
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Doctor of Philosophy

TITLE Dynamic Beamforming Optimization for

 Anti-Jamming and Hardware Fault Recovery

PRESENTED BY Jonathan Becker

ACCEPTED BY THE DEPARTMENT OF

 Electrical and Computer Engineering

 ___Jason Lohn___________________ ___5/14/14______________
 ADVISOR, MAJOR PROFESSOR DATE

 ___Jelena Kovacevic_____________ ____5/14/14________________
 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 __Vijayakumar Bhagavatula___________________ ___5/14/14__________________
 DEAN DATE

Dynamic Beamforming Optimization for Anti-Jamming and Hardware Fault
Recovery

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

 in

Electrical and Computer Engineering

Jonathan M. Becker

B.S., Electrical Engineering, California Polytechnic State University
M.S., Electrical Engineering, University of Southern California

Carnegie Mellon University
Pittsburgh, PA

May, 2014

© Copyright by Jonathan M. Becker, 2014

All rights reserved.

Abstract

In recent years there has been a rapid increase in the number of wireless de-

vices for both commercial and defense applications. Such unprecedented demand has

increased device cost and complexity and also added a strain on the spectrum utiliza-

tion of wireless communication systems. This thesis addresses these issues, from an

antenna system perspective, by developing new techniques to dynamically optimize

adaptive beamforming arrays for improved anti-jamming and reliability.

Available frequency spectrum is a scarce resource, and therefore increased in-

terference will occur as the wireless spectrum saturates. To mitigate unintentional

interference, or intentional interference from a jamming source, antenna arrays are

used to focus electromagnetic energy on a signal of interest while simultaneously min-

imizing radio frequency energy in directions of interfering signals. The reliability of

such arrays, especially in commercial satellite and defense applications, can be ad-

dressed by hardware redundancy, but at the expense of increased volume, mass as

well as component and design cost.

This thesis proposes the development of new models and optimization algorithms

to dynamically adapt beamforming arrays to mitigate interference and increase hard-

ware reliability. The contributions of this research are as follows. First, analytical

models are developed and experimental results show that small antenna arrays can

thwart interference using dynamically applied stochastic algorithms. This type of in-

situ optimization, with an algorithm dynamically optimizing a beamformer to thwart

interference sources with unknown positions, inside of an anechoic chamber has not

been done before to our knowledge. Second, it is shown that these algorithms can

recover from hardware failures and localized faults in the array. Experiments were

performed with a proof-of-concept four-antenna array. This is the first hardware

demonstration showing an antenna array with live hardware fault recovery that is

adapted by stochastic algorithms in an anechoic chamber. We also compare multiple

stochastic algorithms in performing both anti-jamming and hardware fault recovery.

Third, we show that stochastic algorithms can be used to continuously track and mit-

igate interfering signals that continuously move in an additive white Gaussian noise

wireless channel.

ii

Acknowledgments

It has been said that it takes a village to raise a child. From my experiences, it

takes a department to create a successful PhD. I would like to thank my academic

advisor, Professor Jason Lohn, who guided me through the process of earning my

PhD. I would also like to thank my committee members from Silicon Valley, Professors

Patrick Tague and Ole Mengshoel, whose advice helped me complete my thesis. I

would also like to thank my external committee member, Dr. Derek Linden, for his

advice and inspiration. I am appreciative that Dr. Linden allowed me to use his

AntNet software with my antenna array optimization simulations with WIPL-D and

for his tips on properly using both software packages.

In addition, my research was funded in part by Cylab at Carnegie Mellon Uni-

versity under grant DAAD19-02-1-0389 from the Army Research Office, the Navy,

and by the Electrical and Computer Engineering Department at Carnegie Mellon

University. I would like to thank these organizations for their generosity and for their

support.

Of course, I also thank several other professors that I met during my studies

and research at CMU: Professor Martin Griss and Professor Bob Iannucci for their

support as the Silicon Valley Campus chairs, Professor Ozan Tonguz for his guidance

during my preparation for the qualifying exams, Professor Emeritus James Hoburg

for the opportunity to be a teaching assistant for his electro- and magneto-quasi stat-

iii

ics undergraduate course and his support in helping me prepare for my qualifying

exams, Professor James Bain for allowing me to be a teaching assistant for his elec-

tromagnetics waves course, Professors David Ricketts and David Greve for having me

as their teaching assistants for their RF/wireless capstone courses, and Professor Vi-

jayakumar Bhagavatula for teaching the undergraduate noisy signals representation

course that was fundamental to and greatly helped me in passing my second Quali-

fying Exam. Without your support and advice, I would not have been successful in

earning my PhD.

Furthermore, I would like to thank my friends that I made at CMU. I thank

Dr. James Downey for his advice and humor both before and after he completed

his PhD, Professor Joshua Griffin for his support and advice during and after my

graduate internship at Disney Research Pittsburgh (DRP), Dr. Matthew Trotter for

his support and advice during and after my time at DRP, Dr. Joseph Fernandez for

his friendship and advice throughout my PhD, Dr. Reginald Cooper for his friendship

and support, Jon Smereka for his friendship and well branded humor, Dr. Joel Harley

for his guidance and friendship as a fellow EGO officer, Dr. Shahriyar Amini for

encouraging me to be more active in EGO as its Secretary, and Matthew Beckler for

his years of service as EGO secretary and support in guiding me into following his

footsteps as an EGO secretary.

Finally, I would also like to thank my family who supported me along the way.

First and foremost, I send thanks to my girlfriend, Heather Mallet, who put up with

iv

my long hours dedicated to completing my PhD and the inevitable stress that we

both endured together. Her wisdom helped me through the stress because she knew

that my hard work would pay off in the end. I would also like to thank her parents,

Herbert and Adrienne Mallet, as well as her brother and sister-in-law, Matthew and

Laine-Guttman Mallet, who gave their support and guidance while I worked hard

towards graduation. I am truly appreciative that you all support me and want to see

me succeed. I also thank my family for their support and guidance: My parents Tully

and Frances Davis Becker, my brother George, my sister Hannah, and my brother-

in-law Brent Bremer. Mom, I wish that you could have been here to see me complete

my PhD. However, I know that you are in a better place, and you are very proud of

what I have accomplished.

v

Contents

Abstract i

Acknowledgments iii

List of Tables ix

List of Figures xi

List of Acronyms 1

1 Introduction 3
1.1 Limitations of Current Phased Array Technology 7
1.2 Importance of Anti-Jamming Beamforming with Hardware Fault Re-

covery . 9
1.3 Motivation for Implementing Array Redundancy via Algorithms . . . 13
1.4 Stochastic Algorithms for Anti-Jamming Beamforming and Hardware

Fault Recovery . 16
1.4.1 Genetic Algorithms in Anti-Jamming Beamforming with Hard-

ware Fault Recovery . 16
1.4.2 Simulated Annealing in Anti-Jamming Beamforming with Hard-

ware Fault Recovery . 21
1.5 Thesis Contributions . 22
1.6 Thesis Outline . 24

2 Background and Previous Research in Beamforming Arrays 25
2.1 Assumptions and Algorithm Comparisons 30
2.2 Array Factor Method . 32
2.3 Array Weighting Methods and Beampattern Synthesis 35
2.4 Beamforming with Gradient Search Based Adaptive Algorithms . . . 40
2.5 Beamforming using Genetic Algorithms 44
2.6 Beamforming using Simulated Annealing 47
2.7 Antenna Array Hardware Fault Detection, Recovery, and Localization 50
2.8 Summary . 61

3 New Models for Phased Antenna Array Anti-Jamming 64
3.1 Anti-Jamming Beamforming Problem Formulation and Setup 65

vi

3.2 Derivation of Complex Array Weight Solutions for Given SOI and In-
terference Directions . 67
3.2.1 Calculating Weights for Uniformly Spaced Linear Arrays . . . 70
3.2.2 Calculating Weights for Circular Arrays 75

3.3 Stationary Signal Beamforming and Anti-Jamming in Fading Wireless
Channels with N -Element Arrays . 85

3.4 Mobile Signal Beamforming and Anti-Jamming with N -Element Arrays 90
3.5 Equivalence of Stochastic Optimization of Anti-Jamming Beamforming

Arrays Using Electromagnetic Models of Varying Complexity 96
3.6 Summary . 100

4 Models for Phased Antenna Array Hardware Fault Recovery 102
4.1 Hardware Fault Recovery Problem Formulation 103
4.2 Diagnostic Models for Hardware Fault Detection 105

4.2.1 Time Averaged Array Weights and Fitness Both Increasing . . 114
4.2.2 Time Averaged Array Weights Increasing, Time Averaged Fit-

ness non-Increasing . 116
4.2.3 Time Averaged Array Weights non-Increasing, Time Averaged

Fitness Increasing . 117
4.2.4 Time Averaged Array Weights and Fitness Both non-Increasing 117

4.3 Hardware Fault Recovery Model . 120
4.4 Hardware Fault Localization . 124
4.5 Theoretical Limits on Recoverable SOI Array Gain 128
4.6 Summary . 130

5 Dynamic Optimization of Beamforming Arrays with Experimental
In-Situ and Simulation Results 131
5.1 Experimental and Simulation Setup 133
5.2 SINR Fitness Landscape . 138
5.3 FEM and MOM Models of Antenna Array 139
5.4 Algorithm Performance With Static Signals 144

5.4.1 One SOI and Three Interfering Signals 144
5.4.2 One SOI and Two Interfering Signals 158

5.5 Algorithm Performance With Stepped Mobile Signals 168
5.6 Algorithm Tracking of Continuously Mobile Interference 176
5.7 Summary . 188

6 Dynamic, In-Situ and Simulated Hardware Fault Recovery of Beam-
forming Arrays 190
6.1 Experimental and Simulation Setup 191
6.2 Recovery in the Presence of Static Signals 192

6.2.1 One Static SOI and Two Static Jammers 193
6.2.2 One Static SOI and Three Static Jammers 204

vii

6.3 Recovery in the Presence of Mobile Signals 211
6.4 Summary . 218

7 Conclusions and Future Work 220
7.1 Conclusions . 220
7.2 Future Work . 223

7.2.1 Real-Time Anti-Jamming Beamforming Capabilities 223
7.2.2 Modular Eight Element Array 228
7.2.3 Direction Finding and Adversarial Capabilities 229
7.2.4 Fault Detection and Localization Algorithms 231

Bibliography 233

viii

List of Tables

1.1 Situations where beamforming array failures cause serious issues . . . 12

1.2 Terminology used to describe Genetic Algorithms 18

2.1 Classes of beamforming problems . 27

2.2 Comparison of stochastic search algorithms used in beamforming . . . 32

2.3 Comparison of various array weighting methods 36

3.1 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 10 ele-
ment ULA with mainbeam steered to 90°, GI = N, and Gj = 0, j ∈
[1,N]. 71

3.2 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 10 ele-
ment ULA with mainbeam steered to 30°, GI = N, and Gj = 0, j ∈
[1,N]. 72

3.3 Comparison of complex array weights calculated using (3.13) with
Chebyshev amplitude weights for SLL = -20 dB and canonical phase
steering for N = 10 element ULA with mainbeam steered to 90°,
GI = 9.54, and Gj = 0, j ∈ [1,N]. 73

3.4 Comparison of complex array weights calculated using (3.13) with
Chebyshev amplitude weights for SLL = -20 dB and canonical phase
steering for N = 10 element ULA with mainbeam steered to 30°,
GI = 9.54, and Gj = 0, j ∈ [1,N]. 74

3.5 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 10 ele-
ment ULA with mainbeam steered to 30°, GI = N, and Gj "= 0, j ∈
[1,N − 1]. 76

3.6 Comparison of complex array weights calculated using (3.13) with
Chebyshev amplitude weights and canonical phase steering for N =
10 element ULA with mainbeam steered to 30°, GI = 9.54, and
Gj "= 0, j ∈ [1,N − 1]. 77

3.7 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 6 el-
ement circular array with mainbeam steered to 0°, GI = N, and
Gj = 0, j ∈ [1,N − 1]. 78

ix

3.8 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 6 el-
ement circular array with mainbeam steered to 60°, GI = N, and
Gj = 0, j ∈ [1,N − 1]. 79

3.9 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 6 el-
ement circular array with mainbeam steered to 30°, GI = N, and
Gj = 0, j ∈ [1,N − 1]. 81

3.10 Comparison of complex array weights calculated using (3.13) with
uniform amplitude weights and canonical phase steering for N = 6
element circular array with mainbeam steered to 30°, GI = N,
Gj = 0, j ∈ [1,N− 3] ∪ (N− 1), and Gj=N−2 = 2. 82

3.11 Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for a N = 7 el-
ement single-ring concentric circular array with an element located at
the origin and its mainbeam steered to 0°, GI = N, and Gj = 0, j ∈
[1,N]. 84

3.12 Four events that can occur during a stochastic algorithm run. 90

4.1 Five events that can occur while a stochastic algorithm adapts an anti-
jamming beamforming array subjected to hardware faults. 106

4.2 State description of generalized Markov chain describing the system’s
probabilistic behavior when subjected to possible faults and TVDOAs. 118

4.3 Number of correlations needed to localize K faulty elements in a N -
element antenna array. 126

5.1 List of anti-jamming scenarios explored by experiments (Exp) and sim-
ulations (Sim). 136

5.2 Parameters used in SGA and TDGA in-situ experiments and simulations.137
5.3 Parameters used in simulated annealing in-situ experiments and sim-

ulations. 137

6.1 List of hardware fault recovery test cases explored by experiments and
simulations. 192

6.2 Types of hardware faults emulated and investigated. 193

7.1 Comparison of SINR vs. PN sequence maximum cross-correlation as
fitness functions . 227

x

List of Figures

1.1 Beamforming Examples: (a) Overview of an Anti-jamming System, (b)
An example of beamforming with main lobe at 0°and a null at 30°. . . 6

1.2 A wireless WAN section of a hypothetical terrestrial wireless commu-
nications network protected by an anti-jamming beamforming array. . 10

1.3 The wireless WAN section of a hypothetical terrestrial wireless com-
munications network unprotected and jammed due to a faulty beam-
forming array. 10

1.4 A high-level flowchart showing hardware fault detection, localization,
and recovery. 15

1.5 Flowchart of a SGA adapted to maximize an anti-jamming beamform-
ing array’s SINR. 17

1.6 Flowchart of a TDGA adapted to maximize an anti-jamming beam-
forming array’s SINR. 20

1.7 Flowchart of Simulated Annealing adapted to maximize an AJBF ar-
ray’s SINR when stationary signals are present. 22

3.1 Diagram of a N-Element antenna array with arbitrary layout. 65
3.2 Array Factor Patterns for a ULA steered to 90° showing a reference pat-

tern created with uniform weights and pattern with complex weights
calculated using equation (3.13). 72

3.3 Array Factor Patterns for a ULA steered to 30° showing a reference pat-
tern created with uniform weights and pattern with complex weights
calculated using (3.13). 73

3.4 Array Factor Patterns for a ULA steered to 90° showing a reference
pattern created with Chebyshev weights for SLL = -20 dB and pattern
with complex weights calculated using (3.13). 74

3.5 Array Factor Patterns for a ULA steered to 30° showing a reference
pattern created with Chebyshev weights for SLL = -20 dB and pattern
with complex weights calculated using (3.13). 75

3.6 Array Factor Patterns for a ULA steered to 30° showing a reference pat-
tern created with uniform weights and pattern with detuned complex
weights calculated using (3.13) and variable Gj "= 0, j ∈ [1,N − 1]. 76

3.7 Array Factor Patterns for a ULA steered to 30° showing a reference
pattern created with Chebyshev weights for SLL = -20 dB and pat-
tern with detuned complex weights calculated using (3.13) and variable
Gj "= 0, j ∈ [1,N]. 77

xi

3.8 Layout of N = 6 element circular array with equally spaced elements
on a radius r = λ/2. 78

3.9 Array Factor Patterns for a circular array steered to 0° showing a refer-
ence pattern created with Uniform weights and pattern with complex
weights calculated using (3.13) and Gj = 0, j ∈ [1,N − 1]. 79

3.10 Array Factor Patterns for a circular array steered to 60° showing a ref-
erence pattern created with Uniform weights and pattern with complex
weights calculated using (3.13) and Gj = 0, j ∈ [1,N]. 80

3.11 Array Factor Patterns for a circular array steered to 30° showing a ref-
erence pattern created with Uniform weights and pattern with complex
weights calculated using (3.13) and Gj = 0, j ∈ [1,N]. 82

3.12 Array Factor Patterns for a circular array steered to 30° showing a ref-
erence pattern created with Uniform weights and pattern with complex
weights calculated using (3.13) and Gj = 0, j ∈ [1,N]. 83

3.13 Layout of N = 7 element concentric circular array with six equally
spaced elements on a radius r = λ/2 and one element in the center. 83

3.14 Array Factor Patterns for a N = 7 element concentric circular ar-
ray steered to 0° showing a reference pattern created with Uniform
weights and pattern with complex weights calculated using (3.13) and
Gj = 0, j ∈ [1,N]. 84

3.15 High level diagram of a wireless system with interference and non-LOS
paths with stationary signals. Obstacles can be mobile or stationary
to cause time-varying fades in received signals. Multipath reflections
not shown for clarity. 86

3.16 Analytic block diagram of wireless communication link from SOI and
interference inputs to a fading wireless channel to output of beamformer. 87

3.17 Upper level diagram of a wireless system with mobile and stationary
signals. Obstacles can be mobile or stationary to cause time-varying
fades in received signals. Multipath reflections not shown for clarity. . 91

3.18 Venn Diagram showing the relationship between events A, B, C, and
D in the parameter search space S. Event B subspace is represents by
a solid color, and Event C subspace is represents by a checkerboard
pattern. 92

3.19 Example Bayesian assisted temperature schedule with 9.5 × 10−4 ≤
PMut ≤ 0.55 shown over 12,200 evaluations. 95

3.20 Model of an N -element antenna array consisting of infinitesimal dipole
elements with arbitrary layout used to perform the array factor calcu-
lation. 96

3.21 Model of an N -element antenna array that consisted of wire dipole
elements with arbitrary layout used in a MOM radiation pattern cal-
culation. 97

xii

3.22 Model of an N -element antenna array that consisted of wire dipole
elements plus metallic hardware components with arbitrary layout used
in a MOM radiation pattern calculation. 98

3.23 Method of calculating optimal array weights with compensation for
mutual coupling between antenna elements. 98

3.24 Method of calculating optimal array weights with compensation for
mutual coupling between antenna elements and reflection off hardware
near antenna elements. 99

3.25 Diagram showing equivalence of stochastic algorithms using array fac-
tor calculations, mutual coupling only compensation, and mutual cou-
pling plus external reflections compensation in calculating optimum
array weights. 100

4.1 Diagram of a N -Element antenna array with arbitrary layout showing
a faulty element k. 103

4.2 High level diagram showing hardware fault detection, recovery, and
localization integrated with an optimization algorithm that performs
anti-jamming beamforming. 104

4.3 High level diagram of a hardware fault detector. 105
4.4 Venn Diagram showing the relationship between events A, B, C, D, and E

in the parameter search space S. 106
4.5 Example of time-varying nature of complex array weights and their

associated fitness values with time-varying means, variances, and cor-
relation coefficients. 112

4.6 Sliding windows used to calculate time-varying means, variances, and
correlation coefficients associated with the time-varying array weights
and fitness functions. 113

4.7 An example of an unconverged algorithm in a hypothesis H3 state with
increasing time-averaged array weights and time-averaged fitness (left).
The solutions chosen by this algorithm moved from near the origin of
the unit-radius hypersphere to its outer edge as nk → nc where k < c
(right). 115

4.8 A generalized Markov chain showing the system’s probabilistic states
when subjected to possible faults and TVDOAs. 119

4.9 A high level model showing hardware fault recovery. 121
4.10 Example showing how the TDGA recovers from hardware faults in an

antenna array. 121

5.1 Diagram showing experimental setup of a four-antenna array inside an
anechoic chamber. 133

5.2 Block diagram of a four-antenna anti-jamming beamforming array. . . 134
5.3 Bitwise string encodings of array phase shifters and step-attenuators

with a sample encoding. 135

xiii

5.4 Photographs of 2.4 GHz antenna array mounted inside CMU’s anechoic
chamber: (a) Showing chamber horn antenna, (b) Beamforming array
with major components identified. 136

5.5 Example SINR (dB) fitness landscape for 30 independent trials of an
SGA with 200 strings population when SOI at 0° and two jammers at
45° and 200°. 139

5.6 HFSS FEM model of the 2.4 GHz beamforming array with antennas,
hardware components, mounting boards, and coax cables. 140

5.7 WIPL-DMOMmodel of the 2.4 GHz beamforming array with antennas
only. 140

5.8 WIPL-DMOMmodel of the 2.4 GHz beamforming array with antennas
and hardware components. 141

5.9 WIPL-D MOM model of the 2.4 GHz beamforming array with anten-
nas, hardware components, and standoffs. 141

5.10 Comparison of in-situ measurements with WIPL-D and HFSS models
of a four-antenna array when the SOI is at 0° and the jammers are at
45° and 200°. 143

5.11 Comparison of in-situ measurements with WIPL-D and HFSS models
of a four-antenna array when the SOI is at 0° and the jammers are at
120° and 300°. 143

5.12 In-situ measurements of SGA optimized azimuth radiation pattern
with a single SOI at 60° and three jammers at 105°, 245°, and 320°.
The SGA has a population size of 200 strings 145

5.13 In-situ measurements of SGA optimized azimuth radiation pattern
with a single SOI at 60° and three jammers at 105°, 45°, and 320°.
The SGA has a population size of 400 strings 146

5.14 In-situ best-case learning curve of SGA with a single SOI at 0° and
three jammers at 45°, 200°, and 300°. The SGA has a population size
of 200 strings. 147

5.15 In-situ best-case SGA optimized azimuth radiation pattern with a sin-
gle SOI at 0° and three jammers at 45°, 200°, and 300°. The SGA has
a population size of 200 strings . 147

5.16 In-situ best-case Hamming distance curve of SGA with a single SOI at
0° and three jammers at 45°, 200°, and 300°. The SGA has a population
size of 200 strings . 148

5.17 AntNet WIPL-D (third model) best-case learning curve of SGA with
a single SOI at 0° and three jammers at 45°, 200°, and 300°. The SGA
has a population size of 200 strings 148

5.18 AntNet WIPL-D (third model) best-case Hamming distance curve of
SGA with a single SOI at 0° and three jammers at 45°, 200°, and 300°.
The SGA has a population size of 200 strings 149

xiv

5.19 AntNet WIPL-D (third model) best-case SGA optimized azimuth ra-
diation pattern with a single SOI at 0° and three jammers at 45°, 200°,
and 300°. The SGA has a population size of 200 strings 149

5.20 SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers
at 45°, 200°, and 300°. The SGA has a population size of 200 strings . 151

5.21 TDGA simulated performance curves collected over 30 independent
runs using AntNet WIPL-D (third model) with SOI at 0° and three
jammers at 45°, 200°, and 300°. The TDGA has a population size of
200 strings . 152

5.22 AntNet WIPL-D (third model) best-case TDGA optimized azimuth
radiation pattern with a single SOI at 0° and three jammers at 45°,
200°, and 300°. The TDGA has a population size of 200 strings. . . . 153

5.23 SA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers
at 45°, 200°, and 300°. 153

5.24 AntNet WIPL-D (third model) best-case SA optimized azimuth radi-
ation pattern with a single SOI at 0° and three jammers at 45°, 200°,
and 300°. 154

5.25 SA in-situ performance curves collected over 30 independent runs with
SOI at 0° and three jammers at 45°, 200°, and 300°. 156

5.26 Best-case SA in-situ optimized azimuth radiation pattern with a single
SOI at 0° and three jammers at 45°, 200°, and 300°. 156

5.27 HCA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers
at 45°, 200°, and 300°. 157

5.28 AntNet WIPL-D (third model) best-case HCA optimized azimuth ra-
diation pattern with a single SOI at 0° and three jammers at 45°, 200°,
and 300°. 157

5.29 SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers
at 45° and 200°. 159

5.30 AntNet WIPL-D (third model) best-case SGA optimized azimuth ra-
diation pattern with a single SOI at 0° and three jammers at 45° and
200°. 159

5.31 SGA in-situ performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. 160

5.32 Best-case SGA in-situ optimized azimuth radiation pattern with a sin-
gle SOI at 0° and two jammers at 45° and 200°. 160

5.33 TDGA simulated performance curves collected over 30 independent
runs using AntNet WIPL-D (third model) with SOI at 0° and two
jammers at 45° and 200°. 162

xv

5.34 AntNet WIPL-D (third model) best-case TDGA optimized azimuth
radiation pattern with a single SOI at 0° and three jammers at 45° and
200°. 162

5.35 TDGA in-situ performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. 163

5.36 Best-case TDGA in-situ optimized azimuth radiation pattern with a
single SOI at 0° and two jammers at 45° and 200°. 163

5.37 SA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers
at 45° and 200°. 164

5.38 AntNet WIPL-D (third model) best-case SA optimized azimuth radi-
ation pattern with a single SOI at 0° and three jammers at 45° and
200°. 165

5.39 SA in-situ performance curves collected over 30 independent runs with
SOI at 0° and two jammers at 45° and 200°. 166

5.40 Best-case SA in-situ optimized azimuth radiation pattern with a single
SOI at 0° and two jammers at 45° and 200°. 166

5.41 HCA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers
at 45° and 200°. 167

5.42 AntNet WIPL-D (third model) best-case HCA optimized azimuth ra-
diation pattern with a single SOI at 0° and three jammers at 45° and
200°. 167

5.43 SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with static SOI at 0° and mobile
two jammers that switch between [45°, 200°] and [120°, 300°]. 169

5.44 Hamming plot for best out of 30 independent SGA simulations using
AntNet WIPL-D (third model) with static SOI at 0° and mobile two
jammers that switch between [45°, 200°] and [120°, 300°]. 169

5.45 Best-case azimuth radiation patterns out of 30 independent SGA simu-
lations using AntNet WIPL-D (third model) with static SOI at 0° and
mobile two jammers that switch between [45°, 200°] and [120°, 300°]. . 170

5.46 SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with static SOI at 0° and mobile
two jammers that switch between [45°, 200°] and [120°, 300°]. The
SGA is run for 101 generations, and jammers changed directions after
51 generations with mutation turned-on after generation 50. 171

5.47 Hamming plot for best out of 30 independent SGA simulations using
AntNet WIPL-D (third model) with static SOI at 0° and mobile two
jammers that switch between [45°, 200°] and [120°, 300°]. The SGA
is run for 101 generations, and jammers changed directions after 51
generations with mutation turned-on after generation 50. 171

xvi

5.48 SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with static SOI at 0° and mobile
two jammers that switch between [45°, 200°] and [120°, 300°]. The
SGA is run for 101 generations, and jammers changed directions after
51 generations with mutation turned-off after generation 50. 172

5.49 Hamming plot for best out of 30 independent SGA simulations using
AntNet WIPL-D (third model) with static SOI at 0° and mobile two
jammers that switch between [45°, 200°] and [120°, 300°]. The SGA
is run for 101 generations, and jammers changed directions after 51
generations with mutation turned-off after generation 50. 173

5.50 TDGA performance curves collected over 30 independent simulations
using AntNet WIPL-D (third model) with static SOI at 0° and mobile
two jammers that switch between [45°, 200°] and [120°, 300°] every 10
generations. 174

5.51 Comparison of SGA and TDGA confidence intervals over 30 indepen-
dent simulations of each with static SOI at 0° and mobile two jammers
that switch between [45°, 200°] and [120°, 300°] every 10 generations. . 174

5.52 TDGA Hamming distance plots for best solution found in 30 indepen-
dent simulations using AntNet WIPL-D (third model) with static SOI
at 0° and mobile two jammers that switch between [45°, 200°] and [120°,
300°] every 10 generations. 175

5.53 TDGA azimuth radiation plots for best solution found in 30 indepen-
dent simulations using AntNet WIPL-D (third model) with static SOI
at 0°. Shown are best generation 0 (initial) plot, generation 50 with
two jammers nulled at [45°, 200°], and generation 60 with jammers
nulled at [120°, 300°]. 176

5.54 SGA performance graphs for 30 independent runs with static SOI at
0° and jammers that continuously move over a course of 50 generations
from {45°, 200°} to {120°, 300°}. 177

5.55 SGA best-case Hamming distance plots with static SOI at 0° and jam-
mers that continuously move over a course of 50 generations from
{45°, 200°} to {120°, 300°}. 178

5.56 SGA best-case azimuth radiation plots with static SOI at 0° and jam-
mers that continuously move over a course of 50 generations from
{45°, 200°} to {120°, 300°}. 179

5.57 SGA performance curves for 30 independent runs with static SOI at
0° and jammers that continuously move over a course of 100 generations
from {45°, 200°} to {120°, 300°}. 180

5.58 SGA best-case Hamming distance plots with static SOI at 0° and jam-
mers that continuously move over a course of 100 generations from
{45°, 200°} to {120°, 300°}. 181

xvii

5.59 SGA best-case azimuth radiation plots with static SOI at 0° and jam-
mers that continuously move over a course of 100 generations from
{45°, 200°} to {120°, 300°}. 182

5.60 TDGA performance graphs for 30 independent runs with static SOI at
0° and jammers that continuously move over a course of 50 generations
from {45°, 200°} to {120°, 300°}. 183

5.61 TDGA best-case Hamming distance plots with static SOI at 0° and
jammers that continuously move over a course of 50 generations from
{45°, 200°} to {120°, 300°}. 184

5.62 TDGA best-case azimuth radiation plots with static SOI at 0° and
jammers that continuously move over a course of 50 generations from
{45°, 200°} to {120°, 300°}. 185

5.63 TDGA performance graphs for 30 independent runs with static SOI at
0° and jammers that continuously move over a course of 100 generations
from {45°, 200°} to {120°, 300°}. 186

5.64 TDGA best-case Hamming distance plots with static SOI at 0° and
jammers that continuously move over a course of 100 generations from
{45°, 200°} to {120°, 300°}. 186

5.65 TDGA best-case azimuth radiation plots with static SOI at 0° and
jammers that continuously move over a course of 100 generations from
{45°, 200°} to {120°, 300°}. 187

6.1 SGA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna
fault (2 step attenuators in one path set to 31.0 dB) at generation 16. 194

6.2 Best-case SGA simulated recovery Hamming distance from emulated
2 step attenuator hard fault seen in 30 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 195

6.3 Best-case SGA simulated recovery Azimuth patterns from emulated 2
step attenuator hard fault seen in 30 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 196

6.4 TDGA simulated performance curves collected over 30 independent
runs with SOI at 0° and two jammers at 45° and 200°. Emulated an-
tenna fault (2 step attenuators in one path set to 31.0 dB) at generation
16. 196

6.5 Best-case TDGA simulated recovery Hamming distance from emulated
2 step attenuator hard fault seen in 30 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 197

xviii

6.6 Best-case TDGA simulated recovery azimuth patterns from emulated
2 step attenuator hard fault seen in 30 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 197

6.7 TDGA in-situ performance curves collected over 15 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna
fault (2 step attenuators in one path set to 31.0 dB) at generation 16. 198

6.8 Best-case TDGA in-situ recovery Hamming distance from emulated 2
step attenuator hard fault seen in 15 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 199

6.9 Best-case TDGA in-situ recovery azimuth patterns from emulated 2
step attenuator hard fault seen in 15 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 199

6.10 SA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna
fault (2 step attenuators in one path set to 31.0 dB) at generation 16. 201

6.11 Best-case SA simulated recovery azimuth patterns from emulated 2
step attenuator hard fault seen in 30 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 201

6.12 HCA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna
fault (2 step attenuators in one path set to 31.0 dB) at generation 16. 202

6.13 Best-case HCA simulated recovery azimuth patterns from emulated 2
step attenuator hard fault seen in 30 independent runs with SOI at
0° and two jammers at 45° and 200°. Emulated fault set at generation
16. 203

6.14 SGA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated
antenna fault (2 step attenuators in one path set to 31.0 dB) at gen-
eration 16. 204

6.15 SGA simulated best-case Hamming distance plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16. 205

6.16 SGA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16. 206

xix

6.17 TDGA simulated performance curves collected over 30 independent
runs with SOI at 0° and three jammers at 45°, 200°, and 300°. Emu-
lated antenna fault (2 step attenuators in one path set to 31.0 dB) at
generation 16. 207

6.18 TDGA simulated best-case Hamming distance plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16. 207

6.19 TDGA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16. 208

6.20 SA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated an-
tenna fault (2 step attenuators in one path set to 31.0 dB) at evaluation
6,201. 208

6.21 SA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at evaluation 6,201. 209

6.22 HCA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated an-
tenna fault (2 step attenuators in one path set to 31.0 dB) at evaluation
6,201. 210

6.23 HCA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at evaluation 6,201. 210

6.24 SGA simulated performance curves collected over 30 independent runs
with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16. 212

6.25 SGA simulated Hamming distance plots for best-case solution out of 30
independent runs with SOI at 0° and two mobile jammers. Emulated
step-attenuator stuck-at fault emulated at generation 16. 212

6.26 SGA simulated azimuth radiation plots for best-case solution out of 30
independent runs with SOI at 0° and two mobile jammers. Emulated
step-attenuator stuck-at fault emulated at generation 16. 213

6.27 TDGA simulated performance curves collected over 30 independent
runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16. 214

6.28 TDGA simulated Hamming distance plots for best-case solution out of
30 independent runs with SOI at 0° and two mobile jammers. Emulated
step-attenuator stuck-at fault emulated at generation 16. 215

6.29 TDGA simulated azimuth radiation plots for best-case solution out of
30 independent runs with SOI at 0° and two mobile jammers. Emulated
step-attenuator stuck-at fault emulated at generation 16. 215

xx

6.30 TDGA in-situ performance curves collected over 15 independent runs
with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16. 217

6.31 TDGA in-situ Hamming distance plots for best-case solution out of 15
independent runs with SOI at 0° and two mobile jammers. Emulated
step-attenuator stuck-at fault emulated at generation 16. 217

6.32 TDGA in-situ azimuth radiation plots for best-case solution out of 15
independent runs with SOI at 0° and two mobile jammers. Emulated
step-attenuator stuck-at fault emulated at generation 16. 218

7.1 High-level block diagram of beamforming system using demodulated
PN sequence from SOI to perform anti-jam beamforming. 224

7.2 Genetic Algorithm (GA) flowchart adapted to operated as part of a
USRP wireless link. 225

7.3 A graphical example showing concept of using max |RXY (τ)| as a fit-
ness function: The unjammed system created an cross-correlation with
series of impulses having spacing L whereas the jammed system re-
sulted in an cross-correlation resembling noise. 226

7.4 Block diagram of a wideband, modular beamforming system. 229
7.5 Algorithm flowchart for potential direction finding and active jamming

capabilities. 230

xxi

List of Acronyms

AJBF Anti-Jamming Beamforming

AF Array Factor

AUT Array Under Test

BER Bit Error Rate

CCA Concentric Circular Array

CGM Conjugate Gradient Method

DOA Direction of Arrival

EM Electromagnetic

EF Element Factor

GA Genetic Algorithm

HCA Hill Climbing Algorithm

HR Hardware Redundnacy

LMS Least Mean Squares

LOS Line of Sight

MIMO Multiple Input Multiple Output

MMSE Minimum Mean Square Error

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

MOM Method of Moments

MVDR Minimum Variance Distortionless Response

NLOS Non Line of Sight

OFDM Orthogonal Frequency Division Multiplexing

PSLL Peak Side Lobe Level

PAA Phased Antenna Array

PDF Probability Density Function

1

PN Pseudo-Random Noise

POC Proof of Concept

RSGA Rejuvenated Simple Genetic Algorithm

SLL Side Lobe Level

SNR Signal to Noise Ratio

SOI Signal of Interest

SGA Simple Genetic Algorithm

SINR Signal to Interference and Noise Ratio

SIR Signal to Interference Ratio

SA Simulated Annealing

SOA State of the art

TDGA Triallelic Diploid Genetic Algorithm

ULA Uniform Linear Array

UCA Uniform Circular Array

VNA Vector Network Analyzer

2

Chapter 1

Introduction

In recent years there has been a rapid increase in the number of wireless devices

for both commercial and defense applications. This has been adding strain on the

spectrum utilization of wireless communication systems. Because there exists a lim-

ited amount of available frequency spectrum, interference is bound to occur as the

spectrum saturates [1]. In the military realm, adversaries jam signals used to guide

military equipment including smart bombs and unmanned aerial drones. As a coun-

termeasure to unintentional interference and adversarial jamming, antenna arrays are

used in wireless communications to focus electromagnetic energy on a signal of in-

terest (SOI) while simultaneously minimizing energy in jammer directions. However,

sophisticated antenna arrays cost millions of dollars and are designed for defense ap-

plications that are not suitable for lightweight drones or consumer mobile devices.

These systems utilized standard optimization techniques, generally gradient-based

algorithms, and consist of tens to hundreds of antenna elements rendering them un-

suitable for consumer wireless communication systems.

3

Much of the hardware incorporated into sophisticated antenna arrays are used to

implement gradient-based algorithms for optimizing the array. A goal of this thesis is

to show that it is possible to shift hardware based optimization into software by us-

ing optimization algorithms. It is also possible to achieve anti-jamming beamforming

for commercial wireless applications with fewer antennas compared to beamforming

systems used for defense applications. By shifting optimization to software and using

fewer antennas, the cost of anti-jamming beamforming systems can be reduced from

millions of dollars to thousands of dollars making them more feasible for commer-

cial applications. In addition, this shift from hardware to software also reduces the

physical size of the array which is also desirable for commercial applications.

In addition, many optimization algorithms applied to beamforming arrays as-

sume that the signals do not change direction. If the signal directions can be deter-

mined, the algorithms used to optimize these arrays are run once and the optimized

settings are used indefinitely [2]. This is often an invalid assumption, as many wire-

less devices are mobile with time-varying directions of arrivals (TVDOAs) at the

antenna array. Furthermore, the wireless channel can also vary with time. Objects,

such as people and vehicles, can momentarily move between the transmitters and

the receiving beamformer thereby causing temporary fades in the received signals.

The optimization algorithm needs to quickly adapt to these signals and to changing

environment conditions, or anti-jamming beamforming will be difficult to obtain.

The reliability of such arrays, especially in commercial satellite and defense appli-

4

cations, can be addressed by hardware redundancy, but at the expense of additional

volume and mass with a greater component and design cost. Commercial systems

are often limited by cost and available space, so hardware redundancy is not a viable

option. Some defense systems, such as Unmanned Aerial Vehicles (UAVs) are limited

by volume and mass, so hardware redundancy is unfeasible as well. In both cases,

anti-jamming functionality is lost if a hardware component faults. Redundancy must

therefore be obtained via software techniques that can detect and re-optimize the

antenna array for fault recovery. This thesis addresses these issues, from an antenna

system perspective, by developing new techniques to dynamically optimize adaptive

beamforming arrays for anti-jamming and reliability.

A high-level overview of a system of three jamming devices is depicted in Figure

1.1a. The system uses Stochastic Algorithms to perform anti-jamming and hardware

fault recovery. The research in this thesis focuses primarily on the Genetic Algorithm

(GA) – a population-based stochastic search technique built around the concepts of

survival of the fittest mate selection, chromosomal crossovers, and bitwise mutation.

The GA’s goal is to maximize a fitness function (i.e., Signal to Interference and Noise

Ratio, SINR). The performance of the GA is compared to the Simulated Annealing

(SA) algorithm and the Hill Climbing Algorithm (HCA). The algorithms operate on

a computer as depicted in Figure 1.1a.

Beamforming is an important technique in modern RF systems. In most commu-

nication based applications, a transmitting system directs RF energy at an intended

5

(a)

Main Lobe
at 0° Null at

30°

(b)

Figure 1.1: Beamforming Examples: (a) Overview of an Anti-jamming System, (b)
An example of beamforming with main lobe at 0°and a null at 30°.

receiving antenna system. In other applications, the receiving antenna system steers

nulls (deep negative decibel gains) towards jammers. A beamforming network is com-

prised of radio frequency (RF) or microwave circuitry that fed each antenna element

in an antenna array with an external device that sets the complex array weights

(amplitudes and phases) to obtain a desired radiation pattern. Figure 1.1b shows an

example of beamforming in which a null is directed at 30 degrees. The main lobe

represents the direction where incoming signals are received, whereas very little signal

is received in the null directions (i.e., at 30 degrees). An anti-jamming beamforming

array is similar to a Phased Antenna Array (PAA) except the PAA actively adjusts

phases to form a mainbeam in a desired direction with low sidelobes in relation to

the mainlobe. Prior to steering the beam, PAAs set weight amplitudes to create the

desired sidelobe levels (SLLs) in relation to the mainbeam. The weight amplitudes

are not modified while the array’s mainbeam is steered.

6

1.1 Limitations of Current Phased Array Technol-
ogy

Current phased array technology is developed for antenna arrays with dozens to

hundreds of antennas. These beamforming arrays are phased such that they focuse a

narrow beam pointed in the direction of a known SOI using radiation pattern mask

that guarantees that the sidelobe levels are below a certain level with respect to the

SOI (i.e., ≤ -20 dB) [3,4]. They are typically designed for military use (such as radar

arrays) and are large and typically too expensive for commercial wireless applications.

Given known SOIs, it can be shown that at least 50 antennas would be needed

to achieve SLLs of at least -20dB with a Uniform Linear Array (ULA) with linear

phased weights [4]. This SLL is sufficient to prevent interference from jamming the

SOI because the output interference power will be less than one-hundredth of its input

SOI power level. However, these SLLs are not achievable for small antenna arrays.

