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Abstract 

The advent of the nanoscale integrated circuit (IC) technology makes high performance analog and 

RF circuit increasingly susceptible to large-scale process variations. Process variations, including inter-die 

variations and local mismatches, significantly impact the parametric yield of analog/RF circuit, and must be 

properly handled at all levels of design hierarchy. Traditional approaches based on over-design are not 

sufficient to maintain high parametric yield, due to the large-scale process variations and aggressive design 

specifications at advanced technology nodes. In this context, the self-healing circuit has emerged as 

promising methodology to address the variability issue. In this thesis, we propose efficient pre-silicon 

validation and post-silicon tuning techniques, which are essential for the practical usage of self-healing 

methodology.  

One important problem in self-healing methodology is to efficiently and accurately predict the 

parametric yield in pre-silicon. The main challenge of this problem is caused by multiple circuit states 

related to tuning knobs. Given that these circuit states closely interact with process variations, they must be 

properly modeled in order to accurately estimate the parametric yield. Towards this goal, we develop an 

efficient performance modeling algorithm, referred to Correlated Bayesian Model Fusion (C-BMF) that 

explores the correlation between circuit states. Next, based on the performance model, the self-healing 

behavior and the parametric yield can be efficiently and accurately predicted.  

Another important problem in self-healing circuit is to efficiently perform post-silicon tuning. 

Towards this goal, indirect performance sensing methodology has recently attracted great attention. In the 

indirect performance sensing paradigm, the performance of interest (PoI) is not directly measured by on-

chip sensor, but is instead accurately predicted from an indirect sensor model. Such indirect sensor model 

takes a set of other performances as inputs, which are referred to as the performances of measurements 

(PoMs). The PoMs are selected such that they are highly correlated with PoI and are easy to measure. Due 

to the process shift associated with manufacturing lines, the indirect sensor model must be calibrated from 
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time to time. For the purpose of reducing the model calibration cost, we propose a Bayesian Model Fusion 

(BMF) algorithm that reuses the information collected in early stage of manufacturing. We further extend 

BMF to a Co-learning Bayesian Model Fusion (CL-BMF) algorithm that incorporates not only the early 

stage information, but also the current stage information that was not considered in the original modeling 

problem. 
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Chapter 1 Introduction 

Introduction 

In 1965, Gordon E. Moore made the projection that the number of transistors in a dense integrated 

circuit (IC) doubles approximately every two years, which is later known as Moore’s law [1]. Moore’s law 

proved accurate for several decades, and is used in the semiconductor industry to guide long-term planning. 

Behind Moore’s law, reduced cost and improved performances are the main driving factors for continuous 

IC scaling.  

In past few decades, numerous technology breakthroughs in IC technology contribute to sustain 

Moore’s law including chemically-amplified photoresist [2], deep UV excimer laser photolithography 

[3], chemical mechanical planarization [4]. New technology nodes enabling smaller transistor feature size 

continuously being developed. Larger and larger circuit functions with superior performances are 

manufactured on a single semiconductor substrate. However in 2012, when technology node reaches 22nm, 

the growth rate began to decrease [5]. The key limiting factor is the yield loss, which is defined as the 

proportion of the number of fabricated chips that fail to meet performance specifications [6]. The yield loss 

directly degrades the profitability of the IC manufacturing, and thus must be properly handled in all stages 

of technology node development. 

Process variations in analog/RF circuit is an important factor that causes yield loss [6]-[7]. Process 

variations, including inter-die variations and local mismatches, manifest themselves as the uncertainties 

associated with the geometrical and electrical parameters of semiconductor devices. Designing analog/RF 

circuit becomes increasingly challenging in advanced technology nodes. With the deep submicron IC 

technology scaling, the device-level process variations have become larger and larger, which are not easily 

mitigated by foundries. This lays a fundamental challenge on robust design techniques for analog/RF 

circuits. 
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However, traditional robust design techniques [8]-[32] are not sufficient to maintain high parametric 

yield with process variations. In this context, on-chip self-healing methodology has been proposed [41]-

[53]. In self-healing circuit, tuning knobs (e.g. tunable current source) are employed which allow 

performance (e.g. voltage gain, power, etc.) flexibility. The key idea of on-chip self-healing is to actively 

measure and adaptively tune circuit performances in post-silicon on-chip. As such, for each manufactured 

chip, the knob configurations can be tuned to optimize the circuit performance for its particular process 

corner. The parametric yield of circuit can therefore be significantly improved. 

The design flow of self-healing analog/RF IC will be discussed in detail in Section 1.2.2. Pre-silicon 

validation and post-silicon tuning are two important tasks in the design flow. In pre-silicon, the self-healing 

circuit design must be verified by parametric yield analysis before moving to the manufacturing process. 

Once the circuit is manufactured, post-silicon tuning is required to exploit the benefit of configurability and 

improve the parametric yield. The main challenge for both pre-silicon validation and post-silicon tuning is 

how to maintain low overhead in computation, hardware and testing cost so that self-healing methodology 

can be practically implemented.  

In this thesis, we develop efficient pre-silicon validation and post-silicon tuning techniques for self-

healing analog/RF IC. The core task of pre-silicon validation is the parametric yield estimation. We 

propose an efficient parametric yield estimation algorithm based on correlated performance modeling 

which considers the correlation among tuning knob configurations. The post-silicon tuning of self-healing 

circuit consists of two core tasks: (i) on-chip performance sensing, and (ii) on-chip performance tuning. In 

on-chip performance sensing, circuit performances are actively measured by on-chip sensors. Then in on-

chip performance tuning, a set of on-chip tuning knobs (e.g. bias current) are adaptively adjusted in order to 

satisfy all performance specifications. While the on-chip performance tuning is also an important topic, we 

restrict our discussion to on-chip performance sensing in this thesis. We develop a novel indirect 

performance sensing technique to facilitate inexpensive-yet-accurate on-chip performance sensing. In the 

rest of this chapter, we will briefly review the background on traditional robust design techniques, on-chip 

self-healing methodology, pre-silicon validation of self-healing circuit, and post-silicon tuning of self-

healing circuit, and then outline the overall structure of the thesis. 
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1.1 Traditional Robust Design Techniques  

Traditionally, various design techniques have been proposed to handle the performance uncertainty 

of analog/RF IC. The traditional design techniques can be classified into two broad categories: (i) corner-

based design optimization [8]-[24], and (ii) statistical design optimization [25]-[32].  

In corner-based design optimization [8]-[24], the circuit is optimized at all process corners by 

combining the extreme values of all process parameters. However, the corner-based approach has two 

major issues. First, the performance corner in an analog circuit does not necessarily to be the process 

parameter corner. In other words, the extreme performance value may not occur when all process 

parameters reach extreme values. In fact, the actual performance corner is topology dependent and 

performance dependent [7]. Second, the total number of the combinations of the process corners 

exponentially grow with the number of process parameters. In an advanced technology node, the total 

number of process parameters can easily reach 1000. In such case, the total number of corner combinations 

will become astronomical, and the corner-based approach would be impractical. 

In statistical design optimization [25]-[36],  the statistical distribution of the circuit performance is 

first analyzed. Then the circuit design is optimized such that an only sufficient and necessary margin is 

chosen. As such, the design is robust with respect to process variations, and meanwhile the over-design is 

minimized. Statistical design optimization has three categories: (i) direct yield estimation [25]-[28], (ii) 

design centering [29]-[32], and (iii) worst-case optimization [33]-[36]. The direct yield estimation approach 

[25]-[28] essentially traverses the design space and estimate parametric yield associated with each design 

point. The yield is usually estimated by transistor-level Monte Carlo simulations. Eventually the design 

point with the maximum yield is selected. However, since the simulation based yield estimation can be 

very expensive, the direct yield estimation based design optimization is not very efficient. The design 

centering approach [29]-[32] is based on the geometrical insight in the parameter space, which aims to find 

the optimal design point that has the maximum distance from all boundaries posed by performance 

constraints. In design centering approach, the robustness of the circuit is measured by the volume of the 

ellipsoid that maximally inscribed or minimally circumscribed the boundaries. However, since design-

centering does not directly optimize parametric yield, the optimized design point might not provide the 

maximum yield.  
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The worst-case optimization approach [33]-[36] achieves robust circuit design by optimizing the 

worst case circuit performances considering process variations. The worse-cast performance values can be 

defined as a particular percentile point (e.g. 99%) of the performance cumulative distribution function. 

However, worst-case optimization has the limitation that it could only guarantee good optimized design 

with a single performance. In the case of multiple performance specifications, it will ignore the 

performance correlation and thus cannot provide an accurate yield estimation, rendering sub-optimal design 

point. 

In this context, the robust analog/digital optimization algorithm (ROAD) has been proposed [35]-

[36]. ROAD approach is consisted of one initialization step and three core steps. In the initialization step, a 

coarse initial design is found by performance centering algorithm [37]. Then, a number of transistor-level 

simulations are run and the performance model in terms of both design variable and process parameters is 

fitted. After this, worst-case performance is analyzed and the worst-case performance model is fitted in 

terms of design variables. Such worst-case performance model is then used to optimize circuit performance 

via nonlinear programming.  

 

Figure 1-1. Robust analog/digital optimization algorithm flow [7]. 

With the scaling of IC technology, robust circuit design has become more and more challenging, if 

not impossible. The reasons are two-folds here. On one hand, process variations have become larger and 

larger with the transistors continuously scaling to deep submicron. On the other hand, more and more 

aggressive specifications on speed, power and area are set to accommodate costumer demands. For 

example, with the world quickly moving into the Internet of Things (IoT) era, ultra-high speed 
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communication circuits with low power consumption are required [38]-[40]. In this context, robust circuit 

design becomes extremely difficult. Figure 1-2 illustrates the challenge. The advance in IC technology 

makes the performance distribution becoming increasingly scattered. As such, the performance 

specification keeps pushing to squeeze the feasible design region. Even if the optimal robust design point 

can be found, the trend of the parametric yield decrease is inevitable for the traditional design methodology. 

To address this fundamental challenge, on-chip self-healing methodology has been proposed, which will be 

explained in Section 1.2 in detail. 
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Figure 1-2. Challenges of robust circuit design is shown. With the scaling of IC technology, on one hand 

the process variations become larger, while on the other hand the circuit specifications become more 

aggressive. As a result, the design margin dramatically shrinks. 

 

1.2 On-Chip Self-Healing Methodology 

On-chip self-healing methodology [41]-[46], [49]-[53], [58]-[60] has emerged as a promising 

avenue to address the aforementioned challenges. In self-healing circuit, tuning knobs (e.g. tunable current 

source) are employed which allow performance (e.g. voltage gain, power, etc.) flexibility. The key idea of 

on-chip self-healing is to actively measure and adaptively tune circuit performances in post-silicon on-chip. 

Compared to the post-manufacturing calibration work in [54]-[57], on-chip self-healing provides more 

flexibility. The performance tuning of on-chip self-healing is not restricted to be in the testing site, but can 
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be done anywhere. This provides additional tuning capacity when the environmental condition and/or the 

circuit condition changes in field.  

In this sub-section, we provide an overview of on-chip self-healing methodology. In Section 1.2.1, 

we introduce essential components of self-healing circuit. In Section 1.2.2, we discuss the design flow of 

self-healing circuits. 

 

1.2.1 Components of On-Chip Self-Healing 
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Figure 1-3. Three core components of on-chip self-healing are shown: tunable circuit block, sensing circuit 

and controlling circuit. The three components are seamlessly integrated on-chip to achieve self-healing.  

Figure 1-3 shows three core components of the on-chip self-healing circuit [51], which need be 

seamlessly integrated on-chip: 

 Tunable circuit block: Control knobs (e.g. tunable current mirror, tunable capacitor bank, etc.) are 

employed on-chip to allow flexibility in circuit performances (e.g. noise figure, gain, nonlinearity, 

etc.).  The tunable circuit block can either be a single circuit component (e.g. low-noise amplifier) or a 

system consisted of multiple circuit components (e.g. the receiver path in a RF transceiver). The 

tunable circuit block serves as the main body of the self-healing circuit and usually consumes the 

major portion of area. The control knobs need to be carefully designed in the tunable circuit such that 

the tuning ranges of the circuit performances of interest are large enough to cover the process and 
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environmental condition variations. Different from traditional circuit block without control knobs, the 

tunable circuit block possesses multiple ‘states’ enabled by control knobs. Therefore, tunable circuit 

block has the potential of adaptively selecting the optimal state that suits best to a particular process 

corner or environmental condition. Such potential will be realized through the integration with sensing 

and controlling circuitry. 

 Sensing circuit: Sensing circuit (e.g. voltage sensor, temperature sensor, frequency counter, etc.) is the 

circuit component that is able to capture the performance metrics of tunable circuit block. The design 

of sensing circuit is an important task in the self-healing design. The accuracy-cost trade-off must be 

carefully analyzed and optimized in order to achieve accurate performance sensing while not causing 

large over-head. For example, it is not reasonable to always design high accuracy sensing circuit, 

because they usually consume large circuit area and the yield impact may not high.    

 Controlling circuit: Controlling circuit is a decision-making circuit component that obtains tunable 

circuit performance information from sensing circuit and optimally determines the tuning knob 

configuration for tunable circuit block. In our work, controlling circuit is consisted of microcontroller, 

I/O, SRAM [51]-[53]. The self-healing algorithm (e.g. exhaustive search) can be loaded in the 

controlling circuit and the self-healing operation procedure is performed exactly as directed by the self-

healing algorithm. The self-healing algorithm can either be a component-level algorithm focusing on 

the healing of a particular circuit component (e.g. LNA) or a system-level algorithm targeting at 

system-level performance metrics (e.g. noise figure of a receiver path). 

The eventual goal of the on-chip self-healing is to actively sense important circuit performances and 

adaptively tune the knob configurations in order to improve overall circuit performance (e.g. improving 

parametric yield, reducing power consumption, etc.).  

 

1.2.2 Design Flow of On-Chip Self-Healing 

Similar to traditional circuit without tuning knobs, self-healing circuit design also needs to go 

through several important design stages. The design flow of self-healing circuit is summarized in Figure 1-

4. The flow spans four stages: (i) schematic design, (ii) layout design, (iii) chip manufacturing, and (iv) 

post-silicon tuning and testing. At each stage, simulation or measurement data are collected to tune and/or 
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validate the self-healing system in Figure 1-3.  

The design starts from the schematic design where the topology, transistor sizing and other 

important design parameters are selected. Then the parasitics, routing and transistor placement are 

considered in the layout design. If the design fails to meet the performance specifications at any of the pre-

silicon stage, the circuit design will be improved until the specifications are met. Once the design is fully 

verified in the pre-silicon stage, the chip will be manufactured. The post-silicon tuning is then done to 

improve the circuit performances in order to increase parametric yield or reduce power consumption. The 

post-silicon tuning involves close interaction between tunable circuit block, sensing, controlling circuitry, 

as well as the automatic testing equipment (ATE).  

Schematic

design

Layout

design

Pre-silicon

verification

Chip 

manufacturing
Post-silicon

tuning

 

Figure 1-4. Design flow of self-healing circuit is shown, which is consisted of four stages: (i) schematic 

design, (ii) layout design, and (iii) chip manufacturing, and (iv) post-silicon tuning. 

To reduce the overall cost per good chip, efficient analysis, design, validation and tuning 

methodology are required. In this thesis, we focus on three important problems related to self-healing 

circuit: pre-silicon validation, post-silicon tuning (as shown in the highlighted blocks in Figure 1-4) and 

cost analysis. 

 

1.3 Pre-Silicon Validation of Self-Healing Circuit 

In this section, we review the background of the pre-silicon validation of self-healing circuit. The 

goal of the pre-silicon validation is to verify the parametric yield considering the self-healing effect in pre-

silicon. Parametric yield estimation is a fundamental task for analog/RF circuit and has been extensively 

studied in the literature [61]-[67]. The traditional parametric yield estimation can be classified into four 

broad categories: (i) Monte Carlo based approach [61]-[63], (ii) statistical blockade [64]-[66],  (iii) 
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Bayesian inference based approach [67], and (iv) performance model based approach [68]-[69],  

The Monte Carlo based approach is to repeatedly draw random samples from process parameter 

distributions and evaluate circuit performance of interest by circuit simulations (e.g. transistor-level 

simulations in Cadence). In the direct Monte Carlo approach [61], the pre-silicon parametric yield is 

estimated by calculating the portion of the number of simulated instances that pass all performance 

specifications Npass out of the total number of simulated instances Ntotal: 

 

pass

total

N
Yield

N
 . (1.1) 

Direct Monte Carlo approach is easy to implement and is not dependent on the dimensionality of the 

process parameters, because it directly operates in the performance space. However, the well-known 

limitation of the Monte Carlo approach is that it is very time consuming, since no structural insight is used. 

The Quasi-Monte Carlo method [63] is an extension of direct Monte Carlo. The key idea is to assign a 

sequence of deterministic Monte Carlo samples in parameter space to improve the convergence rate. This 

approach aims to uniformly sample the whole parameter space, which is able to better capture the low 

probability region and thus yield more efficient estimation. The Quasi-Monte Carlo approach is efficient 

when the parameter space is low-dimensional. However, as a trade-off, it suffers from the curse of 

dimensionality because it relies on the parameter space. The accuracy of Quasi-Monte Carlo can be even 

worse than direct Monte Carlo in high-dimensionality case. For self-healing circuits in advanced 

technology node, since the number of process parameters is high and a large number of knob configurations 

need to be simulated, the simulation cost of Monte Carlo approach would be very high. Therefore, Monte-

Carlo approach is not suitable for pre-silicon validation task of self-healing circuit. 

 Statistical blockade [64]-[66] is proposed based on the observation that some Monte Carlo samples 

are not likely to fail, therefore simulating them would have very limited benefit. In particular, a classifier is 

constructed to block the Monte Carlo samples that are deemed to pass or fail. As such, the whole parameter 

space is classified into two types of regions. One region contains the parameter values that we are certain 

about the outcome of the simulation (i.e. pass or fail in performance specifications), which are blocked out 

from running simulations. The other region contains parameter values whose simulation outcomes are not 

clear. By simulation the second region, the outcomes of uncertain points are determined and classifier can 
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be further refined. The main strength of statistical blockade is its efficiency in low failure rate application. 

In such application, the majority of samples would pass the specifications, therefore avoid simulating those 

points can provide significant efficiency improvement over Monte Carlo approach. However, in analog/RF 

circuit, the failure rate is usually not as low as the rare failure rate application, due to the over-design 

consideration. Furthermore, since statistical blockade operates in the parameter space, the dimensionality 

problem would affect its effectiveness. In advanced technology nodes, the number of process parameters 

are usually high (e.g. above 1000), and the cost of training and refining the classifier can be very expensive. 

As a result, the benefit of applying statistical blockade on self-healing analog/RF circuit is very limited. 

 In light of the correlation between design stages, a Bayesian inference based approach [67] is 

proposed. The key observation that motivates the approach is that the performance probability distribution 

can be very similar in different design stages. For example, the performance cumulative distribution 

function (CDF) of the read path delay of SRAM in the schematic stage can be very similar to the CDF in 

post-layout stage. Such correlation can be explored among any stages in the design flow where the two 

stages follow a sequential order. The stage that appears earlier in the design flow is considered as the early 

stage while the stage appears later is considered as late stage. Mathematically, a Bayesian inference 

approach is proposed which encodes the early stage information into a prior distribution. The prior 

distribution is then combined with very few samples collected in the late stage (either by simulation or 

silicon measurements) through Bayesian inference [61]. The Bayesian inference would provide a posterior 

distribution that can be translated into the performance distribution in the late stage. Although Bayesian 

inference based approach is promising, it relies on the existence and accuracy of the early-stage model. In 

the case where an early-stage performance distribution does not exist or not reliable, the parametric yield 

estimation can be very expensive. 

The performance modeling based approach [68]-[69] is consisted of two steps. First, performance 

model is constructed based on a number of simulation samples of the circuit. Performance model is a 

statistical model where circuit-level performance (e.g. phase noise) is approximated as an analytical 

function (e.g. polynomial) of device-level variations (e.g. VTH). As such, the circuit-level performance 

variations are linked to the process parameters variations. Next, based on the performance model, the 

probability distribution is predicted. Since the performance model usually has a special form (e.g. linear or 
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quadratic polynomials), the associated probability distribution is also structured. The statistical parameters 

(e.g. mean, variance, or high-order moments) can then be efficiently determined from performance model 

and the parametric yield can be estimated. 

