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Abstract

We study distributed estimation of dynamic random fields observed by a sparsely

connected network of agents/sensors. The sensors are inexpensive, low power, and they

communicate locally and perform computation tasks. In the era of large-scale systems and

big data, distributed estimators, yielding robust and reliable field estimates, are capable of

significantly reducing the large computation and communication load required by centralized

estimators, by running local parallel inference algorithms. The distributed estimators have

applications in estimation, for example, of temperature, rainfall or wind-speed over a large

geographical area; dynamic states of a power grid; location of a group of cooperating

vehicles; or beliefs in social networks.

The thesis develops distributed estimators where each sensor reconstructs the estimate

of the entire field. Since the local estimators have direct access to only local innovations,

local observations or a local state, the agents need a consensus-type step to construct locally

an estimate of their global versions. This is akin to what we refer to as distributed dynamic

averaging. Dynamic averaged quantities, which we call pseudo-quantities, are then used by

the distributed local estimators to yield at each sensor an estimate of the whole field. Using

terminology from the literature, we refer to the distributed estimators presented in this thesis

as Consensus+Innovations-type Kalman filters.

We propose three distinct types of distributed estimators according to the quantity that

is dynamically averaged: (1) Pseudo-Innovations Kalman Filter (PIKF), (2) Distributed

Information Kalman Filter (DIKF), and (3) Consensus+Innovations Kalman Filter (CIKF).

The thesis proves that under minimal assumptions the distributed estimators, PIKF, DIKF and

CIKF converge to unbiased and bounded mean-squared error (MSE) distributed estimates of

the field. These distributed algorithms exhibit a Network Tracking Capacity (NTC) behavior

– the MSE is bounded if the degree of instability of the field dynamics is below a threshold.

We derive the threshold for each of the filters.

The thesis establishes trade-offs between these three distributed estimators. The NTC

of the PIKF depends on the network connectivity only, while the NTC of the DIKF and of

the CIKF depend also on the observation models. On the other hand, when all the three
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estimators converge, numerical simulations show that the DIKF improves 2dB over the PIKF.

Since the DIKF uses scalar gains, it is simpler to implement than the CIKF. Of the three

estimators, the CIKF provides the best MSE performance using optimized gain matrices,

yielding an improvement of 3dB over the DIKF.

Keywords: Kalman filter, distributed state estimation, multi-agent networks, sensor net-

works, distributed algorithms, consensus, innovation, asymptotic convergence, mean-squared

error, dynamic averaging, Riccati equation, Lyapunov iterations, distributed signal process-

ing, random dynamical systems.
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CHAPTER 1
Introduction

1.1 Motivation

For decades, the Kalman-Bucy filter [1, 2] has played a key role in estimation, detection, or

prediction of time-varying noisy signals. The Kalman filter is found in a wide variety of applications

ranging from problems in navigation to environmental studies, computer vision to bioengineering,

signal processing to econometrics. More recently, algorithms inspired by the Kalman filter have

been applied to estimate random fields monitored by networks of sensors. In these problems, we

distinguish two distinct layers: (a) the physical layer of the time-varying random field; and (b) the

cyber layer of sensors observing the field.

A centralized approach to field estimation poses several challenges. It requires that all sensors

communicate their measurements to a centralized fusion center. This is fragile to central node

failure and severely taxes computationally the fusion center. Moreover, it also requires excessive

communication bandwidth to and from the fusion center. Hence, the centralized approach is inelastic

to estimation of large-scale time-varying random fields, like when estimating temperature, rainfall,

or wind-speed over large geographical areas [3–6], estimating dynamic states of a power grid, [7–9],

tracking a group of cooperating vehicles, [10, 11], or analyzing the diffusion of beliefs in social

networks, [12]. The field is observed by a sparse network of sensors (agents) that are inexpensive,

low power, communicate locally, and can compute. The goal of this thesis is to design distributed

linear estimators of time-varying fields that use only local communication among the sensors such

that the distributed estimates are asymptotically unbiased with bounded mean-squared errors (MSE).
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1.2 Previous Work

We review related previous research on distributed estimation of time-varying random fields.

We organize the prior work into two main classes, the second class being further sub-divided in two

sub-classes: i) Two time scale: Fast communication–slow dynamics and sensing; and ii) Single

time scale: ii-1) Gossip Kalman filters; and ii-2) Consensus+innovations estimators.

Two time scale: Fast communication–slow dynamics and sensing. Here, the linear distributed

estimator reproduces a Kalman filter locally at each sensor with a consensus step on the observations.

This is a two time scale algorithm because the sensing and the local Kalman filter updates occur

at the same slow time scale of the process dynamics, while the consensus iterations happen at the

fast time scale of communication among sensors. References [13–21] represent variations on this

structure. Reference [15] modifies the local Kalman filters to account for the distributed nature of

the field so that the local Kalman filters are all different since they operate on different dynamics

(local dynamics). References [19, 20] assume local observability, i.e., the dynamical system is

observable at each sensor; this is a much more stringent condition than global observability and is

not practical in most distributed large-scale applications. The two time scale distributed estimator

in [21] considers time-varying dynamics and observation matrices and expresses the measurements

in information filter form. As a final comment, we may also include in this class [22,23] that assume

that the communication network is complete. Since every agent communicates with every other,

every sensor acts as a centralized fusion center and the consensus step is trivial. In [23] the nodes

broadcast only one bit based on the sign of the innovations.

Single time scale. In this class, sensing and communication occur once at every time step; the

local estimators operate at the same time scale of the process dynamics. Operating at a single time

scale reduces the onerous communication rounds required by the consensus step in the two time step

estimators. The tradeoffs between different versions of these single time step algorithms are between

the convergence rate and the asymptotic MSE of the estimators. Reference [24] proposed a gossip

Kalman filter, a distributed estimator where each agent replicates a (local) Kalman filter processing

its local observations. At every sensing time step, there is a communication round between a single

pair of connected sensors, chosen according to the gossip protocol, [25], when these two sensors

exchange their current state estimate and their current error covariance matrix provided by the
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local Kalman filter Riccati equation. The reference shows through large deviations theory that,

under appropriate conditions, asymptotically, each local estimate is unbiased and has bounded

covariance, regardless of the degree of instability of the field dynamics. Reference [26] improved

the convergence rate of [24] by allowing several pairs, rather than a single pair, of connected sensors

to exchange their states. Although gossip Kalman filters can track any unstable field, they may pay

a price on the communications (every round exchanges not only the state estimate but also the error

covariance, an object on the order of M2 that can be very large for spatially distributed fields), on

the convergence rate, and on higher asymptotic MSE with respect to the consensus+innovations

distributed estimator that we present here.

The consensus+innovations estimators, the second class of single time scale distributed estima-

tors, extend to time varying dynamics the consensus+innovations distributed estimators introduced

in [27, 28] for parameter estimation; see also [29]. The consensus+innovations distributed linear

parameter estimator updates at every sensor the local state estimate by a consensus term on the

current estimate and by the current local innovations–the difference between the current sensor

observation and its local prediction. A number of approaches [30–33] have been developed to

extend this structure to time varying fields. They add a term to the consensus+innovations dis-

tributed parameter estimator to account for the field time dynamics. In [30, 31], the innovation

update at each sensor collects its own observations and those of its neighbors. These references

show that the distributed estimate at every sensor is asymptotically unbiased and, if the degree

of instability of the field dynamics is appropriately upper bounded (this bound is defined as the

Network Tracking Capacity (NTC) [30, 31]), the distributed field estimator has bounded MSE. The

NTC for the estimators in [30, 31] depends on the connectivity of the sensor network and on the

assumed observation model. Further, [32, 33] developed structural system properties that the sensor

network and the observation models satisfy such that the consensus+innovations type distributed

estimator in [30] has bounded MSE performance. Reference [34] developed a single time-scale

distributed estimator considering that there are no input or measurement noises. This reference

provides a sufficient condition for the existence of an augmented observation model, which depends

on the eigenvalues of the network Laplacian and the field dynamics matrix.
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1.3 Contributions
In this section, we highlight the major challenges in distributed filtering and prediction of

time-varying random fields and discuss the contributions of the thesis.

• Time-scales of operation: In distributed estimation, the three components of the problem

framework are field dynamics, sensing, and communication. We denote the time constants

of these components by τdyn, τsens, and τcomm, respectively. In parameter estimation the field

is almost static, i.e., τdyn � τsens and τdyn � τcomm. In dynamic field estimation, the time

constants of field dynamics and sensing are comparable, τdyn ≈ τsens. For this scenario,

prior work on distributed Kalman filtering considered a two time-scale approach where the

communication between agents is orders of magnitude faster than the dynamics and sensing,

i.e., τcomm � τdyn ≈ τsens. However, in most practical applications this is not the case; instead

all the three time constants are of the same order of magnitude. To address this problem, we

consider single time-scale distributed estimation where τcomm ≈ τdyn ≈ τsens.

• Pseudo-innovations, pseudo-observations, and pseudo-state: In centralized estimation,

a fusion center receives the observations from all the agents and then combines them to

compute the field estimates. In distributed inference, the agents do not have access to all the

observations. Hence, the local distributed estimators at each agent lack the global innovations

that are used by the centralized Kalman filter. Further, the dimensions of the local observations

and of the local innovations are different at different agents. In contradistinction with the

centralized solutions, we identify that the key components in the distributed estimators that we

develop are a global average step of linearly transformed versions of one of the three quantities:

innovations, observations, or state. We refer to these linearly transformed and normalized

versions of the local innovations, local observations, and state as pseudo-innovations, pseudo-

observations, and pseudo-state, respectively. The dimensions of the pseudo-innovations,

pseudo-observations, and pseudo-state are the same at every agent.

• Dynamic averaging: In a centralized solution, at every time iteration all the agents transmit

their observations to a fusion center that can compute the average of the local pseudo-

observations, pseudo-innovations, or pseudo-state. But in the distributed setup, each agent has
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its own pseudo-observation/pseudo-innovations/pseudo-state and, at each time iteration, it can

communicate only once with its neighbors. The distributed estimators compute the distributed

estimates of the average of all the local quantities, namely, of the pseudo-observations, pseudo-

innovations, or pseudo-state through a dynamic consensus step. This is similar to distributed

dynamic averaging. Although distributed averaging is well-studied, [35–37], very limited

literature is available when the inputs are time-varying [38–41]. In this thesis, we propose

consensus+innovations approaches for dynamic averaging. Under the set-ups of distributed

field estimation that we assume, we prove that the dynamic averaging steps yield unbiased

distributed average estimates with bounded mean-squared error (MSE). The distributed field

estimators use these average estimates in the filtering step to compute the field estimates.

• Distributed Kalman filter: Apriori it is not known which of the three dynamic averaging

estimators will yield better performance or what are the trade-offs in the computation com-

plexity or what are the communications constraints of each algorithm. Hence, in this thesis,

we develop three distinct distributed estimators:

1. Pseudo-Innovations Kalman Filter (PIKF in Chapter 3) using average pseudo-innovations

estimates;

2. Distributed Information Kalman Filter (DIKF in Chapter 4) using average pseudo-

observation estimates; and

3. Consensus+Innovations Kalman Filter (CIKF in Chapter 5) using pseudo-state esti-

mates.

The structure of these estimators involves two steps – a dynamic averaging step and a field

estimation step. The details vary, see Fig 1.1. The structure of the dynamic averaging is

consensus+innovations type for all the three estimators. So there are two gain parameters

for dynamic averaging: a consensus gain and an innovations (pseudo-innovations/pseudo-

observations/pseudo-state) gain. The structure of the field estimation step in the PIKF is

also consensus+innovations type, i.e., it includes a consensus term and an innovations

term, whereas in the DIKF and the CIKF it only includes an innovations term. In the field

estimation step of the PIKF, there are again two gain parameters: a consensus gain and a
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Figure 1.1: Comparison between the three distributed estimators presented in the thesis: (top) PIKF,
(middle) DIKF, and (bottom) CIKF.
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filtering gain. With the DIKF and the CIKF, the field estimation step involves only one

gain. We prove that these estimators achieve unbiased estimates with bounded MSE under

the minimal assumptions of global detectability and network connectedness. We analyze

all the error processes in vector form and derive the distributed version of the associated

algebraic Riccati equation. The distributed algebraic Riccati equation captures the asymptotic

behavior of the prediction error covariances, whose traces provide the MSE of the distributed

estimators. We validate our theoretical results through numerical evaluations using Monte-

Carlo simulations. We evaluate experimentally the sensitivity of these three distributed

estimators to model parameters, noise statistics, gain variations, and network models. The

steps of the distributed estimators, PIKF, DIKF and CIKF, are illustrated using a block diagram

in Fig 1.1. The structure of these three estimators are similar but they exhibit trade-offs in

terms of convergence guarantees, gain designs and MSE performance.

• Tracking capacity: In distributed parameter estimation and detection, global observability

and mean connectedness of the network is sufficient for optimal asymptotic performance of

consensus+innovations type algorithms [27, 28]. In two time-scale distributed estimation of

dynamical fields, the agents are allowed to communicate among themselves multiple times

between each observation cycle till they come to a consensus of the global average of all

the local observations. Hence the two time-scale distributed Kalman filters also converge

under the assumptions of global observability and mean connectedness of the network. But

in this thesis, we consider single time-scale updates only, i.e., the agents are constrained to

communicate with their neighbors only once between each observation of the dynamical

system. In distributed estimation of dynamical fields, global observability and connectedness

on average of the underlying network are sufficient for bounded MSE only for stable fields.

Distributed tracking of unstable systems requires stricter conditions on the network topology

and/or local observation models, in addition to global observability. References [30, 31]

studied distributed state estimation of dynamical systems with Kalman filter type algorithms

and introduced the concept of Network Tracking Capacity (NTC). NTC restricts the degree of

instability of the dynamical systems that can be tracked by a distributed network of agents. In

contrast with [30, 31], we show that the network tracking capacity of the PIKF in Chapter 3

is dependent only on the spectral gap of the network topology and is independent of the
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model assumed for the local observations. For the DIKF and CIKF algorithms in Chapters 4

and 5, the NTC depends on both the connectivity of the agent communication network and

on the local observation models. Hence the PIKF can still provide bounded MSE distributed

estimates depending only if the network connectivity satisfies the NTC, having the flexibility

of increasing the NTC just by rewiring the agent communication network.

• Gain designs: The distributed estimators have gains associated with each step – dynamic

averaging and field estimation. The design of these gains directly impacts the MSE perfor-

mance of the distributed estimation algorithms. It is imperative to choose the gain designs

such that the MSE of the distributed solutions are bounded. In PIKF, we design a scalar

constant-weight for the dynamic averaging consensus, a constant time-invariant gain matrix

for the pseudo-innovations and a constant matrix gain for the field estimation step. These

designs guaranty bounded MSE performance for the PIKF. In the dynamic averaging step

of the DIKF, we consider scalar weights for the consensus and for the innovations. Then,

given the distributed averaged pseudo-observation estimates, we design a filter gain matrix

for the DIKF using the Gauss-Markov theorem, so that the MSE is minimized. We also

provide a design with a scalar filter gain for the DIKF that shows comparable MSE perfor-

mance and reduces the computation complexity significantly. In the CIKF, the consensus and

innovations gain matrices for the dynamic averaging step and the gain matrix for the field

estimation step are designed using the Gauss-Markov theorem so that the estimation MSE

is minimized. The gain design is novel as it maintains the block-sparsity pattern similar to

the graph Laplacian; these non-zero blocks are computed using the Gauss-Markov theorem.

Designing the Gauss-Markov gains is particularly challenging for distributed estimators, as

the gain matrices can not be full-matrices. We overcome this challenge and provide design

details in Chapter 5. The DIKF provides the advantage of simpler implementation with scalar

gains with a corresponding loss in performance with respect to the CIKF.

• MSE Performance: Developing distributed estimators for time-varying random fields (“dis-

tributed Kalman filter”) has gained considerable attention over the last few years. The goal

is to achieve MSE performance as close as possible to the optimal centralized Kalman filter.

The design of the distributed optimal time-varying field estimator is, in general, NP-hard.
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For distributed parameter estimation, references [27, 42] have shown asymptotic optimality,

in the sense that the distributed parameter estimator is asymptotically unbiased, consistent,

and efficient converging at the same rate as the centralized optimal estimator. However,

estimation of time-varying random fields adds another degree of complication since, while

information diffuses through the network, the field itself evolves. This lag causes a gap

in MSE performance between the distributed and centralized field estimators. Numerical

simulations show that when all these estimators meet the NTC condition, the CIKF is the

best among the three in terms of MSE performance. The DIKF is 2dB better than the PIKF.

The CIKF improves the performance by 3dB over the DIKF, reducing by half the gap to the

centralized (optimal) Kalman filter, while showing a faster convergence rate than the DIKF.

1.4 Thesis Outline
In this section, we summarize the organization of the rest of the thesis. We detail the contents of

each chapter.

• Chapter 2: Distributed Field Estimation

In this chapter, we discuss the framework of distributed field estimation over multi-agent

networks. The problem setup is classified into two layers: physical layer and cyber layer.

The physical layer is the time-varying random field. The cyber layer consists of the network

of sensors/agents. The sensors make local observations of the underlying field and they

exchange their estimates with their neighbors by local communications. We state the modeling

assumptions: Gaussian and uncorrelated input noise, observation noise, and initial conditions;

and, the assumptions of global detectability and network connectedness that are required

for bounded MSE distributed field estimation. We briefly discuss the centralized Kalman

filter and the Information filter. This chapter briefly compares and contrasts the prior work

on distributed estimation, both single time-scale and two time-scale, with the distributed

estimators developed in this thesis.

• Chapter 3: Pseudo-Innovations Kalman Filter

This chapter introduces pseudo-innovations that are linear transformations of innovations.

The dimension of the local innovations are different for different agents, whereas the pseudo-
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innovations of all the agents have the same dimension (equal to the dimension of the field).

The Pseudo-Innovations Kalman Filter (PIKF) proposed in this chapter combines the pseudo-

innovations from neighboring agents to obtain the distributed estimates of the global average

of all the pseudo-innovations at each agent. Since the pseudo-innovations are themselves

dynamic (time-varying), this step of the distributed estimator is akin to a dynamic averaging

problem. We show, both theoretically and numerically, that the PIKF is unbiased with

bounded MSE as long as the spectral norm of the field dynamics
(
‖A‖2

)
is less than the

Network Tracking Capacity (NTC). The NTC depends on the diffusion rate of the agent

communication network. Numerically, we show that it is possible to increase the NTC of the

network by altering the communication links among the nodes.

• Chapter 4: Distributed Information Kalman Filter

This chapter develops the Distributed Information Kalman Filter (DIKF) for the distributed

estimation of the dynamic random field. This chapter introduces pseudo-observations, a

normalized version of the observations, whose dimensions are the same for all the agents.

Recall that the dimension of the local observations are different. The DIKF introduces a

new consensus+innovations type Dynamic Consensus on Pseudo-Observations (DCPO)

algorithm. The DCPO step computes the distributed estimate of the global average of the

pseudo-observations, and this estimate turns out to yield more accurate field estimates than

the global average of the pseudo-innovations. In the PIKF presented in Chapter 3, the NTC

depends only on the network connectivity, but for the DIKF it depends on both the network

connectivity and the local observation models. The MSE error performance of the DIKF is

better than other contemporary single time-scale distributed estimators [24,30,31] in literature.

We design the scalar consensus and innovations gain for the DCPO and the innovation gain

matrices for the DIKF. In this chapter, we develop a distributed version of the algebraic

Riccati equation that provides the trajectory of the asymptotic error covariance matrices.

Through numerical evaluations, we validate our theoretical convergence and design claims,

and demonstrate the impact of model parameters, noise, and network parameters on the

performance of the DIKF.
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• Chapter 5: Consensus+Innovations Kalman Filter

In this chapter, we propose a Consensus+Innovations Kalman Filter (CIKF) that obtains

unbiased minimized MSE distributed estimates of the pseudo-states and real-time employs

them to obtain the unbiased distributed filtering and prediction estimates of the time-varying

random state at each agent. The pseudo-state is a linear transformation of the dynamic

state/field and it has the same dimension as the field. The filter update iterations are of the

Consensus+Innovations type. Using the Gauss-Markov principle, we design the optimal

consensus and innovation gain matrices that yield approximately 3dB improvement over the

DIKF in Chapter 4. The method to design the gain matrices for distributed estimation and

consensus are unique and novel. We simulate the CIKF with a large field (50 state variables)

monitored by a network with 50 agents, and study its convergence characteristics.

• Chapter 6: Conclusions

This chapter summarizes the theoretical and simulation results presented in the thesis. We

revisit the contributions of the thesis towards the development and design of single time-

scale distributed filtering and prediction algorithms for time-varying random fields. We state

how this work can be used in applications and draw insights on how the thesis can lay the

foundations for future research directions.

Each chapter contains related literature review, and compares the results, presented in the chapter,

with existing work.
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CHAPTER 2
Distributed Field Estimation

2.1 Introduction
In this chapter we introduce the problem statement for distributed estimation. We define

the underlying framework for which we develop a distributed estimator. In Section 2.2, the

formulation of the system, observation and communications models are presented. Section 2.2

states the modeling assumptions and the objectives. We briefly discuss the centralized estimators in

Section 2.4. In Section 2.5 the existing distributed estimators are summarized. Finally, we conclude

in Section 2.6.

2.2 System, Observation, and Communication
The distributed estimation framework consists of three components: dynamical system, local

observation, and neighborhood communications. These three parts include two layers: the physical

layer and the cyber layer. For the sake of simplicity, we motivate the model with the example of a

time-varying temperature field over a large geographical area monitored by a sensor network.

2.2.1 Physical layer: dynamical system
Consider a time-varying temperature field distributed over a large geographical area, as shown

in Fig 2.1. A first-order approximation and discretization of the temperature field provide spatio-

temporal discretized temperature variables xji , j = 1, · · · ,M , of M sites at discrete time indexes

i = 1, · · · , . We stack the M field variables in a temperature state vector xi =

[
x1
i , · · · , xMi

]T
∈

RM . The evolution of the time-varying temperature field, xi, can be represented by a discrete time
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Figure 2.1: Dynamical system: random field

linear dynamical system:

xi+1 = Axi + vi, (2.1)

where the first-order dynamics matrix A ∈ RM×M contains the coupling effects between the M

temperature variables, and the residual vi =

[
v1
i , · · · , vMi

]T
∈ RM is the system noise driving the

dynamical temperature field. At each of the M sites, the input noise vji , j = 1, · · · ,M accounts for

the deviations in the temperature after the overall field dynamics. The field dynamics A incorporates

the sparsity pattern and connectivity of the physical layer consisting of the dynamical system (2.1).

2.2.2 Cyber layer: local observations
The physical layer consisting of the field dynamics (2.1) is observed by a cyber layer consisting

of a network of N agents (sensors). In Fig 2.2, we see that there are N sensors, where each sensor

observes the temperatures of only a few sites. Denote the number of sites observed by sensor n

by Mn,Mn �M , and its measurements at time i by zni ∈ RMn . The observations of the agents in

the cyber layer can be represented by a linear model:

zni = Hnxi + rni , n = 1, . . . , N, (2.2)

where, the observation matrix Hn ∈ RMn×M contains the observation pattern and strength informa-

tion, and the observation noise rni ∈ RMn reflects the inaccuracy in measurements due to sensor

precision, high frequency fluctuations in temperature, and other unavoidable constraints.
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Figure 2.2: Agent network: local measurements

To illustrate, consider that sensor 1 is observing the temperature of 3 sites {x1
i , x

2
i , x

3
i }, i.e.,

M1 = 3. An example snapshot of the observation model of agent n is


z11
i

z12
i

z13
i


︸ ︷︷ ︸
z1i

=


1 0 0 . . . 0

0 5 0 . . . 0

0 0 6 . . . 0


︸ ︷︷ ︸

H1


x1
i

...

xMi


︸ ︷︷ ︸
xi

+


r11
i

r12
i

r13
i


︸ ︷︷ ︸
r1i

=


x1
i

5x2
i

6x3
i

+


r11
i

r12
i

r13
i

 .

Now, for the ease of analysis, we aggregate the noisy local temperature measurements, z1
i , · · · zNi ,

of all the N agents in a global observation vector, zi ∈ R
∑N

n=1Mn:


z1
i

...

zNi


︸ ︷︷ ︸
zi

=


H1

...

HN


︸ ︷︷ ︸

H

xi +


r1
i

...

rNi


︸ ︷︷ ︸
ri

, (2.3)

where, the global observation matrix is H ∈ R
∑N

n=1Mn×M and the stacked measurement noise

is ri ∈ R
∑N

n=1Mn . Note that, in general, the temperature measurement model is non-linear. For

non-linear cases, refer to distributed particle filter in [43] and the references cited therein. Here we

perform a first-order approximation to obtain a linear observation sequence.
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Figure 2.3: Agent network: neighborhood communications

2.2.3 Cyber layer: neighborhood communication
In the cyber layer, the agents exchange their temperature readings or current estimates with their

neighbors. In many applications, to reduce communications costs, neighbors communicate only

with their geographically nearest agents as shown in Fig 2.3.

Formally, the agent communication network is defined by a simple (no self-loops nor multiple

edges), undirected, connected graph G = (V , E), where V is the set of sensors (nodes or agents) and

E is the set of local communication channels (edges or links) among the agents. The open Ωn and

closed Ωn neighborhoods of agent n are:

Ωn = {l|(n, l) ∈ E}. (2.4)

Ωn = n ∪ {l|(n, l) ∈ E}. (2.5)

In Fig 2.3 the open and closed neighborhoods of agent 1 are Ω1 = {2, 3} and Ω1 = {1, 2, 3},

respectively. The Laplacian matrix of G is denoted by L. The eigenvalues of the positive semi-

definite matrix L are ordered as 0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λN(L). For details on graphs refer

to [44]. The communication network is sparse and time-invariant.

In this thesis, we focus on developing a distributed estimator over a time-invariant network with

time-invariant observation models, Hn, and time-invariant dynamics A. Future work can extend

these results to make the solution robust to communication link failure, observation and/or node

failures. In this section, we have laid the framework of the problem statement for the rest of this

thesis. The complete problem setup is demonstrated in Fig. 2.4. The framework consists of two
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Figure 2.4: The evolution of a random field as a discrete-time linear dynamical system. The field is
observed by a network of sensors (agents). The agents collaborate locally via agent communication
network.

layers: (a) physical layer, consisting of the field dynamics, and (b) cyber layer, consisting of the

sensor local observations and agent communication network.

