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Abstract

Fluid interfaces and membranes can mediate forces between particles bound to them.
Bound objects impart local deformations of the surface geometry and modify its thermal
fluctuation spectrum, the effects of which spread to distant regions where other objects can
respond to it. Such surface-mediated interactions play an important role in aggregation
and structure formation of both colloids at fluid interfaces, relevant for many technological
applications, and protein inclusions in biological membranes, which are believed to assist
in important cellular remodeling processes like endocytosis and exocytosis. While the
physical characteristics of these geometric interactions are conceptually straightforward,
the corresponding calculations are unfortunately far from trivial. The challenge is that one
must enforce conditions at the particle–surface boundaries of finite-sized objects, which
themselves may also be subject to thermal fluctuations. In this thesis we develop an Effective
Field Theory (EFT) formalism which disentangles the particle boundary conditions from
the calculation of the interaction free energy by constructing an equivalent point-particle
description. We first motivate the intuition and key steps needed to construct an EFT
through a familiar electrostatics problem, which will serve as a guiding analogy for capturing
finite-size information in point-like “polarizabilities” and determining their values through
a suitable “matching” procedure. We then apply the formalism to construct complete
effective energy functionals for flat, curved, and asymmetric rigid particles bound to tension
dominated and bending-elasticity dominated surfaces. The interaction potential emerges as
a systematic cumulant expansion, for which we provide a powerful diagrammatic technique
and derive series expansions for pairwise and multibody interactions, as well as corrections
due to thermal fluctuations. In particular, we calculate to high orders—and in some cases
to all orders—the elastic and entropic interactions between particles with various fixed and
free boundary conditions, and analyze the corresponding energy landscapes to determine
the preferred configurations and orientations of anisotropic and multibody systems.
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Introduction

Nature exhibits a wide diversity of phenomena and structure across a multitude of scales.
Yet, within Nature’s complexity, there exist fascinating patterns and commonalities. At the
heart of these emergent forms and behaviors lies a concordance of influence from a tangled
network of interactions, which are directed and constrained by physical laws. However, many
of the associated characteristics appear universal, and may be understood by examining
the underlying mathematical structure that describes them.

The modern view of particle interactions presents such a unified picture, wherein particles
“communicate” with one another via the fields to which they couple. In classical field
theory, the electric field mediates the Coulomb force between electric charges and the
curvature of spacetime mediates forces between masses, the corresponding “charge” for
gravity. In quantum field theory (QFT), field-mediated interactions appear as an exchange
of quanta—quantized excitations of the field, such as photons and gravitons. The reach
of this viewpoint, however, is much broader, and the analogous mathematics provides a
coherent language to both describe and explain seemingly unrelated phenomena. In this
thesis we will use this perspective—and the tools it offers—as a guiding theme to explore
surface-mediated interactions between particles adsorbed to soft matter surfaces.
At the breakfast table, one might observe bubbles on the surface of coffee aggregating

together and collecting at the walls of the mug. Similar behavior might be seen with cereal
floating in milk. Perhaps as a child (or even as an adult), the reader has taken advantage of
this “Cheerios effect” [VM05] to spell out their name in a bowl of alphabet soup. One may
even further explore and replicate this behavior by carefully floating thumbtacks, paper
clips, or segments of soda straws on a liquid surface [VM05, CFHQ02]. Humans are not
the only creatures who have noticed this behavior; certain insects readily exploit this effect
to pass from a water surface to land by “climbing” the meniscus at the water’s edge [HB05].
In each of these examples, the “particles” are trapped at the liquid–air interface, and the
competition between gravity and surface tension deforms the surface in the vicinity of the
particles’ boundaries. Positively buoyant objects like bubbles tend to move up any height
gradients of the surface, such as at the liquid meniscus near the wall of a cup. Denser objects
like thumbtacks, which would normally sink if not held up by surface tension, depress
the surface and tend to move down height gradients. The mysterious attraction then
results as like objects encounter each other’s menisci and reduce the excess area from their
deformations—thereby decreasing the excess energy due to tension and gravity—during
approach. In the language of the previous paragraph, the liquid surface height serves as the
field and the objects source deformations in this field in much the same way as a charged
conductor sources an electric field. More akin to gravity, however, in this case like “charges”
attract and opposites repel.
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Understanding the interactions between particles bound to soft matter surfaces of course
serves more than just to explain curiosities in the dining room. It also provides insight
into structure formation of colloidal particles adsorbed to fluid interfaces relevant to
technological applications, and informs our understanding of protein aggregation and other
structural inhomogeneities of inclusions in cellular membranes. More than a century ago,
Ramsden [Ram03] and Pickering [Pic07] observed that colloidal particles may act similarly
to surfactants by adsorbing to and subsequently lowering the surface tension at the interface
between two normally immiscible fluids—such as oil and water—leading to particularly
stable emulsions [Bin02, ABC03, MMY+12] (see also Ref. [NB15] for very recent theoretical
and experimental treatments of particle-stabilized emulsions). This insight has found a
wide range of applications, from pharmaceuticals to cosmetics to mineral processing and
refining of crude oil [Bin07]. Colloidal assemblies at fluid interfaces have been utilized in the
fabrication of special materials, such as macroporous ceramics—relevant to filtration and
insulation technologies—and 3D photonic crystals, where colloidal crystals serve as template
structures [HBS98, GYX99, SS01]. Assemblies of nanoscale colloidal metal particles have
also been applied to optofluidic devices, such as tunable liquid mirrors [BKT+09].
Surface-mediated interactions also play an important role in biology. Fluid membranes

envelope and provide basic structure to cells and their interior organelles and vesicles,
but most of the biological functions are performed or controlled by their bound proteins
[AJL+07]. Among the myriad of complex interactions between bound constituents in the
“fluid mosaic” of a cellular membrane [SN72, Nic14], these objects may impart deforma-
tions on the membrane itself [MG05, ZK06], which in turn mediates interparticle forces
through the overlap of its responding surface curvature. These deformations are more than
incidental [VS06, PUWS09]—indeed, proteins such as clathrin, epsin, BAR domains, and
various reticulons induce membrane curvature and aid in vesicle formation, endocytosis,
and exocytosis [TSHDC99, BV06, Koz07, YS07, RIH+07, AG09, RH11], and furthermore
play a role in the structural tubulation and stability of the endoplasmic reticulum and
Golgi apparatus [FRT+01, IER+05, SVR06, VPS+06, YS07, GHV14]. Understanding how
particle inclusions modify the physical properties of the membrane and how the mem-
brane consequently mediates interparticle forces is necessary to make accurate quantitative
predictions regarding the above phenomena.
Calculating these surface-mediated interactions is unfortunately far from trivial and

has been met with varying degrees of success. The presence of particles creates a set of
compact boundaries in the surface and therefore requires solving a rather tricky boundary
value problem. Not surprisingly, such problems usually resist exact solutions, owing to
the complicated shape of the intervening equilibrium surface. For particles at liquid–
fluid interfaces, the one exception is the special case of two floating parallel cylinders of
infinite length [GS71]; for all others, some simplifying assumptions or approximations are
necessary. One common strategy, provided by Nicolson [Nic49], is to assume a superposition
approximation of the particles’ respective menisci, which has been applied to floatation
forces between spheres and finite cylinders [CHJW81, KPIN92, Luc92, KPD+93, PKDN93,
KN00, KD01]. The problem with such an approach is its failure to account properly for
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the modification of a particle’s local meniscus from its equilibrium shape in the absence of
other particles—as well as other associated finite-size effects—much in the same way as
applying Coulomb’s law to find the force between charged conducting spheres will miss
polarization effects. One should at best expect it to work in the limit of infinite separation,
or rather when the particle size to separation ratio is extremely small, but even in this
limit the asymptotic behavior may be incorrect if the lowest-order interaction relies on
a “polarization” effect. Such point-particle approximations must therefore be amended to
preserve finite-size information if one wishes to go beyond leading order, or indeed have
confidence in the leading-order result.
Gravity not generally the sole contributor to a particle’s meniscus, nor is it always

significant. The contact line between the particle and the surface may be pinned in
such a way as to locally deform the surface, and the resulting interparticle forces can be
used to explain and engineer mesoscale 2D self-assembly processes [BTCW97, BCGW99,
BWCW01, GBA+01, WG02, BO07, LBT+09]. Irregular contact lines can occur for thin
but curved particles, or through differing wetting properties across a particles surface
[Saf94]. For surfaces characterized by surface tension, bound particles cannot permanently
impart axisymmetric height or slope deformations unless acted upon by an external force
or torque. To lowest order, only anisotropic deformations of a quadrupolar shape matter
(though nonequilibrium “dipole” configurations have been studied [RSZ13]), and lead to
orientation-dependent particle interaction potentials which scale as ∼ 1/r4 in separation
[PKDN93, BSR00, KN00, KD01, SDJ00, vNSH05, LAZY05, LYP06].

For fluid membranes in the biological context, surface tension acts weakly at small enough
length scales (below 100 nm, roughly), and the surface energy is instead characterized by its
curvature elasticity [Can70, Hel73, Eva74]. In this case, the surface permits contact profiles
around a particle that fix the attachment slope, even axisymmetrically so. Using matched
asymptotics or Green function methods, researchers have also calculated interparticle
forces and torques in the weakly curved limit, and found a repulsive interaction energy
that also scales as ∼ 1/r4, but for unconstrained isotropic particles [GBP93a, GBP93b,
FD97, BF03]. More remarkably, this interaction is not characterized by the product of
the particles’ corresponding “curvature charges,” as one finds in electrostatics or gravity,
and is also nonvanishing even if the second particle imparts no curvature to the surface
(a flat contact profile). This shows the breakdown of any superposition principle even at
leading order and demonstrates that a consistent approximation strategy must be developed
with care. Due to the biological importance of such interactions, many generalizations and
extensions have appeared, most notably nontrivial multibody interactions [KNO98, KNO99,
DF99b, CKO01, DF02, FDP03, FHP03, KCR08], relevant to the lateral distribution and
configurational stability of proteins; interactions on curved membranes [GFG98], relevant
when the membrane envelopes a cell or other vesicle; and corrections for nonvanishing
tension [WKH98].

All the interactions discussed above are ground state energies, i.e., in the limit of vanishing
surface undulations. However, in such 2D soft matter surfaces—namely those with moduli
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comparable to thermal energy—small local strain can lead to very large deformations,1
and are thus particularly susceptible to thermal fluctuations and exhibit long-range surface
correlations [LL01, BDFN95]. Even if embedded particles impart no permanent curvature,
the particle attachment boundaries constrain the spectrum of thermal fluctuations, resulting
in long-range fluctuation-induced forces between particles. From a physicist’s perspective,
we recognize this behavior as a thermal analogue of the famed Casimir effect [Cas48, Mil01].
The Casimir effect was first theorized in 1948 to describe a force of quantum origin between
neutral conducting plates due to fluctuations in the electromagnetic zero-point energy, but
thirty years later Fisher and de Gennes [FdG78] placed the same ideas into a thermodynamics
context. It has since been generalized to describe any fluctuation-induced interactions
mediated by a field with constraining boundaries, including classical systems such as critical
fluids [HHG+08, GMH+09, Gam09, SZH+08, NHB09] and the present work on fluctuating
fluid interfaces and membranes.

Just as with the ground state forces, the calculational challenge for the fluctuating problem
is in the proper handling of the nontrivial boundary conditions imposed by embedded
particles. The issue is further complicated as the particles themselves may be endowed
with additional fluctuating degrees of freedom, such as bobbing or tilting. A variety
of strategies have been proposed and implemented to calculate such interactions [Net97,
HW01, Wei01, PL96, LK91, EGJK07, EGJK08, YRD11], yielding asymptotic results for
fluid interfaces [GGK96b, GGK96a, KG99, LOD06, LO07, LNO08, LNO08, NO09, YRD11,
YRD12, NWZ13b, NWZ13a] and membranes [GGK96b, GGK96a, KG99, GFG98, YD12].
Pushing beyond leading order has been fraught with additional difficulty. For example,
an attempt was made by Netz [Net97] to construct a point-particle representation of
the membrane problem, but he did not properly account for the finite size of inclusions.
Fournier and coworkers have also considered higher order corrections [DF99b, DF99a,
BDF10], but conflated finite-size considerations with a specially chosen small-length cutoff.
Another approach employing a scattering formalism [NWZ13b, NWZ13a] has enjoyed
success; however, clarity in interpretation and intuition is obscured slightly within the
resulting mathematics.

In this thesis we will take a different approach, namely that of effective field theory (EFT).
The essence of EFT rests upon the following observation: For any system we study in science,
we inevitably must ask scale-dependent questions—either implicitly or explicitly—but we
also know that in certain scale regimes it is often collective or aggregate properties that are
important and determine the overall behavior. That is, although the microscopic physics
informs the values of the larger-scale emergent or phenomenological parameters or couplings
(e.g., bulk modulus, diffusion constant, conductivity), much of the microscopic detail is
irrelevant. Indeed, this has been the prime reason for the success of statistical physics,
but the success of “sloppy models” across other branches of science often enjoy the same
feature [MCTS13, TMB+15]. This “coarse-graining” and scale-separation philosophy has

1Note that large deformations due to small strains are also possible for surfaces that are not soft, as
one might observe by bending a sheet of paper. In these cases the effect is primarily related to the reduced
dimensionality, as can be understood through thin-plate theory [LL01].
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undergirded much of the development of modern physics, most notably in critical phenomena
and the renormalization group [Wil71a, Wil71b], and reaches maturity in EFT [Rot04]
as a theory-building method. This particular incarnation of the EFT formalism was first
developed in the context of general relativity and black hole physics to handle boundary
conditions of massive extended objects [GR06b, GR06a, PRR11], and was subsequently
applied to very different problems including finite-size corrections in the Abraham–Dirac–
Lorentz radiation reaction force law in classical electrodynamics [GLR10] and the Casimir
torque on cylindrical gears [Vai14]. Recently, Yolcu, Deserno, and Rothstein have adapted
EFT to address surface-mediated interactions in soft matter [YRD11, YRD12, YD12]. The
aim of this thesis is to both build upon and generalize the aforementioned approach, and to
explore and make accessible the principles and tools of EFT beyond this specific application.

Applied to our problem, EFT exploits the separation of scales to guide the construction
of an equivalent point-particle description of surface-mediated interactions in such a way
that complete information of the short-distance physics (particle geometries, boundary
conditions, and field responses) is preserved and encoded as numerical couplings. These
couplings present clear physical interpretations, therefore assisting in understanding and
intuition from the start. Moreover, the particle descriptions are disentangled from the rest of
the problem. Particles are characterized by simpler single-particle boundary value problems,
rather than by treating the particles all at once. Even if the single-particle boundary value
problem is difficult, the procedure simply amounts to matching a coefficient to a number,
which may be determined numerically or by experiment, or even left undetermined to
give a phenomenological theory. Because of this independence, it is then easy to compute
interactions between nonidentical particles of differing boundary conditions. Furthermore,
by “going point-particle,” calculating multibody interactions follows almost as easily as
those between pairs.

To familiarize ourselves with EFT, we begin in Chapter 1 with a discussion of an analogous
field-mediated problem: the electrostatic force between conducting spheres. This textbook
problem serves as a conceptual anchor to motivate and develop the EFT formalism, which
we will then push to a substantial level of sophistication. After summarizing the lessons
learned and discussing the general EFT philosophy and procedure, we will take an interlude
in Chapter 2 to introduce the geometric theory of random surfaces and address the physical
consequences for fluctuating fluid surfaces. We will then apply EFT to surface-mediated
interactions between rigid, axisymmetric particles in Chapters 3 and 4, and generalize to
particles of arbitrary geometry before calculating high-order results pertaining to elliptical
particles in Chapter 5. We conclude with a few proposals for further investigation and close
with a recap of the key results and ideas.

5



1 An invitation to Effective Field Theory

In this chapter, we will introduce and develop the philosophy and formalism of Effective
Field Theory (EFT) through a detailed exploration of a straightforward question in classical
electrostatics: What is the force between two conducting spheres respectively held at fixed
total charge or fixed potential? Through this illustrative example, we will develop intuition
about scale separation and the relationship between sources, boundary conditions, and
linear response that will prove to be not only relevant, but serve as a useful guiding analogy
in later chapters. Since the physics involved should be familiar to most students of physics,
we will have the opportunity to introduce and clarify some of the more technical aspects of
field theory within a comfortable context.

Along the way, the formalism we develop will suggest a systematic procedure for approach-
ing similar problems of field-mediated interactions between compact objects. In the final
section, we reflect on the lessons learned from the electrostatics example and summarize
the steps for constructing and implementing an EFT for a more general class of problems.

1.1 An electrostatics example
Consider two (ideal) conducting spheres of radii R1 and R2, separated by a distance d� Ra.
Here we will explore two cases (see Fig. 1.1):

Case 1: The conductors are isolated but with fixed total charges Q1 and Q2 respectively.

Case 2: The conductors are respectively held at fixed potentials φ(x ∈ V1) = Φ1 and
φ(x ∈ V2) = Φ2, with the reference potential Φ∞ = 0 at infinity, but are otherwise
isolated.

This problem has a rich history, stretching back at least 170 years with William Thomson
(Lord Kelvin) [Lek12c]. Maxwell himself provided a series solution (up to 22 orders!) for
charged spheres in his Treatise on Electricity and Magnetism [Max91]. Even today, the
problem of interacting spheres finds applications ranging from protein dynamics in biological
systems [DY06] to electrorheological fluids in hydraulics or flexible electronics [BVS13].

Given its history, this system has been tackled by a number of mathematical methods—
including zonal harmonics [Max91], method of images [SBO98], and capacitance coefficients
[Lek12a, Lek12b]—each with varying levels of mathematical sophistication and physical
interpretation. Here, we will provide a different perspective in which the mathematical
machinery is systematic and physical intuition is manifest throughout.
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1 An invitation to Effective Field Theory

Φ∞ = 0

R1
R2

d

Q1 Q2

Φ∞ = 0

+
− Φ1

+
− Φ2

R1
R2

d

Figure 1.1: Two ideal conducting spheres of radii R1 and R2 are separated a distance d from their
centers. In Case 1, the conductors are isolated with fixed total charges Q1 and Q2 respectively. In Case 2,
the conductors are kept at fixed electric potentials Φ1 and Φ2 relative to the ground reference potential
Φground = Φ∞ = 0.

Case 1: Fixed charges

At leading order, the force F12 that conductor 1 exerts on conductor 2 is simply given by
the Coulomb force

F12 ≈ F c
12 = Q1Q2

4πε0d2 . (1.1)

Intuitively, the electric field generated by the charge on the first conductor is of the same
form as that of a point charge. At large distances, the second conductor appears as a point
charge as well, giving rise to the above expression via F12 ≈ Q2Ec

12. However, the mobile
charges in a finite-sized conductor respond to an external field and will reconfigure until
the net force within the conductor vanishes. At electrostatic equilibrium, the conductor’s
charges will no longer be uniformly distributed across the surface, but will instead create a
field-dependent surface charge distribution σ(x). The resulting field due to this induced
charge distribution will in turn provide an additional contribution ∆F = F − F c to the
total force.
To quantify these finite-size effects, let us examine the response of conductor 2 due

to the field generated by conductor 1. Across the spatial extent of conductor 2, the
external field E12 ≈ Ec

12 is approximately constant. The response ∆E2 of the mobile
charges within conductor 2 serve to completely expel the field within the volume such that
∆Ein

2 = −E12 ≈ −Ec
12. To calculate the exterior response ∆Eout

2 due to the resulting charge
distribution σ, it will prove easier to first examine the electric potentials ∆φin2 and ∆φout2
since they must match along the conductor’s boundary ∂V2.
Taking for a moment the origin to be centered on conductor 2 with the z axis passing

through both centers, we can express the inner response as ∆φin2 = E12z = E12r cos θ in
spherical coordinates. Note that the inner response varies over the length scale r ∼ R2, so
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at large distance from the conductor we should expect the potential to fall off as increasing
powers of R2/r. Outside the conductor, the potential is generated by the new charge
distribution σ and can be written as the familiar multipole expansion [Zan13]

∆φout2 (x) = 1
4πε0

∫

∂V2

dA′ σ(x′)
|x− x′| = 1

4πε0

(
q

r
+ p · x̂

r2 + · · ·
)
, (1.2)

where
q :=

∫

∂V2

dA′ σ(x′), and p :=
∫

∂V2

dA′ σ(x′) x′ (1.3)

are, respectively, the total induced charge (monopole moment) and induced dipole moment
of the distribution. By the angular dependence of ∆φin2 , we immediately see that q = 0
as expected. Furthermore, it follows from azimuthal symmetry that p · x̂ = p cos θ and
therefore only the dipole moment is nonvanishing. We solve for p by imposing continuity of
the potential at the boundary, ∆φin2 (R2, θ) = ∆φout2 (R2, θ), which gives

p = 4πε0R3
2 E12. (1.4)

We recognize the prefactor 4πε0R3
2 =: α2 as the (dipole) polarizability of the conductor.

The electric field then follows from ∆Eout
2 = −∇(∆φout2 ). In particular, the polarization

field ∆E21 at the position of conductor 1 is given by

∆E21 = 2α2E12
4πε0d3 = 2E12

(
R2
d

)3
≈ 2Q1R3

2
4πε0d5 (1.5)

in the z direction. Similarly, the field of conductor 2 will polarize conductor 1, which will
in turn generate a response field at conductor 2 given by

∆E12 = −2α1E21
4πε0d3 = −2E21

(
R1
d

)3
≈ −2Q2R3

1
4πε0d5 . (1.6)

We find that the force on conductor 2 deviates from the Coulomb force due to polarization
effects, and the leading-order correction has two contributions. The first arises from the
charge of conductor 2 interacting with the induced dipole field of conductor 1 and is given
by Q2∆E12. The second contribution is due to the interaction of the induced dipole moment
of conductor 2 interacting with the field generated by conductor 1, which by Newton’s third
law can be written as −Q1∆E21. The final result is

∆F12 ≈ Q2∆Ec
12 −Q1∆Ec

21 = −2Q
2
1R

3
2 +Q2

2R
3
1

4πε0d5 . (1.7)
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1 An invitation to Effective Field Theory

Case 2: Fixed potentials

In contrast to isolated conductors of fixed total charge, conductors at fixed potentials
require an external energy source—and therefore an external source of charges—to maintain
their respective values. When a conductor is connected to such an external source (e.g., a
battery), charges will be drawn from the reservoir and flow until electrostatic equilibrium is
reached, at which point the surface will become equipotential. This response, which occurs
over the length scale of the conductor, results in a surface charge Q = Cφ, where C is the
geometry-dependent self-capacitance of the conductor. For a spherical conductor of radius
R, we see from Eq. (1.2) that a fixed potential at the boundary will induce a monopole
field with charge Q = 4πε0Rφ, thereby revealing the self-capacitance to be C = 4πε0R.
For our two-sphere system with fixed potentials, Coulomb’s law immediately tells us that
conductor 2 will experience a force by conductor 1 due to the charges induced by their
respective potentials:

F c
12 = Q1Q2

4πε0d2 = 4πε0Φ1Φ2
R1R2
d2 . (1.8)

However, Coulomb’s law only applies to fixed charge point particles. In this case, the
conductors under consideration will not only present polarization effects due to their finite
sizes as before, but they have a charge reservoirs that will respond to external electric
potentials.

To account for these effects, we recall that the surface charges on each conductor generate
their own spatially varying electric potentials. That is, the total electric potential at
the site of a given conductor will be altered by the potential sourced from the other,
and furthermore will vary across the space it occupies. This potential difference disrupts
electrostatic equilibrium, so charges will be drawn from the reservoirs as before, and
additionally redistribute (polarize) along the surface until an equipotential surface is
reached that matches the imposed electric potential. This response again takes place over
the length scale Ra of conductor a, so, keeping in mind d � Ra, we again expect the
finite-size corrections to appear as increasing powers of the ratio Ra/d of the small and
large length scales.

The charge Q1 = CΦ1 on the first conductor will generate a field that alters the electric
potential at the site of the second conductor by an amount ∆φ(0)

12 = Q1/4πε0d = Φ1R1/d.
The second conductor responds to the external potential by drawing from its reservoir an
additional charge ∆Q(0)

2 = −C2∆φ(0)
12 to restore the imposed potential. A similar process

takes place for the first conductor. This results in a correction to the Coulomb force (1.8)
by the interaction between charge Q1 and the induced charge ∆Q(0)

2 , and vice versa:

∆F (0)
12 = Q1∆Q(0)

2 +Q2∆Q(0)
1

4πε0d2 = −4πε0
Φ2

1R
2
1R2 + Φ2

2R
2
2R1

d3 (1.9)

At this point we notice that higher-order corrections will appear not only from polarization
effects, but also from the interactions between induced charges ∆Q(0) as well as further
induced charges ∆Q(1) due to the induced potentials ∆φ(0) sourced from the other conductor.

9



1 An invitation to Effective Field Theory

From the expression of ∆φ(0), it follows that the induced monopole field response ∆E(0) =
∆Q(0)/4πε0d2 ∼ R2/d3. Furthermore, the change in potential ∆φ(1) = ∆Q(0)/4πε0d
sourced by the induced charge of the opposing conductor will induce an additional charge
∆Q(1) = C∆φ(1) ∼ R3/d2 and a monopole field response ∆E(1) = ∆Q(1)/4πε0d2 ∼ R3/d4.
Therefore the next order force due to monopole induction is given by both ∆Q(0)∆E(0) and
Q∆E(1), and appear at order (R/d)4. However, we see from Eq. (1.7), with Q = CΦ ∼ R,
that corrections due to polarization do not appear until order (R/d)5, so the next-order
contribution to the force is given solely by the interactions between charges and induced
monopoles. Working out the details for conductor 2, we find

∆F (1)
12 =

(
∆Q(0)

2 ∆E(0)
12 −∆Q(0)

1 ∆E(0)
21

)
+
(
Q2∆E(1)

12 −Q1∆E(1)
21

)

= (1 + 1 + 1 + 1)4πε0Φ1Φ2
R2

1R
2
2

d4

= 4πε0Φ1Φ2
4R2

1R
2
2

d4 . (1.10)

If one wishes to press on further in this manner, it should become clear that a rather
admirable amount of fortitude is required. The induced charges on one conductor generate
monopole fields which subsequently induce further charges on the other conductor and
so on ad infinitum. Moreover, these fields will polarize the opposing conductor, exciting
additional multipole moments (monopole, dipole, quadrupole, etc.) and corresponding
multipole fields. Following this logic, these higher moments will induce a staggering array of
moments of the other conductor, and vice versa in an infinite regress, with each correction
falling off as increasing powers of R/r. To actually calculate these corrections efficiently
and systematically, we will need to develop a formalism better suited for this task.

1.1.1 Developing a formalism
To begin, we reframe the problem in terms of an energy-minimization principle. In general,
electrostatics problems can be reduced to finding solutions which minimize—or, more
generally, extremize—the total electrostatic energy stored in the electric field [SDJMT98],

U [E] :=
∫

d3x
ε0
2 E2, (1.11)

which are compatible with some given charge distribution and imposed boundary conditions.
The electric field, however, is furthermore always required to obey Maxwell’s equations.
For electrostatics in particular, the equilibrium energy minimizes U [E] subject to the
constraint imposed by Gauss’s law, ∇ · E = ρ/ε0. Writing the constraint implicitly as
C(E | ρ) := ρ− ε0∇ ·E ≡ 0, it follows that for a fixed charge distribution ρ the electrostatic

10



1 An invitation to Effective Field Theory

energy U [ρ] is given by the minimization problem,

U [ρ] := min
E∈L2(R3)
C(E | ρ)=0

U [E], (1.12)

where we have indicated for completeness that the permissible vector fields E(x) must be
square-integrable.
We can instead enforce the Gauss’s law constraint explicitly at each point by way of a

Lagrange multiplier function φ(x). From an energetics perspective, the idea is to augment
U [E] by a positive energetic penalty,

UC [E, φ, | ρ] :=
∫

d3xφ(x) C
(
E(x) | ρ(x)

) !
> 0, (1.13)

such that the Lagrange multiplier φ takes on as large or small a value to ensure that the
constraint is satisfied. This results in the augmented functional

U [E, φ | ρ] := U [E] + UC [E, φ | ρ] =
∫

d3x
[ε0

2 E2 + φ
(
ρ− ε0∇ ·E

)]
(1.14)

which, by construction, satisfies U [E] > U [E, φ |ρ]. Equality of the functionals can therefore
only be achieved by maximizing U [E, φ | ρ] over φ. The maximization applies only to the
penalty term, which gives

max
φ

UC [E, φ | ρ] =
{
∞, if C(E | ρ) 6= 0
0, if C(E | ρ) = 0

(1.15)

and thus forces permissible minimizers E to obey the constraint. The equilibrium electro-
static energy may therefore be obtained from the unconstrained min–max problem,

U [ρ] = min
E

max
φ

U [E, φ | ρ]. (1.16)

Since the augmented functional (1.14) is convex1 in E, the order of minE and maxφ
can be interchanged without affecting the optimal value U [ρ], providing an alternative
max–min problem dual to Eq. (1.16). Transforming a constrained optimization problem
to its dual is a common technique in convex analysis and may be rigorously justified by
certain minimax theorems [BZ15]. Often, the dual problem results in simpler manipulations
and computations as compared to the “primal” constrained problem. In our case, the
minimization over E is straightforward for the augmented functional. Varying the functional

1 Convexity for functionals generalizes the standard definition for functions. For example, U [E] in
Eq. (1.11) is convex since it satisfies U [(α− 1)E1 + αE2] 6 (α− 1)U [E1] + αU [E2], where α ∈ [0, 1]. Since
the penalty term in Eq. (1.14) is operationally linear in E, it is easy to check that the augmented functional
retains its convexity: U

[
(α− 1)E1 + αE2, φ | ρ

]
6 (α− 1)U [E1, φ | ρ] + αU [E2, φ | ρ], with α ∈ [0, 1].

11



1 An invitation to Effective Field Theory

with respect to E gives

δEU [E, φ | ρ] := U [E + δE, φ | ρ]− U [E, φ | ρ]

=
∫

d3x ε0
(
δE ·E − φ∇ · δE

)
+
∫

d3x ε0(δE)2

IBP=
∫

d3x ε0 δE ·
(
E +∇φ

)
+
∫

d3x ε0(δE)2, (1.17)

where the final line results from integration by parts and requiring the variation to vanish
at infinity. The second-order term is positive definite, so we indeed minimize the functional
with respect to E by setting the first-order variation to zero. The vanishing of the first
term for an arbitrary variation implies the solution E = −∇φ, revealing that we may in
fact identify the Lagrange multiplier φ as the familiar electrostatic potential.

This relation between E and φ provides—by insertion into Eq. (1.14) and integrating by
parts—an alternative, dual functional in terms of the potential:

U [φ | ρ] := min
E

U [E, φ | ρ] =
∫

d3x
[
−ε02 (∇φ)2 + ρφ

]
. (1.18)

The equilibrium energy may therefore be obtained by maximizing U [φ | ρ] with respect to
the potential. Indeed, performing the φ variation and integrating by parts results in

δφU [φ | ρ] =
∫

d3x
(
ε0∇2φ+ ρ

)
δφ−

∫
d3x ε0(δ∇φ)2, (1.19)

and the vanishing of the first term leaves a negative-definite remainder. The equilibrium
potential φ[ρ] is therefore a solution to Poisson’s equation, −ε0∇2φ[ρ] = ρ, and the energy
takes the familiar form

U [ρ] =
∫

d3x
{
−ε02

(
∇φ[ρ]

)2 + ρ φ[ρ]
}

IBP=
∫

d3x

{
−1

2φ[ρ]
(
−ε0∇2φ[ρ]

)
+ ρ φ[ρ]

}
= 1

2

∫
d3x ρφ[ρ]. (1.20)

We note in passing that the concave functional (1.18)—perhaps equipped with additional
boundary conditions—is particularly useful for analytic calculations, but for many applica-
tions involving numerical simulation or optimization, finding an energy functional that is
local and globally convex in the desired dynamical degrees of freedom is often necessary
(see for instance Refs. [Mag04] and [Mag12], and the more recent [SJOdlC13], including
references therein).

Energy principles for conducting objects

Returning to our case study of conducting spheres, we wish to construct an energy functional
that appropriately accounts for the physics at the conducting boundaries. A minimal energy

12



1 An invitation to Effective Field Theory

principle exists for conductors, known as Thomson’s theorem [LLP84, SDJMT98, Zan13],
which we will explore with Eq. (1.18) as a starting point.

Thomson’s theorem states that the electrostatic energy U of a system of fixed but
otherwise isolated conductors is minimized (with respect to E) when the charge on each
conductor distributes itself such that the electrostatic potential is constant at the surface and
throughout the volume of each conductor. An analogous statement holds for a conductor at
fixed potential, except the electrostatic free energy F := U−Wext, whereWext is the external
work done to maintain the potential, is instead minimized [Don03, LM08]. Mirroring the
previous discussion, these statements in terms of their respective dual functionals of the
electrostatic potential become instead maximization principles. We provide below proofs of
these statements by explicit construction of the appropriate energy functionals. In what
follows, the conductor shapes are arbitrary (but compact) and not tied to any spherical
geometry.

Fixed charges. Consider a system of conductors with total charge Qa and volume Va
for each conductor a. Beginning with the dual functional (1.18), we lift the fixed-charge
constraint through a collection of (constant) Lagrange multipliers Φa. Following [FEPN11],
we can break up the integration domain into the interior conductor volumes, Vin =

⋃
a Va;

the conductor surfaces, S =
⋃
a Sa =

⋃
a ∂Va; and the volume between and exterior to the

conductors, Vout = R3 \⋃a Va. Assuming an interior volume charge distribution ρ and a
surface charge distribution σ, the functional can be written in the form

U [φ,Φ | ρ, σ,Q] :=
∫

Vin

d3x
[
−ε02 (∇φ)2 + ρφ

]
−
∫

Vout

d3x
ε0
2 (∇φ)2 +

∫

S
dAσφ

+
∑

a

Φa

(
Qa −

∫

Va

d3x ρ−
∫

Sa

dAσ
)
. (1.21)

After integrating by parts and collecting terms, the first-order functional variation gives

δU [φ,Φ | ρ, σ,Q] =
∑

a

∫

Va

d3x
[
δφ
(
ε0∇2φ+ ρ

)
+ δρ(φ− Φa)

]
+
∫

Vout

d3x δφ
(
ε0∇2φ

)

+
∑

a

∫

Sa

dA
{
δφ
[
ε0n̂a · (∇φout −∇φin) + σ

]
+ δσ(φ− Φa)

}
,

(1.22)
where n̂a is the outward normal vector of the ath conductor. Requiring this variation to
vanish informs us that for each conductor a, the potential satisfies φ = Φa within the
conductor and at the surface. The neglected second-order term is strictly negative (cf.
Eq. (1.19)) so the dual functional is maximized and we have completed the proof. However,
the functional also provides us with additional information. In the space outside all the
conductors, the potential satisfies Laplace’s equation, ∇2φ = 0. Moreover, we find the
equilibrium distribution of charge: ρ = 0 within the volume and σ = −ε0n̂a ·∇φout on the
surface of each conductor a. �
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Fixed potentials. Consider now a system of conductors held at fixed potentials Φa. From
the steps leading up to Eq. (1.22), we know that any charge will distribute on the conductors’
surfaces, so we need only consider for the integration domain the regions outside and on
the surfaces of each conductor. To fix the potentials, we introduce the Lagrange multiplier
function σ(x) at the conductor surfaces,

F [φ, σ | Φ] := −
∫

Vout

d3x
ε0
2 (∇φ)2 +

∑

a

∫

Sa

dAσ(φ− Φa). (1.23)

The first-order variation is then

δF [φ, σ|Φ] =
∫

Vout

d3x δφ
(
ε0∇2φ

)
+
∑

a

∫

Sa

dA
{
δφ(σ + ε0n̂a ·∇φout)+δσ(φ− Φa)

}
, (1.24)

where the remainder is strictly negative, as before. Thus we find the (dual) functional
is maximized and the true charge distribution is given by σ = −ε0n̂a ·∇φout for each
conductor. Notice, however, that F can be decomposed into the analogue of Eq. (1.18) for
a surface source,

F [φ, σ | Φ] = U [φ | σ]−
∑

a

QaΦa, (1.25)

in which we recognize the remainder as the work Wext done by the external sources to
maintain the potentials.2 �

Forces between conductors

Once we have obtained an expression for the equilibrium energy of a conductor system, we
may calculate the force Fa exerted on each conductor a. Normally the force points down
the gradient of potential energy. However, our use of two different types of energy for the
fixed-charge and fixed-potential systems, Eqns. (1.21) and (1.23) respectively, requires a
few comments.
For the case of fixed charges, we may calculate the energy along the same lines as

Eq. (1.20), resulting in
U [Q] = 1

2
∑

a

Qa Φa[Q], (1.26)

where Φa[Q] is the solution of the outer potential, due to the collection of conductor charges,
at the surface of conductor a. We calculate a similar result for the case of fixed potentials,
but the sign is reversed:

F [Φ] = −1
2
∑

a

Qa[Φ] Φa, (1.27)

where Qa[Φ] =
∫
Sa

dAσ[Φ] is the charge on conductor a due to the fixed potentials of all
2 This expression can also be interpreted as a Legendre transformation of U [φ | σ] that replaces fixed

surface charges with fixed potentials as its natural variables [Zan13, LM08].
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conductors. To find the force given the two different results, we may exploit the observation
that F [Φ] and U [Q] differ in their natural variables (see footnote 2) and the expression
(1.25) transforms between the two. Following Ref. [Zan13], adding to each conductor small
amounts of charge dQa, and furthermore displacing their locations by dxa results in a
change in energy,

dU [Q] =
∑

a

(Φa dQa − Fa · dxa)
!=
∑

a

{(
∂U

∂Qa

)
dQa +

(
∂U

∂xa

)
· dxa

}
, (1.28)

where it is implicit in the partial derivatives that all other variables are held constant. This
expression provides us with two relations,

Φa = ∂U

∂Qa
and Fa = − ∂U

∂xa
(fixed charge). (1.29)

On the other hand, by Eq. (1.25) the change in energy for fixed potentials is

dF [Φ] = dU [Q]−
∑

a

(Qa dΦa + Φa dQa)

= −
∑

a

(Qa dΦa + Fa · dxa)
!=
∑

a

{(
∂F
∂Φa

)
dΦa +

(
∂F
∂xa

)
· dxa

}
, (1.30)

showing that the force in this case points down the gradient of the free energy via the
resulting relations

Qa = − ∂F
∂Φa

and Fa = − ∂F
∂xa

(fixed potential). (1.31)

1.1.2 An effective energy functional
The energy principles illustrated above provide additional information and insight into the
conductor problem, but actually finding the solutions to the complicated boundary value
problems can be difficult or intractable for arbitrary conductor shapes. In the descriptive,
yet rather heuristic solution presented in the previous section, we made progress by treating
the spheres as point particles and accounting for additional induced charge and polarization
effects by examining the conductors’ respective responses to external fields. In order to
maintain this intuitive picture, let us review two key lessons we learned from that example:

1. The setup involved two length scales, the separation distance d over which the in-
teractions are mediated by the field, and the characteristic “particle” size R over
which excitations take place. Given the scale separation d� R, higher-order correc-
tions came equipped with increasing powers of d/R, providing a counting scheme to
characterize our accuracy.
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2. The response of an individual conductor to an external field was characterized by a
parameter that was independent of the external field, and therefore independent of
the other conductor (or even several other conductors). Indeed, a conducting sphere
held at a fixed potential has a monopole response to a uniform electric potential
that is characterized by its monopole polarizability, or self-capacitance C = 4πε0R,
which depends only on its geometry and boundary conditions (for a conductor of
fixed charge, the monopole response is zero). This feature persists for higher-order
polarizabilities, ultimately allowing complete characterization of the conductor while
keeping a point-particle prescription.

From our discussion of energy principles for conductors, there is yet another lesson that
can be revealed by considering symmetry:

3. In the absence of external sources of charge or potentials, the energy functionals
(1.11), (1.14), and (1.18) all exhibit a simultaneous discrete Z2 symmetry, under which
E → −E and φ→ −φ. Additionally, the source-free version of Eq. (1.18) is invariant
under a global shift of φ by a constant. These symmetries are explicitly broken by
the inclusion of external sources. The implication here is that we can decompose
the energetic description of a conductor into pieces which either obey or break the
field symmetries—the invariant terms encode the response of the conductor itself
to external fields, whereas the symmetry-breaking terms encode the response of the
external conductor sources (e.g., battery or surface charges) to external fields as
mediated by the conductor.

These lessons suggest a way to construct an effective field theory (EFT) of interacting
conductors. In the absence of conductors, the bulk energy functional is given by the
source-free form of Eq. (1.18),

U0[φ] = −
∫

R3
d3x

ε0
2 (∇φ)2. (1.32)

Lesson 2 teaches us that the conductors respond independently of each other, in the sense
that they only rely on the external field at their respective locations. The inclusion of
conductors therefore results in a change in energy ∆Ua[φ] for each conductor. Hence we
can construct an effective energy functional Ueff by including these additional local terms
with U0:

Ueff[φ] = U0[φ] +
∑

a

∆Ua[φ]. (1.33)

As per lesson 1, in the large separation regime d� R we treat the conductors as point
particles and expand ∆Ua about their respective center of mass positions, or worldlines3
xa, resulting in a series that is polynomial in φ(xa) and its derivatives and weighted by

3The term “worldline” here is borrowed from different instances of EFT in relativistic field theory, even
though the positions are stationary in our setup.
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powers of Ra. Since the terms in ∆Ua must be scalars, a few possible options would be

c1φ(xa), c2φ
2(xa), c3

[
∇φ(xa)

]2
, c4φ(xa)∇2φ(xa), etc.

Since each term must ultimately have units of energy, we can apply dimensional analysis to
estimate the magnitudes of their respective coefficients. Since the length scale of a given
conductor is Ra and each derivative carries units of inverse length, the coefficients will scale
respectively as c1 ∼ Qa ∼ ε0RaΦa (for an imposed Φa), c2 ∼ ε0Ra, and c3 ∼ c4 ∼ ε0R3

a for
the remaining two. That is, we can order the terms by increasing numbers of derivatives to
get the desired accuracy in powers of Ra.
Notice that the last term above is proportional to the variation of the particle-free bulk

energy (1.32). As a consequence of the equivalence theorem, terms such as these play a
redundant role in the description of particles [Rot04, Bur07]. In a classical field theory,
observables will depend on solutions of the Euler-Lagrange equations—in this case the
field must satisfy ∇2φ = 0 (subject to boundary conditions) in the space outside the
conductors—so it becomes clear that if we impose this from the start, these terms vanish
and should ultimately be irrelevant. If, however, we were to retain these terms, the role
they play would be limited to the formal mathematical manipulations occurring while
calculating observables, but the final result would be identical to that calculated from an
effective functional without those terms. From another perspective, the terms comprising
the expansion form an “operator basis” in which some permissible terms may be expressed as
either linear combinations of others (with perhaps more transparent properties), equivalent
to others by integration by parts, or both [EW13]. It is desirable to construct a series in
irreducible and nonequivalent terms to avoid redundancies—and therefore avoid unnecessary
work. Although the ultimate choice of operator basis in our theory will not affect the
observables—as long as it “spans” the permissible functional space—different choices may
have different advantages, either in convergence or even interpretation. In our case, dropping
terms containing ∇2φ provides what is known as an on-shell basis4 and tacitly assumes
∇2φ = 0 outside the conductors at every stage of calculations.
In addition to the terms discussed above, the coefficients are not limited to just scalars.

Indeed tensorial coefficients are permissible in general, such as a term Cij∂iφ∂jφ, where
∂i := ∂/∂xi and summation is implied over repeated indices.5 However, this is where
lesson 2 again simplifies matters. Since a conductor’s response is characterized by its
geometry and boundary conditions, the presence of spherical symmetry will be reflected
in the permissible form of the worldline terms. To make this manifest, we can restrict
∆Ua to consist of terms invariant under rotations about the point xa. Under the rotation

4“On-shell” is basically a fancy way saying that the Euler–Lagrange equation is satisfied. The term
is appropriated from relativistic field theory in which particles satisfying the Euler-Lagrange equations of
motion lie on their (hyperbolic) mass shell, E2 − |p|2 = m2 (with c ≡ 1 as per convention).

5Throughout the remainder of this chapter we will adhere to this summation convention for repeated
spatial indices unless otherwise specified. We will treat squared terms such as (∂iφ)2 as equivalent to ∂iφ∂iφ
so that summation is also implied. Summation over particle labels and multipole orders (to be introduced
presently), however, will always be made explicit.
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x′ = R x, it follows that ∂i = ∂ix
′
j∂
′
j = Rji∂

′
j = (Rᵀ)ij∂′j and our example term transforms

into (RikCk`Rj`)∂′iφ∂′jφ ≡ C ′ij∂
′
iφ∂

′
jφ. Rotational invariance implies C ′ij = Cij , but this

can only be true if Cij ∝ δij (where we have used RikRjk = (R Rᵀ)ij = δij). That is,
the tensor coefficient itself must be rotationally invariant and our example reduces to
C∂iφ∂iφ = C(∇φ)2, a term we have mentioned previously.

The end result is that ∆Ua consists of a series of rotationally-invariant terms polynomial
in the electric potential φ and its derivatives, with the exception of any terms containing
∇2φ. Furthermore, based on Eqns. (1.21) and (1.23), the expansion should be truncated at
quadratic order in φ for consistency.6 Finally, from lesson 3 we can decompose ∆Ua into
conductor and source terms, ∆Qc

a and ∆U s
a respectively. Collecting terms with the same

symmetries of the bulk—invariance under φ→ −φ and φ→ φ+ const—gives the worldline
conductor energy,

∆U c
a [φ] = −

∑

n>0

1
2C

(n)
a

[
∂i1 · · · ∂inφ(xa)

]2
,

≡ −
∑

n>0

1
2C

(n)
a

[
∂nI φ(xa)

]2 (1.34)

where the factor of 1/2 is inserted for later convenience, and we have introduced the more
compact notation ∂nI := ∂i1 · · · ∂in . We have also included a minus sign with the hindsight
that a conductor will expel the electric field from its volume and therefore, from Eq. (1.11),
lower the electrostatic energy. In the language of EFT, the prefactors C(n)

a are referred
to as Wilson coefficients, and we know by dimensional analysis that they must scale as
C

(n)
a ∼ ε0R2n+1

a . The remaining symmetry-breaking terms constitute the worldline source
energy, and can be expressed as

∆U s
a[φ] = −1

2C
(0)
a φ2(xa) +Qaφ(xa). (1.35)

The first Wilson coefficient must scale as C(0)
a ∼ ε0Ra. In the second term, we have

identified the Qa as a permanent charge [cf. Eqns. (1.18), (1.21), and (1.23)], which in
the fixed-potential case is sourced by the applied potential Φa and therefore scales as
Qa ∼ ε0RaΦa. Our effective energy functional for conducting spheres can therefore finally

6To clarify, more complex physical considerations may suggest an additional expansion parameter that
counts the nonlinearities in the field theory. For example, if the system presents some characteristic energy E
(E = kbT at finite temperature, for example), it suggests a characteristic potential ϕε =

√
E/ε0R, indicating

that nonlinearities will scale as φn ∼ ϕnε . However, one may check that such a scaling implies that terms
linear and quadratic in φ are respectively relevant and marginal, but higher orders are sufficiently irrelevant
if the expansion parameter is small enough.
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be expressed as

Ueff[φ] = U0[φ] +
∑

a

(
∆U c

a [φ] + ∆U s
a[φ]

)

= −
∫

d3x
ε0
2 (∇φ)2 +

∑

a

{
−
∑

n>0

1
2C

(n)
a

[
∂nI φ(xa)

]2 − 1
2C

(0)
a φ2(xa) +Qaφ(xa)

}
.

(1.36)

Determining Wilson coefficients via matching

If we were to compute and expand observables (field responses, forces, etc.) from either “full-
theory” functionals (1.21) or (1.23), the same observables as computed from the respective
forms of the effective functional (1.36) should match up to the desired order of accuracy in
powers of R/d, thereby revealing the values of the Wilson coefficients. It follows, therefore,
that we have the freedom to compute and compare any convenient (and suitably sufficient)
observables we wish in order to determine their values.
As discussed in lesson 2, the response of a conductor to an external field can be charac-

terized by a set of field-independent parameters. These are precisely the Wilson coefficients
of Eq. (1.36). Recall the steps leading up to the expressions for the electric field responses
(1.5) and (1.6); along the way we introduced the dipole polarizability α, whose value was
determined by a simple boundary value problem (BVP) but ultimately did not depend
explicitly on the details of the field, but only the geometry of the boundary. Furthermore,
the response to a linearly rising background potential was a dipole field that satisfied both
continuity at the conductor boundary and vanishing at infinity. This suggests a general
method to determine the Wilson coefficients:

Consider a conductor in isolation and introduce a set of background fields that
excite multipole moments in its charge distribution. By Thomson’s theorem (for
both fixed charge and fixed potential), the surface of the conductor will reach
some constant equilibrium potential Φeq. The total electrostatic potential can
then be decomposed into the background and response potentials, φ = φbg + δφ,
such that ∇2φ = 0 outside the conductor, δφ→ 0 as |x| → ∞, and φ(x ∈ S) =
Φeq at the conductor surface S. Then compute the effective response using Ueff
and match the coefficients with the solution to the full BVP.

Full theory. For the particular case of an isolated spherical conductor sitting at the origin,
it proves useful to consider the general solution to Laplace’s equation with azimuthal
symmetry,

φ(r, θ) =
∑

`>0

[
A`r

` +B`r
−(`+1)

]
P`(cos θ), (1.37)

where P`(cos θ) is the Legendre polynomial of order `, and θ is the polar angle from the
positive z-axis. This can be derived by separation of variables and can be found in most
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standard textbooks on electrodynamics or mathematical physics. The general solution
outside a sphere of radius R held at fixed potential Φeq must satisfy

φ(R, θ) = A0 + B0
R

+
∑

`>1

[
A`R

` +B`R
−(`+1)

]
P`(cos θ) != Φeq. (1.38)

As a consequence of the linear independence of the Legendre polynomials, it follows that
the summand must vanish for ` > 1, and the coefficients B` can therefore be written as

B` =
{

(Φeq −A0)R for ` = 0,
−A`R2`+1 for ` > 1.

(1.39)

Put differently, if a conducting sphere at fixed potential Φeq is immersed in a background
field given by

φ
(`)
bg (r, θ) = A`r

`P`(cos θ), (1.40)

then the response δφ(`) is

δφ(`)(r, θ) = Φ(`)
eqR

r
−A`r`P`(cos θ)

(
R

r

)2`+1
. (1.41)

Due to the resemblance of the response to the multipole expansion, we will hereafter refer
to φ(`)

bg and δφ(`) as an `th-order multipole background and response, respectively.
If an external source enforces a fixed potential Φ on the conductor, then obviously

Φ(`)
eq = Φ, independent of `. In contrast, for an isolated conductor of fixed total charge the

equilibrium potential is not fixed and depends on the external field. An isolated conductor,
however, does not respond to a uniform shift in potential, so δφ(0) consists only of the
field produced by the fixed charge. This means that in the fixed-charge case Φ(`)

eq is a free
parameter whose value changes depending on external fields. If the conducting sphere has
total charge Q, then the equilibrium potential in a multipole background φ(`)

bg is given by
Φ(`)
eq = Q/4πε0R+A0δ`,0.

Effective theory. To determine the effective response to a background field, we expand
the functional (1.36) about the fixed background. Since the functional is quadratic in the
field, the functional Taylor series truncates at second order:

Ueff[φbg + δφ] = Ueff[φbg] +
∫

d3x
δUeff
δφ(x)

∣∣∣∣
φbg

δφ(x)

+ 1
2

∫
d3x d3y

δ2Ueff
δφ(x)δφ(y)

∣∣∣∣
φbg

δφ(y)δφ(x), (1.42)
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where the integrands define the functional derivatives.7 Since the second term is proportional
to the response, we can identify the response prefactor as an effective source ρ, which is
given by the functional derivative evaluated at the fixed background field. This effective
source can be broken up into two terms: the permanent charge density ρ0, and the induced
charge density ρind. For a single conductor at the origin, the resulting expression for the
effective source is given by8

ρ(x | φbg) = δUeff
δφ(x)

∣∣∣∣
φbg

= ε0∇2φbg(x)−
(∑

n>0
C(n)∂nI φbg (−∂)nI + C(0)φbg

)
δ(x)−Qδ(x)

= ε0∇2φbg(x) + ρind(x | φbg) + ρ0(x). (1.43)

Notice that the background field in general produces its own source charge, as indicated in
the first term above. However, since our EFT is on shell we must require the background
field to also be on shell: ∇2φbg ≡ 0.
The second-order functional derivative can also be broken into two pieces:

δ2Ueff
δφ(x)δφ(y) = δ2U0

δφ(x)δφ(y) + δ2∆U
δφ(x)δφ(y) . (1.44)

The bulk term results simply in

δ2U0
δφ(x)δφ(y) = ε0∇2δ(y − x), (1.45)

so that ∫
d3x d3y

δ2U0
δφ(x)δφ(y)δφ(y)δφ(x) =

∫
d3x

[
ε0∇2δφ(x)

]
δφ(x). (1.46)

7Functional derivatives can be defined in this way—as the integrand prefactors of the variation in a
functional Taylor series—or alternatively by the (equivalent) rule

δ

δφ(x)

∫
d3y f(y)φ(y) = f(x),

for some permissible test function f(x). Furthermore, any linear differential operators acting on φ will end
up on f(x) by integration by parts (in the sense of distributions), e.g.,

δ

δφ(x)

∫
d3y f(y) ∂′iφ(y) = −∂if(x).

8The object δ(x) here is the three-dimensional Dirac delta function, sometimes written as δ(3)(x).
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The second-order functional derivative can be read off similarly, giving

δ2∆U
δφ(x)δφ(y) = −

∑

n>0
C(n)∂nI δ(x) ∂nI δ(y)− C(0)δ(x)δ(y). (1.47)

Finally, we can re-express Eq. (1.42) as

Ũ [δφ | φbg] = Ueff[φbg] +
∫

d3x
(
ρ0 + ρind

)
δφ+

∫
d3x

(
ε0∇2δφ

)
δφ+O

[
(δφ)2]. (1.48)

To solve for the effective response, we now perform the first variation δŨ/δ(δφ) and set
it to zero as usual. Neglecting the O

[
(δφ)2] terms, this results in

− ε0∇2δφ(x) = ρ0(x) + ρind(x | φbg). (1.49)

At this point it is worth mentioning that we neglected the O
[
(δφ)2] terms under the

assumption that the response will be small. Intuitively, linear response holds in the full
theory, so we expect it to carry over in the effective theory. However, as we can see
from Eq. (1.47), unphysical artifacts of the point-particle approximation will manifest as
divergences in these higher-order terms. Although we will not dwell on those details at
this moment, we will mention that their effects will actually vanish from a more rigorous
renormalization treatment.9
Continuing along, we solve for the effective response from Eq. (1.49) using the method

of Green functions. The bulk Green function here is the fundamental solution to the bulk
Euler-Lagrange equation in the presence of a point source,

− ε0∇2G(x) = δ(x) ⇐⇒ G(x) = 1
4πε0|x|

, (1.50)

which can be derived in a variety of standard ways.10 An arbitrary source ρ can be
considered a “weighted sum” of point sources, ρ(x) =

∫
d3x′ δ(x− x′)ρ(x′), so by linearity

9The reader interested in the details may wish to glance at Appendix A, where the renormalization of
similar problem in two dimensions is laid out. The formalism may be applied to the present problem with
few modifications (albeit with intensified index gymnastics).

10A simple solution is to integrate both sides over a sphere of radius r. By the divergence theorem, this
reduces to a surface integral of the normal derivative of G which, due to the spherical symmetry of the
Laplacian, must be constant on the surface:

−ε0
∫
Vr

d3x∇2G = −ε0
∮
∂Vr

dA r̂ ·∇G = −4πε0r2 dG
dr

!= 1.

This ordinary differential equation is then solved by integration, where we apply the boundary condition at
infinity, G(∞) = 0:

G(r) =
G(r)∫

G(∞)=0

dG = − 1
4πε0

∫ r

∞

dr′
r′2

= 1
4πε0r

.
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the response is given by the “weighted sum”, or convolution, of the point-source solution G:

δφ(x) =
∫

d3xG(x− x′)ρ(x′). (1.51)

For the effective source (1.43), the response therefore is given by

δφ(x | φbg) =
∫

d3x′G(x− x′)
[
ρ(x′) + ρind(x′ | φbg)

]

=
∫

d3x′G(x− x′)
[
Qδ(x′)−

(∑

n>0
C(n)(∂′)nI φbg(−∂′)nI + C(0)φbg

)
δ(x′)

]

=
[
Q− C(0)φbg(0)

]
G(x)−

∑

n>0
C(n)∂nI φbg(0)(−∂)nIG(x),

(1.52)
where in the last line we used integration by parts and (∂′)nI = (−∂)nI on the Green function
G(x− x′) before setting x′ → 0. Now, we use the multipole background potential φ(`)

bg (x)
defined in Eq. (1.40). This background is especially convenient because ∂nI φ

(`)
bg (0) is only

nonvanishing when n = `. It therefore follows from the expression above that a single
background φ(`)

bg is sufficient to determine C(`).
To proceed, we also need an expression for (−∂)nIG(x), which we construct in Technical

Note 1.1. The relevant piece is

(−∂)nIG(x) = (2n− 1)!!
4πε0r2n+1x

n
I + ( · · · ), (1.53)

where xnI = xi1 · · ·xin and ( · · · ) represents the remaining terms containing Kronecker deltas.
The Kronecker delta terms contract with the derivatives on the background, leading to
terms containing δij∂i∂jφbg = ∇2φbg = 0, so we can simply ignore them for now. The
final ingredient is the observation that the multipole background fields are homogeneous
polynomials, for which we can use the generalized Euler theorem [App89]:

xnI ∂
n
I h`(x) = `!

(`− n)!h`(x) (1.54)

for any homogeneous polynomial h`(x) of degree ` > 0. In our case, we have11

xnI ∂
n
I φ

(`)
bg (0) = `! δn`φ(`)

bg (x). (1.55)

11To clarify, since (∂′)nI φ
(`)
bg (x′) is evaluated at x′ = 0, the nonvanishing case (for which n = `) has all

instances of x′ removed with combinations of Kronecker deltas in their stead. Since φbg is homogeneous,
the (post-derivative) contractions with xnI restore the position dependence to give Eq. (1.55).
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Technical Note 1.1: Derivatives of the electrostatic Green function
We can calculate the first few derivatives of 1/r, with r = |x|, directly without too much headache:

−∂i
1
r

= xi
r3 ,

+∂i∂j
1
r

= 3xixj − r2δij
r5 ,

−∂i∂j∂k
1
r

= 15xixjxk − 3r2(xiδjk + xjδki + xkδij)
r7 .

Higher-order derivatives result in lengthy expressions with increasing instances of Kronecker delta functions.
Burgos and Bonadeo [BB81] have worked out the general expression for the nth-order derivative of 1/r,
which can be written as

(−∂)nI
1
r

= 1
r2n+1

bn/2c∑

k=0
(−)k(2n− 2k − 1)!! r2kPI(δkxn−2k),

where bn/2c is the integer part of n/2 and PI is the permutation polynomial, defined via

PI(δkxn−2k) :=
∑

D(I)

δi1i2 · · · δi2k−1i2k
xi2k+1 · · ·xin ,

where the sum is over all permutations D(I) of the indices which give distinct terms. Despite the
proliferation of indices, the summation over k has a particularly illuminating interpretation as an
operator Tn that removes the traces from the totally symmetric tensor xnI = xi1 · · ·xin . That is,
(−∂)nI r−1 = r−(2n+1)(Tnxn)I is completely symmetric and trace-free. This detracer operator is used
extensively in multipole analysis and its applications (see for instance Refs. [App84], [App89], [Vre05],
and [GB08]).

Plugging these expressions into Eq. (1.52) and simplifying gives the multipole response,

δφ(`)(x) =
(
Q− C(0)δ0,`

4πε0r
−
∑

n>0
C(n) (2n− 1)!!

4πε0r2n+1 `! δn`

)
φ

(`)
bg (x)

= Q

4πε0r
− C(`) `!(2`− 1)!!

4πε0r2`+1 A`r
`P`(cos θ). (1.56)

Finally, comparing the effective response (1.56) to the full theory result (1.41) gives
expressions for the coefficients. The polarizabilities, corresponding to the (n > 1) coefficients
C(n) in ∆U c[φ] are revealed to be

C(n) = 4πε0R2n+1

n!(2n− 1)!! = 4πε0R
2nR2n

(2n)! (for n > 1), (1.57)

where we have provided at the second equality an alternative expression using the identity

24



1 An invitation to Effective Field Theory

(2n− 1)!! = (2n)!/(2nn!). The coefficients in ∆U s[φ] follow from matching the ` = 0 terms.
After rearranging, the matching condition reads

Q− C(0)A0
!= 4πε0R

(
Φ(0)
eq −A0

)
. (1.58)

For the fixed charge case, Φ(0)
eq = Q/4πε0R + A0 and eliminates the A0-dependence of

the matching condition. It therefore follows that Q is the total charge as expected and,
furthermore, C(0) must be identically zero. For the fixed potential case, Φ(0)

eq = Φ and
therefore the induced charge Q = 4πε0RΦ and the monopole polarizability matches the
self-capacitance, C(0) = 4πε0R. In summary,

Q =
{
total charge Q (fixed Q)
4πε0RΦ (fixed Φ)

, C(0) =
{

0 (fixed Q)
4πε0R (fixed Φ)

. (1.59)

1.1.3 Interactions
Now that we have fully determined the effective energy functional, we may calculate the
forces on each conductor. We will do this in two steps. First, we will extract the stationary
solution φ by extremizing Ueff. Then, we will plug this solution back into the energy
functional and isolate the interaction energy part. The forces then follow from the negative
gradient of the interaction energy.

Electrostatic potential

The stationary electrostatic potential must be a solution to the extremization condition
δUeff/δφ = 0. After taking the functional derivative and rearranging, this condition reads

− ε0∇2φ(x) =
∑

a

Qaδ(x− xa)−
∑

a

∑

n>0
C(n)
a ∂nI φ(xa)(−∂)nI δ(x− xa), (1.60)

where the value of C(0)
a depends on whether the ath conductor’s total charge or potential

is held fixed. As in Eq. (1.43), we break up the right-hand side into a permanent source
charge density,

ρ0(x) =
∑

a

Qaδ(xa), (1.61)

and an induced charge density,

ρind(x | φ) = −
∑

a

∑

n>0
C(n)
a ∂nI φ(xa)(−∂)nI δ(x− xa). (1.62)
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By applying the Green function method as before, we wind up with an integral equation
for the electric potential,

φ(x) =
∫

d3x′G(x− x′)ρ0(x′) +
∫

d3x′G(x− x′)ρind(x′ | φ)

=
∑

a

G(x− xa)Qa −
∑

a

∑

n>0
(−∂)nIG(x− xa)C(n)

a ∂nI φ(xa)

≡
∑

a

GxaQa −
∑

a

∑

n>0
(−∂)nIGxaC(n)

a ∂nI φ(xa), (1.63)

where we have introduced the abbreviated notation Gxa ≡ G(x− xa).
The above integral equation can be solved iteratively by introducing a counting parameter

λ, which we will later set to unity, via

φ(x) =
∑

a

GxaQa − λ
∑

a

∑

n>0
(−∂)nIGxaC(n)

a ∂nI φ(xa), (1.64)

and expanding φ as a Liouville–Neumann series,

φ(x) =
∑

k>0
λkφk(x). (1.65)

Plugging in this expansion and comparing order by order in λ gives the recursive solution,

φ0(x) =
∑

a

GxaQa, φk+1(x) = −
∑

a

∑

n>0
(−∂)nIGxaC(n)

a ∂nI φk(xa). (1.66)

The terms beyond φ0 are:

φ1(x) = −
∑

a,b

∑

n>0
(−∂)nIGxaC(n)

a ∂nIG
abQb, (1.67a)

φ2(x) = +
∑

a,b,c

∑

n,m

(−∂)nIGxaC(n)
a ∂nI (−∂)mJ GabC

(m)
b ∂mJ G

bcQc, (1.67b)

or more generally,

φk(x) = (−)k
∑

{a}

∑

{n}

[
k∏

j=1
(−∂)njIj G

aj−1ajC
(nj)
aj ∂

nj
Ij

]
Gakak+1Qak+1 , (1.67c)

where the sets {a} and {n} respectively indicate sums over all particle labels ai and multipole
orders ni (both with i > 1), and Ga0a1 = G(x− xa1).
We have structured the series solution so that the k index counts the number of occur-

rences of the polarizability C(n). We can instead restructure the series to produce a truly
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perturbative series in powers of R/d. The R-scaling is carried by the multipole index n,
since C(n) ∼ R2n+1, so we may extract the sum over {n} from the general expression (1.67c)
by writing

φk(x) =:
∑

{n}

ϕ
(n1,...,nk)
k (x), (1.68)

and see that ϕk ∼ R2|n|+k+1, where |n| := ∑k
i=1 ni. It therefore follows that the contribution

scaling as R` will consist of all terms that partition ` into integers ni such that 2|n|+k+1 = `.
Summing over `—and setting λ = 1 as promised—then gives the desired form:

φ(x) =
∑

`>0




2|n|+k+1=`∑

k

∑

{n}

ϕ
(n1,...,nk)
k (x)


. (1.69)

Electrostatic energy

We may now calculate the total electrostatic energy by plugging in the stationary solution
φ(x) into the effective energy functional (1.36). We first use Eqns. (1.61) and (1.62) to
re-express the worldline energy in terms of the external and induced charge distributions:

∆U [φ] =
∫

d3x

[
−
∑

a

∑

n>0

1
2C

(n)
a ∂nI φ(xa)(−∂)nI δ(x− xa) +

∑

a

Qaδ(x− xa)
]
φ(x)

=
∫

d3x

{
1
2ρind(x | φ) + ρ0(x)

}
φ(x).

(1.70)
Additionally, we integrate U0[φ] by parts and use Eq. (1.60) to put the bulk energy in a
similar form:

U0[φ] = −
∫

d3x
ε0
2 (∇φ)2 IBP= −

∫
d3x

1
2
(
−ε0∇2φ

)
φ

= −1
2

∫
d3x

{
ρind(x | φ) + ρ0(x)

}
φ(x). (1.71)

When these pieces are summed together, the ρind terms cancel, leaving the total effective
energy

U [φ] = U0[φ] + ∆U [φ] = 1
2

∫
d3x ρ0(x)φ(x) = 1

2
∑

a

Qaφ(xa). (1.72)

Before proceeding with the calculations, we must address the problem of self-interactions.
The sums in the expression for φ(x) run over all particle labels, and consequently we
encounter terms in which the Green function and its derivatives are evaluated at the same
worldline position, i.e., G(xa − xb) with a = b, and are therefore divergent. These terms
not only occur in the self-energy of each conductor, which we are not interested in, but
also appear in the interaction energy. In hindsight, this is not a surprise—it is a technical
repercussion of the point-particle prescription. By naïvely treating the conductors as singular
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points, we should expect singular behavior to appear as an artifact. To determine whether
there is physical information contained within the divergences, we turn to renormalization
group (RG) theory [Vas04, BDFN95, Del04]. From the perspective of RG, the procedure of
“integrating out” the short-scale physics necessitates a set of counterterms which, although
not physically observable themselves, should appear from a careful limiting procedure and
ensure that physical observables obtained from the coarse-grained, or renormalized, theory
remain finite. Since we obtained the values of the Wilson coefficients (polarizabilities) by
matching directly to physical observables, we have effectively sidestepped this issue and these
couplings are in fact the renormalized versions and a series of counterterms is implicit. For
our theory, all of the divergences are power-like in the sense that ∂nIG(λx− λx′) ∼ λ−(n+1)

as λ → 0, and RG tells us that there is no nontrivial running of the couplings. This
means that there is no physical information contained within the divergences, and these
divergent pieces will always be removed by pure counterterms; that is, we can completely
(and safely) ignore them. In what follows, we will capture this renormalization procedure by
the replacement G(xa − xb)→ (1− δab)G(xa − xb), but otherwise keep the counterterms
implicit.12

Fixed potentials. Previously, we found that the polarizabilities in the fixed-charge and
fixed-potential cases are identical for a given conductor and only differ in their monopole
terms Q and C(0). Since these terms are non-vanishing in the fixed-potential case, that is
where we will begin our discussion.

The interaction energy U is defined as the difference in energy between U [φ |xa,xb], given
by Eq. (1.72), and the self-energies U [φ, |xa − xb| → ∞]. After expanding the result to
O
(
R9), dropping the self-energy and self-interaction terms, and contracting the derivatives

according to the methods of Technical Note 1.1 we find13

UΦ = 1
2
∑

a6=b

{
QaQb
4πε0d

− Q2
aC

(0)
b

(4πε0)2d2 +
QaC

(0)
b C

(0)
a Qb

(4πε0)3d3 − Q2
a

[
C

(0)
b

]2
C

(0)
a
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a
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C

(1)
b
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12Again, the interested reader may consult Appendix A for the explicit renormalization details of a closely
related problem.

13As a guide for those readers attempting to perform this calculation themselves, the multiplicities of each
term have been set as prefactors to distinguish them from the numerical factors coming from the derivatives.
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− 2
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(2)
a
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aC

(3)
b

(4πε0)2d8 +O
(
d−9)

}
, (1.73)

where “a 6= b” in the summation means that we sum both a and b over {1, 2} but exclude
the cases for which a = b (e.g.,

∑
a6=b fab = f12 + f21). At this point we can make a few

observations:

1. By retaining the general polarizabilities, this expression is valid for the interaction
energy between any two spherical conductors—the boundary conditions and effects
of external sources are contained within the polarizabilities. In particular, setting
C(0) → 0 immediately gives the interaction energy between two spherical conductors
of fixed total charge. Furthermore, since the polarizabilities were left arbitrary, this
expression also reveals the interaction behavior for two (spherical) conductors of
differing boundary conditions.

2. The first term is the Coulomb energy and shows that for charges of the same sign,
the energy is lowered by increasing the distance—that is, they repel—and indeed this
behavior persists for large separations.

3. If one of the conductors is neutral (grounded or otherwise without a net charge), all
the terms with odd powers of d vanish, including the Coulomb term. The remaining
terms are all negative and show that a neutral and charged sphere are universally
attracted to each other due to polarization effects.

4. The series alternates in sign and hence the interaction energy is not guaranteed to
be monotonic in the separation d. Although the leading term dominates at large
separation, the alternating sign suggests that the behavior may change at close
approach. Indeed this is the case, as discussed in Technical Note 1.2: Two conducting
spheres of like charges will repel up to some critical distance, smaller than which the
effects of polarization will overcome the repulsion and the two conductors will attract
with a diverging force. The only exception is if the charge ratio is the same as if the
two conductors were in contact, or rather, if the two conductors are equipotential.

This behavior is revealed more explicitly by plugging in the expressions for the polar-
izabilities. We group the interactions into two pieces: those that appear as more “direct”
interactions between the conductors, which we express as corrections to the Coulomb
energy, and “indirect” interactions that we write as corrections to the conductors’ respective
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Technical Note 1.2: Attraction at close approach
The problem of conducting spheres at fixed po-
tentials also has a complete series solution in
terms of capacitance coefficients Cab [Lek12a].
The total energy stored is

WΦ = −1
2
(
C11Φ2

1 + 2C12ΦaΦb + C22Φ2
b

)
,

where the capacitance coefficients for spheres
are known and are often expressed as an infi-
nite series in hyperbolic sine and hyperbolic co-
sine functions. However, applying the identity
sinh[(n+ 1) cosh−1 ξ] =

√
ξ2 − 1Un(ξ), where

Un(ξ) is the Chebyshev polynomial of the second
kind (apologies for the clash of notation), can put the full expression into a more compact form. In
particular, for spheres of identical radii R separated by a distance d from their centers, the interaction
energy—in which the self-energies are subtracted off—can be written as

UΦ
4πε0R

= −1
2

∞∑

n=0

Φ2
1 + Φ2

2
Un(ξ) + Un+1(ξ) + R

d

∞∑

n=0

Φ1Φ2
Un(ξ) , (1.74)

where ξ := 1
2 (d/R)2 − 1. Shown in the plot is the behavior for opposite potentials (dashed) and like

potentials (solid). Notice that for Φ2/Φ1 6 0, the spheres always attract. For Φ2/Φ1 > 0, the spheres
repel until some critical distance; further decrease in separation leads to attraction due to polarization
effects. This attractive force diverges near contact, except for the special case Φ1 = Φ2 for which the
energy and force limits to a finite value (open circle) and is always repulsive. Analogous behavior is
found between spheres with fixed total charges, where at close enough separation the spheres attract,
unless they touch in which case the charges will redistribute and the spheres will subsequently repel.
The special case of a (repulsive) finite limit near contact occurs for charge ratios that would remain
unchanged upon contact [Lek12b].

self-energies:

UΦ = 4πε0Φ1Φ2
R1R2
d

{
1 + R1R2

d2 + R1R2(R2
1 +R1R2 +R2

2)
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2)2

d6 +O
(
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}
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a + 2R4

aRb + 5R3
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2
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aR
3
b + 3RaR4

b +R5
b

)

d7 +O
(
d−9)

}
.

(1.75)
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As an illustrative example, consider two spheres of equal radii R and a ratio of (indepen-
dently) fixed potentials Φ2/Φ1 =: ν. In this case, the interaction energy, normalized by the
self-energy of sphere 1 in isolation, is given by

UΦ
4πε0RΦ2

1
= ν

(
1
χ

+ 1
χ3 + 3

χ5 + 9
χ7 + · · ·

)
− 1 + ν2

2

(
1
χ2 + 2

χ4 + 5
χ6 + 15

χ8 + · · ·
)
, (1.76)

where χ := d/R. The force F12 = −∂UΦ/∂d of conductor 1 on conductor 2 is is given by

F12
4πε0Φ2

1
= ν

(
1
χ2 + 3

χ4 + 15
χ6 + 63

χ8 + · · ·
)
− (1 + ν2)

(
1
χ3 + 4

χ5 + 15
χ7 + 60

χ9 + · · ·
)
. (1.77)

In both expressions, the first term depends on the sign of the two potentials; it is repulsive
for like potentials (ν > 0), attractive for opposite potentials (ν < 0), and vanishes when
sphere 2 is grounded (ν = 0). The second term exhibits universal attraction. The particular
case of equipotentials (ν = 1) is not captured by the expansion in large distances. Lekner
[Lek12a] has explored the force at close approach up to linear order by analyzing the
short-distance asymptotics of the capacitance coefficients, which we reproduce here for
comparison:

F12
4πε0Φ2

1
= − (1− ν)2

8
R

s
+ (1− ν)2

48

(
ln R
s

+ 2γe + 1
6

)
+ 1 + ν2

48 (4 ln 2− 1)

− (1− ν)2

720

(
ln R
s

+ 2γe −
169
40

)
s

R
− 1 + ν2

720

(
4 ln 2 + 17

4

)
s

R
+ · · · , (1.78)

where s = d − 2R is the surface to surface separation, and γe = 0.57721566 . . . is the
Euler–Mascheroni constant. We have plotted in Fig. 1.2 the force expression (1.77) along
with Lekner’s expression (1.78) for close approach and the “exact” series solution from
Technical Note 1.2, demonstrating that the EFT solution, even for being derived in the
limit of large separations, captures the short-range behavior remarkable well.