One key observation about the self-healing circuit is that the performances associated with different 

states are highly structured. In other words, the underlying statistical link between process parameters and 

circuit performances among different states are highly correlated. The performance modeling approach 

directly build model based on process parameters and therefore has the potential to captures such structure. 

Performance modeling is the task to find model coefficients associated with performance model. It 

serves as a core component in the modeling, analyzing and optimization throughout the analog/RF circuit 

design flow. The performance modeling techniques have been extensively studied in the literature [70]-

[79]. The state-of-the-art performance modeling technique is the sparse regression [74]-[80]. Sparse 

regression approach is motivated by the observation that only a small number of process variables 

contributes to the performance variation. Based on this assumption, sparse regression aims to find a small 

number of important basis functions and simply the model template. As such, only a small number of 

model coefficients that relates to important basis functions need to be solved. The modeling efficiency can 

be significantly improved by using sparse regression.  

For self-healing circuit, this fundamental modeling problem can be extremely difficult with the 

following characteristics: 

 High-dimensional variation space: A large number of device-level random variables must be used to 

model the process variations associated with a self-healing analog/RF system at advanced technology 

nodes. For example, a self-healing low-noise amplifier designed in a commercial 32nm process carries 

over 1000 device-level random variables. 

 Large number of knob configurations: To maximize tuning range and resolution, a large number of 

knob configurations (i.e. ‘states’) should be designed. This, however, significantly increases the 

complexity of performance modeling, since a unique performance model is required to accurately 

capture the variability at each state. 

 Correlated knob configurations: Since different states are associated with the same self-healing circuit, 

the performance models of the different states are correlated. In particular, the model template and 
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model coefficients are expected to be similar among these states. 

It is important to note that most traditional approaches [74]-[80] are not fully equipped for 

performance modeling of self-healing circuits. Taking sparse regression [74]-[77] as an example, the 

sparsity of model coefficients is explored to improve efficiency. However, no correlation is considered 

between different states. In other words, performance modeling is done for each state independently and the 

performance modeling cost would quickly become intractable as the number of states increases. Several 

other performance modeling methods (e.g., simultaneous orthogonal matching pursuit [78], multi-mode 

multi-corner sparse regression [79], group lasso [80], etc.) have been proposed to exploit the 

aforementioned correlation information. However, these methods only take into account the shared model 

template among different states and they ignore the correlation of coefficient magnitude. In this regard, 

there is a strong need to develop an efficient performance modeling approach, which serves as a starting 

point of pre-silicon validation. 

 

1.4 Post-Silicon Tuning of Self-Healing Circuit 

Post-silicon tuning is another important step in the self-healing circuit design flow. The goal of post-

silicon tuning is to find the optimal tuning knob configuration that gives desired circuit performances. Two 

important tasks need to be achieved to enable post-silicon tuning through on-chip self-healing: (i) on-chip 

performance sensing, and (ii) on-chip performance tuning. While the on-chip performance tuning is also an 

important topic [81]-[82], we restrict our discussion to on-chip performance sensing in this thesis. 

 To practically implement on-chip performance sensing, a large number of performance metrics 

must be measured accurately and inexpensively by on-chip sensors. Such a measurement task is not trivial 

because many analog and RF performance metrics (e.g. phase noise) cannot be easily measured by on-chip 

sensors [41]-[42]. For this reason, alternate test methodology, also called indirect performance sensing, has 

recently attracted great attention [43], [47], [50]-[51], where performance of interest (PoI) is not directly 

measured by an on-chip sensor. Instead, it is accurately predicted from a set of other performance metrics, 

referred to as the performance of measurement (PoMs) that are highly correlated with PoI and are easy to 

measure. Towards this goal, indirect sensor modeling is a critical task where the objective is to build a 

mathematical model to capture the correlation between PoI and PoMs so that PoI can be accurately 
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predicted from PoMs. The indirect sensor models, once trained, can be stored on an on-chip 

microcontroller and direct the control knob tuning in the controlling phase. 

To provide a fully on-chip indirect performance sensing solution with low overhead, two important 

challenges must be addressed: 

 High cost in on-chip hardware: The storage, computation and sensor inputs of indirect sensor models 

all require on-chip hardware resources. A complex model with many PoMs and model coefficients, 

though accurate, consumes massive hardware resources and thus introduce large overhead in self-

healing [51]. 

 High cost in repeated calibration: Due to the process shift associated with manufacturing lines, the 

indirect sensor models must be repeatedly calibrated from time to time. During each calibration, PoMs 

and PoI need to be measured from a set of training chips, and then used for model regression. Such 

calibration procedure can lead to large overhead in self-healing if done inefficiently. 

The aforementioned two challenges pose a strong need of developing an efficient on-chip indirect 

performance sensing methodology.  

It should be noted that neural network [61] has been adopted as indirect sensor model in the on-chip 

self-healing work in [58]-[60]. Compared to the polynomial indirect sensor model in the proposed 

methodology, neural network model is able to achieve higher prediction accuracy when the polynomial 

model is insufficient to capture the performance variability. However, neural network consumes huge on-

chip resources [58]-[60] and therefore has larger overhead than the proposed methodology. Such overhead 

can be a critical concern in the applications with limited on-chip resources (e.g. spy transmitter). 

 

1.5 Cost Analysis 

The design methodology of analog/RF circuits can be classified into three categories: (i) traditional  

design without tuning capacity (Traditional) [8]-[32], (ii) off-chip adaptive performance tuning (AT) [47]-

[48], and (iii) on-chip self-healing (OH) [41]-[46], [49]-[53]. The Traditional method does not include 

tunable control knobs in the circuit design. For both AT and OH, tunable control knobs are designed to 

improve parametric yield. The performance calibration in AT is done off-chip, which relies on ATE 

measurements for all knob configurations. On the other hand, the performance calibration of OH is done 
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on-chip, which relies on microcontroller loaded with indirect sensor model. Although the three design 

methods have been proposed for many years, their trade-off has not been extensively studied in the 

literature. It is important for circuit designs to understand the critical cost factors when selecting an optimal 

design method. Toward this goal, we perform a cost analysis for Traditional, AT and OH. In this thesis, we 

limit the application to the mmWave transceiver product. 

Cost per good chip is an important criterion that measures the profitability of product [99]. The cost 

per good chip essentially quantifies the overall capital investment in the manufacturing, testing and 

packaging cost throughout the good chip generation process. The manufacturing cost is the cost of 

fabricating a particular chip. It includes the material, equipment, maintenance, consumables and utilities 

cost during the manufacturing process. In this thesis for comparison purpose, we assume that given a 

particular manufacturing process (e.g. 32nm), the manufacturing cost per good chip is proportional to the 

die area of the circuit. In other words, if the circuit design has larger area, the manufacturing cost would be 

higher. In this regard, the OH approach would have the highest manufacturing cost among the three 

approaches, due to the overhead in controlling and sensing circuit.  The Traditional approach, on the other 

hand, has the lowest manufacturing cost because it does not have either controlling or sensing circuit. In 

this thesis, we further assume that the packaging cost is approximately the same as the manufacturing cost 

[98]. 

The testing cost includes the cost of performing post-silicon performance tuning as well as 

validating the pass/fail of a particular die [91]-[99]. To combat the variability issue, tuning knobs are 

employed in the circuit blocks to allow flexibility. Once the circuits are manufactured, the control knobs 

must be adaptively tuned to maximally exploit the benefit of configurability. This procedure can be done 

either off-chip (i.e. AT) or on-chip (i.e. SH). AT essentially measure the performances for all knob 

configurations directly using ATE, while SH measure a small number of performances to fit an indirect 

sensor model and then tune the knob configurations using microcontroller on chip. Once the knob 

configuration is selected for each chip, AT and OH can be treated similarly as Traditional. In particular, the 

circuit performances are first verified through wafer probe test. Then the die is packaged and the final 

specification test is done for the packaged chips. It should be noted that for mmWave product, the 

packaging cost is very high, therefore there is a strong need to test the circuit in wafer probe level before 
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packaging. Given that ATE with mmWave measurement capability is usually very expensive, the testing 

cost is directly proportional to the total testing time using ATE. The Traditional approach would have 

smallest testing time, because it does not require any performance tuning. The AT approach, on the other 

hand, has the largest testing time, because all knob configurations need to be tested. 

Compared to the Traditional approach, OH is able to achieve better parametric yield. However, the 

hardware cost overhead and testing cost overhead will be high. Compared to AT, OH will achieve lower 

parametric yield due to limited accuracy in on-chip performance sensors. However, the testing cost, 

especially the performance tuning cost, will be lower. Therefore, it is not clear which approach would 

provide lowest cost per good chip. In this regard, there is a strong need to perform a cost analysis 

considering important cost factors for Traditional, AT and OH approaches.  

 

1.6 Thesis Contributions 

In this thesis, we propose an efficient pre-silicon validation flow, efficient post-silicon tuning flow 

and a cost analysis for on-chip self-healing. The major technical contributions of this thesis are: 

 We propose an efficient pre-silicon validation flow via performance modeling. In particular, we 

propose to build performance model of self-healing circuits based on Correlated Bayesian Model 

Fusion (C-BMF) algorithm. The proposed C-BMF method is motived by the fact that performance 

models associated with different states are correlated. Our key idea is to encode the correlation 

information for both model template and coefficient magnitude among different states by using a 

unified prior distribution. The prior distribution is then combined with a few simulation samples via 

Bayesian inference to efficiently determine the unknown model coefficients. Furthermore, we propose 

efficient and robust hyper-parameter inference technique to solve a large number of hyper-parameters 

involved in C-BMF. It consists of two major steps: (i) estimating the hyper-parameters to obtain an 

initial guess using a heuristic approach, and (ii) optimizing the hyper-parameter values using an 

expectation-maximization algorithm [61]. The performance model coefficients can then be determined 

based on the inferred hyper-parameters. Moreover, an efficient pre-silicon validation approach is 

proposed where the correlated performance modeling algorithm serves as a core component. Instead of 

simulating all the knob configurations from all chips, we generate pseudo samples based on 
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performance model. As such, the parametric yield estimation cost can be significantly reduced. 

 We propose an efficient post-silicon tuning flow via indirect performance sensing. In particular, we 

propose a Bayesian Model Fusion (BMF) based indirect sensor model calibration technique. The key 

idea of BMF is to combine the old (i.e., before process shift) indirect sensor model with very few new 

(i.e., after process shift) measurement data to generate a new model that is aligned with the new 

process condition. Mathematically, the old model is encoded as prior knowledge, and a Bayesian 

inference is derived to optimally fit the new model by maximum-a-posteriori (MAP) estimation. As 

such, the indirect sensor model can be efficiently calibrated. As an extension of BMF, we further 

propose a novel indirect sensor modeling algorithm that is referred to as Co-Learning Bayesian Model 

Fusion (CL-BMF). CL-BMF takes advantage of the additional information collected from 

measurements to reduce the performance modeling cost. Different from the BMF which focus on the 

prior information of model coefficients (i.e. the coefficient side information) only, CL-BMF takes 

advantage of another new form of prior knowledge: the performance side information (PSI). In 

particular, CL-BMF combines the coefficient side information (CSI), the PSI and a small number of 

training samples through Bayesian inference based on a graphical model. Furthermore, a PSI selection 

technique is proposed to select most important performances to provide PSI. As a result, the indirect 

sensor model calibration cost can be further reduced. 

 Due to the overhead involved in the on-chip self-healing, it is not clear to circuit designers whether the 

on-chip self-healing would really benefit the final cost of product. In this regard, we present a cost 

analysis on a mmWave self-healing transceiver to compare three different circuit designs 

methodologies: (i) traditional circuit design without tunable component, (ii) tunable circuit with off-

chip performance calibration, and (iii) on-chip self-healing circuit. The cost per good chip is calculated 

which quantifies the overall capital investment in the manufacturing, testing and packaging cost 

throughout the good chip generation process for each design approach. The cost analysis can provide a 

guideline to circuit designer on whether or not to apply on-chip self-healing for a particular application. 

It is important to note that the proposed C-BMF, BMF and CL-BMF algorithms are derived from 

rigorous statistical theory, and can be generally applied to other applications such as fast statistical analysis 

of rare failure events [62], probability distribution estimation [67], etc. 
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1.7 Thesis Organization 

In this section, we briefly summarize the thesis organization. The thesis is composed of three core 

components: efficient pre-silicon validation, efficient post-silicon tuning and cost analysis. 

In Chapter 2, we first develop a Correlated Bayesian Model Fusion (C-BMF) algorithm to efficient 

fit performance model for self-healing circuit via Bayesian inference. In the Bayesian inference, a large 

number of hyper-parameters need to be determined. Towards this goal, we further propose an efficient and 

robust hyper-parameter inference approach, which consists of two major steps: (i) estimating the hyper-

parameters to obtain an initial guess using a heuristic approach, and (ii) optimizing the hyper-parameter 

values using an expectation-maximization algorithm. The proposed performance modeling approach is 

validated in two circuit examples designed in a commercial 32nm CMOS process. We further present the 

parametric yield estimation flow for self-healing circuit based on performance model. Instead of simulating 

all the knob configurations from all chips, we generate pseudo samples using performance model of self-

healing circuit. As such, the parametric yield estimation cost can be significantly reduced. The efficacy of 

the proposed parametric yield estimation algorithm is validated by simulation data collected from two 

circuit examples designed in a commercial 32nm CMOS process. 

In Chapter 3, we address the problem of efficient post-silicon tuning. Towards this goal, we propose 

a novel indirect performance sensing technique for on-chip self-healing of analog and RF circuits. In 

particular, we propose to use sparse regression to identify a set of important basis functions so that the 

overhead of on-chip self-healing can be minimized. We further propose an efficient indirect sensor model 

calibration approach based on Bayesian Model Fusion (BMF). In BMF algorithm, we encode the early 

stage information in the prior distribution. The prior distribution is then combined with a few samples in 

the late stage via Bayesian inference. As a result, the indirect sensor model can be updated with low cost. 

Experiments on silicon measurement data demonstrate that the efficacy of the proposed indirect 

performance sensing  

The BMF algorithm essentially takes advantage of the side information of model coefficients (i.e. 

CSI) to facilitate the efficient indirect sensor model calibration. In Chapter 4, we extend BMF algorithm to 

further consider another type of side information: the PSI. CL-BMF optimally combines the following 
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information: (i) the CSI, (ii) the PSI, and (iii) a small number of training samples. Bayesian inference is 

constructed and represented as a graphical model, where the CSI and the PSI are encoded by the prior 

distribution and the likelihood function respectively. From the Bayesian inference, the unknown model 

coefficients can be accurately determined by maximizing the posterior distribution. Furthermore, a PSI 

selection technique is also proposed to select most important performances to provide PSI. As is 

demonstrated by our circuit examples designed in a commercial 32nm SOI CMOS process, the proposed 

CL-BMF method achieves significant cost reduction over other indirect sensor modeling techniques. 

In Chapter 5, we present a cost analysis on a mmWave self-healing transceiver. The manufacturing 

cost, testing cost and packaging cost are taken into consideration to analyze the cost per good chip. In this 

cost analysis, three different circuit design methodologies are compared: (i) traditional circuit design 

without tunable component, (ii) tunable circuit with off-chip performance calibration, and (iii) proposed on-

chip self-healing circuit. Based on our cost analysis for this particular example, the cost per good chip of 

self-healing circuit is significantly less than the other two circuit design methods.  

Chapter 6 concludes the thesis with a high-level summary of the work, and discusses several future 

potential directions of research related to this work. 
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Chapter 2 Efficient Pre-Silicon Validation via Performance Modeling 

Efficient Pre-Silicon Validation via Performance 

Modeling  

2.1 Motivation 

One key observation about the self-healing analog/RF IC is that the performances associated with 

different states (i.e. knob configurations) are highly structured. In other words, the underlying statistical 

link between process parameters and circuit performances among different states are highly correlated. The 

performance modeling approach directly build model based on process parameters and therefore has the 

potential to captures such structure. In this regard, we propose the pre-silicon validation approach that is 

consisted of two steps: (i) performance modeling of self-healing circuits, and (ii) parametric yield 

estimation based on performance model. In the proposed flow, the main challenge is the performance 

modeling step. Once the performance model is obtained, the parametric yield can be estimated 

straightforwardly. Furthermore, the performance model, once obtained, can be applied to other important 

applications for self-healing circuit such as corner extraction [84] and design optimization [25]-[36].  

To start with, we mathematically formulate the performance modeling problem for self-healing 

circuits. Given a self-healing analog/RF circuit (e.g. a down-conversion mixer) with totally K states (i.e. 

knob configurations), the performance model of the k-th state can be represented by an analytical function 

(e.g., polynomial) of device-level variations (e.g., VTH): 
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where {yk; k = 1, 2, , K} contains the performance of interest (PoIs) associated with the K states, x is a 

vector representing the device-level variations, fk(x) denotes the performance model of interest which 
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establishes a mapping from x to yk, {αk,m; m = 1, 2, ..., M} contains the model coefficients of fk(x), {bm(x); m 

= 1, 2, ..., M} contains the basis functions (e.g., linear or quadratic polynomials), and M denotes the total 

number of basis functions. Without loss of generality, we assume that the same set of basis functions {bm(x); 

m = 1, 2, ..., M} are shared among all the states. 

In order to determine the performance models in (1), we need to find the model coefficients {αk,m; k 

= 1, 2, …, K; m = 1, 2, ..., M}. Towards this goal, the traditional least-squares fitting method first collects a 

number of sampling points of x and {yk; k = 1, 2, , K} for all K states, and then solves the model 

coefficients from the following optimization problems: 
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where 
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In (2.3)-(2.5), xk
(n) is the value of x at the n-th sampling point of the k-th state, yk

(n) is the value of yk at the 

n-th sampling point, ||||2 stands for the L2-norm of a vector, and N represents the total number of sampling 

points collected for each state. Here we assume that the same number of samples is collected for each state, 

since we consider all states to be equally important. To avoid over-fitting, the number of sampling points 

(i.e., N) must be substantially greater than the number of unknown coefficients (i.e., M). 

To reduce the number of samples required for performance modeling, the simultaneous orthogonal 

matching pursuit (S-OMP) algorithm [78] has been proposed in the literature. The key idea of S-OMP is to 

explore the sparse property and the correlation of model template between different states. As an extension 

of the orthogonal matching pursuit (OMP) algorithm [75], S-OMP naturally inherits the assumption of 

sparse regression. In other words, S-OMP exploits the fact that only a small number of basis functions in 

{bm(x); m = 1, 2, ..., M} are important and, hence, should be used to approximate {yk; k = 1, 2, , K}. More 
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importantly, S-OMP also explores the correlation of model template among {yk; k = 1, 2, , K}. In 

particular, S-OMP assumes that different states possess the same set of important basis functions. This is 

usually a valid assumption in practice, because different states are associated with the same self-healing 

circuit. 

While S-OMP has been successfully applied to many practical applications (e.g. wafer spatial 

pattern analysis [78]), it is possible to explore other correlation information between states to further 

improve the efficiency of performance modeling for self-healing circuits. There is a strong need to develop 

a novel performance modeling approach that takes advantage of the correlation of coefficient magnitude. 

Once such performance model is built, the performance variation of self-healing circuits can be efficiently 

predicted, and thus the parametric yield can be estimated. 

 

2.2 Prior Knowledge Definition 

To start with, we consider the performance models of K states in a self-healing circuit as defined in 

(2.1). We rewrite their model coefficients in a concatenated form as: 

 1 2

T
T T T

M
   α β β β  (2.6) 

where 
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{αk,m; k = 1, 2, ..., K; m = 1, 2, ..., M} are the model coefficients defined in (2.1), and α is the combined 

column vector with size of M·K. In (2.6), the model coefficients are organized such that the coefficients 

associated with the m-th basis function are grouped together in βm (m = 1, 2, ..., M). Since the model 

coefficients in βm are related to the same basis function, we assume that they are statistically correlated and 

define their prior distribution as: 

 
     ~ , 1,2, ,m m mpdf N m M  β 0 R . (2.8) 

In (2.8), {λm; m = 1, 2, ..., M} are the hyper-parameters that control the sparsity of the basis functions, and 

{Rm; m = 1, 2, ..., M} are the positive definite matrices that quantify the correlation among model 

coefficients. 
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Studying (2.8) yields several important observations. First, the sparse property is naturally encoded 

in {λm; m = 1, 2, ..., M}. To understand this, we consider the m-th basis function where λm is zero. In this 

case, the variance of the zero-mean Gaussian distribution in (2.8) is also zero. As such, the coefficients βm 

can only take zero values based on their prior distribution, thereby implying the sparsity of βm. Second, the 

correlation of model template is also encoded by the mathematical representation in (2.8). In particular, all 

the model coefficients in βm share the same sparse pattern, because their prior distribution is controlled by 

the same hyper-parameter λm. Third, but most importantly, the correlation of coefficient magnitude is also 

encoded by this prior definition, as long as the covariance metrics {Rm; m = 1, 2, ..., M} are not diagonal. 

