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Abstract

It is expected that the grid of the future differs from the current system by the increased

integration of distributed generation, distributed storage, demand response, power electron-

ics, and communications and sensing technologies. The consequence is that the physical

structure of the system becomes significantly more distributed. The existing centralized

control structure is not suitable any more to operate such a highly distributed system. This

thesis is dedicated to providing a promising solution to a class of energy management prob-

lems in power systems with a high penetration of distributed resources. This class includes

optimal dispatch problems such as optimal power flow, security constrained optimal dis-

patch, optimal power flow control and coordinated plug-in electric vehicles charging. Our

fully distributed algorithm not only handles the computational complexity of the problem,

but also provides a more practical solution for these problems in the emerging smart grid

environment. This distributed framework is based on iteratively solving in a distributed

fashion the first order optimality conditions associated with the optimization formulations.

A multi-agent viewpoint of the power system is adopted, in which at each iteration, every

network agent updates a few local variables through simple computations, and exchanges

information with neighboring agents. Our proposed distributed solution is based on the

consensus+innovations framework, in which the consensus term enforces agreement among

agents while the innovations updates ensure that local constraints are satisfied.
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Chapter 1

Introduction

This focus of this thesis is the provision of a distributed framework for addressing the

needs of future power grids. The emergence of advanced power electronic technologies,

abundance of local intelligence and communication capabilities, and ever increasing adop-

tion of scalable energy resources, e.g., distributed energy generation and energy storage

devices, have been shaping the paradigm of the future power grid. The operation of such a

grid relies on maintaining the harmony between operation of different controllable elements

of the system. The raising number of controllable elements increases the number of control

variables and the complexity of operation problems, hence, renders the conventional cen-

tralized control approaches incapable of coordinating all controllable devices. Motivated

by this need, this thesis focuses on addressing coordination challenges of the future grid

by leveraging the inherent distributed structure of the smart grid. To this end, we present

a distributed coordination solution for a class of optimal dispatch problems. This section

gives a background and motivation to solve these problems and presents a brief overview

of our contributions. Finally an outline of the thesis concludes this section.
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1.1 Background and Motivation

1.1.1 Transition to Smart Grid

In 2012, the electric energy demand in the US reached 3,800 billion kilowatt-hours and it is

expected to keep growing over the next decades. The majority of this demand is currently

supplied by dispatchable bulk power plants such as coal and nuclear plants, i.e., plants for

which the power output can be controlled to anywhere between zero and the capacity of

the plant. At every point in time, the electric power output of these plants is adjusted to

cover the instantaneous electric power demand as there is only very limited storage in the

system and load is considered to be mostly unadjustable. The future electric power grid,

which is commonly referred to as smart grid, is expected to differ from the current system

by the increased integration of the following technologies:

Distributed Generation: Power generation resources that include for example wind,

solar, or fuel cells tend to be of smaller capacity and therefore also more distributed across

the system. This goes as far as having a significant part of the generation connected at

the distribution system level.

Distributed Storage: With the increase in non-dispatchable generation resources such

as wind and solar generation, the overall variability and intermittency that needs to be

handled by dispatchable generation increases. At least part of this variability can be

balanced by locally added storage devices.

Demand Response: The concept of demand response relies on the fact that the time

instance of the consumption of part of the load can be shifted without inconveniencing

the customer. Incentives to achieve such shifting include real-time or time of use pricing

or various types of demand response programs, where customers receive rebates for being

flexible.

Power Electronics: Power electronics enables multiple of the above mentioned concepts
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and technologies, e.g., converter technologies are needed to connect Photovoltaic sources

or storage to the system. It is also the key enabler for adding flexibility to the transmission

grid via Flexible AC Transmission Systems (FACTS) and High Voltage DC (HVDC) lines

by which power can be routed actively throughout the grid.

Sensing and Communication Technology: The key component of a smart grid is the

deployment and usage of distributed sensing and communication technology to collect high

resolution data and exchange information with the intention of enabling intelligent decision

making. The overlay of the physical system with an extensive communication network is

what turns the power grid into a cyber-physical system.

The consequence of this transition from the operational perspective is that overall the

flexibility in the grid increases; but this also means that more control decisions need to be

made. This flexibility is vital not just for balancing the increased variability but also to

be able to handle the uncertainty inherent to the non-dispatchable generation resources.

A key question that needs to be answered is how the sensing and communication network

can be used efficiently to ensure a reliable and safe operation of the electric power grid

despite the increased challenges imposed on the supply side.

1.1.2 Current Operational Practices

The electric power system is a large scale system spanning multiple states, countries, and

even continents. The responsibility for the control of such a system is therefore shared

by multiple entities. This sharing of responsibility occurs on multiple dimensions: first

of all, the system is divided into geographical areas within which all the assets belong to

the same control area and are coordinated. Second, depending on if the system belonging

to a specific area is vertically integrated or part of an electricity market. In the first case

(vertically integrated), overseeing and controlling both generation and transmission is done

by a single entity and the chosen dispatch of the available generators is based on their cost
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effectiveness. In the latter case, the responsibility for operating the transmission grid and

generation is assigned to different entities. Moreover, in this case, generators and load

serving entities submit bids for production and consumption to a market. Decisions on

who is producing how much are made by the market operator. In both cases, the task of

optimally scheduling generation as well as other tasks within a control area are carried out

using an Energy Management System (EMS). The coordination among neighboring control

areas is generally done such that overall suboptimal solutions for generation dispatch result

because the areas agree on a flow on their tie lines and schedule the supply of the remaining

loads according to their dispatch procedure.

Moreover, the distribution side of the power system is experiencing a paradigm shift.

The conventional distribution grid was designed to deliver power from upstream to down-

stream, and ultimately to the end users. Given the conventional grid’s design and limited

number of controllable elements, a centralized control structure was suitable to cope with

the complexity of control and operation problems in a conventional environments. However,

in recent years the number of distributed energy resources including distributed generation

and intelligent and adjustable demand has increased significantly and ways need to be

found to handle the increasing number of control variables.

In this thesis we present consensus+innovations based distributed approaches to solve

functions that are part of the Energy Management System of a transmission grid or the

Distribution Management System of a distribution network. These functions fulfill impor-

tant tasks in the operation of the system to ensure reliable and cost-effective supply of

the demand. In what follows, we will apply the consensus+innovations framework to ob-

tain algorithmic procedures to address the optimal power flow (OPF), security constrained

optimal power flow (SCOPF), power flow control (PFC) and plug-in electric vehicles coordi-

nated charging (PEV-CC) problems that conform to the distributed multi-agent structure

of the system. The specifics of these distributed algorithms vary depending on the ap-
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plication/task, however, broadly speaking, these algorithms have a common structure in

which the network agents iterate over problem-specific local variables that are updated

from time-to-time using the information received from neighboring agents and local data.

1.2 Contribution

In this thesis, we study distributed energy management procedures with a view to address

the major challenges encountered in conventional grid operations. In particular, we focus

on a class of optimal power dispatch functions, including OPF, SCOPF, PFC and PEV-CC

problems, and provide distributed algorithmic procedures to achieve these functionalities.

We adopt a multi-agent formalism in which geographically distributed network entities are

designated as agents with local sensing, communication, and computation abilities. The

agent distinction is generic and varies from one application to the other. An agent may

correspond to a single generator/load/storage entity or may represent a power system bus,

thereby consisting of the collection of generator/load/storage entities connected to that

bus. An agent may also refer to an area consisting of multiple buses.

To realize our distributed algorithms, we will assume that the network agents are

equipped with appropriate computational capabilities and can communicate with each

other according to a pre-defined possibly sparse inter-agent communication graph. We

leverage the existing framework of consensus+innovations decision-making architecture, a

family of distributed inference and optimization procedures for multi-agent networks (see

for example [1]), to achieve proper inter-agent coordination required to solve the above-

mentioned system tasks in an optimal distributed fashion. More specifically, given that

different (possibly geographically distributed) entities/areas/components control or have

access to different sets of variables and information in the power system, we will employ

a multi-agent networked framework in which each network agent can directly control or

access only a local subset of the state and control variables. Viewed in this multi-agent

5



context, the generic formulation of optimal dispatch problems can be interpreted as a col-

laborative distributed optimization problem in which the network agents collectively aim

to minimize a global cost, i.e., a cost which possibly depends on all of the network variables

and information, and under constraints which couple these variables.

In order to achieve inter-agent coordination to solve the relevant (global) optimiza-

tion problems, we will assume that there exists a preassigned inter-agent communication

network (possibly sparse and different from the power system physical inter-connection

network) through which the agents can exchange information to coordinate their actions.

The consensus+innovations architecture is well suited to such distributed networked sce-

narios and has been developed to solve important subclasses of collaborative decision-

making problems of the form with modest computation/communication requirements at

the agents.

The contributions of this dissertation are as follows:

• Development of a fully distributed solution for optimal dispatch problems:

Our proposed approach is an iterative procedure that uses the optimality conditions

of underlying optimal dispatch problem as innovation-gradient terms in the updates

of local variables. Each bus is represented by an agent, and that agent is responsible

for updating few local variables and sharing limited information with neighboring

buses/agents. Therefore, the iterative update procedure is completely distributed.

In fact, our approach reduces the optimization problem to solving a coupled system

of linear equations with geometric constraints in a fully distributed manner through

an iterative process.

• Modification of the proposed fully distributed algorithm to allow for dif-

ferent levels of distributedness: The fully distributed approach requires buses

(agents) to exchange variable updates after every iteration, which might be pro-

hibitive for an actual implementation. We further propose a more realistic version
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of our proposed algorithm which does not require every bus to exchange information

with all of its neighboring buses after every single iteration. Our modified algorithm

groups buses into areas where the exchange between buses within the areas may take

place every iteration while communication with buses in another area might take

place only every x-th iteration. This structure further allows for assigning an agent

to each area to perform the intra-area computations at a central location within the

area which makes the intra-area communications redundant.

• Extension of the fully distributed algorithm to improve the convergence

by altering communication topology: Our proposed solution only uses informa-

tion from physically connected neighboring buses to perform local updates and solve

optimal dispatch problems such as OPF, SCOPF and PFC problems. Consequently,

the convergence speed of the algorithm measured as number of required iterations

is highly dependent on the diameter of the network, i.e., the furthest distance be-

tween any two buses in the system, because as the diameter increases the number of

iterations it takes for information to travel from one end of the system to the other

increases as well. We propose an extended version of our original algorithm which al-

lows for sharing additional information between buses without physical connections

across the system, hence, can speed up the convergence of the algorithm. A key

aspect is the constrained selection of these additional communication links and the

effective integration of this information in the update of the local variables.

• Development of a fully distributed receding horizon framework to opti-

mize cooperative charging of a fleet of plug-in electric vehicles taking into

account charging scenarios: We propose a fully distributed solution for PEVs

Cooperative Charging (PEV-CC) problem. The PEV-CC minimizes the charging

costs for a PEV fleet whilst considering limitations of PEVs and charging infrastruc-

ture. The PEV-CC is a multi-time step problem and a receding horizon is employed
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to integrate feedback into the decision-making process. Driving uncertainties are

accounted for by considering multiple driving scenarios for individual PEVs. Our

distributed iterative procedure achieves a distributed solution for the first order opti-

mality conditions of the underlying optimization problem through local computations

and limited communication. The algorithm is designed to reach an agreement on a

price signal among PEVs over the course of iterations, while local PEV constraints

are enforced at each iteration. Therefore, each iteration yields a feasible solution for

the PEV-CC problem.

1.3 Thesis Outline

The chapters that comprise this thesis are outlined as follows:

• Chapter 2 presents an overview of the proposed distributed methods using a generic

problem formulation.

• Chapter 3 focuses on finding a distributed solution for the optimal power flow prob-

lem. At first, this chapter gives an overview of the existing centralized and distributed

approaches to solve the OPF problem and then discusses in details the applicability

of our proposed innovations based approach to solve this problem. While numerous

test cases are used to examine the performance of our method, this chapter also

analytically justifies the optimally of the achieved solution.

• Chapter 4 presents a innovations based distributed approach to solve the security

constrained optimal power flow problem. To this end, this chapter compares the

proposed technique with the state of the art methods and validates the performance

of our solution both through simulation results and analytical discussions.

• Chapter 5 solves the power flow control problem, i.e., optimal power flow problem

in the case that lines are equipped with power flow control devices, in a distributed
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manner. This chapter includes the formulation of distributed updates for the pro-

posed innovations based solution as well as case studies and analytical arguments

concerning the optimality of the proposed solution.

• Chapter 6 offers a new perspective for application of our proposed distributed con-

sensus+innovations approach to solve problems in the distribution grid. Specifically,

this chapter focuses on solving the plug-in electric vehicles coordinated charging

problem. Given the multi-time step nature of this problem, this chapter formulates

a receding horizon iterative update scheme which provides a feasible solution for the

original optimization problem at each iteration. Moreover, this chapter provides a

proof of concept by conducting simulation results and presenting convergence analysis

of the proposed approach.

• Chapter 7 concludes this thesis and discusses future research directions.
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Chapter 2

Methods

In this thesis, we present a distributed solution for a class of optimal dispatch problems.

The methods developed in this thesis are based on the consensus+innovations update

structure. Some chapters include formulations based upon innovations-based updates,

e.g., chapters 3, 4 and 5, while chapter 6 utilizes the consensus+innovations structure to

solve the underlying optimization problem in a distributed manner. To avoid redundancy,

the general formulation of the developed methods are discussed here. Later, each chapter

of this thesis discusses a specific application of our proposed method in great detail.

2.1 Problem Formulation

The general compact mathematical formulation for the aforementioned class of optimal

dispatch problems is given by

min
x

F(x) (2.1)

s.t. G(x) = 0 (2.2)

H(x) ≤ 0, (2.3)
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where, F is the objective function, and x refers to the vector of variables. Also, G and

H represent equality constraints, e.g., load balance equations in the optimal power flow

problem, and inequality constraints, e.g., line flow constraints in the OPF problem, respec-

tively. Our proposed method is based on solving the first order optimality conditions of the

underlying optimization problem (2.1)-(2.3). Our technique reduces the original optimiza-

tion problem to solving a (constrained) system of equations, i.e., the first order optimality

conditions. To this end, in the following section, we derive the optimality conditions for

the aforementioned compact formulation.

2.2 Optimality Conditions

The Lagrange function for the above optimization problem is given by

L = F(x) + λG(x) + µH(x), (2.4)

where λ’s and µ’s correspond to Lagrange multipliers associate with equality and inequality

constraints, respectively. The first order optimality conditions are given by

∂L

∂x
=
∂F(x)

∂x
+ λ

∂G(x)

∂x
+ µ

∂H(x)

∂x
= 0 (2.5)

∂L

∂λ
= G(x) = 0 (2.6)

∂L

∂µ
= H(x) ≤ 0 (2.7)

µ ≥ 0 (2.8)

µ H(x) = 0. (2.9)

In order to find a solution for (2.1)-(2.3), the above system of constrained equations needs

to be solved. If the original optimization problem, defined by (2.1)-(2.3), is convex and also

satisfies the strong duality conditions, any solution that fulfills all of the above first order
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optimality conditions is the optimal solution of the problem. If the underlying optimization

problem is non-convex but satisfies the constraint qualification, any solution that satisfies

all of the above optimality conditions constitutes a local optimal solution of the original

problem.

2.3 Solution approach

In this section, we present our proposed distributed solution to solve the discussed first

order optimality conditions (2.5)-(2.9). Our distributed approach leverages the fact that

first order optimality conditions in the considered problems are inherently distributed,

meaning that, each of these equations merely involve local information. In the following

subsection, we present an innovations-based approach to find a distributed solution for

(2.5)-(2.9). Moreover, depending on the nature of the primal optimization problem, the

optimality conditions may include a common global variable. In this case, instead of

dealing with a global variable directly we create local copies of this variable and solve the

first order optimality conditions in a distributed manner while enforcing consensus among

all local copies. This approach is referred to as the consensus+innovations based method

and it is presented in the later subsection.

2.3.1 Innovations based Approach

This subsection is devoted to a brief review of the generic innovations-based procedure for

finding distributed solutions to cooperative decision-making processes. The innovations-

based setup requires each agent (decision maker) to carry out local information processing

and information exchange with neighboring agents in order to optimize a global decision-

making task. This setup assumes that each agent has access to merely local information

and the communication graph is at least as dense as the physical/constraint graph.
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The set of first order optimality conditions lends itself to be solved by a cooperative

decision-making process among V agents. In the proposed iterative process, each agent

v ∈ {1, · · · , V } is responsible for updating the variables associated with itself, and ex-

changing information with neighboring agents. The updates are formulated based on the

following general form,

xv(k + 1) = Pv [xv(k) + ΦvCv(xw(k))] w ∈ Ωv, (2.10)

where k denotes the iteration counter, and xv(k) includes the variables associated with

agent v at iteration k. Moreover, Ωv is the set of neighboring agents for agent v. In

(2.10) , the function Cv(·) represents the first order optimality constraints related to agent

v. Also, Φv is the vector of tuning parameters. Moreover, Pv is the projection operator

which projects xv onto its determined feasible space. In chapters 3, 4, and 5, we discuss

applications of the discussed innovations-based method to solve various optimal dispatch

problems (including OPF, SCOPF, PFC problems) in great details.

2.3.2 Consensus+Innovations based Approach

Following up on the innovation-based approach, here, we utilize a consensus+innovations

technique to solve the distributed restricted agreement problem, i.e., enforcing an agree-

ment between V agents on a common variable Υ such that the following global restriction

is satisfied. A generic restricted agreement problem is presented as

V∑

v=1

Dv(Υ) = Z, (2.11)

where, Dv(·) is a certain real-valued function. Moreover, Υ should satisfy local constraints

of an individual agent v, e.g., upper and lower bounds restricting values of function Dv(·).

The underlying assumption restricts each agent v’s data access to its own information
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and its predefined neighboring agents (Ωv). Under broad assumptions on Dv(·), i.e., regu-

larity conditions such as Lipschitz continuity and monotonicity, and connectedness of the

communication graph, an iterative consensus+innovations type procedure can be designed

and deployed to find a distributed solution for the aforementioned restricted agreement-

type problem (for more details see [2]).

The iterative process of the consensus+innovations algorithm requires each agent to

preserve and update a local copy of Υ at each iteration k, denoted by Υv(k). The update

rule for the local copy of the common variable follows the following format,

Υv(k + 1) = Υv(k)− βk

(
∑

w∈Ωv

(Υv(k)−Υw(k))

)
− αk

(
Ẑv(k)− D̃v(k)

)
, (2.12)

where βk and αk are tuning parameters. Also, Ẑv is agent v’s estimation of the global

commitment Z, which will be updated based on the newly received local information in

each iteration (this will be discussed in extensive details in chapter 6). Finally, we can

design a projected consensus+innovations variant that ensures that the updated local

function lies in the predefined feasible region of Dv(·),

D̃v(k) = P [Dv(Υv(k))] .

Here P[·] denotes the projection operator onto the feasible space imposed by local con-

straints.

Typical conditions that ensure convergence, i.e., Υv(k) → Υ as k → ∞ for all v with

Υ satisfying (2.11) are (see [1]):

1. Sufficient regularity of the local functions Dv(·).

2. Connectivity of the inter-agent communication graph.

3. The following conditions on the weight parameters α and β:
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• The weight parameters are positive.

• The sequences αk and βk are decaying, i.e., as k → ∞, αk → 0, βk → 0.

• The weights are persistent, i.e.,

∑

k≥0

αk =
∑

k≥0

βk = ∞.

• The innovation excitation (αk) decays at a faster rate than the consensus tuning

parameter (βk), i.e., βk/αk → ∞ as k → ∞.
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Chapter 3

Distributed Optimal Power Flow

3.1 Introduction

3.1.1 Motivation and Related Work

The control responsibility of the electric power system is shared among many control en-

tities, each responsible for a specific part of the system. While these control areas are

coordinated to a certain degree, the coordination generally does not lead to system wide

optimal performance, i.e., only suboptimal solutions are achieved. Within each control

area, a highly centralized control structure is used to determine the settings of the con-

trollable devices in that area usually taking the neighboring control areas into account as

static power injections.

The recent interest in distributed methods to solve economic dispatch and optimal

power flow problems stems mostly from the fact that the amount of distributed generation

and intelligent and adjustable demand is expected to increase significantly, and ways need

to be found to handle the increasing number of control variables even within a single control

area. While this is also the main motivation for this chapter, the same methods can also be

employed to achieve improved coordination among control areas thereby leading to optimal
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overall system utilization.

Distributed approaches to solve the Optimal Power Flow (OPF) problem to determine

the optimal generation settings taking into account grid constraints have mostly been

based on decomposition theory such as Lagrangian Relaxation and Augmented Lagrangian

Relaxation [3]. Examples for such applications in power systems include [4, 5, 6, 7].

Reference [8] proposed an auxiliary problem principle technique to find a distributed

solution for OPF in a large scale power system. Also, [9] presented a Lagrangian Relax-

ation based technique to solve the multi area OPF by modeling each interconnecting line

using fictitious buses. Exchanging price signals between areas is suggested as a coordina-

tion method to reach a decentralized solution for OPF in [10]. A more recent approach

is presented in [11] where an alternating direction method of multipliers, an augmented

Lagrangian relaxation method, is employed to solve a multi-step DC optimal power flow

problem. In [12], an ADMM based method is presented which takes into account the pos-

sibility of partitioning the problem into region-based sub-problems to find a more efficient

solution by reducing the number of sub-problems.

On the other hand, there has been a range of publications on the usage of consensus

based approaches to solve the economic dispatch problem including [13, 14, 15, 16, 17].

Given the incremental cost rule, a consensus approach can be employed to seek an agree-

ment for the marginal cost value. The additional constraint of total generation having to

be equal to total load is taken into account differently in the various approaches. In [13], a

leading role is assigned to one of the distributed agents whereas in [15, 16] local innovation

gradients computed solely on the basis of local demand/supply information are used to

enforce that constraint.

Moreover, distributed control methods can be classified as on-line or off-line solution

approaches. While off-line solution approaches are focused on the operation of the network

in near future, e.g., day ahead, on-line control approaches are mainly concerned with real
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time operation of the network. Examples for on-line distributed methods include [18, 19,

20]. Reference [18] presented a decentralized solution for the tertiary frequency control

problem, i.e., energy management, by optimizing droop control gains in primary frequency

control. Also, [19] proposed a primal-dual gradient-based distributed approach to modify

the conventional Automatic Generation Control (AGC) to improve its economic efficiency

by incorporating economic objectives into AGC. Along this line, [20] proposed a distributed

control algorithm for frequency control that asymptotically minimizes a quadratic cost of

power generation.

In this chapter, we present an off-line approach which enables a distributed solution of

the DC Optimal Power Flow problem. Hence, the objective is to minimize the generation

cost to fully supply the load while ensuring that no line limits are violated. Our proposed

approach, denoted by I − DOPF (Innovation based Distributed Optimal Power Flow), is

based on obtaining a solution to the first order optimality conditions of the corresponding

optimization problem in a fully distributed fashion. In other words, the I − DOPF algo-

rithm is an application of the Innovation-based method that was presented in Sect. 2.3.1.

The optimality conditions include constraints which constitute a coupling of the Lagrange

multipliers associated with the power flow equations and line constraints at neighboring

buses and lines. This is used to formulate a term in the updates of the local variables and

multipliers which takes into account these couplings. In addition, the power flow equations

at the buses are used to form another term which corresponds to an innovation term enforc-

ing the demand/supply balance. The information that buses share with neighboring buses

is limited to the updates of the bus angle and the local Lagrange multipliers, i.e., there is

no need to share information about the generation settings or the cost parameters during

the iterative process.

The I − DOPF requires buses to exchange variable updates after every iteration, which

might be prohibitive for an actual implementation. We further propose a more realistic
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version of our proposed algorithm, denoted by AI − DOPF (Asynchronous Innovation

based Distributed Optimal Power Flow), which does not require every bus to exchange

information with all of its neighbors after every single iteration. The AI −DOPF groups

buses into areas where the exchange between buses within the areas may take place every

iteration while communication with buses in another area might take place only every x-th

iteration.

The I − DOPF approach is based on solving the first order optimality conditions of

the considered problem by integrating these conditions as innovation-gradient terms into

the update of the local variables. Information only from physically connected neighbors

is taken into account in these local updates. Consequently, the convergence speed of the

algorithm measured as number of required iterations is highly dependent on the diameter

of the network, i.e., the furthest distance between any two buses in the system, because as

the diameter increases the number of iterations it takes for information to travel from one

end of the system to the other increases as well.

In this chapter, we also suggest to add additional communication between buses that

are not physically connected to improve the speed at which information is spread through-

out the network thereby increasing convergence speed. This approach is denoted by

EI − DOPF (Enhanced Innovation based Distributed Optimal Power Flow). The key

questions that EI − DOPF needs to address are which additional communication links

should be incorporated, what information should be exchanged and how such information

can be taken into account in an intelligent way in the local variable updates.
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3.1.2 Notation

Parameters and Constants

PLi
Load at bus i

an, bn, cn Cost function parameters of generator n

PGn
Maximum generation of generator n

PGn
Minimum generation of generator n

ΩG Set of all generators

ΩB Set of all buses

ΩGi
Set of all generators at bus i

ΩL Set of all lines in the grid

Ωi Set of all buses physically connected to bus i

Ωi+ Set of all buses that bus i communicates with
in addition to its physical neighbors

Xij Reactance of line ij

P ij Line flow limit of line ij

α, β, γ, τ, η Tuning paramters

NB Number of buses

Variables

PGn
Power output of generator n

θi Voltage angle at bus i

µ+
n , µ

−
n Lagrangian multipliers related to upper and

lower generation limits of generator n

µij Lagrangian multiplier of the line flow con-
straint of line ij

λi Lagrangian multiplier of the load balance
equation of bus i
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3.2 DC Optimal Power Flow

3.2.1 Problem Formulation

The goal in DC Optimal Power Flow is to determine the generation dispatch which min-

imizes the cost to supply a given load taking into account operational constraints such

as line limits and generation capacities. The grid is modeled using a DC approximation,

hence, it is assumed that angle differences across lines are small, voltage magnitudes are

all equal to 1pu and resistances of the lines are negligible.