2.3 Problem Statement
The goal of this work is to obtain distributed estimates of the time-varying random field xi

at each agent. The agents have access to their own observations zni and exchange their estimates

with theirs neighbors. In this section we state the objective of the distributed estimation, and the

assumptions on the model.

2.3.1 Modeling assumptions
In this thesis, we make three assumptions on the model framework for the purpose of field

estimation. The assumptions are formally stated as:

Assumption 1 (Gaussian processes). The system noise, vi, the observation noise, ri, and the initial

condition of the system, x0, are Gaussian sequences, with

vi ∼ N (0̄, V ), rni ∼ N (0̄, Rn), x0 ∼ N (x̄0,Σ0),

where, V ∈ RM×M , Rn ∈ RMn×Mn and Σ0 ∈ RM×M are the corresponding covariance matrices.

The noise covariance matrix R of the global noise vector vi in (2.3) is block-diagonal, i.e., R =

blockdiag{R1, . . . , RN}, and positive-definite, i.e., R > 0.
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Assumption 2 (Uncorrelated sequences). The system noise, the observation noise, and the initial

condition: {{vi}i, {ri}i,x0}i≥0 are uncorrelated random vector sequences.

Assumption 3 (Prior information). Each agent in the cyber layer knows the system dynamics model,

A and V , the initial condition statistics, x̄0 and Σ0, the parameters of the observation model, H

and R, and the communication network model, G.

Assumption 1 characterize the properties of the noises in the system and observations, and the

initial conditions. For Gaussian noise with non-zero means, the problem setup can be reduced to a

zero-mean case by simple linear transformation and all the results hold true. However, for distributed

estimation under non-Gaussian noises refer to distributed particle filtering approaches in [45, 46]

and the references cited therein. In this thesis, by Assumption 2 we consider that the noises and

the initial conditions are uncorrelated. In the scenario of correlated noises, the derivations can be

modified for distributed estimation as explained in [47]. In large-scale system applications, the

dynamics, observation, and network Laplacian matrices, A, Hn, and L, are sparse, with Mn �M ,

and the agents communicate with only a few of their neighbors, |Ωn|� N,∀n.

In the dynamics (2.1) and observations (2.2), we assume that there is no deterministic input.

Proposition 1. It is sufficient to design a filter without any input and in the case of non-zero inputs

the filter estimates are corrected with the known non-zero mean of the field.

Proof. It is sufficient to design an estimator considering no deterministic inputs and then we can

extend it to non-zero input case by adapting the following approach. Consider a discrete-time

system and observation model:

xi+1 = Axi +Bui + vi

zi = Cxi +Dui + ri

where, i is the time index; xi and zi are the state and observation of the system; the matrices

A,B,C,D and the input sequence ui are known; and, the mean and covariance of the random

initial condition x0 and random noise sequences vi, ri are known. The objective is to obtain the

estimates, x̂i+1, of xi+1 given the observations zi. Now consider another discrete-time system and

observation model where the inputs are zero, i.e., Bui = 0 and Dui = 0,

xi+1 = Axi + vi
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zi = Cxi + ri

Then, we can show that,

xi+1 = xi+1 +
i∑

j=0

AjBui−j (2.6)

zi = zi −

C i−1∑
j=0

AjBui−j−1 +Dui

 . (2.7)

Let us assume that we have an algorithm (say, Algorithm XYZ) to compute the estimates, x̂i+1,

of xi+1 given the observations zi when there are no inputs in the system. When there are inputs

in the system, i.e., Bui 6= 0 and/or Dui 6= 0, then we can use the same algorithm to compute the

estimates, x̂i+1, of xi+1 given the observations zi, by performing the following steps (Note that

A,B,C,D and ui are known):

Step 1: Given zi, compute zi using equation (2.7) stated above.

Step 2: Using Algorithm XYZ and the observations zi, compute the estimates, x̂i+1.

Step 3: Compute x̂i+1 from x̂i+1 using the following equation,

x̂i+1 = x̂i+1 +
i∑

j=0

AjBui−j.

Thus the results are readily extended if there is a known deterministic input. In Subsection 2.3.2,

we formally state the objectives of distributed estimation and the underlying assumptions required

to achieve those objectives.

2.3.2 Unbiased Estimates with bounded MSE
At time i, denote the nth agent’s distributed filter and prediction estimates of the state xi by x̂ni|i

and x̂ni+1|i respectively. Denote the filtering and prediction error processes εni|i and εni+1|i of the the

state xi at agent n by

εni|i = xi − x̂ni|i, (2.8)

εni+1|i = xi+1 − x̂ni+1|i. (2.9)
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The objective is to design distributed estimators such that the distributed estimates of the state at

each agent are unbiased with bounded mean squared error (MSE), i.e.,

E
[
εni|i

]
= E

[
εni+1|i

]
= 0, n = 1, · · · , N, (2.10)

E
[
εni|iε

nT

i|i

]
= Σn

i|i <∞, E
[
εni+1|iε

nT

i+1|i

]
= Σn

i+1|i <∞, n = 1, · · · , N. (2.11)

The unbiasedness of the estimates are reflected in (2.10) and (2.11) ensures that the distributed

estimates converge with bounded MSE. To achieve unbiased distributed estimates with bounded

MSE we make the following assumptions:

Assumption 4 (Global detectability). The dynamic state equation (2.1) and the observations

model (2.3) are globally detectable, i.e., the pair (A,H) is detectable.

Assumption 5 (Connectedness). The agent communication network is connected, i.e., the algebraic

connectivity λ2(L) of the Laplacian matrix L of the graph G is strictly positive.

By Assumption 4, the state-observation model (2.1)-(2.3) is globally detectable but not nec-

essarily locally detectable, i.e., (A,Hn),∀n, are not necessarily detectable. Note that these two

are minimal assumptions. Assumption 4 is mandatory even for a centralized system, and Assump-

tion 5 is required for consensus algorithms to converge. In Section 2.4, we review centralized

estimator followed by a overview of existing distributed estimators of time-varying random fields in

Section 2.5.

2.4 Centralized Estimators
Although not practical in the context of the problem we study, we use the centralized information

filter to benchmark our results on distributed estimator. In a centralized scheme, all the agents in the

cyber layer communicate their measurements to a central fusion center, as depicted in Fig 2.5. The

fusion center performs all needed computation tasks.

2.4.1 Centralized Kalman filter
At time i, denote the centralized filter and prediction estimates of xi and the centralized filter

and prediction error covariance matrices as x̂ci|i, x̂
c
i+1|i, Σc

i|i, and Σc
i+1|i, respectively. The filtering

and prediction equations of the centralized Kalman filter are:
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Figure 2.5: Centralized estimator

Step 1: Filtering

Kc
i = Σc

i|i−1H
T
(
HΣc

i|i−1H
T +R

)−1

(2.12)

x̂ci|i = x̂ci|i−1 +Kc
i

(
zi −Hx̂ci|i−1

)
(2.13)

Σc
i|i = Σc

i|i−1 −Kc
i

(
HΣc

i|i−1H
T +R

)
KcT

i (2.14)

Step 2: Prediction

x̂ci+1|i = Ax̂ci|i (2.15)

Σc
i+1|i = AΣc

i|iA
T + V (2.16)

where: Kc
i is the centralized Kalman gain; the initial conditions are x̂c0|−1 = x0 and Σc

0|−1 = Σ0.

The centralized Kalman filter (2.12)-(2.16) provides unbiased estimates of xi with miminum MSE

under the Assumption 4 of global detectability. The MSE is the trace of the error covariance matrix.

2.4.2 Centralized Information filter
Recall the information form [47] of the centralized Kalman filter (CKF). The filtering and

prediction equations of the information form of the centralized Information filter are:

Step 1: Global averaging

zi =
1

N

N∑
n=1

HT
nR
−1
n zni (2.17)
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Step 2: Filtering

Kc
i =

( 1

N
(Σc

i|i−1)−1 +G
)−1

(2.18)

x̂ci|i = x̂ci|i−1 +Kc
i

(
zi −Gx̂ci|i−1

)
(2.19)

Σc
i|i =

(
I
M
−Kc

iG
)
Σc
i|i−1

(
I
M
−GKc

i

)
+

1

N
Kc
iGK

c
i (2.20)

Step 3: Prediction

x̂ci+1|i = Ax̂ci|i (2.21)

Σc
i+1|i = AΣc

i|iA
T + V (2.22)

where: Kc
i is the centralized gain; the initial conditions are x̂c0|−1 = x0 and Σc

0|−1 = Σ0; and

IM denotes an identity matrix of dimension M×M . The centralized Kalman filter (2.17)-(2.22)

provides unbiased estimates of xi with miminum MSE. Note that, in the information form of the

Kalman filter, the global average of a linearly transformed version of the observations are used

instead of the observations. The performance of the information filter is equivalent to that of the

Kalman filter that receives the entire measurement vector zi. The performance equivalence of the

two centralized filters can be shown using Matrix Inversion Lemma [48]. However, the information

filter has computational advantages and similarity to distributed approaches.

2.5 Distributed Estimators
We review related prior research on distributed estimation of time-varying random fields. We

classify prior work into two categories based on the time-scales of operation: (a) two time-scale and

(b) single time-scale.

2.5.1 Two time-scale
In two-time scale distributed estimators, see Fig 2.6, agents exchange their information multiple

number of times between each dynamics/observations time-scale. Here, the linear distributed

estimator reproduces a Kalman filter locally at each sensor with a consensus step on the observations.

This is a two time scale algorithm because the sensing and the local Kalman filter updates occur

at the same slow time scale of the process dynamics, while the consensus iterations happen at the

fast time scale of communications among sensors. References [13–21] represent variations on this
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Figure 2.6: Time-scales of operation of dynamics, sensing and communications: single and two
time-scales.

structure. Reference [15] modifies the local Kalman filters to account for the distributed nature of the

field so that the local Kalman filters are all different since they operate on different dynamics (local

dynamics). References [19, 20] assume local observability, i.e., the dynamical system is observable

at each sensor, which is not practical in most distributed large-scale applications. The two time

scale distributed estimator in [21] considers time-varying dynamics and observation matrices and

expresses the measurements in information filter form. As a final comment, we may also include

in this class [22, 23] that assume that the communication network is complete. Since every agent

communicates with every other, every sensor acts as a centralized fusion center and the consensus

step is trivial. In [23] the nodes broadcast only one bit based on the sign of the innovations.

2.5.2 Single time-scale

In this class, sensing and communication occur once at every time step; the local estimators

operate at the same time scale of the process dynamics. Operating at a single time scale reduces

the onerous communication rounds required by the consensus step in the two time step estimators.

The trade-offs between different versions of these single time step algorithms are between the

convergence rate and the asymptotic MSE of the estimators. Reference [24] proposed a gossip

Kalman filter, a distributed estimator where each agent replicates a (local) Kalman filter processing

its local observations. At every sensing time step, there is a communication round between a single

pair of connected sensors, chosen according to the gossip protocol, [25], when these two sensors

exchange their current state estimate and their current error covariance matrix provided by the

local Kalman filter Riccati equation. The reference shows through large deviations theory that,

under appropriate conditions, asymptotically, each local estimate is unbiased and has bounded

covariance, regardless of the degree of instability of the field dynamics. Reference [26] improved

the convergence rate of [24] by allowing several pairs, rather than a single pair, of connected sensors
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to exchange their states. Although the gossip Kalman filters can track any unstable field, it may pay

a price on the communications (every round exchanges not only the state estimate but also the error

covariance, an object on the order of M2 that can be very large for spatially distributed fields), on

the convergence rate, and on higher asymptotic MSE with respect to the consensus+innovations

distributed estimator that we present here.

The consensus+innovations estimators, the second class of single time scale distributed estima-

tors, extend to time varying dynamics the consensus+innovations distributed estimators introduced

in [27, 28] for parameter estimation; see also [29]. The consensus+innovations distributed linear

parameter estimator updates at every sensor the local state estimate by a consensus term on the

current estimate and by the current local innovations–the difference between the current sensor

observation and its local prediction. A number of approaches [30–33] have been developed to extend

this structure to time varying fields. They add a term to the consensus+innovations distributed

parameter estimator to account for the field time dynamics. In [30, 31], the innovation update at

each sensor collects its own observations and those of its neighbors. This reference shows that the

distributed estimate at every sensor is asymptotically unbiased and, if the degree of instability of

the field dynamics is appropriately upper bounded (the bound defined as the Network Tracking

Capacity (NTC)), the distributed field estimator has bounded MSE. This NTC depends on the

connectivity of the sensor network and on the observation model. Further, [32, 33] developed

structural system properties that the sensor network and the observation models satisfy such that the

consensus+innovations type distributed estimator in [30] has bounded MSE performance.

2.6 Conclusions
In this thesis we are interested in single time-scale solution. Developing distributed estimators

for time-varying random fields (“distributed Kalman filter”) has gained considerable attention

over the last few years. The goal has been to achieve MSE performance as close as possible to

the optimal centralized Kalman filter. The distributed optimal time-varying field estimation is, in

general, NP-hard. The distributed parameter estimation [27, 42] have shown asymptotic optimality,

in the sense that the distributed parameter estimator is asymptotically unbiased, consistent, and

efficient converging at the same rate as the centralized optimal estimator. However, estimation of

time-varying random fields adds another degree of complication since, while information diffuses
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through the network, the field itself evolves. So, this lag causes a gap in performance between

distributed and centralized field estimators. In this thesis, we develop distributed estimators that

converge to a bounded MSE solution requiring minimal assumptions, namely global detectability

and connected network.
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CHAPTER 3
Pseudo-Innovations Kalman Filter

3.1 Introduction
In this chapter, we present Pseudo-Innovations Kalman Filter (PIKF), a single time-scale

distributed estimator for time-varying random fields. We extend a consensus+innovations type

algorithm for parameter estimation, as in [27] and [28], to linear dynamic fields. We define a

modified version of the innovations, pseudo-innovations, that are different from the way defined

in [49] and [50]. The PIKF consists of simultaneous computation of two companion distributed

estimates: the field estimate and the pseudo-innovations estimate at each sensor. The pseudo-

innovations estimate is a local distributed estimate of global average of all the pseudo-innovations.

This part is similar to the dynamic averaging problem addressed in [41].

We show that the Pseudo-Innovations Kalman Filter (PIKF) is asymptotically unbiased and its

mean-squared error (MSE) is bounded, as long as a particular eigen-ratio of the network topology is

above a lower bound. In other words, the Network Tracking Capacity (NTC), as defined in [30]

and [31], of the estimator depends only on the connectivity of the sensor network and is independent

of the local measurement models (provided the dynamic field is globally observable). However

in [13], [14] and [15], the agents are allowed to communicate among themselves multiple times

between each observation cycle till they come to a consensus of global average of all the local

observations. Under such circumstances the NTC of the distributed Kalman filter is infinity. But

here we consider single time-scale updates only, i.e., the agents are constrained to communicate

with their neighbors only once between each observation of the dynamical system.

The rest of the chapter is organized as follows. In Section 3.2 we state the preliminaries and
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present the PIKF. Section 3.3 analyze the error processes of the estimator proposed in Section 3.2.

We study the Network Tracking Capacity (NTC) of the estimator and provide designs of estimator

gain matrices so that it converges with bounded MSE in Section 3.4. The simulation results presented

in Section 3.5 establish our claims on the convergence of the PIKF and visually demonstrates the

impact of the NTC on the performance of the estimator. Finally we conclude in Section 3.6.

3.2 Distributed Kalman Filter
The information form of the centralized Kalman filter, [47], has access to all the local innovations

and computes their scaled average. Since the local innovations of the agents can have different

dimensions, we normalize the local innovations by pre-multiplying them with the inverse of the

observation noise covariance matrices and then pre-multiply the normalized innovations with the

transpose of the observation matrix so that all of them have same the dimension M . We term these

normalized form of the innovations of same dimension as pseudo-innovations, different from the

un-normalized pseudo-innovations defined in [49] and [50]. The distributed Kalman filter has two

companion estimation processes running in parallel - dynamical state estimation and dynamic global

pseudo-innovations average estimation as considered in [51].

3.2.1 Notation
In this chapter, we represent the dynamical system θ(i) which evolves with discrete time i as:

θ(i+ 1) = Aθ(i) + v(i) (3.1)

where: A ∈ RM×M is the system matrix and v(i) ∈ RM is the system noise. v(i) is white Gaussian

noise, i.e., v(i) ∼ N (0, V ). The initial condition of the state vector is θ(0) ∼ N (θ̄0,Σ0).

The local observations of the nth agent, denoted by zn(i) ∈ RMn , are:

zn(i) = Hnθ(i) + rn(i) (3.2)

where: Hn ∈ RM×Mn is the observation matrix and rn(i) is the observation noise. The observation

noises are also white Gaussian noises, i.e., rn(i) ∼ N (0, Rn). Note that each agent observes

only a fraction Mn � M of the dynamic state vector θ(i). We assume that the system noise,

v(i), observation noises, rn(i), and the initial condition, θ(0), of the state vector are statistically

independent. The system and observation model satisfies Assumptions 1-3.

40



3.2.2 Distributed Algorithm
Denote xn(i) as the field estimate and ν̂n(i) as the pseudo-innovations estimate at sensor n at

time i given the measurements up to time i− 1. Each sensor implements the following steps:

1. Pseudo-innovations measurement:

νn(i) = HT
nR
−1
n

(
zn(i)−Hn

∑
l∈Ωn

wnlxl(i)
)

(3.3)

2. Updates:

ν̂n(i+ 1) =
∑
l∈Ωn

wnlν̂l(i) +
(
νn(i)− Cn

∑
l∈Ωn

wnlν̂l(i)
)

(3.4)

xn(i+ 1) = A
(∑
l∈Ωn

wnlxl(i) +Kn(i)ν̂n(i+ 1)
)

(3.5)

where: W = {wnl} is the consensus weight matrix with the same sparsity as the graph Laplacian L,

Kn(i) is the local estimator gain matrix, and Cn is the local pseudo-innovations gain matrix. The

initial conditions are xn(0) = θ̄0 and ν̂n(0) = νn(0),∀n. In vector notation, we combine equations

(3.3) - (3.5) as:

ν(i) =DT
HR

−1
(
z(i)−DH(W ⊗ IM)x(i)

)
(3.6)

ν̂(i+ 1) = (W ⊗ IM)ν̂(i) +
(
ν(i)− C(W ⊗ IM)ν̂(i)

)
(3.7)

x(i+ 1) = (IN ⊗ A)
(

(W ⊗ IM)x(i) +K(i)ν̂(i+ 1)
)

(3.8)

where,

x(i) =


x1(i)

...

xN(i)

 , z(i) =


z1(i)

...

zN(i)

 , ν̂(i) =


ν̂1(i)

...

ν̂N(i)

 ,
the blockdiagonal matrices are

DH = blockdiag{H1, ..., HN}

R−1 = blockdiag{R−1
1 , ..., R−1

N }
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Algorithm 1 Pseudo-Innovations Kalman Filter (PIKF)

Input: Model parameters A, V , H , R, G, L, θ0, Σ0.
Initialize: xn(0) = θ̄0 and ν̂n(0) = νn(0).
Pre-compute: Gain matrices W , Cn and Kn(i) using (3.30)-(3.34), (3.43).
while i ≥ 0 do
Communications:

Broadcast xn(i) and ν̂n(i) to all neighbors l ∈ Ωn.
Receive {xl(i), ν̂l(i)}l∈Ωn from neighbors.

Observation:
Make measurement zn(i) of the state θ(i).
Transform zn(i) in pseudo-innovation νn(i) using (3.3).

Prediction updates:
Compute the estimate ν̂n(i+ 1) of νavg(i) using (3.4).
Compute the estimate xn(i+ 1) of the state θ(i+ 1) using (3.5).

end while

K(i) = blockdiag{K1(i), ..., KN(i)}

C = blockdiag{C1, ..., CN}

and ⊗ denotes Kronecker matrix product. This Pseudo-Innovations Kalman Filter (PIKF) is a

modified version of the algorithm proposed in [49] and [50]. The two key properties that an estimate

should satisfy are unbiasedness and bounded error. In this chapter we will show that the proposed

PIKF is asymptotically unbiased and the mean-squared error of estimation is bounded. First we

formulate and analyze the different errors of estimation, then design the different parameters in the

PIKF such that it satisfy the desired two key properties.

3.3 Error Analysis

The proposed Pseudo-Innovations Kalman Filter (PIKF) has two companion update equations,

(3.7) and (3.8). These kinds of algorithms inhibit the conventional way of error analysis, that is why

we do not have a standalone equation for the error process. So we define the averaged or consensus

estimate sequence and the centralized estimate sequence. Then we will show that the proposed

PIKF (3.7) converges to the averaged or consensus estimator and the averaged estimator converges

to the centralized estimator. This multistep methodology is introduced in [27]. The averaged linear

42



estimator is:

xavg(i) =
1

N

N∑
n=1

xn(i) =
1

N
(1N ⊗ IM)Tx(i). (3.9)

Similarly, global dynamic average of the local pseudo-innovations of N agents νavg(i) and its

estimate ν̂avg(i) sequences are:

νavg(i) =
1

N

N∑
n=1

νn(i) =
1

N
(1N ⊗ IM)Tν(i), (3.10)

ν̂avg(i) =
1

N

N∑
n=1

ν̂n(i) =
1

N
(1N ⊗ IM)T ν̂(i). (3.11)

Define the error process exavg(i) as the error between the distributed field estimates x(i) and the

averaged estimates xavg(i)

exavg(i) = x(i)− 1N ⊗ xavg(i) (3.12)

and the pseudo-innovations error process eν̂avg(i) as the error between the distributed pseudo-

innovations estimates ν̂(i) and the averaged estimates ν̂avg(i),

eν̂avg(i) = ν̂(i)− 1N ⊗ ν̂avg(i). (3.13)

Define

P
NM

=
1

N
(1N ⊗ IM)(1N ⊗ IM)T (3.14)

and note that

P
NM
x(i) = 1N ⊗ xavg(i), (3.15)

P
NM
ν̂(i) = 1N ⊗ ν̂avg(i), (3.16)

P
NM

(W ⊗ IM) = P
NM
. (3.17)

The error process exavg(i) evolves as:

exavg(i+ 1) = x(i+ 1)− 1N ⊗ xavg(i+ 1)

= (IN ⊗ A)
(

(W ⊗ IM)x(i) +K(i)ν̂(i+ 1)− (W ⊗ IM)P
NM
x(i)−K(i)P

NM
ν̂(i+ 1)

)
= (IN ⊗ A)

(
(W ⊗ IM − PNM

)(x(i)− 1N ⊗ xavg(i)) +K(i)(ν̂(i+ 1)− 1N ⊗ ν̂avg(i+ 1))
)
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= (IN⊗A)

(W⊗IM−PNM
)exavg(i) +K(i)eν̂avg(i+1)

 (3.18)

and the error process eν̂avg(i) evolves as:

eν̂avg(i+ 1) = ν̂(i+ 1)− 1N ⊗ ν̂avg(i+ 1)

= (W ⊗ IM)ν̂(i) +
(
ν(i)− C(W ⊗ IM)ν̂(i)

)
− P

MN
(W⊗I

M
)ν̂(i) +

(
P

MN
ν(i)

−CP
MN

(W⊗I
M

)ν̂(i)
)

= (IMN − C)(W ⊗ IM − PNM
)(ν̂(i)− 1N ⊗ ν̂avg(i)) +

(
ν(i)− P

NM
ν(i)

)
= (I

MN
− C)(W ⊗ I

M
−P

MN
)eν̂avg(i) +

(
I
MN
−P

MN

)
ν(i) (3.19)

Note that the estimate xn(i) at the nth sensor is the expected value of θ(i) given its observations

and neighbors estimates upto time index i − 1. Therefore the pseudo-innovations ν(i) is a zero-

mean process. So far we have studied the error processes between the distributed estimates and

the averaged estimates. Now we study the error processes between the averaged estimates and

centralized estimates. The objective is to design the estimator in such a way that the averaged field

estimates xavg(i) converge to the centralized estimates xc(i),

xc(i+ 1) = A

(
xc(i) +Kc(i)

1

N

N∑
n=1

HT
nR
−1
1

(
zn(i)−Hnxc(i)

))
(3.20)

and the averaged pseudo-innovations estimate ν̂avg(i) converge to the global average, νavg(i), of

all the pseudo-innovations. Define exc (i) as the error process between the averaged field estimates

xavg(i) and the centralized estimates xc(i).

exc (i) = 1N ⊗ xavg(i)− 1N ⊗ xc(i) (3.21)

and eν̂c (i) as the error process between the averaged pseudo-innovations estimates ν̂avg(i) and the

global average of all the pseudo-innovations νavg(i),

eν̂c (i+ 1) = 1N ⊗ ν̂avg(i+ 1)− 1N ⊗ νavg(i). (3.22)

The error process exc (i) evolves as:

exc (i+ 1) = 1N ⊗ xavg(i+ 1)− 1N ⊗ xc(i+ 1)
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= (IN ⊗ A)
(
P

NM
x(i) +K(i)P

NM
ν̂(i+ 1)− 1N ⊗ xc(i)

−(I
N
⊗Kc(i))PNM

DT
HR

−1(z(i)−DHxc(i))
)

= (I
N
⊗A)

exc (i)+K(i)(I−C)P
NM
(W⊗I)ν̂(i)+K(i)P

NM
D

H

×
(

1
N
⊗(xc(i)−xavg(i))+(1

N
⊗xavg(i)−(W⊗I)x(i))

)
= (IN ⊗ A)

(IMN −K(i)(IN ⊗G)
)
exc (i)

+K(i)P
NM

(
ν̂(i+ 1)− ν(i)

)
−K(i)P

NM
DH(W ⊗ I)exavg(i)


= (I

N
⊗A)

(I
MN
−K(i)(IN ⊗G)

)
exc (i) +K(i)eν̂c (i+ 1)

−K(i)P
NM
DH(W ⊗ I)exavg(i)

. (3.23)

Note that here we chooseKn(i) = Kc(i), ∀n, andDH = DT
HR
−1DH = blkdiag{HT

1 R
−1
1 H1, . . . ,H

T
NR
−1
N HN}.