Here we further assume that: 

 1 2 M  R R R R  (2.9) 

in order to reduce the number of hyper-parameters and avoid overfitting. 
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Figure 2-1. The prior knowledge for model coefficients is illustrated.  

As shown in (2.1), the prior knowledge of sparsity and correlation is encoded by the hyper-

parameters. To complete the definition of prior distribution for all model coefficients in α, we further 

assume that βi and βj are statistically independent for any i  j. Therefore, the joint distribution can be 

represented as: 

 
   ~ ,pdf Nα 0 A  (2.10) 

where 
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The independence assumption in (2.10)-(2.11) simply indicates that we do not know any correlation 

information between different basis functions as our prior knowledge. Such correlation will be learned from 

sampling points, when the posterior distribution is calculated from Bayesian inference in Section 2.3. 

 

2.3 Maximum-A-Posteriori Estimation 

Once the prior distribution pdf(α) is defined in (2.10)-(2.11), we will combine pdf(α) with a number 

of samples collected from K states {(xk
(n), yk

(n)); n = 1, 2, …, N; k = 1, 2, …, K} to solve the model 

coefficients α by maximum-a-posteriori (MAP) estimation. According to Bayes’ theorem, the posterior 

distribution is proportional to the prior distribution pdf(α) multiplied by the likelihood function, which can 

be represented as [61]: 

 
     | |pdf pdf pdf α y α y α . (2.12) 

In (2.12), pdf(y|α) is the likelihood function, where 

 
           1 1 2 2

1 1 1

T
N N

K K Ky y y y y y 
 

y  (2.13) 

is a vector containing N·K sampling points collected from K states. The likelihood function pdf(y|α) 

represents the probability of observing these samples given the model coefficients α. 

To derive the likelihood function, we assume that the error associated with the performance model 

fk(x) follows a zero-mean Gaussian distribution. We therefore rewrite (2.1) as: 
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M
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m

y b k K 


    x  (2.14) 

where ε represents the modeling error with the following distribution: 
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In (2.15) the standard deviation 0 controls the magnitude of the modeling error. Combining (2.14)-(2.15) 

yields the probability of observing a particular sampling point (xk
(n), yk

(n)): 
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Given that all sampling points are independently generated, the joint likelihood function pdf(y|α) can 

be written as: 

 
   2

0 0| , ~ ,pdf N y α Dα I  (2.17) 

where D is a matrix with N·K rows and M·K columns. The matrix D can be obtained by permuting the 

rows and columns of the following block diagonal matrix: 
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where {Bk; k = 1, 2, , K} are defined in (2.3). Combining (2.10), (2.12) and (2.17), the posterior 

distribution can be calculated as [61]: 

 
   | ~ ,P ppdf Nα y μ Σ  (2.19) 

where 
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The MAP solution of the model coefficients α is: 

 
2

0

T

P p  α μ Σ D y . (2.22) 

While the proposed Bayesian inference has been illustrated, the hyper-parameters in the prior 

distribution (2.10) and the likelihood function (2.17) must be appropriately determined in order to solve the 

model coefficients α. In the next section, we will further discuss a statistical inference to find the optimal 

hyper-parameter values. 

 

2.4 Hyper-Parameter Inference 

The hyper-parameters of our proposed Bayesian inference are defined in Section 2.2 and Section 

2.3: Ω = {λ1, λ2, …, λM, R, 0}. To determine these hyper-parameters, one possible approach is to apply 



 36 

cross-validation [61] which has been successfully used for various applications [74]-[79]. However, the 

cross-validation approach is not applicable to our Bayesian inference here. It is well-known that the 

computational complexity of cross-validation exponentially grows with the number of hyper-parameters, 

and thus is only suitable to handle small-size problems. Our Bayesian inference involves a large number of 

hyper-parameters, since the number of basis functions (i.e., M) can easily reach several thousand due to the 

large number of device-level process parameters at an advanced technology node. Hence, an alternative 

approach must be developed to efficiently determine these hyper-parameters in Ω. 

Statistically, the hyper-parameters can be determined by maximizing the conditional probability of 

observing the data set, i.e., the marginal likelihood: 

 
       | | , |l pdf pdf pdf d      y y α α α . (2.23) 

The integration in indicates that the effect of model coefficients α is averaged out in the marginal 

likelihood. Given that the two terms in the integration depend on different sets of hyper-parameters in Ω, 

we can rewrite (2.23) as: 

 
     0 1| , | ,..., ,Ml pdf pdf d     y α α R α . (2.24) 

By combining (2.10)-(2.11) and (2.17) and taking the negative logarithm for (2.24), we have: 
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The hyper-parameters can be found by minimizing the cost function in (2.25). However, minimizing 

(2.25) is not trivial, because the cost function is not convex. Here we adopt an expectation-maximization 

(EM) algorithm to address this challenge. In particular, instead of directly minimizing (2.25), the EM 

algorithm approaches a local optimum of (2.25) by iteratively performing two operations [61], [83], known 

as the expectation step and the maximization step respectively. 

In the expectation step, we first calculate the posterior distribution pdf(α|y, Ω(old)) according to 

(2.19)-(2.21) based on Ω(old), where Ω(old) denotes the hyper-parameters calculated in the last iteration. Next, 

we define the following quantity [61]: 

 

    
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| log ( , | )old
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
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 α y

E y α  (2.26) 

where the operator E represents the expectation of the log probability function with respect to the posterior 

distribution pdf(α|y, Ω(old)). Note that the expected value in (2.26) depends on the mean vector μp and the 



 37 

covariance matrix Σp of the posterior distribution in (2.19). 

In the maximization step, we try to find Ω such that: 

 

  arg max |
old

Q


    . (2.27) 

The optimal solution of Ω corresponds to: 
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. (2.28) 

Combining (2.26) and (2.28), we can find the optimal solution Ω of (2.27) as a function of Ω(old), resulting 

in the following rule for updating Ω [83]: 

 
  

 

1

1,2, ,

T
m m m

p p p

m

Tr

m M
K



 
   

R Σ μ μ
 (2.29) 

 
 

 
1

1
1,2, ,

T
m m m

M
p p p

m m

m M
M 


 

Σ μ μ
R  (2.30) 

 
 

 

2

2
0 1,2, ,

T

p pTr
m M

N


 
 

y Dμ Σ D D
 (2.31) 

where μp
m corresponds to the m-th sub-vector in μp with size of K, Σp

m corresponds to the m-th diagonal 

block in Σp with size of KK. The expectation step (2.19)-(2.21) and the maximization step (2.29)-(2.31) 

are performed iteratively until convergence is reached. 

Given that the EM algorithm only converges to a local optimum, the initial guess of Ω must be 

carefully chosen. Here we propose a modified S-OMP algorithm to achieve this goal. The key idea of the 

proposed algorithm is to (i) reduce the hyper-parameter space by posing additional constraints on R, (ii) 

apply a greedy algorithm for basis function selection, and (iii) apply cross-validation to solve this 

simplified problem within the reduced hyper-parameter space. 

Following this idea, we first consider the parameterized covariance matrix R defined as: 
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(2.32) 

where r0 < 1 is a non-negative hyper-parameter. The matrix in (2.32) has several implications. First, the 
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correlation becomes small when two states (i.e., their indexes) are substantially different. Second, the same 

decaying rate r0 is used for all the states. This assumption often provides a good approximation, even 

though it is not highly accurate. However, since our goal here is to find a good initial guess of Ω, a 

reasonably accurate approximation should suffice. As the covariance matrix R depends on a single 

parameter r0 in (2.32), we can now apply cross-validation to estimate its value with low computational cost. 

On the other hand, a greedy basis selection algorithm based on S-OMP [78] is used to infer the sparsity 

information that is encoded by the hyper-parameters {λ1, λ2, …, λM}. In this way, we do not have to directly 

estimate {λ1, λ2, …, λM}, which is computationally expensive. 

At this point, the hyper-parameter space has been reduced to three variables: r0, 0 and η, where η 

denotes the number of selected basis functions. These three hyper-parameters can be efficiently determined 

using cross-validation [61]. Namely, we start from a candidate set {(r0
(q), 0

(q), η(q)); q = 1, 2, …, ω}, where 

ω denotes the size of the set. At the q-th iteration step, we choose the hyper-parameter values (r0
(q), 0

(q), 

η(q)), estimate the model coefficients, and evaluate the modeling error. To solve the model coefficients with 

given (r0
(q), 0

(q), η(q)), we adopt a modified S-OMP algorithm to iteratively identify the important basis 

functions. Similar to S-OMP [78], a single most important basis function is greedily chosen at each 

iteration step by maximizing the correlation between the selected basis function and the modeling residual 

over all states. The model coefficients are then calculated from the Bayesian inference in (2.11), (2.20)-

(2.22) and (2.32) based on r0
(q), 0

(q)
 and the currently selected basis functions. Different from the 

traditional S-OMP method, we take into account the correlation of coefficient magnitude when solving the 

unknown model coefficients. The aforementioned iteration continues until the number of chosen basis 

functions reaches η(q). The modeling error can now be evaluated by cross-validation for the hyper-

parameters (r0
(q), 0

(q), η(q)). Eventually, the optimal values of (r0, 0, η) are chosen to minimize the 

modeling error, and they are used to initialize the hyper-parameters Ω for the iterative EM algorithm. 

 

2.5 Algorithm Summary 

Algorithm 1 summarizes the major steps of the correlated Bayesian model fusion (C-BMF) 

algorithm. It consists of two main components: (i) a modified S-OMP algorithm from Step 1 to Step 17 to 
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find the initial guess of the hyper-parameters Ω, and (ii) the EM algorithm from Step 18 to Step 20 to 

iteratively solve the optimal values of Ω where the model coefficients are updated at each iteration step. 

Algorithm 1: Correlated Bayesian Model Fusion Algorithm 

1. Start from a candidate set of hyper-parameters {(r0
(q), 0

(q), η(q)); q = 1, 2, …, ω}. Partition the sampling 

points into C groups with the same size for cross-validation. 

2. Set the candidate index q = 1. 

3. Set the cross-validation index c = 1. 

4. Assign the c-th group as the testing set and all other groups as the training set. 

5. Initialize the residual Resk = yk, the basis vector set Θ = {}, and the iteration index p = 1. 

6. Calculate the inner product values {ξk,m; k = 1, 2, …, K; m = 1, 2, …, M} between Resk and all basis 

vectors bk,m for each state, where bk,m represents the m-th column of Bk in (2.3). 

7. Select the index s based on the following criterion: 

 ,

1

arg max
K

k m
m k

s 


  . (2.33) 

8. Update Θ = Θ ⋃ s. 

9. By considering the basis functions in Θ and λm = 1 where m  Θ, solve the model coefficients {αk,m; k = 

1, 2, …, K; m  Θ} using (2.11), (2.20)-(2.22) with r0
(q), 0

(q) and R defined in (2.32). 

10. Calculate the residual: 

 
 , , 1,2, ,k k k m k m

m

Res k K


   y B . 
(2.34) 

11. If p < η(q), p = p + 1 and go to Step 6. 

12. Calculate the modeling error eq,c using the testing set. 

13. If c < C, c = c + 1 and go to Step 4. 

14. Calculate eq = (eq,1 + eq,2 + ... + eq,C)/C. 

15. If q < ω, q = q + 1 and go to Step 3. 

16. Find the optimal r0, 0, and η among the set {(r0
(q), 0

(q), η(q)); q = 1, 2, …, ω} such that the modeling 

error eq is minimized. 

17. Initialize the matrix R using (2.32), λm = 1 where m  Θ, and λm = 105 where m  Θ. 

18. Calculate μp and Σp based on the expectation step using (2.19)-(2.21). 
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19. Update {λm; m = 1, 2, …, M}, R and 0 based on the maximization step using (2.29)-(2.31). 

20. If convergence is not reached, go to Step 18. Otherwise, stop iteration and calculate the model 

coefficients α by using (2.22). 

 

2.6 Performance Modeling Results 

In this section, two circuit examples designed in a commercial 32nm CMOS process are used to 

demonstrate the efficacy of the proposed C-BMF algorithm. Our objective is to build the performance 

models for tunable circuits. For testing and comparison purposes, two different modeling algorithms are 

implemented: (i) S-OMP [78], and (ii) C-BMF. Here, S-OMP is chosen for comparison, as it is one of the 

state-of-the-art techniques in the literature. 

In each example, a set of random samples are generated by transistor-level Monte Carlo simulations. 

The data set is partitioned into two groups, referred to as the training and testing sets respectively. The 

training set is used for coefficient fitting, while the testing set is used for model validation. All numerical 

experiments are run on a 2.53GHz Linux server with 64GB memory. 

 

2.6.1 Low-Noise Amplifier 

Figure 2-2 shows the simplified circuit schematic of a tunable low-noise amplifier (LNA) designed 

in a commercial 32nm CMOS process. In this example, there are totally 1264 independent random 

variables to model the device-level process variations, including both the inter-die variations and the 

random mismatches. The LNA is designed with 32 different knob configurations (i.e., states) controlled by 

a tunable current source. Our objective is to model three performance metrics, noise figure (NF), voltage 

gain (VG) and third-order intercept point (IIP3), as linear functions of the 1264 random variables for all 32 

states. The modeling error is estimated by using a testing set with 50 samples per state. 

Figure 2-3(a)-(c) show the performance modeling error for NF, VG and IIP3 respectively. Two 

important observations can be made here. First, for both S-OMP and C-BMF, the modeling error decreases 

when the number of samples increases. Second, with the same number of samples, C-BMF achieves 

significantly higher accuracy than S-OMP, because C-BMF takes into account the additional correlation 
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information of coefficient magnitude. 

VDD

to tunable

current mirror

IN OUT

VDD

 

Figure 2-2. The schematic of a tunable LNA designed in a commercial 32nm CMOS process is shown. 

(a) (b)

(c)
 

Figure 2-3. The performance modeling error for NF, VG, and IIP3 are compared for (i) S-OMP and (ii) C-

BMF method. 
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Table 2-1 further compares the performance modeling error and cost for S-OMP and C-BMF. The 

overall modeling cost consists of two major components: (i) the circuit simulation cost for collecting 

training samples, and (ii) the model fitting cost for solving all model coefficients. As shown in Table 2-1, 

the overall modeling cost is dominated by the simulation cost in this example. C-BMF achieves more than 

2 cost reduction over S-OMP without surrendering any accuracy. 

Table 2-1. Performance modeling error and cost for LNA 

Example S-OMP C-BMF 

Number of training samples 1120 480 

Modeling error for NF 0.316% 0.285% 

Modeling error for VG 0.577% 0.566% 

Modeling error for IIP3 2.738% 2.497% 

Simulation cost (Hours) 2.72 1.16 

Fitting cost (Sec.) 1.32 316.13 

Overall modeling cost (Hours) 2.72 1.25 

 

2.6.2 Down-conversion Mixer 

VDD

IN+

OUT+/-

LO-LO+ LO+

IN-

 

Figure 2-4. The schematic of a tunable Mixer designed in a commercial 32nm CMOS process is shown. 
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Table 2-2. Performance modeling error and cost for down-conversion mixer 

 S-OMP C-BMF 

Number of samples 1120 480 

Modeling error for NF 0.173% 0.166% 

Modeling error for VG 2.758% 2.569% 

Modeling error for I1dBCP 2.401% 2.340% 

Simulation cost (Hours) 17.20 7.37 

Fitting cost (Sec.) 1.39 407.10 

Overall modeling cost (Hours) 17.20 7.48 

 

Shown in Figure 2-4 is the simplified circuit schematic of a down-conversion mixer designed in a 

commercial 32nm CMOS process. In this example, there are totally 1303 independent random variables to 

model the device-level process variations, including both the inter-die variations and the random 

mismatches. The mixer is designed with 32 different states controlled by two tunable load resistors. The 

performances of interest include NF, VG, and input referred 1dB compression point (I1dBCP). The 

modeling error is estimated by using a test set with 50 samples per state. 

Figure 2-5(a)-(c) show the performance modeling error for NF, VG and I1dBCP respectively. Note 

that C-BMF requires substantially less training samples than S-OMP to achieve the same modeling 

accuracy. In this example, C-BMF achieves more than 2 cost reduction over the traditional S-OMP 

approach, as shown in Table 2-2. 

 

2.7 Parametric Yield Estimation of Self-Healing Circuits 

The main goal of pre-silicon validation is the parametric yield estimation. In earlier sections of this 

Chapter, we proposed an efficient performance modeling algorithm for self-healing circuit. In this section, 

we present the parametric yield estimation flow based on performance modeling. To start with, we consider 
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the traditional circuit without control knobs, the performance constraints can be expressed as the following 

standard form: 

(a) (b)

(c)
 

Figure 2-5. The performance modeling error for NF, VG, and I1dBCP are compared for (i) S-OMP and (ii) 

C-BMF method. 

 
     1 1 2 2 R Rf s f s f s       (2.35) 

where {yr; r = 1, 2, ···, R} contains R performances with specifications {sr; r = 1, 2, ···, R}. The parametric 

yield is the probability that all performances constraints are satisfied, which can be defined as: 

 
     1 1 2 2 R RYield P f s f s f s        

. (2.36) 

The parametric yield definition of self-healing circuits takes a more complicated form because of the 

control knobs. The pass/fail of a self-healing chip is determined by the pass/fail of a set of control knobs as 

well as the self-healing algorithm. The performance constraints of self-healing circuits can be expressed as: 
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     1, ( , ) 1 2, ( , ) 2 , ( , )k A p k A p R k A p Rf s f s f s       (2.37) 

and the parametric yield of self-healing circuits is defined accordingly as: 
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 

 (2.38) 

where fr,k(A,p) denotes the r-th performance value corresponding to the selected control knob configuration 

k(A, p). Here notation k(A, p) means that the selected control knob is a function of process corner (i.e. p) as 

well as self-healing algorithm (i.e. A). In other words, the control knob is adaptively selected according to 

the process corner and self-healing algorithm. Given a particular self-healing algorithm (e.g. exhaustively 

searching all knob configurations), k(A, p) can be dependent on all possible knob configurations for this 

particular process corner p. Given the versatile feature of k(A, p), we can imagine that the yield in (2.38) is 

very difficult to estimate.  

The parametric yield of self-healing circuit in (2.38) can be estimated by a Monte Carlo method. By 

independently simulating N chips at N different process corners, the parametric yield can be expressed as: 
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where 
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, (2.40) 

Npass denotes the number of chips with at least one control knob configuration passing all specifications, 

{Yn; n = 1, 2, ···, N} contains the binary variables indicating pass/fail of chips, {k(A, pn); n = 1, 2, ···, N} 

denotes the final knob configurations selected by the self-healing algorithm A at process corner pn (i.e. chip 

n), and fr, k(A, pn),n represents the r-th performance associated with final knob selection in the n-th chip. 

The traditional parametric yield estimation flow of self-healing circuit is shown in Figure 2-6. The 

flow begins with the indirect sensor model construction from a number of Monte Carlo samples based on 

random sampling. The indirect sensor model provides a mapping from PoM to PoI. Then, a number of 

chips are randomly generated in simulation. Given that self-healing algorithm is usually based on indirect 

sensor model prediction, all PoMs from all knob configurations are required to determine the final knob 

selection. This leads to totally NK simulations for PoM. Once all PoM values are collected, the final knob 
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selection can be determined for all chips. The PoI associated with this particular knob configuration can 

then be simulated, and the pass/fail of the chip can be determined by (2.40). The parametric yield of the 

self-healing circuit can then be determined by (2.39). 

ISM construction

PoM Monte Carlo simulations on 

N process corners  K knob configurations

PoI simulations on N process corners

Optimal knob selection

Parametric yield estimation

 

Figure 2-6. Traditional parametric yield estimation flow of self-healing circuit. 