Modeling generation costs using a quadratic cost function, the mathematical problem

formulation results in

min
PG

∑

n∈ΩG

(
anP

2
Gn

+ bnPGn
+ cn

)
(3.1)

s.t.
∑

n∈ΩGi

PGn
− PLi

=
∑

j∈Ωi

θi − θj
Xij

, ∀i ∈ {1, . . . , NB} (3.2)

θ1 = 0 (3.3)

PGn
≤ PGn

≤ PGn
, ∀n ∈ ΩG (3.4)

−P ij ≤
θi−θj
Xij

≤ P ij ∀ij ∈ ΩL. (3.5)

Comparing with the compact problem formulation presented in Sect. 2.1, (3.1) and (3.2)

corresponds to (2.1) and (2.2), respectively. Moreover, (3.4) and (3.5) are representations

of the inequality constraint (2.3). Here, i = 1 is taken to be the slack bus.

3.2.2 Optimality Conditions

The Lagrange function for this optimization problem is given by

L =
∑

n∈ΩG

(
anP

2
Gn

+ bnPGn
+ cn

)
+
∑

n∈ΩG

µ+
n

(
PGn

− PGn

)
+
∑

n∈ΩG

µ−
n

(
−PGn

+ PGn

)

22



+

NB∑

i=1

λi


−

∑

n∈ΩGi

PGn
+ PLi

+
∑

j∈Ωi

θi − θj
Xij




+
∑

ij∈ΩL

µij

(
θi − θj
Xij

− P ij

)
+
∑

ij∈ΩL

µji

(
−
θi − θj
Xij

− P ij

)
, (3.6)

where λ’s and µ’s correspond to Lagrange multipliers. Following the derivation presented

in Sect. 2.2, the first order optimality conditions are given by

∂L

∂PGn

= 2anPGn
+ bn − λn + µ+

n − µ−
n = 0 (3.7)

∂L

∂θi
= λi ·

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λj

1

Xij

+
∑

j∈Ωi

(
µ+
ij − µ−

ij

) 1

Xij

= 0 (3.8)

∂L

∂λi

= −
∑

n∈ΩGi

PGn
+ PLi

+
∑

j∈Ωi

θi − θj
Xij

= 0 (3.9)

∂L

µ+
n

= PGn
− PGn

≤ 0 (3.10)

∂L

µ−
n

= −PGn
+ PGn

≤ 0 (3.11)

∂L

∂µij

=
θi − θj
Xij

− P ij ≤ 0 (3.12)

∂L

∂µji

= −
θi − θj
Xij

− P ij ≤0, (3.13)

for all i ∈ {1, . . . , NB}, n ∈ ΩG and ij ∈ ΩL plus the complementary slackness conditions

for the inequality constraints and the positivity constraints on the µ’s. The sign of λ is not

restricted. Consequently, in order to find a solution to the DC-OPF problem, the above

constrained equation system needs to be solved. Given that the choice of the slack bus

does not have any influence on the result of the underlying optimization problem, θ1 = 0

is omitted from the Lagrangian function and first order optimality conditions. Since the

discussed DC-OPF problem is convex and also satisfies the strong duality conditions, any

solution that fulfills all of the discussed first order optimality conditions is the optimal
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solution of the DC-OPF problem. Here, we assume that the primal optimization problem

is strictly feasible.

3.3 Distributed Approach

This section presents the distributed updates for I − DOPF , AI −DOPF and EI − DOPF

algorithms. These proposed iterative procedures solve the constrained system given in

Sect. 3.2.2.

3.3.1 The I − DOPF Algorithm

In I − DOPF each bus exchanges information with all of its physically connected neigh-

bors at each iteration. In the proposed approach, each bus i updates the variables λi, θi

and PGn
, n ∈ ΩGi

which are directly associated with that bus and the µij ’s which are as-

sociated with the constraints on flows going out of bus i and into line ij. The format of

local updates follows the general update format that is presented in Sect. 2.3.1. As will be

seen, µ+
n , µ−

n do not need to be known and therefore no update is needed.

The Lagrange multipliers λi are updated according to

λi(k + 1) = λi(k)− β ·

(
∂L

∂θi

)
+ α ·

(
∂L

∂λi

)

= λi(k)− β ·

(
λi(k)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λj(k)
1

Xij

+
∑

j∈Ωi

(µij(k)− µji(k))
1

Xij

)

−α ·


 ∑

n∈ΩGi

PGn
(k)− PLi

−
∑

j∈Ωi

θi(k)− θj(k)

Xij


 , (3.14)

where α, β > 0 are tuning parameters and k denotes the iteration index. Hence, the first

term corresponds to the optimality condition (3.8) which reflects the coupling between

the Lagrange multipliers and the second term constitutes an innovation term based on the
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power balance equations (3.9). The update makes intuitive sense, e.g., if the power balance

(3.9) is not fulfilled because generation is too high, it leads to a reduction in λi which on

the other hand, as shown next, leads to a decrease in the PGn
, n ∈ ΩGi

. Furthermore, if

no line constraints are binding the µ’s are equal to zero and the part of the update in the

first row leads to finding an agreement between the λ’s at all buses.

Knowing the value of the Lagrange multiplier λi, the following update for the generators

PGn
, n ∈ ΩGi

can be carried out:

PGn
(k + 1) = Pn

[
PGn

(k)−
1

2an
·

∂L

∂PGn

]
= Pn

[
λi(k)− bn

2an

]
. (3.15)

Here Pn is the operator which projects the value determined by (3.15) into the feasible space

defined by the upper and lower limits PGn
and PGn

, i.e., if the value is greater than PGn
,

PGn
(k + 1) is set to that upper limit and similarly for the lower limits. This is equivalent

to using the full equation (3.7) including the multipliers µ+
n and µ−

n to update PGn
. As

these multipliers do not appear in any other constraint it is not necessary to provide an

update for them. In that case, the PGn
update includes projecting onto a specific upper

and lower bound for each segment.

The bus angles are updated according to

θi(k + 1) = θi(k)− γ

(
∂L

∂λi

)

= θi(k)− γ


−

∑

n∈ΩGi

PGn
(k) + PLi

+
∑

j∈Ωi

θi(k)− θj(k)

Xij


 ,

(3.16)

with γ > 0 being a tuning parameter. Hence, the power balance equation (3.9) is used for

the update. It again makes intuitive sense because if the power balance is not fulfilled and

the load plus what is flowing onto the lines is greater than the generation at that bus, the

25



angle is reduced which results in a reduction of the residual of that constraint.

The Lagrange multipliers µij, µji appear in the λ updates (3.14), and hence, values

and updates for these multipliers are needed.

The update is given by

µij(k + 1) = P

[
µij(k) + δ

(
∂L

∂µij

)]
= P

[
µij(k)− δ

(
P ij −

θi(k)− θj(k)

Xij

)]

(3.17)

µji(k + 1) = P

[
µji(k) + δ

(
∂L

∂µji

)]
= P

[
µji(k)− δ

(
P ij +

θi(k)− θj(k)

Xij

)]
,

(3.18)

with δ > 0 being a tuning parameter. Consequently, the inequalities (3.12) and (3.13) are

used. The projection operator (P) enforces the positivity constraint on the µ’s by setting

the µij(k + 1) and µji(k + 1) equal to zero if the update (3.17) and (3.18) yield negative

values, respectively. Assuming that the current value for the line flow Pij = (θi − θj)/Xij

from bus i to bus j is positive but below its limit P ij the update (3.17) yields a decreasing

value for µij with a minimum value of zero due to the projection into the feasible space

µij ≥ 0. If the flow is above the line limit, the value for µij may increase or stay zero. The

same discussion applies to µji. Our presented updates in (3.14)-(3.18) requires each bus

to merely exchange its λ and θ with neighboring buses. In other words, the I − DOPF ’s

procedure maintain information local and confidential.

It should be noted that all of these updates have purposely been defined only based on

the variables from the previous iteration in order to allow for a parallel computation of all

of the updates. If implemented in series, i.e., (3.16) uses the already updated generation

values, the number of iteration until convergence decreases but computation time increases

because all the computations at a specific bus have to be done after each other.

The pseudo code for the I − DOPF is given in Table 3.1. Note that the stopping

condition can be chosen according to some user-defined criterion, e.g., the changes in the
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variables need to be lower than a pre-defined threshold, and the measurement of res and

rel (see Sect. 3.5.2) is simply for the purpose of performance analysis.

Table 3.1: Pseudo code for the I − DOPF algorithm

Initialize tuning parameters

Initialize variables λ, θ, µ, PG

While convergence criteria is not satisfied

for i=1:number of buses

Update λi using (3.14)

Update PGi
using (3.15)

Update θi using (3.16)

Update µij and µjiusing (3.17) and (3.18)

Communicate λi and θi to neighboring buses

end

measure res and rel

end

3.3.2 The AI −DOPF Algorithm

Asynchronous Update

In the AI − DOPF ’s procedure, some buses only exchange information after every x-th

iteration, whereas I − DOPF requires every bus to exchange information with all of its

neighbors after every single iteration. Figure 3.1 visualizes the two different implementa-

tions. The asynchronous implementation may be used in a situation in which the goal is to

coordinate multiple areas, each area, for instance being operated by a single central entity:

the internal iterations for the buses within each area could be done at a central location

within the area and the designated area centers exchange information with each other,

referred to as outer iterations, after every few of these inner iterations. We introduce an
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iteration counter ki for each bus and iteration counter nij for the update of the information

between buses i and j, assuming that nij only increases after every x-th increase of ki and

kj. Hence, updates (3.14), (3.16), (3.17) and (3.18) are adjusted to

(a) (b)

Figure 3.1: (a) Synchronous update and (b) asynchronous update

λi(ki + 1) = λi(ki)− β ·

(
λi(ki)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λj(nij)
1

Xij

+
∑

j∈Ωi

(µij(ki)− µji(nij))
1

Xij

)

−α ·


 ∑

n∈ΩGi

PGn
(ki)− PLi

−
∑

j∈Ωi

θi(ki)− θj(nij)

Xij


 (3.19)

θi(ki + 1) = θi(ki)− γ


−

∑

n∈ΩGi

PGn
(ki) + PLi

+
∑

j∈Ωi

θi(ki)− θj(nij)

Xij




(3.20)

µij(ki + 1) = P

[
µij(ki)− δ

(
P ij −

θi(ki)− θj(nij)

Xij

)]

(3.21)

µji(ki + 1) = P

[
µji(ki)− δ

(
P ij +

θi(ki)− θj(nij)

Xij

)]
.

(3.22)
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Distributedness

Distributed algorithms may be implemented because they provide the ability to optimally

coordinate entities which are unwilling to exchange significant amounts of information or

because they allow for a parallelization of the computations thereby improving computa-

tional performance. Hence, even if the computations are carried out at a single centralized

location, there is value in employing distributed methods.

In this regard, Fig. 3.2 gives an overview of two different levels of distributedness. The

letter B is used to indicate the updates of the variables at a specific bus. Fig. 3.2(a)

shows the fully distributed algorithm in which computations for all buses are carried out

at physically distinct locations, e.g., at the bus itself. As for each update, information only

from neighboring buses is needed, the communication network topology is the same as the

physical electrical system.

In Fig. 3.2(b), a hybrid implementation of a distributed algorithm is shown. The

updates for a set of buses within an area are carried out at a single location and commu-

nication takes place with neighboring areas to receive information about the values at the

border buses over the iterations. Such an implementation may enable optimal coordination

among the current control areas while achieving computational improvements within the

control area itself.

The question of the level of asynchronism and the level of distributedness may go

hand-in-hand but could also be considered separately. One can envision a completely

distributed implementation as shown in Fig. 3.2(a) with either fully synchronized or with

some asynchronous updates. For the hybrid implementation given in Fig. 3.2(b), while it is

not necessary, it would be natural and probably most effective to implement synchronous

updates within the area and asynchronous updates between the areas because the update

within the area only requires exchanging information between geographically co-located

processors.

29



B
B

B

B

B

BBB

(a)

BBBBBBBB
AreaArea

(b)

Figure 3.2: (a) Fully distributed and (b) Partially distributed implementation

3.3.3 The EI − DOPF Algorithm

Inclusion of Additional Communication Links in Variable Update

In the I − DOPF approach, the updates only depend on variables associated with that

bus and neighboring buses. Specifically, (3.14) uses its own power balance function and the

coupling of the Lagrangian multipliers to update the λ. By using the λj of its neighboring

buses in its update of λi, bus i indirectly takes into account the power balance at bus j

because bus j uses its own power balance equation in the update of λj . Consequently,

the number of iterations that it takes for a bus to indirectly take into account the power

imbalance at one of its non-immediate neighbors depends on the shortest path between

those buses.

We suggest that direct communication of the power imbalance, i.e. the residual of the

power balance equation, between buses with a notable distance and the integration of that

imbalance in the update of the local λi’s can potentially decrease the number of required

iterations to trade information between different regions of the system. As a result, the

convergence rate of the algorithm will improve. The following is a modified version of

(3.14), which incorporates the information about the power imbalance at a distant bus:

λi(k + 1) =λi(k)− β

(
λi(k)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λj(k)
1

Xij

+
∑

j∈Ωi

(µij(k)− µji(k))
1

Xij

)

− τ


 ∑

h∈Ω
i+

∆Ph(k)


− α


 ∑

n∈ΩGi

PGn
(k)− PLi

−
∑

j∈Ωi

θi(k)− θj(k)

Xij


 ,

(3.23)
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where Ωi+ denotes the set of buses h that bus i communicates with in addition to its

physical neighbors and ∆Ph represents the power imbalance of bus h.

Based on (3.23), bus i is aware of the power imbalance at bus h. Given that bus h

incorporates the power imbalances at its neighboring buses with the delay of only one

iteration, information from buses connected to bus h now also flow faster to bus i. Thus,

intuitively, an additional communication link between buses i and h improves the flow of

information in the system, and leads to faster convergence.

The updates for PGi
, θi, µij, and µji are the same as the updates presented in (3.15)-

(3.18). Note that the updates are still linearly independent combinations of the first order

optimality conditions, thus the proper choice of values for the tuning parameters α, β, γ,

δ and τ ensures that the updates are stable and the iterative procedure converges to the

optimal solution of the DC Optimal Power Flow problem.

Choice of Communication Links

Given that adding communication links can be expensive, the choice of which buses should

be connected by additional communication links is critical and influences the level of con-

vergence rate improvement. In the following, we present some general guidelines which may

be employed while selecting additional communication links. These criteria determine the

merit of a specific bus to become part of an additional communication link.

Generation Capacity and Cost Parameters: Buses with a notable generation capacity

and low generation cost are important players in preserving the supply/demand equality

of the entire system. Since generators are responsible for supplying the demand of the

system, the sooner large and low cost generators detect the supply/demand imbalance the

fewer iterations are needed for them to respond and counterbalance the imbalance.

Demand: Major load buses have a notable influence on the supply/demand equality.

Thus, the communication of the power imbalance at buses to which large consumers are
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connected with other influential players such as low cost generators, can have a significant

impact on the required number of iterations to solve the problem.

Distance: The distance between two buses, i.e. the shortest path between two buses, is

another important criteria when choosing additional communication links. The higher the

distance, the more effective (in general) the communication link in improving convergence

speed.

Based on the above criteria, buses can be prioritized and communication links may be

added accordingly.

3.4 Convergence Analysis

This section presents a formal proof that any limit point of the I − DOPF is the optimal

solution of the OPF problem. To this end, we introduce a sufficient condition for the

convergence of the proposed algorithm. Furthermore, this section presents an approximate

parameter tuning discussion. Finally, justifications of the approximate tuning parameter

method concludes this section.

In order to derive the convergence properties for the I − DOPF algorithm, we first

introduce a compact form the distributed updates. The update rules for the all variables

in I − DOPF can be written in a dense form as

X(k + 1) = X̃(k)−AX̃(k) + C

X̃(k + 1) = P[X(k + 1)], (3.24)

where X is the vector of the stacked variables (λi, θi, µij, PGi
) for all buses i = {1, . . . , NB},

j ∈ Ωi and P is the projection operator which ensures that the Lagrange Multipliers for

the line constraints stay positive and the generation outputs stay within the given bound.

Hence, X̃ is the vector of the stacked projected variables. Equation (3.26) presents (3.24) in
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more detail. In (3.26), I and B are the identity and bus admittance matrices, respectively.

Moreover, By = H · (I · diag 1
Xij

)T , where I is the incidence matrix, and H = [I,−I]T .

X(k + 1) =



I −




−α β 0 0

γ 0 0 0

0 0 −δ 0

0 0 0 1
2a










∂L
∂λ

∂L
∂θ

∂L
∂µ

∂L
∂PG




(3.25)

X(k + 1) =




I −

A︷ ︸︸ ︷


βB −αB βBT
y αI

0 γB 0 −γI

0 −δBy 0 0

− I
2a

0 0 I







X̃(k) +

C︷ ︸︸ ︷


αPL

−γPL

−δP ij

− b
2a



. (3.26)

3.4.1 Optimality of the Solution

In the following Theorem 1, we first show that a fixed point of the proposed iterative

scheme necessarily satisfies the optimality conditions (3.7)–(3.13) of the OPF problem.

Theorem 1: Let X∗ be a fixed point of the proposed algorithm defined by (3.24). Then,

X⋆ satisfies all of the optimality conditions of the OPF problem (3.7)–(3.13).

Proof: To prove this theorem, we verify the claim that X⋆ fulfills all of the first order

optimality conditions. Note that X⋆ is the vector of stacked variables (λ⋆
i , θ

⋆
i , µ

⋆
ij, µ

⋆
ji, P

⋆
i )

for all buses i = {1, . . . , NB}.

Claim 1: X⋆ fulfills the optimality conditions which enforce the positivity of the La-

grangian multipliers associated with the line limits, i.e., µ⋆
ij ≥ 0.

Verification by contradiction: Let us assume on the contrary that in X⋆ one of the line

limit multiplier variables, say µ⋆
ij , is negative. Now, note that, evaluating (3.17) at X⋆
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results in a non-negative value for µij due to the projection of µij into the set of positive

reals. In other words, we have

µ⋆
ij 6= P

[
µ⋆
ij − δ ·

(
P ij −

θ⋆i − θ⋆j

Xij

)]
,

which contradicts the fact that X∗ is a fixed point of (3.17). A similar argument would

establish that µ⋆
ji ≥ 0.

Claim 2: X⋆ satisfies the optimality conditions associated with the line limit constraints,

(3.12)–(3.13).

Verification by contradiction: Let us assume that X⋆ does not fulfill (3.12) for all i

and j, i.e., there exists (i, j) such that
θ⋆i −θ⋆j
Xij

> P ij . This implies that the value of the

innovation term in (3.17) is negative when evaluated at X⋆. Also, note that, based on the

claim 1, µ⋆
ij ≥ 0. Therefore, evaluating (3.17) at X⋆ results in a value greater than µ⋆

ij , i.e.,

µ⋆
ij < P

[
µ⋆
ij − δ ·

(
P ij −

θ⋆i − θ⋆j

Xij

)]
,

which contradicts the fact that X∗ is a fixed point of (3.17). Similar arguments can be

used to prove that X⋆ fulfills (3.13).

Claim 3: X⋆ satisfies the optimality conditions associated with the complementary

slackness condition, i.e., for all pairs (i, j),

µ⋆
ij ·

(
θ⋆i − θ⋆j

Xij
− P ij

)
= 0.

Verification by contradiction: Let us assume on the contrary that X∗ does not satisfy

the above complementary slackness condition, i.e., there exists a pair (i, j) such that both

µ⋆
ij and

θ⋆i −θ⋆j
Xij

− P ij are non-zero. Hence, according to the claims 1 and 2, we must have,

µ⋆
ij > 0 and

θ⋆i −θ⋆j
Xij

< P ij , respectively. Now, note that evaluating (3.17) at X⋆, results in a

value less than µ⋆
ij, which clearly contradicts the fact that X∗ is a fixed point of (3.17).

Claim 4: X⋆ satisfies the local load balance equation (3.9).
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Verification by contradiction: Let us assume on the contrary that X⋆ does not fulfill

(3.9), i.e., there exists i such that the value of the innovation term in (3.16) is non-zero

when evaluated at X⋆. Clearly, this would lead to

θ⋆i 6= θ⋆i − γ


−
∑

n∈ΩGi

P ⋆
Gn

+ PLi
+
∑

j∈Ωi

θ⋆i − θ⋆j

Xij


 ,

thus contradicting the fact that X∗ is a fixed point of (3.16).

Claim 5: The coupling between the Lagrangian multipliers, given by (3.8), is main-

tained at X⋆.

Verification by contradiction: Let us assume on the contrary that X⋆ does not fulfill

(3.8) for some i. Note that (3.14) includes two innovation terms: the innovation term asso-

ciated with the Lagrangian multipliers’ coupling and the innovation term which represents

the local power balance equation. We already verified that the local power balance equa-

tion is zero at X⋆ (see claim 4). Thus, the contradiction hypothesis necessarily implies

that the innovation term associated with the Lagrangian multipliers’ coupling attains a

non-zero value at X⋆. This, in turn, implies that the the value of (3.14) is not equal to λ⋆
i

when evaluated at X⋆, which clearly contradicts the fact that X∗ is a fixed point of (3.14).

Claim 6: X⋆ satisfies the optimality conditions associated with the generation limits,

(3.10)–(3.11).

Verification by contradiction: Let us assume on the contrary that there exists i such

that P ⋆
Gi

does not lie in [PGi
, PGi

]. Now, note that, plugging in λ⋆ in (3.15), would then

result in a value different from P ⋆
Gi
, since the projection operator enforces the value of PGi

to stay in the specified region, [PGi
, PGi

]. This, in turn, clearly contradicts the fact that

X∗ is a fixed point of (3.15).

We now discuss the consequences of Theorem 1. To this end, note that, since the

proposed iterative scheme (3.24) involves continuous transformations of the iterates, it

follows that, if (3.24) converges, the limit point is necessarily a fixed point of the iterative
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mapping. Since, by Theorem 1, any fixed point of (3.24) solves the first order optimality

conditions (3.7)–(3.13), we may conclude that, if (3.24) converges, it necessarily converges

to a solution of the first order optimality conditions (3.7)–(3.13). This immediately leads

to the following optimality of limit points of the proposed scheme.

Theorem 2: Suppose the OPF problem (3.1)–(3.5) has a feasible solution that lies in the

interior of the associated constraint set, and, further, assume that the proposed algorithm

defined by (3.24) converges to a point X⋆. Then X∗ constitutes an optimal solution of the

OPF problem (3.1)–(3.5).

Proof: By Theorem 1 and the above remarks, X⋆ fulfills the optimality conditions (3.7)–

(3.13). Since the DC-OPF is a convex problem and, by assumption, is strictly feasible, it

follows readily that the primal variables (P ⋆,θ⋆) in X∗ constitutes an optimal solution to

the OPF problem (3.1)–(3.5).

In summary, we note that Theorems 1 and 2 guarantee that any fixed point of the

proposed algorithm constitutes an optimal solution to the OPF problem, and, hence, in

particular, if the scheme achieves convergence, the limit point is necessarily an optimal

solution of the OPF problem.

Finally, we note, that whether the scheme converges or not depends on several design

factors, in particular, the tuning parameters α, β, γ and δ. Hence, a general sufficient

condition for convergence is presented in the following subsection.

3.4.2 Sufficient Condition for Convergence

To this end, the following assumption on the matrix A as defined in (3.26) is imposed:

A.1: There exists an ℓp-norm such that the tuning parameters α, β, γ and δ can be designed

to achieve ‖I − A‖p < 1.

Remark 1: Note that the projection operator P in our context involves component-wise

projections, and, hence, is non-expansive with respect to ℓp-norms, i.e., the following holds
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for any two iterates X(k) and X(v),

‖P(X(k)) − P(X(ν))‖p ≤ ‖X(k) −X(ν)‖p . (3.27)

Remark 2: Based on Remark 1, the following equations hold,

∥∥∥X̃(k + 1)− X̃(k)
∥∥∥
p

(3.28)

=
∥∥∥P[(I −A)X̃(k) + C]− P[(I −A)X̃(k − 1) + C]

∥∥∥
p

≤
∥∥∥(I −A)X̃(k) + C − (I −A)X̃(k − 1)− C

∥∥∥
p

≤ ‖(I −A)‖p

∥∥∥X̃(k)− X̃(k − 1)
∥∥∥
p
.

Consequently, (3.28) leads to

∥∥∥X̃(k + 1)− X̃(k)
∥∥∥
p
≤ ‖I −A‖kp

∥∥∥X̃(1)− X̃(0)
∥∥∥
p
. (3.29)

Theorem 3: Let A.1 hold, then the algorithm presented in (3.24) achieves convergence.

Proof: The distance between the values of X̃ at two iterations k and ν is given by,

∥∥∥X̃(k)− X̃(ν)
∥∥∥
p
= (3.30)

∥∥∥X̃(k)− X̃(k − 1) + X̃(k − 1)− · · ·+ X̃(ν + 1) − X̃(ν)
∥∥∥
p

≤
∥∥∥X̃(k)− X̃(k − 1)

∥∥∥
p
+ · · ·+

∥∥∥X̃(ν + 1)− X̃(ν)
∥∥∥
p
.

Moreover, using (3.29) the following equation can be derived:

∥∥∥X̃(k)− X̃(ν)
∥∥∥
p

(3.31)

≤
∥∥∥X̃(k)− X̃(k − 1)

∥∥∥
p
+ · · ·+

∥∥∥X̃(ν + 1)− X̃(ν)
∥∥∥
p
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≤
(
‖I −A‖kp + · · · + ‖I −A‖νp

)∥∥∥X̃(1) − X̃(0)
∥∥∥
p
.

Since A.1 holds, we have

lim
ν→∞

‖I −A‖νp = 0. (3.32)

Hence, combining (3.31) and (3.32) further implies,

∀ ǫ > 0, ∃ N s.t. k, ν > N ⇒
∥∥∥X̃(k)− X̃(ν)

∥∥∥
p
≤ ǫ. (3.33)

Therefore the sequence of
{
X̃(i)

}∞

i=0
, which is introduced by (3.24), is a Cauchy sequence.

Since a sequence of real vectors converges to a limit in Rn if and only if it is Cauchy, it

follows that the proposed iterative algorithm is convergent, i.e., X(i) → X∗ as i → ∞ for

some X∗ ∈ R
n.

3.4.3 Parameter Tuning

The choice of tuning parameters affects the convergence speed of the proposed algorithm.