For example, Manteghi et al. [5] developed a low-cost antenna array and shows that

a four-antenna linear array had SLLs of -12 dB with respect to SOI. A 64 element

linear achieves SLLs greater than -20 dB with respect to SOI.

Although Bevelacqua [6] shows that a six element linear array with Dolph-

Chebyshev phase weights can achieve SLLs of -30 dB,1 an issue with linear arrays

is that they have a grating lobe opposite the main lobe. This is not desirable, as

the array will not block interference that arrives 180° with respect to the SOI. The

1Bevelacqua did not calculate the minimum achievable SLL for a four element linear array using
Dolph-Chebyshev phase weights.

7

practice is to place a ground plane near the linear array to block EM radiation behind

the array [4]. However, this ground plane adds weight to and increases the size of the

array because the ground plane must be several wavelengths larger than the array in

both the X and Y directions.2

Unlike linear arrays, circular arrays have an advantage in that they possess sym-

metry in the azimuth plane [4]. Although Belevacqua [6] optimizes the geometry of

hexagonal arrays3 and other planar array configurations, that method is unable to

optimize planar arrays for SLLs less than -20 dB for all evaluated test cases. It can

also be noted that the analysis is based on array factor calculations, so they do not

include mutual coupling between elements which tend to increase SLLs.

The above beamforming methods assume that the SOI and interference directions

are known a priori. However, it is not always possible to know SOI and interference

DOAs ahead of time. For example, Zhang et al. [8] notes that GPS systems operate

at a cold start without any prior knowledge of its position and orientation, so the

system must determine the SOI’s DOA at startup. However, the GPS system can

be jammed at startup, and the jammers need to be suppressed before the system

can locate the SOI. Adaptive algorithms are needed to steer nulls in the jammers’

directions while simultaneously focusing EM energy towards the SOI. However, the

classical Least Means Squares (LMS) algorithm is known to have slow convergence

2The ground plane theoretically halves the input impedance of the array as noted through the
use of image theory [7].

3Hexagonal arrays can be considered to be a limiting form of the circular array with a maximum
of seven elements where the seventh element was placed in the array’s center.

8

with poor multimodal performance [9]. Although the Conjugate Gradient Method

(CGM) converges much faster than LMS, SOI and jammer directions are needed for

it to optimize the array pattern for anti-jamming [9].

1.2 Importance of Anti-Jamming Beamforming with
Hardware Fault Recovery

Hardware fault recovery is important in anti-jamming beamforming arrays be-

cause they typically operate in the field as part of a wireless network and can not

be easily repaired. Figure 1.2 shows a hypothetical situation where an anti-jamming

beamforming array has been optimized to protect a wireless Wide Array Network

(WAN) that connects to several Local Area Networks (LANs) as well as mobile in-

frastructure (i.e., buses, ambulances, automobiles, etc.). This WAN is part of a larger

terrestrial wireless communications network that connects a central uplink transmit-

ter to multiple WANs and aircraft via a communications satellite.

If the anti-jamming beamforming array can not recover from hardware faults

with some form of hardware fault tolerance, a hardware fault will cause the array to

fail in the sense that it no longer protects the wireless WAN. The jammer prevents

the central uplink transmitter from communicating with that WAN’s multiple wireless

LANs that in turn no longer forwards broadcast information to their respective users

and wireless sensor networks (Figure 1.3). Chiti et al. [10] notes that fault tolerance

is important when multiple wireless systems are interconnected in an ad-hoc network

aimed at providing disaster management over a wide area. Failures within any part

9

Central
Uplink

Transmitter

Satellite

Aircraft

Wireless
WAN

Mobile
Infrastructure

Wireless
LAN

Mobile UsersStationary
Users

Wireless Sensor
Networks

Aircraft
WAN

Wireless
LAN

Mobile
Infrastructure

Wireless
LANs

JAMMER Beamforming
Array PROTECTED

Figure 1.2: A wireless WAN section of a hypothetical terrestrial wireless communi-
cations network protected by an anti-jamming beamforming array.

Central
Uplink

Transmitter

Satellite

Aircraft

Wireless
WAN

Mobile
Infrastructure

Wireless
LAN

Mobile UsersStationary
Users

Wireless Sensor
Networks

Aircraft
WAN

Wireless
LAN

Mobile
Infrastructure

Wireless
LANs

JAMMER
Faulted

Beamforming
Array UNPROTECTED

Figure 1.3: The wireless WAN section of a hypothetical terrestrial wireless commu-
nications network unprotected and jammed due to a faulty beamforming array.

10

of the network prevent vital information from being communicated between various

first-responders, governmental agencies, and concerned peoples within the network’s

reach. They also observe that the ability to detect inter-network failures is important

not only to implement fault tolerance, but it is also important to ensure people’s

safety within the network’s coverage area. Khatib [11] describes fault tolerance issues

in a military terrestrial network similar to the one illustrated in Figure 1.2.

As in the civilian case previously discussed, a faulty PAA in a long-range UAV

can prevent communication of vital commands from reaching military personnel on

the ground. Rabbath and Léchevin commented in [12] that an information flow fault

(i.e., “a temporary or permanent loss of information between two or more UAVs, or

between UAVs and the operating crew”) can be caused by communication failures

due to situations including jamming and TX/RX failures. As such, ground personnel

cannot submit tactical reports to the central receiver (co-located with the central

uplink transmitter) because the enemy jams their communications because the long-

range UAV’s PAA failed and did not recover functionality. Clearly, it would be of

vital importance to detect and recover from faults in that PAA to regain anti-jamming

functionality.

Possible situations where beamforming array failures can cause serious issues are

listed in Table 1.1. The motivation for hardware fault recovery in antenna arrays for

long-range military communication and civilian disaster management is clear [10,11].

For the case of arrays used with MTI radars, Klemm notes that if array errors are

11

known a priori, they can be incorporated into the beamforming weights. However,

if the errors are unknown (as would be the case for an antenna element fault), the

beam would be skewed away from the target, and its clutter performance will suffer

[13]. It is possible that the interference null performance would suffer as well because

unknown array errors detuned the array’s radiation pattern causing increased SLLs.

Table 1.1: Situations where beamforming array failures cause serious issues

Situation Effects of Array Failure

Long-range military
communication

Trickle down loss of communication in chain
of command with decreased safety and
possible loss of life in the field

Civilian Disaster /
Emergency Management

First responders’ safety at risk due to lack
of situation awareness along with confusion
in and out of disaster arena due to
non-dispersion of information

Airborne Moving Target
Indicator (MTI) Radars

Degradation of performance due to poor
clutter and interference rejection

Consumer Mobile
Communication

Degradation of cell performance and
increased cost from sending field engineers
to perform repairs

Spaceborne
Communications

Early termination of mission due to array
fault induced communication system failure

Aircraft & Weather
Surveillance Radar

Increased risk of aircraft collisions with loss
of life and delayed passenger traffic

Although a single antenna element fault is unlikely to cause severe issues in a large

array with hundreds or thousands of elements, an array failure is likely to occur when a

significant portion (i.e., 10%) of the elements are at fault [14]. Agrawal et al. [15] notes

that the purpose of redundancy in beamforming arrays was to increase the array’s

Mean Time Between Failure (MTBF) beyond that of its individual components. They

12

discuss redundancy techniques to increase system MTBF for an 8,000 element circular

antenna array. A failed array is described as one that had a 3 dB increase in SLL.

Antenna elements include Transmit/Receive Modules (TRMs), control modules, and

power supplies. A fault in any of those subsystems can cause an antenna element to

fail. Out of the 8000 elements, their analysis shows that it took 3.2% (or 256 out of

8000) element failures to cause an array failure when the each antenna had its own

TRM, control module, and power supply. The above example indicates that hardware

fault recovery is important for array applications that typically use large arrays such

as satellites and aircraft and weather surveillance radar.

As the size of the platform decreases, the available space for an antenna array

decreases making it infeasible to incorporate an array with hundreds or thousands of

elements. Even in military applications that typically use large arrays, small UAVs

can have their own PAAs [11]. Such arrays are limited to dozens of antennas, so fault

recovery is more critical.

1.3 Motivation for Implementing Array Redund-
ancy via Algorithms

Since previous antenna arrays operate on large platforms and are supported by

government funds, it is feasible to build large arrays with hardware redundancy. Hard-

ware redundancy allows arrays to operate beyond individual component lifespans, as

standby subsystems would takeover when primary subsystems fail. However, com-

mercial wireless systems are both space and funding limited, so it is not feasible to

13

build large arrays with hardware redundancy. Redundancy must therefore be placed

in software algorithms that can detect and recover from hardware failures to regain

anti-jamming performance.

As discussed above, an array failure due to a hardware fault can cause a ripple

effect in the sense that wireless communication systems that connect to a beamformer

could cease functioning if the beamformer faults and fails to thwart interference.

This is critical because wireless systems can be connected indirectly to the faulty

beamformer protected system via wireless links of their own. The fault recovery

algorithms must detect faults and recover anti-jamming beamforming functionality.

These algorithms should localize faults, as fault detection is necessary for future

repair or replacement of the system by a field engineer. A primary motivator of

fault tolerance is to increase the Mean Time Between Failure (MTBF) of a system

beyond that of the MTBF of its components given that the Mean Time to Repair

(MTTR) was greater than the component MTBF [16]. Although fault localization is

not critical as fault tolerance, fault localization is still important because it decreases

system repair time, and downtime reduction increases the system’s availability.

A high-level flowchart showing how a hardware fault detection, recovery, and

localization algorithm could be incorporated into a system is shown in Figure 1.4. An

assumption is generally made that the system starts with normal operation, a hard-

ware fault causes a system failure, the algorithm detects a failure, and the algorithm

recovers system functionality at least partially. However, this assumption that faults

14

System
Hardware

Failure Occurs

Algorithm
Detects Fault

Algorithm Implements
Fault Recovery

Algorithm Localizes
Fault

Algorithm Records
Fault Location

Normal
System

Operation

System Operating in
(Partially) Recovered

Mode

Another
System
Fault?

System
Repaired?

YES YES

NO

NO

Hardware Fault
Database

Field Engineer Repair Input

Figure 1.4: A high-level flowchart showing hardware fault detection, localization, and
recovery.

cause system failures is not always valid [16]. For example, an antenna fault would

not cause a beamformering failure (i.e., loss of anti-jamming) if the antenna element

does not have a significant impact on the array’s radiation pattern prior to the fault.

It is not always possible for the algorithm to recover anti-jamming functionality

after the occurrence of each fault. A general rule of thumb in anti-jamming beam-

forming arrays is that a normally operating array with N antennas can anti-jam at

most N − 1 jamming signals (where the N th signal is the SOI). If one SOI and N − 3

jammers are present, and three antenna elements become faulty, it is impossible for

any fault recovery algorithm to recover anti-jamming functionality. The three faults

effectively reduce the array size from N elements to N − 3 elements, so there are

more signals than normally operating antenna elements.

Because of the critical nature of hardware failures in general, it is desirable to

15

maximize the fault detection probability. It is also possible for the algorithm to give

false alarms and detect faults when anti-jamming failures do not occur. Although

false alarms are not as critical as missed faults, the algorithm should minimize the

probability of false alarms. If too many false alarms occur, the end users will not

trust the algorithm’s performance, and correct detection of faults will be ignored.

1.4 Stochastic Algorithms for Anti-Jamming Beam-
forming and Hardware Fault Recovery

This thesis compares multiple stochastic algorithms in performing both anti-

jamming and hardware fault recovery. Stochastic algorithms use random variations

guided by fitness functions to find optimal solutions in large, multimodal search

spaces. In anti-jamming beamforming applications with hardware fault recovery, the

fitness function to be maximized is the Signal to Interference and Noise Ratio (SINR).

Because the Genetic Algorithm (GA) and the Simulated Annealing (SA) algorithm

are investigated in performing anti-jamming beamforming and hardware fault recov-

ery, those algorithms will be discussed below. The Hill Climbing Algorithm (HCA)

is a special case of SA.

1.4.1 Genetic Algorithms in Anti-Jamming Beamforming with
Hardware Fault Recovery

GAs are useful for solving combinatorial optimization problems with multimodal

landscapes. GAs have been used to solve electromagnetic problems including antenna

design [17–20], phased antenna array synthesis [21], and array synthesis recovery fol-

16

lowing occurrence of element faults [22,23]. The GA is a stochastic search algorithm

based on three concepts found in nature: survival of the fittest mate selection, chromo-

somal crossovers, and chromosomal bitwise mutations. There are additional operators

that the GA can use, but a GA that operates only on these three operators is known

as a Simple Genetic Algorithm (SGA) [24–26]. The GA maximizes a fitness function

chosen to represent the problem at hand. As will be shown in Chapter 5, the prob-

lem of optimizing complex array weights to focus energy on a SOI and null multiple

jammers after a fault occurred is a combinatorial one with a multimodal landscape

suitable for optimization with a GA. SINR is a valid fitness function because it mea-

sures how well the array’s radiation pattern focuses energy on a SOI and steers nulls

towards interference. A flowchart of an SGA adapted to maximize an anti-jamming

beamforming array’s SINR is shown in Figure 1.5. Terminology related to genetic

algorithms are defined in Table 1.2.

Decode bits into
M sets of

complex weights

Measure M Sets
SOI and Jammer
Powers at Output

of Array

Calculate SINR fitness F(SINR) for all
M sets of complex weights

Goal: max(F)

Scale F s.t.
max(F') = s•avg(F)

Copy 2k << M
strings with

largest fitness

Select remaining
M - 2k mates

based on fiteness
proportion

Select
crossover sites

Apply crossovers
& mutations with
P(cross) & P(mut)

Start
Continuous
Adaptation

Initialize
Binary GA
Population

Figure 1.5: Flowchart of a SGA adapted to maximize an anti-jamming beamforming
array’s SINR.

At generation zero, the GA randomly chooses a population of M binary strings

17

Table 1.2: Terminology used to describe Genetic Algorithms

Terminology Definition

String Genetic representation (typically binary) of
the GA’s input parameters.

Chromosome See “String”

Genome Set of genetic strings

Phenome Problem specific decoding of the Genome
(i.e., conversion of binary strings to array
attenuator and phase shifter settings)

Genes Individual bits in a string

Allele Set of all possible values that a gene can
have

Triallelic Refers to alleles having values of (-1, 0, +1)
where ‘-1s’ are recessive ‘1s’

Haploid Single string representation

Diploid Dual string representation

Mate-selection Process of selecting mate pairs based on
string fitness

Crossover Process of slicing, swapping, and splicing a
pair of strings akin to chromosomal
crossover

Mutation Random changes to a small percentage
(≤ 2%) of genes in a population

of length L. Each string representes the settings for the array’s complex weights (i.e.,

amplitudes and phase). The complex weight search space is constrained such that

R{â} ∈ (0, 1] and I {â} ∈ [0, 2π). Although there are an infinite number of

possible analog solutions in this search space, the decimal to binary conversion creates

a finite search space.

Although the initial population is chosen randomly, the GA performs a guided

search through the binary parameter space. Strings with higher SINR fitness are

18

chosen more often than strings with low SINR fitness. The crossover operation shares

the good qualities of fit strings and created children with better fitness compared to

their parents. Mutation reintroduces genetic material into the population that is lost

during the mate selection process.

The SGA performs best when desired solutions did not change with time. In

theory, the SGA converges to a steady-state population with little diversity [27].

This is problematic in situations when signal directions change because the SGA

theoretically converges to the first signal set, and it will be unable to adapt to the

new set of directions without re-initializing the algorithm. This requires additional

time for the SGA to converge to the new set of directions. In many situations as in

the case of portable WiFi applications, the SOI’s DOA remains constant once located,

but interference can change directions (i.e., mobile jammers). With other applications

including ground to UAV communications, the SOI can change directions because the

SOI’s transmitter constantly moves.

There are other operators and variations that improve the GA’s performance

against mobile signals by preserving generational population diversity. One variation

of the GA uses diploid strings with triallelic values (i.e., TDGA) as previously dis-

cussed by [24, 28] and shown in Figure 1.64. The hardware settings are first encoded

into a dual string representation with tertiary values. This allows for long-term ge-

netic memory because the dual-string representation allows dominant (i.e., expressed)

4The SGA shown in Figure 1.5 uses binary haploid (i.e., single) strings to encode the array’s
complex weights

19

Decode bits into
M sets of

complex weights

Measure M Sets
SOI and Jammer
Powers at Output

of Array

Calculate SINR fitness F(SINR) for all
M sets of complex weights

Goal: max(F)

Scale F s.t.
max(F') = s•avg(F)

Copy 2k << M
strings with

largest fitness

Select remaining
M - 2k mates

based on fiteness
proportion

Select
crossover sites

Apply crossovers
& mutations with
P(cross) & P(mut)

Start
Continuous
Adaptation

Initialize
Binary GA
Population

Triallelic Diploid String
Single String Representation

. . . 0 -1 1 0 -1 1 1 0 . . .

. . . 1 0 -1 -1 -1 0 1 0 . . .
. . . 1 0 1 0 1 1 1 0 . . .

Dig. Step Atten.
Settings

Analog Phase
Shifter Settings

Figure 1.6: Flowchart of a TDGA adapted to maximize an anti-jamming beamforming
array’s SINR.

and recessive (hidden) properties to be stored for many generations, and the tertiary

values allows hidden properties to switch places with expressed properties when the

environment changes. The diploid strings in Figure 1.5 are encoded into single string

representations using these dominance relations. The encoded single string represen-

tation is then decoded into the array’s complex weights (i.e., attenuators and phase

shifters).

The primary focus of this thesis will be on evaluating the SGA and TDGA in

optimizing an anti-jamming beamforming array and perform hardware fault recovery.

It is the intent to compare GA results with Simulated Annealing as well as the Hill

Climbing Algorithm to create a baseline in Chapters 5 and 6. The thesis discusses how

Simulated Annealing is applied to anti-jamming beamforming arrays with hardware

20

fault recovery in the following subsection.

1.4.2 Simulated Annealing in Anti-Jamming Beamforming
with Hardware Fault Recovery

Another stochastic search algorithm used is Simulated Annealing (SA). SA is an

algorithm based on the concept of annealing metallic objects [29]. At high tempera-

tures (i.e., 1000 K), the atoms in a metal object move rapidly in random directions

and bounced off each other. As the metal is slowly cooled to 0 °K, the atoms’ veloci-

ties decrease until they formed a perfect crystalline lattice. The SA algorithm models

this process to guide the search process. SA is also useful for solving multimodal

combinatorial optimization problems because its random nature at high tempera-

tures prevents the algorithm from getting stuck at local optima early in its search.

The SA algorithm’s applications to electromagnetic problems includes optimal array

design [30, 31] and calibration of sparse antenna arrays [32]. To the best of the au-

thor’s knowledge, SA has not been applied to optimizing complex array weights for

anti-jamming beamforming after antenna elements have faulted.

The application of simulated annealing to anti-jamming beamforming with hard-

ware fault recovery arrays is similar to that of the GA, and a block diagram of simu-

lated annealing is shown in Figure 1.7. The SA is a form of a hill climbing algorithm

(HCA) that modifies solutions based on a temperature schedule and always accepts

better solutions. The temperature schedule controls the mutation rate with a high

probability of mutation at evaluation v = 0, and the mutation rate approaches zero

21

Decode bit string
S(v = 0) into

complex weights

Measure SOI and
Jammer Powers at

Output of Array with
S(v = 0) setting

Calculate SINR fitness
F(v = 0) = SINR(v = 0) for

S(v = 0) setting
Start

Continuous Adaptation

Initialize Bit String
S(v = 0)

v = v + 1

Create Temp ST(v)
bit string with
Pmut(v) = T(v)

Decode bit string
ST(v) into

complex weights

Measure SOI and
Jammer Powers at

Output of Array with
ST(v) setting

Calculate SINR fitness
F(v) = SINR(v) for

ST(v) setting

F(v) > F(v - 1)?

ΔF(v) = F(v - 1) - F(v)

ξ = exp{-ΔF(v) / [K∙T(v)]}
ξ > rand[0, 1)?

v < Vmax?

S(v) = S(v - 1)

S(v) = ST(v)

NONO

NO

YES
YES

SBest = S(v)

YES

Figure 1.7: Flowchart of Simulated Annealing adapted to maximize an AJBF array’s
SINR when stationary signals are present.

when the SA terminates at evaluation Vf . A sigmoid function with cooling rate τ is

typically used as SA’s temperature schedule. SA uses a second parameter known as

the Metropolis condition that allows the SA to accept worse solutions dependent on

the cooling schedule [29]. The difference between SA and HCA is that HCA never

accepts worse solutions because the Metropolis condition is disabled in HCA.

1.5 Thesis Contributions

The necessity for research on stochastic optimization of anti-jamming beamforming

arrays with hardware fault recovery is demonstrated in this thesis. SOI and jammer

DOAs are unknown, so the parameter search space is combinatorial with trillions of

possible solution, and the fitness landscape is multi-modal. This renders classical

optimization algorithms such as Least Mean Squares (LMS) ineffective because they

would stagnate in one of many local optima. Use of stochastic algorithms is proposed

because they are effective in optimizing combinatorial search problems with large

22

parameter search spaces. The contributions of this thesis are:

1. Analytical models are developed and experimental results show that small an-

tenna arrays can thwart interference using dynamically applied stochastic al-

gorithms. This type of in-situ optimization, with an algorithm dynamically

optimizing a beamformer to thwart interference sources with unknown posi-

tions, inside of a anechoic chamber has not been done before to the author’s

knowledge.

2. It is shown that these algorithms can recover from hardware failures and local-

ized faults in the array. Experiments were performed with a proof-of-concept

four-antenna array. This is the first hardware demonstration showing an an-

tenna array with live hardware fault recovery that is adapted by stochastic

algorithms in an anechoic chamber.

3. A comparison of multiple stochastic algorithms in performing both anti-jam-

ming and hardware fault recovery. The algorithms to be compared include

genetic algorithms and simulated annealing.

4. Demonstration via simulations showing that stochastic algorithms can be used

to continuously track and mitigate interfering signals that continuously move

in an additive white Gaussian noise wireless (AWGN) channel.

5. Demonstration via simulations showing that the SGA can adapt to mobile sig-

nals and perform hardware fault recovery in an AWGN channel even after con-

vergence. This result is novel because current theory predicts that the SGA

23

cannot adapt to mobile signals and hardware faults after convergence in any

situation. The results demonstrate a case where the SGA’s mutation operator

introduces sufficient diversity and allows the SGA to continue its search without

the need to randomly generate a new population.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses the back-

ground and previous research in anti-jamming beamforming antenna arrays with

hardware fault recovery optimized by stochastic algorithms. Chapter 3 discusses

new models for anti-jamming beamforming. Chapter 4 discusses new models for an-

tenna array fault detection, recovery, and localization. Chapter 5 discusses dynamic

optimization of anti-jamming beamforming arrays with both simulated and in-situ

results. Chapter 6 discusses in-situ experiments and simulation analysis of hardware

fault recovery. Finally, Chapter 7 concludes this thesis and discusses future work

related to anti-jamming beamforming arrays with hardware fault recovery.

24

Chapter 2

Background and Previous Research
in Beamforming Arrays

There is a wide range of research in antenna beamforming with hardware fault recov-

ery. This research has generally been on large arrays with dozens to hundreds or thou-

sand of antennas. The authors behind these research papers generally assume that

the SOI’s DOA is known a priori, and this simplifies the problem significantly. The

resulting problem becomes one of finding the optimal complex antenna weights that

steer the array’s main beam towards the SOI while simultaneously keeping the SLLs

below a predefined value such as -20 dB. If the antenna array consists of uniformly

spaced elements arranged on a line, the array can be tuned by applying uniform, Bi-

nomial, or Dolph-Chebyshev weights [3, 33]. Array patterns can also be synthesized

whether the arrays are linear or planar.

The problem becomes slightly more difficult if the SOI changes directions or if

the wireless channel faded. Adaptive algorithms such as Least Means Squares (LMS)

can be used to form and move the main beam in relation to the SOI thereby tracking

its movements [9]. This set of problems is still relatively simple to solve, as the SOI’s

initial direction is known a priori. Furthermore, interference in this problem set is

either lacking, or the arrays are large enough such that the SLLs can be tuned to at

25

least -20 dB in relation to the main beam at all times.

The beamforming problem becomes difficult to solve when the SOI’s DOA is not

previously known, interference is present with unknown directions, and the antenna

array is small1. There are commercial applications where the SOI’s and interfer-

ence’s DOAs are not known a priori such as portable 802.11 WiFi communications

in crowded public spaces with many people using various wireless devices. There are

also military applications such as communication with small UAVs where the UAV

does not initially know its basestation’s location, and adversaries jam the UAV from

the moment it is turned on. In these cases, the problem search space that consists of

the complex antenna weights becomes multimodal [34], and classical adaptive algo-

rithms such as LMS are rendered ineffective because they converge on local optima

[35]. A categorization of beamforming problems are summarized in Table 2.1. Note

that these solutions assume that the antenna elements are infinitesimal dipoles and

generate first order approximations of the antenna array radiation patterns.

Reliability and fault tolerance are also important in antenna arrays because they

typically operate in the field and cannot be easily repaired. Agrawal et al. [15]

discuss redundancy techniques to increase active phased array Mean Time Between

Failure (MTBF) for an 8,000 element circular antenna array with 40dB Taylor low

sidelobe taper. An antenna array’s components are divided into passive and active

components. Agrawal assumes that passive components such as transmission lines

1Small in the sense that the number of signals present (both SOI and interference with multipath
reflections) is comparable to the number of antennas in the array typically 12 antennas or less.

26

Table 2.1: Classes of beamforming problems

Array Type Signal States Method(s) to Find Weights

Large ULA SOI DOA known &
constant

Uniform, Binomial,
Dolph-Chebyshev weighting or
array synthesis

Large ULA SOI DOA known &
variable

Adaptive algorithms such as
LMS, CGM, or MVDR.
Stochastic search algorithms also
viable.

Circular array SOI DOA known &
constant

Similar to ULA except array
factor modeled using Bessel
functions [3, 33]

Small planar
array or ULA

SOI DOA known &
variable with single
interference with known
DOA (i.e., known
noncoherent multipath
reflection)

Adaptive algorithms such as
LMS, CGM, or MVDR.
Stochastic search algorithms also
viable.

Small planar
array or ULA

SOI DOA unknown &
interference DOAs
unknown

Stochastic search algorithms

and power dividers have infinite MTBF. Active components included power supplies,

Transmit/Receive (T/R) modules, and T/R control modules.

In [15], the authors assign finite MTBFs to active components with values based

on the MIL-217 standard. An array failure occurred when the sidelobe level (SLL)

increased by 3 dB. They found that it requires less elements to cause a 3 dB SLL

increase when the antennas are clustered with eight T/R modules per control module

compared to one T/R module per control module. Although the no-cluster configu-

ration has a 1,120 hour average per antenna MTBF, and the eight antenna cluster

27

configuration has a 162 hour average antenna MTBF, they note that a configuration

with redundant power supplies and dual antenna clusters has the best 1,882 hours

average antenna MTBF. An issue with antenna arrays used in commercial wireless

communication systems is that they cannot have hundreds or thousands of antenna

elements because such arrays are limited in hardware cost, mechanical volume, and

weight. Even in military wireless communications, it is desirable to use smaller arrays.

for example due to the existence of small UAVs in the communications chain [11].

Thus, there is a need to investigate redundancy via software algorithms in the form of

reconfiguration (i.e., self-healing) of remaining hardware subsystems to compensate

for hardware failures.

Hardware fault detection and recovery can be divided into several areas: fault

detection, recovery from faults, and localization of faults. Detection is clearly im-

portant because a failure cannot be compensated if it is unknown to the algorithm.

The primary goal of fault recovery is to ensure that the array continues operating (al-

though in a possibly hindered state) until it can be repaired. This in essence extends

the array’s MTBF beyond that of individual components’ MTBFs. Fault localization

is necessary to aid in the repair of the array thereby reducing the array’s MTBR.

It follows that fault localization can aid in speeding up fault recovery by excluding

faulty hardware during the self-healing process (i.e., performing an in-situ swap of a

faulty component with a standby component). Fault localization for the purposes of

in-situ replacement of faulty components is beyond the scope of this thesis.

28

The ability to detect, localize, and correct for hardware faults in an antenna

array has been demonstrated. Lee et al. [36] implement a radar beamforming sys-

tem with a built-in pulsed signal injection system for fault detection, localization of

faults, and fault correction. The beamforming system consists of ten columns of eight

monopole antennas that connect to computer controlled T/R modules. Their system

performs fault detection and localization by injecting pulsed RF signals into each of

the monopole antennas via microstrip transmission lines mounted in proximity to the

antenna banks. The injected signals consist of pulse trains that are fed through a ten

way divider and phase toggled such that the amplitude and phase of each element

can be determined. Once the amplitude and phase of each element is known, their

method computes array performance metrics including gain, null depths, and side

lobe patterns. They also generate fault detection maps to isolate faults and imple-

mented a fault correction algorithm to retune the remaining element amplitude and

phase weights to regenerate desirable beam patterns and SLLs.

However, the method demonstrated by [36] requires additional hardware to create

and inject phased pulse trains into the array at the RF frequency. Their system also

requires receiver calibration as reference for insertion loss and phase measurements,

system level calibration of the phase-toggling circuitry to determine its accuracy, and

calibration of antenna element phase shifter bits to determine accuracy of each phase

shift bit. Because the system is built as a radar beamformer, it should be noted

that the mainbeam direction and SLLs are known previously, so pre-fault amplitude

29

and phase weights are calculated by default and used as references for comparison

to the faulted array’s parameters. Because fault detection hardware can fail and

prevent array fault detection, it is desirable to perform fault detection, localization,

and recovery functions in software without the need for additional hardware.

The remainder of this chapter is as follows. Section 2.1 discusses the assump-

tions used in solving the anti-jammer beamforming with hardware fault recovery

problem and included an upper level algorithm comparison. Section 2.2 explains

the Array Factor method used to calculate first-order approximations of antenna

array radiated fields by classical beamforming weighting methods and optimization

algorithms.Section 2.3 summarizes and compares several array weighting methods

commonly used in radar beamforming. Although these techniques are not used in

anti-jamming beamforming, they are relevant to antenna array hardware fault recov-

ery discussed later in this chapter. Section 2.4 reviews techniques in beamforming

using LMS and related algorithms. Section 2.5 discusses previous research in beam-

forming using GAs, and Section 2.6 discusses previous research in beamforming using

simulated annealing. Section 2.7 discusses previous research in antenna array hard-

ware fault detection, recovery, and localization. Finally, Section 2.8 summarizes this

chapter.

2.1 Assumptions and Algorithm Comparisons

Much of the previous beamforming research relates to beamforming in the sense

of focusing a main beam towards an SOI. Applications of such beamformers include

30

radar systems in which the SOI’s DOA is known, as it consists of reflections from tar-

gets whose properties (such as position, velocity, and relative size) are desired. The

array is electronically steered towards a direction where a target might be present.

These arrays are often large and consist of dozens to hundreds or thousands of an-

tennas. If interference is present, the beamformer’s radiation pattern can be tuned

such that the SLLs are at least 20 dB below the main beam pointed at the SOI.

In contrast, anti-jamming beamformers researched in this thesis are used with

wireless communication systems. The SOI’s DOA is most often unknown a priori, and

interference exists that prevent the receiver from decoding information transmitted

by the SOI’s source. Because the systems are often commercial, the arrays are limited

in size due to budget and space constraints. As such, the following assumptions are

made throughout this thesis:

1. The signal directions are unknown prior to system startup.

2. The SOI is jammed when the receiver turned on.

3. The SOI and interference are potentially mobile, so an adaptive solution is

required.

4. The problem is combinatorial because the complex array weights are digitized

to create a finite search space.

5. The array consists of hardware components with finite MTBF, so it is possible

for hardware faults to occur during or after optimization of the array. As such,

it is necessary for the algorithms to perform hardware fault recovery during the

31

optimization process.

Several stochastic search algorithms are compared in Table 2.2. Because the

problem being solved is multimodal, LMS and CGM would not perform well because

they both tend to get stuck in local maxima. CGM differs from LMS in that, at

each iteration, CGM searches the parameter space in a direction orthogonal to its

previous search step [9]. Once LMS and CGM converge to a solution, the search

steps are effectively zero, so neither algorithm can find a better solution if one exists.

The evaluation and comparison of all possible search algorithms used in beamforming

is outside the scope of this thesis.

Table 2.2: Comparison of stochastic search algorithms used in beamforming

Approach Features Drawbacks

Least Mean
Squares

Adaptive feedback Local search with poor
multi-modal performance

Conjugate
Gradient
Method

Searches parameter space using
conjugate directions

Signal directions needed,
poor multi-modal
performance, O (N2)

Genetic
Algorithms

Population based global search Run-time is problem
dependent

Simulated
Annealing

Evaluates solutions sequentially Convergence is cooling
schedule dependent

2.2 Array Factor Method

The array factor (AF) is a means of estimating an antenna array’s radiation pattern

via its electric field. The AF calculation assumes that the electromagnetic waves

32

are steady sinusoidal state in free space, and the observation point is located in the

far-field. The antenna elements are assumed to be infinitesimal dipoles. The antenna

array’s electric field can be expressed via (2.1) ([3, 37]) as

ˆ̄E (R, θ,φ) = ˆ̄F (R, θ,φ) Â (θ,φ) (2.1)

where ˆ̄F (R, θ,φ) is the element factor that represents individual element contribution

to the radiation pattern. For an infinitesimal dipole element, the element factor can

be expressed as

ˆ̄F (R, θ,φ) = ˆ̄F (R, θ) = āθ
µojβe−jβR

4πR
sin (θ) Iod' (2.2)

The array factor Â (θ,φ) is the sum of elements contribution to the radiation pattern

and can be expressed as

Â (θ,φ) =
N
∑

i=1

âie
jβāR•d̄i (2.3)

where β = 2π/λo is the free-space wavenumber. The array factor described in

equation (2.3) has three important parts:

1. {âi} , i ∈ [1, N] are complex weights added to each antenna element.

2.
{

d̄i
}

, i ∈ [1, N] are the X,Y,Z coordinates of the N antennas

3. āR is the spherical coordinate radial unit vector expressed in terms of its X,Y,Z
coordinate projections.

It can be seen from (2.3) that an array’s radiation pattern can be controlled by

either moving the antennas or by adjusting the complex weights. The former method

is known as reconfigurable antenna arrays, and the later method as complex weighted

beamforming. Phased Antenna Arrays (PAAs) are a subset of the later method where

the complex weights are purely imaginary. PAAs are used when the SOI direction is

33

known a priori, and when either there is no interference present, or the array has a

sufficient number of elements such that the SLLs can be reduced to a level where the

interference does not pose a threat. If there are not enough elements to keep the SLLs

below -20 dB with respect to the main lobe, and/or it is necessary to steer nulls in

directions of jammers, amplitude portions of the complex weights {âi} add additional

degrees of freedom in steering the main beam towards the SOI while simultaneously

steering nulls towards jammers.

Antenna radiation patterns are typically expressed in terms of radiated power.

It can be seen from equation (2.1) that an array’s radiated power (i.e., directivity)

can be expressed as

D (θ,φ) = DEF (θ,φ)
∣

∣

∣
Â (θ,φ)

∣

∣

∣

2
(2.4)

If the antenna elements are infinitesimal dipoles, the directivity due to the element

factor DEF (θ,φ) reduces to [3]

DEF (θ,φ) = DEF (θ) = sin2 (θ) (2.5)

and equation (2.4) can be expressed as

D (θ,φ) = sin2 (θ)
∣

∣

∣
Â (θ,φ)

∣

∣

∣

2
(2.6)

The research discussed in this thesis focuses on azimuth (i.e., θ = π/2) radiation

patterns, so it can easily be seen that equation (2.6) for the azimuth plane reduces to

DAZ (φ) =
∣

∣

∣
Â (θ = π/2,φ)

∣

∣

∣

2
(2.7)

The power and simplicity of using the array factor for calculating array radiation

patterns when modeling its elements as infinitesimal dipoles can be seen through

equations equations (2.4) – (2.7). The array’s radiation pattern involves a calcu-

34

lation that is O (N), and integration of the electric fields over θ ∈ [−π/2, π/2]

and φ ∈ [−π, π] is unnecessary. If the azimuth radiation patterns are desired, the

calculation of the array’s radiation pattern depends only on the antenna elements’

locations and complex weight values. The drawback to the array factor method, how-

ever, is that antenna elements have finite lengths, and mutual coupling exists between

elements. The array factor does not account for mutual coupling, but it is generally

acceptable for theoretical modeling of antenna arrays used by classical beamforming

algorithms and beampattern synthesis techniques.

2.3 Array Weighting Methods and Beampattern
Synthesis

There are multiple beamforming array weighting methods that include uniform

amplitude phasing, binomial weighting, and Dolph-Chebyshev weighting. The meth-

ods induce tradeoffs between mainlobe gain, mainlobe beamwidth, and SLLs as de-

scribed in great detail by [9,33]. These methods can be used when the SOI’s DOA is

known a priori, the SOI does not move, and there are sufficient elements in the array

such that the SLLs can be tuned below an acceptable level (i.e., -20 dB) with respect

to the SOI’s mainbeam. Table 2.3 summarizes the properties of various weighting

methods as described in [9,33] for an N element linear array with spacing d between

elements. The beamwidths and SLLs are approximations assuming large N .

The term fbbf found in the Dolph-Chebyshev mainbeam gain and 3 dB beamwidth

approximations is a beam broadening factor defined in [3] as

35

Table 2.3: Comparison of various array weighting methods

Method Mainbeam Gain 3dB Beamwidth PSLL

(dB)

Uniform Broadside 2N
(

d
λ

)

≈ 2
(

1.391λ
πNd

)

-13.5

Binomial (d = λ/2) ≈ 1.77
√
N ≈ 1.06 (N − 1)−

1

2 −∞

Dolph-Chebyshev

(SLL = Ro, unitless)

≈
(

1
fbbf

)

(2N)
(

d
λ

)

≈ 2fbbf
(

1.391λ
πNd

)

Ro (dB)

fbbf = 1 + 0.636

{

2

Ro
cosh

[

√

(

cosh−1Ro

)2 − π2

]}2

(2.8)

The beam broadening factor fbbf ≈ 1 for a SLL of 15 dB down from the mainlobe

gain, and it approaches 1.7 for a SLL of 60 dB (see Figure 6.24(a) in [3]). The

approximation of the Dolph-Chebyshev mainbeam gain in Table 2.3 assumes that

R2
o + 1 which is clearly valid for SLLs ≥ 15 dB. Thus, Dolph-Chebyshev arrays

sacrifice mainbeam gains and 3dB beamwidths for SLLs greater than 15 dB, and the

Dolph-Chebyshev array approaches the Binomial array as SLLs approach infinity. It

can be seen from Table 2.3 that the uniform weighted array have the smallest 3dB

beamwidth followed by the Dolph-Chebyshev and binomial weightings. This is in

agreement with [3].

Although Table 2.3 approximates the mainbeam gain of a Dolph-Chebyshev

ULA, [3] gives a more exact formula for an array scanned near broadside that is

36

valid for −60dB ≤ SLL ≤ −20dB in (2.9):

Go =
2R2

o

1 + (R2
o − 1) fbbf

λ
(L + d)

(2.9)

L = (N − 1) d (2.10)

where d is the spacing between elements. The design of Dolph-Chebyshev ULAs is

made simpler by use of the z-transform where z = ejΨ [33] such that (2.3) for ULAs

is expressed in simpler terms as

AF (z) =
N
∑

n = 1

wnz
n − 1 (2.11)

AF (z) = wn (z − z1) (z − z2) · · · (z − zN) (2.12)

zn = ejΨn (2.13)

If wn = 1, (2.12) represents a unit-circle in the z-domain, and (2.13) represents zeros

on that unit-circle. Haupt [33] notes that for a ULA with half-wavelength spacing

between elements, equation (2.13) can be expressed as

Ψn = 2 arccos

cos
(

(n − 0.5)π
N − 1

)

cosh
(

πAcheb

N − 1

)

(2.14)

Acheb =
1

π
arccosh (Ro) (2.15)

Substituting (2.14) into (2.12), letting wn = 1, and simplifying the result yields a

polynomial in z whose coefficients are the array’s Chebyshev amplitude coefficients.

The Dolph-Chebyshev array can be steered in azimuth by using the canonical form

φn (φo) = − β cos (φo) (n − 1) [3].

Balanis and Haupt [3,33] discuss the Uniform Circular Array (UCA). The concept

37

behind a UCA is similar to the ULA except that the antenna elements are equally

spaced on a circle with radius r. They both note that the array factor for the UCA

can be expressed as a sum of Bessel functions where Haupt expressed it in (2.16) as

AF = N
∞
∑

n=−∞

JnN (βr) ejnN(
π
2

− ξ) (2.16)

where

ξ = arctan

(

v − vo
u− uo

)

(2.17a)

u = sin (θ) cos (φ) (2.17b)

v = sin (θ) sin (φ) (2.17c)

uo and vo are equations (2.17b) – (2.17c) applied in the mainbeam direction, and

JnN (βr) are Bessel functions of the First Kind of order n×N . Haupt notes that if N

is large, then (2.16) can be simplified to N Jo (βr). The mainbeam of the UCA can

be steered to (θo,φo) by applying a phase at each element per [33] as:

ζ = e−jβr sin(θ0) cos(φo − φn) (2.18)

where φn is the angular location of element n on a radius r in the XY -plane. Reduced

SLLs of UCAs using Dolph-Chebyshev (and Dolph-Chebyshev equivalent) amplitude

weights are investigated in [38–41].