To efficiently estimate the parametric yield, we propose the flow in Figure 2-7. The main different 

between the proposed flow and the traditional flow is the PoM samples generation. In particular, instead of 

simulating PoMs in all chips, we first collect a number of samples to build performance models. Based on 

performance model, we generate PoM pseudo samples. As such, a significantly less number of samples are 

needed to find the optimal knob configurations for each chip. The parametric yield can then be efficiently 

estimated for self-healing circuit.  

 

2.8 Yield Estimation Results 

In this section, two circuit examples designed in a commercial 32nm CMOS process are used to 

demonstrate the efficacy of the proposed parametric yield estimation algorithm.  
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PoM performance 
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PoM pseudo sample generation on 

N process corners  K knob configurations

PoI simulations on N process corners

Optimal knob selection

Parametric yield estimation

C-BMF

 

Figure 2-7. Proposed parametric yield estimation flow of self-healing circuit. 

 

2.8.1 Low-Noise Amplifier 

Show in Figure 2-8 is the schematic of a self-healing LNA. The performances of interest include 

noise figure (NF), voltage gain (VG) and third-order intercept point (IIP3). The performances of 

measurements include DC voltage of the input transistor, DC current of the LNA and the peak detector 

output. Cubic indirect sensor models are used to predict circuit performances of interest. More details about 

indirect sensor model fitting will be discussed in Chapter 4. The self-healing LNA possesses 32 different 

knob configurations enabled by tunable current mirror. 

To demonstrate the efficacy of the proposed approach, we collect simulation data from 500 chips 

generated by Monte Carlo random sampling. We compare three different approaches: (i) traditional yield 

estimation approach as illustrated in Figure 2-6 (Traditional), (ii) performance modeling based yield 
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estimation approach in Figure 2-7 using S-OMP (S-OMP based yield estimation), and (iii) performance 

modeling based yield estimation approach in Figure 2-7 using C-BMF (C-BMF based yield estimation). 

The only difference between (ii) and (iii) is the difference in the performance modeling algorithm for PoM. 

To assess the robustness of the three approaches, we use bootstrapping [61] to repeatedly draw samples for 

200 times and estimate the confidence interval. The bar in Figure 2-6 shows the 1% and 99% confidence 

interval. The x-axis shows the overall simulation time which considers all steps in Figure 2-6 or Figure 2-7.  
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Figure 2-8. Schematic of a self-healing LNA. 

Observing Figure 2-9 yields several important observations. First, the confidence interval shrinks 

with the increased number of samples collected for all three approaches. Second, the performance modeling 

based approaches requires significantly less samples than traditional method to achieve similar confidence 

interval. Third, the S-OMP approach is biased from the golden value, due to limited accuracy in PoM 

prediction. Fourth, the C-BMF approach is able to provide unbiased estimation with small confidence 

interval using only a small number of samples. Based on all the simulation samples, the golden parametric 

yield is 73.8%. Table 2-3 further compares the simulation time cost comparison between the traditional 

approaches and the proposed C-BMF based approach. To achieve a similar confidence interval, the 

proposed approach requires 5.8 less samples than the traditional approach. 
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Figure 2-9. Comparison of three parametric yield estimation approaches: (i) Traditional, (ii) S-OMP based 

yield estimation, and (iii) C-BMF based yield estimation. 

Table 2-3. Confidence interval comparison between proposed and traditional approaches 

 C-BMF based yield estimation Traditional 

Confidence interval of yield (%) [73.5-2.6, 73.5+2.9] [73.7-2.9, 73.7+3.1] 

Simulation time (s) 7843 45850 

 

2.8.2 Down-Conversion Mixer 

Show in Figure 2-10 is the schematic of a self-healing down-conversion mixer. The performances of 

interest include noise figure (NF), voltage gain (VG) and input referred 1dB compression point (I1dBCP). 

The performances of measurements include DC voltage of the input transistor, DC current of the mixer and 

the peak detector output. Cubic indirect sensor models are used to predict circuit performances of interest. 

The self-healing mixer possesses 32 different knob configurations enabled by tunable resistor. 

To demonstrate the efficacy of the proposed approach, we collect simulation data from 250 chips 

generated by Monte Carlo random sampling. We compare three different approaches: (i) traditional yield 

estimation approach as illustrated in Figure 2-6 (Traditional), (ii) performance modeling based yield 
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estimation approach in Figure 2-7 using S-OMP (S-OMP based yield estimation), and (iii) performance 

modeling based yield estimation approach in Figure 2-7 using C-BMF (C-BMF based yield estimation). To 

assess the robustness of the three approaches, we use bootstrapping to repeatedly draw samples for 200 

times and estimate the confidence interval. The bar in Figure 2-6 shows the 1% and 99% confidence 

interval. The x-axis shows the overall simulation time which considers all steps in Figure 2-6 or Figure 2-7. 
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Figure 2-10. Schematic of a self-healing down-conversion mixer. 
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Figure 2-11. Comparison of three parametric yield estimation approaches: (i) Traditional, (ii) S-OMP based 

yield estimation, and (iii) C-BMF based yield estimation. 
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Observing Figure 2-11 yields several important observations. First, the confidence interval shrinks 

with the increased number of samples collected for all three approaches. Second, the performance modeling 

based approaches requires significantly less samples than traditional method to achieve similar confidence 

interval. Third, the C-BMF approach is able to provide accurate estimation with small confidence interval 

using only a small number of samples. Based on all the simulation samples, the golden parametric yield is 

66.0%. Table 2-4 further compares the simulation time cost between the proposed and traditional 

approaches. To achieve a similar confidence interval, the proposed approach requires 3 less samples than 

the traditional approach. 

Table 2-4. Confidence interval comparison between proposed and traditional approaches 

 C-BMF based yield estimation Traditional 

Confidence interval of yield (%) [66.2-0.9, 66.2+0.9] [66.1-2.2, 66.1+1.7] 

Simulation time (s) 31690 95910 

 

2.9 Summary 

In this Chapter, a novel C-BMF algorithm is proposed for efficient performance modeling of self-

healing analog/RF IC. C-BMF encodes the correlation information for both model template and coefficient 

magnitude among different states in a prior distribution. Next, the prior distribution is combined with very 

few simulation samples to accurately solve the model coefficients. An efficient and robust hyper-parameter 

inference approach is also proposed to handle the large number of hyper-parameters involved in the 

Bayesian inference. As is demonstrated by two circuit examples designed in a commercial 32nm CMOS 

process, the proposed C-BMF method achieves more than 2 cost reduction compared to the state-of-the-

art modeling technique.  

Furthermore, an efficient pre-silicon validation approach is proposed where the correlated 

performance modeling algorithm serves as a core component. Instead of simulating all the knob 

configurations from all chips, we generate pseudo samples based on performance model. As such, the 

parametric yield estimation cost can be significantly reduced. Numerical results of a self-healing LNA and 
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a self-healing down-conversion mixer demonstrate that the propose approach is able to achieve up to 5.8 

reduction in simulation cost. It should be noted that the proposed performance modeling algorithm for self-

healing circuit can be widely applied to other important applications such as corner extraction [84] and 

design optimization [25]-[36]. 
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Chapter 3 Efficient Post-Silicon Tuning via Indirect Performance Sensing 

Efficient Post-Silicon Tuning via Indirect 

Performance Sensing 

3.1 Motivation 

One major challenge with on-chip self-healing is to efficiently implement on-chip sensors to 

accurately measure various analog and RF performance metrics. Towards this goal, indirect sensor 

modeling is a critical task where the objective is to build a mathematical model to capture the correlation 

between PoI and PoMs so that PoI can be accurately predicted from PoMs. To achieve this goal, PoMs and 

PoI are first measured from several training chips, and then indirect sensor models are constructed off-line 

based on these measurement data. Such indirect sensor models are eventually stored in an on-chip 

microcontroller for self-healing. 

To describe an indirect senor, its model coefficients are stored in an on-chip microcontroller as 

fixed-point values. A complex model that is composed of many model terms would consume massive 

hardware resources, since a large number of model coefficients must be stored. Furthermore, during on-

chip self-healing, an indirect sensor model is repeatedly evaluated to predict the corresponding PoI based 

on different PoMs and, therefore, a compact model could dramatically reduce the computational cost. Here, 

the computational cost accounts for on-chip multiplication and addition, and multiplication dominates the 

overall computational cost. For these reasons, an indirect sensor model should be compact in order to 

minimize the cost of on-chip self-healing. 

Such a modeling task, however, is nontrivial since there is a tradeoff between the model complexity 

and the model accuracy. In general, it is likely that an over-simplified model will induce a large modeling 

error. Here, how to construct a compact indirect sensor model without sacrificing its modeling accuracy 
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remains an open question. In addition, these indirect sensor models must be repeatedly calibrated to 

accommodate the process shift associated with manufacturing lines. Such a model calibration issue has not 

been extensively studied yet. Hence, there is a strong need to develop a new methodology to facilitate 

efficient model calibration with low cost (i.e., requiring few additional measurement data). As such, the 

overhead of indirect performance sensing and, eventually, the overhead of on-chip self-healing can be 

minimized.  

To address the aforementioned issues, a novel indirect performance sensing approach is proposed. 

The proposed method consists of two major steps: (i) pre-silicon indirect sensor modeling, and (ii) post-

silicon indirect sensor calibration. In the first step, a compact indirect sensor model between PoMs and PoI 

is constructed based on pre-silicon simulation data by using sparse regression (SR) [74]-[77]. SR starts with 

a complicated model template (e.g., a high-order polynomial) that can accurately capture the correlation 

between PoMs and PoI. L1-norm regularization is then applied, resulting in a convex optimization problem 

which can be efficiently solved to determine the most important model terms in the template without 

sacrificing any modeling accuracy. Other model coefficients corresponding to the unimportant terms are 

simply set to zero, and are ignored in the final indirect sensor model. Intuitively, the unimportant model 

terms have negligible contribution for accurately predicting the value of PoI and, hence, can be discarded to 

minimize the self-healing cost. 

Furthermore, in the second step, an indirect sensor model is repeatedly calibrated based on post-

silicon measurement data. To perform efficient model calibration with low cost, a novel Bayesian model 

fusion (BMF) technique is proposed. The key idea of BMF is to combine the old (i.e., before process shift) 

indirect sensor model with very few new (i.e., after process shift) measurement data to generate a new 

model that is aligned with the new process condition. Mathematically, the old model is encoded as prior 

knowledge, and a Bayesian inference is derived to optimally fit the new model by maximum-a-posteriori 

(MAP) estimation. 

Finally, an on-chip self-healing flow is developed where the indirect sensor models are extracted by 

the proposed technique. In this Chapter, we will present our proposed post-silicon tuning methodology in 

detail. 
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3.2 Indirect Performance Sensing 

Without loss of generality, we denote PoI as f and PoMs as: 

 
 1 2

T

Mx x xx  (3.1) 

where M stands for the number of performance metrics belonging to PoMs. The objective of indirect 

performance sensing is to accurately predict the PoI f from the PoMs x that are highly correlated with f and 

can be easily measured by on-chip sensors. Generating an indirect sensor model f(x) consists of two major 

steps: 

 Pre-silicon indirect sensor modeling aims to construct a compact model f(x) that can accurately capture 

the correlation between the PoI f and the PoMs x based on pre-silicon simulation data. 

 Post-silicon indirect sensor calibration aims to calibrate the indirect sensor model f(x) based on post-

silicon measurement data. Such model calibration must be repeatedly performed in order to 

accommodate the process shift associated with manufacturing lines. 

We start with a generic and complicated model template (e.g., a high-order polynomial) to 

accurately capture the mapping between PoI and PoMs. The reason we choose a generic model is simply 

because we do not know the relation between PoI and PoMs in advance. Mathematically, we can write the 

model f(x) as the linear combination of several basis functions: 
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where {bk(x); k = 1, 2, …, K} are the basis functions (e.g., linear and quadratic polynomials), {αk; k = 1, 2, 

…, K} are the model coefficients, and K is the total number of basis functions. 

Such a complicated model, though accurate, consumes considerable hardware resources to 

implement, as all model coefficients must be stored in an on-chip microcontroller to perform on-chip self-

healing. To reduce the overhead of on-chip self-healing, we aim to select a small set of basis functions 

during pre-silicon modeling without surrendering any accuracy. Such a basis function selection task, 

however, is extremely challenging due to the tradeoff between the model complexity and the modeling 

error. In general, an over-simplified model is likely to have a large modeling error. SR [74]-[77] is applied 

to efficiently address the aforementioned basis function selection problem. More details about pre-silicon 
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indirect sensor modeling via SR will be discussed in Section 3.3. 

Furthermore, at the post-silicon stage, the indirect sensor must be repeatedly calibrated to 

accommodate the process shift associated with manufacturing lines. Since post-silicon measurement is 

extremely expensive, sensor calibration must be accomplished with very few post-silicon measurement data 

to facilitate efficient generation of accurate indirect sensor models and, eventually, minimize the overhead 

of on-chip self-healing. To this end, a novel Bayesian model fusion (BMF) technique is proposed to keep 

the calibration cost affordable. The details about post-silicon indirect sensor calibration via BMF will be 

presented in next section. 

 

3.3 Pre-Silicon Indirect Sensor Modeling via Sparse 

Regression 

In this section, we aim to construct a compact indirect sensor model to accurately capture the 

relation between PoI and PoMs. Since the mapping from PoMs to PoI is not known in advance, we start 

with a generic and complicated model template consisting of a large number of basis functions (e.g., a 

high-order polynomial), as shown in (3.2). Our objective here is to automatically identify a small set of 

most important basis functions, and then determine their corresponding model coefficients based on pre-

silicon simulation data. 

To start with, we first collect a number of pre-silicon simulation samples {(x(n), f(n)); n = 1, …, N}, 

where x(n) and f(n) denote the values of x and f for the n-th sampling point respectively, and N denotes the 

total number of sampling points. Thus, a set of linear equations can be expressed as: 

 
T  B α f  (3.3) 

where 
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One simple approach to solve the model coefficients α is to apply the traditional ordinary least 

squares (OLS) fitting method [61]. OLS determines the model coefficients α by solving the following 

optimization problem: 

 

2

2
minimize T  

α
B α f  (3.7) 

where ||||2 denotes the L2-norm of a vector. Intuitively, OLS intends to find a solution α that can minimize 

the mean squared modeling error. 

As mentioned at the beginning of this section, we aim to identify a small set of important basis 

functions from a large number of possible candidates. All other unimportant basis functions will be 

discarded due to their negligible contribution for accurately predicting the value of PoI. From this point of 

view, all model coefficients associated with these unimportant basis functions should be set to zero. Hence, 

identifying the most important basis functions is equivalent to finding a sparse solution α for the linear 

equation in (3.7). The OLS formulation in (3.7) poses no constraint on the sparsity of α. In other words, the 

unconstrained optimization in (3.7) used by OLS cannot fit our need of basis function selection. Realizing 

this limitation of OLS, SR, instead, solves the following L1-norm regularization problem: 
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where ||||1 denotes the L1-norm of a vector, and λ > 0 is a user-defined parameter. The formulation in (3.8) 

is a convex optimization problem and can be solved both efficiently (i.e., with low computational cost) and 

robustly (i.e., with guaranteed global optimum) [85]. 

There are several important properties associated with the optimization problem in (3.8). First, 

unlike the conventional OLS that minimizes the mean squared error only, the formulation in (3.8) 

minimizes the mean squared error subject to an L1-norm constraint posed on the model coefficients α. It, in 

turn, promotes a sparse solution of α that is desired by our application of basis function selection for on-

chip self-healing.  

Second, the parameter λ in (3.8) provides a tradeoff between the sparsity of the solution α and the 
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modeling error. For instance, a large λ is likely to result in a small modeling error, but meanwhile it will 

increase the number of non-zeros in α. It is important to note that if the vector α contains many non-zeros, a 

large number of model coefficients have to be stored in the on-chip microcontroller to predict the PoI and, 

hence, the cost of indirect performance sensing can be overly expensive. In practice, the value of λ must be 

appropriately set to accurately predict the PoI with a small set of basis functions. To find the optimal value 

of λ, we must accurately estimate the modeling error for different λ values. To avoid over-fitting, we cannot 

simply measure the modeling error from the set of sampling data that is used to calculate the model 

coefficients. Instead, modeling error must be measured from an independent data set. 

To determine the modeling error for a given λ value, we adopt the idea of Q-fold cross-validation 

from the statistics community [61]. Namely, we partition the entire data set {(x(n), f(n)); n = 1, 2, …, N} into 

Q groups. Modeling error is estimated from Q independent runs. In each run, one of the Q groups is used to 

estimate the modeling error and all other groups are used to calculate the model coefficients by solving 

(3.8). Note that the training data for coefficient estimation and the testing data for error estimation are not 

overlapped. Hence, over-fitting can be easily detected. In addition, different groups should be selected for 

error estimation in different runs. As such, each run results in an error value eq (q = 1, 2, ..., Q) that is 

measured from a unique group of the data set. The final modeling error is computed as the average of {eq; q 

= 1, 2, ..., Q}, i.e., e = (e1 + e2 + ... + eQ)/Q. More details about cross-validation can be found in [61]. 

So far, we only consider how to reduce the number of basis functions (i.e., the number of non-zeros 

in α) in order to save on-chip self-healing cost. Actually, different basis functions may involve different 

number of multiplications, and the computational cost to calculate each basis function when evaluating the 

indirect sensor can be quite different. For instance, α1·x requires only one multiplication, while α2·x3 needs 

three multiplications. To further reduce the computational cost, we can assign different weights for 

different coefficients (e.g., a small weight for α1 while a large weight for α2) in the constraint of (3.8). 

Intuitively, a coefficient with a larger weight is more likely to be set to zero in a weighted L1-norm 

regularization. Because of the space limitation, the extended version of (3.8) to handle weighted α is not 

mentioned here.  

The aforementioned SR method can be efficiently applied to pre-silicon basis function selection and 

model coefficient estimation. However, the device models used for pre-silicon simulation are not perfectly 
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accurate and may differ from the post-silicon measurement results. For this reason, there is a strong need to 

further calibrate the proposed indirect sensor models based on post-silicon measurement data, as will be 

discussed in Section 3.4. 

 

3.4 Post-Silicon Indirect Sensor Calibration via Bayesian 

Model Fusion 

The objective of post-silicon indirect sensor calibration is to further correct the modeling error posed 

by pre-silicon simulation and also accommodate the process shift associated with manufacturing lines. One 

straightforward approach for sensor calibration is to collect a large amount of post-silicon measurement 

data and then completely re-fit the indirect sensor model. Such a simple approach, however, can be 

practically unaffordable, since post-silicon testing is time-consuming and, hence, it is overly expensive to 

collect a large set of post-silicon measurement data. 

To address this cost issue, we propose a novel statistical framework, referred to as Bayesian model 

fusion (BMF), for efficient post-silicon sensor calibration. BMF relies on an important observation that 

even though the simulation and/or measurement data collected at multiple stages (e.g., pre-silicon vs. post-

silicon) are not exactly identical, they are expected to be strongly correlated. Hence, it is possible to borrow 

the data from an early stage (e.g., pre-silicon) for sensor calibration at a late stage (e.g., post-silicon). As 

such, only few post-silicon data should be measured at the late stage and, hence, the cost of sensor 

calibration is substantially reduced. 

More specifically, our indirect sensor models are initially fitted by using the early-stage (e.g., pre-

silicon) data. Next, the early-stage sensor model is encoded as our prior knowledge. Finally, the indirect 

sensor model is further calibrated by applying Bayesian inference with very few late-stage (e.g., post-

silicon) measurement data. Here, by “fusing” the early-stage and late-stage sensor models through Bayesian 

inference, the amount of required measurement data (hence, the measurement cost) can be substantially 

reduced at the late stage. 

To fully understand the proposed BMF method, let us consider two different models: the early-stage 

model fE(x) and the late-stage model fL(x): 
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where {bk(x); k = 1, 2, …, K} are the basis functions selected by SR at the early stage, {αE,k; k = 1, 2, …, K} 

and {αL,k; k = 1, 2, …, K} contain the early-stage and late-stage model coefficients respectively, and E and 

L denote the modeling error associated with the early-stage and late-stage models respectively. 

