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Abstract

The focus of this thesis is the study of the evolution of two models adopted in the context of
phase separation and pattern formation, the Cahn-Hilliard model and the Swift-Hohenberg
model. In the study of the Cahn-Hilliard model, the PDEs arising as the L2 and H�1 gradi-
ent flows in the higher dimensional setting n > 1 are studied, and estimates are provided on
the evolution of solutions initiated close to configurations that globally or locally minimize
the perimeter of the interface are provided. The results rely on a new regularity property of
a local version of the well-known isoperimetric function. In the Swift-Hohenberg setting,
the one dimensional model is considered, and the slow evolution of a particular class of
solutions is established. In this context, existence and regularity of solutions in dimension
n  3 are provided. In the last part of this thesis, two ongoing project and future research
directions are presented.
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“Perché [...] debbe uno uomo prudente entrare sempre per vie battute da uomini
grandi, e quegli che sono stati eccellentissimi imitare, [...] e fare come gli arcieri pru-
denti, a quali parendo el luogo dove desegnano ferire troppo lontano, [...] pongono la
mira assai più alta che il luogo destinato [...] per potere con lo aiuto di sı̀ alta mira per-
venire al disegno loro.”

“A wise man ought always to follow the paths beaten by great men, and to imitate those
who have been more than excellent, [...] and act like the prudent archers who, seeing the
target they want to hit too far distant, [...] take aim much higher than the mark, [...] to be
able with the aid of so high an aim to fulfill their plan.”

N. Machiavelli
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Chapter 1

Introduction

The main area of this thesis is analysis of problems in the context of phase separation and
pattern formation. The goal is to use variational methods to study the evolution of solutions
and to give estimates on their speed of convergence. The first part of this work deals
with the Cahn-Hilliard energy and its gradient flows, the Allen-Cahn and Cahn-Hillard
equations. This contribution is mostly contained in [60].

The second part addresses the Swift-Hohenberg equation, seen as a gradient flow of a
higher order energy. These results are contained in [46].

Finally, future directions of research are proposed in the final part of this dissertation,
where a brief summary on two ongoing projects is given.

1.1 Slow motion
Equations displaying interfacial dynamics have been studied extensively in the last two
decades, see, e.g., [2], [3], [4], [5], [17], [16], [19], [39] . Among them, the most well-
known are the Allen-Cahn equation

u"
t = "2�u" �W 0

(u"
) (1.1.1)

and the Cahn–Hilliard equation

u"
t = ��("2�u" �W 0

(u"
)) (1.1.2)

where, here and henceforth, we write u" to highlight the dependence of solutions on the pa-
rameter " > 0. In the one dimensional setting n = 1, it has been shown for the Allen–Cahn
equation (see [19] and the references therein) that if "⌧ 1 the evolution from a sufficiently
regular initial data occurs in four main stages. In the first stage, the diffusion term "2�u"

can be ignored and the leading order dynamics are driven by the " independent ordinary
differential equation ut = �W 0

(u). This is the time-scale in which interfaces develop,
i.e., regions in the space domain that separate almost constant solutions corresponding to
the stable equilibria of the ordinary differential equation. This stage, referred to as the
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generation of interface, has been analyzed for the Allen–Cahn equation first in [35], and
subsequently in [19], [20], [29], [73].

As the regions separating unequal equilibria decrease in length, the spacial gradient
necessarily increases, and after O(| ln "|) time the dynamics are driven by a balance be-
tween the two terms on the right–hand side of (1.1.1). In particular, as shown in [19], after
O("�1

) time the solution is exponentially close to the standing–wave profile

�(x; p
1

, . . . , pn) := ±
Y

n

�

✓

x� pi
"

◆

, (1.1.3)

parametrized by the positions p
1

, . . . pn, where � satisfies

�00
= W 0

(�), lim

z!±1
�(x) = ±1, �(0) = 0. (1.1.4)

The zeros p
1

(t), . . . , pn(t) of � can be viewed as specifying the location of the interfaces.
In particular, the residual "2�xx�W 0

(�) is exponentially small and the corresponding third
stage of the evolution proceeds on an exponentially slow time scale until two zeros of the
solution of (1.1.1) u" collide and disappear as part of the fourth stage of the evolution.

The third stage, usually referred to as slow motion, has been studied extensively. Some
precise interface evolution results for the Allen–Cahn equation can be found in [16], [17],
[38], [39]. See also the formal derivation obtained by Neu [61]. To be precise, the zeros
of the solution u" are approximated by {pi}, which at leading order move according to the
evolution law

p0i = "S

✓

exp

✓

�µ
pi+1

� pi
"

◆

� exp

✓

�µ
pi � pi�1

"

◆◆

, (1.1.5)

where µ =

p

W 00
(±1), S > 0 is a constant depending only on W . The proof of this

reduction involves invariant manifold theory and geometric analysis.
A similar approach has been recently adopted by several authors to extend these ideas

to a more general setting, by studying the slow manifolds inherent to the dynamics of these
equations, see [66] and the references therein.

Subsequently, Bronsard and Kohn [12] introduced a new variational method to study the
behavior of solutions of the Allen–Cahn equation (1.1.1). They observed that the motion of
solutions of this equation, subject to either Neumann or Dirichlet boundary conditions in an
open, bounded interval ⌦ ⇢ R, could be studied by exploiting the gradient flow structure
of (1.1.1) (cf. (2.4.3) in Section 2.4). The key tool in their paper is a careful analysis of the
asymptotic behavior of the energy

G"[u] :=

ˆ
⌦

1

"
W (u) +

"

2

|ru|2dx, u 2 H1

(⌦), (1.1.6)

where W is a double-well potential with {W = 0} = {a, b} for some a < b. See [37] for
more details. The L2–gradient flow of (1.1.6) is precisely (1.1.1). It is well–known (see,
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e.g., [58], [59], [74]) that if {v"} converges in L1

(⌦) to a function v 2 BV (⌦; {a, b}) with
exactly N jumps, then

lim inf

"!0

G"[v"] � NcW =: G
0

[v], (1.1.7)

where

cW :=

ˆ b

a

W 1/2
(s) ds.

Bronsard and Kohn improved the lower bound (1.1.7) by showing that, for any k > 0,

G"[v"] � NcW � C
1

"k (1.1.8)

for " sufficiently small and some C
1

> 0. They then applied (1.1.8) to prove that (cf.
Theorem 4.1 in [12]) if the initial data u"

0

of the equation (1.1.1) converges in L1

(⌦) to the
jump function v, and u"

0

are energetically “well–prepared”, that is,

G"[u
"
0

]  NcW + C
2

"k

for some C
2

> 0, then for any M > 0,

sup

0tM"�k

||u"
(t)� v||L1 ! 0 as "! 0

+. (1.1.9)

Subsequently, Grant [44] improved the estimate (1.1.8) to

G"[v"] � NcW � C
1

e�C2"�1
(1.1.10)

for " small, and some C
1

, C
2

> 0, which in turn gives the more accurate slow motion
estimate

sup

0tMeC"�1

||u"
(t)� v||L1 ! 0 as "! 0

+ (1.1.11)

for some C > 0, and his analysis extends to solutions of the Cahn-Hilliard equation (1.1.2).
Finally, Bellettini, Nayam and Novaga [8] gave a sharp version of Grant’s second–order
estimate by proving that

G"[v"] � NcW � 2↵
+

2
+

N
X

k=1

e�↵+
d"k
" � 2↵�

2

�

N
X

k=1

e�↵�
d"k
"

+ 3
+

�
+

N
X

k=1

e�
3↵+
2

d"k
"
+ 3���

N
X

k=1

e�
3↵�
2

d"k
"

+ o

 

N
X

k=1

e�
3↵+
2

d"k
"

!

+ o

 

N
X

k=1

e�
3↵�
2

d"k
"

!

(1.1.12)

as " ! 0

+, where ↵±,±, �± are constants depending on the potential W and d"k is the
distance between the k–th and the (k + 1)–th transitions of v". This last work gives a vari-
ational validation of [16], [17]. Indeed, the sharp energy estimate allows the authors to
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(formally) recover the ODE describing the motion of transition points.

The situation in higher dimensions is more complicated. In particular, we will consider
the nonlocal (or mass-preserving) Allen-Cahn equation

u"
t = "2�u" �W 0

(u"
) + "�", (1.1.13)

where �" is the Lagrange multiplier responsible for the preservation of the mass (see Sec-
tion 1.2 for more details). As in the one–dimensional setting, it is well–known (see, e.g.,
[14], [71]) that, after rescaling time by ", (1.1.13) is the L2–gradient flow of the energy
(1.1.6) subject to the mass constraint ˆ

⌦

u dx = m, (1.1.14)

where here ⌦ ⇢ Rn, n � 2. Furthermore, the energy G" : L1

(⌦) ! [0,1] defined by

G"[u] :=

(

G"[u] if u 2 H1

(⌦) and
´
⌦

u dx = m,

1 otherwise,
(1.1.15)

is known to �–converge to G
0

: L1

(⌦) ! [0,1], where

G
0

[u] :=

(

2cWP ({u = a};⌦) if u 2 BV (⌦; {a, b}) and
´
⌦

u dx = m,

1 otherwise.
(1.1.16)

Here P (E;⌦) denotes the relative perimeter of E inside ⌦, for any measurable set E ⇢ Rn

(see Section 2.2). In particular, if

uE0 := a�E0 + b�Ec
0

(1.1.17)

is a local minimizer of G
0

then @E
0

is a surface of constant mean curvature, and the curva-
tures may affect the slow motion of solutions of (1.2.1). Much of the work in the existing
literature in this setting has addressed the motion of phase “bubbles”, namely solutions
approximating a spherical interface compactly contained in ⌦. For example, Bronsard
and Kohn [13] utilize variational techniques to analyze radial solutions u",rad of the Allen–
Cahn equation. They prove that u",rad separates ⌦ into two regions where u",rad ⇡ +1 and
u",rad ⇡ �1 and that the interface moves with normal velocity equal to the sum of its prin-
cipal curvatures. In [32], Ei and Yanagida investigate the dynamics of interfaces for the
Allen–Cahn equation, where ⌦ is a strip–like domain in R2. They show that the evolution
is slower than the mean curvature flow, but faster than exponentially slow. This suggests
that estimates of the type (1.1.10) cannot be expected to hold in higher dimensions. In the
Cahn–Hilliard case, Alikakos, Bronsard and Fusco [3] use energy methods and detailed
spectral estimates to show the existence of solutions of (1.1.2) supporting almost spher-
ical interfaces, which evolve by drifting towards the boundary with exponentially small
velocity. Other related works include [2], [4] and [5]. Most of these contributions require
significant analytical techniques, and often focus only on the existence of slowly moving
solutions.
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1.2 Allen-Cahn & Cahn-Hilliard
The first part of this thesis addresses the slow motion of phase boundaries for the nonlocal
Allen–Cahn equation with Neumann boundary conditions. To be precise, consider

8

>

<

>

:

u"
t = "2�u" �W 0

(u"
) + "�" in ⌦⇥ [0,1),

@u"

@⌫
= 0 on @⌦⇥ [0,1),

u"
= u"

0

on ⌦⇥ {0}.
(1.2.1)

Here ⌦ ⇢ Rn, 1 < n  7, is an open, bounded, connected set with @⌦ regular (see (2.1.1)),
" > 0 is a parameter representing the interaction length, W : R ! [0,1) is a double well-
potential with wells at a < b, u"

0

is the initial datum, and �" is a Lagrange multiplier that
renders solutions mass–preserving, i.e.,

�" =
1

"Ln
(⌦)

ˆ
⌦

W 0
(u"

) dx.

This nonlocal reaction diffusion equation was introduced by Rubinstein and Sternberg [71]
to model phase separation after quenching of homogenous binary systems (e.g., glasses or
polymers). An important property of this equation is that the total mass

´
⌦

u"
(x, t) dx is

preserved in time. It can be shown that when "! 0

+ the domain ⌦ is divided into regions
in which u" is close to a and to b, and that the interfaces between these regions as " ! 0

+

evolve according to a nonlocal volume–preserving mean curvature flow.
A key tool in the analysis of solutions of (1.2.1) in the higher-dimensional setting is

the analogue of (1.1.8) that was recently obtained by Leoni and Murray [55]. Their result
assumes that the isoperimetric function

I
⌦

(r) := inf{P (E;⌦) : E ⇢ ⌦ Borel, Ln
(E) = r}, r 2 [0,Ln

(⌦)], (1.2.2)

satisfies a Taylor formula of order two at the value

r
0

:=

bLn
(⌦)�m

b� a
, (1.2.3)

where m is the mass constraint given in (1.1.14), and where by a “Taylor formula of order
two” we mean that there exists a neighborhood U of r

0

such that

I
⌦

(r) = I
⌦

(r
0

) +

dI
⌦

dr
(r

0

)(r � r
0

) +O(|r � r
0

|1+&
), (1.2.4)

for some & 2 (0, 1], for all r 2 U (see Lemma 3.2.3; see also [7] and [75]).
In certain settings it is known that I

⌦

is semi–concave (see [7] and [75]), and indeed
we will later show that I

⌦

is semi–concave as long as ⌦ is C2,� (see Remark 3.2.4). Hence,
I
⌦

satisfies a Taylor formula of order two at L1–a.e. r or, equivalently, for L1–a.e. mass m
in (1.1.14).
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If a set E
0

⇢ ⌦ satisfies

Ln
(E

0

) = r
0

, P (E
0

;⌦) = I
⌦

(r
0

), (1.2.5)

then we call E
0

a volume–constrained global perimeter minimizer. Classical results [45],
[56] establish the existence of volume–constrained global perimeter minimizers, and assert
that the boundary of any volume–constrained global perimeter minimizer is a surface of
(classical) constant mean curvature for n  7, provided @⌦ is of class C2,↵ (see Proposition
2.3.7 and Lemma 3.2.1 below).

Under technical hypotheses on ⌦,W,m, a simplified version of the main theorem in
[55] is the following.

Theorem 1.2.1. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
and suppose that E

0

⇢ ⌦ is a volume–constrained global perimeter minimizer with
Ln

(E
0

) = r
0

. Suppose further that I
⌦

satisfies a Taylor expansion of order two at r
0

(given by (1.2.3)) as in (1.2.4). Then given any function u 2 L1

(⌦), the following error
bound holds

G"[u] � G
0

[uE0 ]� C()" (1.2.6)

for all " > 0 sufficiently small, where uE0 is the function given in (1.1.17) and C() is a
known, sharp constant that depends only upon W , P (E

0

;⌦) and the mean curvature  of
@E

0

.

Thanks to the previous energy estimate, we are naturally led to the study of motion of
solutions of the initial value problem (1.2.1). We will denote

X
1

:=

⇢

u 2 L2

(⌦) :

ˆ
⌦

u dx = m

�

.

The first main result in the first part of this thesis is the following.

Theorem 1.2.2. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
and let E

0

be a volume–constrained global perimeter minimizer with Ln
(E

0

) = r
0

. Fur-
thermore, suppose that I

⌦

satisfies a Taylor expansion of order two at r
0

as in (1.2.4).
Assume that u"

0

2 X
1

\ L1
(⌦) is such that

u"
0

! uE0 in L1

(⌦) as "! 0

+, (1.2.7)

and
G"[u

"
0

]  G
0

[uE0 ] + C" (1.2.8)

for some C > 0. Let u" be a solution to (1.2.1). Then, for any M > 0

sup

0tM"�1

||u"
(t)� uE0 ||L2 ! 0 as "! 0

+. (1.2.9)

6



Remark 1.2.3. The assumption u"
0

2 X
1

\L1
(⌦) is needed in order to ensure regularity of

the solutions, see Theorem 2.4.1. In particular, (2.4.1) is satisfied thanks to the hypotheses
on the potential, see (2.1.6).

Using Theorem 1.2.1, we can also prove that solutions to the Cahn–Hiliard equation
with Neumann boundary conditions

8

>

>

>

>

>

<

>

>

>

>

>

:

u"
t = ��v" in ⌦⇥ (0,1),

v" = "2�u" �W 0
(u"

) in ⌦⇥ [0,1),

@u"

@⌫
=

@v"
@n

= 0 on @⌦⇥ [0,1),

u"
= u"

0

on ⌦⇥ {0}.

(1.2.10)

admit analogous properties. As a matter of fact, it is well–known that the Cahn–Hilliard
equation can be seen as the X

2

–gradient flow of the energy in (1.1.15), where the space
X

2

(⌦) is similar to H�1

(⌦). In particular, following [52], we will formally denote

X
2

(⌦) := ((H1

(⌦))

0, h , iX2),

where the inner product will be precisely introduced in Section 2.4. We will prove the
following.

Theorem 1.2.4. Let n = 2, 3, assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6),
(2.1.9), (2.1.11), and let E

0

be a volume–constrained global perimeter minimizer with
Ln

(E
0

) = r
0

. Furthermore, suppose that I
⌦

satisfies a Taylor expansion of order 2 at
r
0

as in (1.2.4). Assume that u"
0

2 X
2

\ L2

(⌦) is such that

u"
0

! uE0 in X
2

(⌦) as "! 0

+, (1.2.11)

and
G"[u

"
0

]  G
0

[uE0 ] + C" (1.2.12)

for some C > 0. Let u" be a solution to (1.2.10). Then, for any M > 0

sup

0tM"�1

||u" � uE0 ||X2 ! 0 as "! 0

+. (1.2.13)

Remark 1.2.5. To the best of our knowledge, regularity results for (1.2.10) have not been
rigorously derived in the case n � 4. For this reason, the previous result is stated in a
lower dimensional setting and we rely on Theorems 2.4.2 and 2.4.3 for the regularity of
solutions. On the other hand, if we assume that solutions u"

(t) 2 L1

(⌦) for all t � 0, then
the result holds for any 1 < n  7.

Next we show that Theorem 1.2.2 continues to hold for certain volume–constrained
local perimeter minimizers (for a precise definition see Definition 2.2.6 in Section 2.1).
For this purpose, we introduce a local version of the isoperimetric function I

⌦

defined by

7



(1.2.2). Given a Borel set E
0

⇢ ⌦ and � > 0 we define the local isoperimetric function of
parameter � about the set E

0

to be

I�,E0
⌦

(r) := inf{P (E,⌦) : E ⇢ ⌦ Borel, Ln
(E) = r,↵(E

0

, E)  �}, (1.2.14)

where
↵(E

1

, E
2

) := min{Ln
(E

1

\ E
2

),Ln
(E

2

\ E
1

)} (1.2.15)

for all Borel sets E
1

, E
2

⇢ ⌦.

Under smoothness assumptions on I�,E0
⌦

and other technical hypotheses on ⌦,W,m
(see Section 2.1), we will prove the following result.

Theorem 1.2.6. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
let E

0

be a volume–constrained local perimeter minimizer with Ln
(E

0

) = r
0

. Fix � > 0

and suppose that I�,E0
⌦

admits a Taylor expansion of order two at r
0

as in (1.2.4). Then for
any u 2 L1

(⌦) satisfying
ku� uE0kL1  2� (1.2.16)

we have
G"[u] � G

0

[uE0 ]� C()", (1.2.17)

for " > 0 sufficiently small, where C() is a known, sharp constant that depends only upon
W , P (E

0

;⌦) and the mean curvature  of @E
0

.

Remark 1.2.7. The closeness condition (1.2.16) depends on the distance between the wells
of W , and it precisely reads as ku� uE0kL1  (b� a)�. Without loss of generality, we will
assume a = �1 < 1 = b, see (2.1.11).

Replacing I
⌦

with I�,E0
⌦

, we are able to show that Theorem 1.2.1 continues to hold for
volume–constrained local perimeter minimizers. In turn, this brings us to the next main
result of the first part of this thesis.

Theorem 1.2.8. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
and let E

0

be a volume–constrained local perimeter minimizer with Ln
(E

0

) = r
0

. Fix
� > 0, and suppose that I�,E0

⌦

admits a Taylor expansion of order two at r
0

as in (1.2.4).
Assume that u"

0

2 X
1

\ L1
(⌦) is such that

u"
0

! uE0 in L1

(⌦) as "! 0

+, (1.2.18)

and
G"[u

"
0

]  G
0

[uE0 ] + C" (1.2.19)

for some C > 0. Let u" be a solution to (1.2.1). Then, for any M > 0

sup

0tM"�1

||u"
(t)� uE0 ||L1 ! 0 as "! 0

+.
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In view of the previous theorem, the regularity of I�,E0
⌦

at r
0

is of crucial importance.
Note that unlike I

⌦

, the function I�,E0
⌦

depends upon r
0

, and thus semi–concavity does not
provide enough information. We will focus on the case in which E

0

is either a ball or a
set with positive second variation in the sense of (2.3.6). The case in which E

0

is a ball is
linked to the case of phase “bubbles”, which have been extensively studied in [2], [3], [4],
and [5] (see Section 3.2).

