, 14(2):220 –240, apr 1998. 2, 2.1, 2.2, 4.2

[55] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1995. 5.1

[56] G.Terry Ross and RichardM. Soland. A branch and bound algorithm for the generalized
assignment problem. Mathematical Programming, 8:91–103, 1975. 7.1

[57] M.W.P. Savelsbergh. A branch-and-price algorithm for the generalized assignment prob-
lem. Operations Research, 45:831–841, 1997. 7.1

[58] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Allocating tasks in extreme teams. In
Proceedings of the fourth international joint conference on Autonomous agents and multi-
agent systems, AAMAS ’05, 2005. 2, 4.2

[59] T. Service and J. Adams. Coalition formation for task allocation: theory and algorithms.
Journal of Autonomous Agents and Multi-Agent Systems, 22:225–248, 2011. 4.2

118

[60] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assign-
ment problem. Math. Program., 62(3):461–474, December 1993. 7.1

[61] A. Stentz and M. B. Dias. A free market architecture for coordinating multiple robots.
Technical report, CMU Robotics Institute, 1999. 2, 2.1, 2.2, 4.2

[62] A. Stroupe. Collaborative execution of exploration and tracking using move value estima-
tion for robot teams (MVERT). PhD thesis, Robotics Institute, Carnegie Mellon University,
2003. 2

[63] L. Vig and J. A. Adams. Multi-robot coalition formation. IEEE Trasactions on Robotics,
22(4), 2006. 4.2

[64] A. K. Whitten, H.-L. Choi, L. Johnson, and J. P. How. Decentralized task allocation with
coupled constraints in complex missions. In American Control Conference (ACC), June
2011. 2, 2.1, 2.2, 4.2

[65] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A distributed auction algorithm for the
assignment problem. In Proc. 47th IEEE Conf. Decision and Control, pages 1212–1217,
2008. 1, 2, 2.1, 2.2, 4.1, 4.2, 4.5, 5.1, 5.3.2, 9.3

[66] Y. Zhang and L. Parker. Considering inter-task resource constraints in task allocation.
Journal of Autonomous Agents and Multi-Agent Systems, 26:389–419, 2013. 4.2

[67] X. Zheng and S. Koenig. Generalized reaction functions for solving complex-task alloca-
tion problems. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 2011. 2.1, 2.2

[68] R. Zlot and A. Stentz. Market-based multirobot coordination for complex tasks. Interna-
tional Journal of Robotics Research, 25(1):73–101, 2006. 2, 2.1, 2.2

[69] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer. Multi-robot exploration controlled by a
market economy. In ICRA, pages 3016 – 3023, May 2002. 2.1, 2.2

119

	1 Introduction
	1.1 Work Accomplished and Contributions
	1.2 Outline

	2 Related Work
	3 Distributed Algorithm Framework for Multi-robot Task Assignment
	3.1 Decomposition-based Approach
	3.2 Iterative Distributed Procedure
	3.2.1 Auxiliary Variable Design: Updating Task Price
	3.2.2 Distributed Implementation: Message Passing Mechanism

	3.3 Summary

	4 Multi-Robot Linear Task Assignment with Task Group Constraints
	4.1 Introduction
	4.2 Related Work
	4.3 Problem Statement
	4.3.1 Motivation

	4.4 Algorithm Design and Performance Analysis
	4.4.1 Centralized Solution: Reduction to network flow problem
	4.4.2 Distributed Solution: Auction-based Algorithm Design

	4.5 Totally Distributed Assignment Algorithm
	4.6 Extensions
	4.6.1 Relaxation of budget constraint
	4.6.2 Relaxation of task group constraint
	4.6.3 Dynamically Arising Tasks
	4.6.4 Uncertainty Analysis

	4.7 Simulation Results
	4.7.1 Example: Multi-robot Cooperative Package Transport
	4.7.2 Simulation with Randomly Generated Samples
	4.7.3 Comparison with centralized solution
	4.7.4 Comparison to Best-first Heuristics for distributed algorithm design

	4.8 Summary

	5 Multi-robot Linear Task Assignment with Task Deadline Constraints
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Algorithm Design and Performance Analysis
	5.3.1 Centralized Solution: Reduction to Network Flow Problem
	5.3.2 Basic Idea and Concepts of Auction Algorithm
	5.3.3 Auction-based Distributed Algorithm Design
	5.3.4 Performance Analysis

	5.4 Simulation Results
	5.5 Summary

	6 Multi-robot Linear Task Assignment with General Task Group Constraints
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Algorithm Framework and Performance Analysis
	6.3.1 Preliminary
	6.3.2 Distributed Algorithm Framework
	6.3.3 Performance Guarantee

	6.4 Summary

	7 Generalized Multi-robot Task Assignment
	7.1 Introduction
	7.2 Problem Formulation
	7.2.1 Motivation

	7.3 Algorithm Design and Performance Analysis
	7.3.1 Preliminary Concepts
	7.3.2 Auction-based Decentralized Algorithm Design
	7.3.3 Performance Analysis
	7.3.4 Distributed Implementation

	7.4 Simulation Results
	7.5 Summary

	8 Multi-robot Constrained Generalized Task Assignment
	8.1 Generalized Assignment with Task Group Constraints
	8.1.1 Problem Formulation
	8.1.2 Algorithm Design and Performance Analysis

	8.2 Task Assignment with Deadline Constraints and Different Task Durations
	8.2.1 Problem Formulation
	8.2.2 Algorithm Design and Performance Analysis

	8.3 Simulation Results
	8.4 Summary

	9 Online Multi-Robot Task Assignment with Task Group Constraints
	9.1 Introduction
	9.2 Problem Formulation
	9.2.1 Definition of the Problem OTA

	9.3 Greedy Auction Online Algorithm
	9.4 Highest Budget Heuristic for OTA
	9.5 Simulation Results
	9.6 Summary

	10 Conclusion
	Bibliography