The early-stage model fE(x) in (3.9) is fitted by using the early-stage (e.g., pre-silicon) data. Hence, 

we assume that the early-stage model coefficients {αE,k; k = 1, 2, …, K} are already known, before fitting 

the late-stage model fL(x) in (3.10) based on the late-stage (e.g., post-silicon) measurement data. The 

objective of BMF is to accurately determine the late-stage model coefficients {αL,k; k = 1, 2, …, K} by 

combining the early-stage model coefficients {αE,k; k = 1, 2, …, K} with very few late-stage measurement 

data. 

Our proposed BMF method consists of two major steps: (i) statistically extracting the prior 

knowledge from the early-stage model coefficients {αE,k; k = 1, 2, …, K} and encoding it as a prior 

distribution, and (ii) optimally determining the late-stage model coefficients {αL,k; k = 1, 2, …, K} by MAP 

estimation. In what follows, we will describe these two steps in detail. 

 

3.4.1 Prior Knowledge Definition 

Since the two models fE(x) and fL(x) in (3.9)-(3.10) both approximate the mathematical mapping from 

PoMs to PoI, we expect that the model coefficients {αE,k; k = 1, 2, …, K} and {αL,k; k = 1, 2, …, K} are 

similar. On the other hand, fE(x) and fL(x) cannot be exactly identical, since they represent the indirect 

sensor models at two different stages. To statistically encode the “common” information between fE(x) and 

fL(x), we define a Gaussian distribution as our prior distribution for each late-stage model coefficient αL,k: 
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(3.11) 

where αE,k and ρ2αE,k
2 are the mean and variance of the Gaussian distribution respectively, and ρ > 0 is a 
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parameter that can be determined by cross-validation. 

The prior distribution in (3.11) has a two-fold meaning. First, the Gaussian distribution pdf(αL,k) is 

peaked at its mean value αE,k, implying that the early-stage model coefficient αE,k and the late-stage model 

coefficient αL,k are likely to be similar. In other words, since the Gaussian distribution pdf(αL,k) 

exponentially decays with (αL,k  αE,k)2, it is unlikely to observe a late-stage coefficient αL,k that is extremely 

different from the early-stage coefficient αE,k. Second, the standard deviation of the prior distribution 

pdf(αL,k) is proportional to |αE,k|. It means that the absolute difference between the late-stage coefficient αL,k 

and the early-stage coefficient αE,k can be large (or small), if the magnitude of the early-stage coefficient 

|αE,k| is large (or small). Restating in words, each late-stage coefficient αL,k has been provided with a 

relatively equal opportunity to deviate from the corresponding early-stage coefficient αE,k. 

To complete the definition of the prior distribution for all late-stage model coefficients {αL,k; k = 1, 

2, …, K}, we further assume that these coefficients are statistically independent and their joint distribution 

is represented as: 
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is a vector containing all late-stage coefficients {αL,k; k = 1, 2, …, K}. Combining (3.11) and (3.12) yields: 
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where 
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is a vector containing all early-stage coefficients {αE,k; k = 1, 2, …, K}, and 
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denotes a diagonal matrix. The independence assumption in (3.12) simply implies that we do not know the 
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correlation information among these coefficients as our prior knowledge. The correlation information will 

be learned from the late-stage measurement data, when the posterior distribution is calculated by MAP 

estimation in the next sub-section. 

 

3.4.2 Maximum-A-Posteriori Estimation 

Once the prior distribution is defined, we collect a few (i.e., N) late-stage measurement data 

{(x(n), fL
(n)); n = 1, 2, …, N}, where x(n) and fL

(n) are the values of x and fL(x) for the n-th data point 

respectively. These new measurement data can tell us additional information about the difference between 

early and late stages and, hence, help us to determine the late-stage coefficients αL. 

Based on Bayes’ theorem [61], the uncertainties of the late-stage coefficients αL after knowing the 

data {(x(n), fL
(n)); n = 1, 2, …, N} can be mathematically described by the following posterior distribution: 
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In (3.17), the prior distribution pdf(αL) is defined by (3.14). The conditional distribution pdf(X, fL | αL) is 

referred to as the likelihood function. It measures the probability of observing the new data {(x(n), fL
(n)); n = 

1, 2, …, N}. 

To derive the likelihood function pdf(X, fL | αL), we assume that the modeling error L in (3.10) can be 

represented as a random variable with zero-mean Gaussian distribution: 
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where the standard deviation 0 indicates the magnitude of the modeling error. Similar to the parameter ρ in 

(3.11), the value of 0 can be determined by cross-validation. Since the modeling error associated with the 

n-th data point (x(n), fL
(n)) is simply one sampling point of the random variable εL that follows the Gaussian 
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distribution in (3.20), the probability of observing the n-th data point (x(n), fL
(n)) is: 
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Note that the likelihood function pdf[x(n), fL
(n) | αL] in (3.21) depends on the late-stage model coefficients 

{αL,k; k = 1, 2, ..., K}. Assuming that all data points {(x(n), fL
(n)); n = 1, 2, …, N} are independently 

generated, we can write the likelihood function pdf(X, fL | αL) as: 
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Eq. (3.22) can be re-written as: 
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where B, αL and fL are defined in (3.4), (3.13) and (3.18), respectively. 

After the new data {(x(n), fL
(n)); n = 1, 2, …, N} are available, the late-stage coefficients {αL,k; k = 1, 

2, ..., K} can be described by the probability density function pdf(αL | X, fL) (i.e., the posterior distribution) 

in (3.17). Depending on the shape of the posterior distribution pdf(αL | X, fL), the late-stage coefficients 

{αL,k; k = 1, 2, ..., K} do not take all possible values with equal probability. If the posterior distribution 

pdf(αL | X, fL) reaches its maximum value at {α*L,k; k = 1, 2, …, K}, these values {α*L,k; k = 1, 2, …, K} are 

the optimal estimation of the late-stage coefficients, since these coefficient values are most likely to occur. 

Such a method is referred to as the MAP estimation in the literature [61]. 

The aforementioned MAP estimation can be formulated as an optimization problem: 
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Substituting (3.17) into (3.24) yields: 
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Combining (3.14), (3.23) and (3.25), we have: 
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(3.26) 

Since the exponential function is monotonically increasing, Eq. (3.26) can be re-written as: 
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where 

 
2 2

0   . (3.28) 

It is straightforward to prove that the cost function in (3.27) is convex [85]. Hence, its global optimum can 

be directly solved by applying the first-order optimality condition [85]: 
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Solving the linear equation in (3.29) results in the optimal value of αL: 

    
1

T

L E L 


        α A B B A α B f . (3.30) 

Studying (3.30), we observe that only the value of η is required to find the late-stage model 

coefficients {αL,k; k = 1, 2, ..., K} and, hence, we only need to determine η, instead of the individual 

parameters 0 and ρ. In our work, the optimal value of η is determined by cross-validation.  

Once the optimal η value is found, the late-stage model coefficients {αL,k; k = 1, 2, ..., K} are 

calculated from (3.30), and then an updated indirect sensor model fL(x) in (3.10) is generated to match the 

late-stage measurement data. Such a calibrated indirect sensor model is eventually stored in an on-chip 

microcontroller to facilitate efficient on-chip self-healing, as will be discussed in detail in the next section. 

Finally, it is important to mention that the post-silicon indirect sensor calibration is performed off-

chip and, hence, no hardware overhead is introduced. To further reduce the indirect sensor calibration cost 

(i.e., with very few number of post-silicon measurement data), we can calibrate the indirect sensor if and 

only if the new measurement data are not consistent with the old indirect sensor model. In practice, such 
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inconsistency can be detected by measuring a small number of dies from each wafer or lot to estimate the 

indirect sensing error. If the error is not sufficiently small, the indirect sensor model must be calibrated. 

 

3.5 On-Chip Self-Healing Flow 

In this section, we will further develop a practical on-chip self-healing flow based on our proposed 

indirect sensing approach. As mentioned earlier, the key idea of on-chip self-healing is to actively monitor 

the post-manufacturing circuit performance metrics and then adaptively adjust a number of tuning knobs 

(e.g., bias voltage) in order to meet the given performance specifications. In this work, we mathematically 

formulate the self-healing problem as a constrained optimization where one particular performance metric 

is minimized subject to a set of given performance constraints: 

 

 

   

minimize

subject to 1,2, ,p p

f

g s p P 

t
t

t

 (3.31) 

where t denotes the set of tuning knobs, f(t) denotes the performance metric that we aim to minimize, and 

{gp(t); p = 1, 2, …, P} denote the other P performance metrics with the given specifications {sp; p = 1, 

2, …, P}. Take mixer as an example. We aim to minimize the mixer power while keeping its gain and 1dB 

compression point larger than their specifications. In this case, f(t) is the mixer power, g1(t) is the mixer 

gain, and g2(t) is the 1dB compression point.  

There are two important clarifications we need to make for the optimization formulation in (3.31). 

First, the formulation in (3.31) is set up for a circuit where one performance metric f(t) should be 

minimized while constraining all other performance metrics {gp(t); p = 1, 2, …, P} to their lower bounds 

{sp; p = 1, 2, …, P}. For a circuit where a performance metric f(t) should be maximized, the objective 

function in (3.31) can be simply modified to f(t). Similarly, for a circuit where the performance metrics 

{gp(t); p = 1, 2, …, P} should be constrained to their upper bounds {sp; p = 1, 2, …, P}, the constraints in 

(3.31) can be adjusted as –gp(t) ≥ –sp (p = 1, 2, …, P). Second, not all the performance metrics f(t) and 

{gp(t); p  1, 2, …, P} in our self-healing circuit can be directly measured by on-chip sensors. For the 

performance metrics that cannot be easily measured by on-chip sensors, the proposed indirect performance 

sensing technique is applied to efficiently and accurately predict their values. 
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Figure 3-1. A simplified block diagram describes the on-chip self-healing flow. 

To find the optimal solution t* in (3.31), we propose an on-chip self-healing flow shown in Figure 

3-1 where the indirect sensors are modeled and calibrated by our proposed SR and BMF techniques 

described in previous sections. The indirect sensor models are stored and evaluated by a microcontroller for 

on-chip self-healing. The search algorithm starts with an initial guess t0. We set t = t0 and all performance 

metrics f(t) and {gp(t); p = 1, 2, …, P} are measured either directly or indirectly. Here, we use the symbol 

PMs to represent the performance metrics that are directly measured by on-chip sensors, and the symbol 

PoIs to represent the performance metrics that are estimated by the proposed indirect sensors. In particular, 

to estimate the PoIs, the corresponding PoMs are first measured by on-chip sensors. Next, the indirect 

sensor models stored in the on-chip microcontroller are evaluated to predict the PoIs, as shown in Figure 3-

1. Based on the performance values {f(t), gp(t); p = 1, 2, …, P}, t is updated and the aforementioned 

process is repeated until the optimal solution t* is found. Algorithm 2 summarizes the details of such an 

optimization flow with indirect performance sensing for on-chip self-healing. Once the optimal solution t* 

is found, tuning knobs are adjusted to the values of t* and the self-healing process is complete. 

Algorithm 2: On-chip Self-healing Flow 

1. Start with the constrained optimization problem in (3.31) and an initial guess t0. 

2. Set t = t0. 

3. Measure f(t) and {gp(t); p = 1, 2, …, P} either directly or indirectly. 

4. Based on the performance values {f(t), gp(t); p = 1, 2, …, P}, update t. 

5. If t is the optimal solution, stop iteration. Otherwise, go to Step 3. 
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For different circuits of interest with different performance metrics and tuning knobs, the search 

strategy of updating t in Step 4 of Algorithm 2 could be substantially different. For instance, if there is only 

a small number of (e.g., one or two) tuning knobs, we can apply a simple brute-force search algorithm to 

find the optimal solution of (3.31). Without loss of generality, we assume that the tuning knobs can take H 

possible values {th; h = 1, 2, …, H}. The initial value of t is set as t1 in the first iteration, and {f(t1), gp(t1); p 

= 1, 2, …, P} are either directly or indirectly measured. Next, in the second iteration, t is updated to t2, and 

{f(t2), gp(t2); p = 1, 2, …, P} are measured. Similarly, in the h-th iteration, {f(th), gp(th); p = 1, 2, …, P} are 

measured. In the end, we have a large data set {f(th), gp(th); p = 1, 2, …, P, h = 1, 2, …, H}. The optimal 

solution t* for the optimization in (3.31) can be eventually determined based on the performance values 

{f(th), gp(th); p = 1, 2, …, P, h = 1, 2, …, H}. Algorithm 3 summarizes the details of the aforementioned 

brute-force search algorithm. 

Algorithm 3: Brute-force Search for On-chip Self-healing 

1. Start with the constrained optimization problem in (3.31) and H possible values {th; h = 1, 2, …, H} 

for the tuning knobs. Set h = 1.  

2. Set the tuning knobs to t = th. 

3. Measure f(t) and {gp(t); p = 1, 2, …, P} and set f(th) = f(t), and {gp(th) = gp(t); p = 1, 2, …, P}. 

4. If h < H, h = h + 1 and go to Step 2. Otherwise, go to Step 5. 

5. Based on the performance values {f(th), gp(th); p = 1, 2, …, P, h = 1, 2, …, H}, determine the 

optimal solution t* for the optimization in (3.31). 

The brute-force search algorithm (i.e., Algorithm 3), though simple to implement, has no practical 

utility if we have a large number of tuning knobs. To understand the reason, let us consider the general case 

of U tuning knobs where the u-th tuning knob can take Vu possible values. In this case, we have H = 

V1×V2×...×VU possible values for t in (3.31). With the increasing number of tuning knobs, the total number 

of possible values for these tuning knobs (i.e., H) will dramatically increase, thereby making the brute-force 

search algorithm quickly intractable. In these cases, other efficient search algorithms (e.g., interior point 

method [85]) must be applied to solve the optimization in (3.31) for on-chip self-healing. 

Before ending this section, it is important to discuss the design overhead of on-chip self-healing that 

requires a number of additional circuitries (e.g., on-chip sensors, on-chip microcontroller, etc.), as shown in 
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Figure 3-1. There are several important clarifications we need to make here. First, many analog and RF 

circuit blocks on the same chip may require self-healing, and they can possibly share the same on-chip 

sensors and microcontroller. Second, for a typical system-on-chip (SoC) application, the microcontroller is 

needed for other computing tasks during the normal operation. In other words, the microcontroller is not 

added for on-chip self-healing only. For these reasons, the design overhead of on-chip self-healing is fairly 

small, or even negligible, in many application scenarios. 

 

3.6 Case Study 

In this section, a 25GHz differential Colpitts VCO designed in a 32nm CMOS SOI process is used 

to validate the proposed on-chip self-healing flow based on off-line data analysis. Figure 3-2 shows the 

simplified schematic of the VCO. It consists of a cross-coupled differential pair connected to two common-

gate Colpitts oscillators. The capacitor at the output is tunable so that the VCO frequency can be centered at 

different frequency bands. The bias voltage Vb is controlled by a DAC for self-healing. More details about 

the VCO design can be found in [86]. 

For the VCO shown in Figure 3-2, since we only have one tuning knob (i.e., the bias voltage Vb), the 

simple brute-force search algorithm described in Algorithm 2 is applied for self-healing. In this example, 

phase noise is an important performance of interest, and its specifications derived from the system 

requirement for four different center frequencies are shown in Table 3-1. If the phase noise value of a VCO 

is smaller than the given specification at all four frequencies shown in Table 3-1, this VCO is considered as 

“PASS”. Otherwise, we consider it as “FAIL”. The objective of self-healing is to find the optimal bias 

voltage to minimize the phase noise. 

Vb

Vo
+ Vo

-

 

Figure 3-2. A Simplified circuit schematic is shown for a Colpitts VCO. 
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Accurately measuring the phase noise at 25GHz is not trivial. Hence, an indirect sensor is used for 

on-chip phase noise measurement (i.e., phase noise is considered as a PoI in Figure 3-1). According to 

Leeson’s model [87], oscillation frequency (x1), oscillation amplitude (x2), and bias current (x3), all of 

which are easy to measure using fully integrated sub-circuits, have strong correlation with phase noise and, 

hence, are first chosen as PoMs. The sensors used to measure these three PoMs are listed in Table 3-2. An 

on-chip current sensor to measure bias current will be integrated in our future work. More details about 

how to measure these three PoMs can be found in [50]. In addition, the tuning knob Vb (x4) is considered as 

another PoM. Since Vb is directly controlled by a DAC, the digitized value of Vb is known, and no 

measurement is required. In total, four PoMs (i.e., x = [x1 x2 x3 x4]T) are chosen as the indirect sensor inputs, 

and are summarized in Table 3-3. Next, a quadratic model template with four input variables (i.e., x1, x2, x3 

and x4) and, hence, fifteen polynomial terms in total is used to build the indirect sensor for phase noise. 

With all fifteen polynomial terms, the average modeling error is 0.36dBc/Hz. SR is then applied to simplify 

the quadratic model template. Nine polynomial terms are eventually selected by SR, as summarized in 

Table 3-4. The average modeling error of the simplified quadratic model is 0.41dBc/Hz. The degradation of 

the modeling accuracy is negligible (0.05dBc/Hz only). The accuracy of the simplified quadratic model 

with nine polynomial terms can be further demonstrated by the scatter plot between the actual phase noise 

and the predicted phase noise shown in Figure 3-3. 

Next, we collect four PoMs and phase noise at all possible bias voltages from a silicon wafer that 

contains 61 functional VCOs. The VCOs that are not functioning in this wafer are not considered here. 

These data are further used to calibrate the indirect phase noise sensor to improve its accuracy. Without 

self-healing, the parametric yield achieved by using a fixed bias voltage for all the VCOs on the wafer is 

summarized in Table 3-5. Here, bias code denotes a digitized bias voltage, and parametric yield is defined 

as the ratio between the number of functional VCOs that can meet all four given phase noise specifications 

shown in Table 3-1 and the total number of functional VCOs. From Table 3-5, we can see that the best 

parametric yield achieved by using a fixed bias voltage (i.e., bias code is 4) is only 11.48%. If other bias 

voltages are selected during the design, the parametric yield is even worse, which is almost zero for this 

wafer. It, in turn, serves as an excellent design case to demonstrate the importance of self-healing. 
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Figure 3-3. Scatter plot is shown for the actual phase noise and the predicted phase noise based on the 

simplified quadratic model. 

Table 3-1. Frequencies and corresponding phase noise specifications 

Frequency (GHz) 26.2 24.6 23.3 22.2 

PN specification (dBc/Hz) -123.5 -123.5 -123.5 -123.5 

Table 3-2. PoMs and measurement sensors 

PoM x1 x2 x3 

Measuremen

t Sensor 

On-chip counter 

On-chip peak detector + 

on-chip 6 bit ADC 

Off-chip current Sensor 

Table 3-3. PoI and PoMs of indirect phase noise sensor 

 Performance Metric 

PoI Phase Noise 

PoMs Oscillation Frequency (x1) 

Oscillation Amplitude (x2) 

Bias Current (x3) 

Bias Voltage (x4) 
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Table 3-4. Basis functions selected for indirect phase noise sensor 

Index Term Index Term Index Term 

1 x2 4 x1
2 7 x3•x4 

2 x3 5 x1•x2 8 x4
2 

3 x4 6 x1•x4 9 const 

Index Term Index Term Index Term 

1 x2 4 x1
2 7 x3•x4 

Table 3-5. Parametric yield of the wafer by using a fixed bias voltage 

Bias Code 1 2 3 4 5 6 

Parametric Yield 0 0 1.64% 11.48% 3.28% 0 

 

For testing and comparison purposes, three different self-healing methods are implemented: 

 Ideal: The optimal bias voltage is determined by directly measuring the phase noise with an off-chip 

tester for all bias voltages. As a result, no indirect phase noise sensor is needed, and all the off-chip 

measurement data from the wafer will be used. This approach is not considered as on-chip self-healing; 

however, it provides the upper bound of the yield improvement that can be achieved by self-healing. 

 OLS: The traditional OLS method is applied to fit the indirect phase noise sensor based on a number 

of measured VCOs from the wafer. Next, the indirect sensor is applied to self-heal all the VCOs on the 

wafer. 

 BMF: The indirect phase noise sensor learned by SR is considered as the early-stage model. Next, the 

proposed BMF algorithm is applied to calibrate the early-stage model and generate a late-stage model 

based on a few measured VCOs from the wafer. The late-stage model is then applied to self-heal all 

the VCOs on the wafer. 