Theorem 1.2.9. Let ⌦ satisfy (2.1.1), let E
0

= B⇢0(x0

) ⇢⇢ ⌦ for some x
0

2 ⌦ with
⇢
0

= (r
0

/!n)
1/n. Then there exist �

0

> 0 and 0 < r
1

< r
0

such that

I�,E0
⌦

(r) = Cnr
n�1
n , (1.2.20)

for all r 2 [r
0

� r
1

, r
0

+ r
1

] and all 0 < �  �
0

, where Cn is a constant depending only on
the dimension n. In particular, the map r 7! I�,E0

⌦

(r) admits a Taylor expansion of order
two at r

0

as in (1.2.4) and Theorem 1.2.8 holds for E
0

.

Here !n := Ln
(B

1

(0)). Moreover, we are able to prove regularity of I�,E0
⌦

in the
setting of isolated local minimizers with positive second variation in the sense of (2.3.6).
The proof of the previous result relies upon the theory of the stability of the perimeter
functional developed by Fusco, Maggi and Pratelli [40]. In particular, we use the results
obtained by Julin and Pisante [49], who extended the techniques introduced by Acerbi,
Fusco and Morini [1].

Theorem 1.2.10. Suppose that ⌦ satisfies (2.1.1), and that E
0

is a local volume–
constrained perimeter minimizer with Ln

(E
0

) = r
0

and with positive second variation
in the sense of (2.3.6). Then, for sufficiently small �, I�,E0

⌦

admits a Taylor expansion of
order two at r

0

as in (1.2.4). In particular, Theorem 1.2.8 holds for such E
0

.

1.3 Swift-Hohenberg
The fourth order partial differential equation

ut = ru� (q̄2 +r2

)

2u+ f(u) (1.3.1)

is a generalization of the Swift–Hohenberg equation introduced in 1977 by Swift and
Hohenberg [76] as a model for the study of pattern formation, in connection with the
Rayleigh–Bénard convection, e.g. see [27],[51]. Among many different applications, the
most famous ones in the literature are those in connection to pattern formation in vibrated
granular materials [77], buckling of long elastic structures [48], Taylor–Couette flow [47],
[69], and the study of lasers [53]. Moreover, in recent years considerable interest has
been paid to models of phase transitions in the study of pattern–formation in bilayer mem-
branes, see e.g. [21] where the Swift–Hohenberg equation turns out to be the gradient flow
of Ginzburg–Landau type energies with respect to the right inner product structure.
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Consider (1.3.1) on a periodic domain with a characteristic size L = 1/", where 0 <
" ⌧ 1. Letting W be the primitive of s 7! 2(f(s) + (r � q̄4)s), q := 2q̄2, and rescaling
time and space by " in (1.3.1), we obtain at the rescaled formulation

(

ut = �W 0
(u)� 2"2qu"

xx � 2"4u"
xxxx x 2 T, t > 0,

u"
(x, 0) = u"

0

(x) x 2 T,
(1.3.2)

where T is a one–dimensional torus, and u"
0

is the initial datum. As above, W : R !
[0,+1) is a double–well potential with phases supported at a < b, and we study the
long–time behavior of solutions when q > 0 is sufficiently small. In particular, due to the
presence of the small parameter " in (1.3.2) the solutions are expected to develop interfacial
structure driven by the minima of the potential W . Equation (1.3.2) may be viewed as a
gradient flow associated to a second order energy functional, and our main result consists
of an asymptotic lower bound on the corresponding energy functional and the consequent
bounds on the speed of evolution of the developed interfaces, as in the case of the lower
order Allen-Cahn equation (1.1.1).

Equations associated to higher–order energy functionals have been studied in the last
two decades. For instance, in [50] the authors consider a family of the form

H"(u) :=
1

"

ˆ
I

 

n
X

k�1

�k"2k

2

|u(k)|2 +W (u)

!

dx, (1.3.3)

where u(k) stands for the k–th spatial derivative of u. Due to difficulties associated with
higher order nature of the functional, in particular, the lack of exact solutions of the cor-
responding Euler–Lagrange equation, sharp bounds analogous to (1.1.12) have not been
established. An important condition on H" in [50] is

(HP) There exist constants d
0

, ⌘ > 0 such that for every interval I ⇢ R with length |I| �
d
0

, and for all u 2 Hn
(I) := W 2,n

(I)

ˆ
I

 

n
X

k�1

�k|u(k)|2
!

dx � ⌘

ˆ
I

�|u(n)|2 + |u0|2� dx. (1.3.4)

Under this hypothesis the authors prove that for any u 2 Hn
(I) sufficiently close to a step

function taking values ±1 and having exactly N jumps,

H"(u) � Nm
1

� C exp

✓

�d�

3"

◆

, (1.3.5)

where � is a constant satisfying � < |Re(µ)|, for all eigenvalues µ of the linearization of

n
X

k=1

(�1)

k�ku
(2k)

+W 0
(u) = 0 (1.3.6)
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at (±1, 0, . . . , 0).

The initial value problem (1.3.2) can be seen as the L2–gradient flow of the second
order energy functional

E"(u;T) :=
ˆ
T

✓

1

"
W (u)� "q|u0|2 + "3|u00|2

◆

dx, u 2 H2

(T), (1.3.7)

and our main goals are the extension and the improvement of the bound (1.3.5) for this
energy and, in turn, using this to prove the slow motion of solutions of (1.3.2). We note
that the functional (1.3.7) does not satisfy (HP) due to the negative term in the energy.
We use recently established interpolation inequalities (see [21] and [23]) to overcome this
difficulty if q > 0 is sufficiently small. Moreover, in the proof of an energy estimate
analogous to (1.3.5), see Theorem 1.3.1, we do not assume any closeness condition on the
H2 functions we consider, instead we make an assumptions on the zeros of such functions.

The main result in this framework is the following lower bound on the energy.

Theorem 1.3.1. Let T be the one–dimensional unit torus, and let W satisfy the hypotheses
(2.1.3), (2.1.5) and (2.1.7)–(2.1.9). Let ↵

0

> 0. Then there exist q
0

> 0 and "
0

> 0,
possibly dependent on ↵

0

and q
0

, such that if q < q
0

and w 2 H2

(T) has at least N zeros,
{xk}Nk=1

, satisfying mink |xk+1

� xk| � ↵
0

then

E"(w;T) � Nm
1

� C
N
X

k=1

exp

✓

�dk�

"

◆

, (1.3.8)

for every 0 < " < "
0

, where dk = xk+1

� xk, � > 0 is defined in (4.1.45) and depends only
on W , while C > 0 is independent of ".

We remark that a similar estimate can be obtained when the domain is an interval I :=

(a
0

, b
0

), with (1.3.8) replaced with

E"(w; I) � Nm
1

� C
N
X

k=0

exp

✓

�dk�

"

◆

, (1.3.9)

where d
0

:= x
1

� a
0

, dN := b
0

� xN .

Remark 1.3.2. We highlight the fact that we are not requiring the function w of Theorem
1.3.1 to be L1–close to a jump function, in contrast with [9], [12], [44], [50]. On the other
hand, it is easy to show that if w is L1–close to a jump function v taking values ±1, then
there exists an ↵

0

> 0 with the property that the zeros of w are at least ↵
0

> 0 apart, as in
the statement of Theorem 1.3.1.

The energy estimate above is a crucial ingredient to prove slow motion of solutions of
(1.3.2), when the initial data is close in the L1 norm to a BV function, as in [12], [44], [50].
In particular, we will consider regular solutions of (1.3.2), whose existence is proved in the
Appendix, see Theorem 4.3.1. Our analysis yields the following result.
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Theorem 1.3.3. Let v 2 BV (T; {±1}) be a function with N(v) 6= 0 jumps at xk(v), for
k = 1, . . . , N(v), and let q

0

> 0 be as in Theorem 1.3.1. Let d := mink |xk+1

(v)� xk(v)|.
Then there exist "

0

, �
0

> 0 with d � 4�
0

> 0 such that, if u" is a solution of (1.3.2) with
u" 2 L2

((0,1);H4

(T)), u"
t 2 L2

((0,1);H2

(T)) and initial data u"
0

2 H2

(T) satisfying

||u"
0

� v||L1
(T)  � (1.3.10)

for 0 < � < �
0

and

E"(u0

;T)  E
0

(v;T) + 1

h(")
, (1.3.11)

for all 0 < " < "
0

and for some function h : (0,1) ! (0,1), then for all q < q
0

,

lim

"!0

+

⇢

sup

0tT"

ˆ
T
|u"

(x, t)� u"
0

(x)|dx
�

= 0, (1.3.12)

where
T" := �2 min{h("), exp((d� 4�)�/")}.

Remark 1.3.4. If h(") = exp(d�/"), then

T" = � exp((d� 4�)�/")

which is consistent with the estimates obtained in [44] and [50]. On the other hand, we
remark that our Theorem 1.3.3 provides more general results.

Remark 1.3.5. To the best of our knowledge, only recently some regularity results for the
Swift–Hohenberg equation have been proved, see [42]. In the statement of Theorem 1.3.3
we assume that the solutions are sufficiently regular. In the Appendix we prove existence
of solutions (though with weaker regularity) using De Giorgi’s technique of Minimizing
Movements (see Theorem 4.3.1).
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Chapter 2

Preliminaries

2.1 Notation and structural assumptions
In the first part of this thesis we consider an open, connected, bounded domain ⌦ ⇢ Rn,
with n  7, such that

Ln
(⌦) = 1, @⌦ is of class C4,�, � 2 (0, 1]. (2.1.1)

We use the fact that @⌦ is of class C4,� only in the proof of Theorem 1.2.10. All the other
results in this thesis continue to hold if the regularity of @⌦ is assumed to be C2,�. More-
over, following Remark 5.2 in [55], we believe that, for many of our results, assumption
(2.1.1) could be weakened to assuming that ⌦ has a Lipschitz boundary.

We will work with a potential W : R ! [0,1) satisfying:

W is of class C2

; (2.1.2)
W has precisely two zeros at a < b; (2.1.3)
W 00

(a) = W 00
(b) > 0; (2.1.4)

W 0 has exactly 3 zeros at a, c, b, with a < c < b, W 00
(c) < 0; (2.1.5)

lim inf

|s|!1
|W 0

(s)| = 1. (2.1.6)

and, only in the second part of the thesis, we will also make use of

W is of class C5 and W (s) = W (�s), for all s 2 R; (2.1.7)
there exists 0 < cW  1 such that W (s) � cW |s� a|2, for s � 0. (2.1.8)

For simplicity, we set
a = �1, b = 1, (2.1.9)

and a prototype for W is given by

W (s) :=
1

4

(s2 � 1)

2. (2.1.10)
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Furthermore, without loss of generality, we will work with masses m (see (1.1.14)) satis-
fying

m 2 (�1, 1). (2.1.11)

By way of notation, constants C vary from line to line throughout the whole thesis.

2.2 BV functions and perimeter
We recall some definitions and basic results from the theory of functions of bounded vari-
ation, see, e.g., [34], [54].

Definition 2.2.1. Let ⌦ ⇢ Rn be an open set. We define the space of functions of bounded
variation BV (⌦) as the space of all functions u 2 L1

(⌦) such that for all i = 1, . . . , n
there exist finite signed Radon measures Diu : B(⌦) ! R such that

ˆ
⌦

u�xidx = �
ˆ
⌦

�dDiu

for all � 2 C1
0

(⌦). The measure Diu is called the weak, or distributional, partial derivative
of u with respect to xi. Moreover, if u 2 BV (⌦) then the total variation measure of Du is
finite, namely

|Du|(⌦) := sup

(

n
X

i=1

ˆ
⌦

�idDiu : � 2 C
0

(⌦;Rn
), ||�||C0(⌦;Rn

)

 1

)

< 1.

It is well–known that characteristic functions of smooth sets belong to BV (⌦). More
generally, we have the following.

Definition 2.2.2. Let E ⇢ Rn be a Lebesgue measurable set and let ⌦ ⇢ Rn be an open
set. The perimeter of E in ⌦, denoted P (E;⌦), is the variation of �E in ⌦, that is,

P (E;⌦) := |D�E|(⌦).
The set E is said to have finite perimeter in ⌦ if P (E;⌦) < 1. If ⌦ = Rn, we write
P (E) := P (E;Rn

).

Given a set E of finite perimeter, by the Besicovitch derivation theorem (see, e.g., [34])
for |D�E|–a.e. x 2 supp|D�E| there exists the derivative of D�E with respect to its total
variation |D�E|, and it is a vector of length 1. For such points we have

D�E

|D�E|(x) = lim

r!0

D�E(Br(x))

|D�E|(Br(x))
=: �⌫E(x) and |⌫E(x)| = 1. (2.2.1)

Definition 2.2.3. We denote by @⇤E the set of all points in supp(|D�E|) where (2.2.1)
holds. The set @⇤E is called the reduced boundary of E, while the vector ⌫E(x) is the
generalized exterior normal at x.
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By the structure theorem for sets of finite perimeter, (see, e.g., [34], Theorem 2, (iii),
page 205), if E has finite perimeter in Rn then for any Borel set F ⇢ Rn

P (E;F ) = Hn�1

(@⇤E \ F ), (2.2.2)

where Hn�1 stands for the (n � 1)–dimensional Hausdorff measure. A classical result in
the theory of sets of finite perimeter is the following isoperimetric inequality.

Theorem 2.2.4. Let E ⇢ Rn, n � 2, be a set of finite perimeter. Then either E or Rn \ E
has finite Lebesgue measure and

min{Ln
(E), Ln

(Rn \ E)}n�1
n  !�1/n

n

n
P (E), (2.2.3)

where equality holds if and only if E is a ball.

A version of the isoperimetric inequality also holds in bounded domains (see Corollary
3.2.1 and Lemma 3.2.4 of [57], or [22]).

Proposition 2.2.5. Let ⌦ ⇢ Rn be an open, bounded, connected set with Lipschitz bound-
ary. Then there exists C

⌦

> 0 such that

min{Ln
(E), Ln

(⌦ \ E)}n�1
n  C

⌦

P (E;⌦) (2.2.4)

for all sets E ⇢ ⌦ of finite perimeter.

Next we give the formal definition of a local volume–constrained perimeter minimizer.

Definition 2.2.6. Let ⌦ ⇢ Rn be an open set. A measurable set E
0

⇢ ⌦ is said to be a
volume–constrained local perimeter minimizer of P (·,⌦) if there exists ⇢ > 0 such that

P (E
0

;⌦) = inf {P (E;⌦) : E ⇢ ⌦ Borel, Ln
(E

0

) = Ln
(E), Ln

(E
0

�E) < ⇢} .

The next proposition motivates the definition of local isoperimetric function I�,E0
⌦

(see
(1.2.14)).

Proposition 2.2.7. Let ⌦ ⇢ Rn be an open set, let E
0

⇢ ⌦ be a Borel set and let vE0 =

��E0 + �E0
c . Then

↵(E
0

, {u  s})  � (2.2.5)

for all u 2 L1

(⌦) such that
ku� vE0kL1  2�, (2.2.6)

and for every s 2 R, where ↵ is the number given in (1.2.15).
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Proof. Fix � > 0 and for s 2 R define Fs := {x 2 ⌦ : u(x)  s}. If s 2 (�1, 1) then, by
(2.2.6),

2� �
ˆ
Fs\E0

|u� vE0 | dx+

ˆ
E0\Fs

|u� vE0 |dx

� (1� s)Ln
(Fs \ E0

) + (1 + s)Ln
(E

0

\ Fs) � 2↵(E
0

, Fs),

so that (2.2.5) is proved in this case. If s � 1, again by (2.2.6),

2� �
ˆ
E0\Fs

|u� vE0 |dx � (1 + s)Ln
(E

0

\ Fs) � 2↵(E
0

, Fs).

The case s  �1 is analogous.

2.3 First and second variation of perimeter
We recall here the following standard definitions and theorems from Chapter 17 in [56].

Definition 2.3.1. Let ⌦ ⇢ Rn be open. A one-parameter family {f(·; t)}t of diffeomor-
phisms of Rn is a smooth function

(x, t) 2 Rn ⇥ (�✏, ✏) 7! f(x; t) 2 Rn, ✏ > 0,

such that f(·; t) : Rn ! Rn is a diffeomorphism of Rn for each fixed |t| < ✏. In particular,
we say that {f(·; t)}|t|<✏ is a local variation in ⌦ if it defines a one-parameter family of
diffeomorphisms such that

f(x; 0) = x for all x 2 Rn,

{x 2 Rn
: f(x; t) 6= x} ⇢ ⇢ ⌦ for all 0 < |t| < ✏.

It follows from the previous definition that given a local variation {f(·; t)}|t|<✏ in ⌦,
then

E�f(E; t) ⇢⇢ ⌦ for all E ⇢ Rn.

Moreover, one can show that there exists a compactly supported smooth vector field T 2
C1

c (⌦;Rn
) such that the following expansions hold in Rn,

f(x; t) = x+ T (x) +O(t2), rf(x; t) = Id + trT (x) +O(t2), (2.3.1)

where r denotes the derivative with respect to x, and T satisfies

T (x) = ft(x; 0) x 2 Rn,

with ft(x; 0) standing for the derivative of f with respect to t evaluated at (x; 0).

Definition 2.3.2. The smooth vector field T in (2.3.1) is called the initial velocity of
{f(·; t)}|t|<✏.
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The following result gives an explicit expression for the first variation of the perimeter
of a set E, relative to ⌦, with respect to local variations {f(·; t)}|t|<✏ in ⌦, that is, a formula
for

d

dt

�

�

�

t=0

P (f(E; t);⌦) for T 2 C1
c (⌦;Rn

) given.

Theorem 2.3.3 (First variation of perimeter). Let ⌦ ⇢ Rn be open, let E be a set of locally
finite perimeter, and let {f(·; t)}|t|<✏ be a local variation in ⌦. Then

P (f(E; t);⌦) = P (E;⌦) + t

ˆ
@⇤E

divETdHn�1

+O(t2), (2.3.2)

where T is the initial velocity of {f(·; t)}|t|<✏ and divET : @⇤E ! R, defined by

divET (x) := divT � ⌫E(x) ·rT (x)rE(x), x 2 @⇤E, (2.3.3)

is a Borel function called the boundary divergence of T on E.

In the case of volume–constrained perimeter minimizers, the following holds.

Theorem 2.3.4 (Constant Mean Curvature). Let ⌦ ⇢ Rn be an open set, and let E
0

⇢ ⌦

be a volume–constrained perimeter minimizer in the open set ⌦. Then there exists �
0

2 R
such that ˆ

@⇤E

divETdHn�1

= �
0

ˆ
@⇤E

(T · ⌫E)dHn�1 for all T 2 C1
c (⌦;Rn

).

In particular, E
0

has distributional mean curvature in ⌦ constantly equal to �
0

, and we
denote E0 := �

0

.

In order to characterize the second variation for the perimeter of open, regular sets, we
need to introduce some preliminary tools.

Proposition 2.3.5. Let ⌦ ⇢ Rn be open, and let E ⇢ ⌦ be an open set such that @E \⌦ is
C2. Then there exists an open set ⌦0 with ⌦ \ @E ⇢ ⌦

0 ⇢ ⌦ such that the signed distance
function sE : Rn ! R of E,

sE(x) :=

(

dist(x, @E) if x 2 Rn \ E,

�dist(x, @E) if x 2 E,

satisfies sE 2 C2

(⌦

0
).

The previous result allows us to define a vector field NE 2 C1

(⌦

0
;Rn

) and a tensor
field AE 2 C0

(⌦

0
;Sym(n)) via

NE := rsE, AE := r2sE on ⌦

0. (2.3.4)
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In particular, one can show that for every x 2 ⌦ \ @E there exist r > 0, vector fields
{⌧h}n�1

h=1

⇢ C1

(Br(x);Sn�1

), and functions {h}n�1

h=1

⇢ C0

(Br(x)), such that {⌧h}n�1

h=1

is an orthonormal basis of Ty@E for every y 2 Br(x) \ @E, {⌧h}n�1

h=1

[ {NE(y)} is an
orthonormal basis of Rn for every y 2 Br(x), and

AE(y) =
n�1

X

h=1

h(y)⌧h(y)⌦ ⌧h(y) for all y 2 Br(x).