A concentric circular array (CCA) can be formed by arranging several circular

arrays with radius rn, n ∈ [1, Nr] such that r1 < r2 < · · · < rn, and a single element

is placed in the CCA’s origin. Haupt [33] stated that the array factor of the CCA

38

can then be expressed as

AF = 1 +
Nr
∑

n=1

wnNn

∞
∑

−∞

JmNn

(

βrn sin (θ) e
jmNn(π

2
− φ)

)

(2.19)

If the radii of the concentric rings are large, Haupt notes that the CCA’s array factor is

independent of φ, and it can be expressed in terms of each ring’s principle component

Jo in (2.20).

AF = 1 +
Nr
∑

n=1

wnNnJo (βrn sin (θ)) (2.20)

It should be noted that wn represents element weights for ring n. If the rings

are equally spaced with radius rn = nλ/2, and the spacing between elements is

dn = λ/2, then the maximum number of equally spaced elements in ring n is

Nn = -2πn. [33]. To the best of the author’s knowledge, research in SLL reduction

in CCAs using array weighting methods such as Dolph-Chebyshev is limited to [42].

An extension of array weighting is beampattern synthesis. The power in beam-

pattern synthesis is in creating arbitrarily shaped radiation patterns that meet differ-

ent mainlobe and sidelobe requirements as noted above as well as custom SLLs in a

specific set of directions. Zhang and Ser [43] note that the Dolph-Chebyshev method

cannot specify null locations, mainlobe beamwidth, and mainlobe ripple. They de-

velop a pattern synthesis method that accounts for mutual coupling between antenna

elements and null multiple angular regions to thwart interference. The beampattern

synthesis is treated as an optimization problem where a cost function is minimized

with respect to the array weights. They evaluate two cost functions (Dolph-Chebyshev

and quadratic) and made the problem convex by imposing upper and lower limits on

39

the mainlobe.

In [43], the authors simulate their synthesis methods on 32-element ULAs and

UCAs both with 0.5λ and 0.3λ spacing. Their synthesis method with the Dolph-

Chebyshev cost function outperform both the classical Dolph-Chebyshev weighting

method in forming a beampattern that steered a null at 90° with a 20° beamwidth

while simultaneously nulling 20° and 120° with 1° and 6° null widths. Their method

performs better with a ULA having 0.5λ interelement spacing although the 0.3λ

spacing ULA achieves acceptable beampatterns, and they have similar results for the

UCA arrays.

2.4 Beamforming with Gradient Search Based Adap-
tive Algorithms

There has been recent research in anti-jamming beamforming arrays. Traditional

gradient search beamforming methods include Least Mean Squares (LMS), Minimum

Variance Distortionless Response (MVDR), Sample Matrix Inversion (SMI), and Con-

jugate Gradient Method (CGM). Gross summarizes these method in [9], and Van

Trees discusses these methods in great detail in [2].

Zhang et al. [8] notes that GPS systems need to be protected from accidental and

intentional interference because GPS systems are used for navigation and guidance.

GPS systems initialize with no knowledge of the channel state and signal directions,

so blind anti-jamming techniques such as minimum variance (MV) null-steering are

used. However, current blind anti-jamming techniques create carrier phase errors that

40

prevent GPS receivers from accurately predicting the estimated range or cause them

to lose carrier phase lock. They develop and verify through simulations an algorithm

that removes an estimated phase error from a MV beamformer. They implement

their algorithm using SMI to estimate the signal covariance matrix R and its inverse.

Although their simulations produce positive results, Gross [9] notes that SMI can

produce erroneous results if R is poorly conditioned.

A sidelobe canceller as described by Applebaum [44] uses a blocking matrix to

remove the SOI from the MVDR training data prior to shifting the sidelobes to cancel

interferers. However, this algorithm cancels the SOI if a mismatch in its assumed DOA

exists. To alleviate these problems, Lei et al. [45] propose a generalized sidelobe

canceller in which the SOI blocking matrix is widened to account for SOI direction

mismatch. Although they prove that this method prevents SOI self-cancellation with

SOI DOA mismatch, their beamformer needs to know the SOIs DOA with mismatch

limits a priori.

Xu and Lui [46] comment that current blind adaptive algorithms exploit known

properties (such as their modulation types) of the SOI and interferers to determine

the SOIs DOA. They develop an adaptive blind beamforming algorithm called Non-

circularity Rate Maximization (NORM) that blindly recovers noncircularly polarized

signals such as BPSK, ASK, and AM signals in the presence of circular (i.e. purely

phase modulated) interference and noise. They compare their NORM beamforming

algorithms results to MVDR and covariance-cumulant (C2) beamformers with a non-

41

circularly polarized SOI that have a 5° DOA mismatch. They compare these methods

both with and without the presence of circularly polarized interfering signals.

Without circularly polarized interference present, they note that MVDR steers

a null in the SOI’s direction when an SOI direction mismatch exists, and the C2 and

NORM methods pointed the main beamlobe at 5°. With the presence of a QPSK

interferer at 30°, MVDR adds an additional null at 30°, and the C2 beamformer

places a null close to the desired signal direction while attempting to null the QPSK

interferer. On the other hand, their NORM beamformer does not move the SOI’s

mainlobe while steering a null at 30°. It should be noted that [46] assumes that

the SOI always uses noncircular modulation. If the SOI changes its modulation to

circular modulation (i.e., QPSK), the NORM algorithm would no longer distinguish

the SOI from circularly modulated interference.

Chen et al. [47] develop three modified CGM based beamforming algorithms that

minimizes the BER for a Quadrature Phase Shift Keyed (QPSK) wireless system and

compared them to MMSE. Their first method is called minimum BER (MBER), and

it finds optimal array weights by calculating the gradient of the beamforming array’s

marginal error PDFs. These PDFs are based on the real and imaginary parts of the

receiver’s decision regarding the transmitted symbol given that its decision is made

in error. Their second method uses a Parzen window estimate of the array’s output

PDF using a K length block of data and a kernel width similar in form to the array’s

noise standard deviation. They called their third method Least BER (LBER). It

42

estimated the array output PDF using a normalized K length block of data that gave

rise to a stochastic gradient of the marginal error PDFs.

They simulate their three algorithms and MMSE for a three element linear array

with one SOI and three interference signals. The MBER algorithm performs better

than MMSE when the SIRs of all the three jammers are 0 dB, as MBER requires

a lower Signal-to-Noise-Ratio (SNR) than MMSE for those SIRs. When all three

jammers have -2 dB SIR, MMSE no longer functions while MBER attains a BER of

10−10 for SNR of ≈24 dB. Neither MMSE or MBER perform well when the SIRs for

the first two jammers are -2 dB and -6 dB for the third jammer. They also compare

magnitudes and phases of the array radiation pattern for the array weights calculated

by MMSE and MBER given the cases of SNR = 15 dB, SIR = 0 dB for all jammers,

and SNR = 20 dB and SIR = -2 dB for all jammers. Both pattern magnitudes are

similar. Even though only one jammer is completely nulled in the second case, the

phases of the other two jammers are 90° out of phase with respect to the SOI for

MBER while the other jammers are 90° and 30° out of phase with respect to the SOI

for MMSE.

Lee [48] notes that interference problems between femtocell basestations occur

because they are installed in confined areas. Their simulations show that interference

can be mitigated through a combination of coordinated user scheduling (CUS) and

beamforming techniques. Because WiFi basestations are typically installed indoors,

they can be considered femtocells. CUS is infeasible because jammers may not be

43

WiFi basestations operating in a femtocell network.

2.5 Beamforming using Genetic Algorithms

There has been relatively few studies of GA optimization of antenna arrays.

Haupt et al. [49] built a beamforming array that successfully thwarts a single jammer.

It consists of eight active elements with sixteen dipole antennas per element. They

assume that the SOI’s direction of arrival (DOA) is known, and they tune the array

to focus energy towards the SOI before turning a jammer on. If no jammers are

present, the algorithm would minimize the SOI’s power because their GA minimized

the array’s output power. They solved this problem by modifying a limited number of

attenuator and phase shifter bits. This allows their algorithm to form a null towards

a single jammer while not altering the main lobe. Their algorithm’s goal is to thwart

a jammer, and it does not form the main lobe because the array is already tuned

towards the SOI.

Massa et al. [50] simulate a modified standard GA with real-time parameterized

crossover and mutation probabilities to thwart jammers with randomly varying DOAs.

They parameterize the crossover and mutation probabilities on the binary strings’

variance in a population of N trial solutions. Probabilities vary linearly with solution

variance: Maximized (minimized) when solutions in the current generation have low

(high) variance. Their modified GA discards a percentage of δ (k) solutions at the

kth generation and replaces them with randomly generated strings. The percentage

of replaced solutions varies linearly with solution variance, and the replacement rate

44

is maximized when solution variance is minimal. Weile et al. [28] develop a dual

(i.e., diploid) string GA with triallelic values. Their simulations show that a GA

with dominance and diploidy (DDGA) can thwart mobile jammers. Their work is

based on GA theory developed by Goldberg [24]. They add two more operators

called storage and resurrection. The storage operator copies the most fit string in the

current generation into memory, and the resurrection operator replaces the least fit

string in that generation with the most fit string in memory.

Boeringer et al. [21] discuss a real valued GA with dynamic crossover and mu-

tation probabilities. This GA with a dynamic parameter adjustment strategy is used

to optimize the array weights for array pattern synthesis. Their GA uses tourna-

ment selection mate pairing, positive non-integer crossover, and mutation with a

variable range. Positive non-integer crossover means that a number at random is

chosen to define the probability that one-point, two-point, and three-point crossovers

are used. Mutation range is defined as how far a mutated element value is modified

from its original value. Their supervisory algorithm prevents premature convergence

by dynamically adjusting parameters (mutation range, mutation rate, and number

of crossovers) in directions that give the most cost improvement. In an amplitude-

only array synthesis problem, their GA with dynamic parameter adjustment strategy

converges in 100 iterations compared to over 1000 iterations with a static parameter

GA with two crossovers, small mutation rate, and small mutation range. A static

parameter GA with full mutation rate, full mutation range, and two crossovers does

45

not converge in over 10,000 iterations.

Lee et al. [51] simulate a phase-only null steering beamformer optimized by a

GA. The beamformer is a linear array with 6-bit phase shifters and 100 isotropic

antenna elements. The GA maximizes the output SIR as its fitness function, and

it uses the first three least significant bits of phase shifters with odd phase shifts to

create nulls. They successfully nulled two jammers with the mainbeam at 0deg, the

first jammer 2.8deg away from the mainbeam, and the second jammer 4deg away

from the mainbeam. They compare their initial simulations with a 20 element patch

antenna simulated in a 3-dimentional electromagnetic simulator and saw comparable

results.

Ares et al. [52,53] compare the performance of genetic algorithms and simulated

annealing in optimizing the array weights that synthesized sum and difference patterns

of an N + 1 element array with Doplh-Chebyshev. Sum and difference patterns fill

in the nulls creating a pattern that has null depths 5 dB less than the SLLs. Because

there are 2N possible weight combinations, an exhaustive search is unfeasible, and

they find that genetic algorithms and simulated annealing are applicable in solving

this problem. Their simulations show that both algorithms solve this problem with

the GA having faster convergence times than simulated annealing. They also show

in [53] that convergence times increases exponentially with number of array elements

N for exhaustive search while GA convergence times stay relatively flat. This occurs

because the GA does not need to search the entire parameter space to find optimal

46

solutions.

2.6 Beamforming using Simulated Annealing

Other researchers have approached the beamforming problem through the use

of simulated annealing in terms of optimizing array layouts as well as optimizing

array weights. For example, Evans et al. [30] optimize the feed of a 2 x 2 patch

antenna using simulated annealing, and Sadler [54] implements a version of simulated

annealing with a dual temperature schedule to optimize array layout of a direction

finding (DF) antenna array. The DF array is optimized to reduce the number of

ambiguous angles (i.e., sidelobes or grating lobes) that prevent the array from finding

a target signal. Sadler defines an ambiguity function that accounts for all possible

steering directions of the array within its upper hemisphere. The simulated annealing

algorithm minimizes a cost function that includes both the ambiguity function and

a weighted element distribution function that accounts for imperfect distribution of

elements over the array space.

Sadler’s two stage temperature schedule in [54] is selected such that once that

initial convergence is detected, the temperature schedule is changed to one with a

lower temperature. This allows small improvements to the array layout because higher

cost solutions are discarded with low temperatures. The array elements positions are

also perturbed by picking a random number from a uniform distribution. Prior to

convergence, the element positions are perturbed by a maximum of ±0.1λ, and after

convergence the maximum disturbance is limited to ±0.01λ.

47

In this manner, Sadler [54] shows that a seven element concentric circular array

arranged in two rings (with three elements on an inner ring of radius 1.5λ and four

elements on an outer ring of radius 4.5λ) has 36 total ambiguous peaks with values

greater than 4.0 dB with the largest ambiguous peak being 4.5 dB high. The target

signal has a peak value of 10 dB. This is a significant improvement to a reference

circular array with one element in the center and seven elements on a radius of 4.5λ.

The reference array has a total of 70 ambiguous peaks with amplitude greater than

4.0 dB, and the largest ambiguous peak has an amplitude of 5.0 dB.

Dong et al. [31] considers the case of optimizing MIMO antenna element posi-

tions to create the largest possible virtual array given a set of M transmitting and

N receiving elements. The M transmitted waveforms are orthogonal, and not all

element position combinations maximized the virtual array’s aperture. They com-

bine simulated annealing with cyclic difference sets (CDS) to reduce the search space

and increase the algorithm’s convergence time. They constrain the locations of one

array’s (receiving or transmitting) as a CDS. For M = 3, N = 5, and the largest

contiguous aperture of the virtual array L = 63 calculated by an exhaustive search

algorithm, they reduce the search space from over 1 billion to roughly 2000 combi-

nations by using a CDS. They showed that the SA alone converges in over 30,000

iterations while the CDS constrained SA converges in less than 250 iterations. With

the receive elements constrained by a CDS, their hybrid algorithm creates transmit

arrays with positions that generate 64 ≤ L ≤ 72.

48

The simulated annealing algorithm in [31] minimizes a cost function that includes

a term to minimize the total user transmit power and two penalty terms. The first

penalty term accounts for individual BERs that are greater than the maximum per-

mitted BERs, and the second penalty term accounts for individual transmit powers

that are greater than permitted powers. Their simulated annealing algorithm creates

solutions that meets all of the individual BER constraints with a total transmit power

of 73.4 W. However, their reference gradient search algorithm does not meet any of

the BER constraints despite obtaining a total transmit power of 64.1 W. Two version

of their optimizer meet the three BER constraints, but the total transmit powers

are greater than simulated annealing meaning that their optimizer found suboptimal

solutions.

Pascual-Iserte et al. [55] optimizes the weights of multiple beamformers using

simulated annealing and compare their results to a Lagrange gradient search opti-

mizer and an alternate and maximize (AM) optimizer. Their simulated beamformers

operate in a multiuser MIMO-OFDM system. They optimize the beamformers to

minimize total user transmit power. They constraine individual user Bit Error Rates

(BERs) to be no greater than 10−3, 10−3, and 10−2 and add an optional constraint

on individual transmit power (i.e., Pi
T ≤ Pi

max). The problem is non-convex due to

the constraint set.

49

2.7 Antenna Array Hardware Fault Detection, Re-
covery, and Localization

Detection of hardware faults in an antenna array is necessary for the correction of

such faults. Migliore [56] develops a technique for detecting array faults by evaluating

the near field of a N element array under test (AUT) and placing M probes with

effective heights h (θ,φ) at distances r̄m, m ∈ [1,M] from the AUT’s origin. Each

antenna element has complex excitation x̄n, n ∈ [1, N] with complex electric-field

radiation patterns f̄n (θ,φ). The voltage at the probe outputs can be expressed as a

linear system of equations

Aˆ̄x = ˆ̄y (2.21)

where
ˆ̄x = (x̂1, x̂2, · · · , x̂N)

T (2.22)

ˆ̄y = (ŷ1, ŷ2, · · · , ŷM)T (2.23)

A ∈ CM×N s.t. Amn =
e−jβrm,n

4πrm,n
f̂ (θm,n,φm,n)h (θm,n,φm,n) (2.24)

rm,n = |rm − rn| (2.25)

and θm,n,φm,n are relative angles between the nth antenna element and themth probe.

The matrix elements of (2.24) is similar to an array factor calculation except that

the system formed by (2.21) is formed in the near-field and M "= N whereas the

array factor calculation is an approximation that assumes the measuring points are

in the far-field with M = N probes having zero effective height. In [56] it is shown

that inverting the system of (2.21) required that M ≥ N .

Migliore also notes that the number of faults K / N , and their goal is to

identify the faults with M / N . Their technique assumes a reference array to

50

compare with the AUT, as the technique needed knowledge of the fault free array’s

element excitations. Migliore labels the reference array’s excitation and probe vectors

ˆ̄xr and ˆ̄yr and of the AUT ˆ̄xd and ˆ̄yd. With these definitions, they re-form the system

described by equation (2.21) by replacing equations (2.22) – (2.23) with

ˆ̄x = ˆ̄xr − ˆ̄xd (2.26)

ˆ̄y = ˆ̄yr − ˆ̄yd (2.27)

As such, Migliore notes that the fault detection and localization problem in the pres-

ence of noise becomes a constrained minimization problem described by

min
x

||ˆ̄x||1 subject to ||Aˆ̄x − ˆ̄y||2 ≤ ε (2.28)

where ε / 1. Migliore notes that (2.28) is convex with a unique minimum. The

problem is in determining the minimum number of measurement probes necessary to

create a stable '1 norm in the calculation of (2.28). This problem is generally solved

by properly choosing the measurement probe locations such that the probes are far

enough away from each other to prevent spatial correlation between their electromag-

netic fields. They also comment that the number of probes M = O (K log (N)).

Migliore [56] evaluate their method on a simulated N = 33 × 33 planar array

with λ/2 regular lattice and Chebyshev element excitation. They setup M = 36

measurement probes and -35 dB noise levels. Two test cases are considered: no faults

and five elements faulted with a π radians phase shift. The reference arrays have

the same element excitations as the AUTs. In both cases, their method recover the

excitation values with 36 measurement probes showing that it can detect and localize

51

faults in the array. Because the faulty reference array contains the same faults as the

AUT, this method works best when the fault locations are correctly hypothesized.

The detection of faults in an antenna array can be performed with the AUT

in an environmental test chamber. The idea is to detect occurrences of faults after

an AUT is subjected to a series of environmental tests. Chamberlain [57] develops a

technique that involved exciting individual antennas of a corporate-fed patch antenna

array with impulses. A narrow width pulse is fed into the corner of patch antenna,

and the time-varying voltage at the antenna’s output is measured on an oscilloscope.

Chamberlain’s method is useful for testing open-circuits within the array including

missing resistors that caused opens within Wilkinson power dividers. They note that

open-circuits within Wilkinson power dividers are difficult to detect via return loss

measurements because reflections are dissipated by internal isolation resistors.

Chamberlain develops time-domain circuit models of 600 MHz and 1250 MHz

resonant patch antennas as well as the 5× 5 antenna array. They compare the impulse

responses of individual patch antennas with and without faults, and the faults cause

the impulse response amplitudes to drop more than 50%. This serves as the criteria

for detecting faults in the AUT. They also note that the time-domain impulse response

contained all voltage vs. frequency information whereas S-parameter measurements

of individual antennas with a VNA contain a low-frequency cutoff. They note that

S-parameter measurements produce poor results at low frequencies because antennas

and feed-networks are poorly matched at those frequencies causing S11 to be large

52

and S21 to be small. This results in high sensitivity of S21 to small changes in the

antenna attachment configuration, and it increases the risk of false alarms [57].

Once a fault is detected, the array weights needed to be retuned to regain the

desired array performance. Liu [58] develops a deterministic approach to array hard-

ware fault recovery that is used in the beamforming array described by [36]. Liu’s

method minimizes a performance metric P such that

∇w̄∗ P = 2 I (w̄ − w̄o) + 2µCw̄ = 0 (2.29)

w̄ = (I + µC)−1 w̄o (2.30)

where

P = (w̄ − w̄o)
H (w̄ − w̄o) + µ w̄HCw̄ (2.31a)

C ∈ CNxN s.t. cmn = ejβ(dn−dm) sin(θo)sinc [β (dn − dm) e] , m, n ∈ [1,N] (2.31b)

N is the number of elements in a linear array, and the term e defines a range of angles

outside the mainbeam angle θo whose SLLs are to be minimized. The weight vector

w̄o represents the quiescent array weights including element faults, and the vector w̄

represents the corrected weight vector that needs to be calculated. [58] comment that

the first term in (2.31a) minimizes perturbations in the mainbeam while the second

term minimizes average power in the side lobes. (2.30) can be calculated using a

computer to find w̄. The drawback to this method is that the antenna faults need to

be localized (i.e., in the definition of w̄o) before w̄ can be calculated.

The genetic algorithm has been used to resynthesize an array pattern after el-

ement failures. Yeo et al. introduce new crossover operators and resynthesize a 32

element Dolph-Chebyshev array with -35 dB SLL with two and three element failures

53

[22]. Their simulations show that their GA recovered the array pattern with two fail-

ures with less than 2 dB error in convergence after 100 generations. Their GA recovers

the array pattern with three failures with roughly 6.5 dB in 200 generations. They

note that both amplitude and phase weights are required to compensate for element

failures. Han et al. uses an adaptive weighted beam pattern mask to resynthesize the

beam pattern with a GA after a single element failed [23].

Joler [59] develops a self-recovery algorithm (SRA) based on a GA. The radiation

pattern of 4 x 4 array without faults is computed, and an external detector flagged

a flawed array element. The SRA computed the average error (e) between healthy

and flawed radiation patterns. If e is greater than a given tolerance level (tol), the

SRA recalculates element amplitude and phase weights until a solution with e < tol

is found. They implemente the SRA on a computer and on a FPGA to create an

autonomous system that can be used to monitor an antenna array’s health.

Mitilineos and Capsalis [60] develop a GA optimization technique that incorpo-

rates the probability of element failure in the design of an eight element switched-beam

UCA. Their technique redistributes the array weights for balanced performance after

element failure during the array’s design by anticipating which element failure is most

likely to cause worst case post-failure performance. Although their procedure slightly

degrades the normally operating array, the worst case post-failure radiation pattern

compensated for the element failure.

Oliveri et al. [14] develop a technique that uses Bayesian compressive sensing

54

to localize faults in linear arrays. Their compressive sensing technique is an '1-norm

minimization tool used to retrieve the sparse failure vector f . They defined this failure

vector as the failure-free reference array and the array under test. They calculate the

posterior probability P
(

f |F
)

where F is the difference field measurements that is

defined as the difference between an error-free N -element linear array and a measured

array under test with failed elements. The vector that contains the detected faulted

elements is defined as

f̂ = argmax
f

{

P
(

f |F
)}

(2.32)

They use Bayes’ theorem to solve P
(

f |F
)

for the purposes of calculating the solution

to (2.32) given the likelihood of a difference field given a failure vector P
(

F |f
)

and

the priors P (F) and P
(

f
)

. [14] also defines two metrics for the error in detecting and

localizing array faults: SNR and the normalized diagnosis error ξ. They compute their

approach’s sensitivity on the solver’s initialization state η and its angular sampling

ratio ν (i.e., ratio of number of angular points K to the number of elements N) vs. ξ

and various SNR values.

Their results show that there is no optimum for ξ vs. η because each curve for

given SNR value have its own minimum in ξ. However, they calculate and suc-

cessfully use a compromise value ηopt based on the average value of ηbest$SNR =

argminη {ξ (η, SNR)} over 20 dB ≤ SNR ≤ 60 dB. They also find that diagnosis

error (based on ξ vs. ν for several SNR values) depend non-negligibly on ν without

any minima or maxima over 0.85 ≤ ν ≤ 1.15, thus they calculate a compromise

55

value νopt in a manner similar to ηopt.

[14] also defines a confidence level vector γ based on (2.32) whose elements γn, n ∈

[1, N] measure the reliability of the fault diagnosis f̂n for each of the N elements. They

define a total confidence level Γ where

Γ =
1

N

N
∑

n=1

|γn|2 (2.33)

and smaller values of Γ indicated more reliable solutions in terms of f̂ . Their simula-

tions show that low values of total confidence level Γ corresponded to low diagnosis

errors ξ. However, their BCS method requires SNR = 60 dB to correctly diagnose

array faults with Γ = 6.78 × 10−4 and ξ = 8.93 × 10−5 for a Dolph 100 element

array with -30dB PSLLs, but their method incorrectly diagnoses array faults when

SNR = 20 dB with resulting Γ = 1.23× 10−2 and ξ = 4.79× 10−1 for that array.

Rivera et al. [61] implement a reconfigurable antenna array with vertical and

horizontal microstrip sensing lines to localize antenna faults. The antenna array

consists of four patch antennas arranged 2 x 2. Each patch antenna is divided into

two sections with two diagonal slots that are disconnected in the patch’s center, and

they place switches at each end to bridge the upper and lower corners of the patches.

The ends of the four sensing lines are connected to a VNA. The insertion loss of all

possible switch configurations is collected at initial design and stored in a lookup table.

A switch fault is detected and localized by turning all switches on and remeasuring

the insertion losses of the sensing lines. The switch fault would be indicated by the

resulting sensing line pair’s insertion loss that differed from the lookup table values.

56

Iglesias et al. [62] combine case based reasoning (CBR) and GAs to find faulty

elements in moderate and large linear arrays. CBR involves storing previously found

solutions (i.e., cases) to find solutions for new radiation patterns. Their method

collects two groups of cases. The first group contains radiation patterns for the

ith antenna that is active, and the second group contains patterns with a faulty

ith antenna. For every new radiation pattern xnew, their implementation of CBR

calculates the average distances between xnew and old radiation patterns xk for the

sets containing element i that work properly and the sets where element i becomes

faulty.

Using the difference of these two average distances, they calculate a failure vector

that contains the possibility of element i ∈ [1, N] being faulty. They notee that these

calculations reduce the number of element that can be faulty, the use of a GA can

reduce the computational cost of verifying which elements failed, and the failure

vector can reduce the number of antenna combinations to be checked because the

current cases can be stored for future comparisons.

[62] also notes that there are two types of CBRs. The first type uses all available

cases to propose solutions for new radiation patterns. The second type uses a self-

organizing map (SOM) neural network that stores a small subset of cases most similar

to the current radiation pattern, and it uses that small subset to propose solutions

for new radiation patterns. Their CBA-GA uses a SOM neural network that requires

training with a set of reference vectors to adapt the SOM neural network to the prob-

57

lem. They name the neuron with the smallest Euclidean distance (||xk − wk||) to the

current radiation pattern xk the best matching unit (BMU). The BMU reference vec-

tors (and neurons topographically close to them) approach the neural weight learning

function

wi (t+ 1) = wi (t) + α (t) [xk (t) − wk (t)] (2.34)

where i represents the BMU of xk or one of its neighbors, α (t) is a learning coefficient,

and t represents the current time step.

The result of training the neural network as noted by [62] is to produce a set

of reference vectors wk that approaches the PDF of the current radiation patterns

xk. After training, every new radiation pattern xnew is compared to set of reference

vectors to determine the new BMU. They then reduce the number of cases to be

compared by considering only BMUs or their neighboring neurons. This reduced set

of cases is called a proposed solution. The proposed solution is fed into a GA that

finds a final solution that contains a vector of faulty elements given the new radiation

pattern.

They test both types of CBR plus GA on a simulated 100 element linear array

tuned to a flattop radiation pattern that have asymmetric SLLs of -25 dB and -20 dB.

CBR type 1 has over a 91% success ratio with 24.18 average faulty candidates and

13,120 cases to find the solution when the noise level is 2 dB. For a 30 element linear

array with the same radiation pattern, their method’s success rate increases to 98%

with 25.62 average faulty elements and 12,900 test cases at a 2dB noise level. The

58

CBR type 2 (SOM neural network) has an 86.6% success ratio with 49 neurons for the

30 element array. It has 30.8 average faulty candidates and uses roughly 1487 cases

to find the solution. A 100 neuron SOM has a 83.7% success ratio with 26.2 average

faulty candidates and 857 cases needed to find the solution. Increasing the number of

neurons decreases the success rate while simultaneously reduces the number of cases

to find the solution [62].

Yeo et al. develop a technique for detecting and localizing failed antenna array

elements using support vector machines [63]. Considering only full functionality and

total element failures, they creat a table of all possible 256 failure combinations for an

eight element linear array with Chebyshev weights. They consider non-homogeneous

polynomials with order d, Gaussian radial basis functions (RBFs), and heavy-tailed

RBFs as the kernels for training and testing of their algorithm. They show that

linear, second-order, and third-order polynomial RBFs outperform the Gaussian RBF

in terms of classification accuracy vs. SNR with all three polynomial RBFs having

similar accuracy for SNR ≥ 10 dB. They perform simulations of their classifier and

compare received patterns with failed elements for 0 dB ≤ SNR ≤ 25 dB. They

note that although the noisy received patterns no longer resembles the original failed

pattern for SNR ≤ 10 dB, their classifier with a linear polynomial RBF still recognizes

the failure with an accuracy greater than 90% at 0 dB SNR.

Rodŕıquez-González et al. [64] create a modified GA algorithm for locating

multiple faults in an N element planar array. They consider only complete element

59

faults with zero excitation when an element faults. Without mutual coupling effects

considered, they derive the fully-functional array’s radiation pattern using the product

of array factor with element factor. They call this N element sum F (θ,φ) and note

that the defective array’s pattern can be calculated as

FC (θ,φ) = F (θ,φ)−
∑

n∈C

[F (θ,φ) − FC (θ,φ)] (2.35)

where {FC (θ,φ)}n∈C represents radiated patterns with only the nth element faulted.

They measure the pattern of the defective array FD (θ,φ) by arranging M points in

directions (θm,φm) , m ∈ [1,M]. Their GA reconfigures the array weights to minimize

the squared distance between the measured pattern and the configured pattern as

dC =
M
∑

m=1

[FD (θm,φm) − FC (θm,φm)]
2 (2.36)

Their GA objective function2 as described by equation (2.36) makes their modified

GA more effective than other researchers’ GAs at solving this problem because (2.36)

tabulates both the fault-free pattern as well as the N single fault patterns through

equation (2.35) and the definition of F (θ,φ). They note that GAs implemented

by other researchers require array factor patterns to be calculated for every array

configuration whether fault-free, single-fault, or multiple-fault. Their GA differs from

other GA implementations through a more efficient means of calculating radiation

patterns for faulty arrays. They simulate their GA fault finding algorithm on a 100-

element linear array consisting of λ/2 dipoles with λ/2 spacing that is positioned

2Although Rodŕıquez-González et al. does not specify their GA’s fitness function in [64], it most
likely takes the form of FGA = 1/(dC + ε) where ε / 1.

60

λ/4 wavelengths in front of a ground plane. For the fault-free array, they synthesize

a pattern with 1.2° -3 dB beamwidth using a linear Taylor distribution with order

n̄ = 12 and -25 dB SLLs.

They compare the results of their GA with exhaustive search both without and

with mutual coupling between elements for 50 amplitude-only test patterns. Without

mutual coupling, exhaustive search successfully reconfigures the array 100% of the

time with over 4-million evaluations in 14.3 seconds. The GA developed by [64] is

successful 99.9% of the time with 322,336 evaluations in 4.3 seconds. They note that

a conventional GA solves the problem 99.9% of the time with 313,279 evaluations in

175.7 seconds. With mutual coupling included, exhaustive search solves the problem

98.8% of the time with the same number of evaluations and run-time. However, their

GA solves the problem 97.9% of the time with 389,368 evaluations in 5.2 seconds.

A conventional GA solves the problem with mutual coupling 99.8% of the time with

379,297 evaluations in 965.8 seconds.

2.8 Summary

The assumptions in solving the anti-jamming beamforming with hardware fault re-

covery problem are discussed in this chapter, and previous research in optimizing

beamforming arrays and hardware fault recovery is reviewed. Because the research

focus is on arrays for wireless communications links, it is assumed that the signal

(both desired and jammer) directions are not known a priori. The wireless channel

61

is also assumed to be time varying, and signal DOAs can be either time varying or

static thus requiring an adaptive solution. The problem is combinatorial because the

complex array weights are digitized to create a finite search space. This rendered

classical optimization algorithms such as LMS impractical.

Much of the theory behind canonical beamsteering and weighting is discussed,

including methods for ULAs, UCAs, and CCAs. Investigations of Dolph-Chebyshev

amplitude weighting to reduce SLLs in UCAs and CCAs are performed by [38–42].

Beampattern synthesis is an extension of the classical array weighting methods (i.e.,

Uniform, Binomial, Dolph-Chebyshev), and research in synthesizing array patterns is

summarized including research performed by [43].

Gross summarizes traditional gradient search beamforming methods including

LMS, MVDR, SMI, and CGM in [9], and Van Trees discusses these methods further in

[2]. Improvements to these algorithms (assuming signal known DOAs) are discussed in

[8,45–48]. Research in beamforming using genetic algorithms is discussed in [21,49–53]

and using simulated annealing in [30, 31, 54, 55].

Previous research in hardware fault detection and recovery in antenna arrays is

also discussed in this chapter. Hardware faults prevent the array from anti-jamming,

and it is necessary to recovery anti-jamming functionality through software algo-

rithms. The goal of fault detection and recovery is to extend an array’s MTBF

beyond that of its individual components. It is also important to localize the fault,

as doing so can not only allow the recovery algorithm to isolate it from the system,

62

fault localization can serve as a means of reducing the system’s MTBR. The fault lo-

calization algorithm can record fault locations in a look up table, and field engineers

can use it to aid in system repair and thus reduce system downtime. The location of

the faulted element is also important in the sense that physical locations of elements

played a role in their effects on array performance [65, 66].

Research in hardware fault detection focuses on injecting signals into the system

and measuring the system response [36, 56, 57]. There has been research in fault

localization that implies fault detection [14, 61–64], but this research assumes that

the array patterns of fully functional systems are known or can be measured with

signal directions known a priori. Research in fault recovery algorithms either rely

on localization of faults in order to recover functionality [58], use pattern masks to

re-tune array weights [22,23], use external fault detectors [59], or incorporate element

probability of faults in the array design to minimize the effects of faulty elements

during system operation [60]. To the best of the author’s knowledge, state-of-the-art

systems lack the ability to detect, localize, and recovery from array faults while the

system operates as parts of wireless communication links.

63

Chapter 3

NewModels for Phased Antenna Ar-
ray Anti-Jamming

This chapter discusses new models for phased antenna arrays used to anti-jam

interference. These models serve as a theoretical basis for evaluating the performance

of stochastic algorithms in performing anti-jamming beamforming under various sit-

uations such as stationary signals in fading wireless channels. The models apply for

N element antenna arrays of arbitrary layouts.

Section 3.1 defines the problem formulation and setup for performing anti-jamming

beamforming using an N element array with an arbitrary layout. Section 3.2 discusses

the derivation of complex array weight solutions given a known set of SOI and interfer-

ence DOAs. Although we generally assumed that signal DOAs are unknown prior to

implementing the optimization algorithms, it is useful to derive array weight solutions

as a means of evaluating algorithm performance. Section 3.3 discusses the models for

stationary signal beamforming and anti-jamming in fading wireless channels. Section

3.4 discusses the models for anti-jamming mobile signals, and section 3.5 discusses

methods for showing equivalencies between different electromagnetic simulation types

used in stochastic optimization.

64

3.1 Anti-Jamming Beamforming Problem Formu-
lation and Setup

The problem formulation is based on an N element antenna array as shown in

Figure 3.1. The element position vectors {d̄i}, i ∈ [1, N] are referenced to the

coordinate, and each element has a complex weight {âi}, i ∈ [1, N]. In general,

two types of beamforming arrays exist: passive and active. Passive arrays assume

that the amplitudes have values 0 ≤ |âi| ≤ 1, ∀ i, and active arrays assume that

0 ≤ |âi| ≤ Amax where 1 < Amax < ∞. In terms of beamforming array solutions,

passive arrays constrain the complex weight search space to an area defined by the

unit circle in complex space, and active arrays require the use of amplifiers to extend

the solution search beyond the unit circle.

â2

_
d2

ŷ2â1

_
d1

ŷ1ŷ1

ŷΣ

â3

_
d3

ŷ3

â4

_
d4

ŷ4

âN

_
dN

ŷN

Σ

X

Y

Z

Figure 3.1: Diagram of a N-Element antenna array with arbitrary layout.

The array factor equation discussed in Section 2.2 is repeated below for reference

65

Â (θ,φ) =
N
∑

i=1

âie
jβāR(θ,φ)•d̄i (3.1)

where
āR (θ,φ) = āx sin (θ) cos (φ) + āy sin (θ) sin (φ) + āx cos (θ) (3.2)

β = 2π/λo is the free-space wavenumber, and λo is the free-space wavelength.

Although the array factor does not include mutual coupling effects, it is a good first

order approximation to an N -element antenna array’s pattern. The array factor is a

sum of individual antenna element positional contributions to the total electric field

in far-field multiplied by the individual element’s complex weight. Derivation of the

array-factor is discussed in [3,37,67] The array factor (3.1) can be expressed in vector

notation as

Â (θ,φ) = ˆ̄aT · ejβ ĀR(θ,φ) (3.3)

where

ˆ̄a = [â1, â2, . . . , âN]
T (3.4a)

ĀR (θ,φ) =
{

āTR · DT
}T

= D · āR (θ,φ) (3.4b)

āR (θ,φ) = [sin (θ) cos (φ) , sin (θ) sin (φ) , cos (θ)]T (3.4c)

D =
[

d̄1, d̄2, . . . , d̄N
]T

(3.4d)

d̄i = [dix, diy, diz]
T , i ∈ [1, N] (3.4e)

It should be noted that D ∈ RN× 3 contains all of the N antenna element position

vectors, the vector dot product ĀR (θ,φ) ∈ RN× 1 such that the exponential term in

(3.3) is RN× 1, and ˆ̄a ∈ CN× 1.

66

3.2 Derivation of Complex Array Weight Solutions
for Given SOI and Interference Directions

Although it is assumed that the SOI and interference directions are not known

a priori, the complex array weights for an N element antenna array with arbitrary

layout given a set of SOI and interference directions are derived in this section. The

derivation of array weights that steer a main beam towards the SOI while simultane-

ously minimizing array gain towards interference directions will serve as a means of

comparing the algorithms’ performance. The goal is to find ˆ̄a such that

∃ ˆ̄a0 → GI = max
{

Â (θ = θo,φ = φo)
}

(3.5)

given Â (θ = θj,φ = φj) ≤ Gj = ε, ∀j ∈ [1, J]

where ε << 1, θj "= θo, & φj "= φo ∀j

It is assumed that {θj} and {φj} in (3.5) are linear independent (i.e., J separate angles

for J jammers). The problem at hand is essentially one of solving N independent

equations to find N complex weights. Namely,

Â (θ = θo,φ = φo) = GI = ˆ̄aT · ejβ ĀR(θo,φo) (3.6)

{

Â (θ = θj ,φ = φj) = Gj = ˆ̄aT · ejβ ĀR(θj ,φj)
}

, j ∈ [1, J] (3.7)

In general, the total number of SOI and interference signals is less than the number

of antennas, so equations (3.6) – (3.7) represent a system of 1 + J < N equations.

67

Because there are more unknowns than equations in this system, the problem cannot

be solved as is. However, M = N − (J + 1) arbitrary directions can be chosen with

minimal gains Gm ≤ ε m ∈ [1,M] such that

{

Â (θ = θm,φ = φm) = Gm = ˆ̄aT · ejβ ĀR(θm,φm)
}

, m ∈ [1,M] (3.8)

where θm "= θj , θm "= θo, φm "= φj, and φm "= φ0 ∀m, j. One can note that the

multimodality of the anti-jamming beamforming problem arises from the multiple

values available to {Gj ≤ ε} depending on acceptable values of ε and the possible

combinations of complex array weights that achieve those levels when solving (3.5).

Although the choice of {θm,φm} , m ∈ [1,M] adds to the problem’s multimodal-

ity, the problem is still multimodal if M = 0 for the reasons noted above. These

directions can also be thought of as degree of freedoms since they can be chosen

arbitrarily. The problem described by (3.5) with the addition of the M equations

described by (3.8) can be restated as

∃ ˆ̄a0 → GI = max
{

Â (θ = θo,φ = φo)
}

(3.9)

given Â (θ = θj,φ = φj) ≤ Gj = ε, ∀j ∈ [1, J]

while forcing Â (θ = θm,φ = φm) ≤ Gm = ε, ∀m ∈ [1,M]

where ε << 1, θj "= θo, θm "= θj, θm "= θo,

φj "= φo, φm "= φj , φm "= φ0 ∀j, m

and M = N − (J + 1)

68

Equation (3.9) represents an N equation system, and M = 0 only if J + 1 = N .

It is easy to show that these equations can be represents in matrix form as

Bˆ̄a = ˆ̄y (3.10)

where B represents the array manifold for one SOI, J jammers, and M arbitrary

nulling directions, and ˆ̄y represents the array outputs in the N specified directions.

Both B and ˆ̄y can be expressed as

B =

ejβAR,1(θo,φo) ejβAR,2(θo,φo) · · · ejβAR,N (θo,φo)

ejβAR,1(θj=1,φj=1) ejβAR,2(θj=1,φj=1) · · · ejβAR,N (θj=1,φj=1)

...
...

. . .
...

ejβAR,1(θj=J ,φj=J) ejβAR,2(θj=J ,φj=J) · · · ejβAR,N(θj=J ,φJ=1)

ejβAR,1(θm=1,φm=1) ejβAR,2(θm=1,φm=1) · · · ejβAR,N (θm=1,φm=1)

...
...