We discuss the design of the gain matrices later in Section 3.4. Now we study the evolution of the

error process eν̂c (i),

eν̂c (i+ 1) = 1N ⊗ ν̂avg(i+ 1)− 1N ⊗ νavg(i)

=
(
I − C

)
(W ⊗ I)P

NM
ν̂(i) + P

NM
ν(i)− P

NM
ν(i)

=
(
I − C

)
P

NM

(
ν̂(i)− ν(i− 1)

)
+
(
I − C

)
P

NM
ν(i− 1)

=
(
I − C

)
eν̂c (i) +

(
I − C

)
P

NM
ν(i− 1). (3.24)

The error process that is still left to be derived is the one between the centralized field estimates

xc(i) and the field dynamics θ(i). Denote this error process by ecθ(i),

ecθ(i+ 1) = 1N ⊗ xc(i+ 1)− 1N ⊗ θ(i+ 1)

= (IN ⊗ A)
(
ecθ(i) + (IN ⊗Kc(i))PNM

DT
HR

−1(z(i)−DHxc(i))
)
− 1N ⊗ v(i)

= (IN ⊗ A)
(
ecθ(i) + (IN ⊗Kc(i))PNM

DHe
c
θ(i)
)
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+(I
N
⊗ A)(IN ⊗Kc(i))PNM

DT
HR

−1r(i)−1N ⊗ v(i)

= (IN ⊗ A)

IMN − IN ⊗
(
Kc(i)G

)ecθ(i)
+ (I

N
⊗A)(I

N
⊗Kc(i))PNM

DT
HR

−1r(i)− 1
N
⊗v(i)︸ ︷︷ ︸

δ(i)

(3.25)

where, G is

G =
1

N

N∑
n=1

HT
nR
−1
n Hn. (3.26)

The noise process δ(i), which is a linear combination of zero-mean field noise v(i) and measurement

noises r(i), is also a zero-mean noise. Now we assemble all the error processes together to analyze

the overall stability of the PIKF. Combining equations (3.18), (3.19), (3.23), (3.24) and (3.26),

ecθ(i+1)

exc (i+1)

exavg(i+1)

eν̂avg(i+1)

eν̂c (i+1)


︸ ︷︷ ︸

ẽ(i+ 1)

= Ã(i)



ecθ(i)

exc (i)

exavg(i)

eν̂avg(i)

eν̂c (i)


︸ ︷︷ ︸

ẽ(i)

+η(i) (3.27)

where, Ã(i) and η(i) are

Ã(i) =



(I ⊗A)
(
I − I ⊗ (Kc(i)G)

)
0 0 0 0

0 (I ⊗A)
(
I −K(i)(I ⊗G)

)
−(I ⊗A)K(i)PDH 0 (I ⊗A)K(i)(I − C)

0 0 (I ⊗A)(W ⊗ I − P ) (I ⊗A)K(i)(I − C)(W ⊗ I − P ) 0

0 0 0 (I − C)(W ⊗ I − P ) 0

0 0 0 0 (I − C)


(3.28)

η(i) =



δ(i)

(I⊗A)K(i)
(
I − C

)
P

NM
ν(i− 1)

(I⊗A)K(i)(I − P
NM

)ν(i)

(I − P
NM

)ν(i)(
I − C

)
P

NM
ν(i− 1)


(3.29)
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Note that all the elements in the noise process η(i) are zero-mean. Therefore the stability of the

PIKF depends on the error matrix Ã(i). For the error processes to be stable, the spectral radius of

Ã(i) should be less than unity. Note that Ã(i) is a block triangular matrix. So the design parameters:

consensus weight matrix, estimator gain matrices, and the pseudo-innovations gain matrices are

required to be designed such that the spectral radii of each of the diagonal blocks of Ã(i) are less

than unity.

3.4 Estimator Design
We design the estimator gain matrices Kn(i), the pseudo-innovations gain matrices Cn and the

consensus weight matrix W such that the spectral radii of each of the diagonal blocks of Ã(i) are

strictly less than one.

3.4.1 Gain Matrices
In this problem we assume that the dynamical system θ(i) is distributedly observable, i.e., the

matrix G in (4.5) is invertible. This assumption ensures that each of the state variables of the system

θ(i) is being observed by at least one of the agents. Under this assumption we design the local

estimator gain matrix Kn(i) at agent n as:

Kn(i) = Kc(i) = G−1, ∀n. (3.30)

Equation (3.30) makes the spectral radii of the matrices A11 and A22 strictly less than one. Similarly

we design the pseudo-innovations gain matrices Cn as:

Cn =
1

‖G−1‖2

G−1, ∀n (3.31)

which makes the spectral radius of A55 to be strictly less than one. The matrix G, and hence

G−1, is symmetric positive definite. Therefore the eigenvalues of Cn lie in the range (0, 1]. Now

we discuss another way of designing the gain matrices Kn(i). The gain matrices premultiplies

the pseudo-innovation estimates of each sensor. At each sensor the pseudo-innovation estimate

initializes with the local pseudo-innovation and then eventually converges to the global average

of the pseudo-innovations. To maintain the parity between the sparsity of the gain matrix and the

pseudo-innovation estimate at each sensor, we design the initial values and the update equations for
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the gain matrices Kn(i) at each sensor n as:

Kn(0) =
(
HT
nR
−1
n Hn

)+

(3.32)

Kn(i+ 1) =
(∑
l∈Ωn

wnlK
+
l (i)

)+

(3.33)

where F+ is the Moore-Penrose pseudo-inverse of the matrix F as defined in [52]. Note that the gain

matrices at each sensor converges to G−1 as time progresses. Also note that all the gain matrices

can be pre-computed and saved at each agent. This will reduce the computational complexity while

running the algorithm.

Now we discuss the design of the consensus weight matrix W . Here we consider W to be

uniform-weight, i.e.,

W = IN − βL (3.34)

where, β is the consensus weight. For stable systems, the choice of β is straight-forward. However,

for unstable dynamical systems there may not always exist a β such that the PIKF converges with

bounded MSE solution. In the next Subsection 3.4.2, we study the conditions under which the PIKF

converges and the corresponding design of the consensus weight β.

3.4.2 Network Tracking Capacity
The design of the consensus weight depends on the agent communication network. The

properties of the network are represented by its graph Laplacian matrix L. Since the graph Laplacian

L is a positive semi-definite matrix with λ2(L) > 0 for connected networks, we define the diffusion

rate of the network γ as:

γ =
λ2(L)

λN(L)
(3.35)

Let a denote the spectral norm ||A||2 of the system matrix A, which is a measure of the degree of

stability or instability of the dynamical system (3.1). To be able to design the consensus weight

matrix W such that the spectral radius of A33 is less than one, we require an upper bound on the

degree of instability of the system which results in the following theorem.

Theorem 3.4.1. If the spectral norm of the system matrix (A) is:

a =

∥∥∥∥A∥∥∥∥
2

<
1 + γ

1− γ
(3.36)
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then there exists a consensus weight

β ∈
( a− 1

aλ2(L)
,
a+ 1

aλN(L)

)
(3.37)

such that

ρ(A33) = ρ
(

(IN ⊗ A)(W ⊗ IM − PNM)
)
< 1 (3.38)

where, ρ(F ) denotes the spectral radius of F .

Proof. Start with the left-hand side of (3.38),

ρ
(

(IN ⊗ A)(W ⊗ IM − PNM)
)
≤

∥∥∥∥(IN ⊗ A)(W ⊗ IM − PNM)

∥∥∥∥
2

≤
∥∥∥∥IN ⊗ A∥∥∥∥

2

∥∥∥∥W ⊗ IM − PNM∥∥∥∥
2

=

∥∥∥∥A∥∥∥∥
2

∥∥∥∥IN − βL− J∥∥∥∥
2

where, J =
1

N
1N1TN

= a.max{|1− βλ2(L)|, |βλN(L)− 1|} (3.39)

Replacing γ in (3.36) by (3.35), we have a−1
aλ2(L)

< a+1
aλN (L)

. Now choose β such that,

a− 1

aλ2(L)
< β <

a+ 1

aλN(L)
(3.40)

Use (3.40) to analyze the first absolute term in (3.39),

a.|1− βλ2(L)| = a.max
{

(1− βλ2(L)), (βλ2(L)− 1)
}

< a.max

{(
1− a− 1

aλ2(L)
λ2(L)

)
,
( a+ 1

aλN(L)
λ2(L)− 1

)}
< a.max

{
1

a
,
( a+ 1

aλN(L)
λN(L)− 1

)}
= 1 (3.41)

Similarly, analyze the second absolute term in (3.39),

a.|βλN(L)− 1| = a.max
{

(βλN(L)− 1), (1− βλN(L))
}

< a.max

{( a+ 1

aλN(L)
λN(L)− 1

)
,
(

1− a− 1

aλ2(L)
λN(L)

)}
< a.max

{
1

a
,
(

1− a− 1

aλ2(L)
λ2(L)

)}
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= 1 (3.42)

(3.39), (3.41) and (3.42) implies that if (3.36) holds true, then there exist β satisfying (3.37) such

that

ρ
(

(IN ⊗ A)(W ⊗ IM − PNM)
)
< 1.

Thus (3.38) along with (4.39) make the spectral radii of A33 and A55 less than one. To achieve

this we have a upper bound on the degree of instability of the dynamical system as in (3.36). This

bound is the Network Tracking Capacity of the distributed Kalman filter. Note that the NTC, which

is a function of the diffusion rate of the agent communication network, depends only on the network

topology and is independent of the local observation patterns in contrast to [30] and [31] where it

depends on both. Also, regarding the choice of the consensus weight note that (3.40) is sufficient,

but the optimal choice of β is:

1− β∗λ2(L) = β∗λN(L)− 1

i.e., β∗ =
2

λ2(L) + λN(L)
. (3.43)

3.4.3 Network Models
Now we discuss about designing the network topology such that (3.36) is satisfied. From (3.36),

we see that the lower bound on the diffusion rate of the network depends on the degree of instability

of the dynamical system (3.1) as:

γ >
1− a
1 + a

where, a =

∥∥∥∥A∥∥∥∥
2

(3.44)

For a given dynamical system, if a particular network topology fails to satisfy (3.44) then rewire

the network connections to increase the diffusion rate γ so that it satisfies (3.44). For example,

a lattice graph has a lower diffusion rate as compared to Erdös-Renýi or Watts-Strogatz graphs

with equal number of nodes and edges. However, in [53] it is proved that for a fixed number of

edges in the network there exists a class of expander graphs, called Ramanujan Graphs, which

maximizes the eigenratio γ. In the following section, we simulate the distributed Kalman filter

algorithm to compare the MSE for different models and see how the NTC affect the performance of

the algorithm.
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3.5 Simulation Results

We simulate, using Matlab, a discrete-time linear dynamical system with M = 10 number of

state variables. The system matrix A is generated randomly. A group of N = 10 agents observe

the dynamical system, where each agent observes only two state variables, i.e., Mn = 2. The

covariance matrices of the system noise V , the observation noises R and the initial condition Σ0

are randomly generated and then squared to ensure that they are positive definite. The mean of the

initial condition θ̄0 is also randomly generated. The initial condition of the field vector is chosen

from θ(0) ∼ N (θ̄0,Σ0), the evolution noise at each time index are chosen from v(i) ∼ N (0, V )

and the global measurement noise r(i) is produced from N (0, R). From the global measurement

noise, the local measurement noises rn(i) are fed into each sensor to obtain the noise corrupted

measurements. The system and observation model is such that it is not locally observable but it is

globally observable and distributedly observable, i.e., G is invertible.

3.5.1 Unbiasedness and Bounded MSE Convergence

First, we evaluate the convergence properties of the Pseudo-Innovations Kalman Filter (PIKF)

and benchmark its performance with respect to the centralized filter. The sensor network is

considered to be a regular lattice graph with neighborhood size = 4. The diffusion rate of the

network is γ = 0.0802. The values of γ and ‖A‖ satisfy the assumption (3.36). We chose the

consensus weight β = 0.3135, that satisfies (3.37). We compare the distributed results with the

centralized estimator where the gain matrices are designed using the principles from the Kalman

filter. These estimators with the design parameters, as stated above, are then simulated up to time

index (i = 200). We have done Monte-Carlo simulations using Matlab by repeating the algorithm

1000 times to obtain the estimation error. The simulation plots are shown in Fig. 3.1. We see that the

PIKF is asymptotically unbiased since the expected value of the normalized error converges to zero

asymptotically. Also we see that the MSE of the PIKF is bounded. The distributed case shows a

loss of approximately 2dB with respect to the centralized estimator, in steady state condition, due to

the fact that the centralized estimator has access to all the random time-varying pseudo-innovations,

whereas the PIKF relies only on its own pseudo-innovations and cooperation from its neighbors.
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a Unbiased estimates b Bounded MSE estimates

Figure 3.1: Normalized error and root mean-squared error (RMSE in dB) plots of distributed and
centralized estimators.

3.5.2 Network dependencies
First we consider a symmetric system matrix with ||A||2= 1.1, which is obtained by scaling the

singular values of the previously randomly generated matrix A, using singular value decomposition.

Then we generate a lattice graph, an Erdös-Renýi graph and a Watts-Strogatz graph with N = 10

nodes and E = 17 edges. The NTC, computed using (3.36), of these three graphs are 1.17, 1.26 and

1.31 respectively. We simulate the centralized Kalman filter and the distributed Kalman filter with

these three network models upto 200 time iterations. The mean-squared errors (MSE) in dB are

computed in each of these cases by 1000 Monte-Carlo simulations as shown in Fig. 3.2(a). Then we

repeated the above simulation after just increasing the spectral norm to ||A||2= 1.25 and the plots

are shown in Fig. 3.2(b). Fig. 3.2(a) shows that the distributed Kalman filters, with network models

having NTC greater than the spectral norm of the system dynamics, have bounded MSE with a

performance gap of nearly 2dB as compared to the centralized filter. When we increase the degree

of instability of the system dynamics such that it is greater than the NTC of the lattice network but

smaller than the NTC of the Erdös-Renýi and Watts-Strogatz networks, we see that the MSE is

unbounded for the lattice network but are bounded for the other two networks as depicted in Fig.

3.2(b). Hence for a given unstable dynamical system, if a network model fails to satisfy the NTC

condition then it can be rewired to increase the diffusion rate of the network such that it satisfies

NTC condition to obtain a distributed Kalman filter with bounded MSE.
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a Below NTC b Above NTC

Figure 3.2: MSE of centralized and distributed Kalman filters with different graphical models when:
(a). ||A||2= 1.1, and, (b). ||A||2= 1.25

3.6 Conclusions
In this chapter, we proposed a distributed estimator, Pseudo-Innovations Kalman Filter (PIKF),

for estimation of a linear discrete-time field dynamics. We have considered a consensus+innovations

type algorithm as introduced in [27] and [28]. This is a single time-scale update algorithm, i.e.,

between successive evolutions of the system dynamics the sensors in the distributed network can

communicate among themselves only once. Our results are based on two important assumptions:

the model is globally observable, not necessarily locally observable, and the degree of instability

of the dynamics is upper bounded by a function of the diffusion rate of the network. The degree

of instability of the dynamics is independent of the specifics of the measurement models. We

empirically demonstrated that for a given set of agents with a fixed number of communication

links, the NTC of the network can be increased by rewiring the edges of the network. We showed

theoretically and illustrated by simulation that the PIKF is unbiased and its mean-squared error

remains bounded.

In the next chapter, we develop a single time scale distributed information Kalman filter (DIKF).

For the DIKF, we obtain an analytical NTC based on the eigenvalues of the network Laplacian

and the local observation matrices, whereas in [30, 31] the NTC is computed by solving a large

optimization problem. In contrast to consensus and gain matrices designed for the scalar case, in

DIKF, we present a generalized analytical design of the estimator gain matrices following the first

principles of Kalman filter and develop a distributed version of the algebraic Riccati equation. The
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proposed DIKF accomplishes this by operating a companion consensus step on a modified local

observation, the pseudo-observation. The DIKF is asymptotically unbiased and improves MSE

performance by 2dB over the PIKF.
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CHAPTER 4
Distributed Information Kalman Filter

4.1 Introduction
In Chapter 2, we proposed a single time-scale consensus+innovations distributed estimator,

Pseudo-Innovations Kalman Filter (PIKF), that performs consensus on the state estimates and

introduced an additional consensus on a modified version of the innovations. References [49–51,54]

showed that the distributed estimator is unbiased with bounded MSE, but, in contrast to [30], their

NTC depends only on the degree of connectivity of the sensor network and is independent of the

observation models.

In this chapter, we propose a single time scale distributed information Kalman filter (DIKF)

to obtain unbiased estimates with bounded MSE for unstable systems. In contrast to [30, 31],

we derive the NTC based on the eigenvalues of the network Laplacian and the local observation

matrices. We develop a general analytical design of the estimator gain matrices. We achieve this

by introducing a novel consensus+innovations type dynamic averaging step that runs in parallel

with the DIKF. The DIKF achieves better asymptotic MSE performance than the PIKF proposed

in Chapter 2. We confirm the theoretical results by extensive Monte-Carlo simulation. We draw

further insights on how the performance of the proposed solution is affected by varying model

parameters, noise statistics, gain constants, and network structure.

4.2 Preliminaries
The key component of the DIKF is the role of the global average of the pseudo-observations

in the distributed estimation and prediction of time-varying fields. In this section, we introduce
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pseudo-observations and discuss the additional conditions required for the convergence of the DIKF.

4.2.1 Pseudo-observations
The dimensions Mn of the local observations, zni , in (2.2) are different for different agents. We

introduce the pseudo-observations, yni , all of which have the same dimension M ,

yni = HT
nR
−1
n zni , n = 1, . . . , N. (4.1)

Note that the pseudo-observations yni are linearly transformed (by HT
n ) and normalized (by R−1

n )

versions of the observations zni . Pseudo-observations are the observations expressed in information

filter form, the information vectors. Let, yi = [(y1
i )
T , . . . , (yNi )T ]T . Then, in vector form,

yi = DT
HR

−1zi (4.2)

where DH = blockdiag{H1, . . . , HN}. The vector yi ∈ RMN . The averaged pseudo-observations,

yi, are

yi =
1

N

N∑
n=1

yni =
1

N

N∑
n=1

HT
nR
−1
n zni (4.3)

= Gxi +
1

N
HTR−1ri (4.4)

where G is:

G =
1

N

N∑
n=1

HT
nR
−1
n Hn =

1

N
HTR−1H. (4.5)

In a centralized solution, at every time iteration i, all the agents transmit their observations,

zni , n = 1, . . . , N , to a fusion center that can compute the averaged pseudo-observations yi. But in

the distributed setup, each agent has its own observation zni (or pseudo-observation yni ) and, at each

time iteration i, it can communicate only once with its neighbors. Our distributed estimator computes

distributed estimates, ŷni , of the averaged pseudo-observations yi through dynamic consensus on the

pseudo-observations, yni . This is akin to the challenge of distributed dynamic averaging. Although

distributed averaging is well-studied, [35], very limited literature is available when the inputs are

time-varying [38–41]. In this paper, we propose a consensus+innovations approach, the Dynamic

Consensus on Pseudo-Observations, for dynamic averaging.
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4.2.2 Distributed Observability

For the DIKF, in addition to the Assumptions 4-5 of global detectability and connected network,

we make an additional assumption of distributed observability, as stated below.

Assumption 6 (Distributed observability). The system is distributedly observable, i.e., the matrix

G is full rank.

Assumption 6 ensures that each of the state variables of the time-varying field xi is being

observed by at least one of the sensors in the agent network. This extends weak detectability defined

in [24] and is similar to the distributed observability in [27] and [28]. This assumption is crucial for

the convergence of the DIKF with bounded MSE.

Before we proceed further, we define the following matrices:

A
G

= GAG−1 (4.6)

Hn
G

= HT
nR
−1
n HnG

−1 (4.7)

DH = DT
HR

−1DH (4.8)

J = 1N1TN (4.9)

where: A is the system matrix; G and DH are in (4.5) and (4.2), respectively; and the N-dimensional

vector 1N = [1, . . . , 1]T . In the following Section 4.3, we present the DIKF algorithm and discuss

its memory, communication and computational costs.

4.3 Distributed Estimator

In this section we describe the novel single time scale distributed information Kalman fil-

ter (DIKF) presented in [55]. The distributed information Kalman filter (DIKF) is a consen-

sus+innovations algorithm [29] operating at single time scale. Each agent aims to compute a

distributed estimate of the averaged pseudo-observations yi for distributed filtering. Each agent

runs two companion sub-routines: 1) dynamic consensus on the pseudo-observations (DCPO) to

estimate yi; and 2) distributed filtering to estimate the states xi.
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4.3.1 Notation
The nth agent’s distributed filter and prediction estimates of xi are x̂ni|i and x̂ni+1|i, respectively.

The distributed filter error εni|i and the distributed prediction error εni+1|i are:

εni|i = x̂ni|i − xi,

and, εni+1|i = x̂ni+1|i − xi+1.

The corresponding distributed filter and prediction error covariance matrices are Σn
i|i and Σn

i+1|i,

respectively. We define the distributed pseudo-observation error qni as

qni = ŷni −Gxi.

The distributed pseudo-observations error covariance matrix is Qn
i . The distributed prediction

estimate x̂ni|i−1 and pseudo-observations estimate ŷni are statistically dependent. Let Πn
i be the

covariance between the error processes εni|i−1 and qni . We collect all the distributed estimates in a

vector and define

x̂i|i =


x̂1
i|i
...

x̂Ni|i

 , x̂i+1|i =


x̂1
i+1|i
...

x̂Ni+1|i

 , ŷi =


ŷ1
i

...

ŷNi

 .
Using (4.10)-(4.10), define the error processes in vector form

εi|i = x̂i|i − 1N ⊗ xi

εi+1|i = x̂i+1|i − 1N ⊗ xi+1

qi = ŷi − 1N ⊗ (Gxi)

where ⊗ denotes Kronecker product of vectors and matrices. The corresponding global filter,

prediction, and pseudo-observations error covariance matrices are Σi|i, Σi+1|i, and Qi respectively.

The covariance between εi|i−1 and qi is Πi. The error matrices Σi|i, Σi+1|i, Qi, and Pii are block

matrices consisting of N×N blocks, where each block is M×M .

4.3.2 Distributed Information Kalman Filter Algorithm
At time i, agents communicate their pseudo-observations estimates ŷni−1 to neighbors and

implement the steps:
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Step 1: Dynamic consensus on pseudo-observations (DCPO)

ŷni = A
G

∑
l∈Ωn

wnlŷ
l
i−1 +B

(
yni −Hn

G
A

G
ŷni−1

)
(4.10)

Qi+1 = FQiF
T + Ψ (4.11)

Step 2: Filtering

Kn
i =

((
Qn
i + (Πn

i )TG
)(

Σn
i|i−1G+ Πn

i

)−1

+G

)−1

(4.12)

x̂ni|i = x̂ni|i−1 +Kn
i (ŷni −Gx̂ni|i−1) (4.13)

Σi|i =
(
I
MN
−Ki(IN⊗G)

)
Σ

i|i−1

(
I
MN
−(I

N
⊗G)KT

i

)
+KiQiK

T
i +

(
I
MN
−Ki(IN ⊗G)

)
ΠiK

T
i

+ KiΠ
T
i

(
I
MN
− (I

N
⊗G)KT

i

)
(4.14)

Step 3: Prediction

x̂ni+1|i = Ax̂ni|i (4.15)

Σi+1|i = (IN ⊗ A) Σi|i

(
IN ⊗ AT

)
+ J ⊗ V (4.16)

Πi+1 =
(
I
N
⊗A
) (
I
MN
−Ki(IN⊗G)

)
ΠiF

T+(IN⊗A)KiQiF
T

+ (J ⊗ V )
(
IN⊗G−DH

(
IN⊗BT

))
(4.17)

where: where: W = [wnl] is a stochastic consensus weight matrix; Kn
i are the estimator gain

matrices; Ki = blockdiag{K1
i , . . . , K

N
i }; and B is the pseudo-observations gain matrix. The error

matrix F and the noise covariance matrix Ψ are:

F = W ⊗ A
G
− (IN ⊗B)DH(IN ⊗ AG−1)

Ψ =
(

(IN⊗B)DH − IN⊗G
)

(J⊗V )
(
DH(IN⊗BT )− IN⊗G

)
+ (IN⊗B)DH(IN⊗BT),

and the initial conditions are:

Σ0|−1 = J ⊗ Σ0

Q0 =
(

(IN⊗B)DH − IN⊗G
)

(J⊗Σ0)
(
DH(IN⊗BT )− IN⊗G

)
+ (IN⊗B)DH(IN⊗BT)

Π0 = (J ⊗ Σ0)
(
IN⊗G−DH

(
IN⊗BT

))
,

We term the distributed dynamic averaging (4.10) as Dynamic consensus on pseudo-observations

in [55]. The initial conditions are:

x̂n0|−1 = x0
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Algorithm 2 Distributed Information Kalman Filter
Input: Model parameters A, V , H , R, G, L, x0, Σ0.
Initialize: x̂n0|−1 = x0, AGŷn−1 = Gx0.
Pre-compute: Gain matrices W , Bi and Ki using Algorithm 3.
while i ≥ 0 do
Communications:

Broadcast ŷni−1 to all neighbors l ∈ Ωn.
Receive {ŷli−1}l∈Ωn from neighbors.

Observation:
Make measurement zni of the state xi.
Transform zni in pseudo-observation yni using (4.1).

Filter updates:
Compute the estimate ŷni of yi using (4.10).
Compute the estimate x̂ni|i of the state xi using (4.13).

Prediction updates:
Predict the estimate x̂ni+1|i of the state xi+1 using (4.15).

end while

AGŷ
n
−1 = Gx0

Σ0|−1 = J ⊗ Σ0 (4.18)

Q0 =
(

(IN⊗B)DH − IN⊗G
)

(J⊗Σ0)
(
DH(IN⊗BT )− IN⊗G

)
+ (IN⊗B)DH(IN⊗BT)(4.19)

Π0 = (J ⊗ Σ0)
(
IN⊗G−DH

(
IN⊗BT

))
, (4.20)

Note that here we chose the same gain matrix B at all agents. Designing different gain matrices at

different agents, such that the MSE is further reduced, is discussed in Chapter 5.

