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Abstract
Modern power systems are characterized by an increasing penetration of re-

newable energy generating units. These aim to reduce the carbon emissions in
the environment by replacing conventional energy generating units which rely on
fossil fuels. In this new power systems composition, wind generators (WGs) dom-
inate, being one of the largest and fastest-growing sources of renewable energy
production. Nevertheless, their unpredictable and highly volatile power output
hinders their efficient and secure large-scale deployment, and poses challenges for
the transient stability of power systems. Given that, we identify two challenges
in the operation of modern power systems: rendering WGs capable of regu-
lating their power output while securing transient stabilization of conventional
synchronous generators (SGs). This dissertation makes several contributions for
effectively dealing with these major challenges by introducing new distributed
control techniques for SGs, storage devices and state-of-the-art (SoA) WGs.

Initially, this dissertation introduces a novel nonlinear control design which
is able to coordinate a storage device and a SG to attain transient stabilization
and concurrent voltage regulation on their terminal bus. Thereafter, it proposes
control designs that SoA WGs can adopt to effectively regulate their power out-
put to meet local or group objectives. In this context, the first control design is
a decentralized nonlinear energy-based control design, that can be employed by
a wind double-fed induction generator (DFIG) with an incorporated energy stor-
age device (namely a SoA WG) to regulate its power output by harnessing stored
energy, with guaranteed performance for a wide-range of operating conditions.
Recognizing that, today, albeit wind farms (WFs) are comprised of numerous
WGs which are sparsely located in large geographical areas, they are required
to respond rapidly and provide services to the grid in an efficient, reliable and
timely fashion. To this end, this dissertation proposes distributed control meth-
ods for power output regulation of WFs comprised of SoA WGs. In particular,
a novel distributed control design is proposed, which can be adopted by SoA
WGs to continuously, dynamically and distributively self-organize and control
their power outputs by leveraging limited peer-to-peer communication. By em-
ploying the proposed control design, WGs can exploit their storage devices in a
fair load-sharing manner so that their total power output tracks a total power
reference under highly dynamical conditions. Finally, this dissertation proposes
a distributed control design for wind DFIGs without a storage device, the most
common type of WGs deployed today. With this control design, wind DFIGs can
dynamically, distributively and fairly self-dispatch and adjust the power they ex-
tract from the wind for the purpose of their total power tracking a dynamic
reference. The effectiveness of the control designs proposed in this dissertation is
illustrated through several case studies on a 3-bus power system and the IEEE
24-bus Reliability Test System.
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Chapter 1

Introduction

Modern power systems are characterized by both the influx of advanced control, sensing, com-

munications, information technologies as well as the penetration of high levels of renewable

energy resources. On one side, advanced technologies provide new sources of information,

and new means of contributing to power systems control and maintaining secure normal

operation of power systems. On the other side, the volatile nature of renewable energy re-

sources causes fast and unpredictable variations on the generation side that challenge normal

operation of power systems.

In this thesis, we develop advanced distributed nonlinear control designs for conventional

and new power systems technologies like synchronous generators, energy storage devices and

state-of-the-art wind generators. These control designs exploit communication, sensing and

information technologies to accomplish several objectives with guaranteed performance and

stability in power systems with high levels of renewable power generation.

1.1 Motivation

In this new power systems environment, wind power dominates the renewable power

generation portfolio worldwide. In the U.S., wind power is one of the fastest growing sources

of new electricity capacity and the largest source of new renewable power generation added
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since 2000, according to a U.S. Department of Energy (DOE) study [1]. Specifically, as

pointed out in this study, by 2020, the total generated wind energy per year (coming from

offshore and onshore wind farms) is expected to cover 10% of the total U.S. electricity

demand. Projecting further into the future, the DOE study envisions that by 2030, the

generated wind energy would cover 20% of the total U.S. electricity demand, and by 2050,

this percentage could even reach 35%.

In Europe and other countries all over the world, the ratio of wind generation capacity

over the total generation capacity and the ratio of yearly generated wind energy over the

total electricity demand already reached higher values [2]. Furthermore, these ratios are

increasing according to a much steeper growth curve. If this global trend of integrating high

amounts of wind power generation into modern power systems remains consistent it will

cause WGs to become core generating units along with synchronous generators (SGs) in the

near future. In this scenario, they will contribute with a significant share in the total power

generation portfolio while they will dominate the renewable power generation portfolio along

with hydro power generators.

Although integration of high levels of wind power into modern power systems is very

desirable from an environmental viewpoint, it raises some critical challenges to be tackled

on the secure operation of power systems.

Two aspects of wind power generation can affect power systems operation in detrimental

ways: it can cause reduction of the total system’s effective rotational inertia and it is highly

variable and unpredictable. We explain the former as follows. Wind Double-fed Induction

Generators (DFIGs) also have significant amount of kinetic energy stored in their rotating

blades, and therefore inertia, which, in fact, is comparable to the inertia of conventional

generators. However, in the case of conventional synchronous generators, immediately after

a grid disturbance, e.g a load increase, the electrical torque of each generator will increase

to supply the load, causing its rotor speed to decrease. The decrease of the rotor speed
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releases the kinetic energy stored in the shaft of the generator and causes a corresponding

decrease in the electrical torque. In fact, the electrical torque decrease will be caused by the

decrease of the physical angular position of the rotor flux vector which follows the decrease

of the rotational speed of the rotor. That is because the flux vector is fully aligned with

the physical position of the rotor. To summarize, the above sequence of actions leads to a

self-stabilizing mechanism on the generator speed dynamics called “inertial response”, and

is an inherent characteristic of their dynamic behavior. On other hand, DFIGs lack this

innate “inertial response” capability due to their asynchronous operation (their rotor speed

differs from the synchronous speed 2π60 (rad/s)), realized by electrical decoupling from their

power electronics (particularly the rotor-side converter (RSC)). Because of that, during grid

disturbances, although the rotor speed and rotor angle position of DFIGs will vary, that will

not significantly and directly affect the rotor flux vector position and correspondingly the

generator electrical torque, since, these are independently controlled by the power electronics.

In other words, the rotor flux vector position and the electrical torque are not dependent

on the physical position of the rotor. However, DFIGs can release their kinetic energy and

provide inertial response when their power electronic controllers are designed appropriately.

With the majority of the new WGs replacing SGs today in power systems being DFIGs,

a total reduction of the total systems’ effective inertias will inevitably be observed in power

grids worldwide.

The reduction of this effective inertia can challenge transient and frequency stability of

power systems. More so the frequency stability, since the reduced effective inertia can make

the frequency more sensitive to disturbances, therefore prone to faster and greater variations

around the equilibrium, for a given set of power system disturbances. Furthermore, the

reduced effective inertia can affect transient stability, which is characterized by SGs retaining

their synchronism with the grid after being subjected to a large disturbance. This will

happen in power grids with high wind power integration since the reduction of the effective
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inertia will cause large disturbances to have a pronounced impact on the SGs’ dynamics, so

maintaining their synchronism with the grid will become a challenging task.

At the same time, the highly variable and unpredictable power output of WGs can

challenge frequency and transient stability of power systems even more, if it is not effectively

managed. The reason is that the highly variable wind power initiates new power disturbances

that can lead to imbalance between power generation and demand, and respectively to

frequency variations. In addition, these imbalances can lead to SGs losing their synchronism

with the grid.

We underline that, today, wind power output variability is mainly managed by operating

SGs such that they withhold certain “spinning reserve” levels, so that they are able to

counteract power imbalances, caused by the variable wind generation in real time. SGs can

maintain “spinning reserves” when they are underoperated, so that they can increase their

power output to maintain supply-demand balance in response to wind power variations.

However, operating conventional SGs in such a way leads to a number of inefficiencies. For

instance, since these SGs are operated below their nominal power output values, their power

output is not the maximum that could be used for base load supply. From an economic

point of view, this is highly inefficient and constitutes one of the main reasons hampering

integration of high amounts of wind power generation today.

From the above discussion, we identify two main challenges for modern power systems

with high wind power integration: to guarantee their transient and frequency stability.

In this thesis, we address these challenges by developing novel nonlinear control laws for

SGs and energy storage devices to guarantee transient stabilization of the SGs, and novel

distributed nonlinear control laws for state-of-the-art (SoA) WGs to enable them to regulate

their power output.
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1.2 Problem Statement

1.2.1 Transient Stability

Transient stability, is a term specifically devised for power systems to characterize the

state in which all generators retain their synchronism with the grid after a system is subjected

to a large disturbance [3], e.g. disconnection of a line, tripping of generator, etc. On the

other hand, transient instability describes the state in which one or more generators lose

synchronism with the grid and is often the main cause of wide-spread blackouts [4].

We underline the significance of transient stability in modern power systems by analyzing

the mechanism through which transient instabilities can lead to a series of catastrophic

cascading events and eventually to a wide-spread blackout. Consider a power system in

which a contingency (i.e a large disturbance), such as a disconnection of a transmission line,

occurs. Immediately after such a disturbance, three main events will take place. The first

is redistribution of the powers flowing through the lines in the vicinity to the disturbance.

This will be experienced by each of the synchronous generators in close physical proximity

with the fault as a power imbalance between its mechanical and electrical power, causing

its rotational speed to vary. This leads to the second event. Let G represent the set of

synchronous generators, and consider the rotor speed dynamics of a SG i given as [3, 5]:

ω̇i =
(Pm,i − Pe,i)

2Hi

, ∀i ∈ G (1.1)

The variables Pm,i, Pe,i, Hi denote mechanical power, electrical power and inertia of the

generator, respectively. During and right after a fault, Pm,i is not changing significantly due

to the slow response of the governor (main controller of the mechanical power), whereas

Pe,i is varying according to the grid conditions. Hence, in the second event generators that

experience a power imbalance, i.e Pm,i 6= Pe,i, either accelerate or decelerate with respect to
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the synchronous speed of the grid.

When generators accelerate/decelerate, there is a great risk of damage to the physical

equipment. For this reason, generators are always equipped with a specific type of protection

scheme, namely an out-of-step protection scheme. The sole purpose of this scheme is to detect

when generators accelerate/decelerate and disconnect them from the grid when their speeds

greatly deviate from the synchronous speed [3]. The action of these protection schemes

initiates the third event in which generators disconnect from the grid. In some of the most

widely known blackouts [4], the latter event led to several generators being taken offline.

When generators disconnect from the grid, the imbalance between total load and gener-

ation becomes even greater. This, in turn, leads to new redistribution of power flows, more

generators accelerating/decelerating and finally getting disconnected from the grid. In other

words, the three main events we just described continue repeating in the same sequence.

Another important aspect of power systems operation is voltage regulation. Formally,

voltage regulation is the regulation of the terminal voltages of all buses in a power system

at an acceptable level [6], [3] which, for transmission systems, is any value within ±5% of

the nominal value.

Today, the main means to effectively counteract transient instabilities and retain the syn-

chronism of SGs with the grid are control of conventional SGs (exciter, governor) and control

of new technologies interfaced through power electronics, such as storage devices, wind gen-

erators (WGs), photovoltaics (PVs) and Flexible AC Transmission Systems (FACTS).

1.2.2 Power Output Regulation of Wind Generators

Today, the ongoing integration of high amounts of wind power led us to take the concerns,

associated with the impact of wind power on power systems, more seriously. This can be

realized from the technical regulations regarding the integration and operation of WGs which

are becoming very demanding. In the current status of these regulations, WGs are required

to provide several capabilities and support to the grid, ranging from voltage/frequency reg-
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ulation and ability to stay connected with the grid during disturbances, to the ability to

regulate their power output [2].

The inability of WGs to generate predictable power through power output regulation is

the main reason that slows down the integration of more wind power into power systems.

This can be realized by analyzing the impact that unpredictable wind power generation has

on today’s power system operations. In the slow time-scale (several minutes) of operations, at

which the economic dispatch (ED) is conducted, time-delays arise from the moment system

operators gather information (e.g wind speed) and issue scheduled power outputs for the

WFs, until the moment these schedules are actually implemented by the WFs. Thus, by

the time WFs receive their scheduled powers they might not be able to meet them due to

the minute-to-minute wind variability. Consequently, that leads to the increase of the total

generation cost since expensive conventional synchronous generators are called in real-time

to compensate the power mismatch between scheduled and real available wind power. In

addition, as already mentioned, the unpredictable wind power forces system operators to

operate online SGs below their maximum capabilities, maintaining in that way spinning

reserves, or to add online generation capacity that otherwise would be offline. In the fast

time-scale of operations, wind power variability causes supply-demand imbalances that can

challenge frequency and transient stability. In this case, fast regulating SGs are required to

compensate these power imbalances.

When integrating very high amounts of wind power in power systems, the economic

inneficiency that comes from underoperating generators such that they withhold spinning

reserves, as well as the great challenge of securing the stability of these systems may together

outweigh the benefits of such integration. In these cases, the integration levels become

infeasible due to both economic and technical reasons.

Currently used wind DFIGs can provide power output regulation when they operate in

a deloaded regime. When DFIGs operate in this regime, they extract mechanical power less

7



than the maximum possible for given wind-speed conditions. This gives them the flexibility

to control their power to meet several power demands, given that these demands lie in the

feasible power range. On the other hand, WGs could provide power output regulation and

many other capabilities, presuming that they exploit some kind of energy storage within their

system. Unfortunately, the DFIGs integrated today into power systems lack this capability.

On the bright side, General Electric recently announced the commercialization of their

“brilliant” wind DFIG [7]. The brilliant wind DFIG is a DFIG that incorporates an energy

storage device, in particular a battery, into its system. This type of wind DFIGs is now

considered to be the gold standard for WG technology, being studied in the literature over

the last decade. With the integrated storage device, these WGs can realize many of the

already discussed capabilities, including power output regulation, without resorting to the

energy stored in their shafts. In other words, they can provide these capabilities by relying

on their electrical and not on their mechanical part.

1.3 Background and Related Work

1.3.1 Industry Practice

a) Transient Stability

The current industry practice for securing transient stability is purely heuristic and based

on extensive trial and error procedures [8]. Specifically, in this practice, system operators

(SO) execute the following steps before finalizing and communicating the scheduled power

outputs to generators.

• First, they conduct the economic dispatch (ED) process in order to compute the op-

timal power outputs of generators with respect to total generation cost for serving a

given load.

• Then, they perform contingency analysis for a given set of faults with the ED power

outputs assigned to generators.
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• If the contingency analysis shows transient instabilities, they alter the dispatch ob-

tained from ED, i.e they re-distribute generation from critical (for being transiently

unstable) to not critical generators using knowledge of the system and reconduct the

contingency analysis with the new dispatch.

• If the contingency analysis with the new dispatch results to a transiently stable system

for the studied set of faults, then it is regarded as secure.

The logic behind executing the above heuristic approach is to exhaustively assess whether

a system is transiently stable/unstable after it is subjected to various disturbances through

numerical simulations. Thus, the above process terminates when simulations lead to a se-

cure/stable power system response. The aforementioned steps describe today’s industry

practice for securing transient stability [8].

b) Voltage Regulation

Today, one of the main means for ensuring voltage regulation in power systems are the exci-

tation controllers of conventional generators [3], [9]. These controllers are based on approxi-

mate linearizations and they control the DC voltage of the generator’s rotor field windings

in order to regulate its terminal voltage to a specific value.

1.3.2 Related Work - Transient Stability

In the literature, the line of research that was followed by researchers for addressing

transient stability and voltage regulation was based on nonlinear control theory. The reason

that motivated researchers to resort to nonlinear control theory is that power systems are

inherently nonlinear dynamical systems, and large disturbances, such as faults, trigger their

nonlinear dynamic behavior. Since the states move away from their equilibrium during

large disturbances, standard linear controllers are not able to guarantee stabilization or

performance [10]. On the other hand, nonlinear controllers can guarantee stabilization and

performance for a wide range of operating conditions that correspond to a wide range of
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state-variables’ deviations around equilibrium.

In [11] the authors proposed a feedback linearizing excitation controller for accomplishing

concurrent transient stabilization and voltage regulation. This controller is shown to be able

to avoid break-down of a large real-world system during a major disturbance. Nevertheless,

a shortcoming of this approach is that during transience, voltage can vary greatly outside

the acceptable limits and can trigger the generator voltage protection. In [6], the authors

proposed a switching excitation controller to achieve transient stability and post-fault voltage

regulation. Specifically, during the transient period, this controller uses the electromechanical

states as feedback signals in order to ensure transient stability, while during the post-transient

period, it uses voltage as a feedback signal in order to ensure voltage regulation. The smooth

transition among the different feedback signals is realized through appropriate membership

functions. A drawback of this approach is that the membership functions need to be carefully

designed based on simulations and trial and error procedures.

In general, guaranteeing concurrent transient stabilization and voltage regulation with

the excitation controller is challenging since these two objectives become conflicting for

the controller. Simply put, since the excitation controller adjusts the voltage to ensure

transient stabilization, regulating the voltage to an equilibrium rapidly (voltage regulation)

will lead to the controller losing the capability for transient stabilization. To overcome this

limitation, researchers proposed coordinated control of a storage device and a generator.

In this direction the authors in [12] proposed a multi-index nonlinear coordinated control

approach for a storage device and an exciter. The main drawback of this approach is that the

rotor angle position and the rotor acceleration are not exploited as feedback signals by the

controller. According to [11], these two variables can be very effective feedback signals for

controllers that aim to ensure transient stabilization. In particular, the acceleration signal as

a feedback signal can enable the controller to increase the transfer capability of the system

while the rotor angle can provide high synchronizing torque to the generator, critical for
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avoiding first swing instability [3].

In this thesis, we develop a nonlinear coordinated controller for a generator and a storage

device that are on the same bus, able to effectively guarantee concurrent transient stabiliza-

tion and voltage regulation without the limitations discussed above. This, given that the

storage device has sufficient stored energy.

1.3.3 Related Work - Power Output Regulation of Wind Genera-

tors

WGs without energy storage can regulate their power output when they operate in a

deloaded regime. On the other hand, when WGs are equipped with energy storage they

can exploit the storage device to regulate their power output. The literature related to the

problem of enabling a group of deloaded DFIGs (without storage devices) to attain power

output regulation is not very broad.

Specifically, distributed approaches for dispatching and regulating the power output of

WGs were considered in [13] and [14]. In [13], a multi agent systems-based (MAS) control

strategy for wind DFIGs in a microgrid was proposed. Each bus is assumed to have an agent

that is allowed to communicate with its neighboring agents according to two consensus

protocols. That way, each agent can retrieve the ratio defined by the total demand over

the total available wind power in a distributed fashion. Subsequently, this information

can be used by each DFIG to define its set-point. The drawback of this method is that it is

quasistatic. In other words, the set-points are computed and communicated to the respective

controllers at discrete time instants. Since the DFIGs’ controllers have to wait until the

protocols converge before implementing their new set-points, it means that their power

output is also controlled in a quasistatic fashion. Therefore, in settings where DFIGs have to

control their power outputs rapidly and under highly and fast-varying dynamical conditions,

e.g in microgrids, DFIGs may not be able to respond timely. In [14], the authors proposed
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two controllers for WGs operating in a deloaded mode, a centralized and a distributed

controller. Both controllers aimed to regulate the set-points of the individual WGs such that

the fatigue on the wind turbines is minimized, and at the same time the total power demand

is met. In this work, linear WG models were considered, therefore, the performance of the

controllers on regulating the power set-points can only be guaranteed close to the operating

point around which the linear model is valid. This limits the operating region in which

the power set-points could be controlled making the approach unsuitable in cases where the

power set-points have to vary greatly in order to meet large variations in the total power

demand.

To the best of our knowledge, [13] and [14] are the only references that presented dis-

tributed control methods for dispatching WGs according to a total power demand, therefore

enabling deloaded WGs to regulate their power output. In both of them, the controllers

for the DFIGs were derived based on approximate linearizations around specific operating

points, therefore their performance can be guaranteed only in a small neighborhood around

these operating points. Thus, with these controllers, the domain of capabilities that DFIGs

can offer is limited since the rotor-speed and the capacitor dynamics are highly nonlinear.

The idea of integrating an energy storage device into a wind DFIG scheme dates back

at least a decade. Several researchers suggested the integration of an energy storage device

into the DFIG system as a way of increasing the range of capabilities that the DFIG can

provide to the grid [15, 16, 17]. Particularly in [16] a PI controller for the grid side converter

(GSC) and a PI controller for the DC-DC converter of a DFIG/energy storage system were

presented. Jointly, the two controllers can enable the WG to provide constant power output

while improving the transient voltage response. In a similar line of research, the authors in

[17] proposed a multi-mode control strategy for SoA WGs that can enable them to manage

intermittency as well as to improve their dynamic response during faults. In [15], a two-layer

centralized constant power control architecture for SoA WGs (with integrated storage) was

12



introduced. In the higher layer, a wind farm supervisory controller computes the power

set-points for the individual WGs. Specifically, the set-point for the power extracted from

the wind as well as the storage device’s power output in order to meet a total WF power

demand. In the lower layer, local controllers guarantee that the power set-points are met.

Centralized control approaches such as the one in [15] require high computational effort, are

not robust to single-point failures and run in a quasistatic time domain that might hamper

a fast WF response under fast-varying dynamical conditions.

1.4 Thesis Contributions

The contributions of this dissertation are analyzed below.

• Nonlinear Coordinated Control Scheme for a Generator and an Energy

Storage Device that Guarantees Transient Stabilization and Voltage Reg-

ulation. We develop a nonlinear coordinated control architecture for a SG and an

energy storage device using results from Multi-Input Multi-Output (MIMO) feedback

linearization theory. Concretely, we first introduce a novel output vector that leads

to the generator-storage subsystem dynamics having full relative degree. Thereafter,

we use this output vector to recast the generator-storage dynamics to a new form in

which these dynamics inherit several desired properties. We accomplish that by explic-

itly deriving a full state transformation. In the new state-space form, the first property

is that, the relevant variables for accomplishing transient stability and voltage regu-

lation become state-variables. The second property is that the state transformation

is full, i.e the dimension of the new state-space matches that of the initial one. This

comes from the fact that with the proposed output vector the system has full relative

degree and has the following implication. The particular choice of the output vector

makes it possible to explicitly design a full MIMO feedback linearizing controller for

the generator-storage dynamics that causes the closed-loop system to be linear and
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controllable without zero dynamics. This proposed controller for the generator-storage

set-up is the first one to guarantee concurrent transient stability and voltage regula-

tion by coordinating a SG and an energy storage, and in that way exploiting their full

potential in a cooperative way.

• Decentralized Nonlinear Energy-based Control Scheme Enabling SoA WGs

to Guarantee Maximum Power Point Tracking (MPPT) and Power Out-

put Regulation. We develop a nonlinear energy-based control scheme for all three

converters of a DFIG with energy storage, namely the RSC, GSC and DC-DC con-

verter. Initially, we recast the SoA WG standard state-space model into a new form

where some critical energy variables become state-variables. Subsequently, we form

and translate the main control objectives, Maximum Power Point Tracking (MPPT)

and predictable power output, into tracking objectives of asymptotically stable equi-

libria for these new energy state-variables. Lastly, we design nonlinear Control Lya-

punov Function (CLF) Energy-based control laws for its rotor-side converter (RSC) to

guarantee MPPT, and for its grid-side converter (GSC) and DC-DC converter (that

controls the storage power) to jointly guarantee power output regulation by exploiting

the energy storage device.

This is the first comprehensive nonlinear control scheme for all three converters of a

SoA WG. Hence, it is the first control scheme to guarantee MPPT from the WG under

nonlinear rotor speed dynamics and power output regulation during large variations of

the power set-point. Finally, our approach is the first to leverage energy state-space

modeling for control of SoA WGs that facilitates a more intuitive understanding of the

control objectives using energy variables, which eventually leads to a more intuitive

controller design.

• Methodology for Compositional Stability Analysis and for Deriving Suffi-
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cient Stability Conditions of a Specific Class of Leader-follower Consensus

Protocols. For a specific class of leader-follower consensus protocols (e.g with a spe-

cific communication architecture), we combine singular perturbation and Lyapunov

theories with the Gershgorin circle theorem to perform compositional stability analysis

and derive sufficient stability conditions for their control gains. Further, by employing

a Lyapunov-Krasovskii functional we establish time-delay independent asymptotic sta-

bility of their equilibria, guaranteeing their robustness with respect to communication

delays. Combining all these tools, we provide a new methodology to stability analysis

for a particular class of distributed protocols that is: 1) intuitive - it exploits singu-

lar perturbation theory to reveal the local and global control objectives accomplished

by the protocol in different time-scales; 2) computationally efficient - it is based on

Lyapunov functions for lower-dimensional subsystems; 3) provides an explicit way of

deriving sufficient conditions for stability of this class of protocols through the use of

Gershgorin’s circle theorem.

• Distributed Control for Power Output Regulation of Wind Farms with SoA

WGs. We establish a novel distributed control architecture for SoA WGs that enables

them to self-organize and control their storage devices under dynamical conditions

such that their total power output tracks a given varying reference. At the same

time, it enables their storage devices to contribute in a equal sharing fashion, i.e all

storage devices provide the same amount of power. The details of this work can be

found in [18]. We first pose the main problem as a constrained consensus problem for

the power electronics controllers of SoA WGs, specifically the GSCs, and introduce a

distributed leader-follower consensus protocol that WGs can adopt to distributively

and asymptotically achieve the above control objectives. Further, by applying our

proposed methodology we employ singular perturbation and Lyapunov theories to per-

form compositional stability analysis and prove that the desired equilibrium point of
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the consensus protocol is asymptotically stable, explicitly deriving sufficient conditions

under which this is guaranteed. Lastly, we design distributed control laws for the GSC

and the DC-DC converter that realize the protocol in practice and accomplish the

desired control objectives. The distributed power-electronics control architecture: 1)

can lead to total generation cost reduction, especially when it is deployed in large-scale

applications, since it enables SoA WGs to regulate their power output using stored

wind energy, therefore eliminating the need for utilizing fast ramping-up SGs to com-

pensate wind power variability; 2) is practically realizable, requiring WGs to exchange

feedback signals that can be easily measured locally; 3) leads to guaranteed stability

and performance of the associated dynamics with and without communication delays.

The proposed distributed control laws for the GSC and DC-DC converter are the first

advanced, distributed controllers for WGs with integrated storage to reveal and exploit

their full potential for accomplishing complex capabilities. Specifically, they are the

first controllers of their kind to enable SoA WGs to self-organize and provide WF power

output regulation with load sharing among their the storage devices, under dynamical

conditions. We emphasize that, since these WGs will be main energy generating units

in the coming years, systematic and distributed methods for controlling them, that are

practical and mathematically rigorous, are needed before their large-scale application.

This contribution paves the way toward this direction.

• Distributed Torque Control Scheme of Deloaded Wind DFIGs for Wind

Farm Power Output Regulation. We establish a novel distributed control archi-

tecture that WGs can adopt to dynamically self-dispatch in an equal loading manner.

In our context that means their loading levels have to be equal, while their total power

extracted from the wind tracks a given power reference. The details related to this

contribution can be found in [19]. We first formulate this problem as a constrained
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consensus problem where the WGs have to agree on their utilization levels (that de-

pend on local wind-speed conditions) while their total power is constrained to match a

reference. We propose a leader-follower consensus protocol that WGs can incorporate

into their rotor-side converter (RSC) control scheme to accomplish the above objectives

in a distributed and coordinated fashion. By applying our proposed methodology for

stability analysis, we study the asymptotic behavior of the protocol and establish cer-

tain stability properties as follows. We start by employing singular perturbation theory

to perform temporal decomposition of the protocol dynamics. Subsequently, we per-

form compositional stability analysis and establish (using Lyapunov-like arguments)

asymptotic stability of the equilibria of the corresponding fast and slow decoupled

subsystems. Then, we combine these stability certificates through a composite Lya-

punov function and derive conditions on the time-scale separation parameter under

which asymptotic stability of the equilibrium of the full protocol dynamics is guar-

anteed. Further, we extend these results and establish, using a Lyapunov-Krasovskii

functional, that the stability property is time-delay-independent. Lastly, we develop a

CLF-based torque controller for the rotor-side power electronics (RSC) of WGs that

realizes the protocol in practice through peer-to-peer communication. The proposed

control architecture: 1) can dynamically dispatch and control the power output of a

group of WGs based on local wind-speed conditions and in a distributed fashion, elim-

inating the need for a central wind farm controller that has to gather information from

all WGs and perform extensive computations; 2) requires minimum peer-to-peer com-

munication among neighboring WGs; 3) enables WGs to be dispatched timely which is

critical when dispatching has to be performed under fast-varying dynamical wind and

loading conditions to balance supply-demand, especially in autonomous power systems

such as microgrids; 4) leads to guaranteed stability and performance of the associated

dynamics.
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It is the first control scheme for the RSC to systematically and effectively solve the

problem of dispatching and regulating the power output of a group of deloaded WGs

in a distributed, dynamic and efficient manner. In contrast to previous work [13], our

method is dynamic in the sense that the proposed power electronics WG controllers

reach consensus dynamically according to a given reference. We emphasize that, in

the near future, the problem of dispatching and controlling the power outputs of WGs

efficiently and distributively will become as critical as the distributed Economic Dispatch

(ED) problem for SGs, which has already attracted a lot of attention in the power

systems and control communities [20, 21, 22]. Therefore, this work provides first steps

in this direction.

1.5 Thesis Organization

In Chapter 2, we present an analytical approach of a nonlinear coordinated MIMO feed-

back linearizing control law for a conventional SG and an energy storage device. The control

objective for the SG/energy storage scheme is concurrent transient stabilization of the SG

and voltage regulation of the terminal bus after a large disturbance.

In Chapter 3, a wind double-fed induction generator (DFIG) with an energy storage

system (SoA WG) is studied. We present the design of nonlinear CLF Energy-based feedback

control laws for the rotor-side converter (RSC) to guarantee MPPT and for the grid-side

converter (GSC) and DC-DC converter to jointly guarantee power output regulation by

deploying the energy storage.

In Chapter 4, we consider a WF comprised of a group of SoA WGs. The control objectives

for the WGs are to self-organize and control their storage devices in an equal sharing fashion

under dynamical conditions in order for the WF power output to track a given varying

reference, i.e WF power output regulation. We propose a leader-follower consensus protocol

that WGs can adopt to distributively and asymptotically achieve these control objectives.
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Further, in the same chapter, we introduce a methodology for compositional stability analysis

and for deriving sufficient stability conditions for this particular class of protocols. By

employing our methodology we establish conditional asymptotic stability of the protocol’s

equilibrium point. Lastly, we design distributed control laws for the GSC and the DC-

DC converter that realize the protocol in practice through peer-to-peer communication and

accomplish the desired objectives.

In Chapter 5, a WF comprised of conventional DFIGs without storage devices operating

in a deloaded mode, is considered. The control objective for the WGs is to dynamically

self-dispatch in an equal loading manner, i.e for their relative loading levels to have the same

value while their total power output is regulated to a given power reference. We introduce a

leader-follower consensus protocol that WGs can incorporate into their RSC control scheme

to accomplish the above objectives in a distributed, coordinated and dynamical fashion. We

study the asymptotic behavior of the protocol and establish conditional asymptotic stability

of its equilibrium point by employing the methodology introduced in chapter 4. Further,

we extend these results and establish, using a Lyapunov-Krasovskii functional that this

stability property is time-delay-independent. Lastly, we develop a distributed CLF-based

torque controller for the RSC that realizes the protocol in practice through peer-to-peer

communication.

In Chapter Conclusions and Future Work, the results presented in this thesis are sum-

marized and new research directions for future work are pointed out.
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Chapter 2

Coordinated Nonlinear Control of a

Generator and a Storage Device

2.1 Introduction

As elaborated in the introduction of the thesis, transient stability is defined as the prop-

erty of a power system to withstand large disturbances (e.g disconnection of a line, short-

circuit in a line) and retain its normal operation. In more detail, it is the property of power

system to retain synchronism of all of its synchronous generators after a disturbance. Se-

curing transient stability is traditionally considered one of the main problems that system

operators have to address, while with the expected future high levels of wind power penetra-

tion, solving this problem will become even more challenging. Consequently, guaranteeing

transient stability will arise as an even more critical problem for power systems operations

that demands a lot of attention.