. . .
...

ejβAR,1(θm=M ,φm=M) ejβAR,2(θm=M ,φm=M) · · · ejβAR,N (θm=M ,φm=M)

(3.11)

ˆ̄y = [GI , GJ , . . . , GJ , GM , . . . , GM]T (3.12)

Note that the rows of (3.11) are simply the transpose of (3.4b) applied to specific

directions in θ and φ. The gain terms in (3.12) are real valued constants, and they are

related to the array gain as the square root of array gain. If the matrix B is invertible

(i.e., det (B) "= 0), then the complex array weights for a given set of directions (SOI,

jammer, arbitrary nulling directions) can be calculated as

69

ˆ̄ao = B−1 ˆ̄y (3.13)

The inverse of matrix B is clearly not invertible for all signals impinging on the array.

For that matrix to be invertible, all of the rows in (3.11) must be linearly independent

in the phase terms. An obvious example is when an interfering signal coincides with

the SOI, as nulling the jammer would also null the SOI, and maximizing the mainbeam

gain towards the SOI would also maximize jammer power at the array’s output. Other

directions are less obvious and are dependent on the array’s layout.

3.2.1 Calculating Weights for Uniformly Spaced Linear Ar-
rays

The complex weight solutions for electronically steering ULAs is well known

[3, 33], so comparisons of the constant amplitude phase weights {δn = βxn cos φo
}

for N -element ULAs with elements placed on the x-axis with the complex weights

calculated using (3.13) is a useful performance metric. For example, a 10-element

ULA steered towards 90° has the same amplitude and phase weights using uniform

amplitude and the canonical {δn} form compared to equation (3.13) as shown in Table

3.1 and Figure 3.2. For simplicity, jammer directions are chosen that coincided with

the null directions that naturally occur for this phased array. The uniform weighted

ULA is indistinguishable from the ULA with complex weights calculated by inverting

matrix B, as the amplitude weights differed by ±1%, and the phase weights are the

same.

70

The ability of equation (3.13) to find complex array weights is compared with the

amplitude and phase weights for a 10-element ULA with uniform amplitude weights

steered to 30° as well as Dolph-Chebyshev 10-element ULAs steered to 90° and 30°.

The patterns are indistinguishable as shown in Figures 3.3 – 3.5 with comparable

weights as listed in Tables 3.2 – 3.4.

Table 3.1: Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 10 element ULA with
mainbeam steered to 90°, GI = N, and Gj = 0, j ∈ [1,N].

SOI / Jammer
Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation
Amplitude Phase (Radians) Amplitude Phase (Radians)

90.00 (SOI) 1.00 0.00 0.99 0.00
0.00 1.00 0.00 0.99 0.00
36.88 1.00 0.00 1.00 0.00
53.12 1.00 0.00 1.00 0.00
66.44 1.00 0.00 1.01 0.00
78.44 1.00 0.00 1.01 0.00
101.60 1.00 0.00 1.00 0.00
113.60 1.00 0.00 1.00 0.00
126.90 1.00 0.00 1.00 0.00
143.10 1.00 0.00 0.99 0.00

The graphs shown in Figures 3.2 – 3.5 with parameters listed in Tables 3.1 – 3.4

represent the optimal solutions for those arrays because Gj = 0, ∀j ∈ [1,N − 1].

However, it follows that other solutions exist for Gj "= 0, j ∈ [1,N,− 1] provided

that the signal directions form an invertible array manifold matrix B as defined by

(3.11).

A random number generator in Matlab is seeded to generate a repeatable random

71

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

8

9

10

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted
Inv. Matrix Calc.

Figure 3.2: Array Factor Patterns for a ULA steered to 90° showing a reference
pattern created with uniform weights and pattern with complex weights calculated
using equation (3.13).

Table 3.2: Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 10 element ULA with
mainbeam steered to 30°, GI = N, and Gj = 0, j ∈ [1,N].

SOI / Jammer
Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation
Amplitude Phase (Radians) Amplitude Phase (Radians)

30.00 (SOI) 1.00 0.00 1.00 0.00
48.25 1.00 −1× π

√
3/2 1.00 −1× π

√
3/2

62.19 1.00 −2× π
√
3/2 1.00 −2× π

√
3/2

74.56 1.00 −3× π
√
3/2 1.00 −3× π

√
3/2

86.19 1.00 −4× π
√
3/2 1.00 −4× π

√
3/2

97.69 1.00 −5× π
√
3/2 1.00 −5× π

√
3/2

109.50 1.00 −6× π
√
3/2 1.00 −6× π

√
3/2

122.20 1.00 −7× π
√
3/2 1.00 −7× π

√
3/2

137.20 1.00 −8× π
√
3/2 1.00 −8× π

√
3/2

159.10 1.00 −9× π
√
3/2 1.00 −9× π

√
3/2

set of {Gj} such that the nulls in reference to the main beam are −40 dBMB < {Gj} <

−20 dBMB, j ∈ [1, J = N − 1]. For applications where it is acceptable to have nulls

at least 20 dB down from the mainbeam, these levels represent acceptable suboptimal

72

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

8

9

10

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted

Inv. Matrix Calc.

Figure 3.3: Array Factor Patterns for a ULA steered to 30° showing a reference
pattern created with uniform weights and pattern with complex weights calculated
using (3.13).

Table 3.3: Comparison of complex array weights calculated using (3.13) with Cheby-
shev amplitude weights for SLL = -20 dB and canonical phase steering for N = 10
element ULA with mainbeam steered to 90°, GI = 9.54, and Gj = 0, j ∈ [1,N].

SOI / Jammer
Directions (°)

Chebyshev Amplitude Reference Inverse Matrix Calculation
Amplitude Phase (Radians) Amplitude Phase (Radians)

90.00 (SOI) 0.78 0.00 0.78 0.00
0.00 0.72 0.00 0.72 0.00
37.81 0.94 0.00 0.94 0.00
54.31 1.12 0.00 1.12 0.00
67.19 1.21 0.00 1.21 0.00
76.44 1.21 0.00 1.21 0.00
103.60 1.12 0.00 1.12 0.00
112.80 0.94 0.00 0.94 0.00
125.70 0.72 0.00 0.72 0.00
142.20 0.78 0.00 0.78 0.00

solution for the complex array weights.1

The suboptimal solution for (3.9) calculated by (3.13) is compared with a uniform

1Clearly, this would represent an unacceptable solution for applications that required null depths
much greater than -20 dBMB.

73

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

8

9

10

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

ChebyshevWeighted
Inv. Matrix Calc.

Figure 3.4: Array Factor Patterns for a ULA steered to 90° showing a reference
pattern created with Chebyshev weights for SLL = -20 dB and pattern with complex
weights calculated using (3.13).

Table 3.4: Comparison of complex array weights calculated using (3.13) with Cheby-
shev amplitude weights for SLL = -20 dB and canonical phase steering for N = 10
element ULA with mainbeam steered to 30°, GI = 9.54, and Gj = 0, j ∈ [1,N].

SOI / Jammer
Directions (°)

Chebyshev Amplitude Reference Inverse Matrix Calculation
Amplitude Phase (Radians) Amplitude Phase (Radians)

30.00 (SOI) 0.78 0.00 0.78 0.00
50.88 0.72 −1× π

√
3/2 0.72 −1× π

√
3/2

61.44 0.94 −2× π
√
3/2 0.94 −2× π

√
3/2

73.56 1.12 −3× π
√
3/2 1.12 −3× π

√
3/2

85.62 1.21 −4× π
√
3/2 1.21 −4× π

√
3/2

97.69 1.21 −5× π
√
3/2 1.21 −5× π

√
3/2

110.10 1.12 −6× π
√
3/2 1.12 −6× π

√
3/2

123.40 0.94 −7× π
√
3/2 0.94 −7× π

√
3/2

138.20 0.72 −8× π
√
3/2 0.72 −8× π

√
3/2

154.10 0.78 −9× π
√
3/2 0.78 −9× π

√
3/2

weighted N = 10 element ULA steered to 30° with the resulting {Gj} levels, reference

array weights, and calculated array weights listed in Table 3.5. The array patterns

are normalized to the SOI’s mainbeam gain to show null depths referenced to the

74

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

8

9

10

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

ChebyshevWeighted
Inv. Matrix Calc.

Figure 3.5: Array Factor Patterns for a ULA steered to 30° showing a reference
pattern created with Chebyshev weights for SLL = -20 dB and pattern with complex
weights calculated using (3.13).

SOI gain in Figure 3.6. The two array patterns are not the same, as the reference

weights differ considerably from the weights calculated using (3.13) with the {Gj}

levels shown. Similar results are also compared for a N = 10 element ULA with

interference directions set to those of a Dolph-Chebyshev ULA with SLL = -20 dB

as shown in Table 3.6 and Figure 3.7.

3.2.2 Calculating Weights for Circular Arrays

A circular array consists of antenna elements equally spaced on a circle of radius

r. Circular arrays can be amplitude and phase steered in manners similar to ULAs.

The maximum number of elements on a circular array with radius r = λo/2 is

six, as this ensures that the spacing between elements is d ≥ λo/2 where λo is the

free space wavelength. The layout of a six-element circular array for λo = 12.5cm

75

Table 3.5: Comparison of complex array weights calculated using (3.13) with uni-
form amplitude weights and canonical phase steering for N = 10 element ULA with
mainbeam steered to 30°, GI = N, and Gj "= 0, j ∈ [1,N − 1].

SOI / Jammer
DOAs (°)

Gj
Gj

(dBMB)
Uniform Ampl. Ref. Inverse Matrix Calc.
Ampl. Phase Ampl. Phase

30.00 (SOI) – – 1.00 0.00 1.45 0.00
48.25 0.52 -25.64 1.00 −1× π

√
3/2 1.02 −1.01 × π

√
3/2

62.19 0.47 -26.63 1.00 −2× π
√
3/2 0.95 −2.02 × π

√
3/2

74.56 0.37 -28.62 1.00 −3× π
√
3/2 0.98 −3.00 × π

√
3/2

86.19 0.69 -23.17 1.00 −4× π
√
3/2 0.87 −1.72 × π

√
3/2

97.69 0.13 -37.60 1.00 −5× π
√
3/2 0.94 −2.69 × π

√
3/2

109.50 0.37 -28.63 1.00 −6× π
√
3/2 0.87 −3.66 × π

√
3/2

122.20 0.59 -24.63 1.00 −7× π
√
3/2 0.98 −4.69 × π

√
3/2

137.20 0.41 -27.79 1.00 −8× π
√
3/2 0.95 −5.67 × π

√
3/2

159.10 0.95 -20.48 1.00 −9× π
√
3/2 1.02 −6.68 × π

√
3/2

0 30 60 90 120 150 180 210 240 270 300 330 360
−60

−50

−40

−30

−20

−10

0

N
or
m
al
iz
ed

A
rr
ay

G
ai
n
(d
B
i)

φ(degrees)

UniformWeighted

Inv. Matrix Calc.

Figure 3.6: Array Factor Patterns for a ULA steered to 30° showing a reference pattern
created with uniform weights and pattern with detuned complex weights calculated
using (3.13) and variable Gj "= 0, j ∈ [1,N − 1].

(fo = 2.4 GHz) is shown in Figure 3.8.

The amplitude and phase weights needed to steer a six-element circular array

are calculated using uniform weights and the canonical phase steering equation (for

76

Table 3.6: Comparison of complex array weights calculated using (3.13) with Cheby-
shev amplitude weights and canonical phase steering for N = 10 element ULA with
mainbeam steered to 30°, GI = 9.54, and Gj "= 0, j ∈ [1,N − 1].

SOI / Jammer
DOAs (°)

Gj
Gj

(dBMB)
Chebyshev Ampl. Ref. Inverse Matrix Calc.
Ampl. Phase Ampl. Phase

30.00 (SOI) – – 0.78 0.00 1.23 −0.01× π
√
3/2

50.88 0.52 -25.23 0.72 −1× π
√
3/2 0.72 −1.01× π

√
3/2

61.44 0.47 -26.23 0.94 −2× π
√
3/2 0.86 −2.03× π

√
3/2

73.56 0.37 -28.21 1.12 −3× π
√
3/2 1.07 −3.00× π

√
3/2

85.62 0.69 -23.76 1.21 −4× π
√
3/2 1.05 −4.02× π

√
3/2

97.69 0.13 -37.18 1.21 −5× π
√
3/2 1.15 −5.00× π

√
3/2

110.10 0.37 -28.22 1.12 −6× π
√
3/2 1.00 −6.99× π

√
3/2

123.40 0.59 -24.37 0.94 −7× π
√
3/2 0.95 −7.98× π

√
3/2

138.20 0.41 -27.37 0.72 −8× π
√
3/2 0.70 −9.00× π

√
3/2

154.10 0.95 -20.07 0.78 −9× π
√
3/2 0.81 −6.68× π

√
3/2

0 30 60 90 120 150 180 210 240 270 300 330 360
−60

−50

−40

−30

−20

−10

0

N
or
m
al
iz
ed

A
rr
ay

G
ai
n
(d
B
i)

φ(degrees)

Che yshev Weighted
Inv. Matrix Calc.

Figure 3.7: Array Factor Patterns for a ULA steered to 30° showing a reference
pattern created with Chebyshev weights for SLL = -20 dB and pattern with detuned
complex weights calculated using (3.13) and variable Gj "= 0, j ∈ [1,N].

phasing a circular array) as described by Haupt [33]. Our calculations are compared

with equation (3.13) for the six-element circular array steered to 0°, 60°, and 30°. The

matrix inversion method agrees well with the reference calculations for the 0° and

77

−10 −5 0 5 10
−10

−5

0

5

10

X (cm)

Y
(c
m
)

Figure 3.8: Layout of N = 6 element circular array with equally spaced elements on
a radius r = λ/2.

60° SOI cases as can be seen in Tables 3.7 – 3.8 and Figures 3.9 – 3.10.

Table 3.7: Comparison of complex array weights calculated using (3.13) with uniform
amplitude weights and canonical phase steering for N = 6 element circular array with
mainbeam steered to 0°, GI = N, and Gj = 0, j ∈ [1,N − 1].

SOI / Jammer
Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation
Amplitude Phase (Radians) Amplitude Phase (Radians)

0 (SOI) 1.00 −π 1.00 +1.00π
44.84 1.00 −0.5π 1.00 +1.50π
105.00 1.00 +π 1.00 +2.50π
157.10 1.00 +0.5π 1.00 +3.00π
202.90 1.00 +0.5π 1.00 +2.50π
255.00 1.00 −0.5π 1.00 +1.50π

When the SOI’s DOA is changed to 30° with new reference phase weights, one

of the six nulls seen in the previous patterns vanishes as shown in Figure 3.11. This

makes the problem intractable, as one of the J equations of (3.7) no longer exists,

and N − 1 equations are present for solving N unknowns. It should be noted that

78

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted
Inv. Matrix Calc.

Figure 3.9: Array Factor Patterns for a circular array steered to 0° showing a reference
pattern created with Uniform weights and pattern with complex weights calculated
using (3.13) and Gj = 0, j ∈ [1,N − 1].

Table 3.8: Comparison of complex array weights calculated using (3.13) with uniform
amplitude weights and canonical phase steering for N = 6 element circular array with
mainbeam steered to 60°, GI = N, and Gj = 0, j ∈ [1,N − 1].

SOI / Jammer
Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation
Amplitude Phase (Radians) Amplitude Phase (Radians)

60 (SOI) 1.00 −0.5π 1.00 −0.50π
15.16 1.00 −π 1.00 −1.00π
104.80 1.00 −0.5π 1.00 −0.50π
165.00 1.00 +0.5π 1.00 +0.50π
217.10 1.00 +π 1.00 +1.00π
262.90 1.00 +0.5π 1.00 +0.50π

the array factor for a circular array can be expressed as an infinite sum of n Bessel

functions of the First Kind of order n×N , JnN (β r), n ∈ (−∞,+∞), per [3,33] (see

equation (2.16)). Although the 0th order Bessel function is the principle component,

the other Bessel functions in this sum cannot be ignored since the small array size

means that JnN (β r) "= 0 for n "= 0. Since Bessel functions of order |ν| > 0 are

79

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted
Inv. Matrix Calc.

Figure 3.10: Array Factor Patterns for a circular array steered to 60° showing a
reference pattern created with Uniform weights and pattern with complex weights
calculated using (3.13) and Gj = 0, j ∈ [1,N].

out of phase with J0 (β r) and each other [68], it is possible for their zeros to change

location as the array’s mainbeam is rotated.

In an attempt to alleviate this problem, a new direction is chosen that can be

inserted into the system of equations via equation (3.8). The array factor had local

minima at 120° and 300° with equal values, and 300° with Gm=1 = Gj=4 = 0 is

chosen. It is clear from Table 3.9 and Figure 3.11 that this does not completely solve

the problem. Although the inverse matrix calculation gave a pattern whose main-

beam and {Gj} nulls matched the reference pattern, the sidelobes between 75.19° to

174.20° and 245.80° to 344.80° do not match. The calculated weights require an active

array because their amplitudes are greater than unity.

The setting Gm=1 = 2 used to match the value of the sidelobe at 300° is also

80

investigated. The resulting calculated weights listed in Table 3.10 have amplitudes

greater than unity, and they do not match the reference weights. The two patterns

shown in Figure 3.12 do not completely match although the mainbeam and null

locations are correct. This example shows that this method described by equation

(3.13) produces limited results when the array layout is circular.

Table 3.9: Comparison of complex array weights calculated using (3.13) with uniform
amplitude weights and canonical phase steering for N = 6 element circular array with
mainbeam steered to 30°, GI = N, and Gj = 0, j ∈ [1,N − 1].

SOI / Jammer

Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation

Amplitude Phase (Radians) Amplitude Phase (Radians)

30 (SOI) 1.00 −
√
3
2 π 1.27 −0.75π

75.19 1.00 −
√
3
2 π 0.95 −1.03π

174.20 1.00 0 1.09 −1.87π

245.80 1.00 +
√
3
2 π 1.27 −1.25π

300.0 (non-null) 1.00 +
√
3
2 π 0.95 −0.97π

344.80 1.00 0 1.09 −0.13π

A concentric circular array (CCA) is a planar array that is arranged in concentric

circles about the array’s origin with a single element placed at the origin [33]. A

discussion of the theory behind calculating complex phase weights for CCAs is relevant

since the proof-of-concept beamforming array to be discussed later in this thesis is a

type of CCA. The simplest form of a CCA is a one-ring circular array with a single

element located at the origin as shown in Figure 3.13.

The method described by (3.13) with the layout shown in Figure 3.13 is compared

81

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted
Inv. Matrix Calc.

Figure 3.11: Array Factor Patterns for a circular array steered to 30° showing a
reference pattern created with Uniform weights and pattern with complex weights
calculated using (3.13) and Gj = 0, j ∈ [1,N].

Table 3.10: Comparison of complex array weights calculated using (3.13) with uniform
amplitude weights and canonical phase steering for N = 6 element circular array with
mainbeam steered to 30°, GI = N, Gj = 0, j ∈ [1,N− 3]∪(N− 1), and Gj=N−2 = 2.

SOI / Jammer

Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation

Amplitude Phase (Radians) Amplitude Phase (Radians)

30 (SOI) 1.00 −
√
3
2 π 1.64 −0.67π

75.19 1.00 −
√
3
2 π 1.14 −1.17π

174.20 1.00 0 1.34 −1.77π

245.80 1.00 +
√
3
2 π 1.64 −1.33π

300.0 (non-null) 1.00 +
√
3
2 π 1.14 −0.83π

344.80 1.00 0 1.34 −0.23π

with a reference array pattern calculated using uniform weights and canonical steering

using incremental phase shifts that are calculated per [33]. The SOI is steered to 0°,

82

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted
Inv. Matrix Calc.

Figure 3.12: Array Factor Patterns for a circular array steered to 30° showing a
reference pattern created with Uniform weights and pattern with complex weights
calculated using (3.13) and Gj = 0, j ∈ [1,N].

−10 −5 0 5 10
−10

−5

0

5

10

X (cm)

Y
(c
m
)

Figure 3.13: Layout of N = 7 element concentric circular array with six equally
spaced elements on a radius r = λ/2 and one element in the center.

and the jammer directions are chosen to be the six nulls that appeared in the reference

pattern. The SOI/jammer directions as well as the reference and calculated weights

83

are shown in Table 3.11. The resulting Azimuth patterns are shown in Figure 3.14.

Table 3.11: Comparison of complex array weights calculated using (3.13) with uniform
amplitude weights and canonical phase steering for a N = 7 element single-ring
concentric circular array with an element located at the origin and its mainbeam
steered to 0°, GI = N, and Gj = 0, j ∈ [1,N].

SOI / Jammer

Directions (°)

Uniform Amplitude Reference Inverse Matrix Calculation

Amplitude Phase (Radians) Amplitude Phase (Radians)

0 (SOI) 1.00 0 5.99 +1.00π

51.41 1.00 −π 4.68 +0.98π

98.22 1.00 −0.5π 3.94 +1.07π

164.50 1.00 +0.5π 3.94 +0.93π

195.40 1.00 +π 4.68 +1.02π

261.80 1.00 +0.5π 3.94 +0.93π

308.60 1.00 −0.5π 3.94 +1.07π

0 30 60 90 120 150 180 210 240 270 300 330 360
0

1

2

3

4

5

6

7

8

A
rr
ay

G
ai
n
(U
ni
tle
ss
)

φ(degrees)

UniformWeighted
Inv. Matrix Calc.

Figure 3.14: Array Factor Patterns for a N = 7 element concentric circular array
steered to 0° showing a reference pattern created with Uniform weights and pattern
with complex weights calculated using (3.13) and Gj = 0, j ∈ [1,N].

It is clear that this method found a different solution for steering a N = 7

84

element CCA towards 0° compared to the canonical reference, as this method created a

different set of complex weights as listed in Table 3.11. The array operates inefficiently

in the sense that the SOI gain is seven (unitless) whereas the amplitude weights varied

from approximately four to approximately six. The azimuth patterns have the same

SOI gain and null directions, but their sidelobe gains and shapes clearly differ (see

Figure 3.14).

Multiple-ring CCAs with uniform amplitude weights and canonical phase steering

have a total number of nulls that is less than N − 1, so the method discussed above

cannot be readily evaluated in that case. Although it is possible to reduce the size of

the matrix B by utilizing symmetry in the complex array weights, such an approach

is too restrictive and will not be discussed here.

3.3 Stationary Signal Beamforming and Anti-Jamming
in Fading Wireless Channels with N-Element
Arrays

A model for optimization of N -element beamforming arrays through fading wire-

less channels is developed as discussed in [34]. A high level diagram of a wireless

system with an N -element beamforming array is shown in Figure 3.15. The array is

connected to a receiver whose output is fed to a computer. The computer acts like

a controller and optimizes the array weights such that only SOI and noise appears

at the output. The diagram shows two jammers and omits multipath reflections for

85

Receiver

Computer

SOI TX

Jammer

Jammer

Beamformer (BF)

BF
Hardware

Figure 3.15: High level diagram of a wireless system with interference and non-LOS
paths with stationary signals. Obstacles can be mobile or stationary to cause time-
varying fades in received signals. Multipath reflections not shown for clarity.

clarity. Note that both stationary and mobile obstructions are present.

The mobile objects shown in Figure 3.15 create fades in the signals that impinge

on the array. These objects are assumed to move slowly (e.g., no faster than 2

m/sec). An analytic block diagram for this model is shown in Figure 3.16. The

channel model is Ĥ ∈ C (1+J)× (1+J+Q) where J represents the number of interference

signals, and Q represents the number of multipath reflections impinging on the array.

The unweighted array elements (i.e., antenna output terminals) are represents by

86

Σ ∈ C (1+J+Q)× (N). Because antenna elements behave like spacial filters, the array

transforms 1+J+Q directional inputs into N voltages that are individually weighted

and summed to create an output ŷ (t) = ˆ̄aT · ˆ̄x (t) ∈ C 1× 1. For anti-jamming

beamforming to be successful, 1 + J + Q ≤ N because it is assumed that multipath

reflections are non-coherent with respect to the original signals, and the array cannot

isolate more than N independent signals.

S(t)

J1(t)
HF
^

J2(t)

JJ(t)

Σ â

xf(t)	⋲		C	1+J+Q^ x(t)	⋲		C	N^

xi(t)	⋲		C	1+J^

aTx(t)	⋲	C1X1 ^ ^

Figure 3.16: Analytic block diagram of wireless communication link from SOI and
interference inputs to a fading wireless channel to output of beamformer.

In [34], it is noted that this channel is a fast-fading Rayleigh channel in part

because it is NLOS. The mobile objects move fast enough such that the signals im-

pinging on the array are at significantly different fade levels by the time the computer

sets and begins evaluation of the next array settings. Assuming that the receiver can

distinguish between signals and interference (including multipath reflections), the

output SINR at time t is expressed as

SINROut (t) =
GA (θ0,φo) PS,Avg (t)

∑J
j=1GA (θj,φj) Pj,Avg (t) + No

(3.14)

87

where No is the Johnson (thermal) noise defined as

No = kBTAB (3.15)

kB is Boltzmann’s constant, TA is the temperature (°K) at the array’s summed output,

and B is the system bandwidth. The antenna array gains (in SOI and interference

directions) are noted as GA (θ0,φo) and GA (θj ,φj) , j ∈ [1, J] in equation (3.14).

Output signal powers are averaged in (3.14) to minimize effects of noise in simulations

and in measurements. PS,Avg (t) represents the average SOI power at the array’s

output, and Pj,Avg (t) , j ∈ [1, J] represents averaged output interference powers.

For optimization with a simple genetic algorithm (SGA), the array’s output SINR

is used as the SGA’s fitness in Figure 1.5. It should be noted that the SGA operates

on binary strings, and many wireless protocols use digital communications [69], so

time t in (3.14) needs to be discretized such that t = tn,p = (2P · n + p) Tsamp, and

(3.14) becomes

SINROut [tn,p] =
GA (θ0,φo) PS,Avg [tn,p]

∑J
j=1GA (θj,φj) Pj,Avg [tn,p] + No

(3.16)

where n ∈ [0, Nmax] represents the generation number, p ∈ [1, 2P] represents the

current SGA string, and P is the number of mate pairs in the SGA population.

(Population size is 2P .) Tsamp represents the amount of time it took for the SGA to

evaluate one string. This number includes time needed to setup the complex array

weights and to calculate average signal powers.

The average signal powers in equations (3.14) and (3.16) include losses due to

88

random time-varying fading. Without loss of generality, the loss factors can be fac-

tored out of the averaged received powers such that (3.14) and (3.16) become

SINROut (t) =
GA (θ0,φo) LFade,S (t) PNF

S,Avg (t)
∑J

j=1GA (θj,φj) LFade, j (t) PNF
j,Avg (t) + No

(3.17)

SINROut [tn,p] =
GA (θ0,φo) LFade,S [tn,p] PNF

S,Avg [tn,p]
∑J

j=1GA (θj,φj) LFade, j [tn,p] PNF
j,Avg [tn,p] + No

(3.18)

The loss factors LFade,S and {LFade, j} , j ∈ [1, J] are averaged over the same time win-

dows as the received powers. These loss factors are non-negative with values greater

than one when constructive interference due to multipath occurs. This channel is con-

sidered fast-fading, as it is assumed that |LFade, {S or j} [tn,p] − LFade, {S or j} [tn,p−1]| >

3 dB, ∀ n ∈ [1,N] , ∀ p ∈ [1, 2P] , and ∀ j ∈ [1, J].

It is useful to understand how channel fading affected optimization algorithms

in performing anti-jamming beamforming. Suppose that fading effects are removed

from the calculation of SINR. A modified fade-free version of equation (3.18) can be

written

SINRNF
Out [tn,p] =

GA (θ0,φo) PNF
S,Avg [tn,p]

∑J
j=1GA (θj,φj) PNF

j,Avg [tn,p] + No

(3.19)

It can easily be shown that

SINROut [tn,p] > SINRNF
Out [tn,p] if

J
∑

j=1

LFade, j [tn,p] > LFade,S [tn,p] (3.20)

In other words, fading can artificially improve SINR when interfering signals are in

deeper fades compared to the SOI.

89

3.4 Mobile Signal Beamforming and Anti-Jamming
with N-Element Arrays

We now consider the case of mobile jammer where the wireless channel is not

necessarily Rayleigh. The signal sources can change positions in a way such that some

signals are not blocked, and LOS paths between the sources and the beamformer exist

(see Figure 3.17). It is assumed that the beamformer in Figure 3.17 does not move.

Thus, the wireless channel with mobile and stationary signals is better modeled with

Rician fading. The analytic block diagram of this channel is the same as shown in

Figure 3.16.

Weile et al. [28] shows that a GA with dominance and diploidy optimized an

array when signals are mobile. Because the wireless channel and optimization algo-

rithms used are stochastic in nature, the four events that can occur during a stochastic

algorithm run are described in Table 3.12.

Table 3.12: Four events that can occur during a stochastic algorithm run.

Event Event Description

A Signal DOAs changed.

B SINR fitness dropped.

C The algorithm chose a worse solution.

D The wireless channel faded.

Using these event definitions and Bayes Theorem [70], we can write the posterior

90

Receiver

Computer

SOI TX

Jammer

Jammer

Beamformer (BF)

BF
Hardware

Ja
m

m
e
r

SO
I T

X

Figure 3.17: Upper level diagram of a wireless system with mobile and stationary
signals. Obstacles can be mobile or stationary to cause time-varying fades in received
signals. Multipath reflections not shown for clarity.

probability that the signal DOAs changed given that a SINR fitness drop is observed:

P (A|B) =
P (B|A) P (A)

P (B)
(3.21)

Time indexes (i.e., evaluation / generation numbers) are omitted in equation (3.21)

for clarity. A Venn diagram for this event system is shown in Figure 3.18. Event B

is confined within events A, C, and D, as the only three events that can cause SINR

drops are variable DOAs, channel fades, and algorithm mistakes2. From Figure 3.18,

2Hardware faults (Event E) can cause SINR fitness to drop. We consider hardware faults in the
next chapter.

91

A D

S
Figure 3.18: Venn Diagram showing the relationship between events A, B, C, and
D in the parameter search space S. Event B subspace is represents by a solid color,
and Event C subspace is represents by a checkerboard pattern.

it is observed that

B = B ∩ C + B ∩D − B ∩ C ∩D (3.22)

The subtraction of B ∩ C ∩D in equation (3.22) is necessary because event C over-

lapped events A and D. Event C therefore overlapped subset B ∩ D and events

contained in that subsets would have been doubled counted otherwise. Before pro-

ceeding, it should be explained why B "= C in Figure 3.18. By definition, a solution

Sn is worse than its predecessor if its distance (in the parameter search space) from

the global optimum ||Sn −Go|| is greater than its predecessor. In other words,

∆||S|| = ||Sn −Go|| − ||Sn−1 −Go||

Sn Worse if ∆||S|| < 0

Sn Same if ∆||S|| = 0

Sn Better if ∆||S|| > 0

(3.23)

A fitness function converts the current solution Sn into a positive number that can

be compared and ranked against other solutions. In general, a fitness function can

92

be defined as F
(

Sn; θ̄, φ̄;H (t)
)

whose output F is a non-negative number. θ̄, φ̄ are

(1 + J × 1) vectors that represents the SOI and interference DOAs, and H (t) repre-

sents the time-varying wireless channel response at time t. Assuming that the DOAs

are constant (as is the case for event A in Figure 3.18), the time-varying nature of the

channel potentially causes fades that can artificially decrease the current solution’s

fitness even if ∆||S|| ≥ 0. Channel fading can force the algorithm to generate worse

solutions with better fitness. For example, if a fade sufficiently attenuated the kth

jammer at evaluation n, the algorithm would likely choose a solution Sn without a

null directed at the kth jammer. Although this solution likely has a higher fitness

that solution Sn−1, ∆||S|| < 0 indicating that Sn is a worse solution. Thus, events B

and C cannot be equal.

Observe that if the DOAs are time-varying, the global optimum (as well as

local optima) become time-varying. For solutions that exist in the subspace C ∩D,

Go,n "= Go,n−1, current solutions with fitness less than their predecessors are also

worse solutions. The subspace defined by A ∩ D is also problematic. Not only can

channel fades exist as signals changed their DOAs, a moving signal can cause a fade

in the channel (i.e., a jammer moves into a fade). Therefore, solutions existing in

the subspace of A∩D outside B can be better or worse solutions. Solutions existing

in the subspace defined by A ∩ D ∩ B are assumed to be worse solutions because

they represents solutions that are farther away from the updated global optimum.

An example is when the SOI moves into a fade, the resulting SINR fitness would

93

decrease by definition and represents a worse solution.

The subsets in equation (3.22) are converted into equivalent probabilities with

the application of Bayes Rule in equation (3.24) to create equations (3.25a) – (3.25c)

P (B) = P (BC) + P (BD)− P (DBC) (3.24)

P (B) = P (B|C)P (C) + P (B|D)P (D)− P (DB|C)P (C) (3.25a)

P (B) = P (B|C)P (C) + P (B|D)P (D)− P (D|BC)P (B|C)P (C) (3.25b)

P (B) = P (B|C)P (C) [1− P (D|BC)] + P (B|D)P (D) (3.25c)

An upper bound on equation (3.25c) can be created by dropping the term P (D|BC):

P (B) ≤ P (B|C)P (C) + P (B|D)P (D) (3.26)

with equality obtained when P (D|BC) = 0. The difficulty arose in calculating the

prior probabilities, as they are generally problem dependent. The priors relied on the

state of the wireless channel, the beamforming array layout used, and the optimization

algorithm used. For example, P (B|D) ≤ 1 because an interfering signal can move

from a sidelobe in the array’s radiation pattern into a null, and this would cause

SINR to increase. We observe situations in SGA simulations with stationary signals

(see Section 3.3) where fading caused artificial SINR increases, and we expect that

this would also occur when the signals are mobile.

This thesis proposes a Bayesian assisted temperature schedule (see Figure 3.19)

to aid simulated annealing and HCA in reconfiguring a beamforming array to handle

mobile signals. The idea behind a Bayesian assisted temperature schedule is to add

an additional temperature offset EvalOff in the next algorithm iteration such that the

94

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaluation Number (n)

T
em

pe
ra

tu
re

S
ch

ed
ul

e
(
P M

ut
)

EvalOff (n+1) = f { PMut(n), P(A|B) }

TempOff (n+1) = f { EvalOff(n+1) }

Figure 3.19: Example Bayesian assisted temperature schedule with 9.5 × 10−4 ≤
PMut ≤ 0.55 shown over 12,200 evaluations.

sigmoidal temperature cooling schedule is redefined as

TMod (n) = PMut,Mod (n) = 1−
1

1 + e−τ(n−EvalOff(n)) +Toff

(3.27)

It follows that EvalOff (n + 1) = f {Pmut (n) , P (A|B)}. The size of the Bayesian

offset depends on the likelihood that the signals are mobile and on the algorithm’s

stage in its search. An offset is unnecessary if the algorithm encounters stationary

signals such that P (A|B) → 0. Its conditioning on Pmut (n) prevents generation of

unnecessary offsets that force the algorithm into an endless exploration loop, so an

offset is also unnecessary if TMod (n) ≥ (PMut, i + PMut, f) /2. Assuming that the offset

is originally zero, a simple offset implementation would set EvalOff (n + 1) such that

TMod (n+ 1) = 0.9PMut, i if P (A|B) (n) ≥ 0.5 and TMod (n) < (PMut, i + PMut, f) /2.

95

3.5 Equivalence of Stochastic Optimization of Anti-
Jamming Beamforming Arrays Using Electro-
magnetic Models of Varying Complexity

In performing stochastic optimization of anti-jamming beamforming arrays, there

are multiple EM simulation tools that can be used in calculating solution fitness

functions. The fidelity of these simulations (as compared to in-situ measurements)

depends strongly on the EM model that is used. For example, the array factor

calculation (as shown by the setup shown in Figure 3.20) treats antenna elements as

infinitesimal dipoles, and it assumes that the measurement point is in the far-field with

respect to the antenna array. The calculation is a superposition (i.e., weighted sum)

from the the individual elements, and it ignores coupling between antenna elements

and reflections off array hardware such as metallic step-attenuators and phase shifters.

A2

A3

A1

A4

AN

X

Y
Z P(R,θ,Φ)

Figure 3.20: Model of an N -element antenna array consisting of infinitesimal dipole
elements with arbitrary layout used to perform the array factor calculation.

To increase the model complexity and fidelity, we can treat the individual ele-

ments as dipoles with physical lengths as shown in Figure 3.21. This is the standard

Method of Moments (MOM) approach (using a program such as WIPL-D) used to

model antenna arrays consisting of dipole elements. Clearly, it incorporates mutual

96

coupling between antenna elements since reflections between elements affect the mu-

tual impedance between the elements. This model is an improvement over the array

factor method, but it still neglects reflections off nearby components.

A2

A3

A1

A4

AN

X

Y
Z

Figure 3.21: Model of an N -element antenna array that consisted of wire dipole
elements with arbitrary layout used in a MOM radiation pattern calculation.

To further increase fidelity, we can add metallic components to the array model as

shown in Figure 3.22. The model is closer to reality because the model incorporates

both mutual coupling and external reflections that affect in-situ radiation pattern

measurements. This model can be built and simulated with either MOM or FEM.

The drawback is that the third model has increased computational costs although it

is possible to reduce these computational costs as will be discussed in Section 5.3

A method of incorporating mutual coupling into the optimal array weights is

discussed in the literature by Bevelacqua [6], Zhang et al. [43], and Joler et al. [59].

This method is summarized in Figure 3.23.

The optimal weights are first found using a stochastic algorithm that calculated

the antenna array’s radiation patterns using array factor calculation. The inverse of

the coupling matrix (M−1
C) is calculated using MOM, and the optimized weights with

97

A2

A3

A1

A4

AN

X

Y
Z

Figure 3.22: Model of an N -element antenna array that consisted of wire dipole
elements plus metallic hardware components with arbitrary layout used in a MOM
radiation pattern calculation.

MC
-1 aM,opt = MC

-1 aAF,opt
^ ^ aAF,opt

^

Array Factor
Optimized Weights

Coupling Compensated
Optimized Weights

Figure 3.23: Method of calculating optimal array weights with compensation for
mutual coupling between antenna elements.

compensation for mutual coupling are calculated as

ˆ̄aM,opt = M−1
C · ˆ̄aAF,opt (3.28)

The contribution here is the realization that the it is possible to incorporate the

effects of reflections off hardware near the antennas into the optimal weights. This

can be done either directly by calculating the array factor, or it can be done by finding

the optimal weights with a stochastic optimization algorithm integrated with a MOM

program as shown in Figure 3.24.

The matrix M−1
CR represents the inverse coupling and hardware reflections ma-

trix, and it can be calculated by simulating the antenna array model of Figure 3.22 in

98

MCR
-1 aMR,opt = MCR

-1 aAF,opt
^ ^ aAF,opt

^

Array Factor
Optimized Weights

Coupling + Reflection
Compensated Optimized

Weights

MR
-1 aMR,opt = MR

-1 aM,opt
^ ^ aM,opt

^

MOM Optimized
Weights

Coupling + Reflection
Compensated Optimized

Weights

Figure 3.24: Method of calculating optimal array weights with compensation for
mutual coupling between antenna elements and reflection off hardware near antenna
elements.

a MOM or FEM program. By multiplying this inverse matrix by ˆ̄aAF,opt, the equiv-

alent optimized array weights with compensation for mutual coupling and external

reflections can be calculated. Alternatively, the optimal array weights with mutual

coupling only considered (i.e., ˆ̄aM,opt) can be calculated by using a MOM or FEM

program by running a stochastic algorithm with the model described in Figure 3.21.

The inverse matrix M−1
R represents the effects of external reflections, and its multi-

plication with ˆ̄aM,opt would also create an equivalent set of optimized weights with

compensation for mutual coupling and external reflections.

From the discussion we can conclude that stochastic algorithms that use any

of the three array models discussed above are theoretically equivalent (Figure 3.25).

This conclusion stems from the discussions of coupling compensation [6, 43, 59] to

determine equivalent optimal array weights that include compensation for mutual

compensation between elements. We further note that this compensation can be

99

Stochastic Algorithm
with Array Factor in

Fitness Function

Stochastic Algorithm
with Mutual Coupling

Compensation

Stochastic Algorithm with
Mutual Coupling and HW

Reflections Compensation

aAF,opt
^ aM,opt

^ aMR,opt
^Transformation Transformation

Output Output Output

Equiv.

Equiv. Equiv.

Transformation

Figure 3.25: Diagram showing equivalence of stochastic algorithms using array factor
calculations, mutual coupling only compensation, and mutual coupling plus external
reflections compensation in calculating optimum array weights.

extended to include external reflections provided that array hardware is included in

the overall array model. This is not to say that the three algorithms produce the

same optimized array weights, as the three optimal array weight vectors shown in

Figure 3.25 are related to each other by the appropriate transformation described by

Figures 3.23 and 3.24.

3.6 Summary

We discuss models for phased antenna array anti-jamming in this chapter. The prob-

lem is formulated for a N -element antenna array with arbitrary layout assuming

infinitesimal dipole elements. Although this formulation ignores secondary mutual

coupling effects, it is applicable for a wide range of antenna arrays, and it serves as a

basis for the remainder of this chapter.

A method of deriving the complex array weight solutions for a given set of sig-

100

nal directions is derived following the problem formulation. This method involves

calculating the inverse of the array manifold matrix, so it requires that the matrix

is invertable. This means that an N -element array can handle at most N signifi-

cantly different signal DOAs. This method serves as a baseline for comparing array

weight solutions found by stochastic optimization algorithms. It is shown that the

method of calculating the complex array weights is analytically sound by comparing

the array weights calculated using equation (3.13) with linear arrays with Uniform

and Dolph-Chebyshev weights.