Fixed charges. As we mentioned earlier, the general expansion of the energy (1.73) applies
to the electrostatic interaction between any two spherical conductors. The parameter Qa
refers to the monopole moment (total charge) present on conductor a if it were in isolation,
and C(0)

a is the monopole polarizability and reflects the conductor’s coupling to a charge
reservoir, pulling up additional charge in response to external fields. For free conductors,
there is no such charge reservoir and hence no monopole susceptibility. Therefore, the
electrostatic interaction between conductors with individually fixed charges is given by
Eq. (1.73) with C(0) = 0. Since this eliminates a number of terms, we provide a few
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Figure 1.2: Electrostatic forces near contact for identical spheres of radii R. Plotted are the “exact”
solution (solid, thick), derived from Eq. (1.74) with nmax = 49, Lekner’s asymptotic result (1.78) (dashed)
for small separations, and the asymptotic EFT result (1.77) for large separations. With ν := Φ2/Φ1 as
the ratio of the conductors’ respective fixed potentials, the top row presents the like-potentials ν = 2 (left)
and equipotentials ν = 1 (right). The bottom row presents a grounded second, ν = 0 (left), and opposite
potentials ν = −1 (right). Notice that although the EFT result was derived as an expansion in large
separations, we find remarkable agreement upon close approach. Indeed, apart from the equipotential
case, the thin and thick lines overlap and are difficult to distinguish.
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additional orders of accuracy without too much extra effort:
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}
(1.79)

Like before, we may break up the expansion into “mutual” interactions and those in which
the conductor interacts indirectly with itself via the polarization it induces in the other
conductor. Plugging in for the polarizabilities, collecting terms, and simplifying results in
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b
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(1.80)

This expression agrees with that calculated from zonal harmonics by Maxwell [Max91, §146],
who provides an expression for the energy up to O(d−23) accuracy! It is further verified by
Lekner [Lek12b] who, by expanding the capacitance coefficients, reports an expression to
O(d−10) accuracy. Finally, Sliško and Barito-Orta [SBO98] calculated the force between
identical spheres by the method of images, and report an expression to O(d−21) accuracy,
which is again in agreement.14

14For comparison and for reference, the force between two identical spheres of radii R and fixed total
charges Q as calculated from Eq. (1.80) is given by

F = Q2

4πε0d2

[
1− 4χ−3 − 6χ−5 + 14χ−6 − 8χ−7 + 54χ−8 − 50χ−9 + 154χ−10 − 264χ−11 + 494χ−12 + · · ·

]
,

with χ = d/R as usual.
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1.2 Effective field theory formalism
In the most general sense, an effective field theory is a simplified physical description at a
given length or energy scale. In many cases, differing physical phenomena appear at widely
separated scales, and it is this scale separation that allows us to probe and understand
nature without knowing all the microscopic details. Indeed we can understand the orbits of
planets without invoking quantum mechanics. Furthermore, certain physics—turbulence,
for example—may only be defined in a certain range of scales, appearing as a high level
emergent phenomena resulting from the collective behavior of its interacting constituents.

The EFT philosophy for an appropriately scale-separated problem is to provide a physical
description at a chosen large scale by incorporating only the relevant degrees of freedom,
while ignoring those which require details at short length scales or, equivalently, must be
probed at very high energies. As we saw in the electrostatics problem, the short-distance
details were irrelevant, except for determining the numerical values of the coupling constants
(conductor polarizabilities). Besides those values, the form of our effective description was
completely determined by particle and field degrees of freedom and symmetry considerations.

One way to construct an EFT is from what is referred to in the literature as a top down
approach15 (see, for example Refs. [Geo93] or [Bai13a]). We begin with an underlying
fundamental or “full” theory that is accurate all the way down to the microscopic scale.
Next, through some kind of averaging or coarse-graining procedure we eliminate16 the
short-distance degrees of freedom. That is, we take the features that are small compared to
the scale of interest and shrink them down to zero in such a way that the theory is local and
finite-size effects can be treated perturbatively. By doing so, we have modified the short-
distance behavior and therefore introduced a bound on the range of validity of the EFT.
This should of course be expected, but it is also perfectly acceptable so long as the scaling
regimes are adequately disentangled. However, this limiting process of shrinking parameters
to zero requires some care;17 it could be that by doing so, artificial divergences may appear,
or worse, the dependence could be non-analytic in some parameter, signaling potential for
phase transitions. These subtleties can be handled rather well through renormalization

15Unfortunately, the use of “top down” and “bottom up” is sometimes taken to have the opposite meaning.
In the same Oxford Handbook, Batterman [Bat13] takes “top down” to mean a macroscale continuum model
and “bottom up” to imply an atomistic description, whereas Bain [Bai13a] (along with other EFT authors)
uses the terminology as we have above. With the exception of this section, we will avoid this language.

16By eliminate, we mean remove the functional dependence of the degrees of freedom from the physical
description. This differs from reducing degrees of freedom by, for example, constraining particles to a plane
{(x, y, z) ∈ R3 | z = 0}, or restricting degrees of freedom to, say, a range {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ r2}.
This distinction was emphasized in Ref. [Wil10] in the context of the philosophy of emergence and non-
reductive physicalism, and further explored by Ref. [Bai13b] in the context of EFT.

17This limiting process can be studied from the point of view of intermediate asymptotics, which was
introduced by Barenblatt [Bar79, Bar96] and later used to a great extent by Goldenfeld in the context
of renormalization group theory [GMO89, Gol92]. The point is that we can express (à la Buckingham’s
Π-theorem) some dimensionless physical quantity Π as some relation Π = f(Π0,Π1, . . . ,Πn) of a finite set
of dimensionless parameters {Π0,Π1, . . . ,Πn}. Now consider a scaling regime in which Π0 → 0. If f is
nonsingular, then naturally Π → f(0,Π1, . . . ,Πn). However, if this limit is undefined there may instead
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group analysis [Vas04, BDFN95, Gol92], which in essence describes how the theory behaves
or “flows” under coarse-graining or rescaling.

1.2.1 General formalism
For our purposes, we provide a physical description in terms of a functional S[φ], usually
taken to be the energy or action, where the field φ characterizes some particular configuration
of the system’s degrees of freedom. For convenience, let us choose S[φ] to be dimensionless.
If we are interested in the macroscopic physics, we may (formally) decompose the field
into short-distance and long-distance (respectively high-energy and low-energy) fields φS
and φL, where φL is cut off below some small length scale `, and φS is the remainder.
In eliminating the short-distance degrees of freedom, the functional would become S[φL]
plus some corrections ∆S[φL; `]. As discussed previously, we require ∆S[φL; `] to be local,
meaning it must be polynomial combinations of the field and its derivatives, all evaluated
at the same point.18
From a top-down approach, we could explicitly perform the coarse-graining procedure

and arrive at the ultimate form of ∆S, which would result in a derivative expansion, with
each term Ok[φL] in the series equipped with a Wilson coefficient Ck(`), which may be a
multi-index object or tensor, determined by the short-distance physics. If we rescale φ by
an appropriate parameter v so that the ratio φ/v is dimensionless, then the dimensions of
Ok[φL/v] are carried by the derivatives. If Ok[φL/v] contains an integral, it will always be
accompanied by a factor L−D, where L is some length scale (possibly different from `) and
D is the dimension of the integral. Since ∆S is dimensionless, the Wilson coefficients Ck(`)
are therefore expected to scale generally as L−Dvnk`dk , where nk is the overall power of the
field in Ok[φL/v] and dk counts the total number of derivatives. In this way, both v and `
serve as power-counting parameters that characterizes the importance of each term in the
expansion. The effective functional can therefore be written as (dropping the “L” labels)

exist a set of real numbers {α, α1, . . . , αn} such that we have the well-defined limit

lim
Π0→0

(
Π

Πα
0

)
= lim

Π0→0

1
Πα

0
f
(

Π0,
Π1

Πα1
0
, . . . ,

Πn

Παn
0

)
.

The αi parameters cannot be determined from dimensional analysis, but if f obeys a partial differential
equation (PDE), then in principle they can be determined by the PDE. In a field theory context, f
would correspond to the renormalization group equations and the parameters αi would be the anomalous
dimensions, which give corrections to the naïve scaling of quantities suggested by dimensional analysis.

18In general, the coarse graining procedure could (and usually does) produce nonlocal interactions, i.e.,
those that depend on more than one spatial location. However, these nonlocal interactions can be rewritten
as a (functional) Taylor expansion—provided the field is suitably analytic in an open set containing each
location—and the terms of the series will indeed be polynomial in the field and derivatives evaluated at a
point. For example, an analytic, nonlocal interaction φ(x)φ(x+ a) could be rewritten as

φ(x)φ(x+ a) =
∑
k≥0

ak

k! φ(x)∂kφ(x)

which is now a series of local terms.
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Seff[φ] = S[φ] + ∆S[φ; `], where the remnants of the short-distance physics are encoded in
the numerical couplings of the series expansion via

∆S[φ; `] =
∑

k

Ck(`) · Ok[φ] =
∑

k

vnk`dk

LD
ck · Ok[φ/v], (1.81)

and where ck are dimensionless (again, possibly tensor) coefficients.
Note that there are in principle an infinite number of terms in this expansion, but only

a finite number of terms contribute at any given order. By virtue of the power-counting
parameter, truncating the series at some order implies our results will be accurate up to
that order. So if we have a desired accuracy in mind, we need only determine a finite
number of Wilson coefficients up to that order. Consider, for instance, a fairly general
case19 for which L ∼ ` and v ∝ `D/2. Any physics we calculate will scale as powers of (`/r),
where r � ` is the length scale of the observable, so if we wish to construct an EFT with
an accuracy of (`/r)k & ε, we must therefore include all terms satisfying

k =
(n

2 − 1
)
D + d .

ln(1/ε)
ln(r/`) . (1.82)

Another example, which we will run into later, is if L = v2/D ≡ λ is itself another length
scale such that λ� `� r. Then we could to good approximation only keep terms with
n ≤ 2 powers of the field—a quadratic theory—and the remaining accuracy would be
determined by the number of derivatives.

If we knew the underlying microscopic theory, and furthermore had the fortitude, we could
explicitly perform the coarse-graining procedure, resulting in the series expansion above and
thereby giving us the Wilson coefficients. However, we already know what form the effective
functional must take, so an alternative approach—which we in essence just did—would be
to construct the EFT from the bottom up by simply enumerating all possible products of
the field and its derivatives up to the desired order. With some insight, we can actually
do better. As we saw in the electrostatics problem, we can exploit symmetries to further
reduce the degrees of freedom. Since the symmetries present in the system will always
manifest in any physical observables, we should make the consequences of the symmetries
explicit in the construction of the EFT by only including the appropriate invariants. The
remaining step is to determine the Wilson coefficients. Since we require the underlying
microscopic theory and large-distance effective theory to reproduce the same physics at
large distances, it follows that the two theories should match all the way down to the cutoff
`. This suggests a way to determine the Wilson coefficients: compute convenient physical
observables in both theories and match them at the larger scale (i.e., above `). Since only
a finite number of terms appear up to a given order in the EFT expansion, only a finite
number of observables are required to determine the Wilson coefficients to that order.

19This is motivated by the common appearance of
∫

dDx 1
2 (∇φ)2 as the free action in field theory.
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To summarize, the EFT philosophy consists of the following principles:

1. Scale separation The macroscopic (long distance, low energy) physics does not depend
on most details of the microscopic (short distance, high energy) physics. The boundary
between the two scaling regimes can be characterized by a small cutoff parameter.

2. Degrees of freedom Only the relevant macroscopic degrees of freedom are needed to
describe the physics at the large scale considered. These can be further reduced by
explicit symmetry considerations.

3. Locality Any nonlocal interactions can be exchanged by an infinite tower of local
interactions. The series consists of all combinations of the fields and their derivatives
that respect the symmetries, evaluated at the same point. The relative importance of
each interaction is characterized by its scaling in the small cutoff parameter.

4. Matching Above the boundary of the scaling regimes, an effective description of the
macroscopic physics should reproduce, or match to some desired precision, the ob-
servable effects due to the microscopic physics. If a microscopic theory is missing,
the resulting EFT provides a predictive phenomenological model that can be fit to
experiments.

1.2.2 Worldline EFTs
A worldline EFT follows the same philosophy as discussed above, but emphasizes that
interacting compact objects with sizes below the length cutoff can be treated as particles
shrunk down to points. As in the electrostatics example—and the work to follow—we are
interested in field-mediated interactions between objects. The presence of such objects
puts localized constraints on the field, so any effects due to the objects’ properties can be
completely captured by their influence on the field’s degrees of freedom. In particular, an
object’s boundary conditions and symmetries provide information about what combinations
of the field degrees of freedom, such as φ, ∂iφ, ∂i∂jφ, and so forth, are relevant or permissible
at the location of the object. For example, the conducting spheres of the previous section
exhibit rotational symmetry, so the effective energy needed to only be constructed from
rotationally invariant combinations of the field and its derivatives.
The characteristic size s of an object serves as a natural “microscopic” cutoff, so the

construction of a worldline EFT for compact objects follows the EFT prescription discussed
previously with ` = s. Moreover, because of locality, as long as additional objects are sepa-
rated by distances much larger than the particle sizes (scale separation), their descriptions
completely decouple and their effects on the field can be analyzed independently. The gain
is that the functional describing the physics in the larger scaling regime can be written as
contributions from the particle-free field plus independent derivative expansions evaluated
at the positions, or worldlines, of the objects:

Seff[φ] = Sfree[φ] +
∑

a

∆Sa[φ(xa)]. (1.83)
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Partition function

In the following chapters, we will not only be interested in “ground state” interactions
mediated by the field, but those induced by thermal field fluctuations as well. Any ground
state interactions require the objects to be appropriately sourced by some external agent,
such as a battery or even permanent charges. Field fluctuations, however, also serve to
source the objects, but this sourcing is statistical in nature rather than directly imposed.

Following the common approach in statistical physics, we wish the construct a partition
function Z that captures all the thermodynamic properties of the field–particle system.
However, since we are dealing with field configurations that assign numbers to every point
in space, we are in a sense working with infinite degrees of freedom. The usual sum over
microstates in the partition function must then be replaced by a functional integral over
field configurations:

Z =
∑

i

e−βEi →
∫
Dφ e−βH[φ], (1.84)

where the energy functional H[φ] serves as the Hamiltonian and the functional measure is
an appropriate continuum limit of Dφ ∝∏x dφ(x). As usual, β := 1/kbT .
In this context, coarse graining can be thought of as integrating out the microscopic

degrees of freedom. In many applications, this is done according to one of two top-down
approaches: real-space or Fourier-space coarse graining. The first is to discretize, or “block,”
space into a lattice of points with separations on the order of the cutoff size `, then in some
way averaging the field over each region. We may express the average field φ̄(x̄) about each
block center x̄ as (in D dimensions)

φ̄(x̄) =
∫

dDxφ(x)A(x, x̄), (1.85)

where the integral kernel A(x, x̄) is some appropriate averaging weight. For example, one
might consider A(x, x̄) ∝ Θ(`− |x− x̄|)/VD(`), where Θ(x) is the Heaviside step function,
which averages the field over a ball of radius ` centered at x̄. Alternatively, A(x, x̄) may
represent a smooth Gaussian weight or some more complicated distribution. The resulting
coarse-grained Hamiltonian then follows from

e−βHeff[φ̄] ≡
∫
Dφ

∏

x̄

δ
(
φ̄(x̄)−

∫
dDxφ(x)A(x, x̄)

)
e−βH[φ]. (1.86)

The functional integral can then be performed, for instance, by applying the (functional)
Fourier representation of the delta function and further integrating out the associated
auxiliary fields.

The second, more popular procedure is to instead coarse-grain in Fourier space in which
the microscopic degrees of freedom intuitively correspond to wavelengths smaller than
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1 An invitation to Effective Field Theory

the small length scale `. In terms of the wave number cutoff20 Λ ∝ 2π/`, the Fourier
components are readily decomposed into small and large wavenumber contributions, φ̃<
and φ̃> respectively, through φ̃(q) = φ̃<(q) + φ̃>(q) in which

φ̃>
<

(q) := Θ
(
±(|q| − Λ)

)
φ̃(q). (1.87)

In real space, the field also decomposes linearly as φ(x) = φL(x) + φS(x), where φL and φS
respectively encode the large and small distance degrees of freedom:

φL(x) :=
∫ dDq

(2π)D φ̃<(q) eiq·x =
∫

|q|<Λ

dDq
(2π)D φ̃(q) eiq·x (1.88a)

φS(x) :=
∫ dDq

(2π)D φ̃>(q) eiq·x =
∫

|q|>Λ

dDq
(2π)D φ̃(q) eiq·x (1.88b)

The passage between real and Fourier space is a (linear) unitary transformation, so the
functional measure transforms with a unit Jacobian factor, Dφ ≡ Dφ̃, and allows for the
following factorization:

Dφ̃ ∝
∏

q

dφ̃(q) =
( ∏

|q|<Λ
dφ̃(q)

)( ∏

|q|>Λ
dφ̃(q)

)

=
(∏

q

dφ̃<(q)
)(∏

q

dφ̃>(q)
)

≡
(∏

x

dφL(x)
)(∏

x

dφS(x)
)
∝DφLDφS. (1.89)

Like before, the effective Hamiltonian is obtained by integrating out the microscopic degrees
of freedom:

e−βHeff[φL] ≡
∫
DφS e−βH[φL+φS]. (1.90)

In both cases, the decomposition relied on the homogeneity of space. The coarse-graining
procedure is therefore more subtle (and challenging) with the introduction of spatial
boundaries and their concomitant boundary conditions. However, if the inhomogeneities
are compact with sizes s ∼ `, the EFT prescription tells us how to bypass the complicated

20Technically, one again imagines breaking space into a lattice with cell volume v0 = V/N = `D. Fourier
modes are thus restricted to the first Brillouin zone of the reciprocal lattice, from which it follows [CL95b]:

1
v0

= N

V
= 1
V

∑
q

≡
∫
|q|<Λ

dDq
(2π)D = ΩD

(2π)D
ΛD
D
,

where ΩD is the solid angle subtended by a sphere in D dimensions. The desired cutoff is therefore
Λ = (D/ΩD)1/D(2π/`).
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1 An invitation to Effective Field Theory

decomposition and integration steps. Following the steps laid out in Section 1.2.1, one
constructs an effective worldline Hamiltonian,

Heff[φ] = H0[φ] +
∑

a

∆Ha[φ(xa)], (1.91)

where H0 is the defect-free Hamiltonian and ∆Ha is a series of local field operators evaluated
at the locations xa of each object a. For completeness, we also note that in both coarse-
graining procedures discussed above, the physics should match at the larger scale, so

∫
Dϕ e−βHeff[ϕ] !=

∫
Dφ e−βH[φ], (1.92)

where ϕ denotes either φ̄ or φL. In other words, to determine the associated Wilson
coefficients (and thus completely determine Heff), we need only calculate some convenient
thermodynamic observables in the full and effective theories and match.

Interaction potential

After the EFT is fully constructed, or at least to the desired accuracy, we can then set about
calculating interactions. Such interparticle interaction energies are extracted from the free
energy F = −kbT lnZ. Note, however, that we will never need to compute the functional
integral Z directly. Instead, the interaction potential is defined as the free energy difference
U := F − F0, where F0 is the free energy of the field without particles, and it follows that
calculating interactions reduces to finding moments of the worldline Hamiltonian in the
canonical ensemble of systems governed by the particle-free Hamiltonian. To clarify, we
rearrange the functional integral as

e−βF = Z =
∫
Dφ e−β(H0[φ]+∆H[φ]) =

∫
Dφ
(

e−β∆H[φ]
)

e−βH0[φ]

≡ Z0
〈

e−β∆H[φ]
〉

0
, (1.93)

where 〈· · ·〉0 is the expectation value weighted by the distribution e−βH0[φ]/Z0, and

Z0 =
∫
Dφ e−βH0[φ] ≡ e−βF0 , (1.94)

which bears no information about the particles and is often normalized to unity. Finally,
using the well-known relation ln 〈eX〉 = 〈eX〉c between “connected averages,” or cumulants
〈X〉c, and ordinary averages 〈X〉 [BDFN95], we may express the interaction potential as
the cumulant expansion

U = F − F0 = − 1
β

ln
〈

e−β∆H[φ]
〉

0
≡ − 1

β

∞∑

q=1

1
q!
〈
(−β∆H[φ])q

〉
c. (1.95)
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In the previous chapter, we investigated the interaction between two conductors as mediated
by the electrostatic field. We will soon turn to discuss surface-mediated interactions in
soft matter, where the soft-matter surface plays the role of the deformable, fluctuating
field. Many of the mathematical (and linguistic) tools will carry over from the electrostatics
discussion, particularly the procedure to characterize objects by their field responses. But
before we consider the additional complexity of embedded or adsorbed particles and other
inhomogeneities, we must first be explicit about the mediating field. To this aim, we
provide a brief overview of the physics of random surfaces and construct the requisite energy
functionals.

2.1 Mesoscopic models of interfaces and membranes
2.1.1 Physical origins and considerations
In the realm of soft matter, (quasi-) two-dimensional (2D) extended objects—surfaces
or membranes—typically manifest at the interface between dissimilar fluid phases (e.g.,
liquid–vapor) or between otherwise immiscible fluids (e.g., oil–water). Such an interface
is not strictly a sharp discontinuity between phases, but rather a continuous transition
across molecular length scales. Within the bulk of a liquid—water for example—molecules
experience attractive cohesive interactions (e.g., hydrogen bonds) isotropically. However, at
the interface boundary, molecules necessarily experience fewer interactions or bonds from
the opposing side and result in an internal pressure that contracts the boundary to some
minimum area. Equivalently, the shortage of bonds at the interface entails the boundary
molecules reside at higher energies compared to those in the liquid bulk. That is, the
free energy of the system is concentrated across the width of the interface. Minimizing
the total energy therefore requires decreasing the number of boundary molecules and thus
minimizing the surface area. The free energy per unit area σ of the interface may therefore
be appropriately interpreted as a surface tension that resists changes in the equilibrium
surface area.
Technical Note 2.1 illustrates one such (simplified) instance of an interface as a semi-

infinite domain wall between two phases described by a Ginzburg–Landau free energy
functional. The bulk free energy density exhibits a smooth spike across the width of the
phase profile transition and demonstrates that at mesoscopic length scales—i.e., those
for which the lateral extent and deformations of the interface are much larger than its
width—the interface may be treated as an effective 2D surface with a surface tension
determined by the Ginzburg–Landau expansion parameters. For more examples and details
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2 Physics of random surfaces

Technical Note 2.1: Domain walls in Ginzburg–Landau theory

z

z0

φdw/φ∗

wf(z)/σ

w

phase I

phase II

Consider a mixture of two fluids described by an order
parameter φ = ρII−ρI, where ρI,II are the fluid densities,
and an (Ising order) Ginzburg–Landau free energy of the
form [Saf94, CL95b]

FGL[φ] =
∫

d3x
[ c

2(∇φ)2 + V (φ)
]
,

V (φ) = r

2φ
2 + u

4φ
4,

with r = r0(T − Tc)/Tc and positive constants c, r0,
and u. Alternatively, φ may describe the difference in
concentrations of a binary fluid or the average magneti-
zation of a spin lattice. Below the critical temperature
Tc, the fluid mixture undergoes phase separation with a
domain wall, or interface, between the phases ±φ∗ along
the z-axis with φ∗ =

√
|r|/u the degenerate minima

of the mean field free energy. The interface (domain
wall) profile is given by φdw(z) = φ∗tanh

(
z−z0
w/2

)
, which

satisfies δFLG/δφ = 0, where the interface has a width w = 2
√

2c/|r| centered at z = z0. Moreover,
this phase profile “kink” concentrates the free energy within the width of the interface such that

∆Fdw := FGL[φdw]−FGL[φ∗] =
∫

d3x
u

2
(
φ2
∗ − φ2

dw
)2 =: A

∫
dz f(z) ≡ σA,

where f(z) is the free energy density (plotted above), A is the area of the interface, and σ = uwφ4
∗/3 =

|r|2w/3u is the effective surface tension of the interface. Note that the interface is nonfluctuating in
mean field theory, even though σ ∝ |T − Tc|3/2, but entropic contributions will modify the description.

on phase separation and related capillary phenomena, the reader is referred to Refs. [Saf94],
[Isr11], and [RW02].

The surface energetics may be further altered by the addition of surface-active agents—
or surfactants—that, when dissolved in a solvent at low concentrations, have the ability
to adsorb at interfaces. For example, since there is an energetic cost to moving solvent
molecules from the bulk to the surface, it follows that replacing boundary molecules with
inert or otherwise insoluble molecules will lower the system’s free energy and, by extension,
the surface tension. The reduction is further amplified by the increase in translational
entropy of the surface-active component (the surfactant behaves like a 2D ideal gas on the
surface) [Saf94].
Another important class of soft matter surfaces results from the self assembly of am-

phiphiles, such as fatty acid anions or the phospholipids of cellular membranes. Such
molecules typically consist of a hydrophilic carboxyl head group and long hydrophobic
hydrocarbon chains (“tails”). In an aqueous environment, the hydrophobic regions disturb
the network of hydrogen bonds of nearby water molecules, which in turn forfeit translational
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and rotational entropy. The resulting competition between energy and entropy favors the
aggregation of amphiphiles so as to reduce the hydrophobic surface area exposed to water.
This hydrophobic effect is responsible for the formation of monomolecular films at the
water’s surface [Ise92, Eas10].

In contrast to insoluble surfactants for which the number of surface molecules is fixed, the
number of surface amphiphiles is determined by balancing the bulk and surface chemical
potentials. If the concentration of amphiphiles is increased, then (for low concentrations)
the surface tension reduces linearly, but at larger concentrations the surface saturates and
it becomes more energetically favorable for amphiphiles to create new interfaces within
the bulk. Beyond this critical micelle concentration (CMC), amphiphiles self assemble
into a variety of structures that shield the hydrophobic regions from the bulk solvent (see
Refs. [Saf94, Ch. 8], [Isr11, Chaps. 19, 20], [Eas10], and [Boa12, §§7.1, 7.2]).

The morphology of such structures depends on a variety of physical and chemical factors,
including the length and disorder or saturation of the hydrophobic moiety, and electrostatics
of the head group and solvent. However, geometric and steric considerations can provide a
rough understanding of the morphology [IMN76]. Each lipid consists of a long tail of length
` and effective volume v, and a head group that requires an area a within an assemblage.
The geometry of each lipid informs the ultimate shape of the aggregate, which can be
summarized in terms of the packing parameter P = v/`a. For P . 1/3, lipids assume
effective conical shapes and assemble into spherical micelles. Lipids resembling truncated
cones fall in the range 1/3 . P . 1/2 and assemble into cylindrical micelles. As the lipids
shapes become more cylindrical, typical for double-chain lipids, the packing parameter falls
in the range 1/2 . P . 1 and the aggregate morphology tends toward planar bilayers.
This latter category includes biologically relevant phospho- and glycolipids. For these lipid
bilayers the CMC is remarkable low, around 10−6–10−10 M [Isr11, §20.6], and the resulting
membranes are thus quite stable even with a very low surrounding lipid concentration.
Moreover, at physiological temperatures, the lipid leaflets behave as 2D fluids. That is, the
constituents flow and responds to changing surface shape at no cost in energy.

2.1.2 Modeling and mathematical description
To construct a phenomenological model for the above-mentioned categories of soft-matter
surfaces, we take inspiration from the previous chapter on effective field theory. At sufficiently
large length scales, whatever microscopic degrees of freedom conspired to form the fluid
interface or surface become irrelevant. Upon coarse-graining the physical description, these
degrees of freedom may leave their trace in the numerical values of the resulting emergent
macroscopic parameters, but if we seek a universal description of a surface, the existence
of these emergent parameters is effectively independent of the coarse-grained path that
ultimately gave rise to them. By explicitly acknowledging the scale separation and any
symmetry constraints, the path to a macroscopic description is in essence straightforward
(though not guaranteed to be without effort).

In this thesis, we will concern ourselves with fluid surfaces, for which it is assumed that
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the microscopic surface constituents (lipids, etc.) are free to move around and diffuse in
the plane of the surface. The consequence of fluidity is that no point on the surface is
privileged. Instead, the energy of a surface configuration only depends on its geometry and
lacks any memory of previous shapes. The irrelevancies of microscopic degrees of freedom
at large scales informs us the surface thus behaves as a 2D featureless elastic sheet in which
there is no preferred in-plane coordinate system. That is, the mathematical description
of the configuration energy should consist of coordinate-independent, or reparametrization
invariant (RPI) quantities.

The goal then is to construct an effective energy functional out of geometric scalar
invariants. The final step is to order these invariants as a series expansion in some smallness
parameter. The most obvious choice is the ratio of the surface width to its radius of
curvature, which as we will see soon will count the derivatives of a given scalar. To begin,
we first review some relevant concepts of differential geometry. The following treatment
will roughly follow the course of Ref. [Des15], with some additional insight coöpted from
the general relativity literature [Che05], as well as the canonical references [Spi75, dC76].

2.2 Surface geometry
A fluid surface is appropriately modeled as a smooth, two-dimensional manifold embedded
in three-dimensional Euclidean space R3. As a geometric object, it should be completely
characterized by local and global geometric quantities which naturally exist independent
of any prescribed parametrization or coordinate system. However, the arbitrariness of
parametrizations affords us with the choice of any representation that is most convenient for
surface under consideration. So long as one is mindful of the mathematical limitations or
artifacts that may be inherited from a particular parametrization, a thoughtful combination
of coordinate-invariant and coordinate-explicit considerations can yield dividends when it
comes to calculating interesting quantities.
Although it is not always possible to parametrize an arbitrary surface globally, we can

instead cover a surface S ⊂ R3 in a patchwork of submanifolds,
⋃
α Sα = S, such that within

each patch Sα a local two-dimensional coordinate system is defined. As illustrated in Fig. 2.1,
for each patch Sα one constructs a coordinate chart that maps the pair (u1, u2) ∈ Uα ⊂ R2

to a point on the surface by means of a three-dimensional embedding function X : Uα → Sα
so that (u1, u2) 7→ X = X(u1, u2) ≡

(
X1(u1, u2), X2(u1, u2), X3(u1, u2)

)
. Evidently,

among the “atlas” of coordinate charts, two or more associated surface patches may
overlap and must satisfy appropriate continuity and differentiability conditions. Namely,
for two parametrizations X : Uα → Sα and Y : Uβ → Sβ with an overlapping region
W := Sα ∩ Sβ 6= ∅, the composition map Y −1 ◦X :

(
X−1(W) ⊂ Uα

)
→
(
Y −1(W) ⊂ Uβ

)

must constitute a diffeomorphism1 (i.e., reparametrization), and similarly for X−1 ◦ Y .
At each point X on the surface, we can use the mapping to construct two linearly-

1That is, the function f := Y −1 ◦X defines a coordinate transformation such that X = Y ◦ f on the
subset X−1(W) ⊂ Uα. Hence, both X and Y (re)parametrize the patch W ⊂ S.
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Figure 2.1: Illustration of a surface parametrization and local coordinate system. The surface S ⊂ R3

consists of a single patch and is parametrized by (u1, u2) ∈ U ⊂ R2 via the embedding function
X : U → S. From the parametrization one may construct a local coordinate basis {e1, e2, n̂}, where
{e1, e2} spans the local tangent plane TX S and n̂ is normal to the surface. Note that it is not necessary
that e1 · e2 = 0, but ei · n̂ = 0 will always hold.

independent tangent vectors
ei := ∂iX ≡

∂X

∂ui
, (2.1)

where i ∈ {1, 2}, which form a basis in the corresponding tangent plane TX S. Note the
lower placement of the index i, as opposed to the upper indices of ui, reminding us of
its covariant properties under coordinate transformations (see Technical Note 2.2). The
primary motivation for keeping track of covariant vs. contravariant components is that we
ultimately wish to construct coordinate-independent scalars and the invariance of such
scalars is manifest if they consist of contractions strictly between covariant and contravariant
indices of proper vectors and tensors. For example, under a change of coordinates ui → ũi

the two vectors of the contraction2 U iVi pick up mutually compensating Jacobian factors:

Ũ j Ṽj = ∂ũj

∂uk
Uk

∂ui

∂ũj
Vi = δikU

kVi = U iVi. (2.2)

Furthermore we construct a unit vector normal to the surface (i.e. normal to the tangent
plane at each point) via

n̂ := e1 × e2
|e1 × e2|

, (2.3)

and thereby complete a local frame (basis) {e1, e2, n̂} in R3.

2Recall that we use the Einstein summation convention in which repeated indices are summed over.
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Technical Note 2.2: Covariant and contravariant components
The placement of each index serves to remind us of the “type” of component: covariant or contravariant.
These names derive from the transformation properties under a smooth and invertible coordinate
transformation. For example, consider a vector V defined in the tangent space TX S at the point X on
the surface. The tangent space is spanned the basis vectors {e1, e2}, which are not generally orthogonal:
ei · ej ≡ gij 6= δij (see Eq. (2.4)). There does, however, exist a dual inverse basis {e1, e2}, belonging to
the cotangent space T ∗X S, defined such that ei · ej = δji . The vector V can be expanded in either basis:

V = V iei = Vie
i.

Under the coordinate transform ui → ũi, the basis vectors pick up a Jacobian factor

ẽi = ∂X

∂ũi
= ∂X

∂uj
∂uj

∂ũi
= ej

∂uj

∂ũi
. (∗)

Since vectors are coordinate-independent, Ṽ ≡ V and it follows that the components Vi must co-vary
with the change of basis:

Ṽi = Ṽ · ẽi ≡ V · ẽi =
(
Vje

j
)
·
(

ek
∂uk

∂ũi

)
= Vjδ

j
k

(
∂uk

∂ũi

)
= Vj

∂uj

∂ũi
. (∗)

Similarly, the components V i must contra-vary so that the transformations compensate:

Ṽ i = Ṽ · ẽi ≡ V · ẽi =
(
V jej

)
·
(

ek
∂ũi

∂uk

)
= V jδkj

(
∂ũi

∂uk

)
= V j

∂ũi

∂uj
. (∗∗)

The “upstairs–downstairs” notation makes the transformation properties apparent: we denote contravari-
ant components (those that transform like (∗∗)) by upper indices and covariant components (those that
transform like (∗)) by lower indices.

First fundamental form (metric)

In these local coordinates, the basis vectors spanning the tangent plane are not necessarily
orthogonal (nor of unit magnitude). Instead, their dot product satisfies ei · ej =: gij , where
gij is not generally proportional to δij . The deviation from orthogonality, gij , is known as
the first fundamental form or the (induced3) metric tensor. It gets its name “metric” from
the important role it plays in calculating distances. Namely, the infinitesimal Euclidean
distance d`2 between two points X(u1, u2) and X(u1 + du1, u2 + du2) on the surface is
given by

d`2 = [X(u1 + du1, u2 + du2)−X(u1, u2)]2 =
(
ei dui

)
·
(
ej duj

)
≡ gij dui duj . (2.4)

3Of course the ambient embedding space may possess a nontrivial (3D) metric as well, but we take it to
be Euclidean: gµν = δµν , where µ, ν ∈ {1, 2, 3}.
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It should not be surprisingly that the metric also plays an important role in determining
area, as seen by considering the infinitesimal area element

dA = |e1 du1 × e2 du2| = |e1 × e2|du1 du2

spanned by the displacement vectors e1 du1 and e2 du2. Using

|e1 × e2|2 = |e1|2|e1|2 sin2(∠(e1, e2)
)

= |e1|2|e1|2
[
1− cos2(∠(e1, e2)

)]

= |e1|2|e1|2 − (e1 · e2)2 = g11g22 − g12g21

≡ det gij =: g,

(2.5)

we see that the infinitesimal area element is related to the determinant of the metric:

dA = √g du1 du2. (2.6)

Note that the positions of the metric indices in Eqs. (2.4) and (2.5) indicate covariant
components. The contravariant components are given by the inverse metric gij defined
through the inverse basis (see Technical Note 2.2) such that gijgjk = δki . By computing
the Jacobians, it follows that the metric enables raising and lowering of indices, such as4
gijV

j ≡ Vi or Tijkgj` ≡ T `
i k.

Second fundamental form (extrinsic curvature)

The metric alone is sufficient to describe and calculate distances and intrinsic curvature
on the 2D surface. However, it makes no reference to the embedding space and therefore
cannot describe how the surface curves extrinsically. Different surfaces may curve in wildly
different ways in the bulk embedding space but nevertheless have identical metrics. For
example, the surfaces of a cylinder and a plane are both locally Euclidean and thus share
the same “flat” metric, but clearly curve differently in three dimensions.
The metric is constructed out of the local tangent vectors ei = ∂iX which point in the

directions of increasing ui and characterize the “slope” of the surface at a given point. To
further characterize the surface at that point, we might also consider the second derivative
∂i∂jX = ∂iej as a measure of the surface’s curvature. Moreover, projecting the quantity
onto the normal vector should provide the desired measure of the surface’s extrinsic curvature
into the embedding space. Indeed there is another object important enough to warrant the
designation second fundamental form, defined by5

Kij = −n̂ · ∂i∂jX = −n̂ · ∂jei = ei · ∂jn̂, (2.7)

4An explicit example: V = V iei = V iδji ej = V i(gikgkj)ej = (V igik)(gkjej) ≡ Vkek = V .
5The inclusion of the minus sign is a matter of choice. Here, our convention assigns positive curvature

to a sphere with an outward pointing normal vector. That is, the local curvature is positive if the surface
bends away from the normal.
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Figure 2.2: Illustration of principal curvatures. The eigenvectors p1 and p2 of the extrinsic curvature
tensor Kij give the principal directions over which the local curvature is extremal and, together with n̂,
provide a local orthogonal tangent frame. As illustrated in the left figure, the local curvature at each
point is characterized by the eigenvalues k1 and k2, or principal curvatures, where each curvature ki is
the same as a tangent circle in the pi–n̂ plane of radius Ri = |1/ki|. The curvature is positive if the
surface curve along the principle direction locally bends away from the normal vector. Various cases are
illustrated by the six figures on the right. Note that the top row present surfaces of vanishing Gaussian
curvature KG = k1k2. The bottom right surface presents a saddle point, for which k1 and k2 differ in
sign such that KG < 0. If additionally k1 + k2 = 0, then we have a special “symmetric” saddle. Surfaces
consisting exclusively of symmetric saddles are minimal surfaces (K = 0).

where the last equality follows by expanding ∂i(ej · n̂) = 0. This object, also appropriately
referred to as the extrinsic curvature tensor, essentially characterizes the change in the
surface normal over different points on the surface. The extrinsic curvature tensor Kij is
symmetric, as apparent from the first equality, and thus at every point on the surface can
be diagonalized in an orthogonal frame. The associated eigenvectors define the principal
directions over which the curvature is extremal, and their associated eigenvalues are called
the principal curvatures (see Fig. 2.2).
The principal curvatures also find their way into two scalar invariants of the extrinsic

curvature tensor. The first, called the total extrinsic curvature is given by the trace of Kij

and is hence the sum of the principal curvatures, which we denote as k1 and k2:

K := trKij ≡ gijKij = Ki
i = k1 + k2. (2.8)

The second is called the Gaussian curvature, and is given by the determinant of the matrix
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Ki
j = gikKkj , which is the product of principal curvatures:

KG = detKi
j = k1k2. (2.9)

Covariant derivatives and intrinsic curvature

Recall that our goal is to create an independent set of RPI scalars; any multi-index objects
we construct must ultimately be contracted. We can ensure reparametrization invariance
as long as these contractions occur only between true vectors and tensors. However, we
quickly encounter trouble when attempting to construct important multi-index objects,
particularly derivatives, since the measure of distance intervals is itself position dependent.
For example, consider a (coordinate-free) vector V with the expansions V = V iei = Vie

i.
By the product rule, and using the component projection V i = V · ei, we observe that the
derivative

∂jV
i = (∂jV ) · ei + V · (∂jei) (2.10)

produces an extra term that depends on how the coordinates change with position. Although
the components and the basis vectors independently transform as vectors, as does the
derivative index of the object ∂iV (remember, V is coordinate-independent), the “moving
basis” term spoils the transformation. Indeed, under a coordinate change

∂je
i → ∂̃j ẽ

i = ∂̃j

(
∂ũi

∂uk
ek
)

= ∂u`

∂ũj
(∂`ek)

∂ũi

∂uk
+ ∂u`

∂ũj

(
∂2ũi

∂u`∂uk

)
ek. (2.11)

The first term transforms properly (a Jacobian for each index), but the second term clearly
does not.

To restore reparametrization invariance, we instead define a covariant derivative ∇i such
that invariance is again manifest. From Eq. (2.10), it is clear that the quantity ej · ∂iV has
the required properties, so we construct the covariant derivative by simply subtracting off
the misbehaving term:

∇jV i := ∂jV
i + ΓijkV k, (2.12)

where we have introduced the Christoffel symbol of the second kind (or connection) Γijk,
defined here via V · (∂jei) ≡ −ΓijkV k or, equivalently, ∂jei ≡ −Γijkek, with the property6
Γikj = Γijk. Performing similar calculations shows that the covariant derivative acting on
a type (p, q) tensor brings about Christoffel symbols with positive signs for contravariant
components and negative signs for covariant components:

∇kT i1i2...ipj1j2...jq
= ∂kT

i1i2...ip
j1j2...jq

+ Γi1k`T
`i2...ip
j1j2...jq

+ Γi2k`T
i1`...ip
j1j2...jq

+ · · ·+ Γipk`T
i1i2...`
j1j2...jq

− Γ`kj1T
i1i2...ip
`j2...jq

− Γ`kj2T
i1i2...ip
j1`...jq

− · · · − Γ`kjqT
i1i2...ip
j1j2...`

.
(2.13)

6This follows from taking the double covariant derivative of a scalar function φ and applying the
definition (2.12): ∇j∇kφ = ∇j(∂kφ) = ∂j∂kφ− Γijk∂iφ. The symmetry of the derivatives therefore implies
the symmetry of the lower indices.
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The covariant derivative enjoys several useful properties, the first of which is that it is
metric compatible:

∇kgij = 0, ∇kgij = 0, and ∇kg = 0, (2.14)

which can be derived by expressing gij = ei · ej and applying ∂jei = −Γijkek. This implies
that the covariant derivative commutes with the metric and, hence, commutes with raising
and lowering indices. These, together with the index symmetry of Γkij , also allow us to write
the Christoffel symbol explicitly in terms of the metric:

Γkij = 1
2g

k`(∂igj` + ∂jg`i − ∂`gij). (2.15)

Additionally, by virtue of the curvilinear coordinates, the covariant derivatives do not
commute in general,7 but their commutator on vector components provides information
about the surface’s intrinsic curvature:

[∇i,∇j ]Vk ≡ (∇i∇j −∇j∇i)Vk =: Rijk`V `, (2.16)

where Rijk` is the Riemann curvature tensor.8

The named equations and the Theorema Egregium

The tools thus far now allow us to begin relating key quantities to one another. The
following results are of particular importance, as signified by their appellations. First, by
rewriting Eq. (2.7) so that Kij = Kk

i gkj = (Kk
i ek) · ej and using ∇in̂ = ∂in̂, one finds

∇in̂ = Kj
i ej . Weingarten (2.17)

Similarly, one can obtain

∇iej = −Kijn̂. Gauss (2.18)

Furthermore, from the integrability condition ∂i∂jek = ∂j∂iek follow two additional
equations. Namely, expanding the above condition and collecting the components in the n̂
direction gives

∇iKjk −∇jKik = 0, Codazzi–Mainardi (2.19)

whereas the tangential component yields

KikKj` −Ki`Kjk = Rijk`. Gauss (2.20)

Note that the final equation also provides us with an explicit representation of the Riemann

7They do, however, always commute when acting on scalars since ∇iφ ≡ ∂iφ.
8Note that since ∇i and Vk both transform properly as vectors, Rijk` is also a proper tensor.
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tensor in terms of Christoffel symbols,

Rijk` = ∂kΓj`i − ∂`Γjki + ΓmjkΓi`m − Γmj`Γikm. (2.21)

Equation (2.20) is perhaps the most important of the above four named equations, quietly
revealing a deep mathematical truth. The Riemann tensor Rijk`, by way of the Christoffel
representation above, is seen to be to be completely determined by the induced metric.
That is, it is an intrinsic quantity that is invariant under isometric deformations—bending
without stretching—and, moreover, independent of any embedding. On the other hand, the
curvature tensor Kij is by definition extrinsic since it references the ambient embedding
space (R3) via n̂. Yet, there is a direct relationship between the two. A perhaps more
remarkable finding appears once we begin contracting the indices of Rijk`. First, we
construct the Ricci tensor,

Rk` := gikRijk` = KKj` −KjiK
i
`. (2.22)

Then, performing the remaining trace give the Ricci scalar,

R := gj`Rj` = K2 −Kj
iK

i
j = 2KG, (2.23)

where we have recognized the middle combination as the determinant of Kj
i , and thus as

the Gaussian curvature. Hence, we arrive at the remarkable conclusion that the Gaussian
curvature, originally defined via extrinsic quantities, is revealed to be entirely intrinsic.
This is Gauss’s Theorema Egregium.

Finally, there is an additional simplification worth noting that is particular to two-
dimensions. Namely,

Rijk` = KG(gikgj` − gi`gjk), (2.24)

Rij = 1
2Rgij = KGgij , (2.25)

showing that the Gaussian curvature is in fact the only independent component of the
Riemann tensor.9

Monge gauge

At this point, we have determined all that is needed to construct an effective theory of
fluctuating surfaces. However, before proceeding we must discuss a particular surface
parametrization that we will use heavily throughout this thesis. The most common
manifestation of a surface we will encounter will be that which only deviates and deforms
weakly—with no overhangs or bubbles—about a flat plane. In this case, it suffices to

9In general relativity, the quantity Gµν := Rµν − 1
2Rgµ, known as the Einstein tensor, is identified as

proportional to the energy–momentum tensor Tµν . In two dimensions, Gµν ≡ 0 as per Eq. (2.25). In this
sense, 2D gravity—or or rather (1 + 1)D gravity—is often referred to as “trivial.”
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h(x, y)

x

y

S

Spr

Figure 2.3: A surface S parametrized in the Monge gauge. The embedding X : Spr → S describes
each point on the surface by its height h(x, y) above the point (x, y) in the base plane Spr ⊂ R2.

describe the surface by a height profile h(x, y) above some flat reference plane parametrized
by x and y.
In this so-called Monge gauge, illustrated in Fig. 2.3, we express each point X on the

surface S by the embedding graph X = X(x, y) := (x, y, h(x, y)), where the coordinates
(x, y) lie within the region Spr ⊂ R2 defined by the projection of the surface onto the
reference base plane. It is straightforward to see that in this parametrization, or gauge,
the local tangent vectors are given by ex = (1, 0, ∂xh) and ey = (0, 1, ∂yh), and hence the
metric is

gij = δij + ∂ih ∂jh
.=
(

1 + (∂xh)2 ∂xh ∂yh
∂xh ∂yh 1 + (∂yh)2

)
. (2.26)

Accordingly, the metric determinant and invariant area element are given respectively by

g = det gij = 1 + (∇h)2, (2.27)
dA =

√
1 + (∇h)2 dx dy, (2.28)

where ∇ ≡ (∂x, ∂y) is the usual gradient operator in Euclidean space (R2). Continuing
along, we apply Eq. (2.3) with Eq. (2.5) to give the normal vector,

n̂ = ex × ey√
g

= −∇h+ êz√
1 + (∇h)2

, (2.29)
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which generates the curvature tensor via Eq. (2.7):

Kij = − ∂i∂jh√
1 + (∇h)2

. (2.30)

Finally, we take the trace and determinant to obtain the total extrinsic and Gaussian
curvatures respectively,

K = −∇ ·
(

∇h√
1 + (∇h)2

)
, (2.31)

KG = det[∂i∂jh]
[1 + (∇h)2]2

. (2.32)

If the surface deformations are sufficiently weak, meaning that the surface gradients
|∇h| � 1, then we may expand and truncate the above equations in small gradients.
In this linearized Monge gauge—which will prove valid in many of our applications—the
determinant factor in the area element becomes a squared gradient,

√
g ≈ 1 + 1

2(∇h)2, (2.33a)
and the curvatures reduce to

K ≈ − tr[∂i∂jh] = −∇2h, (2.33b)
KG ≈ det[∂i∂jh]. (2.33c)

2.3 Helfrich theory
As we mentioned early on, at the mesoscopic scale much of the local, microscopic physics
disentangles from the aggregate behavior of the whole surface or membrane. The physical
and chemical confluence of interactions among the constituents that make up the surface
are not always resolvable, nor do their microscopic descriptions necessarily provide useful
information or insight into the larger-scale collective phenomena. Instead, their collective
effects dictate the emergence of patterns and structure, and ultimately determine the values
of the associated—and more universal—material parameters. From this perspective, and in
the spirit of the previous chapter, we will study the fluctuating surface system from the
top down rather than bottom up. That is, we will attempt from the beginning to capture
emergent properties from phenomenological considerations and symmetry principles. A
particularly insightful construction that adheres to this philosophy is provided by Deserno
in Ref. [Des15], which we will follow closely.

We begin with a reminder of our primary physical consideration: Fluidity of the surface
implies that its energetic description cannot depend on internal degrees of freedom and,
moreover, that the surface cannot retain memory of previous shape configurations. The
corresponding mathematical statement is that the surface’s (free) energy must be invariant
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under reparametrizations (diffeomorphisms) of its internal coordinates and, furthermore,
depend only on the current geometry. Hence, our challenge is to construct an effective
energy functional that consists of only geometric invariants.

Luckily, in the previous section we discovered that all RPI scalars can be constructed out
of combinations and of the total extrinsic curvature K, the (intrinsic) Gaussian curvature
KG, and covariant derivatives ∇i acting on the two curvatures. However, to determine the
relevancy of any given combination, we also need account for dimensionality and scaling.
From the definitions (2.7), (2.8), and (2.9), it is clear that the two curvatures scale as
[K] ∼ L−1 and [KG] ∼ L−2. Additionally, each additional derivative contributes another
factor of L−1. We make the assumption that the curvatures, and by extension the derivatives
of the curvatures, are small so that the length scales over which the surface varies are
relatively large. In this sense, we may construct an energy functional as a power series in
inverse length. As per the EFT formalism (see for instance Section 1.2), this series is to be
constructed from a complete “operator basis” in which redundancies are eliminated. Since
many terms that can be constructed from K, KG, and their (covariant) derivatives are
related or equivalent up to boundary terms via integration by parts, the challenge is to first
find a complete, independent set of scalars. Such a task has been completed by Capovilla
et al. [CGS03] up to L−4 (where they use R instead of KG), and hence the most general
effective Hamiltonian for a surface S follows as [Des15]

H[S] =
∫

S
dA
{
C(0) + C(1)K + C

(2)
1 K2 + C

(2)
2 KG + C

(3)
1 K3 + C

(3)
2 KKG

+ C
(4)
1 K4 + C

(4)
2 K2KG + C

(4)
3 K2

G + C
(4)
4 (∇iK)(∇iK) +O(L−5)

}
,

(2.34)

where the index n in each coefficient C(n) indicates the term’s overall scaling L−n.
Note that since the area element also introduces a scaling factor L2, the first energy term

will also scale as ∼ L2 and is therefore very relevant. Similarly, the second energy term
will scale as ∼ L, but the next two are marginal (∼ L0). Higher-order energy terms scale
as higher powers of inverse length, so they become less relevant under coarse gaining so
they may be neglected to good approximation. Finally, we make one further alteration by
relabeling the coefficients via

C(0) = σ + 1
2κK

2
0 C(1) = −κK0

C
(2)
1 = 1

2κ C
(2)
2 = κ̄,

(2.35)

which puts the functional into the form of the celebrated Helfrich Hamiltonian [Hel73],

H[S] =
∫

S
dA
[
σ + κ

2 (K −K0)2 + κ̄KG

]
, (2.36)

where σ is the surface tension, K0 is the spontaneous curvature, and the two curvature
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moduli κ and κ̄ are known respectively as the bending rigidity and the Gaussian modulus
(or saddle splay modulus).

Surface tension. The first phenomenological parameter σ in the Helfrich Hamiltonian is the
surface tension and characterizes the dominant free-energy cost per area of creating
the fluid surface or interface. The natural interpretation of σ is a (constant) material
parameter conjugate to the area, as is appropriate for fluid–fluid interfaces, but it
may alternatively be interpreted as a Lagrange multiplier fixing the total area (i.e.,
a type of boundary condition). The proper interpretation for fluid lipid membranes
is more subtle, depending on, for example, whether the area per lipid is held fixed,
and does not necessarily correspond the expansion modulus of the membrane (see
Refs. [Des15] and [Saf94, Ch. 6]).

Spontaneous curvature. The second parameter K0 is the spontaneous curvature and, as
its name suggests, it indicates a preferred global curvature of the surface and breaks
the n̂→ −n̂ symmetry that would be required for a surface with indistinguishable
sides. This could arise, for example, from an unbalanced curvature tendency between
lipid bilayer leaflets, or adsorption of flexible polymers on one side. Note also that, as
per C(0) in Eq. (2.35), K0 further contributes a “spontaneous tension” [Lip13, Lip14].

Curvature moduli. The remaining curvature terms are multiplied by the bending rigidity κ
and the Gaussian curvature modulus κ̄ (also referred to as the saddle splay modulus).
These two curvature moduli are not entirely independent, as the positive definiteness
of the energy functional requires the inequality −2κ 6 κ̄ 6 0 to hold [Des15].10 The
bending rigidity characterizes the energy penalty for deviations from the preferred
curvature K0. Similarly, κ̄ characterizes the energy cost of nonzero Gaussian curvature.
However, the term involving the Gaussian curvature, by virtue of the Gauss–Bonnet
theorem (see Technical Note 2.3) actually integrates to a topological invariant and a
boundary term and, except for extreme events such membrane fission and fusion, is
typically a constant and thus has no influence.

Variations and the shape equation

A functional variation of the Helfrich Hamiltonian (2.36) leads to the associated Euler–
Lagrange equation, or shape equation, whose solutions describe the ground state (zero
undulations) surface shapes. The variation is performed as an infinitesimal change in the
embedding function,

X →X + δX, (2.37)

where the variation δX can be decomposed into components normal and tangential to the
surface:

δX = νn̂ + εiei. (2.38)
10This argument is also presented by Safran [Saf94, §6.3], but his final result is incorrect.
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Technical Note 2.3: Gauss–Bonnet theorem
The Gauss–Bonnet theorem states that for a multiply connected surface patch S with boundaries ∂S,

∫

S
dAKG = 2πχ(S)−

∮

∂S
dAkg,

where KG is the Gaussian curvature, kg is the geodesic curvature of the boundary curves ∂S, and χ(S) is
the Euler characteristic of the surface patch [Spi75, Kok06]. The Euler characteristic χ(S) = 2− 2g(S)
is a topological invariant, depending only on the genus g(S) (number of “handles”) of the surface patch.
The geodesic curvature kg of a point on the boundary curve ∂S is defined as the curvature of ∂S as
projected onto the surface’s tangent plane at that point. It essentially quantifies how far off the curve is
from a geodesic—the generalization of a straight line on a curved surface. In this thesis, we will only
consider surfaces with fixed topology and, furthermore, with boundaries that are either rigid or infinitely
far away. Under these circumstances, the integral over the Gaussian curvature is constant and thus has
no influence over the surface energetics.

To first order, the tangential variation is equivalent to a reparametrization of the surface’s
local coordinates, which we have already required to be a manifest symmetry. That is, the
tangential variation will provide no additional information regarding the bulk of the surface;
however, its inclusion will generate boundary terms (if there exists surface boundaries) and
thus provide information regarding natural boundary conditions. The normal component,
on the other hand, is a more useful variation.

In many cases, for instance when dealing with vesicles, one might also include a Lagrange
multiplier term −PV to fix the volume, similar to how σ can be interpreted as fixing the
area. With this term included, one may perform the rather tedious process of passing the
variation through the various scalars, and ultimately arrive at the fourth-order nonlinear
partial differential shape equation [ZcH89, CGS03, Des15]

κ
{
−∆K + 1

2(K −K0)
[
(K −K0)K − 2K(K − 2KG)

]}
+ σK = P, (2.39)

where ∆ ≡ ∇i∇i is the covariant Laplace operator. Uncovering the subtle physics hidden
in the shape equation has been a major research thrust for many years [Lip91, Sei97,
OYLXYZ99]. Note that the “brute force” approach to the surface variation is not the only
route to the shape equation. An alternative is to enforce all the geometric constraints by a
set of Lagrange multiplier terms Hc [Guv04],

Hc =
∫

S
dA
[
f i · (ei −∇iX) + λi⊥(ei · n̂) + λn(n̂2 − 1)

+ λij(gij − ei · ej) + Λij(Kij − ei · ∇jn̂)
]
,

(2.40)

so that all quantities can be varied independently. This leads to the elegant stress and
torque tensor formalism [Guv04, Mül07, Des15].
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2.4 Fluctuating surfaces
For fluid surfaces in the zero temperature limit, the equilibrium surface shapes are governed
by the shape equation (2.39). At finite temperature, however, the fluid surface can exchange
energy with its environment and therefore explore a larger configuration space that includes
more energetically costly deformations. The statistical properties of a fluctuating fluid
surface at thermodynamic equilibrium is encoded in the partition function which is given
formally by the sum over all spatial configurations S of the surface:

Z =
∑

S
e−βH[S], (2.41)

where β = 1/kbT as usual. Although we spent effort constructing the surface Hamiltonian to
be coordinate-free, to actually perform the partition sum we must choose a parametrization.
Note, however, that any given surface configuration possesses several (infinitely many)
possible parametrizations, and a naïve sum over all possible surfaces would be (infinitely)
redundant and problematic. Therefore we must instead ensure that the sum only runs over
all possible distinct surfaces. To do so, we re-express the partition sum as a functional
integral over surface embeddings,

Z = N
∫
D[X] e−βH[X], (2.42)

where N is some normalization, and place restrictions on the functional measure D[X].

Gauge fixing and the functional measure

The functional measure should satisfy a few natural conditions, the first being reparametriza-
tion invariance. We also require that it be local (i.e., widely separated deformations should
be independent), for otherwise, large-distance correlations would necessitate the inclusion of
additional degrees of freedom and would therefore correspond to a different physical problem
[Dav]. Furthermore, there must be a short-distance cutoff to account for the breakdown
of the geometric continuum theory at small scales. Finally, we have the above-mentioned
requirement that only distinct surfaces be considered.
To handle the latter condition, we follow the same approach as used in the functional

quantization of gauge theories [Dav, IZ05]: Treat the measure D[X] as reparametrization
invariant and sum over all configurations. Pick out a “gauge slice” through some gauge-fixing
condition and transform the partition sum as an integral over the gauge slice in which each
representative configuration is weighted by the volume of its equivalence class.
Throughout the remainder of this thesis, we will work in the Monge gauge, which is a

special case of the slightly more general normal gauge [CLNP94, Dav] in which surface
configurations X(u) are expressed as deviations from some fixed reference surface X0(u):

X(u) = X0(u) + h(u)n̂0(u), (2.43)
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where u ≡ (u1, u2) are the local coordinates of the reference surface. The corresponding
gauge-fixing condition is expressed as

Fi(X(u)) = ei,0(u) ·
[
X(u)−X0(u)

]
. (2.44)

To enforce reparametrization invariance, we note that the infinitesimal change of coordinates
ui → ũi = ui + εi(u) has the effect of translating X(u) tangentially along the surface,

X(u)→Xε(u) = X(u) + εi(u)∂iX(u) = X(u) + εi(u)ei(u). (2.45)

This change, however, is simply a reordering of points along the surface without changing
the shape (a diffeomorphism) and, hence, should not be counted separately.
The infinitesimal vectors εi(u) are the generators of diffeomorphisms and therefore

characterize the equivalence class of our chosen gauge slice. The (infinite) “volume” of this
equivalence class can by expressed formally as

VDiff =
∫
D[ε] ≡

∫ (∏

u

√
g(u) d2ε(u)

)
, (2.46)

where the appearance of
√
g(u) ensures the covariance of the measure, and the product is

thought of as being taken over a grid of mass points on the surface such that each grid cell
size occupies equal area in the bulk 3D space. Note that the grid cells in coordinate space
are not generally going to be of equal area. We will return to this complication shortly. In
what follows, we will let the u dependence of each term be implied without always explicitly
notating it.
With the above details in place, we may now carry out the gauge-fixing procedure.

Following Cai et al. [CLNP94], we define the Faddeev-Popov determinant Jf [X] as the
formal resolution of the identity:

1 ≡ Jf [X]
∫
D[ε] δ[Fi(Xε)], Jf [X] = det

(
δFi(Xε)
δεj

∣∣∣∣
ε=0

)
, (2.47)

where the delta functional enforces the gauge constraint.11 We now plug this into the
functional integral (2.42) and find

Z = N
∫
D[ε]

∫
D[X] e−βH[X]Jf [X] δ[Fi(Xε)]

=
(
N
∫
D[ε]

)∫
D[X] e−βH[X]Jf [X] δ[Fi(X)]

= N

∫
D[X] e−βH[X]Jf [X] δ[Fi(Xε)]. (2.48)

11The idea here is to generalize the familiar 1D identity 1 = |f ′(x0)|
∫

dx δ(f(x)), where f(x0) = 0.
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Between the first and second lines, we used the reparametrization invariance of the measure,
Hamiltonian, and determinant and transformed X →Xε. Since all the functional arguments
are dummy variables with respect to the functional integration, we then simply relabeled
back to X. The third line follows from Eq. (2.46) and absorbing the constant volume into
the normalization.
Instead of attempting to directly compute the functional determinant of Eq. (2.47), we

may instead employ Eq. (2.46) and use the composition property of the delta function:

1
Jf [X] =

∫ (∏

u

√
g d2ε

)
δ[Fi(Xε)] =

∫ (∏

u

√
g d2ε

)
δ(2)(ε)

det(Jij)
, (2.49)

where Jij is the Jacobian in the normal gauge,

Jij = ∂Fi(Xε)
∂εj

∣∣∣∣
ε=0

= ei,0 · ej . (2.50)

The Faddeev–Popov determinant is therefore

Jf [X] =
∏

u

det(ei,0 · ej)√
g

. (2.51)

Finally, we wish to integrate out components tangential to the surface and leave the
partition sum as a functional integral over only the height function h(u). To this aim, we
express an arbitrary point X from the reference surface as

X(u) = X0(u) + h(u)n̂0(u) + vi(u)ei,0(u), (2.52)

where vi is a tangential displacement and not a reparametrization. In this case, the gauge
constraint (2.44) becomes Fi(X) = ei,0 · ej,0vj = 0. Similar to Eq. (2.46), we use the
reference metric to enforce the covariance of the measure D[X]. Applying it to Eq. (2.48)
results in

Z = N

∫ (∏

u

√
g0 d2v dh

)
Jf [X] δ[ei,0 · ej,0vj ] e−βH[X]

= N

∫ (∏

u

√
g0 d2v dh

)(∏

u′

det(ei,0 · ej)√
g

)
δ(2)(v)

det(ei,0 · ej,0) e−βH[h]

=
∫ (

N
∏

u

dh
)(∏

u′
n̂ · n̂0

)
e−βH[h]‘

=
∫
Dh
(∏

u

n̂ · n̂0

)
e−βH[h], (2.53)
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where we used det(ei,0 · ej) = (e1,0 × e2,0) · (e1 × e2) = √g0n̂0 · √gn̂. Note that in the
Monge gauge, n̂0 = êz so the corresponding measure factor is n̂ · n̂0 = g−1/2.

An additional measure factor

The Faddeev–Popov contribution can alternatively be expressed as an energetic contribution
to the Hamiltonian via

∏
u g
−1/2(u) = e−βHFP , where

HFP = 1
2β
∑

u

ln g(u) (2.54)

and the sum is assumed to be taken over surface grid cells with equal area in the embedding
space. However, in normal gauges the physical surface area is generally larger than the
surface area of the reference, unless the two coincide. Hence, the grid of the reference
surface must change as the physical surface fluctuates so as to maintain fixed grid cell area
of the physical surface. Alternatively, if we were to compensate for the fluctuating grid
cell area, we could fix the reference grid. This is often more desirable, since a fixed grid
allows for efficient calculational techniques such as Fourier transforms. One accounts for the
missing reference area by including an additional measure factor e−β∆H, which is analogous
to the Liouville correction in string theory [För86, Dav88, DK89, CLNP94].
It is worth emphasizing that fixing the reference grid essentially amounts to integrating

out the local fluctuating degrees of freedom. This is reminiscent of the previous chapter in
which we “integrated out” the local degrees of freedom at the boundary of a conductor by
subsuming their effects as a correction ∆U to the conductor-free energy functional. From
the EFT perspective, we (further) coarse grain the description of a fluctuating surface by
writing the energy functional with respect to a fixed reference grid and account for the
fluctuation contribution of the grid through the correction ∆H. The functional form of ∆H
can be constructed via symmetry arguments, and the concomitant Wilson coefficients may
be matched via appropriate renormalization conditions. Indeed, this is the essence of how
the measure correction was dealt with in Ref. [CLNP94].

2.4.1 Harmonic approximation
As we alluded to previously, we will primarily work in the linearized Monge gauge, in
which the energy is truncated to leading order in a small-gradient expansion. Since we will
consider fluctuations about a flat surface, the spontaneous curvature K0 = 0. Furthermore,
we do not wish to consider topological changes, so the Gaussian curvature term can be
ignored. With this specialization in mind, and taking (x, y, h(x, y)) ≡ (x, h(x)), we apply
the small gradient expansion via Eqs. (2.33) to put the Helfrich Hamiltonian (2.36) into
the form

H0[h] = σA+ 1
2

∫
d2x

[
σ(∇h)2 + κ(∇2h)2], (2.55)
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where A is the area of the reference plane. We will refer to the above form as the harmonic
approximation since, similar to a harmonic oscillator, the energy is quadratic in h. This
form allows for a rather simple treatment of thermal fluctuations, as we shall see.
To begin, we first make a few observations about the functional (2.55). First, what

one measures should actually be the energy difference E[h] := H0[h] − σA from the flat
configuration. Second, the functional enjoys both rotational symmetry in the plane and
translation symmetry in the vertical direction. This latter symmetry, h → h+ const., is
of particular importance. In particular, by choosing the position of the base plane, we
technically break the (continuous) translation symmetry. However, the residual symmetry
inherent in Eq. (2.55) indicates that long-wavelength fluctuations will cost vanishingly small
energy and hence may build up without bound and potentially spoil long-range order (i.e.,
flatness).
To study the effects of thermal fluctuations, it helps to first put the energy into a more

convenient form. Assume for a moment that the base plane spans a frame of size L× L
and, for convenience, that the boundaries are periodic. Following Ref. [Des], we decompose
the height function as a sum over Fourier modes:

h(x) =
∑

q

hq eiq·x, q = 2π
L

(
nx
ny

)
(2.56)

for integers nx and ny. The complex basis satisfies the completeness relation
∫

d2x e−i(q−q′)·x = L2δq,q′ . (2.57)

As usual, since h(x) is real, it follows that h−q = h∗q.
We now apply the Fourier transform to the energy functional. The various derivatives

simply bring down factors of q via ∇(eiq·x) = iq eiq·x. After recognizing that the spatial
integral produces δq,−q′ by the completeness relation, we ultimately find that the energy
decouples into a sum over modes,

E = L2

2
∑

q

|hq|2
(
σq2 + κq4) =:

∑

q

Eq. (2.58)

This means each fluctuating degree of freedom may be treated independently. In particular,
the equipartition theorem informs us that the energy of each harmonic mode 〈Eq〉 = kbT/2.
We solve for the fluctuation spectrum by rearrangement, giving

〈|hq|2〉 = kbT

L2(σq2 + κq4) . (2.59)

Amplitude of fluctuations. Equipped with the fluctuation spectrum (2.59), we may now
quantify global fluctuation properties of the surface. First, on a mode per mode basis,
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Eq. (2.59) informs us that the quantity
√
σ/κ =: qc defines a crossover wave vector such

that modes q � qc are dominated by surface tension and modes q � qc are dominated by
bending energy. From a real-space perspective, the quantity Lc :=

√
κ/σ defines a crossover

length scale. Length scales smaller than Lc (large q) are dominated by bending energy,
whereas larger length scales (small q) are dominated by tension. We will consider surfaces
in these three limits: (i) general (finite σ and κ), (ii) tension dominated (κ→ 0), which is
applicable to capillary-type surfaces,12 and (iii) bending-dominated (σ → 0), which applies
to typical fluid lipid membranes.
Let us now compute the average fluctuation amplitude across the entire surface. The

expectation value has two ingredients: the positional average within each configuration, and
the thermal average over all permissible configurations. The in-plane positional average per
configuration is the straightforward weighted integral

h2 := 1
L2

∫
d2xh2(x). (2.60)

It has the Fourier expansion

h2 = 1
L2

∫
d2x

∑

q,q′
hqhq′ ei(q+q′)·x = 1

L2

∑

q,q′
hqhq′ L

2δq,−q =
∑

q

|hq|2, (2.61)

where we have again applied the completeness relation (2.57). Notice that because of the
translation invariance of the integral, the Fourier modes again decouple. The subsequent
thermal average can therefore be written in terms of the fluctuation spectrum (2.59), giving

〈h2〉 =
∑

q

〈|hq|2〉 =
∑

q

kbT

L2(σq2 + κq4) . (2.62)

Finally, we approximate the mode summation by taking the the continuum limit
∑

q →
(L/2π)2 ∫ d2q. We cut off the long wavelength modes according to the system size, qmax =
2π/L. Furthermore, we introduce a small wavelength cutoff qmin = 2π/a, where a is
comparable to the molecular length scale and relates to the surface thickness. Performing

12 This also applies to the domain wall solution of Technical Note 2.1. To see this, consider a small
deviation h(x‖) above each point x‖ = (x, y) of the flat interface so that φdw(z)→ φdw(z − h). In this case
the gradient term of the (mean field) free energy expands as [∇φdw(z − h)]2 = [φ′dw(z − h)]2

[
1 + (∇‖h)2].

The translation by h leaves the z-integral unaffected and it follows that the energy difference reduces to the
harmonic form:

∆Fdw[φdw(z − h)]− σA =
∫

d2x‖
c

2(∇‖h)2
∫ ∞
−∞

dz
[

dφdw(z − h)
dz

]2
=
∫

d2x‖
c

2(∇‖h)2 wφ
2
∗

3c

=
∫

d2x‖
1
2(∇‖h)2

(uw
3 φ4

∗
)

=
∫

d2x‖
σ

2 (∇‖h)2.
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the integration gives

〈h2〉 ≈
∫ d2q

(2π)2
kbT

(σq2 + κq4) =
∫ 2π/a

2π/L

dq
2π

kbT

q(σ + κq2)

= kbT

4πσ ln
(

4π2κ+ σL2

4π2κ+ σa2

)
. (2.63)

We now specialize to the three limits. For the general case, the above expression can be
simplified further by expanding for a/L� 1 and retaining only the dominant term. The
other two limits must be applied to Eq. (2.63) directly. After the required manipulations,
we obtain

〈h2〉 ≈





kbT

2πσ ln
(
L

2π

√
σ

κ

)
, general (a/L� 1) (2.64a)

kbT

2πσ ln(L/a), tension dom. (κ = 0) (2.64b)
kbT

16π3κ
(L2 − a2), bending dom. (σ = 0) (2.64c)

The above expressions reveal several significant consequences, the most profound being
that in all three cases, the amplitude of undulations increases with system size. That is,
for increasing system size, there is no long-range positional order ; the average position of
the surface becomes less and less well defined. This finding is a manifestation of a more
general principle known as the Mermin–Wagner–Hohenberg theorem [MW66, Hoh67], which
states that no spontaneous breaking of a continuous symmetry occurs for systems with
short-range interactions in dimensions d 6 2. An important corollary, however, is that in
the lower critical dimension dc = 2, a phase transitions can occur in special cases—such as
the formation of a fluid interface—but at the expense of dispensing with true long-range
order [Kar07].

Although we demonstrated that asymptotically flat surfaces appear not to exist in three
dimensions, let us put the results (2.64) into perspective. At least in the first two cases,
the average undulation amplitude increases without bound, but it does so very slowly and
hence exceptionally large surfaces are required to detect appreciable fluctuations. On the
other hand, fluctuations are considerable for bending-dominated surfaces (e.g., fluid lipid
membranes). For example, at T = 20 ◦C the thermal energy is kbT ≈ 4 pN · nm. The surface
tension of typical capillary surfaces (liquid–air interfaces) ranges between σ ≈ 20–80 mN/m
(see Ref. [Jas72] for a comprehensive list), and a typical fluid lipid membrane possesses
a bending modulus of κ ≈ 20 kbT [Nag13]. Substituting these values into Eq. (2.64) and
taking the square root provides us with the root mean square (rms) fluctuation amplitudes,

hrms ∼
{

(1.8–0.9Å)
√

ln(L/a), tension dom. (σ ≈ 20–80 mN/m, κ = 0)
L/100, bending dom. (σ = 0, κ ≈ 20 kbT )

(2.65)
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For tension dominated surfaces, we see that the interface is exceedingly flat. For instance,
taking a system size of L ≈ 10 cm and a cutoff of a ≈ 1 nm yields an rms value of only
hrms ∼ 3.8–7.7Å! On the other hand, the rms amplitude for a bending dominated surface is
always about 1% of the system size which, although relatively smooth, is not indiscernible.
Typical membranes with lateral extents on the order of 10 µm will have hrms ∼ 100 nm and
indeed can be seen to “flicker” [BL75, FN91].

Orientational order. Apart from long range positional order of a fluid surface, we may
also ask how thermal fluctuations affect long range orientational order. Accordingly, we
examine the average deviation of the surface normal from the vertical defined by the base
plane. This will in a sense provide a measure of the surface roughness.
To begin, we compute the general deviation from vertical, which for small gradients

reduces to
n̂(x) · êz = 1√

1 + (∇h)2
≈ 1− 1

2(∇h)2. (2.66)

The expansion in Fourier modes follows just as before, with the positional average of the
gradient term given by

(∇h)2 = 1
L2 d2x

∑

q,q′
(−q · q′)hqhq′ ei(q+q′)·x =

∑

q

q2|hq|2. (2.67)

Applying the equipartition theorem to the Fourier amplitudes via Eq. (2.59) and passing to
the continuum limit, we find the average deviation to be

1−
〈
n̂(x) · êz

〉
≈ 1

2
∑

q

q2〈|hq|2〉 ≈
1
2

∫ d2q

(2π)2
kbT

σ + κq2

= 1
2

∫ 2π/a

2π/L

dq
2π

q kbT

σ + κq2 = kbT

8πκ ln
[(

L

a

)2( 4π2κ+ σa2

4π2κ+ σL2

)]
. (2.68)

Finally, we specialize to three limits:

1−
〈
n̂(x) · êz

〉
≈





kbT

4πκ ln
(

2π
a

√
κ

σ

)
, (a/L� 1) (2.69a)

π

2
kbT

σa2
[
1− (a/L)2], (κ = 0) (2.69b)

kbT

4πκ ln(L/a), (σ = 0) (2.69c)

In the first two cases, we observe that the orientational deviations quickly approach fixed
values. Provided the constants evaluate to appreciably less than one—which is also required
for the validity of the small gradient expansion—this implies that both surface types possess
long range orientation order. For a bending dominated surface, the deviations increase with
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system size, but logarithmically so. This technically means the surface does not possess
long range orientational order, but only past a certain size. The lateral extent past which
the assumption of a flat surface with no overhangs breaks down is known as the persistence
length ξp. Here, we estimate

ξp ∼ a e4πκ/kbT . (2.70)

Interestingly, from a different approach Helfrich [Hel85] calculated maximum excess area
due to undulations area before which bending energy loses out over entropy, and the square
root of his result matches Eq. (2.70).

A somewhat better measure of surface flatness comes not from the deviations from vertical,
but rather the orientation angle between distant points, given by n̂(x) · n̂(x′) = cos θ. After
a slightly more involved calculation [Boa12, §8.3], one finds twice the values of Eq. (2.69)
(also with the replacement L = |x − x′|). Allowing the correlation to vanish gives the
de Gennes–Taupin [dGT82] persistence length

ξp ∼ a e2πκ/kbT . (de Gennes–Taupin) (2.71)

Using a more detailed renormalization group approach, Peliti and Leibler [PL85] obtained
a result that amounts to three times Eq. (2.69c) (see also the next section):

ξp ∼ a e4πκ/3kbT . (Peliti–Leibler) (2.72)

Note that the expressions (2.69) also provide a measure for (twice) the squared gradient,
〈(∇h)2〉, and hence reveal the validity of the small gradient expansion. However, all the
values depend on the cutoff a, and hence may provide questionable quantitative information.
For example, the surface tension of a water–air interface at 20 ◦C is σ ≈ 73 mN/m and,
together with the thermal energy kbT , defines a length scale

√
kbT/σ ∼ 2Å which obviously

competes with the cutoff. Instead of fixing the cutoff, we may instead ask how the gradient
varies when the cutoff is altered. If we increase the cutoff by a→ λa, and correspondingly
“integrate out” the smaller scale physics, the surface description essentially becomes “grainier.”
To restore the description’s original resolution, we must now rescale all the physical lengths
via L → λL, x → λx, and h → λh. Applying this “coarse-graining and rescaling”
procedure13 to Eqs. (2.69), we see that the (squared) gradient of a tension dominated
surface decreases under coarse-graining as ∼ 1/λ2. That is, the small gradient expansion
becomes more accurate. Similarly, for a surface with finite σ and κ, the squared gradient
also decreases, though very slowly and additively, by −(kbT/2πκ) lnλ. Finally, for a bending
dominated surface, the gradient is seen to be invariant under coarse graining—its roughness
is self-similar or fractal.