Traditionally, transient stability property is granted to power systems through proper

control design of the synchronous generators. In particular, through proper control of the

excitation controllers, which are the ones that regulate the terminal voltages and indirectly
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the electrical torques of the generators. Through these, SGs can ensure stability of their

swing dynamics or equivalently, that they will remain in synchronism with the grid after

a disturbance. However, although the excitation controllers, when suitably designed, can

be very effective in maintaining transient stability of power systems, it is very challenging

to enable them to achieve that concurrently with terminal voltage regulation which stands

as their main functionality. The reason is that when transient stability is the main control

objective to be accomplished, the terminal voltage has to be a free variable that can vary

accordingly to ensure stable rotor angle/speed dynamics. Hence, when voltage regulation is

also one of the control objectives for the exciter, both objectives are realized as conflicting

for the excitation controller which leads to a challenging control design problem.

In modern power systems, many diverse types of new technologies are integrated. To

name a few, storage devices, photovoltaics (PVs), wind generators etc. These technologies

can be leveraged through advanced control designs to contribute, together with the existing

excitation controllers of SGs, to the maintainance of transient stability and ensuring voltage

regulation in power systems. Here, storage devices, concretely batteries, are considered

for this particular purpose. Coordinating the controller of a battery storage device with

an excitation controller emerged in the literature as a promising direction for concurrently

ensuring transient stability and voltage regulation. This is because of the capability of

battery storage devices to control independently both their real and their reactive power at

the same time. In fact, by exploiting, through suitable control, the potential of both a SG

and a battery, the two main objectives can be effectively attained.

The design of a coordinated controller for a SG and a battery storage (that lie at the same

bus) that achieves concurrent transient stabilization and voltage regulation can be posed as a

nonlinear control design problem with the nonlinearities emerging in the generator dynamics.

Suprisingly, this problem has not been rigorously addressed in the literature, as it will be

further discussed in the literature review section below.
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This Chapter is dedicated to solving this particular problem. Our main contribution

is a nonlinear coordinated control design for a generator-battery storage system that can

effectively guarantee concurrent transient stabilization of the SG and regulation of their

common bus’ voltage.

2.2 Literature Review

In the literature, the line of research that is followed by researchers for addressing tran-

sient stability and voltage regulation together is grounded on nonlinear control theory. The

reason that motivated researchers to resort to nonlinear control theory is that power systems

are inherently nonlinear, and large disturbances, as the ones considered during contingen-

cies, trigger a highly nonlinear dynamic behavior. In this case, the states move away from

their equilibrium operating points around which, standard linear controllers can guarantee

stabilization and performance [10]. On the other hand, nonlinear controllers can guarantee

stabilization and performance for a wide range of operating conditions. The authors in [11]

proposed a feedback linearizing excitation controller to accomplish transient stabilization

and voltage regulation concurrently, and is able to avoid break-down of a large real-world

system during a major disturbance. However, a concern with this approach is that, during

transience, voltage can vary greatly outside the acceptable limits and might trigger the gen-

erator protection. In [6], the authors proposed a switching excitation controller to achieve

transient stability and post-fault voltage regulation. Specifically, during the transient pe-

riod, this controller uses feedback from electromechanical states to retain transient stability,

and during the post-transient period, it uses voltage feedback to ensure voltage regulation.

The smooth transition among the different feedback signals is realized through membership

functions. A weakness of this approach is that the membership functions need to be carefully

designed based on simulations and trial and error procedures. To overcome the limitations

that come along with using only the excitation controller to jointly guarantee transient sta-
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bility and voltage regulation, as we already mentioned, researchers proposed coordinated

control of a generator and a storage device. In more detail, in [12], the authors introduced a

multi-index nonlinear coordinated control design for a generator and a storage device. The

drawback of this approach is that feedback signals from the rotor angle position and the rotor

acceleration are not incorporated in the control design. According to [11] the acceleration

signal as a feedback variable is important for increasing the transfer capability of the system

and the rotor angle signal for enabling the generator to exhibit a high synchronizing torque

response, critical for avoiding first swing instability [3].

Our proposed control design that will be analyzed in forthcoming sections is free of the

limitations discussed above.

2.3 Modeling

2.3.1 Load Model

In this thesis, we assume that loads behave as constant impedances during transience

and adopt this modeling type. Accordingly, we eliminate load buses to obtain a reduced

representation of the system [9].

2.3.2 Generator Model

Each synchronous generator is modeled with the standard model for transient stability

studies, namely the one axis or flux-decay model. In this model, a generator is represented

as a voltage behind the direct axis transient reactance. Denoting the set of generator-storage

systems by the set G̃, the following dynamical equations fully describe the generator model:

δ̇i = ωs(ωi − ω0), ∀i ∈ G̃ (2.1)

ω̇i =
1

2Hi

(Pm,i − Pe,i), ∀i ∈ G̃ (2.2)

Ė
′

q,i =
1

T
′
d0,i

(Efd,i − E
′

q,i + (X
′

d,i −Xd,i)Ids,i), ∀i ∈ G̃ (2.3)
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Pe,i = E
′

q,iIqs,i (2.4)

The generator state-variables δi, ωi, E
′
q,i ∈ R denote the rotor angle position, angular speed

and voltage behind transient reactance, respectively. Further, the variables Pe,i, Pm,i ∈ R

denote electrical and mechanical powers of the generator and Ids,i, Iqs,i ∈ R, the currents of

the generator in a d−q reference frame. The generator control input is given by the excitation

voltage Efd,i ∈ R. The constants ωs, ω0 denote the synchronous speed ωs = 2 ·π ·60 (rad/s)

and the per unit synchronous speed ω0 = 1. The constants T
′

d0,i, Xd,i, X
′

d,i, Hi ∈ R denote

the transient open-circuit time constant, the stator reactance, the stator transient reactance

and the inertia of the generator, respectively.

2.3.3 STATCOM/Battery Energy Storage Model

As a storage device, we consider a Battery Energy Storage (BES) that is interfaced by

a Static Synchronous Compensator (STATCOM). Its full model can be described by the

dynamics of the current components in the synchronous reference frame [16]. In particular

by the following two dynamical equations:

İdb,i = −ωs
Rb,i

Lb,i
Idb,i + ωsIqb,i + ωs

(uα,i − Vsd,i)
Lb,i

, ∀i ∈ G̃ (2.5)

İqb,i = −ωs
Rb,i

Lb,i
Iqb,i − ωsIdb,i + ωs

(uβ,i − Vsq,i)
Lb,i

, ∀i ∈ G̃ (2.6)

The state-variables in the above model are Idb,i, Iqb,i ∈ R which denote the current output

of the STATCOM/BES system. In addition, the control inputs are uα,i, uβ,i ∈ R which

denote the voltage components directly controlled by the STATCOM, whereas the variables

Vsd,i, Vsq,i ∈ R, denote the terminal voltage components in the synchronous reference frame.

It is important to note that the generator reference frame and the synchronous reference

frame are rotating with the same speed but with a phase angle difference δi. The constants
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Rb,i, Lb,i ∈ R denote the resistance and the reactance of the transformer connecting the

STATCOM/BES to the grid.

We specifically considered battery storage devices since they have appealing character-

istics; they can respond rapidly, they have high efficiency and they have the capability to

provide both real and reactive power in the fast time scale relevant for transient stabilization

and voltage regulation [23].

With the necessary modeling presented above, we now proceed to rigorously formulate

our main problems.

2.4 Problem Formulation

2.4.1 Transient Stability

Transient stability can be mathematically defined in the context of Lyapunov stability

theory [10]. Consider a power system whose dynamics are generically described by the

following differential equation:

ẋ = f(x), x ∈ D ⊆ Rn (2.7)

where f : D 7→ Rn is a vector field and x is a state vector. Before stating our problem, we

introduce some necessary definitions starting from the definition of an asymptotically stable

equilibrium xe.

Definition 2.1 ([10]). An equilibrium point xe of (2.7) is asymptotically stable if it is stable

and if:

∃δ such that ||x(0)− xe|| ≤ δ ⇒ lim
t→∞

x(t)→ xe (2.8)

where x(0) denotes the initial condition of x. Moreover, φ(t;x) is the solution of the

system (2.7) that starts at the initial state x at t = 0 while RA is the region for which

the asymptotically stable equilibrium point attracts all the solutions, and is called region of
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attraction (ROA). This region, is defined as follows.

Definition 2.2 ([10]). The ROA of xe is defined by the following set

RA =
{
x ∈ D | φ(t;x) is defined ∀t ≥ 0 and φ(t;x)→ xe as t→∞

}
Consider now that the power system defined by the dynamics in (2.7) is initially operating

at equilibrium when subjected to a disturbance at the time instant tf , which is cleared at tcl.

Let pr, f, ps denote the pre-fault, faulted and post-fault operating conditions, respectively.

The effect of the disturbance can be seen in the vector field that changes from fpr to f f .

After a temporary disturbance which is cleared at tcl, the system will evolve according to

the same pre-fault vector field i.e fps = fpr. In each time range, the system (2.7) can be

compactly described as:

ẋ = fpr(x), 0 ≤ t < tf (2.9a)

ẋ = f f (x), tf ≤ t < tcl (2.9b)

ẋ = fps(x), tcl ≤ t (2.9c)

The following definition gives the conditions that lead to the system (2.9a)-(2.9c) being

transiently stable.

Problem Formulation 1 (Transient stability, [9]). The power system given by (2.9a)-

(2.9c) will be transiently stable after a disturbance when the following two conditions are

met:

• The equilibrium xpse of (2.9c) is asymptotically stable.

• x(tcl) ∈ Rps
A i.e in the time instant the fault is cleared, the state-vector lies inside the

ROA of the post-fault system dynamics.

It springs from the above definition that two factors play a key role in maintaining

transient stability of a power system. In particular, the type of the equilibrium point (e.g

asymptotically stable, stable), and how large the region of attraction of the post-fault equi-
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librium is. From these, we identify two causes that can lead to a transiently unstable power

system.

• Case 1. The post-fault equilibrium is identical to the pre-fault equilibrium i.e xpse =

xpre , and the disturbance moves the state-variable x outside of the region of attraction

when the fault is cleared, i.e x(tcl) 6∈ Rps
A [9, 3, 10].

• Case 2. The post-fault equilibrium is different from the pre-fault equilibrium, i.e

xe,ps 6= xe,pr, and the disturbance moves the state-variable x when the fault is cleared

outside the region of attraction of the post-fault equilibrium, i.e x(tcl) 6∈ Rps
A [9, 3, 10].

In this thesis and without loss of generality, we particularly study Case 1. This case emerges

when the topology of the power grid remains intact after a disturbance. Maintaining transient

stability in this set-up solely depends on whether the equilibrium point has a RA large enough

so that the state will remain inside it at the moment the fault is cleared. When that is the

case, the state will converge to the equilibrium point asymptotically. In power systems

terminology, the time interval measured from the onset of the fault until the moment that

the state-vector exits the RA is called the Critical Clearing Time (tCCT ). In conclusion,

to guarantee transient stability in the particular Case 1 is equivalent to having a tCCT

large enough (equivalently RA large enough), so that, for a given set of disturbances, the

state-vector lies inside the RA at the moment the fault is cleared.

2.4.2 Voltage Regulation

Problem Formulation 2 (Voltage regulation). Voltage regulation is guaranteed when

the following conditions hold for the voltage Vs,j of each bus j ∈ B:

• Vs,j0 ∈ [V s,j, V s,j]

• Vs,j0 is asymptotically stable.

where V s,j = 0.95·V nom
s,j , V s,j = 1.05·V nom

s,j . The constant V nom
s,j denotes the nominal voltage.

From the above, we can conclude that the voltage regulation functionality is realized
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Figure 2.1: Generator/storage subsystem

when the voltage equilibrium Vs,j0 of each bus j meets the two requirements listed above.

2.5 MIMO Feedback Linearizing Controller

We consider the generator-storage set-up (as in Fig. 2.1) with a battery energy storage

system. For this set-up, the main contribution of this thesis is a novel nonlinear Multi-input

Multi-output (MIMO) coordinated control design that guarantees transient stability of the

generator and voltage regulation of the terminal bus [24].

Our proposed methodology can be outlined as follows. First, we begin with the state-

space model (2.1)-(2.3), (2.5), (2.6) and define an objective manifold, which, if tracked,

leads to provable transient stability and voltage regulation. Thereafter, we define an output

vector and a corresponding state-space transformation that recasts the state-space model

in a new form that possesses some desired properties. Specifically, the relevant variables

for accomplishing the main objectives, namely rotor angle, rotor acceleration and terminal

voltage appear as state-variables in this new state-space. Finally, for the generator and

storage system in this new form, we develop a MIMO feedback linearizing controller which

attains transient stability and voltage regulation by rendering desired equilibria for these

state-variables asymptotically stable. In particular, asymptotic stability of the rotor an-

gle and acceleration equilibria leads to transient stability, while asymptotic stability of the

terminal voltage equilibrium to voltage regulation.

29



2.5.1 State-space Model in Input-affine Form

The first step in our analysis is to bring the system (2.1)-(2.3), (2.5), (2.6) in the standard

state-space form. To do that, let xi, ηi be the state vector and the output vector of the

generator/storage subsystem i:

xi = [δi, ωi, , E
′

q,i, Idb,i, Iqb,i]
>, xi ∈ R5 (2.10)

ηi = [Ids,i, Iqs,i]
>, ηi ∈ R2 (2.11)

With these, the system (2.1)-(2.3), (2.5), (2.6) can be written in input-affine state-space

form as:

ẋi = fi(xi, ηi) + giui, (2.12)

fi : R5 × R2 7→ R5, gi ∈ R5×3
+ , ui ∈ R3

fi(xi, ηi) ,



ωs(ωi − ω0)

1
2Hi

(Pm,i − E
′
q,iIqs,i)

1

T
′
d0,i

(−E ′q,i + (X
′

d,i −Xd,i)Ids,i)

ωs(
−Rb,i
Lb,i

Idb,i + Iqb,i)

ωs(
−Rb,i
Lb,i

Iqb,i − Idb,i)



, gi ,



0 0 0

0 0 0

1

T
′
d0,i

0 0

0 ωs
Lb,i

0

0 0 ωs
Lb,i



, ui ,



Efd,i

uα,i − Vsd,i

uβ,i − Vsq,i



Recall that G, G̃ denote the sets of generator and generator/storage systems respectively.

By extending the expressions for the generator currents Ids,i, Iqs,i to accommodate the effect
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of the energy storage devices results to:

Ids,i =
∑
k∈G

[
GikE

′

q,k sin(δi − δk)−BikE
′

q,k cos(δi − δk)
]

+
∑
l∈G̃

[
GilE

′

q,l sin(δi − δl)−BilE
′

q,l cos(δi − δl)

−(Gr,ilIdb,l −Br,ilIqb,l) sin(δi) + (Br,ilIdb,l +Gr,ilIqb,l) cos(δi)︸ ︷︷ ︸
effect of energy storage l on generator i

]
(2.13)

Iqs,i =
∑
k∈G

[
GikE

′

q,k cos(δi − δk) +BikE
′

q,k sin(δi − δk)
]

+
∑
l∈G̃

[
GilE

′

q,l cos(δi − δl) +BilE
′

q,l sin(δi − δl)

−(Gr,ilIdb,l −Br,ilIqb,l) cos(δi)− (Br,ilIdb,l +Gr,ilIqb,l) sin(δi)︸ ︷︷ ︸
effect of energy storage l on generator i

]
(2.14)

The terms Gik, Bik, Gil, Bil ∈ R denote the conductances and the susceptances of the

elements Ye,ik, Ye,il of the reduced admittance matrix Ye ∈ C(|G|+|G̃|)×(|G|+|G̃|) [5]. The terms

Gr,il, Br,il denote the conductance and the susceptance of the element Yr,il. The matrix Yr is

given as Yr = I(|G|+|G̃|) − Ye diag{ ·X ′d,i}, Yr ∈ C(|G|+|G̃|)×(|G|+|G̃|).

2.5.2 Control Objectives

The next task is to pose the main problem as a tracking control problem which involves

a target manifold that we wish to drive our state-variables xi to. We first define the tar-

get manifold by identifying the variables of interest for our problem. These are the rotor

angular speed of generator i, ωi, its angular acceleration ω̇i, and its terminal voltage Vs,i.

We assemble these variables into the vector yi = [ωi, ω̇i, Vs,i]
T , yi ∈ R3 (with equilibrium
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yi0 = [ω0, 0, Vs,i0]T ), and define the target manifold Oi as:

Oi := {xi ∈ R5 | yi = yi0, yi ∈ R3} (2.15)

We now analyze the state constraints to provide more insight on why tracking of the above

manifold realizes the control objectives. Consider the first constraint on Oi which imposes

ω̇i = 0 and the corresponding equation (2.2). From these two, it can be inferred that, on

Oi, Pm,i = Pe,i holds, which corresponds to the mechanical and electric power of generator

i being equal. Further, the second constraint ωi = ω0, mandates that generator i be in

synchrony with the grid on Oi, with its rotational speed being equal to the synchronous.

When the state-variables respect these two constraints, the transient stabilization objective

is realized. On the other hand, the last constraint, Vs,i = Vs,i0, imposes Vs,i to be at its

equilibrium on Oi, realizing the voltage regulation objective. Altogether, by driving the

states to the target manifold Oi the desired objectives can be accomplished. To this end, we

employ MIMO feedback linearization theory to design a nonlinear controller.

2.5.3 MIMO Feedback Linearization Theory

In this section, we review some theoretical results from Multi-Input Multi-Output (MIMO)

feedback linearization theory which form the basis for designing our proposed controller [25].

In doing that, we abuse the notation slightly and reuse some of the already defined indices

in a different context with sole purpose of being consistent with the reference [25]. First,

consider a MIMO system in the form:

ẋ = f(x) +
m∑
i=1

gi(x)ui x ∈ Rn (2.16)

y1 = h1(x)

...

32



ym = hm(x)

where f(x), g1(x), ..., gm(x) are vector fields in an open set of Rn. In a more compact form

the above system can be written as:

ẋ = f(x) + g(x)u (2.17)

y = h(x)

u = [u1, u2, ..., um]>, u ∈ Rm

y = [y1, y2, ..., ym]>, y ∈ Rm

Let the Lie Derivative of h along f be defined as:

Lfh(x) =
∂h

∂x
f(x) (2.18)

Then, according to [25], the above system has (vector) relative degree {r1, ..., rm} if the

following conditions are satisfied:

i. LgjL
k
fhi(x) = 0, for all 1 ≤ j ≤ m, k < ri − 1, 1 ≤ i ≤ m and ∀x in a neighborhood of

x0.

ii. the m×m matrix

A(x) =



Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)


(2.19)
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is nonsingular at x = x0.

The existence of an output y that meets the above two conditions is a necessary and sufficient

condition for the existence of a coordinate transformation and a state feedback (locally

around x0) that solve the State Space Exact Linearization Problem [25]. This is formally

stated through the next definition.

Lemma 2.1 ([25]). Suppose the matrix g(x0) has rank m. Then the State Space Exact

Linearization Problem is solvable if and only if there exist a neighborhood V of x0 and m-

real valued functions h1(x), h2(x), ..., hm(x) defined on V such that the system (2.17) has

some (vector) relative degree {r1, ..., rm} at x0 and r1 + r2 + ... + rm = n (dimension of the

state-space).

In this case the functions:

ξik(x) = Lk−1
f hi(x) for 1 ≤ k ≤ ri, 1 ≤ i ≤ m (2.20)

define a local transformation at x0. Next, we use these results to develop a novel MIMO

feedback linearizing controller for the generator-storage system.

2.5.4 Controller Design

We first introduce an output y for the system (2.1)-(2.3), (2.5), (2.6) that fulfills the

conditions i and ii. Then, we use this output to define a key state-space transformation

that recasts the initial state-space, (2.1)-(2.3), (2.5), (2.6) into a new form in which: 1)

the relevant variables for achieving transient stability and voltage regulation become state-

variables (the rotor angle, the rotor acceleration and the terminal voltage); 2) a coordinated

full-state MIMO feedback linearizing controller with no zero dynamics can be explicitly

designed. We propose the following output vector.

Proposition 2.1. The output yi = [∆δi, ∆Iqb,i, ∆Vs,i]
> solves the state-space exact lin-
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earization problem for the subsystem given by (2.1)-(2.3), (2.5), (2.6).

Proof. Note that the new state variables ∆δi, ∆Iqb,i, ∆Vs,i denote deviations from the

pre-fault equilibrium values. The first step is to show that the output yi achieves a vector

relative degree {r1,i, r2,i, r3,i}, where r1,i + r2,i + r3,i = 5. To show that, we differentiate each

output at least until one input appears:

...
∆δi = b1,i(x) + a11,i(x)Efd,i + a12,i(x)(uα,i − Vsd,i) + a13,i(x)(uβ,i − Vsq,i) (2.21a)

˙∆Iqb,i = b2,i(x) + a23,i(x)(uβ,i − Vsq,i) (2.21b)

˙∆Vs,i = b3,i(x) + a31,i(x)Efd,i + a32,i(x)(uα,i − Vsd,i) + a33,i(x)(uβ,i − Vsq,i) (2.21c)

where the matrices bi(x) ∈ R3 and Ai(x) ∈ R3×3 can be written as:

bi(x) =



b1,i(x)

b2,i(x)

b3,i(x)


, Ai(x) =



a11,i(x) a12,i(x) a13,i(x)

0 0 a23,i(x)

a31,i(x) a32,i(x) a33,i(x)


(2.22)

The full expressions of the functions b1,i(x), b2,i(x), b3,i(x), a11,i(x), a12,i(x), a13,i(x), a23,i(x),

a31,i(x), a32,i(x), a33,i(x) are given at the end of this chapter. From (2.22), observe that

the matrix Ai(x) is nonsingular in a neighborhood of x0 so that condition ii is fulfilled.

Further, we have that Lfi(∆δi) = ωs(ωi − ω0) and Lgi,zLfi(∆δi) = 0 with z := {1, 2, 3} and

gi,z being the z-(th) column of gi. We can show that the latter condition also holds for all

other elements of the output vector so that condition i is fulfilled as well. Altogether, we

can conclude that conditions i and ii are fulfilled and that the output yi achieves a vector

relative degree {r1,i, r2,i, r3,i} = {3, 1, 1}, where r1,i + r2,i + r3,i = 5. By invoking Lemma 1,

and because rank gi = 3 we can conclude that the State-Space Exact Linearization Problem
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for the subsystem i is solvable. �

Next, we use the output yi to define a state-space transformation. The new state-variables

can be obtained from yi as [25]:

ξ1,i = [∆δi, ∆ωi, ω̇i]
>, ξ1,i ∈ R3 (2.23)

ξ2,i = [∆Iqb,i], ξ2,i ∈ R (2.24)

ξ3,i = [∆Vs,i], ξ3,i ∈ R (2.25)

ξi = [ξ1,i, ξ2,i, ξ3,i]
>, ξi ∈ R5 (2.26)

Let vi = [v1,i, v2,i, v3,i]
T , vi ∈ R3 be the control inputs of the linearized system. Then,

equations (2.21a)-(2.21c) can be written as:

...
∆δi = v1,i (2.27a)

˙∆Iqb,i = v2,i (2.27b)

˙∆Vs,i = v3,i (2.27c)

By combining (2.21a)-(2.21c), (2.27a)-(2.27c), we can obtain the feedback linearizing input

vector in compact form as:

ui = A−1
i (x)

[
vi − bi(x)

]
(2.28)

Moreover, with a(·),i(x) , a(·),i, we analytically obtain each input ui as:

Efd,i =
(a12,ia23,ib3,i − a12,ia33,ib2,i

(a23,i(a11,ia32,i − a12,ia31,i))
+
a13,ia32,ib2,i − a23,ia32,ib1,i − a12,ia23,iv3,i

(a23,i(a11,ia32,i − a12,ia31,i))

+
a12,ia33,iv2,i − a13,ia32,iv2,i + a23,ia32,iv1,i)

(a23,i(a11,ia32,i − a12,ia31,i))
(2.29)
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uα,i =
−(a11,ia23,ib3,i − a11,ia33,ib2,i

(a23,i(a11,ia32,i − a12,ia31,i))
+
a13,ia31,ib2,i − a23,ia31,ib1,i − a11,ia23,iv3,i

(a23,i(a11,ia32,i − a12,ia31,i))

+
a11,ia33,iv2,i − a13,ia31,iv2,i + a23,ia31,iv1,i)

(a23,i(a11,ia32,i − a12,ia31,i))
+ Vsd,i (2.30)

uβ,i =
(v2,i − b2,i)

a23,i

+ Vsq,i (2.31)

The transformed closed-loop linearized subsystem i takes the Brunowsky canonical form:

ξ̇i = Āiξi + B̄ivi (2.32)

Āi=



0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, B̄i=



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


When full state feedback is available, the input vi can be expressed as:

v1,i = k1,i(∆δi) + k2,i(∆ωi) + k3,i(ω̇i)

v2,i = k4,i(∆Iqb,i)

v3,i = k5,i(∆Vs,i) (2.33)

The gains k1,i − k5,i can be chosen appropriately such that Āi is a Hurwitz matrix. When

that is true, the equilibrium point ξi0 = 05×1 of (2.32) becomes asymptotically stable [10]

and the initial state-vector xi is driven to a manifold Fi given below.

Fi := {xi ∈ R5 | ξi = 05 } (2.34)
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Further, notice that

Fi ⊆ Oi (2.35)

This implies that when Āi is Hurwitz the state-variables xi are asymptotically tracking the

objective manifold Oi and accomplishing the desired objectives.

2.6 Case Studies

1 2

3

Storage
Battery

Figure 2.2: 3-bus system

We illustrate the effectiveness of the proposed controller through numerical simulations

on the 3-bus power system shown in Fig. 2.2. At bus 2, an energy storage device is placed

with the storage and generator controlled according to (2.30), (2.31) and (2.29) respectively.

The following two scenarios are explored.

• Scenario 1: At t = 0s, the system is at equilibrium, when at t = 0.3s, a three-phase

short-circuit occurs at bus 3 and lasts 200 ms.

• Scenario 2: At t = 0s, the system is at equilibrium, when at t = 0.3s, a three-phase

short-circuit occurs at bus 3 and lasts 600 ms.
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The system response under these scenarios is depicted in Fig. (2.3), (2.4) below.

2.6.1 Assessment of the Numerical Simulations

From Fig. 2.3a, we observe that, during scenario 1, the rotor angle δ2 is regulated to its

equilibrium rapidly with a low-magnitude first swing and no oscillations, as in the case of

generators 1 and 3 (which are controlled through standard AVR controllers). It is important

for generators to exhibit low-magnitude first swings in their transient response since then it

would be more likely that they will retain their synchronism with the grid after the fault.

On the other hand, large-magnitude first swings very often lead to generators losing their

synchronism (first swing instability) [3]. From the rotor angle transient response we conclude

that under Scenario 1 the proposed controller ensures transient stabilization of generator

2. Moving to Fig. 2.3b, we observe that the terminal voltage of generator 2 is regulated to

its equilibrium rapidly without oscillations, verifying that the controller also ensures voltage

regulation of bus 2.

Under the most severe Scenario 2, generator 2 behaves again very well during transience.

More specifically, its rotor angle response is still very damped as depicted in Fig. 2.4a. In

contrast, the rotor angle responses of generators 1 and 3 are very oscillatory. In addition, the

voltage at bus 2 is regulated to its equilibrium immediately after the fault without overshoot

and oscillations (Fig.2.4b).

In summary, we conclude that the performance of the proposed controller is not com-

promised in the most severe fault with the controller effectively accomplishing the assigned

objectives in both scenarios.

2.6.2 Discussion on the Implementation of the Controller

In order to implement the proposed controller a nonlinear observer is required for re-

trieving the rotor angle, the rotor acceleration and the voltage E
′
q. The reason is that these

variables cannot be directly measured. Alternatively, we can compute some of these hard-to-
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Figure 2.3: System response under scenario 1
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Figure 2.4: System response under scenario 2
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measure variables through some other variables that can be measured easily. For instance,

acceleration can be computed from ∆Pe when that is available, since ω̇=∆Pe/H while E
′
q

can be computed from the currents Ids, Iqs and the voltage Vs when they are available. In

general, ∆Pe, Ids, Iqs, Vs can be easily measured and can be used in the above computations.

2.7 Conclusion

In this chapter, a coordinated nonlinear controller for a generator and an energy storage

device is developed. The controller is built upon MIMO Feedback Linearization theory [25]

and has two assigned control objectives, transient stabilization of the synchronous genera-

tor and voltage regulation of the generator/storage bus. The effectiveness of the proposed

controller is demonstrated through numerical simulations on a 3-bus system.

2.8 Appendix

Full Expressions of the Terms Involved in the Derivation of the Controller

b1,i = − 1

2Hi

(Iqs,i + E
′

q,i

∂Iqs,i
∂E

′
q,i

)
1

T
′
d0,i

(−E ′q,i + (X
′

d,i −Xd,i)Ids,i)−
1

2Hi

|G|+|G̃|∑
k=1, k 6=i

[E
′

q,i(
∂Iqs,i
∂E

′
q,k

Ė
′

q,k

+
∂Iqs,i
∂Idb,k

İdb,k +
∂Iqs,i
∂Iqb,k

İqb,k)]−
1

2Hi

|G|+|G̃|∑
k=1

[E
′

q,i

∂Iqs,i
∂δk

δ̇k]−
1

2Hi

E
′

q,i

∂Iqs,i
∂Idb,i

(−ωs
Rb,i

Lb,i
Idb,i + ωsIqb,i)

− 1

2Hi

E
′

q,i

∂Iqs,i
∂Iqb,i

(−ωs
Rb,i

Lb,i
Iqb,i − ωsIdb,i)

a11,i = − 1

2Hi

(Iqs,i + E
′

q,i

∂Iqs,i
∂E

′
q,i

)
1

T
′
d0,i

a12,i = − 1

2Hi

E
′

q,i

∂Iqs,i
∂Idb,i

ωs
Lb,i

a13,i = − 1

2Hi

E
′

q,i

∂Iqs,i
∂Iqb,i

ωs
Lb,i

b2,i = −ωs
Rb,i

Lb,i
Iqb,i − ωsIdb,i

a23,i =
ωs
Lb,i
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b3,i =
1

2
√

(E
′
q,i − Ids,iX

′
d,i)

2 + (Iqs,iX
′
d,i)

2

[
− 2X

′

d,i(E
′

q,i − Ids,iX
′

d,i)
[ |G|+|G̃|∑
k=1, k 6=i

(
∂Ids,i
∂E

′
q,k

Ė
′

q,k

+
∂Ids,i
∂δk

δ̇k +
∂Ids,i
∂Idb,k

İdb,k +
∂Ids,i
∂Iqb,k

İqb,k) +
∂Ids,i
∂δi

δ̇i

]
+ 2Iqs,iX

′

d,i

[ |G|+|G̃|∑
k=1, k 6=i

(
∂Iqs,i
∂E

′
q,k

Ė
′

q,k +
∂Iqs,i
∂δk

δ̇k

+
∂Iqs,i
∂Idb,k

İdb,k +
∂Iqs,i
∂Iqb,k

İqb,k) +
∂Iqs,i
∂δi

δ̇i

]
+
[
2(E

′

q,i − Ids,iX
′

d,i)(1−X
′

d,i

∂Ids,i
∂E

′
q,i

)

+ 2Iqs,iX
′

d,i

∂Iqs,i
∂E

′
q,i

] 1

T
′
d0,i

(−E ′q,i + (X
′

d,i −Xd,i)Ids,i) +
[
2(E

′

q,i − Ids,iX
′

d,i)(−X
′

d,i

∂Ids,i
∂Idb,i

)

+ 2Iqs,iX
′

d,i

∂Iqs,i
∂Idb,i

]
(−ωs

Rb,i

Lb,i
Idb,i + ωsIqb,i) +

[
2(E

′

q,i − Ids,iX
′

d,i)(−X
′

d,i

∂Ids,i
∂Iqb,i

)

a31,i =
[
2(E

′

q,i − Ids,iX
′

d,i)(1−X
′

d,i

∂Ids,i
∂E

′
q,i

) + 2Iqs,iX
′

d,i

∂Iqs,i
∂E

′
q,i

] 1

T
′
d0,i

a32,i =
[
2(E

′

q,i − Ids,iX
′

d,i)(−X
′

d,i

∂Ids,i
∂Idb,i

) + 2Iqs,iX
′

d,i

∂Iqs,i
∂Idb,i

] ωs
Lb,i

a33,i =
[
2(E

′

q,i − Ids,iX
′

d,i)(−X
′

d,i

∂Ids,i
∂Iqb,i

) + 2Iqs,iX
′

d,i

∂Iqs,i
∂Iqb,i

] ωs
Lb,i

∂Ids,i
∂E

′
q,k

= [Gik sin(δi − δk)−Bik cos(δi − δk)]

∂Iqs,i
∂E

′
q,k

= [Gik cos(δi − δk) +Bik sin(δi − δk)]

∂Ids,i
∂Idb,k

= [−Gr,ik sin(δi) +Br,ik cos(δi)]

∂Ids,i
∂Iqb,k

= [Br,ik sin(δi) +Gr,ik cos(δi)]

∂Iqs,i
∂Idb,k

= [−Gr,ik cos(δi)−Br,ik sin(δi)]

∂Iqs,i
∂Iqb,k

= [Br,ik cos(δi)−Gr,ik sin(δi)]

∂Ids,i
∂δi

=

|G|+|G̃|∑
k=1

[GikE
′

q,k cos(δi − δk) +BikE
′

q,k sin(δi − δk)− (Gr,ikIdb,k −Br,ikIqb,k) cos(δi)− (Br,ikIdb,k

+Gr,ikIqb,k) sin(δi)]

∂Ids,i
∂δk

= [−GikE
′

q,k cos(δi − δk)−BikE
′

q,k sin(δi − δk)]
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∂Iqs,i
∂δi

=

|G|+|G̃|∑
k=1

[−GikE
′

q,k sin(δi − δk) +BikE
′

q,k · cos(δi − δk) + (Gr,ikIdb,k −Br,ikIqb,k) sin(δi)

− (Br,ikIdb,k +Gr,ikIqb,k) cos(δi)]

∂Iqs,i
∂δk

= [GikE
′

q,k sin(δi − δk)−BikE
′

q,k cos(δi − δk)]
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Chapter 3

Nonlinear Control of a Wind

Generator with Integrated Storage

3.1 Introduction

As envisioned by a recent U.S. DOE study [1], by 2020, 10% of the annual U.S. electricity

demand is expected to be produced by WGs, offshore and onshore. Projecting more into

the future, the study envisions that by 2030, 20% of the U.S. electricity demand could be

produced from WGs, and by 2050, this percentage could even be 35%. Altogether, this

study reveals a trend of increased exploitation of WGs to generate renewable energy in the

U.S. Although in general this is highly desirable, on the downside, it renders the stability,

robustness and efficiency of power grids more dependent on the control methods used by

these WGs. This dependency and the actual impact of wind power on power systems has

not yet been quantified and completely understood. However, it is clear that designing more

sophisticated and advanced control schemes for state-of-the-art (SoA) WGs should be a high

priority task in this new power systems environment.