The filtering (4.10)-(4.13), and prediction (4.15) steps of the DIKF, in vector form, are:

ŷi = (IN ⊗ AG
)(W ⊗ IM)ŷi−1 + (IN⊗B)

(
yi−DH(IN⊗A)(IN⊗G−1)ŷi−1

)
(4.21)

x̂i|i = x̂i|i−1 +Ki(ŷi − (IN ⊗G) x̂i|i−1) (4.22)

x̂i+1|i = (IN ⊗ A) x̂i|i. (4.23)

In Algorithm 2, we state the steps that each sensor implements to estimate the time varying

random field. We will show that the distributed estimates ŷni are unbiased and converge to the

averaged pseudo-observations yi with bounded MSE under Assumptions 1-7. Assumption 7 stated

in Subsection 4.4.3 assumes the asymptotic stability of the matrix F defined in (4.18). However,

we provide in Subsection (4.4.3), a construction on the system parameters that shows how to
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guarantee that the matrix F is actually asymptotically stable. We will discuss the design of the

pseudo-observations gain matrix B and its relation with the NTC of the DIKF. We will also prove

that, given the pseudo-observation estimates ŷni , the estimator gain matrices Kn
i , in (4.12), provide

minimum MSE distributed estimates x̂ni|i−1 of the field xi.

4.3.3 Memory, Communication and Computational Cost
The error covariance matrices Qi, Σi|i, Σi+1|i, and Πi can be pre-computed by (4.11), (4.14),

(4.16), and (4.17). Using these matrices and (4.12), at each agent we compute and store the gain

matrices Kn
i for all iterations to reduce the cost of the online DIKF. Offline computation of the gain

matrices is explained in [56]. In Section ??, we propose an alternative time-invariant gain matrix

Kn
i = αG−1, ∀ n, ∀ i, where α is a parameter. Choosing a time-invariant gain over time-varying

gain matrices significantly reduces at each agent: (a) the computation cost, since computing the

equations (4.11), (4.12), (4.14), (4.16), and (4.17) are no longer required; and (b) the memory usage,

since the time-varying, Kn
i for each iteration, are not required to be stored. In Sections ?? and ??,

we discuss in detail the time-invariant gain and design of α.

We discuss the memory, communication and computational costs of the DIKF.

1. Memory: Each agent n stores a local copy of the dynamics model, A and V , the statistics

of the initial condition, x̄0 and Σ0, the observations model, H and R, and the network graph

Laplacian, L. The consensus weight matrix, W and the gain matrices B and Kn
i

(
= αG−1

)
are pre-computed and stored at each agent. Note that, in practice A, H and L are sparse,

R is block diagonal, and, Σ0 and B are diagonal matrices. In addition, at time iteration i,

each agent stores the estimates ŷni−1 and x̂ni|i−1 computed at the previous iteration i− 1. The

maximum number of elements that need to be stored in memory is on the order of

3M2+5M+
1

2

(
N2+N

)
+

N∑
n=1

M2
n+(M + 0.5)

N∑
n=1

Mn.

For example, ifM = N = 20 and if ∀n,Mn = 4, then the maximum number of elements that

need to be stored is 3470, which is equivalent to 27 kilobytes of memory usage (considering a

real number in single-precision floating-point format occupies 4 bytes of computer memory).

2. Communication: At iteration i, each agent n transmits its pseudo-observation estimate ŷni−1,

containing M scalar elements, to its neighbors and receives the estimates ŷli−1, l ∈ Ωn, from
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its neighbors. The total number of such transmissions across the entire network at each

iteration is twice the total number of edges in the network.

3. Computation: At iteration i, each agent n observes the new measurement zni and computes

the estimates ŷni and x̂ni+1|i, using equations (4.10), (4.13), and (4.15). These computations

involve multiplication and addition operations between matrices and vectors. The computation

requirement per iteration at each sensor is approximately

(η + 4)M2 +
(
davg + 1

)
M multiplications, and,

(η + 5)M2 +
(
davg − 3− η

)
M additions

where η is the sparsity of the field dynamics matrix, A, and davg is the average degree of the

sensor communication network. For example, when M = 20, η = 0.25 and davg = 6, then

the number of multiplications and additions required per iteration at each agent are about

1840 and 2155, respectively. In this work we consider floating point operations and do not

take into account quantization effects.

4.3.4 DIKF vs CKF
We compare the DIKF with the information of the CKF presented in Subsection 2.4.2.

1. CKF accesses all the pseudo-observations, yni , n = 1, . . . , N , and computes (2.17), the

averaged pseudo-observation sequence yi. In DIKF, each agent accesses only its own pseudo-

observation, and it communicates only with its neighbors. They compute (4.10)-(4.11),

distributed estimates ŷni and use them in place of yi.

2. The error covariance matrices of yi and ŷi are 1
N
G and Qi. In the filtering step, if we replace

Qi = 1
N

(IN ⊗G) and the cross error covariance Πi = 0 in (4.12)-(4.14), then the distributed

gains Kn
i and filter error covariances Σn

i|i become equal to the centralized gain Kc
i and filter

error covariance matrix Σc
i|i in (2.18)-(2.20).

3. The prediction steps of the DIKF (4.15)-(4.16) and CKF (2.21)-(2.22) are similar.

The rest of this chapter derives the steps of the DIKF, analyzes its MSE, compares with the CKF,

and finally validates these results through simulation.
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4.4 DCPO: Convergence Analysis
The pseudo-observations, yni , are time-varying. Computing the distributed estimates, ŷni , of the

averaged pseudo-observation yi with DCPO is a dynamic consensus problem. This Section analyzes

the DCPO step (4.10) of the DIKF.

4.4.1 Dynamics of the pseudo-observations
Before the analysis of the dynamic consensus step, we derive the dynamics of the averaged

pseudo-observation, yi. We express the pseudo-observations, yni , as the local measurements of yi.

We also characterize the noises both in the dynamics and the observations. We start from the system,

observation, and noise equations, (2.1)-(2.2). The detailed analysis of the yi and yni leads to the

following proposition.

Proposition 2. Consider (2.1)-(2.2), assumption 6, and definitions (4.1) and (2.17).

(i) Dynamics: The averaged pseudo-observation yi follows

yi+1 = A
G
yi + ξi (4.24)

where the dynamics matrix is A
G

and the noise ξi ∼ N (0,Ξ), with

Ξ = GV G+
1

N
G+

1

N
A

G
GAT

G
.

The initial condition is y0 ∼ N (Gx0,Σy0) with

Σy0 = GΣ0G+
1

N
G.

(ii) Observations: The pseudo-observation yni at agent n is

yni = Hn
G
yi + δni , n = 1, . . . , N (4.25)

where the observation matrix is Hn
G

= HT
nR
−1
n HnG

−1 and the noise δni ∼ N (0,∆n), with

∆n = HT
nR
−1
n Hn −

1

N
HT
nR
−1
n HnG

−1HT
nR
−1
n Hn.

In vector notation,

yi =
(
DH

(
IN ⊗G−1

))
(1N ⊗ yi) + δi
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where the noise δi ∼ N (0,∆) with

∆ = DH −
1

N
DH

(
J ⊗G−1

)
DH .

(iii) Uncorrelated noises: The dynamics noise, ξi, the observation noise, δi, and the initial condi-

tion y0 are uncorrelated Gaussian random vectors.

Proof. Proposition 1 consists of three key formulations: dynamics, observations, and independence

of noises.

(i) Dynamics: Consider the averaged pseudo-observations sequence yi+1 in (4.3), substitute

zni+1 and then xi+1 using (2.2) and (2.1) respectively.

yi+1 =
1

N

N∑
n=1

HT
nR
−1
n

(
Hn (Axi + vi) + rni+1

)
= GAxi +Gvi +

1

N
HTR−1ri+1

Replace GA with A
G
G (= GAG−1G) and substitute G using (4.5). Then add and subtract a term

with rni leading to

yi+1 =A
G

1

N

N∑
n=1

HT
nR
−1
n (Hnxi+r

n
i −rni )+Gvi +

1

N
HTR−1ri+1

=A
G
yi +Gvi −

1

N
A

G
HTR−1ri +

1

N
HTR−1ri+1︸ ︷︷ ︸

ξi

.

The equation above shows that the dynamics of yi follows (4.24). The noises vi, ri and ri+1 are

zero-mean Gaussian. Hence the noise ξi is zero-mean Gaussian with covariance

E[ξiξ
T
i ] =GE[viv

T
i ]G+

1

N2
A

G
HTR−1E[rir

T
i ]R−1HAT

G
+

1

N2
HTR

−1E[r
i+1
rT
i+1

]R−1H

=GV G+
1

N
G+

1

N
A

G
GAT

G
= Ξ

satisfying (4.25). Now using (4.4) we compute the Gaussian parameters of the initial condition y0

and prove (4.25).

E[y0] =E[Gx0 +
1

N
HTR−1r0] = GE[x0] = Gx0

Σy0 =E[(y0−E[y0])(y0−E[y0])T ] = GΣ0G+
1

N
G
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(ii) Observations: Pre-multiply both sides of (4.4) with G−1

xi = G−1yi −
1

N
G−1HTR−1ri

and substitute this xi in (4.1) to obtain the observations yni

yni =HT
nR
−1
n zni = HT

nR
−1
n Hnxi +HT

nR
−1
n rni

=HT
nR
−1
n Hn

(
G−1yi −

1

N
G−1HTR−1ri

)
+HT

nR
−1
n rni

=HT
nR
−1
n HnG

−1︸ ︷︷ ︸
Hn
G

yi+H
T
nR
−1
n

(
rni −

1

N
HnG

−1HTR−1ri

)
︸ ︷︷ ︸

δni

as in (4.25). Since ri is zero-mean Gaussian, δni is zero mean Gaussian with covariance (∆n) and

cross-covariance (∆n,l)

∆n =E[δni (δni )T ] = HT
nR
−1
n

(
E[rni (rni )T ]− 1

N2
HnG

−1HTR−1E[rir
T
i ]R−1HG−1HT

n

)
R−1
n Hn

=HT
nR
−1
n Hn −

1

N
HT
nR
−1
n HnG

−1HT
nR
−1
n Hn

∆n,l =E[δni (δli)
T ] = − 1

N
HT
nR
−1
n HnG

−1HT
l R
−1
l Hl

The covariance ∆ in (4.26) contains ∆n and ∆n,l as blocks.

(iii) Uncorrelated noises: The initial condition y0 consists of x0 and r0, whereas the noises ξi

and δi consists of vi, ri and ri+1. The noises vi and ri are independent of x0 and r0 (for i > 0).

Hence y0 is independent (zero covariance) of both ξi and δi. The covariance between ξi and δi is

E[ξiδ
T
i ] =E

[(
Gvi +

1

N
HTR−1ri+1 −

1

N
A

G
HTR−1ri

)(
DT
HR

−1ri

− 1

N
DH(IN ⊗G−1)(IN ⊗ (HTR−1ri))

)T]
=− 1

N
A

G
HTR−1DH +

1

N
A

G

( 1

N
HTR−1H

)
G−1DH

=− 1

N
A

G
DH +

1

N
A

G
DH = 0.

The pair-wise zero covariances between y0, ξi and δi ensures that they are uncorrelated.

Thus, we formulated distributed dynamic consensus as the distributed estimation of a linear dynami-

cal system (4.24), with observations (4.25), and uncorrelated Gaussian noises. Before we study the
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error process of DCPO step (4.21), we express yi+1 in terms of yi by applying (4.24) on (4.26),

yi+1 = DH(IN ⊗G−1)(IN ⊗ AG
)(1N ⊗ yi) +DH(IN ⊗G−1)(1N ⊗ ξi) + δi+1. (4.26)

We use the formulation in Proposition 2 to analyze the convergence of dynamic consensus. From

this point on, we write all equations in vector form for ease of notation.

4.4.2 Error Analysis
To show convergence and to analyze the performance of the dynamic consensus step (4.21), we

analyze the error process ei

ei = ŷi − 1N ⊗ yi. (4.27)

Now, we study the dynamics of ei. Equations (4.21) and (4.24) along with (4.27) imply

ei+1 = ŷi+1 − 1N ⊗ yi+1

= (IN ⊗ AG
)(W ⊗ IM)ŷi − (IN ⊗ AG

)(1N ⊗ yi) + (I
N
⊗B)

(
y
i+1
−D

H
(I

N
⊗A)(I

N
⊗G−1)ŷi

)
−(1

N
⊗ξi).

Substitute yi+1 from (4.26),

ei+1 = (IN⊗AG
)(W⊗IM) (ŷi − 1N⊗yi) + (IN⊗B)δi+1 − (IN ⊗B)DH(IN ⊗ AG−1) (ŷi − 1N ⊗ yi)

+
(

(IN ⊗B)DH(IN ⊗G
−1

)− IMN

)
(1N ⊗ ξi)

=
(
W⊗A

G
−(IN⊗B)DH(IN⊗AG

−1

)
)
ei + φi

where the noise φi is defined in (4.29). The error process, ei, evolves with time i as:

ei+1 = Fei + φi (4.28)

where, the error matrix F is defined in (4.18) and the noise φi,

φi =
(

(IN ⊗B)DH(IN ⊗G−1)− IMN

)
(1N ⊗ ξi) + (IN ⊗B)δi+1. (4.29)

The noise φi in (4.28) is a linear combination of the noises ξi and δi+1. By Proposition 2, ξi and δi

are uncorrelated zero-mean Gaussian. Therefore, φi ∼ N (0,Φ), with

Φ =
(

(IN⊗B)DH(IN⊗G−1) − IMN

)
(J⊗Ξ)

(
(IN⊗G−1)DH(IN⊗BT )

−IMN

)
+ (IN⊗B)∆(IN⊗BT ). (4.30)
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Lemma 4.4.1. The error process ei and the noise sequence φi are correlated and their covariance

is

Φ̃ =E[eiφ
T

i ] = − 1

N

(
(IN ⊗B)DH(IN ⊗G−1)− IMN

)
×(J ⊗ ATG)

(
(IN ⊗G−1)DH(IN ⊗BT )− IMN

)
. (4.31)

Proof. The noise, φi in (4.29), and the error process, ei in (4.47), are both zero-mean. The

covariance between ei and φi is

E[eiφ
T

i ] = E
[(
Fei−1 + φi−1

)
φ
T

i

]
.

Note that φi is composed of ξi and δi+1. The error ei−1 contains the noise φi−2, which is composed

of ξi−2 and δi−1. The noises ξi−2 and δi−1 are independent of ξi and δi+1. Hence, E
[
ei−1φ

T

i

]
= 0.

Using (4.29) expand φi−1 and φi,

E[eiφ
T

i ] = E
[
φi−1φ

T

i

]
=
(

(IN ⊗B)DH(IN ⊗G−1)− IMN

)(
J ⊗ E

[
ξi−1ξ

T
i

])
×
(

(IN ⊗G−1)DH(IN ⊗BT )− IMN

)
(4.32)

where, the expectation of all the cross terms are zero except ξi−1 and ξi, whose covariance

E
[
ξi−1ξ

T
i

]
= − 1

N2
HTR−1E

[
rir

T
i

]
R−1HAT

G

= − 1

N
GG−1ATG = − 1

N
ATG

when substituted in (4.32) proves the lemma.

The MSE of ŷi is bounded if and only if the dynamics of the error process, ei, are asymptotically

stable, i.e., the spectral radius ρ(F ) < 1. With dynamic consensus step, (4.21), the consensus

weight matrix, W , and the pseudo-observation gain matrix, B are the two design parameters. Next,

we provide an example construction of W and B such that ρ(F ) < 1.

4.4.3 Estimator Design:
The agents communicate their distributed estimates to their neighbors. The graph Laplacian

L of the undirected agent network is symmetric. In this example design, we consider a stochastic

67



constant-weight consensus matrix W [35], i.e.,

W = IM − β1L (4.33)

where, β1 is the consensus weight. The agents weigh their neighbors’ estimates with β1 to update

their distributed estimates ŷni . For the purpose of illustration, we choose a scalar pseudo-observation

gain matrix B, i.e.,

B = β2IM . (4.34)

Note that the parameters β1 and β2 are positive, i.e., β1 > 0 and β2 > 0. We design β1 and β2 and

find the conditions such that ρ(F ) < 1. Substitute W and B in the error matrix F (4.18) using

equations (4.33) and (4.34),

F = (I
N
⊗G)

(
I
MN
−
(
β1

(
L⊗I

M

)
+β2

(
I
N
⊗G−1

)
D

H

))
(IN ⊗ A)(IN ⊗G−1) (4.35)

= (I
N
⊗G)F2(IN ⊗ A)(IN ⊗G−1),

where, F2 denotes the part of F dependent on the network topology L and observation model DH ,

F2 = I
MN
−
(
β1

(
L⊗I

M

)
+β2

(
I
N
⊗G−1

)
D

H

)
(4.36)

= I
MN
−β1F1, with,

F1 =L⊗ IM + β2(IN ⊗G−1)DH , β2 =
β2

β1

> 0. (4.37)

The eigenvalues of F1 play a key role in the design of β1 and β2 such that the spectral radius of the

error matrix ρ(F ) < 1.

Lemma 4.4.2. The matrix F1 has positive eigenvalues.

Proof. The matrices L and DH are symmetric positive semi-definite (PSD) matrices, whereas, G

and hence G−1 are symmetric positive definite (PD) matrices1. Note that F1 is not necessarily

symmetric since IN ⊗G−1 and DH may not commute. So we decompose F1 as follows:

F1 = (IN⊗G−
1
2 )
(
L⊗IM+β2(IN⊗G−

1
2 )DH(IN⊗G−

1
2 )
)

︸ ︷︷ ︸
F 1

(IN ⊗G
1
2 ) (4.38)

1The symmetricity, definiteness and semi-definiteness of matrices remain conserved after Kronecker product with
identity matrices.
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where, G−
1
2 denotes the square-root2 of G. Since G

1
2 is a symmetric positive definite matrix,

equation (4.36) implies that F1 and F 1 are similar matrices3. Therefore, F1 and F 1 share the same

eigenvalues. So it is sufficient to show that the eigenvalues of F 1 are positive.

Note that the matrices L⊗IM and (IN ⊗G−
1
2 )DH(IN ⊗G−

1
2 ) are symmetric PSD, and, β2 > 0.

Therefore F 1 is also symmetric PSD and its eigenvalues are non-negative. Now we show that zero

is not an eigenvalue of F 1 by proving it PD.

Take any u ∈ RNM , u 6= 0. Similar to Lemma 6 in [27], orthogonally decompose u into uCand

u
C⊥

, the projections into consensus subspace C and orthogonal subspace C⊥

u = uC + u
C⊥

where, C =

{
v ∈ RNM |v = 1N ⊗ s, s ∈ RM

}
.

The orthogonal projections uC and u
C⊥

satisfy

uT
C

(L⊗ IM) = (L⊗ IM)uC = 0 ∀ uC , and

uT
C⊥

(L⊗ IM)u
C⊥

> 0 ∀ u
C⊥
6= 0.

The quadratic form of F 1 with u results in

uTF 1u=
(
uC+uC⊥

)T(
L⊗IM+β2(IN⊗G−

1
2 )DH(IN⊗G−

1
2 )
)(

uC + u
C⊥

)
(4.39)

=β2

(
uC+uC⊥

)T(
(IN⊗G−

1
2 )DH(IN⊗G−

1
2 )
)(
uC+uC⊥

)
+ uT

C⊥
(L⊗ IM)u

C⊥
.

Both quadratic terms are non-negative due to positive semi-definiteness of the matrices. Since

u 6= 0, then at least one of the orthogonal components uC and u
C⊥

must be non-zero. If u
C⊥
6= 0,

then for all uC

uTF 1u ≥ uT
C⊥

(L⊗ IM)u
C⊥
> 0.

To complete the proof, now we need to show that uTF 1u > 0 when u
C⊥

= 0 and uC 6= 0. We use

the form uC = 1N ⊗ s where, s ∈ RM and s 6= 0. Then,

uTF 1u = β2u
T
C

(
IN ⊗G−

1
2

)
DH

(
IN ⊗G−

1
2

)
uC

2The square-root exists since the symmetric PD matrix G is diagonalizable. Note G− 1
2 retains the symmetric

positive definiteness property of G.
3Refer to [48] for properties of similar matrices.
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= β2

N∑
n=1

sTG−
1
2HT

nR
−1
n HnG

− 1
2 s

= β2s
TG−

1
2GG−

1
2 s

= β2||s||2 > 0.

Denote the positive eigenvalues of F1 by 0 < λ1 ≤ . . . ≤ λN . Given the local observation

model (4.26), define the diffusion rate, γ, of the agent communication network and γ
G

as

γ = max
β2

λ1

λN
=

λ1

λN
(4.40)

γ
G

=
λmin(G)

λmax(G)
. (4.41)

Note that γ, γ
G
∈ (0, 1]. Let, β

∗
2 denote the maximizer in (4.40). Recall the error matrix F in (4.35).

The next lemma derives the conditions and the design of β1, β2 such that ρ(F ) < 1.

Lemma 4.4.3. If the spectral norm of the system matrix, A, is upper bounded as:

a = ||A||2 <
√
γ
G

1 + γ

1− γ
(4.42)

then there exists

β1 ∈
(
a−√γ

G

aλ1

,
a+
√
γ
G

aλN

)
(4.43)

such that ρ(F ) < 1.

Proof. We write the error matrix F in (4.35) as

F=(IN ⊗G)F3

(
IN ⊗G−1

)
where, F3 = (IMN−β1F1) (IN⊗A).

Note that F and F3 are similar matrices.

ρ(F ) = ρ(F3)

≤
∥∥∥∥(IMN−β1F1) (IN⊗A)

∥∥∥∥
2

≤
∥∥∥∥IMN−β1F1

∥∥∥∥
2

∥∥∥∥A∥∥∥∥
2
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≤ a
∥∥∥∥(IN ⊗G−

1
2 )
(
IMN−β1F 1

)
(IN ⊗G

1
2 )

∥∥∥∥
2

≤ a
∥∥∥∥G− 1

2

∥∥∥∥
2

∥∥∥∥G 1
2

∥∥∥∥
2

∥∥∥∥IMN−β1F 1

∥∥∥∥
2

=
a
√
γ
G

ρ
(
IMN−β1F 1

)
=

a
√
γ
G

max
{(

1− β1λ1

)
︸ ︷︷ ︸

(i)

,
(
β1λN − 1

)
︸ ︷︷ ︸

(ii)

}
. (4.44)

Before we analyze the terms (i) and (ii) of (4.44), we comment on the choice of β1. Substitute γ in

(4.42) by (4.40) to get

a−√γ
G

λ1

<
a+
√
γ
G

λN
.

Divide both sides by a and choose β1 such that

a−√γ
G

aλ1

< β1 <
a+
√
γ
G

aλN
,

which is in accord with (4.43). Substitute these minimum and maximum values of β1 into the terms

(i) and (ii) of (4.44),

ρ(F )≤ a
√
γ
G

max
{(

1− β1λ1

)
,
(
β1λN − 1

)}
<

a
√
γ
G

max
{(

1−
a−√γ

G

aλ1

λ1

)
,
(a+

√
γ
G

aλN
λN−1

)}
≤ a
√
γ
G

max

{√
γ
G

a
,

√
γ
G

a

}
= 1.

Network Tracking Capacity: We choose β1 satisfying (4.43) of Lemma 4.4.3 and construct the

consensus weight matrix W using (4.33). Using this β1 and the maximizer β
∗
2 from (4.40), we

obtain β2 = β
∗
2 β1 and subsequently the gain matrix B using (4.34). Such design of W and B

enforces asymptotic stability of the error process, ei in (4.28), i.e., ρ(F ) < 1. To obtain such

asymptotic stability, Lemma 4.4.3 states that the degree of instability of the system dynamics (2.1),

characterized by the spectral norm of the system matrix A, should be within a threshold determined

by (4.42). The corresponding upper bound on the dynamics of the averaged pseudo-observation, yi

in (4.24), given by spectral norm of the dynamics matrix A
G

is

‖A
G
‖2 = ‖GAG−1‖ ≤ ‖G‖‖G−1‖‖A‖
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<
1

γ
G

√
γ
G

1 + γ

1− γ
=

1
√
γ
G

1 + γ

1− γ
. (4.45)

Inequality (4.45) defines the dynamic consensus step’s Network Tracking Capacity (NTC). With

this design, we can choose any β1 that satisfies (4.43), but the β1 that minimizes ρ(F2) is

β∗1 =
2

λ1 + λN
. (4.46)

Note that β∗1 lies in the acceptable range given by (4.43). Since the design of the B and W matrices

is not the primary focus of this paper, we stop here by providing an example design. Any other

design of B and W matrices is also acceptable as long as it satisfies the ρ(F ) < 1assumption stated

below:

Assumption 7 (Stability). The pseudo-observations error matrix F , defined in (4.18), has ρ(F ) < 1.

From now onwards, we assume that given (4.24) and (4.25), we design the matrices W and

B such that ρ(F ) < 1. With this assumption, we discuss the convergence and performance of

the DCPO step in Subsection 4.4.4. The design of a generic gain B and consensus-weights W to

improve the overall performance of the DIKF, is discussed in Chapter 5. For a given A, L and DH ,

there may not always exist B and W such that ρ(F ) < 1. In these cases, we should rewire the agent

communication network (i.e., the network topology, L) and/or modify the sensor placements (i.e.,

observations, DH), so that we can design B and W satisfying ρ(F ) < 1.

4.4.4 Unbiasedness and bounded MSE:
This Subsection analyzes the convergence and performance of DCPO, (4.10) of Step 1 of DIKF.

We consider the DCPO formulation of Subsection 4.4.1 with the design matrices as constructed in

Subsection 4.4.3 and study the error equations from Subsection 4.4.2, which results in the following

theorem.