13A third step would be to notice that rescaling alters the fluctuation spectrum and hence the “contrast.”
To restore contrast, one then introduces a multiplicative factor to absorb the discrepancy and thereby
renormalize the quantity. This conceptual description of the renormalization group procedure is outlined in
Kardar’s excellent book [Kar07, Ch. 4].
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2.4.2 Nonlinearities and renormalization
We conclude this chapter with a brief discussion of the nonlinear corrections to the harmonic
approximation, and the renormalization of the tension and bending moduli due to thermal
fluctuations. In the previous discussion, we observed that for a bending dominated surface
(membrane), upon increasing scale fluctuations compound and wrinkle the surface up to
a certain scale (the persistence length), after which the concept of surface flatness breaks
down. Physically, bending the membrane costs energy—which is characterized by κ—and
for large enough membranes the overall energy of thermal fluctuations wins out over the
energetic cost of bending [dGT82]. In this sense, the membrane can be thought of as
softening at larger scales (or higher temperatures). From an alternate perspective, one
may posit that the entropic energy may be absorbed into the membrane description as
a negative surface energy. In particular, due to the manner in which the entropic energy
emerges mathematically, it may be absorbed into the definition of the bending modulus κ.
That is, κ→ κ(T, L, a) gets renormalized according to thermal and spatial scales.

One may regard the renormalization procedure as integrating out the thermal fluctuations
from the energetic description of the surface. It is not clear a priori, however, that the
resulting entropic contributions can be absorbed into the couplings. Indeed, the previous
heuristic argument was based on the harmonic approximation, but the elastic moduli of the
Helfrich Hamiltonian multiply quantities that are highly nonlinear in h and its derivatives.
Moreover, the large scale softening is an inherently long wavelength phenomena, but it is
modified by short wavelength fluctuations. Nonlinearities must be integral to this effect, as
Fourier modes decouple in the harmonic approximation. The situation is further complicated
by the amendments introduced by the functional measure.
Owing much to these subtle issues, there has been an interesting disagreement in the

literature as to how the moduli renormalize. Following Ref. [Hel87], we summarize the
results for the bending rigidity as

κ(T, L, a) = κ− α kbT

4π ln(L/a), (2.73)

with a being inversely proportional to the short wavelength (“ultraviolet”) cutoff. The
parameter α accounts for the differing results among various authors. Helfrich [Hel85, Hel87],
and later Förster [För87], derived Eq. (2.73) with α = 1. Other authors found α = 3,
including Peliti and Leibler [PL85], Förster [För86], and Kleinert [Kle86, Kle89]. This result
was further verified by a variety of techniques [CLNP94, GK96, BKS99, SZ05]. In contrast,
Helfrich and Pinnow [Hel98, PH00] also obtained α = −1 (meaning the membrane stiffens)
by constructing an alternative functional in which the local mean curvature is promoted to
the fundamental integration measure with the aim of respecting in-plane incompressibility.14
Similarly, several authors have considered the renormalization of the surface tension σ

in the presence of nonzero bending rigidity. It turns out that the surface tension does not
14It should be noted that this restriction may be problematic. For example, Cai and Lubensky [CL95a]

found that a membrane can never be considered as incompressible at long length scales.
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alter the renormalization of κ, but the curvature renormalization does induce a surface
energy even if one begins with σ = 0 before integrating out fluctuations. Indeed, from the
measure factor (2.54) in the gradient expansion, it should be apparent that a tension-like
term should develop. Like before, we may summarize the results as

σ(T, L, a) = σ + α′
kbT

4π
σ

κ
ln(L/a), (2.74)

where the parameter value α′ = 1 was obtained by Refs. [För86, DL91, CLNP94, BKS99,
SZ05], and α′ = 3 by Refs. [PL85, Kle86]. As pointed out in Ref. [BKS99], the differences
found in Refs. [PL85, Kle86] can be attributed to beginning with a tensionless membrane,
only to have a tension develop due to thermal fluctuations.

We close by speculating that this issue, though worthy of further investigation, is somewhat
illusory and misleading—a sentiment also put forth in the closely related context of quantum
gravity (see, for instance, [Ham09, § 2.4]). The primary difficulty appears to stem from
attempting to properly handle the short-distance cutoff in a covariant way. For example,
the continuum limit of the Faddeev–Popov contribution Eq. (2.54) becomes the integral

HFP →
ρ

2β

∫
d2u ln g(u), (2.75)

where the factor ρ essentially represents the density “Ndof/A” of degrees of freedom per
area. For a discretized grid, Ndof counts the number of permissible wavevectors per cell
and may be approximated by replacing the grid Brillouin zone by a circular zone of equal
area [CL95b, §5.8]

ρ = 1
A

∑

q∈B.Z.
≈
∫ Λ

0

d2q

(2π)2 , (2.76)

where Λ ∝ 1/a is some ultraviolet cutoff. As discussed in Section 2.4 (page 60), one
must account for the fluctuating area of the grid cells to avoid a mismatch of degrees of
freedom in the surface description. By going to the continuum limit, this constraint must be
nontrivially enforced by the cutoff Λ or, alternatively, be accounted for by an appropriate
counterterm (i.e., the Liouville correction).

Based on our remarks in the previous section, it seems the most appropriate route is via
the EFT formalism. For instance, one writes down all possible covariant operators that
respect any additional imposed symmetries, and then matches the coefficients to physical
observables. Indeed, this is what was essentially done in Ref. [CLNP94]: The authors fixed
the gauge through the Faddeev–Popov determinant, which was then transformed to an
exponent as a contribution to the energy. Then they introduced a series of counterterms
which were intended to account for additional nonlinearities to restore covariance that was
broken by the cutoff. Ultimately, all terms were fixed by matching to the (observable) frame
tension which, in essence, is akin to enforcing a renormalization condition. For alternative
renormalization schemes, the path to the final result may be more straightforward. For
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example, Borelli, Kleinert, and Schakel [BKS99] calculated the renormalization in full
nonlinear glory by way of the derivative expansion technique and dimensional regularization,
which has the benefit of setting to zero many of the controversial terms (including the
measure factor (2.54)).
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3 Surface-mediated interactions of
axisymmetric particles

In this chapter we examine the interactions between particles bound to a fluid surface
characterized by its surface tension. Surfaces of this type are found in a variety of physical
systems, perhaps the most well known being soap films [Ise92] and fluid–fluid interfaces,
such as between microemulsions or the surface of water [RW02, dGBWQ04]. As discussed
in the introduction, understanding such colloidal systems or assemblies is key to a variety of
industrial applications, including microfabrication and separation technologies. Here we will
restrict our attention to a more idealized class of rigid particles and study surface-mediated
interactions among a small but diffuse collection.

3.1 Surface energetics
The energy functional1 for a tension-dominated fluid surface S is given in covariant form by

H = σ

∫

S
dA, (3.1)

where σ is the surface tension. Since we will be interested in deviations about a flat
equilibrium ground-state surface, we will work in the Monge gauge in which the surface
is described by its orthogonal displacement z = h(x) from a base plane parametrized by
x = (x, y). This representation is appropriate with the additional assumption that thermal
fluctuations are small and without bubbles or overhangs. Taking the base plane to coincide
with the flat ground state (i.e., h = 0), we can then write the energy cost associated with
surface deformations as the Hamiltonian

H = σ
(
AS −ASpr

)
= σ

∫

Spr
d2x

[√
1 + (∇h)2 − 1

]
=: H[h], (3.2)

where AS and ASpr are respectively the areas of the surface S and its projection Spr onto
the base plane. Assuming the deformations are gentle enough so that |∇h| � 1, we can
instead work in the linearized Monge gauge by performing a gradient expansion and keeping

1For many systems, including fluid phase interfaces, it would technically be more correct to refer to this
as a free energy. This is because the microscopic degrees of freedom that allow for the surface fluidity are
necessarily temperature dependent, and this dependence leaves its trace in the phenomenological parameters
of the coarse-grained theory. For example, the domain wall solution in Ginzburg–Landau theory gives
σ ∝ |T − Tc|3/2, where Tc is the critical temperature (see Technical Note 2.1).
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the leading term:
H[h] ≈ σ

∫

Spr
d2x

1
2(∇h)2. (3.3)

To justify dropping the higher order terms, we can look at the average gradient size using
the Fourier methods of the last chapter, for which we find

〈(∇h)2〉 =
∑

q

q2〈|hq|2〉 ≈ π
kbT

σa2 ≡ π
`2m
a2 ,

where a is a small length cutoff. In the last equality we introduced the thermal molecular
length scale `m =

√
kbT/σ. This length scale is very small for many fluid systems. For

example, water at room temperature has a surface tension of about 73 mN/m, so the length
scale `m ≈ 2Å, which is comparable to the size of a water molecule. Since both `m and
a are small, one might question which dominates and whether the gradients are actually
small. The resolution is due to the rescaling argument given previously—upon sufficient
coarse-graining (i.e., increasing the size of the cutoff a beyond the molecular scale `m),
〈(∇h)2〉 indeed gets smaller and the gradient expansion becomes more accurate.
From a different perspective, the appearance of `m as an appropriate measure of the

fluctuation amplitude suggests we compare the energy with the typical thermal energy kbT
and recast the Hamiltonian in terms of the dimensionless height function φ = h/`m:

H[φ]
kbT

= 1
`2m

∫

Spr
d2x

[√
1 + `2m(∇φ)2 − 1

]

= 1
`2m

∫

Spr
d2x

{
`2m
2 (∇φ)2 − `4m

8 [(∇φ)2]2 + · · ·
}

=
∫

Spr
d2x

1
2(∇φ)2 +O(`2m).

(3.4)

We see, then, that the length scale `m becomes useful as a small power-counting parameter,
showing that the higher order gradients provide negligible corrections on the order of `2m.
We are therefore justified in retaining only the leading-order term.

Taming the zero mode

Recall from the previous chapter that the existence of an interface breaks translation
symmetry in the z direction. In accordance with the Mermin–Wagner theorem, this allows
the buildup of long-wavelength fluctuations and an ultimate loss of long-range positional
order—implying the surface cannot be asymptotically flat. However, we know that height-
difference correlations only diverge logarithmically (see Eq. (2.64b)), so the flatness issue
is relatively minor. In contrast, when we later calculate interactions this problem may
resurface, so we need a method to dampen (or regulate) the fluctuations. The most obvious
physical option is to include a gravitational energy cost to Eq. (3.2). For an interface
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between two fluids with a density difference ∆ρ, any deviations h(x) from equilibrium
increases the system’s potential energy by an amount

Hg[h] =
∫ h

0
dh′
∫

Spr
d2x∆ρgh′ =

∫

Spr
d2x

1
2∆ρgh2 ≡ σ

∫

Spr
d2x

1
2`
−2
c h2, (3.5)

where we have introduced the capillary length `c =
√
σ/|∆ρ|g. The interpretation of the

capillary length becomes especially clear if we examine the Fourier modes of the surface
energy. Following Section 2.4.1, the free energy of a surface of size L× L is given by the
mode summation (Fourier transform of the quantity Eq. (3.2) + Eq. (3.5))

E = σ(L/`c)2

2
∑

q

|hq|2
[
(`cq)2 + 1

]
. (3.6)

The terms within brackets imply that wavelengths much larger than the capillary length
(1/q � `c) are suppressed by the gravitational energy. Conversely, for length scales much
smaller than `c, gravity is negligible. Typical values for `c are on the order of millimeters
for room temperature water and other simple liquids [dGBWQ04], but may be much larger
for immiscible fluids of comparable densities. The capillary length will be the largest length
scale in any system we will consider, and will therefore serve to regulate any large distance
divergences. As such, we will work in the asymptotic `c →∞ limit, for which Eq. (3.2) is
usually satisfactory, but, as we will see in Sections 3.5.4 and 3.6.4, some care will be needed
in taking the limit properly.

Stationary surface conditions

We wish to look for surface profiles h(x) for which the energy functional is stationary under
small variations h→ h+ δh. In the linearized Monge gauge, the energy variation becomes
(to leading order)

δH[h] = σ

∫

Spr
d2x∇h ·∇δh

IBP= σ

∫

Spr
d2x (−∇2h)δh+ σ

∮

∂Spr
ds ( ˆ̀·∇h)δh,

(3.7)

where the second line follows from integration by parts (à la the divergence theorem). In
the boundary integral, ˆ̀ is the outward unit normal (in the base plane) from the projected
surface boundary ∂Spr. Note that for an exterior problem in which Spr is the region outside
a compact domain A, ˆ̀ will point into A. Setting the above variation to zero provides
the stationary conditions for the surface. Moreover, the second-order term we neglected in
Eq. (3.7) is an integral over (∇δh)2 and is therefore positive-definite, so setting δH = 0
provides conditions that minimize the energy. Since, the variation δh is arbitrary, each
contribution to δH must generally vanish independently. Setting the surface integral to zero
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tells us the minimum energy surface configuration h(x) must satisfy Laplace’s equation,

−∇2h(x) = 0 for x ∈ Spr. (3.8)

This is the usual Euler–Lagrange equation for the above energy functional. On the other
hand, the boundary integral suggests some naturally appropriate boundary conditions: either
δh must vanish on the boundary, implying h|∂Spr is fixed (Dirchlet boundary conditions),
or the normal gradient ( ˆ̀·∇h)|∂Spr must vanish (Neumann boundary conditions).

If we were to include the gravitational potential energy, the variational problem would be
similar but with the following modification to the Euler-Lagrange equation:

(−∇2 + `−2
c )h(x) = 0 for x ∈ Spr. (3.9)

The boundary conditions would remain unchanged.

3.2 Particle boundary conditions
The surface acts as a medium for “communication” between embedded particles; it is only
through the surface constraints imposed by the particles that the particles can (indirectly)
interact with one another. In this sense, any relevant description of the particles must be
posited in the language of surface degrees of freedom in the neighborhood of the particles.
In this thesis, we will consider only compact rigid particles in which the surface is attached
(or pinned) to a particular fixed contact line around each particle boundary (see Fig. 3.1).
This can be enforced, for instance, by engineering so-called Janus particles with wetting
properties that favor opposing fluid phases. Since the only direct interaction between a
particle and the surface is through pinning at the boundary, particles with the same contact
line profiles (and the same allowed motions) will fall into an equivalence class. According
to the surface, a flat, circular disk and a (symmetric) Janus sphere are the same.

Note that the attachment requirement is a boundary condition of the Dirichlet type. For
a particle with a projected region A in the base plane, the height function must assume
the contact profile h(x)|∂A = hct(x)

∣∣
∂A at the (projected) particle boundary ∂A. That is,

the surface may be extended into the particle domain, but since the contact slope cannot
be consistently fixed along with the position, this continuation cannot generally be done
smoothly and we should not worry about kinks at contact. This is analogous to electrostatics,
in which the potential is continuous across the boundary, but the electric field may be
discontinuous due to the presence of surface charges. Alternative boundary conditions are
of course possible and indeed correspond to other interesting problems. Neumann boundary
conditions are relevant for non-rigid surface holes, as considered in [Rot12]. A particular
combination of the two conditions appear in the study of smooth, partially-wetting spheres
trapped at a fluid-fluid interface (for instance, see [LO07]). However, in this thesis we will
only consider the Dirichlet conditions.

We can express an arbitrary contact profile hct(x) as a series expansion about the particle’s
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3 Surface-mediated interactions of axisymmetric particles

Figure 3.1: Illustration of bound particles with circular contact line projections in the base plane. The
surface attaches to a particle along fixed contact lines whose height profile is parametrized by its projected
boundary. So long as the allowed rigid-body motions are the same, any particles with equivalent contact
line profiles—such as the disk and Janus sphere to the right—are considered equivalent.

center. As per the previous discussion, the particle may not actually take this physical
shape, but since the surface only encounters the particle’s boundary, we may choose any
functional representation that is most convenient. For x ∈ ∂A, we may therefore express
the contact line in the general form

hct(x) = hct(0) + xi∂ih
ct(0) + 1

2xixj∂i∂jh
ct(0) + · · ·

=: h0 + s · x− 1
2ηijxixj + · · · ,

(3.10)

where we sum over repeated indices as usual.2 In the second line, we define the parameters
h0, s, and ηij which each have an intuitive interpretation. Consider for a moment a particle
with a flat contact line. That is, the contact line is fixed to a flat, imaginary plane. If
the particle were to undergo any rigid-body motions, namely changing height or tilt with
respect to the base plane, so must this particle reference plane. Returning to Eq. (3.10), we
notice that the height at the center of this particle representation is given by hct(0) = h0.
Similarly, if the particle were tilted in the xiz-plane by an angle θi, the particle reference
plane would be as well, with a slope given by si = tan θi = ∂ih

ct(0). We see then that the

2Recall that in the Monge gauge, the base plane is Euclidean so there is no need to distinguish between
up and down indices.
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free parameters

(BC 1) xi (none)

(BC 2)

n̂ref

xi

h0

h0

(BC 3)

n̂p
i
n̂ref

θi

θi = tan−1 si

xi
êi

h0

h0, s

Figure 3.2: Illustration of the three boundary conditions for a flat particle. The freedom of the particle to
fluctuate in height and tilt is parametrized by h0 and s respectively, measured from the equilibrium base
plane. The component si gives the slope of the particle’s rim in the xiz-plane and is given by si = tan θi,
where θi is the angle from the horizontal. The slope can also be expressed as the ratio of vertical and
horizontal projections of the particle normal vector n̂pi (in the xiz-plane): si = −(n̂pi · êi)/(n̂pi · n̂ref),
where êi and n̂ref are respectively the xi unit vector and base plane normal vector.

two first terms of Eq. (3.10) parametrize the height and tilt of a flat contact line:

hflat(x) = h0 + s · x. (3.11)

Any remaining tensor coefficients must therefore parametrize permanent vertical deviations
from a flat (though potentially tilted) contact line. In this chapter, we will only consider
the lowest-order term and write

hperm(x) = −1
2ηijxixj . (3.12)

Note that ηij = −∂i∂jhct(0), and hence represents the extrinsic curvature tensor of the
contact line parametrization in the small gradient expansion (cf. Eq. (2.30)).
For the rigid particles we will consider, any deviations from a flat contact line must

be fixed—they are intrinsic properties of the particle. Whether h0 and s are fixed or
may fluctuate, however, depends on what extrinsic conditions are imposed. Following the
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3 Surface-mediated interactions of axisymmetric particles

categorization of Ref. [LO07], we will consider three types of boundary conditions (see
Fig. 3.2):
(BC 1) The position and tilt are fixed.

(BC 2) The vertical position is allowed to fluctuate but the tilt is fixed.

(BC 3) The vertical position and tilt are both allowed to fluctuate.
In terms of the contact line parameters, the first condition (BC 1) “freezes” the particle

in place by fixing both the height h0 and tilt s through some external mechanism. In the
second condition (BC 2), the tilt is fixed, but the height is unconstrained. That is, h0 is a
free parameter that can fluctuate freely with the surface without an energy cost. Similarly,
in (BC 3) the particle height and tilt may fluctuate with the surface, so both h0 and s are
free parameters.

Conditions for the contact line

Previously, we discussed the energy costs of out-of-plane surface deformations for a general
surface S. To account for particle inclusions, we need to make their presence explicit in the
surface domain. Since we will consider particles that are much smaller than the surface,
we can take the projected surface region to be infinite; i.e., it will span R2. If we include
particles, their boundaries will effectively cut holes into the plane. For a collection of N
particles, the full projected surface is then Spr = R2 \⋃N

a=1Aa where Aa is the area of the
ath particle projected onto the base plane. The boundary conditions above are then applied
at the boundaries ∂Aa. However, in the case of (BC 3) the tilt degree of freedom means
that the projected area A may fluctuate from its equilibrium area. That is, we must account
for a projected boundary that fluctuates. To illuminate and resolve this complication, let
us reconsider the particle inclusions from an alternative perspective.
Consider the surface to be continuous (Spr = R2). We can then deal with the energy

costs ∆H of particle inclusions directly in the Hamiltonian. The general form for a single
particle is

∆H = ∆Hex + ∆Hg + ∆Hct, (3.13)

where ∆Hex accounts for the energy associated with the surface patch excluded by the
particle, ∆Hg corrects the gravitational energy cost above the patch, and ∆Hct accounts
for any energies required to enforce the contact line (such as wetting properties). The first
term accounts for the surface patch exclusion by cutting the region A from the surface
as well as the region Aeq from the equilibrium surface (see Fig. 3.3). The energy cost is
therefore given as the difference from equilibrium,

∆Hex = −σ
(∫

A
d2x

√
1 + (∇h)2 −Aeq

)
. (3.14)

The particle also alters the gravitational energy over the region A, which we can account
for by removing the gravitational energy of the excluded surface patch and replacing it with
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x
y

S

Spr

x

y

Spr

∆A

∂Aeq

∂A

Figure 3.3: Illustration of an example particle’s projection A onto the base plane as compared to its
equilibrium projection Aeq. The particle particle’s tilt results in an excess (projected) area ∆A = Aeq−A.

the potential energy at the particle’s center of mass height hcm. This correction then takes
the form

∆Hg = −1
2∆ρg

∫

A
d2xh2 + 1

2∆ρg h2
cmA

= −σ
∫

A
d2x

1
2

(
h

`c

)2
+ 1

2

(
hcm
`c

)2
σA.

(3.15)

To enforce the contact line, ∆Hct must encode an energy penalty for deviations from hct at
the boundary. For particles at a fluid–fluid interface, the third term could be written

∆Hct = σI∆Act
I + σII∆Act

II = (σI − σII)∆Act
I , (3.16)

where σI,II are the contact tensions between the particle and the upper and lower fluid
phases (I and II respectively) and ∆Act

I,II are the changes in respective contact area from the
equilibrium configuration. In the second step, we used that the sum Act

I +Act
II is the total

particle area, so ∆Act
II = −∆Act

I . This term would be particularly relevant for particles
without fixed contact lines, such as smooth spheres trapped but not pinned to an interface.
However, for the pinned particles we will consider, the surface is permanently attached to
the contact line, so ∆Act = 0 always. To enforce this condition, we could instead include a
term in which deviations from hct on the boundary would cost an “infinite” energy (provided
by the intrinsic particle properties), which we will examine shortly.
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Let us now focus on the exclusion energy ∆Hex in the small gradient expansion:

∆Hex ≈ −
σ

2

∫

A
d2x (∇h)2 + σ(Aeq −A)

= −σ2

∫

A
d2x (−∇2h)h− σ

2

∮

∂A
ds (n̂A ·∇h)h+ σ(Aeq −A),

(3.17)

where the second line follows by integration by parts, and n̂A is the outward normal vector
of the projected particle boundary ∂A in the base plane. We also dropped the boundary
term at infinity, which is justified by the assumption that the surface returns to its flat
equilibrium shape at infinity:3 h(r →∞)→ 0. The last term above gives energy cost when
the projected particle area differs from its equilibrium value. However, since the particle
is rigid, the true area defined by the contact line representation hct must be unchanged,
giving the equal-area condition

∫

A
d2x

√
1 + (∇hct)2 = Aeq. (3.18)

The small gradient expansion then provides the approximate area difference, which after
integration by parts becomes

Aeq −A = 1
2

∫

A
d2x (−∇2hct)hct + 1

2

∮

∂A
ds
(
n̂A ·∇hct

)
hct. (3.19)

Plugging this result into Eq. (3.17), and noting that h = hct on the boundary, we find that
the boundary terms cancel, leaving

∆Hex = −σ2

∫

A
d2x (−∇2h)h+ σ

2

∫

A
d2x (−∇2hct)hct. (3.20)

The first term simply corrects the continuous particle-free surface Hamiltonian by removing
the patch A from Spr = R2 so that Spr → R2 \A. The second term gives the energy cost of
the tilted contact line, which we can make vanish by continuing the contact line within the
particle domain such that it satisfies Laplace’s equation, −∇2hct = 0 for x ∈ A.
The condition on the extended contact line, −∇2hct = 0, provides insight into the

equivalence classes of particle shapes. Recall that ηij from Eq. (3.12) is the curvature
tensor for hct(x), and the total curvature is given by tr[ηij ] = − tr[∂i∂jhct(0)] = −∇2hct(0).
Equation (3.20) therefore implies that any total curvature imposed on the surface by a
particle must cost external energy. To clarify, the contact slope at the boundary cannot be
fixed—a particle imparting nonzero total curvature will feel a force from the surface and
will ultimately reach equilibrium where the curvature vanishes unless acted on by some
other counterforcing mechanism (whose energy will show up in ∆Hct). Nonzero Gaussian

3An alternative justifying assumption is that the surface is asymptotically flat; i.e., ∂rh(r →∞)→ 0.
In most cases, both assumptions are satisfied.
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x

y

α
R

Figure 3.4: Illustration of a saddle-shaped particle with Gaussian curvature −S2. The principal directions
are highlighted with a solid line for positive curvature (curves down) and a dashed line for negative
curvature (curves up). The principal axis of positive curvature lies at an angle α from the x-axis.

curvature det[ηij ], however, is not forbidden. With this information, we are now ready to
provide an explicit expression for ηij and hence hperm(x).
Since ηij is necessarily real and symmetric, it may be parametrized by two independent

variables, the most convenient choice being the basis-invariant trace and determinant, which
respectively correspond to the total and Gaussian curvatures. Since we require tr[ηij ] = 0,
ηij must be symmetric and trace-free, and have the following representation in its diagonal
basis:

ηij
.= SM = S

(
1 0
0 −1

)
. (3.21)

The Gaussian curvature det[ηij ] = −S2 shows that the two principal curvatures are +S in
the x direction and −S in the y direction and hence ηij defines a saddle shape. Since the
curvature is an invariant, we can rotate the basis of M via

M→ R(α) M Rᵀ(α) =
(

cos 2α sin 2α
sin 2α − cos 2α

)
, (3.22)

to give a saddle rotated by an angle α from the x-axis. The final expression for hperm(x)
then simplifies in polar coordinates (r, ϕ):

hperm(x) = −1
2xᵀ(S R M Rᵀ)x = −1

2Sr
2 cos(2ϕ− 2α). (3.23)

The corresponding shape is illustrated in Fig. 3.4.
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Constraint forces

Let us now return to our discussion of ∆Hct, the energy costs of enforcing the contact line.
With the now modified integration domain Spr = R2 \A, we may enforce the contact line at
the boundary ∂A with a Lagrange multiplier λ(x ∈ ∂A) to give the unconstrained energy
functional

H[h, λ | hct] = H[h | Spr] + ∆Hct[h, λ | hct]

= σ

2

∫

Spr
d2x (∇h)2 −

∮

∂A
ds λ (h− hct). (3.24)

In this construction, the boundary term is (minus) the external work required to maintain
the contact line. Accordingly, we interpret the Lagrange multiplier λ as a linear force
density acting on the surface in the neighborhood of the boundary. That is, λ is as large
as required to enforce the contact line and therefore formally provides an infinite energy
penalty for any deviations from h = hct on the boundary. The original constrained energy
is therefore given by H[h, hct] = maxλH[h, λ | hct].

The first-order variation is, after integrating by parts and dropping the infinite boundary
term,

δH[h, λ | hct] = σ

∫

Spr
d2x (−∇2h)δh−

∮

∂A
ds
[
(σn̂A ·∇h+ λ)δh+

(
h− hct

)
δλ
]
. (3.25)

The second-order variation integrates over (∇δh)2 and is therefore positive-definite, so the
energy is minimized when the above variation vanishes. Setting the first term to zero gives
Laplace’s equation −∇2h = 0 on the surface outside the particle as usual. The last term
simply enforces the contact line h = hct on the boundary, but the second term provides
something new. At equilibrium, the force density is given by4

λ = −σn̂A ·∇h, (3.26)

where h is the exterior solution to −∇2h = 0 with the boundary condition h(∂A) = hct(∂A).
Note that the above analysis generalizes quite simply for finite `c, by replacing −∇2h = 0
with (−∇2 + `−2

c )h = 0, and to multiple particles via A → ⋃
aAa, ∂A →

⋃
a ∂Aa, and

λ→ λa.

Pathologies

Recall that the undamped (`c →∞) Hamiltonian Eq. (3.2) suffers from divergences due to
the buildup of long-wavelength fluctuations, the origin of which is the broken translation
symmetry in the direction orthogonal to the surface. As hinted at previously, this problem
may reappear once particles are included. If the boundary conditions imposed by a particle
also break invariance of the Hamiltonian under translation h → h + const., such as in
(BC 1), it is not guaranteed that the surface response to the particle is well-behaved or

4Recall that n̂A is defined as the normal vector in the base plane pointing out from the region A.
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physical, even in the absence of fluctuations. To be more precise, let us examine a general
stationary solution h(x) to the Euler–Lagrange equation (3.8) in polar coordinates (r, ϕ):

h(x) = a ln br +
∑

n≥1

[
cnr

n cos(nϕ− nαn) + r−ndn cos(nϕ− nβn)
]
, (3.27)

with undetermined parameters a, b, cn, dn, αn, and βn. Acceptable (i.e., physical) exterior
solutions are those proportional to r−n, whereas acceptable interior solutions are those
proportional to rn. Notice that the first term, a ln br, was excluded from both; it is divergent
for both large and short distances. This term is therefore a pathological solution which we
must avoid when dealing with physics in either the interior or exterior domains.
By adding a damping term, namely the gravitational potential (3.5), the pathologies

disappear. With this modification, the Euler–Lagrange equation is instead given by Eq. (3.9)
and has a general stationary solution

h(x) =
∑

n≥0

[
AnIn(r/`c) cos(nϕ− nϑn) +BnKn(r/`c) cos(nϕ− nψn)

]
, (3.28)

where In(x) and Kn(x) are the modified Bessel functions of the first and second kind
respectively, and An, Bn, ϑn, and ψn are undetermined coefficients and phases. For large
distances, Kn → 0, whereas In → 0 for short distances. That is, for finite `c there are
no longer pathological solutions. At the end of the day, however, we wish to take the
asymptotic limit `c → ∞. As we will see, for (BC 2) and (BC 3) we can safely take the
limit from the beginning and use the solutions (3.27) without problems. However, we will
need to be more careful with (BC 1).

Charge distributions: An electrostatics analogy

To further understand the various terms in Eqs. (3.27) and (3.28), we draw an analogy to
electrostatics. In the linearized Monge gauge, the Hamiltonian (3.3) is equivalent to the
source-free (ρ = 0) electrostatics energy functional (1.18), but with one fewer dimension
and an additional minus sign. We will discuss the significance of the minus sign shortly. In
this analogy, h serves as the electrostatic potential, and −∇h serves as the electric field.
With this in mind, consider the two-dimensional version of Gauss’s Law:

∇ · (−∇h) = −∇2h =: 1
σ
ρ(x) ⇐⇒ Q :=

∫

A
d2x ρ(x) =

∮

∂A
ds σn̂A · (−∇h), (3.29)

where we have defined the capillary charge distribution ρ(x) and the total capillary charge
Q within the domain A. Comparing with the expression (3.26) for the force density λ,
we see that a “charge” in the surface context corresponds to the strength of a point force
acting on the surface. Similarly, ρ has units of pressure, so it may also be understood as a
distribution of “pressure points” acting on the surface.
Now consider Eq. (3.27) within a circular region of radius R, for which n̂A ·∇ = ∂r.
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Applying Gauss’s Law and using
∫ 2π

0
dϕ cosnϕ = 0, ∀n ∈ Z, (3.30)

we find that most terms vanish. The only nonzero term is in fact the first one:
∫ 2π

0
R dϕ

[
−∂r(a ln br)

]
= −2πa ≡ Q/σ. (3.31)

One way to interpret this result is that the first term, a ln br, is a monopole potential of
charge Q = −2πσa. The remaining terms correspond to higher-order multipole potentials
which, of course, have no net charge. These higher-order multipole potentials instead
provide information about how the surface domain “polarizes.”

If we instead calculate the boundary integral using Eq. (3.28), we also find that only the
n = 0 terms are nonvanishing. Furthermore, in the `c →∞ limit, only one of the two terms
survives:

∂rI0(r/`c) = I1(r/`c)
`c

→ 0, (3.32)

∂rK0(r/`c) = −K1(r/`c)
`c

→ −1
r
. (3.33)

Since the integral yields an additional factor of 2πR, we see that the term B0K0(r/`c)
corresponds to a monopole potential of charge Q = 2πσB0 in the `c → ∞ limit. The
difference here, however, is that the monopole potential is suitably regularized at large
distances by the `c cutoff:

K0(r/`c)
`c→∞∼ ln

(
2`c
γer

)
, (3.34)

where γe = eγe and γe = 0.57721 . . . is the Euler–Mascheroni constant.
The benefit of this electrostatics analogy is that we can apply some of the insight gained

from the conducting spheres problem from Chapter 1. In particular, we can reinterpret
the contact line profile (3.10) in terms of charges: h0 corresponds to a fixed potential and
thus for a particle of finite size, it is proportional to the total charge (monopole moment),
with the proportionality constant depending only on the boundary geometry. Similarly, the
tilt parameter s is proportional to the dipole moment, and the higher-order coefficients
correspond to higher-order multipole moments. However, recall that allowing the particle
to tilt entails a changing boundary in the base plane. This implies that once fluctuations
are included, the interpretation of the terms as multipole moments is only valid for small
fluctuations in which the change in the projected boundary is negligible. Fortunately, as
seen previously, the circumstances in which the linearized Monge gauge is justified ensures
that this is indeed true as long as −∇2hct = 0, which we restrict to in this chapter, and the
interpretation is appropriate.
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The particle boundary conditions may also be viewed from this perspective. The first
two conditions have the following electrostatics analogues:

(BC 1)⇐⇒ conductor held at a fixed potential

(BC 2)⇐⇒ free conductor

In the correspondence above, each conductor may also contain permanent internal charge
configurations that do not respond to an external field. Interpreting (BC 3), however, is a
little strange in that it would behave as a free conductor except that it will not respond
to a linear electric potential (it has no dipole susceptibility). Notice that in (BC 2) and
(BC 3), the particles are invariant under global changes in constant height. But in (BC 1),
this shift would be met with an induced monopole charge (external force) in order to hold
the particle at a fixed height. That is, (BC 1) is the only one of the boundary conditions
that is sensitive to the pathological monopole solution of Eq. (3.27). As such, it is the only
one that will require the use of the `c regulator.

Capillary charges: Attractive or repulsive?

Let us now return to the minus sign difference in the analogy. In one regard, it appears to
make no difference since in both the electrostatics and surface (with `c → ∞) problems,
the corresponding scalar fields satisfy Poisson’s equation. However, recall that that the
electric potential φ appeared in the energy functional as a Lagrange multiplier to enforce
Gauss’s law—the fundamental field is the vector E, not the scalar field φ. Indeed, it is the
condition δH/δE = 0 that minimizes the energy, whereas δH/δφ = 0 instead maximizes it.
The difference in the sign of the energy functional, then, is really a manifestation of the
difference between vector field and scalar field theories.5
To see how the minus sign changes the physics, consider a collection of capillary point

charges (forces) ρ(x) =
∑

a faδ(x − xa) in the surface. The energy functional is then
modified in the usual way

H[h | ρ] =
∫

d2x
{σ

2
[
(∇h)2 + `−2

c h2]− ρh
}
, (3.35)

appearing similar to the electrostatics functional (1.18) when `c →∞, but with the opposite
5The origin of the minus sign difference can be explained more definitively once dynamics are considered.

In the relativistic Lagrangian formulation, the kinetic term ∝ (∂tφ)2 of a scalar field theory must appear
with a positive sign in order for the corresponding energy to be bounded from below, and thus the gradient
appears with a minus sign via ∂µφ∂µφ = (∂tφ/c)2 − (∇φ)2. To get the Hamiltonian, one applies the usual
Legendre transformation which ultimately flips the sign of (∇φ)2 and results in the same form as Eq. (3.3).
In electrodynamics, the “kinetic” term instead applies to the vector potential Aµ so that (∂tA)2 appears
with a positive sign. The scalar potential A0 actually does not appear with any time derivatives, and indeed
can be interpreted again as a Lagrange multiplier that enforces Maxwell’s equations. More details on the
differences between scalar, vector, and tensor fields—and their implications in relativistic and quantum field
theories—can be found in Refs. [Des05], [Zee03], and [Pad10].

82



3 Surface-mediated interactions of axisymmetric particles

sign. The minimum-energy solution must satisfy (−∇2 + `−2
c )h = ρ/σ, as follows from

setting the functional variation to zero. This may be solved by the method of Green
functions to give

h(x | ρ) = 1
σ

∫
d2x′G(x− x′)ρ(x′) =

∑

a

fa
σ
G(x− xa), (3.36)

where the Green function comes from the n = 0 term in Eq. (3.28):6

G(x) = 1
2πK0(r/`c). (3.37)

In the harmonic limit `c →∞, the Green function takes the asymptotic form,

GH(x) = 1
2π ln

(
2`c
γer

)
. (3.38)

We can now plug this solution back into the functional (3.35) to find the energy, but it first
helps to rewrite the functional in the form (cf. Eq. (1.20)),

H[ρ] = −1
2

∫
d2x ρ(x)h(x | ρ) = − 1

2σ

∫
d2x d2x′ ρ(x)G(x− x′)ρ(x′). (3.39)

The first part of the above expression results from integration by parts and applying the
stationary condition (−∇2 + `−2

c )h = ρ/σ. In doing so, we have dropped the boundary term
at infinity, which is acceptable since both K0(r/`c) and ∂rK0(r/`c) vanish as r →∞. In
the harmonic limit, this is also valid since ∂r ln(2`c/γer) = −1/r → 0 as r →∞ (i.e., h[ρ]
is asymptotically flat), but additionally since the regularization condition r � `c implies we
replace the infinite distance limit with the (noncommuting) nested limits

lim
`c→∞

[
lim
r→`c

ln
(

2`c
γer

)]
,

which indeed vanishes.
The energy for a collection of point forces therefore follows by plugging in the expression

6The factor of 1/2π may be checked by integrating both sides of (−∇2 + `−2
c )B0K0(r/`c) = δ(x) over a

disc D of radius r and applying the divergence theorem:

B0

∫
D

(−∇2 + `−2
c )K0(r/`c) = −2πrB0∂rK0(r/`c) + B0

`2c

∫
D

d2xK0(r/`c)

= −2πrB0[−K1(r/`c)/`c] + 2πB0

`2c
[`2c − `crK1(r/`c)] != 1

After canceling terms, it follows that B0 = 1/2π.
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for ρ into Eq. (3.39), giving

H[fa] = − 1
2σ
∑

a,b

fafbG(xa − xb) = −
∑

a

f2
a

2σG(0)−
∑

a<b

fafb
σ

G(xa − xb). (3.40)

The first term on the right side (∝ G(0)) corresponds to the self-energy of each of these
“charges,” and, as familiar in electrostatics, it diverges for point charges. The last term
corresponds to the interaction energy between pairs of point sources indexed by a and b,
and unfortunately also appears to diverge in the `c → ∞ limit. However, in both cases
these divergences in energy are inconsequential as physical observables depend on overall
differences in energy, and the dependence on `c can be seen to no longer be singular. For
example, the force between two point sources is finite:

F = − ∂

∂r

[
−f1f2

2πσK0(r/`c)
]

= − f1f2
2πσ`c

K1(r/`c)
`c→∞−−−−→ − f1f2

2πσr . (3.41)

Note the sign in the above force equation. If the two “charges” are of like sign, then the
force is attractive. Likewise, with opposite signs the force is repulsive. This is in contrast to
electrostatics, in which like charges repel and opposites attract. This significant difference
in behavior is in fact a universal feature in field theory: Like charges always attract in
scalar field theories, repel in vector field theories, attract in rank-2 tensor field theories
(e.g., gravity), and so on [Zee03, Pad10].

Let us end the discussion by by circling back to the Cheerios effect mentioned in the
introduction. If the point forces are due to small objects floating on a liquid surface, then
Eq. (3.41) at finite capillary length becomes the leading-order attractive flotation force. A
more detailed calculation [VM05] shows that a floating sphere of radius R, density ρs, and
contact angle θ with the liquid has an effective weight f = 2πσRBo Σ(θ), where Bo = R2/`2c
is the particle Bond number and

Σ(θ) = 2(ρs/ρ)− 1
3 − 1

2 cos θ + 1
6 cos3 θ.

Substituting this into Eq. (3.41) for finite `c reproduces the force at large separation between
identical spheres calculated in Refs. [CHJW81, VM05],

F = −2πσRBo5/2Σ2(θ)K1(r/`c). (3.42)

As a final comment, in the absence of gravity, the effective weight of each particle vanishes
and therefore so does the interparticle flotation force. Hence, at vanishing Bond number—
and in the absence of other external forces—there are no surface-mediated forces in the
ground state unless at least one particle imparts an irregular contact line on the surface.
We will explore how that changes the leading-order force law in Section 3.5.
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Having discussed particle responses qualitatively, let us now examine the quantitative
implications of the imposed boundary conditions on our finite-sized particles.

3.2.1 Surface response to an isolated particle
In the spirit of Sections 1.1 and 1.2, we characterize each embedded particle by examining
its response δh to an imposed stationary background surface deformation (background
field) hbg. The total field hbg + δh must then satisfy the attachment condition at the
particle contact line. Furthermore, as discussed in the previous chapter, a given particle
may be characterized completely by its surface responses alone and therefore we need only
consider the full-theory boundary value problem for particles in isolation. In this chapter,
we will specialize to the case of axisymmetric particles, which we will define as those whose
projected equilibrium contact lines are circles in the base plane.

For one such disk-like particle of radius R, the attachment condition in polar coordinates
states

h(R,ϕ) = hbg(R,ϕ) + δh(R,ϕ) != hct(R,ϕ). (3.43)

This condition must hold for any background field, so we are free to choose hbg so that the
boundary value problem is as simple as possible. One approach is to take advantage of
the circular symmetry of the boundary and apply the general solutions (3.27) and (3.28).
Physically, we expect the surface response due to the particle to die off at infinity, so we
should impose the additional condition δh(r → ∞) → 0. Consider now the expansion
(3.28). The functions In(r/`c) are regular at r = 0 but monotonically increasing, whereas
the functions Kn(r/`c) are singular at r = 0 but monotonically decreasing and regular as
r →∞ (or rather, as r → `c). With this in mind, permissible response fields must take the
form

δh(x) =
∑

n>0
BnKn(r/`c) cos(nϕ− nψn). (3.44)

Likewise, we will ultimately want to treat particles as points, so permissible background
fields should be well behaved at the particle centers. The background fields should therefore
take the form

hbg(x) =
∑

n>0
AnIn(r/`c) cos(nϕ− nϑn). (3.45)

Note that although the above expression diverges at infinity, it does not mean that back-
ground fields cost infinite energy. Instead, we assume that background deformations are,
for instance, externally sourced at the far away (but finite distance) surface boundary so
that the particle-free surface takes on the profile given by Eq. (3.45).
Since both expansions are solutions to (−∇2 + `−2

c )h = 0 by construction, a convenient
boundary value problem and solution presents itself:

{
(−∇2 + `−2

c )h(x) = 0, |x| > R,

δh(R,ϕ) = hct(R,ϕ)− hbg(R,ϕ),
(3.46)
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where δh and hbg are given by Eqs. (3.44) and (3.45). For simplicity, we will set ϑn = 0 in
the background field (3.45). What remains is to solve for the coefficients Bn in terms of An.

Flat particle

Earlier, we explored the various terms that contribute to a particle’s contact line hct and
decomposed its series expansion into terms describing rigid-body motions, hflat, and those
encoding permanent deformations, hperm. The boundary condition in Eq. (3.46) then
consists of three terms, hflat + hperm− hbg, which the response must match at the boundary
r = R. By linearity, the solution δh can also be decomposed as

δh = δhind + δhflat + δhperm, (3.47)

where the responses have the following interpretations:

δhind: Induced response to the background field for a particle contact line both flat and
fixed in the equilibrium base plane (i.e., the contact line coincides with its projection
so that h0 = 0 and s = 0).

δhflat: Permanent response, independent of the background, for a particle with a flat
contact line and fixed h0 and s.

δhperm: Permanent response, independent of the background, for a particle fixed in the
equilibrium base plane with h0 = 0 and s = 0 and fixed contact line curvature.

The background field response δhind is analogous to the induced polarization potential of a
conductor in an external field, whereas the two permanent responses account for permanent
multipole potentials. Depending on the particle degrees of freedom—that is, whether h0
and s are fixed or free—the response δhflat will serve different purposes. Namely, when
both parameters are fixed, δhflat simply gives the permanent surface deformation imparted
by the particle. But if h0 and s are free parameters, their values will change to balance
the forces and torques generated by the background field response, canceling any nonzero
height and tilt.
With hperm = 0, the response consists of just the first two terms, δh = δhind + δhflat,

and corresponds to particles with a flat contact line. The solution follows quickly from the
expansions (3.44), (3.45), and (3.11) matched at the boundary:

δhind(R,ϕ) =
∑

n>0
BnKn(R/`c) cosnϕ != −

∑

n>0
AnIn(R/`c) cosnϕ (3.48a)

δhflat(R,ϕ) = C0K0(R/`c) +K1(R/`c)
(
C1 cosϕ+ C ′1 sinϕ

)

!= h0 + sxR cosϕ+ syR sinϕ (3.48b)
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The final result is

δhind(x) = −
∑

n>0
An

In(R/`c)
Kn(R/`c)

Kn(r/`c) cosnϕ, (3.49)

δhflat(x) = h0
K0(r/`c)
K0(R/`c)

+ (s ·Rr̂) K1(r/`c)
K1(R/`c)

. (3.50)

Now let us examine what happens when h0 and s are promoted to free parameters. If h0
is free, as in (BC 2), the particle will respond by changing its height to h0 = A0I0(R/`c),
canceling the n = 0 term of δhind. Similarly, if s is free, the particle will respond by tilting
with a slope s = (A1/R)I1(R/`c) êx, which then cancels the n = 1 term of δhind. To
summarize, we present the full flat-particle responses for the three boundary conditions:

(BC 1): δh(x) = h0
K0(r/`c)
K0(R/`c)

+ (s ·Rr̂) K1(r/`c)
K1(R/`c)

−
∑

n>0
An

In(R/`c)
Kn(R/`c)

Kn(r/`c) cosnϕ

(3.51)

(BC 2): δh(x) = (s ·Rr̂) K1(r/`c)
K1(R/`c)

−
∑

n>1
An

In(R/`c)
Kn(R/`c)

Kn(r/`c) cosnϕ (3.52)

(BC 3): δh(x) = −
∑

n>2
An

In(R/`c)
Kn(R/`c)

Kn(r/`c) cosnϕ (3.53)

Note that in the applications we will discuss, we will usually choose h0 = 0 and s = 0.

Curved particle

For particles with irregular contact lines, the curvature imparted on the nearby boundary
will be encoded in the surface response δhperm. By linearity, this will simply add to the
total field hbg + δh and can therefore be analyzed independently. For a general permanent
contact line hperm, we may calculate the corresponding response field by first decomposing
it into Fourier components on the boundary,

hperm(R,ϕ) =
∑

n>2

(
an cosnϕ+ bn sinnϕ

)
(3.54a)

with {
an
bn

}
= 1
π

∫ π

−π
dϕhperm(R,ϕ)

{
cosnϕ
sinnϕ

}
, (3.54b)

and matching coefficients to the solution (3.44). Here we will restrict ourselves to the case
of saddle shapes, where hperm is given by Eq. (3.23) and already appears in the desired
form. Matching on the boundary r = R yields the condition

δhperm(R,ϕ) = B2K2(R/`c) cos(2ϕ− 2α) != −1
2SR

2 cos(2ϕ− 2α) (3.55)
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and, after solving for B2, the permanent surface deformation becomes

δhperm(x) = −1
2SR

2 K2(r/`c)
K2(R/`c)

cos(2ϕ− 2α). (3.56)

Harmonic limit

In this chapter, we will primarily restrict our discussion to the case of vanishing Bond
number, which corresponds to the limit `c →∞ and associated solutions that obey Laplace’s
equation −σ∇2h = 0. But in doing so, we will retain the capillary length `c as a regulator
such that r � `c. Accordingly we must be careful about taking the `c → ∞ limit. In
general, one should avoid taking the limit until the end of the calculation of an observable.
The consequence of taking the limit prematurely is that singularities will be encountered
which otherwise would have been regulated by `c, and furthermore may undesirably set
many other terms to zero which could have an implicit `c-dependence in the coefficients.
For example, we know the general solution (3.28) should reduce to the Laplace equation
solution (3.27) when `c →∞, but naïvely taking the limit would annihilate all In terms for
n > 0 and cause all Kn terms to diverge. This is seen by looking at their asymptotic forms
[DLMF],

In(r/`c) ∼
1
n!

(
r

2`c

)n
, (3.57)

K0(r/lc) ∼ ln
(

2`c
rγe

)
, (3.58)

Kn>0(r/`c) ∼
(n− 1)!

2

(
2`c
r

)n
. (3.59)

The solution to Laplace’s equation in polar coordinates indeed has the same r-dependence,
so for the limit to reproduce the correct series (3.27), the coefficients An and Bn in Eq. (3.28)
must have implicit `c-dependencies. Keeping this in mind, we may now present the properly
regularized background and response solutions in the harmonic limit:

hbg(x) = a0 +
∑

n>1
anr

n cosnϕ (3.60)

δhperm(x) = −1
2S

R4

r2 cos(2ϕ− 2α) (3.61)

(BC 1): δh(x) = (h0 − a0)
ln
( 2`c
rγe

)

ln
( 2`c
Rγe

) + (s · r̂ − a1 cosϕ)R
2

r
−
∑

n>2
an
R2n

rn
cosnϕ (3.62)

(BC 2): δh(x) = (s · r̂ − a1 cosϕ)R
2

r
−
∑

n>2
an
R2n

rn
cosnϕ (3.63)
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(BC 3): δh(x) = −
∑

n>2
an
R2n

rn
cosnϕ (3.64)

The above equations take the form of two-dimensional multipole expansions, which should
not be surprising given the similarity between the surface and electrostatics governing
equations. As such, we will use the term multipole order when referring to the the
numbers n in the above sums.7 We remark in passing that the recognition and use of
the multipole formalism has been exploited before, namely by Kralchevsky and coworkers
[KDD01, DKNB05, DK10] who also treat the given ground state problem in terms of
“capillary multipoles.”

3.3 Effective theory
Instead of calculating physical observables in the full theory, where the multiple boundaries
pose a significant challenge, we will take a step back and reformulate the problem in a
way that takes advantage of the system’s scale separation. The largest and smallest length
scales of the problem are of course the spatial extent of the surface, which we take to be
infinite, and the molecular length scale for which the effective geometric theory breaks
down. Besides those we have the capillary length `c, which characterizes the size of the flat
surface, and the characteristic particle sizes Ra � `c, which is still much larger than the
molecular length scale. In this chapter, we will be interested in the interactions between
particles that are widely separated. The length scale at which we calculate observables is
thus characterized by the separation r, generating the scaling hierarchy R� r � `c. Given
the large separation of the particles relative to their sizes, the effects of their neighbors
will appear as coming from localized sources. Accordingly, we will construct an effective
point-particle Hamiltonian for which the physics at the particle length scale manifests as a
series of point sources and interactions:

Heff[h] = H0[h] + ∆H[h], (3.65)

where H0[h] is the particle-free—or bulk—surface Hamiltonian,

H0[h] = σ

2

∫

R2
d2x

[
(∇h)2 + `−2

c h2], (3.66)

and ∆H[h] is the worldline Hamiltonian and accounts for the energetic contributions of
bound particles. The task then is to determine the additional contributions ∆H[h] from
the inclusion of particles.

7Just a note on language: A perhaps better name for the multipole order n would be the “derivative
order”—which we will use interchangeably—since n counts the number of derivatives required in the multipole
expansion. However, the terms monopole, dipole, quadrupole, octopole, etc., linguistically count the number
of poles (the “pluses” and “minuses”) and a general multipole of order n should be called a 2n-pole.
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In general, to construct ∆H we must write down all possible local scalar terms C(k) · Ok[h],
or operators in the EFT language, that obey the symmetries of the surface and the particles.
The prefactors (Wilson coefficients) C(k) encode the short distance particle information and
will be determined later by a matching procedure. By locality, the operators Ok[h] must
be polynomial in the field h and its derivatives, and, since we have shrunk the particle
boundaries to points, each operator will be localized to individual particles and evaluated
at their respective positions (worldlines) x = xa. The impact of a given operator can be
estimated by dimensional analysis, and hence the sum of operators can be organized to
form a power series in each of the physical scales, thereby allowing us to truncate the series
to any desired order of accuracy in a consistent and controlled way.
Let us first consider the bulk Hamiltonian (3.66) in the absence of gravity (`c → ∞).

Then there are three relevant field transformations that leave the energy invariant:

T1. Reflection (h→ −h) across the base plane.

T2. Transformations of the field of the form h→ h+ h0, where h0 is a constant.

T3. Rotations around a vertical axis centered at any point in the base plane.

The inclusion of a particle may either break or preserve these symmetries, and the cor-
responding particle descriptions can thus be decomposed and categorized as such. The
contribution of a single particle clearly breaks the in-plane translation symmetry implicit in
T3 by selecting a preferred origin, but rotational symmetry will still apply about the center
of a flat, circular particle. The transformation symmetry T2 is preserved in (BC 2) and
(BC 3), as the particle height is a free parameter in both cases, but it is broken for (BC 1).
The reflection symmetry T1 also holds for flat particles but may be broken for particles that
are curved or fixed at nonzero heights or tilts. Just as in the electrostatics problem (see
Section 1.1.2), the terms in ∆H can be grouped into those which respect the symmetries,
and hence correspond to induced polarization responses, and those which break them and
correspond to external surface “charges” or forces. We will examine each case separately.

3.3.1 EFT for free, flat particles: induced polarization
We will first consider particles with the most degrees of freedom, and hence respect the most
bulk symmetries: flat particles with the freedom to bob and tilt. This corresponds to the case
(BC 3). As laid out previously in the discussion of δhind, induced and permanent surface
deformations combine linearly. Hence, any further conditions that break the symmetries
will appear as additional terms. In fact the worldline Hamiltonian for free, flat particles will
apply to all boundary conditions we consider, and encodes the induced surface deformation
response to any impinging background field. Once again, we may draw an analogy to
electrostatics—the total amount and distribution of permanent charges on a conductor
does not affect its capacitance or polarizabilities and thus does not affect its response to an
external field.
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Since the bulk Hamiltonian (3.66) results from a small-gradient expansion and is truncated
at quadratic order in the field h, the worldline Hamiltonian must be at most quadratic in
h. The reflection symmetry T1 rules out any operators with odd powers of h, so terms
linear in h will not appear. As per our discussion at the end of Section 3.2.1, free particles
with flat contact lines respond to changes in height and slope without costing energy, and
furthermore, at quadratic order the changes in the projected boundary are negligible. Hence,
we require that transformations of the type h→ h+ h0 + s · x do not alter the worldline
energy, so all terms with less than two derivatives acting on each occurrence of h are ruled
out. Because of the circular symmetry of the projected particle boundary (see the remarks
at the end of Section 3.2.1), the T3 symmetry—without translation—is respected and
requires that all derivatives must be contracted amongst themselves; i.e., any tensorial
Wilson coefficients must be proportional to the identity (see the discussion in Section 1.1.2).
Finally, physical observables will always depend on solutions to the bulk Euler–Lagrange
equation, −∇2h = 0, so we choose an on-shell operator basis that enforces this from the
start by setting to zero all terms with at least two derivative indices contracted on the same
field instance. Together, these rules dramatically simplify the form and enumeration of
possible terms, and the worldline Hamiltonian for all free, flat, and circular particles takes
the compact form

∆Hf[h] =
∑

a

∑

n>2

1
2c

(n)
a [∂nI h(xa)]2, (3.67)

where the particles and their respective positions are labeled by “a” and we have used the
compact notation ∂nI := ∂i1 · · · ∂in , with repeated indices summed over as usual. Each Wilson
coefficient c(n)

a multiplies a term with 2n derivatives and therefore scales as c(n)
a ∼ σR2n

a

by dimensional analysis. Note the similarity to the worldline Hamiltonian (1.34) for
conductors. There we interpreted the coefficients as generalized polarizabilities. An
analogous interpretation is appropriate here, so we will also refer to the coefficients c(n)

a in
the surface context as polarizabilities of the particle a.

Matching

To determine the polarizabilities, we again compute the response to the background field
(3.60), but this time using the effective Hamiltonian Heff = H0 + ∆Hf. As the background
field meets the particle boundaries, the surface and particles respond to obey the boundary
conditions, thereby generating a distribution of point sources localized in the neighborhood
of the boundary. Indeed, setting h→ hbg + δh in the Hamiltonian and expanding generates
a term linear in δh, appearing as the expected induced source (cf. Eq. (3.35)). Picking out
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this source term gives8

ρ(x | hbg) = − δ∆Hf
δh(x)

∣∣∣∣
h=hbg

= −
∑

a

∑

n>2

[
c(n)
a ∂nI hbg(xa) (−∂)nI

]
δ(x− xa).

(3.68)

Restricting now to the case of a single particle at the origin, the resulting response field
is calculated in the standard way as the convolution with the bulk Green function,

δhefff (x | hbg) = 1
σ

∫
d2x′G(x− x′)ρ(x′ | hbg)

= −
∑

n>2
c(n)∂nI hbg(0) (−∂)nIG(x),

(3.69)

where G(x) is given by Eq. (3.38) and we have dropped the particle label for convenience.9
To proceed, we will need an expression for (−∂)nIG(x) so that we may perform the required
index contractions. In the previous chapter, we did so via the detracer operator from
Technical Note 1.1. However, here we can do better by a change of variables.

Complex coordinates

A particular luxury of two dimensions is that points and vectors in the Euclidean plane
may alternatively be described in terms of complex numbers. With this description come
the elegant results of complex analysis, which will significantly simplify our work compared
to the three dimensional system studied in Chapter 1. In particular, the field h satisfies
Laplace’s equation −∇2h = 0, and can therefore always be broken up into holomorphic and
antiholomorphic functions. This provides motivation to work directly in complex coordinates
z = (z, z̄) with z = x + iy and z̄ = z∗ = x − iy. Under this change of variables, the x-
derivatives are replaced by the complex Wirtinger derivatives [Kre09], ∂ := ∂z = (∂x−i∂y)/2
and ∂̄ := ∂z̄ = (∂x + i∂y)/2, according to

∂

∂xi
= Tij

∂

∂zj
with Tij

.=
(

1 1
i −i

)
. (3.70)

Laplace’s equation then takes the form −4∂∂̄h = 0, so one of the immediate benefits of this
coordinate transformation is that mixed derivatives acting on on-shell fields will always

8Note that an additional source term could appear from the bulk Hamiltonian via (δH0/δh)|hbg
, but we

have chosen to consider only on-shell background field for which this term vanishes. If hbg did not satisfy the
bulk Euler–Lagrange equation, then the aforementioned term would give the source necessary to maintain
the background.

9As a reminder, the negative signs multiplying the Green function derivatives in Eq. (3.69) result from
integration by parts in x′ and using (∂′)nI = (−∂)nI before setting x′ = xa = 0.
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vanish. That is, in our derivative expansion only exclusively ∂ or ∂̄ derivatives will appear
on each instance of the field.10
Applying this to the worldline Hamiltonian (3.67) puts it in the form

∆Hf[h] =
∑

a

∑

n>2
C(n)
a

[
∂nh ∂̄nh

]∣∣∣
z=za

. (3.71)

Since the coefficients have yet to be determined, the relation between the new and old
polarizabilities C(n)

a and c(n)
a is irrelevant, but for completeness we mention that they differ

only by a factor of 2n × 2, where the extra factor of two is due to the term being its own
complex conjugate. Similarly, applying the transformation to the single-particle response
(3.69) gives

δhefff (z | hbg) = − 1
σ

∑

n>2
C(n)∂̄nhbg(0) (−∂)nG(z) + c.c., (3.72)

where “c.c.” denotes complex conjugation of the preceding terms. As promised, the multi-
index contractions between G and hbg have reduced to a much simpler task of multiplication.
Furthermore, the (harmonic) Green function rewritten in complex coordinates becomes

G(z) = 1
4π ln

(
4`2c
zz̄γ2

e

)
= 1

4π ln
(

2`c
zγe

)
+ 1

4π ln
(

2`c
z̄γe

)
, (3.73)

for which performing the ∂ and ∂̄ derivatives is simple:

(−∂)nG(z) = (n− 1)!
4πzn , (3.74)

and similar for the complex conjugate. Applying this to the response (3.72) finally gives

δhefff (z | hbg) = −
∑

n>2

(n− 1)!C(n)

4πσzn ∂̄nhbg(0) + c.c. (3.75)

Note also the way in which hbg appears in Eqs. (3.72) and (3.75), with its derivatives
evaluated at z = 0. This suggests that the most convenient form the background field
could take would be proportional to zn (plus the complex conjugate) since only nth-order
derivatives would survive when evaluated at zero. Of course, for these backgrounds to apply,
we require them to satisfy Laplace’s equation −4∂∂̄hbg = 0, which indeed any function
of exclusively z or z̄ satisfies. Let us return to the background field (3.60). Rewriting in

10Strictly speaking, z and z∗ are not independent. However, the formal manipulations can be justified
by promoting x and y to complex numbers so that (z, z̄) ∈ C2. The ∂ and ∂̄ derivatives then follow the
standard derivative rules of calculus. After performing computations we can restrict the results to the “real
surface,” { (z, z̄) ∈ C2 | z̄ = z∗ }.
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complex coordinates shows that it happens to appear in this convenient form,

hbg(z) = a0 +
∑

n≥1

an
2 (zn + z̄n). (3.76)

The corresponding full-theory response (3.64) also appears in an elegant form:

δh(z) = −
∑

n>2

an
2 R

2n(z−n + z̄−n
)
. (3.77)

Let us finally put everything together. The background field satisfies ∂nhbg(0) = n!an/2,
singling out only the nth multipole order. This fits our expectations about multipole fields
and symmetry—a multipole background field of order n impinging on a circular boundary
with vanishing Dirichlet conditions (e.g., a perfect conductor) will produce a strictly nth-
order multipole response. This indeed is the case according to Eq. (3.75). Matching the
full and effective responses can therefore be performed order-by-order without mixing, and
the matching condition δh(z) !=δhefff (z) becomes

− (n− 1)!C(n)

4πσ
n!an

2
!= −an2 R

2n. (3.78)

Thus the we find the set of polarizabilities for free, flat particles:

C(n)
a = 4πσ R2n

a

n!(n− 1)! (n > 2). (3.79)

Some remarks on the regulator

Before proceeding, a few comments are in order regarding the capillary length. When
`c is finite, we include the gravitational term `−2

c h2 in the Hamiltonian, and the bulk
Euler–Lagrange equation is modified to (−∇2 + `−2

c )h = 0. That is, ∇2h = `−2
c h 6= 0,

so the attentive reader might question the validity of dropping Laplacian terms in the
effective worldline Hamiltonian (3.67). The reason this is still permissible is that the
complete effective Hamiltonian is constructed out of all possible terms, so we may indeed
apply the bulk Euler-Lagrange equations to replace ∇2h with `−2

c h, but in doing so we will
ultimately reproduce terms that already appear. Since the Wilson coefficients were yet
undetermined, we can simply absorb the the `−2

c contributions into the coefficients and end
up with the same form for the effective Hamiltonian, but with the knowledge that they have
implicit `c-dependencies. Now, since the bulk symmetries are slightly different, namely the
transformation T2 no longer leaves the bulk Hamiltonian invariant, we find that terms linear
in h, as well as a quadratic h2 term (without derivatives), are now generally permissible.
This is actually not undesirable, since our particle degrees of freedom may break those
symmetries anyway. In fact, this is precisely why we wished to include the gravity term in
the first place; for (BC 1) particles, fixing the height breaks vertical translation symmetry
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and excites the ill-defined and divergent zero modes of the bulk Hamiltonian. Breaking the
symmetry in the bulk allows the divergences to be tamed, with `c acting as a regulator.

Now, we still wish to work in the regime of vanishing Bond number, so the gravitational
term appears as a bulk perturbation. This necessarily breaks the bulk symmetries, but
they are restored when `c → ∞. If we were to keep `c finite, we could still do the
matching using Eqs. (3.53) and (3.69) (or even Eq. (3.72)), but the higher-order derivatives
would be significantly more tricky thanks to the Bessel functions. We would find that the
polarizabilities would depend on `c, but in such a way that they are regular for `c → ∞
and ultimately reproduce Eq. (3.79) in the limit. The terms that break vertical height
translation symmetry will also have a dependence on `c, but instead of decaying as `−pc for
some power p, they would do so with a logarithmic correction, similar to the (h0−a0) term in
Eq. (3.62). As we will see later, this logarithmic behavior is important in properly capturing
interactions with surface monopoles that are finite and nonzero, even with `c →∞.

3.3.2 EFT for constrained flat particles: induced sources
The induced polarization effects of the previous section also apply to the two remaining
boundary condition types, (BC 1) and (BC 2). However, fixing the height and tilt of
a particle requires external forces that may change in response to those imposed by a
background field. This is analogous to a conductor maintained at a fixed electrostatic
potential: it must be connected to some reservoir of charge (e.g., a battery) so that charge
may flow to and from the conductor surface to make up for the potential difference. We
will discuss now how to incorporate these effects into the worldline Hamiltonian for flat
particle. Just as before, we need only discuss fixing the height and tilt for flat particles
in the equilibrium configuration, h0 = 0 and s = 0, as enforcing nonzero values must be
handled by additional terms that can be treated separately.

(BC 2). First consider the case (BC 2) in which the particle slope s is fixed to zero,
but is free to bob in the vertical direction. That is, h → h + h0 is still a symmetry for
∆H, but h → h + s · x is not. This means an additional term proportional to (∇h)2 is
now permissible, so in addition to Eq. (3.67), such particles provide the additional n = 1
contribution:

∆Hf[h] =
∑

a

∑

n>1

1
2c

(n)
a [∂nI h(xa)]2 (3.80a)

=
∑

a

∑

n>1
C(n)
a

[
∂nh ∂̄nh

]∣∣∣
z=za

, (3.80b)

where we have gone ahead and rewritten the expression it in complex coordinates. Since
the polarizabilities for n > 2 have already been determined, we need only match C

(1)
a .

Using the same background field (3.76) and s = 0, the full-theory response is given by
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Eq. (3.77) but with the n = 1 term included in the sum. Hence, the expression (3.79) for
the polarizabilities holds also for n = 1 and C(1)

a = 4πσ R2.

(BC 1). Now consider particles with both height and tilt fixed such that h0 = 0 and
s = 0. This is the notorious case which breaks the bulk h → h + h0 symmetry. In
addition to Eq. (3.80), this case allows for one more symmetry-breaking contribution which
is proportional to h2. Given its significance, we will isolate the contribution and write

∆Hm
f [h] = 1

2
∑

a

M (0)
a h2(xa), (3.81)

where “m” stands for “monopole.” By dimensional analysis, we see that M (0) ∼ σ and
thus cannot be treated perturbatively in R. This will add a few subtleties later on when
calculating interactions. Finding its value, however, is simple. An imposed background field
hbg will induce a monopole response, sourced by the external constraint forces—akin to a
conductor drawing charge from a battery—which for a single particle at the origin takes
the form

δheffm (x | hbg) = −M (0)hbg(0)G(x) = −M
(0)

2π hbg(0) ln
(

2`c
rγe

)
. (3.82)

The only multipole background that excites this response is a constant shift in height,
hbg(0) = a0, for which the full-theory response is given by the first term in Eq. (3.62) (with
h0 = 0). Matching coefficients therefore gives the monopole polarizability,

M (0)
a = 2πσ

ln
( 2`c
Raγe

) . (3.83)

Note that among all polarizabilities, this is the only one that explicitly depends on the
capillary length. Hence, we might expect that later taking the `c →∞ limit may be tricky.

3.3.3 EFT for curved particles: permanent sources
So far, we have constructed an effective Hamiltonian that reproduces the particle-surface
responses induced by an external background field. As we mentioned before, a particle
may also impart permanent deformations in the surface either due to the curvature of the
contact line, or due to fixing the particle’s height or tilt away from its equilibrium position.
In both cases, these deformations cost energy which either must be supplied by the material
properties of the particle, or via external forcing mechanisms. In the previous section
we discussed how the force “reservoirs” respond to match and cancel any imposed height
differences at the particle’s boundary due to external fields. Fixing any height deviations
from equilibrium, then, will be accounted for by permanent sources, independent of the
background. To clarify, it is the permanent sources which force fixed surface deformations
in the ground state, but the induction terms are responsible for maintaining the particle
position and contact line against background deformations. In the language of the functional,
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these permanent sources must necessarily persist even when hbg = 0 and are given by
(δ∆H/δh)|h=0. That is, they must appear as terms linear in (derivatives of) h, evaluated
at the particle position. The permanent distribution of charges at the boundaries does not
need to respect rotational symmetry, so the most general worldline source Hamiltonian
takes the form

∆Hp[h] = −
∑

a

∑

n>0

(
Q(n)
a

)
i1...in

∂i1 · · · ∂inh(xa) (3.84a)

= −
∑

a

{
Q(0)
a h+

∑

n>1

[
Q(n)
a ∂nh(za) + Q̄(n)

a ∂̄nh(za)
]}
, (3.84b)

where in the first line the tensors Q(n)
I are completely (pairwise) traceless to remove any

Laplacians on h, and in the second line we have transformed to complex coordinates, with
Q̄(n) = [Q(n)]∗ so that ∆Hp is real. In the rest of this chapter we will work primarily
in complex coordinates, so the relationship between Q(n)

I and Q(n) is unimportant. The
resulting permanent source for a single particle at the origin is therefore

ρp(z) = Q(0)δ(z) +
∑

n>1

[
Q(n)(−∂)n + Q̄(n)(−∂̄)n

]
δ(z), (3.85)

and convolving this with the Green function gives the permanent response,

δheffp (z) = 1
σ
Q(0)G(z) + 1

σ

∑

n>1

[
Q(n)(−∂)nG(z) + Q̄(n)(−∂̄)nG(z)

]

= Q(0)

2πσ ln
(

2`c
rγe

)
+
∑

n>1

(n− 1)!
4πσ

(
Q(n)

zn
+ Q̄(n)

z̄n

) (3.86)

Fixed height and tilt. As we found in Eq. (3.62), fixing the particle height h0 and tilt s
entails a permanent field response,

δh(x | h0, s) = h0
ln
( 2`c
rγe

)

ln
( 2`c
Rγe

) + (s · r̂)R
2

r
. (3.87)

To compare with Eq. (3.86), we first rewrite the above expression with the second term in
complex coordinates:

δh(z | h0, s) = h0
ln
( 2`c
rγe

)

ln
( 2`c
Rγe

) + ϑR2

2

(
eiθ

z
+ e−iθ

z̄

)
, (3.88)
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where ϑ and θ are defined via sx + isy = ϑeiθ and represent a rising vertical slope of
magnitude ϑ oriented the direction an angle θ from the x-axis in the base plane.11 Finally,
setting δheffp (z) != δh(z | h0, s) solves for the two nonvanishing charges,

Q(0)
a = h0

2πσ
ln
( 2`c
Rγe

) (3.89)

and
Q(1) = 2πσ ϑR2 eiθ. (3.90)

Observe that the monopole charge satisfies Q(0) = M (0)h0, with M (0) given in Eq. (3.83),
analogous to the the capacitance equation Q = CΦ in electrostatics.

Saddle-shaped particles. The remaining terms with n ≥ 2 in Eq. (3.86) correspond to
sources that fix the permanent curvature at the contact line. We have already calculated
the permanent surface response for a saddle-shaped particle in Eq. (3.61). We re-express
the solution in complex coordinates and find

δh(z | S, α) = −1
4SR

4
(

e2iα

z2 + e−2iα

z̄2

)
. (3.91)

Matching with Eq. (3.86) then selects the permanent charge

Q(2) = −πσSR4 e2iα. (3.92)

General contact line. We mentioned earlier, that the contact line profile hct(x) of any
generic, compact particle could be described by decomposing its representation at the
boundary into Fourier modes via Eqs. (3.54) and (3.44). For completeness, we will briefly
discuss this procedure and the corresponding EFT description.

Recall from Eq. (3.10) that an arbitrary contact line hct can be represented by its Taylor
series about the particle origin, which we will reproduce here for convenience in the compact
form

hct(x) =
∑

n>0

1
n!x

n
I ∂

n
I h

ct(0). (3.93)

We discussed the interpretation of such terms: n = 0 corresponds to height, n = 1 gives the
tilt, and n > 2 describes the permanent curvature. We selected the first such curvature
term and found it corresponded to a quadrupole moment or saddle shape. Part of this

11This form result from rewriting (s · r̂)/r in complex coordinates using 1/z = (cosϕ − i sinϕ)/r.
Rearranging terms yields the form

(s · r̂)
r

= 1
2

(
sx + isy

z
+ sx − isy

z̄

)
.

Defining the complex number ϑeiθ = sx + isy then leads to the result (3.88).
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interpretation relies on the information revealed by discussing surface energetics: the surface
is insensitive to a particle’s total curvature unless acted upon by an external force. That is,
in our representation of the contact line, we should choose ∇2hct = 0 to avoid unnecessary
or redundant information. This is actually a bonus for our analysis, because hct is therefore
a real harmonic function and in complex coordinates decomposes into hct(z, z̄) = f(z)+ f̄(z̄)
for some function f . Applying the transformation (3.70) and using ∂∂̄hct = 0 puts Eq. (3.93)
into the form

hct(z) = hct(0) +
∑

n>1

1
n!
[
zn∂nhct(0) + z̄n∂̄nhct(0)

]
. (3.94)

On the particle boundary ∂A, z = R eiϕ and the contact line indeed becomes a Fourier
series,

hct(ϕ | ∂A) = hct(0) +
∑

n>1

Rn

n!
[
∂nhct(0) einϕ + ∂̄nhct(0) e−inϕ], (3.95)

with Fourier modes an = ∂nhct(0)Rn/n! (and complex conjugate). The permanent response
then follows by matching coefficients to a general exterior solution, giving

δh(z | hct) = hct(0)
ln
( 2`c
rγe

)

ln
( 2`c
Rγe

) +
∑

n>1

R2n

n!

(
∂̄nhct(0)

zn
+ ∂nhct(0)

z̄n

)
. (3.96)

Finally, we match this solution to the EFT result (3.86) and find the complete set,12

Q(0)
a = 2πσ

ln
( 2`c
Raγe

) hcta (0), (3.97a)

Q(n)
a = 4πσ R2n

a

n!(n− 1)! ∂̄
nhcta (0) (n ≥ 1), (3.97b)

where we have reinstated the particle label a. The special cases we have considered can be
verified by substitution, and directly reproduce the expressions (3.89), (3.90), and (3.92).

Polarizabilities and preferred shape

In light of the previous discussion, let us remark on an additional conceptualization of the
particle polarizabilities. Looking back on the expressions (3.97a) and (3.97b), we observe
that the prefactors precisely match the expressions for the polarizabilities (3.83) and (3.79);
i.e.,

Q(0)
a = M (0)

a hcta (0) and Q(n>1)
a = C(n)

a ∂̄nhcta (0). (3.98)

12If the particle is not centered on the origin, we simply translate the argument of hcta (x) via hcta (x− xa)
so that when evaluated at the particle position x = xa, it still gives the same values hcta (0). Higher-order
derivatives should be interpreted similarly in these expressions.
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Written in this form, the interpretation of M (0) and C(n) respectively as the self-capacitance
and nth-order polarizability13 is even more clearly appropriate: Given the source fields
∂̄nhct(0) due to particle properties or external mechanisms, the permanently induced charge
(force) distributions Q(n) are characterized by the self-capacitance and polarizabilities.