In the past decade, a new line of research was initiated, with the goal to assess the
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impact of integrated wind power on power systems stability. One of the related studies

concluded that, integrating numerous WGs in particular wind doubly-fed induction gener-

ators (DFIGs), can potentially either enhance or deteriorate power systems’ transient and

small-signal stability [26, 27]. Mainly, this can be attributed to the overall decrease of these

systems’ inertia caused by the integration of WGs. In other words, wind generators can

impact power systems in both beneficial or detrimental ways as pointed out in many of the

related studies.

With the actual impact of wind power on power systems being vague, the technical regula-

tions associated with the integration and operation of WGs evolved and became increasingly

demanding [28]. In particular, these regulations now mandate that WGs provide many capa-

bilities and ancillary services to power grids, ranging from voltage and frequency regulation

to the ability to withstand certain faults while staying connected to the grid [2, 28]. As a

reference, we list some of these capabilities below:

• Primary frequency regulation and inertial response to support grid’s frequency

• Reactive power control for voltage regulation

• Low Voltage Ride Through (LVRT) for avoiding disconnection during low-voltage con-

ditions

• Power output regulation

The reasoning that drove the changes and developments in the technical regulations is

the following. Integrated WGs are replacing synchronous generators (SGs) in the genera-

tion portfolio with the latter traditionally providing capabilities that contribute to a stable

and robust power systems operation. WGs can also contribute to this, when they provide

capabilities akin to the ones provided by the SGs. If that is the case, WGs counteract their

negative effects on the grid as well.

From a systems operation perspective, one of the main problems that WGs have to resolve
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in order to emulate SGs’ performance is to counterbalance wind intermittency and somehow

generate predictable power output [2]. DFIGs without storage can carry out this when they

operate in a deloaded mode, extracting less wind power than the maximum available possible

for given wind speed conditions[29]. On the other hand, DFIGs with integrated storage (SoA

WGs) can carry out this capability by harnessing their storage devices [16]. In fact, with

the integrated storage devices SoA WGs can, not only counterbalance wind intermittency

and regulate their power output, but further contribute to frequency regulation as well as

many other power systems functionalities. With such flexibility, this technology can become

advantageous in the operation of power systems with high wind power integration.

In this day and age, SoA WGs are under commercialization by General Electric with the

name brilliant wind DFIGs. Brilliant wind DFIGs are consisted of common wind DFIGs

with battery storage devices incorporated into their systems [7]. The development of this

technology is propelled by the ongoing stringent technical regulations associated with the

performance and operation of WGs. Thus, DFIGs with storage are able to comply with strict

technical regulations by offering many ancillary services to the grid through capabilities that

do not draw on the kinetic energy stored in their rotating shafts.

We envision that, DFIGs with energy storage devices, by possessing all of these appeal-

ing characteristics, they will be widely deployed in the future and be very valuable to power

systems operation particularly in high wind power integration settings. However, we rec-

ognize that this has to be preceded by the development of sophisticated control designs for

these WGs that will allow them to effectively and efficiently use their potential to provide

advanced services to the grid. These services have to contribute to the secure, efficient and

reliable power grid operations.

In this chapter, we make a contribution toward this direction. Our contribution is the

development of a decentralized nonlinear energy-based Control Lyapunov Function-based

(CLF) control design [30] which guarantees that a WG attains Maximum Power Point Track-
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ing (MPPT) and power output reference tracking by leveraging its storage device. In con-

clusion, the proposed control design aspires to enable the performance of WGs to emulate

that of SGs over a wide range of operating conditions.

3.2 Literature Review

We briefly review the literature on control of wind DFIGs with integrated storage devices.

Partly, this has been already presented in the introductory chapter. In [16], a PI controller for

the grid side converter (GSC) and a PI controller for the DC-DC converter were introduced,

which together enable a SoA WG to generate constant power output and enhanced voltage

response during faults. In similar spirit, in [17], a multi-mode control strategy for a SoA

WG was developed with aim to counterbalance the variability on the WG’s power output

and enhance its transient performance during faults. In [15], a two-layer centralized control

design for a group of SoA WGs in a WF was presented, that consists of a high-level wind

farm controller which issues the real power references for the individual SoA WGs and local

low-level controllers which realize them.

In the above literature, the design of the controllers rests on approximate linearization

methods which, because of the highly nonlinear rotor-speed and capacitor dynamics of the

SoA WG, lead to guaranteed performance only in a small operating region around the equi-

librium.

3.3 Wind Generator Modeling

In this section, the detailed model of a wind DFIG with integrated storage, which is

shown pictorially in Fig. 3.1, is presented. Further, the stochastic wind-speed model that is

extensively used throughout this thesis.

3.3.1 Rotor Voltages Dynamical Model

The rotor-voltages model originates from [5] and is restated here for completeness. It

captures the rotor-voltage dynamical equations via two first-order ordinary differential equa-
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Figure 3.1: Wind generator with integrated storage

tions (ODEs) in a d− q coordinate system. In this coordinate system, the d axis is aligned

with the terminal voltage while the q axis is orthogonal to the d axis. That facilitates de-

coupled real and reactive power control through the rotor-side converter (RSC). Let the set

of SoA WGs be denoted by G. The rotor voltages dynamical model, assuming instantaneous

stator voltage dynamics, is given by:

Ė
′

d,i =
1

T
′
0,i

[−E ′d,i + (Xs,i −X
′

s,i)Iqs,i + T
′

0,i(−ωs
Xm,i

Xr,i

Vqr,i + (ωs − ωr,i)E
′

q,i)], ∀i ∈ G (3.1a)

Ė
′

q,i =
1

T
′
0,i

[−E ′q,i − (Xs,i −X
′

s,i)Ids,i + T
′

0,i(ωs
Xm,i

Xr,i

Vdr,i − (ωs − ωr,i)E
′

d,i)], ∀i ∈ G (3.1b)

where state-variables E
′
q,i, E

′

d,i ∈ R are the internal rotor voltages or flux linkages in the d−q

coordinate system, and ωr,i the WG rotor-speed. The constant ωs is the synchronous speed

2π60 [ rad
s

] where the variables Vqr,i,Vdr,i ∈ R are the voltage components representing the

control inputs directly controlled by the RSC. Further, the variables Iqs,i, Ids,i ∈ R denote the

stator currents of the WG. In the above equations, T
′
0,i ∈ R++ is the transient open-circuit

time constant, X
′
s,i ∈ R++ the stator transient reactance, Xs,i ∈ R++ the stator reactance,

Xr,i ∈ R++ the rotor reactance, Xm,i ∈ R++ the mutual reactance between stator and rotor.

49



3.3.2 Rotor Speed Dynamical Model

The rotor speed dynamical model also comes from [5] and captures the dynamics of the

rotor speed ωr,i with an ODE as follows:

ω̇r,i =
ωs

2Hi

(Tm,i − Te,i) , ∀i ∈ G (3.2a)

where the mechanical and electrical torque are respectively given by:

Te,i =
E
′
q,iVs,i

X
′
s,i

, ∀i ∈ G (3.2b)

Tm,i ,
1

2

ρπR2
iωs

Sb,iωr,i
Cp(λi, θi)v

3
w,i , ∀i ∈ G (3.2c)

In the electrical torque equation, Vs,i represents the voltage whereas in the mechanical torque

equation, ρ ∈ R++ represents the air density [ kg
m3 ], Ri ∈ R++ the radius of the turbine,

vw,i ∈ R++ the wind speed [m
s

], Sb,i ∈ R++ the base power and Hi the combined inertia of

the turbine and the generator. Additionally, Cp,i ∈ R++ denotes the power coefficient that

depends on the tip-speed ratio λi ∈ R++ and the pitch angle θi ∈ R. Concretely, Cp,i can be

analytically expressed in terms of λi, θi as [5]:

Cp,i(λi, θi) , 0.22
[
116(

1

λi + 0.08θi
− 0.035

θ3
i + 1

)
]
· e
(
−12.5( 1

λi+0.08θi
− 0.035

θ3
i
+1

)

)
, ∀i ∈ G (3.3a)

where λi is given by:

λi ,
2ki
pi

ωr,iRi

vw,i
, ∀i ∈ G (3.4a)
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3.3.3 Grid-side Converter (GSC) Dynamical Model

The grid-side converter (GSC) model can be described by the dynamics of its current

output expressed in the d− q coordinate system [31] as:

dIdg,i
dt

= −ωs
(Rg,i

Lg,i

)
Idg,i+ωsIqg,i+ωs

(Vdg,i−Vs,i
Lg,i

)
, ∀i ∈ G (3.5)

dIqg,i
dt

= −ωs
(Rg,i

Lg,i

)
Iqg,i−ωsIdg,i+ωs

(Vqg,i
Lg,i

)
, ∀i ∈ G (3.6)

The state-variables Idg,i, Iqg,i represent the current output of the GSC in the d and q axis

respectively, whereas, Vdg,i, Vqg,i ∈ R are the controllable voltage inputs of the GSC [31]. The

constants Rg,i, Lg,i ∈ R+ represent the losses of the GSC. The power output of the GSC is:

Pg,i = Idg,iVs,i (3.7)

3.3.4 Interfacing Capacitor Dynamical Model

The dynamical model of the DC capacitor that interfaces the RSC and the GSC consists

of the dynamics of its DC voltage Vdc,i, described by:

Cdc,iVdc,iV̇dc,i = (Pr,i+Pst,i−Pg,i), i ∈ G (3.8)

where the state-variable Vdc,i denotes the DC voltage, and Cdc,i ∈ R the capacitance of the

capacitor. In addition, Pr,i and Pst,i are the RSC and storage power outputs, respectively.

The RSC power output can be expressed in terms of local variables and parameters as:

a) RSC power output

Pr,i = −
Vdr,iE

′
q,iXs,i

X
′
s,iXm,i

−Vqr,i
[(Xs,i−X

′
s,i)Vs,i

Xs,i

−E ′d,i
] Xs,i

X
′
s,iXm,i

(3.9)

51



In this thesis, the storage devices studied are supercapacitors due to their high efficiency

and rapid response capability. Their power output can be expressed as:

b) Storage power output

Pst,i = Vsc,i
(Vsc,i−usc,i)

Rsc,i

(3.10)

where Vsc,i ∈ R denotes its DC voltage and usc,i ∈ R its control input. This control input

represents the controllable, by the DC-DC converter (that interfaces the storage device and

the capacitor), voltage through which the real power flowing from the storage device into the

DC link can be regulated. By employing (3.9), (3.10), (3.7), equation (3.8) can be expanded

as:

V̇dc,i =
1

Cdc,iVdc,i
(−
Vdr,iE

′
q,iXs,i

X
′
s,iXm,i

−Vqr,i[
(Xs,i−X

′
s,i)Vs,i

Xs,i

−E ′d,i]
Xs,i

X
′
s,iXm,i︸ ︷︷ ︸

Pr,i

+Vsc,i
(Vsc,i−usc,i)

Rsc,i︸ ︷︷ ︸
Pst,i

− Idg,iVs,i︸ ︷︷ ︸
Pg,i

) (3.11)

3.3.5 Supercapacitor Energy Storage Dynamical Model

The dynamical model of a supercapacitor energy storage is:

Csc,iVsc,iV̇sc,i = Vsc,i
(usc,i−Vsc,i)

Rsc,i

, i ∈ G

where Vsc,i is the state-variable that denotes the DC voltage of the supercapacitor and

Csc,i, Rsc,i ∈ R are constants that denote the capacitance and resistance of the supercapacitor

respectively.
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3.3.6 Time-constants of the WG Model

The above dynamical models involve several state-variables that are associated with both

the mechanical and the electrical part of a SoA WG. To obtain some insight on the relevant

time-scales that characterize these dynamics, we order their time-constants in a decreasing

order.

Tmech[ωr,i]︸ ︷︷ ︸
slowest

> Trotor volt[E
′

q,i] > Tsupercap[Vsc,i] > Tcap[Vdc,i] > TGSC [Idg,i]︸ ︷︷ ︸
fastest

(3.12)

We underline that this ordering is valid for the specific parameters considered in this thesis.

3.3.7 Wind-speed Model

The wind speed model is from [32, 33]. In this model, the effective wind speed vw,i is

obtained as the superposition of two components:

vw,i , vm,i+vs,i (3.13)

The first component vm,i corresponds to the average wind speed which can be assumed

constant (at the turbulence time-scale), or slowly varying with the averaging usually being

performed over a 10-min time window [34]. This particular component can be modeled with

a Weibull distribution. The second component vs,i corresponds to the fast turbulence and can

be modeled as a zero average random process. In this thesis, we assume that the mean wind

speed vm,i is measured and therefore known. On the other hand, we take vs,i to be the output

of a nonlinear model which represents the spectrum of the point wind and the spectrum of

the area swept by the the rotor blades. For a specific frequency range, this nonlinear model

can be well-approximated by a second-order linear filter whose state-space realization varies
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Figure 3.2: Cp−λ characteristic under MPPT

with the mean wind speed vm,i. This state-space realization can be expressed as:


v̇s,i

v̈s,i

 =


0 1

− 1
p1,ip2,i

−p1,i+p2,i
p1,ip2,i



vs,i

v̇s,i

+


0

ki
p1,ip2,i

 e (3.14)

where the input driving the above dynamics e ∈ N (0, 1) is a white noise process. The terms

p1,i, p2,i, ki depend on the mean wind speed vm,i so that p1,i , p1,i(vm,i), p2,i , p2,i(vm,i),

ki , ki(vm,i) [32, 33].

3.4 Problem Formulation

In this section, we analytically formulate two main problems that we seek to solve for

the single-SoA-WG set-up. The first is provable maximum power extraction from the wind

during low wind-speed conditions and the second is power output regulation.

3.4.1 Maximum Power Point Tracking (MPPT)

The fundamental equation for a WG is the one that describes the mechanical power

extracted from the wind. This can be stated as:

Pm,i ,
1

2
ρCp,iAiv

3
w,i, ∀i ∈ G (3.15)

54



Now, for specified θ∗i , the relation between the power coefficient Cp,i and the tip-speed ratio λi

is captured by equation (3.3a) which can be plotted as shown in Fig. 3.2. When Cp,i attains

its maximum value Cp,i = maxλi{Cp,i(λi, θ∗i )}, the mechanical power of the WG becomes the

maximum possible for the particular wind speed conditions, i.e Pm,i = maxCp,i{Pm,i(Cp,i)} =

Pm,i(Cp,i). That can be seen from:

Pm,i ,
1

2
ρCp,iAiv

3
w,i, ∀i ∈ G (3.16)

A WG i that is operated such that Cp,i = Cp,i and Pm,i = Pm,i is said to be operated under

a Maximum Power Point Tracking (MPPT) strategy. We state this formally as follows.

Problem Formulation 3 (Maximum power point tracking (MPPT)). For given θ∗i ,

a WG is operated under a MPPT strategy, extracting maximum power from the wind, when

Cp,i(λi, θ
∗
i ) = Cp,i where

∂Cp,i
∂λi

(λi, θ
∗
i ) = 0.

MPPT can be achieved through control of the RSC. To see this, recall that λi depends

on ωr,i as shown in (3.4a). Thus, the RSC can regulate λi to λi by regulating the rotor speed

ωr,i to:

ωr,i =
λipivw,i
2kiRi

(3.17)

which depends on the wind speed conditions. The RSC regulates ωr,i through the following

mechanism. By controlling the voltage Vdr,i which adjusts the internal voltage E
′
q,i and

through that the electrical torque Te,i. The variations of the Te,i are translated into variations

of the generator speed ωr,i through the relation in (3.2a).

At this point, we emphasize that the rotor speed dynamics are highly nonlinear due to

the relation (3.3a). This motivates the nonlinear control design that we will introduce in

later sections.
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3.4.2 Power Output Regulation

The second control objective for the WG system is power output reference tracking. Let

the total power output of a WG i be given by:

Pt,i = Pg,i+Pe,i (3.18)

The above objective can be formally stated as follows.

Problem Formulation 4 (Power Output Regulation). Given a total power refer-

ence P ∗t,i, a WG i attains power reference tracking or i.e power output regulation, when

limt→∞ Pt,i = P ∗t,i.

In our analysis, we assume that Pe,i is known and corresponds to the electrical power of

the WG originating from the wind. Hence, we realize the power reference tracking control

objective through the GSCs by designing appropriate control for their voltage input Vdg,i.

In more detail, we properly design a control input Vdg,i that enables GSCs to regulate Idg,i

and ultimately Pg,i to (P ∗t,i−Pe,i).

3.5 Nonlinear Energy-Based Control

In this section, we analytically construct a novel nonlinear controller for a SoA WG. In

the first place, we assemble the individual models which we already introduced in a compact

standard state-space form. Subsequently, we use new energy state-variables to recast the

WG model in a new standard state-space form. We eventually define the control objectives

in this new model and construct Control Lyapunov Function (CLF)-based controllers to

achieve them.

3.5.1 State-Space Model of a DFIG With Integrated Storage

Altogether, the interdependent models in (3.1a), (3.1b), (3.2a), (3.5), (3.6), (3.8), (3.12)

constitute the model of a DFIG with a supercapacitor energy storage device. This can be
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expressed in compact state-space form as:

ẋi = fi(xi, yi, ui, di), i ∈ G (3.19)

where fi : R7×R3×R5×R 7→ R7 is the vector field:

fi :=



1

T
′
0,i

[−E ′d,i+(Xs,i−X
′
s,i)(Iqs,i)+T

′
0,i(−ωs

Xm,i
Xr,i

Vqr,i+(ωs−ωr,i)E
′
q,i)]

1

T
′
0,i

[−E ′q,i−(Xs,i−X
′
s,i)(Ids,i)+T

′
0,i(ωs

Xm,i
Xr,i

Vdr,i−(ωs−ωr,i)E
′

d,i)]

ωs
2Hi

(1
2

ρπR2
iωs

Sb,iωr,i
Cp(λi, θi)v

3
w,i−

E
′
q,iVs,i

X
′
s,i

)

1
Cdc,iVdc,i

(−Vdr,iE
′
q,iXs,i

X
′
s,iXm,i

−Vqr,i[
(Xs,i−X

′
s,i)Vs,i

Xs,i
−E ′d,i]

Xs,i

X
′
s,iXm,i

+Vsc,i
(Vsc,i−usc,i)

Rsc,i
−Idg,iVs,i)

−ωs
(
Rg,i
Lg,i

)
Idg,i+ωsIqg,i+ωs

(
Vdg,i−Vs,i

Lg,i

)
−ωs

(
Rg,i
Lg,i

)
Iqg,i−ωsIdg,i+ωs

(
Vqg,i
Lg,i

)
Vsc,i

(usc,i−Vsc,i)
Rsc,i



and

xi the WG state-vector:

xi = [E
′

d,i, E
′

q,i, ωr,i, Vdc,i, Idg,i, Iqg,i, Vsc,i]
>, xi ∈ R7 (3.20)

The control input vector ui consists of the RSC, storage and GSC controllable voltages:

ui = [u>RSC , u
>
stor, u

>
GSC ]>, ui ∈ R5 (3.21)

uRSC = [Vqr,i, Vdr,i]
>, uRSC ∈ R2 (3.22)

ustor = usc,i, ustor ∈ R (3.23)

uGSC = [Vdg,i, Vqg,i]
>, uGSC ∈ R2 (3.24)
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The subsystem (3.19) is interconnected with the rest of the system through the variables:

yi = [Ids,i, Iqs,i, Vs,i]
>, yi ∈ R3 (3.25)

where Ids,i, Iqs,i, Vs,i are the current output components and voltage of each WG respectively.

The wind-speed is treated as an exogenous input:

di = vw,i, di ∈ R (3.26)

3.5.2 Energy-based State-Space Model of a Wind DFIG

In this section, we introduce new energy state-variables which we use to recast the WG

model (3.19) in a new standard state-space form. The reason for performing such a trans-

formation are twofold. First, the main control objectives can be explicitly expressed as

reference tracking for these new energy state-variables. In general, most of the control ob-

jectives related to power systems operation can be very easily defined with the notions of

energy and power [35]. Second, the action of controllers on these physical quantities is more

intuitive. In summary, energy state-space modeling enables a more direct definition of the

control objectives and lends itself to a more intuitive control design. We now define the first

energy state-variable Eg,i as:

Eg,i =

∫ τ

0

(Pe,i+Pg,i−P ∗t,i)dτ, Eg,i ∈ R (3.27)

This variable represents an additional undesired accumulated disturbance energy that is

channeled from the WG i to the grid. Given a WG power reference P ∗t,i, its dynamics are:

Ėg,i = (
E
′
q,iVs,i

X
′
s,i

+Idg,iVs,i︸ ︷︷ ︸
WG Total Power Output

−P ∗t,i) (3.28)
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The second energy state-variable we consider here is the kinetic energy Ek,i of WG i::

Ek,i = Hiω
2
r,i, Ek,i ∈ R+ (3.29)

This kinetic energy (KE) is stored in the shaft of the WG which is rotating with speed ωr,i.

The dynamics of the KE can be described by:

Ėk,i = ωsωr,i(Tm,i−Te,i) (3.30)

The third state-variable that we employ is the energy stored in the interfacing capacitor.

This is denoted by the variable Edc,i and expressed as:

Edc,i =
1

2
Cdc,iV

2
dc,i, Edc,i ∈ R+ (3.31)

The dynamics of this energy state-variable can be represented as:

Ėdc,i = (Pr,i+Pst,i−Pg,i) (3.32)

To proceed, we restrict the domains of ωr,i and Vdc,i to lie in R+ so that the functions Ek,i

and Edc,i become bijections with inverses:

ωr,i =

√
Ek,i
Hi

, ωr,i ∈ R+ (3.33)

Vdc,i =

√
2Edc,i
Cdc,i

, Vdc,i ∈ R+ (3.34)

Finally, we augment the initial state-vector:

xi = [E
′

d,i, E
′

q,i, ωr,i, Vdc,i, Idg,i, Iqg,i, Vsc,i]
>, xi ∈ R7 (3.35)
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with the state-variable Eg,i and replace the state-variables ωr,i, Vdc,i with their corresponding

Ek,i, Edc,i. All these actions finally lead to the new state-vector :

x̃i = [E
′

d,i, E
′

q,i, Ek,i, Edc,i, Idg,i, Iqg,i, Vsc,i, Eg,i]
>, x̃i ∈ R8 (3.36)

The new transformed state-space model corresponding to the state-vector x̃i is:

˙̃xi = f̃i(x̃i, yi, ui, di) (3.37)

with the new vector field f̃i : R8×R3×R5×R 7→ R8 defined as:

f̃i :=



1

T
′
0,i

[−E ′d,i+(Xs,i−X
′
s,i)(Iqs,i)+T

′
0,i(−ωs

Xm,i
Xr,i

Vqr,i+(ωs−
√

Ek,i
Hi

)E
′
q,i)]

1

T
′
0,i

[−E ′q,i−(Xs,i−X
′
s,i)(Ids,i)+T

′
0,i(ωs

Xm,i
Xr,i

Vdr,i−(ωs−
√

Ek,i
Hi

)E
′

d,i)]

ωs

√
Ek,i
Hi

2Hi
(1

2

ρπR2
iωs

Sb,i

√
Ek,i
Hi

Cp(λi, θi)v
3
w,i−

E
′
q,iVs,i

X
′
s,i

)

(−Vdr,iE
′
q,iXs,i

X
′
s,iXm,i

−Vqr,i[
(Xs,i−X

′
s,i)Vs,i

Xs,i
−E ′d,i]

Xs,i

X
′
s,iXm,i

+Vsc,i
(Vsc,i−usc,i)

Rsc,i
−Idg,iVs,i)

−ωs
(
Rg,i
Lg,i

)
Idg,i+ωsIqg,i+ωs

(
Vdg,i−Vs,i

Lg,i

)
−ωs

(
Rg,i
Lg,i

)
Iqg,i−ωsIdg,i+ωs

(
Vqg,i
Lg,i

)
Vsc,i

(usc,i−Vsc,i)
Rsc,i

(
E
′
q,iVs,i

X
′
s,i

+Idg,iVs,i−P ∗t,i)



(3.38)

where yi, ui, di denote the interconnection vector, control input and exogenous disturbance

as already defined in (3.25), (3.21), (3.26), respectively.

60



3.5.3 Control Objectives

a) Maximum Power Point Tracking (MPPT)

In Section 3.4.1, we explained that MPPT can be attained when the rotor speed ωr,i is

tracking the reference ωr,i (3.17), equivalently when ωr,i is an asymptotically stable equi-

librium of (3.2a). By employing equation (3.29), we now translate this requirement into a

corresponding one for the kinetic energy Ek,i variable through the following claim.

Claim 1. For given θ∗i , WG i is operating under a MPPT strategy, extracting maximum

power from the wind, when its kinetic energy Ek,i is tracking Ek,i, which is explicitly given

by:

Ek,i = Hiω
2
r,i

(3.17)
=

Hiλ
2

i p
2
i v

2
w,i

4k2
iR

2
i

(3.39)

In other words, when Ek,i is an asymptotically stable equilibrium point of (3.30).

Proof. To prove this claim, it is sufficient to formally show that asymptotic stability of Ek,i

implies asymptotic stability of ωr,i. For this scope, we invoke the next theorem.

Theorem 3.1 ([10]). Let ẏ = f(y), where f : Rn 7→ Rn. Consider the change of variables

z = T (y), where T (0n) = 0n and T : Rn 7→ Rn is a diffeomorphism in the neighborhood of

the origin; that is, the inverse map T−1(·) exists, and both T (·) and T−1(·) are continuously

differentiable. The transformed system is ż = f̂(z). Then y = 0 is stable (asymptotically

stable) iff z = 0 is stable (asymptotically stable).

Practically, the above theorem states that, if we have two systems which are interrelated

through a sufficiently smooth transformation then, establishing stability (asymptotic stabil-

ity) of one of them is sufficient to infer stability (asymptotic stability) of the other. In our

case, we consider the mapping T : ωr,i 7→ Ek,i as T (ωr,i) = Hiω
2
r,i where T (ωr,i) = Ek,i. In

a neighborhood around ωr,i, the inverse map T −1(·) exists, and both T (·) and T −1(·) are
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continuously differentiable, i.e T is a diffeomorphism. From Theorem 3.1, we have that,

the equilibrium point ωr,i = ωr,i is asymptotically stable if and only if the equilibrium point

Ek,i = Ek,i is asymptotically stable. �

In brief, the above analysis reduced the problem of achieving MPPT, which is a standard

capability for a WG [16], into a nonlinear control design problem for the RSC with the

objective to guarantee asymptotic stability of the equilibrium point Ek,i = Ek,i.

b) Power Output Reference Tracking

The power output reference tracking is realized by regulating the power output of a WG

such that it asymptotically matches a prespecified reference. Equivalently, by regulating the

accumulated disturbance energy originating from the WG side to zero. The latter is formally

stated as follows.

Claim 2. WG i attains power output reference tracking and generates predictable power P ∗t,i

when Eg0,i = 0 is an asymptotically stable equilibrium of (3.28).

Proof. At the equilibrium of Eg,i it holds that Eg,i = Eg0,i and Ėg,i = 0. Further, that the

total power Pe,i+Pg,i matches the power reference P ∗t,i, i.e Pe,i+Pg,i = P ∗t,i. �

Intuitively, power output reference tracking is attained when all the disturbances that

contribute to fluctuations of the WG’s power output are counterbalanced. In our analysis,

these are quantified through the energy that they carry. This quantification enables posing

of the power output reference tracking problem as a control design problem for the GSC with

objective to guarantee asymptotic stability of the equilibrium point Eg,i = Eg0,i. Practically,

GSCs accomplish this objective by properly regulating their power outputs Pg,i through the

control input Vdg,i.

c) Power Balancing on The Interfacing Capacitor

The previous section focused on the GSC’s control objective, which is power output regula-

tion. The GSC can carry out this objective despite not being a generating source. In fact,
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the way the GSC carries out this objective is by drawing from the energy stored in the DC

capacitor that interfaces RSC and GSC. However, an insignificant amount of energy is stored

in this capacitor. On the other hand, we can use the energy stored in the supercapacitor to

replenish the energy stored in the interfacing capacitor. By performing that, we indirectly

supply the GSC with the required energy to attain its goal. Technically, we can achieve that

by eliminating any power imbalance at the capacitor, i.e by maintaining the energy stored

in the interfacing capacitor Edc,i at a specific equilibrium Edc0,i. The combined actions of

the DC-DC converter and the GSC facilitate energy/power flow from the storage through

the GSC and into the grid [16]. Consider an equilibrium value for the Edc,i as:

Edc0,i = 1
2
Cdc,iV

2
dc0,i

where Vdc0,i is the equilibrium of the DC voltage that corresponds to this particular energy

level. Formally, power balancing at the capacitor can be posed as the following control

problem.

Claim 3. At the interfacing capacitor, power balancing and regulation of the DC voltage Vdc,i

to Vdc0,i are jointly guaranteed when Edc,i is tracking Edc0,i, i.e when Edc0,i is an asymptotically

stable equilibrium of (3.32).

Proof. There two main arguments that need to be proved. The first is that, regulation of

the Edc,i to Edc0,i results to power balancing on the capacitor. This is easy to see by noticing

that, at the equilibrium, Edc,i = Edc0,i, which gives Ėdc,i = 0 and Pr,i+Pst,i−Pg,i = 0. Simply

put, the capacitor’s stored energy remains constant when the sum of powers at the capacitor

(with the right sign convention) equals zero, i.e there is power balancing at the capacitor.