The lower the values for the tuning parameters, the smaller the correction caused by

the innovation terms, hence, the slower the algorithm converges. Larger values for the

tuning parameters generally result in faster convergence. However, the resulting large

innovation values might result in oscillatory behavior or even divergence. Theorem 3

suggests that our algorithm’s convergence is generally structural-dependent, i.e., on the

values of the model parameters only. Leveraging this property, in the following, we present

some general guidelines, that are based on our observations which may be employed to

tune the parameters.

Observations: Analyzing the effects and meaning of the individual terms in the update

rules, we can make the following statements about the values for the tuning parameters:

• The λ update (3.14) includes two innovation terms: coupling between neighbors and

local load balance equation. It is reasonable to choose α > β, since supplying local
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demand should have a higher priority than the coupling perseverance.

• Since θ regulates the ingoing and outgoing flows of a bus, and the previous observation

suggests that α > β, adjusting γ such that α > γ is likely to prevent possible

oscillatory behaviour.

• A set of tuning parameters for a system should work for a wide range of loading

conditions.

Heuristic Parameter Tuning Method: In the following, we present some more specific

guidelines to adjust the tuning parameters. The analytical justification for this heuristic

method is given in the Appendix, which is based on a specific equivalent reformulation of

the original problem.

1. choose β such that β ≤ 1
maxi

∑
j∈Ωi

1

Xij

.

2. choose γ such that γ ≤ 1
maxi

∑
j∈Ωi

1

Xij

.

3. choose α such that α > β and α > γ. Larger values of α may be preferred, of course,

till the point that increasing α leads to oscillatory behavior or divergence. Increase

α until noticing oscillatory behavior.

4. Tuning of δ to achieve faster convergence depends on the loadings of the system.

Start with δ = 0.5 × β; larger values of δ may be preferred, of course, till the point

that increasing δ leads to oscillatory behavior or divergence.

Note, the above is a heuristic and is not guaranteed to yield optimal choices of the tuning

parameters in all system and loading scenarios. Nonetheless, some simulation examples

are presented in Sect. 3.5 in which we follow the above guidelines to choose the tuning

parameter for a class of realistic power systems.
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3.4.4 Justifications for Approximate Tuning Parameter Method

The following subsection justifies the approximate parameter tuning procedure introduced

in the pervious subsection. Specifically, we consider a modified system, denoted by M, (see

Assumptions M.1 and M.2 ) for which we tune the parameters, namely (αm, βm, γm, δm).

Then, we derive the desirable parameter choices for the original setup, denoted by O, from

the αm, βm, γm, and δm designed for the system M.

M.1: The generators’ cost function parameters of O, i.e., aOn , b
O
n , c

O
n , are scaled by a

factor ξ such that 1
ξaOn

obtain sufficiently small values. It also follows that

∀ ǫ > 0, ∃ ξ s.t.
1

ξaOn
≤ ǫ, ∀n ∈ ΩG (3.34)

M.2: A fictitious bus, i.e., a bus without generator/load, is added to the O’s network.

This fictitious bus could be connected to any of the buses. Note, the fictitious bus is not

equivalent to the slack bus. Later in this section, we discuss the necessity of adding a

fictitious bus to the O’s network.

Remark 3: Let the DC-OPF problem, defined by (3.1)–(3.5), yield [λ⋆, θ⋆, µ⋆, P ⋆] as the

optimal primal and dual variables. Then, scaling the objective function of this problem by

a factor ξ, results in [ξλ⋆, θ⋆, ξµ⋆, P ⋆] as the optimal primal and dual variables.

Justification 1: Let the I − DOPF algorithm converge to the optimal solution of

DC-OPF for the modified system (M) using the (αm, βm, γm, δm) as tuning parameters.

Then, adjusting the tuning parameters to (1
ξ
αm, βm, γm,

1
ξ
δm) results in convergence of the

I − DOPF algorithm for the original system (O).

Proof: Given that the tuning parameters of I − DOPF are adjusted to (1
ξ
αm, βm, γm,

1
ξ
δm),

the I − DOPF ’s iterative updates for the system O, namely [λO, θO, µO, PO], are as follows

40



λO
i (k + 1) = λO

i (k)− βm ·

(
λO
i (k)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λO
j (k)

1

Xij

+
∑

j∈Ωi

(
µO
ij(k)− µO

ji(k)
) 1

Xij

)

−
αm

ξ
·


∑

n∈ΩGi

PO
Gn

(k)− PLi
−
∑

j∈Ωi

θOi (k)− θOj (k)

Xij


 (3.35)

PO
Gn

(k + 1) = Pn

[
λO
i (k)− bOn
2aOn

]
(3.36)

θOi (k + 1) = θOi (k)− γm


−

∑

n∈ΩGi

PO
Gn

(k) + PLi
+
∑

j∈Ωi

θOi (k)− θOj (k)

Xij




(3.37)

µO
ij(k + 1) = P

[
µO
ij(k)−

δm
ξ

(
P ij −

θOi (k)− θOj (k)

Xij

)]

(3.38)

µO
ji(k + 1) = P

[
µO
ji(k)−

δm
ξ

(
P ij +

θOi (k)− θOj (k)

Xij

)]
.

(3.39)

Now, multiplying (3.35) by ξ results in,

ξλO
i (k + 1) = ξλO

i (k)− βm ·

(
ξλO

i (k)
∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

ξλO
j (k)

1

Xij

+
∑

j∈Ωi

(
ξµO

ij(k)− ξµO
ji(k)

) 1

Xij

)

−αm ·


 ∑

n∈ΩGi

PO
Gn

(k)− PLi
−
∑

j∈Ωi

θOi (k)− θOj (k)

Xij


 . (3.40)

Also, (3.36) could be stated as,
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PO
Gn

(k + 1) = Pn

[
ξλO

i (k)− ξbOn
2ξaOn

]
. (3.41)

Furthermore, multiplying (3.38) and (3.39) by ξ results in,

ξµO
ij(k + 1) = P

[
ξµO

ij(k)− δm

(
P ij −

θOi (k)− θOj (k)

Xij

)]

(3.42)

ξµO
ji(k + 1) = P

[
ξµO

ji(k)− δm

(
P ij +

θOi (k)− θOj (k)

Xij

)]
.

(3.43)

Note, (3.42) and (3.43) hold because P projects the updated values onto [0,∞). In other

words, µO
ij(k + 1) = 0 yields ξµO

ij(k + 1) = 0, whereas if µO
ij(k + 1) > 0 then projection is

not needed anymore.

Now, we define transformation T as,





λT(k) = ξλO(k), θT(k) = θO(k)

µT(k) = ξµO(k), P T
G(k) = PO

G (k).

(3.44)

Under this transformation (3.40)-(3.43) are stated as,

λT
i (k + 1) = λT

i (k)− βm ·

(
λT
i (k)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λT
j (k)

1

Xij

+
∑

j∈Ωi

(
µT
ij(k)− µT

ji(k)
) 1

Xij

)

−αm ·


 ∑

n∈ΩGi

P T
Gn

(k)− PLi
−
∑

j∈Ωi

θTi (k)− θTj (k)

Xij


 (3.45)

PO
Gn

(k + 1) = Pn

[
λT
i (k)− ξbOn
2ξaOn

]
(3.46)
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θTi (k + 1) = θTi (k)− γm


−

∑

n∈ΩGi

P T
Gn

(k) + PLi
+
∑

j∈Ωi

θTi (k)− θTj (k)

Xij




(3.47)

µT
ij(k + 1) = P

[
µT
ij(k)− δm

(
P ij −

θTi (k)− θTj (k)

Xij

)]

(3.48)

µT
ji(k + 1) = P

[
µT
ji(k)− δm

(
P ij +

θTi (k)− θTj (k)

Xij

)]
.

(3.49)

Equations (3.45)-(3.49) are similar to the iterative updates of I − DOPF for system

M with tuning parameters adjusted to (αm, βm, γm, δm), which converges to the optimal

solution according to the hypothesis of Justification 1.

Finally, let I − DOPF achieve the optimal solution, namely [ξλ⋆, θ⋆, ξµ⋆, P ⋆] for system

M. Then, due to the transformation, defined by (3.44), I − DOPF achieves [λ⋆, θ⋆, µ⋆, P ⋆]

as the optimal solution for system O. This verifies Remark 3. Note that adding a fictitious

bus does not change the solution of the DC-OPF, since it is not connected to a generator

or a load.

We now analytically justify the applicability of our proposed approximate tuning pa-

rameter method for the modified test system (M), namely (αm, βm, γm, δm). To this end,

we consider system M without line limit constraints for which we provide choices of βm,

γm and αm that are guaranteed to lead to convergence of the corresponding I − DOPF

algorithm. Then, for this system M, δ is tuned according to the guideline presented in the

previous subsection.

Note, by leaving out the µ update the corresponding matrix A, see (3.26), reduces to
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Ar as follows,

Ar =




βB −αB αI

0 γB −γI

− I
2a 0 I




, (3.50)

where we also assume that M.1 and M.2 hold for the above reduced modified system. The

matrix Ar is then decomposed as

Ar =

AI
r︷ ︸︸ ︷



βB −αB αI

0 γB −γI

0 0 I




+

AII
r︷ ︸︸ ︷



0 0 0

0 0 0

− I
2a 0 0




. (3.51)

Remark 4: Using standard eigenvalue perturbation results, namely the Bauer–Fike

theorem [21], since M.1 ensures that all entries of AII
r are less than ǫ, we have ρ(Ar) ≤

ρ(AI
r) + O(ǫ), where the order notation O(ǫ) denotes that the quantity goes to zero as

ǫ → 0. Here, ρ(.) denotes the spectral radius.

Moreover, AI
r is an upper triangular matrix. Therefore the eigenvalues of AI

r are the

eigenvalues of its diagonal blocks, namely βB, γB and I.

Justification 2: Let M.1 and M.2 hold for the reduced modified system. Then there

exists a set of tuning parameters such that ρ(I −Ar) < 1.

Proof: The three diagonal blocks of AI
r are symmetric diagonally dominant matrices

with positive diagonal entries, hence, they are positive semi-definite. Furthermore, M.2

guarantees the positive definiteness of AI
r ’s diagonal blocks. Although our system’s set up

includes a slack bus, a fictitious bus is required to remove singularity of the βB block.

By adding an additional fictitious bus at least one row of B does not sum to zero, hence,
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the resulting B matrix becomes non-singular. Note, the fictitious bus merely updates θ to

ensure that its corresponding line flow stays zero. Using standard relations between matrix

traces and eigenvalues, it may then be shown that

ρ(I − AI
r) ≤ max

[
1−max(β ×

∑

j∈Ωi

1

Xij

), 1−max(γ ×
∑

j∈Ωi

1

Xij

)

]
.

provided β and γ are sufficiently small. Specifically, by adjusting β and γ such that,





β ≤ 1
maxi

∑
j∈Ωi

1

Xij

γ ≤ 1
maxi

∑
j∈Ωi

1

Xij

.

(3.52)

we would have ρ(I − AI
r) < 1. In (3.34), the constant ǫ can be made arbitrary small by

properly scaling the cost parameters in M.1, which results in ρ(I −AI
r) +O(ǫ) < 1, hence,

ρ(I −Ar) < 1.

Remark 5: For any ς > 0 there exists an ℓp-norm such that ρ(Ar) ≤ ‖Ar‖p ≤ ρ(Ar)+ ς.

Justification 3: Let β and γ hold in (3.52), then there exists an ℓp-norm such that

‖I − Ar‖p < 1.

Proof: Since β and γ hold in (3.52), Justification 2 implies that ρ(I − Ar) < 1. Then,

we can pick an ς > 0 such that ρ(I−Ar)+ ς < 1 and, by Remark 5, we can find an ℓp-norm

such that ‖I −Ar‖p ≤ ρ(I − Ar) + ς < 1.

After tuning β and γ, we choose α such that α > β and α > γ. Then, we increase α

until I − DOPF does not converge any more. Finally, to tune δ we start with δ = 0.5×β

and then increase δ until noticing oscillatory behavior.

Remark 6: Justification 1 further implies that assumption M.1 does not affect the

choice of β and γ for a system. Therefore, in order to tune the parameters one can follow
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the steps provided in the previous subsection.

3.5 Simulation Results

3.5.1 Test System Set up

We use the IEEE 118-bus (see Appendix) [22] and 994-bus test systems to carry out sim-

ulations to test the I − DOPF , AI − DOPF and EI − DOPF algorithms. For the

I − DOPF , AI −DOPF algorithms the communication network, i.e., which bus is com-

municating and exchanging information with which bus, has the same topology as the

physical system. The consumption of the loads is set to be equal to the values given in

the original systems, while the synchronous condensers are removed. Also, following the

guidelines in Sect. 3.4.3, the tuning parameters are set to the values given in Table 3.2.

The chosen line limits for the IEEE 118-bus test system result in three congested lines

namely #4-#5, and #25-#27, and #49-#50.

We use cold start for the simulations. In the cold start, all variables except the λ’s

are set to zero at the start of the simulation, which is reasonable due to the fact that

the λ’s represent the locational marginal prices and are generally strictly bounded away

from zero. Also, for an actual implementation, reasonable initial settings for all of these

variables could be the optimal values computed for the previous time step.

Table 3.2: Tuning Parameter Values

Parameter IEEE 118-bus

α 0.15

β 0.0032

γ 0.0032

δ 0.08
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3.5.2 Convergence Measurements

In order to evaluate the performance of the proposed distributed approach, two measures

are introduced. The first measure determines the relative distance of the objective function

from the optimal value over the iterations,

rel =
|f − f ∗|

f ∗
, (3.53)

where f ∗ is the optimal objective function value calculated by solving the centralized

DC-OPF problem. In order to calculate f ∗, the centralized problem is implemented in

MATLAB environment and solved using the optimization package Tomlab. Moreover, the

value of load balance, as one of the optimality conditions, is potentially another indication

of the distance from the optimal value, since the value of the load balance at the optimal

point is equal to zero. Thus, we propose using the sum over the residuals of all power flow

equations over the course of the iterations as the second measure of convergence, and is

given by:

res =
∑

i

√
g2i , (3.54)

where gi corresponds to the local power flow balance at bus i, which enforces supply/de-

mand balance.

3.5.3 Case Study 1: Synchronous Update

In this subsection, we use synchronous updates for all buses. Figure. 3.3(a) shows the

evolution of the power output of the generator buses over 7500 iterations for the IEEE

RTS. Figures 3.3(b) and 3.3(c) show the evolution of λ and µ, respectively. Also, Fig. 3.4

shows the rel, and the res for the same simulation set up. At the final iteration, the

maximum power balance constraint violation is 0.0048. Note that, occasional oscillations

appear which could be prevented by reducing some of the tuning parameters further but
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this would also lead to a larger number of iterations until convergence. It can be seen that

the three Lagrange multipliers associated with the line constraints of the congested lines

are non-zero and the locational marginal prices λ are not equal to the same value.
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Figure 3.3: (a) Generation output (b) Lagrangian multiplier λ (c) Lagrangian multiplier
µ for the IEEE 118-bus system with synchronous update
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Figure 3.4: (a) Objective function value |f−f∗|
f∗ and (b) residual of equality constraints

∑
i

√
g2i for the IEEE 118-bus system with synchronous update.

Note that each iteration is computationally very inexpensive as it only requires the evalua-

tion of algebraic functions which are done in parallel at the individual buses. In the above

figures, each iteration merely corresponds to updating the variables according to updates

(3.14)-(3.18). The resulting intermediate values do not necessarily constitute a feasible

solution of the power flow equations.
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3.5.4 Case Study 2: Synchronous Update with extra links

Figure 3.5 shows the evolution of the rel and res values for the set up that is introduced

in Sect. 3.5.2, in which three of the system lines are congested, for 10000 iterations with

four additional communication links as given in Table 3.3. This figure clearly illustrates

the effect of added communication links on the convergence towards the optimal solution

from the centralized DC-OPF.
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Figure 3.5: (a) Residual of equality constraint
∑

i

√
g2i (b) Relative distance to solution

( |f−f∗|
f∗ )

Table 3.3: added communication links for the congested case

ID Added communication links

0AL No link

1AL 65-4

2AL 65-15 & 65-4

3AL 100-4 & 65-15 & 65-4

4AL 65-50 & 100-4 & 65-15 & 65-4
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Figure. 3.6 illustrates the impact of adding new communication links with more details.

Based on these simulations, as the number of new communication links increases, the

efficacy of new additional communication links reduces. In other words, the influence of

new communication links on the convergence rate decreases.
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Figure 3.6: (a) Residual of equality constraint
∑

i

√
g2i (b) Relative distance to solution

( |f−f∗|
f∗ )

3.5.5 Case Study 3: Asynchronous Update

Figure. 3.7 presents the simulation results for the IEEE 118-bus test system when it is

divided into two areas, and updated values are exchanged among buses within each area

at every iteration and between buses in separate areas only once every 30 iterations. This

figure illustrate the results for the generation settings and for the Lagrangian multipliers,

where the evolution at the outer iterations are shown, i.e., every 30th inner iteration,

hence, the total number of inner iterations conducted is actually 5000. Furthermore,

Fig.3.8 illustrates the introduced convergence measures, i.e., rel and res, over the course

of iterations for this case.
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Figure 3.7: (a) Generation output (b) Lagrangian multiplier λ (c) Lagrangian multiplier
µ for IEEE 118-bus with asynchronous update, 2 areas.
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Figure 3.8: (a) Objective function value |f−f∗|
f∗ and (b) residual of equality constraints

∑
i

√
g2i for IEEE 118-bus with asynchronous update, 2 areas.

Now, the IEEE 118-bus test system is divided into four areas, and inter-area information

exchange takes place every 20 iterations. Figure 3.9 shows the PG, λ, and µ over the course

of 5000 inner iterations. Moreover, Fig. 3.10 depicts the rel and res for the same system

settings. The speed of convergence with respect to inner iterations depends on the number

of areas and how often these areas exchange update information. Generally, if number

of areas increases but the communication gap stays the same, convergence speed reduces.
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Figure 3.9: (a) Generation output (b) Lagrangian multiplier λ (c) Lagrangian multiplier
µ for IEEE 118-bus with asynchronous update, 4 areas.
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Figure 3.10: (a) Objective function value |f−f∗|
f∗ and (b) residual of equality constraints

∑
i

√
g2i for IEEE 118-bus with asynchronous update, 4 areas.

It can be assumed that inner iterations do not require any communication if carried out

centrally inside the region thereby reducing the communication needs significantly.

Also note, although as the outer communication time gap increases, the frequency

of outer data exchange decreases, a big outer communication time gap could result in

divergence of the algorithm. For example, based on our simulations for IEEE 118-bus,

with 4 areas, AI − DOPF diverges if time gap is larger than 200 iterations.
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Moreover, asynchronous updates are carried out for 994-bus test system. To this end,

eight 118-bus test systems, i.e., each of them considered as an area, are attached to each

other to form the 944-bus test system. Updated values are exchanged between agents

within the area after each iteration and between agents in separate areas once every 20

iterations. The tuning parameters are presented in Table 3.4. Figure 3.11 presents the

outer iteration results for the generation settings PG, Lagrangian multiplier µ and res.

Note, it is assumed that inner iterations do not require any communication if carried out

at a central regional location thereby reducing the communication needs significantly.
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Figure 3.11: (a) Generation output, (b) Lagrangian multiplier µ and (c) Residual of equal-

ity constraint
∑
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2/NB, AI − DOPF , 944 bus test system.

Table 3.4: Tuning Parameter Values

Parameter 944-bus

α 0.0040

β 0.0024

γ 0.0004

δ 0.3
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3.5.6 Case Study 4: Asynchronous Update with Additional Com-

munication

Table 3.5 presents the achieved res for the IEEE 118-bus test system after 5000 iterations

under various partitioning and two different communication topologies, i.e., with and with-

out additional communication links. Note, that two additional communication links are

utilized in addition to the communication links in the physical neighborhood. These new

links connect two major generators (buses #65 and #4) and a major generator and major

load (buses #65 and #50) across the system. The tuning parameters are kept the same

for the sake of comparison.

Based on this table, as the number of areas increases and equal communication gap,

the convergence gets slower. This makes intuitive sense, since coordination overhead is

proportional to the number of areas. Also, this table clearly shows the effectiveness of the

additional communication links.

Table 3.5: Achieved res under different communication topology and portioning, IEEE
118 system

# areas
Outer area res without res with two

communication gap additional links additional links

1 1 0.51 0.45

2 30 0.57 0.55

4 20 0.73 0.69

6 20 0.85 0.8

3.6 Summary

In this chapter, we presented a distributed approach to solve the DC Optimal Power Flow

problem, i.e., the generation dispatch is determined which minimizes the cost to supply the
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load in a distributed manner taking into account limited line capacities. The main features

of the algorithm are that it allows for a fully distributed implementation down to the bus

level without the need for a coordinating central entity; the individual updates per iteration

consist of simple function evaluations and exchange of information is limited to bus angles

and Lagrange multipliers associated with power flow equations and line constraints among

the neighboring buses. In particular, there is no need to share information about generation

cost parameters or generation settings.

We discussed synchronous and asynchronous implementations of the proposed algo-

rithm. The asynchronous version not only allows to model multiple information exchange

modalities in the system but also communication delays. The asynchronous updates enable

a more realistic implementation to optimally coordinate across geographically distinct areas

and/or to improve computation speed by parallelizing calculations. Moreover in order to

improve convergence rate of our developed method, we proposed to add additional commu-

nication links between distant buses in the system and provided a way to make beneficial

use of the information exchanged between these distant buses in the local variable update.

These additional links improve the flow of information in the system, which leads to faster

agreements between the buses across the system on the values for the control variables.

In particular, we suggested that adding communication links between the influential buses

across the network to exchange the supply/demand imbalance enhances the convergence

rate. Along this line, investigating impact of communication graph’s connectivity on the

convergence properties of our proposed algorithm is a valuable research direction. The

proposed algorithms were tested in the IEEE 118-bus and 944-bus test systems showing

that it converges to the overall optimal solution. Moreover, this chapter discusses the

convergence criteria for the proposed distributed method, and analytically proves that the

limit point of our innovation-based approach is the optimal solution of the OPF problem.

55



56



Chapter 4

Distributed Security Constrained

Optimal Power Flow

4.1 Introduction

4.1.1 Motivation and Related Work

In this chapter, we propose a distributed energy management procedure with focus on

security of power network operation. Today’s centralized controllers have to deal with the

large scale problem of coordinating geographically scattered energy resources while ensuring

reliable operation of the power system in accordance with the N-1 security criteria. To fulfill

the N-1 security requirement, generation is dispatched such that no operational constraints

are violated in normal conditions or in any credible contingency case involving the failure of

at most one system component. The respective generation dispatch is found by solving the

Security Constrained Optimal Power Flow (SCOPF) problem. Traditionally, this problem

is solved in a centralized fashion.

However, current coordination practices are incapable of coping with challenges caused

by evolving power grid’s new technologies and capabilities. Majority of industry leaders
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have reached consensus on the need for transitioning from existing centralized control to a

hybrid central/distributed control structure. To address this need, an alternative control

structure should be designed to provide features such as regional authorization of enti-

ties, coordinated control of regional entities, and scalability to work seamlessly with other

elements of the existing grid [23]. This need has motivated the Seams Issues Subcommit-

tee of the Western Electricity Coordinating Council (WECC) to search for coordination

approaches to perform virtual consolidation for wide-area security constrained economic

dispatch over multiple balancing areas while accounting for seams problems [24]. In this

chapter, we present an off-line distributed coordination method that could be used to

enable SCOPF for virtual consolidation of multiple balancing areas.

In the proposed multi-agent context, the DC-SCOPF1 problem is viewed as a collab-

orative distributed optimization problem in which the network agents collectively aim to

minimize the global cost of secure power system operation. In our approach denoted by

I − DSCOPF (Innovation based Distributed Security Constrained Optimal Power Flow),

each agent is responsible for updating its local variables pertaining to normal operation as

well as contingency cases. As it was discussed in chapter 3, our proposed innovation based

update structure is based on the fact that each of the optimality conditions constitutes

equalities or inequalities with only local variable coupling. The local updates are built

on the local Lagrange multipliers relationships and the fact that the power flow equation

should hold at every bus.

In I − DSCOPF , an agent corresponds to a power system bus, thereby representing

a collection of generator/load/storage entities connected to that bus. The I − DSCOPF

requires buses to exchange variable updates after every iteration, which might be pro-

hibitive for an actual implementation. Like chapter 3 we also propose a more realistic

version of our proposed algorithm, denoted by AI −DSCOPF (Asynchronous Innova-

1Using DC approximation for N-1 calculations is a common practice in today’s power system operation,
e.g., Midwest Independent Transmission System Operator and Southwest Power Pool [25].
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tion based Distributed Security Constrained Optimal Power Flow), which does not require

every bus to exchange information with all of its neighbors after every single iteration.

Similar to the AI −DOPF method in chapter 3, the AI − DSCOPF groups buses into

areas where the exchange between buses within the areas may take place every iteration

while communication with buses in another area might take place only every x-th iteration.

Moreover, AI − DSCOPF structure allows for assigning an agent to each area to

perform the intra-area computations at a central location within the area which makes

the intra-area communications redundant. Therefore, AI − DSCOPF can be employed

to achieve improved coordination among control areas thereby leading to optimal overall

system utilization or to address what is commonly referred to as the seams problem, i.e.,

enabling coordination among areas to exchange energy while executing their own policies

locally in their own areas.

Prior distributed approaches to solve the SCOPF have mostly been based on decom-

position theory [26]. A widely used decomposition technique to tackle the computational

complexity of the SCOPF problem is Benders decomposition technique e.g., [27, 28, 29].

Benders decomposition facilitates parallel computing and copes with the large scale nature

of the original SCOPF optimization problem by decomposing the SCOPF into a master

problem corresponding to normal operation (pre-contingency, c = 0) and Nc subproblems,

each corresponding to a contingency case (c ∈ {1, · · · , Nc}).

Lagrangian based methods are also applied to find regionally decomposed solution ap-

proaches for the SCOPF problem. In these regionally decomposed techniques the SCOPF

is divided into subproblems where each subproblem corresponds to a region, e.g., [30, 31].