Substituting the above expressions into Eq. (3.84) leads to an interesting simplification.
Comparing the resulting terms with those in Eqs. (3.80) and (3.81) shows that one may
complete the square in the following way:

1
2M

(0)
a h2(xa) +

∑

n>1
C(n)
a |∂nh(za)|2 −Q(0)

a h−
∑

n>1

[
Q(n)
a ∂nh(za) + Q̄(n)

a ∂̄nh(za)
]

= 1
2M

(0)
a

(
h(za)−

Q
(0)
a

M
(0)
a

)2
+
∑

n>1
C(n)
a

∣∣∣∣∂nh(za)−
Q̄

(n)
a

C
(n)
a

∣∣∣∣
2
− 1

2

[
Q

(0)
a

]2

M
(0)
a

−
∑

n>1

∣∣Q(n)
a

∣∣2

C
(n)
a

= 1
2M

(0)
a

[
h(za)− hcta (0)

]2 +
∑

n>1
C(n)
a

∣∣∂nh(za)− ∂nhcta (0)
∣∣2

− 1
2M

(0)
a

[
hcta (0)

]2 −
∑

n>1
C(n)
a

∣∣∂nhcta (0)
∣∣2 (3.99)

Notice the way in which the contact line appears. We may understand this in two ways.
First, the worldline energy as expressed above appears with hct behaving as an external
background field. To make this evident, let us express the source-free (Q(n) = 0) worldline
terms as

∆Hf[h] =
∑

a

∫
d2x∆Hf

a[h(x)] δ(x− xa), (3.100)

where the δ-function serves to evaluate the terms at the particle positions. Then, the
inclusion of external sources that fix the contact line is handled by including hct as a
background field via

∆Hf
a[h(x)]→ ∆Hf

a[h(x)− hcta (x− xa)]−∆Hf
a[hct(x− xa)], (3.101)

where the argument of hct evaluates to the particle positions as per footnote 12. The second
term above gives the (negative) external work done to maintain the contact line. We note
in passing that the monopole term of Eq. (3.99)—the first term after the last equality—is
reminiscent of the way in which Lehle and Oettel include a harmonic potential to model
laser tweezers acting on a colloid [LO07]. We will return to this in Section 3.7.
The inclusion of sources via (3.99) and (3.101) is also similar to the way in which

spontaneous curvature is included in the Helfrich energy (cf. Eq. (2.36)), and provides an
alternative interpretation. For each possible permanent deformation implicitly sourced
via hct, there exists a preferred background field h

(n)
p such that it satisfies the boundary

conditions and ∂nh(n)
p (za) = ∂nhcta (0), and thus no 2n-pole excitation occurs. Likewise, we

13i.e., a 2n-pole polarizability
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may interpret hct as the preferred shape for a particle in a given background field if its
permanent deformation conforms exactly to that of the background field. We have used
this idea implicitly when discussing the responses to generic particle shapes. Namely, the
saddle shaped particles impart a permanent quadrupolar deformation in the surface, and
thus there exists a preferred quadrupolar background that directly counters and conforms
to this deformation.

Permanent charges and force balance

We conclude this section with a short discussion of the relationship between permanent
sources and polarizabilities. The relationships expressed in Eq. (3.98) are not mere coinci-
dence, but reflect the force balance at the particle contact line. To understand this, let us
reconsider fixing the contact line explicitly in the energy functional. The remarks leading
up to Eq. (3.101) motivate thinking of the external sources as imposing a background field
hct centered at the particle position. However, the resulting forces must be balanced for
there to exist an equilibrium solution for an unperturbed particle. Any permissible field
configurations h beyond hct should be governed by the energy difference H[h+hct]−H[hct],
but with the restriction that the net permanent source (force distributions) vanish. We can
extract an explicit consistency condition by expanding the energy functional and identifying
the quantity coupling linearly to h as the total force distribution ρtot and setting it to zero:

H[h+ hct]−H[hct] =
∫

d2x
δH
δh

∣∣∣∣
hct
h(x) + 1

2

∫
d2x d2x′

δ2H
δh(x)δh(x′)

∣∣∣∣
hct
h(x)h(x′)

≡ −
∫

d2x ρtot(x | hct)h(x) + (H0[h] +Hf[h]),

(3.102)

where on the right side the integral reproduces the purely quadratic terms and Hf includes
the monopole term (3.81). Force balance therefore requires that

ρtot(x | hct) = − δH0
δh

∣∣∣∣
hct
− δ∆Hf

δh

∣∣∣∣
hct
− δ∆Hp

δh

∣∣∣∣
hct

= 0 + ρf(x | hct) + ρp(x | hct) != 0, (3.103)

where the vanishing of the bulk derivative follows from −σ∇2hct = 0 (see Section 3.2).14
Applying this condition not only verifies the consistency of our matching procedure, but

14Equation (3.103) is somewhat similar to the average-force cancellation condition of Ref. [BLDW07].
There, the the condition arises as a necessary (but not sufficient) requirement for there to exist a global
solution for a fluid surface of constant mean curvature when in the absence of gravity. Namely, if one
appends to the surface energy both the energy costs of a pressure difference, −

∫
Ω d2x∆p h(x), and the

forces at the outer boundary, −
∮
∂Ω ds σ̃(s)h(x), the condition reads

Q := ∆p×Area(Ω) +
∮
∂Ω

ds σ̃(s) != 0.
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also provides the permanent sources for free:

ρf(z | hct) + ρp(z | hct) = −M (0)hct(0)δ(z)−
∑

n>1
C(n)[(−∂)nδ(z) ∂̄nhct(0) + c.c.

]

+Q(0)δ(z) +
∑

n>1

[
Q(n)(−∂)nδ(z) + c.c.

]

=
[
Q(0) −M (0)hct(0)

]
δ(z)

+
∑

n>1

{[
Q(n) − C(n)∂̄nhct(0)

]
(−∂)nδ(z) + c.c.

}
(3.104)

Setting the above equation to zero therefore reproduces the matched expressions in
Eq. (3.98).

By now we have completely rewritten and restructured the original problem in a point-
particle EFT framework. The Hamiltonian for the surface or interface is simply that of a
particle-free gradient-squared theory with a gravitational perturbation serving to regulate
divergences, Eq. (3.66). The structure of the originally finite-sized particles is recaptured in
a local derivative expansion, which encodes particle polarizabilities, Eqs. (3.80) and (3.81),
and possible finite deformations due to the shape and conditions on the particle contact
lines, Eq. (3.84). The complete sets of Wilson coefficients for both expansions have also
been determined—respectively Eqs. (3.79) (including n = 1) and (3.83), and Eqs. (3.97)
and (3.98), with special cases for height, tilt, and saddle shapes: Eqs. (3.89), (3.90), and
(3.92). Since it has been a rather lengthy journey with important results scattered along
the way, we summarize the complete effective Hamiltonian in Technical Note 3.1.

3.4 Surface-mediated interactions: Preliminaries
We are now in the position to calculate surface-mediated interactions between bound
particles. Such interactions arise from the free energy difference with respect to the particle-
free surface, and depend on the spatial arrangements—and possibly the orientations—of the
bound particles. In what follows we will not only be interested in ground state interactions,
which necessarily must be sourced by permanent deformations or external forces, but
also those induced by thermal fluctuations of the surface. As we discussed formally in
Section 1.2.2 of the previous chapter, the relevant physics is completely captured in the
thermodynamic partition function Z, and the corresponding interaction potentials may be
extracted from the free energy difference U = F −F0 = −kbT ln(Z/Z0), where the subscript
“0” refers to the particle-free system. By expanding the Hamiltonian as Heff = H0 + ∆H,
we may treat the effects of particle inclusions perturbatively via Eq. (1.95), so finding U
amounts to calculating a series of cumulants ∝ 〈(∆H[h])q〉c. However, the the worldline
Hamiltonian ∆H itself contains many terms, so the number of terms in the cumulant
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Technical Note 3.1: The complete EFT for circular particles
For convenience and reference, we present the complete effective Hamiltonian for circular particles on a
tension-dominated surface (with the understanding `c →∞):

Heff[h] = H0[h] + ∆Hf[h] + ∆Hp[h]

= σ

2

∫

R2
d2xh

(
−∇2 + `−2

c
)
h+

∑

a

[
1
2M

(0)
a h2(za) +

∑

n>1
C(n)
a ∂nh(za) ∂̄nh(za)

]

−
∑

a

{
Q(0)
a h(za) +

∑

n>1

[
Q(n)
a ∂nh(za) + Q̄(n)

a ∂̄nh(za)
]}
.

The values of the polarizabilities C(n) andM (0), and the permanent sources Q(n) depend on the particle’s
out-of-plane contact line curvature and fluctuation degrees of freedom:

Polarizabilities:





(BC 1): M (0)
a = 2πσ

ln
( 2`c
Raγe

) , C(n)
a = 4πσ R2n

a

n!(n− 1)! (n > 1)

(BC 2): M (0)
a = 0, C(n)

a = 4πσ R2n
a

n!(n− 1)! (n > 1)

(BC 3): M (0)
a = 0, C(1)

a = 0, C(n)
a = 4πσ R2n

a

n!(n− 1)! (n > 2)

Permanent charges: Q(0)
a = M (0)

a hcta (0), Q(n)
a = C(n)

a ∂̄nhcta (0) (n > 1)

Special cases:





height: hcta (0) = h0,a, Q(0)
a = 2πσ

ln
( 2`c
Raγe

) h0,a

tilt: ∂̄hcta (0) = ϑa
2 eiθa , Q(1)

a = 2πσ ϑaR2
a eiθa

curvature: ∂̄2hcta (0) = −1
2Sae2iαa , Q(2)

a = −πσSaR4
a e2iαa

expansion quickly proliferates and requires a transparent bookkeeping system. Fortunately,
there exists a standard tool from quantum and statistical field theory that provides such a
system: Feynman diagrams.

3.4.1 The diagrammatic technique
To standardize our treatment, we will briefly review the technique of Feynman diagrams as
it pertains to our quadratic theory. More elaborate and detailed discussions can of course
be found in standard books (for examples, Refs. [NO88, BDFN95, ZJ02, Zee03, Vas04]).
Consider the following functional integral with a real symmetric and positive-definite

kernel function K(x,x′)
Z0 =

∫
Dh e−

1
2 hᵀ K h, (3.105)
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where we have used the abbreviated notation

hᵀK h ≡
∫

d2x d2x′ h(x)K(x,x′)h(x′). (3.106)

The reason for the font choice and transpose symbol is to make manifest the connection to
linear algebra, where the indices are instead continuous and the inner product corresponds
to spatial integration.15 For many applications, including ours, the kernel represents some
differential operator D(∂) and can be expressed as K(x,x′) = D(∂x)δ(x−x′). The meaning
of the transpose then relates to integration by parts such that for every derivative ∂ᵀ = −∂.
If the indices were discrete so that K h = Kijhj and Dh =

∏
i dhi, the answer could be

directly calculated. To do so, one could diagonalize K by an orthogonal transformation,
thereby decoupling the integral into a product of single-variable Gaussian integrals. The
result would then contain a product of all eigenvalues of K, which is identified with the
determinant, finally giving

Z0 =
(

det K
2π

)−1/2
. (3.107)

The functional integral (3.105) is the continuum generalization of the above result, and
indeed the functional determinant can be formally defined by the above expression [Vas04].
Note that in passing to the continuum limit, there are many mathematical subtleties
in rigorously defining and regularizing such functional determinants (see, for instance
Ref. [Dun08]), but for our purposes it will suffice to proceed formally.
Now consider adding linear (source) and quadratic perturbations,

Z =
∫
Dh e−

1
2 hᵀ K h− 1

2 hᵀ V h+Jᵀ h. (3.108)

This is the same form as in our effective theory with the identifications

K(x,x′) = δ2(βH0)
δh(x)δh(x′) (3.109a)

V (x,x′) = δ2(β∆Hf)
δh(x)δh(x′) , (3.109b)

J(x) = −δ(β∆Hp)
δh(x) , (3.109c)

with H0, ∆Hf, and ∆Hp given in Technical Note 3.1. Using the functional identity

δ

δJ(x) eJᵀ h = h(x) eJᵀ h, (3.110)

15This connection is precisely what Dirac’s bra–ket notation was invented for, but we wish to avoid a
confusing clash between inner products and thermal averages.
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we may replace instances of h with functional derivatives of the source J . In particular, we
may pull the quadratic perturbation (V ) outside the functional integral:

Z =
∑

k>0

1
k!

(
−1

2
δ

δJ

ᵀ

V δ

δJ

)k ∫
Dh e−

1
2 hᵀ K h+Jᵀ h, (3.111)

where the functional operator is shorthand for

δ

δJ

ᵀ

V δ

δJ =
∫

d2x d2x′
δ

δJ(x)V (x,x′) δ

δJ(x′) (3.112)

and the integrals and derivatives act on everything to the right.16 The functional integral can
then be calculated by “completing the square” in the exponent, which may be accomplished
by simply shifting the field via h → h + K−1 J, where K−1 is the inverse of the kernel
K(x,x′) and satisfies

K−1 K = 1 ⇐⇒
∫

d2x′′K−1(x,x′′)K(x′′,x′) = δ(x− x′). (3.113)

For differential operators, the inverse corresponds to the Green function, and in our problem

K−1(x,x′) = (βσ)−1G(x− x′) (3.114)

with G given by Eq. (3.38) (or equivalently Eq. (3.73)). With this in mind, we will use
the notation G = K−1. The inverse G is also symmetric, a property inherited from K.
After substituting in the shifted field and expanding, we use this to simplify the terms in
the exponent and find that the residual h-dependence factors out into the form (3.105),
resulting in

Z = Z0
∑

k>0

1
k!

(
δ

δJ

ᵀ

V δ

δJ

)k
e

1
2 Jᵀ G J. (3.115)

At this point, we can begin performing the functional derivatives, which bring down
factors of G and J but otherwise leave the exponential intact. In this sense, the above
expression generates a perturbative expansion for the partition function, where the index k
counts how many times V occurs in a given term. Writing

Z/Z0 = e
1
2 Jᵀ G J

∑

k>0
ζ(k), (3.116)

16Note, however, that V (x,x′) does not depend on J , so the functional derivative passes through it.
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we find the first couple of terms to be17 (ζ(0) = 1 trivially),

ζ(1) = − 1
2

[
tr V G + JᵀG V G J

]
(3.117)

ζ(2) = 1
8

[
4 JᵀG V G V G J + 2 tr V G V G + (tr V G)2

+ 2(tr V G)(JᵀG V G J) + (JᵀG V G J)2
]
, (3.118)

where the functional trace acting on some A is defined via

tr A ≡
∫

d2xA(x,x). (3.119)

The form in which the factors contract with one another suggests the following graphical
representation in terms of Feynman diagrams,

ζ(1) =
V

+ J V J (3.120)

ζ(2) = J V V J +
V

V

+ 1
2

[

V

]2

+ V

J V J

+ 1
2

[
J V J

]2
(3.121)

In the above diagrams, each two-legged vertex represents a factor of −V, each end node
represents a factor of J, and each connecting line represents a propagator G. Additionally,
each diagram is endowed with a combinatorial factor that relates to the symmetry of the
diagram. We will return to this shortly. Taking a step back to Eq. (3.116), the associated
free energy difference has the expansion (ordered according to the number of vertices)

−βU = ln(Z/Z0) = 1
2JᵀG J + ln

(
1 +

∑

k>1
ζ(k)

)

= 1
2JᵀG J + ζ(1) +

(
ζ(2) − 1

2

[
ζ(1)
]2
)

+ · · ·
(3.122)

17 To produce these expressions, one could revert to index notation

δ

δJ (Jᵀ G J) =⇒ δ

δJi
(JkGk`J`) = Gi`J` + JkGki ⇐⇒ G J + Gᵀ J = 2 G J .

A similar calculation shows δ
δJ

ᵀ V G J = tr V G. Alternatively, one could use δ
δJ

ᵀV δ
δJ = tr V δ

δJ
δ
δJ

ᵀ, where the
trace and derivative operators act on everything to the right.
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If one notices the disconnected part ζ(2)—i.e., the last three terms of Eq. (3.121)—combine
to give [ζ(1)]2/2, it is seen that these disconnected diagrams cancel out in the calculation
of the free energy above. This property actually holds to all orders, with the conclusion
that the free energy is given by the sum of all connected diagrams. This is nothing but the
relation between cumulants and ordinary averages, but in diagrammatic form.

Since we only have one- and two-legged vertices (only linear and quadratic terms appear
in H), the only completely connected diagrams possible here are of linear and ring types.
Hence the diagrammatic expansion of the free energy difference is given by

− βU =
∑

k>0
J V V J

k

+
∑

k>1

V
V

V
V

k . (3.123)

Finally, let us track down all the numerical factors that end up as an overall combinatorial
weight. For each diagram with k V-vertices, we have a factor (−1)k/(k!2k) simply coming
from the Taylor expansion of the exponential factor (see Eqs. (3.111) and (3.115)). Now,
in constructing the diagrams, there are k! ways in which to order the V-vertices, and a
further 2k ways of connecting them for each ordering, achieved by swapping the vertex legs.
Hence, all the numerical factors cancel, except (−1)k. However, this possibly overcounts the
number of ways to construct the diagram by a factor S, which is called the symmetry factor.
The reason for the overcounting is that some of the reordering and relinking mentioned
above treat connections that can be rotated or reflected into one another as if they are
distinct. Therefore, the symmetry factor counts the number of transformations that can be
performed on the diagram that preserve its connectivity.18 The numerical factors for each
diagram is then (−1)k/S, correcting for the overcounting. For the linear diagrams, we can
either do nothing (the identity) or reverse the vertex ordering, i.e., perform one reflection,
so S = 2. For the ring diagrams, the symmetry group consists of the identity plus rotations
and reflections, i.e., the dihedral group Dk, and thus S = 2k.

A more direct route

The previous discussion is a fairly standard treatment for (perturbatively) calculating the
partition function and free energy. If the theory had instead some generic interactions
V[h] which include perhaps higher-order terms beyond quadratic, the functional derivative
identity (3.110) would allow for the replacement V[h]→ V[δ/δJ ] and result in an expression
similar to Eq. (3.115), but with the terms in parentheses replaced by −V [δ/δJ ]. This would
then generate the required perturbative expansion.
With a quadratic theory, however, we may arrive at the result (3.123) in a more direct

manner by exploiting Eq. (3.107). We do so by first treating K and V on an equal
footing and, instead of expanding as in Eq. (3.111), jump directly to “completing the

18That is, SΓ = |Aut Γ| is the order of the group of graph automorphisms for the given diagram Γ.
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square” in the exponent. This is accomplished again by shifting the field, but this time via
h→ h +(K + V)−1J. After simplifying the exponent, we may apply Eq. (3.107) to find

Z/Z0 = e
1
2 Jᵀ(K+V)−1 J

[
det
(K+V

2π
)

det
( K

2π
)
]−1/2

. (3.124)

Next, we rewrite the operator sum as19 K + V = K(1 + K−1 V). The determinant of a
product is the product of determinants, so the det(K/2π) terms cancel. Using the notation
G = K−1 as before, this leaves

Z/Z0 = e
1
2 Jᵀ(1+G V)−1 G J[det(1 + G V)]−1/2, (3.125)

and hence the free energy difference becomes

− βU = ln(Z/Z0) = 1
2Jᵀ(1 + G V)−1 G J− 1

2 ln det(1 + G V). (3.126)

Finally, we use the operator identity ln det A = tr ln A, and the two expansions

(1 + A)−1 =
∑

k>0
(−A)k, (3.127)

ln(1 + A) = −
∑

k>1

1
k

(−A)k, (3.128)

to rewrite the free energy as

− βU =
∑

k>0

1
2Jᵀ(−G V)k G J +

∑

k>1

1
2k tr(−G V)k, (3.129)

which exactly reproduces the diagrammatic expansion (3.123), including the symmetry
factors 1/2 and 1/2k.

Multiple perturbations

The above analysis is not limited to a single interaction vertex V. Indeed, the linear
and quadratic worldline terms Hp and Hf each consist of a whole series of differential
operators. To see how that affects the diagrammar, consider the replacement V→ V1 + V2
in Eq. (3.129). Both sums then require expanding (G V1 + G V2)k, but since G V1 and G V2

19In its full glory, this expression reads:

K(x,x′) + V (x,x′) =
∫

d2x′′K(x,x′′)
[
δ(x′′ − x′) +

∫
d2y K−1(x′′,y)V (y,x′)

]
.
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do not necessarily commute we cannot use a simple binomial expansion. Instead, we write

(G V1 + G V2)k =
k∑

`=0
P
[
(G V1)`(G V2)k−`

]
, (3.130)

where P [· · · ] is the sum of all possible permutations of ` instances of G V1 and k−` instances
of G V2. Many of the permutations produce identical terms, as does the cyclic property of
the trace, so we could alternatively re-express the sum in terms of distinct permutations
weighted by their multiplicities. In terms of diagrams, the inclusion of nonidentical vertices
may break the rotation or reflection symmetries and hence alter the symmetry factors.
This is often the case, and the new symmetry factor for a given diagram can be found
by dividing the old symmetry factor by the new diagram’s multiplicity, or equivalently by
directly counting the symmetries of the new diagram. For the linear diagrams, this is very
simple: S = 2 if the diagram is palindromic, otherwise S = 1. For the ring diagrams, one
must count the rotations and reflections case by case.

Ground state versus entropic

Let us return to the correspondence between our problem and the generic quadratic “action”
in the exponent of Eq. (3.108). We originally wrote the action without any factors of
β—this was simply to avoid clutter—but the action is to be identified with βH. There
is some physical insight to be gained by examining the temperature dependence of the
perturbative expansion, so let us restore β in Eq. (3.108) by the replacements K → βK,
V→ βV, and J→ βJ. Accordingly, the propagator (Green function) must be replaced via
G→ 1

βG. With these replacements, the β-dependence drops out of the product G V, and
the free energy expansion (3.129) ultimately simplifies to

U = −
∑

k>0

1
2Jᵀ(−G V)k G J− kbT

∑

k>1

1
2k tr(−G V)k. (3.131)

In general, the interaction free energy can be broken up into two terms: U = E − TS,
where E is the (difference in) internal or ground state energy, and S is the (difference
in) entropy. With the temperature dependence restored in Eq. (3.131), it becomes clear
that the first sum alone accounts for the ground state (T = 0) interactions. On the other
hand, the second sum is linear in temperature and thus accounts for purely entropic, or
fluctuation-induced, interactions. To distinguish these different types of interactions, we will
use the symbols E and U := −TS respectively for the ground state and entropic interaction
energies so that U = E + U . In terms of diagrams, it follows from Eq. (3.123) that ground
state interactions are strictly of the linear-type and entropic interactions are strictly of the
ring-type.

Regarding the ground state energy, the expansion could also be generated without the use
of the partition function. It is, after all, unrelated to thermodynamic fluctuations. Instead,
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one may consider the “classical solution” hc to the Euler–Lagrange equation (K + V) h = J.
This may be solved using the full Green function G = (K + V)−1 so that

hc = G J =
∑

k>0
(−G V)k G J . (3.132)

The interaction energy follows from Eq. (3.39) to give

E = −1
2Jᵀ hc = −

∑

k>0

1
2Jᵀ(−G V)k G J, (3.133)

which reproduces the ground state terms in Eq. (3.131). This type of series expansion was
actually performed in the previous chapter—though with less brevity—under the guise of a
Liouville–Neuman series, resulting in Eq. (1.67) and later Eq. (1.72). Were we so inclined,
we could have alternatively generated those solutions through a diagrammatic expansion.

3.4.2 Surface diagrammar
Having developed the diagrammatic formalism, let us now apply these techniques to our
problem of surface-bound particles. We have identified the appropriate correspondence
between the generic action and our problem in Eq. (3.109), showing that the vertex and
source factors are generated by functional derivatives. For the moment, we will delay
the discussion of the monopole terms (those proportional to Q(0) and M (0)) since these
terms will require additional comments and consideration regarding proper handling of the
regulator. Instead, we will write V→ Vm + V and J→ Jm + J to single out the monopole
contributions and later handle them according to the discussion surrounding Eq. (3.130).
Performing the required calculation gives (in complex coordinates)

J(z) =
∑

a

∑

n>1

[
βQ(n)

a (−∂)nδza + βQ̄(n)
a (−∂̄)nδza

]
, (3.134)

V (z, z′) =
∑

a

∑

n>1
βC(n)

a

[
(−∂)nδza(−∂̄)nδz′a + (z ↔ z′)

]
, (3.135)

where we have used the abbreviated notation δza := δ(z − za).
When the above factors appear in the free energy expansion, the derivatives acting on

delta functions get transferred onto the propagators upon integration. Moreover, due to
these delta functions, the propagators will always “propagate” between two particle positions,
so we will encounter factors such as ∂n∂̄mG(za − zb). It follows from the Euler–Lagrange
equation that any terms in which a Laplacian (∇2 = 4∂∂̄) acts on a propagator G(za − zb)
will vanish, provided za 6= zb (we will consider self-interactions in a moment). That is,
only strictly ∂- or ∂̄-derivatives may act on a given propagator. Our aim, then, is to make
this property manifest in the diagrams, which we accomplish by representing propagators
receiving ∂-derivatives by a single line, and propagators receiving ∂̄-derivatives by a double
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line. For additional clarity, we will represent propagators receiving no derivatives with
a dashed line. The benefit here should be clear, that single, double, and dashed lines
connecting two vertices must share the same flavor of derivatives (∂ or ∂̄) coming from the
two vertex factors. Complex conjugation then simply swaps single lines for double lines and
vice versa (and leaves the dashed line unaffected). The visual correspondence is therefore,

z z′ = (βσ)−1G(z − z′) →





z z′ no derivatives
z z′ ∂-derivatives
z z′ ∂̄-derivatives

(3.136)

where the solid dots at the ends do not represent interaction vertices, but rather indicate
that the propagator links between two spatial points.
Similarly, the expansions (3.134) and (3.135) can be represented diagrammatically via

zJ = J(z) = z + z (3.137a)

=
∑

a

∑

n>1

[
zza

(n)
+ zza

(n) ]
, (3.137b)

and
z

z′
V = −V (z, z′) =

z

z′
+

z

z′
(3.138a)

=
∑

a

∑

n>1

( z

z′
za

(n)
+

z

z′
za

(n)
)
, (3.138b)

where we have dropped the monopole terms for now. The dotted lines connecting the
vertices to the particle worldlines do not represent propagators, but instead remind us
that both z and z′ will be contracted to za upon integration. Additionally, the reason for
the capped ends in the above diagrams is to remind us that the lines emanating from the
vertex do not yet represent propagators, but rather that they must connect—like a ball
and socket—to the appropriate single- or double-lined propagator from Eq. (3.136).20 In
the first line of each diagram expansion, we have implicitly included the sum over particle
labels and derivative order in the vertices, and made them explicit in the respective second
lines. The explicit operators corresponding to these vertices are as follows:

zza

(n)
= βQ(n)

a (−∂)nδza (3.139a)

zza

(n)
= βQ̄(n)

a (−∂̄)nδza (3.139b)

20The “balls and sockets” are here just as a visual aide, but once a vertex is connected to a propagator
the “joint” should disappear. For example: →
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z

z′
za

(n)
= −βC(n)

a (−∂)nδza(−∂̄)nδz′a (3.139c)

In many cases, it will prove convenient to hide the sums as done Eqs. (3.137a) and
(3.138a), but in doing so a given diagram’s symmetry factor should reflect this choice.
Likewise, if in a diagram we include a vertex with an explicitly chosen order or label,
then the vertex is considered distinct and accordingly alters the diagram’s symmetry and
symmetry factor.

Power counting. Since one of our goals is to express the interaction energy as a perturbative
expansion in the interparticle separation r, it helps to determine which diagrams contribute
to a given order. This may be achieved through a simple power-counting argument. The
Green function G has a logarithmic dependence on r, but is otherwise unitless. As we
found in Eq. (3.74), derivatives of the Green function scale as ∂nG ∼ r−n, with r = |z|.
These derivatives originate from the sources and interaction vertices, where a charge Q(n)

contributes n derivatives, and a polarizability C(n) contribute 2n derivatives. A linear
diagram consisting of NV vertices (and hence NV + 1 propagators) in a chain capped on
both ends by sources will therefore scales as ∼ r−p with

p =
NV∑

i=1
2nVi + nJ1 + nJ2 , (3.140)

where nV and nJ are the derivative orders corresponding respectively to a specified interac-
tion vertex or source. Similarly, there are no sources in the ring diagrams, so they must
scale as

p =
NV∑

i=1
2nVi . (3.141)

If monopole interactions are included, then there may exist propagators without derivatives
which—as we will soon see—will lead to logarithmic corrections to these power laws.

Self-interactions. For interactions that occur on the same particle worldline, we will
encounter terms such as ∂n∂̄mG(za − za) = ∂n∂̄mG(0), which are divergent. Such terms
arise in two particular ways. The first is through pure self-interactions—those involving
interactions solely on and between a single particle worldline, such as the first diagram
in Eq. (3.120). These divergences occur at every order in the perturbative expansion,
but since they do not reference the other particles or their relative positions, they do not
contribute to the interaction energy. As such, these pure self-interactions can be removed
by a redefinition of the interaction free energy: U

(
{xa}

)
→ U

(
{xa}

)
− U

(
{xa} | rab →∞

)

where rab = |xb − xa| and a 6= b.
The second type of self-interaction occurs within a given multiparticle interaction diagram,

and therefore will not be removed by the above energy redefinition. Instead, we note that
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in coarse-graining the Hamiltonian, we have in effect reduced the particle structure—and
corresponding (uncountably infinite) field degrees of freedom—to infinitesimal points. It
should not be surprising, then, that divergences should appear as an artifact. The resolution
is that proper coarse-graining should be accompanied by an appropriate renormalization of
the couplings. In fact, for a sensible finite theory the bare parameters of the Hamiltonian
must also suffer from similar but compensating divergences. If we wish to express the
Hamiltonian in terms of the renormalized parameters—that is, those which will factor
into observables—we may, for example, write the bare polarizability as a series in the
renormalized (physical) polarizabilities and make the substitution

C
(n)
b = C(n)

r +
(
C

(n)
b − C(n)

r
)

=: C(n)
r + δC(n), (3.142)

where δC(n) is a series of counterterms that subtract off the divergences. In doing so, the
renormalized parameters may depend on a renormalization scale, but this is precisely set
by our matching procedure. Indeed, the matching procedure we applied earlier provides the
renormalized (and thus observable) polarizabilities, but in doing so we implicitly assumed
that a proper renormalization procedure would eliminate the self-interactions we neglected
by dropping the δ2(∆H)/δφ2 terms in the linear response problem. This is in fact the case,
and the details are provided in Appendix A. Here we will summarize the key points.
For the quadratic Hamiltonian we consider, the renormalization and identification of

counterterms is straightforward and accomplished with the following observations. First,
the bulk Green function is isotropic and so any derivatives of the Green function evaluated
at the origin must inherit that property. In complex coordinates, this implies ∂n∂̄mG(0) =
δnm(∂∂̄)nG(0) and hence an appropriate regularization method should yield ∂nG(0) = 0,
and similarly for the complex conjugate. This implies our claim, that only exclusively ∂- or
∂̄-derivatives should act on a propagator, only applies for propagation between different
particles. Propagators between the same particle worldline must have paired ∂∂̄ derivatives
and, consequently, only self-interactions of the same polarizability orders can possibly
contribute. If we were to include the self-interacting terms in the matching procedure, we
would generate the relationship between the bare and renormalized parameters, and thus
identify the full set of counterterms. These counterterms can then be seen to subtract
off, order by order, all self-interactions for every observable. Instead of including the
tower of counterterms, it is instead more economical to simply exclude all diagrams
that include include self-interactions, or alternatively, redefine the Green function via
G(za − zb)→ (1− δab)G(za − zb) (no sum) for all particle labels a and b.

3.5 Elastic interactions
In the previous section we observed that the ground state (T = 0) interactions between
particles, for which we will use the symbol E, is given by a sum of linear diagrams capped
off by the permanent sources. Earlier, we found that the permanent sources and the
polarizabilities are all proportional to the surface tension σ, whereas the propagator is
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proportional to 1/σ. A generic interaction will scale as ∼ σNJ+NV −NG , but for the linear
diagrams NJ = 2 and NG = NV + 1 and therefore they each scale as ∼ σ. That is,
interaction strength is set by the elastic modulus σ, and as such we will refer to them as
elastic interactions. Returning again to our thematic analogy to electrostatics, note that
with the one-legged vertices interpreted as permanent charges as usual, and with ε0 as some
electrostatic “elasticity” of the vacuum, the elastic interactions are completely analogous to
the interactions of Chapter 1: the permanent sources interact directly as well as through
respective induced polarizations, mediated by the deformations on the field. As discussed
earlier, the only difference is in the overall sign of the energy.
We will begin by examining the interactions between two particles, and consider multi-

particle interactions shortly after.

3.5.1 Pair interactions
According to our summary in Technical Note 3.1, the difference between our three categories
of boundary conditions is whether the first two polarizabilities vanish. Given that the
monopole interactions require some additional discussion, we first consider saddle-type
particles (permanent quadrupoles) with the freedom to bob, i.e., (BC 2). The same
interaction expansion applies when we permit the freedom to tilt, (BC 3), but with C(1) = 0.
On the other hand, (BC 1) will provide additional monopole corrections to these same
results.
According to our power-counting formula (3.140), the leading-order interaction between

permanent quadrupoles occurs for NV = 0 and nJa = 2 and scales as ∼ r−4. This corresponds
to a single propagator between two quadrupole sources,

− βE(4) =
(2) (2)

+
(2) (2)

= 2 Re
[ (2) (2)]

. (3.143)

The superscript refers to the expected power of r−1, and the second equality follows by
recalling that swapping single for double lines in the propagators corresponds to complex
conjugation. Following the diagrammatic rules laid our earlier, these diagrams evaluate to

− βE(4) = 2 Re
[

1
2
∑

a6=b
βQ(2)

a

∂4Gab

βσ
βQ

(2)
b

]
, (3.144)

where the factor of 1/2 is included due to the reflection symmetry of the diagram, and the
constraint a 6= b is included in the sum to prevent self-interactions. Plugging in for the
sources and Green function derivatives gives

E(4) = −
∑

a6=b
Re
[
σπ2SaR

4
ae2iαa 3!

4πz4
ab

SbR
4
be2iαb

]
, (3.145)

where zab = zb − za, and the angles are measured from the line joining the particle centers.
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As the diagram clearly indicates, this interaction involves a maximum of two particles and
thus encodes only pair interactions. Thus the resulting interaction between two particles,
labeled 1 and 2, separated by a distance r is found to be

E
(4)
{1,2} = −3πσR

4
1R

4
2

r4 S1S2 cos(2α1 + 2α2). (3.146)

This is the same interaction energy found by Stamou et al. [SDJ00], also discussed
in Refs. [FG02] and [DKNB05], and calculated with the same EFT formalism in
Ref. [YRD12].21 At leading order, it therefore follows that the interaction implies a
nonzero vertical torque between the particles, and the orientation-dependent force can
either be attractive or repulsive. Maximal attraction occurs for a full range of orientations
such that α1 + α2 ≡ 0 (mod π), which included the tip-to-tip configurations for which
like-curvatures are aligned. Similarly, maximal repulsion occurs for a range of orientations
satisfying α1 + α2 ≡ π/2 (mod π), including configurations for which opposite curvatures
are aligned.

This angular degeneracy of maximal attraction or repulsion in fact holds to all orders, the
reason being that the angular dependence only comes from the sources, of which there can
only be two in a given linear diagram. In particular, the angular dependence can only occur
when the sources come from different particles, for which a factor of cos(2α1 + 2α2) will
always appear. However, if the sources are from the same particle, no angular dependence
occurs. This conclusion follows simply from a diagrammatic argument: For pair interactions,
the linear diagrams must adhere to structure ab, aba, abab, ababa, and so on. That is,
sources with the same particle label can only occur for diagrams with an odd number of
vertices. Since each vertex is paired to single- and double-line propagators, the end sources
must therefore be conjugates of each other. Since Q(2)

a Q̄
(2)
a ∝ e2iαae−2iαa , the dependence

on angles disappears.
To find the corrections to the interaction energy, we recall that for (BC 2), the monopole

polarizability is zero. Hence the next contribution must stem from the sources interacting
with the dipole moments they have respectively induced in the other particle. In the
diagrammatic expansion, this interaction comes from the single term

−βE(6) =
(2) (1) (2)

, (3.147)

which evaluates to
−βE(6) = − β

σ2

∑′

abc

Q(2)
a ∂2

a∂bG
abC

(1)
b ∂̄b∂̄

2
cG

bcQ̄(2)
c

= + β

σ2

∑′

abc

Q(2)
a ∂3GabC

(1)
b ∂̄3GbcQ̄(2)

c ,

(3.148)

21Note that in Refs. [SDJ00, FG02, DKNB05], the corresponding “curvature charge” used by the authors
was the undulation amplitude H with values half that of the saddle curvature, so their interaction energy
has a prefactor of 12H1H2 rather than 3S1S2.
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where the prime on the summation reminds us to exclude self-interactions.22 Since we are
at the moment only considering pair interactions, we sift out the contribution

E
(6)
{1,2} = − 1

σ2

∑

a6=b
|Q(2)

a |2C(1)
b ∂3Gab∂̄3Gba = 1

σ2

∑

a6=b
|Q(2)

a |2C(1)
b

∣∣∣∣
2!

4πz3
ab

∣∣∣∣
2

=
∑

a6=b
πσ

R2
aR

2
b

r6 S2
aR

6
a = πσ

R2
1R

2
2

r6
(
S2

1R
6
1 + S2

2R
6
2
)
. (3.149)

This contribution is purely repulsive and, as predicted in the previous discussion, has no
orientational dependence. Observe that in the above interaction, we encounter the first
breakdown of the superposition principle—a given source interacts purely through the
polarization it induces in the other particle. Such an interaction can occur even if one of
the two particles is “uncharged.” In Ref. [YRD12], it was claimed that the leading-order
correction occurs at O(r−8); however, the authors only considered particles that were free
to tilt, for which the dipole polarizability vanishes and hence this contribution vanishes as
well.

Let us now calculate the O(r−8) correction, where we first encounter the quadrupole
polarizability. The relevant diagrams are

−βE(8) =
(2) (2) (2)

+ 2 Re
[ (2) (1) (1) (2)]

, (3.150)

which for pairs evaluates to

E
(8)
{1,2} =

∑

a6=b

{
1
σ2 |Q

(2)
a |2C(2)

b |∂4Gab|2 − 2
σ3 Re

[
1
2Q

(2)
a C

(1)
b C(1)

a Q
(2)
b ∂3Gab∂̄2Gba∂3Gab

]}
.

(3.151)

We omit the intermediate details of the calculation, and instead quote the final result:

E
(8)
{1,2} = 9

2πσ
R4

1R
4
2

r8
(
S2

1R
4
1 + S2

2R
4
2
)
− 2πσR

6
1R

6
2

r8 S1S2 cos(2α1 + 2α2). (3.152)

Tilt freedom

If we now consider (BC 3) by allowing the particles the freedom to tilt, then the dipole
polarizability C(1) vanishes. As we mentioned before, the corresponding interaction energy
follows from the same calculations as above, but with the appropriate diagrams dropped. In
particular, the leading order contribution comes solely from the first diagram in Eq. (3.150),

22An attempt was also made to explicitly track the minus signs, which can sometimes be a frustrating
game. If in doubt, note that a propagator from vertex C(n)

a to vertex C(m)
b will appear with derivatives as

∂na ∂
m
b G

ab (or the conjugate). Transforming the derivatives to the entire Green function argument picks up
minus signs from ∂b, giving (−)m∂n+mGab. We could also write this as (−)n(−∂)n+mGab so that we may
directly apply Eq. (3.74).
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and thus
E

(8)
{1,2} = 9

2πσ
R4

1R
4
2

r8
(
S2

1R
4
1 + S2

2R
4
2
)

(3.153)

for pairs. This reproduces the finding in Ref. [YRD12].

3.5.2 Multibody interactions
For more than two particles, the interaction energy can also depend on the geometric
configuration of the entire collection. In the previous calculations, the single-vertex diagrams
corresponded exclusively to pair interactions. For multiple particles, those contributions
would yield a pairwise sum over the complete set. The first true multibody interaction—that
is, an interaction that cannot be decomposed into pairwise contributions—is the triplet
interaction, and at leading order results from the diagram in Eq. (3.147). Summing over
the three particle labels then yields the triplet interaction,

E
(6)
tri = −

∑′

abc

π2σSaR
4
ae2iαa(4πR2

b)ScR4
ce−2iαc

(
2

4πz3
ab

)(
2

4πz̄3
bc

)

= −πσ
∑′

abc

SaR
4
aR

2
bR

4
cSce2i(αa−αc) e−3i(ϕab−ϕbc)

r3
abr

3
bc

. (3.154)

At this point a few comments on notation are in order. The complex coordinate zab = zb−za
represents a position vector that points from the center of particle a to the center of particle
b, and can alternatively be written in polar form as zab = rabeiϕab , where rab is the separation
distance and ϕab is the angle zab makes as measured from the x-axis. Since the choice of
coordinate system is arbitrary, it is better to consider a coordinate-free grouping of the
terms. To do so, we denote by ϕ b

ac the angle the vector zbc makes with the (oriented) line
parallel to zab. As illustrated in Fig. 3.5, this exterior angle is found to be ϕ b

ac = −ϕab+ϕbc.
Similarly, we wish to relate the orientation of the particles’ principle axes to the interparticle
joining lines. To that aim, we define θ(b)

bc := αb−ϕbc which gives the angle the principle axis
of particle b makes with the line parallel to zbc. Note that the exterior angle is antisymmetric
in the lower indices, ϕ b

ca = −ϕ b
ac. On the other hand, the quadrupole source is invariant

(or rather, equivalent) under rotations by integer multiples of π, so given that ϕcb ≡ ϕbc
(mod π), the particle angle θ(b)

cb ≡ θ
(b)
bc (mod π) and is therefore effectively symmetric in the

lower indices for our particles.
Applying these definitions, the angles in Eq. (3.154) can be regrouped as 2(αa − ϕab)−

2(αc − ϕbc)− ϕab + ϕbc so that

E
(6)
tri = −πσ

∑′

a,b,c

SaR
4
aR

2
bR

4
cSc

ei
[
ϕ b
ac+2θ(a)

ab −2θ(c)
bc

]

r3
abr

3
bc

. (3.155)

By the symmetries of the indices, the sum of angles in the complex exponent is completely
antisymmetric under the exchange a ↔ c, implying this exchange gives the complex
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za zb

zc

ϕ b
ac

θ
(b)
bc

zab = rabe
iϕab

z bc
=
r bc
e
iϕ

bc

Figure 3.5: Illustration of the parameter definitions in a multibody configuration involving three particles
situated at the coordinates za, zb, and zc with zab = zb − za and similar. The exterior angle ϕ b

ac is
measured from the line parallel to zab. The orientation angle θ(b)

bc of particle b is measured from the line
joining particles b and c to the principle axis of positive “saddle” curvature of the particle contact line.

conjugate of the interaction. Then, we use the identity
perm.
{1,2,3}∑

a,b,c

f(a, b, c)→

cyc.
{1,2,3}∑

a,b,c

[
f(a, b, c) + f(c, a, b)

]
(3.156)

relating the sum over total permutations to the sum over cyclic permutations for any
summand f(a, b, c), noting that in this case f(c, a, b) = f∗(a, b, c), to express the interaction
energy in its real form,

E
(6)
tri = −2πσ

cyc.
{1,2,3}∑

a,b,c

SaR
4
aR

2
bR

4
cSc

r3
abr

3
bc

cos
(
ϕ b
ac + 2θ(a)

ab − 2θ(c)
bc

)
. (3.157)

The triplet interaction can be collectively attractive or repulsive depending on the
geometry of the triangle formed by the particle positions as well as the orientations of the
particles’ principle axes with respect to the triangle edges. Consider, for example, a “bisector
configuration” in which like curvature axes are aligned with the bisector at each triangle
vertex; i.e., the particle curvature axes all point to the triangle centroid. The particle
orientations can then be expressed in terms of the exterior angles via θ(a)

ab = (π − ϕ a
cb)/2

and θ(c)
bc = (π − ϕ c

ba)/2 + ϕ c
ba = (π + ϕ c

ba)/2. The exterior angles must sum to 2π, which
reduces the argument of the cosine to

ϕ b
ac + 2θ(a)

ab − 2θ(c)
bc = 2ϕ b

ac − 2π.
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Plugging this into the triplet interaction then yields

E
(6)
tri,bis = −2πσ

cyc.
{1,2,3}∑

a,b,c

R2
aR

2
bR

2
c

SaR
2
aR

2
cSc

r3
abr

3
bc

cos 2ϕ b
ac, (3.158)

which for the special case of an equilateral configuration (ϕ b
ac = 2π/3 at each vertex) gives

an overall repulsive interaction,

E
(6)
tri,bis(4) = πσR2

1R
2
2R

2
3

(
S1R2

1R
2
3S3

r3
12r

3
23

+ S2R2
2R

2
1S1

r3
23r

3
31

+ S3R2
3R

2
1S1

r3
31r

3
12

)
. (3.159)

In the limit that the bisector configuration lies along a line, the two particles at the
ends will be oriented parallel to one another, whereas the middle particle will be oriented
perpendicular to both. In this case 2ϕ b

ac ≡ 0 (mod 2π) and, from Eq. (3.158), the triplet
interaction is seen to be attractive. This, however, is not the true preferred configuration.
The pair interactions up to O(r−6) (Eqs. (3.146) and (3.149)) suggest the preferred angles
should satisfy αa ≡ −αc (mod π) for each a 6= c ∈ {1, 2, 3} and imply that the configuration
suggested by the triplet interaction is frustrated. Three saddle-shaped particles are therefore
likely to aggregate into zigzag chains.

3.5.3 The complete pair interaction for curved particles
The relative simplicity of the diagrammatic expansion allows us to push further and express
the complete interaction energy for two particles.23 One way to accomplish this is to first
express the expansion in worldline-form with the particle labels specified explicitly:

−βE{1,2} = 2 Re




z1

z2

+
z1

z2

+
z1

z2

+ · · ·




+ Re




z1

z2

+
z1

z2

+ · · ·+
z1

l
z2


,

(3.160)

where we have organized the terms based on whether the interactions start and end on
the same particle. For diagrams that are reflection-symmetric across the middle—those in
the first line—the sum over worldlines cancels the symmetry factor. Adding the complex
conjugates equates to twice the real part of the diagrams above. The remaining diagrams
are their own complex conjugates, and hence real, which we will have indicated explicitly.

Evidently, the organization of the terms above also groups the terms according to whether
the number of interaction vertices is even or odd. In accordance, we will express the energy

23One could do the same for additional particles, but the cluttered form will not likely aid in additional
understanding.
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as a sum indexed by the number of (two-legged) interaction vertices and decompose it into
even and odd indices,

E{1,2} =
∑

k>0
Ek =

∑

k>0
(E2k + E2k+1). (3.161)

What remains is to translate the diagrams into mathematics.
Perhaps surprisingly, it is actually more straightforward to first consider two particles

with arbitrary contact lines hcta (x−xa), though still with the restriction that they project to
circles in the base plane. This is because we found earlier that the sources can be expressed
in terms of the polarizabilities via Q(n)

a = C
(n)
a ∂̄nhcta (0) (see the discussion surrounding

Eq. (3.98)), so every vertex—including the source terms—will bring down a factor of
−4πR2na

a /[na!(na − 1)!]. We begin by first considering E2k, which corresponds to the first
line of Eq. (3.160), and denote the polarizability orders of the two sources as n0 and n2k+1
respectively. Each propagator will give a factor (n+m− 1)!/4πrn+m, where n and m are
the polarizability orders of the vertices it connects, and r is the separation. Note that all
the minus signs due to the propagators ultimately cancel one another,24 and their factors
of 4π cancel all but one from the product of polarizabilities. Putting everything together
therefore yields

E2k = −8πσ
∑

{n}

Re
[
∂̄n0hct1 (0) ∂̄n2k+1hct2 (0)

]

n0!(n2k+1 − 1)!
R

2(n0+n2+···+n2k)
1 R

2(n1+n3+···+n2k+1)
2

rn0r2(n1+n2+n3+···+n2k)rn2k+1

× (n0 + n1 − 1)!
n1!(n0 − 1)!

(n1 + n2 − 1)!
n2!(n1 − 1)! · · ·

(n2k + n2k+1 − 1)!
n2k+1!(n2k − 1)! ,

(3.162)

where we have taken the liberty of shifting around the factorials so that they appear in the
form of binomial coefficients. To somewhat simplify the above expression, we observe that
R1 occurs with powers indexed by even terms, whereas R2 occurs with odd indices, and
define the sums Ne =

∑k
j=1 n2j and No =

∑k−1
j=0 n2j+1, finally arriving at the expression

E2k = −8πσ
∑

{n}

Re
[
∂̄n0hct1 (0) ∂̄n2k+1hct2 (0)

]

n0!(n2k+1 − 1)!
R

2(n0+Ne)
1 R

2(No+n2k+1)
2

rn0+2(No+Ne)+n2k+1

2k∏

i=0

(
ni + ni+1 − 1

ni+1

)
.

(3.163)
The interactions that start and end on the same particle worldline are found in the same

24To see this, consider ∂na ∂mb Gab ∂̄mb ∂̄`aGba. Transforming the derivatives so that they act on the full
argument leads to ∂na ∂mb Gab = (−)m∂n+mGab and ∂̄mb ∂̄`aGba = (−)`∂̄m+`Gba = (−)m∂̄m+`Gab. The product,
∂n+mGab∂̄m+`Gab, is therefore positive and depends on powers of zab = zb−za (and the complex conjugate).
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way. Denoting the source polarizability orders as n0 and n2k+2 respectively, we find

E2k+1 = 4πσ
∑

{n}

Re
[
∂̄n0hct1 (0) ∂n2k+2hct1 (0)

]

n0!(n2k+2 − 1)!

× R
2(n0+Ne+n2k+2)
1 R2No

2
rn0+2(No+Ne)+n2k+2

2k+1∏

i=0

(
ni + ni+1 − 1

ni+1

)
+ (1↔ 2),

(3.164)

where the overall minus sign is canceled by the odd number of −C(ni) factors.
In both contributions, (3.163) and (3.164), the sum over {n} implies the sums over all

polarizabilities n0, n1, n2, . . . . The first and last sums refer to the sources (that is, the
sums over n0 and either n2k+1 or n2k+2), but in all cases the sums are taken over na > 1
for (BC 2) or na > 2 for (BC 3). Before specializing to the case of saddles, we should
emphasize that the above expression is the complete ground state interaction energy for
any two (circular) particles with undulating contact lines hcta (x − xa). It is interesting
to compare these results with those of Refs. [DKNB05] and [DK10], where the authors
calculate the (ground state) pair interactions between general capillary multipoles using
bipolar coordinates. Presented there are specific multipole–multipole interaction energies,
but a systematic series expansion is missing.

For saddle-shaped particles, the sources are given by quadrupole moments and ∂̄nhcta (0) =
−(Sa/2)e2iαaδn2 (see Technical Note 3.1). This picks off the terms for which n0 = n2k+1 = 2
in the expression for E2k and n0 = n2k+2 = 2 for E2k+1. These two contributions then take
the following forms:

E2k = −πσ
∑

{n}

S1R
2(Ne+2)
1 R

2(No+2)
2 S2

r2(No+Ne+2) cos(2α1 + 2α2)

×
(
n1 + 1
n1

)(
n2k + 1

2

) 2k−1∏

i=1

(
ni + ni+1 − 1

ni+1

)
,

(3.165)

E2k+1 = πσ

2
∑

{n}

S2
1R

2(Ne+4)
1 R2No

2 + S2
2R

2(Ne+4)
2 R2No

1
r2(No+Ne+2)

×
(
n1 + 1
n1

)(
n2k+1 + 1

2

) 2k∏

i=1

(
ni + ni+1 − 1

ni+1

)
,

(3.166)

where it is understood that the n1 binomial factor is absent from E2k when k = 0.
It is now a straightforward matter to expand out the two series to gives the asymptotic

expansions of the interaction energy. Since the expressions are lengthy and cluttered, we will
instead—for brevity’s sake—quote the high-order expansions for two identical saddles. With
S1 = S2 = S and R1 = R2 = R, the expansions form a power series in the dimensionless
separation distance χ := r/R. For (BC 2) where the particles are free to bob, but not tilt,
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we find

E{1,2}
πσS2R4 = −

{
3
χ4 + 2

χ8 + 12
χ10 + 53

χ12 + 204
χ14 + 728

χ16 + 2496
χ18 + 8427

χ20 + · · ·
}

cos(2α1 + 2α2)

+
{

2
χ6 + 9

χ8 + 26
χ10 + 66

χ12 + 176
χ14 + 540

χ16 + 1872
χ18 + 6882

χ20 + · · ·
}
,

(3.167)
where “ · · · ” are terms of O(χ−22).

Tilt freedom For (BC 3), where the particles are free to both bob and tilt, the complete
pair interaction is still provided by Eqs. (3.163) and (3.164), but with the polarizability
sums taken over ni > 2. The asymptotic series begins at O(r−8), and for identical particles
becomes

E{1,2}
πσS2R4 =

{
9
χ8 + 24

χ10 + 50
χ12 + 90

χ14 + 228
χ16 + 872

χ18 + 3690
χ20 + 14 880

χ22 + 56 943
χ24 + · · ·

}

− cos(2α1 + 2α2)
{

27
χ12 + 144

χ14 + 540
χ16 + 1794

χ18 + 5791
χ20 + 18 948

χ22 + 63 702
χ24 + · · ·

}
,

(3.168)
where the remaining terms are O(χ−26).

3.5.4 Monopoles
As we have alluded to multiple times, computing interactions that include monopole vertices
requires some care. Recall that the monopole polarizabilities M (0) are proportional to the
surface tension, but are otherwise dimensionless. Hence in order to express the interactions
in a proper series in increasing powers of particle size, or rather in powers of inverse
separation, we must sum up all possible M (0) insertions into each diagram. At first glance
this seems daunting, requiring a systematic way to categorize all possible ways to place
and permute particle labels on arbitrarily large diagrams while avoiding self-interactions.
However, we can save ourselves from intimidating combinatorial gymnastics with a little
mathematical rephrasing: For a collection of N particles, monopole interactions between
particles a and b can be thought of as the abth element of an N ×N matrixM. The sum
of all possible M (0) insertions then appears as a summable series in powers ofM. This
approach is particularly manageable for strictly monopole interactions, so we first focus on
the leading-order interaction energy to discuss the general resummation principles.

Leading order interactions and resummation

For the case of (BC 1) in which the particles are fixed at specified heights from the base
plane, the interaction energies find contributions from both the monopole sources and
monopole polarizabilities. Just as in Eqs. (3.134) and (3.135), the source and interaction
vertices follow from functional derivatives of the field. We represent these interactions
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diagrammatically with the following correspondence:

(0)
zza = βQ(0)

a δza (3.169a)

z

z′
za = −βM (0)

a δzaδ
z′
a (3.169b)

where the dashed lines indicate that the vertices do not place derivatives on the propagator.
The leading-order interaction energy comes from the complete series,

−βE(0) =
(0) (0)

+
(0) (0)

+
(0) (0)

+
(0) (0)

+· · · (3.170)

The first term in the series is the point-source interaction from Eq. (3.40). This term
embodies a strict superposition principle, but the remaining contributions correct for this
by accounting for the particles’ finite sizes. At first glance, every term appears to vanish in
the limit `c →∞. This follows from the observation that in each diagram with k internal
monopole vertices, there is a product ∼ [M (0)]k+2[G]k+1 (recall Q(0) = M (0)h0). In the
asymptotic limit, the product M (0)G/σ → 1, leaving behind in each diagram a single factor
of M (0) which vanishes as `c →∞. This line of reasoning, however, is flawed and instead
demonstrates the noncommutativity of these infinite limits.25 Consistency requires that we
treat `c as large but finite throughout our calculations and only take the limit at the very
end. This means that we should instead view each term above as being very small, but
nonzero. It remains, however, to see whether a residual nonvanishing contribution appears
after the limit is taken correctly.26
To proceed, we will focus on the induced interactions (everything but the first term in

Eq. (3.170)) and perform the following manipulations:

(0) (0)
+

(0) (0)
+

(0) (0)
+ · · ·

=
(0) (

+ + + · · ·
) (0)

=
(0) [ (

+ + + · · ·
)] (0)

=
(0) [ ∞∑

k=0

( )k] (0)

∗=
(0) [ (

−
)−1
] (0)

=
(0) [

(1 + G M)−1
] (0)

(3.171)

25Moreover, this line of reasoning has also lead to some inaccurate claims in the published literature. We
will address these in the next section on entropic interactions.

26Spoiler: It does.
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The starred equality follows from completing the geometric sum. In the last line, we have
identified the sum as the inverse of the matrix

(1 + G M)ij = δij + 1
σ

∑

a

GiaM (0)
a δaj (1− δia) = δij + 1

σ
GijM

(0)
j (1− δij), (3.172)

where the indices run over all particle labels, and the factor of (1− δij) makes explicit the
absence of self-interactions. Note also the change in sign after the starred equality. Recall
that the diagrammatic rules dictate that each vertex brings with it a negative sign so, when
expanded, it cancels the negative sign from the geometric sum. We therefore see that for
a collection of N particles, resumming the monopole interactions reduces to finding the
inverse of the following matrix:

1 + G M =




1 1
σG

12M
(0)
2 · · · 1

σG
1NM

(0)
N

1
σG

21M
(0)
1 1 · · · 1

σG
2NM

(0)
N

...
... . . . ...

1
σG

N1M
(0)
1

1
σG

N2M
(0)
2 · · · 1



. (3.173)

This is the matrixM that was promised earlier. If the number of particles is not too large,
one can explicitly write down the inverse without much trouble. We will demonstrate by
examining the leading-order interaction energy for pairs and for three particles.

Two particles. By way of the Cayley–Hamilton theorem (see Technical Note 3.2), it follows
that the inverse will contain an overall factor of 1/ det(1 + G M) and up to N − 1 powers of
G M and their traces. For two particles, the matrix is 2× 2 and its inverse takes the simple
form

(1 + G M)−1 = 1− G M
det(1 + G M) . (3.174)

Now, we combine this with the monopole vertex and observe the following decomposition:

[
(1 + G M)−1]i

j
= −β

∑

a

M (0)
a δia

[
δaj − 1

σ

∑
bG

ab(1− δab )M (0)
b δbj

det(1 + G M)

]

= −
∑

a

δia
M

(0)
a

det(1 + G M)δ
a
j +

∑

a,b

δia

1
σM

(0)
a Gab(1− δab )M (0)

b

det(1 + G M) δbj

≡ i j + i j

(3.175)
We interpret these expressions in the following way. The first term corresponds to diagonal
elements and accounts for the full series of monopole interactions that begin and end on
the same particle worldline. The second term corresponds to the off-diagonal elements and
accounts for the complete remainder of interactions that begin and end on different particle
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Technical Note 3.2: The Cayley–Hamilton theorem and matrix inverse
In broad strokes, the Cayley–Hamilton theorem states that an n × n invertible matrix M satisfies
its own characteristic polynomial. More precisely, the characteristic polynomial p(λ) is defined as
p(λ) = det(λ1 −M), and the theorem states p(M) = 0, where 0 is the zero matrix. A useful
application of the theorem is that it enables one to express the matrix inverse as a trace identity. Writing

p(M) =Mn + cn−1Mn−1 + · · ·+ c1M + (−)n 1 detM = 0,

one multiplies through byM−1 and rearranges to find

M−1 = (−)n−1

detM
(
Mn−1 + cn−1Mn−2 + · · ·+ c1 1

)
.

The coefficients can be found in a variety of ways, including an application of Newton’s identities or
successive differentiation of the corresponding Mercator series, and can be written compactly as

cn−m = (−)m
m!

∣∣∣∣∣∣∣

tr M m−1 0 ···
tr M2 tr M m−2 ···
...

...
...

. . .
tr Mm−1 tr Mm−2 ··· ··· 1
tr Mm tr Mm−1 ··· ··· tr M

∣∣∣∣∣∣∣
.

Applied to the matrix 1 + G M, one finds for n = 2 and n = 3:

(1 + G M)−1
2×2 = 1− G M

det(1 + G M) , (1 + G M)−1
3×3 =

[
1− 1

2 tr(G M)2]1− G M + (G M)2

det(1 + G M) .

worldlines. Diagrammatically, we represent these terms by the two effective monopole
vertices in the final line of Eq. (3.175).

We may simplify our analysis further by expanding out the determinant. For this 2× 2
matrix, we write

det(1 + G M) = 1− 1
σ2G

12M
(0)
2 G21M

(0)
1 ≡ 1− g2

12, (3.176)

where for brevity, and with a nod to the authors of Ref. [NWZ13a], we have defined the
notation

g2
ij := 1

σ2G
ijM

(0)
j GjiM

(0)
i =

ln2( 2`c
rijγe

)

ln
( 2`c
R1γe

)
ln
( 2`c
R2γe

) . (3.177)

Additionally, we would like to separate out the `c → ∞ asymptotics, so to this aim we
define the parameter

Λij = ln
(

2`c√
RiRjγe

)
. (3.178)

Applying this definition to gij to extract out the asymptotics, we massage the expression to
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the form27

g2
ij =

[
Λij − ln

( rij√
RiRj

)]2

Λ2
ij − ln2√Ri/Rj

, (3.179)

which will prove incredibly useful for the remainder of the chapter. In particular, we may
expand the determinant factors of Eqs. (3.174) and (3.175) for large Λij to isolate the
asymptotics from the interparticle separation:

1
1− g2

12
= Λ12

2 ln
(

r√
R1R2

) +
ln2( r√

R1R2

)
+ ln2

√
R1
R2

4 ln2( r√
R1R2

) +

[
ln2( r√

R1R2

)
− ln2

√
R1
R2

]2

8Λ12 ln2( r√
R1R2

) +O(Λ−2
12 ).

(3.180)
At last, we may use the above results to sift out the leading-order pair interactions from

Eq. (3.170):

−βE(0)
{1,2} =

(0) (0)
+

(0) (0)
+

(0) (0)

= β

2
∑

a6=b
Q(0)
a

Gab

σ
Q

(0)
b −

β

2
∑

a6=b
Q(0)
a

Gab

σ

(
M

(0)
b

1− g2
12

)
Gba

σ
Q(0)
a

+ β

2
∑

a6=b
Q(0)
a

Gab

σ

(
1
σM

(0)
b GbaM

(0)
a

1− g2
12

)
Gab

σ
Q

(0)
b .

(3.181)

Plugging in the source “capacitance equation” Q(0) = M (0)h and performing the particle
sum simplifies the interaction energy to

E
(0)
{1,2} = −h1h2

σ
M

(0)
1 G12M

(0)
2 + 1

2

(
M

(0)
1 h2

1 +M
(0)
2 h2

2 − 2h1h2M
(0)
1
G12

σ
M

(0)
2

)
g2

12
1− g2

12
.

(3.182)
To conclude, we extract the asymptotics from the above expression using Eq. (3.178) and
find that the terms complete a square in the particle height difference:

E
(0)
{1,2} = πσ

(h1 − h2)2

2 ln
(

r√
R1R2

) +O(Λ−1
12 ). (3.183)

This result reveals several interesting features. As mentioned earlier, the first term in
Eq. (3.181) corresponds to representing the two particles as points and applying superpo-
sition, but it vanishes in the limit `c → ∞ (i.e., Λ → ∞). The remaining terms correct
for the particles’ finite sizes and yield nonvanishing contributions even at vanishing Bond

27Through straightforward manipulations, one may obtain Λij = 1
2

[
2 ln
( 2`c
Riγe

)
+ ln Ri

Rj

]
. Rearrangement

shows ln
( 2`c
Riγe

)
= Λij − ln

√
Ri/Rj and ln

( 2`c
Rjγe

)
= Λij + ln

√
Ri/Rj . Equation (3.179) follows by applying

these identities to gij .
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number. The interparticle force is therefore seen to be strictly repulsive,

F
(0)
{1,2} = −

∂E
(0)
{1,2}
∂r

= πσ
(h1 − h2)2

2r ln2( r√
R1R2

) , (3.184)

with a strength governed by the difference in particle heights. One may interpret this as the
restoration of vertical translation symmetry of the full surface in the limit `c →∞: The
surface is free to equilibrate in such a way that minimizes the overall surface deformations
due to the particles. If the particles are fixed to the same height, the surface translates to
meet their vertical positions, eliminating both the surface deformations and the interparticle
forces. If the particles are at different heights, the surface translates between their respective
heights so as to minimize the deformations and equilibrates such that the particles are
respectively positioned above and below the surface position. This interpretation may
be checked by calculating the interaction between two particles vertically separated by
a distance h1 − h2. The calculation proceed similarly, but with the permanent sources
modified by h1 → (h1 − h2)/2 and h2 → −(h1 − h2)/2. Equation (3.183) is then shown to
be invariant under this replacement by plugging in and simplifying.
In the electrostatics analogy (see Fig. 3.6), it is the electric potential differences that

determine the physics, and this equilibrium configuration corresponds to connecting two
conductors’ voltage sources so that a fixed potential difference is held between them. This
leads to opposite induced charges, irrespective of the signs or values of h1 and h2, which
for surface-mediated interactions is universally repulsive. Moreover, this repulsive force
has the same 1/r power law as the attractive (but vanishing) point-particle term, but with
a squared logarithmic correction.28, 29 It is worth emphasizing again that this force does
not appear in mechanical isolation; external forces (and torques) on the particles are still
required to fix their positions, just like an external voltage source is required to fix the
potential difference between conductors.

Three particles. Since the problem has been re-expressed in terms of matrix algebra,
the extension to several particles is relatively straightforward, or at least systematic. To
demonstrate, we will consider a system of three particles. The monopole interactions form a
geometric series in the interaction vertices, which we have shown sums to an inverse matrix.
Again, by way of the Cayley–Hamilton theorem, we express the 3× 3 matrix inverse as the

28To the best of my knowledge, this force law—as well as the following results of this section—does not
appear elsewhere in the published literature. A near exception, however, is found in Ref. [LO07], where the
authors calculate the pair interaction between particles constrained by harmonic “traps.” We will explore
this further in Section 3.7.

29Multiplicative logarithmic corrections should actually not be surprising since marginal perturbations at
the critical dimension (monopole perturbations, in our case) are known to generically produce logarithmic
corrections to scaling [Ken12]. Similar log-dependencies on finite particle sizes have also been observed in
the context of electromagnetic Casimir interactions [REJK08].
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+
− h1

+
− h2

R1
R2
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`c→∞−−−−→

+ −
h1 − h2
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r

Figure 3.6: Illustration of the electrostatics analogy applied to monopoles at vanishing Bond number.
The fixed heights h1 and h2 correspond to fixed potentials from some reference. Taking `c →∞ relaxes
the constraint that h(∞) = 0, instead allowing the surface to vertically translate to equilibrium so
that ∂ih(∞) = 0 (asymptotic flatness). In the electrostatics language, this corresponds to holding the
conductors at a fixed potential difference, but leaving the ground voltage unconstrained.

useful trace identity (valid only for 3× 3 invertible matrices),

(1 + G M)−1 =
[
1− 1

2 tr(G M)2]1− G M + (G M)2

det(1 + G M) . (3.185)

As before, the matrix elements encode the complete monopole interactions which either
start and end on the same particle (diagonal) or end on a different particle (off-diagonal),
which we represent diagrammatically with the effective monopole vertices,

[
(1 + G M)−1]i

j
= i j + i j . (3.186)

The values of the vertices follow by expanding the traces and determinant. Using the
definition (3.177), the first effective vertex reduces to

i j = −β
∑

a

δia
M

(0)
a

[
1− (g2

12 + g2
23 + g2

31) +
∑

k g
2
ak(1− δak)

]

1− (g2
12 + g2

23 + g2
31 − 2g12g23g31) δaj . (3.187)

Written as it is, the above expression appears rather complicated, but a simple pattern
emerges once the particle label a is given explicitly. For example, taking a = 1 eliminates
most of the terms in the numerator, leaving behind M (0)

1 (1− g2
23). For a = 2 or a = 3, the

numerator simplifies similarly, with the indices of g given by the two particle labels not
equal to a (i.e., g31 and g12 respectively).

The second effective vertex is a bit more involved, but can ultimately be expressed in the
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form

i j = β
∑

a,b

δia

M
(0)
a

[
Gab

σ −
∑

k
Gak

σ M
(0)
k

Gkb

σ (1− δak)(1− δkb )
]
(1− δab )M (0)

b

1− (g2
12 + g2

23 + g2
31 − 2g12g23g31) δbj .

(3.188)
The numerator is rather complex, but the Kronecker deltas only appear to prevent self-
interactions. Again, setting a and b to explicit values reveals a simple pattern. The sum over
k will, because of the Kronecker deltas, produce only one term indexed by the remaining
label not picked out by a and b. For example, choosing (a, b) = (1, 2) forces the sum to
choose k = 3.
At this point, we will skip a few steps and immediately consider the asymptotic limit.

Many logarithmic terms will soon appear, so we will define the following parameter for
space-saving convenience:

%ij = (1− δij) ln
(

rij√
RiRj

)
, (3.189)

where the Kronecker delta enforces i 6= j. Using this definition along with Eq. (3.178), it
follows that g2

ij → 1 + 2%ij/Λij +O(Λ−2). Furthermore, we expand the determinant and
find that it vanishes as ∼ Λ−2,

det(1 + G M) =

cyc.
{1,2,3}∑

i,j,k

2Λ12Λ23Λ31Λki%ij%jk − Λ2
jkΛ2

ki%
2
ij

Λ2
12Λ2

23Λ2
31

+O(Λ−3), (3.190)

implying that it contributes a multiplicative ∼ Λ2 divergence when it is in the denominator.
For the first effective monopole vertex, the numerator vanishes as ∼ Λ−2, so the vertex
leaves behind a finite (and nonzero) contribution in the limit. For the second effective
monopole vertex, the numerator appears to only vanish as fast as ∼ Λ−1, but both terms
are actually identical to leading order so their difference cancels. This leaves behind a
leading-order contribution that vanishes as ∼ Λ−2 and cancels off the divergence from the
determinant. The limit is therefore also finite and nonvanishing. The end result for both
vertices is

i j = −β
∑

a

2πσ δia
2
∑

cyc.(%k` − %a`)∑
cyc.
(
2%k`%`m − %2

k`

)δaj +O(Λ−1), (3.191)

i j = β
∑

a,b

2πσ δia

(∑
cyc. %k`

)
− 2%ab∑

cyc.
(
2%k`%`m − %2

k`

)(1− δab )δbj +O(Λ−1), (3.192)

where the “cyc.” notation of the sums refer to summing the nearby indices k, `, and m
cyclically over the labels {1, 2, 3}. In this asymptotic version, the numerator still enjoys a
simplifying pattern when the outer summation indices are explicitly given. Namely, the
numerator’s cyclic sum in first term will sift out the two labels not chosen by a and reduce
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to 2%k`, where k 6= a and ` 6= a (and k 6= `). In the second term, the numerator reduces to
%ak + %kb − %ab where k is the remaining label not picked out by a or b.
We may now calculate the leading-order interaction energy for three particles. The

diagrammatic expansion is the same as in Eq. (3.181), but with the effective monopole
vertices having the values above. As before, the first term vanishes for `c → ∞, but the
remaining two diagrams have nonvanishing contributions. After translating the diagrams
into their corresponding mathematics, we find that the terms combine and simplify to the
following expression:

E
(0)
{1,2,3} = 2πσ

∑
cyc.(ha − hb)%bc(ha − hc)∑

cyc.
(
2%ij%jk − %2

ij

) +O(Λ−1). (3.193)

Similar to the pair interaction, the strength is governed by the differences in the fixed
particle heights. Furthermore, one may check that the total multibody force is inversely
proportional to the separation(s) with a squared logarithmic correction. The numerator
sum is always positive if at least one particle is at a different height than the other two,
and the total force is collectively repulsive (or zero if all particles are at the same height).
This repulsion can again be understood as a consequence of the surface’s restored vertical
translation symmetry: the surface translates to minimize deformations and equilibrates
with an imbalance on either side of the surface. One of the three particles must always end
up on the opposite side of the surface than the other two, effectively producing opposite
charges which are universally repulsive.
Just to emphasize, the above result is the complete three-body interaction potential at

leading order. The pair and triplet contributions are not so straightforwardly extracted
from the above equation. Instead, one may sum the two-body interaction (3.183) over
pairs selected from the set {1, 2, 3} to get the pair contribution, and extract the triplet
contribution by subtracting off that result from Eq. (3.193):

E
(0)
tri = E

(0)
{1,2,3} −

(
E

(0)
{1,2} + E

(0)
{2,3} + E

(0)
{3,1}

)
. (3.194)

The resulting expression is not particularly transparent, so we will examine two example
three-body configurations. For simplicity, we will take all particles to have the same radius
R.

First, consider an arrangement such that the particles are, as viewed from above, respec-
tively positioned at the vertices of an equilateral triangle with side length d. Furthermore,
without loss of generality, let particles 1 and 3 be fixed at the lowest and highest positions
respectively, and particle 2 fixed between them at a height h2 − h1 = α(h3 − h1) with
0 6 α 6 1. Subtracting the pair interactions from Eq. (3.193) and simplifying gives the
pure triplet interaction,

E
(0)
tri,4 = −πσ 1− α(1− α)

3 ln(d/R) (h3 − h1)2. (3.195)
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The numerator is strictly positive (for all α) and gives a minimum value of 3/4 at α = 1/2,
for which the equilibrium surface meets the position of the second particle. The minus
sign and d-dependence therefore shows that the pure triplet interaction lowers the energy
upon bringing the particles closer together. That is, the triplet interaction is collectively
attractive, but not enough so to overcome the repulsive pair interactions.
Next, consider an evenly-spaced collinear arrangement such that r12 = r23 = d and

r31 = 2d (i.e., particle 2 is in the middle). By a similar calculation, and some creativity in
simplifying the logarithms, we find the pure triplet interaction

E
(0)
tri,lin = −πσ2

(∆h31)2 ln d
R +

[
(∆h12)2 + (∆h23)2](ln d

R − ln 2
)

ln
(
d
R

)(
3 ln d

R − ln 2
) , (3.196)

where we have used the shorthand ∆hab := ha − hb. Since d > 2R, otherwise the particles
would overlap, it is clear both the numerator and denominator are strictly positive, and
the triplet interaction is again seen to be collectively attractive, but does not overcome the
pairwise repulsion.
In both cases we observe an interesting three-body effect: the pure triplet interaction

energy is collectively attractive, and diminishes the pairwise repulsion. A natural set of
questions then arises. Is there always competition between the pairwise and multibody
interactions and, if so, does the pairwise repulsion always beat out the triplet attraction
order by order? We will address this line of inquiry by examining the leading-order two-body
and three-body corrections to the interaction energy.

Higher-order corrections

At higher orders, the other polarizabilities begin to play a role. With regards to performing
the calculations, the effect of the monopoles is that the diagrammatic expansion of the
elastic interaction energy is modified by all possible insertions of the effective monopole
vertices between the higher-order multipole vertices. Consistency requires that the two
effective monopole vertices never connect to each other (or themselves), so the modification
can be accomplished by replacing each propagator with the sum

→ + + . (3.197)

Since we will only consider the asymptotic limit `c →∞, a few simplifications already ap-
pear. In the limit, the product M (0)

a Gab/σ → 1, implying that a nonvanishing contribution
must have all monopole polarizabilities balanced by the same number of derivative-free prop-
agators. Since every higher-order polarizability vertex places derivatives on the neighboring
propagators, this rules out all interactions except those in which both monopole sources
are directly connected to effective monopole vertices. The nonvanishing leading-order
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corrections to the interaction energy therefore consist of the diagrams,

−βE(2) =
(1)(0) (0)

+ 2 Re
[ (1)(0) (0)]

+
(1)(0) (0)

.

(3.198)

This diagrammatic representation holds for any N -body system, but with the effective
monopole vertices taking the appropriate N -body forms.