Theorem 4.4.1. At each agent, the distributed pseudo-observation estimates, ŷni , of the averaged

pseudo-observation, yi, are unbiased at all time indices, i.e.,

E[eni ] = E[ŷni − yi] = 0, ∀i, ∀n

and their MSE are asymptotically bounded

lim
i→∞

1

M
E[(ŷni − yi)T (ŷni − yi)] <∞, ∀n.

72



The covariance Pi of the error process ei satisfies the Lyapunov iteration

Pi+1 = FPiF
T + Φ

where, Φ, defined using (4.30).

Proof. Consider the error process ei in (4.27) and compute E[e0], the bias of the distributed

pseudo-observation estimates ŷi at i = 0. Substitute ŷ0, the initial condition of y0, and initial

pseudo-observation y0 using (4.21), (4.25) and (4.26) respectively,

E[e0] =E[ŷ0 − 1N ⊗ y0]

=
(

(IN ⊗G)− (IN ⊗B)DH

)
(1N ⊗ x0) + (IN ⊗B)

×E[DH(IN ⊗G−1)(1N ⊗ y0) + δi]− 1N ⊗ E[y0]

= 1N ⊗ (Gx0)− (IN ⊗B)DH(1N ⊗ x0) + (IN ⊗B)

×DH(IN ⊗G−1)
(
1N ⊗ (Gx0)

)
− 1N ⊗ (Gx0) = 0.

Recall the dynamics of ei in (4.28) and the unbiasedness of the pseudo-observation estimates ŷi at

any time i follows:

E[ei] =FE[ei−1] + E[φi−1]

=FE[ei−1] = F iE[e0] = 0 (4.47)

For the second part of the theorem, denote the covariance of ei by Pi. Expand Pi+1 using (4.28), (4.30)

and Lemma 4.4.1,

Pi+1 = E[ei+1e
T
i+1]

= FE[eie
T
i ]F T + E[φiφ

T

i ] + FE[eiφ
T

i ] + E[φie
T
i ]F T

= FPiF
T + Φ + F Φ̃ + Φ̃TF T︸ ︷︷ ︸

Φ

(4.48)

= F iP0(F T )i +
i−1∑
j=0

F jΦ(F T )j.

Taking the limit as i→∞ and noting that ρ(F ) < 1,

lim
i→∞

Pi = lim
i→∞

F iP0(F T )i + lim
i→∞

i−1∑
j=0

F jΦ(F T )j
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P∞ = lim
i→∞

∞∑
j=0

F jΦ(F T )j.

The infinite sum
∞∑
j=0

F jΦ(F T )j converges to finite P∞, where P∞ is the solution of the following

equation:

P∞ = FP∞F
T + Φ.

Thus the asymptotic MSE is bounded,

lim
i→∞

1

NM
E[eTi ei] =

1

NM
trace(P∞) <∞.

In summary, dynamic consensus on pseudo-observation enables each agent to obtain an unbiased

distributed pseudo-observation estimate, ŷni , of the averaged pseudo-observation, yi, based on its

own observations and by communicating with its neighbors. We proved that the MSE of the

distributed estimates are bounded. Based on this, if we compare the Step 1 of the DIKF in

Subsection 4.3.2 with the Step 1 of the centralized Kalman filter in Subsection 2.4.2, we see it is

justified to substitute yi by their estimates ŷni at each agent.

4.4.5 Intermediate Results
This Subsection analyzes an intermediate step that connects the convergence results of the

dynamic consensus on pseudo-observation to the convergence analysis of the DIKF, namely, the

impact of substituting the global average yi by their distributed estimates ŷni in DIKF. From (2.17),

we infer that yi is Gaussian,

yi ∼ N
(
Gxi,

1

N
G

)
. (4.49)

Now we derive the dynamics of the distributed estimates ŷni with respect to the field dynamics xi.

To obtain the dynamics, we analyze the corresponding error process qi in (4.10) and its covariance

Qi. The next theorem summarizes the dynamics and the distribution of qi.

Theorem 4.4.2. The error qi ∼ N (0, Qi). The covariance Qi is asymptotically bounded and it

satisfies the Lyapunov iteration

Qi+1 = FQiF
T + Ψ
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where Ψ and the initial covariance Q0 are defined in equation (4.18) and Subsection ?? respectively.

Proof. Begin with the error qi in (4.10), then replace ŷi+1 by the DCPO (4.21)

qi+1 = ŷi+1 − 1N ⊗ (Gxi+1)

= (IN ⊗ AG
)(W ⊗ IM)ŷi − 1N ⊗ (Gxi+1)

+ (IN⊗B)
(
yi+1 −DH(IN⊗A)(IN⊗G−1)ŷi

)
=
(
W ⊗ A

G
− (IN ⊗B)DH(IN ⊗ AG−1)︸ ︷︷ ︸

F

)
ŷi

+(IN⊗B)yi+1 − 1N ⊗ (Gxi+1)

where, we use the Kronecker product property,

(IN ⊗ AG
)(W ⊗ IM) = (W ⊗ IM)(IN ⊗ AG

) = (W ⊗ A
G

).

Substitute xi+1 and yi+1 by (2.1) and (4.26) , respectively,

qi+1 =F ŷi + (IN⊗B)
(
DH(IN ⊗G−1)(IN ⊗ AG

)(1N ⊗ yi)

+DH(IN ⊗G−1)(1N ⊗ ξi) + δi+1

)
−1N ⊗

(
G(Axi + vi)

)
=F ŷi + (IN⊗B)DH(IN ⊗ AG−1)(1N ⊗ yi)

−(IN ⊗ AG
)(1N ⊗Gxi)− 1N ⊗Gvi

+(IN⊗B)
(
DH(IN ⊗G−1)(1N ⊗ ξi) + δi+1

)
.

Replace ξi and δi+1 using their definitions from the proof of Proposition 2,

qi+1 =F (ŷi − 1N ⊗Gxi)− 1N ⊗Gvi

+(IN⊗B)DH

(
IN⊗AG−1

)(
1N⊗

(
1

N
HTR−1ri

))

+(IN⊗B)DH

(
IN ⊗G−1

)(
1N ⊗

( 1

N
HTR−1ri+1

+Gvi −
1

N
A

G
HTR−1ri

))
+(IN⊗B)

(
DT
HR

−1ri+1

− 1

N
DH(IN ⊗G−1)(IN ⊗ (HTR−1ri+1))

)
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= Fqi +
(

(I
N
⊗B)D

H
−I

N
⊗G

)
(1

N
⊗vi)+(I

N
⊗B)DT

H
R
−1
r
i+1︸ ︷︷ ︸

ψi

= Fqi + ψi. (4.50)

Note that the noise process ψi is a linear combination of statistically independent zero-mean

Gaussian noises, vi, and ri+1. Therefore, ψi ∼ N (0,Ψ), with

Ψ=
(

(IN⊗B)DH − IN⊗G
)

(J⊗V )
(
DH(IN⊗BT )− IN⊗G

)
+(IN⊗B)DH(IN⊗BT).

Similarly ψi−1 consists of vi−1, and ri, which are independent of vi, and ri+1. So ψi is statistically

independent over time. Note that qi contains all the noises from ψo to ψi−1. Hence, ψi and qi are

statistically independent. Therefore the error covariance Qi follows the Lyapunov type iteration as

computed in the DCPO step (4.11) of the DIKF algorithm.

Now to derive the initial condition Q0, we compute q0 using (4.21), (4.26), (4.4) and ŷn−1,

q0 = ŷ0 − 1N ⊗ (Gx0)

=
(

(IN⊗B)DH − IN⊗G
)

(1N ⊗ x0 − 1N ⊗ x0)

+(IN⊗B)DT
HR

−1r0

E[q0] = 0 (4.51)

Q0 =
(

(IN⊗B)DH − IN⊗G
)

(J⊗Σ0)
(
DH(IN⊗BT )

−IN⊗G
)

+ (IN⊗B)DH(IN⊗BT). (4.52)

Equations (4.11), (4.51), and (4.52) together with Assumption 7, ρ(F ) < 1, establish that qi is zero

mean and the covariance Qi is asymptotically bounded.

The error matrix Qi is a block matrix with N2 blocks of sizes M ×M each. Let Qn
i denote the nth

diagonal block of Qi.

Corollary 4.4.3. The dynamics of the distributed estimates ŷni with respect to the system dynamics

xi is

ŷni = Gxi + qni , ∀n (4.53)

where, qni ∼ N (0, Qn
i ),
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then, ŷni ∼ N (Gxi, Q
n
i ) , ∀n. (4.54)

Proof. Follows from equation (4.10) and Theorem 4.4.2.

In vector form, the dynamics of ŷi is

ŷi = 1N ⊗ (Gxi) + qi. (4.55)

The key results are (4.53) and (4.54) of Corollary 4.4.3. Compare (4.54) with its centralized

counter-part (4.49). We use (4.54) to design the distributed estimator gains Kn
i and analyze the

convergence and performance of the DIKF next.

4.5 DIKF: Convergence Analysis
This section studies the DIKF filtering and prediction steps, (4.13)-(4.16), and compares them

with the centralized filtering and prediction steps, (2.19)-(2.22). First, we analyze the filtering

and prediction error processes and then show that the distributed prediction estimates x̂ni|i−1 of

the dynamical system xi are unbiased and their MSE are bounded. Given the distributed pseudo-

observation estimates ŷni from the DCPO, we design, later in this section, the estimator gains Kn
i

that minimize the MSE of the DIKF and hence improve its performance.

4.5.1 Error Analysis:
Given (2.1) and the pseudo-observation estimate (4.53), we aim to obtain at each agent the

following prediction estimate,

x̂ni|i−1 = E[xi | ŷn0,i−1]

where, ŷn0,i−1 = [(ŷn0 )T , . . . , (ŷni−1)T ]T . Another estimate of interest is the filtering estimate,

x̂ni|i = E[xi | ŷn0,i].

Recall the vector form of the distributed filter error εi|i in (4.10) and the distributed prediction error

εi+1|i in (4.10) of the DIKF. Substitute (4.22) and (4.55) in (4.10), and (4.23) and (??) in (4.10),

εi|i =
(
IMN −Ki(IN ⊗G)

)
εi|i−1 +Kiqi (4.56)

εi+1|i = (IN ⊗ A)
(
IMN −Ki(IN ⊗G)

)
εi|i−1 + (IN ⊗ A)Kiqi − (1n ⊗ vi). (4.57)
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In the prediction error dynamics (4.57), vi is independent of εi|i−1 and qi. We summarize the joint

statistics of εi|i−1 and qi in the next lemma 4.5.1.

Lemma 4.5.1. The error and noise sequences εi|i−1 and qi are statistically dependent and their

time-varying covariance Πi

Πi = E[εi|i−1q
T
i ] (4.58)

=
(
I
N
⊗A
) (
I
MN
−Ki(IN⊗G)

)
Πi−1F

T +
(
I
N
⊗A
)
KiQiF

T

+ (J ⊗ V )
(
IN⊗G−DH

(
IN⊗BT

))
Proof. Equations (4.61) and (4.53) imply that εi|i−1 and qi are zero-mean. Write the covariance

matrix of εi|i−1 and φi and expand εi|i−1 and qi using (4.57) and (4.50) respectively,

E[εi|i−1q
T
i ] = E

[(
(IN ⊗ A)

(
IMN −Ki−1(IN ⊗G)

)
ε
i−1|i−2

+ (IN ⊗ A)Ki−1qi−1 − 1n ⊗ vi−1

)(
Fqi−1 + ψi−1

)T]
= (IN ⊗ A)

(
IMN −Ki−1(IN ⊗G)

)
Πi−1F

T

+ (IN ⊗ A)Ki−1Qi−1F
T − E

[
(1N ⊗ vi−1)ψTi−1

]
. (4.59)

From (4.50), we see that ψi−1 consists of vi−1 and ri. Therefore, expectations of the rest of the cross

terms in (4.59) are zeros. Using (4.50) compute the only cross-covariance term in (4.59),

E
[
(1N⊗vi−1)ψTi−1

]
= (J⊗V )

(
DH

(
IN⊗BT

)
−IN⊗G

)
and substitute it back in (4.59) to prove Lemma 4.5.1.

So far we have formulated the statistics of all the noise sequences. Now we compute the mean

of the error processes.

E[εi|i] = E[x̂i|i − 1N ⊗ xi]

= E
[
E[x̂i|i − 1N ⊗ xi | ŷ0,i]

]
= E

[
x̂i|i − x̂i|i

]
= 0 (4.60)

and similarly, E[εi+1|i] = 0. (4.61)
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The error covariances then follow from (4.56)-(4.61),

Σi|i =E[εi|i(εi|i)
T ]

=
(
I
MN
−Ki(IN⊗G)

)
Σi|i−1

(
I
MN
−(I

N
⊗G)KT

i

)
+ KiQiK

T
i

+ KiΠ
T
i

(
I
MN
− (I

N
⊗G)KT

i

)
+
(
I
MN
−Ki(IN ⊗G)

)
ΠiK

T
i

Σi+1|i =E[εi+1|i(εi+1|i)
T ]

= (IN ⊗ A) Σi|i

(
IN ⊗ AT

)
+ J ⊗ V. (4.62)

From equations (4.62) and (4.62), we see that the covariance of the error processes, and hence the

performance of the DIKF, depends on the design of the gain matrices Kn
i .

4.5.2 Unbiasedness and minimum MSE:
This subsection analyzes the convergence of the proposed DIKF. We start with the design of the

time-invariant distributed gain. The following theorem states and proves the asymptotic properties

and convergence of the DIKF algorithm.

Theorem 4.5.1. Given the pseudo-observation estimates ŷni , the distributed prediction estimates

x̂ni+1|i of the dynamical system xi+1 are unbiased and their MSE are asymptotically bounded at each

agent for all time-invariant gains Kn
i satisfying,

Kn
i = αG−1, (4.63)

where,
‖A‖2−1

‖A‖2

< α <
‖A‖2+1

‖A‖2

.

Proof. The zero mean of the predictor error εni+1|i in (4.61) shows that the distributed estimates

x̂ni+1|i are unbiased at each agent. Now consider the predictor error equation (4.57)

εni+1|i = A(IM −Kn
i G)︸ ︷︷ ︸

A
n
i

εni|i−1 + AKn
i q

n
i − vi︸ ︷︷ ︸
sni

(4.64)

where A
n

i is the error matrix and sni is the noise process. Consider Kn
i = αG−1, then the spectral

radius of A
n

i is,

ρ(A
n

i ) ≤
∥∥∥∥A(IM − αG−1G)

∥∥∥∥
2

≤
∥∥∥∥A∥∥∥∥

2

max{|1− α|, |α− 1|}
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< 1 ∀ ‖A‖2−1

‖A‖2

< α <
‖A‖2+1

‖A‖2

,

and the noise sni = αAG−1qni − vi is zero-mean Gaussian, i.e., sni ∼ N (0, Sni ) with

Sni = α2AG−1Qn
iG
−1AT + V. (4.65)

Since the error covariance matrix Qn
i is asymptotically bounded, the noise covariance Sni in (4.65)

is also asymptotically bounded. Bounded Sni together with ρ
(
A
n

i

)
< 1, ∀ i, proves that the

error process (4.64) is stable and the MSE of the distributed estimates x̂ni+1|i are asymptotically

bounded.

Now we design the time-varying gain matrices Kn
i that provide minimum MSE distributed

estimates x̂ni+1|i of the dynamic system xi. First consider the distributed filter (4.13) and define the

distributed pseudo-innovations νni

νni = ŷni −Gx̂ni|i−1. (4.66)

Lemma 4.5.2 outlines the statistical properties of νni .

Lemma 4.5.2. The pseudo-innovations νni are an uncorrelated sequence of zero-mean Gaussian

random vectors.

Proof. The pseudo-innovations νni in (4.66) are a sequence of Gaussian random vectors. We

compute its mean by substituting ŷni in (4.66) from (4.53) and then using (4.61),

E [νni ] = E
[
Gxi + qni −Gx̂ni|i−1

]
= GE

[
εni|i−1

]
+ E [qni ] = 0

Now we compute the cross-covariances. Without loss of generality, consider i > j and apply

iterated law of expectations

E
[
νni (νnj )T

]
= E

[(
Gεni|i−1 + qni

)(
Gεnj|j−1 + qnj

)T]
= E

[
E
[(
Gεni|i−1 + qni

)(
Gεnj|j−1 + qnj

)T
| ŷn0,i−1

]]

= E

[
E
[(
Gεni|i−1 + qni

)
| ŷn0,i−1

](
Gεnj|j−1 + qnj

)T]
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= E
[(
GE

[
εni|i−1 | ŷn0,i−1

]
︸ ︷︷ ︸

=0

+E [qni ]︸ ︷︷ ︸
=0

)(
Gεnj|j−1 + qnj

)T ]
= 0.

Substitute (4.66) in (4.13), then the distributed filter reduces to

x̂ni|i = x̂ni|i−1 +Kn
i ν

n
i . (4.67)

By Lemma 4.5.2, the pseudo-innovations νni are zero-mean, Gaussian and uncorrelated. We use the

principles of the CKF and state the design of the gain Kn
i in the following lemma.

Lemma 4.5.3. Given the distributed filter (4.67), the gain matrices that minimize the MSE are

Kn
i = Σxiνni

Σ−1
νni
, ∀n (4.68)

where, Σνni
is the covariance of the pseudo-innovations νni and Σxiνni

is the cross-covariance

between xi and νni .

Refer to [47] for the proof of the lemma. In the following theorem, we present the design of the

time-varying gain matrices Kn
i that minimize the asymptotic MSE of the DIKF algorithm.

Theorem 4.5.2. The gain matrices, Kn
i that provide the minimum asymptotic MSE distributed

estimates of the field xi are

Kn
i =

((
Qn
i + (Πn

i )
T

G
)

(Σn
i|i−1

G+ Πn
i )−1 +G

)−1

∀n,

and the Lyapunov-type iteration of the error covariance is

Σi+1|i=(IN⊗A)
((
I
MN
−Ki(IN⊗G)

)
Σi|i−1

(
I
MN
−(I

N
⊗G)KT

i

)
+KiQiK

T
i +

(
I
MN
−Ki(IN ⊗G)

)
ΠiK

T
i

+KiΠ
T
i

(
I
MN
−(I

N
⊗G)KT

i

))
(IN ⊗ AT ) + V (4.69)

with the initial condition, Σ0|−1 = J ⊗ Σ0.
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Proof. Compute the matrices Σνni
and Σxiνni

,

Σνni
= E[νni (νni )T ] = E[(Gεni|i−1 + qni )(Gεni|i−1 + qni )T ]

= GΣn
i|i−1G+Qn

i +GΠn
i + (Πn

i )TG

Σxiνni
= E[(xi − xi)(νni )T ]

= E[(εni|i−1 + (x̂ni − xi))(Gεni|i−1 + qni )T ]

= Σn
i|i−1G+ Πn

i .

The remaining terms in the above equations are all zero due to statistical independence of the noises.

Now, these covariances along with (4.68) provide the optimal gain matrices

Kn
i =

(
Σn

i|i−1
G+Πn

i

)(
GΣn

i|i−1
G+Qn

i +GΠn
i +(Πn

i )
T

G
)−1

=

((
Qn
i + (Πn

i )
T

G
)

(Σn
i|i−1

G+ Πn
i )−1 +G

)−1

.

Define the block gain matrix K = blockdiag{K1
i , . . . , K

N
i }. Substitute Ki and the Lyapunov-type

filter covariance Σi|i equation (4.62) into (4.62) to obtain the Lyapunov-type predictor covari-

ance (4.69). The equation (4.69) along with (4.58) and (4.11) is the distributed version of the

algebraic Riccati equation.

The algebraic Riccati equation (4.69) quantifies the performance of the DIKF algorithm. The

trace of the covariance matrix gives the MSE of the distributed estimates x̂ni . It is the minimum

MSE solution of the problem given the distributed pseudo-observation estimates ŷni , from the DCPO

algorithm. Note that these time-varying Kn
i are computationally more expensive than the time

invariant gain matrices stated in Theorem 4.5.1, but provide better asymptotic performance.
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Algorithm 3 Gain Design of DIKF
Input: Model parameters A, V , H , R, G, L, Σ0.
Dynamic Averaging: Compute consensus weight β1 and pseudo-observation weight β2 us-
ing (4.34)-(4.46).
Field Estimation: Compute the gain Kn

i .
if Scalar Gain then

Compute the scalar gain Kn
i = αG−1 using (4.63).

else
Compute the optimized filter gain matrix Kn

i using the following iterative approach.
Initialize: Σ0|−1, Q0 and Π0 using (4.18)-(4.20).
while i ≥ 0 do
Filter gain:

Compute Kn
i using (4.67)-(4.69).

Prediction error covariance updates:
Update Pi+1,Σi+1|i,Πi+1 using (4.11), (4.16), (4.17).

end while
end if

4.6 Experimental Evaluations

We simulate, using Matlab, a discrete-time dynamical system, A, with M = 20 state variables

and unstable time-invariant dynamics, i.e., ||A||2= 1.05. Note that time-varying A requires a

completely different set of analysis, which is beyond the scope of this paper. For simplicity, we

chose A to be symmetric. This is not required and all the results hold for any other choice of

non-symmetric dynamics. A group of N = 20 agents observes the dynamical system, where each

agent observes only four (possibly different) state variables, i.e., Mn = 4. The covariance matrices

of the input noise V , of the observation noises R, and of the initial condition Σ0 are randomly

generated and then squared to make them positive definite. The spectral norm of the covariance

matrices are ‖V ‖2= 2, ‖R‖2= 16 and ‖Σ0‖2= 8. The mean of the initial condition, x0, is randomly

generated. The system and observation model is not locally observable but is globally detectable

(Assumption 4) and distributedly observable (Assumption 7), i.e., G in (4.5) is invertible. We

consider a lattice graph [57] with 20 nodes and 60 edges for the agent communication network.

This network is connected (Assumption 5) with a positive algebraic connectivity, λ2(L) = 1.3,

of the Laplacian matrix L of the lattice graph. Based on this experimental setup, we evaluate the

performance of dynamic consensus on pseudo-observation and Distributed Information Kalman
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Figure 4.1: (4.1a) Plot of γ and ρ(F ), ρ(F2) with respect to β2. (4.1b) Plot of ρ(F ) with respect to
β1 and β2. (4.1c) MSE (in dB) plots of distributed estimates ŷi with time for the sets of β1 and β2

shown in Table 4.1.

Filter (DIKF) by Monte-Carlo simulations.

4.6.1 DCPO: Convergence and Performance Results
The first step for the dynamic consensus on the pseudo-observations is to design the constant

weight consensus matrix, W , and the pseudo-observation gain matrix, B, i.e., to design the two

parameters β1 and β2. Using equations (4.35)-(4.40), we plot the diffusion rate, λ1
λN

, and the

corresponding spectral radii, ρ(F ) and ρ(F2), with varying β2 = β2
β1

in Fig. 4.1a. For each β2, we

compute β1 using (4.46) and β2 = β2β1. We select the maximizer β
∗
2 that maximizes the diffusion

rate and minimizes ρ(F2), and compute one set (Case I in Table 4.1) of parameters (β1, β2) that

yields ρ(F ) < 1. Note that the β
∗
2 that minimizes ρ(F2) may not yield the minimum ρ(F ) as

evident from Fig. 4.1a. We consider the set (β1, β2) satisfying the β
∗
2 that yields minimum ρ(F ) as

another acceptable set of parameters (Case II in Table 4.1). Another way of analyzing ρ(F ) is by

β2 β1 β2 ρ(F )
Case I 0.8 0.1694 0.1355 0.9798
Case II 1.1 0.1511 0.1662 0.9780
Case III 1.33 0.15 0.20 0.9714
Case IV 1.0 0.1568 0.1568 0.9782

Table 4.1: Sets of β1 and β2 used in Fig. 4.1c.

varying β1 and β2 over randomly selected ranges and then computing ρ(F ) using (4.35). We vary
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Figure 4.2: MSE (in dB) plots of distributed estimates ŷi with time for different: (4.2a) β2; (4.2b)
β1; and (4.2c) ||A||2.

both β1 and β2 in the range [0, 5] and the corresponding plot of ρ(F ) is shown in Fig 4.1b. The

set of parameters (β1, β2) that minimizes ρ(F ) is Case III in Table 4.1. In Case IV, we consider a

special case β1 = β2 and obtain the optimal set of parameters using (4.46) that yields ρ(F ) < 1.

In Table 4.1, we accumulated four acceptable designs of the matrices W and B, i.e., β1 and β2,

that satisfy Assumption 4. With these four sets of β1 and β2, we simulate the dynamic averaging

algorithm of the distributed pseudo-innovations estimate ŷni up to 200 time iterations. Then we

compute the MSE (in dB) of the distributed estimates by 500 Monte-Carlo simulations. From

Fig. 4.1c, we see that the dynamic consensus step (4.10) enables each agent to obtain the unbiased

distributed estimates ŷni of the global average yni with bounded MSE. Note that the Monte-Carlo

simulated results match the theoretical MSE obtained from the Lyapunov type iteration (4.48) of

the pseudo-observation error covariance matrix Pi. For the remaining simulations, we consider

Case I in Table 4.1 as the reference plot (black line with circle markers), since it yields the lowest

asymptotic MSE amongst these four cases.

We now analyze the performance of dynamic consensus step by varying different parameters.

First we plot the performance of dynamic consensus step with fixed β1 and varying β2 in Fig 4.2a.

Similarly, we repeat the Monte-Carlo simulations with fixed β2 and varying β1, as shown in Fig 4.2b.

In all these simulations, we see that the reference Case I yields the lowest asymptotic MSE. Next

we study the performance of dynamic consensus step for different dynamics matrix A, input noise

covariance V and measurement noise covariance R. We randomly generate (as described earlier)

different A, V , and R with specific spectral norms. We plot the MSE of the distributed estimates ŷni

with varying ||A||2, ||V ||2, and ||R||2 in Fig 4.2c, Fig 4.3a, and Fig 4.3b, respectively. From Fig 4.2c,
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λ2 β1 β2 ρ(F )
Lattice 1.3043 0.1694 0.1355 0.9798
Erdös-Renýi 2.3293 0.1079 0.1511 0.9847
Watts-Strogatz 2.0193 0.1197 0.1436 0.9572
Barabasi-Albert 1.8376 0.0708 0.1133 0.9843

Table 4.2: Connectivity and gain parameters used in Fig. 4.3c.
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Figure 4.3: MSE (in dB) plots of distributed estimates ŷi with time for different: (4.3a) ||V ||2; (4.3b)
||R||2; and (4.3c) network models.

we see that the asymptotically stable dynamics with ||A||2= 0.90 yield the lowest asymptotic MSE.