The second argument is that asymptotic stability of Edc0,i implies asymptotic stability of

Vdc0,i. To prove it, we first define the mapping P : Vdc,i 7→ Edc,i as P(Vdc,i) = 1
2
Cdc,iV

2
dc,i,

where P(Vdc0,i) = Edc0,i. Notice that, in a neighborhood around the equilibrium Vdc0,i, the

inverse map P−1(·) exists, and both P(·) and P−1(·) are continuously differentiable, i.e P is
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a diffeomorphism. By invoking Theorem 3.1, we deduce that, the equilibrium Vdc,i = Vdc0,i

is asymptotically stable if and only if the equilibrium point Edc,i = Edc0,i is asymptotically

stable. This establishes that Vdc,i will converge toward its desired equilibrium Vdc0,i when

Edc,i converges toward its corresponding equilibrium Edc0,i. �

To put it simply, Claim 3 guarantees that regulation of the capacitor’s stored energy also

leads to regulation of its DC voltage as well as power balancing.

In the forthcoming analysis, we review the necessary theoretical basis for designing our

controllers.

3.5.4 Control Lyapunov Functions

Consider a nonlinear system:

ẋ = f(x, u), x ∈ D ⊆ Rn, u ∈ U ⊆ Rm (3.40)

where x, u are the state vector and the control input vector respectively. Consider now the

following definition.

Definition 3.1 ([36, 37, 38]). For the nonlinear dynamical system given by (3.40), a con-

tinuously differentiable positive-definite function V : D → R satisfying:

inf
u∈U

∂V

∂x
f(x, u) < 0, x ∈ D, x 6= 0n (3.41)

is called a Control Lyapunov Function (CLF).

Simply put, a CLF is a positive-definite function whose derivative along the trajectories

of the system can be rendered negative by an appropriate choice of the control input u i.e

a Lyapunov function. Note that, if there exists a CLF for the system (3.40), then there

also exists a feedback control law u which makes the equilibrium x = 0n of the closed-loop

nonlinear system (3.40) asymptotically stable. Conversely, if there exists a control law u
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that renders the equilibrium x = 0n asymptotically stable then, from standard converse

Lyapunov theorems, there also exists a continuously differentiable positive-definite function

V : D 7→ R satisfying (3.41) or, equivalently, there exists a CLF for the nonlinear system

(3.40). Thus, a nonlinear system in the form (3.40) is feedback asymptotically stabilizable

if and only if there exists a CLF satisfying (3.41). When D = Rn and u = Rm, x = 0n is

globally asymptotically stable if and only if V is radially unbounded which is equivalent to

V (x)→∞ as ‖x‖ → ∞.

Moreover, for nonlinear input affine systems of the form:

ẋ = f(x)+g(x)u, x ∈ D ⊆ Rn, u ∈ U ⊆ Rm (3.42)

where f : Rn 7→ R, f(0) = 0 and g : Rn → Rn×m we have the following theorem.

Theorem 3.2 ([36, 37, 38]). A continuously differentiable positive definite and radially un-

bounded function V : Rn 7→ R is a Control Lyapunov Function of (3.42) if and only if:

∂V

∂x
f(x) < 0, x ∈ R (3.43)

where R , {x ∈ Rn, x 6= 0n | ∂V∂x g(x) = 0}.

Therefore, the equilibrium x = 0n of a nonlinear system is globally feedback asymptoti-

cally stabilizable if and only if there exists a continuously differentiable positive definite and

radially unbounded function V : Rn 7→ R satisfying (3.43).

3.5.5 Controller Design

We now devise several Control Lyapunov Functions (CLFs) to construct control laws for

the RSC, GSC and storage (DC-DC converter) of a SoA WG. We present our results through

a series of theorems which state the nonlinear stabilizing control laws which guarantee global

asymptotic stability of the energy equilibria Ek,i, Eg0,i, Edc0,i.
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a) RSC Controller Design

The control objective of the RSC controller is to guarantee global asymptotic stability of

the kinetic energy equilibrium Ek,i given by (3.39). A particular RSC control law which can

attain that is provided in the next theorem. Let the following assumption to be true.

Assumption 1. During regulation of Ek,i to Ek,i, Ek,i is constant.

Recall that Ek,i is a function of the wind speed. Thus, the above assumption simply states

that the wind-speed is considered constant during the tracking process. This is a reasonable

assumption since, as we will verify through our numerical simulations, the tracking dynamics

evolve on a timescale of seconds while the fastest variations of the wind speed evolve on a

timescale of minutes.

Theorem 3.3. Under assumption 1, the equilibrium (Ek,i, E
′

q,i) of the closed-loop form of

the system described by (3.30), (3.1b) is globally asymptotically stable with the RSC control

law:

Vdr,i =
[
−k2,i(E

′

q,i−E
′

q,i)+
ωr,iωsVs,i
X
′
s,i

(Ek,i−Ek,i)+Ė
′

q,i−
1

T
′
0,i

(−(E
′

q,i+(Xs,i−X
′

s,i)Ids,i))

+(ωs−ωr,i)E
′

d,i

] Xr,i

Xm,iωs
, ∀i ∈ G (3.44)

where Ek,i is given by (3.39) and E
′

q,i by:

E
′

q,i = (
k1,i(Ek,i−Ek,i)+ωsωr,iTm,i

ωsωr,i
)
X
′
s,i

Vs,i
(3.45)

and Ė
′

q,i is the derivative of E
′

q,i.

Proof. The direct way to prove this theorem is by first, form the closed-loop system with

the control input in (3.44) and then, establish global asymptotic stability of its equilibrium

(Ek,i, E
′

q,i). Instead, here, we wish to provide more insight so we analytically design the
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controller that leads to asymptotic stability of (Ek,i, E
′

q,i). To carry out this, we leverage a

particular CLF.

Initially, consider a quadratic function Vk,i : R+ 7→ R+ with domain Dk,i = Dk,i\

{Ek,i}, Dk,i ⊆ R:

Vk,i =
1

2
(Ek,i−Ek,i)

2, Vk,i > 0, ∀Ek,i ∈ Dk,i (3.46)

Now, a proper control input Vdr,i will be the one which guarantees that:

V̇k,i < 0, ∀Ek,i ∈ Dk,i (3.47)

i.e that Vk,i is a CLF and an asymptotic stability certificate of Ek,i [37]. To construct

such a proper controller, we perform time-differentiation of (3.46) while taking into account

(3.2a). Since the actual control input Vdr,i does not appear in this derivative, we employ the

backstepping method [10] to derive its expression. The reason for resorting to this control

method is the particular structure of the nonlinear system, i.e the nonlinear system lends

itself to backstepping control design. Briefly, the basic idea behind backstepping is that, we

can recursively construct controllers for cascade systems by first treating some state-variables

as inputs; we call these virtual control inputs, and design stabilizing “control laws” for them.

Then, we can design control laws for the actual inputs so that these virtual control inputs

track their desired stabilizing “control laws”. In our particular case, we treat E
′
q,i as a virtual

control input. By defining the desired form of the electrical torque as:

T e,i =
k1,i(Ek,i−Ek,i)+ωsωr,iTm,i

ωsωr,i
(3.48)

and consider the relation:

Te,i =
Pe,i
ω0

=
(Vs,iE

′
q,i)

X
′
s,i

(3.49)

where ω0 = 1 is the per unit synchronous speed and Pe,i is stator’s electrical power output,
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we come up with the following virtual “control law”:

E
′

q,i = (
k1,i(Ek,i−Ek,i)+ωsωr,iTm,i

ωsωr,i
)
X
′
s,i

Vs,i
(3.50)

This is a stabilizing virtual control law since it leads to:

V̇k,i = −k1,i(Ek,i−Ek,i)
2 < 0, Ek,i ∈ Dk,i (3.51)

The last task is to ensure that E
′
q,i is tracking E

′

q,i asymptotically. To this end, we augment

Vk,i with the new variable ξi = (E
′
q,i−E

′

q,i) to obtain the candidate CLF Vξ,i : R+×R 7→ R+

as:

Vξ,i =
1

2
(Ek,i−Ek,i)

2+
1

2
ξ2
i , Vξ,i > 0, ∀(Ek,i, ξi) ∈ Dk,i×Dξ,i (3.52)

where Dξ,i = Dξ,i\{0}, Dξ,i ⊆ R. Before proceeding to the RSC control design, we state

the following Lemma.

Lemma 3.1. The function Vξ,i is a CLF for the system (3.30), (3.1b).

Proof. Time differentiation of Vξ,i with respect to time yields:

V̇ξ,i = (Ek,i−Ek,i)(Ėk,i−Ėk,i)+ξiξ̇i

Using (3.30), (3.1b) this equation can be further expanded to:

V̇ξ,i = (Ek,i−Ek,i)(ωsωr,i(Tm,i−Te,i))

+ξi

( 1

T
′
0,i

[−E ′q,i−(Xs,i−X
′

s,i)(Ids,i)+T
′

0,i(ωs
Xm,i

Xr,i

Vdr,i−(ωs−ωr,i)E
′

d,i)]−Ėq,i

)
(3.53)
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Taking the inf(·) of (3.53) finally yields:

inf V̇ξ,i =


−k1,i(Ek,i−Ek,i)

2, ξi = 0

−∞, ξi 6= 0

(3.54)

By invoking Theorem 3.2, we establish that Vξ,i is a CLF for the system (3.30), (3.1b) and

the equilibrium point (Ek,i, E
′

q,i) is feedback asymptotically stabilizable. �

Next, we proceed to contruct a control law Vdr,i that leads to:

V̇ξ,i < 0, ∀(Ek,i, ξi) ∈ Dk,i×Dξ,i (3.55)

Substituting equations (3.49), (3.50) into (3.53), and imposing the equation:

(
−ωsωr,iVs,i(Ek,i−Ek,i)

X
′
s,i

+ξ̇i) = −k2,iξi (3.56)

yields:

V̇ξ,i = −k1,i(Ek,i−Ek,i)
2−k2,iξ

2
i < 0, ∀(Ek,i, ξi) ∈ Dk,i×Dξ,i (3.57)

The full expression for ξ̇i can be obtained from (3.1b) and the derivative of (3.50) as:

ξ̇i = (Ė
′

q,i−Ė
′

q,i) (3.58)

where:

Ė
′

q,i =
(k1,iω

2
sω

2
r,i(Tm,i−Te,i)−k1,i(Ek,i−Ek,i)ωs

ω2
sω

2
r,i

)X ′s,i
Vs,i

+Ṫm,i
X
′
s,i

Vs,i
(3.59)
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and Ṫm,i given by:

Ṫm,i =
∂Tm,i
∂Cp,i

∂Cp,i
∂λi

∂λi
∂ωr,i

ω̇r,i+
∂Tm,i
∂ωr,i

ω̇r,i (3.60)

The additional terms involved in the above equation are analytically expressed as:

∂Tm,i
∂Cp,i

=
ρπR2

iωsv
3
w,i

2Sb,iωr,i
(3.61)

∂Cp,i
∂λi

= 0.22
[
116(
−1

λ2
i

)
]
·e
(
−12.5( 1

λi
−0.035)

)
(3.62)

+0.22
[
116(

1

λi
−0.035)

]
·e
(
−12.5( 1

λi
−0.035)

)
12.5

λ2
i

(3.63)

∂λi
∂ωr,i

=
2kiRi

pivw,i
(3.64)

∂Tm,i
∂ωr,i

=
1

2

ρπR2
iωs

Sb,i
Cp,iv

3
w,i

(−1

ω2
r,i

)
(3.65)

Lastly, by combining equations (3.56) and (3.1b) we derive the control input for the RSC as:

Vdr,i = [−k2,iξi+
ωr,iωsVs,i
X
′
s,i

(Ek,i−Ek,i)+Ė
′

q,i−
1

T
′
0,i

(−(E
′

q,i+(Xs,i−X
′

s,i)Ids,i))

+(ωs−ωr,i)E
′

d,i]
Xr,i

Xm,iωs
, ∀i ∈ G (3.66)

which is the one in (3.44). This control law establishes global asymptotic stability of (Ek,i, E
′

q,i)

as follows from equations (3.52), (3.57) and the fact that Vξ,i is radially unbounded. To be

precise, global exponential stability since V̇ξ,i ≤ −k12,iVξ,i, where k12,i = 2 min{k1,i, k2,i}. In

addition, exploiting Claim 1, we conclude that the control law in (3.66) guarantees MPPT. To

practically realize the controller in (3.66), the local variables Tm,i, Te,i, ωr,i, E
′

d,i, E
′
q,i, Vs,i, Ids,i

need to be available through measurements as depicted in Fig. 3.3. �

b) GSC Controller Design
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Figure 3.3: CLF-based RSC controller

The control objective of the GSC is to attain global asymptotic stability (GAS) of the

equilibrium Eg0,i = 0. A particular GSC control law which can do that is presented in the

next theorem.

Theorem 3.4. The equilibrium (Eg0,i, I
∗
dg,i) of the closed-loop form of the system (3.28),

(3.5) is globally asymptotically stable with the GSC control law:

Vdg,i = (−(Eg,i−Eg0,i)Vs,i−k4,i(Idg,i−I∗dg,i)+İ∗dg,i−(−ωs
Rg,i

Lg,i
Idg,i+ωsIqg,i))

Lg,i
ωs

+Vs,i, ∀i ∈ G

(3.67)

where I∗dg,i is given by:

I∗dg,i =
(−Pe,i+P ∗t,i−k3,i(Eg,i−Eg0,i)

Vs,i

)
(3.68)

and İ∗dg,i by the derivative of I∗dg,i.
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Proof. We follow the same steps as in the RSC control design, introducing first the candidate

CLF Vg,i : R 7→ R as:

Vg,i =
1

2
(Eg,i−Eg0,i)2, Vg,i > 0, ∀Eg,i ∈ Dg,i (3.69)

where Dg,i = Dg,i\{Eg0,i}, Dg,i ⊆ R. Now, the GSC controller has to guarantee that:

V̇g,i < 0, ∀Eg,i ∈ Dg,i (3.70)

in order for the equilibrium Eg0,i to be GAS. Subsequently, we perform time differentiation

of (3.69) and notice that, Vdg,i does not appear in the resulted expression. To proceed, we

treat Idg,i as a virtual control input and construct its control law I∗dg,i by taking into account

(3.28) as:

I∗dg,i =
(−Pe,i+P ∗t,i−k3,i(Eg,i−Eg0,i)

Vs,i

)
(3.71)

This virtual control law leads to:

V̇g,i = −k3,i(Eg,i−Eg0,i)2 < 0, ∀Eg,i ∈ Dg,i

Again, the structure of the above dynamics guide us to employ the backstepping control

method. In particular, it is left to compute a control law for the actual input Vdg,i which

will ensure that Idg,i is asymptotically tracking I∗dg,i. To do that, we augment Vg,i with the

variable zi = (Idg,i−I∗dg,i) to obtain the candidate CLF Vz,i : R×R 7→ R:

Vz,i =
1

2
(Eg,i−Eg0,i)2+

1

2
z2
i , Vz,i > 0, ∀(Eg,i, zi) ∈ Dg,i×Dz,i (3.72)

where Dz,i = Dz,i\{0}, Dz,i ⊆ R. The following Lemma can be stated for the CLF in (3.72).
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Lemma 3.2. The function Vz,i is a CLF for the system (3.28), (3.5).

Proof. The proof of this lemma is direct. Time-differentiating (3.72) yields:

V̇z,i = (Eg,i−Eg0,i)(Ėg,i−Ėg0,i)+ziżi

which, can be further expanded using the expressions (3.28), (4.1) as:

V̇z,i = (Eg,i−Eg0,i)(Pe,i+Pg,i−P ∗t,i)+zi
(
−(ωs

Rg,i

Lg,i
)Idg,i+ωsIqg,i+ωs(

Vdg,i−Vs,i
Lg,i

)−İ∗dg,i
)

(3.73)

Taking the inf(·) of (3.73) yields:

inf V̇z,i =


−k3,i(Eg,i−Eg0,i)2, zi = 0

−∞, zi 6= 0

(3.74)

Finally, by exploiting Theorem 3.2 it can be concluded that Vz,i is a CLF for the system

(3.28), (3.5) and that the equilibrium point (Eg0,i, I
∗
dg,i) is feedback asymptotically stabiliz-

able. �

An appropriate control law Vdg,i will be one which guarantees:

V̇z,i < 0, ∀(Eg,i, zi) ∈ Dg,i×Dz,i (3.75)

One such controller can be designed by imposing the equation:

Vs,i(Eg,i−Eg0,i)+żi = −k4,izi (3.76)
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such that it holds:

V̇z,i = −k3,i(Eg,i−Eg0,i)2−k4,iz
2
i < 0, ∀(Eg,i, zi) ∈ Dg,i×Dz,i (3.77)

We can obtain the expression of the term żi, involved in (3.76), from equations (3.5) and

(3.68) and by taking into account equations (3.28), (3.49) and (3.1b). Eventually, this term

is obtained as:

żi = (İdg,i−İ∗dg,i) (3.78)

where

İ∗dg,i =
(
−
Ė
′
q,iVs,i

X
′
s,i

−k3,iĖg,i

) 1

Vs,i

=
(
− 1

T
′
0,i

[−E ′q,i−(Xs,i−X
′

s,i)(Ids,i)+T
′

0,i(ωs
Xm,i

Xr,i

Vdr,i−(ωs−ωr,i)E
′

d,i)]
Vs,i
X
′
s,i

−k3,i(
E
′
q,iVs,i

X
′
s,i

+Idg,iVs,i−P ∗t,i)
) 1

Vs,i
(3.79)

We obtain the GSC control law by combining equations (3.76) and (3.5) as:

Vdg,i = (−(Eg,i−Eg0,i)Vs,i−k4,i(Idg,i−I∗dg,i)+İ∗dg,i−(−ωs
Rg,i

Lg,i
Idg,i+ωsIqg,i))

Lg,i
ωs

+Vs,i, ∀i ∈ G

(3.80)

which is the one in (4.87). This control law establishes global asymptotic stability of (Eg0,i, I
∗
dg,i)

or more precisely, global exponential stability since V̇z,i ≤ −k34,iVz,i, where k34,i = 2 min{k3,i, k4,i}.

This follows from (3.72), (3.77) and the fact that Vz,i is radially unbounded. Moreover,

Claim 2 enables us to conclude that the control law (3.80) guarantees power output ref-

erence tracking (predictable WG power output) or, i.e that zero accumulated disturbance
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Figure 3.4: CLF-based GSC controller

energy is flowing from the WG side to the grid. On the practical side, this GSC controller

can be implemented when the local variables Vs,i, Idg,i, Iqg,i, E
′
q,i, ωr,i, Ids,i, Vdr,i, E

′

d,i, Pe,i

are available as depicted in Fig. 3.4. �

c) Storage Controller Design

The aim of the controller for the DC-DC converter is to enable the storage to supply real

power required to the GSC so that the latter effectively attains power reference tracking.

As already explained, practically, the DC-DC converter can accomplish that when it can

balance out any power mismatch in the interfacing capacitor or equivalently when it can

cause the equilibrium of the stored energy Edc0,i to be globally asymptotically stable (GAS).

A particular control law of this type is presented in the next theorem.

Theorem 3.5. The equilibrium Edc0,i of the closed-loop form of the system (3.32) is globally
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asymptotically stable with the DC-DC converter control law:

usc,i = (Pg,i−Pr,i−k5,i(Edc,i−Edc0,i))
Rsc,i

Vsc,i
−Vsc,i, ∀i ∈ G (3.81)

Proof. To design the controller in (3.81), we start from a candidate CLF Vdc,i : R→ R:

Vdc,i =
1

2
(Edc,i−Edc0,i)2, Vdc,i > 0, ∀Edc,i ∈ Dc,i (3.82)

where Dc,i = Dc,i\{Edc0,i}, Dc,i ⊆ R and state the following lemma.

Lemma 3.3. The function Vdc,i is a CLF for the system (3.32).

Proof. To prove this lemma, we compute the derivative of (3.82) with respect to time as:

V̇dc,i = (Edc,i−Edc0,i)(Ėdc,i−Ėdc0,i)

By substituting equations (3.32) and (3.10) we further expand it as:

V̇dc,i = (Edc,i−Edc0,i)(Pr,i+Vsc,i(
usc,i−Vsc,i
Rsc,i

)−Pg,i) (3.83)

The inf(·) of (3.83) yields:

inf V̇dc,i = −∞, Edc,i 6= Edc0,i (3.84)

By applying Theorem 3.2, it can be concluded that Vdc,i is a CLF for the system (3.32) and

that Edc0,i is feedback asymptotically stabilizable. �

A control input usc,i will lead to asymptotic stability of Edc0,i when the inequality:

V̇dc,i < 0, ∀Edc,i ∈ Dc,i (3.85)
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holds along the trajectories of the closed-loop system. One way to realize that, is by designing

the controller so that an equation of the form:

Pr,i+Pst,i−Pg,i = −k5,i(Edc,i−Edc0,i) (3.86)

holds. That being the case, V̇dc,i becomes:

V̇dc,i = −k5,i(Edc,i−Edc0,i)2, V̇dc,i < 0, ∀Edc,i ∈ Dc,i (3.87)

Finally, by combining (3.10) with (3.86) we arrive at the storage control law:

usc,i = (Pg,i−Pr,i−k5,i(Edc,i−Edc0,i))
Rsc,i

Vsc,i
−Vsc,i ∀i ∈ G (3.88)

which is the one given in (3.81). This control law results to global asymptotic stability of

Edc0,i as follows from (3.82), (3.87) and the fact that Vdc,i is radially unbounded. In exact

terms, global exponential stability since V̇dc,i = −2k5,iVdc,i. Combining that with Claim 3,

we conclude that the storage control law given by (3.81) attains power balancing on the

interfacing capacitor. �

Implementation of this controller requires that the local variables Vdr,i, E
′
q,i, Vqr,i, Vs,i, E

′

d,i

Idg,i, Vdc,i, Vsc,i are available feedback signals as shown in Fig. 3.5.

3.6 Case Studies

The performance of the proposed controllers is demonstrated via numerical simulations

on the 3-bus power system depicted in Fig. 3.6. At bus 3 of this system, a DFIG with

integrated storage is placed as depicted in Fig. 3.1. Its RSC, GSC and DC-DC converters

are controlled according to the control laws (3.66), (3.80) and (3.88), respectively. The

simulations are conducted under the following scenarios.
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• Scenario 1: In the time interval t = 0−25s, step-wise variations in the average wind

speed take place, as shown in Fig. 3.7a.

• Scenario 2: In the time interval t = 0−20s, the mean wind speed is constant and

only the fast wind speed variations are present (turbulence), as shown in Fig. 3.8a.

• Scenario 3: In the time interval t = 0−15s, the power reference for the WG changes

in a step-wise manner as shown in Fig. 3.10a.

Below, the dynamic response of the WG under these scenarios is presented and analyzed.

3.6.1 Performance Evaluation

Under Scenario 1, the response of the WG’s rotor speed is depicted in Fig. 3.7b. It

can be observed that this response is very much alike and in complete synchrony with the

response of the wind speed since the rotor speed reference is proportional to the wind speed.

Therefore, the proposed controller enables the rotor speed to track the desired quasistatic

equilibrium rapidly and precisely, ensuring that the WG is operating under a MPPT strategy

during these mean wind speed variations. Technically, the controller carries out its objective,

i.e regulating the WG’s rotor speed to its equilibrium, by regulating the kinetic energy of

the WG to a corresponding equilibrium.

Under Scenario 2, observe that although the wind speed variations are rapid (turbulence)

(Fig. 3.8a), the power output of the WG remains constant. This is achieved by the controllers

of the GSC and DC-DC converter through power reference tracking (Fig. 3.8b). In particular,

the GSC adjusts the power output Pg to counterbalance wind intermittency as depicted in

Fig. 3.9 (green) while, the DC-DC converter continuously regulates the storage power output

Pst to meet the power demand of the GSC, as shown in Fig. 3.9 (blue). With the RSC power

Pr not significantly varying, the power outputs Pst and Pg manifest almost identical responses

as shown in Fig. 3.9. This verifies the effectiveness of the proposed control design logic.

Scenario 3 is characterized by rapid step variations of the WG’s power reference, as seen

79



in Fig. 3.10a. The objective for the WG’s controllers is power output tracking of this varying

reference using power from the storage device. Focusing on Fig. 3.10b, we observe that the

power output of the WG is closely tracking the reference with good dynamic performance,

e.g no oscillations, no overshoot. The GSC and DC-DC converters jointly accomplished that

via the following mechanism. The GSC continuously adjusts its power output, as shown

in Fig. 3.11 (green), in order to regulate the total power output of the WG to the desired

reference. Concurrently, the DC-DC converter rapidly adjusts its power output, as shown

in Fig. 3.11 (blue), to meet the GSC’s power demand. These actions can be realized by

observing that Pst and Pg manifest identical (neglecting the sign convention) dynamical

responses.

In summary, the proposed controllers effectively reached their objectives, MPPT and

power output reference tracking for a wide-range of operating conditions and under all the

studied scenarios.

3.7 Conclusion

In this chapter, we analytically designed nonlinear energy-based control laws for the RSC,

GSC and DC-DC converter of a DFIG with an integrated storage. The proposed controllers

can be leveraged by a WG to attain MPPT during low wind speed conditions and power

reference tracking using stored energy. Further, since they are nonlinear and derived based

on Control Lyapunov Functions (CLFs), their performance is guaranteed for a wide range

of operating conditions. Their performance is evaluated via numerical simulations under

critical scenarios on a proof-of-concept 3-bus system.
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Figure 3.7: Scenario 1 (a): Wind speed (vw) scenario (b): Rotor speed (ωr) with proposed controller
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Chapter 4

Distributed Control of Wind

Generators with Integrated Storage

4.1 Introduction

As already discussed, several studies elaborate on a worldwide tendency for integrating

large amounts of wind power into power systems today, with these integration levels chal-

lenging power systems’ stability, reliability and robustness [2]. At the same time, the current

regulations for the operation of WGs impose that WGs progressively provide multiple an-

cillary services to the grid through proper design of their controllers [2]. Some of these are

frequency regulation, inertial response, power output smoothing, Low Voltage Ride-Through

(LVRT) and voltage control [2]. Albeit all of these services contribute to the secure operation

of power systems, the most crucial is indisputably power output regulation.

In the previous Chapter, we introduced the gold standard on WG technology which is

considered to be the wind DFIG with an integrated energy storage. Further, we elaborated

on how, a WG of this type can provide predictable power output (at the component level1)

by harnessing the stored energy through a decentralized CLF energy-based control scheme.

1component refers to a single WG
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Notice that, a group of WGs of this type that adopt this proposed control method can ulti-

mately provide power output reference tracking at the WF level. WGs can accomplish this

particular objective more efficiently and effectively by employing other methods that enable

them to coordinate their actions. The reason for which decentralized control approaches

might not be the most efficient ones for WF power output regulation is the following. Ag-

gregating the power outputs of several WGs naturally reduces the temporal volatility that

is present on their individual power outputs so that, at the WF level, the variability on the

total wind power output becomes comparably much less than at the WG level [39]. Conse-

quently, the amount of total storage power that will be required to achieve WF total power

reference tracking by employing decentralized power output regulation of WGs will be the

highest one. On the other hand, a more efficient solution and, in general, one that will

lead to less amount of total storage power, will be the WGs to employ distributed control

methods which leverage coordination to attain WF power output reference tracking. In this

case, it is not necessary for the individual power outputs of the WGs to match particular

references.

Realizing WF power output regulation presumes knowledge of the following information:

the total power output, which can be measured locally, and the desired power reference, which

can be obtained by the system operator (SO). In particular, WGs with integrated storage

devices can reach this global objective by leveraging this information in the coordination

and control of their storage devices through limited communication. To achieve that, they

have to solve the following problem: given the total power and power reference, to compute

appropriate individual power set-points for their storage devices under dynamical conditions

and regulate their storage power outputs to these using coordination that is realized through

communication, i.e to coordinately dispatch and regulate their storage power outputs.

Currently, the proposed methods for dispatching and controlling storage devices of a

group of SoA WGs rest on centralized control. Concretely, local wind speed conditions
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prevalent at the location of the WGs as well as information about their stored energy,

are communicated to a centralized controller. Then, the centralized controller uses this

information to compute the available total wind power and the total storage power that is

needed to meet a particular total power reference and, eventually, to compute two power

set-points for each WG. The latter computation is carried out through some pre-specified

allocation rule. The first set-point corresponds to the mechanical power that each WG has

to extract from the wind while the second one to the power that its storage device has to

provide. Finally, these two power set-points are communicated to the WGs which employ

their local wind turbine and storage controllers to meet them.

In general, centralized control approaches carry several drawbacks that are too critical to

be ignored. To mention a few, they exhibit slow response and are not robust to single-point

failures, they demand high computational effort and extensive communication network [40].

In the case of WGs, the slow response can be a hurdle compromising a timely dispatch and

regulation of their power outputs when these have to be performed rapidly under highly

dynamic conditions to attain fast power balancing of supply and demand, e.g in low-inertia

microgrids.

In dispatching and controlling SoA WGs, the real challenge lies into enabling them to

compute both the power set-points for the wind turbine and storage device in a fast, robust

and computationally efficient manner. In particular, it is very important for SoA WGs to be

able to retrieve their power set-points fast since that, combined with the storage devices being

able to respond fast, can allow them to attain fast total power output regulation. In this

case, the range of services that can be provided by the WF will be much broader. In addition,

the power set-points of the WGs have to be retrieved in a robust and efficient fashion, so

that the WF total power output regulation is reliable and requires minimal computational

effort.

Recognizing that the above challenges can be effectively addressed through distributed
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control methods, in this chapter, a particular distributed control design is proposed. The

proposed control design solves the problem of WF power output regulation through dynamic

dispatch and control of the storage devices of a group of SoA WGs.

Our main contribution is a distributed control methodology for the grid-side converter

(GSC) and DC-DC converter that enables SoA WGs to regulate their total power to a

reference by self-organizing and controlling their storage devices in an equal sharing fashion.

In our context, self-organization and control of the storage devices in an equal sharing manner

refers to the storage devices continuously adjusting their power outputs while these remain

equal when the total power reference tracking is attained.

4.2 Related Work

The problem of WF power output regulation via dispatching and controlling a group of

SoA WGs has been only studied in [15] where a centralized control system is proposed. In

particular, a two-layer centralized constant power control system where, at the high-layer,

a wind farm supervisory controller combines information about the reference and available

wind power to generate the power set-points for both the wind turbine and the storage device

of each WG. In the low-layer, proportional integral (PI) controllers for the RSCs and the

DC-DC converters make sure that the power set-points are realized through regulation of

the respective power outputs.

To the best of our knowledge, distributed control methods for dealing with the above

problem have not been proposed in the literature. On the other hand, the centralized

approach in [15] inherits all the weaknesses of centralized control approaches which are

already discussed.

In our work, we develop a distributed control scheme that first allows, the GSCs to

coordinatively and dynamicallly regulate their power outputs using communication so that

WF power output regulation is attained and second, the DC-DC converters to dynamically
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self-organize and control the storage devices and ultimately supply the power demanded by

the GSCs. In contrast with centralized approaches, our control method allows dynamic and

distributed fast WF power output regulation.

4.3 Model of a Wind Generator With Storage

Here, SoA WGs are considered to have supercapacitor storage devices into their systems.

The dynamical models which are related to the control of these storage devices are the GSC

model and the supercapacitor model. Hence, we restate those next for completeness. Let

the set of SoA WGs be denoted by G , {1, ..., n} and each SoA WG be indexed by i such

that i ∈ G.

4.3.1 GSC Model

The GSC model can be represented by the current output dynamics expressed in a d−q

coordinate system as [31]:

dIdg,i
dt

= −ωs
(Rg,i

Lg,i

)
Idg,i+ωsIqg,i+ωs

(Vdg,i−Vs,i
Lg,i

)
, ∀i ∈ G (4.1)

dIqg,i
dt

= −ωs
(Rg,i

Lg,i

)
Iqg,i−ωsIdg,i+ωs

(Vqg,i
Lg,i

)
, ∀i ∈ G (4.2)

The constants Rg,i, Lg,i ∈ R+ represent the losses of the GSC whereas, Vs,i ∈ R represents

the terminal voltage of WG i. Moreover, Vdg,i, Vqg,i ∈ R represent the GSC-controlled voltage

inputs [31].

4.3.2 Supercapacitor Energy Storage Model

Today, General Electric (GE) incorporates batteries into DFIGs. To get a sense of their

relative size, the GE’s batteries for 2.5MW wind DFIGs have energy capacity of 50kWh.