Figure 3-4 shows the parametric yield of the wafer achieved by three different self-healing methods 

given different number of measured VCOs from the wafer. Table 3-6 further summarizes the measurement 
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cost for self-healing. Studying Figure 3-4 and Table 3-6 reveals several important observations. First, BMF 

requires substantially less number of measured VCOs to build the indirect phase noise sensor than the 

traditional OLS method. In this example, BMF needs to measure one VCO only, while OLS requires 

measuring four VCOs (4×) to achieve a similar yield. 
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Figure 3-4. Post-self-healing parametric yield of the wafer is shown as a function of the number of 

measured VCOs from the wafer. 

Second, studying the BMF results in Figure 3-4, we notice that if no measurement data is collected 

from the wafer (i.e., the number of measured VCOs from the wafer is zero) and the self-healing is 

performed with the indirect sensor fitted from the early-stage data by SR, the post-self-healing parametric 

yield is only 27.87%. Once a single VCO is measured from the wafer, the indirect phase noise sensor is 

calibrated by BMF and the post-self-healing parametric yield is increased to 66.80%. It, in turn, 

demonstrates that the aforementioned model calibration is a critical step for yield enhancement. 

Table 3-6. Measurement cost and parametric yield by self-healing 

Self-healing method # of measured VCOs Parametric yield 

Ideal 61 77.05% 

OLS 4 65.30% 

BMF 1 66.80% 

 

Finally, it is important to note that the post-self-healing parametric yield of BMF is close to that of 

the “ideal” case. It, in turn, implies that the modeling error of our proposed BMF method is fairly small, 
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even if only a single VCO is measured from the wafer.  
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Figure 3-5. Histogram of the measured phase noise values from all the VCOs on the wafer. Blue bars 

represent the results from Fixed where bias code is 4, and red bars represent the results from BMF where a 

single measured VCO is used from the wafer. 

Before ending this section, we compare the phase noise values from the proposed self-healing flow 

to those from the fixed bias voltage method (Fixed) to study why the proposed flow can achieve a much 

better parametric yield than Fixed. Figure 3-5 shows the histogram of the measured phase noise values 

from all the VCOs at different frequencies. The blue bars show the results from Fixed where bias code is 4, 

and the red bars show the results from our proposed BMF technique with a single measured VCO from the 

wafer. From Figure 3-5, we have several observations. First, both BMF and Fixed get larger phase noise 

values at higher frequencies, which is consistent with our expectation. Hence, the phase noise specification 

at 26.2GHz is the most difficult one to meet among all four phase noise specifications. Second, the 

proposed BMF technique can get much smaller phase noise values than Fixed at 26.2GHz, which is the 

reason that BMF achieves a much better parametric yield than Fixed. 
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3.7 Summary 

In this Chapter, we propose a novel indirect performance sensing technique for on-chip self-healing of 

analog and RF circuits. In particular, a set of important basis functions are first identified by SR so that the 

overhead of on-chip self-healing can be minimized. Next, the indirect sensors are repeatedly calibrated by 

BMF to accommodate the process shift associated with manufacturing lines. The indirect sensors are 

eventually stored in an on-chip microcontroller to facilitate efficient on-chip self-healing. The proposed 

indirect performance sensing and on-chip self-healing methodology is validated by a 25GHz differential 

Colpitts VCO designed in a 32nm CMOS SOI process. Our silicon measurement data show that the 

parametric yield of the VCO is significantly improved after applying self-healing. In our future work, we 

will further extend the proposed indirect performance sensing and on-chip self-healing methodology to 

other large-scale circuits such as phase-locked loop (PLL). 
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Chapter 4 Co-Learning Bayesian Model Fusion for Indirect Sensor Modeling 

Co-Learning Bayesian Model Fusion for Indirect 

Sensor Modeling 

4.1 Motivation 

Indirect sensor modeling is one type of performance modeling where the circuit performance is 

fitted as an analytical function of circuit operation points. To efficiently fit and calibration indirect sensor 

model, two performance modeling techniques have been proposed in Chapter 4. Sparse regression (SR) is 

used to efficiently determine model coefficients by reducing the model complexity. Bayesian model fusion 

(BMF) is developed, which borrows the data generated from an early stage to facilitate efficient 

performance modeling at a late stage. However, to further reduce the modeling cost, there is a strong need 

to rethink the fundamental strategy for performance modeling. 

The aforementioned performance modeling approaches attempt to take advantage of the side 

information to reduce the number of required samples and, hence, the modeling cost. Here we define the 

side information as the information that is not present in the original performance modeling problem, but is 

indirectly associated with it. Taking sparse regression [74]-[79] as an example, side information refers to 

the prior knowledge that the model coefficients are sparse (i.e., most coefficients are close to zero). For 

BMF that is proposed in Chapter 4, side information indicates that the early-stage and late-stage models are 

similar and, hence, their model coefficients are close. It is important to note that these conventional 

approaches only focus on the side information related to model coefficients, referred to as the coefficient 

side information (CSI). 

In this Chapter we further improve the efficacy of performance modeling by considering other side 

information. Towards this goal, we propose a novel technique that is referred to as Co-Learning Bayesian 
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Model Fusion (CL-BMF). CL-BMF considers two different models that predict the same circuit 

performance. We assume that the complexity of these two models is different: a model with low/high 

complexity must be trained from a small/large number of samples. The key idea of CL-BMF is to pass the 

knowledge from the low-complexity model to the high-complexity model (i.e. co-learning) to reduce its 

training cost. In other words, once the low-complexity model is accurately built based on a small number of 

training samples, the high-complexity model can be trained by borrowing the information from the low-

complexity model, instead of relying on the expensive training data only. In our work, the performance 

model of interest is treated as the high-complexity model, while the low-complexity model provides the 

performance side information (PSI) to reduce the training cost of the high-complexity model. 

Mathematically, the proposed CL-BMF method is derived from the Bayesian inference that can be 

represented as a graphical model [61]. To build a performance model, CL-BMF combines the following 

information: (i) the PSI which enables co-learning, (ii) the CSI which provides prior knowledge, and (iii) a 

small number of training samples collected by pre-silicon simulation or post-silicon measurement. Once the 

Bayesian inference is constructed, the unknown model coefficients can be accurately determined by 

maximizing the posterior distribution. 

For an analog/RF circuit (e.g. a voltage controlled oscillator), the indirect sensor model is an 

analytical function (e.g. polynomial) of device-level operation point (e.g. DC bias current): 

 
   1

1

M

m m

m

y f b


  x x  (4.1) 

where y denotes the performance of interest (PoI), x is a vector representing the device-level operation 

point, f1 denotes the performance model of interest which establishes a mapping from x to y, {αm; m = 1, 2, 

..., M} contains the model coefficients, {bm(x); m = 1, 2, ..., M} contains the basis functions (e.g., linear and 

quadratic polynomials), and M denotes the total number of basis functions. 

To determine the performance model in (4.1), the model coefficients {αm; m = 1, 2, ..., M} must be 

solved. Towards this goal, the traditional least-squares fitting method first collects a number of sampling 

points of x and y, and then solves the model coefficients from the following optimization problem: 
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where 
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(4.3) 

 
 1 2

T

M  α  (4.4) 

 
     1 2

T
K

y y y 
 

y . (4.5) 

In (4.3)-(4.5), x(k) and y(k) are the values of x and y at the k-th sampling point respectively, K represents the 

total number of sampling points, and ||||2 stands for the L2-norm of a vector. To avoid over-fitting, the 

number of sampling points (i.e., K) must be substantially greater than the number of unknown coefficients 

(i.e., M). 

To reduce the number of required sampling points, several advanced performance modeling 

approaches [53], [74]-[79] have recently been proposed. These approaches take advantage of the CSI (i.e. 

the extra prior knowledge related to the model coefficients). Taking SR as an example [74]-[79], the model 

coefficients are solved from the following convex optimization problem: 

 

2 2

1 21 22
min     
α

y B α α α  (4.6) 

where ||||1 stands for the L1-norm of a vector. In , the CSI is encoded by the regularization terms ||α||1 and 

||α||2, and λ1 and λ2 denote two parameters controlling the regularization. Specifically, the CSI here is the 

prior knowledge that the model coefficients {αm; m = 1, 2, ..., M} should be sparse and do not take any 

extremely large values. 

On the other hand, consider BMF [53] as another example. The late-stage model coefficients {αm; m 

= 1, 2, ..., M} are efficiently solved by borrowing the early-stage model information. The performance 

modeling problem is then formulated as a maximum-a-posteriori (MAP) estimation: 
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2
min T     
α

y B α α D α  (4.7) 

where λ denotes a parameter controlling the regularization term, and D stands for a diagonal matrix learned 

from the early-stage model. In (4.7), the CSI is encoded in the second term which indicates the similarity 
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between the early-stage and late-stage models. 

While the CSI has been successfully applied to many practical applications, it is possible to exploit 

other side information to further reduce the performance modeling cost. Motivated by this observation, we 

will propose a new CL-BMF technique that takes into account the PSI. 

 

4.2 Performance Side Information for Co-Learning 

For a given performance modeling task, obtaining the PoI value y at each sampling point is often 

expensive (e.g., by running a transistor-level simulation). Therefore, to reduce the overall performance 

modeling cost, it is extremely important to reduce the number of required PoI samples for model fitting. 

Towards this goal, we propose a co-learning method to generate pseudo samples of PoI without running 

actual circuit simulation or performing physical silicon measurement. These pseudo samples are considered 

as the PSI in our work. 

In particular, we consider a vector of performance metrics z that satisfies the following three criteria: 

(i) z is inexpensive to simulate or measure, (ii) z can be used to accurately predict the PoI y, and (iii) z is 

low-dimensional and, hence, the following model has low complexity and can be accurately learned from a 

small number of training samples: 
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1

T

t t
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y f c


  z z  (4.8) 

where {βt; t = 1, 2, ..., T} contains the model coefficients, {ct(z); t = 1, 2, ..., T} contains the basis functions, 

and T denotes the total number of basis functions. To simplify our discussion, we further assume that the 

vector x in (4.1) and the vector z in (4.8) do not share any common element. Namely, the i-th element xi of 

x is not identical to the j-th element zj of z for any i and j. 

The key idea of co-learning is to amalgamate the PSI when fitting f1(x). Since a much smaller 

training set is needed to fit f2(z) than f1(x), we first learn f2(z) based on a small number of training samples 

of y and z. Next, f1(x) can be trained using the PSI generated from f2(z), instead of relying on the expensive 

simulation or measurement samples only. 

To elaborate, we consider the co-learning procedure shown in Figure 4-1. First, a small number of 

physical samples {(x(r), z(r), y(r)); r = 1, 2, ..., R} are collected by simulation or measurement and they are 
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used to fit the low-complexity model f2(z) accurately. Next, a large number of samples {(x(r), z(r)); r = R + 

1, R + 2, ..., K} are collected, and a set of pseudo samples {(x(r), f2(z(r))); r = R + 1, R + 2, ..., K} are 

generated for the PoI, as shown by the dashed box in Figure 4-1. Note that since z is inexpensive to 

simulation or measure, these pseudo samples {(x(r), z(r), f2(z(r))); r = R + 1, R + 2, ..., K} can be obtained 

with low cost. Finally, the high-complexity model f1(x) is fitted by using all the samples, including both the 

physical samples {(x(r), y(r)); r = 1, 2, ..., R} and the pseudo samples {(x(r), f2(z(r))); r = R + 1, R + 2, ..., K}. 

By taking advantage of the extra pseudo samples, the aforementioned co-learning is expected to result in a 

more accurate model f1(x) than the traditional approach that uses the physical samples {(x(r), y(r)); r = 1, 2, 

..., R} only. Alternatively speaking, applying co-learning can reduce the number of required physical 

samples and, hence, the overall modeling cost for f1(x). 

y z x

y(1) z(1) x(1)

y(R) z(R) x(R)

f2(z
(R+1)) z(R+1) x(R+1)

f2(z
(K)) z(K) x(K)

f2… ……

… ……

f2

Physical

samples

Pseudo

samples

 

Figure 4-1. The co-learning procedure is illustrated. The low-complexity model f2(z) is first fitted using a 

small number of physical samples that are collected by simulation or measurement. Next, a set of pseudo 

samples are generated for the PoI, as shown by the dashed box. Finally, the high-complexity model f1(x) is 

fitted by using all the samples, including both the physical samples and the pseudo samples. 

Note that the low-complexity model f2(z) may not be highly accurate in practice. Hence, directly 

using the pseudo samples {(x(r), f2(z(r))); r = R + 1, R + 2, ..., K} to fit the high-complexity model f1(x) may 

result in large modeling error. It is crucial to develop a statistical framework that can appropriately 

incorporate the PSI into our regression modeling process. To this end, a Bayesian inference will be 

constructed and represented by graphical model. We will discuss the proposed Bayesian interface, 

including the likelihood models of physical and pseudo samples respectively, in the following sub-sections. 
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4.3 Likelihood Model of Physical Samples 

f1(x)

y

PSI

CSI

f2(z)

fc

CSI
 

Figure 4-2. A graphical model is shown to statistically model the likelihood of physical samples. 

As shown in Figure 4-2, a graphical model is constructed to statistically model the likelihood of 

physical samples. In the graphical model, each node represents a random quantity, and each 

directed/undirected edge represents a unidirectional/non-directional dependency. The small solid circle 

represents the prior information as our CSI. The filled node indicates that the node has been observed (i.e. 

the physical samples of y have been collected). In the co-learning process, we expect that the two models f1 

and f2 are consistent with each other because they are predicting the same PoI. In this regard, we explicitly 

define a consensus function fc to represent the true value of PoI predicted by f1 and f2. 

According to the graphical model in Figure 4-2, the joint probability density function (PDF) of f1, f2, 

fc and y can be represented as: 
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. (4.9) 

where σ1, σ2 and σc are three parameters. By integrating over the consensus function fc, we have: 
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where λ1, λ2 and λ3 are three constants depending on σ1, σ2 and σc. 

Given a number of independent physical samples {(x(r), z(r), y(r)); r = 1, 2, ..., R} collected by pre-

silicon simulation or post-silicon measurement, the joint PDF for all these physical samples can be 

represented as: 
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where 
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In (4.13)-(4.14), f1(x) and f2(z) are defined by (4.1) and (4.8), respectively. Hence, fp,1 and fp,2 can be re-

written as: 

 ,1P P f B α  (4.15)  

 ,2P P f C β  (4.16)  

where 
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(4.19)  

Substituting (4.15)-(4.19) into the joint PDF in (4.11) yields the likelihood function: 
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The likelihood function in (4.20) consists of three L2-norm terms. The first term represents the difference 

between the physical samples of y and the approximated function f1(x), the second term represents the 
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difference between the physical samples of y and the approximated function f2(z), and the third term 

represents the difference between f1(x) and f2(z). The aforementioned likelihood function will be further 

used to solve the Bayesian inference in Section 4.5. 

 

4.4 Likelihood Model of Pseudo Samples 
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Figure 4-3. A graphical model is shown to statistically model the likelihood of pseudo samples. 

As shown in Figure 4-3, a graphical model is constructed to statistically model the likelihood of 

pseudo samples. According to the graphical model in Figure 4-3, the joint PDF of f1, f2 and fc can be 

represented as: 
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By integrating over the consensus function fc, we have: 
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where λ4 is a constant depending on σ1 and σ2. Given a number of independent pseudo samples {(x(r), z(r)); r 

= R + 1, R + 2, ..., K}, the joint PDF for all these pseudo samples can be represented as: 
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In (4.24)-(4.25), f1(x) and f2(z) are defined by (4.1) and (4.8), respectively. Hence, fs,1 and fs,2 can be re-

written as: 

 ,1S S f B α  (4.26)  

 ,2S S f C β  (4.27)  

where 
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Substituting (4.26)-(4.27) into the joint PDF in (4.23) yields the likelihood function: 
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The likelihood function in (4.30) contains only one L2-norm term, which represents the difference between 

f1(x) and f2(z). It encodes our prior knowledge that the function values approximated by f1(x) and f2(z) are 

“likely” to be similar. The likelihood function in (4.30) will be combined with the likelihood function in 

(4.20) to solve the Bayesian inference in Section 4.5. 

 

4.5 Bayesian Inference for Co-Learning 

Based on the likelihood function defined in Section 4.3 and 4.4, the model coefficients α and β can 

be optimally determined by MAP estimation through Bayesian inference [61]. Given that the physical and 

pseudo samples are independently generated, the likelihood function in (4.20) and (4.30) can be combined: 
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We statistically represent the CSI of α and β as a PDF that is referred to as the prior distribution. Here, we 

define the prior distribution of α and β in a general form: 

 
( , )pdf α β . (4.32)  

In (4.32), the prior knowledge is encoded in the PDF template (e.g., Gaussian distribution, Laplace 

distribution, etc.) and/or the PDF parameters (e.g. mean and standard deviation for a Gaussian distribution). 

More details about the prior definition will be discussed in Section xxx. 

Once the prior distribution pdf(α, β) is specified, we will combine pdf(α, β) with the physical 

samples {(x(r), z(r), y(r)); r = 1, 2, ..., R} and the pseudo samples {(x(r), z(r)); r = R + 1, R + 2, ..., K} to solve 

the model coefficients α and β by MAP estimation [61]. The key idea of MAP estimation is to find the 

optimal values of α and β to maximize the posterior distribution pdf(α, β | fp,1, fp,2, yp, fs,1, fs,2). Intuitively, 

the posterior distribution indicates the remaining uncertainty of α and β, after we observe all physical and 

pseudo samples. Hence, MAP attempts to find the optimal α and β that are most likely to occur. 

Based on Bayes’ theorem, the posterior distribution can be represented as: 
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Mathematically, the MAP solution can be found by solving the following optimization problem: 
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Combining (4.31)-(4.34) and taking the logarithm for the posterior distribution, we can convert (4.34) to 

the following equivalent optimization problem: 
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(4.35)  

In (4.35), the model coefficients α and β are solved together. The first term in the cost function represents 

the prior knowledge which encodes the CSI. The second term penalizes the difference between the physical 
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samples of y and the approximated function f1(x). The first two terms resemble the traditional regression 

approaches as described in (4.6) and (4.7). The third term penalizes the difference between the physical 

samples of y and the approximated function f2(z), and the fourth and fifth terms penalize the inconsistency 

between f1(x) and f2(z) (i.e. the PSI) for physical and pseudo samples respectively. 

While the basic idea of likelihood modeling and Bayesian inference for co-learning is illustrated in 

this section, several implementation issues must be carefully considered in order to make CL-BMF of 

practical utility. These implementation details will be further discussed in the next section. 

 

4.6 Implementation Details 

In this section, we further discuss several important implementation issues for CL-BMF, including (i) 

prior definition, and (ii) cross-validation. 

 

4.6.1 Prior Definition 

The prior knowledge (i.e. the CSI) of α and β is statistically encoded by the prior distribution pdf(α, 

β) in (4.32). In this sub-section, we consider two special cases: (i) the Laplace prior distribution, and (ii) the 

Gaussian prior distribution. These prior distributions have been extensively used in the literature [53], [74]-

[79]. It should be noted that the proposed CL-BMF framework can be easily extended to accommodate 

other prior distributions [88]-[90], even though the details of these possible extensions are not included in 

this thesis. 

1) Laplace prior distribution: The Laplace prior distribution is defined as: 

 1 1

1

( , ) exp exp exppdf   
  

                 
   

α
α β α β

β
 (4.36)  

where κ is a hyper-parameter and ||||1 represents the L1-norm of a vector. The Laplace prior distribution 

attempts to promote sparsity for the model coefficients α and β. In other words, by applying the Laplace 

prior distribution, the MAP solution of α and β is likely to be sparse. Combining and (4.36), we obtain the 

following optimization problem: 
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(4.37)  

It is straightforward to verify that the optimization problem in (4.37) is convex and, hence, can be 

efficiently solved to find its global optimum. 