Definition 2.3.6. Let ⌦ ⇢ Rn be open, and let E ⇢ ⌦ be an open set such that @E \ ⌦ is
C2. For any y 2 Br(x)\@E, AE(y) (seen as symmetric tensor on Ty@E⌦Ty@E) is called
the second fundamental form of @E at y, while {⌧h}n�1

h=1

⇢ Sn�1 \ Ty@E and {h}n�1

h=1

are
denoted the principal directions and the principal curvatures of @E at y.

We recall that for any matrix M the Frobenius norm, which we will write |M|, is given
by

|M| :=
s

X

i

X

j

|Mij|2 (2.3.5)

Proposition 2.3.7. Let ⌦ ⇢ Rn be open, and let E ⇢ ⌦ be an open set such that @E \⌦ is
C2. The scalar mean curvature E of the C2–hypersurface ⌦\ @E is locally representable
as

E(y) =
n�1

X

h=1

h(y) for all y 2 Br(x) \ @E,

while the second fundamental form satisfies

|AE(y)|2 =
n�1

X

h=1

(h(y))
2 for all y 2 Br(x) \ @E.

We now state the following theorem.

Theorem 2.3.8 (Second variation of perimeter). Let ⌦ ⇢ Rn be open, let E ⇢ ⌦ be an
open set such that @E \ ⌦ is C2, ⇣ 2 C1

c (⌦), and let {f(·; t)}|t|<✏ be a local variation
associated with the normal vector field T = ⇣NE 2 C1

c (⌦;Rn
). Then

d2

dt2

�

�

�

t=0

P (f(E; t);⌦) =

ˆ
@E

|rE⇣|2 +
�

2E � |AE|2
�

⇣2dHn�1,

where rE⇣ := r⇣ � (⌫E ·r⇣)⌫E denotes the tangential gradient of ⇣ with respect to the
boundary of E.

We will say that E has positive second variation if

d2

dt2

�

�

�

t=0

P (f(E; t);⌦) > 0 (2.3.6)

for every local variation {f(·; t)}|t|<✏.
We conclude this section with the following version of the divergence theorem, see,

e.g., [56], Theorem 11.8 and equation 11.14.
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Theorem 2.3.9. Let M ⇢ Rn be a C2–hypersurface with boundary �. Then there exists a
normal vector field HM 2 C(M ;Rn

) to M and a normal vector field ⌫M
�

2 C1

(�;Sn�1

)

to � such that for every T 2 C1

c (Rn
;Rn

)ˆ
M

divMTdHn�1

=

ˆ
M

T ·HMdHn�1

+

ˆ
�

(T · ⌫M
�

)dHn�2,

where HM is the mean curvature vector to M and divMT is the tangential divergence of T
on M , defined by

divMT := divT � (rT⌫M) · ⌫M = trace(rMT ), (2.3.7)

with ⌫M : M ! Sn�1 being any unit normal vector field to M .

2.4 Regularity of solutions and gradient flows
We start by recalling results about the regularity of solutions of (1.2.1) and (1.2.10), re-
spectively. In the case of the nonlocal Allen–Cahn equation, we follow [62]: assume that ⌦
and W satisfy (2.1.1)–(2.1.6) and let s

1

< s
2

be two arbitrarily chosen constants such that

W 0
(s

2

) < W 0
(s) < W 0

(s
1

),

for all s 2 (s
1

, s
2

). Furthermore, assume that the initial data u"
0

in (1.2.1) satisfy

u"
0

2 L2

(⌦) and s
1

 u"
0

 s
2

a.e. in ⌦, (2.4.1)

and set
⌦T := ⌦⇥ (0, T ).

Then the following holds.

Theorem 2.4.1 ([62], Theorem 1.1.1). Fix " > 0, let ⌦,W,m satisfy hypotheses (2.1.1)–
(2.1.6), (2.1.9), (2.1.11), n � 2 and assume that (2.4.1) holds. Then the problem (1.2.1)
admits a solution u" 2 C([0,1);L2

(⌦)) such that, for every T > 0,

u" 2 L1
(⌦T ) \ L2

(0;T ;H1

(⌦)) and u"
t 2 L2

(0, T ; (H1

(⌦))

0
).

Moreover, u" 2 C1
(⌦⇥ (0,1)),

s
1

 u"
(x, t)  s

2

for all x 2 ⌦ and all t > 0.

The variational approach we will follow throughout this thesis relies on the concept of
gradient flow of a given energy. In the case of the nonlocal Allen–Cahn equation, we notice
that integrating (1.2.1) with respect to x gives

0 =

d

dt

ˆ
⌦

u" dx�
ˆ
⌦

✓

�"�u"
+

1

"
W 0

(u"
)� �"

◆

dx

=

d

dt

ˆ
⌦

u" dx�
ˆ
⌦

✓

1

"
W 0

(u"
)� �"

◆

dx =

d

dt

ˆ
⌦

u" dx,

(2.4.2)
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where we have used the Neumann boundary conditions, see (1.2.1). In other words, (2.4.2)
is highlighting the fact that solutions of the nonlocal Allen–Cahn equation preserve the vol-
ume, thanks to the presence of the Lagrange multiplier �". Moreover, the regularity results
of Theorem 2.4.1 allow us to remark that multiplying the nonlocal Allen–Cahn equation by
ut and integrating by parts, using boundary conditions and the volume preserving condition
(2.4.2), gives

G"[u
"
](0)� G"[u

"
](T ) = "�1

ˆ T

0

||u"
t(s)||2L2 ds, (2.4.3)

for any T > 0, which is precisely what we mean when we say that (1.2.1) has a gradient
flow structure. It is very important to recall that our energy (1.1.15) is slightly different
from the unconstrained version of the energy that is used in [12], [8], as those works con-
sider the classical Allen–Cahn equation (1.1.1).

In the case of the Cahn–Hilliard equation, we define the space

H2

N(⌦) := {w 2 H2

(⌦) : ⌫@⌦ ·rv = 0 on @⌦},
where ⌫@⌦ denotes the exterior normal to the boundary of ⌦. The following regularity result
was proved in [33]. See also [63] for a refined version, and Chapter 4 in [28].

Theorem 2.4.2. Fix " > 0, let ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
for n  2, and assume that u"

0

2 H2

N(⌦). Then for any T > 0 there exists a unique global
solution u" of (1.2.10) such that

u" 2 H4,1
(⌦T ).

Theorem 2.4.3. Fix " > 0, let ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
for n  3, and assume that u"

0

2 L2

(⌦). Then there exists a unique solution u" to (1.2.10)
such that for all T > 0

u" 2 C([0;T ];L2

(⌦)) \ L2

(0, T ;H1

(⌦)) \ L4

(0, T ;L4

(⌦)).

Moreover, if u"
0

2 H2

N(⌦), then for all T > 0,

u" 2 C([0, T ];H2

N(⌦)) \ L2

(0, T ;D(A2

)),

where D(·) stands for the domain of a given operator, while A is the Laplacian with Neu-
mann boundary conditions.

Furthermore, (1.1.2) can be seen as the gradient flow with respect to a variant of
(H1

(⌦))

0 of the energy G". To be precise, the following approach is standard in study-
ing the Cahn–Hilliard equation (see, e.g., [52]): let h , i denote the dual pairing between
(H1

(⌦))

0 and H1

(⌦), and recall that for every f 2 (H1

(⌦))

0 there is a g 2 H1

(⌦) such
that

hf,'i =
ˆ
⌦

rg ·r' dx for all ' 2 H1

(⌦).
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As the function g is unique, up to an additive constant, we denote by ��

�1

X2
f the function

g with 0 mean over ⌦. We then define the inner product

hu, viX2 :=

ˆ
⌦

r(�

�1

X2
u) ·r(�

�1

X2
v) dx for u, v 2 (H1

(⌦))

0,

so that X
2

:= ((H1

(⌦))

0, h , iX2) is a Hilbert space. After rescaling time by ", we get

u"
t = �rX2G"(u

"
),

where
rX2G"(u) = ��(�"2�u+W 0

(u)).

In particular, in this case we have

G"[u
"
](0)� G"[u

"
](T ) = "�1

ˆ T

0

||u"
t(s)||2X2

ds. (2.4.4)

2.5 �–convergence and interpolation inequalities
In this section we recall some properties of the energy

E"(u;⌦) :=

ˆ
⌦

✓

1

"
W (u)� "q|ru|2 + "3|r2u|2

◆

dx, (2.5.1)

in the more general setting where ⌦ is a bounded open set of Rn with C1 boundary, q > 0 is
a small parameter, and W is a double–well potential, as in (2.1.10). In [21] Chermisi, Dal
Maso, Fonseca and Leoni proved that the sequence of functionals E" : L2

(⌦) ! R[{+1},
defined by

E"(u) :=

(

E"(u;⌦) if u 2 H2

(⌦),

+1 if u 2 L2

(⌦) \H2

(⌦),

�–converges as "! 0

+ to the functional E
0

: L2

(⌦) ! R [ {+1},

E
0

(u) :=

(

mnP ({u = 1};⌦) if u 2 BV (⌦; {�1,+1}),
+1 if u 2 L2

(⌦) \BV (⌦; {�1,+1}),
where

mn := inf {E"(u;Q) : 0 < "  1, u 2 An} ,
Q :=

��1

2

, 1
2

�n, and

An :=

n

u 2H2

loc(Rn
), u(x) = �1 near x · en = �1

2

,

u(x) = 1 near x · en =

1

2

,

u(x) = u(x+ ei) for all x 2 Rn, i = 1, . . . , n� 1

o

.
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We define the one–dimensional rescaled energy

E(v;A) :=

ˆ
A

�

W (v)� q|v0|2 + |v00|2� dx, (2.5.2)

and we introduce the set of admissible functions

A :=

�

v 2 H2

loc(R) : v(x) = �1 near x = a, v(x) = 1 near x = b
 

. (2.5.3)

It was proved in [21], Section 5.1, that

m
1

= inf

⇢

E(v;R) : v 2 H2

loc(R), lim

x!±1
v(x) = ±1

�

, (2.5.4)

so that in dimension n = 1 we have

E
0

(u) =

(

Nm
1

if u 2 BV ((a, b); {�1,+1}),
+1 if u 2 L2

((a, b)) \BV ((a, b); {�1,+1}),
where N is the number of jumps of the function u. We further define

m± := inf

�

E(u;R+

) : u 2 H2

loc(R+

), lim
x!1

u(x) = ±1, u(0) = 0

 

= inf

�

E(u;R�
) : u 2 H2

loc(R�
), lim

x!�1
u(x) = ±1, u(0) = 0

 

(2.5.5)

and remark that in our case of a symmetric potential W , m
+

= m� = m
1

/2. One of
the key tools to prove the �–convergence result is the following nonlinear interpolation
inequality, see e.g. Theorem 3.4 in [21].

Lemma 2.5.1. Let ⌦ be a bounded open set of Rn with C1 boundary, and assume that
W satisfies (2.1.3), (2.1.5) and (2.1.7)–(2.1.9). Then there exists a constant q⇤ > 0, inde-
pendent of ⌦, such that for every �1 < q < q⇤/N there exists "

0

= "
0

(⌦, q) > 0 such
that

q"2
ˆ
⌦

|ru|2dx 
ˆ
⌦

W (u)dx+ "4
ˆ
⌦

|r2u|2dx

for every " 2 (0, "
0

) and every u 2 H2

(⌦).

In particular, in the one dimensional setting we will often use the following nonrescaled
version of the previous result, see Lemma 3.1 in [23].

Lemma 2.5.2. Let W be a continuous potential satisfying (2.1.3), (2.1.5) and (2.1.8). Let
I ⇢ R be an open, bounded interval. Then there exists a constant q⇤ > 0 such that

q⇤
ˆ
I

(u0
)

2dx  1

L1

(I)2

ˆ
I

W (u)dx+ L1

(I)2
ˆ
I

(u00
)

2dx

for every u 2 H2

(I).
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2.6 Smooth linearization near the hyperbolic fixed point
In the proof of Lemma 4.1.4 we use the fact that in a sufficiently small neighborhood of
the fixed point x

0

of the system (4.1.19), F admits a C1 linearization. This variant of
the classical Hartman–Grobman Theorem is based on the concept of Q–smoothness of the
Jacobian matrix DF (x

0

) introduced in [72]. Following [72], we define

�(�;m) := ��
4

X

i=1

miri, for � 2 C, mi 2 N
0

, (2.6.1)

where ri are the eigenvalues in (4.1.46).

Definition 2.6.1. A matrix A is said to satisfy the Sternberg condition of order N , N � 2,
if

�(�;m) 6= 0, for all � 2 ⌃(A), and for all m such that 2  |m|  N, (2.6.2)

where |m| := P

mi. We will say that A satisfies the strong Sternberg condition of order
N , if A satisfies (2.6.2) and

Re�(�;m) 6= 0, (2.6.3)

for all � 2 ⌃(A) and all m such that |m| = N .

Definition 2.6.2. Let ⌃+

(A) and ⌃

�
(A) be the set of eigenvalues of A having positive and

negative real part respectively. A is said to be strictly hyperbolic if

⌃

+

(A) 6= ;, ⌃

�
(A) 6= ;.

The spectral spread of A is defined by

⇢j :=
max{|Re�| : � 2 ⌃

j
(A)}

min{|Re�| : � 2 ⌃

j
(A)} ,

for j = ±.

Definition 2.6.3. Let Q 2 N and A be hyperbolic. The Q–smoothness of A is the largest
integer K � 0 such that

(i) Q�K⇢� � 0, if ⌃+

(A) = ;;

(ii) Q�K⇢+ � 0, if ⌃�
(A) = ;;

(iii) there exist M,N 2 N with Q = M +N and M �K⇢+ � 0, N �K⇢� � 0, when A
is strictly hyperbolic.

The following theorem is proved in [72] (Theorem 1, page 4).
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Theorem 2.6.4. Let X be a finite dimensional Banach space. Let Q � 2 be an integer.
Assume that G is of class C3Q on U ⇢ X with 0 2 U , where DpG(0) = 0 for p = 0, 1. Let
A be strictly hyperbolic and assume it satisfies the strong Sternberg condition of order Q.
Then

x0
= Ax+G(x) (2.6.4)

admits a CK–linearization, where K is the Q–smoothness of A. In other words, there exists
a CK–diffeomorphism between solutions of (2.6.4) and solutions of its linear part.

In fact, as remarked in [72], in the case of A strictly hyperbolic it suffices to assume
that G is of class CQ+max(M,N)+K . In the remainder, we show that under the assumptions
of Lemma 4.1.4, the matrix DF (0) satisfies the strong Sternberg condition of order N = 2

and the 2-smoothness of DF (0) is K = 1.

Lemma 2.6.1. Consider the ordinary differential equation

x0
= F (x), (2.6.5)

where F is a C4 mapping R4 ! R4 satisfying F (0) = 0. Assume the linearization DF (0)

has four eigenvalues ±� ± �i, where � � � > 0. Then, the matrix DF (0) satisfies the
strong Sternberg condition of order N = 2. Moreover, the Q–smoothness of DF (0) is
K = 1, and (4.1.19) admits a C1–linearization around the hyperbolic fixed point 0.

Proof. We write (2.6.5) as
x0

= DF (0)x+G, (2.6.6)

where G(x) := F (x) � DF (0)x is of class C4, G(0) = F (0) = 0, DG(0) = DF (0) �
DF (0) = 0 and show that (2.6.2) and (2.6.3) hold for N = 2. Recalling (2.6.1), we have

�(r
1

;m) = (1�m
1

)r
1

�m
2

r
2

�m
3

r
3

�m
4

r
4

, (2.6.7)

where |m| = P

4

i=1

mi = 2 and r
1

:= � + �i, r
2

:= � � �i, r
3

:= �� + �i, r
4

:= �� � �i
are the eigenvalues of DF (0). Assume, for the sake of contradiction, that Re�(r

1

;m) = 0

with |m| = 2. Setting the real part of (2.6.7) to 0 and recalling that |m| = 2, we have
(

1�m
1

�m
2

+m
3

+m
4

= 0,

m
1

+m
2

+m
3

+m
4

= 2,
(2.6.8)

Adding the two equations and dividing by two, one has

m
3

+m
4

= 1/2, (2.6.9)

a contradiction since m
3

and m
4

are integers. A similar argument for any � 2 ⌃(Df(0))
shows that (2.6.3) and (2.6.2) hold for the matrix Df(0), and N = 2.

It remains to prove that the 2-smoothness of DF (0) is K = 1. Since |Re�| = �, for
all � 2 ⌃(Df(0)), then the spectral radius of Df(0) is ⇢i = 1, for i = ±. Being Df(0)
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strictly hyperbolic, we are in case (iii) of Definition 2.6.3 and Q = 2 implies M = N = 1.
In turn, the largest integer K that satisfies

(

M �K⇢+ = 1�K � 0,

N �K⇢� = 1�K � 0,
(2.6.10)

is K = 1, which is then the 2–smoothness of Df(0). We now apply Theorem 2.6.4 with
Q = 2 and A = DF (0) to conclude that (2.6.6) admits a C1–linearization.
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Chapter 3

Allen-Cahn & Cahn-Hilliard

3.1 Energy estimates and slow motion
This section is devoted to the study of the motion of solutions for both the nonlocal Allen–
Cahn equation (1.2.1) and the Cahn–Hilliard equation (1.2.10). We start by proving Theo-
rem 1.2.2 and Theorem 1.2.4, and subsequently we study solutions of the nonlocal Allen–
Cahn equation whose initial data is close to a configuration that locally minimizes the
perimeter of the interface, by proving Theorem 1.2.8. In the latter, we make use of a new
local version of the well–known isoperimetric function, whose regularity properties will be
investigated in Section 3.2.

3.1.1 Slow motion near global perimeter minimizers

Due to the fact that the same strategy of proof holds for both Theorem 1.2.2 and Theorem
1.2.4, we will follow the convention that || · ||X stands for the L2 norm in the case of the
nonlocal Allen–Cahn equation, Theorem 1.2.2 (so that in this case X = L2), while X = X

2

in the case of Theorem 1.2.4.

Proof of Theorem 1.2.2 and Theorem 1.2.4. Fix " > 0, let M > 0 and let t 2 [0, "�1M ].
By properties of the Bochner integral (see, e.g., [11], [30]) and Hölder’s inequality

||u"
(t)� uE0 ||X  ||u"

(t)� u"
0

||X + ||u"
0

� uE0 ||X

ˆ t

0

||u"
s(s)||X ds+ ||u"

0

� uE0 ||X

 t1/2
✓ˆ t

0

||u"
s(s)||2X ds

◆

1/2

+ ||u"
0

� uE0 ||X .

(3.1.1)

Since u"
(t) 2 L1

(⌦) for all t � 0 (see Theorems 2.4.1, 2.4.2, 2.4.3), we apply Theorem
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1.2.1 and use the gradient flow structure (2.4.3) and (2.4.4) to obtain
ˆ t

0

||u"
s(s)||2X ds = "G"[u

"
](0)� "G"[u

"
](t)

 "G
0

[uE0 ] + C"2 � "G
0

[uE0 ] + C()"2  C"2,

(3.1.2)

where we have used (1.2.8) and (1.2.12). In turn, by (3.1.1) and (3.1.2)

||u"
(t)� uE0 ||X  C"t1/2 + ||u"

0

� uE0 ||X
 C"1/2 + ||u"

0

� uE0 ||X .

Taking the supremum over all t 2 [0, "�1M ] on both sides, followed by a limit as " ! 0

+,
and using (1.2.7) in the Allen–Cahn case, or (1.2.11) in the Cahn–Hilliard one, gives the
desired result.

Remark 3.1.1. It follows from the previous proof that

lim

"!0

+
sup

0<tg(")

||u"
(t)� uE0 ||X = 0

for every decreasing function g : (0,1) ! (0,1) with

lim

s!0

+
s2g(s) = 0.

In particular, we can take g(s) := s��2, where � > 0. This is also true when we later study
slow motion near local perimeter minimizers.