That means they can provide 1/50 of the wind generator’s nominal power output for one

hour. Alternatively, in our work, we explore the application of supercapacitor storage devices

into DFIGs for the following reasons: a) they have high efficiency and b) they have rapid
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Figure 4.1: a) Physical topology b) Communication topology of the WF

response capability [23]. Their model can be stated as:

(Csc,iVsc,i)
dVsc,i
dt

= Vsc,i
(usc,i−Vsc,i)

Rsc,i

, ∀i ∈ G (4.3)

where usc,i ∈ R is the voltage controlled by the DC-DC converter whereas, Csc,i, Vsc,i, Rsc,i ∈

R+ are the capacitance, the DC voltage and the losses of the supercapacitor, respectively.

Throughout our analysis, the supercapacitors are assumed to be sufficiently charged and no

bounds are imposed on their DC voltages Vsc,i. The storage power output of each WG is

given by:

Pst,i = Vsc,i
(Vsc,i−usc,i)

Rsc,i

, ∀i ∈ G (4.4)

Realize that, this can be regulated by the DC-DC converter through the input usc,i.

4.4 Problem Formulation

Consider a WF with n SoA WGs incorporating supercapacitor energy storage devices that

receives a power reference Pd from a system operator (SO). This power reference corresponds

to the WF’s committed power output toward the SO and is the outcome of a wind forecasting
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method and an economic dispatch (ED) process.

Our main problem is formulated around a particular goal for the SoA WGs. This goal

is coordination of their storage devices for total WF power reference (Pd) tracking, i.e pre-

dictable WF power output, with equal contribution from each storage power to the power

mismatch required to meet the demand Pd, i.e fair load sharing. The reason for imposing

fair load sharing among WGs will be explained later.

Let the variables Pe,i, Pg,i, Pr,i and Pst,i denote respectively the electric power output of

the stator, the grid-side converter (GSC), the rotor-side converter (RSC) and the storage

device, as seen in Fig. 3.1. Now, the dynamics of the capacitor that interfaces the RSC and

the GSC (Fig. 3.1) can be stated as:

(Cdc,iVdc,i)
dVdc,i
dt

= (Pr,i+Pst,i−Pg,i), i ∈ G (4.5)

Observe that, when the storage is not generating any power, at the equilibrium, we have:

Pg,i = Pr,i, i ∈ G (4.6)

In this case, the total WF power output is approximately equal to the total mechanical

power available from the wind, i.e:

∑
i∈G

(Pe,i+Pr,i) ≈
∑
i∈G

Pm,i (4.7)

This total mechanical power
∑

i∈G Pm,i is highly variable because it depends on the wind

speed conditions. Accordingly, the total WF electrical power output is also highly variable

and in the scenario that the WF is requested to meet a particular power reference Pd, it
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might happen that: ∑
i∈G

(Pe,i+Pr,i) < Pd (4.8)

i.e the WF cannot meet system operator’s request. This is based on the following reason.

There is a significant time-delay between the moment the SO issues the scheduled power ref-

erence Pd until the moment that this is implemented by the WF. Precisely, this time-delay is

around 13 minutes according to [7]. This, combined with the wind-speed minute to minute

variability, might cause the WF to be not able to meet SO’s request and generate power that

matches the reference Pd. On the other hand, the WF can manage the wind variability and

time-delays and meet SO’s request even with the available wind power being inadequate,

when it is comprised of WGs with incorporated storage devices into their systems. Specif-

ically, given that the storage devices have sufficient stored energy, the WGs can meet the

reference Pd since: ∑
i∈G

(Pe,i+Pr,i+Pst,i) = Pd (4.9)

given that they have sufficient stored energy. In this case, each storage device generates

power so that, at the equilibrium of (4.5) we have:

Pst,i = (Pg,i−Pr,i), i ∈ G (4.10)

In total, the storage devices can provide additional or draw excess power so that the WF

power output regulation objective is realized. Mathematically, this can be described by the

following condition.

Condition 1 (Total storage power regulation).

∑
i∈G

Pst,i = Pd−
∑
i∈G

(Pe,i+Pr,i) (4.11)
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The available storage devices are utilized more efficiently when they are controlled to con-

tribute equally to the total storage power. This can be described by the following condition

on the storage power outputs.

Condition 2 (Fair load sharing among storage devices).

Pst,i = Pst,j , ∀i, j ∈ G (4.12)

With the desired conditions for the storage power outputs being fully defined, we now

state the following definition.

Definition 1. WF power output regulation with fair utilization of the storage devices is

attained when Conditions 1 and 2 are jointly met.

From this definition, it springs that SoA WGs can reach their goal by properly designing

their controllers so that asymptotically they fulfill Conditions 1 and 2. Given that, the main

problem can be formulated as:

Problem 1. Coordinate and control the energy storage devices of a group of SoA WGs in

a distributed way, to dynamically realize WF power output regulation with fair utilization of

the storage devices..

4.5 Proposed Methodology

We propose the next methodology for solving Problem 1, which is partitioned into five

main steps.

• Step 1: We pose Problem 1 as a twofold control problem, a constrained consensus

problem for the GSCs on the variable zi , (Pg,i−Pr,i), and a tracking problem for the

storage power outputs, i.e to ensure that limt→∞ Pst,i = zi, ∀i ∈ G.

• Step 2: We introduce a leader-follower consensus protocol that GSCs can incorporate
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into their control systems to distributively reach consensus on their zi’s and a desired

closed-loop form for the interfacing capacitor dynamics that the DC-DC converters can

attain to ensure storage power output regulation.

• Step 3: We perform time-scale separation analysis of the coupled consensus protocol

and closed-loop capacitor dynamics and derive conditions on the GSC and DC-DC

converter control gains under which three time-scales arise in these dynamics.

• Step 4: Given that the GSC’s and DC-DC converter’s control gains fulfill the Con-

ditions in Step 3, we first employ singular perturbation theory to conduct temporal

decomposition of the above dynamics. Then, we perform compositional stability anal-

ysis of the decomposed subsystems and prove conditional asymptotic stability of the

equilibrium of the full coupled consensus protocol and closed-loop capacitor system.

• Step 5: We design a distributed controller for the GSC and a decentralized controller

for the DC-DC converter which respectively guarantee that, the closed-loop dynamics

of zi are identical to the consensus protocol dynamics and the closed-loop dynamics of

the capacitor have the desired form defined in Step 2.

4.6 Constrained Consensus Among GSC-controlled Vari-

ables and Storage Power Output Regulation

In Section 4.4, the problem of WF power output regulation with fair load sharing of the

storage devices is formulated as a control problem for the storage devices with objective

their power outputs to meet Conditions 1 and 2. We realize that, instead of controlling

the storage power outputs such that Conditions 1 and 2 are fulfilled, we can, alternatively

control each storage power Pst,i so that equation Pst,i = (Pg,i−Pr,i) is satisfied and then map

Conditions 1 and 2 into the two conditions for the power difference (among GSC and RSC)

zi = (Pg,i−Pr,i) stated below.
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Condition 3 (Total power difference (zi) regulation).

∑
i∈G

zi =
(
Pd−

∑
i∈G

(Pei+Pri)
)

(4.13)

Condition 4 (Fair load sharing among the GSCs).

zi = zj, ∀i, j ∈ G (4.14)

With these conditions, the initial control problem can be transformed to two equivalent

control problems for the storage devices, one with objective for their GSCs to reach consensus

on the variable zi = (Pg,i−Pr,i) and one with objective for their DC-DC converters to regulate

the storage power outputs to their respective zi’s. These problems are stated as follows.

Problem 2 (Constrained Consensus Among GSCs). Coordinate and control the GSCs

so that the variables zi asymptotically reach consensus, i.e fulfill Condition 4, while respecting

the contraint given in Condition 3.

Problem 3 (Storage Power Output Regulation). Control the storage devices so that

their power outputs Pst,i’s are regulated to their respective zi’s, i.e limt→∞ Pst,i = zi, ∀i ∈ G.

4.7 Leader-Follower Consensus Protocol and Desired

Closed-loop Capacitor Dynamics

In this Section, we introduce a leader-follower consensus protocol that GSCs can adopt

into their control design to reach consensus on their zi’s while respecting the constraint (4.13),

i.e asymptotically fulfill the conditions given in Problem 2. Moreover, we introduce a desired

closed-loop form for the capacitor dynamics that the storage devices can realize (through

97



their DC-DC converters) to guarantee regulation of the storage power to the variable zi, i.e

asymptotically fulfill the condition provided in Problem 3.

4.7.1 Leader-Follower Consensus Protocol

The proposed leader-follower consensus protocol is stated below where, without loss of

generality WG l with l , 1 is assigned as the leader and the set of followers is denoted by

G , {2, ..., n}.

Consensus Protocol P1

Leader WG

dξh
dt

=
(
Pd−

∑
i∈G

(Pe,i+Pg,i)
)

ξh ∈ R (4.15a)

dzl
dt

= −kα,l(zl−ξh) , zl ∈ R, zl , z1 (4.15b)

WG i

dzi
dt

= −kα,i(zi−zi−1) , zi ∈ R, ∀i ∈ G (4.15c)

The state variables are the differences among the power outputs of the GSCs and RSCs

zi , (Pg,i−Pr,i) and an additional auxiliary variable of the leader ξh. The variable ξh is

the one that drives the protocol and guarantees regulation of the total WF power to the

reference Pd. Notice that, every WG is allowed to communicate with its two neighbors 2 as

depicted in Fig. 4.1b. Further, observe that, the consensus protocol dynamics are defined in

the continuous time-domain. Thus, to practically implement the protocol a communication

network with high bandwidth is required. Alternatively, this requirement can be relaxed by

defining the above dynamics in the discrete time-domain with sufficiently large time-step.

Nevertheless, the forthcoming analysis will be conducted in the continuous time-domain.

2Here, with neighbors we refer to the WGs that have direct physical connection with the particular WG.
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The execution of the protocol P1 can be conducted in the following way. The leader WG

obtains information about the total power reference Pd from the WF supervisory controller.

Combining this information with the global information
∑

i∈G(Pe,i+Pg,i), the leader WG

controls the dynamics of the state-variables z1 and ξh and continuously communicates z1 to

its neighbors. Synchronized with the leader, all followers control the dynamics of their state-

variables zi by exploiting information from their respective neighbors while they communicate

to them their zi’s. We underline that the information
∑

i∈G(Pe,i+Pg,i) can be retrieved by

the leader through indirect information passing from all WGs or can be physically measured.

4.7.2 Communication Topology

In this thesis, without loss of generality a row-connected communication topology is

studied. Nevertheless, we recognize that this communication network is the most fragile

in the sense that if one of the communication links is compromised then, the consensus

protocol will not be able to converge, i.e this communication network is not robust to single

point failures. In general, to have a sufficiently robust performance and fast convergence of

the consensus protocol, a communication network with redundant communication links is

required. Exploring more complicated communication networks and their interdependency

with the convergence rate and robustness of the consensus protocol lies beyond the scope of

the current work. However, we recognize that this is an interesting direction for future work.

4.7.3 Desired Closed-loop Capacitor Dynamics

Next, a desired closed-loop form for the interfacing capacitor dynamics is stated. Each

DC-DC converter can respectively shape its capacitor’s closed-loop dynamics so that they

have this form and the storage power output Pst,i tracks the variable zi. Foremost, let the

stored energy in the capacitor be:

Edc,i =
1

2
Cdc,iV

2
dc,i, ∀i ∈ G (4.16)
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We state the desired closed-loop form of the capacitor’s dynamics with respect to the variable

∆Edc,i = (Edc,i−Edc0,i) that denotes the deviation of energy around the equilibrium Edc0,i,

as:

d(∆Edc,i)

dt
= −k2,i(∆Edc,i), ∀i ∈ G (4.17)

On the other hand, the open-loop dynamics of the above equation are:

d(∆Edc,i)

dt
= (Pr,i+Pst,i−Pg,i), ∀i ∈ G (4.18)

When the closed-loop dynamics of the capacitor are identical to (4.17), the dynamical equa-

tion for the storage power xi = Pst,i can be obtained, by differentiating equations (4.17)

and(4.18) and letting them be equal, as:

dxi
dt

=
dzi
dt
−k2,i(xi−zi), ∀i ∈ G (4.19)

where (Pg,i−Pr,i) , zi is used. By substituting the term dzi/dt from (4.15c), this equation

can be further expanded to:

Storage power dynamics

dxi
dt

= −kα,i(zi−zi−1)−k2,i(xi−zi), ∀i ∈ G (4.20)

The consensus protocol dynamics in (4.15c) represent the desired closed-loop dynamics of

the variable zi and can be realized by the GSC while, the dynamics in (4.20), the desired

closed-loop dynamics of the storage power Pst,i, that can be realized by the DC-DC converter.

Altogether, the model comprised of the equations (4.15a), (4.15c) and (4.20) describes the
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main dynamical system that will be extensively studied throughout this chapter.

4.8 Time-scale Separation Analysis

The desired closed-loop dynamics of the GSC-controlled variable zi and the storage power

xi can be written more compactly in vector form as:

dξh
dt

=
(
Pd−

∑
i∈G

(Pe,i+Pg,i)
)

(4.21a)

dz

dt
= gz (4.21b)

dx

dt
= gx (4.21c)

where:

z = [z1, ..., zn]> ∈ Rn (4.22)

x = [x1, ..., xn]> ∈ Rn (4.23)

gz = [−kα,1(z1−ξh), ...,−kα,n(zn−zn−1)]>, gz ∈ Rn (4.24)

gx = gz−[k2,1(x1−z1), ...,−k2,n(xn−zn)]>, gx ∈ Rn (4.25)

The dynamics of the above system are characterized by three distinct time-scales, i.e they

possess a three time-scales property, when the gains kα,i, k2,i respect the conditions stated

in the next Lemma.

Lemma 4.1. The dynamics of the system (4.21a)-(4.21c) manifest three distinct time-scales

when kα,i � 1, k2,i � kα,i, ∀i ∈ G.

Proof. Without loss of generality we set:

kα,1 = ... = kα,i = ... = kα,n =
1

ε1

(4.26)
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k2,1 = ... = k2,i = ... = k2,n =
1

ε2

(4.27)

Further, we express equations (4.21b), (4.21c) in scalar form and divide them by kα,i. This

yields:

1

kα,i

dzi
dt

= −(zi−zi−1) , z0 = ξh, ∀i ∈ G (4.28)

1

kα,i

dxi
dt

= −(zi−zi−1)−k2,i

kα,i
(xi−zi) , ∀i ∈ G (4.29)

Multiplying both sides of (4.29) by (kα,i/k2,i) yields:

1

kα,i

dzi
dt

= −(zi−zi−1) , z0 = ξh, ∀i ∈ G (4.30)

1

k2,i

dxi
dt

= −kα,i
k2,i

(zi−zi−1)−(xi−zi) , ∀i ∈ G (4.31)

Finally, by substituting the gains from (4.26) and (4.27), the system (4.30) and (4.31) can

be transformed to:

ε1
dzi
dt

= −(zi−zi−1) , z0 = ξh, ∀i ∈ G (4.32)

ε2
dxi
dt

= −ε2

ε1

(zi−zi−1)−(xi−zi) , ∀i ∈ G (4.33)

Altogether, we finally obtain the system:

dξh
dt

=
(
Pd−

∑
i∈G

(Pe,i+Pg,i)
)

(4.34a)

ε1
dz

dt
= ḡz (4.34b)

ε2
dx

dt
= ḡx (4.34c)
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where the new vector fields are:

ḡz = gzε1, ḡx = gxε2 (4.35)

When ε1 � 1, ε2 � ε1, the form of this system is the standard singularly perturbed one with

three distinct time-scales t, τ = t/ε1, τ̃ = t/ε2 where ε2 � ε1. Subsequently, ξh is the slow

state-variable, z are the fast and x the very fast state-variables. �

Lemma 4.1 can be practically useful in the following way. The conditions involved in

the lemma can guide the choice of appropriate control gains for the GSCs (kα,i) and the

DC-DC converters (k2,i) that will grant three distinct time-scales in the dynamics of the

system (4.21a), (4.21b),(4.21c).

4.9 Stability Analysis

Given that the control gains of the GSCs and DC-DC converters meet the conditions

stated in Lemma 4.1, we employ singular perturbation theory to perform compositional

stability analysis of this system.

4.9.1 Equilibrium and Desired Properties

Taking into account that Pg,i , zi+Pr,i, we can state the model (4.21a)-(4.21c) as:

dξh
dt

=
(
Pd−

∑
i∈G

(Pe,i+Pr,i+zi)
)

(4.36a)

dz

dt
= gz (4.36b)

dx

dt
= gx (4.36c)

where the vectors fields gz, gx are given by (4.24), (4.25), respectively. Recall that, this

model represesents the coupled consensus protocol and storage power system. The equilib-
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rium of this system is:

ξh0 =

(
Pd−

∑
i∈G(Pe,i+Pr,i)

)
n

(4.37a)

z0 = ξh0·1n (4.37b)

x0 = ξh0·1n (4.37c)

We set the vector φ as the state-vector of the full system, concretely:

φ =



ξh

z

x


∈ R2n+1 (4.38)

It is convenient for the rest of our analysis to define a consensus subspace as [41]:

S , {φ ∈ R2n+1 | φ = β·12n+1 , β ∈ R} (4.39)

WF power output regulation with fair load-sharing among the storage devices is guaranteed

when the equilibrium φ0 of the full system (4.36a)-(4.36c) possesses the following properties.

Property 4.1. φ0 ∈ S.

Property 4.2. φ0 is asymptotically stable.

The system’s equilibrium readily has property 4.1, since φ0 = (ξh0·12n+1). It is left to

show that the system possesses property 4.2 as well. By defining the new shifted state-

variables:

ψh , (ξ−ξh0) (4.40)
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y , (z−ξh·1n), y = [y1, ..., yn]> ∈ Rn (4.41)

η , (x−z), η = [η1, ..., ηn]> ∈ Rn (4.42)

the system (4.36a)-(4.36c) is transformed to:

dψh
dt

= −nψh−
n∑
i=1

yi (4.43a)

ε1
dyi
dt

= −(yi−yi−1)−ε1
dψh
dt

, y0 , 0, ∀i ∈ G (4.43b)

ε2
dηi
dt

= −ηi, ∀i ∈ G (4.43c)

or more compactly in vector form:

dψh
dt

= −nψh−1>ny (4.44a)

ε1
dy

dt
= gy (4.44b)

ε2
dη

dt
= gη (4.44c)

where the vector fields are:

gy , [−y1, ...,−(yi−yi−1), ...,−(yn−yn−1)]>−ε1
dψh
dt
·1n (4.45)

gη , −η (4.46)
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We set the vector:

φ̄ =



ψh

y

η


∈ R2n+1 (4.47)

to denote the state-vector of the transformed system (4.44a)-(4.44c) with equilibrium:

φ̄0 = 02n+1 (4.48)

i.e the origin. The aim of the forthcoming analysis is to derive conditions under which φ̄0

is asymptotically stable. But first, realize that, in the transformed system, the consensus

protocol dynamics (4.44a), (4.44b) are decoupled from the storage power dynamics (4.44c).

This facilitates the stability analysis of these dynamics since by merely establishing stability

of (4.44a), (4.44b) and independently of (4.44c), is sufficient to infer stability of the full

system (4.44a)-(4.44c). In other words, if:

ỹ0 =


ψh0

y0

 = 0n+1, η0 = 0n (4.49)

are asymptotically stable equilibria of (4.44a), (4.44b) and (4.44c) respectively, then φ̄0 will

be asymptotically stable equilibrium of (4.44a)-(4.44c).

4.9.2 Stability of the Consensus Protocol Dynamics

We first study stability of the consensus protocol dynamics (4.44a)-(4.44b) that have a

standard singular perturbation form with two distinct time-scales, the slow one t and the
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fast one τ . The state-variable ψh is the slow one while the state-variables y the fast ones.

Stability of this system is established in the following way. Initially, we perform temporal

decomposition to obtain fast and slow decoupled subsystems and establish their asymptotic

stability. Then, these stability certificates for the decoupled systems are assembled into a

composite Lyapunov function which is employed to derive a condition under which asymp-

totic stability of the full consensus protocol system is guaranteed.

a) Stability of Fast-boundary Layer Subsystem

Here, we prove asymptotic stability of the equilibrium of the protocol’s decoupled fast sub-

system, y0 = 0n. This fast boundary-layer system can be obtained by approximating the

slow state-variable ψh in equation (4.43b) as constant, i.e dψh/dτ = 0:

Fast-boundary Layer Subsystem

dyi
dτ

= −(yi−yi−1), ∀i ∈ G (4.50)

where τ = t/ε1. Stability of this system is established through the following lemma.

Lemma 4.2. The equilibrium y0 = 0n of the fast boundary-layer system (4.50) is asymp-

totically stable.

Proof. The system (4.50) in matrix form can be written as:

dy

dτ
= Afy, Af ∈ Rn×n (4.51)

Af=



−1 0 · · · 0 0

...
. . .

...

0 0 · · · 1 −1


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We denote the eigenvalues of this matrix by λλλ = [λl, ..., λn]>. The matrix Af is lower

triangular so it holds that:

det(Af−λ·In×n) = (−1)n(λ+1)n (4.52)

and λλλ = −1n � 0. From this, we conclude that Af is Hurwitz. It also follows from Theorem

4.5 ([10]) that y0 is asymptotically stable. With this, we complete the proof. �

The stability property established above will be useful in proving asymptotic stability of

the full system (4.43a)-(4.43c). Therefore, a parameterized Lyapunov function that captures

this property and serves as a stability certificate of the fast boundary-layer system can be

defined as:

Vf = y>Py, Vf > 0, ∀y ∈ Dy (4.53)

where Dy = Dy\{0n}, Dy ⊂ Rn and P ∈ Rn×n is a positive definite matrix satisfying the

Lyapunov equation:

PAf+A>f P = −Q (4.54)

for a particular choice of Q � 0. Later on, we will use among others this parameterized Lya-

punov function Vf to derive a condition under which, asymptotic stability of y0 is guaranteed.

Thus, this condition will be expressed in terms of the elements of the matrix P.

b) Stability of Slow Reduced-order Subsystem

We will now establish asymptotic stability of ψh0, equilibrium of the protocol’s slow reduced-

order susbystem. Focusing on the slow time-scale t and approximating the fast state-variables

y with their quasisteady state values y = 0n, yields the slow reduced-order subsystem:
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Slow Reduced-order Subsystem

dψh
dt

= −nψh (4.55)

Stability of (4.55) is established through the following lemma.

Lemma 4.3. The equilibrium point ψh0 = 0 of the slow reduced system (4.55) is asymptoti-

cally stable.

Proof. A candidate Lyapunov function for the system (4.55) is:

Vh = ψ2
h, Vh > 0, ∀ψh ∈ Dψh (4.56)

where Dψh = Dψh\{0}, Dψh ⊆ R. The time-derivative of (4.56) along the trajectories of

(4.55) is:

V̇h = −2nψ2
h < 0, ∀ψh ∈ Dψh , n > 0 (4.57)

Applying Lyapunov’s stability theorem yields that ψh0 = 0 is asymptotically stable. �

With the stability properties of the decoupled subsystems established, we are now ready

to derive conditions under which asymptotic stability of ỹ0 is guaranteed.

c) Stability of the Full Consensus Protocol System

The stability properties of the fast boundary-layer and slow reduced-order subsystems just

established can be exploited through their respective Lyapunov functions Vf and Vh to derive

a condition for asymptotic stability of the equilibrium ỹ0 of the full consensus protocol system

(4.44a), (4.44b). In particular, we assemble the Lyapunov functions Vf and Vh through their

linear combination to form a composite Lyapunov function for the full system (4.44a)-(4.44c)
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as:

Vc =
1

2
y>Py+

ψ2
h

2
, Vc > 0, ∀(y, ψh) ∈ Dy×Dψh (4.58)

Without loss of generality the matrix P = [pji] is assumed to be symmetric, i.e P = P>.

The derivative of Vc can be analytically computed as:

dVc
dt

=
1

2
ẏ>Py+

1

2
y>Pẏ+ψhψ̇h

=
1

2
y>(

A>f P+PAf

ε1

)y+[−dψh
dt

>
Py+y>P

dψh
dt

]
1

2
+ψh(−nψh−

n∑
i=1

yi)

= −y>(
Q

2ε1

)y+[−dψh
dt

>
Py]−nψ2

h−ψh
n∑
i=1

yi (4.59)

where ẏ = dy
dt

and dψh
dt

= dψh
dt
·1n. Futher, the term [−dψh

dt

>
Py] can be expanded as:

[−dψh
dt

>
Py] = nψh+

n∑
i=1

(
yi

n∑
j=1

pji

)
+

n∑
i=1

(
y2
i

n∑
j=1

pij

)
+

n∑
i=1

n∑
j=1

yiyj

(pii+pjj+2pij
2

)
(4.60)

Defining the vector:

ỹ =


ψh

y

 ∈ Rn+1 (4.61)

facilitates expressing the equation (4.59) in the compact form:

dVc
dt

= ỹ> G ỹ (4.62)
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where the matrix G is given by:

G =


A B

B> C

 ∈ R(n+1)×(n+1) (4.63)

and the submatrices A ∈ R, B> ∈ Rn, C ∈ Rn×n by:

A = −n (4.64)

B =

[
−1

2
+n

2

n∑
j=1

pj1 · · · −1
2
+n

2

n∑
j=1

pjn

]
(4.65)

C =



− q11
2ε1

+
n∑
j=1

p1j · · · p11+pnn+2p1n
2

...
. . .

pnn+p11+2pn1
2

· · · − qnn
2ε1

+
n∑
j=1

pnj


(4.66)

Stability of ỹ0 is established through the following theorem.

Theorem 4.1. The equilibrium ỹ0 = 0n+1 of (4.44a) - (4.44b) is asymptotically stable when

ε1 < ε1 where, ε1 = min{ε1,i}i∈G and ε1,i is given by:

ε1,i =
qii

2
[ n∑
j=1

pij+
1
n
‖B‖2

2+
n∑
j=1

|− (pii+pjj+2pij)

2
− 1
n
‖B‖2

2|
]

and pij, qij are elements of the matrices P, Q respectively.

Proof. Asymptotic stability of ỹ0 follows from G ≺ 0 or −G � 0. In light of that, we focus

next on deriving a sufficient condition under which −G � 0. As we will show, this condition

will be reduced to be an upper bound on the parameter ε1. The Schur complement of −G
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is:

S = −C+B>A−1B (4.67)

with the corresponding Schur complement conditions being:

−G � 0⇔ S � 0 and−A � 0 (4.68)

Using this equivalence we will proceed to derive conditions which guarantee that S �

0,−A � 0 hold. The second inequality immediately holds as can be realized from −A =

n > 0. Hence, it is left to find a condition under which S � 0 holds. By expanding (4.67),

we obtain:

S = −C− 1

n
‖B‖2

2 (4.69)

where ‖·‖2 is the standard Euclidean norm. The matrix S can be written as:

S = [sij], sij = −cij−
1

n
‖B‖2

2 (4.70)

At this point, the following matrix property can be used: a Hermitian (symmetric) matrix

with all positive eigenvalues is positive definite. The matrix S is symmetric, i.e S = S>,

since C, P are symmetric. Therefore, it only left to find a condition which will guarantee

positivity of the eigenvalues of S. To this end, we employ the Gershgorin’s Circle Theorem

[42] which in our case gives that, the eigenvalues λi of S belong to the following set:

D =
⋃
i∈G

Di (4.71)
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where each subset Di is given by:

Di , {χ ∈ R : |χ−sii| ≤
n∑

j=1,j 6=i

|sij|}, ∀i ∈ G (4.72)

Since S is symmetric, the eigenvalues λ are real and therefore the above subsets lie on the

real axis. Further, S is positive definite when λ are also positive. To establish that, we find

conditions under which the sets Di become subsets of R+. In this direction, we start from

(4.72) and derive an upper and a lower bound for the eigenvalues χ ∈ Di corresponding to

each subset Di as:

sii−
n∑
j=1

|sij|︸ ︷︷ ︸
χ
i

≤ χ ≤ sii+
n∑
j=1

|sij|︸ ︷︷ ︸
χi

(4.73)

Then, to guarantee that χ > 0 holds, the inequality χ
i
> 0, ∀i ∈ G can be forced to hold.

That can be achieved by first noticing from (4.70) that the diagonal elements of the matrix

S (sii) depend explicitly on the parameter ε1. Then, from each inequality χ
i
> 0 an upper

bound on ε1, ε1,i, can be resulted. To compute this upper bound we start from the inequality:

χ
i
> 0⇔ sii−

n∑
j=1

|sij| > 0

and substitute sii and sij from (4.70), (4.65), (4.66) to obtain:

qii
2ε1

−
[ n∑
j=1

pij+
1

n
‖B‖2

2+
n∑
j=1

∣∣∣−(pii+pjj+2pij)

2
− 1

n
‖B‖2

2

∣∣∣] > 0
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Rearranging this inequality such that ε1 appears on the left side leads to:

ε1 <
qii

2
[ n∑
j=1

pij+
1
n
‖B‖2

2+
n∑
j=1

∣∣∣− (pii+pjj+2pij)

2
− 1
n
‖B‖2

2

∣∣∣]︸ ︷︷ ︸
ε1,i

The expression on the right side of this inequality corresponds to the upper limit on ε1 for the

particular subset Di. When the minimum of all these bounds ε1 = min{ε1,i}i∈G is respected,

i.e ε1 < ε1, it holds that D ⊂ R+ and ∀χ ∈ D ⇒ χ > 0, i.e. that the eigenvalues of S are

positive. Equivalently, that S is positive definite. From the Schur complement conditions, it

can be further concluded that −G ≺ 0 and that ỹ0 = 0n+1 is asymptotically stable. With

this, the proof is completed. �

The above bound provides a sufficient and not a necessary condition for asymptotic

stability of ỹ0 = 0n+1. Nonetheless, it can be used in choosing suitable GSC control gains

kα,i that will guarantee this stability property. This can be accomplished as follows. First, for

a particular positive definite diagonal matrix Q, a corresponding matrix P satisfying (4.54)

can be computed. Then by resorting to Theorem 4.1 a corresponding upper bound ε1 can

be explicitly computed. Eventually, a specific value for the gains kα,i can be chosen which

satisfies (1/kα,i) < ε1 and guarantees asymptotic stability of ỹ0 = 0n+1 through Theorem 4.1.

4.9.3 Stability of the Storage Power Dynamics

Having established stability of the consensus protocol dynamics (4.44a),(4.44b), we pro-

ceed to establish stability of the storage power dynamics:

ε2
dηi
dt

= −ηi, ∀i ∈ G (4.74)

via the next Lemma.

Lemma 4.4. The equilibrium η0 = 0n of the storage power dynamics (4.74) is asymptotically
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stable.

A candidate Lyapunov function for this system is the function:

Vη = ‖η‖2
2, Vη > 0, ∀η ∈ Dη (4.75)

where Dη = Dη\0n, Dη ⊆ Rn. Along the trajectories of the system (4.74), the derivative of

Vη is:

V̇η = − 2

ε2

‖η‖2
2, V̇η < 0, ∀η ∈ Dη (4.76)

Applying Lyapunov’s stability theorem results to Vη being a Lyapunov function and η0 = 0n

an asymptotically stable equilibrium point.

4.9.4 Stability of the Full Consensus Protocol & Storage System

The consensus protocol and storage power subsystems appear decoupled in the trans-

formed state-space (4.44a)-(4.44c). Here, this is leveraged by deploying the already estab-

lished stability properties for these subsystems to infer stability of the full system comprised

of the protocol and storage power dynamics through the next Theorem.

Theorem 4.2. The equilibrium φ̄0 = 02n+1 of the full consensus protocol and storage power

output system (4.44a)-(4.44c) is asymptotically stable for ε1 < ε1 where, ε1 is the upper

bound stated in Theorem 4.1.