2) Gaussian prior distribution: In the case where the CSI contains the magnitude information of the 

model coefficients from an early stage, a Gaussian prior distribution can be used. To this end, we 

consider the following models from the early-stage: 
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  z z  (4.39)  

where fE,1 and fE,2 denote the early-stage versions of f1 and f2, {αE,m; m = 1, 2, ..., M} contains the model 

coefficients of fE,1, and {βE,t; t = 1, 2, ..., T} contains the model coefficients of fE,2. We expect that the model 

coefficients {αm; m = 1, 2, ..., M} and {βt; t = 1, 2, ..., T} are close to {αE,m; m = 1, 2, ..., M} and {βE,t; t = 1, 

2, ..., T} respectively, since they are associated with the same PoI. Following this assumption, the joint 

prior distribution of α and β can be defined as a multivariate Gaussian distribution: 
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where  
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 

α

β

D 0
D

0 D
 (4.41)  
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 2 2 2

,1 ,2 ,diag , , ,E E E T    βD . (4.43)  

In (4.42)-(4.43), diag() represents the operator to construct a diagonal matrix and D is the diagonal 

covariance matrix of the prior distribution encoding our CSI. Combining (4.35) and (4.40), we obtain the 
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following optimization problem: 
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(4.44)  

Eq. (4.44) represents a convex quadratic programing problem. Its globally optimal solution can be 

analytically solved by using the first-order optimality condition [85]. 

 

4.6.2 Cross-Validation 

To solve the model coefficients α and β in (4.37) or (4.44), the parameters λ1, λ2, λ3, λ4 and κ must be 

carefully determined. First, we consider the optimization problem in (4.44) with four parameters λ1, λ2, λ3 

and λ4. Note that these four parameters are not independent because they can be uniquely determined by σ1, 

σ2 and σc from (4.9) and (4.21). Here we assume that the simulation or measurement noise is negligible for 

y. Namely, the consensus function fc (i.e. the true value of PoI) is equal to y (i.e. the observed value of PoI). 

In this case, the parameter σc can be set to a value that is close to zero and only two other parameters σ1 and 

σ2 should be determined. Second, we consider the optimization problem in (4.37) with five parameters λ1, 

λ2, λ3, λ4 and κ. It is straightforward to note that the parameter κ can be absorbed into λ1, λ2, λ3 and λ4. 

Therefore, we only need to determine two parameters κ·σ1 and κ·σ2 eventually. 

It is important to find the optimal values of the aforementioned two parameters so that the modeling 

error is minimized. Towards this goal, we use N-fold cross-validation to estimate the modeling error for 

different parameter values. In particular, we partition the entire data set into N groups. Modeling error is 

estimated from N independent runs using the physical samples. In each run, one of the N groups is used to 

estimate the modeling error and all other groups are used to calculate the model coefficients. In addition, 

different groups should be selected for error estimation in different runs. As such, each run gives an error 

value en (n = 1, 2, ..., N) that is estimated from a unique group of data points. The final modeling error is 

computed as the average of {en; n = 1, 2, ..., N}, i.e., e = (e1 + e2 + ... + eN)/N. 
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4.6.3 Side Information Selection 

To exploit the benefit of PSI, it is important to appropriately identify a vector of performance 

metrics z that satisfies the criteria listed in Section 4.2. In practice, these performance metrics can be 

selected by an analog/RF designer according to his design experience. However, in some cases, the 

performance metrics z is not very clear, or a large number of performance metrics can be candidates of z 

and it is not possible to include all candidates. To address this issue, we propose to use sparse regression 

discussed in Section 3.3 to automatically select the important performance metrics in z from a set of 

candidates w. In particular, we are interested in the sparse solution of the following regression problem: 

 
   2

1

L

l l

l

y f c


  w w , (4.45) 

where {cl(w); l = 1, …, L} contains the basis function candidates. 

Towards this goal, we first collect a number of pre-silicon simulation samples {(w(n), y(n)); n = 1, …, 

N}, where w represent a candidate set where z is chosen from, w(n) and y(n) denote the values of w and y for 

the n-th sampling point respectively, and N denotes the total number of sampling points. Based on these 

sampling points, a set of linear equations can be expressed as: 
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To find the important basis functions, we propose to use SR which solves the following L1-norm 

regularization problem: 
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where ||||1 denotes the L1-norm of a vector, and λ > 0 is a user-defined parameter. The formulation in is a 

convex optimization problem and can be solved both efficiently (i.e., with low computational cost) and 

robustly (i.e., with guaranteed global optimum). When λ decreases, the number of coefficients with non-

zero magnitude will decrease. The final set of important basis functions can be selected according to the 

requirement on the model accuracy and model complexity for a particular application. 

 

4.6.4 Summary 

Algorithm 4 summarizes the major steps of the proposed CL-BMF method. It consists of two major 

components: (i) prior distribution definition, and (ii) MAP estimation. CL-BMF can automatically assign 

the appropriate weights to the PSI, the CSI and the physical samples by optimally tuning the parameters λ1, 

λ2, λ3, λ4 and κ in (4.37) or (4.44) based on cross-validation. If the PSI or CSI is not accurate, cross-

validation can automatically assign a small weight value to the inaccurate side information. As such, the 

performance model f1(x) will not be distorted due to the inaccurate side information. 

Algorithm 4: Co-Learning Bayesian Model Fusion (CL-BMF) 

1. Select vector z based on design expertise or sparse regression. 

2. According to the CSI, define the prior distribution for the model coefficients {αm; m = 1, 2, ..., M} and 

{βt; t = 1, 2, ..., T} by (4.36) or (4.40). 

3. Collect the physical samples {(x(r), z(r), y(r)); r = 1, 2, ..., R} and the pseudo samples {(x(r), z(r)); r = R + 

1, R + 2, ..., K}. 

4. Solve the model coefficients {αm; m = 1, 2, ..., M} and {βt; t = 1, 2, ..., T} based on the optimization 

problem in (4.37) or (4.44) where the parameters λ1, λ2, λ3, λ4 and κ are determined by cross-validation. 

 

4.7 Numerical Results 

In this section, we demonstrate the efficacy of CL-BMF by several circuit examples designed in a 
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commercial 32nm SOI CMOS process. Our objective is to build indirect sensor models for post-silicon 

tuning of these circuits. For testing and comparison purposes, two different performance modeling 

techniques are implemented: (i) Bayesian model fusion using Gaussian prior (BMF), and (ii) CL-BMF. 

Here, BMF method is chosen for comparison, since they are among the state-of-the-art techniques in the 

literature. 

In our experiments, a two-level cross-validation is used. In the inner loop, the first-level cross-

validation is used to determine the parameters λ1, λ2, λ3, λ4 and κ. In the outer loop, the second-level cross-

validation is applied to estimate the modeling error. All numerical experiments are run on a 2.53GHz Linux 

server with 64GB memory. 

 

4.7.1 Low-Noise Amplifier 
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Figure 4-4. The simplified circuit schematic is shown in (a) for a three-stage 60GHz low-noise amplifier 

(LNA) designed in a commercial 32nm SOI CMOS process. The scatter plot of noise figure vs. S21 is 

shown in (b). 

In this sub-section, we consider a tunable 60GHz low-noise amplifier (LNA) designed in a 

commercial 32nm SOI CMOS process. The simplified circuit schematic of the LNA is shown in Figure 4-

4(a). It consists of three stages and their bias currents are tunable. Our objective is to efficiently measure 

the circuit performance metrics by low-cost on-chip sensors and then adaptively tune the bias currents to 

maximize the performance and/or reduce the power of the LNA. 

Towards this goal, indirect performance sensing has been proposed in the literature to estimate the 
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performance metrics that cannot be easily measured by on-chip sensor, as we discussed in Chapter 4. In this 

example, we consider the noise figure (NF) of the LNA as our PoI. Instead of directly measuring the NF, 

the key idea of indirect performance sensing is to predict its value by using a set of other performance 

metrics that are referred to as the performances of measurements (i.e. PoMs). The choices of PoMs must 

satisfy the following two criteria. First, the PoMs should be highly correlated with the NF. Second, the 

PoMs can be easily measured by low-cost on-chip sensors. 

To predict the NF of the LNA in Figure 4-4, we choose three performance metrics as the PoMs 

based on our design knowledge: (i) the bias current of the first stage (IB), (ii) the drain voltage of the 

transistor T4 (VN), and (iii) the environmental temperature (Temp). Once the PoMs are chosen, we need to 

further build a performance model to approximate the NF as a polynomial function of the PoMs. 

Table 4-1. Side information for performance modeling of LNA 

 Description Distribution BMF CL-BMF 

CSI Magnitude Gaussian prior Yes Yes 

PSI S21 Gaussian likelihood No Yes 

 

Table 4-1 summarizes the side information for the aforementioned performance modeling problem. 

At the pre-silicon stage, a performance model is fitted based on the simulation data generated by random 

sampling. The magnitude of the coefficients of this pre-silicon model is considered as our CSI, which is 

encoded by a Gaussian prior distribution. 

At the post-silicon stage, both the NF and the PoMs (i.e. IB, VN and Temp) are measured from a 

number of chips by wafer probe test. Here, we have to measure the NF by wafer probe, because it is a high-

frequency performance metric at 60GHz and, hence, cannot be measured at the package level. In addition, 

each chip must be measured individually at such a high frequency, implying that the measurement cost is 

prohibitively high for this LNA example. 
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Table 4-2. Performance modeling error and cost for LNA 

 BMF CL-BMF 

Modeling error (dB) 0.28 0.28 

Number of measured chips for NF 5 1 

Measurement time for NF (Sec.) 250 50 

Number of measured chips for S21 0 13 

Measurement time for S21 (Sec.) 0 0.0039 

Alignment time for wafer probe (Sec.) 0.63 1.63 

Measurement cost (Sec.) 250.63 51.63 

Fitting cost (Sec.) 0.011 0.241 

Overall modeling cost (Sec.) 250.6 51.9 

 

0 2 4 6 8 10 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of measured chips for NF

M
o

d
el

in
g

 e
rr

o
r 

(d
B

)

 

 

BMF

CL-BMF

 

Figure 4-5. The performance modeling error of noise figure (NF) is shown as a function of the number of 

measured chips for NF. 

For testing and comparison purposes, we build the performance models for NF by two different 

approaches: (i) BMF, and (ii) CL-BMF. When CL-BMF is applied, we consider the S21 as our alternative 
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performance metric to define the PSI, because it is strongly correlated with the NF according to our design 

experience and measuring the S21 is significantly less expensive than the NF for high-frequency wafer 

probe test. In our experiment, the S21 values measured from 13 chips are used to build the likelihood 

function for PSI. The correlation between S21 and NF is shown in Figure 4-4(b). In this example, S21 is 

strongly correlated with NF because the transistors have large sizes and S11 is not sensitive to process 

variations. 

Figure 4-5 and Table 4-2 compare the modeling error and cost for BMF and CL-BMF. In this 

example, the overall modeling consists of four major parts: (i) the measurement cost for NF, (ii) the 

measurement cost for S21, (iii) the measurement cost for probe alignment when testing each die, and (iv) 

the fitting cost for solving the unknown model coefficients. As shown in Table 4-2, the overall modeling 

cost is dominated by the measurement cost for NF. CL-BMF requires less measurement data for NF and, 

hence, has lower modeling cost than BMF. In this example, CL-BMF achieves 5 speed-up over BMF in 

terms of the overall modeling cost. 

 

4.7.2 Down-Conversion Mixer 

In this sub-section, we consider a down-conversion mixer example designed in a commercial 32nm 

CMOS process. The current of this mixer is tunable with 13 different knob configurations. In this example, 

input referred 1dB compression point (I1dBCP) is considered as PoI. The DC drain voltage of input 

transistor and peak detector measurements at -40dBm, -20dBm and -4dBm are considered as PoM. The 

goal here is to efficiently fit ISM for I1dBCP. The I1dBCP is an expensive measurement, because the input 

power of the mixer needs to be swept to extract accurate I1dBCP, as shown in Figure 4-6. In this circuit 

example, the input power sweeping is performed as -40:0.5:0dBm. In other words, 81 power gain 

measurements are required to accurately extract I1dBCP.  

We use CL-BMF to facilitate the efficient modeling. In this example, the power gain (PG) from all 

possible input power range can potentially serve as z which provides PSI. However, if all power gain 

measurements are considered as z, the cost of z would be the same as the cost of I1dBCP. Therefore, a 

subset of power gain measurements must be selected which is capable of accurately predicting I1dBCP.  

Towards this goal, we apply the side information selection technique as described in (4.45)-(4.50). 
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In particular, we consider all power gain simulations with different input power as w. The sparse regression 

is then applied to optimally find a subset of w that can well predict I1dBCP. Five different power gain 

measurements with different input power are selected as z, including -40dBm, -20dBm, -4dBm, -2dBm and 

0dBm. Given that we do not have the silicon measurement data of down-conversion mixer, we use 

simulation data to validate the CL-BMF for ISM fitting. The z simulation data from 40 chips are collected 

to provide performance side information. 

Pin

PG

1dB

I1dBCP
 

Figure 4-6. I1dBCP measurement procedure is shown. In order to accurately extract I1dBCP, the input 

power needs to be increased step by step until power gain is compressed by 1dB. 
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Figure 4-7. Indirect sensor modeling error is compared for OLS and CL-BMF. 

In Figure 4-7, the indirect sensor modeling error of (i) OLS and (ii) CL-BMF are compared. Here 

OLS is selected for comparison because only model template of ISM is known. Studying Figure 4-7 yields 

several observations: (i) with the number of samples increases, the modeling error of both methods 
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decreases, (ii) with the same number of samples, CL-BMF achieves significantly less modeling error than 

OLS. 

Table 4-3 further compares the indirect sensor modeling error and cost for OLS and CL-BMF. The 

overall modeling cost consists of two major components: (i) the measurement cost for I1dBCP, and (ii) the 

measurement cost for PG. The overall modeling cost is dominated by the measurement cost of I1dBCP. 

CL-BMF requires significantly less I1dBCP and, hence, has much lower modeling cost. 

Table 4-3. Indirect sensor modeling cost of OLS and CL-BMF (normalized) 

 OLS CL-BMF 

Error (dB) 0.27 0.27 

I1dBCP 

measurements 

260 65 

PG 

measurements 

0 2400 

Total number of PG 

measurements 

20800 7600 

 

 

4.8 Summary 

In this Chapter, a novel CL-BMF algorithm is proposed for efficient indirect sensor modeling of 

self-healing circuits. CL-BMF optimally combines the following information: (i) the CSI, (ii) the PSI, and 

(iii) a small number of training samples. Bayesian inference is constructed and represented as a graphical 

model, where the CSI and the PSI are encoded by the prior distribution and the likelihood function 

respectively. From the Bayesian inference, the unknown model coefficients can be accurately determined 

by maximizing the posterior distribution. The side information technique is also discussed. As is 

demonstrated by our circuit examples designed in a commercial 32nm SOI CMOS process, the proposed 

CL-BMF method achieves up to 5 cost reduction over other state-of-the-art indirect sensor modeling 

techniques. It should be noted that CL-BMF is also applicable to other performance modeling tasks, since it 

is formulated from a rigid mathematical framework. 
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Chapter 5 Cost Analysis of On-Chip Self-Healing 

Cost Analysis of On-Chip Self-Healing 

5.1 Motivation 

Although the idea of on-chip self-healing has been proposed for many years, its benefit on the 

overall product cost has not been studied in the literature. Compared to the traditional design without tuning 

capacity, the on-chip self-healing is able to achieve better parametric yield. However, the hardware cost 

overhead and testing cost overhead will be high. Compared to the tunable design with off-chip performance 

tuning, the on-chip self-healing will achieve lower parametric yield due to limited accuracy in on-chip 

performance sensors. However, the testing cost, especially the performance tuning cost, will be lower. 

Therefore, it is still unclear to circuit designs when on-chip self-healing is appropriate in the cost 

perspective. 

 The rest of this Chapter is organized as follows. First, we briefly review the three different circuit 

design methodologies: (i) traditional circuit design without tuning capacity, (ii) off-chip adaptive 

performance tuning, and (iii) on-chip self-healing. The trade-off of the three methods are analyzed. Next, 

we consider the cost per good chip [99] as the judging criterion for overall product cost. The cost per good 

chip is calculated as the overall capital investment in the manufacturing, testing and packaging cost 

throughout the good chip generation process. According to [98], the cost percentage of manufacturing, 

testing and packaging can be around 40%, 40% and 30% respectively. Therefore, the three components 

must be carefully analyzed to yield accurate cost estimation. The cost per good chip is established from 

several important parameters such as parametric yield, ATE cost, testing time, etc. Finally, we study a 

mmWave transceiver test case to compare three different design methodologies. This cost analysis can 

provide a guideline to circuit designers on whether or not to apply on-chip self-healing for a particular 

application. 
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5.2 Three Design Methodologies 

 

Sensing

Controlling

Tunable circuit 

block

On-chip

Sensing

Controlling

Tunable circuit 

block

On-chip

Circuit block

On-chip

(a)

(b)

(c)
 

Figure 5-1. Circuit components of three different design methodologies are shown: (a) traditional design 

without tuning capacity (Traditional), (b) off-chip adaptive performance tuning (AT), and (c) on-chip self-

healing (OH). 
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As shown in Figure 5-1(a)-(c), the design methodology of analog/RF circuits can be classified into 

three broad categories: (i) traditional design without tuning capacity (Traditional) [8]-[32], (ii) off-chip 

adaptive performance tuning (AT) [47]-[48], and (iii) on-chip self-healing (OH) [41]-[46], [49]-[53]. The 

features of the three design methodologies are listed as follows: 

 Traditional: In Traditional design, no control knobs, sensing or controlling circuitry are designed in the 

circuit block, as shown in Figure 5-1(a). The Traditional design approach has been extensively studied 

in the literature [8]-[32]. Numerous design optimization methods have been proposed, as discussed in 

Section 1.1. However, due to the large-scale process variations in advanced technology nodes, the 

Traditional has become increasingly difficult. In particular, the design margin has continuously 

shrinking and the feasible design region has become smaller and smaller. It is more and more 

challenging to design a circuit with aggressive specification while maintaining high parametric yield. 

The resulting parametric yield loss will significantly degrade profitability of circuit products, as will be 

seen from the case study in Section 5.4. 

Performance 1

Performance 2

Pass

Chip 1

Chip 3

Chip 2

Control knobs

 

Figure 5-2. Adaptive feature of tunable circuit block is shown. Each black dashed ellipsoid denotes one 

manufactured chip. Each red dot represents a particular knob configuration. 

 AT: In AT, the performance sensing and controlling is done off-chip, as shown in Figure 5-1(b). Given 

one knob configuration, the circuit performance of interest will be measured using off-chip ATE. 

Based on the ATE measurements, the knob configuration is adaptively tuned. This procedure is done 

until a certain criterion is met (e.g. performances are optimized or power is minimized while 

performances pass all specifications). AT is expected to achieve superior parametric yield compared to 

Traditional, due to its adaptive feature. Figure 5-2 further illustrates the adaptive feature of tunable 
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circuit block. In this example, only two performances are of interest, which are shown as x-axis and y-

axis respectively. The green region represents the passing region. The three ellipsoids represent three 

instances of manufactured chips. Due to process variations, the performances of three chips are 

deviated from each other. Each red dot denotes a particular knob configuration in the tunable circuit. 

As we can see, by selecting different knob configurations, the manufactured chips are able to flexibly 

locate at any of the four locations enabled by knob configurations. As such, the parametric yield can be 

significantly improved compared to Traditional.  

 OH: The performance sensing and calibration of OH are done on-chip, as shown in Figure 5-1(c). The 

on-chip self-healing is consisted of two steps. The first step is to collect a few ATE samples across a 

number of knob configuration in several chips. Indirect sensor models are then fitted using those ATE 

samples. The indirect sensor models are then loaded in on-chip microcontroller. As discussed in 

Section 3.2, the circuit performances of interest can be inexpensively predicted by indirect sensor 

models. The second step of OH is to perform on-chip performance tuning. Based on indirect sensor 

predictions, the controlling block will sweep a number of knob configurations until certain criterion is 

met. One major difference between OH and AT is that OH employs indirect performance sensor while 

AT uses off-chip ATE measurements. As such, OH is less accurate in performance sensing than AT, 

due to the limited accuracy in indirect sensor models. However, on the other hand, the testing cost 

related to OH is much lower than AT because OH requires much less ATE measurements to fit indirect 

sensor models. 

 

5.3 Cost per Good Chip 

The cost per good chip is defined as the overall capital investment in the manufacturing, testing and 

packaging cost throughout the good chip generation process [99]. It should be noted that the capital 

investment is not done once at the beginning of the manufacturing. Instead, it is done in several steps in the 

manufacturing and testing flow. For example, the packaging is only performed to the dies that pass the 

wafer probe test. In this regard, it is important to first understand the overall manufacturing and testing flow 

to analyze the cost. 
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Figure 5-3. The manufacturing and testing flow of traditional design is shown. 
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Figure 5-4. The manufacturing and testing flow of off-chip adaptive performance tuning (AT) is shown. 
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Figure 5-5. The manufacturing and testing flow of on-chip self-healing (OH) is shown. 