Two particles. For two particles, the effective monopole vertices are given in the decompo-
sition (3.175), and may be readily expanded for Λ12 →∞. The straightforward calculation
yields the pair interaction,

E
(2)
{1,2} = πσ

h2
1R

2
1 + h2

2R
2
2

4r2 ln2( r√
R1R2

) − πσ2h1h2
(
R2

1 +R2
2
)

4r2 ln2( r√
R1R2

) + πσ
h2

1R
2
2 + h2

2R
2
1

4r2 ln2( r√
R1R2

)

= πσ
(h1 − h2)2(R2

1 +R2
2
)

4r2 ln2( r√
R1R2

) , (3.199)

where the three terms in the first line correspond to the evaluation of the three diagrams of
Eq. (3.198). The strength is again governed by the difference in particle heights, and the
corresponding force is

F
(2)
{1,2} = πσ(h1 − h2)2(R2

1 +R2
2)
[

1 + ln
(

r√
R1R2

)

2r3 ln3( r√
R1R2

)
]
, (3.200)

a power law with logarithmic corrections which strengthens the repulsion of the leading-order
contribution.

Three particles. For three particles, the evaluation of the diagrams in Eq. (3.198) is
again straightforward, but somewhat tedious to simplify. Guided by the insight that the
strength should be governed by the interparticle height differences, one may check that all
height terms indeed organize into differences ∆hab = ha − hb. In the end, the complete
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leading-order correction may be expressed as the sum

E
(2)
{1,2,3} = πσ

cyc.
{1,2,3}∑

a,b,c




−

R2
a

[
(%ab − %bc)∆hca + (∆hab −∆hbc)%ca

]2

+R2
b

[
(%ca − %ab)∆hbc + (∆hca −∆hab)%bc

]2

r2
ab

[∑
cyc.
(
2%ij%jk − %2

ij

)]2

+ 2R2
b cosϕ b

ac

[
(%bc − %ca)∆hab + (∆hbc −∆hca)%ab

]

×
[
(%ca − %ab)∆hbc + (∆hca −∆hab)%bc

]

rabrbc

[∑
cyc.
(
2%ij%jk − %2

ij

)]2




.

(3.201)
At this order we also observe the first complete dependence on the particles’ geometric
configuration, which is encoded by the exterior angles ϕ b

ac of the triangle formed by the three
particles. The magnitude of the first term is greater than or equal to the magnitude of the
second term, with a discrepancy further amplified by the cosine factor (since |cosϕ b

ac| 6 1).
The exterior angles cannot all simultaneously equal zero (mod 2π), so the full sum must
be overall negative. Moreover, if all the distances are rescaled by factor λ, the overall
result scales as − ln2 λ/(λ2 ln4 λ), and therefore the energy is lowered if the particles are
brought closer together. Thus, we observe a more interesting three-body effect: the above
interaction energy is collectively attractive, and diminishes the leading-order repulsion. This
implies that the pure three-body interaction overcomes the pairwise (two-body) repulsive
interactions derived from Eq. (3.199). Such deviations due to three-body effects have also
been discovered before in a slightly different context, namely for the case of fluctuation-
induced forces between fixed colloids, first noted by Noruzifar et al. [NWZ13b, NWZ13a]
and later generalized and extended by the present author in Ref. [HD14]. We will revisit
those findings in the next section.

As we did for the leading-order case, we substantiate this collective attraction by examining
two example three-body configurations. For simplicity, we will again take all particles to
have the same radius R. First, consider the particles arranged so that they are respectively
positioned at the vertices of an equilateral triangle of side lengths d (as viewed from above).
The exterior angles all equal 2π/3 and the interaction energy simplifies to

E
(2)
{1,2,3}(4) = −πσR2 ∆h12∆h13 + ∆h23∆h21 + ∆h31∆h32

d2 ln2( d
R

) . (3.202)

The numerator can be seen to be overall positive by following the same analysis as before.
Without loss of generality, let particles 1 and 3 be respectively fixed at the lowest and
highest positions (∆h31 > 0), and particle 2 fixed between them at a height ∆h21 = α∆h31
with 0 6 α 6 1. The above energy then reduces to

E
(2)
{1,2,3}(4)

πσ(∆h31)2 = − 1− α(1− α)
(d/R)2 ln2(d/R)

. (3.203)
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The numerator is identical to that of Eq. (3.195) and is positive definite. The minus sign
combined with the d-dependence therefore shows the interaction to be collectively attractive
for all α. We will not go through the steps of extracting out the pure triplet energy, but it
suffices to re-emphasize that the repulsive pairwise interaction sum derived from Eq. (3.199)
is overcome by the triplet energy to give the ultimately attractive contribution above.
Next, consider a collinear configuration of three particles such that r12 = r23 = d and

r31 = 2d. The exterior angles then satisfy ϕ 2
13 = 0 and ϕ 3

21 = ϕ 1
32 = π. After some time

with scratch paper, we find that the total interaction energy correction eventually simplifies
to

E
(2)
lin = − πσR2

4d2 ln2(2d
R

)(
3 ln d

R − ln 2
)2
{[

3∆h12 ln d

R
− (2∆h23 −∆h12) ln 2

]2

+ 4(∆h31)2
(

3 ln d

R
− ln 2

)2

+
[
3∆h23 ln d

R
− (2∆h12 −∆h23) ln 2

]2
}
.

(3.204)

The quantity within braces is clearly positive, as it is a sum of squares, and the d-dependence
shows the energy is lowered by decreasing the particles separations. As in the previous
example, this energy is minimum when the second particle is vertically positioned halfway
between the other two, and hence at the equilibrium surface.

Curved particles

So far we have explored the interaction energy associated with flat particles at fixed heights.
However, our detailed discussion in the previous sections revealed that a particle’s curvature
is accounted for by higher-order permanent sources, and provide contributions that simply
add to the flat-particle interaction energy. Hence, the monopole interaction energies for two
particles, given by Eqs. (3.183) and (3.199), and for three particles, given by Eqs. (3.193)
and (3.201), all contribute to the total interaction energy between curved particles at fixed
heights. For particles with permanent quadrupole sources, these combine with the previous
results, derived by the pairwise interactions (3.146) and (3.149) (and so on), and the triplet
interaction (3.157). Finally, there are additional contributions due to the interactions
between the permanent monopole sources with the permanent quadrupole sources. These
curvature-corrections begin at O(r−2), and are given by the diagrams

− βE(2)
curv. = 2 Re

[ (0) (2)
+

(0) (2)]
, (3.205)

where the effective monopole vertices take the appropriate multibody forms depending on
the number of particles in the system.
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Two particles. For two particles, the diagrams evaluate to give the energy

E(2)
curv. = −πσ (h1 − h2)

2r2 ln
(

r√
R1R2

)[S1R
4
1 cos 2α1 − S2R

4
2 cos 2α2

]
. (3.206)

This contribution has the same power law as the monopole–monopole interaction (3.199),
but with one fewer power in the logarithm correction. Observe that the interaction also
depends on the relative orientations of the particles’ saddles curvatures, showing the effects
of particle anisotropy appear at a lower order than if the particles were not fixed in place.
Interestingly, the monopole–quadrupole interaction suggests that the preferred configuration
(energy minimum) is attractive and occurs when the particles’ curvature axes are aligned
perpendicularly, or, more specifically, when the higher particle’s saddle-curvature slopes
down toward the lower particle and the lower particle’s saddle-curvature slopes up toward
the higher particle (e.g., α1 = 0 and α2 = π/2 for h1 > h2). This should not be surprising,
however, since this configuration minimizes the surface deformation between the particles.

Three particles. For three particles, the diagrams evaluate to give the complete (two- and
three-body) interaction energy

E(2)
curv. = −πσ

cyc.
{1,2,3}∑

a,b,c





SaR
4
a

[
(%ab − %bc)∆hca + (∆hab −∆hbc)%ca

]2

+ SbR
4
b

[
(%ca − %ab)∆hbc + (∆hca −∆hab)%bc

]2

r2
ab

∑
cyc.
(
2%ij%jk − %2

ij

) cos 2θ(a)
ab




.

(3.207)
Here, the geometry of the particle arrangement plays a role, as does the particles’ relative
curvature orientations. Just as the two-body case, the power law is the same as the monopole
interaction (cf. Eq. (3.201)) but with one fewer power of the logarithmic correction.

Monopoles and mixed boundary conditions

We have noted earlier that the limit `c →∞ should be interpreted as restoring the vertical
translation symmetry of the surface. The interaction between particles with fixed monopole
sources then must be interpreted in light of this fact: the surface will translate freely until
it reaches an equilibrium state that balances the deformation forces with the external
mechanical forces required to fix the particles’ (relative) vertical positions. If there is only
one particle with a fixed height, it stands to reason that the surface should equilibrate to
meet that particle’s position and the particle’s height relative to the surface should vanish.
Hence, if we examined the interaction between a fixed particle with another particle (or
many) with the freedom to translate vertically, both the surface and the other particle(s)
should meet at the same vertical position as the fixed particle. That is, any effects of the
fixed monopole source will disappear.
This line of reasoning serves as a conceptual consistency check for EFT method. First,
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we recall that the enforcement of the monopole constraint is encoded in the monopole
polarizability M (0). We emphasize this particular role of M (0) to clarify the meaning of
a vanishing monopole source Q(0). Indeed Q(0) = 0 means one of two things depending
on the context: If the particle height is fixed, then an external source is required to hold
this position and M (0) 6= 0, so the vanishing of Q(0) means nothing more than the particle
position is fixed at the same height as the reference plane, i.e., h = 0, not necessarily at
the position of the surface. If the particle is vertically unconstrained, then M (0) = 0 so
Q(0) necessarily vanishes since Q(0) ∝ M (0). This means that setting ha = 0 for one of
the particles in the previous interaction energy expressions, such as Eq. (3.206), is not
equivalent to relaxing the vertical constraint of a particle.

If we look at a (BC 1)–(BC 2) pair interaction, we must recall that the effective monopole
vertices were constructed by considering all possible insertions of monopole vertices in
each propagator. For (BC 2), there is no monopole vertex, meaning that no two monopole
vertices can be linked, otherwise it would give a self-interaction. Hence, no resummation
is possible and the statement that every diagram containing monopoles vanishes is now
consistently valid. The only other possibility for a nonvanishing monopole interaction is to
balance each occurrence of M (0) with a derivative-free propagator. This is only possible if
a monopole source links directly to a monopole vertex; however, this is ruled out if only
one particle is fixed because both the source and vertex would lie on the same worldline,
again giving a self-interaction. Hence, no monopole effects can be observed in the `c →∞
limit, other than the translation of the equilibrium surface, unless more than one particle
has a fixed position.

3.6 Entropic interactions
We now explore interaction that arise from thermal fluctuations. The intuitive picture is
that a compact object bound to a surface necessarily imposes some boundary conditions
on the surface in the neighborhood of the surface-particle contact line. These conditions
in turn affect the fluctuation spectrum, and hence the associated entropy and surface free
energy. With more than one bound object, the fluctuation spectrum will be affected in a
way that depends generally on the objects’ relative positions and geometric arrangement.

As discussed in Section 3.4.1 (namely, pages 109–110), the entropic contribution U to the
interaction free energy is given by the sum of ring-type diagrams. Moreover, the elastic and
entropic contributions separate completely, so the results that follow will apply to both flat
particles and those with permanent multipole moments. By the same logic as the previous
section, we will first consider interactions between (BC 2) particles, since (BC 3) follows by
setting C(1) = 0 and (BC 1) gives additional contributions.

3.6.1 Pair interactions
At leading order, the entropic pair energy is given by an induced dipole–dipole interaction,
and by the power-counting formula (3.141) scales as r−4. Performing the calculation yields
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the well known result, first calculated by Lehle et al. in Refs. [LOD06] and [LO07]:

−βU (4) = −βUdip–dip =

(1)

(1)

= 1
2
∑

a6=b
C(1)
a

∂a∂bG
ab

σ
C

(1)
b

∂̄b∂̄aG
ba

σ

=⇒ βU
(4)
{1,2} = −C

(1)
1 C

(1)
2

(4πσ)2r4 = −R
2
1R

2
2

r4 . (3.208)

Just as a reminder, the factor of 1/2 is due to the diagram’s symmetry factor. The leading-
order correction stems from the induced dipole–quadrupole interaction, and is calculated
similarly:

−βU (6) = −βUdip–quad =

(1)

(2)

=
∑

a6=b
C(1)
a

∂a∂
2
bG

ab

σ
C

(2)
b

∂̄2
b ∂̄aG

ba

σ

=⇒ βU
(6)
{1,2} = −4 C

(1)
1 C

(2)
2 + C

(2)
1 C

(1)
2

(4πσ)2r6 = −2 R
2
1R

4
2 +R4

1R
2
2

r6 , (3.209)

in agreement with Ref. [YRD11]. At the next order, the number of diagrams increases and
consists of dipole–hexapole and quadrupole–quadrupole interactions, and a longer chain of
multiple dipole interactions:

− βU (8) =

(1)

(3)

+

(2)

(2)

+

(1)

(1)

(1)

(1) . (3.210)

The symmetry factors for the three diagrams are respectively 1, 2, and 4, and the the sum
evaluates to

βU
(8)
{1,2} = −(3!)2C

(1)
1 C

(3)
1 + C

(3)
1 C

(1)
2

(4πσ)2r8 − (3!)2

2
2C(2)

1 C
(2)
1

(4πσ)2r8 −
1
4

2
[
C

(1)
1
]2[
C

(1)
2
]2

(4πσ)4r8

= −3 R
2
1R

6
2 +R6

1R
2
2

r8 − 9 R
4
1R

4
2

r8 − 1
2
R4

1R
4
2

r8

= −6R2
1R

6
2 + 19R4

1R
4
2 + 6R6

1R
2
2

2r8 , (3.211)

again, in agreement with Ref. [YRD11].

Tilt freedom. If one is interested in the interaction between two particles with the freedom
to tilt, or with differing boundary conditions, the physics can also be extracted from the

137



3 Surface-mediated interactions of axisymmetric particles

above expressions. For example, if the tilt constraint is relaxed for only particle 2, then
C

(1)
2 = 0 and we obtain

βU{1,2} = −2 R
2
1R

4
2

r6 − 3 R
2
1R

6
2 + 3R4

1R
4
2

r8 +O(r−10). (3.212)

The leading-order term was first found in Ref. [LO07]. If instead both particles are allowed
to tilt freely, both C(1)

1 = C
(1)
2 = 0 and the interaction energy reduces to the leading-order

expression

βU{1,2} = −9R
4
1R

4
2

r8 +O(r−10), (3.213)

also found first in Refs. [LOD06, LO07].

3.6.2 The complete pair interaction
For two particles, the simplicity of the ring diagrams allows us to write down the complete
entropic pair interaction like we did for elastic interactions. One may proceed in two ways,
either diagrammatically or through the explicit trace form extracted from Eq. (3.131) (and
applying Eq. (3.135)). Here, we will apply the diagrammatic technique.

Since each interaction vertex has both single- and double-line legs, each ring diagram must
alternate single- and double-line edges and it follows that there must be an even number
of vertices in each diagram. This is true even in the multibody case, but for pairs this
is reinforced since the worldline labels must also alternate. The diagrammatic expansion
therefore takes the form

− βU =
∑

k>1
2k , (3.214)

where the sum over k corresponds to all diagrams with 2k vertices. Note that the presence
of the double-line edges changes the symmetry factor, but it does so in a fairly simple way.
One way to work out the new symmetry factor is to think of the double-line edge as a
vertex so that the diagram is isomorphic to a ring with k vertices (and k identical edges).
Then, we find that the order of the symmetry group is reduced by half and S = 2k.

We now plug in the values of the polarizabilities and Green function derivatives. A
general diagram with 2k vertices evaluates to the cyclic product

2k = 1
2k
∑

a6=b

∑

{n}

k∏

i=1
C

(n2i−1)
a

∂
n2i−1
a ∂n2i

b Gab

σ
C

(n2i)
b

∂̄n2i
b ∂̄

n2i+1
a Gba

σ

= 2
2k
∑

{n}

k∏

i=1

(n2i−1 + n2i − 1)!(n2i + n2i+1 − 1)!
n2i−1!(n2i−1 − 1)!n2i!(n2i − 1)!

R
2n2i−1
1 R2n2i

2
zn2i−1r2n2i z̄n2i+1

,

(3.215)

where n2k+1 ≡ n1 and
∑
{n} ≡

∑
n1,...,n2k

. In the second line, we used that the diagram
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is invariant (equivalent) under the exchange a↔ b. The cyclic product can of course be
simplified further by rearranging factors. In particular, we may shift the factors of z and
z̄ so that the denominator is more obviously real. Furthermore, we may rearrange the
factorials so that they can be recognized as a product of binomial coefficients. Finally, our
choice of derivative-order labels assigns all the odd labels to R1 and the even labels to R2,
so, as we did previously, we define the sums No =

∑k
j=1 n2j−1 and Ne =

∑k
j=1 n2j . After

the appropriate manipulations, we obtain the complete pair interaction,

βU{1,2} = −
∑

k>1

1
k

∑

{n}

R2No
1 R2Ne

2
r2(No+Ne)

2k∏

i=1

(
ni + ni+1 − 1

ni+1

)
, (3.216)

in agreement with Ref. [YRD12] (though derived in a slightly different way).
The above expression is relatively straightforward to expand to very high orders, either by

hand or using algebraic manipulation software (such as Mathematica). If one is interested
in accuracy up to and including r−p, the power-counting formula (3.141) proves useful once
again, relating the expansion order with the derivative orders via n1 +n2 + · · ·+nNV = p/2,
where NV = 2k for some k. In particular, if we only consider (BC 2) particles, then ni > 1
and all diagrams up to NV = p/2 vertices must be included, so the sum in Eq. (3.216)
must run over all k = 1, 2, . . . , bp/4c. To find how high the sum over polarizabilities must
extend, we assign to all but one vertex a derivative order ni = 1, leaving the final vertex to
take on the remainder, p/2− (NV − 1) = p/2− (2k − 1). That is, the polarizability sums
must run over the range 1 6 ni 6 p/2 − (2k − 1) for every k and vertex i. Similarly, for
(BC 3) particles, ni > 2 so one must consider all diagrams with up to bp/4c vertices, or
up to k = bp/8c. For each vertex i, the polarizabilities must be summed over the range
2 6 ni 6 p/2− 2(2k − 1) for every k.

(BC 2). As an example, we will expand out the energy to p = 22 for two identical particles
(R1 = R2 = R) whose respective heights are free to fluctuate. With p = 22, it follows from
the previous discussion that all diagrams with up to 11 vertices will contribute (actually
10 since NV must be even), which translates into kmax = b22/4c = 5. For each k, the
polarizabilities must sum over (at least) the range 1 6 ni 6 11− (2k−1). For example k = 1
corresponds to a two-vertex diagram with a sum that must contain the ranges 1 6 ni 6 10,
whereas k = 5 corresponds to a 10-vertex diagram with a sum that must contain the range
1 6 ni 6 2. Applying these conditions to Eq. (3.216) results in the expansion

−βU{1,2} = 1
χ4 + 4

χ6 + 31
2χ8 + 60

χ10 + 697
3χ12 +900

χ14 +13 955
4χ16 +40 612

3χ18 +262 966
5χ20 +204 600

χ22 +O(χ−24),
(3.217)

where χ = r/R is the usual dimensionless distance. This expansion was also generated in
Ref. [YRD12] up to r−12, and of course we find perfect agreement.
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(BC 3). We may similarly expand out the energy for two identical particles whose
respective heights and tilts are free to fluctuate. The difference from the previous example
is that the polarizability sums instead start at two since C(1) = 0. Let us expand out to
p = 24, for which the earlier analysis tells us that all diagrams with up to NV = 24/4 = 6
vertices would contribute, or equivalently kmax = 3 in Eq. (3.216). The polarizability sums
must cover at least the range 2 6 ni 6 12− 2(2k − 1) for every k and vertex i (e.g., k = 1
gives 2 6 ni 6 10 and k = 3 implies all ni = 2). Applying these conditions results in the
expansion,

−βU{1,2} = 9
χ8 + 48

χ10 + 200
χ12 + 780

χ14 + 6059
2χ16 + 11 856

χ18 + 46 656
χ20 + 183 960

χ32 + 725 353
χ24 +O(χ−26).

(3.218)
The first three terms appear as a limiting case in Ref. [HD14], but the remaining terms are
otherwise not found elsewhere.30

Asymptotics and the exact solution. Although we will not rederive the findings here,
Yolcu et al. [YRD12] have examined the compact expression (3.216) in detail and found
useful results regarding the validity of the asymptotics. First, the authors compared
high-order expansions of Eq. (3.216) with numerical results to determine an empirical
heuristic for the expansions accuracy. In particular, they found that for some fixed edge-to-
edge separation d = r − 2R, the power p for which the series may be truncated and still
achieve less than 5% error obeys the asymptotic relationship p ∼ 8.2(d/R)−1. Furthermore,
Yolcu demonstrated that although Eq. (3.216) is an asymptotic series in inverse powers
of separation, its completeness allows it to be massaged in such a way that the proximity
asymptotics can also be extracted. He was able to isolate the leading-order divergence
βU ∼ −π2/24

√
d, where d is the edge-to-edge separation, which agrees with results obtained

by the Derjaguin proximity approximation [LO07].
Since the asymptotic series (3.216) is complete, one might wonder if there is an analytic

continuation in terms of special functions. This was done to an extent in Ref. [YRD12],
as mentioned above, but a similar system has also been studied via conformal field theory
(CFT) techniques, for which exact results have been obtained. In particular, Rothstein
[Rot12] has calculated the free energy of a bosonic field on a plane with two circular holes
satisfying Neumann boundary conditions, which was later generalized by Bimonte et al.
[BEK13]. Strictly speaking, the Neumann problem is not entirely isomorphic to ours (to
correct the claim in Ref. [YRD12]), but the change in boundary conditions—Dirichlet with
a free parameter to Neumann—only manifests as a change in sign of the Wilson coefficients
(see Ref. [Rot12]). For pair interactions, there is always an even power of Wilson coefficients,
so the resulting (interaction) free energy turns out to be identical. Bimonte et al. provide
the exact solution for identical holes in terms of the Dedekind η-function,31 which with our

30Of course the tools to generate this expansion are set up in Ref. [YRD12], but the authors restricted
their discussion to particles of the type (BC 2).

31The common definition is η(τ) = eiπτ/12∏∞
n=1(1− e2πinτ ), for Im τ > 0 [DLMF, 27.14(iv)].
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usual notation χ = r/R expands as [Rot12]

βU{1,2} = π

6C + ln η
(

2i
C

)

=
∑

k>1
ln
(

1−
[

1
2

(
χ2 − χ

√
χ2 − 4− 2

)]2k
)
,

(3.219)

where C = 2π/ cosh−1(1
2χ

2 − 1
)
is the “mutual capacitance” between two identical disks of

radii R. The first line enables an expansion in small separation (χ ≈ 2), as there exists many
convenient representations of η, and doing so indeed reproduces the divergence mentioned
above. Both the first and second lines are useful for expanding in large separations (χ� 2),
and easily reproduce the series (3.217).32 The power of the CFT method clearly lies in
the ability to produce exact expressions for all separations via Eq. (3.219); however, the
dirty work is in constructing the two-body mutual capacitance C, which is nontrivial for
arbitrarily-shaped objects (a hybrid EFT/CFT approach could prove useful). Furthermore,
it does not directly extend to multibody interactions. For example, the pair interaction
corresponds to a CFT on a cylinder with boundaries (which maps to an annulus), but a
three-body system corresponds to a CFT on a genus-2 “pair of pants” with boundaries and
necessitates some complicated multiply-connected mappings. Of course, it also requires
conformal symmetry of the field theory, so it does not apply to non-conformal systems like
the biharmonic membrane of the next chapter.

3.6.3 Multibody interactions
With more than two particles in the system, multibody interactions will amend the pairwise
summation. For three (BC 2)-type particles, power counting suggests that the leading-order
triplet interaction would be of a dipole–dipole–dipole type and thus scale as r2

12r
2
23r

2
31.

However, the prefactor of this term is identically zero [YRD12]. To see this, we once again
recall that interaction vertices have two legs—one single-lined and the other double-lined—so
they may only be connected to form a ring if there is an even number of vertices (and hence
an alternating pattern of single- and double-line propagators). Therefore, it follows from the
diagram components that a dipole–dipole–dipole interaction diagram cannot be constructed,
which is equivalent to the statement that such an interaction would place a Laplacian on
one of the propagators (between nonidentical points) and thus vanish. The leading-order
triplet interaction must therefore be contained within the tetravalent interaction diagram,

32Evidently, comparing the two series (3.216) and (3.219) provides the (likely unknown) summation
identity

− 1
k

∑
{nj>1}2k

j=1

2k∏
i=1

χ−ni

(
ni + ni+1 − 1

ni+1

)
= ln

(
1−

[
1
2
(
χ2 − χ

√
χ2 − 4− 2

)]2k)
.
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(1)

(1)

(1)

(1)

which, incidentally, is where the quadruplet interaction begins as well.
In the above diagram, a sum over particle labels is implied at each vertex. For three

particles, two nonadjacent vertices must be placed on the same worldline, which can be
done in two ways. The resulting sum over label permutations may also be reduced to twice
a cyclic sum, since an interchange of the nonrepeated labels returns an equivalent diagram.
That is, representing the worldline-labeled evaluation of the diagram by f(a, b, c, d), the
diagram symmetries allow for the summation reduction,

3∑′

a,b,c,d

f(a, b, c, d)→ 2

perm.
{1,2,3}∑

a,b,c

f(a, b, c, b)→ 4

cyc.
{1,2,3}∑

a,b,c

f(a, b, c, b).

The concluding factor of four cancels the diagram’s symmetry factor, and we find the
leading-order triplet interaction,

βU
(8)
tri = −4

cyc.
{1,2,3}∑

a,b,c

1
4C

(1)
a

[
C

(1)
b

]2
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∂a∂bG
ab

σ

∂̄b∂̄cG
bc

σ

∂c∂bG
cb

σ

∂̄b∂̄aG
ba

σ

= −
(
R2

1R
4
2R

2
3

r4
12r

4
23

+ R2
1R

2
2R

4
3

r4
23r

4
31

+ R4
1R

2
2R

2
3

r4
31r

4
12

)
, (3.220)

in agreement with Ref. [YRD12], and recently derived through a scattering approach in
Refs. [NWZ13b, NWZ13a]. The interaction is purely attractive and does not explicitly
depend on the triangle angles of the three-particle system (though the three lengths are
sufficient to uniquely determine the triangle).

The leading-order quadruplet interaction is also contained within the same diagram, but
the summation is instead given over all permutations of the label set {1, 2, 3, 4}. The diagram
symmetries again reduce the summation, but this time the interchange of nonadjacent labels
produces the diagram’s complex conjugate. The product of Green function derivatives
results in many angles, which may be combined in several equivalent coordinate-free ways.
We first choose the convention that reproduces the result in Ref. [YRD12]:

βU
(8)
quad = −C

(1)
1 C

(1)
2 C

(1)
3 C

(1)
4

σ4 2 Re
(
∂2G12∂̄2G23∂2G34∂̄2G41

+ ∂2G13∂̄2G32∂2G24∂̄2G41

+ ∂2G13∂̄2G34∂2G42∂̄2G21
)
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= −2R2
1R

2
2R

2
3R

2
4

[
cos(ϕ 2

13 − ϕ 3
24 + ϕ 4

31 − ϕ 1
42)

r2
12r

2
23r

2
34r

2
41

+ cos(ϕ 2
14 − ϕ 4

23 + ϕ 3
41 − ϕ 1

32)
r2

12r
2
24r

2
43r

2
31

+ cos(ϕ 3
12 − ϕ 2

34 + ϕ 4
21 − ϕ 1

43)
r2

13r
2
32r

2
24r

2
41

]
. (3.221)

This expression depends on six distances and twelve angles, reflecting the four different
triangles that can be formed between the four particle positions. However, many of these
parameters are not independent. A fact from planar trigonometry is that any polygon
with n vertices may be uniquely determined by 2n− 3 parameters (sides and angles), at
least n− 2 of which must be side lengths [Hob57]. For n = 4, this means the irreducible
set contains five parameters, at least two of which must be lengths. Hence, the energy
expression above is actually highly overdetermined and most of the lengths and angles
could be re-expressed in terms of a set of five parameters. The form expressed, however, is
perhaps preferable to one containing additional trigonometric relationships. An alternative
(but still overdetermined) expression is also suggested by the Green function derivatives
and reduces the angular-dependence by half:

βU
(8)
quad = −2R2

1R
2
2R

2
3R

2
4

[
cos(2ϕ 2

13 + 2ϕ 4
31)

r2
12r

2
23r

2
34r
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14 + 2ϕ 3

41)
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12r
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24r
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+ cos(2ϕ 3
12 + 2ϕ 4
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2
32r

2
24r

2
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]
.

(3.222)
Although the number of particles has somewhat increased the geometric complexity, we
observe that angular configurations which maximize the cosines will minimize the energy
and lead to a collective four-body attraction. One may check that this occurs for both
rectangular and collinear particle arrangements, where the cosine arguments all vanish
(mod 2π).

Tilt freedom. For particles with the freedom to tilt as well as fluctuate vertically, the
dipole polarizabilities vanish, so the leading-order triplet contribution must stem from
induced quadrupoles. By the same argument as before, this contribution must come from a
tetravalent interaction diagram,

(2)

(2)

(2)

(2) ,

for which power-counting reveals the scaling dependence ∼ distance−16. As before, the
consideration of the diagram’s symmetries shows that distributing the three particle labels
on the four vertices such that no self-interactions occur can be done in three unique ways,
each of which has a multiplicity of four which cancels the symmetry factor of the original

143



3 Surface-mediated interactions of axisymmetric particles

diagram. The interaction energy then appears as the cyclic sum,

βU
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tri = −
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a,b,c

C
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3

r8
31r

8
12

)
, (3.223)

which agrees with Ref. [NWZ13a], wherein the authors derived the above result via scattering
methods.

3.6.4 Monopoles33

For particles frozen in position, monopole polarizabilities will contribute to their entropic
interactions. Just as before, the entropic interactions are independent of the particles’
permanent sources, so without losing generality we may treat the particles as flat and
positioned in the reference plane (h = 0). Our treatment of monopoles for elastic interactions
carries over to entropic interactions, but applies to subleading and higher-order contributions
to the interaction energy. At leading order, the fluctuation-induced interactions between
monopoles is much simpler.

Leading order

The relevant diagrams at leading order must be built from only monopole vertices, and
consistency in the perturbative expansion dictates that this infinite set of such monopole
rings be summed completely. Previously, this resummation was achieved by considering
all possible monopole insertions into each propagator and identifying and completing the
resulting geometric series. At leading order, however, the resummation essentially reverses
the derivation from diagrams to the trace expression in Eq. (3.129) to the determinant form
in Eq. (3.126):

−βU (0) =
∞∑

k=1
k =

∞∑

k=1

1
2k tr

( )k = 1
2 tr

∞∑

k=1

(−G M)k

k

= −1
2 tr ln(1 + G M) = −1

2 ln det(1 + G M), (3.224)

where the matrix is given in Eqs. (3.172) and (3.173). We have purposely set the sum to
run over all k > 1 so that the Taylor series of the logarithm is apparent, and kept the
exclusion of self-interactions implicit (it is contained within the expression for 1 + G M). By

33The content and development of this section closely follow Section V. of Ref. [HD14], but specialized to
the case of circular particles.
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replacing continuous operators with finite matrices, the calculation for N particles reduces
to computing the standard determinant of an N ×N matrix. We demonstrate this for two-
and three-particle systems below.

Two particles. We have already calculated the determinant for two particles in Eq. (3.176);
applying the result to Eq. (3.224) reveals the leading-order entropic interaction energy to be

βU
(0)
{1,2} = 1

2 ln
(
1− g2

12
)
. (3.225)

As we discussed previously, the argument of the logarithm vanishes as ∼ Λ−1 in the `c →∞
limit (cf. Eq. (3.180)), so the interaction energy diverges. This divergence can be factorized,
however, and can be separated from the interaction energy as an infinite but irrelevant
constant. To see this, we expand the energy in powers of Λ12 to find

βU
(0)
{1,2} = −1

2 ln Λ12 + 1
2 ln

[
2 ln
(

r√
R1R2

)]
+O(Λ−1). (3.226)

The corresponding attractive force is long-ranged and slightly suppressed by a logarithmic
correction:

F
(0)
{1,2} = − kbT

2r ln
(

r√
R1R2

) +O(Λ−1). (3.227)

Up to irrelevant constants, the above energy expression agrees with the literature, namely
Ref. [LO07], where the result first appears, Ref. [YRD12], where the result is calculated
via EFT methods similar to here, Refs. [NWZ13b, NWZ13a], where the result is obtained
using a scattering formalism, and Ref. [BEK13], where the exact expression is calculated
via CFT methods and the above term matches the large-distance expansion to leading
order. The last reference is of note because, unlike the Neumann problem mentioned earlier,
the Dirichlet problem maps exactly onto the frozen-particle system considered here. We
will return to this when we discuss higher-order corrections.

Three particles. Similarly, we calculate the complete leading-order interaction energy for
a three-particle system and find

βU
(0)
{1,2,3} = 1

2 ln
[
1−

(
g2

12 + g2
23 + g2

31 − 2g12g23g31
)]
. (3.228)

Contained within this result are both the triplet and pairwise interactions. The decomposi-
tion is not readily apparent, but we may do as before and subtract off the pairwise sum
using Eq. (3.225) to obtain an expression for the triplet interaction:

U
(0)
tri = U

(0)
{1,2,3} −

(
U

(0)
{1,2} + U

(0)
{2,3} + U

(0)
{3,1}

)
. (3.229)
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The logarithms combine, and we find the pure triplet interaction energy at leading order,

βU
(0)
tri = 1

2 ln
[

1−
(
g2

12 + g2
23 + g2

31 − 2g12g23g31
)

(
1− g2

12
)(

1− g2
23
)(

1− g2
31
)

]
. (3.230)

The expression above reproduces the findings of Refs. [NWZ13b, NWZ13a], obtained through
a scattering matrix expansion.34
To understand the three-particle behavior, we may again expand the result for `c →∞

using Eqs. (3.190) and (3.226). After some simplification, the total three-body interaction
energy (3.228) becomes35

βU
(0)
{1,2,3} = −1

3 ln(Λ12Λ23Λ31) + βEtot +O(Λ−1), (3.231)
with

βEtot = 1
2 ln

[∑

cyc.

(
2%ab%bc − %2

ab

)]
, (3.232)

where as usual the sum is over cyclic permutations of the label set {1, 2, 3}. Observe that
the divergences again separate as an irrelevant constant, and the distance dependence is
contained within Etot. As an aside, we note that the above equation may alternatively be
expressed as

βEtot = 1
2 ln

(∑

cyc.

[
%2
ab − (%ab − %bc)2

])
. (3.233)

The three-body entropic energy is collectively attractive. To see this, we can examine
the behavior under the distance rescaling rab → λrab:

− ∂(βEtot)
∂λ

= − 1
λ

%12 + %23 + %31∑
cyc.
(
2%ab%bc − %2

ab

) = − 1
λ

ln
(
λ3 r12r23r31

R1R2R3

)
∑

cyc.
(
2%ab%bc − %2

ab

) , (3.234)

where the rescaling is implied in the %ab terms. According to the above equation, decreasing
the interparticle separation lowers the energy, and thus the interaction is collectively
attractive. It is interesting to see how the pure triplet interaction contributes to the
attraction, so we compute it by subtracting off the pairwise energy sum,36

βEp = 1
2 ln(8%12%23%31), (3.235)

34 There is, however, a discrepancy with the published versions of Refs. [NWZ13b, NWZ13a]: The g3

term has the opposite sign. I have communicated with the authors and verified that this is a typographical
error, and our results do indeed agree.

35There are many ways to manipulate terms, but they all inevitably rely on the limit Λab/Λcd → 1.
To arrive at the clean form in Eq. (3.231), one may express the denominator of Eq. (3.190) as
[(Λ12Λ23Λ31)1/3]4(Λ12Λ23Λ31)2/3 and take the ratio limit of the Λ4 terms in the numerator and denominator.

36Of course, one could alternatively just expand Eq. (3.230).
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to give the triplet energy

βEtri = β(Etot − Ep) = −1
2 ln

[
8%12%23%31∑

cyc.
(
2%ab%bc − %2

ab

)
]
. (3.236)

The numerator contains an additional power of % compared with the denominator, so the
argument of the logarithm is greater than one. Moreover, this additional power in the
numerator suggests that under distance rescaling by λ the energy behaves like − ln lnλ and
is therefore collectively repulsive.
We check this repulsive behavior with our usual three-body example configurations of

identical particles (Ra = R). For an equilateral triangle arrangement (r12 = r23 = r31 = d),
the triplet interaction energy reduces dramatically to

βEtri,4 = −1
2 ln

[
8
3 ln

(
d

R

)]
, (3.237)

for which the repulsion is indeed clear. For the collinear arrangement (r12 = r23 = r31/2 = d),
the triplet energy reduces to

βEtri,lin = −1
2 ln

[
8 ln2(d/R)

3 ln(d/R)− ln 2

]
. (3.238)

To demonstrate more clearly that this is attractive, we look at how the energy changes
under rescaling the energy by λ:

− ∂(βEtri,lin)
∂λ

= 1
2λ

3 ln
(
λd
R

)
− 2 ln 2

ln
(
λd
R

)[
3 ln
(
λd
R

)
− ln 2

] . (3.239)

Since we require λd > 2R, it follows that the right side is positive and hence the triplet
interaction is collectively repulsive.
Similar to our findings regarding elastic interactions, we observe another interesting

three-body effect. When the particles are all free to fluctuate in height, or fluctuate in
height and tilt, the triplet contribution reinforces the collective attraction. However, when
the positions of the particles are fixed, the triplet interaction reduces the overall attraction.
This reproduces the observations in Refs. [NWZ13b, NWZ13a].

Higher orders

Luckily, during our discussion of monopole contributions to elastic interactions, we have
completely laid out the tools required to calculate higher-order corrections to the entropic
interaction energies. We will not rederive them here, but instead summarize the formalism
and results.
For a system of N particles with fixed positions, (BC 1), the interparticle interaction

energy is given by the pairwise and multibody diagrammatic expansion (3.214) applicable
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to (BC 2) (i.e., C(1) 6= 0)—where the vertices sum over all particle positions—modified
by all possible monopole insertions on each propagator (including zero insertions). As we
found previously, the monopole insertions on any given propagator can be resummed as
a geometric series and results in three terms: the identity which leaves the propagator
unaffected, an effective monopole vertex which starts and ends on the same particle worldline,
and an effective monopole vertex which starts and ends on different particle worldlines.
In both cases, the effective monopole vertices depend on the total number of particles in
the system, and in this sense are complete. That is, only the N -body effective monopole
vertices for a system of N particles are used, and consistency dictates that the effective
N − 1, N − 2, etc. monopole vertices are not needed. Although this provides the complete
monopole contributions at each order rather efficiently, we note that to determine the
explicit pair, triplet, quadruplet, etc. contributions, one would still need to determine the
effective (n < N)-body monopole vertices and apply the appropriate subtraction like we
did above.

Here we will apply the formalism to both two- and three-body particle systems. For ease
of reference, we provide the effective monopole vertices in the `c →∞ limit below:

N = 2 :





i j = −β
∑

a

2πσ δia
(

1
2%12

)
δaj

i j = β
∑

a,b

2πσ δia
(

1− δab
2%12

)
δbj

(3.240)

N = 3 :





i j = −β
∑

a

2πσ δia
2
∑

cyc.(%k` − %a`)∑
cyc.
(
2%k`%`m − %2

k`

)δaj

i j = β
∑

a,b

2πσ δia

(∑
cyc. %k`

)
− 2%ab∑

cyc.
(
2%k`%`m − %2

k`

)(1− δab )δbj
(3.241)

Incorporating these vertices into the expansion follows from the discussion of multiple
perturbations surrounding Eq. (3.130). The fluctuation-induced interaction energy then
consists of all ring diagrams with distinct permutations of effective monopole insertions:

−βU =
∞∑

k=1
k +

∑

k>1
2k + +

+ 2 Re


 +


+ +

+ + 2 Re





+ + + · · ·

(3.242)
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Two particles. The subleading contribution to the pair interaction energy comes from the
single dipole–monopole diagram,

− βU (2)
BC1 =

(1)

, (3.243)

and is easily evaluated, giving

βU
(2)
BC1 = −R

2
1 +R2

2
4r2%12

. (3.244)

We have dropped the usual {1, 2} label on U in favor of “BC1” to distinguish it from the
(BC 2) contributions.

The next order finds contributions from the (BC 2) dipole–dipole interaction, expressed
in Eq. (3.208), as well as the interactions between two induced dipoles and two (effective)
monopoles, and between monopoles and an induced quadrupole. These are represented by
the expansion,

−βU (4)
BC1 = −βU (4)

BC2 +

(2)

+ 2 Re




(1)

(1)




+

(1)

(1)

+

(1)

(1)

+

(1)

(1)

+

(1)

(1)

.

(3.245)

As usual for pair interactions, only diagrams with an even number of vertices contribute
since an odd number would entail self-interactions. The evaluation of the diagrams is again
fairly straightforward; one needs to just be careful to include the correct symmetry factors.
The diagram in brackets has a symmetry factor of two due to one reflection. The first and
third diagrams in the second line have the same diagram symmetry, a single rotation of
180◦, and thus they share the same symmetry factor of two. Similarly, the second and
fourth diagrams in the second line share the same symmetry factor of two due to a single
reflection across the horizontal midline. After evaluating and simplifying—and completing
the square in two terms—we arrive at the expression

βU
(4)
BC1 = βU

(4)
BC2 −

(R2
1 +R2

2)2 + 2R2
1R

2
2

8r4%12
−
[
βU

(2)
BC1
]2
. (3.246)

The final term comes from the last line of Eq. (3.245) and its identification with the square
of the subleading energy is unique to two-particle systems since the one- and two-vertex
effective monopole vertices furnish the same factors of πσ/%12. This interesting regrouping
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can be seen by decomposing the diagrams, rearranging factors, and reconnecting the links:

(1)

(1)

+

(1)

(1)

+

(1)

(1)

+

(1)

(1)

=
2∑

a6=b

(
2πσ
2%12

)2




1
2 × 2

( b a b

(1)

)2

+ 1
2 × 2

( b a b

(1)

)( a b a

(1)

)


=




2∑

a6=b

(
2πσ
2%12

)( b a b

(1)

)


2

=




(1) 


2

.

(3.247)
As we mentioned earlier, the exact free energy for two particles was obtained in

Ref. [BEK13], and the Dirichlet-Dirichlet case corresponds exactly to the present sys-
tem. Their result reads,

βUBC1 = π

6C + 1
2 ln

(
2π
C

)
+ ln η

(
2i
C

)
, (3.248)

where η is the Dedekind eta function and C is the mutual capacitance between the
two objects. For the case of identical disks of radii R, the capacitance is given by C =
2π/ cosh−1(1

2χ
2 − 1

)
, where χ = r/R as usual. The expansion for large separations generates

the first few terms,

βUBC1 = 1
2 ln(2 lnχ)− 1

2χ2 lnχ −
1
χ2

(
1 + 3

4 lnχ + 1
4 ln2 χ

)
− · · · (3.249)

Combining our own results, namely Eqs. (3.226), (3.244), and (3.246), we find (up to the
irrelevant constant)

βUBC1 = 1
2 ln(2%12)− R2

1 +R2
2

4r2%12
− 1
r4

[
R2

1R
2
2 + (R2

1 +R2
2)2 + 2R2

1R
2
2

8%12
+ (R2

1 +R2
2)2

16%2
12

]
− · · · ,
(3.250)

which we see for R1 = R2 = R indeed agrees with the expansion (3.249).

Three particles. For a system of three particles, diagrams with odd numbers of vertices
now appear and the subleading contribution to the interaction energy is given by the two
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diagrams,

− βU (2)
BC1 =

(1)

+

(1)

. (3.251)

We evaluate the diagrams in the standard way, being careful about minus signs in the
second diagram, and find

βU
(2)
BC1 = −

cyc.
{1,2,3}∑

a,b,c

[
%caR

2
a +R2

b%bc

r2
ab

∑
cyc.
(
2%k`%`m − %2

k`

) + (%ca + %ab − %bc)∑
cyc.
(
2%k`%`m − %2

k`

) R2
a

rcarab
cosϕ a

cb

]
.

(3.252)
In contrast to the leading-order correction of three-body elastic energy, Eq. (3.201), the

above expression reinforces the leading-order fluctuation-induced attraction. Moreover, the
pure triplet interaction is also in harmony and appears attractive. We demonstrate this
through our usual example configurations. For three identical particles (Ra = R) arranged
at the vertices of an equilateral triangle of side lengths rab = d, the above interaction energy
reduces quite dramatically to

βU
(2)
tot,4 = − 3R2

2d2 ln(d/R) . (3.253)

We compare this to the pairwise sum generated by Eq. (3.244), which simplifies to

βU
(2)
p,4 = − 3R2

2d2 ln(d/R) , (3.254)

and find the surprising result that the pure triplet interaction vanishes completely for this
configuration. For a collinear arrangement in which r12 = r23 = r31/2 = d, and the exterior
angles satisfy ϕ 2

13 = 0 and ϕ 3
21 = ϕ 1

32 = π, the three-body interaction energy becomes

βU
(2)
tot,lin = − 9R2 ln(d/R)

2d2 ln
(
d
R

)(
3 ln d

R − ln 2
) , (3.255)

which we see is collectively attractive. We now compare this to the pairwise sum, given by

βU
(2)
p,lin = −R

2

d2

(
1

ln(d/R) + 1
8 ln(2d/R)

)
. (3.256)

Subtracting from Eq. (3.255) yields the pure triplet energy. Admittedly, there are many
different ways to simplify the logarithms, but for demonstration purposes we present one
such regrouping that isolates the overall minus sign and keeps both the numerator and
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denominator clearly positive:

βU
(2)
tri,lin = β

(
U

(2)
tot,lin − U

(2)
p,lin

)
= − 8 ln2( d

2R
)

+ ln
(
d
R

)
ln
(2d
R

)

8
(
d
R

)2 ln
(
d
R

)
ln
(2d
R

)[
3 ln
(
d
R

)
− ln 2

] . (3.257)

In this form, the attractive nature becomes transparent.

Monopole screening. We close this section with an alternative interpretation of the
effective monopole polarizabilities. In Section 3.5.4, we made it clear that the `c →∞ limit
corresponded to the restoration of the surface’s vertical translation symmetry, analogous to
connecting two conductors to a voltage source so that the potential difference is maintained,
but the ground voltage is unconstrained. This has the effect that elastic interactions between
vertically constrained particles only depend on their respective height differences. From this
perspective, the effective monopoles in the expansion (3.181) account for the work done by
the external sources to maintain the height differences.

The picture is not much different in the entropic case, except that the effective monopoles
also account for the work done by the external sources to maintain the particles’ positions
against vertical fluctuations. That is, once fluctuations are included, the effective monopoles
serve two purposes: to fix the particle positions relative to their respective neighbors
(elastic) and to counter surface height fluctuations (entropic). This motivates the following
reinterpretation of the effective monopole contributions and logarithmic factors %ij .37
At leading order, the entropic interaction energy is governed by Eq. (3.226), which we

will write as βEij = 1
2 ln(2%ij) by dropping the irrelevant constant. This energy is due in

part to the attachment constraints at the particle–surface boundary, but also the external
sources that fix the vertical positions. The effective monopoles account for the latter, and
are governed by the expressions in Eq. (3.240) for a two-particle system. These contain
only the factor 1/%12, which we may re-express according to the leading-order interaction
energy,

1
2%ij

= e−2βEij , (3.258)

which is of pure monopole origin. This form suggests that the multiplicative logarithmic
corrections be interpreted as a type of monopole screening.38 Indeed, the external sources

37This discussion expands somewhat on the interpretation I suggested in Ref. [HD14].
38The term “screening” is also suggestive of its similarity to Debey–Hückel theory which, describes the

screening of the electrostatic potential φ in polarizable medium of effective permittivity ε via

−ε∇2φ(x) = ρext(x)− λ−2
D φ(x),

where ρext is a distribution of charges immersed in the medium and λD is the Debye screening length.
A similar governing equation follows from Eqs. (3.66), (3.81), and (3.85), but with the analogue of λD
augmented by a distribution:

−σ∇2h(x) = ρp(x)−
[
`−2
c +

∑
a

M (0)
a δ(x− xa)

]
h(x).
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perform work suppressing height fluctuations, and the suppression of fluctuations near the
particle boundaries effectively shields the particles from one another, or rather, it screens
the interactions between monopoles and induced higher-order multipole moments. For
example, an entropic monopole–dipole interaction should scale as 1/r2 by dimensional
analysis, but as we see by rewriting Eq. (3.244), the monopoles screen this interaction
through the entropic monopole–monopole energy:

βU
(2)
BC1 = −e−2βE12

(
R2

1 +R2
2

2r2

)
. (3.259)

This interpretation of course extends to three particles. Using Eq. (3.232), we rewrite
the total three-body monopole interaction energy as

e2βEtot =
∑

cyc.

[
%2
ab − (%ab − %bc)2

]
= e2β(Etri+E12+E23+E31), (3.260)

where in the last equality we decomposed the energy into the triplet energy and the pairwise
sum. A similar decomposition is achieved for the effective monopole vertices in Eq. (3.241):

i j = −β
∑

a

2πσ δia e−2β(Etri+Eka+Ea`) δaj (3.261a)

i j = β
∑

a,b

2πσ δia
1
2e−2β(Etri+Eab)

×
[
e−2βEak + e−2βEkb − e−2β(Eak+Ekb−Eab)

]
δbj , (3.261b)

where for the first vertex, the indices k and ` (k 6= `) are the two other particle labels
not picked out by a, and for the second vertex, the index k is the remaining particle label
not picked out by a and b. One benefit of expressing the vertices in this form is that it
makes the reduction to two particles clear. That is, the three-body vertices are consistent
with the two-body result: In a two-particle system, both the triplet Etri = 0 and the pairs
E23 = E31 = 0, so the above expressions reduce to those in Eq. (3.240).
The vertices in Eq. (3.261) show that the entropic interactions between monopoles and

higher-order multipole moments are again suppressed, or screened, by the pairwise monopole
interactions, but it also appears the triplet energy suppresses interactions as well. However,
recall that the triplet energy is negative (see Eq. (3.236)), so the triplet actually amplifies
the interactions slightly. The pairwise interactions outcompete the triplet energy, so we
again find an overall screening effect. We illustrate by rewriting Eq. (3.252), the entropic
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three-body interaction energy between monopoles and dipoles:

βU
(2)
BC1 = −1

2

cyc.
{1,2,3}∑

a,b,c

e−2β(Etri)
[
e−2βEab e−2βEbcR2

a + e−2βEcaR2
b

r2
ab

+ e−2βEbc e−2βEca + e−2βEab − e−2β(Eca+Eab−Ebc)

rcarab
R2
a cosϕ a

cb

]
.

(3.262)

The “screening” behavior due to the leading-order pair and multibody energies will persist
for more numerous collections of particles. Since, by way of the Cayley–Hamilton theorem,
the effective vertices will always carry with them the factor det(1 + G M), it follows that all
monopole interactions will be exponentially suppressed by the total leading-order multibody
monopole energy (cf. Eq. (3.224)). As this suppression will always contain multibody
energies specific to the total number of particles, these interactions are not just simply sums
over partitions (pairwise, tripletwise, and so on) of the collection of particles, but they mix
the multibody effects in various ways like in the above examples.

3.7 Harmonic traps and “soft monopoles”
Throughout this chapter we have only considered idealized particle constraints—the fluid
surface or interface is perfectly pinned to the particle, the contact line is perfectly rigid,
and the rigid-body motions are, apart from the surface coupling, either perfectly fixed or
completely free. The most restricted case in which a particle is fixed in place might be
realized, for instance, by engineering a Janus cylinder and arranging it perpendicular to the
surface with the cylinder ends clamped. In this example, the surface pins to the cylinder’s
material dividing line, which serves as the effective “particle.” However, a perhaps more
realistic experimental setup might instead involve constraining a colloid’s position by optical
tweezers, such as in Ref. [PF11].
In this final section, we will consider such a modified “monopole” system in which each

particle’s position is not perfectly fixed, but rather trapped in an external potential well.
This affords each particle a vertical degree of freedom, but with an energy cost for deviations
from the potential minimum. Correspondingly, we will refer to the associated surface
moment as a soft monopole since the external potential can only provide a finite restoring
force and hence small height deviations can occur. Soft monopoles will therefore give rise
to interparticle elastic and entropic forces that are similar to the perfect monopoles of the
previous sections, but with modifications due to the somewhat relaxed vertical constraint.

3.7.1 Surface response to a trapped particle
For simplicity—and generality—we will neglect the physical mechanisms of the particle
trap and model it as an external Hookean potential that provides a linear restoring force to
counter height deviations from the bottom of the potential well. The energy of a particle in
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the trap may thus be expressed as the harmonic potential

V (hcm) = 1
2k(hcm − h0)2, (3.263)

where hcm is the center-of-mass height of the particle, h0 is the position of the trap minimum,
and k is the trap stiffness or “spring constant.” As we remarked in Section 3.3.3, Lehle and
Oettel [LO07] have also used this external potential to model optical tweezers acting on
colloids, and their results will serve as a useful comparison.

To determine the effects the trap ultimately has on the surface profile, we incorporate the
trap as contact-line constraints in much the same way as in Section 3.2. There we related
the surface field h to the particle constraints (and degrees of freedom) encoded in hct by
requiring them to match at the particle–surface boundary. At the monopole level, the
relevant parameter for soft monopoles is the contact line height, which we may alternatively
express as the boundary average,

hcm =
∮

∂A
ds h

L(∂A) , (3.264)

where L(∂A) is the perimeter length of the boundary ∂A. The energy functional then
consists of the surface Hamiltonian plus the trap potential (3.263) with the above constraint
enforced by a Lagrange multiplier f :

H[h, f | hcm] = H0[h | Spr] + V (hcm) + ∆Hct[h, f | hcm]

= σ

2

∫

Spr
d2x

[
(∇h)2 + `−2

c h2]+ 1
2k(hcm − h0)2 + f

(
hcm −

∮

∂A
ds h

L(∂A)

)
.

(3.265)
It is worth mentioning that the Lagrange-multiplier term in the above functional is equivalent
to the constraint term in Eq. (3.24) at the monopole level, with the obvious relationship
λm = f/L(∂A) between the constraint force f and (monopole) force density λm. Note that
this formulation assumes both a pinned contact line as usual and, furthermore, that the
particle’s center of mass is at the same point as the contact-line center (cf. Section 3.2). If
the center of mass height is different, it can by incorporated by the simple modification in
the constraint term h → h − href, where href is the height difference between the pinned
contact line center and the particle’s true center of mass. Note also that the functional
(3.265) refers to a single particle at the origin, but the generalization to several particles
should be clear (quantities inherit a particle label a, which is summed over all particles).
The stationary-surface conditions are revealed by setting the (linear) variations to zero,

giving the following:

δhH :





(−∇2 + `−2
c )h = 0, x ∈ Spr

−σn̂A ·∇h = f

L(∂A) , x ∈ ∂A
(3.266a)

155



3 Surface-mediated interactions of axisymmetric particles

δhcmH : f = −k(hcm − h0) (3.266b)

δfH : hcm = 1
L(∂A)

∮

∂A
ds h (3.266c)

The first set of equations reproduces the BVP mentioned above (cf. Eq. (3.26)) with the
constraint force density f/L(∂A). Equation (3.266b) shows that the trap provides a uniform,
linear restoring force at the particle–surface boundary. The final equality of course just
restates the constraint. For a circular particle of radius R, these together give the surface
boundary condition

∂h

∂r

∣∣∣∣
r=R

= k

2πσR

(
1

2π

∫ 2π

0
dϕh(R,ϕ)− h0

)
. (3.267)

The boundary condition (3.267) dictates the particle–surface response to a background
surface deformation. To determine the response, we mirror Section 3.2.1 and decompose the
field as a superposition of the background field hbg and response δh, where the original BVP,
Eq. (3.46), now has the modified boundary condition (3.267). Outside the particle boundary,
the equations governing the surface are unaltered, so we may still apply the convenient
background field, Eq. (3.45), and know that the response will take the form of Eq. (3.44).
Since only the monopole polarizability is altered, we need only consider hbg = A0I0(r/`c),
which leads to the response δh = B0K0(r/`c). Substituting into Eq. (3.267) yields

A0
`c
I1(R/`c)−

B0
`c
K1(R/`c) = k

2πσR
[
A0I0(R/`c) +B0K0(R/`c)− h0

]

=⇒ B0 = −
A0
[
I0(R/`c)− 2πσ

k
R
`c
I1(R/`c)

]
− h0

K0(R/`c) + 2πσ
k

R
`c
K1(R/`c)

`c→∞−−−−→ − A0 − h0
2πσ
k + ln

( 2`c
Rγe

)
(3.268)

and therefore shows the “full theory” response (for large `c) to be

δh(x) = −
[

A0 − h0
2πσ
k + ln

( 2`c
Rγe

)
]

ln
(

2`c
rγe

)
. (3.269)

3.7.2 EFT for soft monopoles
The appearance of the trap energy, Eq. (3.263), is similar to the monopole contribution
to the effective Hamiltonian, Eq. (3.81). However, this similarity is somewhat misleading;
indeed, the worldline energy ∆Hm

f [h] is vanishing in the `c → ∞ limit but, on the other
hand, the trap strength k is independent of the surface properties and becomes infinite for a
perfectly rigid trap. To see how soft monopoles relate to pure monopoles, we construct the
effective Hamiltonian just as before by adding to the particle-free Hamiltonian the worldline
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monopole and permanent source terms,

∆Hm[h] = 1
2M̃

(0)h2(0)− Q̃(0)h(0), (3.270)

where the tilde decorations are just to distinguish the coefficients from the pure versions,
Eqs. (3.83) and (3.89).

We match coefficients by decomposing the field and calculating the effective response to
the background field. The background induces an effective source,

ρm(x | hbg) = −
[
M̃ (0)A0 + Q̃(0)]δ(x), (3.271)

which generates the induced response

δheffm (x | hbg) = −(A0M̃ (0) − Q̃(0))
2πσ ln

(
2`c
rγe

)
. (3.272)

Comparison with Eq. (3.269) yields the values of the monopole polarizability and permanent
charge. Again, the force-balance condition (3.103) is upheld:

M̃ (0) = 2πσ
2πσ
k + ln

( 2`c
Rγe

) (3.273)

Q̃(0) = M̃ (0)h0 (3.274)

Perfect monopoles are, of course, recovered in the limit of infinite trap strength; i.e.,
M (0) = limk→∞ M̃

(0).

Soft monopoles and self-capacitance

In Section 3.5.4 we discussed how the `c → ∞ limit is analogous to the electrostatics
system illustrated in Fig. 3.6. The monopole polarizability M (0) corresponds to the “self-
capacitance” of the particle, and the external mechanism enforcing the fixed position is
analogous to a battery or other voltage source maintaining the electric potential. From this
perspective, it is appropriate to speak of the particle trap as having a capacitance k, and the
new monopole polarizability M̃ (0) as being the equivalent capacitance of the particle–trap
system. The analogous electrostatics system for a trapped particle is illustrated in Fig. 3.7.

It seems appropriate, then, that the equivalent “capacitance” of a particle in a trap should
follow the reciprocal addition rules for combining capacitors in series. In the electrostatics
case, such an arrangement implies the total charge is conserved between the capacitor plate
and the conductor so that charge of equal magnitude but opposite sign resides on each.
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h = 0

heq

h0ft

fs

∼=

+
− h0

k h0 − heq

R
M (0)

+Q̃

−Q̃

+Q̃

heq

≡ +
− h0

R
M̃ (0)

+Q̃

h0

Figure 3.7: Trapped particle and its electrostatics analogy. The left figure illustrates a surface-bound
particle in an (ideal) optical trap. The trap provides a restoring force ft to the particle for deviations
from the trap height h0, whereas the surface provides a force fs = −ft for deviations from h = 0. At
equilibrium, the particle settles to a height heq. In the right figure, a grounded voltage source fixes the
potential of a conductor system. The particle trap maps onto such a source with a mediating capacitor.
At equilibrium, charge +Q̃ provided by the voltage source is balanced by charge −Q̃ on the opposite
side of the capacitor by pushing charge +Q̃ onto the conductor. This charge balance sets up a potential
difference across the capacitor and thereby alters the equilibrium potential of end conductor.

The electric potential is additive, and the capacitance adds “upside-down:”

heq + (h0 − heq) = h0 ⇔
Q̃

M (0) + Q̃

k
≡ Q̃

M̃ (0)

=⇒ 1
M̃ (0) = 1

k
+ 1
M (0) (3.275)

Plugging in the value for M (0) and rearranging reproduces Eq. (3.273). The soft monopole
polarizability also follows from the force (“charge”) balance, fs = ft, where the restoring
force of the trap is ft = k(h0 − heq) and the force from the surface is fs = M (0)heq. By
definition, the equivalent soft monopole characterizes the force in terms of the external field
h0 so that f = M̃ (0)h0. Force balance therefore implies that the above result also solves
the equivalent double equality

M (0)heq = k(h0 − heq) = M̃ (0)h0. (3.276)

3.7.3 Elastic interactions between trapped particles
Calculating interactions between trapped particles proceeds just as before with the only
change being the replacements M (0) → M̃ (0) and Q(0) → Q̃(0). The elastic interaction
between two trapped particles is given by Eq. (3.181) with the required replacements and
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simplifies to

E
(0)
{1,2} = − h0,1M̃

(0)
1
G12

σ
M̃

(0)
2 h0,2

+ 1
2

(
M̃

(0)
1 h2

0,1 + M̃
(0)
2 h2

0,2 − 2h0,1M̃
(0)
1
G12

σ
M̃

(0)
2 h0,2

)
g̃2

12
1− g̃2

12
.

(3.277)

Note that here h0,a refers to the height of particle a’s trap potential minimum and not the
true position of particle a in general.
Similar to before, if both particle experience identical trap potentials—that is, h0,1 =

h0,2 ≡ h0—then the elastic interaction energy vanishes in the limit `c →∞. Again, this is
understood as a restoration of vertical translation symmetry in the absence of a surface
dampening force (e.g., gravity); the surface translates to a new equilibrium position that
meets the shared height of the particle traps. For identical particles, expanding and
simplifying Eq. (3.277) gives the leading-order interaction energy for large `c,

E
(0)
{1,2} = −h

2
0
[
M̃ (0)]2(G12/σ)2

1 + M̃ (0)(G12/σ)
= − 2πσh2

0 2πG12

(2πσ/M̃ (0))
[
(2πσ/M̃ (0)) + 2πG12

]

= −
2πσh2

0 ln
( 2`c
rγe

)
[

2πσ
k + ln

( 2`c
Rγe

)][2πσ
k + ln

( 4`2c
rRγ2

e

)] . (3.278)

If the trap potentials of the two particles are not identical, then a nonzero result survives
the `c →∞ limit and depends on the trap height difference:

E
(0)
{1,2} =

−h0,1h0,2M̃
(0)
1 M̃

(0)
2 (G12/σ) + 1

2

(
M̃

(0)
1 h2

0,1 + M̃
(0)
2 h2

0,2

)
M̃

(0)
1 M̃

(0)
2 (G12/σ)2

1− M̃ (0)
1 M̃

(0)
2 (G12/σ)2

`c→∞−−−−→ (πσ/2)(h0,1 − h0,2)2

πσ
k1

+ πσ
k2

+ ln
(

r√
R1R2

) .

(3.279)
As expected, for traps of infinite strength (ka → ∞), the particles become frozen at the
trap heights and the energy limits to the pure monopole result (3.183).

Comparison with the results of Ref. [LO07]

Part of the motivation for considering soft monopoles is to make sense of the results presented
by Lehle and Oettel in Ref. [LO07]. There, the authors consider external harmonic potentials
on spherical colloids of equal (effective) radii R0 and calculate the resulting interaction
energy between two particles. In particular, they obtain similar expressions to Eqs. (3.278)
and (3.279), namely Eqs. (61) and (62) of Ref. [LO07], but with important differences. For
convenience, we reproduce their two results below in our own notation. First, for equal
external potentials, the interaction energy—which they express as the meniscus energy
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Vmen—vanishes in the `c →∞ limit but with a leading-order term39

Vmen ≈ −
4πσh2

0 ln
( 2`c
rγe

)
[

2πσ
k + ln

( 2`c
R0γe

)][2πσ
k + ln

( 4`2c
rR0γe

)] . (3.280)

Additionally, they calculate the nonvanishing contribution for nonidentical potentials and
find

Vmen
`c→∞−−−−→ πσ(h0,1 − h0,2)2

1 + πσ(1/k1 + 1/k2) + ln r/R0
. (3.281)

Some additional comments are in order. First, in their paper the authors consider a variety
of boundary conditions, including the case of unpinned contact lines. They did not explicitly
state whether pinned or unpinned particles were assumed in the calculations leading to
the above results, but it seems that unpinned particles are implied.40 However, their first
result, Eq. (3.280) above, matches our own result, Eq. (3.278), for pinned particles. The
only discrepancy is an additional factor of two, which is possibly due to a double-counting
error on their end. For nonidentical external potentials, their result, Eq. (3.281) above,
differs less trivially from our pinned contact line result, Eq. (3.279). In addition to another
factor of two discrepancy, the denominator includes an additive constant of one. Since
this difference may be due to the unpinned degrees of freedom of the contact line, we
repeat our EFT construction in Appendix B for unpinned particles. We indeed reproduce
Eq. (3.281) (cf. Eq. (B.16)) and also find the correct unpinned version of Eq. (3.280) (cf.
Eq. (B.15)), though in both cases the same factor of two discrepancy remains. In the
process we also uncover and clarify some subtleties hidden in the above expression. First,
the effective radius R0 6 R refers to the projected radius of the three-phase contact line in
the single-particle equilibrium configuration, wherein the surface is flat and the particle’s
center of mass lies below the contact line with a position governed by Young’s law. Second,
we find that the parameters h0,a should in general refer not to the position of the external
potential’s energy minimum, but rather the height difference between the minimum and
the equilibrium center of mass position of the particle in isolation (i.e., in the absence of
the external potential or other particles). For identical particles, however, the reference
equilibrium heights will be the same and hence cancel in the difference. To summarize, we
reproduce (and generalize to nonidentical particles) the two results of Lehle and Oettel up
to a factor of two and, furthermore, discover that Eq. (3.280) is applicable only for pinned
contact lines, whereas Eq. (3.281) is only applicable for unpinned contact lines. More details
on the unpinned EFT construction and results can be found in Appendix B.

39We have flipped the arguments of the logarithms so that the logs are manifestly positive. Additionally,
we have corrected a typo in the rightmost logarithm in the denominator (replacing γe by γ2

e ).
40The authors base part of their analysis on Ref. [ODD05], wherein only unpinned colloids are considered.

In particular, the boundary condition they report, Eq. (58) of Ref. [LO07], is pulled from Ref. [ODD05].
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3.7.4 Entropic interactions between trapped particles
For completion, we present the leading-order entropic interaction between trapped particles
(with pinned contact lines). From Eq. (3.225) with the replacement M (0) → M̃ (0), we find

βU
(0)
{1,2} = 1

2 ln
(
1− g̃2

12
)

= −1
2 ln Λ12 + 1

2 ln
[

2πσ
k1

+ 2πσ
k2

+ 2 ln
(

r√
R1R2

)]
+O(Λ−1). (3.282)

The corresponding interparticle force in the `c →∞ limit is

F
(0)
{1,2} = −

∂U
(0)
{1,2}
∂r

= − kbT

2r
[
πσ
k1

+ πσ
k2

+ ln
(

r√
R1R2

)] +O(Λ−1). (3.283)

We can also compare with the results of Ref. [LO07]. There, the authors calculate the
fluctuation and mean-field contributions to the entropic force separately, Eqs. (23) and (63)
in their paper, but they combine to give (for identical particles)

F = Ffluc + Fmf = −kbT

2
1

r ln(r/R̃)
+ kbT

2
1

r ln(r/R̃)
1

1 + o1o2 ln(r/R̃)
o1 + o2

= − kbT

2r
[
1/o1 + 1/o2 + ln(r/R̃)

] ,
(3.284)

where

oi =
{
ki/(πσ), pinned contact line
2/(1 + 2πσ/ki), unpinned contact line

(3.285)

and R̃ refers here to the effective radius of the particle—either the pinned radius or
the equilibrium contact line radius for an unpinned particle. This is in agreement with
Eq. (3.283). We also calculate the entropic force for the unpinned case in Appendix B.3.2
(see Eq. (B.18)) and again find agreement.
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4 Membrane-mediated interactions of
axisymmetric particles

In this chapter, we shift our focus to investigate particle interactions mediated by a surface
characterized solely by its bending elasticity. Such surfaces model the class of soft-matter
interfaces discussed in Chapter 2 that arise from the self assembly of surfactant molecules
within a bulk aqueous environment. One notable incarnation is the fluid lipid bilayer
membrane, which provides critically important structure and protection for cells and
their organelles, as well as hosts and regulates many of the cell’s biological functions
[AJL+83, Boa12].
Mesoscopically, the energetics of membranes are well captured by the Helfrich theory

of two-dimensional fluid surfaces. However, in biological systems, proteins and other
macromolecules constitute more than half of the surface area and comprise roughly 70% of
the total mass of typical membranes, and diffuse and aggregate to form highly heterogeneous
and dynamic structure [LS95, PKT09]. Among the biophysical and biochemical factors
influencing the collective behavior and lateral distribution of particles are curvature and
fluctuation-induced forces mediated by the membrane itself. Here we will model finite-
size membrane inclusions by rigid particles classified by their boundary conditions at the
particle–membrane boundary. Mirroring the previous chapter, we will begin with a general
discussion on membrane energetics and permissible boundary conditions before moving
on to construct an effective theory that incorporates the constraints and energetic costs
of finite-size membrane inclusions. We will then adapt the EFT formalism developed in
Chapter 3 to calculate elastic and entropic particle interactions.

4.1 Membrane energetics
The starting point for our discussion of membrane-mediated interactions is the Helfrich
energy functional from Chapter 2:

H[S] =
∫

S
dA
[
σ + κ

2 (K −K0)2 + κ̄KG

]
, (4.1)

where K, K0, and KG respectively denote the total extrinsic curvature, spontaneous
curvature, and Gaussian curvature of the membrane surface S, and the parameters σ, κ,
and κ̄ respectively measure the surface tension, bending rigidity, and Gaussian modulus.
For the class of membranes we will consider in this chapter, we will assume the bending-
dominated limit in which the crossover length

√
κ/σ is larger than the system size or,
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equivalently σ → 0 (see Section 2.4.1). Furthermore, we will assume an up–down symmetry
such that the ground state surface is flat with no spontaneous curvature (K0 = 0). Finally,
we will assume a fixed topology of the system which, by virtue of the Gauss–Bonnet theorem
(see Technical Note 2.3), entails the final term is constant and can be safely ignored.1

Finally, for membranes that deform and fluctuate weakly from a flat plane, it is convenient
to perform calculations in the Monge gauge and, furthermore, work to leading order in the
small gradient expansion,

H[h] = κ

2

∫

Spr
d2x

[
(∇2h)2 − 1

2(∇2h)2(∇h)2 − 2∇2h ∂ih ∂i∂jh ∂jh+O(h6)
]
, (4.2)

where Spr is the projected surface domain in the reference base plane. To justify the validity
of the expansion, we note that the bending modulus and thermal energy together provide
a relevant power-counting parameter δ := kbT/κ. For typical membranes at biological
temperatures, κ ≈ 20kbT and δ ≈ 0.05 which is indeed small. Let us now define a rescaled
field φ(x) = h(x)/

√
δ. The exponent in the canonical partition function will then become

βH[h] = 1
2

∫

Spr
d2x

{
(∇2φ)2 − δ

[
1
2(∇2φ)2(∇φ)2 − 2∇2φ∂iφ∂i∂jφ∂jφ

]
+O(δ2φ6)

}
,

(4.3)
which shows that terms which are of order hn scale as ∼ δn/2−1. It is therefore acceptable
to retain only the marginal O(δ0) term since higher orders are all suppressed by increasing
powers of δ. With the stated conditions and assumptions in place, the Helfrich energy
functional reduces to the harmonic approximation,

H[h] = κ

2

∫

Spr
d2x (∇2h)2. (4.4)

Stationary membrane conditions

As usual, we look for equilibrium membrane profiles for which the energy functional is
stationary under small variations. With h→ h+ δh in the linearized Monge gauge, we have
to first order

δH[h] = κ

∫

Spr
d2x∇2h∇2δh

IBP= −κ
∫

Spr
d2x∇

(
∇2h

)
·∇δh+ κ

∮

∂Spr
ds∇2h

(
ˆ̀·∇δh

)

1Note that beyond topological changes, there are boundary conditions for which the Gaussian term
matters. For example, if the particle boundary is flexible, then it is possible the corresponding geodesic
curvature of the rim may fluctuate, necessitating further considerations of the Gaussian term. Another
example is provided by Brannigan and Brown, who discuss a scenario in which the Gaussian modulus of
lipid monolayers—by way of “hydrophobic mismatch” considerations of the inclusion—may leave a trace in
membrane-mediated interactions [BB07].
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IBP= κ

∫

Spr
d2x∇4h δh− κ

∮

∂Spr
ds
[

ˆ̀·∇
(
∇2h

)]
δh+ κ

∮

∂Spr
ds∇2h

(
ˆ̀·∇δh

)
, (4.5)

where ˆ̀ is the outward unit normal on the (projected) surface boundary ∂Spr. The neglected
second-order term is positive definite, so the energy is minimized if the first-order variation
vanishes. Since the height variation δh is arbitrary, the vanishing of the surface integral
informs us that our desired membrane profile h(x) satisfies the biharmonic equation,

κ∇4h(x) = 0 for x ∈ Spr. (4.6)

The vanishing of the two boundary terms suggests a couple of natural options for boundary
conditions. One is to require that the height function is always harmonic on the boundary,
i.e., ∇2h(∂Spr) = 0. In the linearized Monge gauge, this corresponds to the total extrinsic
curvature vanishing in the neighborhood of the boundary. An alternative is to fix both the
height and the slope at the boundary so that both δh = 0 and ˆ̀ ·∇δh = 0 respectively.
These latter two conditions are particularly appropriate for membrane surfaces that are
asymptotically flat at the far (infinite) outer boundary.