It is proven indirectly that the anti-jamming beamforming problem is multimodal

by showing that complex array weight solutions existed for N = 10 element array

patterns (with both Uniform and Chebyshev reference weights) having randomly

chosen null depths −40 dB ≤ Gj ≤ −20 dB, j ∈ [1, N − 1]. The multimodality of

the anti-jamming beamforming problem arises in part from optimization algorithms’

shortcoming of getting stuck on non-optimal solutions (i.e., local optima) having

non-zero null-depths. This method clearly produces different weights and radiation

patterns as shown in Tables 3.5 – 3.6 and Figures 3.6 – 3.7. This method is compared

on both UCAs and CCAs with Uniform weighting, and the method produces different

solutions having the same SOI beam gains and null depths but differing SLLs as shown

in Table 3.11 and Figure 3.14.

101

Chapter 4

Models for Phased Antenna Array
Hardware Fault Recovery

This chapter discusses new models for hardware fault recovery in phased antenna

arrays. These models build upon the anti-jamming phased array models discussed in

Chapter 3. The goal of this chapter is to demonstrate a means of detecting hardware

faults in an antenna array as well as localizing and recovering from those faults.

The goal of hardware fault recovery is to re-optimize the antenna array to perform

anti-jamming and SOI beamforming despite the presence of hardware faults. Fault

localization serves to provide reliability data on the array’s components.

In our model, we assume that faults are limited to antenna array hardware. Soft-

ware is assumed to operate without faults, and computing hardware is also assumed

to be fault-free. Although it is possible for software and computing hardware faults

to exist in real systems, discussion of these fault types are beyond the scope of this

thesis.

This chapter continues as follows. Section 4.1 discusses the problem formulation

and setup for implementing hardware fault recovery. Section 4.2 develops new models

for hardware fault detection, Section 4.3 describes models for hardware fault recovery,

and Section 4.4 details the models for fault localization. Section 4.5 presents theoret-

102

ical limits on how much of the SOI array gain can be recovered after hardware faults

occurred.

4.1 Hardware Fault Recovery Problem Formula-
tion

The antenna array setup for hardware fault recovery is similar to the array de-

scribed in Section 3.1, with the exception that at lease one element is faulted as shown

in Figure 4.1. The complex weights consist of attenuators and phase shifters. The

fault at element k can be a damaged antenna, attenuator, phase shifter, or a combi-

nation of the three components. Possible faults include open/short circuits, detuned

antennas, stuck-at-previous settings complex weights, and stuck-at-random settings

complex weights. Only one faulty element is shown in Figure 4.1 for simplicity.

â2

_
d2

ŷ2â1

_
d1

ŷ1ŷ1

ŷΣ

â3

_
d3

ŷ3

â4

_
d4

ŷ4

âN

_
dN

ŷN

Σ

X

Y

Z

âk

_
dk

ŷk

Figure 4.1: Diagram of a N -Element antenna array with arbitrary layout showing a
faulty element k.

The goal of hardware fault detection and optimization is to ensure that an an-

103

tenna array continues to focus energy on the SOI while simultaneously thwarting

interference despite the presence of hardware faults. To obtain this goal, fault detec-

tion and recovery are integrated into the optimization algorithm as shown in Figure

4.2. The model includes fault localization to maintain a database of suspected faults

for later repair (Figure 1.4), and the model assumes that fault localization is not

necessary to perform recovery. The optimization algorithm reacts to a SINR fitness

function, and a failure to anti-jam is detected by a significant drop in SINR assuming

ideal conditions. The fault recovery algorithm re-optimizes all of the array weights

with the goal of regaining anti-jamming functionality despite the presence of hardware

faults.

Choose Array
Settings

Fn

Fault
Detection

an
^

Hardware Fault Recovery

Load Array
Settings

Calculate
Fitness

xn
^

Collect
an
^ xn

^Tyn =^|yn|2^

Fault
Localization fn

Figure 4.2: High level diagram showing hardware fault detection, recovery, and local-
ization integrated with an optimization algorithm that performs anti-jamming beam-
forming.

It is shown in Figure 4.2 that the current array weights ˆ̄an can be used in per-

forming fault detection. If the current array weights are fed back as inputs into

the algorithm, hardware fault recovery can be performed in a closed-loop fashion.

Otherwise, hardware fault recovery can be performed open-loop if fault detection is

104

implemented using only the current fitness value Fn. Although the model shows only

current values of Fn and ˆ̄an, it is possible to include memory in the fault detection

function such that previous values can be used to detect faults.

4.2 Diagnostic Models for Hardware Fault Detec-
tion

This section presents the models for performing hardware fault detection. The

basic fault detector shown in Figure 4.3 can be thought of as a decision device whose

inputs are the current fitness function value Fn and chosen solution Sn = ˆ̄an. A closed-

loop fault detector (as shown in relation to the optimization algorithm in Figure 4.2)

uses both Fn and ˆ̄an in making a decision Dn = 0, 1 whether or not a hardware fault

exists in the array. An open-loop fault detector uses only the current fitness function

value Fn in making its decision. Although fault detection is performed in software,

hardware fault detection is possible because the fitness function is based on array

output power measurements collected by the control system and stored in memory.

Fault
Detector

Fn

an
^ Dn

Figure 4.3: High level diagram of a hardware fault detector.

In this section, it is assumed that hardware faults are present in the array and

prevent anti-jamming, and we relist the five events in Table 4.1 for reference.1 Event

1A Venn Diagram is described in Figure 3.18 that represented four possible events pertaining to
anti-jamming beamforming with mobile signals. This approach cannot be used to detect hardware
faults because it is missing a fifth event E representing the possibility of hardware faults.

105

E clearly complicates the problem because its subspace overlaps with other event

subspaces in the solution space S as can be seen in Figure 4.4. Event E is represented

by dotted filled shapes. The subspace areas including their intersections are not drawn

to scale.

Table 4.1: Five events that can occur while a stochastic algorithm adapts an anti-
jamming beamforming array subjected to hardware faults.

Event Event Description

A Signal DOAs changed.

B SINR fitness dropped.

C The algorithm chose a worse solution.

D The wireless channel faded.

E Hardware faults existed in the array.

A D

S

Figure 4.4: Venn Diagram showing the relationship between events
A, B, C, D, and E in the parameter search space S.

To explain the significance of the subspace intersections, we consider several cases

given that a fault (event E) occurs:

1. Stationary signals, no fading (event E): If SINR increases, the algorithm finds

106

a better solution (event E alone). However, if SINR decreased, the algorithm

always finds a worse solution. This corresponds to the subspace E ∩ B ∩ C.

2. Stationary signals in a fading channel (subspace E ∩ D): Fading creates sit-

uations where increases SINR can lead to worse solutions (i.e., faded jammer,

subspace E ∩ D ∩ C) or better solutions (subspace E ∩ D). However, solu-

tions with decreased SINR are always worse than their predecessors (subspace

E ∩ D ∩ B ∩ C). The reasoning is that only hardware faults or faded SOI

degraded SINR.

3. Mobile signals, no fading (subspace E ∩A): If SINR increases, this means that

the algorithm found a better solution despite presence of hardware faults and

mobile signals. This is represented by the subspace E ∩ A. However, if a new

solution’s SINR is worse than its predecessor, this means that a new solution is

always worse than its predecessor because the new solution moved farther away

from the new global optimum. This is represented by the subspace E∩A∩B∩C.

4. Mobile signals in a fading channel (Subspace E∩A∩D): If SINR increases, the

current solution may or may not be better than its predecessor. If a jammer

fades, this results in a higher SINR even though the solution is farther away

from the current global minimum (subspace E ∩ A ∩ D ∩ C). Solutions with

worse SINR always represent worse solutions (subspace E ∩ A ∩ D ∩ B ∩ C)

because either a hardware fault cause a worse solution to be chosen, or the

signals move away from the new global optimum.

107

A portion of the event E subspace is completely submerged in the subspace C ∩ B.

This means that the probability that SINR decreased P (B) as described by equations

(3.24) – (3.26) is unaffected by the presence of hardware faults. This is an indication

that faults are indistinguishable from time-varying DOAs (TVDOAs) in a Bayesian

probabilistic sense. Therefore, tracking the fitness function alone is insufficient to

diagnose what caused the algorithm to fail to configure the array weights for anti-

jamming, and additional information is necessary to understand why and how the

algorithm failed. It is possible, however, to distinguish hardware faults from TVDOAs

by tracking the complex array weights ˆ̄an along with the fitness function values Fn.

Assuming that the fault detector has internal memory, let

F̄ns = {Fi, Fi+1, · · · , Fn}T (4.1)

ˆ̄̄ans =
{

ˆ̄ai, ˆ̄ai+1, · · · , ˆ̄an
}T

(4.2)

where i = [ns, n], and 1 < ns < n is chosen such that Nsamp = n − ns + 1. The

simple (i.e., trivial) detector assumes that the algorithm converged such that σ2
an =

var
[

ˆ̄̄ans
]

≈ 0. It assumes that the wireless channel is AWGN with no fades, and the

signals did not change their locations and directions. The simple detector therefore is

equivalent to an open-loop detector in the sense that it monitors only equation (4.1)

after the algorithm converged, and it operated on a decision rule

Dn =

1, var
[

F̄ns

]

+ 0

0,Otherwise

(4.3)

Thus the simple detector is unable to distinguish between hardware faults and TV-

108

DOAs, as both cause variance in the fitness function values given that the algorithm

converged. This detector is trivial because it does not have sufficient information to

separate hardware faults from TVDOAs, and it is unable to detect either hardware

faults or TVDOAs if the algorithm has not converged. Channel fades can also mislead

this detector into falsely detecting hardware faults.2

Accounting for the algorithm’s state of convergence, a more sophisticated fault

detector is based on a four-way hypothesis test:

• H0: Algorithm converged with no faults and no TVDOAs.

• H1: Algorithm not converged with no faults and no TVDOAs.

• H2: Algorithm converged with faults and/or TVDOAs.

• H3: Algorithm not converged with faults and/or TVDOAs.

This detector assumes that the wireless channel is AWGN with no fades for

simplicity. Hardware faults and TVDOAs are grouped together because it would

require an eight way hypothesis test when faults and TVDOAs are separated. We

discuss a method of discriminating hardware faults from TVDOAs later in this section.

Let

Fan = F̄ns + ˆ̄̄ans (4.4)

var [Fan] = var
[

F̄ns + ˆ̄̄ans
]

(4.5)

Because Fan and ˆ̄ans are clearly dependent, it follows that equation (4.5) can be

2It assumes that the optimization algorithm follows a convergence rule such that ˆ̄an → W as
n → ∞ where W is a complex valued constant. Thus, channel fades do not affect ˆ̄an after the
algorithm converges.

109

rewritten as

var [Fan] = var
[

F̄ns

]

+ var
[

ˆ̄̄ans
]

+ 2 cov
[

F̄ns, ˆ̄̄ans
]

(4.6)

cov
[

F̄ns, ˆ̄̄ans
]

= E
[

(

F̄ns − µF

)

(

ˆ̄̄ans − µa

)]

(4.7)

σ2
F = var

[

F̄ns

]

= E
[

(

F̄ns − µF

)2
]

(4.8)

σ2
a = var

[

ˆ̄̄ans
]

= E

[

(

ˆ̄̄ans − µa

)2
]

(4.9)

µF = E
[

F̄ns

]

(4.10)

µa = E
[

ˆ̄̄ans
]

(4.11)

Using equation (4.7), the correlation coefficient for F̄ns and ˆ̄̄ans can be written as

ρFa =
cov

[

F̄ns, ˆ̄̄ans
]

√

var
[

F̄ns

]

· var
[

ˆ̄̄ans
]

(4.12)

The correlation coefficient is limited to −1 ≤ ρFa ≤ +1, it is zero when the fitness

functions and complex array weights are uncorrelated (i.e., equation (4.7) is zero),

and is undefined when either variances is zero. Based on equations (4.8), (4.9), and

(4.12), the hypothesis is chosen based on

Choose

H0 if var
[

ˆ̄̄ans
]

→ 0 & var
[

F̄ns

]

→ 0 (ρFa undefined)

H1 if var
[

ˆ̄̄ans
]

+ 0 & var
[

F̄ns

]

+ 0 & ρFa > 0

H2 if var
[

ˆ̄̄ans
]

→ 0 & var
[

F̄ns

]

+ 0 (ρFa undefined)

H3 if var
[

ˆ̄̄ans
]

+ 0 & var
[

F̄ns

]

+ 0 & ρFa ≤ 0

(4.13)

The conditions behind selecting the null hypothesis are evident. The algorithm con-

110

verges if it selects roughly the same complex array weights with approximately equal

fitness over a time-sampling window. For selecting hypothesis H1, var
[

ˆ̄̄ans
]

+ 0

indicates that the algorithm did not converge by evaluation n. The combination of

var
[

F̄ns

]

+ 0 with a covariance coefficient ρFa > 0 indicates that the algorithm is

searching the parameter space and likely choses the current complex array weights

ˆ̄an based on the previous solution’s fitness Fn−1. A positive covariance coefficient

indicates a positive correlation between the most recent complex weights ˆ̄̄ans and

their associated fitness F̄ns. This is expected for normal operation of an optimization

algorithm without external stimuli such as hardware faults and TVDOAs.

The conditions used to select hypothesis H2 indicates that faults and/or TV-

DOAs exist. The condition that var
[

ˆ̄̄ans
]

→ 0 indicates that the algorithm converges,

but var
[

F̄ns

]

+ 0 means that an external stimuli causes the converged solution’s fit-

ness to change randomly. This means that either a hardware fault appeared, or the

signals changed their DOAs. For hypothesis H3, the condition that var
[

ˆ̄̄ans
]

+ 0

shows that the algorithm did not converge. It is searching the parameter space

because var
[

F̄ns

]

+ 0, but a non-positive covariance coefficient indicates that the

relationship between the current solution and previous solutions’ fitness function val-

ues are not clear. The solutions and their fitness are either uncorrelated or negatively

correlated. This means that a hardware fault or a TVDOA affected the algorithm’s

search for an optimal solution.

The decision rule described by equation (4.13) accounts for the algorithm’s con-

111

vergence state, but it still did not separate hardware faults from TVDOAs. It assumes

that the wireless channel is AWGN, and channel fades cause variances in fitness that

in turn cause variations in the complex array weights. If the number of samples,

however, are large enough, then variations due to fading can be smoothed out. To

distinguish hardware faults from TVDOAs, a third metric is necessary. Let µ̄ and its

derivative be defined by

µ̄ = [µa, µF]
T (4.14)

∂µ̄

∂t
=

[

∂µa

∂t
,
∂µF

∂t

]T

(4.15)

Because the means of the complex array weights and the fitness function values both

vary with time, the process is non-stationary. We hypothesize that it is possible to

distinguish between faults and TVDOAs by observing the derivatives of the means as

described by equation (4.15) in conjunction with equations (4.8), (4.9), and (4.12).

||an||
^

||Fn||
^

Figure 4.5: Example of time-varying nature of complex array weights and their asso-
ciated fitness values with time-varying means, variances, and correlation coefficients.

112

To explain this concept, begin with a depiction of an algorithm’s behavior prior

to convergence in Figure 4.5. The ellipses represents the standard deviations of the

complex array weights and fitness values evaluated over Nsamp evaluations with n =

na, nb, and nc. The ellipses’ centers represent the means (see eq. (4.14)) of the

array weights and their fitness at na, nb, and nc. The ellipses’ slopes represent the

correlation coefficient ρFa evaluated at na, nb, and nc. The general idea is that the

complex array weights and their associated fitness are not stationary due to external

factors such as hardware faults and TVDOAs, and the means followed a trajectory

defined by those factors.

Eval #
NSamp

Calculate σa
2(n), σF

2(n),
μa(n), μF(n), ρFa(n)

n n+a

NSamp

Calculate σa
2(n+a),

σF
2(n+a), μa(n+a),
μF(n+a), ρFa(n+a),
μa'(n+a), μF'(n+a)

n+a∙Nwind

NSamp

σa
2(n+a∙Nwind), σF

2(n+a∙Nwind),
μa(n+a∙Nwind), μF(n+a∙Nwind),
ρFa(n+a∙Nwind), μa'(n+a∙Nwind),

μF'(n+a∙Nwind)

1

Figure 4.6: Sliding windows used to calculate time-varying means, variances, and
correlation coefficients associated with the time-varying array weights and fitness
functions.

The time-varying statistical quantities (σ2
a (n), σ

2
F (n), µa (n), µF (n)) and the

derivatives of the means are calculated using a sliding window of sample length NSamp

as depicted in Figure 4.6. The offset parameter a ≥ 1 controls the amount of overlap

between windows. Overlapping windows produce responses that track changes in

the statistical quantities more rapidly where a = 1 gives instantaneous responses.

Overlapping windows are more susceptible to noise due to channel fades, and this

113

causes µ̄ (n+ k ·NSamp) , k ∈ [1, NWind] to be noisy. From a probabilistic viewpoint,

the statistical quantities for the kth and (k + 1)th windows with 1 ≤ a ≤ NSamp are

dependent because the calculations used common samples.

As the algorithm converge, ∂µa

∂t
(n) → 0 along with var

[

ˆ̄̄ans
]

→ 0, and the

second hypothesis H2 is chosen if the fitness variance changes per equation (4.13). If

∂µF

∂t
(n) > 0, the converged solution’s (ˆ̄af) fitness increases. Because a hardware fault

can only decrease the solution’s fitness, this means that a signal changed directions in

a way that moved the converged solution closer to a new global optimum. However, if

∂µF

∂t
(n) ≤ 0, the detector cannot discriminate between hardware faults and TVDOAs

because both factors can cause decreased fitness function values.

If the algorithm does not converge when faults or TVDOAs are detected, the

decision rule of equation (4.13) chooses hypothesis H3, and the behavior of ∂µa

∂t
(n)

and ∂µF

∂t
(n) are split into four quadrants:

1. Q1:
∂µa

∂t
(n) > 0 and ∂µF

∂t
(n) > 0

2. Q2:
∂µa

∂t
(n) > 0 and ∂µF

∂t
(n) ≤ 0

3. Q3:
∂µa

∂t
(n) ≤ 0 and ∂µF

∂t
(n) > 0

4. Q4:
∂µa

∂t
(n) ≤ 0 and ∂µF

∂t
(n) ≤ 0

We discuss these four cases below. Note that we assume the beamforming array uses

passive weights. This means that ||ˆ̄an|| ≤ 1 ∀n, and the complex array weights occupy

an n-dimensional hypersphere with radius of one centered at the origin.

4.2.1 Time Averaged Array Weights and Fitness Both In-
creasing

If ∂µF

∂t
(n) > 0, it clearly follows that the fitness function values generally in-

114

crease over the last Nsamp evaluations leading up to evaluation n. The condition that

∂µF

∂t
(n) > 0 means that the algorithm chose solutions that moved away from the

origin towards the edge of the unit-radius hypersphere as shown in Figure 4.7.

||an|| = 1 ^

||an||
^

||Fn||
^

<σa(nc), σF(nc)>
ρFa(nc) nk

nc
[μa(nc), μF(nc)]

Figure 4.7: An example of an unconverged algorithm in a hypothesis H3 state with
increasing time-averaged array weights and time-averaged fitness (left). The solutions
chosen by this algorithm moved from near the origin of the unit-radius hypersphere
to its outer edge as nk → nc where k < c (right).

In relationship with var
[

ˆ̄̄ans
]

and ∂µF

∂t
(n) > 0, this implies that the algorithm

compensated for a hardware fault. The fault causes a portion of the complex array

weight vector to become ineffective (i.e., dead weight), so the algorithm needs a

solution with additional weighting to compensate for that loss. Although TVDOAs

inherently change the latest solutions up to ˆ̄an, its magnitude is roughly the same

as the last Nsamp solutions because the complex weight vector is tracking the DOAs

on a constant radius sphere within the unit-radius hypersphere if the fitness trended

towards larger values.

Because fault detection is inherently stochastic, it is useful to set a bound on

115

determining how well this metric is in discriminating faults from TVDOAs in hy-

pothesis H3. This bound is difficult to determine when considering that events (see

Figure 4.4) occurred concurrently, and the hypothesis H3 region is divided into four

subregions for a total of eight hypotheses3. However, it is possible to approximate the

performance of this detector by selecting two hypothesis. Namely, either hypothesis

H0 occurs, or hypothesis H3 with the constraints that ∂µa

∂t
(n) > 0 occurs.

Letting ˆ̄xn =
[

ˆ̄an, F̄n

]T
, A31 = {H3 ∩ Q1} be the set of points in H3 with

∂µa

∂t
(n) > 0 and ∂µF

∂t
(n) > 0, an approximate bound is the Neyman-Pearson Test

described in [71]:

ˆ̄xn ∈ H0 if L
(

ˆ̄xn
)

=
P
(

ˆ̄xn|H0

)

P
(

ˆ̄xn|H3, Q1

) ≥ γ; ˆ̄xn ∈ A31 Otherwise (4.16)

PFA =
∑

L(ˆ̄xn)< γ

P
(

ˆ̄xn|H0

)

≤ α (4.17)

4.2.2 Time Averaged Array Weights Increasing, Time Aver-
aged Fitness non-Increasing

Recall from the definition of hypothesis H3 that either a hardware fault occurred,

or a signal’s DOA is time-varying. The additional conditions that ∂µa

∂t
(n) > 0 and

∂µF

∂t
(n) ≤ 0 means the algorithm is searching the parameter space and finding solu-

tions with lower fitness. Although it is possible that a hardware fault occurred, it is

also possible that µa increases due to the algorithm finding worse solutions during its

search. A non-increasing ∂µF

∂t
(n) therefore prevented the detector from discriminating

between faults and TVDOAs.

3Hypothesis H2 should also be divided into four subregions. However, doing so is unnecessary
since faults cannot be distinguished from TVDOAs once the algorithm converged.

116

4.2.3 Time Averaged Array Weights non-Increasing, Time
Averaged Fitness Increasing

Because ∂µF

∂t
(n) is increasing while ∂µa

∂t
(n) either decreased or remained constant,

this implies that TVDOAs are present. The solutions move towards the center of the

array weight hypersphere or stay on a constant radius. The solution finds better

solutions with lower magnitudes. If the channel fades, it assumes that NSamp is large

enough to smooth out fading effects both in the means (µa, µF), means derivatives

(∂µa

∂t
, ∂µF

∂t
), and variances (var

[

ˆ̄̄ans
]

, var
[

F̄ns

]

).

4.2.4 Time Averaged Array Weights and Fitness Both non-
Increasing

This case represents the algorithm searching the parameter space, but it searches

closer to the origin of the complex array weight hypersphere. The fitness function

values are on average decreasing (indicated by ∂µF

∂t
(n) ≤ 0). When combined with

the hypothesis H3 condition that ρFa ≤ 0, this indicates that the solutions that the

algorithm found are on average getting worse. This can have been caused by either

hardware faults or TVDOAs. Under this set of conditions, the detector can not

distinquish between faults and TVDOAs.

The Neyman-Pearson test described by (4.16) to test the effectiveness of this

method in (4.13) requires that the critical regions under test be well defined, and

it does not test the effectiveness of the other hypothesis. An alternative means of

evaluating the system described by (4.13) is to treat the system as a Markov chain with

117

three binary parameters: state of algorithm convergence (converged or not converged),

hardware faults present vs. not present, and TVDOAs present vs. DOAs static. The

Markov chain had eight states as shown in Figure 4.8 and Table 4.2.

Table 4.2: State description of generalized Markov chain describing the system’s
probabilistic behavior when subjected to possible faults and TVDOAs.

State Binary Value (hC hF hT) Meaning

S0 000 Unconverged, no faults, static DOAs

S1 001 Unconverged, no faults, TVDOAs

S2 011 Unconverged, faults, TVDOAs

S3 010 Unconverged, faults, static DOAs

S4 110 Converged, faults, static DOAs

S5 100 Converged, no faults, static DOAs

S6 101 Converged, no faults, TVDOAs

S7 111 Converged, faults, TVDOAs

The binary values associated with the states are Grey encoded. The total number

of hops in the generalized Markov chain is 64, and the hops between states are color

coded: black represented one parameter change between states, blue represented two

parameter changes, and red represented three parameter changes. The generalized

model allows the possibility of intermittent faults with hops from faulty to non-faulty

states shown as dashed lines. The generalized model also allows for the algorithm to

change from converged to unconverged. This is shown with double lines. Per [71],

the transition probabilities between states are described by

118

S0
(000)

S1
(001)

S2
(011)

S3
(010)

S4
(110)

S5
(100)

S6
(101)

S7
(111)

Not all Hops Shown
Total # Hops = (23)∙(23) = (23)2 = 64

Figure 4.8: A generalized Markov chain showing the system’s probabilistic states
when subjected to possible faults and TVDOAs.

Pij = P [Sn+1 = j|Sn = i] (4.18)
Sttot
∑

j=0

Pij = 1 where Pij ≥ 0 ∀i, j (4.19)

The Markov model shown in Figure 4.8 is generalized because it assumes that Pij > 0

for all possible hops between states and included hops that are unlikely (i.e., hop

from state 5 to state 0 where the algorithm changed from converged to unconverged

for no reason). The generalized Markov model also allows for intermittent faults.

Although it is possible to have intermittent faults in a real system, it is assumed that

intermittent faults do not exist to simplify the model. The first step in calculating

the transition probability matrix P is determine unlikely (or disallowed) hops and set

their transition probabilities to zero. Noting the number of parameter changes from

state i to state j as µij ∈ [0, µMax] where µMax = 3 in this model, and hP ∈ [0, 1]

119

where P = {C, F, T}, the rules for simplifying the Markov chain in Figure 4.8

Pij = 0 iff

µij = µMax, or

hF (i) = ¬hF (j) = 1, or

(hC (i) = ¬hC (j) = 1) ∧ (hF (i) = ¬hF (j) = 0) , or

(hC (i) = ¬hC (j) = 1) ∧ (hT (i) = ¬hT (j) = 0)

(4.20)

The first rule indicates that a hop where all of the parameter values changed is so

unlikely that is is virtually impossible. The second rule disallows intermittent faults.

The third and fourth rules specifies that the model cannot hop from a converged

state i to an unconverged state j if either a fault appeared in state j or DOAs started

moving in state j. Because a stochastic algorithm tends to stay converged once in

a converged state, the detector needs to issue a command that causes the algorithm

to entire an unconverged state. The algorithm is either completely reinitialized or

partially initialized with memory of the last known best solution. In other words,

faults and/or TVDOAs need to be detected before the algorithm can re-enter an

unconverged state from a converged state.

4.3 Hardware Fault Recovery Model

In this section, we develop a new model for hardware fault recovery. A simplified

model of this process is shown in Figure 4.9.

As is shown in Chapter 6, various stochastic algorithms (such as the GA) op-

120

Choose Array
Settings

Fn

Fault
Detection

Dn

an
^

Hardware Fault Recovery

Figure 4.9: A high level model showing hardware fault recovery.

erate in a closed loop and automatically feedback the current array weights
(

ˆ̄an
)

at

generation n to create the next set of solutions ˆ̄an+1. An example of the TDGA

automatically detecting and often recovering from a fault is shown in Figure 4.10. In

this example, the strings each have a fitness F ∈ [0, 100] where a fitness of 0 means

that the string is selected as a mate with probability 0, and a fitness of 100 means

that the string is selected for mating with probability 1.

"F"
95

 . . . 1 -1 0 0 1 0 -1 1 . . .

 . . . 0 1 -1 0 1 1 0 0 . . .

"F"
78

Generation
K

Hardware
Fault

Generation
K + 1

. . . 1 0 1 0 -1 1 1 0 . . .

 . . . 1 -1 0 0 1 0 0 0 . . .

. . . 0 -1 -1 -1 -1 0 1 0 . . .

Triallelic Diploid String AK Triallelic Diploid String BK

 . . . 0 1 -1 0 1 1 -1 1 . . .

(. . . 1 0 1 0 1 1 1 0 . . .) (. . . 1 1 0 0 1 1 0 1 . . .)

(. . . 1 0 1 0 1 1 1 0 . . .) (. . . 0 1 1 0 1 1 1 1 . . .)

"F"
7

Triallelic Diploid String AK+1 Triallelic Diploid String BK+1

"F"
21

. . . -1 0 -1 1 0 0 1 -1 . . .

. . . -1 0 -1 0 1 -1 0 -1 . . .

(. . . 1 0 1 1 1 0 1 1 . . .)

"F"
26

Triallelic Diploid String CK+1

. . . 0 1 -1 -1 -1 0 1 0 0 -1 -1 -1 -1 0 1 0 . . .

. . . -1 0 -1 1 0 -1 0 -1 -1 0 -1 0 1 0 1 -1 . . .

(. . . 0 1 1 1 0 0 1 0 . . .) (. . . 0 1 1 1 1 0 1 0 . . .)

Triallelic Diploid String AK+2

NULL

Triallelic Diploid String BK+2 Triallelic Diploid String CK+2

Generation
K + 2

"F"
34

"F"
29

Figure 4.10: Example showing how the TDGA recovers from hardware faults in an
antenna array.

Assuming that by generation K the TDGA nears convergence, the strings have

high fitness as shown in Figure 4.10. Two example strings (AK and BK where the

121

subscript represented the strings’ bitwise values at generation K) are shown to have a

fitness of 95 and 78, and are selected for mating. The triallelic string values are shown

in the boxes along with the crossover locations, and the encoded haploid values are

shown below in parenthesis. Since a hardware fault occurs between generations K

and K + 1, the resulting children strings (AK+1 and BK+1) have much lower fitness

than their parents.

Suppose that the fitness of string AK+1 is too low for mate selection, so a new

string CK+1 is chosen from the current population to mate with string BK+1. Because

string AK+1 is not chosen for mating, it effectively dies off. The resulting children

strings (BK+2 and CK+2) in the second generation following the fault’s occurrence

have higher fitness than their parents, so the TDGA tends towards a higher fitness

averaged over the entire population. It should be noted from the example that prior

to the fault, a +1 dominance occurred in the population in the sense that more

dominant ones (i.e., +1’s) existed than recessive ones (i.e., -1’s). However, in the

second generation after the fault, it can be seen that the role shifted to a−1 dominance

since the recessive ones began to outnumber the dominant ones in the population. A

similar effect is noted by Weile and Michielssen [28] in adapting to mobile signals, so

the mechanism that the TDGA uses to recover from hardware faults is the same as

the one it uses to adapt to mobile signals.

As we will show in Chapter 5, the SGA is able to adapt to mobile signals following

convergence through use of its mutation operator. Although the mutation operator

122

also assists the TDGA in adapting to mobile signals and to faults, it will be shown

that the SGA can adapt to hardware faults via the mutation operator. Because the

SGA reacts automatically to its environment, the SGA uses the closed-loop fault

recovery method as shown in Figure 4.9.

Two methods exist for allowing SA and HCA to perform hardware fault recovery.

The first method assumes that recovery can be achieved provided that the fault occurs

when the algorithm has not converged. This method is open-loop in the sense that it

repeats the temperature schedule multiple times while SA or HCA operated, and it

operates without knowledge of the current array weights ¯̂an. There exists a trade-off

between the number of times that the temperature schedule is repeated during a given

maximum set of evaluations: increases likelihood to convergence to a local maximum

instead of global maximum versus the detection probability and response time to a

fault. In other words, if the temperature schedule is repeated too many times, SA

and HCA will stagnate on suboptimal solutions. If the temperature is allowed to stay

cooled for too long, a fault can go undetected, and the converged solution will be

invalid (even if SA or HCA reports that that solution maintains a high fitness value).

The second method is closed-loop, and in a manner similar to the detection of

mobile signals, the fault-detection model can provide a posterior probability that a

fault occurred. An issue behind this approach is that the algorithm cannot in all

cases discern faults from mobile signals. This is evident from the complexity of the

Venn diagram shown in Figure 4.4 and the diagnosis model discussed in Section 4.2

123

based on a four-way hypothesis test. Based on these reasons, we chose to implement

the open-loop model for hardware fault detection and recovery with SA and HCA,

and save implementation of the closed-loop model for future work.

4.4 Hardware Fault Localization

To localize a hardware fault, it is generally necessary to collect complex voltage

samples at the output of each antenna branch prior to the summing point shown in

Figure 4.1. A problem here is that the complex antenna branch voltages are summed,

and only the summed output voltage is available. However, if the antenna array is

small in size, it is possible to localize the fault by calculating the cross-correlation of

the array’s measured radiation pattern with the array’s calculated radiation pattern

given that element k is removed from an N element array of arbitrary shape. Let this

radiation pattern be defined as

ARF (φ, θ | k) = EF (φ, θ) ·AF (φ, θ | k) (4.21)

AF (φ, θ | k) =
k−1
∑

i=1

âie
jβāR·d̄i +

N
∑

i=k+1

âie
jβāR·d̄i (4.22)

where EF (φ, θ) is the element factor common to all of the array elements. Letting

the array’s measured radiation pattern at a constant θo (i.e., the azimuth plane with

θo = π/2 where θ ∈ [0, π]) be ARM (φ, θo), the probability that a fault in the array

occurred given that antenna element k is the element that faulted is defined as

124

PFlt (k |Fault) =
1

ξ
max

∣

∣

∣

∣

∣

∣

+π
∫

−π

ARF (φ, θo | k)∗ARM (φ + τ, θo) dτ

∣

∣

∣

∣

∣

∣

(4.23)

where 1
ξ
is a normalizing factor to ensure that PFlt (k |Fault) ∈ [0, 1]. Equation

(4.23) is the cross-correlation in a single spherical plane and can be extended to

the entire sphere by applying a second integral over θ with a dummy variable τ2.

Replacing the integral in equation (4.23) with an operator called xcorr, the analysis

can be extended to multiple faults:

PFlt ([ka, kb] |Fault) =
1

ξ
max |xcorr [ARF (φ, θo | [ka, kb]) , ARM (φ, θo)]|

(4.24)

PFlt ([ka, · · · , kJ] |Fault) =
1

ξ
max |xcorr [ARF (φ, θo | [ka, · · · , kJ]) , ARM (φ, θo)]|

(4.25)

Equation (4.24) represents the probability that two faults occurred in the array with

antenna elements ka, kb effectively removed from the array, and equation (4.25) rep-

resented the probability that up to most N − 1 antenna element faults occur in the

array. There are three issues with implementing equations (4.23) – (4.25). First, this

method is based on array factor and does not account for mutual coupling between

elements. Second, it only considers complete antenna faults such that faulty elements

are completely removed from the array. This method does not consider partial faults

such as an antenna element that is damaged, a step attenuator or phase shifter stuck-

at a previous setting, or a step-attenutor or a phase shifter stuck-at a non-controlled

setting. Third, the method is computationally intense as both the number of faulty

125

elements and the array size N increases.

The third issue is addressed by calculating the total number of correlations Cmax

required given N antennas and at most N − 1 faults. Because it is more likely that

the fault vector containing the element numbers of faulted elements is sparse (see

[14]), the number of correlations CS given sparsity level S such that 5S · N6 ≥ 1:

Cmax =
N−1
∑

J=1

(

N

J

)

(4.26)

CS =
(S ·N)
∑

J=1

(

N

J

)

(4.27)

The number of maximum correlations required given the number of elements in

the array N as well as the number of correlations required given a sparsity coefficient

S are listed in Table 4.3. The number of elements considered varied from 4 to 32,

and the sparsity levels considered are 10%, 20%, and 30%.

Table 4.3: Number of correlations needed to localizeK faulty elements in aN -element
antenna array.

CS with Sparsity Coefficient, S

N Cmax 10% 20% 30%

4 14 4 4 10

8 254 8 36 92

10 1022 10 55 175

12 4094 78 298 793

16 65534 136 2516 6884

32 4.295E+09 41448 4514872 1.076E+08

It is clear from Table 4.3 that the total number of correlations needed assuming

126

at most N − 1 faults in the array grew exponentially in N , and this method is

infeasible for arrays with at least 32 elements because CMax > 4 trillion combinations

at that array size. However, assuming a reasonable level of sparsity in the element

fault list of 10% to 20%, this method is reasonable for arrays with 12 or 16 elements.

To compensate for mutual coupling between antenna elements and partial ele-

ment faults, the method Weile and Linden explore in [72] can be extended to calculate

the fields given faulty (partially and fully) elements when calculating the array’s ra-

diation pattern after a single run of a MOM program such as WIPL-D. In [72], the

antenna port voltage vector V is calculated from a single run of WIPL-D using the

resulting diagonal N ×N port impedance matrix Zo, the N ×N coupled impedance

matrix Z, and the Ψ ∈ {θ, φ} component patterns Ei
Ψ (θ,φ) for each antenna element

i ∈ [1, N] as a superposition:

V = Z (Z + Zo)
−1VS (4.28)

EΨ (θ,φ) =
N
∑

i=1

ViE
i
Ψ (θ,φ) , Ψ ∈ {θ,φ} (4.29)

Given that the method in [72] calculates the radiation pattern for an array phased

with a complex port voltage vector VS, equation (4.29) can be modified to include

K ∈ [1, N − 1] partially or fully faulty elements as a superposition

EΨ (θ,φ) =
N
∑

i=1
i *=k

ViE
i
Ψ (θ,φ) +

K
∑

k=1

VkE
k
Ψ (θ,φ) , Ψ ∈ {θ,φ} (4.30)

A fully faulty antenna element can be emulated in equation (4.30) by setting Vk = 0

for all faulty elements in the N × 1 source voltage vector VS. A partial fault is

127

emulated by setting Vk to an expected faulted value not included in the faultless

source voltage vector.

4.5 Theoretical Limits on Recoverable SOI Array
Gain

When an element is removed from an antenna array, it clearly decreases the

array’s maximum gain such that the new maximum gain is (N − 1)×Go where Go is

the maximum gain of a single antenna element. This assumes that the array consists

of equal elements, and mutual coupling between the elements can be ignored. The

question we investigate is whether or not it is possible to recover some (if not all) of

the lost gain by retuning the array’s complex array weights.

Initially, the research focuses on deriving a bound on the recoverable SOI array

gain by using the concept of superdirectivity in which the antenna elements are ar-

ranged in a manner such that the SOI gain GS > N × Go (see [3]). Per Newman et

al. [73], the array’s supergain is maximized when the array sensitivity factor K is

maximized. Gilbert and Morgan originally define sensitivity factor in [74] as

K =

N
∑

i=1
|âi|2

N
∑

i=1

∣

∣âi e+jβāR·d̄i
∣

∣

2
(4.31)

The definition of the array sensitivity factor in equation (4.31) is essentially the

ratio of the sum of the absolute value squared of the array weights to the array factor

squared in a given direction. Although it can be seen that K can be maximized

128

by minimizing the āR · d̄i term in the denominator sum (as is originally intended

by [74] and further developed by [73, 75, 76] in positioning elements to maximize an

array’s mainbeam gain), it can also be observed the array weights ˆ̄a also play a role

in increasing the array’s mainbeam gain beyond its canonically tuned maximum.

There are several issues with using superdirectivity in determining a limit on how

much SOI can be recovered after an antenna fault occurred. First, the relationship

between the array sensitivity factor and supergain as defined by Newman et al. [73]

is an empirical one, so it is unclear on what supergain is achieved when equation

(4.31) is maximized. Second, the array sensitivity factor in equation (4.31) is defined

around an array factor based definition of array gain, so it naturally ignored mutually

coupling between antenna elements. Third, the recent developments in [75,76] focuses

on applying superdirectivity to specific types of antennas or arrays, and the lack of

recent theory made it apparent that this is not a viable approach to deriving limits

on the post-fault recoverable SOI gain.

From theoretical observations on CCA radiation patterns in section 3.2.2, it can

be seen that the maximum gain for a naturally tuned CCA (i.e., all weights set to

âi = 1, ∀i ∈ [1, N]) is roughly have that of a CCA tuned to a specific direction

using canonical weights. It can be noted that recovered SOI gain is limited by this

difference. However, this is an empirical result limited to a specific type of array, so

it is not pursued further in this thesis.

129

4.6 Summary

In this chapter, new models are developed for hardware fault recovery in phased

antenna array systems. The problem is formulated assuming a single output port

antenna array and discussed new models in hardware fault detection, recovery, and

localization. The new models in fault detection and recovery are most useful in

aiding stochastic algorithms that did not automatically react to faults as if they

are changes to the environment. In fact, it is shown that the TDGA and SGA

automatically reacted to and recovered from faults as if the faults are either changes

in the environment (i.e., channel fades) or time-varying mobile signals. Hardware

fault localization models that can be applied to small antenna arrays discussed. In

the attempts to derive theoretical limits on how much SOI gain can be recovered, it

is concluded that such a limit does not exist in the general case, and these limits are

more applicable to specific array layouts.

130

Chapter 5

Dynamic Optimization of Beamform-
ing Arrays with Experimental In-

Situ and Simulation Results

This chapter presents experimental and simulation results of stochastic algorithms in

dynamically focusing electromagnetic energy on a SOI while simultaneously minimiz-

ing EM energy towards interfering sources. The results in this chapter support our

electromagnetic models on dynamic anti-jamming beamforming arrays, and we show

the fidelity of these these models as compared against in-situ experimental results.

We demonstrate the following.

First, we present a first time demonstration of in-situ optimization algorithm

theory and practice to advance adaptive antenna systems. This includes genetic algo-

rithm and simulated annealing algorithms that adapt a proof-of-concept four antenna

beamforming system in-situ to both stationary and mobile signals. Second, the per-

formance of stochastic search algorithms are compared in configuring an antenna array

for anti-jamming beamforming with both simulations and in-situ experiments. The

algorithms compared are genetic algorithms, simulated annealing, and hill-climbing.