The manufacturing and testing flow [91]-[99] of the three approaches are summarized in Figure 5-3-

Figure 5-5. Here we consider a high-volume production scenario for mmWave circuit. The blocks represent 
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the important steps in the flow, while the arrows represent sequential relations between steps. For 

Traditional, as shown in Figure 5-3, the dies are first manufactured. Then a basic function test for supply 

voltage and bias current is performed. The bad dies detected in this step is discarded. Due to the high 

packaging cost, the dies are further screened in a wafer probe final test. Finally, the dies are packaged and 

tested.  

Figure 5-4 shows the testing flow of AT. The dies are first manufactured and go through basic 

function test. Then, the passing dies from basic function test will be calibrated off-chip to adaptively select 

the optimal knob configuration in order to provide desired circuit performance. After this step, the dies are 

tested in wafer probe. The passing dies after wafer probe test are then packaged and tested. 

Figure 5-5 shows the testing flow of OH. Similar to AT, the dies are first manufactured and go 

through basic function test. Then a few ATE samples are collected across a number of knob configuration 

in several dies. Indirect sensor models are fitted using those ATE samples and then loaded in on-chip 

microcontroller. The circuit performances of interest can be inexpensively predicted by indirect sensor 

models. Next, on-chip performance tuning is performed. Based on indirect sensor predictions, the 

controlling block will sweep a number of knob configurations until certain criterion is met. The criterion is 

usually defined according to circuit performances (e.g. minimizing power given specification constraints, 

minimizing noise figure, etc.). Once the on-chip performance tuning is finished, the dies are tested in wafer 

probe. The passing dies after wafer probe test are then packaged and tested. 

In the whole manufacturing and testing flow, three tests are performed: (i) basic function test, (ii) 

wafer probe final test, and (iii) packaged test. In each test, dies/chips are tested to check whether particular 

criteria are met. For example, in the basic function test, the supply voltage and bias current are checked. 

The dies/chips that do not meet the criteria during the test are discarded. We define the following yields to 

denote the portion of good dies/chips in each test: 

 1

#of good dies after basic test
Yield

#of manufactured dies
  (5.1)  

 2

#of good dies after wafer probe test
Yield

#of good dies after basic test
  (5.2)  

 3

#of final good chips
Yield

#of good dies after wafer probe test
 , (5.3)  
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where Yield1 denotes the ratio of the number of good dies after basic test and the total number of 

manufactured dies, Yield2 denotes the ratio of the number of good dies after wafer probe test and the 

number of good dies after basic function test, and Yield3 denotes the ratio of the number of final good chips 

and the number of good dies after wafer probe test. It should be noted that the overall yield of the 

manufacturing, testing and packaging process can be calculated as: 

 

all 1 2 3Yield =Yield Yield Yield

#of final good chips

#of manufactured dies

 


. (5.4)  

N dies

N  Yield1 dies

Basic function testYield1

N Yield1 Yield2 dies

Wafer probe testYield2

N Yield1 Yield2 Yield3 chips

Final testYield3 

Cmanuf

Cwafter_probe

Cpackaging+Cfinal_test

 

Figure 5-6. The manufacturing and testing procedure is shown where different types of costs (shown in 

green box) are applied on different number of dies/chips (shown in black box) due to the chip drop after 

each test (shown in blue box). 

Figure 5-6 shows the overall manufacturing and testing procedure where the green box denotes the 

cost associated with each step, the blue box denotes the test that screens out a portion of dies/chips, the red 

box represents the yield associated with each test as denoted in (5.1)-(5.3), and the black box denotes the 
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number of dies/chips left after testing steps.  

To calculate the cost per good chip, we start from manufacturing N dies. The total cost associated 

with this step is: 

 1Cost manufC N  , (5.5)  

where Cmanuf denotes the manufacturing cost per die in high-volume production. After manufacturing, the 

basic function test is performed. Some dies fail to meet the specifications and are therefore discarded. This 

leaves N  Yield1 dies. For AT and OH, the remaining dies will be tuned in post-silicon using wafer probe 

test (directly or indirectly). And a final probe final test will be performed to determine whether to proceed 

to the packaging step. Given that totally N  Yield1 dies are engaged in the wafer probe test, this step 

involves the cost: 

 2 _ 1Cost Yieldwafer probeC N   , (5.6)  

where Cwafer_probe denotes the wafer probe test cost per die. This cost includes both the post-silicon tuning 

cost and the wafer probe final test cost. The post-silicon tuning cost here would be adaptive performance 

tuning cost for AT or indirect sensor modeling cost for OH. The wafer probe test further screens out a 

portion of chips which leads to N  Yield1  Yield2 remaining dies. These remaining dies are packaged and 

finally tested. The cost of this step would be: 

 
 3 _ 1 2Cost  + Yield Yieldpackaging final testC C N    , (5.7)  

where Cpackaging represents the packaging cost and Cfinal_test denotes the cost for final sign-off tests after 

packaging. The total cost involved in the manufacturing and testing procedure can be calculated from (5.5)-

(5.7) as: 

 
 

1 2 3

_ 1

_ 1 2

Total Cost = Cost Cost Cost

Yield

 + Yield Yield

manuf wafer probe

packaging final test

C N C N

C C N

 

    

   

. 
(5.8)  

The final test further screens out a portion of chips and the final number of good (passing) chips is: 

 1 2 3Yield Yield YieldpassN N    . (5.9)  

The cost per good chip can then be calculated as: 
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 

_ 1

1 2 3

_ 1 2

1 2 3

_

1 2 3 2

YieldTotal Cost
Cost per good chip

Yield Yield Yield

 + Yield Yield

Yield Yield Yield

Yield Yield Yield Yield Yie

manuf wafer probe

pass

packaging final test

manuf wafer probe

C N C N

N N

C C N

N

C C

   
 

  

  


  

 
  

 _

3 3

 + 

ld Yield

packaging final testC C


. 
(5.10)  

In (5.10), the cost in later stage is divided by less yield terms because the investment at a particular stage is 

only done to the chips that are currently good. For example, the packaging is done only on the chips that 

has passed the wafer probe test, but has nothing to do with the chips that was discarded in the basic 

function test. 

 For a particular chip, the manufacturing and packaging cost can be easily calculated based on 

wafer/package expense. The testing cost, however, needs to be calculated in a different way [99]. For 

mmWave product, expensive automatic testing equipment (ATE) are required for testing. Since ATE will 

depreciate in a period of time, every second during the usage of ATE has non-negligible cost. For example, 

as shown in Table 5-1, the cost of acquiring ATE can be $1 million, and it will depreciate within 3~5 years. 

The utilization of ATE (which is the percentage of ATE operating time over the depreciation time) can be 

80%. An example of usage cost per second calculation for this ATE would be: 

 
 

ATE cost
Usage Cost per Sec = 

Lifetime Utilization

1000000
0.013 $

3 365 24 3600 0.8



 
   

. 
(5.11)  

In other words, if the test of a particular mmWave product takes 2 minutes using this ATE, the testing cost 

is as high as $1.56. 

Table 5-1. mmWave ATE parameters 

 Explanations Number 

ATE cost ATE acquisition cost $ 1 million  

Lifetime Depreciation time 3~5 years 

Utilization ATE operating time/depreciation 

time 

80% 
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5.4 Case Study 
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Figure 5-7.A mmWave transceiver schematic is shown. 

In this section, we perform a cost analysis on a mmWave transceiver as shown in Figure 5-7. In this 

example, the LNA, power amplifier (PA), down-conversion mixer, up-conversion mixer and phase-locked 

loop (PLL) are all tunable. To compare the cost per good chip for OH, AT and Traditional, we first 

consider the manufacturing cost and packaging cost as shown in Table 5-2 [100]-[101]. The OH and AT 

requires on-chip DAC that controls each of the tunable circuit blocks. Totally 5 DACs are needed which 

takes 0.2mm2
 area [52]. To actively sense performances/calibrate ISM, two pads are placed at the output of 

PLL and down-conversion mixer, respectively. Furthermore, in OH, the microcontroller (uC) and sensors 

take additional 0.95mm2
 area [51]. As a result, the manufacturing cost of OH is the highest among the three 

approaches due to the hardware overhead. We further assume that the packaging cost is proportional to the 

manufacturing cost. 

In Table 5-3, the parametric yield of circuit design based on Traditional, AT and OH are compared. 

The last column indicates whether the yield value is obtained from simulation, silicon measurement, or 

assumption. We assume that basic function test finds 3% of chips failing for Traditional. Since basic 

function testing mainly screens out failing chips due to short/open defects, we consider that such yield loss 

is proportional to the area. As such, the OH and AT has 3.4% and 3% yield loss in Yield1 respectively, as 

shown in the 2nd row. Then the block-level parametric yield values are estimated based on an industrial 
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32nm self-healing transceiver design. Due to the configurability feature, OH and AT are able to achieve 

significantly higher Yield2 than Traditional. Then a 3% yield loss due to packaging and final test is 

assumed for all three approaches. 

Table 5-2. Manufacturing cost and packaging cost comparison of Traditional, AT and OH. 

 OH AT Traditional 

28nm 300mm2 wafer cost 5400 $ 5400 $ 5400 $ 

Area 70650mm2 70650mm2 70650mm2 

Cost per mm2 0.0764 $/mm2 0.0764 $/mm2 0.0764 $/mm2 

Size of transceiver chip 7.65mm2 

(uC, sensors) 

(5 DACs, 2 pads) 

6.70mm2 

(5 DACs, 2 pads) 

6.50mm2  

Fabrication cost per transceiver 0.58 $ 0.51 $ 0.50 $ 

Packaging cost per transceiver 0.58 $ 0.51 $ 0.50 $ 

Table 5-3. Parametric yield of circuit design based on Traditional, AT and OH. 

 OH AT Traditional Comment 

Yield1 96.6% 97.0% 97.0% Area based 

LNA+Down-mixer 90.0% 90.0% 90.0% Simulation 

Up-mixer+PA 99.0% 99.0% 90.5% Simulation 

PLL 95.0% 95.0% 37.0% Silicon 

Frequency doubler 99.0% 99.0% 99.0% Simulation 

Others (Filter, I/Q mixer) 99.0% 99.0% 99.0% Assumed 

Yield2 80.1% 80.5% 28.7% Calculated 

Packaging and final test (Yield3) 97.0% 97.0% 97.0% Assumed 
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It should be noted that some yield values presented in Table 5-3 are based on simulations. Therefore 

Table 5-3 only provides an upper bound on final yield estimation. Furthermore, the design cost for hiring 

design experts for configurable/self-healing circuit design is not considered. In what follows, we compare 

the cost per good chip using three different design approaches based on parameters described in Table 5-1-

Table 5-3. The cost per second of ATE is assumed to be 0.010$. For Traditional, we assume that wafer 

probe final test takes 15s, and the test after packaging takes additional 15s. Therefore, the cost per good 

chip can be calculated using (5.10) as: 

 

Cost per good chip

0.5 0.010 15 0.5+0.010 15

0.97 0.287 0.97 0.287 0.97 0.97

1.85 0.54 0.67 3.06($)

 
  

  

   

 
(5.12)  

In (5.12), the three terms denote manufacturing, wafer probe tuning/testing, and packaging and final testing 

cost respectively.  

For AT, we assume that wafer probe final test takes 15s, and the test after packaging takes additional 

15s similar to Traditional. Furthermore, the off-chip performance tuning takes 75s to sweep 200 different 

knob configurations. The 200 knob configurations include 64 for up-conversion mixer and PA, 64 for LNA 

and down-conversion mixer, 32 for PLL and 40 for system-level tuning. The cost per good chip can be 

calculated using (5.10) as:  

 

Cost per good chip

0.51 0.010 90 0.5+0.010 15

0.97 0.805 0.97 0.805 0.97 0.97

0.67 1.15 0.67 2.49($)

 
  

  

   

 
(5.13)  

For OH, again we assume that wafer probe final test takes 15s, and the test after packaging takes 

additional 15s. Furthermore, the ISM construction requires 1000 off-chip ATE testing point from each 

measured die. The 1000 ATE testing points include 300 for up-conversion mixer and PA, 300 for LNA and 

down-conversion mixer, and 400 for PLL. The 1000 ATE testing points take 468.75s to finish. We further 

assume that the wafer is consisted of 9000 dies, and only 30 dies are needed to fit the ISM by using BMF 

approach. The cost per good chip can then be calculated using (5.10) as: 



 108 

 

Cost per good chip

30
0.010 468.75 0.010 15

0.58 0.5+0.010 159000

0.966 0.801 0.97 0.801 0.97 0.97

0.772 0.213 0.670 1.66($)

   


  
  

   

 (5.14)  

Comparing (5.12)-(5.14) yields several important observations. First, Traditional has very low 

parametric yield, and therefore the cost per good chip is very high. Second, OH has much lower 

performance tuning cost than AT (i.e. the second term in the cost calculation), because the ISM calibration 

cost is shared among all chips on the same wafer. Third, the overall cost per good chip of OH is the lowest 

among the three approaches, because it is able to achieve high parametric yield as well as low testing cost.  

 

5.5 Summary 

In this Chapter, we perform an overall cost analysis for different design methodologies considering 

manufacturing cost, testing cost and packaging cost. As is demonstrated in our test case, OH is able to 

achieve superior cost per good chip compared to AT and Traditional. The main benefit of OH is its 

capability of achieving high parametric yield and meanwhile maintaining a low testing cost. It should be 

noted that the cost analysis result should be case dependent, because the parametric yield values and testing 

parameters will change from design to design. However, we hope that our cost analysis could provide a 

guideline for circuit designers to determine the optimal design methodology. 
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Chapter 6 Thesis Summary & Future Work 

Thesis Summary & Future Work 

6.1 Summary 

he aggressive scaling of integrated circuits leads to large-scale process variations that cannot be 

easily reduced by foundries. Process variations manifest themselves as the uncertainties associated with the 

geometrical and electrical parameters of semiconductor devices. These device-level variations significantly 

impact the parametric yield of analog/RF circuits and lays a fundamental challenge on robust design 

techniques. 

While the traditional robust design techniques are not sufficient to maintain high parametric yield 

with process variations, on-chip self-healing methodology has emerged as a promising methodology to 

address this challenge. In self-healing circuit, tuning knobs are designed which allow performance 

flexibility. The key idea of on-chip self-healing is to actively measure and adaptively tune circuit 

performances in post-silicon on-chip. As such, the parametric yield of circuit can be significantly improved. 

Pre-silicon validation, post-silicon tuning and cost analysis are three important topics in self-healing 

analog/RF IC design flow. In pre-silicon, the self-healing circuit design must be verified by parametric 

yield analysis before moving to the manufacturing process. Once the circuit is manufactured, post-silicon 

tuning is required to exploit the benefit of configurability and improve parametric yield. The main 

challenge of both pre-silicon validation and post-silicon tuning is how to maintain low overhead in 

computation, hardware and testing cost. On the other hand, cost analysis of self-healing circuit is also a 

critical task to justify its benefit on the overall product cost over other design methodologies. 

One important task in efficient pre-silicon validation is the efficient performance modeling. Towards 

this goal, a novel C-BMF algorithm is proposed. C-BMF encodes the correlation information for both 

model template and coefficient magnitude among different states in a prior distribution. Next, the prior 

T 
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distribution is combined with very few simulation samples to accurately solve the model coefficients. An 

efficient and robust hyper-parameter inference approach is also proposed to handle the large number of 

hyper-parameters involved in the Bayesian inference. As is demonstrated by two circuit examples designed 

in a commercial 32nm CMOS process, the proposed C-BMF method achieves significant cost reduction 

compared to the state-of-the-art modeling technique.  

Based on the C-BMF algorithm, an efficient pre-silicon validation flow is further proposed. Instead 

of simulating all the knob configurations from all chips, we generate pseudo samples based on the 

performance model. As such, the parametric yield estimation cost can be significantly reduced. Numerical 

results of a self-healing LNA and a self-healing down-conversion mixer demonstrates the efficacy of the 

proposed flow. 

On the other hand, in post-silicon tuning, a large number of performance metrics must be measured 

accurately and inexpensively by on-chip sensors. We propose a novel indirect performance sensing 

technique to achieve such a goal. In particular, a set of important basis functions are first identified by SR 

so that the overhead of on-chip self-healing can be minimized. Next, the indirect sensor models are 

repeatedly calibrated by BMF to accommodate the process shift associated with manufacturing lines. The 

proposed indirect performance sensing and on-chip self-healing methodology is validated by a 25GHz 

differential Colpitts VCO designed in a 32nm CMOS SOI process. Our silicon measurement data show that 

the parametric yield of the VCO is significantly improved after applying self-healing.  

As an extension of BMF, we propose a novel CL-BMF algorithm to further facilitate efficient 

indirect sensor modeling of self-healing circuits. CL-BMF optimally combines the following information: 

(i) the CSI, (ii) the PSI, and (iii) a small number of training samples. Bayesian inference is constructed and 

represented as a graphical model, where the CSI and the PSI are encoded by the prior distribution and the 

likelihood function respectively. From the Bayesian inference, the unknown model coefficients can be 

accurately determined by maximizing the posterior distribution. The side information selection technique is 

also discussed. Our circuit examples designed in a commercial 32nm SOI CMOS process demonstrate that 

the proposed CL-BMF method achieves significant cost reduction over other state-of-the-art indirect sensor 

modeling techniques.  

At last, we perform a cost analysis for different design methodologies considering manufacturing 
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cost, testing cost and packaging cost. As is demonstrated in our mmWave transceiver test case, on-chip 

self-healing is able to achieve superior cost per good chip compared to off-chip performance tuning and 

traditional design without tuning knobs. The main benefit of on-chip self-healing is its capability of 

achieving high parametric yield and meanwhile maintaining a low testing cost. We hope this cost analysis 

could provide a guideline for circuit designers to determine the optimal design method. 

 

6.2 Future Work 

There are multiple directions that can be explored to extend this work to further benefit the 

manufacturing, design and testing community.  

First, the proposed C-BMF performance modeling approach relies on the correlation of coefficient 

magnitude as well as model template. However, it is possible that such correlation presents within different 

clusters of states, instead of all states. For example, in the case where the bias current tuning range of LNA 

is very high, LNA may enter a very bad DC operating point with extreme bias current values. In such case, 

the performance model with bad DC operating point would be very different from the performance model 

with normal DC operating point. To handle the clustering of the states, an accurate clustering algorithm 

needs to be developed which is capable of identifying clusters with similar performance models. 

Second, based on the performance model of self-healing circuit, corner extraction is another 

important application that can be further explored. With the proposed parametric yield estimation 

algorithm, designers are able to know the circuit yield and determine whether to sign-off the design. 

However, estimating the yield value only does not meet the needs of circuit designers. If a circuit fails the 

yield specification, it is important for the CAD tool to provide additional information for design debug. 

Towards this goal, worst-case corner extraction aims to identify the unique process condition at which a 

given circuit fails to work. With the extracted worst-case corners, designers can simulate their circuit at 

these particular corners and improve circuit performances accordingly.  

Third, the proposed CL-BMF framework is based on polynomial models, which is in the category of 

parametric model. The predictive model has two broad categories: the parametric model and non-

parametric model. The parametric model is the model that finds the model parameters based on training 

samples, and then make new predictions based on model parameters only. In other words, the training 
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samples are not used during the prediction. The non-parametric model, on the other hand, find the model 

parameters based on training sample and then make the model prediction using both model parameters and 

training samples. In the case where the predictive model is highly nonlinear, the non-parametric model 

usually provides better prediction than parametric model. With IC technology scaling, the performance 

models become increasingly nonlinear. Therefore, there is a strong need to further extend CL-BMF to non-

parametric model. 

Finally, the indirect performance sensing methodology can be utilized for testing cost reduction. The 

indirect sensor model essentially provides a prediction of circuit performances of interest using low cost 

on-chip sensors. In this thesis, indirect sensor model is used for efficient on-chip performance sensing for 

self-healing. It is also possible to extend the usage of indirect sensor model to testing, given its predictive 

feature. For example, indirect sensor model can be used to screen out fail chips before the wafer probe final 

test. As such, the overall testing cost can be reduced if the indirect sensor model is accurate enough. One 

challenge with this technique would be to properly handle the uncertainty associated with indirect sensor 

models.  
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