4.2 Particle boundary conditions
Based on the above observations, we will consider particle inclusions such that the membrane
surface is pinned to the particle boundary at a fixed (and rigid) contact line and, furthermore,
at a fixed slope in the neighborhood of the boundary. Since we will only consider interactions
mediated by the membrane surface, these two parameters—together with allowed rigid body
motions—are all that are required from the perspective of the surface to fully characterize
a given particle. In this sense, we can choose a convenient representative particle shape
for each equivalency class.2 If we express the contact line height profile as hct(x) and the
contact slope profile as Sct(x), the corresponding mathematical statement for a particle
with a projected area boundary ∂A in the base plane is

(
h, n̂A ·∇h

)∣∣
∂A =

(
hct, Sct)∣∣

∂A, (4.7)

where n̂A is the outward pointing unit vector normal to ∂A in the base plane.
As we illustrate in Fig. 4.1, one simple class of representative curved particles can be

generated by analytically continuing the surface such that the height function and its normal
derivative are both continuous across the boundary. Although this condition does not
exhaust the possible particle-types to consider, in this chapter we will only focus on particles
for which Sct = n̂A ·∇hct. That is, the parametrization hct defines both the contact height
and slope profiles at the boundary. Furthermore, we will only consider particles with a

2Other characterizations, such as a pressure difference from asymmetric exposure on either side of the
membrane, may be accounted for as external forces in the energy. These forces, however, still amount to
placing conditions on the contact line and angle, so we are not losing any generality.
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R
γγ

Figure 4.1: The left graphic illustrates a closer look at the cross section of a conical-wedge particle
inclusion in a lipid bilayer membrane. At the particle boundary, the membrane attaches at a fixed contact
angle −γ from the horizontal. In the surface continuum limit, an embedded particle is characterized by its
contact line and slope, so we can describe an equivalence class of particles by a convenient representative
particle. One such option is to analytically continue the surface across the boundary, which we will take
here as the attachment at the membrane’s neutral surface, and use the corresponding parametrization of
the contact line as the particle shape. The curve within the wedge is one such continuation, giving a
paraboloidal cap with a circular imprint of radius R. The graphic on the right shows this representation
from the perspective of our geometric theory.

circular footprint in the base plane. With these (self-imposed) restrictions in mind, the
appropriate boundary conditions are then

(
h, ∂rh

)∣∣
r=R =

(
hct, ∂rh

ct)∣∣
r=R (4.8)

for a projected circular boundary of radius R positioned at the origin.
Just as in Chapter 3, we may express an arbitrary contact line profile hct(x) as a series

expansion,
hct(x) = h0 + s · x− 1

2ηijxixj + · · · (4.9)

where, as before, h0 and s respectively parametrize the height and tilt of the particle. That
is, the combination

hflat(x) = h0 + s · x (4.10)

defines the particle reference plane, as illustrated in Fig. 4.2, with si as the slope of the plane
with respect to the (horizontal) xi direction. As in the previous chapter, we will assume
that |s| is small so that the deviations in the projected area are negligible, second-order
effects. The permanent out-of-plane deviations of the contact line, which we will write
as hperm(x), are encoded in the higher-order terms and contribute to the contact slope
an amount n̂A ·∇hperm for this class of particles. For ease of discussion, we will extend
hct(x) within the particle and use it as the representative shape like we do in Fig. 4.1 (e.g.,
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n̂p
i
n̂ref

θi

θi = tan−1 si

xi
êi

h0

Figure 4.2: Illustration of the particle isometries (rigid displacements). We may define a particle
reference plane from the flat part of the contact line expression, hflat(x) = h0 + s · x. The height h0
is measured from the (equilibrium) base plane. The component si = tan θi of the tilt parameter give
the slope, and consequently the angle θi of the plane from the xi direction. Alternatively, si can be
expressed as the ratio si = −(n̂pi · êi)/(n̂pi · n̂ref) of the projections of the particle plane normal vector
n̂pi (in the xih-plane) onto the base plane unit vector êi and normal vector n̂ref.

“paraboloidal cap” instead of “conical wedge”). In this representation, ηij = −∂i∂jhct(0)
therefore defines the extrinsic curvature tensor (in the linearized Monge gauge) at the center
of the particle. If hct truncates at quadratic order, then ηij gives the whole particle shape.

Unlike in the previous chapter, where caps and disks were equivalent from the perspective
of the surface energetics (we could not simultaneously fix both the contact height and slope),
kinks in the membrane surface are energetically forbidden and so the surface will respond
differently to each. Accordingly, we will in this chapter study particles that combine the
different disk, cap, and saddle shapes. To do so, we will first need an explicit parametrization
of hperm.

The particle curvature tensor ηij is real and symmetric, so we can parametrize it with two
(independent) variables. For instance, we can decompose it into the trace and a symmetric,
trace-free part,

ηij
.= J 1 +SM = J

(
1 0
0 1

)
+ S

(
1 0
0 −1

)
, (4.11)

where we have written ηij in a diagonal basis. In this case, −∇2hct = tr[ηij ] = 2J and
shows that J is the mean curvature. If J = 0, then the Gaussian curvature det[∂i∂jhct] =
det[ηij ] = −S2. That is, ±S are the principal curvatures (+S along the x direction and −S
along the y direction) and characterize the “saddleness” of the particle.3 With J included,
the Gaussian curvature is J2 − S2. If we instead want the principal directions to be rotated
by an angle α from the x-axis, we can rotate the basis of M without altering the (invariant)

3Recall that in our convention a positive curvature bends away from the normal vector. Hence a particle
with J > 0 bends downward, as does the saddle axis with S > 0 (see Fig. 4.3). Note that this convention is
opposite that of Ref. [YHD14].
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Figure 4.3: The left graphic shows a paraboloidal cap with mean and Gaussian curvatures J and J2

respectively. This cap-shape represents any particle that enforces a contact angle of −γ = RJ from
the horizontal, such as in Fig. 4.1. The right graphic illustrates a saddle-shaped particle with Gaussian
curvature −S2 and vanishing mean curvature (J = 0). The principal directions are highlighted with a
solid line for positive curvature (curves down) and a dashed line for negative curvature (curves up). The
principal axis of positive curvature lies at an angle α from the x-axis. The shape implied by the contact
line in Eq. (4.13) is a linear superposition of these two shapes.

curvatures:
M→ R(α) M Rᵀ(α) =

(
cos 2α sin 2α
sin 2α − cos 2α

)
. (4.12)

With this parametrization, we can now express the contact line deformation as a superposi-
tion of paraboloidal and saddle shapes:

hperm(x) = −1
2xᵀ(J 1 +S R M Rᵀ)x = −1

2Jr
2 − 1

2Sr
2 cos(2ϕ− 2α) (4.13)

in polar coordinates. We illustrate these shapes in Fig. 4.3.

Constraint forces

We account for the particles in the energy by modifying the integration domain and including
external sources to fix the boundary conditions. With the inclusion of a particle with
projected domain area A in the base plane, the projected membrane surface becomes
Spr = R2 \ A. Introducing the Lagrange multipliers λ(x) and f(x) to fix the boundary to
the contact line, we can express the energy functional as

H[h, λ, f | hct, Sct] = κ

2

∫

Spr
d2x

(
∇2h

)2 −
∮

∂A
ds
[
λ
(
h− hct

)
+ f

(
∂⊥h− Sct)], (4.14)
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where ∂⊥ = n̂A ·∇ is the outward (from A) normal derivative in the base plane. The
original constrained energy is then H[h] = maxλ,f H[h, λ, f | hct, Sct]. The above boundary
term is (minus) the external work required to maintain the contact line, so λ and f can
be interpreted respectively as the required linear force density and force acting on the
membrane in the neighborhood of the boundary. For a pinned particle, this term acts as an
infinite energy penalty for deviations from hct or Sct.
We can learn a bit more by examining the energy functional’s stationarity conditions.

The first-order variation is

δH[h, λ, f | hct, Sct] = κ

∫

Spr
d2x∇4h δh+

∮

∂A
ds
{[
∂⊥
(
κ∇2h

)
− λ

]
δh−

(
κ∇2h+ f

)
∂⊥δh

}

−
∮

∂A
ds
[(
h− hct

)
δλ+

(
∂⊥h− Sct)δf

]
,

(4.15)
where we have dropped the boundary term at infinity since we require the membrane to
be asymptotically flat. The second-order variation is positive (∼ [∇2δh]2), showing that
the energy is minimized when the first-order variation vanishes. The first term implies h
satisfies the biharmonic equation κ∇4h = 0 outside the particle boundary. The terms in
the second line simply enforce the constraints we imposed. The boundary term on the first
line, however, tells us something new. Namely, the force required to enforce the contact
angle is proportional to the curvature: f = −κ∇2h. Additionally, the linear force density
keeping the contact line fixed is proportional to the gradient of the curvature—and hence
the gradient of f—normal to the boundary in the base plane: λ = ∂⊥(κ∇2h) = −∂⊥f .
For the class of curved particles we will consider, in which Sct = ∂⊥h

ct with hct =
hflat + hperm and hperm given by Eq. (4.13), the constraint force at equilibrium, f = 2κJ , is
constant and the force gradient λ vanishes. Out of equilibrium, the energy is governed by
the functional

H[h, f | hct] = κ

2

∫

Spr
d2x

(
∇2h

)2 −
∮

∂A
ds
[
f∂⊥

(
h− hct

)
− ∂⊥f

(
h− hct

)]
, (4.16)

where we have traded λ for its on-shell value.

Membrane charges and pathologies

Let us now examine more explicitly the energetic cost of particle inclusions. As we saw in the
previous chapter, one must be careful when dealing with zero modes of the surface energy.
An ideal membrane satisfies the biharmonic equation ∇4h = 0, and the corresponding zero
modes reflect the bulk symmetries. One symmetry is translation in height, h → h + h0,
like in the previous chapter. Ideal membranes additionally enjoy a linear displacement
symmetry, h→ h+ s · x. The rigid body displacements discussed previously fall into these
categories, so it is prudent to understand the consequences of constraining these particle
degrees of freedom which explicitly break the bulk symmetries.
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A first natural step is to consider what happens if we include a set of point forces,4
ρ =

∑
a faδ(x− xa), in the membrane. This is accounted for in the usual way, via

H[h | ρ] =
∫

d2x
[κ

2
(
∇2h

)2 − ρh
]
. (4.17)

The stationary solution must satisfy the sourced biharmonic equation, κ∇4h = ρ. We solve
this as usual by the method of Green functions, giving

h(x | ρ) = 1
κ

∫
d2x′G(x− x′)ρ(x′). (4.18)

The biharmonic Green function is

G(x− x′) = L2 − (x− x′)2

16π − (x− x′)2

16π ln
[

L2

(x− x′)2

]
, (4.19)

where L is a large-distance cutoff representing the radial extent of the membrane, and
is required to satisfy asymptotic flatness. The details of its derivation are presented in
Technical Note 4.1. For a single point force at the origin, the solution reads

h(x) = f

16πκ

{
L2 − r2[1 + 2 ln(L/r)

]}
. (4.20)

It immediately follows that the external force holds the membrane up at an equilibrium
height of h(0) = fL2/16πκ at the source point. Put differently, to fix a point on the
membrane to a height h0 requires a force f = 16πκh0/L2. We can make sense of the
L-dependence by recalling that our ideal membrane only suffers energy costs from bending.
A larger membrane will allow a smaller overall curvature between the point source and the
boundary, so a smaller force is required to overcome the bending energy and to reach the
same height. For an infinite membrane, it follows that an infinitesimal force will lead to an
infinite translation in height.
Perhaps more troubling is the resulting membrane energy. Plugging this solution back

into the Hamiltonian leads to

H[ρ] = −1
2

∫
d2x ρ(x)h(x | ρ) = − 1

2κ

∫
d2x d2x′ ρ(x)G(x− x′)ρ(x′), (4.21)

To arrive at the above expression, we have integrated by parts and dropped the boundary
term at infinity, which may appear suspect. However, if we take the boundary to be at the
finite cutoff L, then the boundary terms manifestly vanish as r → L by virtue of the Green
function.5 In this form, the integral is trivial due to the delta functions and we immediately

4These membrane “charges” f have units of force and ρ has units of pressure, so one may think of ρ as
a set of “pressure points.”

5One could also compute the Hamiltonian’s original integrals directly and find the same result.
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Technical Note 4.1: The biharmonic Green function
The biharmonic Green function is the particular solution to the biharmonic equation with a point source,

∇4G(x) = ∇2(∇2G(x)
)

= δ(x).

From the above equation, we observe that ∇2G must itself be harmonic, so we can write ∇2G =
a+ b ln(r/L), where we have introduced a scale L to make the argument of the logarithm dimensionless.
From Chapter 3 we know that ∇2 ln(r/L) = 2πδ(x). Applying the Laplace operator to ∇2G therefore
gives∇4G = 2πb δ(x), and it follows that b = 1/2π. Next, we integrate both sides of∇2G = a+b ln(r/L)
over a disk of radius r and use the divergence theorem to give a differential equation for G. The left side
leads to ∫

D

d2x∇ ·∇G =
∮

∂D

ds ∂rG = 2πrdG
dr ,

where we have used the circular symmetry of G. After integrating the right side, we find the ODE,

dG
dr = ar

2 + r

8π
[
2 ln(r/L)− 1

]
.

We wish now to apply the asymptotic flatness condition, ∂rG(r →∞)→ 0, but the above expression
obviously diverges. At this point we must suspend the notion of an unbounded membrane and introduce
a large-distance cutoff to rescue our boundary conditions. If we interpret L > r as the radial extent of
the membrane, we can instead enforce the condition ∂rG(L) = 0. This condition then leads to a = 1/4π
and

dG
dr = − r

4π ln(L/r).

Integrating both sides over [0, r] yields G(r) = G(0)− r2

16π
[
1 + 2 ln(L/r)

]
. Finally, we can enforce the

final boundary condition G(L) = 0, which informs us that G(0) = L2/16π. The appropriate biharmonic
Green function is therefore

G(r) = 1
16π

(
L2 − r2)− 1

8π r
2 ln(L/r).

find
H = −f

2

2κG(0) = − f2

32πκL
2. (4.22)

That is, the surface energy diverges as the square of the membrane size.
In electrostatics, we are familiar with the self-energy of a point charge diverging, but

interactions between point charges nonetheless remaining finite. To check if this also holds
for our membrane “charges,” consider two point forces separated by a distance r. Plugging
in ρ =

∑2
a=1 faδ(x− xa) and dropping the self-energy terms gives the interaction energy,

U = − f1f2
16πκ

{
L2 − r2[1 + 2 ln(L/r)

]}
. (4.23)

We find that for point forces of the same sign, the energy is lowered by decreasing the
particles’ separation—like “membrane charges” attract while opposites repel. This behavior
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is verified in the force expression

F = −∂U
∂r

= −f1f2
4πκ r ln(L/r), (4.24)

from which it is also apparent the force drops to zero at close approach.
Unfortunately both the energy and force expressions above depend on the cutoff and,

moreover, diverge for an unbounded membrane.6 That is, attempting to fix the positions of
particle inclusions leads to unbounded energies and forces. A similar argument applies to
fixing particle orientations from the horizontal, though the divergence in the energy is less
severe and the force appears finite, but long ranged (see Technical Note 4.2).

So what is going wrong? Let us return to the particle-free version of the Hamiltonian (4.4).
Physical systems must have finite energy, but for an extended (infinite) membrane there
exist families of solutions that satisfy the biharmonic equation but nonetheless lead to an
infinite energy. In particular, there are solutions for which ∇2h is not square integrable. The
problem with the zero modes is that constraining their parameters leads precisely to these
problematic membrane responses. We made an attempt to mend this by introducing a cutoff,
but the divergences persisted. This will also lead to trouble once we include fluctuations.
As we learned in Chapter 2, long-wavelength fluctuations build up and spoil any positional
order on the membrane, and similarly for orientational order but to a lesser degree. The
origin of this catastrophe lies again with the zero modes, for which the dimensionality of
the surface is not enough to dampen the low-energy excitations.7
For the particle inclusions we wish to consider, even the simple act of fixing a particle’s

position and orientation to match the flat equilibrium surface is sufficient to cause havoc.
The fluctuating membrane will explore its full configuration space, with the lowest-energy
excitations being the most probable. So a gentle undulation will inevitably meet resistance
from the constrained particle and induce a pathological response.
In the previous chapter we made great headway because the inclusion of gravitational

forces proved sufficient to regulate the theory. This was possible because the divergent
interaction energies were in a sense only marginally infinite; the resulting forces were finite,
albeit very long ranged. We find that a similar treatment is possible as well for point dipoles
in our membrane theory, but inadequate for point forces. Rather than pushing into this
technical and potentially thorny territory, we will instead be content to allow the zero mode
parameters to be free as they are wont to be. We will allow the particles to conform or

6Note that if we were to include some nonlinear terms, we learned from Chapter 2 that fluctuations would
act to soften the membrane and lead to an effective renormalized bending rigidity, κ̃ = κ− (3kbT/4π) ln(ΛL).
Using this renormalized value, the force become finite, though temperature dependent:

F = −f1f2

4π
r ln(L/r)

κ̃+ 3kbT
4π ln(ΛL)

L→∞−−−−→ − f1f2

3kbT
r.

We see that particles with like charges interact with a Hooke-like attraction with an effective spring
constant k = f1f2/3kbT . However, this does not rescue the ground state forces as it still diverges in the
zero-temperature limit.

7Mermin–Wagner strikes again!
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Technical Note 4.2: Membrane point dipoles
To see the effects of fixing a particle’s orientation from the horizontal, we include an external point-
dipole source, ρ = −p · ∇δ(x). The stationary solution is given by the convolution of the Green
function and source as usual, and we find h(x) = − 1

κp ·∇G(x). This corresponds to fixing the slope
s = (p/4πκ)

[
ln(L/ε)− 1

]
in the neighborhood ε of the source point. The associated self-energy then

follows from Eq. (4.21), giving H = (1/2κ)pipj∂i∂jG(0). The Green function derivatives are

∂iG(r) = − 1
4πxi ln(L/r), ∂i∂jG(r) = 1

4π

[xixj
r2 − δij ln(L/r)

]
,

so the self-energy evidently suffers from long-scale as well as the more familiar short-scale divergences.
The interparticle energies also suffer divergences for large membranes. For example, consider a point
force (monopole) and a point dipole with a separation vector r pointing from the monopole to dipole.
The interaction energy is Um–d = −(f/κ)p ·∇G(r). The energy and force then simplify to

Um–d = f(p · r)
4πκ ln(L/r) = fp r cos θ

4πκ ln(L/r), and Fm–d = fp cos θ
4πκ

[
ln(L/r)− 1

]
,

where θ is the angle p makes from the joining line. This is attractive when f and p are of the same
sign and the dipole points to the monopole, which is to be expected since that entails like “charges” are
infinitesimally closer. Note that the force is still divergent. Now consider the interaction energy between
two dipoles, Ud–d = 1

κp1,ip2,j∂i∂jG(r). After taking the dot products and applying the product-sum
trig identity, we find for the energy and force,

Ud–d = p1p1
8πκ

{
cos(θ1 + θ2) +

[
1− 2 ln(L/r)

]
cos(θ2 − θ1)

}
, and Fd–d = − p1p2

4πκ r cos(θ2 − θ1).

This interaction is attractive for parallel dipoles, and repulsive for antiparallel. The physical reason is that
the dipoles are free to shift vertically: Parallel dipoles will displace vertically so that membrane follows
the slope and minimizes bending between the particles. The membrane between antiparallel dipoles must
always have a local extremum since the slope must switch sign, hence the bending cost increases for
closer particles. Note that the forces now are finite, but long ranged.

fluctuate freely in response to any vertical rigid-body translation or tilt above the base
plane. The relevant “charges,” therefore, will be due solely to nonvanishing, permissible
membrane curvature −∂i∂jh localized around the particle contact line.

4.2.1 Membrane response to an isolated particle
Having settled on the allowable particle degrees of freedom, we may now investigate the
response of an isolated particle to an imposed background deformation. This entails solving
the biharmonic equation, ∇4h = 0, outside the circle at r = R. Since we are interested
in those solutions which are eventually fields of localized sources, we want the solution
to flatten and be well-behaved infinitely far away. The most general solution obeying
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∇h(r →∞)→ 0 in polar coordinates is

h(x) = a0 ln er + a1r
−1 cos(ϕ− α1)

+
∑

n>2

[
anr
−n cos(nϕ− nαn) + a′nr

−n+2 cos(nϕ− nα′n)
] (4.25)

up to an irrelevant constant. Since rigid body displacements are allowed, it follows that the
prefactor in the argument of the logarithm can be chosen arbitrarily. We have adjusted
it to make the following mathematical expressions more aesthetically clean. In particular
we include Euler’s number so that the biharmonic Green function may take a much nicer
form that presented in Eq. (4.19). Starting with ∇2G(x) = (1/2π) ln er, we follow the same
steps as in Technical Note 4.1, but arrive at a more compact form,

G(x) = 1
8πr

2 ln r, (4.26)

where we have fully exploited the height translation and tilt freedom to remove the constants
and (now irrelevant) cutoff.8

Similarly, we may write down the biharmonic solutions that diverge at infinity. We select
from them a subset that is well-behaved at the origin, but omit those that are constant or
linear as per the particle degrees of freedom. This subset will make up the list of useful,
on-shell background fields. These solution families fall into two categories, those strictly
harmonic and those strictly not harmonic. Accordingly, we will separate them into two
different background profiles to highlight the difference, grouping the solutions under hbg if
they are strictly harmonic, or under h̃bg if otherwise:

hbg(x) =
∑

n>2
bnr

n cosnϕ, (4.27)

h̃bg(x) =
∑

n>0
b̃nr

n+2 cosnϕ. (4.28)

Flat particle

When a background hbg is applied, the presence of the particle contributes a response δh so
that the total field is δh+ hbg. Therefore, in the boundary condition (4.8), we substitute
δh+ hbg for h, to obtain δh(R) = hflat(R)− hbg(R) and ∂rδh(R) = ∂rhflat(R)− ∂rhbg(R).
Starting with the harmonic background, we use the expansion (4.25) for δh and determine
the coefficients by plugging in hbg from Eq. (4.27). By linearity, the total response will
consist of two additive contributions, one from hflat and the other from the background.
Since the parameters in hflat are all free, it suffices to mention that they will always take on

8Technically, some length parameter should be introduced to ensure that the arguments of the logarithms
are dimensionless. However, it will always disappear by the end the calculation of an observable, so we will
simply omit it from the beginning.
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values to conform to any overall height and slope that are introduced from the background
deformations. Since this behavior is not present in our harmonic background choice, we may
ignore it in the response calculation. We note in passing that we could proceed assuming
fixed values of h0 and s, but that approach is not without difficulty (see Technical Note 4.3).
Since the overall height and slope of hbg are zero, it immediately follows that a0 and a1

vanish. For the rest, we plug hbg into the boundary conditions to obtain the following pair
of equations:

an + a′nR
2 = −bnR2n,

nanR
−1 + (n− 2)a′nR = nbnR

2n−1.
(4.29)

We solve to find the coefficients, an = (n− 1)bnR2n and a′n = bnR
2n−2, and therefore the

induced response,

δh(x) =
∑

n>2
bn
[
(n− 1)R2nr−n − nR2n−2r−n+2] cosnϕ. (4.30)

We proceed similarly for the response to the nonharmonic background h̃bg. In this case,
there is an nonzero height and slope of the background, so hflat makes an appearance. A
system of equations for the coefficients then follows from the boundary conditions:

a0 ln eR = h0 − b̃0R2

a0R
−1 = −2b̃0R

a1R
−1 = sR− b̃1R3

−a1R
−2 = s− 3b̃1R2

nanR
−1 + (n− 2)a′nR = (n+ 2)b̃nR2n+1

an + a′nR
2 = −b̃nR2n+2 (4.31)

As a consequence of the height and tilt freedom, the particle will rise by an amount
h0 = −b̃0R2(2 ln eR− 1) and tilt with a slope of s = 2b̃1R2 to meet the imposed background
deformation. The resulting response field is

δh̃(x) = − 2b̃0R2 ln er + b̃1R
4r−1 cosϕ

+
∑

n>2
b̃nR

2n[nR2r−n − (n+ 1)r−n+2] cosnϕ. (4.32)

Curved particle

The response δh to a curved particle in a background field can be decomposed into
two contributions, δhperm from the particle curvature itself and δhind induced from the
background field. Indeed, at the boundary we require δhperm + δhind = hflat + hperm − hbg
and similarly for the derivatives. Just previously, we computed the induced response δhind,
so that takes care of a portion of hflat − hbg on the right side of the equation. What is left
is the field due to the particle’s permanent deformation of the contact line, together with
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any additional displacements resulting from hperm. The solution can later be superimposed
with the induced response from some nontrivial background.

The contact profile appears as hflat + hperm, with hperm given by Eq. (4.13), which we
will repeat here for convenience:

hct(x) = h0 −
1
2Jr

2 − 1
2Sr

2 cos(2ϕ− 2α). (4.33)

We included the constant term from hflat since hperm is nonzero at the particle boundary,
but s = 0 trivially. The parameters h0 and s encode rigid-body displacements, and one
could imagine fixing those as well. This would, as we have discussed, lead to pathological
problems for an unbounded domain, but we could nonetheless make progress by considering
a large, but finite surface. We illustrate a few of the details in Technical Note 4.3, but we
will not pursue this further.

We proceed now exactly as we did for a flat particle. Comparing the form of hct with the
expansion (4.25), we see that only the coefficients a0, a2, and a′2 will be nonzero. Plugging
the fields into the boundary conditions therefore gives a simpler system of coefficient
equations than previously:

a0 ln eR = h0 −
1
2JR

2

a0R
−1 = −JR

a2R
−2 + a′2 = −1

2SR
2

−2a2R
−3 = −SR

(4.34)

We conclude that the permanent response is therefore

δhperm(x) = −JR2 ln er + 1
2SR

2(R2r−2 − 2
)

cos(2ϕ− 2α), (4.35)

where the particle has shifted by an amount h0 = −1/2JR2 lnR to meet with the equilibrium
(h = 0) base plane.

4.3 Effective theory
We now turn our focus to an effective point-particle formulation of membrane-mediated
interactions. As usual, we take advantage of the scale separation between the generic
particle size (∼ R) and the interparticle distance (∼ r). Accordingly, we integrate out
the short distance physics in favor of a coarse-grained model that subsumes the finite-size
particle information and (nontrivial) boundary conditions into a series of point sources and
interactions. Shrinking the finite particle boundaries into points therefore results in an
effective Hamiltonian,

Heff[h] = H0[h] + ∆H[h], (4.36)
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Technical Note 4.3: Biharmonic solution on an annulus
No biharmonic solution exists that both fixes a particle’s height and tilt and satisfies asymptotic flatness.
However, a workaround is to introduce a cutoff L� r > R so that the response obeys δh(L) = 0 and
∂rδh(L) = 0. The boundary value problem now is well-posed in an annular domain (r, ϕ) ∈ [R,L]×[0, 2π).
The contact line profile for a flat, circular particle is hflat = h0 + sr cos(ϕ − ϑ) in polar coordinates,
where s = |s| and ϑ is the angle s makes with the x-axis. This is then matched with the response
expansion,

δh(r, ϕ) = c0 + c1 ln r + c2r
2 + c3r

2 ln r +
(
d0
r

+ d1r + d2r ln r + d3r
3
)

cos(ϕ− ϑ)

at the inner and outer boundaries. We omit the details, but after comparing coefficients and cleverly
applying properties of logarithms, we find (after a few cups of coffee),

δhflat(r, ϕ) = h0
(L2 −R2)(L2 − r2)− 2L2R2 ln

(
L
r

)[
2 ln
(
L
r

)
− 1
]
− 2r2[L2 ln

(
L
r

)
+R2 ln

(
r
R

)]

(L2 −R2)− 4L2R2 ln2(L
R

)

+ s

2r
(L2 − r2)(r2 +R2)− 2r2(L2 +R2) ln

(
L
r

)

(L2 −R2)− (L2 +R2) ln
(
L
R

) cos(ϕ− ϑ).

As this solution is an observable, we expect to be able now to safely take the L→∞ limit. Indeed we
can and obtain

δhflat(r, θ)
L→∞−−−−→ h0 + sr cos(ϕ− ϑ),

which simply returns the contact profile. If this solution is used, however, one must keep in mind its
regime of validity.

where H0[h] is the particle-free—or bulk—membrane Hamiltonian,

H0[h] = κ

2

∫

R2
d2x

(
∇2h

)2
, (4.37)

and ∆H[h] is a derivative expansion localized on the particle worldlines.
Our pragmatic approach for constructing the derivative expansion ∆H[h] is to simply

include all possible scalars expressible as localized derivatives of the field, up to quadratic
order (consistent with the bulk Hamiltonian (4.37)) and respecting the symmetries of the
problem. There are three transformations under which the bulk Hamiltonian is invariant:

T1. Reflection (h→ −h) across the base plane.

T2. Transformations of the field of the form h → h + hflat, where hflat is given by
Eq. (4.10).

T3. Rotations around a vertical axis centered at any point in the base plane.

The contribution of a single particle to the effective theory, then, can be categorized as
either symmetry-respecting or symmetry breaking. Of course the inclusion of a particle
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already breaks the in-plane translation symmetry of T3 by selecting a preferred origin.
However, for a flat,9 circular particle, rotational symmetry is retained about the particle
center. Furthermore, we agreed in the previous section to restrict our attention to particles
with the freedom to bob and tilt, so T2 will always be respected. Finally, T1 will remain a
symmetry for flat particles. On the other hand, curved particles may break each one of
these symmetries, and consequently must serve as an external source of “curvature charge.”

4.3.1 EFT for flat particles: induced sources
We first consider flat particles, i.e., those that force the boundary into a planar shape in
the vicinity of their boundary. Recall that the boundary condition that the surface needs to
satisfy at the circumference of a particle is as follows: the surface has to attach to the rim
of the particle, and do so at an angle which makes the slope continuous normally across the
boundary. These boundary conditions are in harmony with the bulk symmetries T1, T2,
and T3 (without translation), so we may begin enumerating the admissible worldline terms
for flat particles, which we will denote by ∆Hf[h].
The first of the bulk symmetries rules out terms linear in (derivatives of) h in the

construction of ∆Hf. The second forbids the usage of the zeroth and first derivatives of the
field. Hence, ∂i∂jh is the field occurrence with the least number of derivatives allowed in
the derivative expansion ∆Hf. The third symmetry—rotational invariance—requires that
no derivatives are left uncontracted between the field factors. Although these properties
are sufficient to write out the derivative expansion, we have one final simplification. We
wish to eliminate the redundant terms that will vanish when the field h is on-shell. That is,
we restrict the fields h to satisfy the bulk Euler-Lagrange equation, ∇4h = 0, so at most
one instance of a Laplacian can act on a given field instance. The effective theory is then
constructed by writing all terms obeying these rules, for all particles a:

∆Hf[h] =
∑

a

∑

n>2

[
1
2c

(n)
a (∂nI h)2 + c̊(n)

a ∂n−1
I ∇2h ∂n−1

I h+ 1
2̊ c̊

(n)
a

(
∂n−2
I ∇2h

)2
]∣∣∣∣

x=xa

, (4.38)

where ∂nI = ∂i1∂i2 · · · ∂in . Each Wilson coefficient labeled by derivative order n multiplies
a term that possesses a total of 2n derivatives, and the accents on them indicate the
number of ∇2’s among the derivatives.10 Accordingly, each coefficient must scale as κR2n−2

by dimensional analysis. Note that the term c̊
(2)
a ∂i∇2h ∂ih violates the T2 symmetry, so

c̊
(2)
a = 0 for flat particles.

9Recall that “flatness” here refers only to the boundary conditions at the particle rim; the true shape
of the particle is irrelevant beyond the pinned membrane height and angle along the contact line. A flat
particle is defined as having a contact line that lies completely within a plane and a contact slope that is
everywhere tangent to that plane in the neighborhood of the boundary.

10Thanks to Cem Yolcu for this delightful ornamentation. The relevance of the ring notation will become
apparent in Section 4.4.

177



4 Membrane-mediated interactions of axisymmetric particles

Matching

To determine the values of the coefficients, we use Heff[h] to compute the effective responses
to the background fields (4.27) and (4.28). The background fields are disrupted by the
particles, and subsequently excite a distribution of “curvature charges” near the particle
boundaries. This induced curvature source is computed with Eq. (4.17) as inspiration,
leading to the distribution,

ρ(x | hbg) = − δH
δh(x)

∣∣∣∣
h=hbg

= −
∑

a

∑

n>2

[
c(n)
a ∂nI hbg (−∂)nI
+ c̊(n)

a ∂n−1
I ∇2hbg (−∂)n−1

I

+ c̊(n)
a ∂n−1

I hbg (−∂)n−1
I ∇2

+˚̊c (n)
a ∂n−2

I ∇2hbg (−∂)n−2
I ∇2

]
δ(x− xa).

(4.39)

This has the expected form of a collection of point sources whose magnitudes are proportional
to (derivatives of) the field incident upon them. It is therefore appropriate to refer to
all these Wilson coefficients again as polarizabilities. We will further abuse this analogy
occasionally by using the term multipole order interchangeably with derivative order when
referring to the numbers n.
The response field δh emanating from the particles is given by the convolution of the

induced source distribution and the bulk Green function as in Eq. (4.18), where now the
Green function

G(x− x′) = 1
16π (x− x′)2 ln(x− x′)2. (4.40)

Due to the locality of the Hamiltonian, we may consider each particle separately, and we
find the induced response of a single particle a centered at the origin,

δhefff (x | hbg) = −1
κ

∑

n>2

[
c(n)∂nI hbg(0) (−∂)nIG(x)

+ c̊(n)∂n−1
I ∇2hbg(0) (−∂)n−1

I G(x)
+ c̊(n)∂n−1

I hbg(0) (−∂)n−1
I ∇2G(x)

+˚̊c (n)∂n−2
I ∇2hbg(0) (−∂)n−2

I ∇2G(x)
]
,

(4.41)

where the label a was dropped from the polarizabilities for convenience.
The tensors ∂nIG and ∂nI hbg, and their various contractions, pose a bit of a technical

challenge. Instead of continuing along this path we will take a lesson from the previous
chapter and switch over to complex coordinates z = (z, z̄). The Green function then takes
on the form,

G(z − z′) = 1
16π (z − z′)(z̄ − z̄′) ln(z − z′)(z̄ − z̄′) (4.42)
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To convert the worldline Hamiltonian, we could perform the required transformations
directly. Instead we recall that a given rotationally symmetric terms must have an equal
number of ∂ and ∂̄ derivatives,11 and ∇2 = 4∂∂̄. It is straightforward, then, to re-express
the derivative expansion in complex coordinates:

∆Hf[h] =
∑

a

∑

n>2

[
C(n)
a ∂nh ∂̄nh+ C̊(n)

a ∂n−1∂∂̄h ∂̄n−1h

+ C̊(n)
a ∂n−1h ∂̄n−1∂∂̄h+ ˚̊C(n)

a ∂n−2∂∂̄h ∂̄n−2∂∂̄h
]∣∣∣∣

z=za

,
(4.43)

The relation between the coefficients in Eq. (4.38) and (4.43) is irrelevant since they are
yet to be determined, but the number of accents still indicate the number of Laplacians
in their respective terms acting on the field. Due to the rigid body symmetry T2, we still
have C̊(2) = 0.

With the worldline Hamiltonian rewritten as above, the corresponding response (4.41) of
a single particle in a background field becomes

δhefff (z | hbg) = −1
κ

∑

n>2
(−)n

[
C(n)∂nhbg(0) ∂̄nG(z)

− C̊(n)∂n−1∂∂̄hbg(0) ∂̄n−1G(z)
− C̊(n)∂n−1hbg(0) ∂̄n−1∂∂̄G(z)

+ ˚̊C(n)∂n−2∂∂̄hbg(0) ∂̄n−2∂∂̄G(z)
]

+ c.c.

(4.44)

The way hbg(z) appears in the above terms with its derivatives evaluated at z = 0
immediately suggests the most convenient form to use for the backgrounds: zn and znzz̄
(plus their complex conjugates) for positive integers n.12 The background fields (4.27) and
(4.28) are seen to be precisely of this form when re-expressed in complex coordinates:

hbg(z) = 1
2
∑

n>2
bn(zn + z̄n), (4.45)

h̃bg(z) = 1
2
∑

n>0
b̃nzz̄(zn + z̄n). (4.46)

Let us impose the two forms separately and calculate the effective response they induce.
When the harmonic background hbg(z) is applied, we find the response (refer to Technical

11We remind the reader that ∂ = ∂/∂z and ∂̄ = ∂/∂z̄. For other relations and properties, see Section 3.3.1.
12Of course, convenience is not the only criterion here. We have mentioned earlier that we write our

effective theory on-shell, i.e., without any terms involving∇4h owing to the Euler-Lagrange equation∇4h = 0.
Accordingly, we must match on-shell as well, using backgrounds that obey ∇4hbg = 16∂2∂̄2hbg = 0, which
these backgrounds do.
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Note 4.4 for the Green function derivatives) to be

δhefff (z) = −1
2
∑

n>2
bn

[
C(n)

16πκn! (n− 2)! z

z̄n−1 −
C̊(n+1)

16πκ n! (n− 1)! 1
z̄n

]
+ c.c. (4.47)

Similarly, the nonharmonic background h̃bg(z) induces the effective response

δh̃efff (z) = − b̃0
˚̊C(2)

16πκ ln
(
e2zz̄

)
+ b̃1

˚̊C(3)

16πκ
1
z̄

− 1
2
∑

n>2
b̃n

[
C̊(n+1)

16πκ (n+ 1)! (n− 2)! z

z̄n−1 −
˚̊C(n+2)

16πκ (n+ 1)! (n− 1)! 1
z̄n

]
+ c.c.

(4.48)
We now wish to compare with the full-theory responses (4.30) and (4.32). In complex

coordinates, these solutions appear as

δhfullf (z) = − 1
2
∑

n>2
bnR

2n
[
nR−2 z

z̄n−1 − (n− 1) 1
z̄n

]
+ c.c., (4.49)

δh̃fullf (z) = − 1
2 b̃0R

2 ln
(
e2zz̄

)
+ 1

2 b̃1R
4 1
z̄

− 1
2
∑

n>2
b̃nR

2n
[
(n+ 1) z

z̄n−1 − nR
2 1
z̄n

]
+ c.c. (4.50)

In this form we can easily match coefficients via δhefff = δhfullf and δh̃efff = δh̃fullf , and
therefore find the complete set of polarizabilities:

C(n) = 16πκR2n−2

(n− 1)! (n− 2)! , (4.51a)

C̊(n) = (n− 2)C(n), (4.51b)
˚̊C(n) = (n− 2)2C(n), (4.51c)

for n > 2, with the exception of the coefficient for pure laplacians: ˚̊C(2) = C(2)/2. It is
perhaps surprising that ˚̊C(2) and C(2) are so similar; the latter only parametrizes (part of)
the local Gaussian curvature, whereas the former additionally accounts for the square of the
total curvature.13 However, a factor of 1/2 is to be expected regardless. By convention, we
usually include a factor of 1/n! for terms that contain n powers of an identical field operator
because of their exchange symmetry, and indeed ˚̊C(2) multiplies (∂∂̄h)2 so normally we
would include a 1/2 prefactor on this term. We refrained from doing so in the worldline

13In complex coordinates, the total curvature takes the form K = −∇2h = −4∂∂̄h and the Gaussian
curvature is KG = det[∂2h] = 4(∂2h ∂̄2h− ∂∂̄h ∂∂̄h).
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Technical Note 4.4: Derivatives of the biharmonic Green function
We summarize here for reference the derivatives of the biharmonic Green function (4.42) in complex
coordinates:

G(z) = 1
16π zz̄ ln zz̄,

∂∂̄G(z) = 1
16π ln

(
e2zz̄

)
,

∂nG(z) = (−)n (n− 2)!
16π

z̄

zn−1 (n > 2),

∂n−2∂∂̄G(z) = (−)n−1 (n− 3)!
16π

1
zn−2 (n > 3).

We will always rewrite the derivatives so that they act on the full argument of the Green function and
hence appear in the forms above. For example, ∂naG(zb − za) = (−)n∂nG(zab) with zab = zb − za.

Hamiltonian to keep the sum relatively compact, but the exceptional factor of two will
reappear when we discuss interactions.

4.3.2 EFT for curved particles: permanent sources
Curved particles impart and enforce permanent deformations on the membrane surface
without the need for a background field or fluctuations to induce them. In the EFT, these
deformations appear as permanent sources, δ∆H/δh 6= 0 with h = 0, and augment the
Hamiltonian by local worldline terms that explicitly break the field symmetries. Of the
three field symmetries discussed on page 176, we wish to retain the rigid-body displacements
T2, but break the both vertical reflection T1 and rotational symmetry T3 of the membrane
about the particle’s center. The breaking of vertical reflection symmetry subject to T1
suggests including derivative expansion linear in h but with derivative order of at least
two. The breaking of point rotational symmetry tells us we do not need to ensure each
term is rotation invariant. Recalling that more than one ∂∂̄ ∼ ∇4 in the effective theory is
redundant, the most general linear term we can add to the worldline Hamiltonian ∆H to
capture permanent sources is

∆Hp[h] = −
∑

a

∑

n>2

[
Q(n)
a ∂nh(za) + Q̊(n)

a ∂n−2∂∂̄h(za)
]

+ c.c. (4.52)

The worldline terms quadratic in h do not contribute to a source deformation in the
absence of an incident field; they account for only induced polarization.14 The breaking
of rotational symmetry in the quadratic terms, therefore, is not the result of a permanent
source, but rather a consequence of a particle with a noncircular projected boundary. In
other words, the quadratic terms account for induced deformations and any anisotropy of

14This is analogous to the statement in electrostatics that the actual amount of charge on a conductor
does not affect its capacitance or polarizabilities.
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the particle boundary, whereas the linear terms account for permanent deformations and
any anisotropy in the contact curvature. Thus the quadratic worldline terms ∆Hf require no
modification for our class of particles, and there is no need to re-match the polarizabilities;
the series (4.52) fully captures the permanent particle curvature, and ∆H = ∆Hf + ∆Hp is
the complete set of worldline terms.

Matching

To determine the “curvature charges” Q(n) and Q̊(n), we first calculate the permanent field
response due to ∆Hp[h]. At zero incident field (hbg = 0), we find the permanent source for
a single particle,

ρp(z) = − δH[h]
δh(z)

∣∣∣∣
h=0

=
∑

n>2

[
Q(n)(−∂)n + Q̊(n)(−∂)n−2∂∂̄

]
δ(z) + c.c., (4.53)

and its corresponding field response,

δheffp (z) = 1
κ

∑

n>2
(−)n

[
Q(n)∂nG(z) + Q̊(n)∂n−2∂∂̄G(z)

]
+ c.c. (4.54)

We now compare this to the full-theory response (4.35), which in complex coordinates reads

δhfullp (z) = −1
4JR

2 ln e2zz̄ + 1
4Se2iαR

2

z2
(
R2 − 2zz̄

)
+ c.c. (4.55)

To further simplify the matching, we refer to Technical Note 4.4 and rewrite the expression
in terms of the Green function:

δhfullp (z) = −8πJR2∂∂̄G(z)− 4πSe2iαR2[R2∂2∂∂̄G(z) + 2∂2G(z)
]

+ c.c. (4.56)

In this form, the requisite matching condition δheffp = δhfullp shows that all the Wilson
coefficients are zero except for the following three (and their complex conjugates):

Q(2) = −8πκSe2iαR2, (4.57a)
Q̊(2) = −4πκJR2, (4.57b)
Q̊(4) = −4πκSe2iαR4 , (4.57c)

and hence the worldline source Hamiltonian is

∆Hp[h] = −
∑

a

[
Q(2)
a ∂2h(za) + Q̊(2)

a ∂∂̄h(za) +Q(4)
a ∂2∂∂̄h(za)

]
+ c.c. (4.58)
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As an additional word of caution, both Q̊(2) and ∂∂̄h are real, so the middle term actually
occurs twice due to the addition of the complex conjugate. This will be another source of
exceptional factors of two to keep in mind.

Preferred shape

Let us briefly comment on a useful way to conceptualize the permanent sources, namely, as
a “preferred shape” for the surface at the location of the particles. The easiest way to see
this is to consider, for instance, the “quadrupole” terms

C(2)∂2h∂̄2h−Q(2)∂2h− Q̄(2)∂̄2h

from the worldline Hamiltonian. Collecting terms, this becomes

1
2C

(2)∂̄2h

[
∂2h− 2Q̄

(2)

C(2)

]
+ c.c.,

which is of the same form as the Lagrange multiplier terms of the full-theory Hamil-
tonian (4.14) and appropriately relates the Wilson coefficients to the contact line and
constraint forces. Not surprisingly, this view is reminiscent of the way Dommersnes and
Fournier [DF99a, DF99b] enforced a preferred form Kij on the curvature tensor −∂i∂jh of
the surface, through the usage of a factor δ(∂i∂jh + Kij) in the integration measure, to
account for the curvature of the particles.
Alternatively, one can easily check that, up to an irrelevant numerical constant, these

terms can be rewritten as C(2)|∂2h− Q̄(2)/C(2)|2. That is, when the surface shape obeys
∂2h = Q̄(2)/C(2), no excitation occurs. Viewed in this manner, these permanent sources
appear as a local spontaneous curvature as imposed by the particle. More generally, one
could impose a desired shape by including analogous “spontaneous curvature” terms in
the appropriate worldline terms, providing an alternative construction of the effective
Hamiltonian.

4.3.3 Some comments on the usage of point particles
The EFT formalism replaces the finite-sized particles by points with suitable additional local
properties. As mentioned in the introduction, other strategies have been employed which
involve, either effectively or directly, point-like particles. Before moving on to computing
mediated forces using the effective theory we have constructed, we wish to briefly discuss
these other approaches in the membrane context and explain how they differ from EFT.

The route followed by Netz [Net97] as well as Marchenko and Misbah [MM02] also utilizes
localized quadratic and linear terms in the Hamiltonian in order to account for the particles,
and points out the role of the quadratic terms in allowing interactions that a superposition
approximation would not capture. Neither of these works, however, recognized (or at least
exploited) the ability of such a strategy to handle finite-sized particles. This is also reflected
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in the fact that the quadratic terms were kept at lowest derivative order. Netz [Net97]
did capitalize on how amenable the form of such a theory is to a standard statistical field
theory framework, but he missed a second set of quadratic operators15 while setting up
the problem and later neglected to apply derivatives to the correlation functions. Also, he
interprets the polarizabilities as coupling constants and then claims that infinite values for
them correspond to rigid particles. This is not the right interpretation, though, as Sec. 4.3.1
shows.
Marchenko and Misbah [MM02] similarly exploited the convenience of point particles,

and illuminated the form of the lowest order mediated interaction based on the symmetry
the particles possess. However, in their treatment the particles impact the membrane in a
very different way: Rather than rigidly enforcing a particular shape, they impose a localized
force distribution, such as a point quadrupole. Since the response of the membrane to a
given force becomes weaker if the membrane gets stiffer, their interaction energies scale
inversely with the bending rigidity. The same philosophy was followed by Evans et al.
[ETS03], who generalized the treatment to arbitrary force densities. Bartolo and Fournier
showed that this different scaling indeed only results from a different way in which the
particle-membrane interaction is treated [BF03].

Dommersnes and Fournier [DF99a, DF99b] also employed a point particle method where
they fixed the local curvature of the membrane by a delta function. To our knowledge,
their work for the first time attempted to calculate higher order terms in the asymptotic
expansion of mediated interactions in terms of inverse distance, thanks to the simplicity
of the point particle assumption. However, in that case, the only way the particle affects
the surface is by constraining the curvature (i.e., the second derivative of the field) at a
point, by assumption. In relation to the EFT framework, this corresponds to truncating the
world line Hamiltonian right after the coefficients of derivative order 2. One can imagine
adding delta function constraints for higher order derivatives, then, in order to remove the
“point curvature defect” assumption and incorporate the rest of the boundary conditions
around a finite sized particle. However, this does not suffice to recover the otherwise ignored
features of the boundary in a quantitative way. The reason is that in such a treatment
there is no systematic means of linking the properties of the point particle to those of the
original particle before it was coarse grained into a point. Another related matter is the
ambiguity in the magnitudes of physical observables (e.g., forces) in the form of a cutoff
dependence. The cutoff is afterwards reinterpreted as the size of the particle, arguing that
what counts as a point should be of size comparable to the cutoff wavelength beyond which
the continuum description is unreliable. Consequently, this approach cannot be considered
a suitable strategy for treating particles of arbitrary size effectively as if they were point-like.
Also, the cutoff regularization is an operation which eventually has to do with the field, and
not the particles. Hence, particles of different size cannot be dealt with. More importantly,

15Stated in the terminology developed in Sec. 4.3.1, his version of Eq. (4.38) only consists of the one term
proportional to the polarizability ˚̊C(2). This is inconsistent, since the term proportional to C(2) contributes
at the same derivative order. Indeed, as Eqns. (4.71), (4.72) and (4.110) below will show, both terms
contribute to the leading order (axisymmetric) elastic and entropic interaction, respectively.
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though, the cutoff is innately an ambiguous quantity no matter what kind of regularization
it achieves on the theory, and therefore by construction cannot be equated to anything
observable.

The following are not point particle approaches per se, but can be considered as such to
the extent that EFT can be considered a point particle approach. The scattering formalism
adopted by Lin et al. [LZMP11], and the somewhat closely related method incorporating
δ-functions to constrain the partition sum [GBP93a, GBP93b, GGK96a, GGK96b], treat
the particles “fully”, as we do. The particle information then ends up in a collection of
numbers, to arbitrary accuracy, similar to EFT. In fact, there is an equivalence between
these approaches and the EFT formalism on the quadratic level, where the former is valid,
and this can be shown using Hubbard-Stratonovich transformations. Lin et al. [LZMP11]
have recently treated the problem of membrane mediated Casimir interactions within the
scattering framework, even under finite surface tension, and evaluated the pair interaction
numerically as a function of distance.

4.4 Interactions diagrammar
Now that we have recaptured the finite-size particle data in the EFT framework, we are set
to calculate the interparticle forces. As a reminder, our goal is the calculate the interaction
potential U defined by

U = − 1
β

ln


∑

k>0

1
k!〈
(
−β∆H[h]

)k〉0


, (4.59)

where 〈. . .〉0 is the expectation value weighted by the particle-free distribution e−βH0[h]/Z0.
As we learned in the previous chapter, this free energy difference can be expressed graphically
as a sum of linear and ring diagrams for a quadratic theory:

− βU =
∑

k>0
J V V J

k

+
∑

k>1

V
V

V
V

k , (4.60)

where the source and interaction vertices are given by the functional derivatives on the
worldline,

zJ = −
[
δ(β∆H)
δh(z)

]

h=0

= β
∑

a

[
Q(2)
a ∂2 + Q̊(2)

a ∂∂̄ + Q̊(4)
a ∂2∂∂̄

]
δza + c.c., (4.61a)
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z

z′
V = −

[
δ2(β∆H)
δh(z)δh(z′)

]

h=0

= −β
∑

a

∑

n>2

[
C(n)
a ∂nδza ∂̄

nδz
′
a + C̊(n)

a ∂n−1∂∂̄δza ∂̄
n−1δz

′
a (4.61b)

+ C̊(n)
a ∂n−1δza ∂̄

n−1∂∂̄δz
′
a + ˚̊C(n)

a ∂n−2∂∂̄δza ∂̄
n−2∂∂̄δz

′
a

]
+ (z ↔ z′),

where δza := δ(z−za). The propagator—the edges connecting these vertices in the complete
diagrams—is proportional to the Green function:

z z′ = (βκ)−1G(z − z′). (4.62)

The linear and quadratic vertices appear as a tower of derivatives acting on delta functions,
which will then be thrown onto the propagators upon integration. If we encounter a term in
which a bi-Laplacian (∇4 = 16∂2∂̄2) acts on the propagator, it will vanish; i.e., for za 6= zb,
∂n∂̄mG(za − zb) = 0 when n,m > 2. We make this property manifest diagrammatically by
representing propagators receiving at least two ∂-derivatives by a single line and propagators
receiving at least two ∂̄-derivatives by a double line. Additionally, propagators receiving
a single Laplacian (∇2 = 4∂∂̄) will be indicated by a small circle along the usual single
or double line, which explains the motivation for the ring-accent notation of the Wilson
coefficients. Complex conjugation will simply swap single lines for double lines and vice-
versa. With this in mind, we assign new diagrams to each term in the source and vertex
expansions above. For general permanent source terms, we write:

zza

(n)
= βQ(n)

a (−∂)nδza

zza

(n)
= βQ̄(n)

a (−∂̄)nδza

zza

(n) ∗= βQ̊(n)
a (−∂)n−2∂∂̄δza

zza

(n) ∗= β ˚̄Q(n)
a (−∂̄)n−2∂∂̄δza

(4.63a)

The starred equality “ ∗=” in the right column is there to remind us that the Q̊(2) term
appears twice in the source expansion (4.61a) and should therefore include a factor of two
when n = 2. Moreover, the Q̊(2)

a term will serve diagrammatically as either a single or
double line, depending on what other vertices it links to.
For the interaction vertices, we write:
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z

z′
za

(n)
= −βC(n)

a ∂nδza∂̄
nδz

′
a

z

z′
za

(n)
= −βC̊(n)

a ∂n∂̄δza ∂̄
n−1δz

′
a

z

z′
za

(n)
= −βC̊(n)

a ∂n−1δza ∂̄
n∂δz

′
a

z

z′
za

(n) ∗= −β˚̊C(n)
a ∂n−1∂̄δza ∂̄

n−1∂δz
′
a

z

z′
za

(2)
= −2β˚̊C(2)

a ∂∂̄δza ∂∂̄δ
z′
a

z

z′
za

(2)
= −2β˚̊C(2)

a ∂∂̄δza ∂∂̄δ
z′
a

(4.63b)

We have singled out the ˚̊C(2) vertex since it may behave as any of the three diagrams in
the right column depending on what other vertices it links to. As hinted at previously,
since ˚̊C(2) multiplies the square of a field operator, (∂∂̄h)2, it corresponds to a vertex with
two identical legs and so is always accompanied by an additional factor of two due to the
freedom to swap the legs.16 This is explicitly included in the two bottom right vertices,
and the starred equality “ ∗=” after the top right vertex is there to remind us that the factor
of two should be included when n = 2.
For both the permanent source and interaction vertices we have explicitly included the

particle worldline position za. When convenient—which is most of the time—we will drop
the label (and dotted line) and let the vertex imply a sum over all particles.
As is hopefully apparent, the single versus double lines govern the connectivity of the

vertices. In addition, we claim that no two legs labeled with circles shall be connected—these
edge accents denote Laplacians, and two Laplacians on a link make it vanish. This is in
accordance with our on-shell Hamiltonian and demonstrates why the exclusion of any
worldline terms carrying the Euler-Lagrange derivative ∇4 does not affect the partition
function; the bi-Laplacian would nullify any link it appears on.

The usual Feynman rules include a numerical weight 1/S that accounts for the multiplicity
and symmetries of each diagram. This symmetry factor S is simple for the linear and ring
diagrams of Eq. (4.60): 2 and 2k respectively. The expansion into the various types of
vertices (4.63) will reduce the symmetry of resulting diagrams, but the symmetry factors
are still found in the same straightforward way: count and add together the number Nrefl of
reflections and the number Nrot of rotations under which the diagram is invariant. For linear
diagrams, S = 2 if the diagram is invariant under reflection across the middle, otherwise
S = 1. For ring diagrams, S = 1 +Nrefl +Nrot.
Notice that each diagram will result in an overall factor of βNV +NJ−NG , where NV , NJ ,

and NG are respectively the numbers of interaction (two-leg) vertices, source (one-leg)
vertices, and propagators. The first two stem from the power in the Taylor expansion
in Eq. (4.59), whereas the last is due to the propagator (4.62). For the linear diagrams,
NG = NV + 1 and NJ = 2, resulting in an overall factor of β which cancels that from −βU .
This reminds us—and verifies—that the linear diagrams represent temperature-independent

16We mentioned on page 181 that this term would conventionally be accompanied by a factor of 1/2! for
precisely this reason. The price we pay for keeping the ∆H expansion compact is that we must be vigilant
about the factors of two floating around.
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ground state interactions. For the ring diagrams, NV = NG and NJ = 0, resulting in an
overall factor of β0 for −βU . That is, these contributions to the free energy are proportional
to kbT and represent entropic, Casimir-type interactions.
To determine which diagrams contribute at a given order in inter-particle distance we

can perform simple power counting of the diagram ingredients. Referring back to the list
of Green function derivatives in Technical Note 4.4, we see that ∂∂̄G is unitless, but both
∂nG and ∂n−2∂∂̄G scale as ∼ r−(n−2), with r = |z|. Since G itself scales as ∼ r2, the
power-counting scheme follows: each link gives a power of 2 and each derivative reduces the
power by one. Therefore, a given linear diagram will scale as ∼ r−p with

p =
NV∑

i=1
2nVi + nJ1 + nJ2 − 2(NV + 1), (4.64)

where nV and nJ are the derivative orders corresponding to a given interaction or source
vertex, respectively. Similarly for ring diagrams,

p =
NV∑

i=1
2nVi − 2NV . (4.65)

Before proceeding with the calculations, we must address the problem of self-interactions—
diagrams in which propagators begin and end on vertices on the same particle worldline.
Similar to the previous chapter, we look at how self-interactions diverge and see that they
are all power-like in the sense that ∂n>2G(λx− λx′) ∼ λ2−n as λ→ 0, and therefore the
RG flow is trivial and the divergences contain no physical information. These divergent
contributions will always be removed by pure counterterms, so we can save ourselves the
hassle and effectively ignore them. Diagrammatically this means we can safely drop any
diagrams that contain self-interactions.
To summarize, computing interactions reduces down to drawing all relevant diagrams

and evaluating them. The rules for evaluating the diagrams are straightforward: Every
two-legged vertex labeled by a derivative order n, unless otherwise stated, affords a sum over
all particles of the appropriate polarizability for the vertex (one of C(n)

a , C̊(n)
a , or ˚̊C(n)

a )—see
Eqs. (4.63). Similarly, one-legged vertices contribute permanent charges Q(n)

a or Q̊(n)
a (or

their complex conjugates) summed over all particles. Possible numerical factors are the
(reciprocal) symmetry factor 1/S, and the factors of 2 that accompany each occurrence
of Q̊(2) and ˚̊C(2), as explained following Eqs. (4.63a) and (4.63b). Each propagator is
placed to link together the legs from two different vertices, and inherits their respective
summation labels in its argument. From each leg, the propagator receives derivatives acting
at the position variable of the associated vertex. The number of derivatives is equal to the
derivative order n of the vertex if it is of types C(n), ˚̊C(n), Q(n), or Q̊(n). If, however, it is of
type C̊(n), the leg with the Laplacian (circle) has n+ 1 derivatives and the other n− 1. If
there is no Laplacian on the leg, all derivatives are either ∂ or ∂̄ depending, respectively, on
whether the link is plain or double. If there is a Laplacian on the leg, there is one ∂̄ among
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∂s, or vice versa. Finally, the sum over the particle labels must be done with the stipulation
that no single propagator begins and ends on the same particle. One then extracts the
terms from the sum in pairwise, tripletwise, etc., fashion.

4.5 Elastic interactions
The interaction free energy U consists of two parts, one proportional to kbT and the other
to κ, stemming respectively from ring and linear diagrams. In this section, we will be
concerned with terms of the latter type, and, since the interaction strength is set by the
elastic modulus κ, we refer to them as elastic interactions. Note that with these interactions
having no temperature dependence (at the scale where the Helfrich Hamiltonian is valid,
that is), and the rest being linear in temperature, the elastic part constitutes the ground
state (T = 0) energy E in U = E − TS. Therefore we will use the symbol E for these
interactions. We will begin with a discussion of particle pairs and then examine multibody
effects.

4.5.1 Pair interactions
Recall that due to the freedom of the particles to move vertically and tilt, we do not
have any field occurrence with less than 2 derivatives in ∆Hf or ∆Hp. Equivalently, no
vertex leg exists in our diagrams which differentiates the propagator less than twice, and
since a propagator is differentiated at both ends, the least number of derivatives on a
propagator is four. Hence, the lowest possible order in the interaction is achieved by a
single propagator between two source vertices of derivative order 2 and, by Eq. (4.64), will
scale as ∼ r−(2+2−2) = r−2. The elastic interaction energy is therefore

− βE(2) = 2 Re
[ (2) (2)

+
(2) (2)]

, (4.66)

where the Re operator appears since the complex conjugate of each diagram contributes
as well. The superscript on the symbol E indicates the power of r−1 that is expected.
Following the diagrammatic rules laid out earlier, these diagrams evaluate as

E(2) = − 2
β

∑′

a,b

Re
[

1
2β

2Q(2)
a Q

(2)
b

∂4Gab
βκ

+ 2β2Q̊(2)
a Q

(2)
b

∂3∂̄Gab
βκ

]
. (4.67)

The prime on the summation enforces a 6= b, since self-interaction terms are unphysical.
In the above expression Gab ≡ G(za − zb) and we have dropped the argument-dependence
of the derivatives by transforming their variables to the full Green function argument.
Following the diagrammatic rules, a factor of 1/2 is included in the first term due to the
reflection symmetry of its diagram, and a factor of 2 accompanying Q̊(2) is also included.
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After substitution of the Wilson coefficients and the Green function derivatives, we have

E
(2)
{1,2} = −

∑

a6=b
2 Re

[
1
2κ(8π)2Sae2iαaR2

a Sbe2iαbR2
b

2!z̄
16πz3

+ 2κ 8πJaR2
a 4πSbe2iαbR2

b

−1!z̄
16πz2

]
.

(4.68)

This interaction involves only a maximum of two particles at once, as the diagrams clearly
indicate, and therefore encodes only pair interactions. The resulting pair interaction
between some arbitrarily chosen pair of particles, 1 and 2, is then sifted out from the above
summation:

E
(2)
{1,2} = −8πκR

2
1R

2
2

r2

[
2S1S2 cos(2α1 + 2α2)− S1J2 cos 2α1 − J1S2 cos 2α2

]
. (4.69)

This result was also worked out in Ref. [YD12], and earlier in Ref. [DF99b] up to explicit
dependence on particle size and a differing angle convention.
Several physical insights can be gained by examining the angular and curvature depen-

dencies of Eq. (4.69). When the mean curvatures Ja are of the same sign, the particles tend
to align their principal axes of smallest curvature with the joining line between the particles
(i.e., αa = π/2 for Ja > 0, and αa = 0 for Ja < 0) and attract. To clarify the picture,
each particle enforces a contact angle at the rim of γ(ϕ) = −JR− SR cos(2ϕ− 2α) from
the horizontal. For J > 0, the magnitude of this contact angle is greatest at ϕ = α (the
direction of downward curvature) and smallest in the perpendicular direction. The above
expression tells us that the lowest energy state occurs when the axes of smallest contact
curvature line up. This makes sense energetically because this configuration minimizes
the magnitude of interparticle membrane curvature. If Ja vanishes, as in the case of two
perfect saddles, the particles are maximally attractive across the full range of orientations
satisfying α1 + α2 = 0 (mod π), at least to this order.
Notice that every term includes at least one factor of S-type. This implies that if both

particles are curved, but axisymmetrically so, they will exert no force upon each other
at this order. The 1/r2 interaction hinges entirely on the broken axisymmetry in particle
curvature, which was pointed out earlier by Marchenko and Misbah [MM02]. We may
understand this directly from our effective Hamiltonian: With axisymmetry, the term
Q(2)∂2h drops from the world line when Sa = 0, leaving only the rotationally invariant
term, Q̊(2)∂∂̄h (recall ∇2 ∼ ∂∂̄). The field therefore receives a Laplacian as it spreads out
from one curvature-charge distribution, and then receives another when it interacts with
the other particle, yielding an interaction proportional to ∇2∇2G(xa − xb) = 0.
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At the next order, the elastic energy takes the form

−βE(4) =
(2) (2) (2)

+
(2) (2) (2)

+
(2) (2) (2)

+ 2 Re
[ (2) (2) (2)

+
(2) (2) (2)]

+ 2 Re
[ (2) (4)]

.

(4.70)

Notice that since C̊(2) = 0 there are no diagrams with a single circle on the quadratic vertex.
Evaluating the diagrams (recall that both Q̊(2) and ˚̊C(2) always come with a factor of two)
gives the sum over particle worldlines

E(4) = 1
κ2

∑′

a,b,c

{
Q(2)
a C

(2)
b Q̄(2)

c ∂4Gab ∂̄
4Gbc

+ 22Q̊(2)
a C

(2)
b

˚̄Q(2)
c ∂3∂̄Gab ∂

3∂̄Gbc + 2Q(2)
a
˚̊C(2)
b Q̄(2)

c ∂3∂̄Gab ∂̄
3∂Gbc

+ 2 Re
[
2Q̊(2)

a C
(2)
b Q̄(2)

c ∂3∂̄Gab ∂̄
4Gbc + 1

2 × 2Q(2)
a
˚̊C(2)
b Q(2)

c ∂3∂̄Gab ∂
3∂̄Gbc

]}

− 1
κ

∑′

a,b

2 Re
[
Q(2)
a Q̊

(4)
b ∂5∂̄Gab

]
,

(4.71)

where the primes on the sums remind us that we exclude all self-interaction terms. Notice
that the first sum contains not only pairwise interactions, but triplet interactions as well—
the latter we will consider in the next section. Taking the terms that involve only a pair of
particles, labeled 1 and 2, we obtain the first correction to the pair interaction. After a
short calculation, which involves plugging in for the sources and polarizabilities, expanding
the Green function derivatives using the lookup table in Technical Note 4.4, and simplifying,
gives [YD12]

E
(4)
{1,2} = 4πκR

2
1R

2
2

r4

[
R2

1J
2
1 +R2

2J
2
2 +−4R2

1J1S1 cos 2α1 − 4R2
2J2S2 cos 2α2

+ 5R2
1S

2
1 + 5R2

2S
2
2 +R2

1S
2
1 cos 4α1 +R2

2S
2
2 cos 4α2

+ 6(R2
1 +R2

2)S1S2 cos(2α1 + 2α2)
]
.

(4.72)

As we mentioned previously, if the particles are axisymmetric, then both Sa vanish as
well as the entire O(r−2) term. The interaction above therefore reduces to the lowest order
interaction for axisymmetric particles, and, recalling that γa = RaJa (no summation) are
the detachment angles, can be expressed as

E
(4)
{1,2} = 4πκ (γ2

1 + γ2
2)R

2
1R

2
2

r4 . (4.73)

The calculation of the above interaction, Eq. (4.72), was also attempted in Ref. [DF99b];
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however, the last term was missed. This term originates from the interaction between Q(2)

and Q̊(4), the latter of which is not encoded if one treats a particle as a point curvature
defect. This term turns out to be significant in determining the overall behavior of the
interaction. The richness of the energy landscape—even at this order—is not adequately
represented in the published literature where it appears (namely [YD12] and [YHD14]) so
we will take an excursion to examine the preferred particle configurations in detail.

Minimum energy configurations

To simplify the discussion, we will consider identical particles such that R1 = R2 = R,
S1 = S2 = S, and |J1| = |J2| = J . Since an inverted saddle (S → −S) is equivalent to a
saddle rotated by π/2 we will keep S positive without loss of generality. However, inverting
one of the cap shapes (J → −J) is qualitatively different, so we will consider each case
separately with J > 0, J1 = J , and J2 = ±J . To clean up the expressions, we define
χ = r/R like before, and also define γ0 = RJ and η = S/J . The expression for γ0 is the
contact angle for an axisymmetric cap (S = 0), and η is the ratio of saddle to cap curvature.
We may then write the interaction energy as

E±
4πκγ2

0
=: Ẽ± = Ẽ

(2)
± + Ẽ

(4)
± +O(χ−6), (4.74)

where the ± subscript corresponds to the sign of J2 relative to J1, and the two contributions
may be expressed as

Ẽ
(2)
± χ2 = 2η(± cos 2α1 + cos 2α2)− 4η2 cos(2α1 + 2α2), (4.75)

Ẽ
(4)
± χ4 = 2− 4η(cos 2α1 ± cos 2α2) + η2[10 + cos 4α1 + cos 4α2 + 12 cos(2α1 + 2α2)

]
.

(4.76)

To begin, let us consider just the Ẽ(4) contribution. If the final term ∝ cos(2α1 + 2α2) is
missed as in Ref. [DF99b], then this contribution is always positive and therefore always
repulsive, regardless of the sign of J2. Just to emphasize, without this term there is no
possibility for this contribution to be attractive. Now, with the term included, the Ẽ(4)

contribution is still always repulsive when J2 > 0, but it can be attractive if J2 < 0.
In particular, if J2 < 0 and η > 1/4, then the preferred configuration suggested by
this contribution—that is, the minimum energy configuration of Ẽ(4) alone—is attractive.
Furthermore, this preferred configuration occurs for α1 = 0 and α2 = π/2, but only until a
critical ratio ηc = 1, after which it bifurcates into two degenerate minima:

α1 ≡ ±
1
2 cos−1 1

η
(modπ)

α2 ≡
π

2 − α1 (modπ)




, η > ηc = 1. (4.77)

The energetic behavior of the Ẽ(4) contribution alone, however, does not present the full
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Figure 4.4: Visual representations of the interaction energy landscape, plotted as Ẽ+χ
2, for the values

χ = r/R = 2.5 and η = S/J = 6. The two white crosses on the contour plot (left) show the points
of minimum energy, which occur for (α1, α2) ≈ (0.3076, 0.6924)π and (0.6924, 0.3076)π. Notice that
the energy exhibits reflection symmetry about the two lines α2 = α1 and α2 = π − α1. An alternative
view of the energy is presented on the right by plotting the family of energy curves as a function of α1
for fixed α2. The corresponding envelope provides information about the energy extremes. The global
minimum gives the preferred angle α1, and α2 follows from the curve which touches the minimum point.

story as it competes with the Ẽ(2) contribution. An analysis of both terms together is
therefore prudent. We will consider the two cases J2 = ±J separately.

Up–up (J2 = +J) case. The energy landscape is determined by calculating the energy
Ẽ+ for various configurations of α1 and α2. We present this visually as a contour plot
in Fig. 4.4, where the preferred configurations are located at the minimum energy points.
As an alternative representation, we may consider slicing up the α1α2-plane and plotting
the family of energy curves as a function of α1 for various fixed values of α2. The global
minimum of the envelope of these curves then yields the preferred angle α1, and α2 comes
from the curve that touches this minimum. One could of course proceed to find the energy
minima numerically, but the functional form is tractable enough to examine the behavior
completely analytically.
A useful starting point is to consider and exploit any symmetries the energy function

exhibits. An obvious symmetry is the interchange of the two angles, α1 ↔ α2, which
one may also observe from the contour plot in Fig. 4.4. More generally, we may look for
reflection symmetry across a line α2 = sα1 +β, where s is the slope and β is the α2-intercept.
The exchange symmetry is one such invariance with s = 1 and β = 0. To see how reflection
across the line transforms the angle coordinates, we refer to Technical Note 4.5 with the
identifications y0 → α2, x0 → α1, m→ s, and b→ β. Due to the particle symmetry and
periodicity, we only need to consider (α1, α2) in the fundamental domain [0, π)2 and keep
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Technical Note 4.5: Point reflections across a line
Consider the point (x0, y0) reflected across the line y = mx+b. The new reflected point (x′0, y′0) is follows
by inverting the normal vector between the line and the point (x0, y0). The construction is as follows:
Translate the coordinate system so that the y-intercept occurs at the origin and let v = (x0, y0−b) be the
position vector from this new origin. Next, construct a unit vector û = (1,m)/

√
1 +m2 that points along

the reflection line, from which we then construct a unit normal vector to the line, n̂ = (−m, 1)/
√

1 +m2.
The vector projection of v in this normal direction is given by v⊥ = (v · n̂)n̂ = Dn̂ and therefore the
vector reflection v′ = v − 2v⊥. Translating back up by b then gives the reflected point

(
x′0
y′0

)
=
(
x0 + 2Dm/

√
1 +m2

y0 − 2D/
√

1 +m2

)
, D = −mx+ (y − b)√

1 +m2
.

all angle results modulo π (the “angle space” defines a torus). Plugging the transformation
into (4.74) shows that there are two reflection lines of symmetry, α2 = α1 and α2 = π − α1.
Again, both lines of symmetry are apparent in Fig. 4.4.

The benefit of considering such reflection symmetries is that they provide hints about (or
outright reveal) the locations of the maxima and minima. An application of either reflection
transformation must preserve both numbers of global maxima and minima,17 otherwise
it would contradict the invariance. Hence, if there is only one global minimum it must
occur at the intersection of the two lines. Note that there are in fact two such intersections:
There is the obvious intersection at (π/2, π/2), but also one at (0, 0) due to periodicity and
our choice of fundamental domain. If there are two degenerate minima, then both points
must either lie on one of the reflection lines or they must occur on the boundary, for which
one or the other angle vanishes.18 We could of course generalize to a higher number of
degenerate global minima; however, the energy function does not contain terms higher than
doubly-periodic in this domain, so we expect at most two such solutions.
With this in mind, let us consider the energy along the line α2 = π − α1. If a minimum

exists along this line, it must satisfy

∂

∂α1
Ẽ+(α1, π − α1) = −8η

χ4 sin 2α1
(
χ2 − 2 + 2η cos 2α1

)
= 0, (4.78)

where we have simplified the expression using sin 4α1 = 2 sin 2α1 cos 2α1. Along this line,
this expression vanishes when either sin 2α1 = 0 or the terms in parentheses sum to zero.
The first solution gives α1 = α2 = π/2 along the line. Setting the terms in parentheses to
zero gives the solution

cos 2α1 = −χ
2 − 2
2η , (4.79)

17It must in fact preserve the number of all critical points, including saddles points.
18Recall that the fundamental domain identifies 0 and π, so having solutions on the boundary does not

double the number of critical points as it appears to suggest in the contour plot of Fig. 4.4.
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which in the fundamental domain corresponds to the two angle solutions

α1 = π

2 ±
1
2 cos−1

(
χ2 − 2

2η

)
(4.80)

with α2 = π − α1 for each. Since η > 0 and χ > 2 by definition (the particles overlap
when χ < 2), this solution is only valid when −1 6 (χ2 − 2)/2η 6 1. That is, for the fixed
curvature ratio η, this solution only applies up to a critical separation distance: 2 6 χ 6 χc
with χc :=

√
2(η + 1). We could instead consider a fixed distance χ, for which the solution

applies when the curvature ratio is larger than a critical value ηc := (χ2 − 2)/2.
For the plots in Fig. 4.4 we used η = 6 and χ = 5/2. The corresponding critical values

are ηc = 17/8 = 2.125 and χc =
√

14 ≈ 3.742, so the plots are indeed in the two-minima
regime. To check that these points indeed correspond to energy minima, we check the
second derivative:

∂2

∂α2
1
Ẽ+(α1, π − α1) = −32η2

χ4

[
(χ2 − 2)

2η cos 2α1 +
(
2 cos2 2α1 − 1

)]
. (4.81)

Using (χ2 − 2)/2η = ηc/η, we find for the value α1 = π/2 that

∂2

∂α2
1
Ẽ+(α1, π − α1) = −32η

χ4 (η − ηc). (4.82)

This point can only be a minimum if the second derivative is positive, so this tells us that
α1 = π/2 corresponds to an energy minimum only when η < ηc. For the other solution, we
use the simplified expression cos 2α1 = −ηc/η which gives for the second derivative

∂2

∂α2
1
Ẽ+(α1, π − α1) = 32

χ4 (η2 − η2
c ), (4.83)

showing that this corresponds to a minimum when η > ηc, which indeed matches the
condition for which this solution applies. For the plots in Fig. 4.4, the minima occur for
the angles

α1 = π

2 ±
1
2 cos−1

(
17
48

)
≈ π

2 ± 0.6044 (4.84)

and therefore occur for the configurations (α1, α2) ≈ (0.6924, 0.3076)π and (0.3076, 0.6924)π.
To summarize, up to O(χ−6) corrections E+(α1, α2) is minimized for

α1 =





π

2 ±
1
2 cos−1

(
χ2 − 2

2η

)
if 2 6 χ 6

√
2(η + 1)

π

2 if χ >
√

2(η + 1)
, and α2 = π − α1. (4.85)

This behavior is illustrated in Fig. 4.5. For a fixed curvature ratio η, there are two degenerate
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Figure 4.5: Illustration of the minimum-energy bifurcation behavior along the line α2 = π − α1. The
left plot is for a fixed curvature ratio η = 6 and shows the “binodal” lines (dashed) which trace out the
energy minima. Observe that as the scaled separation χ is increased, the minima merge into one solution
at a critical distance χc. Note that the particles overlap for χ < 2, so the configurations at contact are
curvature dependent and occur in the open interval π4 < α1 <

3π
4 and are symmetric about α1 = π/2.

The right plot is for a fixed separation χ = 2.5 and shows the bifurcation of the energy minima beyond a
critical curvature ratio ηc. The solutions asymptote to α1 = π/2± π/4.

minimum energy configurations which, as the particle separation is increased, ultimately
merge into one configuration (π/2, π/2) at and after a critical separation χc =

√
2(η + 1).

Analogously, at a fixed (scaled) distance χ, we may consider increasing the curvature ratio
η from zero and find one minimum at (π/2, π/2) up to a critical ratio ηc = (χ2 − 2)/2 at
which point it bifurcates into two degenerate energy minima that asymptote to (3π/4, π/4)
and (π/4, 3π/4).

Up–down (J2 = −J) case. For the case in which the “cap” nature of the two particles
is anti-aligned (J2 = −J1 = −J), we may apply the same analysis. Applying the reflection
transformation from Technical Note 4.5, we find the energy E− is symmetric across the two
lines α2 = α1 − π/2 and α2 = π/2− α1, each modulo π. In this case, the most convenient
choice of fundamental domain is to shift α1 by a phase: (α1, α2) ∈

(
−π

2 ,
π
2
]
× [0, π).