Third, mapping of the fitness landscape via in-situ measurements show that this prob-

lem is multimodal thereby rendering classical optimization algorithms such as LMS

131

ineffective in solving the beamforming problem. Fourth, in addition to the stepped

mobile case where interfering signals change every MSt generations for the GA (ev-

ery P × MSt evaluations for the SA and Hill Climbing Algorithm (HCA) where P

is the GA population size), it is shown that the GA is capable of real-time tracking

and anti-jamming of continuously mobile jammers. Fifth, the fidelity of WIPL-D

MOM models of an antenna array is compared with azimuth radiation patterns mea-

sured in-situ with the hardware system inside an anechoic chamber. Sixth, Hamming

distances quantify the amount of genetic material that the SGA, TDGA, SA, and

HCA discard during the optimization process. In particular, simulations show that

the SGA is capable of tracking mobile jammers if the jammers move after the SGA

converges to previous settings because the mutation operator introduced new genetic

material into the population.

This chapter proceeds as follows. Section 5.1 discusses the experimental and

simulation setups including a list of the anti-jamming beamforming test cases that

are investigated. Section 5.3 discusses the FEM and MOM models with a discus-

sion of the AntNet program that allowed the WIPL-D MOM simulation software

to be integrated with Matlab. Section 5.4 discusses performance of the stochastic

algorithms in anti-jamming with static signals, and section 5.5 quantifies algorithm

performance when jammers changed directions in instantaneous steps. Section 5.6

evaluates the abilities of the algorithms to track interfering signals that continually

change directions. Finally, section 5.7 summarizes the results discussed this chapter.

132

5.1 Experimental and Simulation Setup

The antenna array is placed inside an anechoic chamber for experimental measure-

ments as shown in Figure 5.1. A horn antenna capable of wideband operation from

0.3 GHz to 3.0 GHz serves as SOI and Jammers since the computer sends commands

to a Velmex stepper motor that rotates a turn-table in the directions of the SOI and

Jammers individually. In addition to controlling the motor, the programs containing

the stochastic algorithms resides on the computer and set the digital step-attenuators

and analog phase shifters via National Instruments controllers.

VNA
Port 1 Port 2

SOI
Jammers

VNA = Vector Network Analyzer
SOI = Signal of Interest

Figure 5.1: Diagram showing experimental setup of a four-antenna array inside an
anechoic chamber.

In the current GA generation (SA / HCA evaluation), the program first rotates

the stepper motor to the SOI and measured all hardware setting solutions that the

algorithm chose in that generation (evaluation). The measurements collected are

S21(dB) values as seen by the VNA. The program then repeats this process by rotating

the motor to the next signal direction and measuring all hardware settings in that

133

direction. When all hardware settings in the current generation (evaluation) are

measured in the final jammer direction, the program rotates the stepper motor back

to 0° and repeats the process for the next generation (evaluation). The procedure

described above is repeated until the last GA generation (SA / HCA evaluation) is

measured. This measurement setup and procedure is the same one used to evaluate

the algorithms’ abilities to perform hardware fault recovery as described in Chapter

6.

Σ
4-WAY

DIVIDER

Phase Shifter
P4

Step Attn.
ATT41

Figure 5.2: Block diagram of a four-antenna anti-jamming beamforming array.

A block diagram of the proof-of-concept system is shown in Figure 5.2. The

array consists of four 2.4 GHz WiFi antennas arranged in a equilateral triangle with

a reference antenna located in the center of the array. The triangle’s vertices are

inscribed on a circle with radius λ0/2 where λ0 is the free-space wavelength at 2.4

GHz. Each non-reference path includes a single Miteq 2.4 GHz analog phase shifter

with±5° tolerance and two 15.5 dB five-bit digital step-attenuators with serial-clocked

latched enabled controls.

For the experiments and simulations described in this chapter, step-attenuators

ATT22, ATT32, and ATT42 are set to 0 dB. When the algorithms chose hardware

134

settings, the phase-shifters are digitized with five bits with 11.6° per bit. With three

step-attenuators and three phase shifters, the resulting setting string is 30 bits long

as shown in Figure 5.3. The example substring shown in Figure 5.3 encoded a step-

attenuator setting of 4.5 dB and a phase-shifter setting of 151°.

ATT21 ATT31 ATT41

Figure 5.3: Bitwise string encodings of array phase shifters and step-attenuators with
a sample encoding.

Our proof-of-concept anti-jamming beamforming system is shown in Figure 5.4

with the major components identified. The array hardware including phase shifters

and step-attenuators is mounted on a 16”× 18” FR4 perforated board and mounted

the assembly onto a 1/4” thick Plexiglas plate. The Plexiglas plate is mounted into

a Delrin pipe that is connected to a Velmex stepper-motor controlled turntable (not

shown). The antenna array layout shown in Figure 5.4b is translated into a CAD

model and served as the basis of the FEM and MOM models described in Section

5.3.

The test cases used to evaluate the algorithms are listed in Table 5.1. Stepped

mobile means that jammer DOAs remains constant forMSt generations (every P×MSt

SA / HCA evaluations), switched to another set of DOAs every MSt + 1 generation

135

Horn
Antenna

(a)

Power
Combiner

Phase
Shifters

Antennas

Step
Attenuators

Hardware
Controllers

(b)

Figure 5.4: Photographs of 2.4 GHz antenna array mounted inside CMU’s anechoic
chamber: (a) Showing chamber horn antenna, (b) Beamforming array with major
components identified.

Table 5.1: List of anti-jamming scenarios explored by experiments (Exp) and simu-
lations (Sim).

Static Stepped Mobile Continuous Mobile

Algorithm 2 jammer 3 Jammer 2 Jammer 2 Jammer

SGA Exp & Sim Exp & Sim Sim Sim

TDGA Exp & Sim Sim Exp & Sim Sim

SA Exp & Sim Exp & Sim Sim Sim

HCA Sim Sim Sim Sim

(P × MSt + 1 evaluation) and remains constant for the next MSt generations (P ×

MSt evaluations). Continuous mobile signals changed their DOAs every generation

(evaluation). The SGA and TDGA hardware experiments expand upon the results

discussed in [77–80]. Hardware experiments and simulations are conducted with both

simulated annealing and the hill-climbing algorithm to compare all four algorithms’

performances in terms of converges SINR fitness values and convergence times. The

136

Table 5.2: Parameters used in SGA and TDGA in-situ experiments and simulations.

Parameter Value(s)

Probability of Crossover Pc 0.6

Probability of Mutation, Pm

0.02 gen 0–5;

0.01 after

Number of Elite Strings, ne 4

Population Size, M 200

Number of Generations (Static Signals) 51

Number of Generations (Stepped Mobile Signals) 61

Stepped Mobile Signal Switching Period in Generations 10

Number of Generations (Continuous Mobile Signals) 51 & 101

SGA and TDGA hardware experiment results are used to evaluate simulation fidelity

and to show that simulations are comparable to hardware experiments. We performed

simulations only on all HCA test cases, all continuous mobile cases, and SGA and SA

stepped mobile cases.

Table 5.3: Parameters used in simulated annealing in-situ experiments and simula-
tions.

Parameter Value(s)

Initial Probability of Mutation, Pi 0.55

Final Probability of Mutation, Pf 9.5 × 10−4

Metropolis Condition Temperature Scaling Factor, TMet 10

Total Evaluations (Stationary Signals), νTot 10200

Total Evaluations (Stepped Mobile Signals), νTot 12200

Total Evaluations (Continuous Mobile Signals), νTot 10200 & 20200

137

We list our SGA and TDGA parameters (common to both hardware experiments

and simulations) in Table 5.2. These are the same settings used in [34, 77–80]. The

SA hardware experiment and simulation parameters are listed in Table 5.3. The tem-

perature schedule cooling rate τ and schedule offset Toff are calculated using equation

(3.27) with Pi = PMut,Mod (ν = 1) and Pf = PMut,Mod (ν = νTot) as its inputs. The

HCA experiments used the same SA settings except the Metropolis Condition tem-

perature scaling factor, TMet, is set to 1× 10−18 to turn off the Metropolis Condition.

5.2 SINR Fitness Landscape

The anti-jamming beamforming problem is a combinatorial search problem because

the array’s step-attenuators used binary control settings, and its analog phase shifter

settings are digitized to five bits (with 11.6° per bit). With a 30-bit long hardware

setting string, the total number of possible combinations is 230. Given that the time

required to set the three step-attenuators and three phase shifters is roughly 100

milliseconds, a brute force search of the entire parameter space would take more than

3.4 years. Because signals can change directions in seconds, this is clearly unfeasible.

To plot the fitness landscape, the 30-bit string shown in Figure 5.3 is divided into

two parts: The first 15-bits with encoded settings for the three step-attenuators, and

the last 15-bits with encoded settings for the phase shifters. Each binary sub-string is

converted into a decimal number with the resulting step-attenuator number plotted

on the x-axis, the phase-shifter number plotted on the y-axis, and the SINR fitness

138

plotted on the z-axis.

An example SINR (dB) fitness landscape for 30 independent trails of an SGA

with a population of 200 strings is shown in Figure 5.5. This figure indicates that

the landscape is highly multimodal with multiple peaks and values. This would

lead classical optimization algorithms such as LMS towards getting stuck in local

maxima. Even if LMS is perturbed with noise, it will move from one local maxima

due to another. GAs are less likely to get stuck in local maxima [24]. Examples of

other fitness landscapes explored by the SGA and TDGA can be found in [34, 79].

Figure 5.5: Example SINR (dB) fitness landscape for 30 independent trials of an SGA
with 200 strings population when SOI at 0° and two jammers at 45° and 200°.

5.3 FEM and MOM Models of Antenna Array

To account for mutual coupling between antennas and reflections off array hardware,

electromagnetic models of the proof-of-concept beamforming array are developed in

WIPL-D (MOM) and Ansys HFSS v15 (FEM).The models developed are shown in

139

Figures 5.6 – 5.8. The HFSS model (see Figure 5.6) includes the array hardware com-

ponents, coax cables, component mounting board, 0.25” Plexiglas turntable mounting

plate, and metal standoffs. There are three WIPL-D models developed: antennas only

(Figure 5.7), antennas with hardware components (Figure 5.8), and antennas with

hardware components and metal standoffs (Figure 5.9).

Figure 5.6: HFSS FEM model of the 2.4 GHz beamforming array with antennas,
hardware components, mounting boards, and coax cables.

Figure 5.7: WIPL-D MOM model of the 2.4 GHz beamforming array with antennas
only.

140

Figure 5.8: WIPL-D MOM model of the 2.4 GHz beamforming array with antennas
and hardware components.

Figure 5.9: WIPL-D MOM model of the 2.4 GHz beamforming array with antennas,
hardware components, and standoffs.

The three WIPL-D models have 44 unknowns, 432 unknowns, and 450 unknowns

with 0.23 second calculation times. The HFSS model shown in Figure 5.6 has 218785

141

total tetrahedra and reaches convergence with 18.6 minutes simulation time.

These MOM models of the four-antenna array are integrated with Matlab sim-

ulations using the AntNet software provides by Dr. Derek Linden. AntNet is an

add-on program to WIPL-D that calculates N -port antenna array far-field patterns

by using the N ×N impedance matrix Z, the diagonal N ×N port impedance (Zo)

matrix, and the theta (Ei
θ (θ,φ)) and phi (Ei

φ (θ,φ)) radiation pattern components

for each antenna i ∈ [1, N] from a single run of WIPL-D. Using a N -vector complex

voltage source VS, AntNet uses network theory and superposition to calculate the

beamformed electric fields per [72] as

V = Z (Z + Zo)
−1VS (5.1)

EΨ (θ,φ) =
N
∑

i=1

ViE
i
Ψ (θ,φ) , Ψ ∈ {θ,φ} (5.2)

The two in-situ cases are compared with WIPL-D and HFSS models to evaluate

the models’ fidelity as shown in Figures 5.10 – 5.11. Both cases stem from solutions

found by the stochastic algorithms in-situ and located inside an anechoic chamber.

The first case is when the SOI is at 0°, and the jammers are at 45° and 200°. The

second case is when the SOI remains at 0°, and the jammers are at 120° and 300°. It

can be seen that the WIPL-D models with antennas only, antennas plus hardware,

and antennas plus hardware and mounting bracket standoffs are very similar. They

also agree very well with the in-situ measurements shown in Figure 5.10. The HFSS

model in Figure 5.10 also agrees well with the in-situ azimuth pattern although the

142

HFSS pattern varies more across the azimuth angles due to the presence of dielectric

mounting plates.

0 15 30 45 60 75 90 105120135150165180195210225240255270285300315330345360
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Azimuth Angle (Degrees)

N
or

m
al

iz
ed

A
rr

ay
G

ai
n

(d
B

)

In−Situ

WIPL Model HW only
WIPL Model HW +Standoffs
HFSS Model HW +Standoffs

WIPL Antennas only

Att (dB): 0, 3, 13.5, 2.0
Pha (Rad): 0, 4.459, 1.621, 2.635

Figure 5.10: Comparison of in-situ measurements with WIPL-D and HFSS models
of a four-antenna array when the SOI is at 0° and the jammers are at 45° and 200°.

0 15 30 45 60 75 90 105120135150165180195210225240255270285300315330345360
−40

−35

−30

−25

−20

−15

−10

−5

0

Azimuth Angle (Degrees)

N
or

m
al

iz
ed

A
rr

ay
G

ai
n

(d
B

)

In−Situ

WIPL Model HW only
WIPL Model HW +Standoffs
HFSS Model HW +Standoffs

WIPL−D Antennas only

Att (dB): 0, 3, 3.5, 1.0
Pha (Rad): 0, 5.472, 2.283, 0.608

Figure 5.11: Comparison of in-situ measurements with WIPL-D and HFSS models
of a four-antenna array when the SOI is at 0° and the jammers are at 120° and 300°.

Although the WIPL-D and HFSS models do not capture all of the nulls in Figure

5.11, the null depths at 120° and 300° are conservative compared to in-situ measure-

ments, and simulations with the stochastic algorithms predict lower than expect SINR

fitness. The WIPL-D and HFSS models track the in-situ azimuth pattern in Figure

5.10 with conservative nulls, and the azimuth patterns for three WIPL-D models dif-

143

fer little compared to the HFSS azimuth pattern. Thus, the WIPL-D simulations

have reasonably good fidelity to justify evaluation of results obtained by algorithm

simulations.

Even though the HFSS model includes both dielectric mounting plates and coax

cables as seen in Figure 5.4, its resulting azimuth pattern differs little from the WIPL-

D patterns. Although it is possible that control cables and hardware non-linearities

not included in the model created the additional nulls in Figure 5.10, the fidelity of

the current models are high enough that further developing the models is deemed

unnecessary.

5.4 Algorithm Performance With Static Signals

This section discusses in-situ measurements of the SGA, TDGA, and SA in thwarting

jammers when all of the signals are static. As shown in Table 5.1, algorithm perfor-

mance is compared in maximizing SINR with two jammers and with three jammers.

Because the three jammer case is invested first during the research, it is discussed in

this section first.

5.4.1 One SOI and Three Interfering Signals

Our first set of experiments begins with an investigation into if and how well the SGA

can adapt to maximize SINR with one SOI and three jammers via simulations of the

array operating in a Rayleigh fading environment [34]. The array is modeled using

144

an array factor equation that did not account for mutual coupling between antennas,

so the next step is to investigate the SGA’s performance inside an anechoic chamber.

In-situ experiments begins with the single SOI and three jammers case as described

in [77].

A test case with the SOI at 60° and the three jammers at 105°, 245°, and 320° is

discussed. The results with a population size of 200 strings is shown in Figure 5.12 and

with a population of 400 strings in Figure 5.13. The shallowest null depth in both cases

is 12.1 dB down from the SOI. This corresponds to a SINR fitness of approximately 9

dB. This indicates that increasing the population size from 200 strings to 400 strings

has no effect on SGA performance. The number of signals equaled the number of

antennas in the array, so this makes the beamforming problem more difficult for the

SGA.

Figure 5.12: In-situ measurements of SGA optimized azimuth radiation pattern with
a single SOI at 60° and three jammers at 105°, 245°, and 320°. The SGA has a
population size of 200 strings

A second test case with the SOI at 0° and three jammers at 45°, 200°, and 300° is

145

Figure 5.13: In-situ measurements of SGA optimized azimuth radiation pattern with
a single SOI at 60° and three jammers at 105°, 45°, and 320°. The SGA has a
population size of 400 strings

evaluated to verify that the SGA handles other signal direction sets. A best case

performance graph (sampled from several independent runs) is shown in Figure 5.14.

It exhibits SGA search progress where the SGA performed useful search within the

first 15 generations and converges to its final value by generation 20. The maximum

SINR at convergence is 15.8 dB which is several decibels higher than what is measured

for the one SOI and three jammer case in [77]. The SGA in this experimental run

has a population size of 200 strings.

The corresponding initial and converged azimuth radiation plots are shown in

Figure 5.15. Although the SOI lost 1 dB of array gain, the SGA improves all three

jammers’ null depths significantly with the worst case final null depth 17.2 dB down

from the SOI. Another means of evaluating the GA’s convergence time as is to cal-

culate the population’s mean and standard-deviation Hamming distance as noted by

[81]. The mean and standard-deviation for the second single SOI and three jammer

146

0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12

14

16

Generation Number

F
itn
es
s
F
un
ct
io
n
V
al
ue

(S
IN
R
,d
B
)

fitnessMean (dB)
fitnessMax (dB)

Figure 5.14: In-situ best-case learning curve of SGA with a single SOI at 0° and three
jammers at 45°, 200°, and 300°. The SGA has a population size of 200 strings.

case described above is shown in Figure 5.15. It can be seen that the SGA con-

verges by generation 15 since the mean Hamming distance dropped to 0.05, and the

standard-deviation leveled out to approximately 0.035.

0 15 30 45 60 75 90 105120135150165180195210225240255270285300315330345360
−30

−25

−20

−15

−10

−5

Phi (Degrees)

A
rr
ay

G
ai
n
(d
B
i)

Gen0
Gen35

J 1 J 2 J 3

Figure 5.15: In-situ best-case SGA optimized azimuth radiation pattern with a single
SOI at 0° and three jammers at 45°, 200°, and 300°. The SGA has a population size
of 200 strings

Hamming distance can also be used to measure how much genetic information

that the GA discarded as it converges to a final solution. If the initial population

147

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 5.16: In-situ best-case Hamming distance curve of SGA with a single SOI at
0° and three jammers at 45°, 200°, and 300°. The SGA has a population size of 200
strings

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

Generation Number

itn
e

un
tio
n
V
al
ue

(S
IN
R
,d
B
)

fitnessMean (dB)
fitnessMax (dB)

Figure 5.17: AntNet WIPL-D (third model) best-case learning curve of SGA with a
single SOI at 0° and three jammers at 45°, 200°, and 300°. The SGA has a population
size of 200 strings

is chosen purely at random, the mean Hamming distance as a percentage is 0.5.1

The mating selection process causes multiple copies of the same string to occupy the

population as the GA converges causing information contained by deceased strings

to be lost. As is shown in Section 5.5, the mutation operator causes the mean and

1In Figure 5.16, the initial mean Hamming distance is 0.4 because the two MSBs (4 dB and 8
dB settings) for the three step-attenuators are set to logic 0 at initialization. Six out of thirty bits
for every string are non-random corresponding to an 80% initially random population.

148

standard-deviation Hamming distance to remain small but non-zero during conver-

gence. Convergence is also non-final in an AWGN channel due to the mutation

operator’s reintroduction of information into the population.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 5.18: AntNet WIPL-D (third model) best-case Hamming distance curve of
SGA with a single SOI at 0° and three jammers at 45°, 200°, and 300°. The SGA has
a population size of 200 strings

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
(d
B
i)

Azimuth Angle (Degrees)

Gen#0
Gen#50

J 1 J 2 J 3

Figure 5.19: AntNet WIPL-D (third model) best-case SGA optimized azimuth radi-
ation pattern with a single SOI at 0° and three jammers at 45°, 200°, and 300°. The
SGA has a population size of 200 strings

Because the 95% confidence intervals for in-situ measurements using Gaussian

and Student-t distributions are numerically close (see [79]), less than thirty indepen-

149

dent runs of the SOI at 0° and jammers at {45°, 200°, 300°} are collected in-situ.

Because it is shown that the WIPL-D model produced azimuth patterns agreed well

with in-situ measurements in Section 5.3, 30 independent simulations of the SGA for

the same signal set are run since simulation data can be generated quickly. The best

case performance graph, Hamming distance plots, and azimuth radiation patterns are

shown in Figures 5.17 – 5.19. Performance graphs with statistical comparisons are

plotted in Figure 5.20 based on the best performing solutions from each independent

trial.

The performance curves shown in Figure 5.17 behave in the same manner as

the in-situ performance curves of Figure 5.15. A similar pattern is observed in the

Hamming distance plots of Figures 5.16 and 5.18. Like the in-situ run, the simulated

SGA performed useful search in the first 15 generations and converges to a final

solution by generation 20.

Because the SGA performed its optimization search on a population, it is useful

to create a “best of the best” statistical performance graph by plotting several curves

versus generation number over the 30 independent runs. In Figure 5.20, the maxi-

mum of each trial’s best solution is plotted along with the average of the best and

minimum of the best. The confidence intervals are also calculated. The shaded region

surrounding the average of the best represents the 95% confidence intervals using the

Student-t distribution, and the error bars represent the 95% confidence intervals as-

suming Gaussian distribution. The Student-t confidence interval is indistinguishable

150

from the Gaussian confidence interval which is consistent considering the number of

samples used in the calculation.

The maximum of the best and minimum of the best curves along with the confi-

dence intervals places bounds on the expected SINR fitness. The best overall solution

has a 21.6 dB SINR while the worst of the best solutions has 16.1 dB SINR. This

represents a 5.5 dB total spread between the set of best solutions finds in 30 inde-

pendent trials. If a good solution is chosen at random from the converges solution

space, 95% of solutions chosen are expected to be found within a confidence interval

C around the average of the best. The 99% confidence intervals (not shown) are also

calculated, and it is observed that those confidence intervals occupied more of the

region between the maximum of and minimum of the best curves.

0 10 20 30 40 50
6

8

10

12

14

16

18

20

22

GenerationNumber

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 5.20: SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers at 45°, 200°,
and 300°. The SGA has a population size of 200 strings

Thirty independent trials are performed where the TDGA optimizes the antenna

151

array to focus EM energy on the SOI at 0° and to minimize energy towards the

jammers at 45°, 200°, and 300°. The statistical performance curves and the initial

and final radiation patterns for the best solution are plotted in Figures 5.21 and

5.22. Compared to the SGA, the TDGA converges roughly in the same number of

generations to the same maximum SINR value. However, the minimum of the best

solution found by the TDGA has a 17.6 dB SINR compared to the SGA’s minimum of

the best 16.1 dB SINR solution. The spread of the set of the best converges solutions

for the TDGA is 4.1 dB: a one dB improvement compared to the SGA. The TDGA’s

Student-t and Gaussian 95% confidence intervals are indistinguishable and represent

smaller bounds than the SGA’s 95% confidence intervals. The converged best-case

TDGA optimized azimuth radiation pattern shown in Figure 5.22 is similar to the

best-case SGA optimized pattern plotted in Figure 5.19.

0 10 20 30 40 50
4

6

8

10

12

14

16

18

20

22

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 5.21: TDGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers at 45°, 200°,
and 300°. The TDGA has a population size of 200 strings

152

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
(d
B
i)

Azimuth Angle (Degrees)

Gen#0
Gen#50

J 3J 2J 1

Figure 5.22: AntNet WIPL-D (third model) best-case TDGA optimized azimuth
radiation pattern with a single SOI at 0° and three jammers at 45°, 200°, and 300°.
The TDGA has a population size of 200 strings.

The remainder of this subsection analyzes the Simulated Annealing and Hill

Climbing Algorithms in maximizing SINR when three static jammers are present. The

HCA is SA with the Metropolis condition turned off such that only better solutions

(compared to the most recent ones) are kept.

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−50

−40

−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 5.23: SA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers at 45°, 200°,
and 300°.

153

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
(d
B
i)

Azimuth Angle (Degrees)

a 1
a 10200

321

Figure 5.24: AntNet WIPL-D (third model) best-case SA optimized azimuth radiation
pattern with a single SOI at 0° and three jammers at 45°, 200°, and 300°.

The performance curves for 30 independent simulated runs of the SA algorithm

along with the best-case azimuth plots are shown in Figures 5.23 and 5.24. For consis-

tency with the SGA and TDGA experiments, we run SA for 10,200 evaluations where

every 200 evaluations represent one GA generation of 200 strings, and an evaluation

represents the set of calculations necessary to calculate one solution’s SINR value.

Whereas the SGA and TDGA perform most of their useful search on average within

ten generations for the three jammer case, SA requires on average 7,140 evaluations.

SA is thus slower than the GA by a factor of approximately 3.5 since this represents

an equivalent of almost 36 generations. Using the sigmoidal temperature schedule

defined by Table 5.3, SA explores the search space for over 5,100 evaluations before

it begins its exploitation stage.

When SA converges, the best solution has 21.5 dB SINR, and the worst solution

has 16.4 dB SINR. This represents a 5.1 dB spread which is the same compared to the

set of best solutions found by the SGA. The azimuth radiation patterns from the SA

154

trial that produced the best converges solution are shown in Figure 5.24. The azimuth

plot from evaluation 10,200 is very similar to the best SGA and TDGA azimuth plots

at convergence which is expected, as the three algorithms produce similar best-case

results at convergence.

After performing SGA and TDGA experiments in-situ with the four-antenna

array in an anechoic chamber, SA’s performance is investigated in maximizing SINR

first with two static jammers and then with three static jammers. Our results over

thirty independent runs are shown in Figures 5.25 – 5.26.

Although the in-situ simulated annealing algorithm makes improvements, it did

not perform as well compared to simulation results. The final best case azimuth plot

shown in Figure 5.26 improves the SOI gain by a couple decibels and increases two

null depths by 2 dB to 3 dB. Due to intermittent data collection issues, SA would have

otherwise found better solutions, and this indicates a limitation to fault recovery with

stochastic algorithms. As is shown in Chapter 6, stochastic algorithms can recover

from hardware faults that occur within the RF paths between the antennas and the

radio, but this assumes that the array controller is 100% reliable. Because the antenna

array is in operation for several years prior to investigating SA, this assumption does

not hold. This supports the discussion that although hardware fault recovery can

keep the array operating longer under certain conditions, it does not negate the need

to have an array repaired in the field after faults occur.

The performance curves for thirty independent trials of the HCA in simulation are

155

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−60

−50

−40

−30

−20

−10

0

10

20

Evaluation Number

S
IN
R
(d
B
)

In−Situma (itne
av (itne it Student−t on Int S aded
av (itne it au on Int Bar
In−Situmin(itne

Figure 5.25: SA in-situ performance curves collected over 30 independent runs with
SOI at 0° and three jammers at 45°, 200°, and 300°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
(d
B
i)

Azimuth Angle (Degrees)

a 1
a 10200

1 2 3

Figure 5.26: Best-case SA in-situ optimized azimuth radiation pattern with a single
SOI at 0° and three jammers at 45°, 200°, and 300°.

shown in Figure 5.27, and the azimuth plots associated with the trial that contains the

best solution are plotted in Figure 5.28. HCA is as slow in comparison to simulated

annealing, as HCA converges by evaluation 7,140. However, HCA gets stuck at a

local optima near evaluation 2,040 and stays there until evaluation 4,080 when it

continues searching the parameter space. The maximum SINR value shown in the

156

performance graph at evaluation 10,200 is 21.33 dB, and the minimum SINR is 15.77

dB. This represents a 5.56 dB spread between the best and worst solutions that HCA

finds. The best-case azimuth plot shown in Figure 5.28 is similar in comparison to

the solutions found by SGA, TDGA, and SA.

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 5.27: HCA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and three jammers at 45°, 200°,
and 300°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
(d
B
i)

Azimuth Angle (Degrees)

a 1
a 10200

1 2 3

Figure 5.28: AntNet WIPL-D (third model) best-case HCA optimized azimuth radi-
ation pattern with a single SOI at 0° and three jammers at 45°, 200°, and 300°.

157

The simulations show that the SGA and SA obtain higher converges solutions

compared to in-situ results. Although it is shown that MOM based simulations have

good fidelity when compared to in-situ measurements, there are other reasons why

the simulations predict higher converges values. Aside from intermittent controller

faults that interrupt the simulated annealing optimization process, there exist non-

linearities within the RF path between the antennas and the RF power summer that

cannot be modeled in simulation. Both WIPL-D and HFSS place the generators

at the antennas whereas the hardware system has coax cables, phase shifters, step-

attenuators, and adapters after the antennas. The phase-shifters are also non-linear

devices whose impedance matches vary with their control voltages. Although the coax

cables are the same length, phase variances in the phase shifters due to impedance

mismatches affect the overall solution and cause the in-situ results to differ from

simulations.

5.4.2 One SOI and Two Interfering Signals

Following [77], investigations are performed showing how well the SGA and TDGA

performed in maximizing SINR when two static jammers are present, and better

results are obtained at convergence. The double jammer case provides an extra degree-

of-freedom which makes the problem easier to solve by the optimization algorithms.

Simulations of the SGA, TDGA, SA, and HCA are run with 30 independent trials

per algorithm.

158

0 10 20 30 40 50
8

10

12

14

16

18

20

22

24

26

28

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 5.29: SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers at 45° and
200°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
(d
B
i)

Azimuth Angle (Degrees)

Gen#0
Gen#50

J 1 J 2

Figure 5.30: AntNet WIPL-D (third model) best-case SGA optimized azimuth radi-
ation pattern with a single SOI at 0° and three jammers at 45° and 200°.

A performance graph for the SGA simulations with an SOI at 0° and two jammers

at 45° and 200° is shown in Figure 5.29, and the best case optimized azimuth radiation

pattern is shown in Figure 5.30. As expected, the best solutions that the SGA found

for the two jammer case are significantly better than the three jammer case. The SGA

159

performed most of its useful search within the first 10 generations, and the SGA on

average converges within 15 generations. The maximum of the best solutions found

in the 30 trials has an SINR of 27.69 dB, and the minimum of the 30 best solutions

found has a 20.67 dB SINR. The 95% confidence intervals are ±0.65 dB and ±0.67

dB for the Gaussian and Student-t distributions, respectively.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Ge er tion Number

S
IN
R
(d
B
)

In−Situmax(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
In−Situmin(FitMax)

Figure 5.31: SGA in-situ performance curves collected over 30 independent runs with
SOI at 0° and two jammers at 45° and 200°.

0 15 30 45 60 75 90 105120135150165180195210225240255270285300315330345360
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Azimuth Angle (Degrees)

A
rr

y
G
ai
n
(d
B
i)

Gen0
Gen50
Gen100

J 1
J 2

Figure 5.32: Best-case SGA in-situ optimized azimuth radiation pattern with a single
SOI at 0° and two jammers at 45° and 200°.

160

Thirty independent runs of the SGA with 101 generations are run in the anechoic

chamber. By generation 50, the best solution found by the SGA in-situ has a 52.7

dB SINR at generation 50, and the best-case SINR increases to 67.8 dB (see Figure

5.32). This is higher than predicted by the simulations. The 95% confidence interval

around the mean of the best solutions shown in Figure 5.32 is ±2.67 dB at generation

50 and increases to ±3.30 dB by generation 100 assuming a Gaussian distribution.

The confidence intervals using a Student-t distribution is ±2.79 dB at generation 50

and increases to ±3.45 dB by generation 100. The overall error between the two

methods is a constant -4.17% overall all generations with the Student-t distribution

predicting slightly smaller confidence intervals that the Gaussian distribution.

The azimuth plots for the best solution out of 30 runs are shown in Figure 5.32.

The patterns plotted are consistent with the SINR values seen in the performance

plots with the second jammer’s null-depth increases by a few decibels. The best-case

generation 50 and 100 in-situ radiation patterns are similar in shape compared to the

radiation patterns predicted by the SGA simulations (see Figure 5.30).

The results from performing 30 independent simulations of the TDGA are shown

in Figure 5.33. The overall performance is better compared to the SGA simulations

where 30 independent runs of the TDGA produced a maximum 27.98 dB SINR, and

a minimum (out of 30 best solutions) 22.49 dB SINR. The 95% confidence intervals at

generation 50 are ±0.55 dB and ±0.57 dB for Gaussian and Student-t distributions.

The best-case generation 0 and generation 50 azimuth radiation plots are shown in

161

0 10 20 30 40 50
5

10

15

20

25

30

GenerationNumber

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 5.33: TDGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers at 45° and 200°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#50

J 1 J 2

Figure 5.34: AntNet WIPL-D (third model) best-case TDGA optimized azimuth
radiation pattern with a single SOI at 0° and three jammers at 45° and 200°.

Figure 5.36. The patterns produced by AntNet WIPL-D are consistent with the SINR

level produced by the best solution that the TDGA found in this set of 30 independent

runs, and the pattern is similar to the patterns produced in the best case by both

SGA simulations and in-situ measurements.

We present the performance graphs for 30 independent in-situ runs of our TDGA

162

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Generation Number

S
IN
R
(d
B
)

in−Situmax(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
in−Situmin(FitMax)

Figure 5.35: TDGA in-situ performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

Gen0
Gen50
Gen100

21

Figure 5.36: Best-case TDGA in-situ optimized azimuth radiation pattern with a
single SOI at 0° and two jammers at 45° and 200°.

along with the best-case azimuth before / after optimization plots in Figures 5.37

and 5.38 with the algorithm run for 101 generations. The maximum SINR values at

generation 50 and 100 are 51.26 dB and 55.50 dB. The 95% confidence intervals are

±2.12 dB and ±2.21 dB at generation 50 and ±2.47 dB and ±2.37 dB at generation

100 for the Gaussian and Student-t distributions respectively. The TDGA simulations

163

are more conservative in predicting the converges SINR values, and the best-case

converges in-situ azimuth plots shown in Figure 5.36 are similar in shape to the

AntNet WIPL-D model’s azimuth plots. However, the 95% confidence intervals based

on in-situ measurements are roughly 4 times larger than the confidence intervals

predicted by the simulations.

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−40

−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 5.37: SA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers at 45° and
200°.

The results for 30 simulations of SA are shown in Figures 5.37 and 5.38, and the

resulting performance graphs as well as the best case azimuth plots for the in-situ

measurements are shown in Figures 5.39 and 5.40. The simulations agreed well with

in-situ measurements where the simulated SA algorithm gave conservative values for

the maximum SINR values at convergence. Like the static three jammer case, SA is

slower than both the SGA and TDGA to converge, but SA converges slightly faster

when only two jammers are present.

164

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

a 1
a 10200

1 2

Figure 5.38: AntNet WIPL-D (third model) best-case SA optimized azimuth radiation
pattern with a single SOI at 0° and three jammers at 45° and 200°.

The maximum SINR value predicted by the SA simulations is 26.09 dB at evalu-

ation 10,200, and the minimum SINR value is 21.09 dB. The 95% confidence intervals

based on 30 independent runs is ±0.51 dB and ±0.53 dB for Gaussian and Student-t

distributions. This is a 4.17% difference which is consistent with the number of in-

dependent trials used in the calculations. The in-situ measurements finds a solutions

with a maximum SINR of 48.2 dB at evaluation 10200, and the worst case solution

it finds during that evaluation has a 13.83 dB SINR value. The 95% confidence in-

tervals based on 30 independent in-situ trials are ±2.52 dB and ± 2.63 dB assuming

Gaussian and Student-t distributions, respectively. The in-situ confidence intervals

are larger than the simulated confidence intervals by a factor of 5. This is likely

due to step-attenuator and phase shifter tolerances that can not be accounted for in

simulations.

Unlike the three-jammer case, SA begins its exploitation stage both in simulation

after evaluation 3060 and in-situ after evaluation 4080. Because the two-jammer static

165

case is easier to solve, the average fitness begins increasing linearly earlier during the

algorithm’s search. The best-case converges azimuth plots for (shown in Figures 5.38

and 5.40) are similar in shape with the AntNet WIPL-D model predicting shallower

null-depths.

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−60

−40

−20

0

20

40

60

Evaluation Number

S
IN
R
(d
B
)

In−Situmax(itne
av (itne it Student−t on Int S aded
av (itne it au on Int Bar
In−Situmin(itne

Figure 5.39: SA in-situ performance curves collected over 30 independent runs with
SOI at 0° and two jammers at 45° and 200°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

a 1
a 10200

1 2

Figure 5.40: Best-case SA in-situ optimized azimuth radiation pattern with a single
SOI at 0° and two jammers at 45° and 200°.

The performance curves and azimuth plots for the HCA simulations are shown in

166

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 5.41: HCA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with SOI at 0° and two jammers at 45° and
200°.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

a 1
a 10200

2
1

Figure 5.42: AntNet WIPL-D (third model) best-case HCA optimized azimuth radi-
ation pattern with a single SOI at 0° and three jammers at 45° and 200°.

Figures 5.41 and 5.42. At evaluation 10,200, the best solution has a 21.16 dB SINR,

and the worst solution has a SINR of 18.20 dB. The 95% confidence intervals at the

final evaluation are ±0.61 dB and ±0.63 dB for Gaussian and Student-t distributions.

The final azimuth plot for the best converges solution is similar in shape and null-

depths compared to the azimuth plots found by the SGA, TDGA, and SA simulations.

167

5.5 Algorithm Performance With Stepped Mobile
Signals

It is desirable to investigate the performance of stochastic algorithms in maxi-

mizing an array’s SINR when the signals are mobile. Weile and Michielssen discuss

the simulated performance of a GA with dominance and diploidy [28]. Because they

invested a case where a set of interfering signals changed directions every 20 gener-

ations, and their GA is able to adapt in simulations, it is a natural place to verify

their results in-situ with a hardware system.

A switching cycle of 10 generations is chosen because this presents a situation

where the algorithm has not converged before the signals change directions. The

situation of one SOI with two mobile jammers is considered, and performance is

evaluated for the SGA, TDGA, SA, and HCA. The SOI is held constant at 0° and the

interfering signals originate at 45° and 200°. The jammers are switched to 120° and

300° after 10 generations, are held at those positions for another 10 generations, and

are switched back to their original directions.

Performance curves for 30 independent trials of the SGA adapting to this sit-

uation are shown in Figure 5.43. It can be seen that the SGA adapts to mobile

jammers that change directions every 10 generations. The mobility of signals keep

the SGA in flux, as the mean and standard-deviations of the population’s Hamming

distance generally increase after the jammers change directions (Figure 5.43). The

SGA clearly does not converge by the time the jammers change directions because

168

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Signal
Set#2

Signal
Set#2

Signal
Set#2

Signal
Set#1

Signal
Set#1

Signal
Set#1

Figure 5.43: SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers
that switch between [45°, 200°] and [120°, 300°].

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal
Set#1

Signal
Set#1

Signal
Set#1

Signal
Set#2

Signal
Set#2

Signal
Set#2

Figure 5.44: Hamming plot for best out of 30 independent SGA simulations using
AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers that
switch between [45°, 200°] and [120°, 300°].

the average SINR fitness of the best solutions do not level out, and the population

mean and standard-deviation Hamming distance do not drop and stay below 0.05.

The resulting azimuth plots for the best solution found by the SGA are shown in

169

Figure 5.45. The SGA clearly moves the two nulls from 45° and 120° to 200° and

300° even though the SGA sacrificed the SOI’s gain by about 3 dB in the process.

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5
A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#50
Gen#60

1
2

1
1

2
2

2
1

Figure 5.45: Best-case azimuth radiation patterns out of 30 independent SGA sim-
ulations using AntNet WIPL-D (third model) with static SOI at 0° and mobile two
jammers that switch between [45°, 200°] and [120°, 300°].

The results shown in Figures 5.43 – 5.45 are unexpected, as it is expected that the

SGA cannot adapt to mobile signals because the crossover operator tends to create

multiple copies of the same string as the SGA moves towards convergence [24,26,27].

To understand what allowes the SGA to adapt to mobile signals within 10 generations,

the experiment is modified. With 30 independent simulation trials, the SGA is run

for a total of 101 generations. For the first 51 generations (including 0th generation),

the SOI and jammers originated at 0°, 45°, and 200°. For the final 50 generations,

the SOI’s direction is held constant, but the jammers move to 120° and 300°.

Two separate experiments are conducted with these signal direction sets. In the

first experiment, the same probability of mutation (Pm = 0.01) is used in the final 50

170

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WI 3rd ode ax it ax
a it ax it Student t on Int S aded
a it ax it Gau on Int Bar
WI 3rd ode in(it ax

Signal Set # 2

Signal Set # 1

Figure 5.46: SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers
that switch between [45°, 200°] and [120°, 300°]. The SGA is run for 101 generations,
and jammers changed directions after 51 generations with mutation turned-on after
generation 50.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal Set#1 Signal Set#2

Figure 5.47: Hamming plot for best out of 30 independent SGA simulations using
AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers that
switch between [45°, 200°] and [120°, 300°]. The SGA is run for 101 generations,
and jammers changed directions after 51 generations with mutation turned-on after
generation 50.

171

generations with the resulting performance curves and Hamming distance plots shown

in Figures 5.46 and 5.47. In the second experiment, the probability of mutation is

turned off (i.e., Pm = 0) for the final 50 generations, and the resulting performance

graphs are shown in Figures 5.48 and 5.49.

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)

avg(FitMax) with Student−tConf. Int. Shaded

avg(FitMax) with Gauss Conf. Int. Bars

WIPL−D 3rdModel min(FitMax)

Signal Set#2Signal Set#1

Figure 5.48: SGA simulated performance curves collected over 30 independent runs
using AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers
that switch between [45°, 200°] and [120°, 300°]. The SGA is run for 101 generations,
and jammers changed directions after 51 generations with mutation turned-off after
generation 50.