When ||A||2= 1.10 the error process is unstable as ||A||2 is greater than the NTC (1.0519). If the

degree of instability ||A||2 of the field dynamics is greater than the NTC, then it is not possible

to design β1 and β2, such that ρ(F ) < 1. From Fig 4.3a, we see that the asymptotic MSE of

dynamic consensus step increases with increasing ||V ||2, whereas it decreases with ||R||2 as shown

in Fig 4.3b.

Finally in Fig 4.3c, we plot the performance of the dynamic consensus step for varying agent

communication network models. We consider Erdös-Renýi [57], Watts-Strogatz [58], and Barabasi-

Albert [59] graphs with the same number of nodes (N = 20) and edges (E = 60) as the Lattice

graph. Following a similar approach, we compute the gain parameters, β1 and β2, for each network.

The algebraic connectivity, λ2, and the gain parameters, β1 and β2, are listed in Table 4.2. From Fig

4.3c, we see that the Lattice model with the lowest λ2 has the maximum asymptotic MSE, whereas

the Erdös-Renýi model with the highest λ2 has the minimum asymptotic MSE. The asymptotic MSE

is sensitive to the algebraic connectivity λ2 of the network. We will use this Erdös-Renýi network

for the DIKF analysis in Subsection 4.6.2. From the simulation plots we see that the performance of

the DCPO step depends on a combination of multiple factors including the design parameters, noise
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Figure 4.4: MSE of DIKF - theoretical and simulated, CKF, and, DKF-Pseudoinnovations (PIKF in
Chapter 3)

covariances, field dynamics and the agent communication network models. There is no monotonic

relationship between ρ(F ) and asymptotic MSE. In Fig 4.1a, due to varying gain parameters, higher

ρ(F ) lead to lower asymptotic MSE, whereas in Fig 4.3c, lower ρ(F ) lead to lower asymptotic

MSE due to the substantially increased connectivity caused by the network models. In this context,

note that we do not expect any monotonic or dramatic changes in the performance of the distributed

estimates with varying Mn as long as the field dynamics, A, is locally undetectable at each agent but

globally detectable (Assumption 1) and distributedly observable (Assumption 3). Other observation

models, i.e., sensor placements, may yield different asymptotic MSE performance, as is to be

expected like in centralized Kalman filtering.

4.6.2 DIKF: Convergence and Performance Results
Now, we use the distributed pseudo-observations estimate ŷni in the DIKF algorithm (4.13)-(4.16).

Then we compute the MSE (in dB) of the distributed state estimates by 500 Monte-Carlo simulations.

We also compute the theoretical MSE of DIKF using the Riccati equation (4.69). Note that the

distributed gain matrices Kn
i are computationally expensive. So we also Monte-Carlo simulate the

DIKF with time invariant gain matrices Kn = αG−1 and compute the corresponding theoretical

MSE asymptotics for different α. We compare these simulated and theoretical MSE of DIKF with

the centralized Kalman filter and the PIKF presented in Chapter 3. The plot shown in Fig. 4.4 shows

that DIKF improves 2dB over the PIKF, while its MSE performance gap from the CKF is 3dB. Fig.

4.5a shows that the DIKF is capable of distributed estimation of the unstable dynamical system
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Figure 4.5: Comparison of MSE between centralized filter, the proposed DIKF with time-varying
Kn
i , and, time-invariant Kn

i = αG−1 for different α. MSE (in dB) plots of distributed estimates x̂i
with time for: (4.5b) different ||V ||2; and, (4.5c) different ||R||2.

with bounded MSE as expected from the results in Theorems 4.5.1 and 4.5.2. The simulated MSE

of the DIKF has a performance gap of about 2.5 dB when compared to the centralized Kalman

filter. On the other hand, with varying α, the best performance is obtained for α = 1. Choosing

among time-varying and time-invariant gain matrices is a tradeoff between computation complexity

and asymptotic MSE performance. For the remaining simulations, we consider time-invariant gain

matrices with α = 1 as the reference case (black line with circle markers). Now, we study the

λ2 β1 β2 ρ(F )
E = 60 2.3293 0.1079 0.1511 0.9487
E = 30 0.3127 0.2240 0.1120 0.9694
E = 90 3.6303 0.0802 0.1604 0.9353
E = 150 11.8390 0.0559 0.1788 0.9104

Table 4.3: Connectivity and gain parameters used in Fig. 4.6c.

performance of DIKF for different input noise covariance V , measurement noise covariance R,

and dynamics matrices A. We randomly generate (similar to dynamic consensus) different V , R,

and A with specific spectral norms. We plot the MSE of the distributed estimates x̂ni with varying

||V ||2, ||R||2 and A in Fig 4.5b, Fig 4.5c, and Fig 4.6a respectively. From Fig 4.5b and 4.5c, we see

that with increasing ||V ||2 and ||R||2 the asymptotic MSE of both DIKF and centralized Kalman

filter (corresponding dotted lines) increase proportionally. But both DIKF and centralized Kalman

filter are more robust to the increase in measurement noise level as compared to the input noise

level. In contrast, increasing the degree of instability of the dynamics matrix ||A||2 affects the

performance of the DIKF significantly more than the centralized Kalman filter, as evident from Fig
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Figure 4.6: Mean-squared error (MSE in dB) plots of distributed estimates x̂i with time for: (4.6a)
different ||A||2; (4.6b) different network models; and, (4.6c) varying number of edges E in the
network.

4.6a. That is why ||A||2 plays a key role in the convergence of the DIKF. Finally in Fig 4.6b and

Fig 4.6c, we analyze the performance of the DIKF with varying agent communication networks,

considering both different network models and different number of edges. Similar to dynamic

consensus, we consider Erdös-Renýi, Watts-Strogatz, and Barabasi-Albert graphs with the same

number of nodes (N = 20) and edges (E = 60) that yield the parameters listed in Table 4.2. From

Fig 4.6b, we see that the Barabasi-Albert model results in maximum asymptotic MSE, whereas the

Erdös-Renýi model achieves minimum asymptotic MSE. On the other hand, when we consider an

Erdös-Renýi network model and vary the number of edges, E, in the network, we obtain the set

of parameters shown in Table 4.3. Fig 4.6c illustrates that, increasing the number of edges in the

network, increases the algebraic connectivity, (λ2), and hence results in lower asymptotic MSE of

DIKF. The performance gap between the DIKF and centralized Kalman filter depends on the design

of the gain matrices, the input and the measurement noises, the system dynamics, and the agent

network model and its connectivity.

4.7 Conclusions
This chapter proposes a novel distributed filter, DIKF, for the estimation of unstable time-varying

random fields over sensor networks to achieve unbiased distributed estimates with bounded MSE.

The distributed filter includes a new consensus+innovations type dynamic consensus on pseudo-

observations (DCPO) algorithm. We proved that both distributed filter and dynamic consensus

converge asymptotically. Given the pseudo-observations estimates from the DCPO, we designed
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the gain matrices of the distributed filter algorithm such that the estimation MSE is minimized.

The main contributions of this chapter are: (i) an explicit expression for the Network Tracking

Capacity of the distributed estimation based on the eigenvalues of the network Laplacian and

the local observation matrices; (ii) analytical design of the general estimator gain matrices and

subsequent characterization of a distributed version of the algebraic Riccati equation; and (iii)

experimental evaluation of the sensitivity of model parameters, noise statistics, gain variations, and

network models on the performance of the distributed estimator.
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CHAPTER 5
Consensus+Innovations Kalman Filter

5.1 Introduction
In Chapter 4, we proposed the Distributed Information Kalman Filter (DIKF) that is a distributed

estimator of time-varying random fields consisting of two substructures. The first is the Dynamic

Consensus on Pseudo-Observations (DCPO), a distributed estimator of the global average of the

pseudo-observations (modified versions of the observations) of the agents. The second substructure

uses these average estimates of pseudo-observations to estimate the time-varying random field. In

this chapter, we develop a distributed Kalman filter like estimator, the Consensus+Innovations

Kalman Filter (CIKF), that instead of using the pseudo-observations uses distributed estimates

of the pseudo-state (modified version of a state) to estimate the field. We show how to design

optimally the gain matrices of the CIKF. We prove that the CIKF converges in the mean-squared

error (MSE) sense when the degree of instability of the dynamics of the random field is within

the network tracking capacity [30], a threshold determined by the cyber network connectivity and

the local observation models. Numerical simulations show that the proposed CIKF improves the

performance by 3dB over the DIKF, reducing by half the gap to the centralized (optimal) Kalman

filter, while showing a faster convergence rate than the DIKF. These improvements significantly

distinguish the CIKF from the DIKF.

The rest of the chapter is organized as follows. Section 5.2 introduces the pseudo-state and

presents the proposed optimal gain distributed Kalman filter (CIKF). In Section 5.3, we analyze

the dynamics of the error processes and their covariances. Section 5.4 includes the analysis of the

tracking capacity of the proposed CIKF. We design the optimal gain matrices to obtain distributed
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estimates in Section 5.5. Numerical simulations are in Section 5.6. We present the concluding

remarks in Section 5.7.

5.2 Distributed filtering and prediction
This section considers our single time-scale distributed solution. We start with the introduction

and derivation of the key components of our distributed estimator and then present our distributed

field estimator.

5.2.1 Pseudo-state model
In a centralized information filter [47], all the observations are converted into pseudo-observations [55]

to obtain the optimal estimates. Following (2.2), the pseudo-observation z̃ni of agent n is

z̃ni = HT
nR
−1
n z

n
i = Hnxi +HT

nR
−1
n r

n
i , (5.1)

where, Hn = HT
nR
−1
n Hn. (5.2)

The centralized information filter computes the sum, zi of all the pseudo-observations

zi =
N∑
n=1

z̃ni = Gxi +HTR−1ri (5.3)

where, G =
N∑
n=1

HT
nR
−1
n Hn =

N∑
n=1

Hn. (5.4)

Note that the definition of G in (5.4) is different from the G defined in (4.5). Here G is the sum

of all the pseudo-observations, whereas in (4.5) it is the average of the pseudo-observations. The

aggregated pseudo-observation, zi, is the key term in the centralized filter. It provides the innovations

term in the filter updates enabling the filter to converge with minimum MSE estimates. However, in

the distributed solution, each agent n does not have access to all the pseudo-observations; instead it

can only communicate with its neighbors. To address this issue, in [55] we introduced a dynamic

consensus algorithm to compute the distributed estimates of the averaged pseudo-observations, zi,

at each agent. In (5.3), we note that the crucial term is Gxi which carries the information of the

dynamic state, xi; and the second term in zi in (5.3) is noise. We refer to it as the pseudo-state, yi,

yi = Gxi. (5.5)
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The pseudo-state, yi, is also a random field whose time dynamics can be represented by a discrete-

time linear dynamical system. The pseudo-observations z̃ni are its linear measurements. We

summarize the state-space model for the pseudo-state in the following proposition.

Proposition 3. The dynamics and observations of the pseudo-state yi are:

yi+1 = Ãyi +Gvi + Ǎxi (5.6)

z̃ni = H̃nyi +HT
nR
−1
n r

n
i + Ȟnxi. (5.7)

The pseudo-dynamics matrix Ã, pseudo-observations matrix H̃n, and the matrices Ǎ, Ȟn, and Ĩ at

agent n are:

Ã = GAG† (5.8)

H̃n = HT
nR
−1
n HnG

† = HnG
† (5.9)

Ǎ = GAĨ (5.10)

Ȟn = HT
nR
−1
n HnĨ (5.11)

Ĩ = I −G†G, (5.12)

where, G† denotes the Moore-Penrose pseudo-inverse of G.

Proof. First we derive the dynamics (5.6) of the pseudo-state yi. Using (5.5) and (2.1),

yi+1 = Gxi+1

= G (Axi + vi)

= GA
(
G†G+ Ĩ

)
xi +Gvi,

[
by (5.12), I = G†G+ Ĩ

]
= GAG†yi +Gvi +GAĨxi

= Ãyi +Gvi + Ǎxi, [by (5.5)] .

Now, we derive the observations (5.7) of the pseudo-observations z̃ni . Using (5.1) and (2.2),

z̃ni = HT
nR
−1
n Hnxi +HT

nR
−1
n r

n
i

= HT
nR
−1
n Hn

(
G†G+ Ĩ

)
xi +HT

nR
−1
n r

n
i

= HT
nR
−1
n HnG

†Gxi +HT
nR
−1
n r

n
i +HT

nR
−1
n HnĨxi
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= H̃yi +HT
nR
−1
n r

n
i + Ȟnxi.

In [55], the distributed information Kalman filter (DIKF) assumes distributed observability,

i.e., it considers the case where G is invertible. Under this assumption, G† = G−1 and Ĩ = 0. In

this chapter we relax the requirement of invertibility of G, proposing a distributed estimator for

general dynamics-observation models under the assumption of global detectability. In most cases Ĩ

is low-rank. In (5.6), the term
(
Gvi + Ǎxi = ξi, say

)
can be interpreted as the pseudo-state input

noise, which follows Gauss dynamics

ξi ∼ N
(
Ǎxi , GV G+ ǍΣiǍ

T
)

where, Σi = E
[
(xi − xi)(xi − xi)T

]
.

Similarly, in (5.7), the term (δni = HT
nR
−1
n r

n
i + Ȟnxi) is the pseudo-state observation noise at

agent n, which is Gaussian

δni ∼ N
(
Ȟnxi, Hn + ȞnΣiȞn

)
.

For the ease of analysis, we express the pseudo-state observation model in vector form by z̃i ∈

R
∑N

n=1Mn , the aggregate of the noisy local temperature measurements, z̃1
i , · · · z̃Ni , of all the agents,

z̃1
i

...

z̃Ni


︸ ︷︷ ︸
z̃i

=


H̃1

...

H̃N


︸ ︷︷ ︸

H̃

yi +DT
HR

−1ri +


Ȟ1

...

ȞN


︸ ︷︷ ︸

Ȟ

xi, (5.13)

where, the matrices H̃, Ȟ ∈ RNM×M , and, DH = blockdiag{H1, · · · , HN}.

We have established in (5.6)-(5.7) the state-space dynamics and observations model of the

pseudo-state, yi. The structure of (5.6)-(5.7) is similar to the dynamics and observations model

(2.1)-(2.2) of the random field, xi. In the following subsection, we develop a distributed estimator

with optimized gains to obtain unbiased estimates of the pseudo-state, yi, and of the state, xi, at

each agent with minimized mean-squared error.
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5.2.2 Consensus+Innovations Kalman Filter (CIKF)
At time i, denote the nth agent’s distributed filter and prediction estimates of the state xi

by x̂ni|i and x̂ni+1|i respectively. Similarly, its distributed filter and prediction estimates of the

pseudo-state yi are denoted by ŷni|i and ŷni+1|i. At any time i, each agent n has access to its own

pseudo-observation z̃ni and receives the prediction state pseudo-state estimates, ŷli|i−1, l ∈ Ωn, of its

neighbors at the previous time i − 1. Under this setup, the minimized MSE filter and prediction

estimates are the conditional means,

ŷni|i=E
[
yi | z̃ni , {ŷli|i−1}l∈Ωn

]
(5.14)

x̂ni|i=E
[
xi | ŷni|i

]
(5.15)

ŷni+1|i=E
[
yi+1 | z̃ni , {ŷli|i−1}l∈Ωn

]
(5.16)

x̂ni+1|i=E
[
xi+1 | ŷni|i

]
. (5.17)

In (5.14), ŷni|i is the filtered estimate of the pseudo-state yi given all the pseudo-observations avail-

able at agent n up to time i including those of its neighbors. By the principle of recursive linear esti-

mation, instead of storing all the pseudo-observations {{z̃nt }t=0,···,i, {z̃n1
t }n1∈Ωn

t=0,···,i−1, {z̃
n2
t }

n2∈Ωn1,∀n1

t=0,···,i−2 , · · ·},

we need only the current pseudo-observation z̃ni and the pseudo-state estimates (including those of

its neighbors) from the previous time instant {ŷli|i−1}l∈Ωn . The filtered estimate x̂ni|i of xi in (5.15)

depends on the current pseudo-state filtered estimate ŷni|i. Similarly, the prediction estimates ŷni+1|i

and x̂ni+1|i of yi+1 and xi+1 in (5.16)-(5.17), respectively, are conditioned on the corresponding

available quantities up to time i.

Theorem 5.2.1. The iterative updates to compute the distributed filtered estimates with optimized

gains in (5.14)-(5.15) are:

ŷni|i= ŷ
n
i|i−1+

∑
l∈Ωn

Bnl
i

(
ŷli|i−1−ŷni|i−1

)
︸ ︷︷ ︸

Consensus

+Bnn
i

(
z̃ni −

(
H̃nŷ

n
i|i−1+Ȟnx̂

n
i|i−1

))
︸ ︷︷ ︸

Innovations

, (5.18)

x̂ni|i= x̂
n
i|i−1+Kn

i

(
ŷni|i−Gx̂ni|i−1

)
︸ ︷︷ ︸

Innovations

(5.19)

where, pseudo-state gain block matrix, Bi ∈ RMN×MN , is Bi =

[
Bnl
i

]l=1,···,N

n=1,···,N
, Bnl

i = 0 if l /∈ Ωn.

The state gain block-diagonal matrix is Ki = blockdiag{K1
i , · · · , KN

i }, Kn
i ∈ RM×M . The
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optimized MSE prediction estimates in (5.16)-(5.17) are:

ŷni+1|i = Ãŷni|i + Ǎx̂ni|i, (5.20)

x̂ni+1|i = Ax̂ni|i. (5.21)

Proof. In Lemma 5.5.1, we showed that ν̃ni and νni are independent Gaussian sequences. By the

Innovations Property [47], there are 1− 1 correspondence between {z̃ni , {ŷli|i−1}l∈Ωn
} and ν̃ni , and

between {ŷni|i} and νni . The Innovations Property guarantees that there exists a unique way to get

one from the other.

ŷni|i=E
[
yi | z̃ni , {ŷli|i−1}l∈Ωn

]
⇐⇒ ŷni|i=E

[
yi | ν̃ni

]
x̂ni|i=E

[
xi | ŷni|i

]
⇐⇒ x̂ni|i=E

[
xi | νni

]
By the Gauss-Markov principle,

ŷni|i = ŷni|i−1 + B̂n
i ν̃

n
i

x̂ni|i = x̂ni|i−1 +Kn
i ν

n
i

where B̂n
i are the non-zero blocks of the nth row of Bi. Now we expand the term B̂n

i ν̃
n
i by

multiplying the gain blocks Bnl
i with the corresponding (ŷli|i−1 − ŷni|i−1) and the gain block Bnn

i

with
(
z̃ni−H̃nŷni|i−1−Ȟnx̂ni|i−1

)
. This gives us the consensus+innovations filtering pseudo-state

update (5.18).

The pseudo-state and state prediction updates are

ŷni+1|i=E
[
yi+1 | z̃ni , {ŷli|i−1}l∈Ωn

]
=E

[
Ãyi +Gvi + Ǎxi | z̃ni , {ŷli|i−1}l∈Ωn

]
= Ãŷni|i + Ǎx̂ni|i

x̂ni+1|i=E
[
xi+1 | ŷni|i

]
=E

[
Axi + vi | ŷni|i

]
= Ax̂ni|i.

The update equations reflect the computation tasks of each agent n at each time index i. The

gain matrices, Bi and Ki, in (5.18)-(5.21) are deterministic and can be pre-computed and saved at

each agent. We discuss the details of the design of these optimal gain matrices in Section 5.5. With
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these optimal gain matrices, the Kalman type Consensus+Innovations filter and prediction updates

(5.18)-(5.21) provide the minimized MSE distributed estimates of the dynamic states, and hence we

term our solution as Consensus+Innovations Kalman Filter (CIKF).

5.2.3 CIKF: Assumptions
The Consensus+Innovations Kalman Filter (CIKF) achieves convergence given the Assump-

tions 4-5 of global detectability and connected network hold true. By Assumption 4, the state-

observation model (2.1)-(2.3) is globally detectable but not necessarily locally detectable, i.e.,

(A,Hn),∀n, are not necessarily detectable. Note that these two are minimal assumptions. Assump-

tion 4 is mandatory even for a centralized system, and Assumption 5 is required for consensus

algorithms to converge. Further, note that in this chapter we do not consider distributed observ-

ability (invertibility of G) of the model setup, which is the strong and restrictive assumption taken

in [55], [27], [28] and [60] and similar to weak detectability presented in [24].

5.2.4 CIKF: Update algorithm
In this subsection, we present the step-by-step tasks executed by each agent n in the cyber layer

to implement the Consensus+Innovations Kalman Filter (CIKF) and thereby obtain the unbiased

minimized MSE distributed estimates of the dynamic state xi. Each agent n runs Algorithm 4

locally.

Later in Section 5.6, we analyze and compare the performance of CIKF with that of the

distributed information Kalman filter (DKF) [55] and of the centralized Kalman filter (CKF). The

centralized filter collects measurements from all the agents in the cyber layer. Before going into the

numerical evaluation, we do theoretical error analysis of CIKF, derive the conditions for convergence

guarantees, and design the optimal consensus and innovations gains in the following sections.
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Algorithm 4 Consensus+Innovations Kalman Filter
Input: Model parameters A, V , H , R, G, L, x0, Σ0.
Initialize: x̂n0|−1 = x0, ŷn0|−1 = Gx0.
Pre-compute: Gain matrices Bi and Ki using Algorithm 5.
while i ≥ 0 do
Communications:

Broadcast ŷni|i−1 to all neighbors l ∈ Ωn.
Receive {ŷli|i−1}l∈Ωn from neighbors.

Observation:
Make measurement zni of the state xi.
Transform zni in pseudo-observation z̃ni using (5.2).

Filter updates:
Compute the estimate ŷni|i of yi using (5.18).
Compute the estimate x̂ni|i of the state xi using (5.19).

Prediction updates:
Predict the estimate ŷni+1|i of yi+1 using (5.20).
Predict the estimate x̂ni+1|i of the state xi+1 using (5.21).

end while

5.3 Error Analysis
We analyze the MSE performance of the CIKF and derive its error covariance matrices. First,

we define the different error processes and determine their dynamics. Denote the filtering error

processes eni|i and εni|i of the pseudo-state and of the state at agent n by

eni|i = yi − ŷni|i, (5.22)

εni|i = xi − x̂ni|i. (5.23)

Similarly, represent the prediction error processes eni+1|i and εni+1|i of the pseudo-state and the state

at agent n by

eni+1|i = yi+1 − ŷni+1|i, (5.24)

εni+1|i = xi+1 − x̂ni+1|i. (5.25)

We establish that the CIKF provides unbiased estimates of the state and pseudo-state in the following

lemma.
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Lemma 5.3.1. The distributed filter and prediction estimates, ŷni|i, x̂
n
i|i, ŷ

n
i+1|i and x̂ni+1|i, of the

pseudo-state and state are unbiased, i.e., error processes, eni|i, e
n
i+1|i, ε

n
i|i, and εni+1|i are zero-mean

at all agents n:

E[eni|i] = 0, E[eni+1|i] = 0, E[εni|i] = 0, E[εni+1|i] = 0. (5.26)

Proof. Consider the filtering error definitions (5.22)-(5.23). We take expectations on both sides,

E
[
eni|i

]
= E

[
yi − ŷni|i

]
= E

[
E
[
yi − ŷni|i | z̃ni , {ŷli|i−1}l∈Ωn

]]
= E

[
ŷni|i − ŷni|i

]
= 0 [by(5.14)]

E
[
εni|i

]
= E

[
xi − x̂ni|i

]
= E

[
E
[
xi − x̂ni|i | ŷni|i

]]
= E

[
x̂ni|i − x̂ni|i

]
= 0 [by(5.23)] .

Similarly, taking expectations on prediction errors (5.24)-(5.15),

E
[
eni+1|i

]
= E

[
yi+1 − ŷni+1|i

]
= E

[
E
[
yi+1 − ŷni+1|i | z̃ni , {ŷli|i−1}l∈Ωn

]]
= E

[
ŷni+1|i − ŷni+1|i

]
= 0 [by(5.16)]

E
[
εni+1|i

]
= E

[
xi+1 − x̂ni+1|i

]
= E

[
E
[
xi+1 − x̂ni+1|i | ŷni|i

]]
= E

[
x̂ni+1|i − x̂ni+1|i

]
= 0 [by(5.25)] .

Each agent exchanges their estimates with their neighbors, hence their error processes are

correlated. It is not feasible to analyze the error process of each agent separately as they depend on

each other. To analyze all of them together, we stack the estimates and the errors of all the agents as

we have done earlier for observations (2.3) and pseudo-observations (5.13):
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x̂i|i=


x̂1
i|i
...

x̂Ni|i

 , x̂i+1|i=


x̂1
i+1|i
...

x̂Ni+1|i

 , ŷi|i=


ŷ1
i|i
...

ŷNi|i

 , ŷi+1|i=


ŷ1
i+1|i
...

ŷNi+1|i

 ,

εi|i=


ε1
i|i
...

εNi|i

 , εi+1|i=


ε1
i+1|i
...

εNi+1|i

 , ei|i=


e1
i|i
...

eNi|i

 , ei+1|i=


e1
i+1|i
...

eNi+1|i

 .

We summarize the dynamics of the error processes in the following lemma.

Lemma 5.3.2. The error processes, ei|i, ei+1|i, εi|i, and εi|i are Gaussian and their dynamics are:

ei|i=
(
IMN−BCi −BIi D̃H

)
ei|i−1−BIi ĎHεi|i−1−BIi DT

HR
−1ri, (5.27)

εi|i =
(
IMN −Ki (IN ⊗G)

)
εi|i−1 +Kiei|i, (5.28)

ei+1|i =
(
IN⊗Ã

)
ei|i +

(
IN⊗Ǎ

)
εi|i + 1N⊗(Gvi) , (5.29)

εi+1|i = (IN ⊗ A) εi|i + 1N ⊗ vi, (5.30)

where, BCi is the consensus gain matrix and BIi , Ki are the innovations gain matrices for

the pseudo-state and state estimation, respectively. The block diagonal matrices are D̃H =

blockdiag{H̃1, · · · , H̃N} and ĎH = blockdiag{Ȟ1, · · · , ȞN}.