Within this domain, consider the energy along the line α2 = α1 + π/2. The extreme
values along this line must satisfy

∂

∂α1
Ẽ+(α1, α1 + π/2) = 8η

χ4 sin 2α1
[
χ2 + 2− 2η(2χ2 − 5) cos 2α1

]
= 0. (4.86)

One may check using the same procedure as before that the solutions to the above equation
correspond to energy minima and exhibit a similar bifurcation behavior as in the E+ case.
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The minimum energy configurations are therefore given by

α1 =




±1

2 cos−1
[

χ2 + 2
2η(2χ2 − 5)

]
if χ2 + 2 6 2η(2χ2 − 5)

0 if χ2 + 2 > 2η(2χ2 − 5)
, and α2 = α1 + π

2 . (4.87)

The bifurcation picture in this case is a bit more subtle. For a fixed separation χ, there
is a single energy minimum at (0, π/2) as η is increased from zero until a critical ratio
ηc = (χ2 +2)/[2(2χ2−5)], after which there are two minima. For a fixed curvature ratio η we
the picture is as follows: If 0 6 η 6 1

4 , there is the single solution for all separations χ > 2. If
1
4 < η 6 1, then there is the single solution until a critical separation χ2

c = 2(5η+1)/(4η−1),
after which it bifurcates into two degenerate energy minima. When the curvature ratio
η > 1, there are always two degenerate minima.

Attractive versus repulsive. The energy considerations above may alternatively be in-
terpreted as describing a “phase transition” from one ground state configuration to two
degenerate configurations. From this perspective we may construct a phase diagram in the
χη-plane, wherein the regions of one versus two minima are separated by a critical line.
This critical line depends on the sign of J2 relative to J1 and may be expressed as either

χc(η) =





√
2(η + 1) if J2 = +J1√
2(5η + 1)

4η − 1 if J2 = −J1
(4.88)

or

ηc(χ) =





1
2(χ2 − 2) if J2 = +J1

χ2 + 2
2(2χ2 − 5) if J2 = −J1

. (4.89)

Note that for J2 = −J1, the critical line only occurs in the interval 1
4 < η 6 1 since χ > 2

and η > 0.
Missing from this discussion is whether the preferred configurations are attractive or

repulsive. We have looked at the angular configurations that minimize the energy, but the
force depends on the spatial gradient of the energy. Since the two contributions (4.75) and
(4.76) differ in powers of χ, the sign of the forces is not necessarily in agreement with the
sign of the energy in the preferred angular configurations.
To proceed, we examine the dimensionless force

F̃ := R

4πκγ2
0
F = − ∂

∂χ
Ẽ = 2

χ3 Ẽ
(2) + 4

χ5 Ẽ
(4) +O(χ−7) (4.90)

197



4 Membrane-mediated interactions of axisymmetric particles

evaluated at the minimum energy configurations. The phase diagram will then consist of
two regions in the χη-plane divided by the critical line χc(η), each of which will be further
divided into attractive and repulsive subregions depending on the sign of the force for the
minimum energy configurations. Thus, there are four cases to study:

1. J2 = +J1, χ > χc. The preferred configuration is α1 = α2 = π/2, and the correspond-
ing force F̃+

> is
F̃+
χ>χ2 = 8

χ5
[
1 + 4η(3η + 1)− χ2η(η + 1)

]
. (4.91)

The force vanishes along the curve

χ+
>(η) =

√
1 + 4η(3η + 1)

η(η + 1) (4.92)

which divides the region χ > χc(η) into an attractive (F < 0) region when χ > χ+
>(η)

and a repulsive (F > 0) region when χ < χ+
>(η).

2. J2 = +J1, χ 6 χc. The preferred configuration is given by Eq. (4.85), which fed into
the force expression gives

F̃+
χ6χc = 8

χ5

[
χ2 − 1 + η2(10− χ2)]. (4.93)

The region χ 6 χc(η) is therefore divided by the curve

χ+
<(η) =

√
10η2 − 1
η2 − 1 (4.94)

into an attractive region when χ > χ+
<(η) and a repulsive region when χ < χ+

<(η).
Note that all critical curves meet at the same point (χ∗c , η∗c ), where a short calculation
shows

η∗c = 1
6

[
8 +

(
710 + 18

√
201
)1/3

+
(

710− 18
√

201
)1/3

]
≈ 4.26215, (4.95a)

χ∗c =
√

2(η∗c + 1) ≈ 3.24412. (4.95b)

3. J2 = −J1, η 6 ηc. In this case there is one preferred configuration of (α1, α2) = (0, π/2)
with the corresponding force

F̃−η6ηc = 8
χ5
[
1− 4η + χ2η(η − 1)

]
. (4.96)
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The region η 6 ηc(χ) is therefore divided by the curve

χ−(η 6 ηc) =
√

4η − 1
η(η − 1) ⇐⇒ η−<(χ) = 1

2χ2

(
χ2 + 4−

√
χ4 + 4χ2 + 16

)
(4.97)

into an attractive region η > η−<(χ) and a repulsive region η < η−<(χ).

4. J2 = −J1, η > ηc. Here there are two preferred angular configurations given by
Eq. (4.87). The corresponding force is given by

F̃−η>ηc = − 4
χ2(2χ2 − 5)2

[
χ6 + 42χ2 − 70− 2η2(2χ2 − 5

)2(10− χ2)]. (4.98)

The region η > ηc(χ) is therefore divided by the curve

η−>(χ) =

√
χ6 + 42χ2 − 70

2(10− χ2)(2χ2 − 5)2 (4.99)

into an attractive region η < η−>(χ) and a repulsive region η > η−>(χ).

The final phase portraits in the χη-plane are presented and summarized in Fig. 4.6

Higher orders for axisymmetric particles

If we wish to calculate higher-order corrections, we simply follow the machinery laid out
by the Feynman rules. To demonstrate, let us consider axisymmetric particles (Sa = 0)
to keep the number of terms reasonable. Then, the only source vertex is of the type Q̊(2),
which carries a Laplacian and has a strength given by Eq. (4.57b). For axisymmetric
particles there is no interaction of r−2 dependence—the leading-order interaction is given
by Eq. (4.72) with Sa = 0. The first correction therefore involves six powers of inverse
distance, and will be given by the diagrams

− βE(6) = 2 Re
[ (2) (2) (2) (2)

+
(2) (3) (2)]

. (4.100)

Many-body interactions involving two, three, and four particles at once can be extracted
from this interaction, as the number of vertices in the diagrams suggest, but we will limit
ourselves to pair interaction for the moment. Extracting, as usual, the pair interaction
between particles 1 and 2, one has [YD12]

E
(6)
{1,2} = −16πκJ1J2

R4
1R

4
2

r6 + 8πκ
(
J2

1 + J2
2
)R4

1R
4
2

r6

= 8πκ (J1 − J2)2R
4
1R

4
2

r6 ,

(4.101)
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Figure 4.6: Illustrations of the phase portraits in the up–up (left plot) and up–down (right plot) cases.
Each portrait in the χη-plane is divided by a critical curve χc(η) into two regions with either one or
two preferred (minimum energy) angular configurations. The two-minima regions are denoted by hatch
lines. These regions are further subdivided into subregions for which the preferred configurations are
either attractive (light gray) or repulsive (darker gray). The darkest regions for χ < 2 are forbidden
and correspond to the particles overlapping. The vanishing force lines (solid lines)—presented in the
text—are extended (dashed and dot-dashed lines) beyond their corresponding regions for clarity. The
dotted lines indicate asymptotes. In the left plot, the regions correspond to I: one attractive minimum,
II: two attractive minima, III: two repulsive minima, and IV: one repulsive minimum. Observe that
all lines meet at a special point (χ∗c , η∗c ) ≈ (3.24412, 4.26215) [see Eqs. (4.95)]. In the right plot, the
regions correspond to I: two repulsive minima, II: two attractive minima, III: one attractive minimum,
and IV: one repulsive minimum. Note that in both plots, as η → 0 (i.e., for axisymmetrically curved
particles) the preferred configurations become repulsive for all separations (at least to this order), but at
larger separations any small anisotropy in curvature (S 6= 0) will change the behavior from repulsive to
attractive.
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where the two separate terms in the first line originate from the two diagrams in Eq. (4.100),
respectively. The calculation of this order was attempted in Ref. [DF99a], but due to
the point curvature defect assumption the second term could not be calculated. Again,
the neglect of this term leads to an interaction which seems to be attractive or repulsive
depending on the signs of Ja. However, the two terms complete a square ∼ (J1 − J2)2 so
the correct interaction is strictly repulsive, and it vanishes if the two curvatures are equal.
Continuing to higher orders is not conceptually difficult—one needs to just follow the

recipe and pay attention to power counting (and factors of two). From Eq. (4.64) it
follows that an order r−2p diagram with k vertices of multipole orders ni must satisfy∑k

i=1 ni = p+ k − 1, resulting in the following expansion for the next two orders:

−βE(8) =
(2) (4) (2)

+ 2 Re
[ (2) (2) (3) (2)

+
(2) (3) (2) (2)]

+
(2) (2) (2) (2) (2)

+
(2) (2) (2) (2) (2)

+ 2 Re
[ (2) (2) (2) (2) (2)]

(4.102)

−βE(10) =
(2) (5) (2)

+ 2 Re
[ (2) (3) (3) (2)

+
(2) (3) (3) (2)]

+ 2 Re
[ (2) (2) (4) (2)

+
(2) (4) (2) (2)]

+
(2) (2) (3) (2) (2)

+ 2 Re
[ (2) (2) (2) (3) (2)

+
(2) (3) (2) (2) (2)

+
(2) (2) (3) (2) (2)]

+
(2) (2) (3) (2) (2)

+ 2 Re
[ (2) (2) (2) (3) (2)

+
(2) (2) (2) (3) (2)]

+ 2 Re
[ (2) (2) (2) (2) (2) (2)

+
(2) (2) (2) (2) (2) (2)

+
(2) (2) (2) (2) (2) (2)]

(4.103)

We may then extract the pair interactions as usual and simplify. The resulting expressions
enjoy similar simplification and show that the interaction is still strictly repulsive:

E
(8)
{1,2} = 12πκR

4
1R

4
2

r8

[
J2

1R
2
1 + J2

2R
2
2 + (J1 − J2)2(R2

1 +R2
2
)]

(4.104)

E
(10)
{1,2} = 16πκR

4
1R

4
2

r10

[(
J1R

2
1 + J2R

2
2
)2 + (J1 − J2)2(R4

1 +R4
2 + 5R2

1R
2
2
)]

(4.105)
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za zb

zc

ϕ b
ac

θ
(b)
bc

zab = rabe
iϕab

z bc
=
r bc
e
iϕ

bc

Figure 4.7: Illustration of the parameter definitions in a multibody configuration involving three particles
situated at the coordinates za, zb, and zc with zab = zb − za and similar. The exterior angle ϕ b

ac is
measured from the joining line between particles a and b. The orientation angle θ(b)

bc of particle b is
measured from the line joining particles b and c to the principle axis of positive “saddle” curvature of the
particle contact line.

4.5.2 Multibody interactions
The leading order triplet interactions come from the first sum in Eq. (4.71), where a
maximum of three particle labels can be mixed. These interactions depend on the (three)
separations between each pair of particles, as well as the orientations of their principal axes,
in a way that cannot be decomposed as a sum over pairs. Since these interactions now mix
the particle coordinates, it is useful to define zab := zb− za =: rabeiϕab as well as the exterior
vertex angle ϕ b

ac := −ϕab + ϕbc between three particles situated at positions za, zb, and zc
(see Fig. 4.7). Similarly, define the angle which the principal axis of a particle at position
za makes with the joining line zab as θ(a)

ab := αa − ϕab. With these variables we can write
the final result in a coordinate-free manner.

As a consequence of dropping the self-interaction terms, the sum over the three particles’
worldlines can be written as the sum over all permutations of particle labels {1, 2, 3}. For
terms symmetric in the two endpoint worldline labels, the sum can be instead written as
twice the sum over only cyclic permutations:

perm.
{1,2,3}∑

a,b,c

→ 2

cyc.
{1,2,3}∑

a,b,c

(if symmetric under a↔ c)
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The final result is19

E
(4)
{1,2,3} = 8πκ

cyc.
{1,2,3}∑

a,b,c

R2
aR

2
bR

2
c

r2
abr

2
bc

[
SaSc cos

(
2θ(a)
ab − 2θ(c)

bc

)

+ 4SaSc cos
(
2ϕ b

ac + 2θ(a)
ab − 2θ(c)

bc

)

+ SaSc cos
(
2θ(a)
ab + 2θ(c)

bc

)
+ JaJc cos 2ϕ b

ac

]

− 16πκ

perm.
{1,2,3}∑

a,b,c

JaR
2
aR

2
bR

2
cSc

r2
abr

2
bc

cos
(
2ϕ b

ac − 2θ(c)
bc

)
. (4.106)

In the case of axisymmetric particles (Sa = 0), this reduces to the simple form [YD12]

E
(4)
{1,2,3} = 8πκ

cyc.
{1,2,3}∑

a,b,c

R2
aR

2
bR

2
c

r2
abr

2
bc

JaJc cos 2ϕ b
ac , (Sa = 0). (4.107)

Notice that this triplet term has the same order (distance−4) as the pair force (4.72).
Indeed, the pair force originates with a curvature charge polarizing a second particle,
which then interacts back with the first charge. In this triplet term the polarized second
particle instead interacts with the curvature charge of a third particle. Still, both cases
involve two curvature charges and a quadrupole polarizability. Because of this kinship, it
is actually possible to express the lowest order (axisymmetric) pair and triplet term in a
single formula. Defining γa = RaJa (no summation) and ζab = zab/

√
RaRb, the sum of all

pair- and triplet-interactions between N axisymmetric particles can be written as

E(4) = 4πκ
N∑

a=1

(∑

b6=a

γ2
b

ζ2
abζ̄

2
ab

+
∑

c 6=b 6=a
c 6=a

γcγb

ζ2
caζ̄

2
ab

)

= 4πκ
N∑

a=1

∣∣∣∣
∑

b6=a

γb
ζ2
ab

∣∣∣∣
2
.

(4.108)

This elegant formula was first derived by Kim et al. [KNO98] using rather different tech-
niques. These authors apply it to explore the interactions between N particles in special
arrangements. For instance, they prove that five identical particles placed at the corners of
a regular pentagon and subject to the potential energy (4.108) are “geometrically stable”
(i.e, (only) affine deformations of the plane leave the energy invariant). However, this result

19The angles defined have the properties ϕ b
ca = −ϕ b

ac and θ(c)
ac = θ

(c)
ca . Since cosine is even, it follows then

that all the terms in summation over cyclic permutations are indeed symmetric under a↔ c.
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actually holds only approximately, since five particles will also be subject to quadruplet and
quintuplet interactions: even though Eq. (4.108) involves the coordinates of N particles, it
is not actually an N -body potential; it only contains the pair and triplet contributions to
the full N -body potential. Quadruplet and quintuplet interactions begin to appear at orders
distance−6 and distance−8 respectively, along with further pair and triplet interactions.
Although we will not explore it here, it is possible that these contributions may disrupt the
proposed geometric stability.

We leave higher order (in multibody as well as in terms of distance dependence) terms at
this point, and move on to interactions that arise from thermal fluctuations.

4.6 Entropic interactions
We have seen above how permanent deformations on the particles propagate to other
particles and initiate interactions. The strength of these interactions were set by the elastic
modulus associated with the intervening medium. In addition to these permanent curvature
charges, however, thermal fluctuations induce fluctuating charges due to the boundary
conditions around the particles. Interactions initiated by these induced fluctuating charges
are akin to Casimir interactions from electrodynamics. To the quadratic order we have
written our theory, we have stated several times that the free energy of interaction U is
made up of two parts, one proportional to κ and the other proportional to kbT . These
Casimir-like interactions are the latter, and we refer to them as entropic since they constitute
the −TS =: U in the free energy E − TS. As mentioned previously, these interactions
are contained within all the ring diagrams of Eq. (4.60). The leading order contribution
comes from a diagram with two links, each differentiated twice at every leg, hence scaling
as (R/r)−4, and is given by the two induced quadrupolar interactions

− βU (4) =

(2)

(2)

+

(2)

(2)

. (4.109)

Evaluating the diagrams gives the well known result for pairs [GBP93a, GBP93b, GGK96b,
GGK96a, PL96, DF99a, DF99b, HW01, YRD11, YD12]

βU
(4)
{1,2} = −

∑

a6=b

[
1
2C

(2)
a C

(2)
b

∂4Gab
κ

∂̄4Gba
κ

+ 2̊C̊(2)
a C

(2)
b

∂3∂̄Gab
κ

∂̄3∂Gba
κ

]

= −(4 + 2)R
2
1R

2
2

r4 = −6R
2
1R

2
2

r4 .

(4.110)

In the above calculation, the factor of 1/2 comes from the reflection symmetry of the first
diagram across the horizontal, and as before each ˚̊C(2) comes with a factor of two.
We had quite a few examples on how to apply the Fenyman rules to obtain algebraic
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expressions, involving the Wilson coefficients and propagators, from the diagrams. From
now on, we will omit these steps.

The leading order correction to the pair interaction energy consists of induced quadrupole–
octupole interactions:

− βU (6) =

(2)

(3)

+

(3)

(2)

+

(2)

(3)

+ 2 Re

(3)

(2)

. (4.111)

After calculating the diagrams, we find the pair interaction energy [YD12]

βU
(6)
{1,2} = −

∑

a6=b
(18 + 2 + 2− 12)R

4
aR

2
b

r6 = −10R
4
1R

2
2 +R2

1R
4
2

r6 . (4.112)

where the four terms in the first line were ordered the same way as the diagrams in
Eq. (4.111). This step of the calculation was not omitted, just to highlight that not all
components of the interaction turn out to be attractive. This remains true for higher orders,
but never to the extent that the overall prefactor of βU (k) is rendered positive, as far as
we have calculated, although we do not have a rigorous proof. It is typically argued in the
context of such fluctuation-induced interactions that bringing the constrained regions closer
reduces the restriction on fluctuations, thereby making them attractive. However, when we
compute many body terms, we will see that this is not necessarily true.

It is also worth noting here that heuristic point-particle approaches based on a pointwise
localized curvature constaint, such as Refs. [DF99a, DF99b, MM02, BF03], are bound to
miss this contribution (4.112), because it rests entirely on induced multipole sources beyond
just quadrupoles (here: the octupole). In particular, it was claimed in Refs. [DF99a, BDF10]
that the subleading correction to Eq. (4.110) scales as r−8, which would be the expected
answer if interactions are restricted to induced quadrupoles, but is incorrect if that artificial
restriction is removed, as Eq. (4.111) and (4.112) show.
Continuing with the higher order corrections to the pair interaction energy, the next

order is given by the expansion

−βU (8) = + 2 Re





+ +

+ + + + .

(4.113)

We have only included diagrams that will contribute at this order, and a sum over polariz-
ability orders is implicitly contained in the vertices. Calculating the diagrams reproduces
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the result in Ref. [YD12],

βU
(8)
{1,2} =−

∑

a6=b

{(
48 · 2

2 − 2 · 24 + 0 + (12 + 3)
)
R6
aR

2
b

r8

+
(

576
2 − 2 · 144− 36

2 + 36
)
R4
aR

4
b

r8 +
(

16
4 + 4 + 1

2 + 1
2

)
R4
aR

4
b

r8

}

=− 15R2
1R

6
2 + 54R4

1R
4
2 + 15R6

1R
2
2

r8 . (4.114)

In the above calculation, the first term in parentheses corresponds to the quadrupole–
hexadecapole two-vertex diagrams, the second term corresponds to the octupole–octupole
two-vertex diagrams, and the third line corresponds to the four-vertex diagrams of
quadrupole vertices. The symmetry factors were also kept explicit for clarity.

It is clear that cranking out higher-order contributions to any desired order is a straight-
forward task, albeit cumbersome, given how the number of diagrams begins to proliferate.
However, the formalism is amenable to implementation in symbolic algebra software such
as Mathematica. This was also done up to O(R20/r20) in Ref. [YD12] and we quote the
result

βU{1,2} = − 6
χ4 −

20
χ6 −

84
χ8 −

344
χ10 −

1 388
χ12 −

5 472
χ14

− 21 370
χ16 − 249 968

3χ18 −
1 628 876

5χ20 − · · · ,
(4.115)

where it was assumed that R1 = R2 = R and χ = r/R, for the sake of a compact expression.

Multibody interactions

Let us now consider multibody entropic interactions. The leading-order is a triplet interaction
given by

−βU (6)
{1,2,3} = 2 Re

(2)

(2) (2)

= −1
2

perm.
{1,2,3}∑

a,b,c

2
κ3 Re

[
2̊C̊(2)

a C
(2)
b C(2)

c ∂3∂̄Gab∂̄
4Gbc∂

3∂̄Gca
]
,

(4.116)

where the factor of 1/2 is due to reflection symmetry of the diagram across the vertical.
Since this expression is invariant under b↔ c, we can evaluate this as twice the sum over
cyclic permutations. Recalling the exterior angle definition ϕ b

ac := −ϕab + ϕbc, we arrive at
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the final result [YD12]

βU
(6)
{1,2,3} = 4R

2
aR

2
bR

2
c

r2
abr

2
bcr

2
ca

cyc.
{1,2,3}∑

a,b,c

cos
(
2ϕ b

ac − 2ϕ c
ba

)
. (4.117)

This interaction can be attractive or repulsive, depending on the angles. However, one may
have to be more specific about what is meant by attractive (or repulsive) when there are
more than two distances involved: The distance dependence is contained in the fraction
above. If it is multiplied by a negative (or positive) quantity, then the free energy of
interaction decreases when all distances are scaled down (or scaled up) at once. Under such
an interpretation, this triplet interaction can definitely be repulsive for appropriate relative
placings of the three particles (i.e., angles ϕ b

ac). As such, particles converging in on each
other is not necessarily favorable energetically (or entropically, since these are entropic
forces). Therefore, the common conceptualization of entropic forces as arising from a desire
to free up more space for the field to fluctuate must be taken with a grain of salt.
Let us more precisely investigate the magnitude of the triplet interaction. The joining

lines between the three particles form a triangle, with the exterior angles always summing
to 2π. Following similar logic as our previous discussions of multibody configurations, we
observe that repulsion is maximal for equilateral configurations as well as evenly spaced
collinear arrangements. Similarly, we find that maximal attraction occurs when the set
{ϕ 2

13, ϕ
3

21, ϕ
1

32} is equal to {0, π/3, 2π/3}. The triangle formed by these angles is one in
which two of the particles are on top of each other (or the distance between them is infinitely
smaller than their distance to the other, to be precise). This is interesting, because it
suggests that the triplet interaction is becoming more and more attractive as the spatial
configuration of particles grows more and more (practically) similar to a pair of particles.
We take this as a hint that perhaps the attractiveness of the force has to do with to what
degree the sources can be localized into two regions.
To finish off, let us demonstrate the effectiveness of the EFT technique by considering

the leading order quadruplet interaction. This interaction simply arises from the last four
diagrams of Eq. (4.113):

−βU (8)
{1,2,3,4} =

(2)

(2)

(2)

(2) +

(2)

(2)

(2)

(2) +

(2)

(2)

(2)

(2) +

(2)

(2)

(2)

(2) . (4.118)
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Applying the usual diagrammar, we find

βU
(8)
{1,2,3,4} = −1

2

perm.
{1234}∑

a,b,c,d

R2
aR

2
bR

2
cR

2
d

r2
abr

2
bcr

2
cdr

2
da

[
8 cos(4ϕ b

ac + 4ϕ d
ca) + 8 cos(4ϕ b

ac + 2ϕ d
ca)

+ cos(2ϕ b
ac + 2ϕ d

ca) + cos(2ϕ b
ac − 2ϕ d

ca)
]
.

(4.119)

This result has not been derived previously, as far as we know.20 It admittedly looks awfully
complicated, but given how many angles and distances are involved, this ought not to be too
terribly surprising. It may be a slight relief, however, that one only requires 2× 4− 3 = 5
parameters to uniquely determine the geometry (see page 143), so much of the apparent
complexity is redundant. Perhaps the most important take home message is not the specific
form of this interactions, but rather the fact that it can be derived in a straightforward
(albeit not effortless) way.

20Except, of course, for the article [YHD14] on which this chapter is based and which it extends.
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5 Particle anisotropies

Up to this point we have only considered ideal particle models in which the particle bound-
aries project circular footprints onto the base plane. Although the particle footprints
were restricted to be axisymmetric, we have also generalized slightly to nonflat particles.
Specifically, we considered a particular case of particle anisotropy in which vertical undula-
tions hct(∂A) of the contact line at the boundary ∂A were allowed—or, more accurately,
permanent multipole moments were imposed—but the particle footprint was nonetheless
still circular. This type of contact line asymmetry is important to elastic interactions
between particles, but plays no additional role when it comes to fluctuation-induced (en-
tropic) interactions. Entropic interactions instead depend on the projected boundary shapes
∂A, but, with the exception of the conditions placed on the particles’ rigid body motions
(bobbing and tilting), is independent of hct.

Symmetry breaking at the particle contact line, due either to the boundary shape or out-of-
plane curvature, has the potential to significantly alter the behavior of particle interactions.
For example, in Chapter 4 we found that anisotropic curvature alters the leading-order
elastic interactions from ∼ 1/r4 for axisymmetric cap or wedge shapes, cf. Eq. (4.69), to
∼ 1/r2 for particles with quadrupolar (saddle) curvature, cf. Eq. (4.72). The two results
manifest in the interactions between the (isotropic) mean curvature charges Q̊(2)

i ∝ JiR2
i

and the (anisotropic) Gaussian saddle-curvature charges Q(2)
i ∝ SiR2

i (which also leaves a
trace in Q(4)

i ∝ SiR4
i ). More specifically, two anisotropic Q(2) charges interact directly to

produce an energy difference that scales as ∼ κS1S2R2
1R

2
2/r

2, whereas two Q̊(2) charges
may only interact indirectly through an induced C(2)-polarization, giving a higher-order,
isotropic result ∼ κJ2

i R
2
i R

2
1R

2
2/r

4 (which, incidentally, also breaks superposition). For fluid
surfaces characterized by surface tension—the model of Chapter 3—no such difference can
occur since the surface is agnostic to mean curvature (in that there is no way to impose a
mean curvature that “speads out” from the place of imposition) and, hence, anisotropic
curvatures are required for elastic interactions to exist (see Section 3.5.1).
It is conceivable, however, that anisotropies of the particle boundaries may alter the

leading-order entropic interactions. Indeed, such interactions are influenced by the symme-
tries of the curvature-response spectrum (i.e., polarizabilities), which inherit the symmetries
of the particle boundaries. This question was addressed in part by Oettel and cowork-
ers [LNO08, NO09] by studying ellipses, and they found that anisotropic effects do not
change the order, but instead append orientation-dependent corrections to the leading-order
asymptotics, except in the case of particles with fixed heights, for which the leading-order
result remains isotropic and long ranged (double logarithmic). Their results follow from
a particularly involved calculation in which the functional integral is entangled with an
elliptic multipole expansion in a way that obfuscates a generalization to arbitrary geometries.
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5 Particle anisotropies

In contrast, the EFT formalism disentangles the boundary expansion from the partition
function as a much simpler matching problem, so the behavior can be determined from the
form of the effective Hamiltonian alone.
A question not addressed is how anisotropies apply to multibody interactions. In

Chapter 3, the pure triplet interaction was found to begin at 1/r4
ijr

4
jk, rather than the

expected ∼ 1/r2
12r

2
23r

2
31 from dimensional analysis (the vanishing of this term is understood

most succinctly by the diagrammatic argument in Section 3.6.3). Boundary anisotropies
are expected to violate this special case and allow for the lower-order contributions. We
will see in Section 5.3.3 that this is indeed the case.

In this chapter we will explore the consequences of relaxing isotropy of the particle
boundaries and calculate the anisotropic contributions to particle interactions. To make
connection with previous studies, we will consider the simplest case of broken symmetry:
particles with elliptic boundaries. This choice has the added advantage of smoothly
interpolating from disk-like objects, for which we may directly compare with the results of
Chapter 3, and rod- or needle-like objects, which represent the most extreme asymmetry.
Unlike the previous chapters, we will forgo a discussion of elastic interactions in favor of
a focus on entropic interactions. This is because the broken symmetry of the (projected)
boundary shapes is encoded in the particle polarizabilities, which govern each particle’s
response to external fields and hence completely dictate fluctuation-induced interactions.
Although permanent sources necessarily break rotational symmetry as well, we have already
considered them in their most general form and little further insight is to be gained.

Model and boundary conditions

Fluid surfaces characterized by surface tension were the primary focus of Chapter 3, so
instead of repeating the discussion of energetics here, we refer the reader the early sections
of that chapter. Here we will summarize the necessary ingredients.
We describe the fluid surface in the Monge gauge through a height function h(x) with

respect to an appropriate reference base plane, which we take to be the equilibrium surface in
the absence of fluctuations. At a finite temperature, entropic contributions are characterized
by the energy kbT , which when compared with the surface energy σ`2 defines a length scale
`m =

√
kbT/σ characterizing the amplitude of fluctuations. As discussed in Chapter 3,

this length scale is extraordinarily small and comparable to the molecular length scale
(`m ∼ 10−10 m for an air–water interface at room temperature). To avoid factors of σ and
β = 1/kbT from floating around—which can be a distracting nuisance—in this chapter we
will work with the dimensionless height function φ := h/`m.

The behavior of the fluid surface is described through the energy functional, or bulk
Hamiltonian,

βH0[φ] = 1
`2m

∫

Spr
d2x

[√
1 + `2m(∇φ)2 − 1

]

=
∫

Spr
d2x

1
2(∇φ)2 +O(`2m),

(5.1)
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where Spr is the region defined by the projection of the surface onto the base plane. In the
second line we applied the small-gradient approximation, which is valid for small deviations
from flatness and justified by the negligible O(`2m) corrections. In cases that break the
vertical translation symmetry of the bulk surface energy, long-wavelength fluctuations will
build up, leading to divergences and pathologies. In these circumstances, we will tame them
by including a gravitational potential,

βHg[φ] =
∫

Spr
d2x

1
2
φ2

`2c
, (5.2)

where `c =
√
σ/|∆ρ|g is the capillary length and will serve as a large-distance regulator.

After calculating observables, we will take the limit `c → ∞. This will restore the bulk
translation symmetry, but allow the intermediate steps to be well-posed.
Finally, the inclusion of particles has the effect of removing compact domains from

the surface (and its projection). We take the surface to be infinite, so for a collection
of N particles, each with projected areas Aα, the integration domain can be written as
Spr = R2 \⋃N

α=1Aα. As usual, we will take the surface to be pinned to the boundary of
each particle α with some contact line profile φctα (x) where x ∈ ∂Aα. We will not consider
permanent sources of surface deformation, so each contact line will be taken as flat and
therefore completely parametrized by the allowable rigid-body motions of the corresponding
particle, i.e., vertical bobbing and out-of-plane tilt (the reader is referred to Fig. 3.2 for
an illustration). As in Chapter 3, we will consider the following three types of particle
boundary conditions:

(BC 1) The position and tilt are fixed: φ(∂Aα) = 0.

(BC 2) The vertical position may fluctuate freely but the tilt is fixed: φ(∂Aα) = φ0,α.

(BC 3) The vertical position and tilt may both fluctuate freely:
φ(∂Aα) = (φ0,α + sα · x)|∂Aα .

In the above enumeration, φ0,α and sα respectively parametrize the height and tilt of
particle α with respect to the base plane, and may fluctuate with the surface without
costing any energy. Given the subtleties associated with fixing the height, we will first
discuss (BC 2) and (BC 3), and defer the discussion of (BC 1) to Section 5.2.4.

5.1 Symmetry revisited
The gravity-free, small-gradient surface Hamiltonian (5.1), with Spr = R2, enjoys the
following symmetries:

T1. Reflection across the base plane: φ→ −φ.

T2. Vertical translation: φ→ φ+ φ0, where φ0 is a constant.
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T3. Rotation (isotropy) around a vertical axis centered at any point in the base plane
(homogeneity): x→ R x for any x ∈ R2.

T4. Conformal transformations: z → F (z) for any analytic function F and z ∈ C ' R2.

The fourth symmetry was neglected in Chapter 3, but we will make use of it here. With the
inclusion of particles, the homogeneity condition on T3 is necessarily broken as it makes
the boundary points unique. Earlier when we considered an isolated circular particle, the
rotational symmetry was retained about the particle center, which simplified both the
construction of the effective Hamiltonian and the background-response boundary value
problem (BVP). For arbitrarily-shaped particles, T3 is broken completely (in general). This
is where T4 comes in. Although the effective Hamiltonian will be more complicated, the BVP
can be conformally mapped onto a circular boundary where the solution is straightforward,
and then mapped back.

5.1.1 EFT for particles of arbitrary shape
As usual, we will take the characteristic particle sizes to be much smaller than the interparti-
cle separations. This allows for the accommodation of particles into the surface Hamiltonian
through a “point-particle”-like derivative expansion evaluated at each particle position,
or worldline. This adds to the unconstrained Hamiltonian H0[φ] a worldline Hamiltonian
∆H[φ] to give an effective Hamiltonian Heff = H0 + ∆H. Generically, ∆H is constructed
out of all possible operators C(k) · Ok[φ] that obey the symmetries (and isometries) of the
particle boundaries. The prefactors C(k) are the usual Wilson coefficients that encode the
short-distance information regarding particle-field responses. Since we have taken φ to be
dimensionless, the dimensions of each operator Ok[φ] are carried by derivatives. Here, there
are two relevant length scales for a single particle: the characteristic particle size s, and the
molecular length scale `m—defined above—which characterizes the amplitude of vertical
fluctuations and is thus associated with φ. The particle size s essentially characterizes the
length over which gradients in φ may be affected (and vice versa), and is thus associated
with derivatives. Hence, denoting the overall power of φ by nk and the total number of
derivatives by dk, we can write β∆H up to some unknown dimensionless (possibly tensor)
coefficients c(k),

β∆H[φ] =
∑

α

∑

k

C(k)
α · Ok[φ(xa)]

=
∑

a

∑

k

`nk−2
m sdkα c(k)

α · Ok[φ(xa)],
(5.3)

where nk+dk−2 = 0. This series, although complete, may include redundancy. As exploited
multiple times in the preceding chapters, operators containing δH0/δφ can be removed by
appropriate field redefinitions without affecting the physics, so long as we only calculate
with on-shell quantities, i.e., with fields φ satisfying the bulk Euler-Lagrange equation
δH0/δφ = 0. In this case, the condition is −∇2φ = 0, eliminating all terms containing a
Laplacian. Terms with nk > 2 correspond to nonlinearities in H0 (cf. Eq. (5.1)), so in the
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small-gradient approximation nk 6 2, eliminating the dependency on `m and truncating
∆H at quadratic order in φ.

Returning to symmetries, we again note that the particle boundary conditions can
either respect or break the bulk symmetries. Those that break them require external
forces, such as wetting properties of the particle surface to pin the contact line or external
mechanisms that fix the particles’ vertical positions or orientations. Hence, the terms
in ∆H can be categorized as symmetry-breaking, and thus couple to external source
terms, or symmetry-preserving. Since the presence of particles will always break some
symmetry, namely homogeneity, we refine these categories to distinguish between those
that source permanent surface deformations or only respond to background deformations.
For the flat, free particles we consider, no permanent deformations are imparted and
no external mechanism fixes the vertical positions. That is, T1 will always hold, and
therefore eliminate any terms linear in φ. Additionally, for (BC 2) and (BC 3), T2 will also
hold and therefore impose the restriction that all field instances must carry at least one
derivative. For (BC 3) in particular, the freedom to tilt out of the plane eliminates—in the
small-gradient approximation—any field instance with one derivative (see the discussion in
Section 3.3.1). As mentioned earlier, T3 is broken in general. In previous chapters, rotation
invariance restricted the Wilson coefficients to be scalars. However, for arbitrary shapes
we must construct scalar terms out of tensors, such as ∂iφCijk ∂j∂kφ, or more generally
∂i1 · · · ∂inφC

(n,m)
i1···inj1···jm∂j1 · · · ∂jmφ ≡ ∂nI φC

(n,m)
IJ ∂mJ φ in multi-index notation.1 The most

general worldline Hamiltonian can therefore be written as

β∆H[φ] =
∑

α

∑

n,m

∂nI φ(xa)C(n,m)
α,IJ ∂mJ φ(xa), (5.4)

where n,m > 1 for (BC 2) and n,m > 2 for (BC 3). It follows from dimensional analysis
that the Wilson coefficients scale as [C(n,m)

IJ ] ∼ sn+m, and from exchange symmetry that
the index sets I and J are (independently) fully symmetric and C(n,m)

IJ = C
(m,n)
JI . Although

these terms break rotation symmetry, they do not permanently deform the surface. Much
like how a conductor polarizes in the presence of an electric external field, these particles
respond via induced deformations in response to background surface curvature. Just as in
previous chapters, we will appropriately interpret and refer to the Wilson coefficients as
polarizabilities.

The present form for ∆H requires significant index manipulation and will result in some
rather unwieldy expressions. However, the previous two chapters have demonstrated that a
change of variables to complex coordinates z = (z, z̄) with z = x+ iy and z̄ = z∗ tends to
simplify matters dramatically. Without attempting to express the relationship with the
yet undetermined polarizability tensors above, we may directly reconstruct the worldline
Hamiltonian using the Wirtinger derivatives ∂ := (∂x − i∂y)/2 and ∂̄ := (∂x + i∂y)/2. Since
∇2 ≡ 4∂∂̄, the elimination of redundant terms means each field instance can be acted on by
strictly ∂- or ∂̄-derivatives, but not both. The most general worldline Hamiltonian satisfying

1For circular particles, the coefficients would reduce to C(n,m)
i1···inj1···jm

→ C(n)δnmδi1j1 · · · δinjn .
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the symmetries discussed above is therefore simple to write down, and takes the form

β∆H[φ] =
∑

α

∑

n,m

[
Cnmα ∂nφ ∂̄mφ+ 1

2χ
nm
α ∂nφ∂mφ+ 1

2 χ̄
nm
α ∂̄nφ ∂̄mφ

]∣∣∣∣
z=zα

, (5.5)

where each term is evaluated at the particle position zα, and again n,m > 1 for (BC 2)
and n,m > 2 for (BC 3). The polarizabilities all scale like above as ∼ sn+m. The only
remaining restrictions are that Cnm is Hermitian and χ̄nm = (χnm)∗, which follows from
the requirement that β∆H be real, and that both χnm and χ̄nm are symmetric, which
follows from the exchange of derivatives. We have included the factors of 1/2 to account for
double counting under an index swap, but it also conveniently places the conventional half
in front of each squared field terms (∂nφ)2 and (∂̄nφ)2.

5.2 EFT for elliptical particles
Equation (5.5) is the general form for any anisotropic particle. However, just as the
permitted rigid-body particle motions put constraints on the n = 0 and n = 1 terms,
additional symmetries associated with the particle boundary conditions or shape may lead
to further restrictions (or vanishing) of some terms. For example, in the case of the circular
disks considered in Chapter 3, there is complete rotational symmetry for each particle
α in isolation. Applying the transformation (z − zα) → eiθ(z − zα) with θ ∈ [0, 2π) to
the single-particle version of Eq. (5.5), and enforcing invariance, leads to the conditions
Cnm → Cnmδnm and χnm = χ̄nm = 0, and reproduces the worldline Hamiltonian (3.71)
(and (3.80)). Hence, particle anisotropies must be encoded in the χnm and χ̄nm tensors
as well as the off-diagonal elements of Cnm. For ellipses, the primary particle shape
considered in this chapter, the symmetry is limited to discrete rotations by an angle π, i.e.,
(z − zα)→ −(z − zα). Since the worldline Hamiltonian must obey this same symmetry, we
find that the polarizabilities for an ellipse are reduced to only those whose indices obey
n+m ∈ 2N; that is, the sum n+m must be even.
To determine the polarizabilities, we must perform an appropriate matching procedure

such that the EFT correctly reproduces the physics at large distances. That is, any
observable calculated in the EFT must asymptotically match the result obtained by the
full BVP. The aim then is to find a convenient set of observables such that their calculation
in the full theory is as simple as possible. In line with previous chapters, the obvious choice
is to employ the background field method in which we introduce some background surface
deformation φbg and compute from the full and effective theories the response δφ, such that
the total field φ = φbg + δφ satisfies the boundary conditions, and match the two results.
Since each particle can be independently characterized by its response to external fields, we
need only compute the response for each particle in isolation.
We first examine the EFT response for a general background. The form of the response

will motivate a convenient choice of background field, which we will then apply to the full
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theory boundary value problem. We will perform the calculations first for (BC 2), and later
discuss the modifications to accommodate (BC 1) and (BC 3).

5.2.1 Effective response
The coupling between the particle and surface generates an effective source, induced by
the imposed background φbg. Since we have chosen an on-shell operator basis for ∆H, we
must require any permissible background field to satisfy (δH0/δφ)|φbg = 0, or equivalently
−∇2φbg = 0. Setting φ = φbg + δφ in Eq. (5.5) and taking the terms linear in δφ therefore
gives the effective source for this background. Without loss of generality, we will take the
particle to be positioned at the origin and find the (dimensionless) effective source in the
usual way:

ρ(z | φbg) = − δ(β∆H)
δφ(z)

∣∣∣∣
φ=φbg

= −
∑

n,m>1

[
Cnm(−∂)nδ(z) ∂̄mφbg(0) + χnm(−∂)nδ(z) ∂mφbg(0)

]
+ c.c.,

(5.6)

where c.c. stands for the complex conjugate. The response is given by the convolution

δφeff(z | φbg) =
∫

d2z′G(z − z′)ρ(z′ | φbg), (5.7)

where
G(z − z′) = − 1

4π ln
[
(z − z′)(z̄ − z̄′)

]
(5.8)

is the Green function for the Laplacian2 −∇2 ≡ −4∂∂̄, and d2z′ = d(Re z′) d(Im z′),
resulting in

δφeff(z | φbg) = −
∑

n,m>1
(−∂)nG(z)

[
Cnm ∂̄mφbg(0) + χnm ∂mφbg(0)

]
+ c.c. (5.9)

The form of both the effective source (5.6) and response (5.9) suggests choosing a general
set of background multipole fields

φ
(n)
bg (z | ϑ) = A(n)(zne−inϑ + z̄neinϑ), (5.10)

where A(n) ∈ R and ϑ is an arbitrary rotation introduced to double the parameters and allow
both Cnm and χnm to be matched for each background (otherwise the matching condition
would be underdetermined). These multipole backgrounds are particularly desirable since

2Technically, the argument of the Green function should be dimensionless, so it should be divided by
some appropriate length scale. However, for the (BC 2) and (BC 3) cases, such a constant will be immaterial
since the Green function will always be acted upon by derivatives. In the case of (BC 1), the length scale is
significant an must be included (cf. Eq. (5.32)).
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the derivatives in Eq. (5.9) will independently pick off one multipole order at a time via

∂mφ
(n)
bg (0) = A(n)n! e−inϑδnm. (5.11)

Plugging the multipole background into Eq. (5.9) and using

(−∂)nG(z) = (n− 1)!
4πzn (5.12)

gives the effective response

δφ
(n)
eff (z | ϑ) = −A(n)n!

∑

k>1

(k − 1)!
4πzk

[
Ckneinϑ + χkne−inϑ

]
+ c.c. (5.13)

5.2.2 Full-theory response
The full theory response is a solution to the Laplace boundary value problem ∂∂̄ δφ = 0
for the outer domain z ∈ R2 \ A, where A is the area of the ellipse projected onto the
base plane, subject to the boundary condition φ|∂A = (φbg + δφ)|∂A = φ0, where φ0 is the
dimensionless free parameter of (BC 2) describing the height above the base plane, and
δφ(|z| → ∞)→ 0. Since global height translations are a symmetry of the (BC 2) theory,
φ0 will take on the value of the total background surface height so that the symmetry
remains respected. Given this symmetry, we may assume that the particle has already
translated to the appropriate vertical position of the surface and, accordingly, we may safely
ignore any constants that arise during the following calculations, saving ourselves from an
unnecessary technical distraction. We will revisit the constants that may appear when we
discuss monopoles.

Conformal mapping

As evident from our analysis in Chapter 3, this Dirichlet problem is simple for a circular
boundary of radius R. Indeed, for backgrounds that can be put into a Laurent series

φbg(z) =
∑

k>0

[
Ak

( z
R

)k
+Bk

(
R

z

)k]
+ c.c., (5.14)

the response is given by

δφ(z) = −
∑

k>0

[
(A∗k +Bk)

(
R

z

)k
+ c.c.

]
, (5.15)

as can be seen by plugging in z = R eiϕ. With this in mind, we exploit the conformal
symmetry T4 of Laplace’s equations and map the ellipse BVP to a circle, solve using the
simple replacement above, and map back (see Fig. 5.1).
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(
φbg ◦ F

)
(w) = φ̃bg(w)

δφ̃(w)

φbg(z)

δφ(z) =
(
δφ̃ ◦ F−1)(z)

Re w

Im w

Re z

Im z

w = F−1(z)

z = F (w)

easy hard

R

a

b

Figure 5.1: Conformal mapping between circle (w-space) and ellipse (z-space) boundaries. The mapping
takes a background field φbg(z) imposed on an ellipse to a new field φ̃bg(w) =

(
φbg ◦ F

)
(w) imposed

on a circle, for which calculating the response δφ̃(w) is easy and follows from Eq. (5.15). Mapping back
gives the ellipse response δφ(z) =

(
δφ̃ ◦ F−1)(z).

The conformal transformations between an ellipse (z-space) of semi-major axis a and
semi-minor axis b, with the major axis aligned along the real axis, and a circle (w-space) of
radius R are

z = F (w) = 1
2

(
s+
w

R
+ s−

R

w

)
(5.16)

and
w = F−1(z) = R

s+

(
z +

√
z2 − s+s−

)
, (5.17)

where s+ := a + b and s− := a − b. The quantity √s+s− =
√
a2 − b2 =: f is the ellipse

focus. The expression for F−1(z) results from solving a quadratic equation, where it is
necessary to chose the (+) sign so that the ellipse and circle boundaries correspond.3 Since

3To clarify, consider the circular boundary parametrization w = R eiϕ. Applying the map (5.16) produces
the boundary parametrization of the ellipse: z = 1/2

(
s+eiϕ + s−e−iϕ) = a cosϕ+ ib sinϕ. Conversely, the

inverse transformation has a sign ambiguity and, using z2 − s+s− = [1/2(s+eiϕ − s−e−iϕ)]2, leads to

w± = (1± 1)
2 R eiϕ + s−

s+

(1∓ 1)
2 R e−iϕ.

It is clear then that choosing w+ gives the correct circle boundary w+ = R eiϕ.
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we are considering points z outside the ellipse, the branch cut for the square root can be
conveniently chosen as the interval (−f, f), which lies within the ellipse.4
Under this transformation, the background field (5.10) becomes

φ̃
(n)
bg (w | ϑ) = A(n)

2n

[(
s+
w

R
+ s−

R

w

)n
e−inϑ +

(
s+
w̄

R
+ s−

R

w̄

)n
einϑ

]
. (5.18)

To solve the circle BVP, we first expand (5.18) as a binomial series using
(
s+
w

R
+ s−

R

w

)n
=

∑

`<n/2

{(
n

`

)
sn−`+ s`−

(w
R

)n−2`
+
(
n

`

)
s`+s

n−`
−

(
R

w

)n−2`
}

+
even

(
n

n/2

)
(s+s−)n/2,

(5.19)

where the last term only appears when n is even. This extra constant term can be ignored
due to the height-translation symmetry of (BC 2); however, we must revisit it later when we
discuss (BC 1). The above series now puts Eq. (5.18) in the required form (cf. Eq. (5.14)),
so the response follows from the appropriate substitutions à la Eq. (5.15):

δφ̃(n)(w | ϑ) = −A
(n)

2n
∑

`<n/2

[(
sn−`+ s`−einϑ + s`+s

n−`
− e−inϑ

)(R
w

)n−2`
+ c.c.

]
. (5.20)

To transform back to the ellipse BVP (z-space), we set w = F−1(z) and use the expansion

1(
1 +
√

1− x
)n = n

2n
∞∑

k=0

1
n+ 2k

(
n+ 2k
k

)(x
4

)k
(5.21)

to produce a proper power series in 1/z, and thus find the full-theory ellipse response,

δφ
(n)
full(w | ϑ) =

∑

`<n/2

∞∑

k=0
C(n, `, k) 1

zn−2`+2k + c.c., (5.22)

4Choosing the appropriate branch cut depends on whether z is inside or outside the ellipse. In general,
we can write

√
z2 − f2 =

√
(z + f)(z − f) = e i

2 (θ++θ−)√r+r−, where r± = |z ± f | and θ± = arg(z ± f). If
z is outside the ellipse, the most convenient choice for the branch cut is between the two branch points,
z ∈ (−f, f), corresponding to the principal arguments θ± ∈ (−π, π]. If instead z is within the ellipse we
should choose the branch cuts z ∈ (−∞,−f) ∪ (x,∞), corresponding to the principal angles θ+ ∈ [0, 2π)
and θ− ∈ (−π, π]. Using the conventional definition for the principal square root,

√
z = e i

2 Arg z√|z| where
Arg z ∈ (−π, π], we could instead write

√
z2 − f2 ≡

√
z + f

√
z − f .
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where

C(n, `, k) = −A
(n)

2n

(
n

`

)(
sn−`+ s`−e

inϑ + s`+s
n−`
− e−inϑ

)

×
(s+

2

)n−2` n− 2`
n− 2`+ 2k

(
n− 2`+ 2k

k

)(s+s−
4

)k
.

(5.23)

5.2.3 Matching
To match the polarizabilities, we wish to set δφ(n)

eff
!= δφ

(n)
full. So that we can directly compare

coefficients, we first put (5.22) into more convenient form by re-indexing the sums. We omit
the details for brevity, but after performing the appropriate index manipulations we obtain

δφ

(
n even
n odd

)
full =

∞∑

k=
{
even
odd

}
min[n,k]∑

`=
{
even
odd

} C
(
n,
n− `

2 ,
k − `

2

) 1
zk

+ c.c., (5.24)

where both sums are over only positive even (odd) integers when n is even (odd). Comparing
the coefficients to that of (5.13) and simplifying finally gives the full set of polarizabilities:

Cnm =
min[n,m]∑

`=
{
even
odd

}
4π`

2n+mn!m!

(
n
n−`

2

)(
m
m−`

2

)
(s+s−)

n+m
2

(
s+
s−

)`
, (5.25)

χnm =
min[n,m]∑

`=
{
even
odd

}
4π`

2n+mn!m!

(
n
n−`

2

)(
m
m−`

2

)
(s+s−)

n+m
2

=





2πnm
2n+m(n+m)

(s+s−)n+m
2

[(n2 )!]2[(m2 )!]2 , n,m even

8π
2n+m(n+m)

(s+s−)n+m
2

[(n−1
2 )!]2[(m−1

2 )!]2
, n,m odd

(5.26)

where again the sums are over ` strictly even or odd depending on whether both n and m
are even or odd. Recall that if n+m 6∈ 2N, meaning one is even and the other is odd, then
Cnm = χnm = 0.

Rotated ellipse. The conformal map we considered treats the special case in which the
ellipse’s major principal axis is aligned with the x-axis and, consequently, this matching
procedure gives the polarizabilities for a single ellipse in the same configuration. If we
instead consider an ellipse rotated an angle θ from the x-axis, we can equivalently rotate the
coordinate system by −θ (i.e., z → eiθz). This has the effect ∂ → e−iθ∂ and, applying it to
Eq. (5.5) and enforcing coordinate-invariance of the energy, it follows that the polarizabilities

219



5 Particle anisotropies

are modified via
Cnm → ei(n−m)θCnm and χnm → ei(n+m)θχnm, (5.27)

where the values of Cnm and χnm are unchanged from Eqs. (5.25) and (5.26).

Tilt freedom. For the case of (BC 3), the tilt degree of freedom allows the ellipse to tilt
out of the plane without costing energy so as to align with a dipole background field. Dipole
backgrounds are linear in z, so this freedom forbids terms with fewer than two derivative.
We therefore conclude that Cnm = χnm = 0 if n = 1 or m = 1. Since the higher-order
multipole fields do not impose an overall slope on the surface, it follows that the higher-order
matching is unaffected and the remaining polarizabilities are the same as in (BC 3).

Limiting cases: rods and disks

The polarizabilities of thin rods and disks are natural limiting cases of our ellipse model.
For a thin rod of length L, the full set of polarizabilities is given by (5.25), (5.26), and
(5.44)—with the appropriate subsets vanishing depending on the boundary conditions—with
a→ L/2 and b→ 0 (implying s± → L/2), which does not change the overall form of the
expressions. However, for a rotationally symmetric disk we expect the anisotropic terms
to vanish. Indeed, setting a, b → R (implying s+ → 2R, s− → 0) gives χ = χ̄ = 0. For
Cnm, the only non-vanishing terms are those for which ` = (n+m)/2. Since ` 6 min[n,m],
taking n > m leads to (n+m)/2 6 m =⇒ n ≤ m, therefore n = m. Hence, for disks

Cnm = 4πR2n

n!(n− 1)! δnm (5.28)

which agrees with the results of Chapter 3 (see Technical Note 3.1), and Refs. [YRD12]
and [Rot12] up to a factor of σ/2n due to the difference in definition.

5.2.4 Monopoles
For the case of (BC 1), the particle constraint breaks the T2 vertical translation symmetry,
so we must also include in the effective Hamiltonian the n = 0 and m = 0 terms (along
with the n = 1 and m = 1 terms required for (BC 2)). We will refer to these as monopole
terms and distinguish them by writing

β∆Hm[φ] =
∑

α

[
1
2M

(0)
α φ2 +

∑

n>0
even

(
M (n)
α φ∂nφ+ M̄ (n)

α φ ∂̄nφ
)]∣∣∣∣

z=zα

, (5.29)

where M̄ = M∗ and the condition that n is even follows from the π-rotation symmetry of
each ellipse. The first term is the familiar “charge reservoir” contribution (cf. Eq. (1.35) of
Chapter 1 and, in particular, Eq. (3.81) of Chapter 3) that accounts for the external work
required to freeze the particle’s vertical position, analogous to the work done by a battery
to maintain a conductor’s electrostatic potential. The remaining terms account for the
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anisotropies of these boundary “charges.” These terms present a particular challenge: the
monopole field, proportional to ln |x|, exhibits a long-distance divergence and is therefore
ill-defined as it stands. For a sensible theory, we must regulate the Hamiltonian so as to
dampen the long-range correlations.
Regularization can be realized in a physically-motivated way by accounting for the

gravitational energy of the surface via Eq. (5.2). In the usual field theory parlance, this is
equivalent to adding a small “mass” term into the bulk Hamiltonian:

βH0[φ]→ βH0[φ] + βHg[φ] = 1
2

∫
d2x
[
(∇φ)2 + `−2

c φ2]. (5.30)

This change in the bulk Hamiltonian does not alter the form of our effective worldline
Hamiltonian ∆H[φ] + ∆Hm[φ]. The appearance of ∂∂̄φ in any operator can be traded for
`−2
c φ by the bulk Euler-Lagrange equation (5.31), and the prefactor can be absorbed into
one of the pre-existing terms. This implies, of course, that the polarizabilities will therefore
acquire a dependence on `c. However, the capillary length is assumed large, so that we have
the scaling hierarchy a, b� r = |x| � `c, and we will ultimately take `c →∞. Hence, the
polarizabilities that are regular in the limit `c →∞ should remain unaffected, namely Cnm
and χnm, but all M (n>0) should vanish. However, the order of limits matters: Introducing
`c globally breaks the bulk vertical translation symmetry, but the limit `c →∞ restores it.
If `c is meant to regulate the previously ill-posed monopole problem, `c must be treated as
large but finite until the end of a calculation, after which the limit `c →∞ may be safely
taken. We have seen examples in Chapter 3 in which being cavalier about this technicality
can lead to inconsistent results. In this chapter, we will provide brief commentary only
when the issue is encountered.

With the regulator in place, the bulk Euler-Lagrange equation becomes

δ(βH0)
δφ

=
(
−∇2 + `−2

c
)
φ = 0. (5.31)

The bulk Green function is then the modified Bessel function of the second kind, which
limits to a logarithm for large `c (see Eq. (3.34)):

G(x) = 1
2πK0(r/`c)

`c→∞−−−−→ 1
2π ln

(
2`c
γer

)
, (5.32)

where γe = eγe and γe is the Euler-Mascheroni constant.

Effective response

To match the coefficients, we proceed as before by introducing a background field φbg,
computing the response δφ in both the effective and full theories, and comparing. Considering
only the monopole terms ∆Hm for a single particle at the origin, we find the background
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induces an effective source

ρm(z | φbg) = −M (0)δ(z)φbg(0)

−
∑

n>0
even

{
M (n)[δ(z) ∂nφbg(0) + φbg(0) (−∂)nδ(z)] + c.c.

}
. (5.33)

Convolving with the bulk Green function gives effective linear response

δφm(z | φbg) = −M (0)G(z)φbg(0)

−
∑

n>0
even

{
M (n)[G(z) ∂nφbg(0) + (−∂)nG(z)φbg(0)] + c.c.

}
. (5.34)

Finally, using the asymptotic form of the Green function (5.32) with Eq. (5.12), we obtain
the result

δφm(z | φbg) = −M
(0)

2π ln
(

2`c
γe|z|

)
φbg(0)

−
∑

n>0
even

{
M (n)

[
1

2π ln
(

2`c
γe|z|

)
∂nφbg(0) + 1

4π
(n− 1)!
zn

φbg(0)
]

+ c.c.
}
.

(5.35)

Full-theory response

Since the bulk Hamiltonian with the “mass” term also breaks the T4 conformal symmetry,
we unfortunately cannot use the mapping trick as before to compute the full-theory response.
Instead, based on the geometry of the system, it will prove convenient to work in confocal
elliptic coordinates, defined by

x = f cosh ξ cos η (5.36a)
y = sinh ξ sin η, (5.36b)

where ξ ∈ [0,∞), η ∈ (−π, π], and the focus f =
√
a2 − b2. Curves of constant ξ give

ellipses, as can be seen by rearranging the defining equations:
(

x

f cosh ξ

)2
+
(

y

f sinh ξ

)2
= cos2 η + sin2 η = 1. (5.37)

By the appropriately “reverse” argument, curves of constant η are hyperbolas. In the
present case, the boundary of our ellipse results from setting f cosh ξ0 = a and f sinh ξ0 = b,
which leads to

fe±ξ0 = a± b =⇒ ξ0 = 1
2 ln

(
a+ b

a− b

)
. (5.38)
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In complex variables, the defining relations (5.36) can be written compactly as

z = f cosh(ξ + iη). (5.39)

To extract ξ we must invert the hyperbolic cosine. From the definition of cosh, we find

feξ+iη = z ±
√
z2 − f2. (5.40)

The sign ambiguity is resolved by defining the branch cuts of the square root as before and
requiring the ellipse boundary to be consistent. Just as in Eq. (5.17), we take the (+) sign.5

The matching procedure requires an appropriate background field and response solution
pair. The complete set of solutions for the full theory—i.e., Eq. (5.31) with boundary
conditions—is provided in Appendix C, Section C.2. Using the n = 0 background field of
Eq. (C.15), for which φ(0)

bg = A(0) and ∂nφ(0)
bg (0) = 0, the full-theory response is

δφ
(0)
full(ξ, η) = −A(0) ln

(feξ
4`c γe

)

ln
(
a+b
4`c γe

) . (5.41)

Matching

Now, to compare the full and effective responses—respectively Eqs. (5.41) and (5.35) with
φbg = A(0)—we must choose to express the results in either complex or elliptic coordinates.
Either choice will require an expansion, but the expansion of (5.41) in complex coordinates
is somewhat simpler (cosh−1 z versus 1/ coshn z). This is accomplished by first noting that

f2e2ξ =
∣∣∣z +

√
z2 − f2

∣∣∣
2
, (5.42)

which follows from multiplying Eq. (5.40) by its complex conjugate, and then expanding
the logarithm of (5.41) for large z:

ln
(
feξγe
4`c

)
= 1

2 ln
(∣∣∣∣
zγe
4`c

∣∣∣∣
2∣∣∣1 +

√
1− (f/z)2

∣∣∣
2
)

= ln
( |z|γe

2`c

)
− 1

2
∑

n>0
even

(n− 1)!
2n
[(
n
2
)
!
]2
[(

f

z

)n
+
(
f

z̄

)n]
.

(5.43)

5Consistency is checked by evaluating (5.40) at any point (ξ0, η) on the boundary, for which the left
side gives feξ0+iη = (a+ b)eiη. Plugging z = f cosh(ξ0 + iη) into the right side and choosing (+) (and the
appropriate branch cut) recovers the same value.
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Plugging this into (5.41) and comparing with (5.35) (with φbg = A(0)) yields the monopole
polarizabilities

M (n) = 2π
2n
[(
n
2
)
!
]2

(a2 − b2)n/2

ln
( 4`c

(a+b)γe

) . (5.44)

For an ellipse rotated an angle θ from the x-axis, the monopole polarizability is modified to
M (n) → einθM (n), similar to Cnm and χnm in Eq. (5.27).

Higher-order polarizabilities. Since the bulk Hamiltonian has been modified, the question
arises as to whether the higher-order polarizabilities will be affected. At first glance, it
appears they may be unaltered since the higher order terms respect the conformal symmetry
and the associated effective response involves only derivatives of the Green function, which
are nonsingular in the `c → ∞ limit. But, due to the boundary conditions we cannot
ignore the constant terms generated in (5.19). However, this term behaves like the constant
background field introduced above and, as shown in Section C.3, the monopole terms
conspire to exactly cancel it, thereby leaving Cnm, χnm, and χ̄nm with the same values
found for (BC 2).

Limiting cases. Just as for Cnm and χnm, the fully anisotropic limit of a thin rod or
needle of length L, the form of the expression (5.44) does not change significantly, only the
replacements a → L/2 and b → 0 (i.e., s± → L/2 =⇒ f → L/2) is required. However,
for a rotationally-symmetric disk of radius R (i.e., a, b→ R =⇒ f → 0), the anisotropic
pieces M (n>1) all clearly vanish, and the only surviving monopole polarizability is

M (0) = 2π
ln
( 2`c
Rγe

) , (5.45)

in agreement with Chapter 3, and Ref. [YRD12] up to normalization.

5.3 Entropic interactions: free particles
The particle boundaries locally constrain thermal fluctuations which consequently induce
surface-mediated, entropic interactions. The interaction potentials appear as differences
associated free energy, and depend on the spatial arrangements and orientations of the
particles. In particular, we write the interaction energy U as the difference in the free
energy with respect to the particle-free surface,

−βU := −β(F − F0) = ln(Z/Z0)

=
∞∑

q=0

1
q!〈(−β∆H[φ])q〉c,

(5.46)
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where Z0 is the particle-free (bulk) partition function, the correlation functions are (Gaussian)
averages over the bulk Hamiltonian,

〈· · ·〉 = 1
Z0

∫
Dφ (· · · ) e−βH0[φ], (5.47)

and the sum is over all connected correlation functions (cumulants). In this section we will
first consider the simpler case of particles with the freedom to fluctuate vertically with the
surface, applicable to (BC 2) and (BC 3), and treat the case of broken (vertical) translation
invariance in the next section.

5.3.1 Diagrammar
By now, our approach for calculating such interactions should be of recent vintage: we
reformulate the cumulant expansion as a diagrammatic expansion, thereby taking advantage
of the systematics and transparency of the calculational bookkeeping and interpretation.
Since the interactions considered here are strictly quadratic and of the entropic variety, we
have from Chapter 3 that the interaction energy can be expressed as

− βU =
∑

k>1

V
V

V
V

k , (5.48)

where the interaction vertices are define by the functional derivatives,

z

z′
V = −

[
δ2(β∆H)
δφ(z)δφ(z′)

]

φ=0

= −
∑

α

∑

n,m>1

[
Cnmα (−∂)nδzα (−∂̄)mδz′α

+ 1
2χ

nm
α (−∂)nδzα (−∂)mδz′α

+ 1
2 χ̄

nm
α (−∂̄)nδzα (−∂̄)mδz′α

]
+ (z ↔ z′)

≡
z

z′
+

z

z′
+

z

z′
+ (z ↔ z′),

(5.49)

and the propagators are given by the harmonic Green function (5.8). In the above expressions,
δzα := δ(z − zα), and the sum over particle worldlines and derivative orders is implicit in
each diagram vertex. The explicit operators corresponding to these vertices are as follows:

z

z′
zα

n

m
= −Cnmα ei(n−m)θα(−∂)nδzα (−∂̄)mδz′α (5.50a)
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z

z′
zα

n

m
= −1

2χ
nm
α ei(n+m)θα(−∂)nδzα (−∂)mδz′α (5.50b)

z

z′
zα

n

m
= −1

2 χ̄
nm
α e−i(n+m)θα(−∂̄)nδzα (−∂̄)mδz′α , (5.50c)

where we have also accounted for the particle orientation as per Eq. (5.27). The factors of
1/2 in front of the χ and χ̄ polarizabilities must be included since we have given the explicit
endpoints z and z′ and derivative orders n and m; however, when the sum over derivatives
is included, the two legs are symmetric under exchange (z ↔ z′) so the two cases cancel
the 1/2 factor.
The single- and double-line vertex legs are meant to indicate the type of derivatives

the vertex places on the propagators, respectively ∂ and ∂̄. Moreover, they inform the
connectivity of the diagrams in that only single-line legs can connect with each other, and
similarly for double-line legs, manifestly enforcing the constraint ∂∂̄G(zα − zγ) = 0 for two
particles α and γ. As we have discussed in previous chapters, the expansion (5.48) formally
includes self-interactions, in which propagators begin and end on the same particle worldline.
This is of course unfavorable since such self-interactions diverge, but these divergences are
an artifact of coarse-graining the particles as infinitesimal points. A similar analysis as
done in Appendix A shows that a proper renormalization treatment completely removes
these self-interactions with no nontrivial renormalization group flow. That is, there is
no physical information contained in the divergences and, furthermore, the unphysical
(and unobservable) counterterms necessarily introduced in the renormalization procedure
will completely remove them. Equivalently, we may simply set all diagrams containing
self-interactions to zero.
Calculating the interaction energy therefore consists of expanding the vertices for each

diagram of (5.48) according to (5.49), at which point the number of diagrams quickly
proliferates. We can group the diagrams by noting that two diagrams are equivalent if
they can be reflected or rotated into one another. Under this grouping, each representative
diagram then carries an extra factor given by the number of distinct orientations multiplied
by a factor of 2 for each χ and χ̄ vertices, due to the exchange symmetry of their indices.
As we mentioned earlier, these powers of 2 are canceled by the factors of 1/2 in (5.49).
What remains simplifies to the expected 1/SΓ, where SΓ = |Aut Γ| is the symmetry factor
for the diagram Γ.

The number of expected diagrams with k vertices is equivalent to the standard combina-
torial problem of the number of ways to paint a necklace of k beads with only two colors.
However, relationships among the diagrams effectively reduce this number; exchanging
single lines and double lines gives the complex conjugate of the diagram. Diagrams with
equal numbers of single line and double line edges—which can only occur for those with an
even number of vertices—give diagrams in the same equivalency class of the original under
this exchange (they are related by reflections and rotations) and therefore are their own
conjugate; i.e., they are real.
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z1

a1
b1

z2

a2

b2

r = |z2 − z1|θ1

θ2

Figure 5.2: Configuration for two ellipses as viewed from above. The orientation angle θ2 of second
ellipse is measured from the line extended from z1 past z2. Similarly, the orientation angle θ1 is measured
(counterclockwise) from the line extended from z2 past z1.

5.3.2 Pair interactions
Consider two ellipses of semi-major axes a1, a2 and semi-minor axes b1, b2 respectively,
positioned and oriented as shown in Fig. 5.2. The interaction energy expansion will only
contain diagrams with an even number of vertices to prevent self interactions once the
particle assignments are made at each vertex. We provide explicitly the relevant diagrams
and their corresponding symmetry factors in Technical Note 5.1 for reference. To order
the expansion in powers of the interparticle separation r, we note that each vertex places
derivatives on the propagators, and ∂nG ∼ r−n (as per Eq. (5.12)). It follows that each
diagram with a set of vertex indices {ni,mi} will be of order r−

∑
i(ni+mi). Determining

which diagrams are relevant at O(r−p) is therefore equivalent to the problem of partitioning
the integer p into 2k integers and distributing them across the index pairs {ni,mi}i6k
at each of the k vertices (while satisfying the constraint ni + mi ∈ 2N). The resulting
interaction energy can then written in the form

− βU =
∑

p>0
even

u(p)

rp
. (5.51)

The leading order terms come from the diagrams with k = 2 vertices. For (BC 2),
the polarizabilities begin at n = m = 1 and hence the leading order interaction energy
is O(r−4). For (BC 3), however, these coefficients vanish and the polarizabilities begin
at n = m = 2, implying the leading order interaction energy is O(r−8). Following the
diagrammatic rules and accounting for the angular dependence using (5.27), we evaluate
the diagrams in Technical Note 5.1 and find for (BC 2)

u(4) = 1
16
[
(s+

1 s
+
2 )2 + f2

1 f
2
2 cos(2θ1 + 2θ2)

]
, (5.52a)

u(6) = 1
32

{
(s+

1 s
+
2 )2[(s+

1 )2 + 3f2
1 cos(2θ1)

]
+ 4f4

1 f
2
2 cos(4θ1 + 2θ2)

}
+ (1↔ 2), (5.52b)
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Technical Note 5.1: Expansion of entropic interaction diagrams
We provide for reference the vertex expansions and symmetry factors for the first few interaction diagrams
relevant to particle pairs according to Eq. (5.49):

V

V

=

S[Γ(2)
1 ]=2

+ 2 Re
[

S[Γ(2)
2 ]=4

]
()

V

V

V

V =

S[Γ(4)
1 ]=4

+

S[Γ(4)
2 ]=2

+ 2 Re




S[Γ(4)
3 ]=8

+

S[Γ(4)
4 ]=2




V
V

V
V

V

V

=

S[Γ(6)
1 ]=6

+

S[Γ(6)
2 ]=1

+

S[Γ(6)
3 ]=2

+ 2 Re




S[Γ(6)
4 ]=12

+

S[Γ(6)
5 ]=2

+

S[Γ(6)
6 ]=2

+

S[Γ(6)
7 ]=2

+

S[Γ(6)
8 ]=4




For each diagram Γ(k)
i with k vertices, there is a set {nj ,mj}kj=1 of derivative orders that ultimately

contribute an overall factor of r−p, where p =
∑k
j=1(nj +mj) ≡ |n + m|. Denoting by Ik the label set

of distinct diagrams possessing k vertices, we may express the series in increasing powers of 1/r by

−βU =
∑

p>0
even

p/2∑

k=2

∑

i∈Ik

∑

{nj ,mj}k
j=1

|n+m|=p

Γ(k)
i (n,m) ≡

∑

p>0
even

u(p)

rp
.

u(8) = 1
210

{
19(s+

1 s
+
2 )4 + f2

1 f
2
2 (s+

1 s
+
2 )2[36 cos(2θ1 − 2θ2) + 124 cos(2θ1 + 2θ2)]

+ 271f4
1 f

4
2 cos(4θ1 + 4θ2) + 12(s+

1 )6(s+
2 )2 + 36f4

1 (s+
1 s

+
2 )2 + 2f4

1 (s+
2 )4

+ 32(s+
1 s

+
2 )2f2

1
[
2(s+

1 )2 + 3(s+
2 )2] cos(2θ1) + 80f4

1 (s+
1 s

+
2 )2 cos(4θ1)

+ 192f6
1 f

2
2 cos(6θ1 + 2θ2)

}
+ (1↔ 2),

(5.52c)

where f2 = s+s− as before. Since the expressions become increasingly more lengthy, we
have only included the interactions up to and including O(r−8), which only require diagrams
with k = 2 and k = 4 vertices. The k = 6 diagrams appear at O(r−12).

For (BC 3) we find

u(8) = 9
256

[
(s+

1 s
+
2 )4 + f4

1 f
4
2 cos(4θ1 + 4θ2)

]
, (5.53a)
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u(10) = 3
128

[
(s+

1 )6(s+
2 )4 + 5f2

1 (s+
1 s

+
2 )4 cos(2θ1)

+ 3f4
1 (s+

1 )2(s+
2 )4 + 9f6

1 f
4
2 cos(6θ1 + 4θ2)

]
+ (1↔ 2),

(5.53b)

u(12) = 5
211

{
5(s+

1 s
+
2 )6 + 5(s+

1 s
+
2 )2
[
(s+

1 )6(s+
2 )2 + 6(s+

1 )4f4
2 + 8(s+

1 s
+
2 )2f4

2

]

+ 45(s+
1 s

+
2 )2f4

1 f
4
2 + 396f6

1 f
6
2 cos(6θ1 + 6θ2) + 63(s+

1 s
+
2 )4f4

1 cos(4θ1)
+ 4(s+

1 s
+
2 )4f2

1 f
2
2
[
10 cos(2θ1 − 2θ2) + 21 cos(2θ1 + 2θ2)

]

+ 12(s+
1 s

+
2 )2f2

1 cos(2θ1)
[
3(s+

1 )4(s+
2 )2 + 4(s+

1 )2(s+
2 )4

+ 6f4
1 (s+

2 )2 + 12(s+
1 )2f4

2
]

+ 216f8
1 f

4
2 cos(8θ1 + 4θ2)

}
+ (1↔ 2).

(5.53c)

To this order, only the diagrams with k = 2 vertices contribute. The k = 4 diagrams do not
contribute until O(r−16).
For identical ellipses, we simply set s±1 = s±2 in the above expressions. The leading

order terms then reproduce the results of [NO09] up to powers of 2p for O(r−p), where
the discrepancy is due to differing assignments of a and b ([NO09] refers to the principal
axes, which are twice the values of the semi-major and semi-minor axes used here). Setting
s+
i = 2Ri and s−i = 0 gives the interaction energy between two disks of radii R1 and
R2 respectively and reproduce the results of [YRD12] for (BC 2) (compare also with
Eqs. (3.208), (3.209), and (3.211)). Since the result for disks obeying (BC 3) appears to be
absent from the literature, we provide the first few terms explicitly:

βUdisks
{1,2} = −9R

4
1R

4
2

r8 − 24R
6
1R

4
2 +R4

1R
6
2

r10 − 50R
8
1R

4
2 + 2R6

1R
6
2 +R4

1R
8
2

r12 +O(r−14), (5.54)

which agrees with our earlier leading-order result Eq. (3.213) calculated in Chapter 3.
Furthermore, setting s±i = Li/2 in Eqs. (5.52) and (5.53) gives the interaction energy
between rods.

Since we have computed the interaction energies between nonidentical ellipses, we can also
consider the limiting cases of disks and rods for each particle independently. Doing so gives
new results for the interactions between an ellipse and rod, ellipse and disk, and a rod and
disk. Furthermore, since the boundary constraints are contained within the polarizabilities,
it is straightforward to compute the interactions between particles with different boundary
conditions. For example, the leading order interactions between a bobbing disk (d) and
an ellipse (e) free to bob and tilt is given by the polarizabilities C11

d and C22
e respectively,

yielding6

βUd–e = −4C
(11)
d C

(22)
e

(4π)2r6 +O(r−8)

= −R
2(a+ b)4

8r6 +O(r−8).
(5.55)

6Unfortunately the published version—Eq. (62) of [HD14]—is off by a factor of two.
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Figure 5.3: Plots of the pair interaction free energy between identical rods of length L separated
by a distance r = 1.25L. The leading-order O(r−4) result is presented on the left and shows the
degeneracy of the minimum energy configurations. The plot on the right includes the O(r−6) correction
and demonstrates the breakdown of this degeneracy after leading order.