The purpose of these two experiments is two-fold. First, the SGA is allowed

to operate on the first signal set until it converges, so its performance when the

jammers changed direction can be observed. Second, it is necessary to understand

the mechanism that allows the SGA to re-adapt to mobile signals in an AWGN

channel. In fact, after mutation is turned off, the SGA’s SINR fitness drops and

remains between ±3 dB from generation 51 onward. The population’s mean and

standard-deviation Hamming distance also dropped to 0, as this indicates that the

172

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal Set#2Signal Set#1

Figure 5.49: Hamming plot for best out of 30 independent SGA simulations using
AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers that
switch between [45°, 200°] and [120°, 300°]. The SGA is run for 101 generations,
and jammers changed directions after 51 generations with mutation turned-off after
generation 50.

SGA eventually converges to a population that consists of 200 copies of the same

string. This is consistent with the theory of GAs using mate-selection and crossover

only as De Jong discusses in [27]. It is important to note that we do not claim that the

SGA can adapt to mobile signals in a Rayleigh fading channel, but the importance

of the GA’s mutation operator should not be underestimated in understanding how

the GA operates in non-ideal environments.

The TDGA is simulated in maximizing SINR with one static SOI and two mobile

jammers. Measurements on the TDGA are collected in-situ in an anechoic chamber

with mobile jammers when the SOI is static or mobile [79,80]. In the simulations, the

SOI is static at 0°, and the jammers switch between {45°, 200°}, and {120°, 300°}

with performance curves shown in Figure 5.50. The TDGA performance graphs are

173

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

max(FitMax) avg(FitMax) with Student−tConf. Shaded avg(FitMax) with Gauss Conf. Bars min(FitMax)

Signal
Set#1

Signal
Set#2

Signal
Set#1

Signal
Set#2

Signal
Set#1

Signal
Set#2

Figure 5.50: TDGA performance curves collected over 30 independent simulations
using AntNet WIPL-D (third model) with static SOI at 0° and mobile two jammers
that switch between [45°, 200°] and [120°, 300°] every 10 generations.

0 10 20 30 40 50 60
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generation Number

95
%
C
on
fid
en
ce

In
te
rv
al
,C

(d
B
)

TDGA Gauss Conf TDGA Student−tConf SGA Gauss Conf SGA Student−tConf

Signal
Set#2

Signal
Set#2

Signal
Set#2

Signal
Set#1

Signal
Set#1

Signal
Set#1

Figure 5.51: Comparison of SGA and TDGA confidence intervals over 30 independent
simulations of each with static SOI at 0° and mobile two jammers that switch between
[45°, 200°] and [120°, 300°] every 10 generations.

slightly better than the SGA performance graphs in Figure 5.43 because the TDGA

has maximum out of the top 30 solutions with SINRs of 27.01 dB and 24.91 dB at

174

generations 50 and 60, and the SGA has maximum SINRs of 26.51 dB and 24.85 dB

at those generations. The SGA, however, has worst of the best solutions that dropped

below 0 dB SINR whereas the TDGA’s worst of the best stayed above 1 dB SINR

after the jammers changed directions. The 95% confidence intervals for both the SGA

and TDGA in simulation are similar with the TDGA having confidence intervals that

are 0.4 dB higher than the SGA after generation 20 (see Figure 5.51).

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n

am
m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal
Set#1

Signal
Set#2

Signal
Set#1

Signal
Set#2

Signal
Set#1

Signal
Set#2

Figure 5.52: TDGA Hamming distance plots for best solution found in 30 independent
simulations using AntNet WIPL-D (third model) with static SOI at 0° and mobile
two jammers that switch between [45°, 200°] and [120°, 300°] every 10 generations.

The Hamming distance vs. generation plots for the best solution that the TDGA

finds out of 30 independent runs is shown in Figure 5.52. The resulting azimuth plots

for the best solution are shown in Figure 5.53. The TDGA optimizes the patterns at

generations 50 and 60 to effectively null the jammers. The SOI gain decreases by 2

dB by generation 60, but its gain at generation 50 is the same compared to its initial

value. If the SOI changes directions, the mainlobe is wide enough such that the SOI

175

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai
n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#50
Gen#60

1
1

1
2

2
1

2
2

Figure 5.53: TDGA azimuth radiation plots for best solution found in 30 independent
simulations using AntNet WIPL-D (third model) with static SOI at 0°. Shown are
best generation 0 (initial) plot, generation 50 with two jammers nulled at [45°, 200°],
and generation 60 with jammers nulled at [120°, 300°].

can move to 75° without being significantly attenuated by the antenna array.

5.6 Algorithm Tracking of Continuously Mobile
Interference

In previous sections, mobile signals move instantaneously and allow the stochastic

algorithms time to settle into optimal solutions before the signals change directions

again. In this section we investigate how well the SGA and TDGA tracks mobile

interference that continually change directions, as this would prevent both algorithms

from finding optimal solutions before the interference changes directions.

In the first experiment, we run 30 independent runs of the SGA with the SOI

static at 0°, and two jammers that move continuously over a period of 50 generations

(plus generation 0) from {45°, 200°} to {120°, 300°}. The resulting performance graphs

176

for the best 30 solutions out of these 30 simulations are shown in Figure 5.54.

0 10 20 30 40 50
6

8

10

12

14

16

18

20

22

24

26

Generation Number

S
IN
R
(d
B
)

max(FitMax) avg(FitMax): Student−tConf. Int. Shaded avg(FitMax): Gauss Conf. Int. Bars min(FitMax)

Figure 5.54: SGA performance graphs for 30 independent runs with static SOI
at 0° and jammers that continuously move over a course of 50 generations from
{45°, 200°} to {120°, 300°}.

It is clear that from Figure 5.54 that the SGA can track the two mobile signals.

The SGA obtains a maximum (best of the best 30 solutions) SINR of 26 dB by

generation 7, and its fitness varies in a sinusoidal fashion with varying frequency

until the simulations end. The best case solution has a SINR of just over 20 dB, and

the worst of the best solutions has 15 dB SINR by generation 50. The worst of the

best 30 solutions maintains a SINR above 6 dB throughout the simulations. It is

also interesting to note that the Student-t and Gaussian 95% confidence intervals are

indistinguishable, and they vary widely versus generation number.

The resulting Hamming distance plots for the best final solution that the SGA

finds are shown in Figure 5.55. As with static signals, the SGA’s diversity quickly

177

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 5.55: SGA best-case Hamming distance plots with static SOI at 0° and jam-
mers that continuously move over a course of 50 generations from {45°, 200°} to
{120°, 300°}.

decreases since its mean Hamming distance dropped from 0.4 to less than 0.1 within 10

generations. For most of the run, its standard-deviation Hamming distance remains

around 0.05 but peaks near 0.075 twice after generation 30. The mean Hamming

distance also increases to 0.15 by generation 35, dipped to around 0.07 by generation

42, and peaks to a local maximum of roughly 0.18 by generation 48. This means that

the mutation operator allows enough population diversity for the crossover operator

to continuously track the mobile jammers.

It is clearly visible that the SGA successfully tracks the two continuously mobile

jammers as they move across the azimuth plane (see Figure 5.56). In this best-case

example, the SGA finds solutions that null the jammers in their initial positions. The

dashed vertical lines indicate the initial jammer azimuth positions, and the dashed

178

0 30 60 90 120 150 180 210 240 270 300 330 360
−60

−50

−40

−30

−20

−10

0

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#35
Gen#40
G n 45
G n 50

1 ni ia 1 ina 2 ni ia 2 ina

Figure 5.56: SGA best-case azimuth radiation plots with static SOI at 0° and jam-
mers that continuously move over a course of 50 generations from {45°, 200°} to
{120°, 300°}.

horizonal arrows indicate the jammers’ movements towards their generation 35 loca-

tions. It can be seen from Figure 5.56 that the SGA tracks the two mobile signals

from {45°, 200°} and places nulls with at least 15 dB depth with respect to the SOI

at the jammers’ generation 35 azimuth positions of {97.5°, 270°}. The SGA continues

tracking the two jammers until they reach their final positions where the SGA nulls

the two jammers 18.67 dB and 42.81 dB with respect to the SOI’s array gain. The

SOI array gain remains relatively constant for the azimuth plots shown, and the SGA

did a far better job of nulling the first jammer compared to the second jammer.

Before investigating the TDGA, it is necessary to evaluate and compare the

SGA’s performance when the two jammers’ rate of movement in azimuth are halved,

and the SGA is allowed to run for 100 generations (plus generation 0). This experi-

ment determines if the SGA can null the first jammer better with respect to the SOI

179

array gain if the SGA is given more time to adapt to slower signals. The performance

curves for the best 30 solutions out of 30 independent runs are shown in Figure 5.57.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WI 3rd ode ax it ax
a it ax it Student t on Int S aded
a it ax it Gau on Int Bar
WI 3rd ode in(it ax

Figure 5.57: SGA performance curves for 30 independent runs with static SOI
at 0° and jammers that continuously move over a course of 100 generations from
{45°, 200°} to {120°, 300°}.

Although the 30 best solutions that the SGA finds at generation 100 are better

compared to the solutions shown in generation 50 (see Figure 5.54), the SGA’s fitness

varies roughly in the same manner while it evolves solutions from generation 0 to

100. The best overall solution peaks above 26 dB SINR by generation 13, but the

worst of the best solutions has a SINR that drops to 5 dB around generation 25. The

Student-t and Gaussian 95% confidence intervals are also indistinguishable and vary

considerably versus generation number.

The best solution’s Hamming distance vs. generation number behaves in a man-

ner similar to the SGA 50 generation experiment (see Figure 5.58). The mean Ham-

180

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 5.58: SGA best-case Hamming distance plots with static SOI at 0° and jam-
mers that continuously move over a course of 100 generations from {45°, 200°} to
{120°, 300°}.

ming distance quickly drops below 0.1 by generation 10, and it oscillates until the

end of the simulation peaking above 0.1 mean Hamming distance several times. The

standard-deviation Hamming distance varies somewhat but remains close to a value

of 0.05. This behavior comes from the mutation operator that reintroduces enough

diversity back into the population such that the crossover operator can track the two

continuously mobile jammers.

For the best-case solution that the SGA finds, the azimuth radiation patterns in

Figure 5.59 indicate that the SGA performs better when the two jammers continuously

move over a period of 100 generations. The slower speed allows the SGA more time

to track the signals and find better solutions. By generation 100, the SGA places

a null at 120° that is 23.37 dB down from the SOI, and the null placed at 300° is

25.76 dB down from the SOI. The generation 100 SOI gain shown in Figure 5.59 is

181

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#85
G n 90
G n 95
G n 100

2 ina1 Ini ia 1 ina 2 Ini ia

Figure 5.59: SGA best-case azimuth radiation plots with static SOI at 0° and jam-
mers that continuously move over a course of 100 generations from {45°, 200°} to
{120°, 300°}.

roughly the same as the generation 50 SOI gain in Figure 5.56. Although running

the SGA for 100 generations improves the null directed towards the first jammer, the

SGA sacrifices the second jammer’s null by 17.05 dB compared to the generation 50

azimuth pattern in Figure 5.56.

In the next set of experiments, thirty independent simulations of the TDGA

are run with the SOI static at 0°, and two jammers that move continuously over a

period of 50 generations (plus generation 0) from {45°, 200°} to {120°, 300°}. This

experiment is repeated by running the TDGA over a period of 100 generations, as

this effectively slows the jammers’ movement down by a factor of two, and it allows

the TDGA more time to adapt. As with the SGA, the goal is to see if the TDGA can

find better solutions if the signals move at a slower rate, and if the TDGA has more

time to adapt to them. The results for the TDGA run over 50 generations are shown

182

in Figures 5.60 and 5.62, and the results for the TDGA run over 100 generations are

then shown in Figures 5.63 and 5.65.

0 10 20 30 40 50
5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

max itMax) a itMax): Student−tConf. Int. Shaded avg(FitMax): Gauss Conf. Int. Bars min(FitMax)

Figure 5.60: TDGA performance graphs for 30 independent runs with static SOI
at 0° and jammers that continuously move over a course of 50 generations from
{45°, 200°} to {120°, 300°}.

The TDGA’s performance curves in Figure 5.60 varies in a sinusoidal fashion

like the SGA counterpart. The generation varying maximum curve peaked around 25

dB at generation 9 (less than 1 dB than the SGA maximum curve in Figure 5.54).

The minimum of the best 30 solutions vs. generation dips towards 5 dB which is also

less than the corresponding SGA performance graph. The TDGA’s 95% confidence

intervals are roughly the same as the SGA’s confidence intervals. Thus from a fitness

perspective, there is not a significant difference between the TDGA and SGA when

they are run for 50 generations with two continuously mobile jammers.

Unlike the SGA, the TDGA maintains higher diversity through the entire sim-

183

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 5.61: TDGA best-case Hamming distance plots with static SOI at 0° and
jammers that continuously move over a course of 50 generations from {45°, 200°} to
{120°, 300°}.

ulation (see Figure 5.61 for the best solution’s Hamming distance vs. generation

curves). The TDGA’s mean Hamming distance linearly decreases and drops below

0.2 after generation 18, and it varies between 0.2 and 0.25 for most of the remaining

generations. However, the standard deviation of the population Hamming distance

remains roughly constant around 0.075 throughout the entire simulation.

The TDGA is also able thwart continuously mobile jammers as they move from

{45°, 200°} to {120°, 300°}with the azimuth plots for the best solution shown in Figure

5.62. It is evident that the best solution that the TDGA finds places nulls at 45° and

200° with the shallowest null 14.84 dB below the SOI at generation 0. The TDGA

tracks the two jammers with the first jammer’s null deepening at first then getting

shallower at 120°. A similar behavior is observed for the second jammer where the

184

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#35
Gen#40
G n 45
G n 50

1 ni ia 1 ina 2 ni ia 2 ina

Figure 5.62: TDGA best-case azimuth radiation plots with static SOI at 0° and
jammers that continuously move over a course of 50 generations from {45°, 200°} to
{120°, 300°}.

null first deepens then becomes less deep as it approaches 300°. This is related to

the sinusoidally varying nature of the performance graphs in Figure 5.61. When the

simulation ends, the TDGA places nulls towards the two jammers that are 19.58 dB

and 26.24 dB down from the SOI.

The next step is to investigate the TDGA’s behavior when the mobile jammers

are slowed down and allowed to vary from {45°, 200°} to {120°, 300°} over 100 gener-

ations. The resulting performance graphs shown in Figure 5.63 has a noisy sinusoidal

behavior similar to the SGA that is run over 100 generations. The overall limits for

the TDGA are roughly the same as the SGA. The sinusoidal nature of these curves

is reflected in null depths that have varying depths as the jammers sweep across the

azimuth plane.

The Hamming distance plots for the best solution found by the TDGA are shown

185

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WI 3rd ode ax it ax
a it ax it Student t on Int S aded
a it ax it Gau on Int Bar
WI 3rd ode in(it ax

Figure 5.63: TDGA performance graphs for 30 independent runs with static SOI
at 0° and jammers that continuously move over a course of 100 generations from
{45°, 200°} to {120°, 300°}.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 5.64: TDGA best-case Hamming distance plots with static SOI at 0° and
jammers that continuously move over a course of 100 generations from {45°, 200°} to
{120°, 300°}.

in Figure 5.64. Although the mean Hamming distance for the 100 generation TDGA

run is considerably lower than the 50 generation TDGA run, this distance is still

186

higher than its SGA counterpart. The mean Hamming distance initially decreases

faster and drops below 0.15 by generation 15. Although the mean Hamming distance

drops below 0.1 after generation 38, the descent is more gradual between Generations

15 and 38.

The azimuth plots for the best-case solution found by TDGA in generation 100

are shown in Figure 5.65. The TDGA tracks both jammers as they sweep across the

azimuth plane. While the nulls directed at the first jammer vary by a few decibels,

it can be seen that the nulls directed at the second jammer vary more.

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Gen#85
G n 90
G n 95
G n 100

1 ni ia 2 ina1 ina 2 ni ia

Figure 5.65: TDGA best-case azimuth radiation plots with static SOI at 0° and
jammers that continuously move over a course of 100 generations from {45°, 200°} to
{120°, 300°}.

The act of slowing down the jammer’s movements and running the TDGA im-

proves the best-case azimuth plots slightly. In their final positions, the first jammer

is 19.47 dB down from the SOI, and the second jammer is 29.05 dB down from the

SOI. Finally, it should be noted that although both the SGA and the TDGA are sim-

187

ulated assuming an AWGN wireless channel and has similar performance, the TDGA

is expected to perform better than the SGA in a non-ideal environment such as a

Rayleigh fading channel. The diversity added by using Triallelic Diploid instead of

Binary Haploid strings makes the TDGA more robust in such an environment. How-

ever, the TDGA is not perfect since its diversity decreases (although at a slower rate

than the SGA) as the TDGA evolves populations across the generations.

5.7 Summary

In this chapter, data in simulation and in-situ with hardware is collected and com-

pared on four stochastic algorithms in in optimizing anti-jamming beamforming an-

tenna arrays. The algorithms fare very well in anti-jamming when a single SOI and

two static jammers are present, but they show limited performance when three static

jammers are present. The SGA and TDGA are both much faster than SA and HCA,

as SA and HCA took over three times the evaluations (compared to 200 evaluations

per generation) before converging to their final solutions in the three-jammer case.

SA exhibits noisy behavior as expected and spends roughly half of the 10,200 evalu-

ations temperature schedule searching for a solution before entering its exploitation

stage. Although HCA is much smoother in its fitness performance behavior, it tends

to get stuck on local maxima before finding and converging to better solutions.

The SGA and TDGA both adapt to stepped mobile signals. SA and HCA are

able to thwart stepped mobile jammers, but the temperature schedule is repeated

188

multiple times during the simulations. There is a sacrifice between the number of

temperature schedule repeats and the quality of the best solutions found by these

algorithms. Although SA and HCA can re-adapt to stepped mobile signals by reset-

ting the temperature values, this amounts to using faster temperature schedules that

result in SA and HCA converging on local maxima instead of a global optimum.

In addition, the SGA and TDGA are both evaluated in adapting to two contin-

uously mobile jammers when a single SOI is static in an AWGN wireless channel. It

is found that both the SGA and TDGA are able to continuously mobile signals, and

both algorithms find best-case solutions that have SINRs of at least 20 dB by the end

of the simulations. This is a very important result because this is the first time that

that it is demonstrated that the GA can adapt to signals that continuously change

their directions. Previous research into GA adaptability to mobile signals focuses on

signals that change directions instantaneously then stay static for a period of time.

This allows the GA time to adapt to the signal. The reality is that signals move

continuously in the field, so it is useful to demonstrate that the GA can adapt quickly

enough to maintain good SINR levels.

189

Chapter 6

Dynamic, In-Situ and Simulated Hard-
ware Fault Recovery of Beamform-
ing Arrays

This chapter presents the research results in hardware fault recovery using the

stochastic search algorithms utilized in the previous chapters. Hardware fault recovery

is important because components can and will fail during operation in the field, and

detection and recovery of these faults via a software algorithm keep the beamforming

system operating (at least partially) until repairs can be performed. In the case of

a satellite-based system, hardware fault recovery helps to achieve longer hardware

lifespans. The results presented in this chapter show that search algorithms are

capable of automatically recovering from hardware faults in a single antenna path

whether the signals present are static or mobile.

The results presented here support the following contributions: First, it is demon-

strated that stochastic algorithms can recover anti-jamming functionality after occur-

rence of hardware failures and localized faults in the array. Second, predictive models

that detect occurrence of hardware faults in the array due to a drop in SINR fitness

are developed. These models quantify changes in SOI gains and interfering signal null

depths when an antenna element (i.e., antenna, phase shifter, or attenuator) faulted.

190

The models quantify multiple stochastic algorithms’ (SGA, TDGA, SA, and HCA)

abilities to recover from antenna element faults whether the signals are stationary or

mobile.

The remainder of this chapter is organized as follows. Section 6.1 describes the

setup for the in-situ experiments and simulations, and it lists the types of hardware

faults that are emulated in the array. Section 6.2 discusses the performance of the

stochastic algorithms in recovering from hardware faults when the signals are static,

and section 6.3 discusses the in-situ experiment and simulation results when hardware

fault recovery is performed in the presence of mobile signals.

6.1 Experimental and Simulation Setup

The setup for performing experiments in hardware fault recovery is the same as the

anti-jamming setup described in Chapter 5. Various kinds of hardware faults in the

RF path are emulated by setting a step attenuator or phase-shifter to values not

chosen by the algorithm. The algorithm parameters from Section 5.1 will not be

repeated here, but a matrix of simulations and in-situ experiments for evaluating the

algorithms’ abilities in anti-jamming with hardware fault recovery are listed in Table

6.1.

The types of faults considered are listed below in Table 6.2. The faults can be

grouped into three categories regardless whether they are step-attenuator and phase

shifter faults: hard, semi-hard, and soft. Hard faults represent hardware faults (i.e.,

191

Table 6.1: List of hardware fault recovery test cases explored by experiments and
simulations.

Static Stepped Mobile

Algorithm 2 jammer 3 Jammer 2 Jammer

SGA Sim Sim Sim

TDGA Exp & Sim Sim Exp & Sim

SA Exp & Sim Exp & Sim Sim

HCA Sim Sim Sim

antenna, step-attenuator or phase shifter) that occur in such a way that either a

short-circuit or an open-circuit exists between the antenna and summing port. Semi-

hard faults represent faults that occur and cause a non-controlled impedance state

(between antenna and summing port) that is neither a RF open-circuit or a RF

short-circuit. Soft faults are stuck-at-previous setting faults that can be caused by

a damaged control cable where the pre-fault setting is held in the device’s memory

despite the issuance of updated commands by the algorithm.

6.2 Recovery in the Presence of Static Signals

Hardware faults that occur in the presence of static signals are the easiest to detect

especially after the algorithm converges to a steady state. Hard and semi-hard hard-

ware faults are emulated as the algorithms nears convergence. Hard faults include

step-attenuators and phase shifters set to their maximum values, and semi-hard faults

include hardware that are set to values not chosen by the algorithm. These faults

192

Table 6.2: Types of hardware faults emulated and investigated.

Fault Classifica-
tion

In-field Equivalent Detectable
Situation

2 step attenuators set
to max (31 dB)

Hard Attenuator fault or
disconnected / broken

antenna

Static or Mobile
Signals

1 step attenuator
stuck-at-random

setting

Semi-hard Attenuator fault or
damaged antenna

Static or Mobile
Signals

1 step attenuator
stuck-at-previous

setting

Soft Attenuator fault Mobile Signals

1 phase shifter
stuck-at-random

setting

Semi-hard Phase shifter fault Static or Mobile
Signals

1 phase shifter
stuck-at-previous

setting

Soft Phase shifter fault Mobile Signals

render all solutions found by the algorithm invalid. The results discussed in this sec-

tion are an extension of the single step-attenuator hard fault recovery discussed in

[82] in which it is demonstrated that the TDGA can recover from a hardware fault.

6.2.1 One Static SOI and Two Static Jammers

As discussed in Chapter 5, one SOI and two jammers present the algorithms with one

degree of freedom (DOF) because the number of antennas in the array outnumber

the number of signals by one. However, the addition of a hardware fault in the worst

case can decrease the DOF to zero by effectively removing an antenna from the array.

This is true in the case of two step-attenuators in the same path set to 31.0 dB

which emulates an antenna fault where the antenna is completely removed from the

193

beamforming array.

The performance curves for 30 independent simulations of the SGA recovering

from a 2 step-attenuator hard fault is shown in Figure 6.1. The best case Hamming

distance and azimuth plots are shown in Figures 6.2 and 6.3.

0 10 20 30 40 50
8

10

12

14

16

18

20

22

24

26

28

Generation Number

S
IN
R
(d
B
)

WIPL D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 6.1: SGA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16.

The performance graphs show that the SGA recovers partially from the hard

fault with roughly 3 dB SINR recovery after the fault in the best case. The Hamming

distance plots for the best solution show an increase in the mean Hamming distance

from generation 16 until generation 34 with a spike in both the mean distance and

standard deviations that occurred between Generations 31 and 35. This spike cor-

responds with a 2 dB SINR increase in the best-case solution. The Hamming mean

and standard-deviation distances level off after generation 35 corresponding with a

194

converged state despite attempts by the SGA’s mutation operator to find better so-

lutions. The azimuth plots in Figure 6.3 also show partial recovery in the best case

solution. Although the SOI gain losses 2 dB during the recovery, the SGA recovers

at least 3 dB in the jammer null depths.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 6.2: Best-case SGA simulated recovery Hamming distance from emulated 2
step attenuator hard fault seen in 30 independent runs with SOI at 0° and two jammers
at 45° and 200°. Emulated fault set at generation 16.

The TDGA’s performance is also evaluated in recovering from an emulated dou-

ble step-attenuator hard fault. Two step-attenuators are set to 31 dB despite the

setting chosen by the TDGA, and this emulates a fault in which an antenna is effec-

tively removed from the array. The resulting performance curves are shown in Figure

6.4, and the Hamming distances and azimuth plots associated with the best solution

found by the TDGA are shown in Figures 6.5 and 6.6. These results indicate that

the TDGA is unable to recover from such a fault. However, the simulations give

conservative results as discussed in Chapter 5.

195

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Be r ault (Gen#15)
A r ault (Gen#16
G n 50

1 2

Figure 6.3: Best-case SGA simulated recovery Azimuth patterns from emulated 2 step
attenuator hard fault seen in 30 independent runs with SOI at 0° and two jammers
at 45° and 200°. Emulated fault set at generation 16.

0 10 20 30 40 50
5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 6.4: TDGA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16.

Fifteen independent runs of the TDGA are run in the anechoic chamber, and the

array is optimized to recover from the double step-attenuator fault. As can be seen

in Figure 6.7, the TDGA performs much better at fault recovery in-situ compared to

196

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 6.5: Best-case TDGA simulated recovery Hamming distance from emulated
2 step attenuator hard fault seen in 30 independent runs with SOI at 0° and two
jammers at 45° and 200°. Emulated fault set at generation 16.

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Be r ault (Gen#15)
A r ault (Gen#16
G n 50

1 2

Figure 6.6: Best-case TDGA simulated recovery azimuth patterns from emulated
2 step attenuator hard fault seen in 30 independent runs with SOI at 0° and two
jammers at 45° and 200°. Emulated fault set at generation 16.

the simulation results. It obtains a best-case (maximum out of the maxima from 15

runs) SINR of 47.0 dB by generation 50. Although the worst of the best 15 solutions

is close to 1 dB SINR, the 95% confidence interval by generation 50 predicted using

197

the Student-t distribution is ±7.37 dB around the 20.76 dB mean SINR of the 15 best

solutions. The Student-t based confidence interval is a few decibels higher than the

±4.77 dB 95% confidence interval calculated assuming a Gaussian distribution. This

is expected because a small sample size is used, but the sample size is large enough

to produce reliable Student-t confidence interval calculations [70].

0 10 20 30 40 50
−10

0

10

20

30

40

50

Generation Number

S
IN
R
(d
B
)

max(FitMax) avg(FitMax): Student−t Conf. Int. Shaded avg(FitMax): Gauss Conf. Int. Bars min(FitMax)

Figure 6.7: TDGA in-situ performance curves collected over 15 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16.

The mean and standard-deviation Hamming distance for the best in-situ solution

found by the TDGA in 15 runs is shown in Figure 6.8. After the emulated fault occurs

at generation 16, the standard deviation increases slightly, but the mean Hamming

distance increases to above 0.15 and stays at that level until around generation 33

where it begins to linearly decrease. Comparing the Hamming distance to the perfor-

mance plots in Figure 6.7, it can be seen that this corresponds to a re-optimization

198

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 6.8: Best-case TDGA in-situ recovery Hamming distance from emulated 2 step
attenuator hard fault seen in 15 independent runs with SOI at 0° and two jammers
at 45° and 200°. Emulated fault set at generation 16.

0 30 60 90 120 150 180 210 240 270 300 330 360
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen0
Gen15 (Be r ault)
Gen16 A r ault)
Gen50

1 2

Figure 6.9: Best-case TDGA in-situ recovery azimuth patterns from emulated 2 step
attenuator hard fault seen in 15 independent runs with SOI at 0° and two jammers
at 45° and 200°. Emulated fault set at generation 16.

of the array settings to compensate for the fault.

The azimuth radiation patterns for the best in-situ solutions are shown in Figure

199

6.9. The patterns are consistent with the maximum of the best SINR performance

curve shown in Figure 6.7 because the TDGA found a solution in generation 15 that

focus energy in the SOI’s direction and null the jammers at 45° and 200°. The solution

is invalidated at generation 16 since the SOI gain dropped 5 dB, the null at 45° is

removed, and the null at 200° is decreased by almost 15 dB. Although the TDGA

recovered roughly 2 dB of SOI gain by generation 50, it repositioned nulls at 45° and

200° with the second null having more than 5 dB depth compared to the generation

15 solution.

The performance curves for 30 independent simulations of the SA algorithm in

performing hardware fault recovery in the case of a double hard step-attenuator fault

are shown in Figure 6.10. The temperature schedule repeats five times over 10,200

evaluations. Because SA convergs as the temperature schedule reached 0% mutation

probability, the schedule needs to be repeated in order for SA to re-optimize the array

settings such that they compensat for the fault. The fault is set to occur much later at

evaluation 6,200 (GA equivalent generation 31) because it is shown in Chapter 5 that

SA converges on average much slower than the SGA and TDGA. This represents a

fallback to the SA algorithm, as SA cannot compensate for a fault if the fault occurred

after the temperature schedule reach 0% mutation probability.

The azimuth radiation plots for the best solution found by SA are shown in

Figure 6.10. By evaluation 6,200, SA steers null in both jammers’ directions. It loses

both nulls after the fault occurred at evaluation 6,201, but by evaluation 10,200, SA

200

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−40

−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 6.10: SA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16.

recovers the nulls that it previously steered towards both jammers. The array gain

towards the SOI is not affected by the emulated loss of an antenna in this case.

0 30 60 90 120 150 180 210 240 270 300 330 360
−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

auati n 1
B r ault (a 6200
A r ault (a 6201
a 10200

1 2

Figure 6.11: Best-case SA simulated recovery azimuth patterns from emulated 2 step
attenuator hard fault seen in 30 independent runs with SOI at 0° and two jammers
at 45° and 200°. Emulated fault set at generation 16.

The performance curves for HCA anti-jamming and recovering from a dual hard

201

step-attenuator fault are shown in Figure 6.12. HCA is also capable of performing

these dual functions like SA. Also like SA, HCA is temperature schedule dependent

because HCA is basically SA with the Metropolis condition turned off, so HCA would

not be able to recover from a hardware fault if it occurs after HCA converged based on

the temperature scheduling setting the probability of mutation close to 0%. However,

as can be seen in Figures 6.10 and 6.12, both SA and HCA can perform hardware

fault recovery if the temperature schedule is repeated ad infinitum.

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 6.12: HCA simulated performance curves collected over 30 independent runs
with SOI at 0° and two jammers at 45° and 200°. Emulated antenna fault (2 step
attenuators in one path set to 31.0 dB) at generation 16.

The tradeoff in repeating the temperature schedule is in the quality of the solution

found versus the HCA’s and SA’s reaction time to a fault, as it is shown that both

algorithms are much slower than the SGA and TDGA. It is also shown in Chapter

5 that HCA gets stuck in local optima, and this behavior is visible in Figure 6.12.

It is feasible that if the temperature schedule repeat factor is changed to 10 times

202

per 10,200 evaluations, HCA would on average get stuck around 15 dB SINR instead

of reaching SINRs greater than 20 dB on average before being reset. Although SA

does not get stuck on local maxima, it spends roughly half of each temperature

schedule period on average before exploiting the search space (see Figure 6.11), so it

is reasonable to expect SA to find solutions with lower SINR value if the temperature

schedule repeat factor is doubled.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

auati n 1
B r ault (a 6200
A r ault (a 6201
a 10200

2
1

Figure 6.13: Best-case HCA simulated recovery azimuth patterns from emulated 2
step attenuator hard fault seen in 30 independent runs with SOI at 0° and two jammers
at 45° and 200°. Emulated fault set at generation 16.

The best case HCA azimuth radiation patterns with recovery from the fault are

shown in Figure 6.13. The fault effectively removes the null directed at jammer 1,

and it shifted the null at jammer 2 by roughly 10° such that the null depth towards

jammer 2 is increased by roughly 5 dB after the emulated fault occurred. The HCA

is able to recover from the fault, and it increased the SOI gain by 1 dB by evaluation

10,200.

203

6.2.2 One Static SOI and Three Static Jammers

It is not possible for the software to fully recover from a hardware fault if one SOI

and three jammers are present. A fault is akin to physically removing or damaging

an antenna, and it presents a situation in which more signals are present than fully-

functional antennas. However, it is shown below that the algorithms recover some

SINR lost after a double step-attenuator hard fault (i.e., antenna physically removed)

occurs. The SGA, TDGA, SA, and HCA are evaluated in this case with the SOI at

0° and three jammers located at 45°, 200°, and 300°in the azimuth plane.

0 10 20 30 40 50
6

8

10

12

14

16

18

20

22

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Figure 6.14: SGA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated antenna fault (2
step attenuators in one path set to 31.0 dB) at generation 16.

The performance curves for the SGA are shown in Figure 6.14. In the best case,

the SGA recovers 1.24 dB SINR after the fault and obtains a final maximum SINR

of 14.00 dB. The recovery in the worst case (worst of the 30 best solutions) is 4.92

204

dB SINR recovered with a final 12.83 dB SINR. Although positive SINR values are

good, the calculations indicate that roughly 25 dB SINR is needed to ensure that all

three jammers are nulled at least 20 dB below the SOI.

The resulting Hamming distance and azimuth radiation plots for the best solution

found by the SGA are shown in Figures 6.15 and 6.16. There is a slight increase in

the mean Hamming distance after the emulated fault occurred, but this is not enough

diversity in the population to fully recover from the fault. Although the SGA shows

improvements in the nulls directed at jammers 1 and 3 by generation 50 (see Figure

6.16), it decreases the null depth directed at jammer 1. It happens that the best

solution found directly after the fault occurs improves the null depth directed at

jammer 1, and the recovery by generation 50 serves to sacrifice jammer 1 attenuation

while maximizing attenuation directed at jammers 2 and 3.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 6.15: SGA simulated best-case Hamming distance plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step attenuators in
one path set to 31.0 dB) at generation 16.

205

0 30 60 90 120 150 180 210 240 270 300 330 360
−45

−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Be r ault (Gen#15)
A r ault (Gen#16
G n 50

1 32

Figure 6.16: SGA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step attenuators in
one path set to 31.0 dB) at generation 16.

The performance curves for the best 30 solutions found by the TDGA in simu-

lation are shown in Figure 6.17. Like the SGA, the TDGA in the best case recovers

1.11 dB SINR to achieve a final 14.05 dB SINR after the emulated fault occurs. In

the worst case, the TDGA recovers 3.15 dB SINR to achieve a final worst (of the

best) case 13.07 dB SINR. Both values are slightly higher compared to the SGA, but

the recovery is still insufficient to achieve jammer array gains that are at least 20 dB

down from the SOI (see Figure 6.18).

The best case Hamming distance and azimuth radiation plots for the simulated

TDGA are shown in Figures 6.17 and 6.18. Unlike the SGA, the TDGA’s best-

case mean Hamming distance curve almost doubles within a few generations after

the emulated fault occurred, and the mean Hamming distance remains above 0.125

for the remainder of trial. However, the standard deviation of population Hamming

206

0 10 20 30 40 50
4

6

8

10

12

14

16

18

20

22

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)

avg(FitMax) with Student−tConf. Int. Shaded

avg(FitMax) with Gauss Conf. Int. Bars

WIPL−D 3rdModel min(FitMax)

Figure 6.17: TDGA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated antenna fault (2
step attenuators in one path set to 31.0 dB) at generation 16.

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Figure 6.18: TDGA simulated best-case Hamming distance plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step attenuators in
one path set to 31.0 dB) at generation 16.

distance remains low. This means that the TDGA is ineffective in its search to find

a good solution that recovers from the fault. It is visible in Figure 6.18 that only

207

the null depth directed at jammer 3 is significantly improved by generation 50. The

other nulls remain roughly the same after the fault.

0 30 60 90 120 150 180 210 240 270 300 330 360
−35

−30

−25

−20

−15

−10

−5
A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Be r ault (Gen#15)
A r ault (Gen#16
G n 50

1 2 3

Figure 6.19: TDGA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step attenuators in
one path set to 31.0 dB) at generation 16.

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−40

−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 6.20: SA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated antenna fault (2
step attenuators in one path set to 31.0 dB) at evaluation 6,201.

208

0 30 60 90 120 150 180 210 240 270 300 330 360
−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

auati n 1
B r ault (a 6200
A r ault (a 6201
a 10200

31 2

Figure 6.21: SA simulated best-case azimuth radiation plots with SOI at 0° and three
jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step attenuators in one
path set to 31.0 dB) at evaluation 6,201.

The simulated annealing algorithm’s performance graphs are shown in Figure

6.20. The best solution that SA found before the emulated fault occurs has a max-

imum SINR of 20.75 dB at evaluation 6,120 before the temperature schedule reset

itself. The maximum SINR at evaluation 10,200 is 13.61 dB. It should be noted that

the azimuth plots at evaluations 6,200 and 6,201 shown in Figure 6.21 have SINRs

of 4.39 dB and 4.80 dB which are not significantly different. Because SA is in the

early stage of a repeated temperature schedule when the emulated fault occur, it is

clear that both the fault and the algorithm’s search state affected the algorithm’s

performance at evaluation 6,201.

Finally, the performance graphs for 30 independent HCA simulations and the

best-case azimuth radiation plots are shown in Figures 6.22 and 6.23. The HCA’s

performance behavior (i.e., SINR vs. evaluation number) is smoother compared to SA

209

0 1020 2040 3060 4080 5100 6120 7140 8160 9180 10200
−40

−30

−20

−10

0

10

20

30

Evaluation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(Fitness)
avg(Fitness) with Student−tConf. Int. Shaded
avg(Fitness) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(Fitness)

Figure 6.22: HCA simulated performance curves collected over 30 independent runs
with SOI at 0° and three jammers at 45°, 200°, and 300°. Emulated antenna fault (2
step attenuators in one path set to 31.0 dB) at evaluation 6,201.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

auati n 1
B r ault (a 6200
A r ault (a 6201
a 10200

2 31

Figure 6.23: HCA simulated best-case azimuth radiation plots with SOI at 0° and
three jammers at 45°, 200°, and 300°. Emulated antenna fault (2 step attenuators in
one path set to 31.0 dB) at evaluation 6,201.

since HCA uses the same repeated temperature schedule with the Metropolis condi-

tion turned off. HCA achieves a maximum 21.38 dB SINR at evaluation 6,120 which

210

is the last full temperature cycle before the emulated fault occurs. The maximum

SINR that HCA achieves by evaluation 10,200 is 14.13 dB. This is slightly higher

than SA.

It can be observed from the azimuth plots shown in Figure 6.23 that the best

solution found by the HCA recovers from the emulated fault.T here are significant

improvements in the null depths directed at jammers 1 and 3 although the null depth

directed towards jammer 2 do not show significant improvement.

6.3 Recovery in the Presence of Mobile Signals

In this section, we show that the algorithms being studied can recover from hardware

faults in the presence of mobile signals, but the faults are difficult to detect because

they are masked. The experiments include stuck-at-previous setting faults that are

difficult to detect when the signals present are static. Stuck-at-previous setting faults

have the property of invalidating the current best solution only if the signals change

direction. For example, if the stuck-at fault occurs after the algorithm converges, it

would be undetectable because there is no pressure on the algorithm to find another

solution.

The performance curves for the best 30 solutions that the SGA found in 30

independent runs are plotted in Figure 6.25. Despite the occurrence of a stuck-at

attenuator fault at generation 16, the SGA behaves as if no fault had occurred. The

best solution at generation 50 has a SINR of over 25 dB which is consistent with

211

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

IP −D 3rdMode ax(itMax
a (itMax it Student−t on Int S aded
a (itMax it Gau on Int Bar
IP −D 3rdMode in(itMax

Si na Set2 Si na Set1Si na Set1Si na Set2Si na Set1

Figure 6.24: SGA simulated performance curves collected over 30 independent runs
with SOI at 0° and two mobile jammers. Emulated step-attenuator stuck-at fault
emulated at generation 16.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation Number

P
op
ul
at
io
n
H
am

m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal
Set1

ignal
Set2

ignal
Set1

ignal
Set2

ignal
Set1

Figure 6.25: SGA simulated Hamming distance plots for best-case solution out of 30
independent runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16.

non-faulted runs of the SGA. The Hamming distance plots for the best out of the

30 best solutions shown in Figure 6.26 also behave as if nothing had happened. The

SGA increases its population diversity to account for both signal stepped mobility

212

and the stuck-at fault.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Be r ault (Gen#15)
A r ault (Gen#16
G n 40
G n 50

1
1

1
2

2
2

2
1

Figure 6.26: SGA simulated azimuth radiation plots for best-case solution out of 30
independent runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16.

The best-case azimuth patterns for the SGA are shown in Figure 6.26. As ex-

pected, the azimuth patterns before and after the stuck-at fault occur are hardly

distinguishable from each other. The SGA is also able to adapt to both signal sets by

placing nulls at 45° and 200° at generation 40, and the SGA places deep nulls towards

the second jammer set at 120° and 300°. Although these simulations are accidentally

run for 50 generations instead of the usual 60 generations, the results obtained are

still valid and indicative of expected SGA behavior.

The TDGA is also simulated with the same signal sets and an emulated step-

attenuator stuck-at previous setting fault that occurs at generation 16. The resulting

performance curves for the best 30 solutions found by 30 independent simulations of

the TDGA are shown in Figure 6.27.