3.1.2 Slow motion near local perimeter minimizers
Here we prove Theorem 1.2.8. In order to do so, we need to introduce some tools and
prove the key energy estimate Theorem 1.2.6. Throughout this section we will assume that
⌦ ⇢ Rn is as in Section 2.1 (see (2.1.1)) and that E

0

is a volume–constrained local perime-
ter minimizer with Ln

(E
0

) = r
0

, see Definition 2.2.6. Moreover, we will assume that I�,E0
⌦

admits a Taylor expantion of order 2 as in (1.2.4), at r
0

, for some � > 0. We remark that
Theorem 1.2.9 and Theorem 1.2.10 are two cases where we will prove the validity of the
last assumption, as long as � is sufficiently small (see Section 2.4). For simplicity, we write
I� in place of I�,E0

⌦

.

By Proposition 3.1 in [55], we may select a function I⇤ 2 C1,&
loc ((0, 1)) satisfying

I⇤
(r

0

) = I�
(r

0

), (3.1.3)
0  I⇤

(r)  I�
(r) for all r 2 (0, 1), (3.1.4)

I⇤
(r) � min

n

Cr
n�1
n , C(1� r)

n�1
n

o

for all r 2 (0, 1), (3.1.5)
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for some C > 0, where & is given in (1.2.4).
After extending I⇤ to be zero outside of (0, 1), we define the function V

⌦

via the initial
value problem

8

>

<

>

:

d

ds
V
⌦

(s) = I⇤
(V

⌦

(s)),

V
⌦

(0) =

1

2

.

Remark 3.1.2. Using (3.1.5), and as 0 < n�1

n
< 1, a straightforward argument gives

that there exist S
1

, S
2

> 0 finite, such that V
⌦

(s) 2 (0, 1) for all s 2 (�S
1

, S
2

) and
V
⌦

(s) /2 (0, 1) otherwise.

Definition 3.1.3. Let u 2 L1

(⌦). For s 2 R we denote

⌘(s) := I⇤
(V

⌦

(s)), %(s) := Ln
({u < s}),

and define the increasing rearrangement of u by

fu(s) := sup{z : %(z) < V
⌦

(s)}.
We remark that our definitions of % and fu differ from [55], and from other standard

sources on rearrangements, in the direction of our inequalities. In particular, we are choos-
ing to construct an increasing rearrangement, as opposed to a decreasing one. In the case
where ⌘ is symmetric there is no difference between using an increasing or decreasing re-
arrangement (see [55] Remark 3.11). Since I�,E0

⌦

is not symmetric in general, in our case ⌘
may not be symmetric either. However, the arguments for the increasing rearrangement do
not differ from the decreasing one in our case (see Remark 3.11 in [55]).

Definition 3.1.4. Let I ⇢ R be an open, bounded interval and consider the function ⌘ in
Definition 3.1.3. We denote the weighted spaces with weight ⌘ as

L1

⌘(I) := L1

(I; ⌘), H1

⌘ (I) := H1

(I; ⌘),

endowed with the norms

kukL1
⌘
=

ˆ
I

|u(s)|⌘(s) ds, kukH1
⌘
=

✓ˆ
I

u(s)2⌘(s) ds

◆

1/2

+

✓ˆ
I

u0
(s)2⌘(s) ds

◆

1/2

,

respectively.

We give the following auxiliary result.

Lemma 3.1.5. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
and let E

0

⇢ ⌦ be a volume–constrained local perimeter minimizer. Let  : R ! R be a
Borel function, u 2 L1

(⌦), S
1

, S
2

be as in Remark 3.1.2. Fix � > 0 and suppose that I�,E0
⌦

admits a Taylor expansion of order two at r
0

as in (1.2.4). Then
ˆ
⌦

 (u(x)) dx =

ˆ S2

�S1

 (fu(s))⌘(s) ds, (3.1.6)
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provided the integral on the right hand side of (3.1.6) is well–defined. Moreover,
ˆ
⌦

|u(x)� w(x)| dx �
ˆ S2

�S1

|fu(s)� fw(s)|⌘(s) ds (3.1.7)

for all w 2 L1

(⌦). Furthermore, if u 2 W 1,p
(⌦) for some 1  p < 1 and ku� uE0kL1 

2�, then ˆ
⌦

|ru(x)|p dx �
ˆ S2

�S1

|f 0
u(s)|p⌘(s) ds (3.1.8)

In particular, it follows that if ku� uE0kL1  2� then

G"[u] �
ˆ S2

�S1

("�1W (fu(s)) + " (f 0
u(s))

2

)⌘(s) ds. (3.1.9)

Proof. We will only show (3.1.8), since (3.1.6) and (3.1.7) follow from Lemma 3.3 and
Proposition 3.4 in [55] (see also [26]), and (3.1.9) is a consequence of (3.1.6) and (3.1.8).
By Proposition 2.2.7, for any u 2 L1

(⌦) satisfying ku� uE0kL1  2�, we have

↵(E
0

, {u  s})  �

for every s 2 R, (see (2.2.6)). In turn, by definition of I� (see (1.2.14)) we get

I�
(Ln

({u  s}))  P ({u  s};⌦) for L1–a.e. s 2 R. (3.1.10)

In particular, since ⌦ has finite measure, (3.1.10) holds true for any function in W 1,p
(⌦).

Since the proofs of Lemma 3.3, Proposition 3.4 and Theorem 3.10 in [55] only rely on
properties (3.1.4)–(3.1.5) and (3.1.10), which are shared by I

⌦

and I�, the same results
hold true if we replace I

⌦

with I�. We omit the details.

We consider the functional F" : L1

⌘((�S
1

, S
2

)) ! [0,1] defined by

F"[f ] :=

(´ S2

�S1
("�1

(W � f) + "(f 0
)

2

)⌘ ds if f 2 ˆH1

⌘ ((�S
1

, S
2

)),

1 otherwise

where ˆH1

⌘ ((�S
1

, S
2

)) is the space of functions f 2 H1

⌘ ((�S
1

, S
2

)) with the property that´ S2

�S1
(f � fuE0

)⌘ ds = 0. The following theorem is a simplified version of Theorem 4.20
from [55].

Theorem 3.1.6. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9), (2.1.11),
and let E

0

be a volume–constrained local perimeter minimizer with Ln
(E

0

) = r
0

. Fix
� > 0 and suppose that I�,E0

⌦

admits a Taylor expansion of order two at r
0

as in (1.2.4),
and let f

0

:= fuE0
be such that

f" ! f
0

in L1

⌘((�S
1

, S
2

)) as "! 0

+.
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Then
F"[f"] � G

0

[uE0 ]� C()",

for " sufficiently small, where C() is a positive constant depending only on the curvature
of @E

0

.

We now prove our main energy estimate, Theorem 1.2.6.

Proof of Theorem 1.2.6. Thanks to (3.1.7), if u" ! uE0 in L1

(⌦), then fu" ! f
0

in L1

⌘ and
in light of (3.1.9),

G"[u
"
] � F"[fu"

],

for all " sufficiently small. This, combined with Theorem 3.1.6, gives the desired result.

The techniques we use in the remainder of this section are very similar to those found
in [12] and [44]. We begin with the following auxiliary result.

Proposition 3.1.7. Assume that ⌦,W,m satisfy hypotheses (2.1.1)–(2.1.6), (2.1.9),
(2.1.11), and let E

0

be a volume–constrained local perimeter minimizer. Suppose fur-
ther that I�,E0

⌦

admits a Taylor expansion of order two at r
0

as in (1.2.4), for some � > 0.
Assume that u"

0

2 X
1

satisfy

u"
0

! uE0 in L1

(⌦) as "! 0

+ (3.1.11)

and
G"[u

"
0

]  G
0

[uE0 ] + C" (3.1.12)

for some C > 0. Then there exist two positive constants k
1

and k
2

, not depending on ",
such that ˆ k1"�2

0

||u"
t(t)||2L2 dt  k

2

"2, (3.1.13)

where u" is the solution of (1.2.1).

Proof. By the gradient flow structure (2.4.3), for any T > 0 we have

G"[u
"
0

]� G"[u
"
](T ) = "�1

ˆ T

0

||u"
t(s)||2L2 ds, (3.1.14)

which shows that t 7! G"(u"
)(t) is decreasing and ||u"

t ||2L2 is integrable. Given � as in the
assumptions, then by (3.1.11),

||u"
0

� uE0 ||L1  �

for " sufficiently small. Now suppose that there exists T" > 0 small enough that
ˆ T"

0

||u"
t(t)||L1 dt  �. (3.1.15)
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Then,

� �
ˆ T"

0

||u"
t(t)||L1 dt �

�

�

�

�

�

�

�

�

ˆ T"

0

u"
t(t) dt

�

�

�

�

�

�

�

�

L1

= ||u"
(T")� u"

0

||L1 ,

so that

||u"
(T")� uE0 ||L1  ||u"

(T")� u"
0

||L1
+ ||u"

0

� uE0 ||L1  2� (3.1.16)

and, in particular, by Theorem 1.2.6,

G"[u
"
](T") � G

0

[uE0 ]� C()". (3.1.17)

By (3.1.12) and (3.1.17) together with (3.1.14),
ˆ T"

0

||u"
t(s)||2L2 ds = "G"[u

"
0

]� "G"[u
"
](T")

 "G
0

[uE0 ] + C"2 � "G
0

[uE0 ]  C"2.

(3.1.18)

In turn, by Hölder’s inequality we get

✓ˆ T"

0

||u"
t(t)||L1 dt

◆

2

 CT""
2,

so that

T" � 1

C"2

✓ˆ T"

0

||u"
t(t)||L1 dt

◆

2

. (3.1.19)

In order to conclude the proof, we need to make sure that it is always possible to choose
T" as in (3.1.15) and that T" � k

1

"�2 for some k
1

> 0. We argue as follows: suppose first
that ˆ 1

0

||u"
t(t)||L1 dt > �.

Then by continuity we can choose T" > 0 such that
ˆ T"

0

||u"
t(t)||L1 dt = �,

and for such a choice of T", (3.1.19) gives

T" � �2

C"2
.

Thus, by (3.1.18),

ˆ k1"�2

0

||u"
t(s)||2L2 ds  C"2 =: k

2

"2, (3.1.20)
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for

k
1

:=

�2

C
.

On the other hand, if ˆ 1

0

||u"
t(t)||L1 dt  �,

then (3.1.18) must hold for all T" > 0, and (3.1.20) holds true in this case as well.

We are now ready to prove the main result.

Proof of Theorem 1.2.8. Let k
1

, k
2

be as in Proposition 3.1.7, and rescale u" by setting
ũ"
(x, t) = u"

(x, "�1t). Proposition 3.1.7 applied to ũ" reads

ˆ k1"�1

0

||ũ"
t(t)||2L2 dt  k

2

",

and, in turn, by Hölder’s inequality, for 0 < M < k
1

"�1,

ˆ M

0

||ũ"
t(t)||L1 dt  M1/2

(k
2

")1/2. (3.1.21)

For any 0 < s < M , by the properties of the Bochner integral we have

||ũ"
(s)� u"

0

||L1
=

�

�

�

�

�

�

�

�

ˆ s

0

ũ"
t(t) dt

�

�

�

�

�

�

�

�

L1


ˆ s

0

||ũ"
t(t)||L1 dt


ˆ M

0

||ũ"
t(t)||L1 dt,

and thus

sup

0sM
||ũ"

(s)� u"
0

||L1 
ˆ M

0

||ũ"
t(t)||L1 dt. (3.1.22)

On the other hand, by (3.1.11),

||ũ"
0

� uE0 ||L1 ! 0 as "! 0

+. (3.1.23)

Putting together (3.1.21), (3.1.22) and (3.1.23) leads to

sup

0sM
||ũ"

(t)� uE0 ||L1 ! 0 as "! 0

+,

which implies the desired results (1.2.9) and (1.2.13).

33



3.2 The local isoperimetric Function I�,E0
⌦

As discussed in the introduction, our analysis heavily depends on the regularity of the local
isoperimetric function r 7! I�,E0

⌦

(r) in a neighborhood of r
0

:= Ln
(E

0

), where E
0

is a
mass–constrained local perimeter minimizer (see Definition 2.2.6). This is due to the fact
that Theorem 1.2.6 assumes that the function I�,E0

⌦

satisfies a Taylor expansion of order 2
at r

0

(see (1.2.4)). As previously stated, we will write I� instead of I�,E0
⌦

when the set E
0

is clear from the context.

3.2.1 Regularity in the case E0 = B⇢(0)

Here we prove Theorem 1.2.9, namely that I� is smooth near r
0

when E
0

is a ball. This
particular choice of E

0

corresponds to the case of “bubbles”, which has been widely studied
in the last two decades (see e.g. [3], [4]). Our approach is rooted in the recent rigorous study
of isoperimetric problems, and thus draws on ideas from geometric measure theory. This
offers transparent, quantitative tools that permit a variational approach to the problem that,
to our knowledge, is novel. We believe that these techniques may also prove to be useful in
the study of other similar PDE problems.

E
B⇢0

⌦

⇢
1

Figure 3.2.1: Finding a good “slice” ⇢
1

.

In what follows, we denote by B⇢ the ball centered at 0 and radius ⇢.

Proof of Theorem 1.2.9. Step 1. We start by assuming that ⌦ = B
1

and that E
0

= B⇢0 ,
with ⇢

0

< 1.
Given � > 0 (which we will fix later), choose 0 < c

1

< �/4 and 0 < 2� < �.
Fix a Borel set E ⇢ B

1

with Ln
(E) = r, admissible in the definition of I�

B1
(r), with

|r � r
0

| < c
1

, and satisfying P (E;B
1

) = I�
B1
(r).

Define

V
1

(⇢) :=

ˆ
1

⇢

HN�1

(E \ @Bs) ds = Ln
(E \ (B

1

\B⇢)), ⇢ 2 [0, 1], (3.2.1)
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where we have used spherical coordinates. In particular, we have

Ln
(E \B⇢0) = V

1

(⇢
0

). (3.2.2)

We claim that for � chosen appropriately we must have that V
1

(⇢) ⌘ 0 in a left neighbor-
hood of ⇢ = 1.

We assume, to obtain a contradiction, that V
1

(⇢) > 0 for all ⇢ < 1. Our goal will be
to find an appropriate radius ⇢

1

at which to “slice” our set (see Figure 3.2.1). We will then
estimate the perimeter of the set inside and outside of the slice to demonstrate that a ball
with the same mass decreases the perimeter.

We begin by studying ↵(B⇢0 , E). Notice that if r = r
0

, then

Ln
(E \B⇢0) + Ln

(E \B⇢0) = Ln
(B⇢0) = Ln

(B⇢0 \ E) + Ln
(B⇢0 \ E), (3.2.3)

and, in turn,
Ln

(E \B⇢0) = Ln
(B⇢0 \ E).

In particular, by (3.2.2) this implies that

↵(B⇢0 , E) = Ln
(B⇢0 \ E) = Ln

(E \B⇢0) = V
1

(⇢
0

).

Next, if r
0

� r =: ⇠r > 0 we find that

Ln
(B⇢0 \ E)� ⇠r = Ln

(E \B⇢0),

and thus by (3.2.2),
↵(B⇢0 , E) = Ln

(E \B⇢0) = V
1

(⇢
0

),

while if r
0

� r =: ⇠r < 0, then

Ln
(B⇢0 \ E) + ⇠r = Ln

(E \B⇢0) = V
1

(⇢
0

),

which gives
↵(B⇢0 , E) = Ln

(B⇢0 \ E) = V
1

(⇢
0

)� ⇠r.

Summarizing, we obtain

↵(B⇢0 , E) =

(

V
1

(⇢
0

) if r 2 (r
0

� c
1

, r
0

],

V
1

(⇢
0

)� ⇠r if r 2 (r
0

, r
0

+ c
1

).
(3.2.4)

By definition of I�, see (1.2.14), we know that

↵(B⇢0 , E)  �. (3.2.5)

Thus we find that
V
1

(⇢
0

)  � + |⇠r|  �

2

+

�

4

=

3

4

�, (3.2.6)
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where we used the fact that |r � r
0

| < c
1

< �/4.
We claim that for any C⇤ > 0, if � > 0 (to be fixed later) is so small that

C⇤ >
�

1
n

n(1� ⇢
0

)

, (3.2.7)

then there exists a measurable set F ⇢ [⇢
0

, 1] with L1

(F ) > 0 such that

� C⇤
(V

1

(⇢))
n�1
n  dV

1

d⇢
(⇢), (3.2.8)

for all ⇢ 2 F .
In order to prove (3.2.8), we argue by contradiction and suppose that

�C⇤
(V

1

(⇢))
n�1
n >

dV
1

d⇢
(⇢)

for a.e. ⇢ 2 [⇢
0

, 1]. Then, since V
1

> 0 in [0, 1), for all ⇢ � ⇢
0

,

�C⇤ >
1

n

d

d⇢
(V

1

(⇢))
1
n ,

and, in turn, by the fundamental theorem of calculus, we have

(V
1

(⇢))
1
n
= (V

1

(1))

1
n �
ˆ

1

⇢

d

ds

⇣

V
1

(s)
1
n

⌘

ds > nC⇤
(1� ⇢),

which, using (3.2.6), implies that

� > V
1

(⇢
0

) > (nC⇤
)

n
(1� ⇢

0

)

n,

a contradiction with (3.2.7). Hence (3.2.7) holds on a set of positive measure.
Next we note that for a.e. ⇢ 2 [⇢

0

, 1] we have that

Hn�1

(@⇤E \ @B⇢) = 0. (3.2.9)

Thanks to (3.2.8), we can now choose ⇢
1

2 F such that the condition in (3.2.9) is
satisfied. We define

E
1

:= E \ (B
1

\B⇢1), E
2

:= E \B⇢1 . (3.2.10)

Since
Ln

(E
1

) = V
1

(⇢
1

)  V
1

(⇢
0

) <
3�

4

(3.2.11)

by (3.2.1), (3.2.2) and (3.2.6), taking � < rB1 , where rB1 is the constant given in (2.2.4)
with ⌦ = B

1

, we have that

P (E
1

;B
1

) � CB1(Ln
(E

1

))

n�1
n

= CB1(V1

(⇢
1

))

n�1
n . (3.2.12)
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On the other hand, in view of (3.2.9),

P (E
2

;B
1

) = P (E \B⇢1 ;B1

) = P (E \ B⇢1)

� n!1/n
n (Ln

(E \ B⇢1))
n�1
n

= n!1/n
n (r � V

1

(⇢
1

))

n�1
n ,

(3.2.13)

where we have used the isoperimetric inequality in Rn (2.2.3), and (3.2.1). Using the
inequality

(1� s)
n�1
n � 1� n� 1

n

s

(1� s)
1
n

� 1� n� 1

n
2

1
n s (3.2.14)

for all 0 < s < 1

2

, we can bound from below the right hand side of (3.2.13) by

n!
1
n
n r

n�1
n � !

1
n
n (n� 1)2

1
n r�

1
nV

1

(⇢
1

), (3.2.15)

provided � < r
2

(see (3.2.11)).
We notice that

@⇤E
1

⇢ (@⇤E \ (B
1

\B⇢1)) [ (E \ @B⇢1) ,

@⇤E
2

⇢ (@⇤E \B⇢1) [ (E \ @B⇢1) .
(3.2.16)

Since E
1

is a set of finite perimeter, using the structure theorem for sets of finite perime-
ter (2.2.2), (3.2.16) implies

Hn�1

(@⇤E \ (B
1

\B⇢1)) � P (E
1

;B
1

)�Hn�1

(E \ @B⇢1)

and similarly for E
2

,

Hn�1

(@⇤E \ B⇢1) � P (E
2

;B
1

)�Hn�1

(E \ @B⇢1).

In turn,

P (E;B
1

) = Hn�1

(@⇤E \ (B
1

\B⇢1)) +Hn�1

(@⇤E \B⇢1))

� P (E
1

;B
1

) + P (E
2

;B
1

)� 2Hn�1

(E \ @B⇢1)

� CB1(V1

(⇢
1

))

n�1
n

+ n!
1
n
n r

n�1
n � !

1
n
n (n� 1)2

1
n r�

1
nV

1

(⇢
1

)� 2Hn�1

(E \B⇢1),
(3.2.17)

where the first inequality holds in view of (3.2.9), and where we have used (3.2.12), (3.2.13)
and (3.2.14).

Using the fundamental theorem of calculus in (3.2.1) we have that dV1(⇢)
d⇢

= �Hn�1

(E\
@B⇢) for all 0 < ⇢ < 1, and so also by (3.2.8) the right-hand side of (3.2.17) can be bounded
from below by

(CB1 � 2C⇤
)(V

1

(⇢))
n�1
n

+ n!
1
n
n r

n�1
n � !