Proof. Intuitively, a candidate Lyapunov function for the full system can be defined as:

Vfull = Vc+Vη, Vfull > 0, φ̄ ∈ Dφ̄ (4.77)
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where Dφ̄ = Dφ̄\{02n+1}, Dφ̄ ⊆ R2n+1. The time-derivative of Vfull is:

V̇full = V̇c+V̇η = ỹ>Gỹ− 2

ε2

‖η‖2
2 (4.78)

Recall that, G ≺ 0 when ε1 < ε1 (Theorem 4.1). such that:

V̇full < 0, ∀φ̄ ∈ Dφ̄, ∀ε1 < ε1 (4.79)

From Lyapunov’s stability theorem, it can be concluded that φ̄0 = 02n+1 is asymptotically

stable. This completes the proof. �

The intuition behind the above results is that stability of the coupled consensus protocol

and storage power output system is certified when the GSC gains (consensus protocol’s

gains) respect the inequality ε1 < ε1 (Theorem 4.1). That being the case, provable WF

power output regulation and asymptotic consensus on the variables z will be reached. On

the other hand, the role of the DC-DC converters is to shape the closed-loop storage power

dynamics such that they are identical to the dynamics in (4.20). When that is secured, the

storage power outputs x will be provably regulated to the consensus state-variables z, i.e

limt→∞ η = 0n ⇒ limt→∞ x = z, as long as the control gains k2,i are positive. This has the

implication that the variables x will also reach consensus through tracking of the variables

z. Albeit tracking will be attained as long as the gains k2,i are positive, ideally, high enough

gains k2,i should be chosen so that the storage power regulation occurs much faster than the

consensus on the variables z. In this case, consensus on the variables z will directly lead to

consensus on the variables x.

Corollary 4.1. When ε1 < ε1, the GSC-controlled power variables z will reach consensus on

the vector [
Pd−

∑n
i=1(Pe,i+Pr,i)

n
]·1n and the total WF power (

∑n
i=1 Pe,i+Pg,i) will be regulated to

Pd (WF power output regulation). Additionally, the storage power outputs x will also reach
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consensus on the vector [
Pd−

∑n
i=1(Pe,i+Pr,i)

n
]·1n (fair load-sharing among the storage devices).

Proof. It follows directly from Theorem 4.1 that z reach consensus on (ξh0·1n). Fulfillment

of the WF power output regulation objective can be realized by considering the total WF

power as:

PWF,tot =
n∑
i=1

(Pe,i+Pg,i)

=
n∑
i=1

(Pe,i+Pr,i+Pg,i−Pr,i︸ ︷︷ ︸
zi

)

=
n∑
i=1

(Pe,i+Pr,i+zi) (4.80)

Taking limits on both sides yields:

lim
t→∞

PWF,tot = lim
t→∞

n∑
i=1

(
Pe,i+Pr,i+n[

Pd−
∑n

i=1(Pe,i+Pr,i)

n
]
)

(4.81)

= Pd (WF power output regulation) (4.82)

Moreover, that the storage power outputs will also reach consensus follows directly from

Lemma 4.4 which certified that:

lim
t→∞

x = lim
t→∞

z

= (ξh0·1n) (Consensus among storage power outputs) (4.83)

Equivalently, that fair load-sharing among the storage devices will be reached. �

4.10 Design of the Controllers

We now proceed to design the controllers for the GSC and the DC-DC converter which

respectively realize the closed-loop consensus protocol and storage power output dynamics.
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4.10.1 Design of the GSC Controller

The control objective of the GSC is to shape the physical closed-loop dynamics of zi so

that they are identical to the consensus protocol dynamics żi. These physical dynamics can

be derived as:

żi = (Ṗg,i−Ṗr,i), ∀i ∈ G (4.84)

where Pg,i is the power output of the GSC:

Pg,i = Idg,iVs,i, ∀i ∈ G (4.85)

Now, let the following assumptions to be true.

Assumption 2. dPr,i/dt = 0, dVs,i/dt = 0, ∀i ∈ G.

Intuitively, these assumptions can be justified by the fact that the power output of the

RSC (Pr,i) and the terminal voltage (Vs,i) vary in a much slower time-scale than that of

the żi dynamics. Thus, they can be considered as being constant in the time-scale of the żi

dynamics. By deploying equation (4.85) and under these assumptions, equation (4.84) can

be expanded as:

żi = Vs,i

[
−ωs

(Rg,i

Lg,i

)
Idg,i+ωsIqg,i+ωs

(Vdg,i−Vs,i
Lg,i

)]
, ∀i ∈ G (4.86)

The control input of the GSC is represented by the term Vdg,i. Lastly, the closed-loop

physical dynamics of zi match the consensus protocol dynamics (4.15c) with the distributed

GSC control law :

Vdg,i =
(−kα,i(zi−zi−1)

Vs,i
+ωs

(Rg,i

Lg,i

)
Idg,i−ωsIqg,i

)Lg,i
ωs

+Vs,i
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∀i ∈ G and where z0 , ξh. This controller is pictorially represented in Fig 4.2.

4.10.2 Design of the Storage Controller

The control objective of the DC-DC converter is to shape the physical closed-loop dy-

namics of the interfacing capacitor to the ones given by equation (4.17). Next, we provide

more insight on the particular choice of the closed-loop capacitor dynamics by showing how

these can be analytically derived from a CLF to lead asymptotic stability of ∆Edc,i. First,

consider the related candidate CLF function Vdc,i : R 7→ R as:

Vdc,i =
1

2
∆E2

dc,i, ∀i ∈ G (4.87)

and the corresponding lemma.

Lemma 4.5. Vdc,i is a CLF for the system (4.18).

Proof. The derivative of Vdc,i can be computed as:

V̇dc,i = ∆Edc,i(Pr,i−Pg,i+
(usc,i−Vsc,i)Vsc,i

Rsc,i

) (4.88)

Taking the inf(·) on both sides of (4.88) and assuming that the DC voltage of the superca-

pacitor lies in a domain Vsc,i ∈ (0, V sc,i], yields:

inf V̇dc,i =


−∞, ∆Edc,i 6= 0

0, ∆Edc,i = 0

(4.89)

The bilateral relation (4.89) certifies that Vdc,i is a CLF and that there exists a control law

Vdg,i for the DC-DC converter that renders ∆Edc0,i = 0 asymptotically stable. �

A control law Vdg,i can be constructed by imposing the inequality:

V̇dc,i < 0, ∆Edc,i 6= 0, ∀i ∈ G (4.90)
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to hold along the dynamics of ∆Edc,i. This can be realized by enforcing a constraint on the

capacitor dynamics of the form:

(Pr,i+Pst,i−Pg,i) = −k2,i(∆Edc,i) (4.91)

Notice that, this constraint will lead to the desired closed-loop capacitor dynamics in (4.17)

which are chosen so that:

V̇dc,i = −k2,i∆E
2
dc,i < 0, ∀∆Edc,i 6= 0, ∀i ∈ G. (4.92)

i.e so that ∆Edc0,i = 0 becomes asymptotically stable. Finally, the control law for the DC-DC

converter can be derived from equation (4.91) as:

usc,i =
(
Pg,i−Pr,i−k2,i∆Edc0,i

)Rsc,i

Vsc,i
+Vsc,i, ∀i ∈ G (4.93)

This controller is depicted in Fig. 4.3.
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4.11 Case Studies

The theoretical results presented will now be numerically verified through simulations.

In particular, we evaluate the performance of the proposed controllers and corresponding

consensus protocol and closed-loop interfacing capacitor dynamics on solving the problem of

WF power output regulation with fair load-sharing of the storage power outputs. For this

purpose, a modified version of the IEEE 24-bus reliability test system is adopted where, at

bus 22, a WF comprised of 10 SoA WGs with supercapacitor energy storage devices is placed.

The physical and communication topologies are depicted in Fig. 4.1a, 4.1b. The GSCs and

DC-DC converters of the WGs are controlled according to the distributed control law (4.87)

and the CLF-based control law (4.93), respectively. The simulations are conducted under
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the following two critical scenarios.

Scenario 1: The WF power reference Pd varies in a step-wise manner as shown in

Fig. 4.4a.

Scenario 2: The WF power reference Pd is constant.

Observe from Fig. 4.4a that, the distributed controllers for the GSCs and the CLF-based

controllers for the storage controllers are able to attain WF power reference tracking with

good performance as the total WF power is rapidly and closely tracking the fast-varying

reference without exhibiting an overshoot.

Proceeding to Fig. 4.4b, we realize that the GSCs regulate their power outputs according

to the proposed protocol and in response to the reference changes causing in that way their

corresponding zi variables to dynamically respond. These variables manifest indistinguish-

able dynamical responses throughout their trajectories since, at any point on their trajectory

(Fig.4.4b) they rapidly reach consensus and converge to the variable ξh which is quasistatic.

In the slow time-scale, this variable converges to the equilibrium ξh0 (which depends on

Pd) driving the variables z to the equilibrium ξh0. Particularly, these slower dynamics are

depicted in Fig. 4.4b where the variables z and ξh are together driven to the quasistatic

equilibrium ξh0 while they already reached consensus between each other.

From Fig. 4.5a, it can be observed that the responses of the variables x are one-to-one

identical to the responses of the variables z while they are also indistinguishable between

them throughout their trajectories. This can be explained as follows. The CLF-based con-

trollers for the DC-DC converters regulate the storage power outputs x to their corresponding

z in order to continuously meet the power demands of the GSCs, needed to attain WF power

output regulation. Through that, the storage power outputs x eventually reach consensus

as well, carrying out in that way the fair load-sharing objective.

In Scenario 2, it can be observed from Fig. 4.6b that the total WF power output regu-

lation is also accomplished with good performance with the WF power output being almost
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constant. To accomplish that, both the GSC-controlled variables z and the storage power

outputs x are dynamically varying while reaching consensus at every point of their trajec-

tories as depicted in Fig. 4.7a and Fig. 4.7b, respectively. Therefore, the GSCs and the

DC-DC converters succeeded in regulating the WF power output with the storage devices

being deployed under a fair load-sharing regime.

In conclusion, the proposed distributed GSC controllers and CLF-based storage con-

trollers effectively carried out the WF power output regulation objective with fair utilization

of the storage devices by correspondingly realizing the closed-loop protocol and capacitor

dynamics.

4.12 Conclusion

In this Chapter, a distributed control design for SoA WGs with energy storage devices is

introduced. The proposed control design can be adopted by a group of SoA WGs to attain

WF power output regulaton by deploying their storage devices in a fair load-sharing man-

ner. It is built upon a consensus protocol and a desired form for the closed-loop capacitor

dynamics, realized by a distributed control law for the GSCs and a CLF-based control law

for the DC-DC converters. We combined singular perturbation and Lyapunov theories to

perform compositional stability analysis of the closed-loop dynamics and ultimately derive a

condition under which asymptotic stability of their equilibrium is guaranteed. Finally, both

the GSC’s distributed control law that realizes the protocol with peer-to-peer communica-

tion and the DC-DC converter’s control law that realizes the desired closed-loop capacitor

dynamics are analytically derived. The performance of the controllers and the validity of

the results are numerically tested and assessed via simulations on a modified version of the

IEEE 24-bus RTS system.
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Chapter 5

Distributed Torque Control of

Deloaded Wind Generators

5.1 Introduction

As already discussed in previous chapters, one of the most critical capabilities that wind

generators (WGs) are required to provide is predictable total power output at the wind

farm (WF) level. WGs can distributively attain this through total power output regulation

with limited communication among each other. In the previous chapter, we introduced a

distributed control methodology for a group of DFIGs with storage which exploit peer-to-

peer communication and harness their storage devices to attain total power output regulation

[18]. These WGs are considered to be the State-of-the-Art (SoA) WGs and are currently

under commercialization by General Electric (GE) [7]. However, nowadays, the majority of

WGs that are operating worldwide are wind DFIGs that lack any kind of storage device,

simply called wind DFIGs. Thus, it is also highly significant to develop distributed control

designs for this type of WGs to realize WF power output regulation.

DFIGs can regulate their power output to meet a total power reference, i.e provide
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predictable power, when they operate under the so called deloading strategy, extracting

wind power that is less than the maximum possible for specific wind speed conditions [29].

By operating in this mode, WGs retain some operating reserve and have the flexibility to

raise their power outputs on command. In fact, a group of DFIGs having this flexibility

can provide many services to the grid, directly related to real power control, e.g primary

frequency control, inertial response, secondary frequency regulation [43].

For a group of DFIGs operating under a deloading mode to attain WF power output

regulation, their individual power set-points have to be computed first. These power set-

points can be computed by combining the information about the total WF power reference

and the varying local wind speed conditions. Eventually, they have to be communicated to

the WGs. This process is known as dispatching of WGs.

The traditional approach for dispatching WGs is by employing centralized control schemes.

Centralized schemes presume that initially, local information, such as wind speed, is commu-

nicated to a central controller. Subsequently, the central controller deploys this information

and knowledge of the total WF power output reference to compute the individual power

set-points and transmit them to the WGs. Lastly, the local controller of each WG regulates

its power output to the referenced power given by the power set-point [15].

In general, centralized control approaches carry several drawbacks which can compromise

a timely, robust and efficient WG dispatching under highly dynamic conditions. Therefore,

the real challenge in dispatching DFIGs is to obtain their power set-points timely, robustly

and efficiently: timely, since in the future, WGs will have to respond and control their

power output rapidly to maintain power balance between supply and demand, especially in

microgrid settings; robustly, such that the performance of a group of WGs is also reliable

and efficiently, such that the dispatching of WGs is cost-effective and can be realized in a fast

time-scale, particularly when the number of WGs that has to be dispatched is very large.

In this chapter we effectively tackle this challenge by solving the problem of dispatching
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and controlling a group of deloaded WGs according to a designated total WF power reference

and the local wind speed conditions, in a timely, robust and computationally efficient fashion.

Our main contribution is a distributed torque control scheme that can be adopted by

a group of deloaded DFIGs to provide total power output regulation, i.e predictable power

output, through dynamic adjustment of their power outputs in a fair load sharing manner.

With the term dynamic adjustment, we refer to WGs continuously self-organizing and reg-

ulating their power outputs by driving them to dynamic power set-points that depend on

the varying dynamical conditions. In particular, on the local wind-speed conditions and the

total power reference which here are assumed to be quasistatic. On the other hand, with

fair load sharing we refer to the WGs controlling their power outputs so that their loading

(or utilization) levels reach a common value in steady state. In our case, the loading level of

a WG is defined as the ratio of its mechanical power over its maximum mechanical power

[19].

5.2 Related Work

We review the literature concerned with the problem of distributed dispatch and control

of DFIGs, already discussed in the introduction of the thesis. This is summarized in the

references [13] and [14]. In [13], a multi agent systems-based (MAS) control strategy for

wind DFIGs in a microgrid is proposed. Each bus is assumed to have an agent which is

allowed to exchange a particular information pattern with its two neighbor agents, as defined

by two consensus protocols. In this way, each agent can retrieve the ratio defined by the

total demand over the total available wind power in a distributed fashion. Subsequently, this

information can be used by each DFIG to compute its set-point. A drawback of this method is

that it is not dynamic. In more detail, the set-points are computed and communicated to the

respective controllers at discrete time instants and not continuously, as the system conditions

vary. Since the process that is characterized by the WGs receiving and implementing their
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power set-points evolves in a slow time-scale, power output regulation will also evolve in

a slow time-scale. In settings where DFIGs are required to control their power outputs

rapidly under highly dynamical fast-varying conditions, e.g in microgrids, they may not be

able to respond timely with this control method. Reference [14] introduces a centralized

and a distributed controller for WGs operating in a deloaded mode. Both controllers aim

to regulate the set-points of the individual WGs such that the fatigue on wind turbines is

minimized and at the same time a total power demand is met. In this work, linear WG models

are considered therefore, regulation of the power set-points has performance guarantees close

to the operating point around which the linear model is valid. This significantly bounds the

operating region in which the power set-points can provably attain certain control objectives,

with this approach having no guarantees in cases where the power set-points have to vary

in a wide-range of operating conditions.

To the best of our knowledge, [13] and [14] are the only references that presented dis-

tributed methods for dispatching and controlling deloaded WGs according to a total power

demand. Since the rotor-speed and the capacitor dynamics of wind DFIGs are highly non-

linear, the controllers proposed in the above references can only provide a limited range of

capabilities.

In contrast with the control schemes proposed in [13] and [14], we introduce a distributed

nonlinear control design. The proposed design enables deloaded WGs to dynamically and

continuously self-dispatch and regulate their power outputs by tracking dynamic set-points

with guaranteed performance for a wide-range of operating conditions.

5.3 Wind Generator Model

In this Chapter, control of the rotor-side dynamics will be considered. Thus, the dynam-

ical models related to this part are restated next for completeness. These models are the

rotor-voltages dynamical model with the RSC control input and the rotor-speed dynamical
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model of each WG. The set of deloaded WGs is denoted by G , {1, ..., n} and each WG is

indexed by i so that i ∈ G. The rotor-side dynamics of the wind DFIG can be fully described

by three differential equations [5, 31].

5.3.1 Internal Rotor Voltages Dynamical Model

Two equations describe the dynamics of the rotor-voltage components, expressed as [5]:

Ė
′

d,i =
1

T
′
0,i

[
−(E

′

d,i−(Xs,i−X
′

s,i)Iqs,i)+T
′

0,i(−ωs
Xm,i

Xr,i

Vqr,i+(ωs−ωr,i)E
′

q,i)
]
, i ∈ G (5.1a)

Ė
′

q,i =
1

T
′
0,i

[
−(E

′

q,i+(Xs,i−X
′

s,i)Ids,i)+T
′

0,i(ωs
Xm,i

Xr,i

Vdr,i−(ωs−ωr,i)E
′

d,i)
]
, i ∈ G (5.1b)

The rotor-voltage dynamics are given in a d−q coordinate system where, d is the axis that

is aligned with the terminal voltage phasor vector and, q is the axis that is orthogonal to d.

5.3.2 Rotor Speed Dynamical Model

The third dynamical equation describes the rotor-speed dynamics and is given by:

ω̇r,i =
ωs

2Hi

(Tm,i−Te,i), i ∈ G (5.1c)

where the mechanical torque can be written analytically as:

Tm,i ,
1

2

ρπR2
iωs

Sb,iωr,i
Cp,i(λi, θi)v

3
w,i , i ∈ G (5.1d)

The power coefficient Cp,i can be expressed in terms of the pitch angle θi and tip-speed λi

as [5]:

Cp,i(λi, θi) , 0.22
[
116(

1

λi+0.08θi
−0.035

θ3
i+1

)
]
·e
(
−12.5( 1

λi+0.08θi
− 0.035

θ3
i
+1

)

)
, i ∈ G (5.1e)
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Further, the tip-speed can be written in terms of the rotor speed and wind speed as [5]:

λi ,
2ki
pi

ωr,iRi

vw,i
, i ∈ G (5.1f)

By focusing on the last three equations, it can be realized that the RSC can adjust the me-

chanical torque Tm,i by controlling the rotor speed ωr,i and through that the power coefficient

Cp,i.

5.3.3 Dynamical Models of Cp and Pm

At this point, it is critical to derive the dynamical models of the power coefficient Cp,i and

the mechanical power Pm,i and discuss their inderdependency. These constitute the main

models that will be studied throughout this chapter. In our analysis the pitch angle is not

considered controllable but constant and equal to zero. Given that, the dynamical model of

the variable Cp,i can be derived by applying the chain rule as:

dCp,i
dt

=
∂Cp,i
∂λi

∂λi
∂ωr,i

∂ωr,i
∂t

(5.2)

The individual terms involved in the above expression are given by:

∂Cp,i
∂λi

= 0.22
[
116(
−1

λ2
i

)
]
·e
(
−12.5( 1

λi
−0.035)

)
+0.22

[
116(

1

λi
−0.035)

]
·e
(
−12.5( 1

λi
−0.035)

)
12.5

λ2
i

(5.3)

∂λi
∂ωr,i

=
2kiRi

pivw,i
(5.4)

while the dynamics of the rotor speed ωr,i are given in (5.1c). By substituting the terms

(5.3), (5.4) and (5.1c) into the equation (5.2), we finally obtain the dynamics of Cp,i as:

dCp,i
dt

= 0.22
[
116(
−1

λ2
i

)
]
·e
(
−12.5( 1

λi
−0.035)

)
+0.22

[
116(

1

λi
−0.035)

]
·e
(
−12.5( 1

λi
−0.035)

)
12.5

λ2
i

·2kiRi

pivw,i

· ωs
2Hi

(1

2

ρπR2
iωs

Sb,iωr,i
v3
w,iCp,i−Te,i

)
(5.5)
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In the forthcoming analysis, Cp,i is going to be one of the state-variables whose physical

dynamics in (5.5) have to be shaped through appropriate control design. Alternatively,

the mechanical power Pm,i could be used as a state-variable where its dynamics can be

explicitly derived from the dynamics of Cp,i. To this end, the wind speed is considered to be

a slow-varying variable, i.e a quasistatic variable, such that the dynamics of Pm,i are driven

completely by the dynamics of Cp,i. This is substantiated by the fact that Cp,i can vary

much faster than the wind speed vw,i. Under this assumption, the dynamical equation of

Pm,i can be expressed as:

dPm,i
dt

=
1

2
ρAiv

3
w,i

dCp,i
dt

(5.6)

Utilizing (5.5), this can be further expanded as:

dPm,i
dt

=
1

2
ρAiv

3
w,i0.22

[
116(
−1

λ2
i

)
]
·e
(
−12.5( 1

λi
−0.035)

)
+0.22

[
116(

1

λi
−0.035)

]
·e
(
−12.5( 1

λi
−0.035)

)
12.5

λ2
i

·2kiRi

pivw,i
· ωs
2Hi

(
Pm,i
Sb,iωr,i

−Te,i) (5.7)

It is important to realize from (5.6) that, dPm,i/dt is linearly dependent on dCp,i/dt. Thus,

there is only one degree of freedom in controlling the dynamical equations dPm,i/dt and

dCp,i/dt, i.e only one of these equations can be independently altered. In our analysis,

equation dCp,i/dt is the one that is controlled.

Discussion about the air density ρ. In our analysis, the air density is assumed to be

constant while, in general, it can vary as a function of the humidity and the temperature.

This variation has to be taken into account when the mechanical power is computed and

not measured in a control loop since, otherwise it might challenge the performance of the

control design which we will present in later sections.
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Figure 5.1: Cp−λ characteristic under MPPT

5.4 Problem Formulation

5.4.1 WF Power Output Regulation via Dynamic Dispatching and

Control of WGs’ Power Outputs

Consider a wind farm with n wind generators. The mechanical power that each WG i

extracts from the wind is given by [5]:

Pm,i ,
1

2
ρCp,iAiv

3
w,i , ∀i ∈ G (5.8)

where Cp,i ∈ R+ is the power coefficient, ρ ∈ R++ the air density (kg/m3), vw,i ∈ R++ the

wind speed in (m/s) and Ai = πR2
i ∈ R++ the area swept by the blades with Ri ∈ R+

being the blade radius. Notice that, the only controllable variable in (5.8) is Cp,i, which can

be regulated by the WG through the rotor speed ωr,i. Under low wind speed conditions,

DFIGs usually operate under a Maximum Power Point Tracking (MPPT) strategy (Fig. 5.1)

which was analyzed in Section 3.4.1. Under this strategy, a wind DFIG is controlled so that
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Cp,i = Cp,i, where Cp,i = max
λi
{Cp,i(λi, θ∗i )} and Pm,i in (5.8) is respectively equal to:

Pm,i ,
1

2
ρCp,iAiv

3
w,i , ∀i ∈ G (5.9)

The term Cp,i is the maximum value of the power coefficient so it holds that Cp,i ∈ [0, Cp,i].

Here, we consider a group of WGs operating in a deloading mode with Cp,i < Cp,i, Pm,i <

Pm,i so that they are able to vary their power coefficients in this range. This operating mode

is depicted in Fig. 5.2. When WGs are operating under such regime, they can be controlled

through their RSCs to extract mechanical power Pm,i of any value in the set [0, Pm,i]. On the

other hand, the total power reference Pd for a WF originates from the system operator (SO)

and is the outcome of a wind forecasting and an economic dispatch (ED) process conducted

every several minutes. Further, it denotes the power that the WF is committed to supply

to the grid in a 5-minute time-window.

Here, a set-up that includes a single WF comprised of n deloaded WGs that obtains a

power reference Pd from the SO is considered. The reference satisfies Pd ≤
∑

i∈G Pm,i, i.e it is
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realizable and can be met by WGs, considering the current prevalent wind-speed conditions

at their locations. In fact, since deloaded WGs have more operational flexibility they can

meet any total power request Pd as long as Pd ∈ [0,
∑

i∈G Pm,i].

In our setting, the dispatch problem can be formulated as follows: given vw,i, ∀i ∈ G,

compute the set-points P ∗m,i ∈ [0, Pm,i], C∗p,i ∈ [0, Cp,i] such that
∑

i∈G P
∗
m,i = Pd. The

combination of set-points that can satisfy the above constraints is not unique since any

dispatching scenario (P ∗m,1, ..., P
∗
m,n) that respects the above conditions is realizable. Ideally,

the WGs should be dispatched in a more efficient way by requiring the set-points to also

satisfy (P ∗m,1/Pm,1) = ... = (P ∗m,n/Pm,n). A dispatch that satisfies this condition is known as

“fair dispatch” since WGs’ power outputs are proportional to their maximum values which

depend on the local wind speed conditions. This is equivalent to the WGs having the same

loading levels (fair load sharing). A fair dispatching scenario is shown pictorially in Fig. 5.3

[40]. The conditions that the power outputs of WGs have to meet in order to realize a fair

dispatching scenario are formally stated as follows.

Condition 5 (Total power output regulation).

∑
i∈G

P ∗m,i = Pd (5.10a)
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Condition 6 (Fair load sharing).

P ∗m,i

Pm,i

=
P ∗m,j

Pm,j

, ∀i, j ∈ G (5.10b)

Consider now the following definition.

Definition 5.1. Any dispatch of WGs’ power outputs, (P ∗m,1, ..., P
∗
m,n), that satisfies Condi-

tions 5, 6 is called a fair dispatch.

At this point, we proceed with the following remark.

Remark 1.
P ∗m,i

Pm,i

=
C∗p,i

Cp,i

, ∀i ∈ G (5.11)

The ratio (C∗p,i·C
−1

p,i ) corresponds to the utilization (or loading level) of each WG. Through

Remark 1, which is directly obtained by taking the ratio of (5.8) over (5.9), Condition 6 can

be transformed to the new and equivalent condition below that also realizes the fair load

sharing objective.

Condition 7 (Fair load sharing).

C∗p,i

Cp,i

=
C∗p,j

Cp,j

, ∀i, j ∈ G

Traditionally, the fair dispatching problem is solved in a centralized fashion where first

the WGs communicate their wind-speed measurements to a central WF controller which

then computes the power set-points for the individual WGs so that these meet the above

two conditions. Here, we aim to solve the fair dispatching problem in a distributed set-up,

formulated as follows.

Problem formulation (Total Power Output Regulation via Distributed Dynamic
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Dispatching and Regulation of WGs’ Power Outputs with Load Sharing). Develop

a distributed control design for the RSCs with limited communication that WGs can employ

to dynamically dispatch and regulate their power outputs so that these meet Conditions 5, 7.

A methodology for solving this particular problem is proposed next.

5.5 Proposed Methodology

We first formulate the above problem as a constrained consensus problem for WGs where

they have to agree on their loading levels while their total power is constrained to match

a reference. To accomplish these objectives in a distributed and coordinated fashion, we

propose a leader-follower consensus protocol that WGs can incorporate into their rotor-side

converter (RSC) control design. Then, we study the asymptotic behavior of the protocol

and establish certain stability properties as follows. We begin by employing singular pertur-

bation theory to perform temporal decomposition of the protocol dynamics. Subsequently,

we perform compositional stability analysis and establish, using Lyapunov-like arguments,

asymptotic stability of the equilibria of the corresponding fast and slow decoupled subsys-

tems. Thereafter, we assemble these stability certificates through a composite Lyapunov

function and derive conditions on the time-scale separation parameter, under which, asymp-

totic stability of the equilibrium of the full protocol dynamics is guaranteed. In the final part

of our stability analysis, we extend these results and establish, using a Lyapunov-Krasovskii

functional, that the stability property is time-delay-independent. To realize the protocol in

practice through peer-to-peer communication, we develop a distributed Control Lyapunov

Function-based (CLF) torque controller for the rotor-side power electronics (RSC) of WGs.

Practically, WGs that adopt this proposed control scheme can regulate their total power to

track a reference, while their individual power outputs are driven to values proportional to

their maximum power outputs available from the wind, with the proportionality coefficient

being equal to all of them.

In summary, the proposed control scheme: 1) can be adopted by WGs to dynamically
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self-dispatch and regulate their power outputs based on local wind-speed conditions and in

a distributed fashion, eliminating the need for a central wind farm controller that has to

gather information and carry out numerous computations; 2) requires limited peer-to-peer

communication among neighboring WGs; 3) enables WGs to dispatch and regulate their

power outputs timely which is critical when these have to be performed under fast-varying

dynamical wind and loading conditions to balance supply-demand, especially in autonomous

power systems such as microgrids; 4) leads to guaranteed stability and performance of the

associated dynamics.

5.6 Leader-Follower Consensus Protocol

The main problem can be solved by enabling WGs to distributively guarantee fulfillment

of Conditions 5 and 7. Equivalently, to guarantee that their utilization levels Cp,i/Cp,i reach

the same value while their total power tracks a reference Pd. This problem can be naturally

posed as a constrained consensus problem among WGs, where they have to reach consensus

on their utilization levels Cp,i/Cp,i, constrained by the total power they have to extract.

We propose the next leader-follower consensus protocol, that WGs can adopt in their RSC

control scheme to dynamically self-dispatch and control their power outputs for meeting

conditions 5, 7.

Consensus Protocol P2

Leader WG

dξh
dt

= (Pd−
∑
i∈G

Pm,i) ξh ∈ R (5.12a)

dzl
dt

= −kα,l(zl−ξh) , zl , z1 zl ∈ R (5.12b)

141



WG i

dzi
dt

= −kα,i(zi−zi−1) , i ∈ G zi ∈ R (5.12c)

In the above protocol, without loss of generality WG 1 is assigned as the leader, i.e l , 1,

and the set of followers is denoted by G , {2, ..., n}. The consensus protocol’s state-variables

are the utilization levels zl , Cp,l/Cp,l, zi , Cp,i/Cp,i and the auxiliary variable ξh of the

leader. Each WG is allowed to communicate with two other neighboring (physically) WGs,

as shown in Figure 5.6.

The protocol is executed through the following mechanism. The supervisory WF con-

troller attains a total power set-point Pd from the SO and communicates that to the leader

WG. Subsequently, the leader WG controls the dynamics of its state-variables zl and ξh, using

the reference Pd and information (retrieved distributively via indirect information passing)

from all WGs, and communicates only zl and żl to its neighbors. In synchrony with the

leader, all the followers control the dynamics of their state-variables zi, and communicate

their respective zi and żi to their neighbors. It should be underlined that execution of the

protocol P2 presumes that the leader is able to retrieve the information
∑

i∈G Pm,i.

5.7 Stability Analysis of the Consensus Protocol

In this section, we perform compositional stability analysis of the consensus protocol

dynamics and prove conditional asymptotic stability of its equilibrium. This proof is carried

out through the following steps. First, we show that the consensus protocol dynamics inherit

two distinct time-scales when the protocol gains kα,i meet certain conditions. Thereafter,

by employing singular perturbation theory we decompose the system P2 into fast and slow

subsystems, and prove asymptotic stability of their corresponding equilibria using separate

Lyapunov functions as stability certificates. Finally, we combine these stability certificates

to form a composite candidate Lyapunov function that we exploit to derive a condition under
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which, asymptotic stability of the full system’s P2 equilibrium is guaranteed. This condition

is characterized by an upper bound on the time-scale separation constant.

5.7.1 Leader-Follower Consensus Protocol in Standard Singularly

Perturbed Form

The protocol P2 system inherits a two time-scales property for certain values of the gains

kα,i. To show this, we recast this system into a parametric standard singularly perturbed

form where the time-scale separation ratio is parameterized by the gains kα,i [10]. First, we

define the consensus state-vector as:

z , [z1, z2, ... , zn]>, z ∈ Rn (5.13a)

and the αi coefficients as:

αi ,
1

2
ρCp,iAiv

3
w,i, αi ∈ R+, i ∈ G (5.13b)

ααα , [α1, α2, ..., αn]>, ααα ∈ Rn
+ (5.13c)

The maximum value of ααα is given by α = max{αi}|G|i=1. The two time-scales property of P2

is established through the following Claim.