213

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

WIPL−D 3rdModel max(FitMax)
avg(FitMax) with Student−tConf. Int. Shaded
avg(FitMax) with Gauss Conf. Int. Bars
WIPL−D 3rdModel min(FitMax)

Signal Set1 Signal Set2 Signal Set1 Signal Set2 Signal Set1 Signal Set2

Figure 6.27: TDGA simulated performance curves collected over 30 independent runs
with SOI at 0° and two mobile jammers. Emulated step-attenuator stuck-at fault
emulated at generation 16.

The simulated TDGA behaves in a manner very similar to the SGA, as the

TDGA treats the stuck-at fault like an environment change. The TDGA continues

optimizing the array to anti-jam despite the presence of the fault with mobile signals.

The TDGA gives similar performance compared to the SGA, as the TDGA maximum

SINR curves shown in Figure 6.27 have values of at least 25 dB at convergence with

the given signal sets. The minimum (of the best 30) have slightly lower SINRs at 10

dB compared to the SGA which has minimum values around 12 dB SINR.

The Hamming distances for the best out of 30 TDGA solutions are shown in

Figure 6.28. The TDGA’s Hamming distance behaves in a manner similar to the

SGA although the SGA exhibits higher peak mean Hamming distances. Because the

TDGA achieves roughly the same performance as the SGA, the higher peaks in the

SGA’s mean Hamming distances may indicate that the SGA needs to work harder

214

(i.e., create more diversity) in order for it to compensate for both a stuck-at fault and

stepped mobile signals.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n

am
m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal Set1 Signal Set2 Signal Set1 Signal Set2 Signal Set1 Signal Set2

Figure 6.28: TDGA simulated Hamming distance plots for best-case solution out of 30
independent runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16.

0 30 60 90 120 150 180 210 240 270 300 330 360
−40

−35

−30

−25

−20

−15

−10

−5

A
rr
ay

G
ai

n
dB

i

Azimuth Angle (Degrees)

Gen#0
Be r ault (Gen#15)
A r ault (Gen#16
G n 50
G n 60

1
1

1
2

2
1

2
2

Figure 6.29: TDGA simulated azimuth radiation plots for best-case solution out of 30
independent runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16.

215

The best case azimuth plots for the TDGA simulations are shown in Figure

6.29. The emulated stuck-at previous setting step attenuator fault does not cause

the TDGA to behave differently, as the radiation patterns shown at generation 15

(before fault) and at generation 16 (after fault) are virtually the same. The TDGA

also places nulls towards the four jammers from the two signal sets combined with

null depths comparable to the SGA. The main difference is that the TDGA decreases

the array gain towards the SOI at generation 60 by a few decibels compared to the

SGA. The TDGA also widens the mainlobe such that the SOI can move towards

90° and not have its power level significantly degraded.

Fifteen independent runs of the TDGA operating in-situ with hardware in an

anechoic chamber are also performed using the same signal sets and fault type. The

resulting performance graph of the 15 best solutions found by the TDGA are shown

in Figure 6.30. It is important to note that these performance graphs place bounds

on the TDGA’s expected performance, and a solution with maximum SINR value for

the second signal set does not necessarily represent a solution from the same run for

the first signal set. However, the overall performance exhibited by the in-situ TDGA

is similar to the behavior that the simulated TDGA exhibits. The difference is that

the Student-t distribution predicts higher 95% confidence interval bounds than the

Gaussian distribution. This is expected due to the small sample size.

The resulting Hamming distances and azimuth plots for the best signal set 2

solutions are shown in Figures 6.31 and 6.32. Unlike the TDGA simulations, the

216

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Generation Number

S
IN
R
(d
B
)

max(FitMax) avg(FitMax): Student t on Int S aded avg(FitMax): Gau on Int Bars min(FitMax)

Signal Set1 Signal Set2 Signal Set1 Signal Set2 Signal Set1 Signal Set2

Figure 6.30: TDGA in-situ performance curves collected over 15 independent runs
with SOI at 0° and two mobile jammers. Emulated step-attenuator stuck-at fault
emulated at generation 16.

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation Number

P
op
ul
at
io
n

am
m
in
g
D
is
ta
nc
e
M
ea
n/
S
td

Mean
STD

Signal Set1 Signal Set2 Signal Set1 Signal Set2 Signal Set1 Signal Set2

Figure 6.31: TDGA in-situ Hamming distance plots for best-case solution out of 15
independent runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16.

TDGA in-situ maintain a far higher mean Hamming distance versus generation num-

ber. There are also differences between the generation 15 (before emulated fault)

217

0 30 60 90 120 150 180 210 240 270 300 330 360
−35

−30

−25

−20

−15

−10

−5

Phi (Degrees)

A
rr
ay

G
ai
n
(d
B
i)

Gen0
Be re l Gen15
A er l Gen16
Gen50
Gen60

1
e 1

1
e 2

2
e 2

2
e 1

Figure 6.32: TDGA in-situ azimuth radiation plots for best-case solution out of 15
independent runs with SOI at 0° and two mobile jammers. Emulated step-attenuator
stuck-at fault emulated at generation 16.

and generation 16 (after emulated fault) azimuth plots shown in Figure 6.32. In this

run, it is also observed that the TDGA does a better job at steering nulls towards

the jammers in the second signal set compared to the jammers in the first signal set.

This behavior likely comes from the nature of the small sample size, as the TDGA

would have likely found a better solution in future runs that maintain higher SINRs

for both signal sets despite the emulated stuck-at fault.

6.4 Summary

In this chapter, it is shown how well stochastic algorithms perform hardware fault

recovery in anti-jamming beamforming arrays. The SGA, TDGA, SA, and HCA are

compared in simulations and in some cases for the TDGA in-situ measurements are

218

collected and compared. We evaluate these algorithms’ abilities in performing fault

recovery with both static and mobile signals. The SGA and TDGA automatically

detect and recover from faults when the signals are static. The SGA uses mutation

in its recovery to reintroduce enough diversity back into the population to allow

useful crossovers, and the TDGA uses Triallelic Diploid strings (on top of mutuation)

to increase population diversity in performing fault detection and recovery. As is

expected, both algorithms automatically recover from stuck-at faults when the signals

are mobile, but the faults are undetectable by the observer. Stuck-at faults only affect

the array when the signals change directions. Because SGA and TDGA treat faults in

the same manner as environmental changes, it is not possible to detect a fault unless

it is known for certain that the channel is AWGN (i.e., no fades), and the signals are

static.

Although SA and HCA are both able to detect and recover from faults, both

algorithms are temperature schedule dependent, so the temperature schedule is re-

peated. Otherwise, these algorithms get stuck in pre-fault solutions that are no longer

valid due to the presence of faults. Due to the noisy nature of SA, it is be difficult

to discern a fault from the algorithm’s behavior. The temperature schedule repeat

factor also means that a lag exists between the time that a fault occurs and when SA

or HCA responds to the fault. This means that it would likely be difficult for either

algorithm to issue a fault detection signal when the fault occurs.

219

Chapter 7

Conclusions and Future Work

This chapter concludes this thesis with a summary of our finding and contri-

butions, and it discusses possible future work to further the research in this area.

Section 7.1 states our conclusions to the research presented in this thesis, and section

7.2 discusses our future work in advancing anti-jamming beamforming and hardware

fault recovery.

7.1 Conclusions

In this thesis, we show that it is possible to design stochastic algorithms that perform

anti-jamming beamforming. Namely, the algorithms focus electromagnetic energy on

a signal of interest while simultaneously minimizing energy towards multiple inter-

fering signals. The SGA, TDGA, SA, and HCA are compared in performing this

capability by maximizing the array’s output SINR. It is not only possible for these

algorithms to anti-jam when the signals are static, it is possible for them to anti-jam

when the signals are mobile. This result is novel because this is the first time that

anti-jamming is performed in-situ with an antenna array without knowing the signal

DOAs a priori.

Two types of mobile signals are considered. First, algorithm performance is

220

measured with stepped-mobile signals. This means that the signals stay static in a set

of directions for an 10 generations, change directions instantaneously, and stay static

in the new directions for another 10 generations before switching back to the original

directions. Second, the case in which signals continually change their directions is

simulated. Although it is shown that all four algorithms discussed in this thesis can

anti-jam when signals are stepped mobile, this requires time for each algorithm to

adapt to the new signal directions. This is a novel result because prior research in

anti-jamming assumes that the signals are static, but it is more realistic to assume

that signals constantly move instead of moving instantaneously and staying still.

This means that the algorithm does not have time to converge before the signals

change direction. However, our simulations show that the SGA and TDGA can adapt

to signals whose directions change constantly in time. We show that our simulations

have enough fidelity compared to in-situ measurements, and our simulations are con-

servative in predicting algorithm performance. To the best of our knowledge, this is

the first time that it has been shown that the evolutionary algorithms can adapt to

signals whose directions constantly change.

Finally, it is shown that these algorithms perform hardware fault recovery with

both static and stepped mobile signals. Theory is developed on hardware fault de-

tection, recovery, and localization. In-situ measurements show that the TDGA can

recovery from a single hardware fault in-situ with a four antenna array operating at

2.4 GHz. This result is also novel because this is the also the first time that hardware

221

fault recovery is demonstrated in-situ with a four-antenna array. Further research

via simulations show that other stochastic algorithms (SGA, SA, and HCA) can per-

form both anti-jamming and hardware fault recovery. Although the algorithms find

solutions with similar SINR values at convergence, simulations and in-situ measure-

ments show that the SGA and TDGA are much faster at optimizing the antenna

array compared to SA and HCA.

The algorithms are able to recovery from an emulated hardware fault when one

SOI and two jammers are present. With static signals, the SGA and TDGA both

indicate significant drops in SINR fitness values at generation 16 when the emulated

faults occur, and it is possible to detect the faults. Because SA and HCA are slower

than SGA and TDGA by a factor of approximately 3.5 in configuring the array

for anti-jamming with three-jammers, a fault that occurs at evaluation 3,201 occurs

before SA and HCA nears convergence, so this would not provide useful results.

Instead, the fault is emulated at evaluation 6,201 (equivalent to GA generation 30)

after SA and HCA complete at least one temperature cycle. SA and HCA recover

from the emulated fault, but immediate detection is not possible. The simulation

results for the TDGA are conservative compared to in-situ measurements because

our simulations predict that the TDGA would reconfigure the array with lower SINR

values at generation 50. When the two jammers are mobile, all of the algorithms

recover from the fault. However, the algorithms treat faults in the same manner as

mobile signals, so it is not likely to detect the faults when they occurred.

222

Our results also show that it is not possible for the algorithms to recovery some

anti-jamming functionality from faults when three jammers are present. Because the

number of signals equaled the number of antennas in the array, there are no degrees

of freedom remaining before the faulted occurred. The fault effectively removed an

antenna from the array, so more signals are present that operational antennas.

7.2 Future Work

This section discusses possible directions in which this research can be further de-

veloped. Possible directions for future work focus on the following areas: Further

hardware development of a larger modular array, real-time anti-jamming beamform-

ing, addition of signal direction finding and adversarial capabilities, and development

of fault detection and localization algorithms.

7.2.1 Real-Time Anti-Jamming Beamforming Capabilities

The the in-situ measurements and Matlab simulations discussed in this thesis are

based on results obtained through an anechoic chamber, and it is assumed that the

channel is AWGN. These results are novel because this is the first attempt to the best

of our knowledge at optimizing a four-antenna 2.4 GHz beamforming array inside an

anechoic chamber, and it is shows that both anti-jamming and hardware fault recovery

can be achieved using stochastic algorithms. However, these methods assume that

the signal power levels can be calculated and classified using a spectral estimation

algorithm (such as the Multiple Signal Classification, MUSIC, algorithm).

223

SOI

BF
Hardware

Receiver

Computer
Jammer

Jammer Jammer

Beamformer (BF)

I/Q DeMod

Mod. PN Seq.

Jammed

Un-Jammed

Figure 7.1: High-level block diagram of beamforming system using demodulated PN
sequence from SOI to perform anti-jam beamforming.

The discussion in Chapter 3 assumes that the beamforming receiver is able to

calculate signal power levels and classify signal types between SOI and interference.

Signal classification requires that SOI and interference possess significantly different

properties such as power spectral densities. If the SOI and a jammer possess similar

power spectral densities, it is difficult to classify them and calculate the receiver’s

SINR. An alternative method is to use a known property of the SOI to optimize

the beamformer’s settings and mitigate interference. For example, the SOI transmits

a unique PN sequence, and the optimization algorithm compared the demodulated

signal at the receiver’s output with a copy of the sequence as shown in Figure 7.1.

This work expands upon the previous results discussed in Chapter 5 with the

development of an analytic model of an antenna array that operates in real-time. This

array mitigates interference using a PN sequence generated by a transmitter such as

a Universal Software Radio Protocol (USRP) device to identify the SOI as shown in

224

Decode bits into
M sets of BF

hardware settings

Calculate M
Demodulated I/Q

PN sequence
autocorrelations

Population Fitness Function Array
F(M) = max(abs(M indiv. autocorr)))

Goal: max(F)

Scale F s.t.
max(F') = s•avg(F)

Copy 2k << M
strings with

largest fitness

Select remaining
M - 2k mates

based on fiteness
proportion

Select
crossover sites

Apply crossovers
& mutations with
P(cross) & P(mut)

Start
Continuous
Adaptation

Initialize
Binary GA
Population

Figure 7.2: Genetic Algorithm (GA) flowchart adapted to operated as part of a USRP
wireless link.

Figure 7.1. The beamformer is adapted with a TDGA. In the model, the transmitter

sends a pseudo-random noise (PN) sequence I/Q modulated onto a carrier frequency

(i.e., 2.4 GHz). The receiver following the beamformer demodulates the received

signal and correlates it with a reference PN sequence. Because jammers are present,

the demodulated signal resembles noise, and the correlation fails. As the beamforming

system adapts to better solutions, the demodulated signal resembles the transmitted

PN sequence, and the correlation produces positive results. The system adaptively

forms and aims nulls in jammer directions to maximize the correlation, and it is agile

because it adapts to time-varying wireless channels and mobile jammers.

The GA applied to this problem uses the received cross-correlation function as

its fitness function to be maximized (see Figure 7.2). Because the received correla-

tion function is a high-level measure that uses a demodulated signal after the RF

divider/summer, antenna element to receiver path amplitude and phase differences

plays a minor role in the overall system performance. This is unlike an interference

225

cancellation system (ICS) where all internal RF paths need to be amplitude and phase

matched to obtain best performance.

If the receiver is jammed, the receiver’s demodulated I/Q output in Figure 7.1

resembles noise because the interference exceeds the receiver’s spreading gain, and

the receiver cannot properly demodulate the SOI’s PN sequence. The receiver is

unjammed when the receiver’s output resembles a noisy copy of the transmitted PN

sequence. The beamformer hardware settings are optimized to mitigate interference

when this occurs.

Jammed

Un-Jammed

τ

L

τ
Ideal (X)

(Y)

L

|RXY(τ)|

τ
2L

Figure 7.3: A graphical example showing concept of using max |RXY (τ)| as a fitness
function: The unjammed system created an cross-correlation with series of impulses
having spacing L whereas the jammed system resulted in an cross-correlation resem-
bling noise.

The concept of using the maximum of the cross-correlation magnitude (max|RXY (τ)|)

is shown in Figure 7.3. Assuming that the SOI transmits the PN sequence repeat-

edly, |RXY (τ)| consists of a series of impulses (i.e., a comb function) when the receiver

is unjammed. The length of one cross-correlation sequence is 2L, but because the

PN sequence repeated itself, max|RXY (τ)| becomes maximum since the ideal PN

sequence aligns with another unjammed sequence when τ = 2L. It is assumed that

226

Table 7.1: Comparison of SINR vs. PN sequence maximum cross-correlation as fitness
functions

SINR PN Sequence Max. Cross-correlation

Advantages Disadvantages Advantages Disadvantages

Relatively simple
implementation

Requires signal
classification

Only needs SOI
information

Calculation time
dependent of PN
sequence length

Commonly used
metric in the
literature

Cannot calculate
SINR if SOI and a

jammer have
similar frequency

spectra

Many digital
wireless protocols
(such as 802.11b/g
[83,84], CDMA

[85], RFID [86]) use
PN sequences as

identifiers

New metric for
anti-jamming

fitness

SINR → SNR as
I → 0

SNR limited I/Q demodulated
sequence → TX

sequence + noise as
I → 0

SNR limited

O (N) SINR
calculation

O
(

N3
)

spectral
estimation

O (N)
cross-correlation
with O (log 2N)

max search

Assumes
transmitted

sequence known by
receiver

max|RXY (τ)| = 0∀τ < 0 since the system turns at at time t = τ = 0.

A comparison of SINR versus the maximum of the absolute valued PN sequence

cross-correlation is presented in Table 7.1. An issue with SINR fitness is that it

requires spectral estimation to estimate SOI and interference power levels. If the

SOI and at least one interfering signal have similar spectra, the signals cannot be

classified as SOI or interference, and SINR cannot be computed. In addition, spectral

computation is computationally intensive. For example, the MUSIC algorithm uses

singular value decomposition (SVD) which is O (N3) per Golub et al. [87].

This method has disadvantages in the sense that it includes a new metric for anti-

227

jamming fitness, and it assumes that the receiver knows the transmitted PN sequence

a priori. Neither disadvantages prevent this method from being implemented for the

reason that PN sequences are used in many digital wireless standards [83–85] as noted

in Table 7.1.

7.2.2 Modular Eight Element Array

The analytical model described in [34] assumes that the beamforming system

operates in a Rayleigh fading channel, and algorithms exist that can separate SOI

from interference and calculate their power levels at the array’s output. It calculates

the array’s output Signal to Interference and Noise Ratio (SINR) as the GA’s fitness

function. Although our simulations and subsequent experiments in [34,77–80,82] show

that the GA can thwart interference once their power levels have been determined, it

may not be feasible to implement a spectral estimation algorithm prior to optimizing

the array’s hardware settings.

Future work includes developing a real-time, anti-jamming adaptive beamform-

ing system based on the analytical model of Figure 7.1 that can be used defensively to

thwart jammers in a lab environment. The system will be built with Printed Circuit

Boards (PCBs) using surface mount phase shifters and other electronic components

such as microcontrollers. The system will be modular with one antenna and accom-

panying phase shifters and step-attenuators on each module PCB, as this will allow

multiple layout configurations of the beamforming system. It will have eight antenna

modules, and the system will have a separate microcontroller PCB module that al-

228

lows control of different beamformer configurations via a main computer. While the

research will focus on WiFi (802.11n, 2.4 GHz and 5.8 GHz) frequency bands, the

results will be applicable to other frequency bands from 2.3 GHz to 6.0 GHz.

Σ
8-WAY

DIVIDER

DOWNLINK
USRP TX/RX

y(n,K=8)

COMPUTER

Phase
Low Band

Attn.

Branch # 1

1PDT
Phase

Hi Band1PDT

2.3 - 3.8 GHz

3.8 - 6.0 GHz

1PDT

Phase
Low Band

Attn.

Branch # 8

1PDT
Phase

Hi Band1PDT

2.3 - 3.8 GHz

3.8 - 6.0 GHz

1PDT

SW_T(1)

SW_T(8)

50

50

MICRO-CTRL
PCB

y(n,1)

Figure 7.4: Block diagram of a wideband, modular beamforming system.

A block diagram of a proof-of-concept (POC) hardware system is shown in Fig-

ure 7.4. Each branch is a PCB module with a wideband antenna. Each module has

multiple one-pole-double-throw (1PDT) switches that allow the system to switch be-

tween a low and high band based on commercially available surface mount microwave

components. The beamforming system can be expanded to more than eight antennas

with multiple RF power dividers and microcontroller PCBs.

7.2.3 Direction Finding and Adversarial Capabilities

The eight antenna modular POC hardware system (shown in Figure 7.4) has a

natural potential to provide direction finding and offensive active jamming capabilities

with the development of additional software. For offensive capabilities, a beamforming

229

system must detect directions in which it needs to transmit signals to jam advisories.

A flowchart showing how the algorithm adds signal direction tracking and adversary

jamming is shown in Figure 7.5. The receive (i.e., RCV) mode GA of Figure 7.2 is run

until convergence, and the best found GA solution is held in active memory. The SOI

is the only signal present at the array’s output. The algorithm connects one antenna

branch to the power divider at a time and collects multiple time-indexed samples

after each branch. The MUSIC algorithm calculates the SOI’s direction using these

samples. MUSIC can be used with any antenna array layout with antenna positions

incorporated into the algorithm [1].

Calc. all Signal Directions
(All Phase / Atten. = 0)

All SW_T(#) set LOW 1st
SW_T(#) Swept HI Indiv.

Start
Create New Fitness Function
with Convergence Criteria:

SOI + Max Jammer

Rerun GA Using New
Fitness Function

(All SW_T(#) held HI)
Set UPRS to TX Mode

Set USRP to RX Mode
(GA set to RCV Mode)

Run GA in RCV Mode
(All SW_T(#) held HI)
Fitness: Max AutoCorr

Calculate SOI Direction
(Best GA soln. held)

All SW_T(#) set LOW 1st
SW_T(#) Swept HI Indiv.

TX to SOI and
Jam Adversary

Figure 7.5: Algorithm flowchart for potential direction finding and active jamming
capabilities.

The MUSIC algorithm is run again with the phase shifters and step attenuators

set to 0. All signals are present at the array’s output with these settings, but the SOI’s

direction is known from the previous step and can be isolated from interference. The

new fitness function tracks MUSIC signal magnitudes in SOI and maximum strength

jammer directions. It assumes that the jammer with the maximum signal strength

is the closest adversary and is therefore the most desirable candidate to be jammed.

230

The convergence criteria are shown graphically in Figure 7.5 (rightmost MUSIC signal

diagram).

The offensive jamming mode GA converges when the MUSIC output containes

only the SOI and maximum jammer directions. When the system returns to RX

mode, it is assumed that the previous RCV mode GA solution is no longer valid, as

the adversary would likely change its jammer characteristics (i.e., power, frequency,

and/or location), or the wireless channel would have changed. The algorithm in

Figure 7.5 cannot be effectively run prior to running the receive mode GA because

signal directions are not known a priori, nor can the SOI be isolated from the jammers

before anti-jamming.

7.2.4 Fault Detection and Localization Algorithms

Fault localization theory discussed in Chapter 4 localizes faults in an antenna

array by correlating the radiation patterns measured in-situ (either in an anechoic

chamber or in the field with test equipment) with calculated patterns that have a

candidate antenna removed at various locations. This generates a probability that a

fault occurs at that location. This theory is easily extended to multiple faults with

coupling between antennas considered, and the fault position(s) that generate the

highest cross-correlation values are the best candidate positions for fault locations.

This method requires that the array be removed from wireless system opera-

tion and connected to test equipment to measure its radiation patterns. A more ideal

method allows fault detection and localization to be performed in-situ with connected

231

wireless sub-systems. However, the current POC system investigated in this thesis

(see Chapters 5 and 4) does not lend itself to performing these functions. To localize

faults when the beamforming array operates in-situ with other wireless subsystems,

an array structure with multiple receivers or a reverse commutated single-point con-

nection (see Figure 7.4) is necessary. The real-time localization algorithm performs

cross-correlations like the method described in Section 4.4, but the cross-correlations

calculated using the architecture shown in Figure 7.4 are of time-sampled power mea-

surements collected for all N branches, one branch at a time. Our advancement in

hardware fault recovery via stochastic algorithms helps integration in the military

field because our algorithms make the array more reliable without adding additional

hardware. Interference in wireless communications has long been a problem and will

continue being a problem as wireless devices become more and more common every-

day.

232

Bibliography

[1] F. B. Gross, Frontiers in Antennas: Next Generation Design & Engineering.
New York, NY: McGraw-Hill Professional, 2011.

[2] H. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array
Processing, ser. Detection, Estimation, and Modulation Theory. Wiley, 2004.

[3] C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Hoboken, New
Jersey: Wiley, 2005.

[4] R. J. Mailloux, Phased Array Antenna Handbook, 2nd ed. Boston, MA: Artech
House, 2005.

[5] M. Manteghi and R. Blanco, “A novel technique for a low-cost digital phased
array design,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 7,
pp. 3495–3501, 2013.

[6] P. J. Bevelacqua, “Antenna arrays: Performance limits and geometry optimiza-
tion,” Ph.D. dissertation, Arizona State University, May 2008.

[7] C. Balanis, Advanced Engineering Electromagnetics, 1st ed. Hoboken, New
Jersey: Wiley, 1989.

[8] Y. Zhang and M. Amin, “Anti-jamming GPS receiver with reduced phase dis-
tortions,” IEEE Signal Processing Letters, vol. 19, no. 10, pp. 635–638, 2012.

[9] F. B. Gross, “Smart Antennas,” in Antenna Engineering Handbook, 4th ed., J. L.
Volakis, Ed. New York, NY: McGraw-Hill, 2007, ch. 25.

[10] F. Chiti, R. Fantacci, L. Maccari, D. Marabissi, and D. Tarchi, “A broadband
wireless communications system for emergency management,” IEEE Wireless
Communications, vol. 15, no. 3, pp. 8–14, 2008.

[11] H. Khatib, “Theater wideband communications,” in MILCOM 97 Proceedings,
vol. 1, 1997, pp. 378–382 vol.1.

[12] C. Rabbath and N. Léchevin, Safety and Reliability in Cooperating Unmanned
Aerial Systems. Hackensack, NJ: World Scientific, 2010.

[13] R. Klemm, “Special Aspects of Airborne MTI Radar,” in Principles of Space-
Time Adaptive Processing, 2nd ed. London, United Kingdom: The Instituition
of Electrical Engineers, 2002, ch. 15.

233

[14] G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays: A
bayesian compressive sensing approach,” IEEE Transactions on Antennas and
Propagation, vol. 60, no. 10, pp. 4627–4636, 2012.

[15] A. K. Agrawal and E. Holzman, “Active phased array design for high reliability,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1204–
1211, 1999.

[16] E. Dubrova, Fault-Tolerant Design. New York, NY: Springer Science+Business
Media, 2013.

[17] G. S. Hornby, A. Globus, D. S. Linden, and J. D. Lohn, “Automated antenna
design with evolutionary algorithms,” American Institute of Aeronautics & As-
tronautics, Tech. Rep., 2006.

[18] J. Lohn, W. Kraus, and D. Linden, “Evolutionary optimization of a quadrifi-
lar helical antenna,” in IEEE Antennas and Propagation Society International
Symposium, vol. 3, 2002, pp. 814–817.

[19] X. Chen, K. Huang, and X.-B. Xu, “Automated design of a three-dimensional
fishbone antenna using parallel genetic algorithm and NEC,” IEEE Antennas
and Wireless Propagation Letters, vol. 4, pp. 425–428, 2005.

[20] S. Koulouridis, D. Psychoudakis, and J. Volakis, “Multiobjective optimal an-
tenna design based on volumetric material optimization,” IEEE Transactions on
Antennas and Propagation, vol. 55, no. 3, pp. 594–603, March 2007.

[21] D. W. Boeringer, D. H. Werner, and D. W. Machuga, “A simultaneous param-
eter adaptation scheme for genetic algorithms with application to phased array
synthesis,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp.
356–371, January 2005.

[22] B.-K. Yeo and Y. Lu, “Array failure correction with a genetic algorithm,” IEEE
Transactions on Antennas and Propagation, vol. 47, no. 5, pp. 823–828, 1999.

[23] J.-H. Han, S.-H. Lim, and N.-H. Myung, “Array antenna TRM failure compensa-
tion using adaptively weighted beam pattern mask based on genetic algorithm,”
IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 18–21, 2012.

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Adison-Wesley, 1989.

[25] J. H. Holland, Adaptation in Natural and Artificial Systems, First MIT press ed.
Cambridge, MA: MIT Press, 1992.

[26] K. A. De Jong, “Analysis of the behavior of a class of genetic adaptive systems,”
Ph.D. dissertation, University of Michigan, Ann Arbor, MI, 1975.

234

[27] K. A. De Jong, Evolutionary Computation: A Unified Approach. Cambridge,
MA: The MIT Press, 2006.

[28] D. S. Weile and E. Michielssen, “The control of adaptive antenna arrays with
genetic algorithms using dominance and diploidy,” IEEE Transactions on An-
tennas and Propagation, vol. 49, no. 10, pp. 1424–1433, October 2001.

[29] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications,
ser. Mathematics and Its Applications. Norwell, MA: Kluwer Academic Pub-
lishers, 1987.

[30] H. Evans, P. Gale, B. Aljibouri, E. Lim, E. Korolkwiwicz, and A. Sambell,
“Application of simulated annealing to design of serial feed sequentially rotated
2 times 2 antenna array,” Electronics Letters, vol. 36, no. 24, pp. 1987–1988,
2000.

[31] J. Dong, J. Yang, W. Lei, R. Shi, and Y. Guo, “Antenna array design in MIMO
radar using cyclic difference sets and simulated annealing,” in 2012 International
Conference on Microwave and Millimeter Wave Technology (ICMMT), vol. 1,
2012, pp. 1–4.

[32] Y. Yang, Y. Tan, R. Liang, Q. Wang, and N. Yuan, “A calibration algorithm
of millimeter-wave sparse arrays based on simulated annealing,” in 2010 Inter-
national Conference on Microwave and Millimeter Wave Technology (ICMMT),
2010, pp. 1702–1705.

[33] R. L. Haupt, Antenna Arrays: A Computational Approach. Hoboken, New
Jersey: John Wiley & Sons, Inc., 2010.

[34] J. Lohn, J. M. Becker, and D. Linden, “An evolved anti-jamming adaptive beam-
forming network,” Genetic Programming and Evolvable Machines, vol. 12, no. 3,
pp. 217–234, 2011.

[35] D. Krusienski and W. Jenkins, “A particle swarm optimization-least mean
squares algorithm for adaptive filtering,” in Conference Record of the Thirty-
Eighth Asilomar Conference on Signals, Systems and Computers, vol. 1, Nov
2004, pp. 241–245 Vol.1.

[36] K.-M. Lee, R.-S. Chu, and S.-C. Liu, “A built-in performance-monitoring/fault
isolation and correction (pm/fic) system for active phased-array antennas,” IEEE
Transactions on Antennas and Propagation, vol. 41, no. 11, pp. 1530–1540, 1993.

[37] J. Becker, J. Bain, and J. Hoburg, “Dipole arrays, electronically steered arrays,
and anti-jamming adaptive beamforming arrays,” April 2011, class Lecture.

235

[38] G. T. F. De Abreu and R. Kohno, “A modified Dolph-Chebyshev approach for
the synthesis of low sidelobe beampatterns with adjustable beamwidth,” IEEE
Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 3014–3017, 2003.

[39] B. K. Lau and Y. Leung, “A Dolph-Chebyshev approach to the synthesis of array
patterns for uniform circular arrays,” in 2000 IEEE International Symposium on
Circuits and Systems (ISCAS) Geneva, vol. 1, 2000, pp. 124–127 vol.1.

[40] N. Goto and Y. Tsunoda, “Sidelobe reduction of circular arrays with a constant
excitation amplitude,” IEEE Transactions on Antennas and Propagation, vol. 25,
no. 6, pp. 896–898, 1977.

[41] H. Steyskal, “Circular array with frequency-invariant pattern,” in Antennas and
Propagation Society International Symposium, 1989. AP-S. Digest, 1989, pp.
1477–1480 vol.3.

[42] C. Stearns and A. Stewart, “An investigation of concentric ring antennas with
low sidelobes,” IEEE Transactions on Antennas and Propagation, vol. 13, no. 6,
pp. 856–863, 1965.

[43] T. Zhang and W. Ser, “Robust beampattern synthesis for antenna arrays with
mutual coupling effect,” IEEE Transactions on Antennas and Propagation,
vol. 59, no. 8, pp. 2889–2895, 2011.

[44] S. Applebaum, “Adaptive arrays,” IEEE Transactions on Antennas and Propa-
gation, vol. 24, no. 5, pp. 585–598, 1976.

[45] L. Lei, X. Rongqing, and L. Gaopeng, “Robust adaptive beamforming based on
generalized sidelobe cancellation,” in International Conference on Radar, 2006.
CIE ’06, 2006, pp. 1–4.

[46] Y. Xu and Z. Liu, “Noncircularity-rate maximization: A new approach to adap-
tive blind beamforming,” in 5th International Conference on Wireless Commu-
nications, Networking and Mobile Computing, 2009. WiCom ’09., 2009, pp. 1–4.

[47] S. Chen, L. Hanzo, N. N. Ahmad, and A. Wolfgang, “Adaptive minimum bit
error rate beamforming assisted receiver for QPSK wireless communication,”
Digit. Signal Process., vol. 15, no. 6, pp. 545–567, Nov. 2005.

[48] H.-C. Lee, D.-C. Oh, and Y.-H. Lee, “Coordinated user scheduling with trans-
mit beamforming in the presence of inter-femtocell interference,” in 2011 IEEE
International Conference on Communications (ICC), 2011, pp. 1–5.

[49] R. Haupt and H. Southall, “Experimental adaptive nulling with a genetic algo-
rithm,” Microwave Journal, vol. 42, no. 1, pp. 78–89, 1999.

236

[50] A. Massa, M. Donelli, F. G. B. D. Natale, S. Caorsi, and A. Lommi, “Pla-
nar antenna array control with genetic algorithms and adaptive array theory,”
IEEE Transactions on Antennas and Propagation, vol. 52, no. 11, pp. 2919–2924,
November 2004.

[51] Y.-J. Lee, J.-W. Seo, J.-K. Ha, and D.-C. Park, “Null steering of linear phased
array antenna using genetic algorithm,” in 2009 Asia Pacific Microwave Confer-
ence (APMW), 2009, pp. 2726–2729.

[52] F. Ares, S. Rengarajan, E. Villaneuva, E. Skochinski, and E. Moreno, “Applica-
tion of genetic algorithms and simulated annealing technique in optimising the
aperture distributions of antenna array patterns,” Electronics Letters, vol. 32,
no. 3, pp. 148–149, 1996.

[53] F. Ares, S. Rengarajan, E. Villanueva, E. Skochinski, and E. Moreno, “Applica-
tion of genetic algorithms and simulated annealing technique in optimizing the
aperture distributions of antenna arrays,” in Antennas and Propagation Society
International Symposium, 1996. AP-S. Digest, vol. 2, 1996, pp. 806–809 vol.2.

[54] D. Sadler, “Planar array design for low ambiguity,” in 2009 Loughborough An-
tennas Propagation Conference (LAPC), 2009, pp. 713–716.

[55] A. Pascual-Iserte, A. I. Pérez-Neira, and M. A. Lagunas, “An approach to op-
timum joint beamforming design in a mimo-ofdm multiuser system,” EURASIP
J. Wirel. Commun. Netw., vol. 2004, no. 2, pp. 210–221, Dec. 2004.

[56] D. Migliore, “A compressed sensing approach for array diagnosis from a small set
of near-field measurements,” IEEE Transactions on Antennas and Propagation,
vol. 59, no. 6, pp. 2127–2133, 2011.

[57] N. Chamberlain, “Impulse testing of corporate-fed patch array antennas,” in
2011 IEEE Aerospace Conference, 2011, pp. 1–15.

[58] S. Liu, “A fault correction technique for phased array antennas,” in Antennas and
Propagation Society International Symposium, 1992. AP-S. 1992 Digest. Held
in Conjuction with: URSI Radio Science Meeting and Nuclear EMP Meeting.,
IEEE, 1992, pp. 1612–1615 vol.3.

[59] M. Joler, “Self-recoverable antenna arrays,” IET Microwaves Antennas Propa-
gation, vol. 6, no. 14, pp. 1608–1615, 2012.

[60] S. Mitilineos, S. C. A. Thomopoulos, and C. Capsalis, “On array failure mitiga-
tion with respect to probability of failure, using constant excitation coefficients
and a genetic algorithm,” IEEE Antennas and Wireless Propagation Letters,
vol. 5, no. 1, pp. 187–190, 2006.

237

[61] M. J. Rivera, J. Costantine, Y. Tawk, and C. G. Christodoulou, “Detection of
failures in switch reconfigurable antenna arrays using embedded sensing lines,”
in 2012 IEEE Antennas and Propagation Society International Symposium (AP-
SURSI), 2012, pp. 1–2.

[62] R. Iglesias, F. Ares, M. Fernandez-Delgado, J. Rodriguez, J. Bregains, and
S. Barro, “Element failure detection in linear antenna arrays using case-based
reasoning,” IEEE Antennas and Propagation Magazine, vol. 50, no. 4, pp. 198–
204, 2008.

[63] B.-K. Yeo and Y. Lu, “Fast detection and location of failed array elements using
the fast SVM algorithm,” in 2010 14th International Symposium on Antenna
Technology and Applied Electromagnetics the American Electromagnetics Con-
ference (ANTEM-AMEREM), 2010, pp. 1–4.

[64] J. Rodŕıguez-González, F. Ares-Pena, M. Fernández-Delgado, R. Iglesias, and
S. Barro, “Rapid method for finding faulty elements in antenna arrays using far
field pattern samples,” in 3rd European Conference on Antennas and Propagation
(EuCAP), 2009, pp. 3380–3384.

[65] A. Alexiou and A. Manikas, “Array robustness to sensor failure,” in 2000 IEEE
International Conference on Phased Array Systems and Technology, 2000, pp.
177–180.

[66] A. Sleiman and A. Manikas, “The impact of sensor positioning on the array
manifold,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp.
2227–2237, 2003.

[67] D. Cheng, Field and Wave Electromagnetics, 2nd ed., ser. Addison-Wesley Series
in Electrical Engineering. Addison-Wesley, 2004.

[68] M. D. Greenberg, Advanced Engineering Mathematics, 2nd ed. Upper Saddle
River, NJ: Prentice Hall, 1998.

[69] J. Proakis, Digital Communications, ser. McGraw-Hill series in electrical and
computer engineering. McGraw-Hill Higher Education, 2001.

[70] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Pro-
cesses, 4th ed. New York, NY: McGraw-Hill Companies Inc., 2002.

[71] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers, 2nd ed. Hoboken, NJ: John
Wiley & Sons, Inc., 2005.

[72] D. S. Weile and D. S. Linden, “AntNet: A fast network analysis add-on for
WIPL-D,” in 27th International Review of Progress in Applied Computational
Electromagnetics, March 2011, pp. 1–5.

238

[73] E. Newman, J. Richmond, and C. H. Walter, “Superdirective receiving arrays,”
IEEE Transactions on Antennas and Propagation, vol. 26, no. 5, pp. 629–635,
1978.

[74] E. Gilbert and S. Morgan, “Optimum design of directive antenna arrays subject
to random variations,” Bell System Technical Journal, vol. 34, no. 3, pp. 637–663,
1955.

[75] M. Gustafsson and S. Nordebo, “Optimal antenna currents for Q, superdirectiv-
ity, and radiation patterns using convex optimization,” IEEE Transactions on
Antennas and Propagation, vol. 61, no. 3, pp. 1109–1118, 2013.

[76] Y. Ma, Y. Yang, Z. He, K. Yang, C. Sun, and Y. Wang, “Theoretical and prac-
tical solutions for high-order superdirectivity of circular sensor arrays,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 1, pp. 203–209, 2013.

[77] J. Becker, J. Lohn, and D. Linden, “An anti-jamming beamformer optimized us-
ing evolvable hardware,” in 2011 IEEE International Conference on Microwaves,
Communications, Antennas, and Electronic Systems (COMCAS), November
2011, pp. 1–5.

[78] J. Becker, J. D. Lohn, and D. Linden, “An in-situ optimized anti-jamming beam-
former for mobile signals,” in 2012 IEEE International Symposium on Antennas
and Propagation, IEEE APS, July 2012, pp. 1–2.

[79] J. Becker, J. Lohn, and D. Linden, “Evaluation of genetic algorithms in mitigat-
ing wireless interference in situ at 2.4 GHz,” in WiOpt 2013 Indoor and Outdoor
Small Cells Workshop, May 2013, pp. 1–8.

[80] J. Becker, J. D. Lohn, and D. Linden, “Algorithm comparison for in-situ beam-
forming,” in 2013 IEEE International Symposium on Antennas and Propagation,
IEEE APS, July 2013, pp. 1–2.

[81] S. J. Louis and G. J. Rawlins, “Predicting convergence time for genetic algo-
rithms,” Foundations of Genetic Algorithms, vol. 2, pp. 141–161, 1993.

[82] J. Becker, J. D. Lohn, and D. Linden, “Towards a self-healing, anti-jamming
adaptive beamforming array,” in 2013 IEEE-APS Topical Conference on Anten-
nas and Propagation in Wireless Communications (APWC), September 2013,
pp. 1–4.

[83] B. O’Hara and A. Petrick, IEEE 802.11 Handbook: A Designer’s Companion,
2nd ed., ser. IEEE Standards Wireless Networks Series. New York, NY: Wiley,
2005.

239

[84] “IEEE Standard for Information Technology- Telecommunications and Informa-
tion Exchange Between Systems- Local and Metropolitan Area networks- Specific
Requirements Part Ii: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications,” IEEE Std 802.11g-2003 (Amendment to IEEE
Std 802.11, 1999 Edn. (Reaff 2003) as amended by IEEE Stds 802.11a-1999,
802.11b-1999, 802.11b-1999/Cor 1-2001, and 802.11d-2001), pp. i–67, 2003.

[85] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.,
ser. Prentice Hall Communications Engineering and Emerging Technologies. Up-
per Saddle River, N.J.: Prentice Hall, 2002.

[86] J. Becker, M. Trotter, and J. Griffin, “Passive displacement sensing using
backscatter RFID with multiple loads,” in 2013 IEEE Sensors, November 2013,
pp. 1–4.

[87] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore,
Maryland: The Johns Hopkins University Press, 1996.

240

	ADPEB9B.tmp
	THESIS