1
n
n (n� 1)2

1
n r�

1
nV

1

(⇢). (3.2.18)

Fix C⇤
:=

1

4

CB1 . By taking � so small that

(CB1 � 2C⇤
)� !

1
n
n (n� 1)2

1
n r�

1
n�

1
n > 0,
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by (3.2.11) we have that
P (E;B

1

) > n!1/nr
n�1
n .

Let ⇢r := (

r
!n
)

1
n so that Ln

(B⇢r) = r. Then

Hn�1

(@B⇢r) = n!n⇢
n�1

r = n!
1
n
n r

n�1
n ,

and so P (E;B
1

) > P (B⇢r ;B1

). On the other hand,

↵(B⇢r , B⇢0) = 0  �,

and we have reached a contradiction (see(1.2.14)). It follows that V
1

(⇢) = 0 for all ⇢ close
to 1. This shows that E ⇢ B⇢ for some ⇢ < 1. In turn, P (E;B

1

) = P (E). Hence we can
use the isoperimetric inequality in Rn (see (2.2.3)), to conclude that E is in fact a ball of
radius ⇢r. This proves (1.2.20).

Step 2. Now suppose that E
0

= Br0(x) ⇢⇢ ⌦, for an arbitrary ⌦ satisfying (2.1.1), for
some x 2 ⌦. Again, given a � > 0 (which we will fix later), we choose 0 < c

1

< �/4 and
0 < 2� < �. Let R > r

0

be such that BR(x) ⇢⇢ ⌦. Fix E as in step 1, so that Ln
(E) = r,

|r � r
0

| < c
1

and P (E;⌦) = I�
(r).

We define
E

1

:= E \ (⌦ \BR(x)), E
2

:= E \ BR(x)

and estimate
P (E;⌦) � P (E

1

;⌦ \BR(x)) + P (E
2

;BR(x)).

Following the same reasoning in the derivation of equation (3.2.6) in Step 1, we have that
Ln

(E
1

)  3�
4

, and thus (2.2.4) implies that

P (E
1

;⌦ \BR(x)) � C
⌦\BR(x)Ln

(E
1

)

n�1
n

as long as � is small enough. It is clear that ↵(E
2

, E
0

)  ↵(E,E
0

), and that |Ln
(E

2

)�r
0

| 
Ln

(E
1

) + |r � r
0

|  �. By the results of Step 1 we know that for � small enough

P (E
2

;BR(x)) � I�
BR(x)(Ln

(E
2

)) = n!
1
n
n (Ln

(E
2

))

n�1
n

= n!
1
n
n (r � Ln

(E
1

))

n�1
n .

As in Step 1, defining ⇢r := (

r
!n
)

1
n , if Ln

(E
1

) > 0 this implies that

P (E;⌦) > P (B⇢r(x)) = P (B⇢r(x);⌦)

while ↵(B⇢r(x), E0

)  �, which is a contradiction. Again, as in Step 1, the classical
isoperimetric inequality (2.2.3) then implies that E must be a ball, which concludes the
proof.
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3.2.2 Regularity in the case of positive second variation
Here we prove Theorem 1.2.10. We begin by stating the following lemma, which summa-
rizes a number of classical results (see e.g. [43], [45], [55], [56], [75]), see Lemma 5.4 in
[55] for details.

Lemma 3.2.1. Let ⌦ satisfy the assumptions in Section 2.1 (see (2.1.1)), and let E
0

⇢
⌦ be a volume-constrained local perimeter minimizer in ⌦. Then @E

0

is a surface of
constant mean curvature E0 , which intersects the boundary of ⌦ orthogonally. Moreover,
there exists a neighborhood I of r

0

and a family of sets {Vr}r constructed via a normal
perturbation of E

0

(see Theorem 2.3.8), satisfying

Ln
(Vr) = r, lim

r!r0
|Vr�E

0

| = 0, (3.2.19)

and such that the function

r 7! �(r) := P (Vr;⌦), for r 2 I,

is smooth. Moreover, the function � satisfies

�(r
0

) = P (E
0

;⌦),
d�(r)

dr

�

�

�

r=r0
= E0(n� 1), (3.2.20)

and
d2�(r)

dr2

�

�

�

r=r0
= �
´
@E0

|AE0 |2 dHn�1

+

´
@E0\@⌦ ⌫@E0 · A⌦

⌫@E0 dHn�2

P (E
0

;⌦)

2

,

where AE0 and A
⌦

are the second fundamental forms, see Definition 2.3.6.

Remark 3.2.2. Recalling the definition of I�,E0
⌦

, if follows from (3.2.19) and (3.2.20) that
I�,E0
⌦

is upper semi-continuous at r
0

.

We start by proving the following.

Lemma 3.2.3. Let ⌦ satisfy the assumptions in Section 2.1 (see (2.1.1)), and let E
0

be
a volume–constrained local perimeter minimizer with r

0

:= Ln
(E

0

). Let � > 0, and let
Ir0 ⇢⇢ [0,Ln

(⌦] be an open interval containing r
0

. Suppose that for every r 2 Ir0 at least
one minimizer Er of the problem

min{P (E;⌦) : Ln
(E) = r, ↵(E,E

0

)  �}
satisfies

↵(Er, E0

) < �. (3.2.21)

Then the local isoperimetric function I�,E0
⌦

is semi–concave in Ir0 , that is, there exists a
constant C > 0 such that

r 7! I�,E0
⌦

(r)� Cr2 (3.2.22)

is a concave function in Ir0 .
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Remark 3.2.4. By setting � large enough this establishes that the isoperimetric function
I
⌦

is semi–concave on any interval [a, b] ⇢ [0,Ln
(⌦)] = [0, 1].

Proof. By lower semicontinuity of the perimeter and BV compactness, it follows that I�,E0
⌦

is lower semicontinuous. By (3.2.21) we have that Er must be a local volume-constrained
perimeter minimizer. Thus by Lemma 3.2.1 applied to Er, for any r 2 Ir0 there exists a
smooth function �r and a constant �r > 0 depending on r such that

�r(s) � I�,E0
⌦

(s) for all s 2 (r � �r, r + �r), �r(r) = P (Er;⌦) = I�,E0
⌦

(r), (3.2.23)

and

d2�r(s)

ds2

�

�

�

s=r
= �
´
@Er

|AEr |2 dHn�1

+

´
@Er\@⌦ ⌫Er · A⌦

⌫Er dHn�2

P (Er;⌦)
2

, (3.2.24)

where we recall that |AEr | is the Frobenius norm, see equation (2.3.5). Furthermore, we
notice that the lower semicontinuity of I�,E0

⌦

, together with (3.2.23), implies that I�,E0
⌦

is
continuous on Ir0 .

Let C
⌦

:= max

x2@⌦
|A

⌦

(x)|. Then we have

�

�

�

�

ˆ
@Er\@⌦

⌫Er · A⌦

⌫Er dHn�2

�

�

�

�

 C
⌦

ˆ
@Er\@⌦

⌫
⌦

· ⌫
⌦

dHn�2. (3.2.25)

Since ⌦ is of class C2,↵, we can locally express @⌦ as the graph of a function of class
C2,↵ and, in turn, we can locally extend the normal to the boundary ⌫

⌦

to a C1,↵ vector
field. Thus, using a partition of unity, we may extend the vector field C

⌦

⌫
⌦

to a vector field
T 2 C1

c (Rn
;Rn

) satisfying

kTk1  C, krTk1  C (3.2.26)

for some constant C > 0. We then apply the divergence theorem (see Theorem 2.3.9) with
M = (@Er) \ ⌦ and � = @Er \ @⌦ to find that

C
⌦

ˆ
@Er\@⌦

⌫
⌦

· ⌫
⌦

dHn�2

=

ˆ
@Er

divErT dHn�1 �
ˆ
@Er

T · Er⌫⌦ dHn�1

 CP (Er;⌦) + C

ˆ
@Er

|Er | dHn�1,
(3.2.27)

where in the last inequality we have used (2.3.3) and (3.2.26). Moreover, we recall that
(see Proposition 2.3.7) for every x 2 ⌦ \ @Er,

|AEr(y)|2 =
n�1

X

h=1

h,Er(y)
2, Er(y) =

n�1

X

h=1

h,Er(y) for all y 2 Br(x)\@Er (3.2.28)
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where h,Er are the principal curvatures of Er. Thus, using (3.2.28), if we consider the
principal curvatures h,Er as a vector in Rn�1 then we have that

C|Er | 
p
n� 1C|AEr |  max{(n� 1)C2, |AEr |2}. (3.2.29)

In turn, putting together (3.2.24), (3.2.25), (3.2.27) and (3.2.29), we get

d2�r(s)

ds2

�

�

�

s=r
 � ´

@Er
|AEr |2 dHn�1

+ CP (Er;⌦) +
´
@Er

max{(n� 1)C2, |AEr |2 Hn�1

P (Er;⌦)
2

 CP (Er;⌦) + (n� 1)C2P (Er;⌦)

P (Er;⌦)
2

.

Denote
m

1

:= min

s2Ir0
I�,E0
⌦

(s), m
2

:= C + (n� 1)C2 < 1,

and notice that
min

s2Ir0
I�,E0
⌦

(s) � min

s2Ir0
I
⌦

(s) > 0

where the last inequality follows from Proposition 2.2.5 (see also Lemma 3.2.4 in [57]).
From (3.2.24) we have that

d2�r(s)

ds2

�

�

�

s=r
 m

2

m
1

. (3.2.30)

Thus by (3.2.23) for any r we can find a �r > 0 so that for s 2 (r � �r, r + �r),

I�,E0
⌦

(s)� m
2

m
1

s2  �r(s)� m
2

m
1

s2

= �r(s)� m
2

m
1

((s� r)2 + 2sr � r2)

=:  (s)� m
2

m
1

(2sr � r2),

(3.2.31)

where  (s) = �r(s)� m1
m2

(s� r)2 is a concave function on (r� �r, r+ �r) by (3.2.30). The
estimate (3.2.31) allows us to apply Lemma 2.7 in [75] and conclude that I�,E0

⌦

(s)� m2
m1

s2

is a concave function on Ir0 . In turn, I�,E0
⌦

is semi–concave on Ir0 .

Corollary 3.2.5. Under the assumptions of Lemma 3.2.3, the local isoperimetric function
I�,E0
⌦

is locally Lipschitz in Ir0 . Furthermore, for all Jr0 ⇢⇢ Ir0 , for all r 2 Jr0 , the values
Er(n� 1) belong to the supergradient of I�,E0

⌦

, and hence

|Er |  L, (3.2.32)

where L is the Lipschitz constant of I�,E0
⌦

in Jr0 .
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Proof. Thanks to (3.2.21) in Lemma 4.3, for any r 2 Ir0 there exists a volume–constrained
local perimeter minimizer Er such that

I�,E0
⌦

(r) = P (Er;⌦), Ln
(Er) = r, ↵(Er, E0

) < �.

By Lemma 3.2.1 applied to Er, in particular from (3.2.20), we have that Er(n�1) belongs
to the supergradient of I�,E0

⌦

. From (3.2.22) we know that the mapping r 7! I�,E0
⌦

(r)�Cr2

is concave, and hence locally Lipschitz. In turn, I�,E0
⌦

is locally Lipschitz in Ir0 . Finally,
as Er(n� 1) is in the supergradient of a locally Lipschitz function, there exists a constant
L > 0 so that (3.2.32) holds on Jr0 (see Theorem 9.13 in [70]).

Recently stability estimates have been proved for a nonlocal version of the perimeter
functional by Acerbi, Fusco and Morini [1]. We recall the generalization of their result
obtained by Julin and Pisante (see Theorem 1.1 in [49]), which will turn out to be a key
tool for our analysis.

Theorem 3.2.6. Suppose that ⌦ satisfies (2.1.1) and that E
0

is a mass–constrained local
perimeter minimizer with strictly positive second variation in the sense of (2.3.6). Then E

0

is a strict local minimum for P (·;⌦) in the L1 sense, and there exist c > 0 and �
0

> 0 such
that

P (E;⌦) � P (E
0

;⌦) + cLn
(E�E

0

)

2 (3.2.33)

for every set E of finite perimeter in ⌦ satisfying Ln
(E) = Ln

(E
0

) and Ln
(E�E

0

) < �
0

.

Remark 3.2.7. The original version of Theorem 1.1 in [49] requires the set E
0

in the
statement to be a “regular critical” set of the perimeter functional (see Definition 2.1 in
[49]). In essence, they require the set E

0

to be such that the first variation of P (·,⌦) is zero
in the direction of every admissible vector field of class C1. We notice that this condition is
always satisfied when E

0

is a mass–constrained local perimeter minimizer.

We are now ready to give the proof of Theorem 1.2.10.

Proof of Theorem 1.2.10. The proof will be divided into several steps, and we will invoke
the previous results and the stability estimate (3.2.33) proved by Julin and Pisante [49]. By
Theorem 3.2.6 we know that E

0

is an isolated local volume-constrained perimeter mini-
mizer, and hence the unique minimizer of the problem

min {P (E;⌦) : E ⇢ ⌦ Borel, Ln
(E) = r, ↵(E,E

0

)  �} , (3.2.34)

for r = r
0

and for some fixed 0 < � < �
0

small enough, where �
0

is given in (3.2.33).
Let I be a neighborhood of r

0

(to be fixed later) and consider a sequence {rk} satisfying
rk ! r

0

as k ! 1. Let Erk be a minimizer of the problem (3.2.34) for r = rk.

Step 1. By considering level sets of the signed distance function (see, e.g. Lemma 5.4 in
[55] or [65]), and recalling the definition of I�,E0

⌦

, it is straightforward to show that

I�,E0
⌦

 C (3.2.35)
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for some C > 0 and, in turn, by BV compactness, there exists a subsequence of {Erk} (not
relabeled) such that

Erk ! E⇤ in L1

(⌦) as k ! 1, (3.2.36)

for some measurable set E⇤ such that �E⇤ 2 BV (⌦) and Ln
(E⇤

) = r
0

.
We notice that since ↵(E⇤, E

0

)  � and Ln
(E⇤

) = r
0

, by lower semi-continuity of the
perimeter (see [34]), and Remark 3.2.2, we have that

P (E⇤
;⌦)  lim inf

k!1
P (Erk ;⌦) = lim inf

k!1
I�,E0
⌦

(rk)  lim sup

k!1
I�,E0
⌦

(rk)

 I�,E0
⌦

(r
0

) = P (E
0

;⌦)  P (E⇤
;⌦).

By uniqueness of (3.2.34) for r = r
0

, E⇤
= E

0

, and so (3.2.36) reads

Erk ! E
0

in L1

(⌦) as k ! 1. (3.2.37)

Thanks to (3.2.37), we obtain
↵(Erk , E0

) < �,

for k big enough. In turn, this implies that there exists an open neighborhood Ir0 of r
0

as
in Lemma 3.2.3. By Corollary 3.2.5, we have that I�,E0

⌦

is locally Lipschitz in Ir0 .

Step 2. Fix an open neighborhood Jr0 := (r
0

� R, r
0

+ R) ⇢⇢ Ir0 of r
0

, and let L be the
associated Lipschitz constant of I�,E0

⌦

in Jr0 (see Corollary 3.2.5). Let k be large enough
so that rk 2 Jr0 . Let x

0

2 ⌦, ⇢
0

> 0. We claim that Erk is a (⇤, ⇢
0

)–perimeter minimizer
(see e.g. [56]), that is

P (Erk ;B⇢(x0

))  P (E;B⇢(x0

)) + ⇤Ln
(Erk�E), (3.2.38)

for all ⇢ < ⇢
0

and all measurable E satisfying

Erk�E ⇢⇢ B⇢(x0

), (3.2.39)

and with

⇤ = max

⇢

L,
2C

�
,
2C

R

�

,

where C > 0 is as in Step 1. Because of (3.2.39), we know that P (Erk ;B⇢(x0

)) �
P (E;B⇢(x0

)) = P (Erk ;⌦)� P (E;⌦), and thus it suffices to prove that

P (Erk ;⌦)  P (E;⌦) + ⇤Ln
(Erk�E). (3.2.40)

We divide the proof of (3.2.40) into three cases. If

↵(E
0

, E)  � and Ln
(E) 2 Jr0 ,
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then by our choice of L (see Corollary 3.2.5), we have

P (Erk ;⌦) = I�,E0
⌦

(Erk)  I�,E0
⌦

(Ln
(E)) + L |Ln

(Erk)� Ln
(E))|

 P (E;⌦) + L |Ln
(Erk)� Ln

(E))|
 P (E;⌦) + LLn

(Erk�E),

and (3.2.40) is proved in this case.

If instead E is such that
↵(E

0

, E) > �,

then by (3.2.37),

Ln
(Erk�E) � Ln

(E
0

�E)� Ln
(Erk�E

0

) � �

2

, (3.2.41)

for k sufficiently large. Moreover, by (3.2.35) and (3.2.41),

P (Erk ;⌦)  C  2C

�
Ln

(Erk�E)  2C

�
Ln

(Erk�E) + P (E;⌦), (3.2.42)

so that (3.2.40) follows from our choice of ⇤.

Finally, if
Ln

(E) /2 Jr0 ,

then for rk 2 (r
0

�R/2, r
0

+R/2) we have that

Ln
(Erk�E) � R

2

,

and so (3.2.40) follows as in the previous case.

Step 3. Fix z
0

2 ⌦ \ @E
0

, and choose r > 0 such that Br(z0

) ⇢⇢ ⌦ and

@E
0

\Br(z0

) = graph(u
0

),

for some regular function u
0

. By the theory of (⇤, ⇢
0

) minimizers (see Theorem 26.6 in
[56]), choosing ⇢

0

smaller if needed, it follows that for any sequence of points zk 2 @Erk

such that zk ! z
0

2 ⌦ \ @E
0

, then for k large enough zk 2 ⌦ \ @⇤Erk and

lim

k!1
⌫Erk

(zk) = ⌫E0(z0

), (3.2.43)

uniformly on Br(z0

). In turn, by (3.2.37), for k big enough

@Erk \Br(z0

) = graph(uk), (3.2.44)
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for some functions uk. In particular, by equation (26.52) in [56], we obtain

ruk ! ru
0

, in C0,�
(⌦), (3.2.45)

for all � 2 (0, 1/2).

Step 4. Since @Erk is a surface of constant mean curvature, uk solves

div

 

ruk
p

1 + |ruk|2

!

= k in Br(z0

),

where k is the mean curvature of @Erk . By standard Schauder estimates (see e.g. [41])
and (3.2.43), it follows that

||uk||C2,�
(B0

r/2(z0))
 c

1

|k|  C, (3.2.46)

where B0
r/2(z0

) is the (n � 1)–dimensional ball and the uniform bound on the curvatures
comes from Corollary 3.2.5.

Step 5. By Rellich–Kondrachov compactness theorem and by a bootstrapping argument
on (3.2.46), we deduce that there exists a subsequence of {rk}, not relabeled, and ũ 2
Wm,2

(B0
r/2(z0

)) such that
urj ! ũ in Wm,2

(B0
r/2(z0

)) (3.2.47)

for all m > 0. It follows from (3.2.37), that necessarily ũ = u
0

.

⌦

Erk�k

B0
r/2(z0

)

Figure 3.2.2: Mass fixing perturbation of Erk from Step 6.