Proof. We write the pseudo-state filtering update (5.18) in vector form,

ŷi|i= ŷi|i−1−BCi ŷi|i−1+BIi

(
z̃i−

(
D̃H ŷi|i−1+ĎHx̂i|i−1

))
,

where,
[
BCi
]
nl

= −Bn,l
i , ∀n 6= l,

[
BCi
]
nn

=
∑

l∈Ωn
Bn,l
i ,
[
BIi
]
nn

= Bn,n
i ,

[
BIi
]
nl

= 0, ∀n 6= l.

The block-diagonal matrices: D̃H = blockdiag{H̃1, · · · , H̃N}, ĎH = blockdiag{Ȟ1, · · · , ȞN}.

Note that BCi (1N ⊗ yi) = 0. Using this relation and the vector form of ŷi|i, we expand the

pseudo-state filter error process ei|i,

ei|i = 1N⊗yi − ŷi|i

=
(
1N⊗yi − ŷi|i−1

)
−BCi

(
1N⊗yi − ŷi|i−1

)
−BIi DT

HR
−1ri

−BIi D̃H

(
1N⊗yi − ŷi|i−1

)
−BIi ĎH

(
1N⊗xi − x̂i|i−1

)
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=
(
IMN−BCi −BIiD̃H

)
ei|i−1−BIi ĎHεi|i−1−BIiDT

HR
−1ri.

The state filtering update (5.19), in vector form, is

x̂i|i = x̂i|i−1 +Ki

(
ŷi|i−(IN⊗G) x̂i|i−1

)
,

where,Ki = blockdiag{K1
i , · · · , KN

i }. Using the relation ŷi|i = (1N ⊗ yi)−ei|i = (IN⊗G) (1N ⊗ xi)−

ei|i, we expand the state filter error process ei|i,

εi|i = 1N⊗xi − x̂i|i

=
(
1N⊗xi − x̂i|i−1

)
−Ki (IN⊗G)

(
1N⊗xi−x̂i|i−1

)
+Kiei|i

=
(
IMN −KCi −Ki (IN⊗G)

)
εi|i−1 +Kiei|i.

The dynamics of the pseudo-state and state prediction errors,

ei+1|i = 1N⊗yi+1 − ŷi+1|i

=
(
IN⊗Ã

)
(1N⊗yi) +

(
IN⊗Ǎ

)
(1N⊗xi) + 1N⊗(Gvi)−

(
IN⊗Ã

)
ŷi|i −

(
IN⊗Ǎ

)
x̂i|i

=
(
IN⊗Ã

)
ei|i +

(
IN⊗Ǎ

)
εi|i + 1N⊗(Gvi)

εi+1|i = 1N⊗xi+1 − x̂i+1|i

= (IN⊗A) (1N⊗xi) + 1N⊗vi − (IN⊗A) x̂i|i

= (IN⊗A) εi|i + 1N⊗vi.

Since the state xi, pseudo-state yi, their initial condition and all the noises are Gaussian, their

estimates are also Gaussian making all the filtering and prediction errors Gaussian.

The symbol ⊗ denotes the Kronecker matrix product. Lemma 5.3.1 established that the error

processes (5.27)-(5.30) are unbiased. It then follows that the filter and prediction error covariances

of the pseudo-state and state are simply:

Pi|i = E
[
ei|ie

T
i|i

]
(5.31)

Pi+1|i = E
[
ei+1|ie

T
i+1|i

]
(5.32)

Σi|i = E
[
εi|iε

T
i|i

]
(5.33)

Σi+1|i = E
[
εi+1|iε

T
i+1|i

]
(5.34)
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Note that the state estimates x̂i|i, x̂i+1|i depend on the pseudo-state estimates ŷi|i, ŷi+1|i. Hence the

error process (5.27)-(5.30) are not uncorrelated. The filter and prediction cross-covariances are:

Πi|i = E
[
εi|ie

T
i|i

]
(5.35)

Πi+1|i = E
[
εi+1|ie

T
i+1|i

]
(5.36)

Γi = E
[
εi|i−1e

T
i|i

]
(5.37)

In the following theorem, we define and derive the evolution of the state, pseudo-state, and cross

error covariances.

Theorem 5.3.1. The filter error covariances, Pi|i, Σi|i, Πi|i, and the predictor error covariances,

Pi+1|i, Σi+1|i, Πi+1|i, follow Lyapunov-type iterations:

Γi = Πi|i−1

(
IMN −BCi −BIi D̃H

)T
− Σi|i−1Ď

T
HB

IT
i (5.38)

Pi|i =
(
IMN−BCi −BIi D̃H

)
Pi|i−1

(
IMN−BCi −BIi D̃H

)T
+BIi DHB

IT
i

−
(
IMN−BCi −BIi D̃H

)
ΠT
i|i−1ĎHB

IT
i −BIi ĎHΓi (5.39)

Σi|i =
(
I
MN
−Ki(IN⊗G)

)
Σi|i−1

(
I
MN
−Ki (IN⊗G)

)
+KiPi|iK

T
i +
(
I
MN
−Ki(IN⊗G)

)
Πi|i−1K

T
i

+KiΠ
T
i|i−1

(
I
MN
−Ki(IN⊗G)

)T (5.40)

Πi|i =
(
I
MN
−Ki(IN⊗G)

)
Γi +KiP

T
i|i (5.41)

Pi+1|i =
(
IN⊗Ã

)
Pi|i

(
IN⊗ÃT

)
+
(
IN⊗Ǎ

)
Σi|i

(
IN⊗ǍT

)
+
(
IN⊗Ǎ

)
Πi|i

(
IN⊗ÃT

)
+J⊗(GV G)+

(
IN⊗Ã

)
ΠT
i|i

(
IN⊗ǍT

)
(5.42)

Σi+1|i = (IN⊗A) Σi|i

(
IN⊗AT

)
+ J⊗V (5.43)

Πi+1|i = (IN⊗A) Πi|i

(
IN⊗ÃT

)
+ (IN⊗A) Σi|i

(
IN⊗ǍT

)
+ J⊗(V G) (5.44)

where, J = (1N1
T
N)⊗IM and the initial conditions are Σ0|−1 = J⊗Σ0, P0|−1 = J⊗(GΣ0G) ,Π0|−1 =

J⊗(Σ0G).

Proof. By Lemma 5.3.1 and Lemma 5.3.2, the error processes, ei|i, ei+1|i, εi|i, and εi+1|i are

zero-mean Gaussian. The Lyapunov-type iterations (5.39)-(5.44) of the filter and predictor error

covariances, Pi|i, Σi|i, Πi|i, Pi+1|i, Σi+1|i, and Πi+1|i, follow directly from the definitions (5.31)-

(5.36) and error dynamics (5.27)-(5.30) by algebraic manipulations.
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The iterations (5.40) and (5.43) combined together constitute the distributed version of the

discrete algebraic Riccati equation. The MSE of the proposed CIKF is the trace of the error

covariance, Σi+1|i in (5.43). The optimal design of the gain matrices, Bi and Ki, such that the

CIKF yields minimized MSE estimates, is discussed in Section 5.5. Before that in Section 5.4 we

derive the conditions under which the CIKF converges, in other words, the MSE given by the trace

of Σi+1|i is bounded.

5.4 Tracking Capacity
The convergence properties of the CIKF is determined by the dynamics of the pseudo-state and

state error processes, ei+1|i and εi+1|i. If the error dynamics are asymptotically stable, then the error

processes have asymptotically bounded error covariances that in turn guarantee the convergence of

the CIKF. Note that if the dynamics of the prediction error processes, ei+1|i, εi+1|i are asymptotically

stable, then the dynamics of the filter error processes, ei|i, εi|i are also asymptotically stable. That is

why we study the dynamics of only one of the error processes and in this chapter we consider the

prediction error processes.

5.4.1 Asymptotic stability of error processes
To analyze the stability of the error processes, we first write the evolution of the prediction error

processes, combining (5.27)-(5.30),

ei+1|i =
(
IN⊗Ã

)(
IMN−BCi −BIi D̃H

)
︸ ︷︷ ︸

F̃

ei|i−1 + φ̃i, (5.45)

εi+1|i = (IN⊗A)
(
IMN−Ki (IN⊗G)

)︸ ︷︷ ︸
F

εi|i−1+φi, (5.46)

where, the noise processes φ̃i and φi are

φ̃i =
(
IN⊗Ǎ

)
εi|i −

(
IN⊗Ã

)
BIi ĎHεi|i−1 + 1N⊗(Gvi)−

(
IN⊗Ã

)
BIi D

T
HR

−1ri, (5.47)

φi = (IN⊗A)Kiei|i + 1N ⊗ vi. (5.48)

The statistical properties of the noises, φ̃i and φi, of the error processes, ei+1|i and εi+1|i, are stated

in the following Lemma.
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Lemma 5.4.1. The noise sequences φ̃i andφi are zero-mean Gaussian that follow φ̃i ∈ N
(
0, Φ̃i

)
and φi ∈ N (0,Φi).

Proof. Lemma 5.3.2 and Assumption 1 guarantee that εi|i, εi+1|i, ei|i,vi, ri are Gaussian. The error

noises φ̃i andφi are therefore Gaussian as they are linear combinations of the error processes and the

model noises εi|i, εi+1|i, ei|i,vi, ri. By Lemma 5.3.1, we have E
[
εi|i
]

= E
[
εi+1|i

]
= E

[
ei|i
]

= 0.

From Assumption 1, we know E [vi] = E [ri] = 0. We take expectation on both sides of (5.47)-

(5.48) and apply these relations

E
[
φ̃i

]
=
(
IN⊗Ǎ

)
E
[
εi|i
]
−
(
IN⊗Ã

)
BIi D

T
HR

−1E [ri]

+ 1N⊗
(
GE [vi]

)
−
(
IN⊗Ã

)
BIi ĎHE

[
εi|i−1

]
= 0,

E [φi] = (IN⊗A)KiE
[
ei|i
]

+ 1N ⊗ E [vi] = 0.

Combining (5.28), (5.29) and (5.47), we have

φ̃i = F1εi|i−1 + F2ei|i−1 − F3D
T
HR

−1ri + 1N⊗(Gvi)

where,

F1 =
(
IN⊗Ǎ

)(
IMN−Ki(IN⊗G)−KiB

I
i ĎH

)
−
(
IN⊗Ã

)
BIi ĎH (5.49)

F2 =
(
IN⊗Ǎ

)
Ki

(
IMN−BCi −BIiD̃H

)
(5.50)

F3 =
(
IN⊗Ã

)
BIi . (5.51)

Since φ̃i and φi are zero-mean, the noise covariances are,

Φ̃i=E
[
φ̃iφ̃

T
i

]
=F1Σi|i−1F

T
1 +F2Pi|i−1F

T
2 +F3DHF

T
3 + J⊗(GV G) + F1Πi|i−1F

T
2 + F2ΠT

i|i−1F
T
1 ,

(5.52)

Φi=E
[
φiφ

T
i

]
=(IN⊗A)KiΣi|iK

T
i

(
IN⊗AT

)
+J⊗V, (5.53)

where, F1, F2 and F3 are defined in (5.49)-(5.51).

The dynamics of the error processes are characterized by (5.45)-(5.46) and Lemma 5.4.1. Let

ρ(.) and ‖.‖2 denote the spectral radius and the spectral norm of a matrix, respectively. The error
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processes are asymptotically stable if and only if the spectral radii of F̃ , F are less than one, i.e.,

ρ
(
F̃
)
< 1, ρ (F ) < 1 (5.54)

and the noise covariances, Φ̃i, Φi are bounded, i.e., ‖Φ̃i‖2< ∞, ‖Φi‖2< ∞, ∀i. Now if (5.54)

holds, then the prediction error covariances Pi+1|i, Σi+1|i are bounded; this ensures the filter error

covariances Pi|i, Σi|i are also bounded. Further, the model noise covariances V and R are bounded.

Then, by (??)-(5.53), the noise covariances Φ̃i and Φi are bounded if the spectral radii are less

than one. Thus, (5.54) are the necessary and sufficient conditions for the convergence of the CIKF

algorithm.

5.4.2 Tracking capacity for unstable systems

The stability of the underlying dynamical system (2.1) in the physical layer is determined by

the dynamics matrix A. If the system is asymptotically stable, i.e., ρ(A) < 1, then there always

exist gain matrices Bi, Ki such that (5.54) holds true. Hence for stable systems, the CIKF always

converges with a bounded MSE solution. In contrast, for an unstable dynamical system (2.1),

ρ(A) > 1, it may not always be possible to find gain matrices Bi, Ki satisfying (5.54) conditions.

There exists an upper threshold on the degree of instability of the system dynamics, A, that

guarantees the convergence of the proposed CIKF. The threshold, similar to Network Tracking

Capacity in [30], is the tracking capacity of the CIKF algorithm, and it depends on the agent

communication network and observation models, as summarized in the following theorem.

Theorem 5.4.1. The tracking capacity of the CIKF is, C,

C = max
BCi ,B

I
i

λ1

λm

∥∥∥∥IMN−BCi −BIi D̃H

∥∥∥∥
2

(5.55)

where, BCi has the same block sparsity pattern as the graph Laplacian L, BIi is a block diagonal

matrix, and, λ1 and λm are the minimum and maximum non-zero eigenvalues of G, 0 < λ1 ≤ · · · ≤

λm. If ‖A‖2< C, then there exists Bi, Ki such that the CIKF (5.18)-(5.21) converges with bounded

MSE.
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Proof. For any square matrix, ρ(F̃ ) ≤ ‖F̃‖. Hence if ‖F̃‖< 1, then it implies that ρ(F̃ ) < 1. We

derive the tracking capacity with the sufficient condition, ‖F̃‖< 1,

‖F̃‖ =

∥∥∥∥(IN⊗Ã)(IMN−BCi −BIiD̃H

)∥∥∥∥
≤
∥∥∥∥IN⊗Ã∥∥∥∥∥∥∥∥(IMN−BCi −BIiD̃H

)∥∥∥∥
≤
∥∥∥∥GAG†∥∥∥∥∥∥∥∥(IMN−BCi −BIiD̃H

)∥∥∥∥
≤ λm

λ1

∥∥∥∥A∥∥∥∥∥∥∥∥(IMN−BCi −BIiD̃H

)∥∥∥∥ ,
where, ‖G‖2= λm and ‖G†‖2= 1

λ1
. Since G is a symmetric positive semi-definite matrix, its

spectral norm is its largest eigenvalue (λm) and the spectral norm of its pseudo-inverse, G†, is the

inverse of its smallest non-zero eigenvalue (λ1). If there exists BCi and BIi such that

λm
λ1

∥∥∥∥A∥∥∥∥∥∥∥∥(IMN−BCi −BIiD̃H

)∥∥∥∥ < 1,

then ‖F̃‖< 1 and also ρ(F̃ ) < 1. The bound on the spectral norm of A is,

‖A‖ < λ1

λm

∥∥∥∥(IMN−BCi −BIiD̃H

)∥∥∥∥
≤ max

BCi ,B
I
i

λ1

λm

∥∥∥∥(IMN−BCi −BIiD̃H

)∥∥∥∥ = C.

Thus as long as ‖A‖2< C, there exists BCi and BIi such that ρ(F̃ ) < 1. By global detectability

Assumption 4, there exists Ki such that ρ(F ) < 1. Refer to [47], for the convergence conditions

of the centralized information filters. Further, by Lemma 5.4.1 the Gaussian noises processes φ̃i

and φi have bounded noise covariances. Thus, if ‖A‖2< C, then from (5.45)-(5.46) we conclude

that the CIKF (5.18)-(5.21) converges with bounded MSE.

In the above theorem, the structural constraints on the gain matrices BCi , B
I
i ensure that each

agent combines its neighbors’ estimates for consensus and its own pseudo-observations for the

innovation part of the CIKF. The block sparsity pattern of BCi being similar to that of L implies that

the tracking capacity is dependent on the connectivity of the communication network. Similarly,

since D̃H is a block-diagonal matrix containing the observation matrices Hn we conclude that the

tracking capacity is also a function of the observation models.
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The tracking capacity increases with the increase in communication graph connectivity and

observation density. For instance, the tracking capacity is infinity if all agents are connected with

everyone else (complete graph) or all the agents observe the entire dynamical system (local observ-

ability). Given the tracking capacity is satisfied for the system, observation, and communication

models (2.1)-(2.4), the question remains how to design the gain matrices Bi and Ki to minimize the

MSE of the CIKF, which we discuss in the following section.

5.5 Optimal Gain Design
The asymptotic stability of the error dynamics guarantees convergence of CIKF and bounded

MSE, but here we discuss how to design the Bi and Ki such that the MSE is not only bounded but

also minimum.

5.5.1 New uncorrelated information
In CIKF Algorithm 4, at any time i each agent n makes pseudo-observation z̃ni of the state and

receives prior estimates {ŷli|i−1}l∈Ωn from its neighbors. The CIKF algorithm employs this new

information to compute the distributed filter estimates of the pseudo-state and state. Denote the new

information for the pseudo-state and state filtering by θ̃ni and θni , respectively,

θ̃ni =


ŷl1i|i−1

...

ŷ
ldn
i|i−1

z̃ni


, θni = ŷni|i (5.56)

where, {l1, · · · , ldn} = Ωn and dn = |Ωn| is the degree of agent n. Note the new information, θ̃ni

and θni , are Gaussian since they are linear combinations of Gaussian sequences. However, θ̃ni

and θni are correlated with the previous estimates ŷni|i−1 and x̂ni|i−1. So, we transform them into

uncorrelated new information and then combine the uncorrelated information with the previous

estimates ŷni|i−1 and x̂ni|i−1 to compute the current filtered estimates.

Lemma 5.5.1. The new uncorrelated information ν̃ni and νni for filtering update at agent n are,

ν̃ni = θ̃ni − θ̃
n

i , θ̃
n

i = E
[
θ̃ni |z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
(5.57)
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νni = θni − θ
n

i , θ
n

i = E
[
θni |ŷni−1|i−1

]
(5.58)

that expands to

ν̃ni =


ŷl1i|i−1 − ŷni|i−1

...

ŷ
ldn
i|i−1 − ŷni|i−1

z̃ni−H̃nŷni|i−1−ȞnĨx̂ni|i−1


, νni = ŷni|i−Gx̂ni|i−1. (5.59)

The uncorrelated sequences ν̃ni and νni are zero-mean Gaussian random vectors. Hence ν̃ni and νni

are independent sequences.

Proof. We first compute the conditional means θ̃
n

i and θ
n

i of the new information θ̃ni and θni

from (5.56). The means θ̃
n

i and θ
n

i depend on the conditional means of ŷli|i−1, z̃
n
i−1 and ŷni|i.

E
[
ŷli|i−1|z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
= E

[
E
[
yi|z̃li−1, {ŷki−1|i−2}k∈Ωl

]
| z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
= E

[
E
[
yi|z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
| z̃li−1, {ŷki−1|i−2}k∈Ωl

]
= E

[
ŷni|i−1 | z̃li−1, {ŷki−1|i−2}k∈Ωl

]
= ŷni|i−1, ∀ l ∈ Ωn.

E
[
z̃ni | z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
= E

[
H̃nyi +HT

nR
−1
n r

n
i + Ȟnxi | z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
= H̃nE

[
yi | z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
+ ȞnE

[
xi | z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
= H̃nŷ

n
i|i−1+ȞnE

[
E
[
xi|ŷni|i, x̂li−1|i−2, z̃

n
i−1, ŷ

l
i−1|i−2,∈ Ωn

]]
= H̃nŷ

n
i|i−1 + ȞnE

[
x̂ni|i−1 | z̃ni−1, {ŷli−1|i−2}l∈Ωn

]
= H̃nŷ

n
i|i−1 + Ȟnx̂

n
i|i−1.

E
[
ŷni|i|ŷni−1|i−1

]
= E

[
yi − eni|i | ŷni−1|i−1

]
= E

[
yi | ŷni−1|i−1

]
− E

[
eni|i | ŷni−1|i−1

]
= GE

[
xi | ŷni−1|i−1

]
= Gx̂ni|i−1.
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The conditional means of ŷli|i−1, z̃
n
i−1 and ŷni|i shows that the new uncorrelated information defined

in (5.57)-(5.58) expands to the vectors ν̃ni and νni in (5.59). Note that ν̃ni and νni are zero mean,

by definition, and, are Gaussian since they are linear combination of Gaussian vectors. Now to

prove ν̃ni and νni are sequence of uncorrelated vectors, we have to show:

E
[
ν̃ni ν̃

nT

j

]
= E

[
νni ν

nT

j

]
= 0, ∀ i 6= j, ∀ n.

First, we write ν̃ni and νni in terms of the filtering and prediction error processes using (5.7),

(5.22)-(5.25),

ν̃ni =


eni|i−1−e

l1
i|i−1

...

eni|i−1−e
ldn
i|i−1

H̃ne
n
i|i−1+Ȟnε

n
i|i−1 +HT

nR
−1
n r

n
i


, νni =Gεni|i−1−eni|i.

Without loss of generality, we consider i > j. The rest of the proof is similar to the proof of Lemma 5

in [55]. Here, the only difference is that we should condition on {z̃li−1}l∈Ωn , {ŷli−1|i−1}l∈Ωn .

We write the CIKF filter updates (5.18) and (5.19) in terms of the new uncorrelated informa-

tion ν̃ni and νni from (5.59),

ŷni|i = ŷni|i−1 + B̂n
i ν̃

n
i (5.60)

x̂ni|i = x̂ni|i−1 +Kn
i ν

n
i (5.61)

where, B̂n
i are the building blocks of the pseudo-state gain matrix Bi.

5.5.2 Consensus and innovation gains
Here, we present the methods to: (a) design the matrices B̂n

i and Kn
i ; and (b) obtain the optimal

gains Bi and Ki from them. These optimal gains provide the distributed minimized MSE estimates

of the field. At agent n, we define the matrix B̂n
i as

B̂n
i =

[
Bnl1
i , · · · , Bnldn

i , Bnn
i

]
(5.62)

where, {l1, · · · , ldn} = Ωn. The gain matrix Bi is a linear combination of BCi and BIi , where BCi has

the same block structure as the graph Laplacian L and BIi is a block diagonal. The (n, l)th blocks of
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the nth row of BCi are:

[
BCi

]
nl

=


−Bnl

i , if l ∈ Ωn∑dn
j=1 B

nlj
i , if l = n

0, otherwise.

(5.63)

The {n, n}th blocks of the diagonal block matrices BIi and Ki are:[
BIi

]
nn

= Bnn
i , (5.64)

[Ki]nn = Kn
i , (5.65)

Hence, once we design the matrices B̂n
i and Kn

i , it will provide the optimal gain matrices BCi , B
I
i ,

and Ki.

Theorem 5.5.1. The optimal gains for the CIKF algorithm are

B̂n
i = Σyiν̃n

i

(
Σν̃n

i

)−1

,

Kn
i = Σxiνn

i

(
Σνn

i

)−1

where, Σν̃n
i

, Σνn
i

are the covariances of the new uncorrelated information ν̃ni and νni ; and, Σyiν̃n
i

,

Σxiνn
i

are cross-covariances between yi, ν̃ni and xi, νni , respectively. These covariance and cross-

covariance matrices are related to the error covariance matrices, Pi|i−1, Pi|i,Σi|i−1,Πi|i−1,Γi, by

the following functions:

Σyiν̃n
i

=

[
P nn
i|i−1−P

nl1
i|i−1 · · · P nn

i|i−1−P
nldn
i|i−1 P nn

i|i−1H̃
T
n +ΠnnT

i|i−1Ȟ
T
n

]
Σxiνn

i
= Σnn

i|i−1G− Γnni

[
Σν̃n

i

]
qs

=



P nn
i|i−1−P

nls
i|i−1−P

lqn

i|i−1+P
lqls
i|i−1, if q ≤ s ≤ dn(

P nn
i|i−1−P

lqn

i|i−1

)
H̃T
n +
(

Πnn
i|i−1−Π

lqn

i|i−1

)T
ȞT
n , if q < s = dn+1

H̃nP
nn
i|i−1H̃

T
n + H̃nΠnnT

i|i−1Ȟ
T
n + ȞnΠnn

i|i−1H̃
T
n

+ȞnΣnn
i|i−1Ȟ

T
n +Hn, if q = s = dn+1[

Σν̃n
i

]T
sq

, if q > s[
Σνn

i

]
qs

= GΣnn
i|i−1G−GΓnni − Γnn

T

i G+ P nn
i|i

where,
[
Σν̃n

i

]
qs

denotes the {q, s}th block of the (dn+1)× (dn+1) block matrix Σν̃n
i

.

110



Proof. By the Innovations Property and the Gauss-Markov principle [47], the optimal gains B̂n
i

and Kn
i in (5.60)-(5.61) are:

B̂n
i = Σyiν̃n

i

(
Σν̃n

i

)−1

,

Kn
i = Σxiνn

i

(
Σνn

i

)−1

that yield minimized MSE estimates ŷni|i and x̂ni|i of the pseudo-state yi and of the field xi, respec-

tively, at each agent n. The cross-covariances Σyiν̃n
i

and Σxiνn
i

are

Σyiν̃n
i

= E
[
(yi − yi) ν̃n

T

i

]

= E


(
eni|i−1+

(
ŷni|i−1−yi

))


eni|i−1−e
l1
i|i−1

...

eni|i−1−e
ldn
i|i−1

H̃ne
n
i|i−1+Ȟnε

n
i|i−1+HT

nR
−1
n r

n
i



T


= E

eni|i−1

enT

i|i−1−e
lT1
i|i−1 · · · en

T

i|i−1−e
lTdn
i|i−1 H̃ne

nT

i|i−1

+Ȟnε
nT

i|i−1




=

[
P nn
i|i−1−P

nl1
i|i−1 · · · P nn

i|i−1−P
nldn
i|i−1 P nn

i|i−1H̃
T
n +ΠnnT

i|i−1Ȟ
T
n

]
,

Σxiνn
i

= E
[
(xi − xi)νn

T

i

]
= E

[(
εni|i−1 +

(
x̂ni|i−1 − xi

))(
Gεni|i−1−eni|i

)T]

= E
[
εni|i−1

(
Gεni|i−1−eni|i

)T]
= Σnn

i|i−1G− Γnni .