In order to solve the SCOPF problem, [30, 31] proposed decoupling the problem at tie-

lines connecting neighboring areas, and leaving each area with an autonomous area SCOPF

problem to solve. On the other hand, [32] suggested an Alternating Direction Method of

Multipliers (ADMM) which decouples the SCOPF problem into subproblems associated
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Each bus updates local variables for
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Physical System

Distributed
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Distributed
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(b) Communication and computation structure of the Innovation-
based distributed approach

Figure 4.1: The I − DSCOPF distributed structure, the dashed line represents inner data
exchange, and the solid line represents outer communication. The c = 0 refers to normal
operation (pre-contingency) while c 6= 0 refers to the post-contingency cases

with each bus. Although, ADMM addresses the large scale of the SCOPF problem, it

requires a central coordination of the subproblems because of the update of the multipli-

ers. In [33], the authors proposed a fully distributed algorithm to solve the SCOPF using

the proximal message passing method, where each network device solves an optimization

problem at each iteration, and exchanges information with connected neighbors.

This chapter expands our previous work presented in chapter 3, which focused on the

OPF problem, to the SCOPF problem. Similarly to the I − DOPF (see Sect. 3.3.1), the

proposed I − DSCOPF approach assigns an agent to each bus. Each agent is not only

responsible for the update of a few local variables for normal operation but also the local

variables for the contingency cases. Each agent further exchanges information about the

normal and the contingency cases with other neighboring agents. Our algorithm directly

solves the first order optimality conditions for the security constrained optimal power flow

problem, i.e., reduces the original optimization problem into solving a coupled system of

linear equations.

The key features of I − DSCOPF are as follows:

• Implemented in a fully distributed fashion (see Fig. 4.1(a)).
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• Parallelized computation at all buses without centralized entity, as illustrated in

Fig. 4.1(a).

• Parallelized computation of normal operation and all contingency cases with contin-

gency cases impacting normal operation only if contingency cases become binding,

(will be discussed in detail in Sect. 4.3)

Note, although the structure of I − DSCOPF allows for parallel computations, tackling

the computational complexity of the SCOPF problem is not the primary focus of this

chapter. Additionally, while I − DSCOPF allows for a fully distributed calculation of

the solution to the DC-SCOPF problem, that does not mean that the implementation has

to be done in a geographically distributed way. In fact, the introduced AI − DSCOPF

provides flexibility in choosing the level of distributedness for the actual implementation

of the proposed distributed algorithm.

4.1.2 Notation

Parameters and Constants

PLi
Load at bus i

an, bn, cn Cost function parameters of generator n

PGn
Maximum generation of generator n

PGn
Minimum generation of generator n

ΩG Set of all generators

ΩB Set of all buses

ΩGi
Set of all generators at bus i

Ωc
L Set of all lines in operation during contingency c

ΩC index set corresponding to the set of normal operation
and all contingencies (ΩC = {0, · · · , NC}),
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Ωc
i Set of all buses that bus i communicates with in ad-

ditions to its physical neighbors in contingency c

Ωi+ Set of all buses connected to bus i through additional
communication links

Xij Reactance of line ij

P ij Line flow limit of line ij

α, β, γ, τ, η Tuning paramters

NB Number of buses

Variables

PGn
Power output of generator n

θci Voltage angle at bus i in contingency c

µ+
n , µ

−
n Lagrangian multipliers related to upper and lower

generation limits of generator n

µc
ij Lagrangian multiplier of the line flow constraint of

line ij in contingency c

λc
i Lagrangian multiplier of the load balance equation

of bus i in contingency c

4.2 DC Security Constrained OPF

4.2.1 Problem Formulation

The objective of the SCOPF problem is to determine the generation dispatch which supplies

the load at the least cost while ensuring that the system is N-1 secure. Consequently, the

SCOPF problem has a set of line flow constraints for the pre-contingency case (c = 0) and

a set of constraints for each post-contingency case (c ∈ {1, · · · , NC}). Using the DC power

flow approximation the problem formulation is therefore given by
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min
PG,θ

∑

n∈ΩG

(anP
2
Gn

+ bnPGn
+ cn)

s.t. PGi
− PLi

=
∑

j∈Ωc
i

θci − θcj
Xij

, ∀i ∈ ΩB, ∀c ∈ ΩC

θ1 = 0

PGn
≤ PGn

≤ PGn
, ∀n ∈ ΩG (4.1)

−P ij ≤
θci − θcj
Xij

≤ P ij , ∀ij ∈ Ωc
L. ∀c ∈ ΩC

The above formulation is another instance of the compact problem formulation in Sect. 2.1,

where G enforces the power balance constraint at all buses for all contingency cases, and

and H corresponds to limits on decision variables and operational constraints. Here, i = 1

is taken to be the slack bus.

4.2.2 Optimality Conditions

The Lagrangian function for this convex optimization problem can be written as:

L =
∑

n∈ΩG

(anP
2
Gn

+ bnPGn
+ cn)

+
∑

n∈ΩG

µ+
n (PGn

− PGn
) +

∑

n∈ΩG

µ−
n (−PGn

+ PGn
)

+

NC∑

c=0

∑

i∈ΩB

λc
i · (−PGi

+ PLi
+
∑

j∈Ωc
i

θci − θcj
Xij

)

+

NC∑

c=0

∑

ij∈Ωc
L

µc
ij · (

θci − θcj
Xij

− P ij)

+

NC∑

c=0

∑

ji∈Ωc
L

µc
ji · (−

θci − θcj
Xij

− P ij),
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where the λ’s and the µ’s correspond to the Lagrange multipliers of the equality and

inequality constraints of the SCOPF problem, respectively. Since our proposed approach

is based on solving the optimality conditions of the DC-SCOPF problem in a distributed

manner, the rest of this subsection is devoted to the derivation of the first order optimality

conditions which are given as follows:

∂L

∂PGn

= 2anPGn
+ bn −

Nc∑

c=0

λc
n + µ+

n − µ−
n = 0 (4.2)

∂L

∂θci
= λc

i

∑

j∈Ωc
i

1

Xij

−
∑

j∈Ωc
i

λc
j

1

Xij

+
∑

j∈Ωc
i

(µc
ij − µc

ji)
1

Xij

= 0 (4.3)

∂L

∂λc
i

= −PGi
+ PLi +

∑

j∈Ωc
i

θci − θcj
Xij

= 0 (4.4)

∂L

µ+
n

= PGn
− PGn

≤ 0 (4.5)

∂L

µ−
n

= −PGn
+ PGn

≤ 0 (4.6)

∂L

µc
ij

=
θci − θcj
Xij

− P ij ≤ 0 (4.7)

∂L

µc
ji

= −
θci − θcj
Xij

− P ij ≤ 0, (4.8)

for all i ∈ ΩB, c ∈ ΩC , n ∈ ΩG, and ij ∈ Ωc
L. Additionally, the complementary slackness

conditions for the inequality constraints and the positivity constraints on the µ’s need

to hold. In order to find a solution for the DC-SCOPF problem, the above constrained

equation system needs to be solved. Given that the choice of the slack bus does not have

any influence on the result of the underlying optimization problem, θ1 = 0 is omitted

from the Lagrangian function and first order optimality conditions. Since the discussed

DC-SCOPF is convex and also satisfies the strong duality conditions, any solution that

fulfills all of the discussed first order optimality conditions is the optimal solution of the

DC-SCOPF problem. Here, we assume that the primal optimization problem is strictly

feasible.
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4.3 Distributed Approach

This section presents the distributed updates for I − DSCOPF and AI − DSCOPF .

These proposed iterative procedures solve the constrained system given in Sect. 4.2.

4.3.1 The I − DSCOPF Algorithm

This section presents the I − DSCOPF iterative algorithm to solve the first order opti-

mality conditions of the SCOPF problem, where each agent (bus) merely exchanges infor-

mation with its physically connected neighbors during the course of the iterations. The set

of variables that each agent i updates include the estimates of the setting of the generator

at bus i, all Lagrange multipliers and bus angles associated with bus i for normal operation

and contingency cases. The general format of the local updates follows the format given

in Sect. 2.3.1.

In our distributed I − DSCOPF approach, agent i takes care of updating and finding

the optimal values for the variables associated with it, namely λc
i , θ

c
i , PGi

, and µc
ij for j ∈ Ωi

but receives the updates for λc
j, θ

c
j , µ

c
ji from the neighboring agents j. The remainder of

this section is devoted to introducing the distributed updates for each of the variables, i.e,

λc
i , θ

c
i , PGi

, and µc
ij for all i and j ∈ Ωi.

The proposed update for λc
i iterate is given as:

λc
i(k + 1) = λc

i(k)− β

(
∂L

∂θci

)
+ α

(
∂L

∂λc
i

)

= λc
i(k)− β


λc

i(k)
∑

j∈Ωc
i

1

Xij

−
∑

j∈Ωc
i

λc
j(k)

1

Xij

+
∑

j∈Ωc
i

(µc
ij(k)− µc

ji(k))
1

Xij




− α


PGi

(k)− PLi
−
∑

j∈Ωc
i

θci (k)− θcj(k)

Xij


 ,

(4.9)
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where α, β > 0 are tuning parameters and k denotes the iteration index. In this update rule,

the first term, which corresponds to the optimality condition (4.3), preserves the coupling

between the neighboring Lagrange multipliers, whereas the local power flow equation (4.4)

constitutes the second term to enforce the supply/demand balance at each bus. This

update has the same structure as λ update that is presented in Sect. 3.3.1, hence, the same

argument justifies its intuition.

Then, given the value of the Lagrange multiplier estimates λc
i(k + 1), the PG iterates

are updated by:

PGi
(k + 1) = Pi

[∑Nc

c=0 λ
c
i(k + 1)− bn
2an

]
, (4.10)

where the operator Pi denotes projection onto the interval [PGi
, PGi

], i.e., if the value

is greater than PGi
, the PGi

(k + 1) estimate is set to that upper limit and similarly for

the lower limits. This update is derived based on the intuition that was discussed in

Sect. 3.3.1 for the PG update. A detailed convergence analysis is presented in Sect. 4.4

where we analytically prove that the I − DSCOPF converges to the optimal solution of

the SCOPF even without directly updating µ+
n and µ−

n .

The angles of the buses are updated according to

θci (k + 1) = θci (k)− γ

(
∂L

∂λc
i

)
,

= θci (k)−γ

(
−PGi

(k) +PLi
+
∑

j∈Ωi

θci (k)− θcj(k)

Xij

)
,

(4.11)

with γ > 0 being a tuning parameter. Again, this update is based on the same intuition

as the θ update in the previous chapter (see (3.16)).

The Lagrange multiplier iterates corresponding to the line limits are updated as follows:
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µc
ij(k + 1) = Pij

[
µc
ij(k) + δ

(
∂L

∂µc
ij

)]

= Pij

[
µc
ij(k)− δ

(
P ij −

θci (k)− θcj(k)

Xij

)]
,

(4.12)

where δ > 0 is a tuning parameter and the projection Pij ensures the positivity of µc
ij,

the Lagrange multiplier estimates obtained in (4.12), by projecting the resulting updated

values onto the interval [0,∞).

The update rules of the I − DSCOPF algorithm, (4.9)-(4.12), meet the requirement for

a distributed solution approach, since each agent i performs the updates for local variables

using only local information, i.e., its and its neighbors’ previous iterates. Moreover, the

fact that the updates depend only on the previous iterates enables the parallel computation

of the updates for all agents across the system.

The update (4.10) for the generator outputs is the only update which involves variables

from multiple system states, i.e., normal state and contingency states (c ∈ {0, · · · , NC}).

However, as long as all line flows in a particular contingency case c are below their limits,

the optimal generation setting is actually not affected by contingency c and therefore the

Lagrange multiplier values λc
i turn out to be zero. While iterating towards the solution,

however, the Lagrange multipliers are non-zero and may unnecessarily impact the update

of the PGi
iterates. Consequently, we can adjust the update such that we only include

the estimate λc
i for contingency c in update (4.10) if any of the iterate µc

ij for that con-

tingency are non-zero. This will require spreading the information about if any of these

Lagrange multipliers have become non-zero throughout the network. We call this approach

the version B of the distributed algorithm and the original formulation, i.e., taking into

account the λc
is even if no line constraint becomes binding for contingency c, version A of

the algorithm. Given that the power generation update (4.10) is the only update which

takes into account the interaction between different system conditions (c ∈ {0, · · · , NC}),
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the updates for the normal and contingency cases can be solved concurrently (one step).

Particularly, if approach B is used for the update of the generator settings, then the up-

dates for the contingency cases can basically run in the background without affecting the

iterations of the normal operation if none of the µij iterate become greater than zero.

The PG update for the version B of the I − DSCOPF is given as

PGi
(k + 1)=Pi

[∑Nc

c=0(1− e
−κ

∑
ij∈Ωc

L
µc
ij ) · λc

i(k + 1)− bn
2an

]
.

where κ is a large positive number. As long as the µc
ij’s are zero the λc

i does not have

any impact on PGi
, but as soon as they become non-zero, the term in the first parentheses

becomes close to one due to the large value of κ. Therefore, using the exponential term

leads to proper incorporation of the λc
i iterates associated with non-zero µc

ij estimates.

4.3.2 The AI −DSCOPF Algorithm

In the AI −DSCOPF ’s procedure, some buses only exchange information after every x-th

iteration, whereas I − DSCOPF requires every bus to exchange information with all of

its neighbors after every single iteration. The asynchronous implementation may be used

in a situation in which the goal is to coordinate multiple areas, each area, for instance

being operated by a single central entity: the internal iterations for the buses within each

area could be done at a central location within the area and the designated area centers

exchange information with each other, referred to as outer iterations, after every few of

these inner iterations. We introduce an iteration counter ki for each bus and iteration

counter nij for the update of the information between buses i and j, assuming that nij

only increases after every x-th increase of ki and kj. Hence, updates (4.9), (4.11) and (4.12)

are adjusted to
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λc
i(ki + 1) = λc

i(ki)− β

(
λc
i(ki)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λc
j(nij)

1

Xij

+
∑

j∈Ωi

(
µc
ij(ki)− µc

ji(nij)
) 1

Xij

)

−α ·


∑

n∈ΩGi

PGn
(ki)− PLi

−
∑

j∈Ωi

θci (ki)− θcj(nij)

Xij




θci (ki + 1) = θci (ki)− γ


−

∑

n∈ΩGi

PGn
(ki) +PLi

+
∑

j∈Ωi

θci (ki)− θcj(nij)

Xij




µc
ij(ki + 1) = P

[
µc
ij(ki)− δ

(
P ij −

θci (ki)− θcj(nij)

Xij

)]
.

Note, the proposed AI − DSCOPF algorithm could be potentially used to enable SCOPF

for virtual consolidation of balancing areas. The structure of AI −DSCOPF allows for

assigning an agent to each area. The intra-area computations for the buses within each

area could be done at a central location within the area by an agent. Then, designated area

agents exchange information with each other. The properties of our proposed asynchronous

implementation, such as assigning control of each area to an agent, and requiring limited

non-sensitive information exchange between agents, match with the characteristics of a

desired virtual coordination framework [23].

4.4 Convergence Analysis

This section discusses the convergence properties of the proposed I − DSCOPF algorithm

for version A as described in Sect. 4.3. Although, the convergence analysis follows the

same steps as presented in Sect. 3.4, for the sake of completeness we reiterate some of the

analytical arguments discussed in Sect. 3.4. In order to derive the convergence properties

for the I − DSCOPF algorithm, we first introduce the compact form the distributed

updates.
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The update rules for the all variables in I − DSCOPF can be written in a dense form

as

X(k + 1) = X̃(k)−AX̃(k) + C

X̃(k + 1) = P[X(k + 1)], (4.13)

where X is the vector of the stacked variables (λc
i , θ

c
i , µ

c
ij, µ

c
ji, PGi

) for all buses {1, . . . , NB},

j ∈ Ωi and all contingency cases c = {1, . . . , NC}. Also, P is the projection operator

which ensures that the Lagrange multipliers for the line constraints stay positive and the

generation outputs stay within the given bound. Hence, X̃ is the vector of the stacked

projected variables. Equation (4.15) presents (4.13) in more detail.

X(k + 1) =



I −




−α β 0 0

γ 0 0 0

0 0 −δ 0

0 0 0 1
2a










∂L
∂λc

∂L
∂θc

∂L
∂µc

∂L
∂PG




(4.14)

X(k + 1) =




I −

A︷ ︸︸ ︷


βB −αB β(By)
T αI

0 γB 0 −γI

0 −δBy 0 0

− Z
2a

0 0 I







X̃(k) +

C︷ ︸︸ ︷


αPL

−γPL

−δPij

− b
2a



. (4.15)

In (4.15), B is a block diagonal matrix that its diagonal elements are Bc (bus admittance

matrices associated with contingency c). Also, I is identity matrix. Moreover, By is a block

diagonal matrix and its diagonal elements are Bc
y. Here, Bc

y = H · (Ic · diag 1
Xij

)T , where

Ic is the incidence matrix associated with contingency c, and H = [I,−I]T . Furthermore,
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Z = [I . . . I], and it has NB columns and NC rows. Finally, PL = [PL . . . PL] and Pij =

[P
0

ij . . . P
Nc

ij ].

4.4.1 Optimality of the Solution

At first, Theorem 1 presents the formal proof that any fixed point of the proposed approach

satisfies the optimality conditions (4.2)–(4.8) of the SCOPF problem. Then, Theorem 2

discusses the optimality of the achieved limit point.

Theorem 1: Let X∗ be a fixed point of the proposed I − DSCOPF algorithm. Then,

X⋆ satisfies all of the optimality conditions of the SCOPF problem (4.2)–(4.8).

Proof: The formal proof of Theorem 1, includes the verifications of the set of claims

which show that X⋆ fulfills all of the first order optimality conditions. Note that, the vector

of stacked variables (λc
i
⋆, θci

⋆, µc
ij
⋆, P ⋆

Gi
) for all buses (agents) i = {1, . . . , NB} is denoted by

X⋆.

Claim 1: X⋆ satisfies the optimality conditions that correspond to the positivity of the

Lagrangian multipliers of the line limits, i.e., µc
ij
⋆ ≥ 0.

Verification by contradiction: Let us assume, on the contrary, that the above claim does

not hold, i.e., one of the line limit multiplier variables in X⋆, say µc
ij
⋆, is negative. Assessing

(4.12) at X⋆ leads to a non-negative value for µc
ij, because the projection operator enforces

the positivity of the µc
ij, therefore,

µc
ij
⋆ 6= P

[
µc
ij
⋆ − δ ·

(
P ij −

θci
⋆(k)− θcj

⋆(k)

Xij

)]
.

The above clearly contradicts the fact that X∗ is a fixed point of (4.12).

Claim 2: X⋆ fulfills the optimality conditions that correspond to the line limit con-

straints, (4.7)–(4.8).

Verification by contradiction: Let us assume, on the contrary, that the above claim

does not hold, i.e., X⋆ does not fulfill (4.7) for all i and j. In other words, there exists
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(i, j) such that
(
θci

⋆ − θcj
⋆
)
/Xij > P ij, which results in a negative innovation term in the

assessment of (4.12) at X⋆. Since µc
ij
⋆ ≥ 0 (see claim 1), evaluating (4.12) at X⋆ results

in a value greater than µc
ij
⋆ ≥ 0, i.e.,

µc
ij
⋆ < P

[
µc
ij
⋆ − δ ·

(
P ij −

θci
⋆(k)− θcj

⋆(k)

Xij

)]
,

which contradicts the fact that X∗ is a fixed point of (4.12). Similar discussion proves that

X⋆ fulfills (4.8).

Claim 3: The complementary slackness condition holds at X⋆, i.e., for all pairs (i, j),

µc
ij
⋆ ·

(
θci

⋆ − θcj
⋆

Xij
− P ij

)
= 0.

Verification by contradiction: Let us assume, on the contrary, that the above claim

does not hold, i.e., there exists a pair (i, j) such that both µc
ij
⋆ and

(
θci

⋆ − θcj
⋆
)
/Xij − P ij

are non-zero. Based on the verified claims 1 and 2, µc
ij
⋆ > 0 and

(
θci

⋆ − θcj
⋆
)
/Xij < P ij for

all pairs (i, j), respectively. Now, note that evaluating (4.12) at X⋆, results in a value less

than µc
ij
⋆, which contradicts the fact that X∗ is a fixed point of (4.12).

Claim 4: The local load balance equation (4.4) is preserved at X⋆.

Verification by contradiction: Let us assume, on the contrary, that the above claim

does not hold, i.e., the load balance equation doesn’t hold at X⋆. In other words, there

exists i such that the value of the innovation term in (4.11) is non-zero when evaluated at

X⋆, i.e.,

θci
⋆ 6= θci

⋆ − γ


−
∑

n∈ΩGi

P ⋆
Gn

+ PLi
+
∑

j∈Ωi

θci
⋆ − θcj

⋆

Xij


 ,

which contradicts the fact that X∗ is a fixed point of (4.11).

Claim 5: The coupling between the Lagrangian multipliers, given by (4.3), is maintained

at X⋆.

Verification by contradiction: Let us assume, on the contrary, that the above claim
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does not hold, i.e., X⋆ does not fulfill (4.3) for some i. Note that (4.9) consists of two

types of innovation terms: the innovation term that preserves the Lagrangian multipliers’

coupling, (4.3), and the innovation terms which takes into account the local power balance

equations at each bus across the system, (4.4). The verification of claim 4 indicates that

the local power balance equation residues are zero at X⋆. Therefore, the contradiction

hypothesis, i.e., the Lagrangian multipliers’ coupling is not preserved at X⋆, implies that

that the the value of (4.9) is not equal to λc⋆
i when evaluated at X⋆. This contradicts with

the fact that X∗ is a fixed point of (4.9).

Claim 6: X⋆ fulfills the optimality conditions associated with the generation limits,

(4.5)–(4.6).

Verification by contradiction: Let us assume, on the contrary, that the above claim does

not hold, i.e., there exists i such that P ⋆
Gi

does not lie in [PGi
, PGi

]. Therefore, evaluating

(4.10) at X⋆ acheives a value different from P ⋆
Gi
, due to the presence of the projection

operator that enforces the value of PGi
to stay in the specified region, [PGi

, PGi
]. This

result in a contradiction with the fact that X∗ is a fixed point of (4.10).

Here, we discuss the outcomes of Theorem 1. Due to the fact, that I − DSCOPF

consists of continuous transformations of the iterates, it follows that, if I − DSCOPF

converges, the limit point is necessarily a fixed point of the iterative mapping. Therefore,

based on Theorem 1, any limit point of the I − DSCOPF satisfies the first order optimality

conditions, (4.2)–(4.8), of the DC-SCOPF problem. Moreover, the following Theorem 2

discusses the optimality of limit points of the proposed I − DSCOPF method.

Theorem 2: Let the SCOPF problem (4.1) have a feasible solution within the interior

of the associated constraint set, and, further, assume that the proposed I − DSCOPF

algorithm converges to a point X⋆. Then X∗ is the optimal solution of the SCOPF problem

(4.1).

Proof: By Theorem 1, X⋆ satisfies the optimality conditions (4.2)–(4.8). Due to the
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fact that the DC-SCOPF is a convex problem, and assumed to be strictly feasible, the

primal variables (P ⋆,θc⋆) in X∗ constitutes an optimal solution to the SCOPF problem

(4.1).

To wrap up, note that Theorems 1 and 2 guarantee that any fixed point of the proposed

I − DSCOPF algorithm versionA constitutes an optimal solution to the SCOPF problem.

In other words, if the I − DSCOPF version A attains convergence, the limit point is

necessarily an optimal solution of the SCOPF problem. Finally, we note, that whether

the scheme converges or not depends on several design factors, in particular, the tuning

parameters α, β, γ and δ. Hence, a general sufficient condition for convergence is presented

in the following subsection.

4.4.2 Sufficient Condition for Convergence

In order to derive general sufficient condition for convergence of I − DSCOPF , the fol-

lowing assumption on the matrix A as defined in (4.15) is imposed:

A.1: There exists an ℓp-norm such that the tuning parameters α, β, γ and δ can be de-

signed to achieve ‖I −A‖p < 1.

Theorem 3: Let A.1 hold, then the algorithm presented in (4.13) achieves convergence.

Proof: Proof of this theorem is the same as proof of Theorem 3 in Sect. 3.4.2.

4.4.3 Parameter Tuning

We note, that the convergence of our distributed scheme depends on several design factors,

in particular, the tuning parameters α, β, γ and δ. This section analytical derives a

heuristic method to adjust the tuning parameters. At first we discuss the steps of this

tuning method, and later we present the analytical justification for these steps.

1. choose β such that β ≤ 1
maxi

∑
j∈Ωi

1

Xij

.
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2. choose γ such that γ ≤ 1
maxi

∑
j∈Ωi

1

Xij

.

3. choose α such that α > β and α > γ. Increase α until noticing oscillatory behavior.

4. Tuning of δ depends on the loadings of the system. Start with δ = 0.5× β; Increase

δ until noticing oscillations.

Note, the above heuristic method is not guaranteed to yield optimal tuning parameters in

all system and loading scenarios.

4.4.4 Justifications for Approximate Tuning Parameter Method

This subsection is devoted to justifying the proposed approximate parameter tuning pro-

cedure. Specifically, we consider a modified system, denoted by M, (see Assumptions M.1

and M.2 ) for which we tune the parameters, namely (αm, βm, γm, δm). Then, we derive the

desirable parameter choices for the original setup, denoted by O, from the αm, βm, γm,

and δm designed for the system M.

M.1: The generators’ cost function parameters of O, i.e., aOn , b
O

n , c
O

n , are scaled by a

factor ξ such that 1

ξa
O
n

obtain sufficiently small values. It also follows that

∀ ǫ > 0, ∃ ξ s.t.
1

ξaOn
≤ ǫ, ∀n ∈ ΩG (4.16)

M.2: A fictitious bus, i.e., a bus without generator/load, is added to the O’s network.

This fictitious bus could be connected to any of the buses.

Remark 3: Let the DC-SCOPF problem, defined by (4.1), yield [λc,⋆, θc,⋆, µc,⋆, P ⋆] as

the optimal primal and dual variables. Then, scaling the objective function of this problem

by a factor ξ, results in [ξλc,⋆, θc,⋆, ξµc,⋆, P ⋆] as the optimal primal and dual variables.

Justification 1: Let the I − DSCOPF algorithm converge to the optimal solution of

DC-SCOPF for the modified system (M) using the (αm, βm, γm, δm) as tuning parameters.
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Then, adjusting the tuning parameters to (1
ξ
αm, βm, γm,

1
ξ
δm) results in convergence of the

I − DSCOPF algorithm for the original system (O).