Claim 4. The dynamics of the protocol system P2, given by (5.12a)-(5.12c), manifest two

distinct time-scales when kα,1 = ... = kα,n � α.

Proof. To reveal the two times-scales property, a series of transformations is employed to

recast equations (5.12a)-(5.12c) into a parametric standard singularly perturbed form [10].

To begin with, notice that Pm,i = αizi, ∀i ∈ G. With that, equation (5.12a) is written as:
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(5.12a)/α⇔ 1

α

dξh
dt

= (
Pd
α
−
∑
i∈G

αi
α
zi) (5.14)

with (αi/α) ∈ [0, 1], ∀i ∈ G. By defining a new time-scale τ = α t, equation (5.14) can be

written as:

dξh
dτ

= (
Pd
α
−
∑
i∈G

αi
α
zi) (5.15)

whereas, equations (5.12b), (5.12c) can be written as:

α

kα,i

dzi
dτ

= −(zi−zi−1), z0 = ξh, i ∈ G (5.16)

Letting α/kα,i = ε, i ∈ G and dz
dτ
, [dz1

dτ
, ... , dzn

dτ
]> ∈ Rn, equations (5.15) -(5.16) can be

compactly expressed as:

dξh
dτ

= gh(z) (5.17)

ε
dz

dτ
= g(ξh, z) (5.18)

where:

gh(z) = (
Pd
α
−
∑
i∈G

αi
α
zi), gh ∈ R (5.19)

g(ξh, z) = [−(z1−ξh), ... ,−(zn−zn−1)]>, g ∈ Rn (5.20)

Eventually, recognize that when kα,1 = ... = kα,n and ε � 1, or equivalently kα,i � α,

equations (5.17), (5.18) constitute a singularly perturbed system with two distinct time-
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scales, τ and τ̃ = τ/ε. With this, the proof is completed. �

It is important to realize that, the two times-scales property can be granted in the

dynamics of P2 by choosing proper values for the gains kα,i, i.e it is not an innate property

of the system P2 but it can be inherited.

5.7.2 Equilibrium and Desired Properties

Given that the dynamics of P2 possess two times-scales, the variable ξh is the slow state-

variable and z are the fast state-variables. Their corresponding equilibria can be obtained

from (5.12a) - (5.12c) as:

Slow state-variable (ξh) equilibrium

ξh0 =
Pd

(
∑

i∈G αi)
, ξh0 ∈ R+ (5.21a)

Fast state-variables (z) equilibrium

z0 = ξh0·1n, z0 ∈ Rn
+ (5.21b)

The equilibrium of the full P2 system is then:

z̃0 =


ξh0

z0

 , z̃0 ∈ Rn+1
+ (5.22)
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Before assigning desired properties to the above equilibrium, it is convenient to define a

consensus subspace as [41]:

S , {x ∈ Rn+1 | x = β·1n+1 , β ∈ R} (5.23)

The protocol P2 realizes the control objectives when, its equilibrium possesses the following

two properties.

Property 5.1. z̃0 ∈ S

Property 5.2. z̃0 is asymptotically stable

From equations (5.21a), (5.21b), observe that the equilibrium of P2 already possesses

Property 5.1 with β = ξh0. In the next Sections, a particular condition for the protocol

gains kα,i will be derived which, if respected will lead to the equilibrium of P2 possessing

Property 5.2 as well.

To prepare the ground for the coming stability analysis, we shift z̃0 to the origin 0n+1 by

employing the coordinates transformation:

ψh = (ξh−ξh0), ψh ∈ R (5.24)

y = (z−ξh·1n), y , [y1, ... , yn]> ∈ Rn (5.25)

where y0 = (z0−ξh) = 0. In the new coordinate system, (5.17) and (5.18) are transformed

to:

dψh
dτ

= −(
∑
i∈G

αi
α

)ψh−
∑
i∈G

(
αi
α
yi) (5.26)

ε
dy

dτ
= [−(y1−y0)−εdψh

dτ
, ... , −(yn−yn−1)−εdψh

dτ
]> (5.27)
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The equilibrium of this system is:

ỹ0 =


ψh0

y0

 = 0n+1 (5.28)

The following subsections are dedicated to deriving a condition under which, asymptotic

stability of ỹ0 is guaranteed, i.e under which the equilibrium of P2 possesses Property 5.2.

5.7.3 Stability of Fast Boundary-layer Subsystem

The fist step toward establishing asymptotic stability of ỹ0 is to independently establish

asymptotic stability of y0 and ψh0, equilibria of the decoupled fast and slow subsystems.

In this Section, we focus on establishing asymptotic stability of y0. To this end, we obtain

the fast boundary-layer dynamics by first, designating the fast time-scale as τ̃ = (τ/ε) and

rewrite (5.27) in scalar form as:

dyi
dτ̃

= −(yi−yi−1)−dψh
dτ̃

, i ∈ G (5.29)

Then, we approximate the slow state-variable ψh as constant, i.e assume that dψh
dτ̃

= 0. This

leads to the following system:

Fast boundary-layer system

dyi
dτ̃

= −(yi−yi−1), i ∈ G (5.30)

Stability of the fast boundary-layer system (5.30) is established through the next lemma.

Lemma 5.1. The equilibrium y0 = 0n of the system (5.30) is asymptotically stable.

Proof. The system (5.30) in matrix form can be expressed as:
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

dy1
dτ̃

dy2
dτ̃

...

dyn
dτ̃


=



−1 0 · · · 0 0

1 −1 · · · 0 0

...
. . .

...

0 0 · · · 1 −1


︸ ︷︷ ︸

Af∈Rn×n



y1

y2

...

yn



or, more compactly as:

dy

dτ̃
= Afy (5.31)

Further, we denote the eigenvalues of Af by λλλ = [λ1, ..., λn]> and recognize that Af is lower

triangular therefore, we have:

det(Af−λ·In×n) = (−1)n(λ+1)n (5.32)

equivalently, λλλ = −1n.

Since all of the eigenvalues of Af lie on the left half of the complex plane, i.e Re(λi) < 0, ∀i,

it can be concluded that Af is Hurwitz. By invoking Theorem 4.5 ([10]), it can be further

concluded that y0 = 0n is asymptotically stable. With that, the proof of Lemma 5.1 is

completed. �

Later on, we will establish asymptotic stability of ỹ0 by leveraging the stability property

just proved. For this purpose, a parameterized Lyapunov function can be now constructed

that serves as a stability certificate of (5.30) as:

Vf = y>Py, Vf > 0, ∀y ∈ Dy (5.33)
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where Dy , Dy\{0n}, Dy ⊂ Rn and P ∈ Rn×n, P � 0 satisfying

PAf+A>f P = −Q (5.34)

for a given Q � 0. Since Af is Hurwitz, there exists a unique P, P � 0, satisfying (5.34)

for any given Q, Q � 0. Using this parameterized Lyapunov function Vf , we will derive

conditions in terms of the matrix P under which, asymptotic stability of ỹ0 is guaranteed.

5.7.4 Stability of Slow Reduced-order Subsystem

In this Section, we establish stability of ψh0, equilibrium of the decoupled slow reduced-

order subsystem. By concentrating on the slow time-scale τ , the decoupled slow subsystem

can be obtained by approximating the fast state-variables with their fast equilibrium mani-

fold, y = 0n. In this case, equation (5.26) becomes:

Slow reduced-order subsystem

dψh
dτ

= −(
∑
i∈G

αi
α

)ψh (5.35)

Stability of (5.35) is established through the following lemma.

Lemma 5.2. The equilibrium ψh0 = 0 of the system (5.35) is asymptotically stable.

Proof. First, we construct a candidate Lyapunov function as:

Vh = ψ2
h, Vh > 0, ∀ψh ∈ Dψh (5.36)

where Dψh = Dψh\{0}, Dψh ⊂ R. Granted that, (
∑

i∈G
αi
α

) > 0, the time-derivative of Vh

149



with respect to the time-scale τ along the trajectories of (5.35) becomes:

dVh
dτ

= −2(
∑
i∈G

αi
α

)ψ2
h,

dVh
dτ

< 0, ∀ψh ∈ Dψh (5.37)

By applying Lyapunov’s stability theorem, we conclude asymptotic stability of ψh0 = 0. �

In the next Section, this stability property will be leveraged through its Lyapunov func-

tion certificate Vh together with, the stability property of y0 through its Lyapunov function

certificate Vf , to establish conditional asymptotic stability of ỹ0.

5.7.5 Stability of the Full P2 System

Having established asymptotic stability of the fast boundary-layer subsystem and the slow

reduced order subsystem, we will now proceed to derive conditions under which asymptotic

stability of the full system (5.26)-(5.27) is guaranteed. By combining the stability certificates

of (5.30) and (5.35) through a linear combination of Vf and Vh a candidate Lyapunov function

for this system [10] can be formed as:

Vc =
1

2
y>Py+

ψ2
h

2
, Vc > 0, ∀(y, ψh) ∈ Dy×Dψh (5.38)

Further, we take P = [pij] where P = P> and define the auxiliary coefficients:

α̃s ,
∑
i∈G

αi
α
, α̃i ,

αi
α
, ∀i ∈ G (5.39a)

The derivative of Vc with respect to τ is:

dVc
dτ

=
1

2
(
dy

dτ
)>Py+

1

2
y>P(

dy

dτ
)+ψh

dψh
dτ

=
1

2
y> (

A>f P+PAf

ε
)︸ ︷︷ ︸

− 1
ε
Q

y+(−dψh
dτ

)>Py−α̃sψ2
h−ψh(

∑
i∈G

α̃iyi) (5.40)
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where dy
dτ

= [dy1
dτ
, ..., dyn

dτ
]> ∈ Rn×n and dψh

dτ
= (dψh

dτ
)·1n, dψh

dτ
∈ Rn. The term (−dψh

dτ
)>Py can

be expanded with algebraic manipulations as:

(−dψh
dτ

)>Py = α̃sψh

n∑
i=1

( n∑
j=1

pji

)
yi+

n∑
i=1

( n∑
j=1

pji

)
α̃iy

2
i

+
n∑
i=1

n∑
j=i+1

(
(α̃i

n∑
k=1

pkj+α̃j

n∑
k=1

pki)yiyj

)
(5.41)

Further, by defining the vector:

ỹ =


ψh

y

 , ỹ ∈ Rn+1 (5.42)

equation (5.40) can be written in the compact form:

dVc
dτ

= ỹ> F ỹ (5.43)

The matrix F is given by:

F ,


A B

B> C

 ∈ R(n+1)×(n+1) (5.44)

and comprised of the submatrices A ∈ R, B> ∈ Rn, C ∈ Rn×n as defined below.

A = −α̃s, (5.45)

B =

[
− α̃1

2
+ α̃s

2

n∑
j=1

pj1 · · · − α̃n
2

+ α̃s
2

n∑
j=1

pjn

]
(5.46)
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C =



− q11
ε

+α̃1

n∑
j=1

pj1 · · · α̃1

2

n∑
k=1

pkn+ α̃n
2

n∑
k=1

pk1

. . .

α̃1

2

n∑
k=1

pkn+ α̃n
2

n∑
k=1

pk1 · · · − qnn
ε

+α̃n
n∑
j=1

pjn


(5.47)

Stability of ỹ0 is now established via the next theorem.

Theorem 5.1. The equilibrium ỹ0 = 0n+1 of (5.26) - (5.27) is asymptotically stable for

ε < ε where ε = min{εi}i∈G, and εi given by:

εi =
qii

α̃i
n∑
j=1

pji+
1
α̃s
gii+

n∑
k=1
k 6=i

∣∣∣− α̃i
2

n∑
j=1

pjk− α̃k
2

n∑
j=1

pji− 1
α̃s
gik

∣∣∣
Further, P = [pij], Q = [qij] and G = B>B such that G = [gij] with gij = bi·bj (B = [bi]).

Proof. A sufficient condition for asymptotic stability of ỹ0 = 0n+1 can be found by requiring

the inequality F ≺ 0 to hold. Given that, the forthcoming analysis is focused on deriving a

sufficient condition under which F ≺ 0, eventually showing that its comes down to an upper

bound on ε. Concretely, we derive conditions under which −F � 0 holds. To this end, we

first define the Schur complement of −F as:

S = −C+B>A−1B (5.48)

From the Schur complement conditions we have that:

−F � 0⇔ S � 0 and −A � 0 (5.49)

Thus, the analysis can be simplified by deriving conditions under which S � 0,−A � 0 hold.
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Immediately, we have that, −A = α̃s � 0 so it is only left to guarantee that S � 0. In this

direction, first realize that by deploying A = −α̃s, equation (5.48) becomes:

S = −C−(α̃s)
−1G, where G = B>B (5.50)

With G = [gij] where gij = bi·bj (with B = [bi]), we can further write the matrix S more

compactly as:

S = [sij], sij = −cij−(α̃s)
−1bibj (5.51)

The next step is to find conditions that lead to S � 0. This can be achieved by employing

the following matrix property. A Hermitian (symmetric) matrix with all positive eigenvalues

is positive definite. The matrix S is the sum of two symmetric matrices, −C and −(α̃s)
−1G.

Therefore, it is symmetric, i.e S = S> holds. To meet the second requirement, we have

to find conditions under which all eigenvalues of S are positive. To this end, we resort to

Gershgorin’s Circle Theorem [42] which in our particular case gives that, all the eigenvalues

λi of the matrix S belong to the following set:

D =
⋃
i∈G

Di (5.52)

where Di is given by:

Di , {χ ∈ R : |χ−sii| ≤
n∑

j=1,j 6=i

|sij|}, ∀i ∈ G (5.53)

i.e λi ∈ D, ∀i ∈ G.

In the definition of the set Di, the eigenvalues λi are taken to be real since S is symmetric.

For these to be also positive (λi > 0), all the subsets Di have to satisfy Di ⊂ R+. To establish
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that, we first use (5.53) to derive a lower and an upper bound for the eigenvalues χ ∈ Di,

χ
i
, χi respectively, which corresponds to the particular subset Di, as:

sii−
n∑
j=1

|sij|︸ ︷︷ ︸
χ
i

≤ χ ≤ sii+
n∑
j=1

|sij|︸ ︷︷ ︸
χi

(5.54)

To guarantee that χ > 0, we only have to ensure that χ
i
> 0, ∀i ∈ G. Since sii depends on

ε, this condition will be satisfied when ε respects an upper bound ε̄i. To see that, consider

first the inequality:

χ
i
> 0⇔ sii−

n∑
j=1

|sij| > 0 (5.55)

which, by substituting sii and sij from (5.51), (5.46), (5.47), becomes:

qii
ε
−α̃i

n∑
j=1

pji−
gii
α̃s
−

n∑
k=1
k 6=i

∣∣∣− α̃i
2

n∑
j=1

pjk−
α̃k
2

n∑
j=1

pji−
gik
α̃s

∣∣∣ > 0

Ultimately, this inequality can be reformulated as:

ε <
qii

α̃i
n∑
j=1

pji+
1
α̃s
gii+

n∑
k=1
k 6=i

∣∣∣− α̃i
2

n∑
j=1

pjk− α̃k
2

n∑
j=1

pji− 1
α̃s
gik

∣∣∣
︸ ︷︷ ︸

εi

From the above, it is obvious that, by considering the inequality (5.55) for each set Di a

corresponding upper bound εi can be obtained. The minimum of all these bounds is the

upper bound ε = min{εi}i∈G which, if respected by ε, i.e ε < ε̄, leads to D ⊂ R+, i.e ∀χ ∈ D,

χ > 0. Equivalently, that the eigenvalues of S are positive. In this case, S is positive definite
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and from the Schur complement conditions [42] we conclude that −F ≺ 0, i.e that ỹ0 = 0n+1

is asymptotically stable. That, concludes the proof. �

Theorem 5.1 provides a sufficient but not a necessary condition for asymptotic stability

of ỹ0 = 0n+1. Nevertheless, this theorem can be employed to design the gains kα,i of the

protocol P2 such that asymptotic stability of its equilibrium follows. This can be achieved

in the following way. First we can choose any diagonal positive definite matrix Q and

compute a positive definite matrix P satisfying (5.34). By having the information about the

prevalent local wind-speed conditions at the location of each WG, i.e vw,i, ∀i, we can compute

the coefficients α̃i, α̃s. Then, from Theorem 5.1, the upper bound ε can be computed and

appropriate gains kα,i that are equal and satisfy (α/kα,i) < ε can be chosen so that asymptotic

stability of ỹ0 = 0n+1 is guaranteed.

5.7.6 Delay-Independent Stability

In the previous Sections we saw that, in the case of a system without time-delays, we

can employ the Lyapunov method to determine stability properties of its equilibrium point.

The basic idea behind this method is that, we can construct a Lyapunov function V (t, x(t)),

which measures in some sense the deviation of x(t) from its equilibrium 0, and check whether

this function fulfills certain conditions. In the case that it does, we can directly establish

certain stability properties of the system’s equilibrium point through Lyapunov’s theorem.

Note that, in the case of systems without delay, this Lyapunov function is a function of x(t),

since only x(t) is required to specify the evolution of the system’s state beyond time t. On

the other hand, in the case of a time-delayed system:

ẋ(t) = f(t, xt) (5.56)

where x(t) ∈ Rn and f : R×C 7→ Rn and xt = x(t+θ), −r ≤ θ ≤ 0, the value of x(t) in

the interval [t−r, t], i.e xt, is required to determine its future evolution. Consequently, the

155



corresponding Lyapunov function for a system with delays takes the form of a functional

V (t, xt) which depends on xt, measuring deviation of xt from a trivial solution 0. This

functional is known as Lyapunov-Krasovskii functional [44].

We now state the Lyapunov-Krasovskii Stability Theorem, which gives the conditions

that this functional has to meet in order for the equilibrium point of (5.56) to have certain

stability properties .

Theorem 5.2 (Lyapunov-Krasovskii Stability Theorem, [44]). Suppose f : R×C 7→ Rn

in (5.56) maps R×(bounded set in C) into a bounded set in Rn, and that u, v, w : R+ 7→ R+

are continuous nondecreasing functions, where additionally u(s), v(s) are positive for s > 0,

and u(0) = v(0) = 0. If there exists a continuous differentiable functional V : R×C 7→ R

such that:

u(‖x(t)‖) ≤ V (t, xt) ≤ v(‖xt‖c) (5.57)

where ‖xt‖c = maxa≤θ≤b ‖x(t+θ)‖ and

V̇ (t, xt) ≤ −w(‖x(t)‖) (5.58)

then the trivial solution of (5.56) is uniformly stable. If w(s) > 0 for s > 0 then it is

uniformly asymptotically stable. If, in addition, lims→∞ u(s) =∞, then it is globally asymp-

totically stable.

Next, this theorem will be employed to establish a delay-independent stability property

of the P2 consensus protocol’s equilibrium point. This property certifies that the stability of

the equilibrium point is robust with respect to any communication time-delays that may arise

in the implementation of the consensus protocol in a practical setting. In our case, we con-

sider a particular type of delays, namely fixed time-delays, and establish delay-independent
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asymptotic stability of the consensus protocol’s fast sub-system equilibrium point. The de-

lays are denoted by r ∈ R+ and it is assumed that under these delays, ξh remains constant

in the time range [τ̃−r, τ̃ ]. That results to the value of the time-delayed slow state-variable

ξh(τ̃−r) being equal to the present value of the state-variable ξh(τ̃). This can be formally

stated as follows.

Assumption 3. For the considered time-delays r, it holds that ξh(τ̃−r) = ξh(τ̃).

The time-delayed version of (5.29) under delays r takes the form:

dy(τ̃)

dτ̃
= A0y(τ̃)+A1y(τ̃−r) (5.59)

where A0 , −In and A1 defined as:

A1 ,


0>(n−1) 0

I(n−1) 0(n−1)

 (5.60)

Stability of the system (5.59) is established through the following theorem.

Theorem 5.3. The equilibrium point y0 = 0n of the system (5.59) is delay-independent

asymptotically stable.

Proof. We first construct a candidate Lyapunov-Krasovskii functional for the system (5.59)

[44] as:

V1 = y(τ̃)>P1y(τ̃)+

∫ τ̃

τ̃−r
y(η)>Q1y(η)dη (5.61)

where P1,Q1 ∈ Rn×n and P1,Q1 � 0. We have to prove that the functional V1 meets

conditions (5.57), (5.58) of the Lyapunov-Krasovskii theorem. To prove that it satisfies the
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first condition given by (5.57), we first use the inequality:

λmin(P1)‖y(τ̃)‖2
2 ≤ y(τ̃)>P1y(τ̃) ≤ λmax(P1)‖y(τ̃)‖2

2 (5.62)

to obtain that:

V1 ≥ λmin(P1)‖y(τ̃)‖2
2+

∫ τ̃

τ̃−r
y(η)>Q1y(η)dη (5.63)

where since Q1 is positive definite we finally get:

V1 ≥ λmin(P1)‖y(τ̃)‖2
2 (5.64)

That proves the left part of the inequality (5.57) with u(‖y(τ̃)‖2) = λmin(P1)‖y(τ̃)‖2
2. This

function is nondecreasing and continuous and also satisfies u(0) = 0. To prove the right part

of the inequality (5.57), the next inequality is used:

λmin(Q1)‖y(η)‖2
2 ≤ y(η)>Q1y(η) ≤ λmax(Q1)‖y(η)‖2

2 (5.65)

The right part of this twofold inequality together with the right part of (5.62) applied to

(5.61) yield:

V1 ≤ λmax(P1)‖y(τ̃)‖2
2+

∫ τ̃

τ̃−r
λmax(Q1)‖y(η)‖2

2dη

where this inequality can be further expanded as:

V1 ≤ λmax(P1)
(
y1(τ̃)2+y2(τ̃)2+...+yn(τ̃)2

)
+

∫ τ̃

τ̃−r
λmax(Q1)

(
y1(η)2+y2(η)2+...+yn(η)2

)
dη
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Now, the additional inequalities can be employed:

yi(τ̃) ≤ max
τ̃−r≤η≤τ̃

‖yi(η)‖ = ‖yi,τ̃‖c, ∀i ∈ {1, ..., n} (5.66)

yi(η) ≤ max
τ̃−r≤η≤τ̃

‖yi(η)‖ = ‖yi,τ̃‖c, ∀i ∈ {1, ..., n} (5.67)

to finally obtain:

V1 ≤ λmax(P1)
(
‖y1,τ̃‖2

c+‖y2,τ̃‖2
c+...+‖yn,τ̃‖2

c

)
+

∫ τ̃

τ̃−r
λmax(Q1)

(
‖y1,τ̃‖2

c+‖y2,τ̃‖2
c+...+‖yn,τ̃‖2

c

)
dη

=
(
λmax(P1)+rλmax(Q1)

)(
‖y1,τ̃‖2

c+‖y2,τ̃‖2
c , ..., ‖yn,τ̃‖2

c

)
(5.68)

That, proves the right part of inequality (5.57) where:

v =
(
λmax(P1)+rλmax(Q1)

)(
‖y1,τ̃‖2

c+‖y2,τ̃‖2
c , ..., ‖yn,τ̃‖2

c

)

or in a more compact form:

v(‖yτ̃ ,c‖2) =
(
λmax(P1)+rλmax(Q1)

)∥∥∥yτ̃ ,c∥∥∥2

2
(5.69)

where with yτ̃ ,c we denote the vector yτ̃ ,c = (‖y1,τ̃‖c, ‖y2,τ̃‖c, ..., ‖yn,τ̃‖c)>. Function v is

nondecreasing and continuous and satisfies v(0) = 0. This, verifies that the inequality

condition (5.57) is met. It is left to prove that condition (5.58) of the Lyapunov-Krasovskii

Stability Theorem is fulfilled as well.

In this direction, the first step is to differentiate V1 with respect to τ̃ . Performing that,

yields:

dV1

dτ̃
= ȳ>Q̄1ȳ (5.70)
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where

Q̄1 ,


P1A0+A>0 P1+Q1 P1A1

A>1 P1 −Q1

 (5.71)

and

ȳ ,


y(τ̃)

y(τ̃−r))

 , ȳ ∈ R2n (5.72)

Now, we have to prove that Q̄1 can be rendered negative definite [44], i.e Q̄1 ≺ 0, with

suitable choice of the matrices P1,Q1 (LMI feasibility). This is established through the

next lemma.

Lemma 5.3 (LMI feasibility). ∃P1,Q1 � 0 diagonal positive definite matrices such that

the matrix Q̄1 given by (5.71) satisfies:

Q̄1 ≺ 0 (5.73)

Proof. Without loss of generality P1,Q1 are assumed to be positive definite diagonal ma-

trices. The Schur complement conditions applied on the matrix Q̄1 give that the inequality

Q̄1 ≺ 0 is satisfied when the inequalities P1A0+A>0 P1+Q1 ≺ 0 and S1 ≺ 0 are satis-

fied, where, S1 is the Schur complement matrix of Q̄1. Thus, we proceed to prove that

∃P1,Q1 � 0 for which, the latter two inequalities are satisfied instead of the more involved

Q̄1 ≺ 0. Performing basic matrix manipulations yields:

P1A0+A>0 P1+Q1 =
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

q1−2p1 0 · · · 0

0
. . . 0 0

0 qi−2pi · · · 0

0 0
. . . 0

0 0 · qn−2pn


This matrix is negative definite (≺ 0) when:

qi−2pi < 0, ∀i ∈ {1, ..., n} (5.74a)

Further, the Schur complement matrix of Q̄1 is obtained as:

S1 =



−q1− p22
2p2−q2 0 · · · 0

0
. . . 0 0

0 −qi−
p2i+1

2pi+1−qi+1
· · · 0

0 0
. . . 0

0 0 · · · −qn


which is negative definite (≺ 0) when:

−qi−
p2
i+1

2pi+1−qi+1

< 0, ∀i ∈ {1, ..., n−1} (5.74b)

−qn < 0 (5.74c)
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Restricting P1, Q1 to be positive definite yields:

pi > 0 , ∀i ∈ {1, ..., n} (5.74d)

qi > 0 , ∀i ∈ {1, ..., n} (5.74e)

Eventually, we prove that ∃pi, qi ,∀i ∈ {1, ..., n}, that satisfy the inequalities (5.74a)-(5.74e),

i.e LMI feasibility. Our proof is constructive and relies on the following methodology for

computing pi, qi which provides a deterministic way for finding pi, qi , ∀i ∈ {1, ..., n} that

Methodology 1 for computing pi, qi (LMI feasibility)

1: Choose pi, ∀i ∈ {1, ..., n} that satisfy (5.74d).
2: Choose qn that jointly satisfies (5.74e), (5.74a).
3: Choose qi, ∀i ∈ {1, ..., n−1}, starting from qn−1 and following a decreasing order of i,

such that, at every step the corresponding qi satisfies (5.74a), (5.74b).

satisfy the inequalities (5.74a)-(5.74e). Hence, the LMI in (5.73) is feasible. With this, we

conclude the proof. �

The final step in proving that V1 is a Lyapunov-Krasovskii functional certifying delay-

independent asymptotic stability of (5.59) is, to show that, when Q̄1 ≺ 0 holds, the inequality

(5.58) holds as well, with a function w that is continuous nondecreasing and satisfies w(s) >

0, s > 0. To establish that, the next inequality is considered:

λmin(Q̄1)‖ȳ‖2
2 ≤ ȳ>Q̄1ȳ ≤ λmax(Q̄1)‖ȳ‖2

2 ≤ 0 (5.75)

where since Q̄1 ≺ 0⇒ λmin(Q̄1), λmax(Q̄1) < 0. Therefore, we can choose ε such that:

λmax(Q̄1)‖ȳ‖2
2 ≤ −ε‖ȳ‖2

2 ≤ 0 (5.76)
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Finally, using:

‖ȳ‖2 ≥ ‖y(τ̃)‖2 ⇒ ‖ȳ‖2
2 ≥ ‖y(τ̃)‖2

2 (5.77)

inequality (5.76) is reduced to:

λmax(Q̄1)‖ȳ‖2
2 ≤ −ε‖ȳ‖2

2 ≤ −ε‖y(τ̃)‖2
2 ≤ 0 (5.78)

which proves that the condition (5.58) is fulfilled with:

w(‖y(τ̃)‖2) = ε‖y(τ̃)‖2
2 (5.79)

This function is nondecreasing and continuous with w(‖y(τ̃)‖2) > 0 for ‖y(τ̃)‖2 > 0. In

addition, it holds that lim‖y(τ̃)‖2→∞ u(‖y(τ̃)‖2) = ∞. Employing the Lyapunov-Krasovskii

Theorem 5.2 [44], results to the equilibrium point y0 = 0n of (5.59) being globally asymptot-

ically stable. �

Theorem 5.3 guarantees that the equilibrium point of the fast boundary-layer system

(5.29) is asymptotically stable independently of time-delays. Intuitively, that means that the

fast consensus state-variables zi, ∀i ∈ G, converge to the slow state-variable ξh independently

of any time-delays, as long as ξh remains “frozen” in the time interval [τ̃−r, τ̃ ]. That is of

practical interest, since it certifies robust performance of the protocol P2 with respect to time-

delays that are inherent in communication channels. Finally, Methodology 1 can be deployed

to deterministically construct a Lyapunov-Krasovskii functional (5.61) for the system (5.59)

that fulfills conditions (5.57), (5.58) of Theorem 5.2, and serves as a certificate of the above

time-delays-robust stability property.
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5.8 Distributed CLF-Based Torque Controller Design

In the previous Sections, we established asymptotic stability of the equilibrium of the

system P2 and of the equilibrium of the time-delayed version of P2. Due to these properties,

a group of WGs that adopts the protocol P2 can provably self-organize and control their

power output in a fair load-sharing manner and under dynamical conditions to attain total

power reference tracking. Practically, the protocol can be realized by appropriately designing

the control laws for the RSCs which control the dynamics of Cp,i/Cp,i. To this end, we develop

a distributed CLF-based torque controller for the RSC of each WG which renders the closed-

loop dynamics of Cp,i/Cp,i identical to (5.12c). We begin by considering equation (5.12c) in

analytical form as:

1

Cp,i

dCp,i
dt

= −kα,i(
Cp,i

Cp,i

−Cp,i−1

Cp,i−1

), i ∈ G (5.80)

This dynamical equation represents the desired closed-loop dynamics of the utilization level

Cp,i/Cp,i as described by the consensus protocol dynamics (5.12c). On the other hand, the

physical dynamics of Cp,i/Cp,i are:

1

Cp,i

dCp,i
dt

=
1

Cp,i

∂Cp,i
∂λi

∂λi
∂ωr,i

ωs
2Hi

(Tm,i−Te,i), i ∈ G (5.81)

The controller of the RSC has to ensure that the closed-loop physical dynamics in (5.81)

become identical to the consensus dynamics in (5.80). This happens, when the electrical

torque is equal to:

T ∗e,i = Tm,i−(
1

Cp,i

∂Cp,i
∂λi

∂λi
∂ωr,i

ωs
2Hi

)−1
[
−kα,i(

Cp,i

Cp,i

−Cp,i−1

Cp,i−1

)
]
, ∀i ∈ G
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The control objective of the RSC is to guarantee that the WG’s electrical torque Te,i is

asymptotically tracking the dynamical torque reference T ∗e,i. For this particular purpose,

a distributed control law for the RSC is introduced through the theorem below under the

following assumptions.

Assumption 4 (Constant terminal voltage). dVs,i/dt=0.1

Assumption 5 (Constant wind speed). (∂2λi/∂t∂ωr,i) = 0.

Theorem 5.4. Under assumptions 4 and 5, the electrical torque Te,i is asymptotically track-

ing the dynamical torque reference T ∗e,i with the RSC control law:

Vdr,i =
X
′
s,i

Vs,i

[
˙T ∗e,i−kβ,i(Te,i−T ∗e,i)

]
− 1

T
′
0,i

[
−(E

′

q,i

+(Xs,i−X
′

s,i)Ids,i)+T
′

0,i(−(ωs−ωr,i)E
′

d,i)
] Xr,i

Xm,iωs
(5.82)

where T ∗e,i is given by (5.82) and Ṫ ∗e,i is the time derivative of T ∗e,i.

Proof. This theorem can be proved by analytically constructing the distributed RSC control

law (5.82). First consider the candidate CLF as:

Ve,i =
1

2
(Te,i−T ∗e,i)2, Ve,i > 0, ∀Te,i ∈ De,i, ∀i ∈ G (5.83)

where De,i , De,i\{T ∗e,i}, De,i ⊂ R and define the error ∆Te,i = (Te,i−T ∗e,i). For this CLF,

the next lemma is stated.