Orientational dependence

At leading order for (BC 2), the energy is minimized for θ1 + θ2 = nπ, n ∈ Z, which is
degenerate for a full range of angles. Similarly, there is a degenerate maximum-energy state
given by θ1 + θ2 = (n+ 1/2)π, n ∈ Z. This degeneracy was noted in Ref. [GGK96a] with
the speculation that it should be broken by higher-order terms. Indeed, at the very next
order, the angular dependence breaks this symmetry and we find the true minimum-energy
configuration occurs for θ1 = θ2 = 0 (up to integer multiples of π) which aligns the major
principal axes (tip-to-tip). The energy is maximized for two unique values θ1 = θ2 . π/4
and & 3π/4 which depend on particle size and separation. This symmetry breaking is
illustrated in Fig. 5.3 for the limiting case of identical rods. Although the leading-order
angular dependence for (BC 3) differs by an additional factor of two from (BC 2), we find
similar behavior, but the least-preferred orientations—which depend on particle size and
separation—lie within the intervals (π/4, π/2) and (π/2, 3π/4). It is interesting to compare
the preferred orientations with those observed for ellipsoidal objects in the three-dimensional
electromagnetic case [EGJK09]; the preferred orientations are similar, but the least preferred
orientations are different.
We can also compare with the ground state angular dependence of two permanent

quadrupoles considered in Chapter 3. The leading-order (BC 2) term, Eq. (3.146), ap-
pears with the same separation dependence ∼ r−4 and a similar angular dependence
∼ cos(2α1 + 2α2), where α1 and α2 are the angles which the principle curvature axes of
each particle makes with the interparticle joining line. We discovered that the preferred,
maximally attractive configurations occur for all α1 + α2 ≡ 0 (mod π). That is, the
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particles tend to align like-curvatures, including the “tip-to-tip” configuration that aligns
their principle axes. The primary difference, however, is that the angular degeneracy for
permanent quadrupoles persists to all orders (see the discussion on page 115). This is
because the anisotropy is due only to the out-of-plane curvature, but the multipole moments
in one particle induced by the presence of another inherit the symmetries of the circular
in-plane boundary. This contrasts with the elliptical particles of this chapter, for which the
anisotropy is due solely to the in-plane boundary shape and contaminates the symmetries
associated with the induced multipole moments.

5.3.3 Multibody interactions
In addition to pairwise interactions, the energy also receives contributions from multibody
terms. In general, N -body interactions will begin to appear in diagrams with N vertices of
lowest multipole order. However, in special cases the symmetry of the particles may lead to
the vanishing of some terms. For example, only the Cnn polarizabilities are nonzero for
axisymmetric particles (disks), and all diagrams with an odd number of vertices vanish.
As we discussed in Chapter 3 (see Section 3.6.3), this conclusion becomes obvious in the
diagrammatic language since it is impossible to connect an odd number of C-vertices such
that each vertex connects to both a single and a double line. This property was first
stated in Ref. [YRD12] (with slightly different diagrammatic rules), and is a manifestation
of the vanishing of ∂∂̄G. With this symmetry relaxed, however, the χ-vertices allow for
nonvanishing diagrams with an odd number of vertices and represent pure anisotropic
effects. For brevity, we will restrict our discussion to the (BC 2) case, but the results for
(BC 3) follow similarly.

Since the multibody interactions mix the particle coordinates, it is desirable to define
a suitable parametrization that relates to the geometry of the particle configuration in
a coordinate-free manner. To this aim, we define zij := zj − zi ≡ rijeiϕij as well as the
exterior vertex angle ϕ j

ik := −ϕij + ϕjk as shown in Fig. 5.4. Furthermore, we parametrize
the orientation of the particles with respect to the exterior vertex angles via θ(j)

ij := θj −ϕij ,
where θi is the angle the particle makes from the x-axis. Note that ϕji ≡ ϕij (mod π), and
therefore under the exchange of indices we can equate ϕ j

ki = −ϕ j
ik and θ(i)

ij = θ
(i)
ji up to

integer multiples of π.
We first consider the leading-order triplet (three-body) interaction, which comes from

the diagrams

+ (5.56)

and their complex conjugates. Since self-interactions are set to zero, the sum over particle
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zi zj

zk

ϕ j
ik

θ
(j)
jk

θ
(j)
ij

θ
(j)
kj

zij = rijeiϕij

z jk
=
r jk

ei
ϕ jk

Figure 5.4: Illustration of the parameter and angle definitions for a particle at position zj . The exterior
angle ϕ j

ik is measured between the two joining lines defined by zij and zjk. Similarly, θ(j)
ij measure

the orientation angle of the particle j with respect to zij . Alternatively, θ(j)
jk provides the orientation

with respect to zjk, which is equivalent to the corresponding (exterior) orientation angle θ(j)
kj . These

two angles are in agreement with Fig. 5.2 so that θ(j)
ij is appropriate for pairwise comparisons between

particles i and j, and θ(j)
kj is appropriate for pairwise comparisons between particles j and k.

labels becomes the sum over permutations of {1, 2, 3}. Computing the diagrams results in

βU
(6)
tri = −2 Re

perm.
{1,2,3}∑

i,j,k

[
1
2
χ11
i C

11
j C

11
k

(4π)3
e2iθi

z2
ij z̄

2
jkz

2
ki

+ 1
6
χ11
i χ

11
j χ

11
k

(4π)3
e2i(θi+θj+θk)

z2
ijz

2
jkz

2
ki

]

= − 1
64

perm.
{1,2,3}∑

i,j,k

1
r2
ijr

2
jkr

2
ki

[
f2
i (s+

j s
+
k )2 cos

(
2θ(i)
ki + 2ϕ j

ik

)

+ 1
3f

2
i f

2
j f

2
k cos

(
2θ(i)
ki + 2θ(j)

ij + 2θ(k)
jk

)]
.

(5.57)

This expression can be simplified by noting that if the summand is invariant under the
exchange of two indices, the sum can be written as twice the sum over cyclic permutations.
The second term is seen to be invariant under j ↔ k by noticing that

θ
(i)
ji + ϕ k

ij = θi − ϕji − ϕik + ϕkj

= θ
(i)
ki + ϕ j

ik.
(5.58)
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Using this same property, we see the second term is also invariant under j ↔ k:

θ
(i)
ji + θ

(k)
ik + θ

(j)
kj = θ

(i)
ki + θ

(j)
ij + θ

(k)
jk − ϕ

j
ik − ϕ k

ji − ϕ i
kj

= θ
(i)
ki + θ

(j)
ij + θ

(k)
jk − 2π,

(5.59)

where we have used that the sum over all exterior angles gives 2π. The result finally
simplifies to

βU
(6)
tri = − 1

32
1

r2
12r

2
23r

2
31

[
f2

1 f
2
2 f

2
3 cos

(
2θ(1)

31 + 2θ(2)
12 + 2θ(3)

23
)

+

cyc.
{1,2,3}∑

i,j,k

f2
i (s+

j s
+
k )2 cos

(
2θ(i)
ki + 2ϕ j

ik

)]
.

(5.60)

From the above expression, we see that the minimum energy configurations—suggested
from the triplet interaction alone—occur for θ(i)

ki = −ϕ j
ik, up to integer multiples of π. It is

also apparent that the least preferred configurations occur when θ(i)
ki = π/2− ϕ j

ik, which
maximizes the energy. Note that we can as well rewrite these expressions in terms of the
interior angles by noting that an interior angle α j

ik = π − ϕ j
ik, but all expressions are

equivalent modulo π. These configurations are illustrated in Fig. 5.5.
Since pair interactions will of course also contribute to the three-body interaction energy,

it may be that the preferred angular configuration suggested above could be modified. From
the leading-order pair interaction (5.52a), we find7

βU (4)
p = − 1

16

cyc.
{1,2,3}∑

i,j

1
r4
ij

[
(s+
i s

+
j )2 + f2

i f
2
j cos

(
2θ(i)
ji + 2θ(j)

ij

)]
. (5.61)

The energy is minimized when θ(i)
ji + θ

(j)
ij ≡ 0 (mod π), which when summed over the three

particle labels gives the condition

θ
(1)
31 + θ

(2)
12 + θ

(3)
23 ≡ 0 (mod π

2 ). (5.62)

From Eq. (5.58) and the condition θ(i)
ji +θ(j)

ij ≡ 0 (mod π), it also follows that θ(i)
ki +θ(j)

ij ≡ ϕ i
kj

(mod π). This combined with Eq. (5.62) finally gives the preferred-configuration conditions,

θ
(i)
ki = π − ϕ j

ik + nπ

2 = α j
ik + nπ

2 , n ∈ Z. (5.63)

7In Ref. [HD14], the argument of the cosine was written as 2(θ(i)
ki + θ

(j)
ij − ϕ

i
kj). This is also correct and

follows from Eq. (5.58) with some rearrangement. I have changed it to the present form so that the energy
expression follows more clearly from Eq. (5.52a) in light of the angle definitions in Figures 5.2 and 5.4.
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γ
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β

(a) (b)
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Figure 5.5: Illustration of the various ellipse orientations for an arbitrary three-body particle configura-
tion. The pure triplet interaction suggests configuration (a) is preferred (minimizes the energy), while
configuration (b) is preferred the least (maximizes the energy). However, with the inclusion of all the
pair interactions up to the same order, this conclusion switches: (b) is actually preferred, while (a) is just
a local minimum. The least preferred configurations as suggested by the pair interactions are shown in
(c) and (d).

The angular configuration that maximizes the energy is similar, but with π/4 subtracted
from each angle. These configurations again appear in Fig. 5.5.
At leading order, the minimum-energy configuration therefore suffers from a double

degeneracy. This degeneracy is broken at the next order with the pair and triplet interactions.
To simplify the remainder of our discussion, we can take advantage of the similarity of the
solutions—the preferred ellipse orientations all depend similarly on the respective adjacent
interior angles of the particle configuration as per Eq. (5.63)—and consider the highly
symmetric case of the particles sitting at the vertices of an equilateral triangle with side
lengths d. Furthermore, consider the limiting case in which the ellipses become identical
rods of length L. This results in reducing the problem to a one dimensional angular subspace
in which θ(1)

31 = θ
(2)
12 = θ

(3)
23 ≡ θ and ϕ 2

13 = ϕ 3
21 = ϕ 1

32 = 2π/3. This simplification gives for
the pair energies

βU (4)
p = − 3

16

(
L

2d

)4{
1 + cos

[
4
(
θ − π

3

)]}
, (5.64)
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0
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Figure 5.6: Plot of the pair and triplet contributions to the overall interaction free energy for identical
rods of length L sitting at the vertices of an equilateral triangle of sides d = 1.25L. Notice the competition
between the triplet and pair interactions appearing at O(d−6). The pair interactions ultimately dominate
and we find the preferred orientations occur for θ = 5π/6, in which all rods point inwards.

βU (6)
p = − 3

32

(
L

2d

)6{
2 + 3 cos

[
2
(
θ − 2π

3

)]
+ 3 cos(2θ)

+ 4 cos
[
2
(

3θ − 4π
3

)]
+ 4 cos

[
2
(

3θ − 2π
3

)]}
;

(5.65)

and for the triplet energy

βU
(6)
tri = − 1

32

(
L

2d

)6{
cos(6θ) + 3 cos

[
2
(
θ + 2π

3

)]}
. (5.66)

The result, which is plotted in Fig. 5.6, is that the degeneracy is broken and the θ = 5π/6
configuration preferred. This implies the θ(i)

ki = α j
ik + π/2 solution from before is the true

minimum. Surprisingly, there is competition at O(d−6) between the pairs and triplet: the
preferred angular configurations are opposite one another, but with the pairs ultimately
dominating. That is, the triplet interaction alone suggests the opposite conclusion of the
full result, and simply decreases the difference between the two minima.

5.4 Entropic interactions: fixed particles
Let us now consider the interactions between particles with fixed heights. Such particles
break the vertical translation symmetry of the surface and are consequently excited by
zero-mode fluctuations. For this two-dimensional system, the excitation of zero-modes
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is problematic and leads to pathological results. However, with the inclusion of the
gravitational potential as a regulator—so that a, b� r � `c—we found that the divergences
are tamed and, moreover, sensible results can still be obtained in the harmonic limit in
which `c →∞. The key is to be careful and consistent with the use of the regulator, taking
the limit only at the end of the calculation of an observable (i.e., not a single Feynman
diagram), namely

U = lim
`c→∞

U(`c).

In Section 5.2.4, we were successful in capturing the monopole response at finite Bond
number, finding that the monopole polarizabilities decay as ∼ 1/ ln `c (see Eq. (5.44)).
Since the Green function diverges as ∼ ln `c, as per Eq. (5.32), interesting limiting behavior
should be expected. This is particularly true regarding the “pure” monopoles, characterized
by M (0), since their induced interactions are governed by the Green function without
derivatives. Moreover, these pure monopoles are accounted for in the effective Hamiltonian
by marginal dimensionless operators and therefore cannot be dealt with perturbatively;
instead, the naïve perturbative expansion must be resummed in its entirety. Luckily, we
developed the required resummation principles and mathematical machinery in Chapter 3,
namely Sections 3.5.4 and 3.6.4, and we will make liberal use of it here. This section will
closely mirror the development of Section 3.6.4.

5.4.1 Leading order
The leading order interactions consist of strictly monopole vertices and is given by the
infinite series

−βU (0) =
∞∑

k=1
k , (5.67)

where each vertex has the diagrammatic correspondence

z

z′
zα = −M (0)

α δzα δ
z′
α , (5.68)

and the dashed-line propagators remind us that no derivatives are placed on the Green
function. The diagrammatic rules also dictate that all free positions (e.g., z and z′) are
integrated over and all particle labels are summed over, but with the stipulation that
no two adjacent vertices can simultaneous occur at the same particle position (i.e., no
self-interactions). The integrations and summations ultimately contract all spatial variables
to the particle positions and therefore the operator algebra reduces to matrix algebra. This
is achieved by following the steps leading up to Eq. (3.224), so that the sum is recast as

− βU (0) = −1
2 ln det(1 + G M), (5.69)
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where the determinant is taken over the interaction matrix

(1 + G M)ij = δij +
∑

α

GiαM (0)
α δαj (1− δia) = δij +GijM

(0)
j (1− δij). (5.70)

The indices i and j run over all particle labels, and the factor (1− δij) makes explicit the
absence of self-interactions. For a collection of N particles, we see the calculation of the
leading-order interaction reduces to taking the determinant of the matrix

1 + G M =




1 G12M
(0)
2 · · · G1NM

(0)
N

G21M
(0)
1 1 · · · G2NM

(0)
N

...
... . . . ...

GN1M
(0)
1 GN2M

(0)
2 · · · 1



, (5.71)

and plugging the result into Eq. (5.69). In line with Chapter 3, we will express the results
using the notation

g2
ij := GijM

(0)
j GjiM

(0)
i =

ln2( 2`c
γerij

)

ln
(

4`c
γes

+
i

)
ln
(

4`c
γes

+
j

) , (5.72)

and furthermore introduce the parameter

Λij := ln
(

4`c
γe
√
s+
i s

+
j

)
(5.73)

to massage the expression into a form better suited for later expansions:

gij =
Λij − ln

(
2rij√
s+i s

+
j

)

(
Λ2
ij − ln2

√
s+
i /s

+
j

)1/2 = 1− 1
Λij

ln
(

2rij√
s+
i s

+
j

)
+

ln2
√
s+
i /s

+
j

2Λ2
ij

+O(Λ−3
ij ). (5.74)

Two particles.

For two particles, the determinant is very simple and we quickly find the interaction energy

βU
(0)
{1,2} = 1

2 ln
(
1− g2

12
)
. (5.75)

With the help of Eq. (5.74), we expand this result in powers of 1/Λ and find the divergences
only appear as an irrelevant (infinite) constant:

βU
(0)
{1,2} = −1

2 ln Λ12 + βE12 +O(Λ−1), (5.76)
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where

βE12 = 1
2 ln

[
2 ln
(

2r12√
s+

1 s
+
2

)]
(5.77)

contains the r-dependent terms. The r-dependence, in agreement with [NO09], shows that
at this order the interaction is always attractive.

Three particles.

For a three-particle system, we find the complete leading-order interaction energy

βU
(0)
{1,2,3} = 1

2 ln
[
1−

(
g2

12 + g2
23 + g2

31 − 2g12g23g31
)]
. (5.78)

This result contains but somewhat obscures the role of both pair and triplet interactions
(i.e., two-body versus three-body effects). We may examine each explicitly, however, through
the additive decomposition

U
(0)
{1,2,3} = U

(0)
{1,2} + U

(0)
{2,3} + U

(0)
{3,1} + U

(0)
tri , (5.79)

where U (0)
{i,j} is the pair interaction (5.76) between particles i and j, and U (0)

tri is the triplet
interaction,

βU
(0)
tri = 1

2 ln
[

1− (g2
12 + g2

23 + g2
31 − 2g12g23g31)

(1− g2
12)(1− g2

23)(1− g2
31)

]
. (5.80)

In the limit of circular particles (s+
i = 2Ri), we recover the result obtained by a scattering

approach in Ref. [NWZ13a]8 (as well as the results of Chapter 3).
To understand the three-particle behavior at vanishing Bond number, we expand Eq. (5.78)

using Eq. (5.74). After some simplification, we find the total three-body interaction energy

βU
(0)
{1,2,3} = −1

3 ln(Λ12Λ23Λ31) + βEtot +O(Λ−1), (5.81)
with

βEtot = 1
2 ln




cyc.
{1,2,3}∑

i,j,k

[
2 ln
(

2rij√
s+
i s

+
j

)
ln
(

2rjk√
s+
j s

+
k

)
− ln2

(
2rij√
s+
i s

+
j

)]

. (5.82)

The triplet (pure three-body) interaction is of course found by subtracting off the pairs:

Etri = Etot − E12 − E23 − E31. (5.83)

Consider now a collection of three identical particles (s+
i = s+ for all i) in two different

configurations: sitting at the vertices of an equilateral triangle of side lengths d (r12 =

8Note that Ref. [NWZ13a] has a typo in their g3 term (see footnote 34 on page 146).
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r23 = r31 = d), and equally spaced on a line (r12 = r23 = r31/2 = d). For the triangle
configuration, Eq. (5.81) reduces to

βU
(0)
4 = − ln Λ + 1

2 ln
[
3 ln2(2d/s+)

]
+O(Λ−1), (5.84)

which is overall attractive. To see what role the triplet interaction plays, we subtract off
the pairs as in Eq. (5.80) and find that the triplet and pair interactions can be expressed
with the same d-dependence, but with opposite signs:

βU
(0)
tri,4 = 1

2 ln Λ− 1
2 ln

[
8
3 ln

(
2d
s+

)]
+O(Λ−1)

= 1
2 ln 3Λ

4 −
1
2 ln

[
2 ln
(

2d
s+

)]
+O(Λ−1).

(5.85)

This pure three-body interaction is in fact repulsive, but not enough so to overcome the
attractive pair interactions. For the linear configuration, the total energy is given by

βU
(0)
lin = 1

2 ln
[
4 ln
(

2d
s+

)
ln
(

4d
s+

)
− ln2

(
4d
s+

)]
− ln Λ +O(Λ−1) (5.86)

which is also overall attractive. Although it is less obvious than in the triangle configuration,
the pure three-body interaction in this case is also repulsive, as can be checked by subtracting
off the pairs. Dropping the (infinite) constants, the triplet interaction reads

βEtri,lin = −1
2 ln

[
8 ln2( 2d

s+

)

3 ln2( 2d
s+

)
− ln 2

]
. (5.87)

In both the two- and three-body results, Eqs. (5.75) and (5.78) respectively, the interaction
energies are isotropic. Indeed, the results agree with Eqs. (3.225) and (3.228) computed
for circular disks, but with the replacement R → (a + b)/2 as the characteristic particle
size. Given that the pure monopole polarizability M (0) does not depend on the particle’s
orientation, this should not be surprising. At higher orders the anisotropic effects begin to
appear, particularly those related to M (n>1).

5.4.2 Higher orders
To calculate higher orders, we must again include an infinite number of M (0)-insertions.
This has the effect of replacing each propagator with the sum

→ + + + + · · · (5.88)

This infinite series, which we recognize as a type of Dyson equation, is a geometric sum
involving powers of 1+G M and is formally convergent in the sense of matrices. Reorganizing
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the inner vertex sum gives

+ + + · · ·
=

(
+ + + · · ·

)

=
∞∑

k=0

( )k

∗=
(

−
)−1

≡ (1 + G M)−1, (5.89)

where in the starred equality we completed the geometric sum, and in the last line we
recognized the diagrammatic result as the inverse of the matrix 1 + G M. As long as the
number of particles is not too large, this matrix inverse is relatively straightforward to
compute. It follows from the Cayley–Hamilton theorem (see Technical Note 3.2) that for
N particles, the inverse will contain an overall factor of 1/ det(1 + G M) and up to N − 1
powers of G M and their traces.

The vertex sum contains two possibilities: either the vertices begin and end on the same
particle worldlines (diagonal entries), or begin and end on different particle worldlines
(off-diagonal entries). This motivates grouping the elements of Eq. (5.89) into the following
effective monopole vertices:

i j = −
∑

α

M (0)
α

[
(1 + G M)−1]α

α
δiαδ

α
j (5.90)

i j = −
∑

α

M (0)
α

[
(1 + G M)−1]α

γ
δiαδ

γ
j (5.91)

These effective vertices are then incorporated into interaction diagrams through the vertex
expansion, and the symmetry factors are determined in the normal way. The interaction
energy for (BC 1) is therefore given by the diagrammatic series

−βU (0) =
∞∑

k=1
k +

∑

k>1

V
V

V
V

k +
V

+
V

+
V

V
+

V

V +
V

V

+
V

V

+

V

V

+ · · · ,

(5.92)
where the V vertex is taken to also contain the M (n>0) terms and the solid lines represent
generic propagators (not necessarily with ∂-derivatives).

240



5 Particle anisotropies

To account for the M (n>0) terms, first observe that for n > m the product
(
M (0))n(Gαγ)m `c→∞−−−−→ δnm. (5.93)

Since M (n) ∝M (0), this suggests that for every M (n>0) vertex in a given diagram, there
must be a compensating propagator with no derivatives; otherwise the diagram vanishes. To
make this apparent in the diagrams, we represent the M (n) and M̄ (n) vertices respectively
by

(n) z

z′
zα

(n)
= −M (n)

α einθα(−∂)nδzα δz
′
α (5.94a)

(n) z

z′
zα

(n)
= −M (n)

α e−inθα(−∂̄)nδzα δz
′
α , (5.94b)

where the dashed line represents (and enforces) a propagator with no derivatives, and the
orientation-dependence has been written explicitly so that M (n) is given by Eq. (5.44). To
demonstrate, we provide the expansion for the first effective monopole diagram:

V

= + 2 Re


 +


. (5.95)

Two Particles

For two particles, the (2× 2) matrix inverse is given by

(1 + G M)−1 = 1− G M
det(1 + G M) (5.96)

and the effective vertices take particularly simple forms in the limit `c →∞ (cf. Eqs. (3.175)
and (3.240)):

i j = −
∑

α

2π δiα
(

1
2%12

)
δαj (5.97)

i j =
∑

α,γ

2π δiα
(1− δαγ

2%12

)
δγj , (5.98)

where we have introduced the frequently appearing logarithmic parameter,

%ij = ln
(

2rij√
s+
i s

+
j

)
. (5.99)

The interaction energy must therefore be a power series in the interparticle separation
distance r, augmented by logarithmic corrections. Expanding out the vertices and using
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the notation
−βUBC1 = −βU (0) +

∑

p>0
even

u(p)(%)
rp

we find the higher order terms

u
(2)
BC1 = 1

16%12

[
(s+

1 )2 + 3f2
1 cos 2θ1

]
+ (1↔ 2) (5.100)

u
(4)
BC1 = u

(4)
BC2 + 1

128%12

{
(s+

1 )4 + 2(s+
1 s

+
2 )2 + 4f2

1
[
(s+

1 )2 + 3(s+
2 )2] cos 2θ1

+ 11f4
1 cos 4θ1 + 22f2

1 f
2
2 cos(2θ1 + 2θ2) + (1↔ 2)

}
+
(
u

(2)
BC1

)2
.

(5.101)

At all orders, the interaction energy contains contributions with logarithmic prefactors in
the form of %12, and they do not vanish in the isotropic limit. These terms exist between two
particles, both of which are frozen in place at fixed heights, and they originate from cross-talk
between monopoles and higher-order multipoles. Such contributions were previously claimed
to vanish [YRD12], based on the argument that every diagram involving monopoles and
higher-order multipoles vanishes in the limit `c → ∞. However, adding extra monopole
insertions to such a diagram does not change its order, hence consistency requires we sum
over the complete (infinite) set of insertions, as we have done here. After this resummation,
the final result no longer vanishes in the `c →∞ limit.

The higher-order terms in Eqs. (5.100) and (5.101) agree with what has been calculated
by Noruzifar et al. [NO09] (up to differing definitions of a and b), except for a prefactor in
the last term of Eq. (5.101). This term is a consequence of the single and double effective
vertices limiting to the same value and results from following diagrammatic argument (valid
only for pairs):

V

V

+

V

V

=
2∑

α 6=γ

(
2πσ
2%12

)2




1
4

( γ α γ

V

)2

+ 1
4

( γ α γ

V

)( α γ α

V

)


=


1

2

2∑

α 6=γ

(
2πσ
2%12

)( γ α γ

V

)


2

=




V



2

. (5.102)

In Ref. [NO09] it occurs with an extra prefactor of 1/2, the origin of which is unclear.
Equation (5.102) is actually quite special in that the diagrammatic recomposition is inde-
pendent of any vertex expansion beyond the sum over the two particle worldlines. Just
to emphasize, it holds for the present expansion as well as the special case Eq. (3.247)
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considered in Section 3.6.4 and, moreover, it holds for the full sum over polarizabilities
implied in the vertex. That is, by expanding the square on the right side and collecting
similar powers, one may obtain its contribution to each order without additional work.

We can also compare these results to those obtained using conformal field theory techniques
in Ref. [BEK13], for which the authors provide expansions for a couple of special cases. For
two identical disks of radius R, and using x = r/R, our results reduce to

βUBC1 = 1
2 ln(2 ln x)− 1

2x2 ln x −
1
x4

(
1 + 3

4 ln x + 1
4 ln2 x

)
+ · · · , (5.103)

in agreement with Ref. [BEK13] as well as Eq. (3.250) of Chapter 3. For two identical
aligned rods (θ1 = θ2 = 0) of length L (s+ = L/2 and f2 = L2/4), our results reduce to

βUBC1 = 1
2 ln

(
2 ln 4r

L

)
− 1

2(2r/L)2 ln(4r/L) −
(
L

2r

)4
(

1
8 + 13

16 ln(4r
L )

+ 1
4 ln2(4r

L )

)
+ · · ·

(5.104)
If we calculate the total force F = −∂U/∂r and expand in terms of the tip-to-tip distance
d = r − L, we find (with x = d/(2L))

2LF = − 1
2x ln(8x) + 1 + ln(8x)

4x2 ln2(8x)
+ · · · , (5.105)

again in agreement with Ref. [BEK13].

Three particles

For three particles, the (3× 3) matrix inverse is given by

(1 + G M)−1 =
[
1− 1

2 tr(G M)2]1− G M + (G M)2

det(1 + G M) . (5.106)

The `c → ∞ limit for the effective vertices follows after a short calculation, ultimately
yielding for the effective single vertex (cf. Eqs. (3.191) and (3.241))

i j = −
∑

α

2π δiα
2%k`∑

cyc.(2%ab%bc − %2
ab)

δαj ,

= −
∑

α

2π δiα e−2β(Etri+Ekα+Eα`) δαj ,
(5.107)

where α, k, ` ∈ {1, 2, 3} with α 6= k, `, and k 6= ` (i.e., (α, k, `) is some permutation of
(1, 2, 3)). In the second line, we have applied Eqs. (5.77) and (5.99) to put the effective
vertex into the “screening form” (cf. Eq. (3.261a)) discussed in Chapter 3 (see Section 3.6.4,
page 152). This interpretation recognizes the role of the external work required to fix the
particles respective heights against vertical fluctuations. The associated external sources
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serve to suppress fluctuations near the particle boundaries and consequently screen the
interactions between particles, namely those between fluctuation-induced monopole and
higher-order multipole moments, according to the pair (5.77) and triplet (5.83) interaction
energies. Similarly, the effective double vertex becomes (cf. Eqs. (3.192) and (3.241))

i j =
∑

α,γ

2π δiα
%αk + %kγ − %αγ∑
cyc.(2%ab%bc − %2

ab)
δγj ,

=
∑

α,γ

2π δiα
1
2e−2β(Etri+Eαγ)

×
[
e−2βEαk + e−2βEkγ − e−2β(Eαk+Ekγ−Eαγ)

]
δγj ,

(5.108)

in which (α, γ, k) is a permutation of (1, 2, 3). Like before, we provide the “screening
form” (cf. Eq. (3.261b)) in the second line. Note that if there are only two particles, the
constraints on α, γ, k, and ` in Eqs. (5.107) and (5.108) reduce both three-body effective
vertices to the two-body vertices (5.97) and (5.98), which is most clear in the screening
form since Etri = Eαk = Ekγ = 0 and α, γ ∈ {1, 2}. However, as long as the system has three
height-constrained particles, the monopole interactions will always be “screened” by the
triplet energy, in addition to the pairs.
To demonstrate, we calculate the first subleading correction to the energy of a three-

particle configuration, which comes from the diagrams in Eq. (5.95) plus those same
diagrams with the double monopole vertex (5.108):

βU
(2)
{1,2,3} = −

cyc.
{1,2,3}∑

i,j,k





%ki(s+
i )2 + f2

i [%ki + (%ki − %ij) + %jk] cos 2θ(i)
ji

+ %kj(s+
j )2 + f2

j [%kj + (%kj − %ji) + %ik] cos 2θ(j)
ij

4r2
ij

∑
cyc.(2%ab%bc − %2

ab)

+
[%ki + (%ij − %jk)]

[
(s+
i )2 cosϕ i

kj + f2
i cos

(
θ

(i)
ki + θ

(i)
ij

)]

4rkirij
∑

cyc.(2%ab%bc − %2
ab)




.

(5.109)

The argument of the last cosine is most directly suggested from the evaluation of the
diagrams and refers to the angle of particle i measured with respect to both lines zi → zj
and zk → zi. A perhaps better expression derives from the identity θ(i)

ki = θ
(i)
ij + ϕ i

kj so that
the argument of the last cosine is 2θ(i)

ij + ϕ i
kj , referring to one representation of the particle

orientation plus the exterior angle of the vertex on which the particle sits. The equivalent
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“screening form” of the above result may be expressed in the form9

βU (2) = −

cyc.
{1,2,3}∑

i,j,k

e−2β(Etri+Eij)

8r2
ij

{
e−2βEjk

[
(s+
i )2 + f2

i

(
2 + e−2β(Eki−Ejk)

− e−2β(Eki−Eij)
)

cos 2θ(i)
ji

]
+ (i↔ j)

}

−

cyc.
{1,2,3}∑

i,j,k

e−2β(Etri+Ejk)

8rkirij

(
e−2βEij + e−2βEki − e−2β(Eki+Eij−Ejk)

)

×
[
(s+
i )2 cosϕ i

kj + f2
i cos

(
θ

(i)
ki + θ

(i)
ij

)]

(5.110)

Observe that the first sum is exponentially suppressed by the leading-order pair energies
between one particle and the other two, but amplified by the triplet energy (recall that
the triplet energy is repulsive and Etri < 0). This result differs from simply adding the
two-particle result (5.100) pairwise because of this suppression term. However, from the
screened version we can again see how the result is consistent with the two-body expression
(5.100)—second sum is purely three-body and would vanish in a two-particle system, and
setting Ejk = Eki = Etri = 0 and i, j ∈ {1, 2} in the first sum reduces the expression
to Eq. (5.100). Continuing to even higher orders will follow similarly as straightforward
computations of Feynman diagrams, including the proper insertions of the effective monopole
vertices.

We conclude by finding the preferred particle orientations of an example three-body
arrangement. Taking the ellipses to be identical for convenience (s+

i = a+ b for all particles
i), we consider the three particles situated at the vertices of an equilateral triangle with
equal side lengths d. For this arrangement, the above energy contribution reduces to

βU (2) = − 3(a+ b)2

8d2 ln
( 2d
a+b
) − (a2 − b2)

12d2 ln
( 2d
a+b
)

×

cyc.
{1,2,3}∑

i,j,k

[
cos
(

2θ(i)
ij + 2π

3

)
+ 2 cos

(
2θ(i)
ij + 4π

3

)
+ 2 cos 2θ(i)

ij

]
.

(5.111)

The anisotropic information is contained in the sum and depends on only one particle angle
at a time. Hence, we may solve for each particle orientation independently, finding that
the solution θ(1)

12 = θ
(2)
23 = θ

(3)
31 = π/6 maximizes the summand in square brackets and thus

minimizes the energy. The preferred orientations of the three particles therefore consists of

9This corrects Eq. (102) of Ref. [HD14], in which the exponentials were improperly distributed through
the first term, and the final cos

(
θ

(i)
ki + θ

(i)
ij

)
term is missing.
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all ellipses pointing toward a common point at the triangle center, in agreement with the
(BC 2) conclusion.
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Summary and conclusion

At the end of a long and fruitful journey, it is befitting to reflect upon the adventures
experienced and the lessons learned along the way. The guiding philosophy of effective
field theory, underpinned by scaling and symmetry principles, has revealed a powerful
and elegant framework that can systematically reformulate the conceptually simple yet
technically challenging problem of mediated interactions into one that is both physically
intuitive and tractable. Moreover, it demonstrates a mathematical universality among a
wide class of physical systems, permitting one to exploit decades of field theoretic machinery
and experience to tackle novel problems. In this thesis we have explored several applications
of the EFT formalism as it pertains to soft matter and, in particular, surface-mediated
interactions between adsorbed particles.
We began by considering a familiar problem in electrostatics: the interaction between

conducting spheres at fixed potentials or fixed charges. We used this example to both
introduce some of the key ideas of EFT as well as serve as a guiding analogy for the later
applications. In particular, we highlighted the interplay between the conductors and the
scalar field (electric potential): the interaction between conductors is mediated by the
electric potential and thus the information transmitted by each is restricted to the boundary
data allowable by the field energetics. Such information is encapsulated by each conductor’s
polarizabilities which, although they dictate the conductor’s response to an external field,
are themselves of geometric origin and field-independent. Throughout the remainder of this
thesis, we have retained this intuitive idea to capture field-relevant particle descriptions as
a set of generalized polarizabilities, affording us conceptual and computational faculties
that come with it.
In the second chapter, we began our foray into the physics of soft-matter surfaces,

wherein a general curvature Hamiltonian, quickly specialized to the Helfrich Hamiltonian,
was constructed via EFT principles. The effective theory captures the mesoscopic behavior
of a fluid surface, wherein the short-scale physics of its constituents are subsumed into
a few relevant and marginal phenomenological parameters, namely the surface tension,
spontaneous curvature, and the two curvature moduli. We then specialized further to two
classes of surfaces: (i) a surface whose energetics are dominated by the surface tension
alone—relevant to fluid–fluid interfaces and films—and (ii) a surface whose energetics are
dominated by bending rigidity—relevant to fluid lipid membranes. From the associated
energy functionals we obtained the permissible boundary data that may be probed and
transmitted through the surface.

In the third chapter we fully capitalized on the utility of the EFT formalism by considering
the interactions between small particles adsorbed on a tension-dominated, fluid surface. By
applying the EFT prescription, we were able to disentangle the constraints imposed by the
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particle boundaries to create a completely equivalent point particle description. Similar to
the electrostatics case, we were able to capture all the finite-size information, as well as the
rigid-body degrees of freedom, in a complete set of point-like polarizabilities, which were
determined by matching the full and effective theory results to a simple linear response
boundary value problem. Since the scaling of each term in the resulting derivative expansion
is manifestly transparent, it allows for systematic control (and ensured validity) over any
desired accuracy. We then introduced the diagrammatic technique to aid in calculating
ground state elastic and fluctuation-induced entropic interactions between surface-bound
particles. Although a number of the results we obtained had been known before we re-derived
them, by revisiting them the EFT prescription proves its merit:

• The formalism captures the key underlying physics in such a way that each term and
contribution has an intuitive interpretation.

• Both ground state and fluctuation-induced interactions can be treated within the
same framework.

• Calculating the polarizabilities is disentangled from the full problem and only needs
to be done once. In complicated situations may they be determined numerically or
even experimentally, or left undetermined as a phenomenological theory.

• Since the polarizabilities are independent of the rest of the system, it is straightforward
to extend the theory to complicated, multiparticle systems.

Indeed, we demonstrated the versatility of the EFT formalism by pushing the pair
interactions to all orders and calculating the three-body interactions to several orders, all
for nonidentical particles with various boundary conditions. Furthermore, we elucidated
the subtleties of monopole-type interactions, which are problematic since their perturba-
tive contributions are marginal, and showed how to regulate and completely resum their
contributions for and recover proper power counting of the resulting interaction energy.
At leading order, the elastic interaction energy between two particles with fixed positions
is long ranged (∼ 1/ ln r) and repulsive. We find that for three particles, the energy is
also collectively repulsive but less so than the sum of pairwise energies, indicating that the
pure three-body (triplet) effect is in fact attractive. Curiously, at the next order the triplet
interaction does overcome the pairwise sum at that order, thereby reducing the overall
repulsion further, suggesting that a pairwise approximation to a multiparticle system is
not adequate to properly capture the aggregate behavior. We obtained similar results
for entropic interactions, for which the leading-order pair interaction is very long ranged
(∼ ln ln r) and attractive. The pure three-body contribution is again contrarian, collectively
repelling the particles, but not enough so that it overcomes the attractive pairwise sum.
Interestingly, and in contrast to the elastic case, both the pairwise and triplet contributions
reinforce the the leading-order attraction at the next order. Finally, we considered a partic-
ular case of semi-relaxed constraints in which the particle position is set by an external
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potential (e.g., optical tweezers), and calculated the interparticle forces for both pinned
and unpinned contact lines.

Next, we turned our attention to particle interactions mediated by membranes. Although
the energetics of a membrane are governed by its bending rigidity rather than tension, many
of the same principles apply, but with modified expansion terms and boundary conditions.
As before, we were able to calculate the complete set of generalized polarizabilities for flat and
curved particles and calculated interactions to many orders. Since the richness of the elastic
interaction energy landscape is not adequately represented or discussed in the literature,
we examined in detail the minimum energy orientations for two saddle-shaped particles
with nonzero mean curvature in both the up–down symmetric and antisymmetric cases.
We found that in terms of the scaled separation distance χ = r/R and the ratio η = S/J
between the particles’ saddle and mean curvatures, there exists a critical line separating the
energy in the χη-plane into two orientational phases with one or two (degenerate) minima
respectively. The plane is further subdivided into attractive or repulsive regions showing
that, for instance, for sufficiently small η the interaction is always repulsive as suggested by
the leading-order interaction energy for S = 0, but most of the phase space is dominated
by attraction. Additionally, we calculate the fluctuation-induced interactions between two-,
three, and four-body systems.
A class of particle shape anisotropies were considered in Chapters 3 and 4, namely

those that curve out of the plane but otherwise remain circular in the projected base
plane. Such deformations appeared as permanent sources in the effective Hamiltonian and
account for the existence of ground state (elastic) interactions. In Chapter 5 we generalized
the EFT of particles on a tension-dominated surface to account for anisotropies in the
(projected) boundary shape. The primary complication is that many additional terms
originally forbidden by the rotational symmetry of the projected boundary must now be
accounted for, including those with tensorial polarizabilities. However, once again we were
able to determine the complete set of polarizabilities for particles with elliptical contact lines.
We accomplished this by exploiting the conformal invariance of the effective Hamiltonian to
map the single-particle boundary value problem required for matching, to the much simpler
case of a circular boundary. As a consequence of the Riemann mapping theorem, this trick
is readily generalizable to more arbitrary shapes—all one must know to proceed is the
Laurent expansion (to a some desired order) of the map to a circular boundary. Just as in
Chapter 3, we obtain high-order results for the entropic interactions in two- and three-body
systems with varying fluctuation degrees of freedom. We found in particular that elliptical
particles will minimize their interaction free energy by aligning tip-to-tip or, in a three-body
configuration, align their tips to a common center. Triplet and higher-order interactions
become stronger at closer distances, hence they will be especially relevant in dense bulk
phases, in which many particles coat a fluid surface. The free energy of such phases can be
written as a sum over all pairs, all triplets, and so on. We expect the resulting system to
give rise to nontrivial ordered phases; for instance, it is easy to see that a regular triangular
lattice would be frustrated, since three close particles tend to point their tips together, but
this is a local conformation that cannot be assumed by every close triplet. While the terms
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beyond the pair level are only a small correction to the overall free energy, they would shift
the location of phase boundaries between such dense phases, but this is beyond the scope
of our present work.
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Appendix A

Linear response and complete
renormalization of polarizabilities

Throughout this thesis, we have claimed that the effective field (EFT) theory reproduces
all of the physics of the corresponding full theory. However, in constructing the EFT
we were somewhat cavalier about divergences, both in calculating interactions as well as
during the matching procedure. Here we will revisit and justify the assertions made in the
main text. For simplicity, we will consider a surface dominated by surface tension only.
Furthermore, we will work in the Monge gauge and rescale the height function by the length
scale `m =

√
kbT/σ so that the field φ = h/`m is dimensionless. Then, as per Chapter 3,

the effective Hamiltonian for a single, flat, circular particle at the origin is

S[φ] := βHeff[φ] = 1
2

∫
d2xφ

(
−∇2 + `−2

c
)
φ+

(
1
2M

(0)φ2(0) +
∑

n>1
C(n)|∂nφ(0)|2

)

= S0[φ] + ∆S[φ].
(A.1)

The EFT in essence re-expresses the Hamiltonian as a derivative expansion evaluated on
the particle worldlines. The couplings, or Wilson coefficients, concomitant to each term
in the expansion were interpreted as generalized polarizabilities, which we determined by
calculating and matching the field responses to imposed background fields in both the
EFT and full theory. However, when calculating these observables in the effective theory,
we did so by assuming a linear response and dropping the divergent worldline terms that
are independent of the background. The justification was that the full theory boundary
value problem is indeed linear in the field, so the EFT response must be as well. We then
claimed that the additional divergent terms were of no consequence and were merely an
artifact of reducing the particle to a point. Let us now retain those terms and discuss the
consequences.

A.1 Linear response
Once a background field φbg is imposed, we express the total field as φ = φbg + ϕ and
expand the functional as

S[φbg + ϕ] = S[φbg] + δS

δφx

∣∣∣∣
φbg

ϕx + 1
2

δ2S

δφxδφy

∣∣∣∣
φbg

ϕxϕy, (A.2)
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where we have used continuous index notation in which ϕx = ϕ(x) and repeated “indices”
are integrated. As usual, we take the background field to be on-shell; i.e., (δS0/δφ)|φbg = 0.
The response field must then satisfy

δS[φbg + ϕ]
δϕx

= δS

δφx

∣∣∣∣
φbg

+ δ2S

δφxδφy

∣∣∣∣
φbg

ϕy

≡ −Jx + (Kxy +Mxy + Vxy)ϕy
!= 0

(A.3)

where K(x,y) = (−∇2
x + `−2

c )δ(x− y) is the usual bulk kernel function, and the remaining
terms in the second line follow from the functional derivatives:

Mxy = M (0)δ0
xδ

0
y , (A.4)

Vxy =
∑

n>1
C(n)(∂nδ0

x∂̄
nδ0
y + c.c.

)
, (A.5)

Jx = −M (0)φbg(0)δ0
x −

∑

n>1
C(n)[∂nφbg(0)∂̄nδ0

x

]
. (A.6)

In the above expressions we use the definition δwx = δ(w − x), and the complex derivatives
are taken with respect to the whole argument (e.g., ∂nδ0

x = (−∂)nδx0 ).
In the text, we dropped both Mxy and Vxy and solved for the effective response via

Kxyϕ
y = Jx =⇒ ϕx = GxyJy, (A.7)

where Gxy = K−1
xy is the bulk Green function given by (in the `c →∞ limit)

G(x,y) = 1
2π ln

(
2`c

|x− y|γe

)
. (A.8)

If Mxy and Vxy are retained, the problem instead becomes

(K + M + V) ϕ = J, (A.9)

where we have used the bold “matrix” notation of Chapter 3. The solution then follows
formally by the full Green function G:

ϕ = G J, G = (K + M + V)−1. (A.10)

As discussed in detail in Chapter 3, since M (0) scales the same as the Hamiltonian—in
this case it is dimensionless—monopole interactions cannot be treated perturbatively if we
wish to have a consistent expansion in powers of inverse distance. Rather all monopole
interactions must be summed in their entirety. A particularly economical way to perform
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this sum is by first rewriting G through the following formal manipulations:

G = [K(1 + G M + G V)]−1

= (1 + G M + G V)−1 G

=
[
(1 + G M)

(
1 + (1 + G M)−1 G V

)]−1 G

=
[
1 + (1 + G M)−1 G V

]−1(1 + G M)−1 G . (A.11)

Finally, defineM = 1 + G M and expand the inverse so that

G =
(
1 +M−1 G V

)−1M−1 G =
∑

k>0

(
−M−1 G V

)kM−1 G . (A.12)

A.2 Regularization and resummation
The resummation of the monopole terms results from the inverse ofM. We calculate the
inverse in a couple of steps. First, we expand the inverse and perform the corresponding
contractions using GxwMwy = M (0)Gx0δ0

y :

(M−1)xy = δxy +
∑

`>1

[
(−G M)`

]x
y

= δxy −M (0)Gx0δ0
y +M (0)2

Gx0δ0
wG

w0δ0
y −M (0)3

Gx0δ0
wG

w0δ0
zG

z0δ0
y + · · ·

= δxy −M (0)Gx0δ0
y +M (0)2

Gx0G00δ0
y −M (0)3

Gx0(G00)2δ0
y + · · · (A.13)

Next, we recognize the expansion as a geometric series in numbers rather than operators.
Since this operator always acts on the Green function, we write

(M−1)xwGwy = Gxy −M (0)Gx0
∑

`>0

(
−M (0)G00

)`
G0y

= Gxy −
(

M (0)

1 +M (0)G00

)
Gx0G0y. (A.14)

According to the first line, a surface excitation impinging on the particle experiences
modifications from a series of self-interactions due to the particle’s induced monopole
polarizability. In the second line, we sum the (Dyson-like) series to give a total effective
monopole interaction. Observe that the monopole terms depend on the Green function
evaluated at zero which, given Eq. (A.8), is clearly logarithmically divergent. We will return
to this in a moment.
With the monopoles resummed, we may begin to look at corrections due to the higher-

order polarizabilities. The leading order correction comes from the k = 1 term of Eq. (A.12),
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and requires the operator

(M−1 G V)xy = (M−1 G)xw
∑

n>1
C(n)(∂nδ0

w∂̄
nδ0
y + c.c.

)

=
∑

n>1
C(n)

{[
(−∂)nGx0 −

(
M (0)

1 +M (0)G00

)
Gx0(−∂)nG00

]
∂̄nδ0

y + c.c.
}

(A.15)
Notice the appearance of a new type of divergence, ∂nG(0), which because of the derivatives
diverges as ∼ 1/zn. We may continue as is, but it is worth making a few comments to
simplify the following expressions. Already we have encountered several divergences just by
attempting to calculate the full propagator (Green function) for a single particle. This is
not too surprising since we have condensed all the physical characteristics of the particle,
and hence the uncountably-infinite field degrees of freedom, to a single point, so divergences
are expected to result as an artifact. From the perspective of renormalization group theory,
we have parametrized the effective theory in a way that is sensitive to such a coarse-graining
procedure. The effect is that under coarse-graining, divergences should be expected, but
serve only to renormalize the couplings of the naïvely-parametrized theory. To properly
parametrize the theory, we must also include unphysical counterterms that eliminate the
unphysical divergences but otherwise make no appearance in physical observables. However,
in doing so we must also keep careful watch over the scaling behavior due to renormalization.
For instance, the power-law divergences mentioned above do not pick out a particular
scale and the renormalization group flow is trivial; i.e., there is no nontrivial physical
information contained within the divergences. Logarithmic divergences, however, can
contain information since they necessarily entail a particular renormalization scale. As such,
we will retain terms ∝ G(0).

Regarding terms ∝ ∂nG(0), we note the following. In any sensible renormalization scheme,
the method used to regulate and isolate divergences should respect as many important
symmetries as possible. In our case, the bulk Green function G is isotropic, and thus
has no preferred directionality. Hence derivatives of G evaluated at the origin, such as
∂i∂j∂k · · ·G(0), must also be isotropic and, moreover, fully symmetric in all the indices. Such
tensors must therefore be proportional to combinations of Kronecker delta-functions that
pair off each of the indices amongst one another, and are zero unless all the derivative indices
are (pairwise) contracted. The corresponding statement in complex coordinates is that all
∂-derivatives must be paired with ∂̄-derivatives such that ∂n∂̄nG(0) = δnm(∂∂̄)nG(0). The
immediate implication is that any terms proportional to ∂nG(0) (or ∂̄nG(0)) will vanish
under a suitable renormalization scheme, most notably the terms proportional to M (0)

in Eq. (A.15). That is, we see that the monopole terms decouple from the higher-order
corrections of the full propagator. As one final note, due the the definition of the Green
function, it follows that ∂∂̄G(0) = `−2

c G(0), so we will retain these terms as well.1

1Since we are working in the `c → ∞ limit, one might wonder whether we should instead apply
−4∂∂̄G(0) = δ(0). One could indeed proceed this way, and in dimensional regularization such terms would
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Applying these insights, we contract Eq. (A.15) withM−1 G to give the leading order
correction,

− (M−1 G VM−1 G)xy = −
∑

n>1
C(n)[(−∂)nGx0∂̄nG0y + (terms ∝ ∂̄nG00)

]
+ c.c., (A.16)

where we may drop the terms proportional to ∂nG(0) and ∂̄nG(0). Continuing along, the
next order correction follows by contractingM−1 G V with the above expression. In doing
so, we encounter the factor ∂n(−∂̄)mG(0), which as per the above discussion should be
replaced by δnm(−∂∂̄)nG(0). This has the effect of projecting the second sum onto the
same polarizability order so that the correction is proportional to [C(n)]2:

[
(M−1 G V)2M−1 G

]xy =
∑

n>1

[
C(n)]2{(−∂)nGx0(−∂∂̄)nG00∂̄nG0y + c.c.

}
. (A.17)

This behavior is seen to generalize to all the higher orders such that
[
(−M−1 G V)kM−1 G

]xy
=
∑

n>1

[
−C(n)]k{(−∂)nGx0[(−∂∂̄)nG00]k−1

∂̄nG0y + c.c.
}
.

(A.18)
We now recognize the sum over k > 1 as a geometric series. Combining the sum with
Eq. (A.14) into Eq. (A.12), we finally find the full propagator to be

Gxy = Gxy −Gx0
(

M (0)

1 +M (0)G00

)
G0y

−
∑

n>1

{
(−∂)nGx0

(
C(n)

1 + C(n)(−∂∂̄)nG00

)
∂̄nG0y + c.c.

}
.

(A.19)

We may also interpret the full propagator graphically. The conditions ∂nG(0) = 0 and
∂n∂̄mG(0) = δnm(∂∂̄)nG(0) justify the claim that ∂- and ∂̄-derivatives must be paired
at every vertex, even for a self-interaction, and furthermore re-enforce the diagrammatic
choice of representing the Vxy vertices with single- and double-line legs used in the previous
chapters. Furthermore, self-interactions must only connect identical multipole orders. The
full propagator is therefore a sum of the free (bulk) propagator plus corrections due to the
self-energy corresponding to each polarizability; that is, the particle interacting with its
own structure.

all formally vanish. With the long-distance regulator `c in place, it appears that G(0) cannot diverge more
than logarithmically, so the extra inverse powers of `c will ultimately kill off those terms as well. We will,
however, retain all such terms for this demonstration.
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A.3 Matching and counterterms
To finish off, we will consider explicitly again the matching procedure. In the full theory
(with `c →∞), a convenient background field is the linear sum of exterior solutions,

φbg =
∑

n>0
an(zn + z̄n). (A.20)

The full theory response, with the flat-particle boundary conditions φbg(R) + ϕ(R) = 0, is
easily found (by calculation or a peek at Chapter 3) to be

ϕ = −a0
ln
( 2`c
rγe

)

ln
( 2`c
Rγe

) −
∑

n>1
anR

2n
(

1
zn

+ 1
z̄n

)
(A.21)

For convenience, we can re-express the response in terms of derivatives of the Green function
via the identity

(−∂)nG(z, z̄) = (n− 1)!
4πzn , (A.22)

so that

ϕ = −a0
2πG

ln
( 2`c
Rγe

) −
∑

n>1
an

4πR2n

(n− 1)!

[
(−∂)nG+ c.c.

]
. (A.23)

The effective response follows from the solution ϕ = G J, where the induced source is
given by Eq. (A.6). Using ∂nφbg(0) = n!an, we find

ϕx = −a0M
(0)Gx0 −

∑

n>1
C(n)n!an

[
(−∂)nGx0 + c.c.

]
(A.24)

Next, we plug in the expansion (A.19) for the full propagator, which requires the contraction

Gxy∂nδ0
y = ∂ny Gxyδy0

= (−∂)nGx0 − (−∂)nGx0
(

C(n)

1 + C(n)(−∂∂̄)nG00

)
(−∂∂̄)nG00.

(A.25)

To arrive at the above expression, we pay close attention to the derivative variable, ap-
ply ∂̄m∂nyG0yδ0

y = δnm(−∂∂̄)nG00, and drop the terms proportional to ∂nG(0). Finally,
simplifying the terms gives the effective response

ϕx = −a0

(
M (0)

1 +M (0)G00

)
Gx0−

∑

n>1
ann!

(
C(n)

1 + C(n)(−∂∂̄)nG00

)[
(−∂)nGx0 + c.c.

]
(A.26)
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Comparing this with the full-theory response (A.23), we obtain the matching conditions,

M (0)

1 +M (0)G00
!= 2π

ln
( 2`c
Rγe

) =: M (0)
r (A.27)

C(n)

1 + C(n)(−∂∂̄)nG00
!= 4πR2n

n!(n− 1)! =: C(n)
r . (A.28)

In the above expressions for the polarizabilities, we reproduce the values listed in Technical
Note 3.1, but not for the bare parameters. As mentioned before, this should be expected
since the bare parameters do not necessarily correspond to observables, and may indeed
diverge themselves. Instead, what we do measure through observables are the renormalized
parameters, designated above by M (0)

r and C(n)
r . These are the values we obtained in the

main text by ignoring the unphysical divergences.
To put things differently, the original effective Hamiltonian (A.1) was naïvely expressed in

terms of bare parameters, written now asM (0)
b and C(n)

b . If we wish to instead re-express the
Hamiltonian in terms of physical renormalized parameters, we may make the replacement
M

(0)
b = M

(0)
r + (M (0)

b −M (0)
r ) and similarly for C(n)

b so that the functional becomes a sum
of the renormalized Hamiltonian and a series of counterterms that exactly cancel off the
divergences:

S[φ] = Sr[φ] + Sct[φ], (A.29)
where

Sct[φ] = 1
2M

(0)
r

[
M

(0)
r G00

1−M (0)
r G00

]
φ2(0) +

∑

n>1
C(n)
r

[
C

(n)
r (−∂∂̄)nG00

1− C(n)
r (−∂∂̄)nG00

]
|∂nφ(0)|2. (A.30)

We may instead expand the fractions to produce the series

Sct[φ] =
∑

k>1

{
1
2M

(n)
r

[
M (0)

r G00
]k
φ2(0) +

∑

n>1
C(n)
r

[
C(n)
r (−∂∂̄)nG00

]k
|∂nφ(0)|2

}
. (A.31)

Although we will not prove it here, the benefit of the expanded form of the counterterms is
that they can be seen to cancel out all self-interactions, order-by-order, in the perturbative
expansions for every observable. This generalizes in the obvious way for multiple particles,
with an analogous sum of counterterms on each worldline. Since the observables are in
essence calculated with the full propagator, all self-interactions will manifest the same form
as discussed above, and will be subsequently removed by the appropriate counterterms
from Eq. (A.31). This both justifies and assures that it is safe to completely neglect all
self-interactions during our calculations. Alternatively, these results can be summed up by
a modification of the bulk Green function, Gab → (1− δab)Gab (no sum) for particles a and
b, which we used liberally throughout the main text.
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Appendix B

Soft monopoles and unpinned particles

Throughout this thesis, we have primarily studied particles that are pinned to a surface with
a fixed contact line. For such particles, their actual shapes were irrelevant in that only the
fixed boundary information (including allowable rigid body motions) could be transmitted
through the surface. Here we will consider a different scenario in which the contact line is
not fixed, but instead governed by three-phase interfacial energy (i.e., between the particle
and the two fluids). In this case, the full particle shape matters since the contact line is
unpinned and may move about the particle’s surface.
In Section 3.7 we added a touch of experimental realism by constraining the particles’

vertical positions through the use of external, harmonic trap potentials. When comparing
our results to the published literature, namely Ref. [LO07], we found it necessary to also
consider the effects due to unpinned contact lines. In this appendix, we construct the
effective Hamiltonian for an unpinned spherical particle at a fluid–fluid interface, including
trapping effects, and calculate the resulting interactions between particles.

B.1 Particle boundary conditions
Isolated particle

For a single, surface-bound spherical particle, the equilibrium fluid–fluid interface becomes
flat and the particle settles at a center of mass height hrefcm = −R cos θ (see Fig. B.1). The
contact line forms a circle of radius R0 = R sin θ, where the contact angle obeys Young’s
Equation [Saf94, Chap. 4], cos θ = (σI−σII)/σ. The parameter σI(II) refers to the interfacial
energies between the particle and phase I (II) and σ is the surface tension of the fluid–fluid
interface. For deviations from this reference configuration, we may parametrize the contact
line according to Fig. B.1 such that

R̃(ϕ) = R sinϑ(ϕ), (B.1a)
hcm = h

(
R̃(ϕ)

)
−R cosϑ(ϕ), (B.1b)

where R̃ and ϑ may in general depend on the azimuthal angle ϕ such that the above two
equations hold.
We now apply the philosophy of Section 3.2 (Conditions for the contact line) to express
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h = 0

href
cm

R0
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θθ

Act
I,ref

Act
II,ref

phase I
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θ
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cm

h
(
R̃(ϕ)

)R0
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R̃(ϕ)

R
ϑ

∆hcm

Act
I

Act
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Figure B.1: Parametrizations for an unpinned particle. The left figure illustrates the equilibrium reference
configuration in which the position of the three-phase contact line is governed by Young’s law. The right
figure illustrates a deviation from equilibrium in which the contact line height and position with respect
to the particle changes.

the total free-energy difference from the reference configuration as

H = H0 + ∆Hex + ∆Hct

= σ

2

∫

Srefpr

d2x
[
(∇h)2 + `−2

c h2]+ σ(Aref −A) + (σI − σII)∆Act
I ,

(B.2)

where Srefpr = R2 \ Aref, Aref and A are respectively the projected particle areas in the
equilibrium state and an arbitrary state, and ∆Act

I is the change in contact surface area
(not the projection) of the particle with phase I. Following Appendix A of Ref. [ODD05],
we expand and rearrange the last term, resulting in1

(σI − σII)∆Act
I = σ

2

∫ 2π

0
dϕ
[
h
(
R0(ϕ)

)
−∆hcm

]2 + σ

2

∫ 2π

0
dϕ
[
R̃2(ϕ)−R2

0
]
, (B.3)

where ∆hcm = hcm − hrefcm. Similarly, the second term of Eq. (B.2) becomes

σ(Aref −A) = σ

∫ 2π

0
dϕ
∫ R0

R̃(ϕ)
dr r = σ

2

∫ 2π

0
dϕ
[
R2

0 − R̃2(ϕ)
]
, (B.4)

1 To provide a few details: Starting with the contact area integral

Act
I = R2

∫ 2π

0
dϕ
∫ ϑ(ϕ)

0
dψ sinψ = R2

∫ 2π

0
dϕ [1− cosϑ(ϕ)],

and using the relationships σI−σII = σ cos θ and ϑref ≡ θ, one expands out (σI−σII)∆Act
I . After completing

the square using the identity a2 − ab = 1
2 (a − b)2 + 1

2 (a2 − b2) and applying the relationships (B.1), one
then obtains Eq. (B.3).
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which cancels the second term of Eq. (B.3). Finally, assuming the contact profile does not
deviate significantly from the reference profile, we may approximate h

(
R̃(ϕ)

)
≈ h(R0, ϕ),

which is certainly valid to monopole-order (corrections are of third order in the boundary
multipoles [LO07]). The energy functional therefore takes the form

H[h,∆hcm | R̃(ϕ)] ≈ H0[h | Srefpr ] + σ

2

∫ 2π

0
dϕ
[
h(R0, ϕ)−∆hcm

]2
. (B.5)

Note that in this formulation, the functional contains two “dynamical” fields, h and ∆hcm.
This differs from the functional for a pinned particle, Eq. (3.24), where the force density is
instead dynamical and the height constraint enters in linearly (see also Eq. (3.265)).

Particle in a harmonic trap

A particle trap, such as optical tweezers, may be modeled by an external harmonic potential
that subjects the particle to a linear restoring force for vertical height deviations from
the potential minimum. As we did in Section 3.7, we account for the trapping energy by
amending the energy functional (B.5) with

V (hcm) = 1
2k(hcm − h0)2 = 1

2k
(
∆hcm −∆href0

)2
, (B.6)

where ∆href0 = h0 − hrefcm is the height difference between the trap potential minimum and
the center of mass height of the particle in the (isolated) equilibrium reference configuration.

The presence of the external trap potential will generally alter the equilibrium configura-
tion. We obtain the conditions for the surface profile h in the usual way by requiring that
the energy functional be stationary under small variations of the two dynamical fields h
and ∆hcm. Taking the linear variations and collecting terms gives

δH = σ

∫

Srefpr

d2x (−∇2 + `−2
c )h δh− σ

∫ 2π

0
dϕ
{
R0

∂h

∂r

∣∣∣∣
r=R0

−
[
h(R0, ϕ)−∆hcm

]}
δh

− σ
∫ 2π

0
dϕ
[
h(R0, ϕ)−

(
1 + 2πσ

k

)
∆hcm + k

2πσ∆href0

]
δ∆hcm

!= 0.
(B.7)

The first term gives the usual bulk Euler–Lagrange equation. The second term yields the
two-field boundary condition

∂h

∂r

∣∣∣∣
r=R0

= h(R0, ϕ)−∆hcm
R0

, (B.8)

and the third term relates the two fields,

∆hcm =
2πσ
k h(R0, ϕ) + ∆href0

1 + 2πσ
k

. (B.9)
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Together, these provide the boundary condition for the surface:

∂h

∂r

∣∣∣∣
r=R0

= h(R0, ϕ)−∆href0(
1 + 2πσ

k

)
R0

. (B.10)

Note that this differs from the pinned-particle boundary condition (3.267), most notably
by the replacement 2πσ/k → (1 + 2πσ/k).

B.2 Background field and response
Recall that in general, the effective worldline Hamiltonian for a particle is constructed by
symmetry considerations and that the particle boundary conditions find their influence
only in the polarizabilities and permanent charges. Hence, there is no need to reconstruct
the effective Hamiltonian, but only match the coefficients to the modified “full theory.” In
particular, only the monopole and permanent charge terms in Eq. (3.270) are relevant here,
so we need only match M̃ (0) and Q̃(0).
As usual, we decompose the height function into the background and response fields

as the superposition h = hbg + δh. Using hbg = A0I0(r/`c) and δh = B0K0(r/`c), we
determine

B0 =
A0
[
R0
`c
I1(R0/`c)− I0(R0/`c)

1+2πσ/k

]
+ ∆href0

1+2πσ/k
K0(R0/`c)
1+2πσ/k + R0

`c
K1(R0/`c)

`c→∞−−−−→ − A0 −∆href0

1 + 2πσ
k + ln

(
2`c
R0γe

) , (B.11)

and thus in the large `c limit the induced response is

δh = −
[

A0 −∆href0
1 + 2πσ

k + ln
( 2`c
R0γe

)
]

ln
(2`c
rγe

)
. (B.12)

Comparing with the effective response, Eq. (3.272), yields the modified soft-monopole
polarizability and permanent charge,

M̃ (0) = 2πσ
1 + 2πσ

k + ln
( 2`c
R0γe

) (B.13)

Q̃(0) = M̃ (0)∆href0 . (B.14)
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B.3 Leading-order interaction energy
We are now in the position to calculate the interaction energy between unpinned particles
as promised in Section 3.7.3. Just as before, we need only appropriate the results of
Sections 3.5.4 and 3.6.4 using the replacements M (0) → M̃ (0) and Q(0) → Q̃(0).

B.3.1 Elastic interactions
The first case we wish to consider is the elastic interaction between identical particles
subjected to identical trap potentials so that we may compare with Eqs. (3.278) and (3.280).
After simplification, we obtain

E
(0)
{1,2} = 2πσ(∆href0 )22πG12

(
2πσ/M̃ (0)

)[(
2πσ/M̃ (0)

)
+ 2πG12

]

= −
2πσ(∆href0 )2 ln

( 2`c
rγe

)
[
1 + 2πσ

k + ln
( 2`c
R0γe

)][
1 + 2πσ

k + ln
( 4`2c
rR0γ2

e

)] , (B.15)

which vanishes in the `c →∞ as expected.
The second case to consider is that between particles with nonidentical trap potentials,

for which a nonvanishing contribution is expected to survive the `c →∞ limit. In this case
we find agreement with Lehle and Oettel’s result (up to a factor of two), Eq. (3.281), and
generalize to nonidentical particles:

E
(0)
{1,2}

`c→∞−−−−→
(πσ/2)

(
∆href0,1 −∆href0,2

)2

1 + πσ(1/k1 + 1/k2) + ln
(

r√
R0,1R0,2

) . (B.16)

Note that for nonidentical particles, ∆href0,1−∆href0,2 = (h0,1−h0,2)− (hrefcm,1−hrefcm,2), showing
that both the trap height differences and particle reference height differences come into
play.

B.3.2 Entropic interactions
For completion, we also present the leading-order entropic interaction between unpinned,
trapped particles. From Eq. (3.225) with the replacement M (0) → M̃ (0), we find

βU
(0)
{1,2} = 1

2 ln
(
1− g̃2

12
)

= −1
2 ln Λ12 + 1

2 ln
[
2 + 2πσ

k1
+ 2πσ

k2
+ 2 ln

(
r√

R0,1R0,2

)]
+O(Λ−1). (B.17)
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The corresponding interparticle force in the `c →∞ limit is

F
(0)
{1,2} = −

∂U
(0)
{1,2}
∂r

= − kbT

2r
[
1 + πσ(1/k1 + 1/k2) + ln

(
r√

R0,1R0,2

)] +O(Λ−1), (B.18)

which is in agreement with Ref. [LO07] (cf. Eqs. (3.283) and (3.285)).
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Monopole contributions for the ellipse:
asymptotics and matching

In this appendix we present a more detailed discussion of the anisotropic monopole problem,
including the mathematical technicalities associated with the `c → ∞ asymptotics. We
begin with a construction of the general solution in elliptic coordinates and find the
limiting asymptotic forms. Next, we apply this to the ellipse BVP to generate a convenient
background and response solution pair. We conclude by demonstrating the matching
independence between the monopole and higher-order polarizabilities.

C.1 Asymptotics in elliptic coordinates
The inclusion of the gravitational potential breaks the bulk conformal symmetry and, hence,
the conformal mapping trick used in Section 5.2.2 is no longer applicable. We can instead,
however, transform to elliptic coordinates, which are well-suited for the ellipse BVP.

General case

We first recast the partial differential equation (5.31) in elliptic coordinates. Under this
change of variables, it becomes

1
f2(sinh2 ξ + sin2 η)

(
∂2φ

∂ξ2 + ∂2φ

∂η2

)
− 1
`2c
φ = 0. (C.1)

Now, we separate variables by assuming a solution of the form φ(ξ, η) = R(ξ)Φ(η). Plugging
this in gives

R′′

R
+ Φ′′

Φ −
f2

`2c

(
sinh2 ξ + sin2 η

)
= 0. (C.2)

The squares can be removed by using the identities sinh2 ξ = (cosh 2ξ − 1)/2 and sin2 η =
(1 − cos 2η)/2. Letting c be the separation constant, we obtain two ordinary differential
equations (ODEs),

R′′ −
[(
c− f2

2`2c

)
+ f2

2`2c
cosh 2ξ

]
R = 0, (C.3a)

Φ′′ +
[(
c− f2

2`2c

)
+ f2

2`2c
cos 2η

]
Φ = 0. (C.3b)
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Finally, we define p := c− f2/2`2c and q := −f2/4`2c , which puts the ODEs into the forms

R′′ − (p− 2q cosh 2ξ)R = 0, (C.4a)
Φ′′ + (p− 2q cos 2η)Φ = 0. (C.4b)

The angular ODE is recognized as the Mathieu equation. The periodic boundary condition
Φ(η) ≡ Φ(η+2π) implies that p depends on a positive integer n (via the separation constant
c). The two families of solutions are given by the (even) cosine-elliptic function cen(q; η),
where n ∈ N0, and the (odd) sine-elliptic function sen(q; η), where n ∈ N. We will not
elaborate on the details here, but these solutions may be obtained by considering Eq. (C.4b)
as an eigenvalue problem—more information may be found in Ref. [AW05]. The general
solution of Φ(η) is then the linear superposition

Φn(η) = An cen(q; η) +Bn sen(q; η), B0 = 0. (C.5)

With these same eigenvalues pn, the radial ODE becomes the modified Mathieu DE, with
solutions given by the even and odd evanescent (since q < 0) radial Mathieu functions of
the first kind: Ien(q; ξ) and Ion(−q; ξ), and second kind: Ken(−q; ξ) and Kon(−q; ξ). The
general solution is again a linear superposition

Rn(ξ) = an Ien(−q; ξ) + bn Ion(−q; ξ)
+ cn Ken(−q; ξ) + dn Kon(−q; ξ), (C.6)

where b0 = d0 = 0. The notation highlights the analogy between the modified Mathieu
functions from an elliptic geometry with the modified Bessel functions of a circular geometry.
Indeed, the behavior of the modified Mathieu functions is analogous to the modified Bessel
functions: Both Ken and Kon decay at infinity, whereas both Ien and Ion diverge at infinity.
Finally, the complete general solution is given by

φ(ξ, η) =
∞∑

n=0
Rn(ξ)Φn(η). (C.7)

We could continue in this manner and find the explicit solution to our boundary value
problem; however, we are only interested in the limiting case of `c →∞.

Asymptotics

Since the capillary length `c is being used as a regulator, we must consider the solution
behavior for q = −f2/4`2c → 0. Although asymptotic series expansions for the Mathieu
functions exist in the literature, we can easily get the relevant terms by reconsidering the
original ODEs (C.4a) and (C.4b).

The angular ODE for q → 0 simply reduces to the harmonic oscillator DE with an angular
frequency √p, giving cos(√p η) and sin(√p η) as general solutions. Enforcing periodicity
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requires p = n2 for some integer n. For the radial solution, we must be a little more careful
since cosh 2ξ is not bounded above. However, since ξ ∈ [0,∞), we have for large ξ the
asymptotic form

2q cosh 2ξ = q(e2ξ + e−2ξ) ∼ q e2ξ as q → 0. (C.8)

Recalling that q < 0, this motivates introducing an effective elliptic radius ρ := √−q eξ.
Applying this to Eq. (C.4a) using dρ = ρ dξ gives

ρ
d
dρ

(
ρ

dR
dρ

)
−
(
p+ ρ2 + q2

ρ2

)
R = 0. (C.9)

Finally, taking q → 0 and using p = n2 from before yields the asymptotic ODE

ρ
d
dρ

(
ρ

dR
dρ

)
−
(
n2 + ρ2)R = 0. (C.10)

This is recognized as the modified Bessel equation, whose solutions In(ρ) and Kn(ρ) are
the modified Bessel functions of the first and second kind respectively, again reflecting the
analogy with the Mathieu functions. Of course, this is exactly what one would expect. Far
away from the central ellipse, the coordinate lines approach circles and therefore approach
the circular case which, as discussed in Chapter 3, lead to the modified Bessel equation.

C.2 Background field and response
In order to match the monopole polarizabilities, we need a convenient set of background
fields as well as their (full-theory) responses. Based on the previous section, we should
consider the set of background fields

φ
(n)
bg (ρ, η | ϑ) = A(n)

(
In(ρ)
In(ρ0)

)
cos[n(η − ϑ)], (C.11)

where we have included a possible phase ϑ that may be useful for matching later on, and
ρ0 = feξ0/2`c = (a+ b)/2`c. The corresponding responses that satisfy (φbg + δφ)|ρ=ρ0 and
δφ(ρ→∞)→ 0 are given by

δφ
(n)
full(ρ, η | ϑ) = −A(n)

(
Kn(ρ)
Kn(ρ0)

)
cos[n(η − ϑ)]. (C.12)

Since ρ ∼ `−1
c , we can simplify matters by taking the asymptotics further, keeping only

the singular terms since the remaining terms will vanish in the `c →∞ limit. To make the
expressions more transparent in powers of `c, we set ρ =: ρ̃/`c. The required expansions
then become

In(ρ̃/`c)
In(ρ̃0/`c)

=
(
ρ̃

ρ̃0

)n
+O(`−2

c ), (C.13)

266



Appendix C Monopole contributions for the ellipse: asymptotics and matching

and

Kn(ρ̃/`c)
Kn(ρ̃0/`c)

=





ln
( 2`c
γeρ̃

)

ln
( 2`c
γeρ̃0

) +O(`−2
c ), n = 0

(
ρ̃0
ρ̃

)n
+O(`−2

c ), n > 1,
(C.14)

where γe = eγe and γe is the Euler-Mascheroni constant. Using the definitions of ρ and ρ̃,
the background and response fields may finally be expressed as

φ
(n)
bg (ξ, η | ϑ) = A(n)en(ξ−ξ0) cos[n(η − ϑ)], (C.15)

and

δφ
(n)
full(ξ, η | ϑ) =





−A(n) ln
(feξ

4`c γe
)

ln
(
a+b
4`c γe

) , n = 0

−A(n)e−n(ξ−ξ0) cos[n(η − ϑ)], n > 1.

(C.16)

C.3 Independence of matching
The conformal transformation of the z-space background field (5.10) to the w-space back-
ground field (5.18) in Section 5.2.2 requires the expansion

(
s+
w

R
+ s−

R

w

)n
=

∑

`<n/2

{(
n

`

)
sn−`+ s`−

(w
R

)n−2`
+
(
n

`

)
s`+s

n−`
−

(
R

w

)n−2`
}

+
even

(
n

n/2

)
(s+s−)n/2,

(C.17)

where the last term only appears when n is even (hence the “ +
even” notation). As seen in

Eqs. (C.15) and (C.16), a nonzero constant background generates a monopole response. In
particular, the response to the full constant term in w-space is similar to (C.16) and given
by

δφ̃(n)
c (w | ϑ) = −A

(n)(s+s−)n/2
2n

(
n

n/2

) ln
(
|w|γe
2`c

)

ln
(Rγe

2`c
)
(

e−inϑ + einϑ
)
. (C.18)

Since there is no singular behavior in mapping back to the ellipse via w → w(z), we can
safely take the limit `c →∞, giving

δφ(n)
c (z | ϑ) = −A

(n)(s+s−)n/2
2n

(
n

n/2

)(
e−inϑ + einϑ

)
. (C.19)

Now let’s consider the effect of the background field in the monopole EFT response (5.35).
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From φ
(n>1)
bg (0) = 0 and ∂kφ(n>1)

bg (0) = A(n)n!δkne−inϑ, we obtain the nonvanishing term

δφ(n)
m (z | ϑ) =

∑

k>0
even

M (k)

2π ln
( |z|γe

2`c

)
∂kφ

(n)
bg (0) + c.c.

= −
∑

k>0
even

ln
(
|z|γe
2`c

)

ln
(

(a+b)γe
4`c

) f
kA(n)n! δkne−inϑ

2k
[(
k
2
)
!
]2 + c.c.

`c→∞−−−−→ − f
nA(n)n!

2n
[(
n
2
)
!
]2
(

e−inϑ + einϑ
)

(n even). (C.20)

Recalling that fn = (s+s−)n/2 and
(
n
n/2
)

= n!/[(n2 )!]2, we find (C.20) is precisely equal to
(C.19). Therefore, we find that the higher-order polarizabilities can be matched indepen-
dently of the monopole terms without contamination by simply ignoring the constant term
in the binomial expansion of Eq. (C.17).
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