In the above derivation, using the iterated law of expectation it can be shown that:

E
[(
ŷni|i−1 − yi

)
ν̃n

T

i

]
= E

[(
x̂ni|i−1 − xi

)
νn

T

i

]
= 0

Also, E
[
eni|i−1r

nT

i

]
= 0 due to the statistical independence of the noise sequences. Similarly, the

covariances matrices Σν̃n
i

and Σνn
i

are:

Σν̃n
i

= E
[
ν̃ni ν̃

nT

i

]
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= E





eni|i−1−e
l1
i|i−1

...

eni|i−1−e
ldn
i|i−1

H̃ne
n
i|i−1+Ȟnε

n
i|i−1

+HT
nR
−1
n r

n
i





eni|i−1−e
l1
i|i−1

...

eni|i−1−e
ldn
i|i−1

H̃ne
n
i|i−1+Ȟnε

n
i|i−1

+HT
nR
−1
n r

n
i



T


Σνn
i

= E
[
νni ν

nT

i

]
= E

[(
Gεni|i−1−eni|i

)(
Gεni|i−1−eni|i

)T]
.

The rest of the derivation of Σν̃n
i

and Σνn
i

in terms of the error covariance matrices is by block-by-

block multiplication of the above expressions.

By the Gauss-Markov theorem, the CIKF algorithm, along with this design of the consensus

and innovation gain matrices, as stated in Theorem 5.5.1, results in the minimized MSE distributed

estimates of the dynamic random field xi. The gain matrices are deterministic. Hence they can be

precomputed offline and saved for online implementation. In Algorithm 5, we state the steps that

each agent n runs to compute the optimal gain matrices.

Algorithm 5 Gain Design of CIKF
Input: Model parameters A, V , H , R, G, L, Σ0.
Initialize: Σ0|−1 = J⊗Σ0, P0|−1 = J⊗(GΣ0G) , Π0|−1 = J⊗(Σ0G).
while i ≥ 0 do
Optimal gains:

Compute B̂n
i and Kn

i using Theorem 5.5.1.
Using (5.63)-(5.65), obtain BCi , BIi and Ki from B̂n

i and Kn
i .

Prediction error covariance updates:
Update Pi+1|i,Σi+1|i,Πi+1|i using (5.39)-(5.44).

end while

The offline Algorithm 5 along with the online Algorithm 4 completes our proposed distributed

solution to obtain minimized MSE estimates of the dynamic field xi at each agent in the cyber

network.

5.6 Numerical Evaluation
We numerically evaluate the MSE performance of the CIKF and compare it against the cen-

tralized Kalman filter (CKF) and the distributed information Kalman filter (DIKF) in [55]. To this
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objective, we build a time-varying random system, observation and network model that satisfies

the Assumptions 1-5. The Algorithms 4-5 run on these model parameters. First the Algorithm 5

computes and save the gain matrices and the error covariance matrices. The traces of the error

covariance matrices provide the theoretical MSE trajectory of the CIKF with time. Then, we

Monte-Carlo simulate Algorithm 4 to compute the numerical MSE of the distributed estimators,

CIKF and DIKF, and the centralized estimator CKF.

5.6.1 Model specifications

Here, we consider a time-varying field, xi, with dimension M = 50. The physical layer,

consisting of M = 50 sites, is monitored by a cyber layer consisting of N = 50 agents. Each agent

in the cyber layer observes Mn = 2 sites of the physical layer. We build the field dynamics matrix A

to be sparse and distributed. The dynamicsA possess the structure of a Lattice graph, where the time

evolution of a field variable depends on the neighboring field variables. For illustration, we consider

an unstable field dynamics with ‖A‖2= 1.05 to test the resilience of the algorithms under unstable

conditions. The observation matrices, Hn ∈ R2×50, n = 1, · · · , 50, are sparse 0− 1 matrices with

one non-zero element at each row corresponding to the site of xi observed by the nth agent. The

local observations zni are 2× 1 random vectors. The mean x0 of the initial state vector is generated

at random. The system noise covariance V , the observation noise covariances Rn, and the initial

state covariance Σ0 are randomly generated symmetric positive definite matrices. The norms of

the covariance matrices are: ‖V ‖2= 4, ‖Rn‖2= 8, and ‖Σ0‖2= 16. The agents in the cyber layer

communicate among themselves following a randomly generated Erdős-Rényi graph G with 50

nodes and E = 138 edges. The average degree of each node/agent is approximately 5.5. The

communication network G is also sparse.

For Monte-Carlo simulations, we generate the noises, vi, rni , and the initial condition, x0 as

Gaussian sequences, with vi ∼ N (0̄, V ), rni ∼ N (0̄, Rn), x0 ∼ N (x̄0,Σ0). The sequences

{{vi}i, {ri}i,x0}i≥0 are generated to be uncorrelated. Each agent n in the cyber layer has access to

the system parameters A, V,H,R, x̄0,Σ0, and G. This numerical model satisfies Assumptions 1-3.

The pair (A,H) is detectable and the pairs, (A,Hn) ∀n, are not detectable. The agent communica-

tion graph G is connected with the algebraic connectivity of the Laplacian λ2(L) = 0.7 > 0. Hence

the Assumptions 4-5 hold true for this numerical system, observation, and network model.
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a Theoretical MSE b Monte-Carlo MSE

Figure 5.1: Comparison of MSE performance of the proposed CIKF with CKF and DIKF.

5.6.2 Optimized gains and theoretical MSE

We run Algorithm 5 on the numerical model to obtain the gain matrices and the theoretical error

covariances of the CIKF. We compute the gain matrices and the error covariances of the centralized

Kalman filter (CKF) and of the distributed information Kalman filter (DIKF). In Fig. 5.1a, we

plot the MSE, trace of the predictor error covariance matrices Σi+1|i, for each of these cases up to

time i = 30. The MSE of the optimal CKF is the smallest (recall the CKF, if feasible, would be

optimal) and the objective of the distributed estimators is to achieve MSE performance as close as

possible to that of the CKF.

From Fig. 5.1a, we see that the MSE of the proposed CIKF is 3dB more than the CKF but is 3dB

less than the DIKF. From the plot we see that the CIKF converges faster than the DIKF. Hence,

the proposed CIKF provides faster convergence and 3dB MSE performance improvement over the

DIKF. The performance of the CKF is 3dB better than the CIKF’s due to the fact that the CKF has

access to the observations of all the sensors at every time steps. In contrast in CIKF, each agent

has access to its own observations and the current estimates of its neighbors only; the impact of the

observations from the other agents propagate through the network with delay. As the time-varying

field xi is evolving with input noise vi, lack of access to all the observations containing the driving

input vi, combined with the network diffusion delay, causes a performance gap between the CKF

and the CIKF.
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5.6.3 Monte-Carlo Simulations
We empirically compute the MSE of the distributed estimates given by the CIKF Algorithm 4.

We implement the algorithms using Matlab in the Microsoft Azure cloud. Given the computation

load because of the large system (M = 50) and network (N = 50) models, we run our simulation

on Azure DS13 (8 cores, 56 GB memory) virtual machine (VM). The MSE computation for the

CIKF, CKF, and DIKF algorithms with 1000 Monte-Carlo runs require approximately 30 hours in

the Azure DS13 VM. Once we obtain the field prediction estimates for the three algorithms, we

compute the empirical prediction error covariance matrices Σ̂i+1|i and then obtain the Monte-Carlo

MSE from their trace. From the Monte-Carlo MSE plot in Fig 5.1b, we see that the the empirical

plots follow closely the theoretical plots in Fig 5.1a.

Both the theoretical Fig 5.1a and Monte-Carlo simulated Fig 5.1b MSE performance confirms

our CIKF analysis in Sections 5.3-5.5. The novel Consensus+Innovations Kalman Filter (CIKF)

proposed in Section 5.2 along with the optimized gain designs in Section 5.5 provides unbiased

distributed estimates with bounded and minimized MSE for the Consensus+Innovations distributed

solution. The CIKF achieves nearly 3dB better performance than the DIKF [55].

5.7 Conclusions
In this chapter, we propose a Consensus+Innovations Kalman Filter (CIKF) that obtains

unbiased minimized MSE distributed estimates of the pseudo-states and real-time employs them

to obtain the unbiased distributed filtering and prediction estimates of the time-varying random

state at each agent. The filter update iterations are of the Consensus+Innovations type. Using

the Gauss-Markov principle, we designed the optimal gain matrices that yield approximately 3dB

improvement over previous available distributed estimators like the DIKF in [55].

The three primary contributions of this chapter are: (a) introduction of the concept of pseudo-

state; (b) design of a filter and corresponding gain matrices to obtain minimized MSE distributed

estimates at each agent under minimal assumptions; and (c) a theoretical characterization of the

tracking capacity and distributed version of the algebraic Riccati equation.
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CHAPTER 6
Conclusions

The thesis develops algorithms and methodologies for distributed estimation of time-varying random

fields over multi-agent networks. The random field considered in this work is assumed to be spread

over a large geographical area. The sensors/agents monitoring the field are also spread over the large

geographical area of the field. They make partial and local observations of the field. The sensors are

low-power and inexpensive and are capable of exchanging information with their neighbors. We

design distributed estimators capable of estimating and tracking the entire field at each sensor. The

distributed estimation algorithms presented in this thesis are of the consensus+innovations Kalman

filter type. The consensus aspect of the distributed estimators enables the agents in the network to

come to a consensus on the estimate of the time-varying field. The innovations part ensures that

the distributed estimates of the field at each agent are unbiased with bounded mean-squared error

(MSE). We design consensus and innovation gain matrices such that the MSE performance is as

close as possible to that of the centralized estimators, which has access to all the observations. Our

solution is robust to central node failures and requires limited communication bandwidth at each

sensor. The generic distributed algorithms presented in this thesis can be applied to estimate reliably

and robustly large-scale systems, namely physical phenomena over large geographical areas, or

beliefs in social networks, to mention two important illustrative applications.

6.1 Thesis Summary
We reiterate the structure of the three distributed estimators, Pseudo-innovations Kalman Filter

(PIKF), Distributed Information Kalman Filter (DIKF), and Consensus+Innovations Kalman Filter
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(CIKF), in Fig. 6.1. All three of them are comprised of two steps; the first is dynamic averaging and

the second is field estimation. They achieve unbiased and bounded MSE distributed estimates of the

entire field xi, i ≥ 0, at each agent by employing a consensus+innovations algorithm.

Observa(ons	   Pseudo-‐
innova(ons	  

Es(mate	  average	  of	  
Pseudo-‐innova(ons	  

Local	  es(mate	  
of	  field	  

Average	  Pseudo-‐
innova(ons	  es(mates	  

from	  neighbors	  
Field	  es(mates	  
from	  neighbors	  

Dynamic Averaging 

Pseudo-Innovations Kalman Filter (PIKF) 

Field Estimation 

Observa(ons	   Pseudo-‐
observa(ons	  

Es(mate	  average	  of	  
Pseudo-‐observa(ons	  

Local	  es(mate	  
of	  field	  

Averaged	  Pseudo-‐
observa(ons	  es(mates	  

from	  neighbors	  

Distributed Information Kalman Filter (DIKF) 

Dynamic Averaging Field Estimation 

Observa(ons	   Pseudo-‐
observa(ons	  

Local	  es(mate	  of	  
Pseudo-‐state	  

Local	  es(mate	  
of	  field	  

Pseudo-‐state	  es(mates	  
from	  neighbors	  

Consensus+Innovations Kalman Filter (CIKF) 

Field Estimation Dynamic Averaging 

Figure 6.1: Structure of the distributed estimators: (top) PIKF, (middle) DIKF, & (bottom) CIKF.
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In Chapter 3, the PIKF transforms the local observations into local pseudo-innovations, a

modified version of the innovations. It employs a consensus+innovations step to compute the

dynamic average of all the local pseudo-innovations by combining its own pseudo-innovation

with that of its neighbors iteratively. In the field estimation step, the PIKF combines the dynamic

averaged estimate of the pseudo-innovations with its own and neighbors’ field estimates from

previous time to compute the filtering and prediction estimates of the field.

In contrast to PIKF, the DIKF converts the local observations into local pseudo-observations,

a linear transformation of the observations. In Chapter 4, we show that the DIKF executes a

dynamic averaging step, termed Dynamic Consensus on Pseudo-observations (DCPO), to estimate

the average of all the local pseudo-observations with a consensus+innovations iterative update.

The consensus is on the local averaged pseudo-observation estimates of the neighbors. The DIKF

incorporates the outcome of the dynamic averaging (DCPO) step to compute the estimate of the

field. Note that, in DIKF, the agents exchange only the averaged pseudo-observations estimates

and not the field estimates with their neighbors. The DIKF is a single time-scale version of the

two time-scale distributed estimator proposed in [14, 19]. In [14, 19] the averaging step involves

multiple communications exchanges of pseudo-observations between neighbors until they come to

a consensus on the global average of all the pseudo-observations. Whereas in DIKF, each agent

communicates with its neighbors only once in each update cycle and asymptotically comes to a

consensus on the dynamic global average of all the pseudo-observations.

Similar to the PIKF and the DIKF, the structure of CIKF also has dynamic averaging and field

estimation steps as shown in Fig. 6.1 (bottom). Here, we introduce the concept of pseudo-state, a

linear transformation of the field. The pseudo-state can also be perceived as a noise-less version of

the global average of all the pseudo-observations. In the dynamic averaging step, the CIKF computes

the distributed estimate of the pseudo-state by applying the consensus+innovations approach to the

pseudo-observations. Each agent then combines its own distributed pseudo-state estimate with its

previous field estimate to obtain the distributed filtering and prediction estimates of the field.

For comparison, we restate the filtering and prediction update iterations of the three dis-

tributed estimators in Table 6.1. In PIKF, the local pseudo-innovation at agent n is νni . The

consensus+innovations dynamic averaging step computes the distributed pseudo-innovations es-

timate ν̂ni of the global average of all the pseudo-innovations. The consensus+innovations field
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1. PIKF

Dynamic Averaging: ν̂ni =
∑
l∈Ωn

wnlν̂
l
i−1︸ ︷︷ ︸

Consensus

+

(
νni −Bn

∑
l∈Ωn

wnlν̂
l
i−1

)
︸ ︷︷ ︸

Innovations
Field Estimation

Filtering: x̂ni|i =
∑
l∈Ωn

wnlx̂
n
i|i−1︸ ︷︷ ︸

Consensus

+Kn
i ν̂ni︸︷︷︸

Innovations

Prediction: x̂ni+1|i = Ax̂ni|i

2. DIKF

Dynamic Averaging: ŷni = A
G

∑
l∈Ωn

wnlŷ
l
i−1︸ ︷︷ ︸

Consensus

+B
(
yni −Hn

G
A

G
ŷni−1

)
︸ ︷︷ ︸

Innovations

Field Estimation
Filtering: x̂ni|i = x̂ni|i−1 +Kn

i (ŷni −Gx̂ni|i−1)︸ ︷︷ ︸
Innovations

Prediction: x̂ni+1|i = Ax̂ni|i

3. CIKF

Dynamic Averaging

Filtering: ŷni|i= ŷ
n
i|i−1+

∑
l∈Ωn

Bnl
i

(
ŷli|i−1−ŷni|i−1

)
︸ ︷︷ ︸

Consensus

+Bnn
i

(
z̃ni −

(
H̃nŷ

n
i|i−1+Ȟnx̂

n
i|i−1

))
︸ ︷︷ ︸

Innovations

Prediction: ŷni+1|i = Ãŷni|i + Ǎx̂ni|i

Field Estimation

Filtering: x̂ni|i= x̂
n
i|i−1+Kn

i

(
ŷni|i−Gx̂ni|i−1

)
︸ ︷︷ ︸

Innovations
Prediction: x̂ni+1|i = Ax̂ni|i

Table 6.1: Dynamic averaging and field estimation updates of PIKF, DIKF and CIKF.

estimation step uses the distributed pseudo-innovations estimate ν̂ni to compute the distributed

filter estimate x̂ni|i and prediction estimate x̂ni+1|i. In contrast, the DIKF uses the local pseudo-

observation yni and the averaged pseudo-observation estimates of neighbors to obtain the averaged

estimate ŷni of the global average of all the pseudo-observations. Using the output ŷni of the
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consensus+innovations dynamic averaging step, the DIKF computes the filtering and prediction

estimates, x̂ni|i, x̂
n
i+1|i, in the field estimation step. In CIKF, the dynamic averaging step com-

putes both the filtering and prediction distributed estimates of the pseudo-state, ŷni|i, ŷ
n
i+1|i, with

consensus+innovations using local pseudo-observation z̃ni and the pseudo-state estimates of the

neighbors. The field estimation step then uses the filtering pseudo-state estimate ŷni|i to compute the

filtering and prediction estimates, x̂ni|i, x̂
n
i+1|i, of the time-varying random field xi.

The design parameters for each of the estimators are:

• PIKF: In Chapter 3, the consensus weight matrix is W = [w]n,l = I − βL, where β =

2
λ2(L)+λN (L)

; the pseudo-innovation gain matrix is Bn = 1
‖G−1‖2G

−1; and the filter gain matrix

is Kn = G−1. Here, L is the graph Laplacian of the agent communication network and

G =
∑N

n=1 H
T
nR
−1
n Hn.

• DIKF: In Chapter 4, the consensus weight matrix is W = [w]n,l = IM − β1L and the

pseudo-observation gain matrix is Bn = β2IM , where the choice of the constants {β1, β2}

is discussed in (4.34)-(4.46). The optimized filter gain matrix Kn
i is computed from the

distributed version of the algebraic Riccati equations (4.67)-(4.69). Alternatively, we provide

a scalar and computationally simple filter gain matrix Kn
i = αG−1 in (4.63).

• CIKF: In Chapter 5, the consensus gain matrices Bn,l
i , the pseudo-state gain matrix Bn,n

i , and

the filter gain matrix Kn
i are designed using the Gauss-Markov type strategy (5.60)-(5.65)

and the distributed version of the algebraic Riccati equations (5.39)-(5.44). This optimal

design of the gain matrices minimizes the MSE of the CIKF.

To compute the consensus weights and the gain matrices locally, each agent needs to know the field

dynamics matrix A, the observation matrices Hn, n = 1, · · · , N , the graph Laplacian L of the agent

communication network, the covariance Σ0 of the initial condition, and the noise covariances V

and R. Otherwise, the computations can be done at a centralized processor that can then broadcast

the local gains to the corresponding agents. The gains can be computed offline and stored to

save real time implementation complexity. Instead of time-varying gain matrices, the distributed

estimators can use the asymptotic gain matrices K∞, B∞. This reduces the storage requirement

locally at the cost of some loss of MSE performance. Once each agent has access to the consensus
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PIKF DIKF CIKF

Pseudo-quantities Pseudo-innovations Pseudo-observations Pseudo-state

NTC Depends on the net-
work connectedness
(L).

Depends on both the
network connectedness
(L) and the local obser-
vation models (Hn).

Depends on both the
network connectedness
(L) and the local obser-
vation models (Hn).

Gain Scalar consensus
weight, time-invariant
pseudo-innovations,
and filter gain matri-
ces.

Scalar consensus
weight, scalar pseudo-
observations gain, and
optimized filter gain
matrix.

Optimized consensus
gain, pseudo-state gain,
and filter gain matrices.

MSE Performance Bounded MSE. Bounded MSE and
2dB better perfor-
mance than the PIKF.

Best MSE perfor-
mance. It loses 3dB
compared to central-
ized estimator. CIKF’s
MSE is 3dB better
than that of DIKF.

Trade-offs NTC can be increased
by just rewiring net-
work topology. Flexi-
bility in estimating un-
stable fields.

Better MSE estimates
than the PIKF and sim-
pler to implement as
compared to the CIKF.

Minimized MSE esti-
mates with the opti-
mized but computation-
ally expensive gains.

Table 6.2: Comparison between the distributed estimators PIKF, DIKF and CIKF.

weights and its gain matrices, the online implementation of the distributed estimators requires each

agent to know only the dynamics A and its own observation matrices Hn.

In Table 6.2, we compare and contrast the different aspects and trade-offs of the three distributed

estimators developed in this thesis. In terms of MSE performance CIKF is the best among the

three. The PIKF provides the additional flexibility of adapting a distributed estimator to highly

unstable systems because its NTC can be increased simply by rewiring the network topology. The

DIKF has computationally cheap implementation provisions compared to the CIKF at a better MSE

performance than the PIKF. The three distributed estimators PIKF, DIKF, and CIKF are not linear

transformations of each other, unlike the relationship between the centralized Kalman filter and

the information filter. This difference is due to the dynamic averaging step where it computes the
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pseudo-quantities. The comparisons are further explained in the summary and contributions of the

thesis.

We outline a brief summary of the thesis.

In Chapter 2, we present the three key components of the distributed field estimation, namely,

dynamics, observations, and communications. We assume that the input and observation noises

are white Gaussian and uncorrelated among themselves and the initial conditions. The objective is

to obtain unbiased distributed estimates of the entire field at each agent, where each agent makes

local observations only and performs local information exchange with its neighbors. We discuss the

advantages and challenges of single time-scale distributed estimators over two time-scale distributed

estimators. The primary challenge to be overcome in the single time-scale solution is that diffusion

of information over the agent network may be slow and that may affect the performance and the

convergence of the distributed estimators.

Chapter 3 proposes Pseudo-Innovations Kalman Filter (PIKF), a distributed estimator for the

time-varying random field that runs a companion algorithm to obtain the distributed estimates of

the global average of all the pseudo-innovations at each agent. The averaged pseudo-innovation

estimates are combined with the filter estimates to predict the field at a future time index. The

prediction estimates are unbiased with bounded MSE as long as the field dynamics are upper-

bounded by the Network Tracking Capacity (NTC). The NTC of the PIKF is a function of the

eigenvalues of the network Laplacian and is independent of the specifics of the local observation

models, assuming the dynamical system and the observations are globally observable. This provides

the flexibility of increasing the NTC for unstable fields by just rewiring the agent communication

network.

Chapter 4 develops a consensus+innovations type Dynamic Consensus on Pseudo-Observations

(DCPO) algorithm that computes the distributed estimate of the global average of the pseudo-

observations. The Distributed Information Kalman Filter (DIKF) presented in this chapter uses the

distributed averaged pseudo-observations estimates for the distributed estimation of the dynamic

random field. The MSE error performance of the DIKF is lower than the PIKF in Chapter 3. We

demonstrate the bounded MSE convergence of the DIKF through extensive experimental evaluations

and study the sensitivity of the DIKF with respect to model parameters, noise levels, and network

parameters.
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In Chapter 5, we present the Consensus+Innovations Kalman Filter (CIKF) that computes

the unbiased distributed filtering and prediction estimates of the time-varying random field using

unbiased minimized MSE distributed estimates of the pseudo-states. The distributed estimates of

the pseudo-states reduce the noise of the innovations in the filtering step of field estimation and

hence further improve the MSE performance of the distribuetd estimator. We design the optimal

consensus and innovation gain matrices that provide approximately 3dB improvement over the

DIKF in Chapter 4.

The main contributions of the thesis are:

1. Introduced the concepts of pseudo-innovations, pseudo-observations, and pseudo-state and

considered their relevance in the context of distributed estimation of time-varying random

fields.

2. Introduced distributed dynamic averaging as a key part of distributed field estimation. De-

veloped Consensus+Innovations distributed algorithms to achieve unbiased estimates of

global average of the pseudo-innovations (PIKF in Chapter 3), pseudo-observations (DIKF in

Chapter 4), and pseudo-state (CIKF in Chapter 5) with bounded MSE.

3. Provided scalar consensus weights and time-invariant innovation gain matrices for dynamic

averaging of pseudo-innovations in PIKF. Designed consensus and innovations scalar gains

for the distributed dynamic consensus in DIKF. Derived consensus and innovations gain

matrices for the distributed dynamic averaging in CIKF using the Gauss-Markov Theorem.

4. Proposed novel Consensus+Innovations distributed estimators, PIKF, DIKF, and CIKF of

time-varying random fields over multi-agent networks. Proved that the estimators achieve

unbiased estimates with bounded MSE under minimal assumptions on the local observation

and network communication models.

5. Designed the filter gain matrices using the Gauss-Markov theorem, so that the estimation

MSE is minimized given the distributed estimates of the averaged pseudo-observations and

pseudo-state.
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6. Computed explicit expressions for the Network Tracking Capacity of the distributed estimators

based on the network Laplacian and the local observation matrices.

7. Analyzed the filtering and prediction error processes and derived the distributed version of

the algebraic Riccati equation for the DIKF and the CIKF. The convergence rate and the

MSE performance of the distributed estimators depend on the distributed algebraic Riccati

equation.

8. Validated the theoretical error convergence results through numerical evaluations. Evaluated

experimentally the sensitivity of the performance of the distributed estimators with respect to

model parameters, noise statistics, gain variations, and network models.

6.2 Future Work
The generic nature of the results in this thesis makes them applicable in a variety of problems in

distributed inference. The techniques we present can be used to design consensus gain matrices in

averaging and dynamic averaging problems over large networks in order to improve the convergence

rate of the distributed consensus problems. These results can help in the study of dynamic belief

evolution in social networks.

Interesting extensions include developing a distributed estimator that is resilient to random

sensor link and node failures. This is important in practice because the communication links

between sensors or the sensors themselves can fail. For distributed parameter estimation, this has

been considered in [27].

The distributed estimators proposed in the thesis converge if the degree of instability of the field

dynamics is within the Network Tracking Capacity (NTC). For asymptotically stable time-varying

random fields, the estimators always converge, given the assumptions of global detectability and

connected network hold true. Deriving similar conditions for unstable systems is of interest to

eliminate the NTC restrictions on the distributed solutions. A preliminary approach on deriving such

network detectability conditions for unstable systems is presented in [24]. A complete condition

would probably result from a joint optimization on a functional form of NTC and estimation MSE.
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