Proof: Given that the tuning parameters of I − DSCOPF are adjusted to (1
ξ
αm, βm, γm,

1
ξ
δm),

the I − DSCOPF ’s iterative updates for the system O, namely [λc,O, θc,O, µc,O, PO], are as

follows

λc,O
i (k + 1) = λc,O

i (k)− βm ·

(
λc,O
i (k)

∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

λc,O
j (k)

1

Xij

+
∑

j∈Ωi

(
µc,O
ij (k)− µc,O

ji (k)
) 1

Xij

)

−
αm

ξ
·


∑

n∈ΩGi

PO

Gn
(k)− PLi

−
∑

j∈Ωi

θc,Oi (k)− θc,Oj (k)

Xij




(4.17)

PO

Gn
(k + 1) = Pn

[∑Nc

c=0 λ
c,O
i (k)− bOn
2aOn

]
(4.18)

θc,Oi (k + 1) = θc,Oi (k)− γm


−

∑

n∈ΩGi

PO

Gn
(k) +PLi

+
∑

j∈Ωi

θc,Oi (k)− θc,Oj (k)

Xij


 (4.19)

µc,O
ij (k + 1) = P

[
µc,O
ij (k)−

δm
ξ

(
P ij −

θc,Oi (k)− θc,Oj (k)

Xij

)]

µc,O
ji (k + 1) = P

[
µc,O
ji (k)−

δm
ξ

(
P ij +

θc,Oi (k)− θc,Oj (k)

Xij

)]
.

(4.20)

Now, multiplying (4.17) by ξ results in,
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ξλc,O
i (k + 1) = ξλc,O

i (k)− βm·

(
ξλc,O

i (k)
∑

j∈Ωi

1

Xij

−
∑

j∈Ωi

ξλc,O
j (k)

1

Xij

+
∑

j∈Ωi

(
ξµc,O

ij (k)− ξµc,O
ji (k)

) 1

Xij

)

− αm ·


∑

n∈ΩGi

PO

Gn
(k)− PLi

−
∑

j∈Ωi

θc,Oi (k)− θc,Oj (k)

Xij


 .

(4.21)

Also, (4.18) could be stated as,

PO

Gn
(k + 1) = Pn

[
ξ
∑Nc

c=0 λ
c,O
i (k)− ξbOn
2ξaOn

]
. (4.22)

Furthermore, multiplying (4.20) by ξ results in,

ξµc,O
ij (k + 1) = P

[
ξµc,O

ij (k)− δm

(
P ij −

θc,Oi (k)− θc,Oj (k)

Xij

)]

ξµc,O
ji (k + 1) = P

[
ξµc,O

ji (k)− δm

(
P ij +

θc,Oi (k)− θc,Oj (k)

Xij

)]
.

(4.23)

Note, (4.23) hold because P projects the updated values onto [0,∞). In other words,

µc,O
ij (k + 1) = 0 yields ξµc,O

ij (k + 1) = 0, whereas if µc,O
ij (k + 1) > 0 then projection is not

needed anymore.

Now, we define transformation T as,





λc,T(k) = ξλc,O(k), θc,T(k) = θc,O(k)

µc,T(k) = ξµc,O(k), P T
G(k) = PO

G (k),

(4.24)
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Under this transformation (4.19),(4.21),(4.22),(4.23) are stated as,

λ
c,T
i (k + 1) = λ

c,T
i (k)− βm ·


λ

c,T
i (k)

∑

j∈Ωi

1

Xij
−
∑

j∈Ωi

λ
c,T
j (k)

1

Xij
+
∑

j∈Ωi

(
µ
c,T
ij (k)− µ

c,T
ji (k)

) 1

Xij




− αm ·


 ∑

n∈ΩGi

PT
Gn

(k)− PLi
−
∑

j∈Ωi

θ
c,T
i (k) − θ

c,T
j (k)

Xij




(4.25)

PT
Gn

(k + 1) = Pn

[∑Nc

c=0 λ
c,T
i (k)− ξbOn

2ξaOn

]
(4.26)

θ
c,T
i (k + 1) = θ

c,T
i (k)− γm


−
∑

n∈ΩGi

PT
Gn

(k) + PLi
+
∑

j∈Ωi

θ
c,T
i (k)− θ

c,T
j (k)

Xij


 (4.27)

µ
c,T
ij (k + 1) = P

[
µ
c,T
ij (k)− δm

(
P ij −

θ
c,T
i (k)− θ

c,T
j (k)

Xij

)]

µ
c,T
ji (k + 1) = P

[
µ
c,T
ji (k)− δm

(
P ij +

θ
c,T
i (k)− θ

c,T
j (k)

Xij

)]
.

(4.28)

Equations (4.25),(4.26),(4.27),(4.28) are similar to the iterative updates of I − DSCOPF

for system M with tuning parameters adjusted to (αm, βm, γm, δm), which converges to the

optimal solution according to the hypothesis of Justification 1.

Finally, let I − DSCOPF achieve the optimal solution, namely [ξλc,⋆, θc,⋆, ξµc,⋆, P ⋆] for

system M. Then, due to the transformation, defined by (4.24), I − DSCOPF achieves

[λc,⋆, θc,⋆, µc,⋆, P ⋆] as the optimal solution for system O. This verifies Remark 3. Note that

adding a fictitious bus does not change the solution of the DC-SCOPF, since it is not

connected to a generator or a load.
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We now analytically justify the applicability of our proposed approximate tuning pa-

rameter method for the modified test system (M), namely (αm, βm, γm, δm). To this end,

we consider system M without line limit constraints for which we provide choices of βm,

γm and αm that are guaranteed to lead to convergence of the corresponding I − DSCOPF

algorithm. Then, for this system M, δ is tuned according to the guideline presented earlier

in this section.

Note, by leaving out the µc update the corresponding matrix A, see (4.15), reduces to

Ar as follows,

Ar =




βB −αB αI

0 γB −γI

− Z
2a

0 I




,

where we also assume that M.1 and M.2 hold for the above reduced modified system. The

matrix Ar is then decomposed as

Ar =

AI
r︷ ︸︸ ︷



βB −αB αI

0 γB −γI

0 0 I




+

AII
r︷ ︸︸ ︷



0 0 0

0 0 0

− Z
2a

0 0




.

Remark 4: Using standard eigenvalue perturbation results, namely the Bauer–Fike

theorem [21], since M.1 ensures that all entries of AII
r are less than ǫ, we have ρ(Ar) ≤

ρ(AI
r) + O(ǫ), where the order notation O(ǫ) denotes that the quantity goes to zero as

ǫ → 0. Here, ρ(.) denotes the spectral radius.

Moreover, AI
r is an upper triangular matrix. Therefore the eigenvalues of AI

r are the
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eigenvalues of its diagonal blocks, namely βB, γB and I.

Justification 2: Let M.1 and M.2 hold for the reduced modified system. Then there

exists a set of tuning parameters such that ρ(I −Ar) < 1.

Proof: The assumption M.2 guarantees the diagonal dominance of AI
r ’s diagonal blocks

[34]. Also, by adding an additional fictitious bus at least one row of B does not sum to

zero, hence, the resulting B matrix becomes non-singular. Consequently, AI
r becomes

non-singular. Note, the fictitious bus merely updates θc to ensure that its corresponding

line flow stays zero. Therefore, the three diagonal blocks of AI
r are symmetric diagonally

dominant matrices with positive diagonal entries, hence, they are positive definite.

The remainder of this proof is devoted to finding upper bounds for β and γ such that

ρ(I −Ar) < 1 holds.

Let us define e(I − βB) as the eigenvalue of the matrix block (I − βB), then based on

Remark 4

ρ(I − AI
r) < 1,

which further implies that





|ej(I − βB)| < 1

|ej(I − γB)| < 1.

(4.29)

First we discuss the existence of an upper bound for β such that ρ(I − βB) < 1 holds.

A similar argument would establish an upper bound for γ such that ρ(I − γB) < 1 holds.

The above equation leads to

0 < 1− ej(I − βB) < 2 ∀j ∈ {1, . . . , NB ×Nc}. (4.30)
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Note, B is a block diagonal matrix that its diagonal elements are Bc (bus admittance

matrices associated with contingency c). Using the Gershgorin circle theorem, it may be

shown that

|ej(I − βBc)− 1 + βBc
ii| ≤ βBc

ii ∀j ∈ {1, . . . , NB}

∀c ∈ {0, . . . , Nc}.

Therefore,

0 ≤ 1− ej(I − βBc) ≤ 2βBc
ii ∀j ∈ {1, . . . , NB}

∀c ∈ {0, . . . , Nc}.

(4.31)

As it was discussed earlier M.2 ensures the non-singularity of each block of B, hence,

0 < 1− ej(I − βBc) holds. Combining (4.30) and (4.31) further implies,

∃ β s.t. 0 < 1− ej(I − βBc) < 2βBc
ii < 2 ∀j ∈ {1, . . . , NB}.

∀c ∈ {0, . . . , Nc}.

A similar discussion justifies the existence of γ

∃ γ s.t. 0 < 1− ej(I − γBc) < 2γBc
ii < 2 ∀j ∈ {1, . . . , NB}

∀c ∈ {0, . . . , Nc}.

Finally, provided β and γ are sufficiently small, specifically, by adjusting β and γ such

that,
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β ≤ 1
maxi

∑
j∈Ωi

1

Xij

γ ≤ 1
maxi

∑
j∈Ωi

1

Xij

.

(4.32)

we would have ρ(I − AI
r) < 1. Note, (4.32) only involve B0

ii since B0
ii > Bc

ii. In (4.16), the

constant ǫ can be made arbitrary small by properly scaling the cost parameters in M.1,

which results in ρ(I −AI
r) +O(ǫ) < 1, hence, ρ(I −Ar) < 1.

Remark 5: For any ς > 0 there exists an ℓp-norm such that ρ(Ar) ≤ ‖Ar‖p ≤ ρ(Ar)+ ς.

Justification 3: Let β and γ hold in (4.32), then there exists an ℓp-norm such that

‖I − Ar‖p < 1.

Proof: Since β and γ hold in (4.32), Justification 2 implies that ρ(I − Ar) < 1. Then,

we can pick an ς > 0 such that ρ(I−Ar)+ ς < 1 and, by Remark 5, we can find an ℓp-norm

such that ‖I −Ar‖p ≤ ρ(I − Ar) + ς < 1.

After tuning β and γ, we choose α such that α > β and α > γ. Then, we increase α until

I − DSCOPF does not converge any more. Finally, to tune δ we start with δ = 0.5 × β

and then increase δ until noticing oscillatory behavior.

Remark 6: Justification 1 further implies that assumption M.1 does not affect the

choice of β and γ for a system. Therefore, in order to tune the parameters one can follow

the steps provided in earlier in this section.

4.5 Simulation Results

4.5.1 Test System Set up

The simulations are carried out for the IEEE-14 bus, IEEE-57 bus [22] and 944-bus (con-

sisting of 8 IEEE 118-bus systems) test systems (see Appendix). To test for cases in which

contingencies affect the optimal settings of the generator outputs, line limits are deter-
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mined which lead to a set of severe congestions in case of contingencies. Given the chosen

line limits for the IEEE-14 bus test system, the faults in the lines connecting buses 1 and 5

and buses 2 and 3 will result in bottlenecks in the lines connecting buses 1 and 2 and buses

3 and 4, respectively. Also, in the IEEE-57 bus test system the line limits are adjusted

such that the failure of the lines connecting buses 7 and 29, and buses 1 and 16 lead to

congestions in the lines connecting buses 8 and 9 and buses 12 and 17, respectively. Finally,

in the 944-bus the considered contingencies lead to two congested lines. Note, none of the

considered line failures lead to disconnection of a bus from the rest of the system. The cost

function parameters of the generators are calculated based on the heat rate curves given in

the IEEE Reliability Test System [35] and recent fuel prices. Also, the tuning parameters

are set to the values given in Table 4.1. The tuning parameters are adjusted following the

guidelines presented in Sect. 4.4.3. It should be noted that we used a cold start for all

simulations, i.e., all the variables except the λ’s, which represent the locational marginal

prices, are set to zero at the start of the simulation.

Table 4.1: Tuning Parameter Values

Parameter IEEE 14-bus IEEE 57-bus 944-bus

α 0.0002 0.0019 0.0040

β 0.04 0.0081 0.0024

γ 0.01 0.0050 0.0004

δ 0.01 0.0250 0.3

4.5.2 Convergence Measurements

In order to evaluate the performance of the proposed algorithm we introduce two measures.

These measures quantify the performance the proposed algorithms. The first measure

determines the relative distance of the objective function from the optimal value over the
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iterations, i.e.,

rel =
|f − f ∗|

f ∗
,

where f ∗ is the optimal objective function value calculated by solving the centralized

DC-SCOPF problem. Moreover, the value of the load balance, as one of the optimality

conditions, is another indication of the distance from the optimal solution, since the value

of the load balance at the optimal point is equal to zero. Thus, we use the normalized

sum over the residuals of all power flow equations over the course of the iterations for the

normal operation (pre-contingency, c = 0), and each contingency case (c ∈ {1, · · · , N}) as

the second measure of convergence.

Hence, this measure is given by:

resc =

∑
i

√
(gci )

2

NB

.

where gci is the local power flow equation at bus i in contingency c, and NB is the number

of buses.

4.5.3 Case Study 1: IEEE 14-bus Test System

This section presents the performance of the I − DSCOPF for the IEEE-14 bus test

system taking into account N-1 failures of all lines. Therefore, the contingency set includes

all possible line failures. Using version A of the I − DSCOPF algorithm, Fig. 4.2 shows

the evolution of the total power output of the generator buses, µ and λ over 4000 iterations.

Given that two of the lines reach their limits, two Lagrange multipliers associated with the

line constraints of the congested lines are non-zero and the locational marginal prices (λ)

are no longer equal to the same value.

Also, Fig. 4.3 shows rel and res for the contingencies of the same setup using version

A of our proposed algorithm. Each iteration is computationally very inexpensive as it only
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requires the evaluation of algebraic functions, which are done in parallel at the individual

buses. Furthermore, Fig. 4.4 and Fig. 4.5 depict the evolution of variables and convergence

measures for the same test system setup using version B of the I − DSCOPF algorithm.

Comparing the two versions of I − DSCOPF , version B outperforms version A with

respect to convergence speed.
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Figure 4.2: (a) Generation output, (b) Lagrangian multiplier λ and (c) Lagrangian multi-
plier µ for version A, I − DSCOPF , IEEE-14 bus test system
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Figure 4.3: (a) Relative distance to solution (|f − f ∗| /f ∗) and (b) Residual of equality

constraint
∑

i
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2/NB for version A, I − DSCOPF , IEEE-14 bus test system.
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Figure 4.4: (a) Generation output, (b) Lagrangian multiplier λ and (c) Lagrangian multi-
plier µ for version B, I − DSCOPF , IEEE-14 bus test system
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Figure 4.5: (a) Relative distance to solution (|f − f ∗| /f ∗) and (b) Residual of equality

constraint
∑

i

√
(gci )

2/NB for version B, I − DSCOPF , IEEE-14 bus test system.

4.5.4 Case Study 2: IEEE 57-bus Test System

This section illustrates the performance of the proposed distributed I − DSCOPF algo-

rithm for the IEEE-57 bus test system. Figure. 4.6(a) shows the evolution of the power

output of the generators over 10000 iterations for the I − DSCOPF version A algorithm.

Figures 4.6(b) and 4.6(c) show the evolution of λ and µ, respectively. Oscillations appear

which could be prevented by reducing some of the tuning parameters, but this would also

lead to a larger number of iterations until convergence. Also, Fig. 4.7 shows rel and res

for the considered contingencies. Since in this case that the set of contingencies is not
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complete, the performance of versions A and B of the I − DSCOPF algorithm is similar.

Therefore, using the version B of I − DSCOPF would more or less lead to a replica of

the already included figure for version A. Note, the values of rel and res for the version

B of I − DSCOPF algorithm after 10000 iterations are 5.47e-6 and 0.001, respectively.

Figure 4.6: (a) Generation output, (b) Lagrangian multiplier λ and (c) Lagrangian multi-
plier µ for version A, I − DSCOPF , IEEE-57 bus test system
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Figure 4.7: (a) Relative distance to solution (|f − f ∗| /f ∗) and (b) Residual of equality

constraint
∑
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√
(gci )

2/NB for version A, I − DSCOPF , IEEE-57 bus test system.
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4.5.5 Case Study 3: 944-bus Test System

This section presents the simulation results for the AI −DSCOPF algorithm where asyn-

chronous updates are carried out between areas. To this end, eight 118-bus test systems,

i.e., each of them considered as an area, are attached to each other to form the 944-bus

test system. Note, the contingency set includes failure of the lines connecting buses 5 and

8 and buses 15 and 19 inside each area in addition to lines that connect the areas to each

other. Updated values are exchanged between agents within the area after each iteration

and between agents in separate areas once every 20 iterations. The tuning parameters are

presented in Table 4.1. Figure 4.8 presents the outer iteration results for the generation

settings PG, Lagrangian multiplier µ and res. Note, it is assumed that inner iterations

do not require any communication if carried out at a central regional location thereby

reducing the communication needs significantly.
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Figure 4.8: (a) Generation output, (b) Lagrangian multiplier µ and (c) Residual of equality

constraint
∑
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(gci )

2/NB, AI − DSCOPF , 944 bus test system.
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4.5.6 Case Study 4: Sensitivity Analysis

This section investigates the impact of distributedness, i.e., number of areas, and number

of buses on the convergence of the AI − DSCOPF algorithm. Simulations are carried out

for different numbers of areas and different number of buses and the results are presented

in Table 4.2. Here, the res of AI − DSCOPF is reported after 5000 inner iterations.

Note, the contingency set includes failure of the lines connecting buses 5 and 8 and buses

15 and 19 inside each area in addition to lines that connect the areas to each other. Based

on this table, as the number of buses increases the convergence slows down. Moreover, the

speed of convergence with respect to inner iterations depends on the number of areas and

how often these areas exchange updated information. Generally, if the number of areas

increases but the communication gap stays the same, convergence speed reduces. Again,

as previously mentioned, it can be assumed that inner iterations do not require any com-

munication if carried out centrally inside the region thereby reducing the communication

needs significantly.

Table 4.2: Required number of iterations to achieve convergence with various number of
areas, and various number of attached IEEE 118-bus

# attached
# areas

inner iter.
res×NB

118 buses per outer iter.

2 2 10 0.1215

3 3 10 0.1434

4

4 10 0.1624

8 10 0.1627

8 40 0.1628

8
8 20 0.2152

16 20 0.2153
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4.6 Summary

In this chapter, we have presented two multi-agent distributed approaches to solve the

DC-SCOPF problem, namely the I − DSCOPF and AI −DSCOPF , in a distributed

manner. In the DC-SCOPF problem, the generation dispatch is determined which mini-

mizes the cost to supply the load taking into account limited line capacities both in normal

and contingency cases. The main features of the I − DSCOPF algorithm are that it al-

lows for a fully distributed implementation down to the bus level without the need for a

coordinating central entity. Each bus is represented by an agent and the individual agent

updates per iteration consist of simple function evaluations and exchange of information is

limited to bus angles and Lagrange multipliers associated with power flow equations and

line constraints among the neighboring agents. In particular, there is no need to share

information about generation cost parameters or generation settings. Moreover, we have

presented two versions of the I − DSCOPF ; version A which utilizes the original optimal-

ity conditions in the update functions, and version B that effectively modifies the update

functions to improve the convergence rate of the I − DSCOPF algorithm.

Furthermore, we discussed synchronous and asynchronous implementations of the pro-

posed algorithm. The asynchronous version, denoted by AI −DSCOPF , not only allows

to model multiple information exchange modalities in the system but also the impact of

communication. The asynchronous updates enable a more realistic implementation to

optimally coordinate across geographically distinct areas and/or to improve computation

speed by parallelizing calculations. The proposed algorithms were tested in the IEEE 14-

bus, IEEE 57-bus and the 944-bus test systems showing that it converges to the overall

optimal solution. Moreover, this chapter discusses the convergence criteria for the proposed

distributed methods. Finally, in order to adjust the tuning parameters, we suggested a set

of guidelines which is backed by analytical justifications.
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Chapter 5

Distributed Approach For Power

Flow Control

5.1 Introduction

5.1.1 Motivation and Related Work

Today’s transmission grid is operated closer to its capacity limits due to the increased

penetration of renewable resources, ever increasing electricity consumption, and lack of

investment in transmission assets. The resulting bottlenecks in this interconnected system

may result in a suboptimal usage of the generation assets. A possible way to resolve this

issue is to better utilize the existing transmission system such as by installing and operating

power flow control devices that allow directing power flows to desired paths. This could

alleviate congestions of transmission lines by essentially increasing the transfer capacity of

the grid.

Flexible AC Transmission Systems (FACTS) are capable of steering power flows by

altering parameters of the transmission grid, e.g., line reactances. The newly developed

distributed version of FACTS devices [36], namely Distributed FACTS (D-FACTS), not
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just serve the purpose of increasing the transfer capacity of the grid but also offer a more

reliable and cost effective option compared with traditional FACTS devices. In this regard,

the effect of D-FACTS adoption in the transmission grid is discussed in detail in [36].

A distributed control scheme could decrease the complexity of optimal coordination of

these power flow control devices and hence improve the operation of the future electric grid

which is envisioned to be penetrated by a range of distributed components and generation

resources. To address this need and to implement an autonomous structure for power flow

control, in [37, 38, 39] multi agent distributed control strategies for FACTS devices are

proposed which are based on sensitivity analysis. Moreover, [40] proposed a sensitivity

based distributed control of FACTS devices against line overloading. However, sensitivity

based approaches could lead to a conflicting behavior of FACTS devices in the case that the

control areas assigned to these devices overlap which indicates mutual influences [41]. In

this regards, [42] presented a distributed model predictive control for automatic generation

control of a multi-systems grid where inter-system tie-lines are equipped with FACTS

devices. Furthermore, [43] utilized an alternating direction method of multipliers to solve

the power flow control problem, in which at each iteration every bus has to solve multiple

optimization problems.

Motivated by the same cause, the focus of this chapter is on finding a distributed

solution for the DC-OPF where the D-FACTS are incorporated into the problem formula-

tion to allow for power flow control (PFC). Our proposed distributed scheme, denoted by

I − DPFC (Innovation based Distributed Power Flow Control) integrates first order opti-

mality conditions of the PFC problem as local innovation-gradients into the local variable

updates as presented in chapter 3 for the case without power flow control devices. To our

knowledge, this is the first time this type of approach is proposed for distributed power

flow control.

As mentioned in Sect. 2.3.1, the I − DPFC reduces the original PFC’s optimization
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problem to solving a coupled system of equations in a fully distributed manner. The

I − DPFC’s local update rules, which include linear combinations of the discussed opti-

mality conditions, require each bus to update a few local variables and exchange informa-

tion with neighboring physically connected buses. Also, our proposed I − DPFC method

could be further extended to allow for asynchronous implementation (see 3.3.2 for more de-

tails). However, unlike chapters 3 and 4, the incorporation of power flow control variables

make the formulation non-convex and by solving the first order optimality conditions we

aim to obtain a local optimum, in general, for the PFC problem studied in this chapter.

5.1.2 Notation

Parameters and Constants

PLi
Load at bus i

an, bn, cn Cost function parameters of generator n

PGn
, PGn

Maximum and minimum generation of generator
n

Xij, Yij Reactance and admittance of line ij

∆X ij,∆X ij Maximum and minimum reactance of D-FACTS in
line ij

Y ij, Y ij Upper and lower limit for the admittance of line
ij that is equipped with D-FACTS

P ij Line flow limit of line ij

ΩG, ΩB Set of all generators and set of all buses

ΩGi
Set of all generators at bus i

ΩL Set of all lines in the grid

Ωi Set of all buses physically connected to bus i

NB Number of buses

α, β, γ, τ, η Tuning paramters
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Variables

PGn
Power output of generator n

θi Voltage angle at bus i

Xij,T , Total reactance of line ij

Yij,T Total admittance of line ij

λi Lagrangian multiplier of the load balance equation
of bus i

µij Lagrangian multiplier of the line flow constraint of
line ij

µ+
n , µ

−
n Lagrangian multipliers related to upper and lower

generation limits of generator n

ν+
n , ν

−
n Lagrangian multipliers related to upper and lower

admittance limits of the lines equipped with D-
FACTS

5.2 Power Flow Control

5.2.1 D-FACTS modeling

In this chapter, a D-FACTS device is modeled as a variable reactance ∆Xij in series

with the line reactance Xij [36]. Note, this paper assumes that a D-FACTS is capable of

decreasing and increasing the overall reactance of the line. Increasing a line’s reactance

steers power away from that line while decreasing the reactance draws power into the line.

Incorporating D-FACTS, the total reactance of a line is modeled as

Xij,T = Xij +∆Xij (5.1)

∆X ij ≤ ∆Xij ≤ ∆X ij. (5.2)
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5.2.2 Problem Formulation

The PFC problem is aimed at finding the generation dispatch and the settings for the power

flow control devices which supply the load in the system at the least cost while taking into

account operational constraints such as line flow limits and limits on generation outputs.

Mathematically this problem is formulated as:

min
PG

∑

n∈ΩG

(anP
2
Gn

+ bnPGn
+ cn) (5.3)

s.t.
∑

n∈ΩGi

PGn
− PLi =

∑

j∈Ωi

Yij,T · (θi − θj) ∀i ∈ 1, · · · , NB (5.4)

θ1 = 0 (5.5)

−P ij ≤ Yij,T · (θi − θj) ≤ P ij ∀ij ∈ ΩL (5.6)

PGn
≤ PGn

≤ PGn
∀n ∈ Ωn (5.7)

Y ij ≤ Yij,T ≤ Y ij, ∀ij ∈ ΩL (5.8)

where Yij,T = 1/Xij,T and the upper and lower limits Y ij , Y ij for the admittance of line ij

are derived from (5.1), (5.2) resulting in

Y ij =
1

Xij +∆X ij

and Y ij =
1

Xij +∆X ij

.