Step 6. Define

�k := (r
0

� rk)
⇣ r

2

⌘

1�n

!�1

n�1

, (3.2.48)

and let

ũrk =

(

urk + �k on B0
r/2(z0

)

urk on B0
r(z0

) \B0
r/2(z0

).
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Let ˜Erk be the subgraph of urk (inside a cylinder with base B0
r(z0

), and equal to Erk other-
wise), and notice that Ln

(

˜Erk) = Ln
(E

0

) by our choice of �k. Moreover, we have that

P (

˜Erk ;⌦) = P (Erk ;⌦) + cn
⇣ r

2

⌘n�2

�k = P (Erk ;⌦) +O(|rk � r
0

|), (3.2.49)

where cn is the surface area of the n � 1 dimensional unit ball, and where we have used
(3.2.48). Furthermore, it follows from Corollary 3.2.5 that

P (Erk ;⌦) = P (E
0

;⌦) +O(|rk � r
0

|). (3.2.50)

By (3.2.33), together with (3.2.49), (3.2.50), we infer that

Ln
(

˜Erk�E
0

) 
q

P (

˜Erk ;⌦)� P (E
0

;⌦)  O(|rk � r
0

|1/2).
Moreover, by the triangle inequality, we have

Ln
(Erk�E

0

)  Ln
(E

0

�

˜Erk) + Ln
(Erk�

˜Erk)  O(|rk � r
0

|1/2) +O(|rk � r
0

|),
where the first term is estimated above while the second one follows by the construction of
the ˜Erk . In turn,

Ln
(Erk�E

0

)  O(|rk � r
0

|1/2) (3.2.51)
and
|rk � 

0

|  C||D2urk �D2u
0

||L2
(B0

r/2(z0))

 C||urk � u
0

||1��
L1

(B0
r/2(z0))

||u� urk ||�Wm,2
(B0

r/2(z0))
+ C||urk � u

0

||L1
(B0

r/2(z0))

= CLn
(Erk�E

0

)

1��||u� urk ||�Wm,2
(B0

r/2(z0))
+ CLn

(Erk�E
0

),

(3.2.52)
for m > 2 and for some � 2 (0, 1), where we have used the fact that @Erk are surfaces of
constant mean curvature, Nirenberg’s interpolation inequality (see [64], p. 125-126) and
(3.2.44).

Hence, (3.2.47), (3.2.51) and (3.2.52) imply that

|rk � 
0

| = O(|rk � r
0

|(1��)/2
). (3.2.53)

Since (n�1)Er belongs to the supergradient of I�,E0
⌦

at r 2 Ir0 (see Lemma 3.2.5), at any
point s where I�,E0

⌦

is differentiable we have that

dI�,E0
⌦

(r)

dr

�

�

�

r=s
= (n� 1)Es .

Since I�,E0
⌦

is locally Lipschitz in Ir0 (see Step 1), we apply the fundamental theorem of
calculus for r � r

0

, r 2 Ir0 to obtain
�

�

�

I�,E0
⌦

(r)� I�,E0
⌦

(r
0

)� (r � r
0

)r0(n� 1)

�

�

�

 (n� 1)

ˆ r

r0

|s � r0 |ds

 C

ˆ r

r0

|s� r
0

|(1��)/2ds
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where in the last inequality we have used (3.2.53), and (1.2.4) follows. The case r  r
0

is
analogous.
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Chapter 4

Swift-Hohenberg

4.1 Qualitative properties of minimizers
Corollary 4.1.1. Let W and q⇤ be as in Lemma 2.5.2. Then there exist � > 0 such that for
every open interval I , every 0 < "  L1

(I), and every �1 < q  q⇤/4 ,

q"2
ˆ
I

(u0
)

2dx 
ˆ
I

�

W (u) + "4(u00
)

2

�

dx, (4.1.1)

and

E"(u; I) � �

ˆ
I

�

W (u) + "2(u0
)

2

+ "4(u00
)

2

�

dx. (4.1.2)

for all u 2 H2

loc(I).

Proof. Let I = (a, b) and u 2 H2

((a, b)). We change variables v(y) := u("x), subdivide
the resulting rescaled domain I" = (a/", b/") into

⇥

b�a
"

⇤

subintervals, Ik" , of length between
1/2 and 2 (since 0 < "  b� a) and use Lemma 2.5.2 to obtain

q⇤

4

ˆ b

a

(u0
)

2dx =

q⇤

4"

ˆ b/"

a/"

(v0)2dy =

1

4"

X

k

q⇤
ˆ
Ik"

(v0)2dy

 1

4"

X

k

ˆ
Ik"

�

4W (v) + 4(v00)2
�

dy

=

1

"

ˆ b/"

a/"

�

W (v) + (v00)2
�

dy

=

ˆ b

a

(W (u) + "3(u00
)

2

)dx.

(4.1.3)

Since q  q⇤/4, (4.1.1) easily follows. To prove (4.1.2) we follow closely the strategy used
in the proof of Theorem 1.1 of [21] and proceed as follows. Fix � 2 (0, 1) sufficiently
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small so that (q + �)/(1� �) < q⇤/4. Then,
ˆ b

a

(W (u)�q"2(u0
)

2

+ "4(u00
)

2

)dx

= (1� �)

ˆ b

a

✓

W (u)� q + �

1� �
"2(u0

)

2

+ "4(u00
)

2

◆

dx

+ �

ˆ b

a

�

W (u) + "2(u0
)

2

+ "4(u00
)

2

�

dx,

(4.1.4)

and (4.1.2) follows since by (4.1.3) the first term on the right-hand side of (4.1.4) is non-
negative.

The following lemmas established for a generalization of the Modica–Mortola Func-
tional in [50] will be useful to prove our main result. While our energy does not satisfy
the assumptions of [50], their argument is easily extended to our case with the help of the
interpolation inequality (4.1.2). In particular, Lemma 4.1.2, shows that an H2 function
with a uniformly bounded energy, necessarily takes values close to {±1} and has small
derivatives, except on a set of measure O(") and Lemma 4.1.3 gives a characterization of
the global minimizers for the energy E(·, ·), defined in (2.5.2), subject to small boundary
conditions.

Lemma 4.1.2. Let I be an open interval, M > 0 and 0 < � < 1. Then there exists a
constant C

1

> 0 such that for any 0 < "  L1

(I) and every u 2 H2

(I) with E"(u; I)  M
the following property holds: there is a measurable set J ⇢ I with L1

(J)  C
1

" such that

dist(u(x), {±1}) < � and |"u0
(x)| < � and

hold for all x 2 I \ J , where dist denotes the usual distance between a point and a set.

Proof. By (4.1.2), for every 0 < "  L1

(I) and u 2 H2

(I),
ˆ
I

�

W (u)� q"2(u0
)

2

+ "4(u00
)

2

�

dx � �

ˆ
I

�

W (u) + "2(u0
)

2

+ "4(u00
)

2

�

dx

� �

ˆ
I

W (u)dx.
(4.1.5)

We now let J
0

:= {x 2 I : dist(u(x), {±1}) � �} and from the definition of W we have
c := inf{W (s) : dist(s, {±1}) � �} > 0. Then (4.1.5) implies

M � E"(u; I) � �

"

ˆ
I

W (u)dx � c�

"
L1

(J
0

),

and therefore
L1

(J
0

)  M"

c�
.
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Similarly, setting J
1

:= {x 2 I : |"u0
(x)| � �}, (4.1.5) yields the estimates

M � E"(u; I) � �

"

ˆ
I

"2(u0
)

2dx � ��2

"
L1

(J
1

) (4.1.6)

and consequently

L1

(J
1

)  M"

��2
.

Setting J := J
0

[ J
1

yields the desired result.

Lemma 4.1.3. Let I := (a, b) be an open interval and W 2 C2 satisfy (2.1.3), (2.1.5) and
(2.1.8). Given ↵ = (↵

1

,↵
2

) 2 R2, � = (�
1

, �
2

) 2 R2 define

M±
↵,� := {v 2 H2

(I) : v(a) = ±1 + ↵
0

, v0(a) = ↵
1

, v(b) = ±1 + �
0

, v0(b) = �
1

}.
(4.1.7)

Then there exist constants �
0

, C > 0 such that the following holds. If L1

(I) > 1 and
||↵||, ||�||  � < �

0

then the functional E(·; I) defined in (2.5.2) has a global minimizer
v± on M±

↵,� . This minimizer v± solves the Euler–Lagrange equation, and satisfies the
estimates

||v± ± 1||L1
(I)  C�, (4.1.8)

||v(k)± |L2
(I)  C� for k = 1, . . . , 4. (4.1.9)

||v(k)± ||L1
(I)  C� for k = 1, . . . , 3. (4.1.10)

x
1

x
2

a b

v̂

1

1� �

Figure 4.1.1: If v̂ is close to 1 at x
1

and x
2

, then it stays close in between.

Proof. We prove the proposition when s = �1, the s = 1 case being identical. We divide
the proof into several steps. Moreover, we simplify the notation used for the Lp norms
when the domain of integration will be clear from the context.

Step 1. Fix � > 0. We claim that there exists C
1

> 0 such that if ||↵||, ||�||  �, then

inf

M�
↵,�

E(·; I)  C
1

�2. (4.1.11)
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To show this we note that, if '
0

,'
1

2 C1
(R) satisfy 'i(x) = 0 for all x � 1/2, with

'
0

(0) = 1,'0
0

(0) = 0,'
1

(0) = 0, and '0
1

(0) = 1, then the function

�(x) := �1+↵
0

'
0

(x�a)+↵
1

'
1

(x�a)+�
0

'
0

(b�x)��
1

'
1

(b�x), x 2 (a, b), (4.1.12)

belongs to M�
↵,� . Using � as a test function, (4.1.11) follows from Taylor’s formula for W

and the facts that W (±1) = W 0
(±1) = 0 and W 2 C2

(R).

Step 2. Fix 0 < � < 1. We will show that there exists C
2

> 0 such that for every v 2 M�
↵,� ,

with v  0 on I and ||↵||, ||�||  � we have

E(v; I) � C
2

||v + 1||2L1 . (4.1.13)

Suppose that |v(x) + 1| � ||v + 1||1/2 for all x 2 I . Using (2.1.8) and (4.1.2) with
" = 1 we have,

E(v; I) � �

ˆ
I

W (v)dx � �cW

ˆ
I

|v + 1|2 � L1

(I)
�

4

cW ||v + 1||2L1 (4.1.14)

Otherwise, there are points x
0

, x
1

2 ¯I satisfying

|v(x
0

) + 1| = ||v + 1||1
2

and |v(x
1

) + 1| = ||v + 1||1,

in which case, again by (2.1.8), (4.1.2) and Young’s Inequality

E(v; I) � �

ˆ
I

�

W (v) + |v0|2� dx � 2�

ˆ
I

p

W (v)|v0|

� 2cW�

�

�

�

�

ˆ x1

x0

|v + 1|v0dx
�

�

�

�

= cW�
�

(v + 1)

2

(x
1

)� (v + 1)

2

(x
0

)

�

=

�

2

cW ||v + 1||L1

and this proves (4.1.13).

Step 3. We claim that there exists �
0

> 0 and C
3

= C
3

(�
0

) > 0 such that if ||↵||, ||�|| 
� < �

0

and v 2 M�
↵,� , with E(v; I)  2 infM�

↵,�
E, then

||v + 1||L1  C
3

�. (4.1.15)

By taking 0 < � < 1 sufficiently small, we may assume that v  0 on I . Indeed, since
v(a) = �1 + ↵

0

 �1 + � < 0, if v(x) > 0 for some x, then necessarily there exists x
1

such that v(x
1

) = 0, and so by (2.1.8),

E(v; I) � �

ˆ
I

�

W (v) + |v0|2� dx � 2�

ˆ x1

a

p

W (v)|v0|

� 2CW�

�

�

�

�

ˆ x1

a

|v + 1|v0dx
�

�

�

�

= �CW

�

(v + 1)

2

(x
1

)� (v + 1)

2

(a)
�

� �(1� |↵
0

|2),
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which contradicts Step 1 for � sufficiently small. Hence, Steps 1 and 2 imply (4.1.15).

Step 4. Finally, (4.1.2) with " = 1 and standard compactness and lower semicontinuity
arguments imply the existence of minimizer v� of E(·; I) and since by previous step v�  0

for � < �
0

and
||v� + 1||2L2  L1

(I)||v� + 1||2L1  C�2, (4.1.16)

for some C > 0, again using (4.1.2) along with (4.1.11) yields

||v(k)� ||L2  C�, for k = 1, 2.

Furthermore, since W is C2, from (4.1.16) and the Mean Value Theorem we have

W 0
(v�) = W 0

(v�)�W 0
(�1)  max

0⇠2

W 00
(⇠)(v� + 1). (4.1.17)

The Euler–Lagrange equation

2v(iv)� + 2qv00� +W 0
(v�) = 0,

the L1 bound from Step 3 and (4.1.17) imply

||v(iv)� ||L2  |q|||v00�||L2
+

1

2

||W 0
(v�)||L2  |q|||v00�||L2

+ C||v� + 1||L2  C� (4.1.18)

for some C > 0.
The energy bound (4.1.11) and standard interpolation inequalities (e.g., see Theorem

6.4 in [36]) imply (4.1.8), (4.1.9), (4.1.10).

4.1.1 The Euler–Lagrange equation
Here we further analyze the behavior of the minimizers of the energy E" with the aid of the
corresponding Euler-Lagrange equation, and we prove our main result, Theorem 1.3.1.

Lemma 4.1.4. Consider the ordinary differential equation

x0
= F (x), (4.1.19)

where F : R4 ! R4 is a C4 mapping satisfying F (x
0

) = 0 for some x
0

2 R4. Assume
DF (x

0

) has four eigenvalues ±� ± �i, where � > 0 and � 2 R. Then for 0 < �  �
there exist a constant C(�, �) > 0, T

0

(�, �) > 0 and R > 0 such that for all T > T
0

, if
x : [0, T ] ! B(x

0

, R) is a solution of (4.1.19), then the inequality

|x(t)� x
0

|  C(�, �) exp (��T/2) (4.1.20)

holds for all t 2
h

�T
2�
, T � �T

2�

i

. In particular, if � = �,

|x(T/2)� x
0

|  C(�, �) exp (��T/2) . (4.1.21)
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Proof. Changing variables if necessary, we may assume, without loss of generality, that
x
0

= 0. Let A := DF (0). By an extension of the Hartman–Grobman Theorem (see,
e.g. [72] and Lemma 2.6.1), there exist two open neighborhoods of 0, V

1

, V
2

⇢ R4, and
a diffeomorphism h : V

1

! V
2

of class C1, with h(0) = 0, such that if x(t) 2 V
1

for all
t 2 [0, T ] then the funciton y(t) := h(x(t)), t 2 [0, T ] is a solution of the linearized system

y0 = Ay. (4.1.22)

Let R > 0 be so small that B(0, R) ⇢ V
1

, and define V := h(B(0, R)). Then V is bounded
and since h(0) = 0, there exists L > 0 such that V ⇢ B(0, L). Hence if x(t) 2 B(0, R)

for all t 2 [0, T ], then y(t) 2 B(0, L) for all t 2 [0, T ].
Since the eigenvalues of A are all distinct, the solution of (4.1.22) has the form

y(t) = c
1

v
1

exp ((�� � �i)t) + c
2

v
2

exp ((�� + �i)t)

+ c
3

v
3

exp ((� � �i)t) + c
4

v
4

exp ((�� � �i)t) ,

where c
1

, . . . , c
4

are complex valued constants and {vi} ⇢ C4 is a linearly independent set
of eigenvectors of A. Letting P = [v

1

, v
2

, v
3

, v
4

] be the matrix of eigenvectors of A, we
write the above solution as

y(t) = Pw, (4.1.23)

where

w := [c
1

exp ((�� � �i)t) , c
2

exp ((�� + �i)t) , c
3

exp ((� � �i)t) , c
4

exp ((� � �i)t)]Tr

and the superscript Tr denotes the transpose of a matrix. Since y(t) 2 B(0, L) for all
t 2 [0, T ],

|w|2  ||P�1||2|y(t)|2  L2||P�1||2,
where ||P�1|| is the operator norm of P�1. In particular,

|c
1

|2  L2||P�1||2 exp (2�t) , |c
2

|2  L2||P�1||2 exp (2�t) , (4.1.24)

|c
3

|2  L2||P�1||2 exp (�2�t) , |c
4

|2  L2||P�1||2 exp (�2�t) , (4.1.25)

for all t 2 [0, T ]. Setting t = 0 and t = T in the first and second row respectively we obtain
bounds on the constants c

1

, ..., c
4

,

|c
1

|  L||P�1||, |c
2

|  L||P�1||, (4.1.26)

|c
3

|  L||P�1|| exp (��T ) , |c
4

|  L||P�1|| exp (��T ) . (4.1.27)

Using the resulting bounds in (4.1.23) yields

exp (�T ) |y(t)|2  exp (�T ) ||P ||2 �|c
1

|2 exp (�2�t) + |c
2

|2 exp (�2�t)

+|c
3

|2 exp (2�t) + |c
4

|2 exp (2�t)�

 4L2||P ||2||P�1||2,
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provided
�T � 2�t  0 and �T � 2�T + 2�t  0.

Both of these conditions are satisfied as long as

t 2


�T

2�
, T � �T

2�

�

=: [t
1

, t
2

].

Hence for t 2 [t
1

, t
2

],

|y(t)|2  4L2||P ||2||P�1||2 exp (��T ) .

In particular, if T is sufficiently large (depending only on �, �, and V
2

), there exists a
compact set E such that y(t) 2 E ⇢ V

2

for all t 2 [t
1

, t
2

]. Since h�1 is C1 and h(0) = 0,
by the Mean Value Theorem,

|x(t)| = |h�1

(y(t))|  sup

s2E
|rh�1

(s)||y(t)|  C�,� exp (��T/2) (4.1.28)

for all t 2 [t
1

, t
2

], where C�,� := L sups2E |rh�1

(s)|||P ||||P�1||.

For a given open interval I and a subinterval (y
1

, y
2

) ⇢ I we define

M :=

�

w 2 H2

((y
1

, y
2

)) : w(y
1

) = 0, w(y
2

) = 0

 

. (4.1.29)

Proposition 4.1.1. Let "
0

> 0 and let ŵ" be a global minimizer of E"(·; (y1, y2)) on M
satisfying

E"(ŵ"; (y1, y2))  M, (4.1.30)

for all " < "
0

. Then ŵ" solves the Euler–Lagrange equation

2"4ŵ(iv)
" + 2q"2ŵ00

" +W 0
(ŵ") = 0, (4.1.31)

with additional natural boundary conditions ŵ00
" (y1) = ŵ00

" (y2) = 0, and for all " < "
0

satisfies the estimates

dist(ŵ"((y1 + y
2

)/2), {±1})  CM exp

✓

�d�

2"

◆

, (4.1.32)

|ŵ(m)

" ((y
1

+ y
2

)/2)|  CM exp

✓

�d�

2"

◆

, m = 1, . . . 3, (4.1.33)

where d := y
2

� y
1

and CM > 0 is a positive constant dependent only on M, q and the
potential W .

55



ỹ
1

ỹ
2

y
1

y
2

ŵ"

g

1

�1

1� �

Figure 4.1.2: The contradiction argument.

Proof. Fix � > 0 to be chosen later. We first observe that, due to the upper bound (4.1.30)
and Lemma 4.1.2, there exists c = c(�,M) > 0 and points ỹ

1

2 (y
1

, y
1

+ c") and ỹ
2

2
(y

2

� c", y
2

) such that

dist(ŵ"(ỹ1), {±1}) < �, |"ŵ0
"(ỹ1)| < �, (4.1.34)

dist(ŵ"(ỹ2), {±1}) < �, |"ŵ0
"(ỹ2)| < �. (4.1.35)

In addition, we claim that since ŵ" is a minimizer, at ỹ
1

and ỹ
2

its value is near the same
well of W , i.e., we may assume without loss of generality that

|ŵ"(ỹ1)� 1| < �, |ŵ"(ỹ2)� 1| < �. (4.1.36)

As a matter of fact, if this was not the case and for example

|ŵ"(ỹ1)� 1| < �, |ŵ"(ỹ2) + 1| < �. (4.1.37)

then consider

g(x) :=

8

>

<

>

:

ŵ"(x), y
1

 x  ỹ
1

,

�(x), ỹ
1

 x  ỹ
2

,

�ŵ"(x), ỹ
2

 x  y
2

,

where

�(x) := 1 + (ŵ"(ỹ1)� 1)'
0

(x� ỹ
1

) + ŵ0
"(ỹ1)'1

(x� ỹ
1

)

+ (�ŵ"(ỹ2)� 1)'
0

(ỹ
2

� x) + ŵ0
"(ỹ2)'1

(ỹ
2

� x),
(4.1.38)

and '
0

,'
1

satisfy

'j 2 C1
(R) , 'j(x) = 0 for all x � (y

2

� y
1

)/2,
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'
0

(0) = 1, '0
0

(0) = 0, '
1

(0) = 0, '0
1

(0) = 1.

It is easy to see that
�(ỹ

1

) = ŵ"(ỹ1), �0
(ỹ

1

) = ŵ0
"(ỹ1),

�(ỹ
2

) = �ŵ"(ỹ2), �0
(ỹ

2

) = �ŵ0
"(ỹ2),

and consequently g 2 H2

((y
1

, y
2

)). Obtaining �0 from (4.1.38) and using (4.1.37), we get

||�0||2L1
(ỹ1,ỹ2)

 c(||'0
0

||2L1
(R) + ||'0

1

||2L1
(R))�

2,

where c > 0 is a constant and we notice that
ˆ ỹ2

ỹ1

|�0|2dx  c(y
2

� y
1

)(||'0
0

||2L1
(R) + ||'0

1

||2L1
(R))�

2.