Lemma 5.4. Ve,i is a CLF for the system given by the error dynamics ∆Ṫe,i.

Proof. Let the electrical torque be expressed as:

Te,i =
E
′
q,iVs,i

X
′
s,i

, ∀i ∈ G (5.84)

1This can be achieved through fast voltage control of the DFIG.
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Computing the time derivative of Ve,i gives us:

V̇e,i = (Te,i−T ∗e,i)
[ Vs,i
X
′
s,i

1

T
′
0,i

[−(E
′

q,i+(Xs,i−X
′

s,i)Ids,i)

+T
′

0,i(ωs
Xm,i

Xr,i

Vdr,i−(ωs−ωr,i)E
′

d,i)]−Ṫ ∗e,i
]

(5.85)

Taking the inf(·) of (5.85) we obtain:

inf
Vdr,i∈Ui

V̇e,i


−∞, ∆Te,i 6= 0

0, ∆Te,i = 0

(5.86)

From (5.86), it can be concluded that Ve,i is a CLF and that there exists a control law Vdr,i

which guarantees that limt→∞∆Te,i = 0, i.e limt→∞ Te,i = T ∗e,i. With that, we complete the

proof. �

An appropriate control law Vdr,i is the one that causes the next inequality to hold.

V̇e,i < 0, ∀Te,i ∈ De,i, ∀i ∈ G (5.87)

One such controller can be constructed by imposing the constraint below on the error dy-

namics:

∆Ṫe,i = −kβ,i∆Te,i (5.88)

Expanding this constraint yields:

Ṫe,i = Ṫ ∗e,i−kβ,i(Te,i−T ∗ei), ∀i ∈ G (5.89)
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With this constraint, the derivative of Ve,i becomes:

V̇e,i = −kβ,i(Te,i−T ∗e,i)2 < 0, ∀Te,i ∈ De,i (5.90)

where Ṫ ∗e,i is given by:

Ṫ ∗e,i = Ṫm,i+kβ,iCp,i(
ωs

2Hi

∂λi
∂ωr,i

)−1(
∂Cp,i
∂λi

)−2·
[
(
Ċp,i

Cp,i

− Ċp,i−1

Cp,i−1

)
∂Cp,i
∂λi

−(
Cp,i

Cp,i

−Cp,i−1

Cp,i−1

)
∂2Cp,i
∂λ2

i

∂λi
∂ωr,i

·ω̇r,i
]
, ∀i ∈ G (5.91)

Finally, by substituting the electrical torque expression:

Te,i = (E
′

q,iVs,i)·(X
′

s,i)
−1, ∀i ∈ G (5.92)

into (5.89) and by employing equation (5.1b) the RSC control input can be obtained as:

Vdr,i =
X
′
s,i

Vs,i

[
Ṫ ∗e,i−kβ,i(Te,i−T ∗e,i)

]
− 1

T
′
0,i

[
−(E

′

q,i

+(Xs,i−X
′

s,i)Ids,i)+T
′

0,i(−(ωs−ωr,i)E
′

d,i)
] Xr,i

Xm,iωs
(5.93)

Recall that, in the derivation of the above controller, Assumptions 4 and 5 are considered.

The terms ∂λi/∂ωr,i, ∂Cp,i/∂λi are already given in Chapter 3 by (3.64) and (3.62) while the

term ∂2Cp,i/∂λ
2
i can be obtained by differentiating ∂Cp,i/∂λi with respect to λi as:

∂2Cp,i
∂λ2

i

= e
−12.5( 1

λi
−0.035)

[12.5

λ2
i

(−25.52

λ2
i

+
319

λ2
i

(
1

λi
−0.035))+(

51.04

λ3
i

−957

λ4
i

+
22.33

λ3
i

)
]

(5.94)

�

This completes the proof.
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Figure 5.4: Distributed CLF-based torque controller of RSC i
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5.9 Case Studies

This Section presents numerical simulations verifying the theoretical results presented in

this Chapter. Specifically, through simulations on the modified IEEE 24-bus RT system,

the performance of the proposed protocol and corresponding distributed CLF-based torque

controller are evaluated. The 24-bus system is modified such that on bus 22, a WF, comprised

of 10 WGs and the physical and communication topologies depicted in Fig. 5.6, is placed .

The initial local wind-speed conditions are assumed to be vw,i = 13.17m
s

and homogeneous

throughout the WF. In this set-up, simulations are conducted with the RSC of each WG

implementing the distributed CLF-based torque controller in (5.93) under the following

critical scenarios.

• Scenario 1 (Reference Pd varies with constant wind speed vw = 13.17 m/s)

t = 0s: The WF power reference is constant at Pd = 0.38 p.u.
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t = 3s: The WF power reference decreases to Pd = 0.36 p.u.

t = 9s: The WF power reference increases to Pd = 0.40 p.u.

• Scenario 2 (Wind speed vw varies with constant reference Pd = 0.38)

t = 0s: The wind speed is constant at vw = 13.17 m/s.

t = 2s: The wind speed decreases to vw = 12 m/s.

• Scenario 3 (Both the reference Pd and wind speed vw vary)

t = 0s: The reference and wind speed are constant, Pd = 0.38 p.u, vw =

13.17m/s.

t = 3s: The WF power reference increases to Pd = 0.40 p.u.

t = 9s: The wind speed increases to vw = 14.17 m/s.

t = 15s: The WF power reference decreases to Pd = 0.36 p.u and at the same

time the wind speed decreases to vw = 12.17 m/s.

For illustration purposes, step-wise variations of the reference and wind speed are considered

in the above scenarios. First, the results of Scenario 1 are discussed. From Fig. 5.8,

observe that the distributed CLF-based torque controller succeeds in providing total WF

power output regulation. Specifically, the WF total power output tracks the variations of Pd

with very good dynamic performance e.g small response time, no overshoot. In order for the

total WF power to closely track Pd while it varies quasistatically, the controllers everytime

dynamically redispatch and readjust the power outputs of WGs through regulation of the

loading levels (consensus states) to their new equilibria which depend on the reference Pd.

In our particular case, two new equilibria arise for the loading levels, one at t = 3s and one

at t = 9s. These can be respectively computed as:

t = 3s : ξh0 =
Pd∑10
i=1 αi

=
0.36·100·106

10·(0.5·1.225·0.438·π·522·13.173)
= 0.6915
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t = 9s : ξh0 =
Pd∑10
i=1 αi

=
0.40·100·106

10·(0.5·1.225·0.438·π·522·13.173)
= 0.7684

The “fair dispath” or equivalently, the “load sharing” among the WGs can be observed in

Fig. 5.7, where the loading levels (ratios Cp,i/Cp,i) converge to a common value soon after

each perturbation. The protocol accomplishes that through the following mechanism. The

ratios Cp,i/Cp,i reach consensus and rapidly converge to the auxiliary state-variable ξh of the

leader where ξh can be thought of as a quasistatic equilibrium for the fast state-variables

Cp,i/Cp,i. At the same time, the state-variable ξh converges to its equilibrium ξh0, which

depends on the new reference Pd, in the slow time-scale as depicted in Fig. 5.7. Through

that, ξh drives the consensus protocol dynamics since the state-variables Cp,i/Cp,i eventually

converge to the equilibrium of ξh, ξh0.

The intuition driving the execution of the protocol and the above numerical simulations,

can be analyzed as follows. First, the leader WG senses the variations of Pd through its aux-

ililiary state-variable ξh which decreases and increases at t = 3s and at t = 9s, respectively.

Correspondingly, the leader’s consensus state-variable follows ξh and decreases at t = 3s

while it increases at t = 9s. In a concurrent and synchronized manner, the followers act in a

similar fashion, decreasing and then increasing their utilization levels (consensus states) to

reach consensus with the leader. Concretely, these actions lead to the loading levels converg-

ing to 0.6915 after 3s and to 0.7684 after 9s, while initially departing from the value 0.73

(Fig. 5.7). Practically, the distributed CLF-based torque controllers accomplished that by

initially accelerating and then decelerating the WGs as shown in Fig. 5.9. That facilitated

the WGs to reduce and then increment their mechanical power outputs so that altogether,

they closely tracked the desired power reference in both cases (Fig. 5.8).

Moving to the simulation results under Scenario 2, it can be realized from Fig. 5.12 that

the total mechanical power
∑

i Pm,i is initially constant while after the sudden drop in the

wind-speed it dives to a lower value. The equilibrium of the WGs’ loading levels and the
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auxiliary state-variable ξh, before the wind-speed disturbance (i.e in t ∈ [0, 2s]), is:

ξh0 =
Pd∑10
i=1 αi

=
0.38·100·106

10·(0.5·1.225·0.438·π·522·13.173)
= 0.729

The loading levels starting from non equal values converge to this equilibrium asymptotically

during the first 2 seconds, as can be seen in Fig. 5.11. Subsequently, the leader senses the

wind-speed drop in the dynamics of the auxiliary variable ξh whose equilibrium, that is also

the equilibrium for the loading levels, changes to:

ξh0 =
Pd∑10
i=1 αi

=
0.38·100·106

10·(0.5·1.225·0.438·π·522·123)
= 0.965

Notice that, this equilibrium signifies that the WGs’ loading levels have to increase in order

for the WGs to generate the same power Pd but now with lower wind-speed, vw = 12 (m/s)

instead of vw = 13.17 (m/s). The auxiliary state-variable of the leader first moves toward

the new equilibrium. Concurrently and in synchrony with the leader, each of the followers

exploit the peer-to-peer communication to regulate their loading levels to the loading levels

of their respective neighbors. These actions ultimately lead to all loading levels converging

to the new equilibrium ξh0 as seen in Fig. 5.11. This verifies the fair load-sharing among the

WGs. Practically, the WGs regulate their loading levels by controlling the rotational speeds

of their shafts, i.e accelerating or decelerating their turbines. This can be seen in Fig. 5.13.

In Scenario 3, both variations on the reference Pd and the wind speed vw are considered

as can be seen in Fig. 5.14. First, at t = 3s the WF power reference increases from 0.38 p.u

to 0.4 p.u, causing both the loading levels of WGs and correspondingly the total mechanical

power to increase, with the latter tracking the new value of the reference. These responses

are depicted in Fig. 5.15 and Fig.5.16 respectively. Practically, the RSCs realize that by

slowing down the WGs as seen in Fig. 5.17. At t = 9s, the wind speed increases from
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13.17m/s to 14.17 m/s (Fig. 5.14). In this case, the controllers decrease WGs’ loading levels

(Fig. 5.15) such that they still generate total power equal to 0.4 p.u but now with higher

wind speed. To achieve that, the turbines accelerate in this case as shown in Fig. 5.17. The

abrupt raise of the wind speed causes a spike in the response of the total mechanical power

while at t = 15s, the sudden drop of the wind speed causes the mechanical power to dive as

depicted in Fig. 5.16. In the latter case though, the loading levels increase in order to track

their new equilibrium value that depends on both the reference Pd and the wind speed vw.

The reason is that the drop of Pd alone would cause the loading levels to decrease while the

drop of the wind speed vw alone, would cause the loading levels to increase. In our case,

these variations combined eventually cause the loading levels to increment (Fig. 5.15) which

means that the effect of the wind speed variation is more pronounced on the new equilibrium

of the loading levels. In this case, the WGs decelerate in order to increase their total power

departing from the nadir point that was reached because of the dive in the wind speed.

In all the above results, the small delay in the tracking response of the all the variables

is due to the consensus/information dynamics and not due to the implementation of the

consensus dynamics by the local controllers. The latter is achieved via tracking of the

electrical torque reference almost instantaneously due to high control gains. Therefore, we

speculate that if we run the above simulations by replacing the distributed consensus-based

control scheme with a perfect centralized control scheme, i.e a scheme where the references

can be provided to wind generators almost instantaneously, there would be no delay in the

tracking response of the above variables. In future work, it would be interesting to normalize

the performance of our proposed distributed control scheme over such a perfect centralized

control scheme.

In summary, the proposed protocol and corresponding distributed CLF-based torque

controller, as numerically verified by the above simulations under the three critical scenarios,

are able to distributively and dynamically self-organize and control a group of deloaded WGs
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in a fair load sharing fashion so that their total power tracks a given reference.

5.10 Conclusion

In this Chapter, a control method that can be adopted by a fleet of deloaded WGs

to distributively self-dispatch and regulate their power outputs such that they provide total

power reference tracking, is proposed. Our methodology is comprised of a consensus protocol

and a corresponding distributed CLF-based torque controller for the RSC of each WG. By

invoking Lyapunov and singular perturbation theories [10] we provided theoretical guarantees

for the asymptotic behavior of the consensus protocol and derived a specific condition under

which asymptotic stability of its equilibrium is guaranteed. This result is further extended

by proving delay-independent asymptotic stability of its equilibrium through a Lyapunov-

Krasovskii functional. Lastly, we developed a distributed CLF-based torque controller for

the RSC that implements the protocol in practice through peer-to-peer communication.

The effectiveness of the proposed methodology is tested and evaluated through numerical

simulations on the IEEE 24-bus RT system.
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Chapter 6

Conclusions and Future Work

In this Chapter, the research work presented in this dissertation is summarized and con-

cluded, and directions for future work are pointed out.

6.1 Conclusions

In this dissertation, we first recognize that, modern power systems are characterized by

the increasing influx of advanced sensing, communication, information technologies as well

as high levels of penetration of renewable energy resources. On one side, these advanced

technologies provide a new source of information and new means of contributing to power

systems control and to the maintainance of normal operation of power systems. On the

other side, the volatile nature of renewable energy resources causes fast and unpredictable

variations on the generation side that challenge normal operation of power systems. In this

context, two critical problems for modern power systems are identified and studied in this

thesis, the problem of transient stabilization of conventional synchronous generators and the

problem of WF power output regulation. These two problem can be naturally posed as non-

linear control problems due to the inherent nonlinear dynamics of conventional synchronous

generators, storage devices and wind DFIGs involved. In this thesis, these control problems

are effectively solved through the development of several sophisticated nonlinear control
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architectures that leverage the available communication, sensing and information technolo-

gies. By contributing to transient stabilization of SGs and to WF power output regulation,

the proposed control schemes can lead to enhanced performance, stability, robustness and

efficiency in power systems with high levels of wind power penetration. In this thesis, we par-

ticularly focus on developing decentralized and distributed control schemes for synchronous

generators (SGs), energy storage devices and state-of-the-art wind generators (WGs) that

effectively solve the above problems with theoretical guarantees on their performance. The

effectiveness of the proposed control methods is demonstrated and the theoretical results are

numerically verified, through numerical simulations on a proof-of-concept 3-bus system and

the IEEE 24-bus Reliability Test System (RTS).

In the beginning of this dissertation the focus is on the transient stabilization problem

where the following two facts are recognized: 1) excitation control of generators which is tra-

ditionally the one responsible for retaining their transient stabilization and terminal voltage

regulation cannot effectively accomplish both objectives at the same time since they become

conflicting [24]; 2) large disturbances trigger highly nonlinear power system dynamics for

which standard linearization-based controllers are not able to guarantee stabilization or per-

formance for a wide range of operating conditions. With this in mind, a nonlinear control

law based on MIMO feedback linearization theory is proposed that provably attains tran-

sient stabilization and voltage regulation by coordinating the controller of a storage device,

which can provide real and reactive power regulation, with the excitation controller of a syn-

chronous generator. In this way, the proposed control scheme fully exploits the potential of

both a generator and a storage device for real and reactive power regulation in a coordinated

fashion, effectively accomplishing the above two control objectives. The proposed control

scheme is novel since it is the first control scheme to provably attain concurrent transient

stability and voltage regulation for a wide-range of operating conditions by effectively and

efficiently exploiting the capabilities of existing power system technologies like synchronous
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generators with these of new technologies like storage devices.

The biggest part of this dissertation is dedicated to solving the WF power output regula-

tion problem where several contributions are made. We identify this problem as an emerging

problem in modern power systems for the following reason. In the near future and in many

countries around the world, it is expected that a high portion of the total electricity de-

mand will be met from energy coming from wind generators. The required high wind power

integration levels that will achieve that, can be practically realized efficiently and securely

when WGs are able to counterbalance wind intermittency and attain power output regula-

tion together with capabilities such as frequency/inertial control. This is true because high

wind power integration levels lead to significantly deteriorated power quality and increased

cost of electricity for meeting a particular load pattern. The latter comes from the fact that

expensive conventional generators are called to generate the mismatch between scheduled-

predicted and actual available wind power. At the same time, with WGs replacing SGs and

causing an overall decrease of system’s effective inertia while not providing any frequency

or inertial control capabilities, power systems stability, specifically transient and frequency

stability, is greatly challenged. Having established that power output regulation from WGs

is very important for the secure operation of power systems, we first study this problem at

the component level, i.e enabling a single state-of-the-art (SoA) WG with a supercapacitor

storage device to generate predictable power. To solve this problem in this set-up, we pro-

pose a nonlinear energy-based control scheme for the WG which can enable the WG to use

its storage power in order to drive its power output to a constant or varying reference, i.e to

achieve power output regulation. At the same time, the proposed control scheme attains the

maximum power point tracking (MPPT) objective. This control scheme is the first decentral-

ized nonlinear control scheme for this emerging technology of WGs which is expected to be

widely deployed in the future, that can enable power output regulation through exploitation

of their storage devices for a wide-range of operating conditions.

185



In the same direction, the problem of enabling a group of SoA WGs with supercapacitor

storage devices to regulate their total power output is studied. We first emphasize that ag-

gregating wind power outputs of several wind generators leads to reduced temporal volatility

on their total power output (compared with that of their individual power outputs). There-

fore, in this dissertation we develop a distributed control scheme that WGs can adopt to

self-organize and regulate their total power output. With the proposed scheme, their indi-

vidual power outputs do not have to necessarily match given references, as in the case of

the decentralized control scheme mentioned above. Further, with the proposed distributed

control scheme SoA WGs can regulate their total power output while at the same time de-

ploy their storage devices in a fair load-sharing fashion, i.e all storage devices provide the

same amount of power. The methodology for developing this control scheme can be de-

scribed as follows. Initially, the main problem is posed as a constrained consensus problem

for the power electronics controllers of SoA WGs and a distributed leader-follower consensus

protocol whose equilibrium realizes the desired objectives is proposed. Thereafter, we em-

ploy singular perturbation and Lyapunov theories to conduct compositional stability analysis

and establish asymptotic stability of the consensus protocol’s equilibrium point, explicitly

deriving sufficient conditions under which this is guaranteed. Eventually, we develop the

distributed controller for the GSC and the CLF-based control law for the DC-DC converter

that together enable WGs to attain WF power output regulation with fair load-sharing of

the storage devices. The distributed power-electronics control design: 1) can contribute to

total generation cost reduction especially in large power systems since it uses stored wind

energy to balance wind intermittency, eliminating the need for utilizing fast ramping-up SGs;

2) is practically realizable, requiring WGs to exchange feedback signals that can be easily

measured locally; 3) has stability and performance that are guaranteed for a wide range

of operating conditions. The control methodology and the results related to this proposed

scheme are novel in the following aspects:
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1. For a specific class of leader-follower consensus protocols (e.g with the specific com-

munication set-up analyzed here), it is the first work that employs singular perturba-

tion and Gershgorin’s circle theorem for stability analysis. By combining these two

tools, a new methodology and approach to stability analysis for this particular class

of distributed protocols is provided that: 1) provides valuable insight since singular

perturbation reveals the control objectives that exist in different time-scales; 2) is

computationally simpler than standard full-system stability methods since it is based

on Lyapunov functions for lower-dimensional subsystems; 3) it gives an explicit way

of deriving sufficient conditions for stability of this class of protocols by exploiting

Gershgorin’s circle theorem.

2. On the practical side, it is the first work to introduce a distributed power-electronics

control architecture for SoA WGs that reveals and leverages their full potential by

self-organizating and coordinating them so that they provide power output regulation.

It is worthwhile emphasizing that WGs of this particular type will become main power

generating units in the coming years. Therefore, a crucial task that should precede their

large-scale exploitation is to develop systematic methods for controlling them which are

both practical and mathematically rigorous.

In the same spirit, another direction for effectively dealing with the WF power output

regulation problem is explored. Particularly, solving the problem of enabling a group of

wind double-fed induction generators (DFIGs) that lack storage devices to attain WF power

output regulation. These WGs are the ones that are most commonly deployed today. In order

for them to generate predictable power, they have to first operate in a deloaded operating

regime, extracting less power than the maximum possible for given wind-speed conditions.

Then, they have to self-dispatch according to a given total WF power reference and the

local wind speed conditions, and regulate their power outputs dynamically to corresponding

dynamic set-points. The real challenge for wind DFIGs is to perform all these actions in a
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timely, robust and computationally efficient fashion: timely, since in the future, WFs will

have to respond faster to maintain supply-demand power balance, especially in microgrid

settings; robust, such that the performance of WFs is also reliable and computationally

efficient, to support timely and cost-effective operation (especially when the number of WGs

is very large). In this dissertation, we resolve this challenge by developing a novel distributed

control architecture that WGs can adopt to dynamically self-dispatch and control their

mechanical power outputs extracted from the wind, so that their total extracted power

tracks a pre-assigned reference and their utilization levels converge to a common value (i.e

fair load-sharing). The methodology for developing this control scheme is outlined as follows.

First, the main problem is formulated as a constrained consensus problem among WGs where

they have to dynamically agree on their utilization levels (that depend on local wind-speed

conditions) under the constraint that their total power tracks a power reference. Then,

we introduce a suitable leader-follower consensus protocol that WGs can adopt through

their RSC control scheme to carry out these objectives. We employ singular perturbation

theory to temporarily decompose the protocol dynamics and perform compositional stability

analysis to derive a condition under which asymptotic stability of the equilibrium of the

full protocol dynamics is guaranteed. In the last step of our methodology, we analytically

develop the distributed Control Lyapunov Function-based torque controller for the rotor-side

power electronics of WGs that realizes the proposed protocol in practice through peer-to-peer

communication. The proposed distributed control scheme: 1) can enable a group of WGs to

self-dispatch and regulate their power outputs based on local wind-speed conditions, in that

way eliminating the need for a central wind farm controller and leading to low computational

cost; 2) requires minimum peer-to-peer communication among neighboring WGs; 3) enables

WGs to be dispatched and regulate their power outputs timely which is critical when these

actions have to be performed under fast-varying dynamical wind and loading conditions to

balance supply-demand (especially in autonomous power systems such as microgrids); 4) has
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guaranteed stability and performance.

The dissertation results related to this part are the first to systematically and effec-

tively solve the problem of dispatching and controlling the power outputs of a group

of deloaded WGs in order to attain WF power output regulation, in a distributed,

dynamic and efficient manner. In contrast with previous work [13], our method is dy-

namic in the sense that the proposed power electronics WG controllers reach consensus

dynamically according to a given reference. We emphasize that solving the problem

of dispatching WGs efficiently and distributively is as critical as solving the Economic

Dispatch (ED) problem of SGs in a distributed fashion, which has already attracted a

lot of attention in the power systems and control communities [20, 21, 22]. Therefore,

our work provides first steps in this direction.

In summary, this dissertation makes several contributions to the effective solution of the

transient stabilization and WF power output regulation problems, through comprehensive

distributed control methodologies for storage devices, currently used WGs and SoA WGs

with incorporated storage devices.

6.2 Future Work

There are several interesting directions that can be followed to extend the results of this

dissertation.

6.2.1 Direction 1 - Distributed economic dispatch and frequency

control with dispatchable SoA WGs

In the future, SoA WGs will have to provide services to power grids akin to the services

that SGs provide today, e.g primary, secondary frequency control. Since the storage devices of

these WGs render them dispatchable generating units, they can now be accounted for in the

same manner as conventional synchronous generators in the formulation and solution of the

two most important problems in power systems operation, the economic dispatch problem
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and the frequency control problem: 1) distributed economic dispatch problem has to be

reformulated and solved by considering objective functions for dispatchable WGs together

with the objective functions for SGs in a coupled optimization problem set-up,; 2) distributed

optimal frequency control problem has to be reformulated and solved by considering also the

SoA WGs’ advanced frequency-regulation capabilities. Therefore, formulating and effectively

solving these two main problems in high-wind integration settings arise as two core challenges

for future power systems operation. Possible approaches for solving these challenges in a

rigorous manner can be:

1. Distributed economic dispatch with dispatchable SoA WGs: First, this prob-

lem can be formulated under high-wind integration settings and then solved by deriving

optimality and stability conditions that can be realized distributively with price-based

controllers.

2. Distributed optimal frequency control with SoA WGs: We can solve the op-

timal secondary frequency regulation problem when WGs are also regulating units by

deriving optimality and stability conditions that will ensure optimal frequency regula-

tion in high-wind integration settings.

3. Distributed economic dispatch and optimal frequency control with dispatch-

able SoA WGs: Here, we can study, formulate and solve the above interrelated

problems jointly.

Another interesting direction that can be pursued in the future is distributed stability and

control of modern power systems. This direction is related to the results presented in this

dissertation but is more generic and does not involve only stability and control aspects for

wind farms but stability and control aspects for any type of new heterogeneous technologies

that can be interconnected in power systems today.
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6.2.2 Direction 2 - Distributed stability assessment and control of

power systems

The heterogeneity and complexity of power systems are increasing due to the intercon-

nection of new power generation, communication and information technologies. Moreover,

the power system dynamics tend to evolve in faster time-scales due to decreasing system

inertia caused by the power-electronically-interfaced generation technologies. Additionally,

power systems experience more severe and uncertain power disturbances, originating from

renewable energy resources. The implication of all the above is that stability and normal

operation of power systems are now more endangered but also harder to assess and guarantee.

In this new power systems environment, conducting centralized stability assessment be-

comes computationally inefficient (due to huge amount of data), requires information and

dynamical models from geographically distant control areas and also raises privacy concerns.

At the same time, there are no systematic methods for decomposing the global control ob-

jectives for stability and performance of an interconnected power grid into simpler control

objectives that its dynamical elements (e.g SGs, WGs, storage devices), have to accomplish

[45, 46, 47]. This has the following crucial implications: 1) there are no formal guarantees

for stability and performance of the interconnected system with all these integrated hetero-

geneous technologies; 2) there are no specific control objectives which various technologies

have to meet along with their controllers that are also interrelated with the global objectives

discussed above; 3) because of 2), there are no incentives or requirements for the various

technologies to participate in power systems control through advancing their control method-

ologies; 4) also, the implications of 2), 3) are that, the way power systems are being operated

today does not promote the ongoing plug-and-play evolution of the grid and the integration of

new technologies at value since the control capabilities and value of each technology cannot

be realized and leveraged in such environments [45, 46, 47]. The above challenges can be
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solved by:

1. Developing distributed stability methods that are: 1) computationally efficient,

requiring power system agent-based components to exchange limited information and

formally assess whether they satisfy simple stability criteria; 2) privacy-preserving,

meaning they only require minimal communication among components and nonsensi-

tive private information (e.g detailed dynamical models); 3) provide faster system-wide

stability assessment with guarantees, something very important in modern grids with

fast-varying loading conditions. Previous work toward distributed stability assessment

and control design for nonlinear dynamical systems can be found in [48, 49, 50].

2. Developing distributed stability criteria based on sufficient conditions that single

or group of components have to respect and, if met, guarantee system-wide stability and

performance [45, 46, 47]. The significance of developing such criteria is that they will

1) enable plug-and-play integration of various technologies with simple and well-defined

control objectives accomplished by their controllers; 2) guide the control design since

the controllers have to comply with specific requirements; 3) provide guarantees for

system-wide performance and stability ; 4) promote integration of various technologies

at value, since in the above framework their capabilities and potential can be realized

and leveraged.

3. Developing advanced distributed control architectures for various technologies

that will guarantee stability and certain performance aligned with the criteria in 2).

Our previous work in this direction can be found in [51, 24, 30, 52, 18, 19].
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Appendix A

3-Bus Power System with STATCOM

and Storage

The 3-bus system presented in Chapter 2 is based on the parameters for the dynamical

models of generators and the transmission lines from [53] and the parameters for the models

of the Automatic Voltage Regulators (AVR) from [9] given below.

Gen # Bus # H T
′

d0 Xd Xq X
′

d X
′
q

1 1 10 5 0.44 0.088 0.088 0.088

2 2 15 5 0.25 0.05 0.05 0.05

3 3 30 7 0.075 0.015 0.015 0.015

Table A1: Parameters of generators’ dynamical models
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Gen # Bus # KA TA KE TE KF TF

1 1 20 0.2 1 0.314 0.063 0.35

2 2 20 0.2 1 0.314 0.063 0.35

Table A2: Parameters of the generators’ Automatic Voltage Regulator (AVR) models

From Bus # To Bus # R X

1 2 0.01 0.46

1 3 0.01 0.26

2 3 0.0086 0.0806

Table A3: Parameters of Transmission Lines

Storage # Bus # Rb Lb

2 2 0.05 0.1

Table A4: STATCOM Battery Storage Parameters
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Appendix B

3-Bus Power System with Wind

Generator

The 3-bus system presented in Chapter 3 is based on the parameters for the dynamical models

of generators and the transmission lines from [53] and the parameters for the models of the

Automatic Voltage Regulators (AVR) from [9]. In addition, the parameters for the dynamical

model of the double-fed induction wind generator are from [5]. All these parameters are

provided below.

Gen # Bus # H T
′

d0 Xd Xq X
′

d X
′
q

1 1 10 5 0.44 0.088 0.088 0.088

2 2 15 5 0.25 0.05 0.05 0.05

Table B1: Parameters of generators’ dynamical models
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Gen # Bus # KA TA KE TE KF TF

1 1 20 0.2 1 0.314 0.063 0.35

2 2 20 0.2 1 0.314 0.063 0.35

Table B2: Parameters of the generators’ Automatic Voltage Regulator (AVR) models

Gen # Bus # T0 Xm Xr Xs X
′
s Rs Rr

3 3 1.088 3.5092 3.5547 3.5859 0.1206 0.01015 0.0088

Table B3: Parameters of double-fed induction wind generator’s dynamical model

Gen # Bus # Rg Lg Rsc Csc Cdc

3 3 0.05 0.1 0.1 0.05 0.0001

Table B4: Parameters of double-fed induction wind generator’s GSC, capacitor and super-
capacitor storage models

From Bus # To Bus # R X

1 2 0.01 0.46

1 3 0.01 0.26

2 3 0.0086 0.0806

Table B5: Parameters of Transmission Lines
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Appendix C

IEEE 24-Bus Reliability Test System

with a Wind Farm

The parameters of the dynamical models of generators as well as of their AVRs are given

below while the parameters of the transmission lines can be found in [54]. The impedance

of the line segment among two neighboring wind generators is Zd = 1.3951e−04+1.9849e−

04j Ω.

197



Gen # Bus # H T
′

d0 Xd Xq X
′

d X
′
q

1 1 5.46 8.96 0.146 0.0608 0.0608 0.0608

2 2 2.67 6 0.25 0.05 0.05 0.05

3 7 3.304 5.89 1.3125 0.1813 0.1813 0.1813

4 13 6.496 6 0.8958 0.1198 0.1198 0.1198

5 14 2.5 5.89 1.3125 0.1813 0.1813 0.1813

6 15 5.46 8.96 0.146 0.0608 0.0608 0.0608

7 16 5.46 6 0.8958 0.1198 0.1198 0.1198

8 18 23.55 8.96 0.146 0.0608 0.0608 0.0608

9 21 23.55 8.96 0.146 0.0608 0.0608 0.0608

10 23 12.36 6 0.8958 0.1198 0.1198 0.1198

Table C1: Parameters of generators’ dynamical models

Gen # Bus # KA TA KE TE KF TF

1,...,10 1 20 0.2 1 0.314 0.063 0.35

Table C2: Parameters of the generators’ Automatic Voltage Regulator (AVR) models

Wind Gen # Bus # T0 Xm Xr Xs X
′
s Rs Rr H

1,...,10 3 1.088 3.5092 3.5547 3.5859 0.1206 0.01015 0.0088 4

Table C3: Parameters of double-fed induction wind generator’s dynamical model

Wind Gen # Bus # Rg Lg Rsc Csc Cdc

1,...,10 3 0.05 0.1 0.1 0.05 0.0001

Table C4: Parameters of double-fed induction wind generator’s GSC, capacitor and super-
capacitor storage models
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