Therefore, instead of controlling the reactance of the DFACTS, the admittance of line

ij (Yij,T ) is considered as a control variable. Here, i = 1 is taken to be the slack bus

and its angle θ1 is set to zero. Note, the above formulation can be casted as an instance

of the general optimization form (2.1)-(2.3), with equations (5.3), (5.4), and (5.6)-(5.8)

corresponding to F, G and H, respectively. Here, i = 1 is taken to be the slack bus.
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5.2.3 Optimality Conditions

The Lagrangian function for this optimization problem is given by:

L =
∑

n∈ΩG

(anP
2
Gn

+ bnPGn
+ cn) +

∑

n∈ΩG

µ+
n (PGn

− PGn
) +

∑

n∈ΩG

µ−
n (−PGn

+ PGn
)

+ ν+
ij (Yij,T − Y ij) + ν−

ij (−Yij,T + Y ij)

+

NB∑

i=1

λi(−
∑

n∈ΩGi

PGn
+ PLi +

∑

j∈Ωi

Yij,T · (θi − θj))

+
∑

ij∈ΩL

µij(Yij,T · (θi − θj)− P ij) +
∑

ji∈ΩL

µji(−Yij,T · (θi − θj)− P ij).

(5.9)

and the corresponding first order optimality conditions are derived as follows:

∂L

∂PGn

= 2anPGn
+ bn − λn + µ+

n − µ−
n = 0 (5.10)

∂L

∂θi
= λi

∑

j∈Ωi

Yij,T −
∑

j∈Ωi

λjYij,T +
∑

j∈Ωi

(µij − µji)Yij,T = 0 (5.11)

∂L

∂λi

= −
∑

n∈ΩGi

PGn
+PLi −

∑

j∈Ωi

Yij,T · (θi − θj) = 0 (5.12)

∂L

Yij,T

= (θi − θj) · λi + (θj − θi) · λj + ν+
n − ν−

n

+ (θi − θj) · µij + (θj − θi) · µji = 0 (5.13)

∂L

µ+
n

= PGn
− PGn

≤ 0 (5.14)

∂L

µ−
n

= −PGn
+ PGn

≤ 0 (5.15)

∂L

ν+
ij

= Yij,T − Y ij ≤ 0 (5.16)

∂L

ν−
ij

= Yij,T − Y ij ≤ 0 (5.17)

∂L

µij

= Yij,T · (θi − θj)− P ij ≤ 0 (5.18)

∂L

µji

= −Yij,T · (θi − θj)− P ij ≤ 0, (5.19)
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for all i ∈ ΩB, and ij ∈ ΩL plus the complementary slackness conditions for the inequality

constraints and the positivity constraints on the µ’s and ν’s.

5.3 Distributed Approach

This chapter presents the I − DPFC algorithm to solve the first order optimality condi-

tions of the PFC. This iterative scheme follows the innovation-based update formulation

that is introduced in Sect. 2.3.1. Here, each bus (agent) i is responsible for updating the

variables associated with it, namely λi, θi, PGn
for n ∈ ΩGi

, Yij,T , and µij for j ∈ Ωi. The

rest of this section is devoted to formulating the updates for the local variables. As will

be seen, updates for µ+
n , µ

−
n , ν

+
n , and ν−

n are not required as we use projections to enforce

the limits on the generation outputs and the line reactances. Hence, I − DPFC does not

include any updates for these Lagrange Multipliers.

The proposed update for λi is given as:

λi(k + 1) = λi(k)− β ·

(
λi(k)

∑

j∈Ωi

Yij,T (k)−
∑

j∈Ωi

λj(k)Yij,T (k)

+
∑

j∈Ωi

Yij,T (k) · (µij(k)− µji(k))

)

− α ·


∑

n∈ΩGi

PGn
(k)− PLi

−
∑

j∈Ωi

Yij,T (k) · (θi(k)− θj(k))


, (5.20)

where α, β > 0 are tuning parameters. This update rule is based on the same intuition

that was presented for (3.14).

Knowing the value of λi, the power outputs of the generators PGn
, n ∈ ΩGi

are updated

as follows:

PGn
(k + 1) = Pn

[
λi(k + 1)− bn

2an

]
. (5.21)
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Note, the projection operator Pn in the update rule ensures that the obtained value lies

in the feasible range [PGn
, PGn

], i.e., if the updated value is greater than the capacity of

the generator, the value is set to that upper bound and similarly for the lower generation

limit. The above update and its intuition matches the one for (3.15).

The angles of the buses are updated as

θi(k + 1) = θi(k)− γ


−

∑

n∈ΩGi

PGn
(k) + PLi

+
∑

j∈Ωi

Yij,T (k) · (θi(k)− θj(k))


 , (5.22)

where γ > 0 is a tuning parameter. Using the local supply/demand balance equation in

(5.22) intuitively follows the same argument that is presented for (3.16).

The corresponding update for µij , i.e., the Lagrange multiplier associated with line

limits is given as:

µij(k + 1) =Pij

[
µij(k)− δ ·

(
P ij − Yij,T (k) · (θi(k)− θj(k))

)]
, (5.23)

with δ > 0. Note, this update always results in positive values for the Lagrange multipliers

due to the projection Pij onto the feasible region [0,∞) (see discussion related to (3.18)

for more details).

The update for the admittance Yij,T of the line is given as:

Yij,T (k + 1) = Pij,y [Yij(k)− τ((θi(k)− θj(k)) · λi(k)+

(θj(k)− θi(k)) · λj(k) + (θi(k)− θj(k)) · µij(k) + (θj(k)− θi(k)) · µji(k))] .

(5.24)

Here, τ > 0 is again a tuning parameter. The projection operator Pij,y projects the corre-

sponding updated value onto the feasible space defined by [Y ij, Y ij ]. The aforementioned

update rule is based on (5.13), where the effect of the ν+ and ν− are captured in terms of
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the projections.

Also, note that due to the non-convexity of the PFC, the I − DPFC is not guaranteed

to achieve a globally optimal solution, but by solving the first order optimality conditions

we aim to obtain a local optimum.

5.4 Convergence Analysis

5.4.1 Properties of the Solution

In the following Theorem 1, we first show that a fixed point of the proposed iterative

scheme necessarily satisfies the optimality conditions (5.10)–(5.19) of the PFC problem.

Theorem 1: Let X∗ be a fixed point of the proposed I − DPFC algorithm. Then, X⋆

satisfies all of the optimality conditions of the PFC problem (5.10)–(5.19).

Proof: The formal proof of Theorem 1 includes the verifications of the set of claims

which show that X⋆ fulfills all of the first order optimality conditions. Note that the

vector of stacked variables (λi
⋆, θi

⋆, µij
⋆, P ⋆

Gi
, Y ⋆

ij,T ) for all buses (agents) i = {1, . . . , NB} is

denoted by X⋆.

Claim 1: X⋆ fulfills the optimality conditions which enforce the positivity of the La-

grangian multipliers associated with the line limits, i.e., µ⋆
ij ≥ 0.

Verification by contradiction: Let us assume on the contrary that in X⋆ one of the line

limit multiplier variables, say µ⋆
ij , is negative. Now, note that, evaluating (5.23) at X⋆

results in a non-negative value for µij due to the projection of µij into the set of positive

reals. In other words, we have

µ⋆
ij 6= P

[
µ⋆
ij − δ ·

(
P ij − Y ⋆

ij,T · (θ⋆i − θ⋆j )
)]

,

which contradicts the fact that X∗ is a fixed point of (5.23). A similar argument establishes

that µ⋆
ji ≥ 0.
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Claim 2: X⋆ satisfies the optimality conditions associated with the line limit constraints,

(5.18)–(5.19).

Verification by contradiction: Let us assume that X⋆ does not fulfill (5.18) for all i and

j, i.e., there exists (i, j) such that Y ⋆
ij,T · (θ⋆i − θ⋆j ) > P ij . This implies that the value of

the innovation term in (5.23) is negative when evaluated at X⋆. Also, note that, based on

claim 1, µ⋆
ij ≥ 0. Therefore, evaluating (5.23) at X⋆ results in a value greater than µ⋆

ij , i.e.,

µ⋆
ij < P

[
µ⋆
ij − δ ·

(
P ij − Y ⋆

ij,T · (θ⋆i − θ⋆j )
)]

,

which contradicts the fact that X∗ is a fixed point of (5.23). Similar arguments can be

used to prove that X⋆ fulfills (5.19).

Claim 3: X⋆ satisfies the optimality conditions associated with the complementary

slackness condition, i.e., for all pairs (i, j),

µ⋆
ij ·
(
Y ⋆
ij,T · (θ⋆i − θ⋆j )− P ij

)
= 0.

Verification by contradiction: Let us assume on the contrary that X∗ does not satisfy

the above complementary slackness condition, i.e., there exists a pair (i, j) such that both

µ⋆
ij and Y ⋆

ij,T · (θ
⋆
i −θ⋆j ) are non-zero. Hence, according to the claims 1 and 2, we must have,

µ⋆
ij > 0 and Y ⋆

ij,T · (θ⋆i − θ⋆j ) < P ij, respectively. Now, note that evaluating (5.23) at X⋆,

results in a value less than µ⋆
ij, which clearly contradicts the fact that X∗ is a fixed point

of (5.23).

Claim 4: X⋆ satisfies the local load balance equation (5.12).

Verification by contradiction: Let us assume on the contrary that X⋆ does not fulfill

(5.12), i.e., there exists i such that the value of the innovation term in (5.22) is non-zero
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when evaluated at X⋆. Clearly, this would lead to

θ⋆i 6= θ⋆i − γ


−
∑

n∈ΩGi

P ⋆
Gn

+ PLi
+
∑

j∈Ωi

Y ⋆
ij,T · (θ⋆i − θ⋆j )


 ,

thus contradicting the fact that X∗ is a fixed point of (5.22).

Claim 5: The coupling between the Lagrangian multipliers, given by (5.11), is main-

tained at X⋆.

Verification by contradiction: Let us assume on the contrary that X⋆ does not fulfill

(5.11) for some i. Note that (5.20) includes two innovation terms: the innovation term

associated with the Lagrangian multipliers’ coupling and the innovation term which rep-

resents the local power balance equation. We already verified that the local power balance

equation is zero at X⋆ (see claim 4). Thus, the contradiction hypothesis necessarily im-

plies that the innovation term associated with the Lagrangian multipliers’ coupling attains

a non-zero value at X⋆. This, in turn, implies that the the value of (5.20) is not equal to

λ⋆
i when evaluated at X⋆, which clearly contradicts the fact that X∗ is a fixed point of

(5.20).

Claim 6: X⋆ satisfies the optimality conditions associated with the generation limits,

(5.14)–(5.15).

Verification by contradiction: Let us assume on the contrary that there exists i such

that P ⋆
Gi

does not lie in [PGi
, PGi

]. Now, note that, plugging in λ⋆ in (5.21), would then

result in a value different from P ⋆
Gi
, since the projection operator enforces the value of PGi

to stay in the specified region, [PGi
, PGi

]. This, in turn, clearly contradicts the fact that

X∗ is a fixed point of (5.21).

Claim 7: X⋆ satisfies the optimality conditions associated with the admittance limits

of line ij equipped with D-FACTS, (5.16)–(5.17).

Verification by contradiction: Let us assume on the contrary that there exists i such

that Y ⋆
ij,T does not lie in [Y ij, Y ij ]. Now, note that, plugging in Y ⋆

ij,T in (5.24), would then
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result in a value different from Y ⋆
ij,T , since the projection operator enforces the value of

Y ⋆
ij,T to stay in the specified region, [Y ij , Y ij]. This, in turn, clearly contradicts the fact

that X∗ is a fixed point of (5.24).

Claim 8: X⋆ satisfies (5.13).

Verification by contradiction: Let us assume on the contrary that X⋆ does not fulfill

(5.13), i.e., there exists (i, j) such that the value of the innovation term in (5.24) is non-zero

when evaluated at X⋆. Also, based on Claim 7 Y ⋆
ij,T is in the specified region, [Y ij , Y ij],

hence the projection operator in (5.24) is redundant. Clearly, our assumption would lead

to

Y ⋆
ij,T 6= Y ⋆

ij,T − τ((θ⋆i − θ⋆j ) · λ
⋆
i + (θ⋆j − θ⋆i ) · λ

⋆
j + (θ⋆i − θ⋆j ) · µ

⋆
ij + (θ⋆j − θ⋆i ) · µ

⋆
ji).

thus contradicting the fact that X∗ is a fixed point of (5.24).

Here, we discuss the outcomes of Theorem 1. Due to the fact, that I − DPFC consists

of continuous transformations of the iterates, it follows that, if I − DPFC converges,

the limit point is necessarily a fixed point of the iterative mapping. Therefore, based on

Theorem 1, any limit point of the I − DPFC satisfies the first order optimality conditions,

(5.10)–(5.19), of the PFC problem. Moreover, the following Theorem 2 discusses the

optimality of limit points of the proposed I − DPFC method.

Remark 1: Let us assume that X⋆ fulfills first order optimality conditions of the PFC

problem. Then, X⋆ is a local optimum of the underlaying optimization problem only if

optimality conditions at X⋆ satisfy constraint qualifications.

Theorem 2: Let the PFC problem (5.3)-(5.8) have a feasible solution within the interior

of the associated constraint set, and, further, assume that the proposed I − DPFC algo-

rithm converges to a point X⋆. Then X∗ is a local optimal solution of the PFC problem.

Proof: By Theorem 1, X⋆ satisfies the optimality conditions (5.10)–(5.19) of the PFC

problem. Also, first order optimality conditions of the PFC problem are linearly inde-
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pendent, hence, they satisfy linear independent constraint qualification at X∗. Therefore,

based on Remark 1 X∗ is a local optimal solution of the PFC problem.

Finally, note that the discussed PFC problem is a non-convex problem, hence, a solution

that fulfills its associated first order optimality conditions may not constitute an optimal

solution for the original problem.

5.5 Simulation Results

5.5.1 Test System Set up

We evaluate the I − DPFC using the IEEE 14-Bus system and IEEE 118-Bus system

(see Appendix). The topology of the communication network is the same as the physical

system, i.e., each bus only exchanges information with its physically connected buses. In

the IEEE 14-Bus system, the power flow control devices are placed in lines connecting

buses 3 and 4 and connecting buses 4 and 9. The line limits are chosen such that the lines

connecting buses 1 and 2 and connecting buses 3 and 4 reach their limits in the optimal

solution. In the IEEE 118-Bus system, the power flow control devices are placed in lines

connecting buses 3 and 5 and also buses 25 and 27. At the optimal solution, the lines

connecting buses 4 and 5, buses 25 and 27 and buses 49 and 50 reach their limits.

The cost parameters for the generators are derived from the heat rate curves given in

the IEEE Reliability Test System and recent fuel costs. The simulations are performed

using a cold start, i.e., all the variables except the Lagrange multipliers λi are set to zero

at the start.

5.5.2 Convergence Measurements

The performance of the I − DPFC is evaluated using the same two measures as in pre-

vious chapters. The first corresponds to the relative distance of the objective function
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value f from the solution of the centralized problem (f ∗) using the KNITRO solver of the

commercial optimization package Tomlab,

rel =
|f − f ∗|

f ∗
, (5.25)

The second measure quantifies the fulfillment of the load balance equations. Hence, we

denote gi as the residual of the supply/demand balance at bus i. The sum over these

residuals over the course of the iterations provides this second measure and is given as

res =
∑

i

√
g2i , (5.26)

5.5.3 Case Study 1: IEEE 14-bus Test System

We first discuss the results for the IEEE 14-bus test system. Figure 5.1(a) depicts the evo-

lution of the generation outputs over 2000 iterations, while Fig. 5.1(b) shows the evolution

of the λ’s for the same number of iterations.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

P

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

λ

    (b) 

 Iteration

Figure 5.1: (a) Generation output, and (b) Lagrangian multiplier λ (IEEE 14-Bus test
system).
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Moreover, Figs. 5.2(a) and (b) give the evolution of the µ’s of all lines, and the line

admittances which are equipped with D-FACTS for 2000 iterations, respectively. Since two

of the lines are congested at the optimal solution, their associated µij’s obtain non-zero

values. Furthermore, again due to the congestions, the λ’s for the buses deviate from each

other at the final solution.

Figure 5.3(a) shows the relative distance from the optimal value of the objective function

over the course of the iterations. Although the PFC problem is non-convex, for the IEEE-14

bus the Tomlab’s solution is globally optimal(based on the output flag of the solver).

The sum over the residual of all supply/demand equations is given in Fig. 5.3(b). It is

clear that the I − DPFC algorithm gets closer to the optimal solution as more iterations

are carried out. Also, the obtained values from the I − DPFC are seen to satisfy the first

order optimality conditions. Note that, in particular, at the limiting convergence point,

the value of the power flow equations residual, and consequently the res, is equal to zero.
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Figure 5.2: (a) Lagrangian multiplier µ, and (b) Variable Admittance Y (IEEE 14-Bus
test system).
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Figure 5.3: (a) Relative distance to solution |f−f∗|
f∗ , and (b) Residual of load balance

constraints
∑

i

√
g2i (IEEE 14-Bus test system).

5.5.4 Case Study 2: IEEE 118-bus Test System

Figure 5.4 shows the simulation results (generation outputs, Lagrange multiplier, and vari-

able admittance) for the IEEE-118 bus test system over 5000 iterations.
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Figure 5.4: (a) Generation output, (b) Lagrangian multiplier µ, and (c) Variable Admit-
tance Y (IEEE 118-Bus test system).

Moreover, in order to show the performance of our proposed algorithm we implemented

the I − DPFC algorithm for the case that all lines of the IEEE-118 bus test system are
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equipped with power flow control devices. Figure 5.5 presents the generation outputs,

Lagrange multipliers µ, and variable admittance Y of all lines. The res and rel are given

in Fig. 5.6. The achieved value for rel after 5000 iteration is 0.0028. Similarly to the

IEEE-14 bus test system, the optimization variables converge towards the same solution

as the centralized solver.
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Figure 5.5: (a) Generation output, (b) Lagrangian multiplier µ, and (c) Variable Admit-
tance Y (IEEE 118-Bus test system).
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Figure 5.6: (a) Generation output, (b) Lagrangian multiplier µ, and (c) Variable Admit-
tance Y (IEEE 118-Bus test system).
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5.6 Summary

In this chapter, we have presented a distributed approach to solve the DC Optimal Power

Flow problem with D-FACTS placed in some of the transmission lines. The approach de-

fines local updates for the variables which use combinations of the first order optimality

conditions of the corresponding optimization problem as innovation terms. This algorithm

allows for a fully distributed implementation down to the bus level without the need for

a coordinating entity. The update rules just involve simple function evaluations and the

information exchange is limited to a few neighboring buses. Furthermore, this algorithm

does not require sharing information about generation cost parameters or generation set-

tings. The performance of the algorithm was tested in the IEEE 14-bus and 118-bus test

systems providing proof of concept by showing convergence to the centralized solution.

Finally, we analytically justified that any solution achieved by our proposed algorithm is

a local optimal solution to the underlying optimization problem.
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Chapter 6

Distributed Cooperative Charging of

Plug-in Electric Vehicles

6.1 Introduction

6.1.1 Motivation and Related Work

Plug-in electric vehicles (PEVs) are considered as flexible loads since their charging sched-

ules can be shifted over the course of a day without impacting drivers mobility. This prop-

erty can be exploited to reduce charging costs and adverse network impacts. However, the

uncoordinated charging of PEVs could potentially overburden the electricity network at

certain times [44].

Prior approaches to coordinated charging of PEVs have mostly been based on assigning

coordination responsibilities to an entity, indicated as an aggregator. The aggregator is an

intermediary agent between the PEVs and other power system entities, such as network

operators or energy providers. An aggregator’s role varies depending on the features of a

coordination approach, e.g., a more passive role in decentralized1/distributed approaches

1In the literature, the term “decentralized” is used to refer to approaches that do not rely on commu-
nication, i.e., where charging decisions are taken by PEVs solely based on local information. It can also
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compared with centralized ones.

It should be noted that a centralized control structure is not suitable to handle the

coordination problem of a large PEV fleet, since this problem is inherently distributed and

computationally complex [45, 46, 47, 48, 49, 50, 51]. Moreover, a centralized control scheme

may require communication of sensitive information (arrival and departure times, energy

requirements) from PEVs to an aggregator. Distributed control strategies are a scalable

alternative for solving the PEV-CC problem as they distribute the responsibility of finding

optimal settings among multiple entities and additionally they also protect to a certain

extent private information such as the driving behavior. Moreover, if the algorithm is

implemented in a truly distributed fashion using intelligent agents throughout the network,

it generally can be expected that a distributed approach is more robust than a centralized

approach with respect to communication failures and cyber attacks.

Most of the existing communication-based decentralized approaches in the literature

require an exchange of information (mostly information of charging schedules) with an

aggregator, i.e., coordinating entity, to some extent [52, 53, 54, 55, 56, 57, 58]. Generally,

a control scheme’s underlying structure depends on the agents’ cooperation strategy. The

approach in [52] consider non-cooperative agents and is based on mean field game theory.

Moreover, [54, 58] utilize a price-based scheme to achieve a desired aggregated behavior

for a fleet of non-cooperative PEVs in a decentralized manner. On the other hand, the

approaches in [53, 55, 56, 57] are based on the agents’ cooperation. As an example, the

alternating direction method of multipliers is one of the popular approaches to solve the

PEVs cooperative charging problem, which decomposes the original problem into smaller

subproblems that are assigned to each PEV and an aggregator [55, 56]. Note that, the

discussed decentralized approaches require each PEV to exchange information with a cen-

tral agent and are therefore less robust towards failure than peer-to-peer based distributed

refer to approaches where PEVs take their own charging scheduling decisions based on information shared
with a central coordinator.
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schemes. In other words, in this setup every communication link failure could render a

central coordinator incapable of solving the original optimization problem, whereas a dis-

tributed control approach only requires a sparsely connected communication network to

achieve the optimal solution. Moreover, [58] proposed a decentralized approach for PEV

charging coordination while taking into account tradeoff between total generation cost

and the local costs associated with overloading and battery degradation. To this end, the

authors restructured the original optimization problem as an unconstrained optimization

problem and then solved the first order optimality conditions of the restructured optimiza-

tion problem in a decentralized manner.

With regards to consensus based approaches, [57] proposes a consensus-based method

to solve the PEVs’ cooperative charging problem in a distributed fashion, which requires

one of the agents to access the total charging demand information. Also, [59] proposes

a consensus-based distributed charging rate control scheme for PEVs to minimize total

charging power loss, which overlooks the PEVs’ individual constraints. Here we propose

a consensus+innovations based approach to find a distributed solution for the PEV-CC

problem (see Sect. 2.3.2). In this chapter, the consensus update term of the algorithm

enforces an agreement on an incremental price for the energy provided, while the innovation

term ensures that the local constraints of the individual PEVs are satisfied at the minimum

cost.

Given the inherent uncertainty of PEVs’ driving pattern, i.e., arrival/departure times

and energy consumption during the trips, multi-step receding horizon optimization ap-

proaches lend themselves as suitable options for solving cooperative charging problems. In

this chapter, we utilize the model proposed in [56] to optimize over several possible driv-

ing pattern realizations for each PEV. To solve the respective optimization problem, we

have developed a distributed receding horizon optimization technique. Receding horizon

approaches compute the optimal action over a horizon period, and then apply the imme-
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diate time step solution. To compute the optimal actions for the succeeding time step,

the variables and driving pattern scenarios are updated first, and then the multi-time step

optimization is executed for the subsequent time horizon [60, 61, 62].

Our method is referred to as CI − PEVCC, i.e., consensus+innovations based PEV

Coordinated Charging. Our consensus+innovations based method is inherently different

from existing decomposition theory-based methods in many ways: methodologically, the

proposed consensus+innovations based approach directly solves the first order optimality

conditions of the PEV-CC problem. Hence, it technically reduces the original optimization

problem to finding solutions for a coupled system of (constrained linear) equations in a

fully distributed manner. In contrast with primal-dual distributed methods, our solution

approach does not require updating all Lagrange multipliers (see Sect. 6.3).

The CI − PEVCC is based on the general consensus+innovations framework [1] (see

Sect. 2.3.2), and the iterative updates are designed to achieve a feasible solution for the

PEV-CC problem at each iteration. Therefore, the CI − PEVCC algorithm ensures that

all the intermediate iterates are feasible solutions to the PEV-CC problem, and hence,

is naturally robust to unexpected events such as premature termination of the algorithm

or communication failures leading to loss of network connectivity. Also, the proposed

CI − PEVCC algorithm provides a receding horizon optimization framework which is suit-

able for optimizing over several driving pattern scenarios for each PEV. The CI − PEVCC

allows for a fully distributed solution for the PEV-CC problem which does not require

sensitive information exchange among the PEVs. Additionally, the inter-agent communi-

cation graph is merely required to be connected in order to achieve accurate convergence,

i.e., in particular, the communication topology might be very sparse. Finally, the proposed

CI − PEVCC is a scalable solution to the PEV coordination problem since it distributes

the computation and communication burden among the PEVs. Figure 6.1 illustrates a

sample communication topology that may be employed to implement the CI − PEVCC
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method.