Similarly, an analogous bound for �00 can be derived. Additionally, using Taylor’s formula
for W and the facts that W (±1) = W 0

(±1) = 0 and W 2 C2

(R), it follows that

E"(�; (ỹ1, ỹ2))  ⇠
1

�2, (4.1.39)

where ⇠
1

only depends on y
1

and y
2

, which do not depend on �, while interpolation inequal-
ity of Corollary 4.1.1 yields for � sufficiently small

E"(ŵ"; (ỹ1, ỹ2)) =

ˆ ỹ2

ỹ1

✓

1

"
W (ŵ")� q"|ŵ0

"|2 + "3|ŵ00
" |2
◆

dx

� �

ˆ ỹ2

ỹ1

✓

1

"
W (ŵ") + "|ŵ0

"|2
◆

dx

� �

ˆ ỹ2

ỹ1

p

W (ŵ")ŵ
0
"dx = �

ˆ ŵ"(ỹ2)

ŵ"(ỹ1)

p

W (s)ds

� �

ˆ 1
2

� 1
2

p

W (s)ds =: �⇠
2

> 0.

In turn, from (4.1.39), possibly choosing � even smaller we get a contradiction with the fact
that ŵ" is a minimizer.

Since ŵ" is a minimizer of E"(·; (y1, y2)), it follows from standard arguments that it
satisfies the Euler–Lagrange equation (4.1.31). We change variables z =

x�y1
"

and define
v̂(z) := ŵ"(x). Observe that

E"(ŵ"; (y1, y2)) = E(v̂; (0, d/")) (4.1.40)

and the rescaled minimizer v̂ satisfies the Euler–Lagrange equation

2v̂(iv) + 2qv̂00 +W 0
(v̂) = 0, v̂00(0) = v̂00(d/") = 0. (4.1.41)
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We now apply Lemma 4.1.3 on the interval
�

ỹ1�y1
"

, ỹ2�y1
"

�

with

↵
0

:= ŵ"(ỹ1) = v̂

✓

ỹ
1

� y
1

"

◆

, ↵
1

:= "ŵ0
"(ỹ1) = v̂0

✓

ỹ
1

� y
1

"

◆

, (4.1.42)

�
0

:= ŵ"(ỹ2) = v̂

✓

ỹ
2

� y
1

"

◆

, �
1

:= "ŵ0
"(ỹ2) = v̂0

✓

ỹ
2

� y
1

"

◆

. (4.1.43)

The resulting minimizer agrees with v̂ on this interval and given R > 0, for � sufficiently
small the bounds (4.1.34) and (4.1.35) imply that

� := [v̂ � 1, v̂0, v̂00, v̂000] 2 B(0, R).

Using the notation � = [�
1

,�
2

,�
3

,�
4

], we rewrite (4.1.41) in the system form

�0
= F (�) (4.1.44)

where

F (�) =

2

6

6

6

4

�
2

�
3

�
4

�1

2

W 0
(�

1

)� q�
2

3

7

7

7

5

and the Jacobian of F at 0 is given by

DF (0) =

2

6

6

4

0 1 0 0

0 0 1 0

0 0 0 1

�1

2

W 00
(1) 0 �q 0

3

7

7

5

.

The eigenvalues of DF (0) are the roots of the characteristic polynomial

2r4 + 2qr2 +W 00
(1) = 0.

In particular,

r2 =
�2q ±p

4q2 � 8W 00
(1)

4

,

and since q > 0 is small, the expression under the square root is negative. We write
8

>

>

<

>

>

:

r2 =
�2q +

p

4q2 � 8W 00
(1)

4

,

r2 =
�2q �p

4q2 � 8W 00
(1)

4

and let r
1

, r
2

be the roots of the first equation, r
3

, r
4

those of the second one. We recall that
p
a+ ib = ±(� + i�),
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for

� =

s

a+
p
a2 + b2

2

, � = sgn(b)

s

�a+
p
a2 + b2

2

.

In the case of r
1

, we write

r
1

=

 

�q

2

+ i

p

2W 00
(1)� q2

2

!

1/2

,

and a simple calculation shows that

� =

1

2

⇣

�q +
p

2W 00
(1)

⌘

1/2

, � =
1

2

⇣

q +
p

2W 00
(1)

⌘

1/2

. (4.1.45)

Similarly, one can show that
8

>

>

>

<

>

>

>

:

r
1

= � + i�,

r
2

= �r
1

,

r
3

= � � i�,

r
4

= �r
3

,

(4.1.46)

Applying Lemma 4.1.4 on the interval
�

c, y2�y1�c"
"

� ⇢ �

ỹ1�y1
"

, ỹ2�y1
"

�

yields
�

�

�

�

'

✓

y
2

� y
1

2"

◆

�

�

�

�

 C(�, �) exp

✓

�� y2 � y
1

� 2c"

2"

◆

 C(�, �) exp

✓

�c� �
d

2"

◆

(4.1.47)
and (4.1.32), (4.1.33) follow from definition of ' and the fact that

ŵ

✓

y
1

+ y
2

2

◆

= v̂

✓

y
2

� y
1

2"

◆

. (4.1.48)

Proof of Theorem 1.3.1. Without loss of generality we can assume that N(v) � 2 and
define

Mk := {w 2 H2

((xk, xk+1

)) : w(xk) = 0, w(xk+1

) = 0}. (4.1.49)

We define ŵk 2 H2

((xk, xk+1

)), for 1  k  N , to be the minimizer of E"(·, (xk, xk+1

))

over Mk. We also let ŵ
0

:= ŵN . In turn, ŵk solves the Euler–Lagrange equation (4.1.31)
with

ŵk(xk) = ŵk(xk+1

) = 0.

Define dk := xk+1

� xk for k = 1, . . . , N(v) and

I�k (xk) :=

✓

xk � dk�1

2

, xk

◆

and I+k (xk) :=

✓

xk, xk +
dk
2

◆

.
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Figure 4.1.3: ŵk and I±k

From the minimality of ŵk, we have

E"(w;T) =
N(v)
X

k=1

E"(w; (xk, xk+1

)) �
N(v)
X

k=1

E"(ŵk; (xk, xk+1

))

=

N(v)
X

k=1

E"(ŵk�1

; I�k (xk)) + E"(ŵk; I
+

k (xk)),

(4.1.50)

where in the last equality we have used the fact that xN+1

:= x
1

. To complete the proof, it
remains to show that

E"(ŵk�1

; I�k (xk)) � m
1

2

� C exp

✓

�dk�1

�

"

◆

(4.1.51)

and
E"(ŵk; I

+

k (xk)) � m
1

2

� C exp

✓

�dk�

"

◆

. (4.1.52)

We will only prove (4.1.52), the proof of the first inequality being analogous. Applying the
change of variables z :=

x�xk
"

gives

E"(ŵk; I
+

k (xk)) =

ˆ
1
" I

+
k (0)

�

W (ŵk(xk + "z))� "q|ŵ0
k(xk + "z)|2 + "3|ŵ00

k(xk + "z)|2� "dz

=

ˆ
1
" I

+
k (0)

�

W (v̂k(z))� q|v̂0k(z)|2 + |v̂00k(z)|2
�

dz = E

✓

v̂k;
1

"
I+k (0)

◆

,

where E(·; ·) is the rescaled functional defined in (2.5.2) and

v̂k(z) := ŵk(x) on each
1

"
I+k (0).

In addition, we notice that v̂k(0) = ŵk(xk) = 0 for 1  k  N and Proposition 4.1.1,
together with the change of variables we performed, gives

|v̂k(dk/2")� sk| = |ŵk((xk + xk+1

)/2)� sk|  Cf exp

✓

�dk�

2"

◆

(4.1.53)
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and
|v̂0k(dk/2")| = |ŵ0

k((xk + xk+1

)/2)|  Cf exp

✓

�dk�

2"

◆

, (4.1.54)

where sk is equal to either 1 or �1. We claim that

E

✓

v̂k;
1

"
I",+k (0)

◆

� m
1

2

� E
�

⌘k;R+

�

(4.1.55)

where

⌘k(x) := sk + (v̂k(dk/2")� sk) exp (��x) cos(�x)
+

v̂0k(dk/2") + �(v̂k(dk/2")� sk)

�
exp(��x) sin(�x).

(4.1.56)

See Remark 4.1.5 for the motivations behind the definition of (4.1.56). Indeed, let ✓+" 2
H2

loc(R+

) be the function that coincides with v̂k on 1

"
I",+k (0) and ⌘+k := ⌘k(· � dk/2") on

R+\1

"
I",+k (0). Then,

E(✓+" ;R+

) � m
1

/2,

and in turn (4.1.55) follows. We now want to find an upper bound for E(⌘k;R+

), for "
small enough.
The bounds (4.1.53), (4.1.54) and the definition of ⌘k imply that there exists a constant
C > 0 such that

|⌘k(x)� s
+

|+ |⌘0k(x)|+ |⌘00k(x)|  C exp

✓

�dk�

2"

◆

exp(��x) for all x > 0 (4.1.57)

and consequently

E(⌘k;R+

) =

ˆ 1

0

W (⌘k)� q|⌘0k|2 + |⌘00k |2dx

=

ˆ 1

0

W 00
(s

+

)

2

(⌘k � s
+

)

2 � q|⌘0k|2 + |⌘00k |2 +O((⌘k � s
+

)

3

)dx

 C exp

✓

�dk�

"

◆ˆ 1

0

exp(�2�x)dx  C exp

✓

�dk�

"

◆

.

Remark 4.1.5. The construction of a competitor for the minimization of the energy
E(·;R+

) relies on exploiting, heuristically, asymptotic properties of the minimizers. In
particular, notice that if v(x) := u(x)� 1 solves the Euler–Lagrange equation

2v(iv) + 2qv00 +W 00
(1)v + g(v) = 0 on [0,1), (4.1.58)

where g(v) := W 0
(v + 1) � W 0

(1) � W 00
(1)v then the solution to the linear part of the

equation is of the form

v`(x) = c
1

e��x
cos(�x) + c

2

e��x
sin(�x) + c

3

e�x cos(�x) + c
4

e�x sin(�x).
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The structure of the ODE (4.1.58) allows us to use similar arguments to the ones used in
[24] (see Theorem 4.1, page 330) and infer that v(x) ! 0 and v`(x) ! 0 as x ! 1
under appropriate conditions on the initial data. We then consider the function x 7!  k(x)
defined via

 k(x) := ck
1

e��x
cos(�x) + ck

2

e��x
sin(�x)

obtained by setting c
3

= c
4

= 0 in the expression for v`, as v` would not converge to 0 as
x ! 1 otherwise. Now consider the function v̂k. Our goal is to glue the functions v̂k and
 k in a C1 manner and the first step in this program is to find appropriate values for the
constants cki . In particular, we need to require that

(

 k(0) = vk(dk/2")� sk,

 0
k(0) = v0k(dk/2").

Straightforward computations show that

vk(dk/2")� sk =  k(0) = ck
1

and
v0k(dk/2") =  0

k(0) = ��ck
1

+ �ck
2

= ��[vk(dk/2")� sk] + �ck
2

so that
ck
2

=

�[vk(dk/2")� sk]� v0k(dk/2")

�
.

For the sake of consistency, we introduce the map x 7! ⌘k(x) defined via

⌘k(x) :=  k(x)� sk.

We can finally define a competitor ✓+" for the minimization of the energy E(·;R+

) as in the
final part of the previous proof.

4.2 Slow motion dynamics: proof of Theorem 1.3.3
Proof of Theorem 1.3.3. Fix 0 < � < min{1, d/8}. We recall that by definition of E"

E"(u
"
(·, t);T) =

ˆ
T

✓

1

"
W (u"

)� "q|u"
x|2 + "3|u"

xx|2
◆

dx.

Integrating by parts and using the regularity of the solution u" and equation (1.3.2) gives

d

dt
E"(u

"
(·, t);T) =

ˆ
T

✓

1

"
W 0

(u"
)u"

t � 2"qu"
xu

"
xt + 2"3u"

xxu
"
xxt

◆

dx

=

ˆ
T

✓

1

"
W 0

(u"
)u"

t + 2"quxxu
"
t + 2"3u"

xxxxu
"
t

◆

dx

= �
ˆ
T
|u"

t |2dx.
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It follows that for every T > 0,

E"(u
"
0

;T)� E"(u
"
(·, T );T) = 1

"

ˆ T

0

ˆ
T
|u"

t |2dxdt. (4.2.1)

Suppose there exists T" such that
ˆ T"

0

ˆ
T
|u"

t |dxdt  � (4.2.2)

Then,
ˆ
T
|u"

0

� u"
(·, T")|dx =

ˆ
T

�

�

�

�

ˆ T"

0

u"
tdt

�

�

�

�

dx 
ˆ
T

ˆ T"

0

|u"
t |dtdx  � (4.2.3)

and using (1.3.10) and the triangle inequality

||u"
(·, T")� v||L1

(T)  2�. (4.2.4)

We claim that u"
(·, T") has at least N" zeros, {x"

k}N"
k=1

that satisfy mink |x"
k+1

�x"
k| � d�4�.

Indeed, consider xk, the k–th jump point of v. Since the distance between jump points
of v is at least d and �  d/8, we know that v is constant on (xk�2�, xk) and on (xk, xk+2�)
and may assume without loss of generality that its value is equal to 1 on (xk � 2�, xk) and
to �1 on (xk, xk + 2�). It follows from (4.2.4) that u"

(·, T") must take a positive value
somewhere on (xk � 2�, xk) and a negative value on (xk, xk + 2�). Hence, there exists a
zero x"

k 2 (xk � 2�, xk + 2�) of u"
(·, T").

Applying Hölder inequality, (1.3.10), (4.2.1), and Theorem 1.3.1 yields

1

T"

 ˆ T"

0

ˆ
T
|u"

t |dxdt
!

2


ˆ T"

0

ˆ
T
|u"

t |2dxdt

= " (E"(u
"
0

;T)� E"(u
"
(·, T");T))

 "

 

E
0

(v;T) + 1

h(")
�m

1

N" + C
N"
X

k=1

exp
✓

�(x"
k+1

� x"
k)�

"

◆

!

 "

✓

E
0

(v;T) + 1

h(")
� E

0

(v;T) + Cexp
✓

�(d� 4�)�

"

◆◆

= "

✓

1

h(")
+ Cexp

✓

�(d� 4�)�

"

◆◆

(4.2.5)

and as a consequence,

T" � 1

C"



1

h(")
+ exp (�(d� 4�)�/")

��1

✓ˆ T"

0

ˆ
T
|u"

t |dxdt
◆

2

. (4.2.6)
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Following the ideas of [44], we prove the existence of T" as in (4.2.2) by dividing the
analysis into two cases: first assume that

ˆ 1

0

ˆ
T
|u"

t |dxdt > �.

Since by (4.2.1) with T replaced by any S > 0,
ˆ S

0

ˆ
T
|u"

t |2dxdt  "E"(u
"
0

;T) < 1

we can choose T" such that ˆ T"

0

ˆ
T
|u"

t |dxdt = �, (4.2.7)

and thanks to (4.2.7), equation (4.2.6) gives

T" � �2

C"
h

1

h(")
+ exp (�(d� 4�)�/")

i � �2

2C"
min{h("), exp((d� 4�)�/")} =: ⇤".

In turn, (4.2.2) is satisfied and (4.2.5) yields
ˆ

⇤"

0

ˆ
T
|u"

t |2dxdt  C"



1

h(")
+ exp (�(d� 4�)�/")

�

. (4.2.8)

On the other hand, if ˆ 1

0

ˆ
T
|u"

t |dxdt  �,

then (4.2.2) holds true for all T > 0 and again (4.2.8) follows. To conclude the proof note
that for " sufficiently small

s" := �2 min {h("), exp((d� 4�)�/")}  ⇤"

and Hölder’s inequality together with (4.2.8) yield

sup

0ts"

ˆ
T
|u"

(x, t)� u"
0

(x)|dx 
ˆ s"

0

ˆ
T
|u"

t |dxdt


✓

min

⇢

h("), exp

✓

(d� 4�)�

"

◆�ˆ s"

0

ˆ
T
|u"

t |2dxdt
◆

1/2

 C

✓

min

⇢

h("), exp

✓

(d� 4�)�

"

◆�

"�2


1

h(")
+ exp

✓

�(d� 4�)�

"

◆�◆

1/2

 C
p
"�.

Letting "! 0

+ gives (1.3.12).
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4.3 Existence of solutions via Minimizing Movements
We now turn to the existence and regularity of solutions for (1.3.2) in the more general case
of an open, bounded domain ⌦ ⇢ Rd. We notice that the same proof carries over in the
case of the one–dimensional torus ⌦ = T, that is, when we deal with periodic Dirichlet
boundary conditions, which is the framework in which we have analyzed slow motion of
solutions of (1.3.2).

Theorem 4.3.1. Let ⌦ ⇢ Rd, d  3, be an open bounded set with C2 boundary, let
u
0

2 H2

(⌦) and the real valued function z 7! W (z) be a double–well potential satisfying
hypotheses (2.1.3), (2.1.5) and (2.1.7)–(2.1.9). Then for every T > 0 there exists a weak
solution u" 2 L1

((0, T );H2

(⌦)) in the sense of (4.3.25), with u"
t 2 L2

((0, T );L2

(⌦)) of
(

ut = �1

"
W 0

(u)� 2"q�u� 2"3�2u in ⌦⇥ (0, T ),

u(x, 0) = u
0

(x) in ⌦,
(4.3.1)

such that ˆ
⌦

u(x, t)dx =

ˆ
⌦

u
0

(x)dx+

ˆ t

0

ˆ
⌦

1

"
W 0

(u(x, s))dxds.

Moreover, the following estimates holdˆ T

0

ˆ
⌦

|ut(x, t)|2dxdt  M"�
�1,

ˆ
⌦

|ru(x, t)|2dx  3M"�
�1,

ˆ
⌦

|r2u(x, t)|2dx  3M"�
�1,

for L1 a.e. t 2 (0, T ), where � 2 (0, 1) and

M" := 2

ˆ
⌦

✓

1

"
W (u

0

) + "|ru
0

|2 + "3|r2u
0

|2
◆

dx. (4.3.2)

Proof. Step 1. For ` 2 N we set ⌧ := T/` and subdivide the interval (0, T ) into ` subin-
tervals of length ⌧ ,

⌧
0

:= 0 < ⌧
1

< . . . < ⌧` := T,

where ⌧n := n⌧ for n = 1, . . . , `. For every n = 1, . . . , `, we let un 2 H2

(⌦) be a solution
of the minimization problem

min

v2H2
(⌦)

J",n(v;⌦),

where

J",n(v;⌦) :=

ˆ
⌦

✓

1

"
W (v)� "q|rv|2 + "3|r2v|2

◆

dx+

1

2⌧

ˆ
⌦

(v � un�1

)

2dx

= E"(v;⌦) +
1

2⌧

ˆ
⌦

(v � un�1

)

2dx.
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In order to prove the existence of un, we begin by showing that Jn is non–negative and
coercive in H2

(⌦). We fix q⇤ > 0 such that the interpolation inequality Lemma 2.5.1 holds
in ⌦, namely

k"2
ˆ
⌦

|ru|2dx 
ˆ
⌦

⇥

W (u) + "4|r2u|2⇤ dx, �1 < k  q⇤,

and we let � 2 (0, 1) be such that (q + �)/(1� �) < q⇤, so that we can write

W (u)� q2"2|ru|2 + "4|r2u|2 = (1� �)

✓

W (u)� q + �

1� �
"2|ru|2 + "4|r2u|2

◆

+ �(W (u) + "2|ru|2 + "4|r2u|2),
(4.3.3)

and in turn J",n is non–negative. Then by (2.1.8), and using the fact that cW  1, we obtain

E"(u;⌦) � �cW

ˆ
⌦

�

(|u|� 1)

2

+ "2|ru|2 + "4|r2u|2� dx. (4.3.4)

The above chain of inequalities implies that

J",n(u;⌦) = E"(u;⌦) +
1

2⌧

ˆ
⌦

(v � un�1

)

2dx ! 1 as ||u||H2
(⌦)

! 1,

and hence J" is coercive in H2

(⌦).
We now let mn := inf

v2H2
(⌦)

J",n(v;⌦), and consider a minimizing sequence {vk} ⇢
H2

(⌦) satisfying

mn  J",n(vk;⌦)  mn +
1

k
,

so that
lim

k!1
J",n(vk;⌦) = mn.

It follows from (4.3.4) that {vk} is bounded in H2

(⌦), and hence there exist a subsequence
of {vk} (not relabeled) and some un 2 H2

(⌦) such that

vk ! un in L2

(⌦),

vk ! un pointwise a.e. in ⌦,

rvk ! run in L2

(⌦),

r2vk * r2un in L2

(⌦).

We claim that the above convergences imply that J",n(un;⌦) = mn. Indeed, by Fatou’s
Lemma and lower semicontinuity of L2 norm with respect to weak convergence, we have

mn = lim inf

k!1
J",n(vk;⌦) � Jn(un) � mn.
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It follows that for all w 2 H2

(⌦) and all t 2 R,

J",n(un;⌦)  J",n(un + tw;⌦),

and hence the real valued function !(t) := J",n(un + tw;⌦) has a minimum at t = 0, so
that !0

(0) = 0. Standard arguments show that for every w 2 H2

(⌦),

0 =

ˆ
⌦

✓

1

"
W 0

(un)w � 2"qrun ·rw + 2"3r2un ·r2w

◆

+

1

⌧

ˆ
⌦

(un � un�1

)w,

(4.3.5)

where W 0
(un)w is well–defined by the embedding of H2

(⌦) into L1
(⌦) for d  3, and

r2un · r2w =

P

i,j
@2un
@xi@xj

@2w
@xi@xj

is the Frobenius inner product. In particular, this shows
that un is a weak solution of the equation

�1

"
W 0

(un)� 2"q�un � 2"3�2un =

1

⌧
(un � un�1

) in ⌦.

Since ⌦ has finite measure, choosing w = 1 in (4.3.5) gives

0 =

ˆ
⌦

1

"
W 0

(un)dx+

1

⌧

ˆ
⌦

(un � un�1

)dx.

Step 2: Apriori bounds. For x 2 ⌦ and t 2 (⌧n�1

, ⌧n], n = 1, . . . , `, we define

u⌧
(x, t) := un(x) + (t� ⌧n)

un(x)� un�1

(x)

⌧
. (4.3.6)

The goal of this step is to find apriori bounds on u⌧ .
Since J",n(un;⌦) = mn, it follows that J",n(un;⌦)  J",n(un�1

;⌦), which implies

1

2⌧

ˆ
⌦

(un � un�1

)

2dx 
ˆ
⌦

✓

1

"
(W (un�1

)�W (un))� "q(|run�1

|2 � |run|2)
◆

dx

+

ˆ
⌦

"3(|r2un�1

|2 � |r2un|2)dx.

Summing over n = 1, . . . , `, we get

1

2⌧

X̀

n=1

ˆ
⌦

(un � un�1

)

2dx 
ˆ
⌦

✓

1

"
(W (u

0

)�W (u`))� "q(|ru
0

|2 � |ru`|2)
◆

dx

+

ˆ
⌦

"3(|r2u
0

|2 � |r2u`|2)dx.
(4.3.7)
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By the interpolation inequality in Lemma 2.5.1,
ˆ
⌦

✓

1

"
W (u`)� "q|ru`|2 + "3|r2u`|2

◆

dx � �

ˆ
⌦

✓

1

"
W (u`) + "|ru`|2 + "3|r2u`|2

◆

dx,

where � 2 (0, 1) was chosen above. Thus, the previous inequalities imply

1

2⌧

X̀

n=1

ˆ
⌦

(un � un�1

)

2 dx+ �

ˆ
⌦

✓

1

"
W (u`) + "|ru`|2 + "3|r2u`|2

◆

dx


ˆ
⌦

✓

1

"
W (u

0

) + "|ru
0

|2 + "3|r2u
0

|2
◆

dx =

M"

2

,

(4.3.8)

see (4.3.2). By (4.3.6), for every x 2 ⌦ and t 2 (⌧n�1

, ⌧n],

u⌧
t (x, t) =

un(x)� un�1

(x)

⌧
,

ru⌧
(x, t) = run(x) + (t� ⌧n)

run(x)�run�1

(x)

⌧
,

r2u⌧
(x, t) = r2un(x) + (t� ⌧n)

r2un(x)�r2un�1

(x)

⌧
,

(4.3.9)

so that by (4.3.8) we have

1

2

ˆ
⌦T

(u⌧
t (x, t))

2 dxdt+ �

ˆ
⌦

✓

1

"
W (u`) + "|ru`|2 + "3|r2u`|2

◆

dx  M"

2

(4.3.10)

which implies ˆ
⌦T

(u⌧
t (x, t))

2 dxdt  M", (4.3.11)

for every ⌧ > 0. Since u⌧ is absolutely continuous, for every 0  t
1

< t
2

 T ,
ˆ
⌦

(u⌧
(x, t

2

)� u⌧
(x, t

1

))

2 dx =

ˆ
⌦

✓ˆ t2

t1

u⌧
t (x, t)dt

◆

2

dx

 (t
2

� t
1

)

ˆ
⌦T

(u⌧
t (x, t))

2 dxdt

 M"(t2 � t
1

).

(4.3.12)

Taking t
1

= 0 and noticing that u⌧
(x, 0) = u

0

(x), we getˆ
⌦

(u⌧
(x, t)� u

0

)

2 dx  M"t (4.3.13)

for every ⌧ > 0 and all t 2 (0, T ). In turn, by convexity of the function z 7! z2,ˆ
⌦

(u⌧
(x, t))2 dx  2M"t+ 2

ˆ
⌦

u2

0

(x)dx (4.3.14)
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for every ⌧ > 0 and all t 2 (0, T ).
Moreover, by (4.3.9), for x 2 ⌦ and t 2 (⌧n�1

, ⌧n],

|ru⌧
(x, t)|  2|run(x)|+ |run�1

(x)|,
|r2u⌧

(x, t)|  2|r2un(x)|+ |r2un�1

(x)|,
and by (4.3.8) and arbitrariness of ` we get

ˆ
⌦

|ru⌧
(x, t)|2dx  3M"

�
,

ˆ
⌦

|r2u⌧
(x, t)|2dx  3M"

�
. (4.3.15)

Step 3: Convergence as ⌧ ! 0

+. In the previous step we have shown that {u⌧}
is bounded in L2

((0, T );H2

(⌦)) and {u⌧
t } is bounded in L2

((0, T );L2

(⌦)). Since these
spaces are reflexive, there exist a subsequence of {u⌧} (not relabeled) and u such that
u⌧ * u in L2

((0, T );H2

(⌦)) and in H1

((0, T );L2

(⌦)). Using the fact that the embed-
dings H2

(⌦) ,! H1

(⌦) and H1

(⌦) ,! L2

(⌦) are compact, it follows by the compactness
theorem of Aubin and Lions (see e.g. [6]) and a diagonal argument, that, up to a further
subsequence, u⌧ ! u in L2

((0, T );L2

(⌦)). In turn, for L1 a.e. t 2 (0, T ) we have that
u⌧
(·, t) ! u(·, t) in L2

(⌦). We are now ready to let ` ! 1, or equivalently, ⌧ ! 0

+ in
(4.3.11), (4.3.13), (4.3.15), and deduce the corresponding apriori bounds.

Step 4: u is a weak solution of the Swift–Hohenberg equation.
We let x 2 ⌦ and t 2 (⌧n�1

, ⌧n), n = 1, . . . , `, and define

ũ⌧
(x, t) := un(x). (4.3.16)

We claim that ũ⌧ * u in L2

((0, T );H2

(⌦)) as ⌧ ! 0

+.
Given t 2 (0, T ], we find n such that t 2 (⌧n�1

, ⌧n] and we notice that

ũ⌧
(x, t)� u⌧

(x, t) = un(x)� u⌧
(x, t) = u⌧

(x, ⌧n)� u⌧
(x, t).

By (4.3.12),
ˆ
⌦

|ũ⌧
(x, t)� u⌧

(x, t)|2dx =

ˆ
⌦

|u⌧
(x, ⌧n�1

)� u⌧
(x, t)|2dx

 M"(t� ⌧n�1

)  M"⌧ ! 0,
(4.3.17)

as ⌧ ! 0

+. This shows that ũ⌧
(·, t) � u⌧

(·, t) ! 0 in L2

(⌦) as ⌧ ! 0

+. Moreover, given
� 2 L2

(⌦⇥ (0, T )), we have
ˆ
⌦T

ũ⌧
(x, t)�(x, t)dxdt =

ˆ
⌦T

(ũ⌧
(x, t)� u⌧

(x, t))�(x, t)dxdt

+

ˆ
⌦T

u⌧
(x, t)�(x, t)dxdt.

(4.3.18)
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By Hölder’s inequality and (4.3.17), the first integral on the right-hand side of (4.3.18)
converges to zero. Using the fact that u⌧ * u in L2

((0, T );H2

(⌦)) in the second integral,
we deduce that ũ⌧ * u in L2

((0, T );L2

(⌦)).
Moreover, by (4.3.15) and the fact that ũ⌧

(x, t) = u⌧
(x, ⌧n) for t 2 (⌧n�1

, ⌧n],ˆ
⌦

|rũ⌧
(x, t)|2dx  3M"

�
,

ˆ
⌦

|r2ũ⌧
(x, t)|2dx  3M"

�
, (4.3.19)

for all ⌧ > 0 and all t 2 (0, T ). Hence, up to a subsequence, ũ⌧ * u in L2

((0, T );H2

(⌦)).
Furthermore, by (4.3.5), for every w 2 L2

((0, T );H2

(⌦)),

0 =

ˆ
⌦

✓

1

"
W 0

(ũ⌧
(x, t))w � 2"qrũ⌧

(x, t) ·rw + 2"3r2ũ⌧
(x, t) ·r2w

◆

dx

+

ˆ
⌦

u⌧
t (x, t)w dx.

Integrating in time over (t
1

, t
2

) gives

0 =

ˆ t2

t1

ˆ
⌦

✓

1

"
W 0

(ũ⌧
(x, t))w � 2"qrũ⌧

(x, t) ·rw + 2"3r2ũ⌧
(x, t) ·r2w

◆

dxdt

+

ˆ t2

t1

ˆ
⌦

u⌧
tw dxdt.

We note that from (4.3.8) we have
ˆ
⌦

(un � u
0

)

2 dx =

ˆ
⌦

(un � un�1

+ un�1

� . . .+ u
1

� u
0

)

2 dx

 `
X̀

k=1

ˆ
⌦

(uk � uk�1

)

2 dx  `⌧M" = TM"

where we have used the convexity of the function z 7! z2 and the fact that ⌧ = T/`, and
this implies ˆ

⌦

|un|2 dx  C (4.3.20)

for some constant C > 0. Moreover, arguing as in (4.3.7), it follows that
ˆ
⌦

✓

1

"
W (un)� "q|run|2 + "3|r2u`|2

◆

dx 
ˆ
⌦

✓

1

"
W (u

0

)� "q|ru
0

|2 + "3|r2u
0

|2
◆

dx

 M"

2

for all n 2 {0, . . . , `}, and in turn, by the interpolation inequality in Lemma 2.5.1,
ˆ
⌦

|run|2dx  C and
ˆ
⌦

|r2un|2dx  C (4.3.21)
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for some constant C > 0 and for all n 2 {0, . . . , `}. Using (4.3.20), (4.3.21) and the
Sobolev embedding theorem, we have

||un||L1
(⌦)

 C||un||H2
(⌦)

 C, (4.3.22)

where C > 0 changes from side to side. By the Mean Value Theorem, (4.3.22), and the
fact that W is C2, we deduceˆ

⌦

(W 0
(ũ⌧

(x, t))�W 0
(u(x, t)))wdx  max

�C?⇠C?
|W 00

(⇠)|
ˆ
⌦

|ũ(x, t)� u(x, t)||w|dx

 C

ˆ
⌦

|ũ(x, t)� u(x, t)||w|dx.
(4.3.23)

Letting ⌧ ! 0

+ and using the facts that ũ⌧ * u in L2

((0, T );H2

(⌦)), u⌧ * u in
H1

((0, T );L2

(⌦)) we get

0 =

ˆ t2

t1

ˆ
⌦

✓

1

"
W 0

(u(x, t))w � 2"qru(x, t) ·rw + 2"3r2u(x, t) ·r2w

◆

dxdt

+

ˆ t2

t1

ˆ
⌦

ut(x, t)w dxdt.

(4.3.24)
In particular, let {wk} ⇢ H2

(⌦) be dense. Using the fact that u(·, t) 2 H2

(⌦) and
ut 2 L2

(⌦) for L1 a.e. t 2 (0, T ), by the arbitrariness of t
1

and t
2

, we find that

0 =

ˆ
⌦

✓

1

"
W 0

(u(x, t))wk � 2"qru(x, t) ·rwk + 2"3r2u(x, t) ·r2wk

◆

dx

+

ˆ
⌦

ut(x, t)wk dx

for L1 a.e. t 2 (0, T ), where the measure–zero set depends on k. Since {wk} is countable,
we can find a set E ⇢ (0, T ) with L1

(E) = 0 such that the previous equality holds for all
t 2 (0, T ) \ E and all k.

Since u(·, t) 2 H2

(⌦), then u(·, t) 2 L1
(⌦) and, again by Mean Value Theorem and

the fact that W is C2, it follows that W 0
(u(·, t)) 2 L2

(⌦). This, together with the density
of {wk} in H2

(⌦), and the fact that ut 2 L2

(⌦) for t 2 (0, T ) \ E, implies that

0 =

ˆ
⌦

✓

1

"
W 0

(u(x, t))w � 2"qru(x, t) ·rw + 2"3r2u(x, t) ·r2w

◆

dx

+

ˆ
⌦

ut(x, t)w dx

(4.3.25)

for all t 2 (0, T ) \ E and all w 2 H2

(⌦). Hence u is a weak solution of equation (4.3.1)
and since ⌦ has finite measure, taking w = 1 leads to

0 =

ˆ
⌦

1

"
W 0

(u(x, t))dx+

ˆ
⌦

ut(x, t) dx, (4.3.26)
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which implies
ˆ
⌦

u(x, t)dx =

ˆ
⌦

u
0

(x)dx+

ˆ t

0

ˆ
⌦

1

"
W 0

(u(x, s))dxds.
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Chapter 5

Ongoing and future research

We present here two ongoing research projects ensuing from the main topic of this thesis.
In the first section we describe a model that could be employed in the context of phase
transitions. It is connected to a higher order energy like (2.5.1), and contains a mixed term
of the kind u0u.

The second section is devoted to the introduction of the fractional counterpart of the
isoperimetric function, used in the first part of this thesis.

5.1 A new model for phase transitions
The fifth–order Korteveg–de Vries equation

ut + ↵u000
+ �u(v)

= h0
(u, u0, u00

)

where 0 denotes derivatives with respect to the spatial variable, and z 7! h(z) is a smooth
map, ↵, � 2 R with � 6= 0, models the behavior of waves in various frameworks, such as
in plasma physics, see [10], [18], [69]. This equation belongs to the family

ut + �u(v)
+ ⇣u000 � ⇠{2uu00

+ |u0|2}0 + 2uu0
+ 3ru2u0

= 0

where ⇣, ⇠,, r 2 R and � 2 R+ are constants, and such family arises in the context of
water waves, used as a description of long waves in shallow water under gravity, see e.g.
[10], [18], [25], [31]. Looking for traveling waves u(x, t) = w(y), where y = x � ct, one
obtains, after appropriate scaling, the equation

u(iv)
+ qu00 � µ{2uu00

+ |u0|2}+ f(u) = 0,

in which f is a third order polynomial, q, µ 2 R, see [68], page 8 for more details. This
last equation can be seen, in the one–dimensional setting, as the Euler–Lagrange equation
of the functional ˆ

I

✓

1

2

|u00|2 � q

2

|u0|2 + µu|u0|2 +W (u)

◆

dx (5.1.1)
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where I ⇢ R is an open, bounded interval and W is the primitive of f . As a first simplifi-
cation, considering all the values of µ, q > 0 such that µ = q/2, we haveˆ
I

✓

1

2

|u00|2 � q

2

|u0|2 + q

2

u|u0|2 +W (u)

◆

dx =

ˆ
I

✓

1

2

|u00|2 + q

2

|u0|2(u� 1) +W (u)

◆

dx.

An interesting problem is to understand, after appropriate rescaling, the asymptotic
behavior of energies of this type. More specifically, the �–convergence analysis of such
functionals, where terms with a sign are present, heavily relies on nonlinear interpolation
results as in the case of the analogous model introduced earlier, see (2.5.1), (2.5.1), and
(2.5.2). The aforementioned nonlinear interpolation inequality result would read as follows
in our case. With I as above, we would like to show that there exists a constant c > 0 such
that ˆ

I

1

2

|u00|2 +W (u) dx � c

ˆ
I

|u0|2(1� u) dx (5.1.2)

for all u 2 H2

(I).
As a first step in this direction, one can tackle the study of the functionalˆ

I

|u00|2 + k|u0|s|u� 1|t +W ?
(u) dx

where k > 0 is a parameter, s, t > 0 are values to be investigated and z 7! W ?
(z) is a

double–well potential. We expect the the constraints on the exponents s, t to follow from
applications of Young’s inequality and classical interpolation inequalities, see [64]. This
functional could prove useful in the theory of phase separation in composite materials,
being close to models recently taken into consideration, see [21], [23].

We expect to be able to prove the following.

Theorem 5.1.1. Let I ⇢ R be an open, bounded interval. Then there exist s, t > 0 and a
constant k

2

> 0, such that

k
2

ˆ
I

|u0|s|u|t dx  |I|4�s

ˆ
I

|u00|2 dx+

1

|I|s
ˆ
I

W ?
(u) dx

for all u 2 H2

(I), where z 7! W ?
(z) is the double–well potential with wells at ±1 previ-

ously mentioned.

A compactness result for the rescaled functional would follow by using the previous
theorem.

Theorem 5.1.2 (Compactness). Let I ⇢ R be an open, bounded interval and let �1 <
k < k

0

. Let "n ! 0

+ and consider {un} ⇢ H2

(I) such that

sup

n

ˆ
I

✓

1

"
W ?

(un)� k|u0
n|s�1|1� un|t + "3|u00

n|2
◆

dx < 1.

Then there exist a subsequence {unk
} of {un} and u 2 BV (I; {�1,+1}) such that

unk
! u in L1

(I).
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The study of the �–limit is the next natural step. Moreover, in order to analyze the
original functional (5.1.1), it is necessary to understand the role of the constraint on the
exponents s, t.

5.2 The fractional isoperimetric function
The fractional version of the classical isoperimetric function (1.2.2) can be defined as

I(r) := inf {Ps(E;⌦) : E ⇢ ⌦,Ln
(E) = r} , s 2 (0, 1), r 2 [0,Ln

(⌦)] (5.2.1)

where ⌦ ⇢ Rn is a smooth, bounded, open set, E is a measurable set and Ps(E;⌦) denotes
the fractional perimeter of E relative to ⌦. The fractional perimeter was introduced for
the first time in [15], defined by the fractional s–Sobolev seminorm of the characteristic
function �E of E, and in our case it reads

Ps(E;⌦) :=

ˆ
E

ˆ
Ec\⌦

1

|x� y|n+s
dx dy, s 2 (0, 1). (5.2.2)

One way to study the regularity of the map r 7! I(r) for a fixed value of s, is to analyze the
first and second variations of (5.2.2) and then, using a similar approach to the one adopted
in [75], study the second derivative of Ps(E;⌦) with respect to the volume variable.

In the first part of this thesis we have used the standard isoperimetric function and its
local counterpart in connection to the speed of evolution of solutions of PDEs arising as
gradient flows of the Cahn-Hillard energy, see [55], [60]. An interesting problem is the
search for relations, if any, between (5.2.1) and the fractional version of the Allen–Cahn
equation

ut =
1

"

✓

Su� 1

"2s
W 0

(u) + �(t, x)

◆

, (5.2.3)

whose solutions represent the atom dislocation in a crystal for a general type of Nabarro–
Peierls model, and where " > 0 is a small parameter, S is an integro–differential operator
as in (5.2.2), z 7! W (z) is a periodic potential, and � is an external stress. See [67] and
references therein for more details.
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