Figure 6.1: Proposed distributed PEVs’ coordinated charging scheme (the dashed line
represents data exchange, and the solid line represents charing power)

6.1.2 Notation

xv,s Charging power schedule of PEV v under scenario s
over a given time horizon [0, T ], xv,s ∈ R

T×1

Ls Aggregated load of PEVs under scenario s over a
given time horizon [0, T ], Ls ∈ RT×1

Ωv Set of neighboring charging stations connected to
charging station v

c1, c2 Cost function parameters, c1 ∈ R, c2 ∈ R1×T

A, bv,s Matrix and vector defining the energy constraints of
PEV v under scenario s

xv,s, xv,s Upper and lower bounds defining the power con-
straints of an individual PEV v under scenario s

λs, µv,s Lagrangian multipliers associated with equality and
inequality constraints under scenario s

µv,s,−, µv,s,+ Lagrangian multipliers associated with decision vari-
ables’ upper and lower bounds under scenario s

V , S Total number of PEVs and driving pattern scenarios

γv Lagrangian multipliers associated with consistency
equation for PEV v, γv ∈ RS−1×1

S Set of driving pattern realizations S = {1, · · · , S}
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6.2 PEV’s Coordinated Charging

6.2.1 Problem Formulation

Here we consider a cooperative charging problem for a fleet of PEVs that aims at minimizing

a common cost function, which is quadratic with respect to PEVs’ aggregated load Ls under

scenario s and over horizon T [56], subject to the PEVs’ power and energy constraints under

different scenarios, i.e.,

minimizexv,s,Ls

1

S

S∑

s=1

(
Ls

⊤ · c1 · Ls + c⊤2 · Ls

)
(6.1)

s.t. Ls =
∑

v∈V

xv,s ∀s ∈ {1, · · · , S} (6.2)

A · xv,s ≤ bv,s ∀v ∈ {1, · · · , V } (6.3)

∀s ∈ {1, · · · , S}

xv,s ≤ xv,s ≤ xv,s ∀v ∈ {1, · · · , V } (6.4)

∀s ∈ {1, · · · , S}

xv,s(1) = xv,s′(1). ∀v ∈ {1, · · · , V } (6.5)

∀s, s′ ∈ {1, · · · , S}

Here, it is assumed that we can extract different scenarios from observed driving behavior

s ∈ {1, · · · , S} [56]. Each sample is associated with a system realization scenario for the

fleet and it is referred to using subscript s. In (6.1), c1 and c2 representing electricity tariff

rates are functions of the total predicted inelastic load (inflexible load other than PEV

load). Specifically, as in [56], we assume that the goal is to minimize the costs of serving

both the flexible (PEV) and inflexible loads, and that these costs are a quadratic function

of accumulated PEVs’ consumption and inelastic load.2

2The cost of serving PEV demand L and inelastic demand Lin has the form ã1⊤(L + Lin) + b̃(L +

Lin)
⊤(L+ Lin), where ã and b̃ are scalars. This is equivalent to minimizing (6.1) with proper c1 and c2.
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Energy constraints under scenario s, i.e., constraints on the cumulative demand of an

individual load under realization s, are modelled with (6.3). These constraints prevent vio-

lation of the upper and lower bounds on the State-Of-Charge (SOC) of the PEV batteries.

These bounds are calculated based on individual PEV’s connection times and trip energy

consumption under each scenario.

In this problem setup, Ls is the only global variable that couples the charging schedules

of all PEVs in a fleet under realization s, hence, (6.2) plays an essential role in finding a

distributed solution for this problem setup.

Equation (6.3) presents an abstract model for the energy limitation of PEV batteries.

In order to derive this constraint, the following equation is used to determine the energy

content of a PEV battery at a given time step:

Ev,s(t) = Ev(0) + ηv∆t

t∑

τ=1

xv,s(τ)−

t∑

τ=1

Econs
v,s (τ), (6.6)

where the initial energy content of the battery is given by Ev(0) and the charging efficiency

and time step duration are denoted by ηv and ∆t, respectively. Finally, Econs
v,s (t) indicates

the energy consumption at each time step t under scenario s.

The constraint on energy content is derived using the battery capacity Cv and the

minimum state of charge SOCv requirements as upper and lower bounds, which results in,

SOCv ≤
Ev,s(t)

Cv

≤ 1. (6.7)

In order to derive the energy limitation constraint (6.3), the energy content of a PEV,

which is presented by (6.6), is replaced in (6.7),

SOCv × Cv ≤ Ev(0) + ηv∆t
t∑

τ=1

xv,s(τ)−
t∑

τ=1

Econs
v,s (τ) ≤ Cv. (6.8)
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Note, (6.8) further implies the following two constraints. The lower limit,

1

ηv∆t
×

(
SOCv ×Cv −Ev(0) +

t∑

τ=1

Econs
v,s (τ)

)
≤

t∑

τ=1

xv,s(τ),

and the upper limit as follows,

t∑

τ=1

xv,s(τ) ≤
1

ηv∆t
×

(
Cv − Ev(0) +

t∑

τ=1

Econs
v,s (τ)

)
.

These two constraints could be presented using the following abstract equations,

A1 · xv,s ≤ b1v,s

A2 · xv,s ≤ b2v,s,

where A1 and A2 are lower triangular matrices with all elements being 1. These two

equations could be merged into one equation as follows,

A · xv,s ≤ bv,s,

where A = [A1;A2] and bv = [b1v,s; b
2
v,s].

The power constraints (6.4) define the upper and lower bounds on the charging power.

In this chapter we merely consider uni-directional charging, hence, the lower bound on the

charging power is set to zero (xv,s = 0). The upper bound xv,s is zero during the time steps

when the vehicle is not connected, while it is equal to the maximum charging rate of the

charging infrastructure or the battery, P v, when the vehicle is connected, i.e.,

xv,s(t) =





P v, csv,s(t) = 1

0, csv,s(t) = 0.
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Here, csv,s(t) is a binary parameter describing the connection status at time step t under

scenario s. Therefore, the timing of PEV trips affects the value of the upper bound. This

binary parameter further means that a PEV can plug in and out several times during

the optimization horizon. Here, we assumed that the maximum charge power of PEVs is

independent of the state of charge.

Furthermore, (6.5) ensures consistency of optimal actions of PEV v across all scenarios

at the first time step, which is essential for the implementation of the immediate action.

Note we do not model the self discharge of batteries. Comparing with (2.1)-(2.3), G is the

compact from for (6.2) and (6.5), while (6.3) and (6.4) correspond to H.

In the PEV-CC problem setup (6.3) and (6.4) are local constraints, i.e., merely involve

variables of an individual PEV, while (6.2) is considered as the global constraint, i.e.,

includes variables from all PEVs.

We propose a receding time horizon optimization framework and solve this optimiza-

tion problem over a horizon of T time steps. In other words, in our problem, the PEVs

optimize their schedules over the optimization horizon rather than optimizing for a single

parking instance, but we merely implement the optimal action for the immediate time

step. Then the configuration realizations (bv,s, xv,s, xv,s) can be updated based on newly

available information. Finally, the horizon is shifted by one time step and the optimization

is carried out anew for this shifted horizon.

6.2.2 Optimality Conditions

The Lagrangian function for the aforementioned optimization problem is given by

L =
1

S

∑

s∈S

(
Ls

⊤ · c1 · Ls + c⊤2 · Ls

)
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+
∑

s∈S

λ⊤
s ·

(
−Ls +

∑

v∈V

xv,s

)
+
∑

v∈V

∑

s∈S

µ⊤
v,s · (A · xv,s − bv,s)

+
∑

v∈V

∑

s∈S

µ⊤
v,s,− ·

(
xv,s − xv,s

)
+ µ⊤

v,s,+ · (xv,s − xv,s)

+
∑

v∈V

S∑

s=2

γv(s− 1) · (xv,1(1)− xv,s(1)) ,

where λ’s, µ’s and γ’s are Lagrange multipliers. Note, γv(s− 1) denotes the s− 1 element

of the γv vector. Following the steps presented in Sect. 2.2, the corresponding first order

optimality conditions are derived as follows:

∂L

∂Ls

=
1

S
(2c1 · Ls + c2)− λs = 0 (6.9)

∂L

∂xv,s=1

= λs + A⊤ · µv,s + (µv,s,+ − µv,s,−) +
S∑

s=2

γv(s) = 0 (6.10)

∂L

∂xv,s 6=1
= λs + A⊤ · µv,s + (µv,s,+ − µv,s,−)− γv(s) = 0 (6.11)

∂L

∂λs

= −Ls +
∑

v∈V

xv,s = 0 (6.12)

∂L

∂µv,s

= A · xv,s − bv,s ≤ 0 (6.13)

∂L

∂µv,s,+
= xv,s − xv,s ≤ 0 (6.14)

∂L

∂µv,s,−
= −xv,s + xv,s ≤ 0 (6.15)

∂L

∂γv
=




xv,1(1)− xv,2(1)

...

xv,1(1)− xv,S(1)




= 0, (6.16)

for all v ∈ {1, . . . , V } and s ∈ S plus the complementary slackness conditions for the
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inequality constraints. In addition, we enforce positivity of the µv,s, µv,s,+, and µv,s,−’s. In

Sect. 6.4 we justify that any solution that fulfills the above system of equations yields an

optimal solution for the PEV-CC problem.

6.3 Distributed Approach

The updates for the proposed CI − PEVCC algorithm are derived following the consen-

sus+innovations method presented in Sect. 2.3.2. In the CI − PEVCC, we assume that

the inter-PEV communication graph is connected, i.e., there is a path (possibly multi-hop)

between any pair of agents (charging stations) at each iteration. In our proposed approach,

each agent v updates the variables xv,s, Lv,s, and λv,s which are directly associated with

PEV v. Note, Lv,s and λv,s are agent v’s estimation of the global PEVs’ load Ls and La-

grange multiplier λs under scenario s, respectively. Here, we denote the iteration counter

by k.

The Lagrange multipliers λv,s are updated according to

λv,s(k + 1) = P

[
λv,s(k)− βk

(
∑

w∈Ωv

(λv,s(k)− λw,s(k))

)
− αk

(
Lv,s(k)

V
− xv,s(k)

)]

[
c2
S
,∞)

,

(6.17)

where αk, βk > 0 are tuning parameters. Also, P is the projection operator that ensures

λv,s ≥ c2/S. Note, in (6.9), Ls ≥ 0, consequently λs ≥ c2/S. Therefore, by using the

projection operator we ensure that the local copies of λ satisfy this condition as well.

The first term preserves the coupling between the Lagrange multipliers of agents, while

ensuring that the λ’s are reaching the same value (consensus). The second term, referred

to as innovation, reflects the accuracy of PEV v’s estimation of the total load (Ls) under

scenario s. The update makes intuitive sense, e.g., if PEV v’s consumption (xv,s) is ex-

ceeding its estimated share of overall consumption (Lv,s(k)/V ), then the innovation term

results in an increase in the value of λv,s(k+1). Consequently, using (6.18) to update Lv,s,
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PEV v’s estimation of overall load (Lv,s) increases in the next iteration.

Given the value of the Lagrange multiplier λv,s, PEV v updates its estimation of the

total load (Lv,s) using the following update:

Lv,s(k + 1) = Lv,s(k)−
S

2c1

∂L

∂Lv,s(k)
=

Sλv,s(k)− c2
2c1

. (6.18)

Also, our update structure assumes that all the agents (PEVs) have access to the

cost function parameters, which is a reasonable assumption, since the electricity tariffs

are generally predetermined (they need to be communicated once in advance and not in

real-time).

Finally, a PEV updates the estimation of its charging schedule by following the pro-

cedure below. At first, the charging schedule is updated using the following update rule

which also ensures the feasibility of updates with respect to (6.3) and (6.4):

x̃v,s(k + 1) = P[xv,s(k) + δk

(
Lv,s(k)

V
− xv,s(k)

)
− ηk (λv,s(k))]F (6.19)

with δk > 0 and ηk > 0 being tuning parameters. Also, F the feasible space determined by

individual PEV’s constraints (see (6.3),(6.4)). Here x̃v,s is an intermediary variable and the

projection operator in this case projects x̃v,s onto the feasible space F . The first innovation

term in (6.19) directs x̃v,s to move towards satisfying its share of global commitment, e.g.,

if Lv,s(k)/V < xv,s(k) then x̃v,s increases in the next iteration. Also, the second term in

(6.19) makes intuitive sense because it reflects the sensitivity of the Lagrangian function

(L) with respect to xv,s, i.e., ∂L/∂xv,s. Here we neglect the terms related to µv,s,+ and

µv,s,− from ∂L/∂xv,s in the xv,s update, since these multipliers do not appear in any other

constraint and the projection operator ensures the feasibility of the achieved update.

Also we do not update the Lagrange multipliers associated with (6.3), since the projec-

tion operator in (6.19) guarantees the feasibility of x̃v,s with respect to individual agent’s

limitations. Therefore, the CI − PEVCC update procedure yields feasible intermediate
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iterates.

In the next step, the update rules to enforce the consistency constraint for the initial

time step over scenarios of PEV v, i.e., xv,s(1) = xv,s′(1) ∀s, s′ ∈ S are defined.

• Let us denote X̃v as the collection of all x̃v,ss associated with PEV v, i.e., X̃v =[

x̃v,1, · · · , x̃v,S

]⊤

• Let us define D such that D·X̃v = 0 satisfies the consistency constraint, i.e., x̃v,s(1) =

x̃v,s′(1) ∀s, s′ ∈ S. Note, implementing D · X̃v = 0 is equivalent to enforcing the

consistency constraint (6.5).

This new constraint is further equivalent to projecting X̃v to the null space of D, i.e.,

P

[
X̃v

]
N(D)

where N(D) denotes the null space of matrix D. This projection results in Xv

which represents the collection of all xv,ss associated with PEV v, i.e., Xv =

[

xv,1, · · · ,xv,S

]⊤
.

In our calculations we use the following closed form solution of the aforementioned projec-

tion [63],

Xv = P

[
X̃v

]
N(D)

= (I −D⊤(DD⊤)−1D)X̃v. (6.20)

The pseudo code for the CI − PEVCC algorithm is presented in Table 6.1. The stopping

condition can be defined based on some user-defined criterion, e.g., the measurement of

rel. We have chosen this measure in order to analyze the performance of the algorithm

but other stopping conditions can be defined such as the maximum change in the variables

to be smaller than a certain threshold.

In this chapter, local agents, i.e., charging stations, receive driving information from

PEVs and execute the update rules and data exchange. Given the definition of the updates,

it is clear that the CI − PEVCC only requires agents to exchange non-sensitive information

(λv,s) during the course of the iterations. While agents perform computation and commu-

nication responsibilities in parallel, the intra-agent updates could be performed in parallel

or sequential order. In the sequential implementation, the variables are updated in the
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Table 6.1: Pseudo code for the CI − PEVCC algorithm

Initialize tuning parameters

Initialize variables λv,s,Lv,s,xv,s

While convergence criteria is not satisfied

for i=1:number of agents

Update λv,s using (6.17)

Update Lv,s using (6.18)

Update xv,s using (6.19) and (6.20)

Communicate λv,s to neighboring agents

end

measure rel

end

following order: λv,s, Lv,s, and xv,s. The sequential implementation uses the most recent

updated variables provided by previous update rules in the aforementioned order. For

example, in this setup, (6.18) would be Lv,s(k+1) = (Sλv,s(k+1)− c2)/2c1. On the other

hand, in the parallel implementation, each agent carries out all of the variable updates

at the same time, hence, the update functions use all the values from the previous itera-

tion. For example, Lv,s would be updated according to Lv,s(k + 1) = (Sλv,s(k)− c2)/2c1.

Therefore, the serial implementation improves convergence speed in terms of the number

of iterations required but most likely increases the computation time per agent since the

updates at the agents have to be performed in a sequential manner. The CI − PEVCC is

a fully distributed algorithm since each PEV is represented by one agent that performs

computations and it merely requires each agent to communicate with neighboring agents.

Finally, our proposed update structure is designed such that any set of tuning param-

eters yields a feasible solution for individual PEVs at each iteration. However, tuning

parameters influence the speed of reaching the optimal solution of the PEV-CC problem.

In the Sect. 6.4, we analytically justify the optimality of our algorithm’s achieved solution.
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6.4 Convergence Analysis

While [64] discusses convergence properties of the general projected consensus+innovation

approach in details, in this section we specifically justify convergence properties of the

proposed CI − PEVCC algorithm as described in Sect. 6.3. To this end, Lemma 1 justifies

that the local copies of λ reach consensus or agreement asymptotically as k → ∞. Then,

subsection 6.4.1 presents the justification that any fixed point of the proposed iterative

scheme satisfies the optimality conditions (6.9)–(6.16) of the PEV-CC problem. Finally,

subsection 6.4.2 verifies the optimality of the achieved limit point.

Definition: Suppose that the updates of CI − PEVCC algorithm at iteration k yield

X∗(k), then X∗(k) is a fixed point of the CI − PEVCC algorithm if

∀ k′ ≥ k X∗(k′) = X∗(k).

HereX∗ denotes the vector of stacked variables (x⋆
v,s,L

⋆
v,s, λ

⋆
v,s) for all agents v = {1, . . . , V }

under all scenarios s ∈ S.

Lemma 1: Let the tuning parameters follow the tuning criteria that is presented in

Sect. 2.3.2. Then, the update structure CI − PEVCC result in asymptotic consensus of the

λ variables, i.e., limk→∞ |λv,s(k)− λw,s(k)| = 0 ∀v, w ∈ {1, · · · , V }, s ∈ S.

Reference [64] presents a formal proof that projected consensus+innovations update

structures of the form presented in Sect. 2.3.2, (see (2.12)), achieve consensus under the

stated assumptions on the tuning parameters (see Sect. 2.3.2).

6.4.1 Evaluation of PEV-CC’s optimality conditions at the fixed

point of CI − PEVCC algorithm

Let X∗ be a fixed point of the proposed CI − PEVCC algorithm. Then, X∗ fulfills all of

the optimality conditions of the PEV-CC problem (6.9)–(6.16).
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Justification: The justification is achieved by the series of individual claims developed

below.

Claim 1: X∗ fulfills the optimality conditions that correspond to the aggregation of

PEVs load, i.e., (6.12).

Verification by contradiction: Let us assume, on the contrary, that the above claim

does not hold, i.e., X∗ does not fulfill (6.12) for all s′ ∈ S. Let us evaluate (6.17) for all

v ∈ {1, . . . , V } under scenario s′ at X⋆.

λ⋆
v,s′ =P

[
λ⋆
v,s′ − βk

(
∑

w∈Ωv

(λ⋆
v,s′ − λ⋆

w,s′)

)
− αk

(
L⋆

v,s′

V
− x⋆

v,s′

)]

[
c2
S
,∞)

(6.21)

Note, at the fixed point of the CI − PEVCC algorithm the projection in (6.17) is redundant

since X∗ fulfills (6.17), hence, it lies within the feasible space [ c2
S
,∞). Also, it follows by

Lemma 1 that λ’s are required to reach consensus at the fixed point, i.e., in particular,

∀v ∈ {1, . . . , V } and s′ ∈ S ⇒ λ⋆
v,s′ = λ⋆

w,s′, w ∈ Ωv. Now let us refer to λ⋆
s′ as the achieved

consensus value among all local copies of λ⋆
v,s′ . This further implies local estimates of total

load under scenario s′ (L⋆
v,s′) are also in agreement at the fixed point, denoted by L⋆

s′. Now,

lets define H ∈ R(S×T )×(T×S×V ) as follows

H =
1

V
[I | · · · | I],

where I ∈ R(S×T )×(T×S) is the identity matrix. Multiplying (6.21) by H would yield

λ⋆
s′ =λ⋆

s′ − αk

H

V

(
L⋆

v,s′

V
− x⋆

v,s′

)
.
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In the above, we used the fact that, since λ⋆
v,s′ = λ⋆

s′, their average is also equal to λ⋆
s′. The

above equation could be further simplified to

λ⋆
s′ =λ⋆

s′ −
αk

V

(
L⋆

s′ −

V∑

v=1

x⋆
v,s′

)
.

Since we assumed that X⋆ does not fulfill (6.12) for some s′ ∈ S, the innovation term in

the above equation is non-zero. Therefore the above equation does not hold. This clearly

contradicts the fact that X∗ is the fixed point of (6.17).

Claim 2: X∗ satisfies the optimality conditions that correspond to the coupling between

λs and Ls, i.e., (6.9).

Verification by contradiction: Let us assume, on the contrary, that X∗ does not fulfill

(6.9) for some s, i.e., there exists s such that the value of (6.9) is non-zero when evaluated

at X∗. Clearly this would lead to

L⋆
s 6=

Sλ⋆
s − c2
2c1

,

thus contradicting with our original assumption that X∗ is the fixed point of (6.18). Here,

L⋆
s and λ⋆

s are the achieved consensus values (see Claim 1 and Lemma 1).

Claim 3: X⋆ fulfills the optimality conditions associated with the energy constraints

for each PEV under each scenario, i.e., (6.13).

Verification by contradiction: Let us assume on the contrary, that there exists a scenario

s′ under which the x⋆
v,s′ does not fulfill (6.13). Now, note that, plugging in x⋆

v,s′ in (6.19)

would then yield a value different from x⋆
v,s′, since the projection operator enforces the

charging schedule updates to satisfy the energy constraint, i.e., A · xv,s′ ≤ bv,s′ . This, in

turn, contradicts the fact that X∗ is a fixed point of (6.19).

A similar argument establishes that X∗ satisfies (6.14)-(6.16).

Claim 4: X⋆ satisfies the optimality conditions (6.10) and (6.11).
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Justification: Given our problem setup, the optimal values for Lagrange multipliers

µ, µ+, µ−, γ are not unique. Also, since Lagrange multipliers only appear in (6.10) and

(6.11), we can find various combinations of these multipliers that satisfy (6.10) and (6.11)

while fulfilling complementary slackness conditions. In other words, for any λ⋆
v,s there

exists a set of Lagrange multipliers µv,s, µv,s+, µv,s,−, γv such that (6.10) and (6.11) are

satisfied. Given that CI − PEVCC consists of continuous transformations of the iterates, if

CI − PEVCC converges, the achieved limit point is necessarily a fixed point of the iterative

mapping. Hence, this subsection justifies that any limit point of the CI − PEVCC fulfills

the first order optimality conditions, (6.9)–(6.16), of the PEV-CC problem. Moreover,

the following subsection 6.4.2 discusses the optimality of limit points of our proposed

CI − PEVCC algorithm.

6.4.2 Optimality of the CI − PEVCC algorithm’s fixed point

Let the PEV-CC problem (6.1)-(6.5) have a feasible solution, and, further, assume that

the proposed CI − PEVCC algorithm converges to a point X⋆. Then X∗ is the optimal

solution of the PEV-CC problem (6.1)-(6.5).

Justification: Based on subsection 6.4.1, X⋆ satisfies the optimality conditions (6.9)–

(6.16). Since the PEV-CC is a convex problem, the primal variables (x⋆
v,s,L

⋆
v,s) in X∗

constitutes an optimal solution to the PEV-CC problem (6.1)-(6.5).

All in all, subsection 6.4.1 and 6.4.2 guarantee that any fixed point of the proposed

CI − PEVCC constitutes an optimal solution to the PEV-CC problem. In other words, if

the CI − PEVCC reaches convergence, the limit point is necessarily an optimal solution of

the PEV-CC problem.
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6.5 Simulation Results

In this section, we provide a proof of concept by carrying out simulations.

6.5.1 Test System Set up

We consider a fleet of vehicles for the simulations and each PEV has the following char-

acteristics: maximum charging power 3.5 kW, charging efficiency 0.9, minimum state of

charge 0.2, and battery size of either 16kWh or 24kWh. Note, the average travel distance

of the fleet is 35km. Individual driving pattern information is obtained from a transport

simulation for Switzerland with the tool MATSim [65]. The deterministic driving behav-

iors obtained form MATsim software includes arrival time, departure time and energy

consumption of each trip for each PEV. This input data translates to a deterministic refer-

ence sample based on which stochastic samples for modeling driving behavior of PEVs are

generated (see [66] for more detail). The parameter bv,s is obtained from these patterns,

hence, bv,s represents the driving pattern, e.g., trip specifications, arrival and departure

times, of PEV v. Also, the load profile used in the simulation represents a typical winter

load in the city of Zurich. Note that this original load profile is scaled so that the total

PEV charging consumption load constitutes 10% of total demand. The optimization time

horizon is one day, divided into 15 minutes time intervals, hence, xv,s ∈ R96×1. In this

vector x1
v,s represents the charging of PEV v under scenario s at the end of the first time

interval (15 minutes). Moreover, Fig. 6.2 illustrates c2, i.e., the cost function parameter,

over the time horizon. Also, the communication graph is considered to be a line graph. In

a line graph, each agent except the first and last agent, exchanges information with two

neighboring agents (see Fig. 6.1). The tuning parameters are set to the values given in

Table 6.2. The tuning parameters follow the below format:

Tuning Parameter =
∇

kO
,
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where k is the iteration counter and ∇, O are positive constants. The above format

follows the tuning criteria that is introduced in Sect. 2.3.2. We use cold start for the

simulations, i.e., all variables are set to zero at the start of the simulation. Note, for an

actual implementation, reasonable initial settings for all of these variables could be the

optimal values computed for the previous time step. The computer simulations are carried

out using MATLAB on a PC with a Core i-7 processor (2.7 GHz) and 8 GB RAM.

Table 6.2: Tuning Parameter Values

Parameter ∇ O

α 6.384 0.2457

β 0.500 0.001

η 0.75 0.3

δ 0.135 0.2
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Figure 6.2: Cost function parameter c2 over 24 hours horizon.

6.5.2 Convergence Measurements

Here we introduce two convergence measures to evaluate the performance of our CI − PEVCC

approach. The first measure is similar to the one introduced in chapter 3 and calculates
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the relative distance of the objective function from the optimal value over the iterations,

rel =
|f − f ∗|

f ∗
, (6.22)

where f ∗ is the optimal objective function value obtained from solving the centralized

PEV-CC problem. The value of f ∗ is obtained from solving the centralized problem in the

MATLAB environment using the optimization package Tomlab.

The second measure is based on the difference between consecutive xv,ss over the course

of iterations, which is defined as

Xdiff
v (k − 1) = maxs

|xv,s(k)− xv,s(k − 1)|

P v

. (6.23)

Here, P v is the maximum charging rate of PEV v. Note, this convergence measure could

be implemented in a distributed fashion since it merely involves local information. To be

more specific, if the absolute value of change in Xdiff
v for agent v stays less than a threshold

after a predefined number of iterations, agent v stops updating its associated variables.

6.5.3 Case Study 1: Multi-Step Optimization

Here we first present simulation results for the CI − PEVCC algorithm with deterministic

modeling of the driving behaviors which is equivalent to having just one scenario. The

CI − PEVCC’s resulting load profile for a fleet of 20 PEVs is illustrated in Fig. 6.3. Based

on this figure, most of the charging load is scheduled during the low-load hours of the

night which contributes to valley-filling. Moreover, charging partially takes place during

the shoulder hours, i.e., the hours between the daily peaks. This indicates that in these

hours demand is not flexible enough to be shifted completely to the valley hours. Note,

the resulting load profile matches the c2 trend over the time horizon.

Figs. 6.4 and 6.5 illustrate the two convergence measures rel and Xdiff
v over the course
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Figure 6.3: Total load profiles for the full 24 hours horizon (15 minutes time steps), V = 20.
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Figure 6.4: Relative distance from optimal objective function (rel), V = 20.

of the iterations with the value being 5.40e-005 and 0.0011 (maximum value among all

vehicles) after 200 iterations, respectively. The oscillations could be prevented by reducing

some of the tuning parameters, although this might result in a larger number of iterations

until convergence.

Note, the fleet’s daily total load stays the same during the course of the iterations. This

is because each PEV’s required daily energy is known and is in fact part of the constraint

specification that needs to be provided. As CI − PEVCC is defined such that it yields a

feasible solution at every iteration, the overall energy is equal to the total required energy
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Figure 6.5: Difference between consecutive charging schedules (Xdiff) for individual PEV,
V = 20.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Itertions

λ 
fo

r 
tim

e 
st

ep
 8

5

Figure 6.6: Evolution of the consensus variable for time step 85 during the iterations (λ85
v ),

V = 20.

at all iterations. Finally, Fig. 6.6 depicts agents’ values for the consensus on λ for a sample

time (time step 85). Based on the figure, the λv’s are reaching consensus as the algorithm

converges towards the optimal solution. Similar behavior can be observed for the other

time steps.

Each iteration of CI − PEVCC is computationally inexpensive since it only requires the

evaluation of algebraic functions, namely (6.17)-(6.20), which could be executed in parallel.

It is important to mention once more that the depicted intermediate values constitute a

feasible solution for the PEV-CC problem fulfilling the total load constraint but also the
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individual constraints on the charging schedules and energy levels.

Furthermore, Figs. 6.7 and 6.8 present the CI − PEVCC’s resulting convergence mea-

sures rel and Xdiff over the iterations for a fleet of 100 PEVs. We used the tuning pa-

rameters that are given in in Table 6.2. This indicates that a set of tuning parameters

could potentially function properly for different fleet sizes, hence, allowing for dynamic

adjustment of the fleet size without having to readjust the parameters.
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Figure 6.7: Relative distance from optimal objective function (rel), V = 100.
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Figure 6.8: Difference between consecutive charging schedules (Xdiff) maximum value for
the fleet, V = 100.

As it was mentioned, the connectivity of the communication graph is the only require-

ment for the proper functioning, achieving the optimal solution of the original PEV-CC
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problem, of our proposed algorithm. Figure 6.9 compares the rel for the two communica-

tion topologies, i.e, path (line) communication structure and fully connected communica-

tion graph. Based on this figure, fully connected communication graph leads to increased

speed of information spread which further improves convergence speed of CI − PEVCC.
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Figure 6.9: Relative distance from optimal objective function for two communication
structures, i.e., path communication structure and fully connected communication graph,
V = 20.

6.5.4 Case Study 2: Receding Horizon Multi-Step Optimization

Here, we analyze the performance of the receding horizon version of CI − PEVCC using 5

scenarios to model different realizations of a fleet of 20 PEVs. Fig. 6.10 shows the resulting

aggregated load at the first time step of the 24 hour horizon. Note, the load at the first

step is therefore the same in all samples because (6.5) is enforced. Also, Figs. 6.11 and

6.12 depict the two convergence measures for this setup.

The average combined CPU time for all agents per iteration is 0.009 seconds. By

assigning the computational load to distributed agents in real-world applications, the com-

putations could be executed in parallel at each iteration.
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Figure 6.10: PEVs aggregated load under five scenarios for the first horizon, V = 20 and
S = 5.
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Figure 6.11: Relative distance from optimal objective function (relobj) for the first horizon,
V = 20 and S = 5.
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Figure 6.12: Difference between consecutive charging schedules (Xdiff) maximum value for
the first horizon of the fleet, V = 20 and S = 5.
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6.6 Summary

In this chapter, we have proposed a fully distributed consensus+innovations-based ap-

proach to solve the PEVs’ cooperative charging problem which searches for the charging

schedules that minimize the cost to supply the demand while fulfilling each PEV’s con-

straints. This algorithm is based on a receding horizon approach and allows for a fully

distributed implementation down to the agent (PEV) level without the need for a central

coordinator. As the main feature, the proposed algorithm yields a feasible solution at each

iteration thereby enabling an implementation of an intermediate solution at the cost of

a suboptimal solution. Moreover, our solution approach accounts for uncertain driving

behavior of individual PEVs by considering various scenarios for PEVs’ driving pattern.

Each PEV is responsible for updating/evaluating simple functions over the course of the

iterations while information exchange is limited to communicating Lagrange multipliers,

which determines the value of consumption from each PEV’s point of view, with neighbor-

ing agents. In particular, there is no need to share sensitive information such as driving

patterns. Also, the communication graph could be defined arbitrarily as long as it is con-

nected. Moreover, the proposed distributed algorithm could easily capture individual cost

functions for the PEVs, e.g., battery degradation costs and drivers utility as a function of

battery’s SOC. The algorithm has been tested on a fleet of PEVs showing that our pro-

posed model converges to the overall optimal solution. Finally, note that investigating the

stability of our proposed receding horizon framework is out of the scope of this research,

but it is an interesting future research direction.
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Chapter 7

Conclusion and Future Work

The electric power grid is evolving to increased levels of distributed generation, distributed

storage, and demand response leading to new challenges in operating the grid. At the

same time, increased electronics and sensing technologies are being deployed that provide

the means to overcome some of these challenges. The key is to design the monitoring

and control structure in a way that is suitable to a distributed physical infrastructure

and takes advantage of locally available information. In this thesis, we have presented

distributed approaches to monitoring and control problems in the smart grid. The solutions

presented exhibit a consensus+innovations type structure for solving a class of cooperative

energy management problem in future smart grids in a distributed manner. Our proposed

iterative scheme finds a distributed solution for first order optimality conditions of the

underlaying optimization problem. At each iteration, the algorithm combines two terms:

(1) the consensus term that mixes as a weighted sum the information received from (a few)

other agents areas; and (2) the innovation term that incorporates the gradient information.

In this thesis, we have discussed applications of our proposed distributed approach for

solving energy management problems in the transmission grid as well as the distribution

network. In the transmission grid, we proposed distributed solution for optimal dispatch

problems including optimal power flow, security constrained optimal power flow, and power
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flow control. Our proposed approach to solve these optimal power dispatch problems is

based on obtaining a solution to the first order optimality conditions of the corresponding

optimization problem in a fully distributed fashion. Specifically, these conditions include

the power balance equations as well as constraints which constitute a coupling of the

Lagrange multipliers associated with the power flow equations and line constraints at

neighboring entities and lines. Each entity evaluates the local equations using the current

values for the variables and then uses linear combinations of the evaluated equations to

update the local variables. The result is a computationally very inexpensive algorithm to

solve the optimal power dispatch problems. Moreover, we have presented a more realistic

version of our distributed algorithm by clustering the buses into areas and then allowing

intra and inter-area communications. Intra-area communication refers to the information

exchange between the buses in the same area which happens after each variable update

iteration, while inter-area information exchange takes place between neighboring areas

only every few iterations. The clustering also decreases the communication overhead,

hence, handling the communication delay challenge. Furthermore, in our work, we propose

different communication topologies for implementing our proposed distributed iterative

algorithms. Commonly distributed iterative methods include exchange of information with

only physically connected neighbors. Specifically, the algorithms in this thesis enable the

possibility to incorporate additional communication through information exchange between

system buses that are not physically connected, in order to enhance the convergence rate.

With regards to the distribution side of the future grid we have solved cooperative

charging of plug-in electric vehicles (PEV)s. Specifically, we proposed a fully distributed

approach to determine charging schedules for a fleet of PEVs such that the cost to supply

demand is minimized while each PEVs constraints are fulfilled. This algorithm is based

on a receding horizon approach and allows for a fully distributed implementation down to

the agent (PEV) level without the need for a central coordinator. As the main feature,
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the proposed algorithm yields a feasible solution at each iteration thereby enabling an

implementation of an intermediate solution at the cost of a suboptimal solution. Each agent

has to update/evaluate simple functions over the course of iterations while information

exchange is restricted to communicating a Lagrange multiplier, i.e., a price signal, with

neighboring agents. In particular, there is no need to share information about driving

patterns or charging schedules.

There are multiple directions in which the work presented in this thesis could be ex-

tended. We can point to various extensions of our proposed solution for solving energy

management problems at the transmission level of the future grid. The first goal would

be to develop methods for solving the non-convex DC security constrained optimal power

flow problem including power flow control devices in a distributed manner. The mathe-

matical representation of the DC security constrained optimal power flow, with the added

modeling of FACTS devices, is a nonlinear program (NLP). In this regards, [67] proposed

a method to convert this NLP into a mixed-integer linear program (MILP) and then refor-

mulated the obtained MILP as a two-stage linear program, which enforces the same sign

for the voltage angle differences for the lines equipped with FACTS. Using the method

presented in [67], our proposed distributed solution can be generalized to solve the security

constrained optimal power flow including power flow control devices with guaranteed con-

vergence performance. In addition, given the ever increasing investments in clean energy

and incentives for leveraging flexibility of end users’ consumption, accounting for intermit-

tency of renewable generation resources and demand response flexibility in transmission

level energy management problems, e.g., OPF and SCOPF, is essential. Therefore, the

second goal would be to extend our proposed framework to find a distributed solution for

optimal dispatch problems while taking into account operational uncertainties of renew-

able generation and demand response resources. Moreover, investigating the impacts of

noise and communication error on the performance of our proposed algorithms is worth
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to pursue. Also, given the communication topology’s role in convergence of our proposed

methods, deriving an analytical relation between convergence rate and connectivity of the

communication graph is a possible future research direction. Along this line and to speed

up the convergence of our proposed iterative schemes, the idea of adjusting tuning pa-

rameters for each agent (a single bus or a collection of buses) over iterations can be also

explored. Furthermore, our distributed updates for OPF and SCOPF problems can be

extended to account for transmission system’s loss.

Finally, the idea of reshaping residential energy use by utilizing distributed energy

resources recently has received tremendous attention, e.g., Tesla announced producing a

stationary battery for home owners recently. Also, as the number of distributed control-

lable resources in the distribution grid are increasing, the potential advantages of coor-

dinated control of these resources is the driving force behind collaboration of significant

market players. For example, SolarCity, i.e., the nations largest residential solar installer,

is partnering with Googles Nest to integrate smart thermostats with rooftop solar, and

uses PVs excess of energy for pre-cooling and pre-heating. In this regard, distributed en-

ergy management methods are essentially the glue to tie distributed resources together.

These resources may include distributed generations, e.g., solar photovoltaic, distributed

storages, e.g., batteries, and distributed manageable loads, e.g., residential thermal loads.

In fact, the intelligent control of the distributed resources, enhances the flexibility in the

grid, hence, results in electricity cost reduction.

Therefore, an extremely valuable future direction for this research would be to apply our

proposed distributed method to control distributed assets in an active distribution grid. An

active distribution grid is composed of autonomous elements which should collaborate with

each other in order to operate the entire distribution grid in a secure and economic manner.

In this thesis, we have developed an extension of the algorithm to solve PEVs’ coordination

problem (see chapter 6) which could potentially serve as a starting point moving forward
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to enable our solution to practically control stationary batteries, manageable thermal load,

and distributed generations.
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Appendix

14-bus Line Parameters

The system layout and line reactances for the 14-bus test system are shown in the following

table. The reactance values are given in per-unit (p.u.). The parameters were obtained

from MATPOWER [68].

Table 1: Line parameters for the 14-bus system.
.

Line From To Resistance (R) Reactance (X) Shunt Susceptance (B) Turns Ratio

1 1 2 0.01938 0.05917 0.0528 1.0

2 1 5 0.05403 0.22304 0.0492 1.0

3 2 3 0.04699 0.19797 0.0438 1.0

4 2 4 0.05811 0.17632 0.034 1.0

5 2 5 0.05695 0.17388 0.0346 1.0

6 3 4 0.06701 0.17103 0.0128 1.0

7 4 5 0.01335 0.04211 0.0 1.0

8 4 7 0.0 0.20912 0.0 0.978

9 4 9 0.0 0.55618 0.0 0.969

10 5 6 0.0 0.25202 0.0 0.932

11 6 11 0.09498 0.1989 0.0 1.0

12 6 12 0.12291 0.25581 0.0 1.0

13 6 13 0.06615 0.13027 0.0 1.0
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.

Line From To Resistance (R) Reactance (X) Shunt Susceptance (B) Turns Ratio

14 7 8 0.0 0.17615 0.0 1.0

15 7 9 0.0 0.11001 0.0 1.0

16 9 10 0.03181 0.0845 0.0 1.0

17 9 14 0.12711 0.27038 0.0 1.0

18 10 11 0.08205 0.19207 0.0 1.0

19 12 13 0.22092 0.19988 0.0 0.970

20 13 14 0.17093 0.34802 0.0 0.978
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Figure 1: IEEE 14-bus System

57-bus Line Parameters

The values for the resistance, reactance, shunt susceptance, and transformer turns ratio

for each branch in the IEEE 57-bus test system are given in p.u. in the below table [68].
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Table 2: Line parameters for the 57-bus system.
.

Line From To Resistance (R) Reactance (X) Shunt Susceptance (B) Turns Ratio

1 1 2 0.0083 0.0280 0.1290 1.0

2 2 3 0.0298 0.0850 0.8180 1.0

3 3 4 0.0112 0.0366 0.0380 1.0

4 4 5 0.0625 0.1320 0.0258 1.0

5 5 6 0.0430 0.1480 0.0348 1.0

6 6 7 0.0200 0.1020 0.0276 1.0

7 7 8 0.0339 0.1730 0.0470 1.0

8 8 9 0.0099 0.0505 0.0548 1.0

9 9 10 0.0368 0.1679 0.0440 1.0

10 9 11 0.0258 0.0848 0.0218 1.0

11 9 12 0.0648 0.2950 0.0772 1.0

12 9 13 0.0481 0.1580 0.0406 1.0

13 13 14 0.0132 0.0434 0.0110 1.0

14 13 15 0.0269 0.0869 0.0230 1.0

15 1 15 0.0178 0.0910 0.0988 1.0

16 1 16 0.0454 0.2060 0.0546 1.0

17 1 17 0.0238 0.1080 0.0286 1.0

18 3 15 0.0162 0.0530 0.0544 1.0

19 4 18 0.0 0.5550 0.0 0.970

20 4 18 0.0 0.4300 0.0 0.978

21 5 6 0.0302 0.0641 0.0124 1.0

22 7 8 0.0139 0.0712 0.0194 1.0

23 10 12 0.0277 0.1262 0.0328 1.0

24 11 13 0.0223 0.0732 0.0188 1.0

25 12 13 0.0178 0.0580 0.0604 1.0
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Line From To Resistance (R) Reactance (X) Shunt Susceptance (B) Turns Ratio

26 12 16 0.0180 0.0813 0.0216 1.0

27 12 17 0.0397 0.1790 0.0476 1.0

28 14 15 0.0171 0.0547 0.0148 1.0

29 18 19 0.4610 0.6850 0.0 1.0

30 19 20 0.2830 0.4340 0.0 1.0

31 21 20 0.0 0.7767 0.0 1.0430

32 21 22 0.0736 0.1170 0.0 1.0

33 22 23 0.0099 0.0152 0.0 1.0

34 23 24 0.1660 0.2560 0.0084 1.0

35 24 25 0.0 1.1820 0.0 1.0

36 24 25 0.0 1.2300 0.0 1.0

37 24 26 0.0 0.0473 0.0 1.0430

38 26 27 0.1650 0.2540 0.0 1.0

39 27 28 0.0618 0.0954 0.0 1.0

40 28 29 0.0418 0.0587 0.0 1.0

41 7 29 0.0 0.0648 0.0 0.9670

42 25 30 0.1350 0.2020 0.0 1.0

43 30 31 0.3260 0.4970 0.0 1.0

44 31 32 0.5070 0.7550 0.0 1.0

45 32 33 0.0392 0.0360 0.0 1.0

46 34 32 0.0 0.9530 0.0 0.9750

47 34 35 0.0520 0.0780 0.0032 1.0

48 35 36 0.0430 0.0537 0.0016 1.0

49 36 37 0.0290 0.0366 0.0 1.0

50 37 38 0.0651 0.1009 0.0020 1.0

51 37 39 0.0239 0.0379 0.0 1.0
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Line From To Resistance (R) Reactance (X) Shunt Susceptance (B) Turns Ratio

52 36 40 0.0300 0.0466 0.0 1.0

53 22 38 0.0192 0.0295 0.0 1.0

54 11 41 0.0 0.7490 0.0 0.9550

55 41 42 0.2070 0.3520 0.0 1.0

56 41 43 0.0 0.4120 0.0 1.0

57 38 44 0.0289 0.0585 0.0020 1.0

58 15 45 0.0 0.1042 0.0 0.9550

59 14 46 0.0 0.0735 0.0 0.9000

60 46 47 0.0230 0.0680 0.0032 1.0

61 47 48 0.0182 0.2033 0.0 1.0

62 48 49 0.0834 0.1290 0.0048 1.0

63 49 50 0.0801 0.1280 0.0 1.0

64 50 51 0.1386 0.2200 0.0 1.0

65 10 51 0.0 0.0712 0.0 0.9300

66 13 49 0.0 0.1910 0.0 0.8950

67 29 52 0.1442 0.1870 0.0 1.0

68 52 53 0.0762 0.0984 0.0 1.0

69 53 54 0.1878 0.2320 0.0 1.0

70 54 55 0.1732 0.2265 0.0 1.0

71 11 43 0.0 0.1530 0.0 0.9580

72 44 45 0.0624 0.1242 0.0040 1.0

73 40 56 0.0 1.1950 0.0 0.9580

74 56 41 0.5530 0.5490 0.0 1.0

75 56 42 0.2125 0.3540 0.0 1.0

76 39 57 0.0 1.3550 0.0 0.9800

77 57 56 0.1740 0.2600 0.0 1.0
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Line From To Resistance (R) Reactance (X) Shunt Susceptance (B) Turns Ratio

78 38 49 0.1150 0.1770 0.0030 1.0

79 38 48 0.0312 0.0482 0.0 1.0

80 9 55 0.0 0.1205 0.0 0.9400
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Figure 2: IEEE 57-bus System

118-bus Line Parameters

The values for the resistance, reactance, and shunt susceptance for each branch in the IEEE

118-bus test system are given below in p.u. These values were taken from MATPOWER

[68].
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Table 3: Line parameters for the 118-bus system

.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

1 2 0.0303 0.0999 0.0254

1 3 0.0129 0.0424 0.01082

4 5 0.00176 0.00798 0.0021

3 5 0.0241 0.108 0.0284

5 6 0.0119 0.054 0.01426

6 7 0.00459 0.0208 0.0055

8 9 0.00244 0.0305 1.162

8 5 0 0.0267 0

9 10 0.00258 0.0322 1.23

4 11 0.0209 0.0688 0.01748

5 11 0.0203 0.0682 0.01738

11 12 0.00595 0.0196 0.00502

2 12 0.0187 0.0616 0.01572

3 12 0.0484 0.16 0.0406

7 12 0.00862 0.034 0.00874

11 13 0.02225 0.0731 0.01876

12 14 0.0215 0.0707 0.01816

13 15 0.0744 0.2444 0.06268

14 15 0.0595 0.195 0.0502

12 16 0.0212 0.0834 0.0214

15 17 0.0132 0.0437 0.0444

16 17 0.0454 0.1801 0.0466

17 18 0.0123 0.0505 0.01298
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.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

18 19 0.01119 0.0493 0.01142

19 20 0.0252 0.117 0.0298

15 19 0.012 0.0394 0.0101

20 21 0.0183 0.0849 0.0216

21 22 0.0209 0.097 0.0246

22 23 0.0342 0.159 0.0404

23 24 0.0135 0.0492 0.0498

23 25 0.0156 0.08 0.0864

26 25 0 0.0382 0

25 27 0.0318 0.163 0.1764

27 28 0.01913 0.0855 0.0216

28 29 0.0237 0.0943 0.0238

30 17 0 0.0388 0

8 30 0.00431 0.0504 0.514

26 30 0.00799 0.086 0.908

17 31 0.0474 0.1563 0.0399

29 31 0.0108 0.0331 0.0083

35 36 0.00224 0.0102 0.00268

35 37 0.011 0.0497 0.01318

33 37 0.0415 0.142 0.0366

34 36 0.00871 0.0268 0.00568

34 37 0.00256 0.0094 0.00984

38 37 0 0.0375 0

37 39 0.0321 0.106 0.027

37 40 0.0593 0.168 0.042

30 38 0.00464 0.054 0.422

39 40 0.0184 0.0605 0.01552

40 41 0.0145 0.0487 0.01222

150



.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

40 42 0.0555 0.183 0.0466

41 42 0.041 0.135 0.0344

43 44 0.0608 0.2454 0.06068

34 43 0.0413 0.1681 0.04226

44 45 0.0224 0.0901 0.0224

45 46 0.04 0.1356 0.0332

46 47 0.038 0.127 0.0316

46 48 0.0601 0.189 0.0472

47 49 0.0191 0.0625 0.01604

42 49 0.0715 0.323 0.086

42 49 0.0715 0.323 0.086

45 49 0.0684 0.186 0.0444

48 49 0.0179 0.0505 0.01258

49 50 0.0267 0.0752 0.01874

49 51 0.0486 0.137 0.0342

51 52 0.0203 0.0588 0.01396

52 53 0.0405 0.1635 0.04058

53 54 0.0263 0.122 0.031

49 54 0.073 0.289 0.0738

49 54 0.0869 0.291 0.073

54 55 0.0169 0.0707 0.0202

54 56 0.00275 0.00955 0.00732

55 56 0.00488 0.0151 0.00374

56 57 0.0343 0.0966 0.0242

50 57 0.0474 0.134 0.0332

56 58 0.0343 0.0966 0.0242

51 58 0.0255 0.0719 0.01788

54 59 0.0503 0.2293 0.0598
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.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

56 59 0.0825 0.251 0.0569

23 32 0.0317 0.1153 0.1173

31 32 0.0298 0.0985 0.0251

27 32 0.0229 0.0755 0.01926

15 33 0.038 0.1244 0.03194

19 34 0.0752 0.247 0.0632

60 62 0.0123 0.0561 0.01468

61 62 0.00824 0.0376 0.0098

63 59 0 0.0386 0

63 64 0.00172 0.02 0.216

64 61 0 0.0268 0

38 65 0.00901 0.0986 1.046

64 65 0.00269 0.0302 0.38

49 66 0.018 0.0919 0.0248

49 66 0.018 0.0919 0.0248

62 66 0.0482 0.218 0.0578

62 67 0.0258 0.117 0.031

65 66 0 0.037 0

66 67 0.0224 0.1015 0.02682

65 68 0.00138 0.016 0.638

47 69 0.0844 0.2778 0.07092

49 69 0.0985 0.324 0.0828

68 69 0 0.037 0

69 70 0.03 0.127 0.122

24 70 0.00221 0.4115 0.10198

70 71 0.00882 0.0355 0.00878

24 72 0.0488 0.196 0.0488

71 72 0.0446 0.18 0.04444
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.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

71 73 0.00866 0.0454 0.01178

70 74 0.0401 0.1323 0.03368

70 75 0.0428 0.141 0.036

69 75 0.0405 0.122 0.124

74 75 0.0123 0.0406 0.01034

76 77 0.0444 0.148 0.0368

69 77 0.0309 0.101 0.1038

75 77 0.0601 0.1999 0.04978

77 78 0.00376 0.0124 0.01264

78 79 0.00546 0.0244 0.00648

77 80 0.017 0.0485 0.0472

77 80 0.0294 0.105 0.0228

79 80 0.0156 0.0704 0.0187

68 81 0.00175 0.0202 0.808

81 80 0 0.037 0

77 82 0.0298 0.0853 0.08174

82 83 0.0112 0.03665 0.03796

83 84 0.0625 0.132 0.0258

83 85 0.043 0.148 0.0348

84 85 0.0302 0.0641 0.01234

85 86 0.035 0.123 0.0276

56 59 0.0803 0.239 0.0536

55 59 0.04739 0.2158 0.05646

59 60 0.0317 0.145 0.0376

59 61 0.0328 0.15 0.0388

60 61 0.00264 0.0135 0.01456

89 90 0.0238 0.0997 0.106

90 91 0.0254 0.0836 0.0214
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.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

89 92 0.0099 0.0505 0.0548

89 92 0.0393 0.1581 0.0414

91 92 0.0387 0.1272 0.03268

92 93 0.0258 0.0848 0.0218

92 94 0.0481 0.158 0.0406

93 94 0.0223 0.0732 0.01876

94 95 0.0132 0.0434 0.0111

80 96 0.0356 0.182 0.0494

82 96 0.0162 0.053 0.0544

94 96 0.0269 0.0869 0.023

80 97 0.0183 0.0934 0.0254

80 98 0.0238 0.108 0.0286

80 99 0.0454 0.206 0.0546

92 100 0.0648 0.295 0.0472

94 100 0.0178 0.058 0.0604

95 96 0.0171 0.0547 0.01474

96 97 0.0173 0.0885 0.024

98 100 0.0397 0.179 0.0476

99 100 0.018 0.0813 0.0216

100 101 0.0277 0.1262 0.0328

92 102 0.0123 0.0559 0.01464

101 102 0.0246 0.112 0.0294

100 103 0.016 0.0525 0.0536

100 104 0.0451 0.204 0.0541

103 104 0.0466 0.1584 0.0407

103 105 0.0535 0.1625 0.0408

100 106 0.0605 0.229 0.062
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.

From To Resistance (R) Reactance (X) Shunt Susceptance (B)

104 105 0.00994 0.0378 0.00986

105 106 0.014 0.0547 0.01434

105 107 0.053 0.183 0.0472

105 108 0.0261 0.0703 0.01844

106 107 0.053 0.183 0.0472

108 109 0.0105 0.0288 0.0076

103 110 0.03906 0.1813 0.0461

109 110 0.0278 0.0762 0.0202

110 111 0.022 0.0755 0.02

110 112 0.0247 0.064 0.062

17 113 0.00913 0.0301 0.00768

32 113 0.0615 0.203 0.0518

32 114 0.0135 0.0612 0.01628

27 115 0.0164 0.0741 0.01972

86 87 0.02828 0.2074 0.0445

85 88 0.02 0.102 0.0276

85 89 0.0239 0.173 0.047

88 89 0.0139 0.0712 0.01934

89 90 0.0518 0.188 0.0528

114 115 0.0023 0.0104 0.00276

68 116 0.00034 0.00405 0.164

12 117 0.0329 0.14 0.0358

75 118 0.0145 0.0481 0.01198

76 118 0.0164 0.0544 0.01356
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Figure 3: IEEE 118-bus System
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