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Abstract

This thesis introduces a novel protocol to measure two elastic quantities of lipid mem-
branes, the pivotal plane of a single leaflet and the lipid tilt modulus. The key setup
relies on the simulation of a buckled membrane, a configuration that had been previ-
ously proposed to measure a membrane’s bending rigidity. Since this method solely
depends on the geometrical analysis of the membrane shape, and can hence even be
applied to existing simulation trajectories of buckled membranes, it can provide two
additional physical quantities at no extra simulation cost. Due to the high preci-
sion of its result, many technical subtleties are considered throughout the derivation,
pertaining for instance to higher order corrections due to Poisson ratio effects. This
calculation, as shown in this thesis, can be used to provide both a reference for other
study as well as deeper insight into the nature of lipid models, especially the limita-
tion of the coarse-grained ones.

After introducing the subject in the first chapter, the second chapter is mainly
intended as a concise review of some key technical details for readers not familiar
with the basic concepts in membrane and lipid structure, membrane elasticity theory
and molecular dynamics simulations of membranes.

Once the reader is prepared with the basic background knowledge, the third chap-
ter dives into the first major topic of determining the pivotal plane position. This is a
foundational step in the construction of well-known energy functionals for membranes
(such as the Helfrich Hamiltonian), which describe the membrane as a continuous sur-
face with no thickness. Among all the possible choices of a dividing surface, the pivotal
plane, which is the location where the area strain vanishes, is one of the most common
ones. We provide two measurement methods, both of which are based on monitoring
the number imbalance across two opposing lipid layers. The first method is based on
simple geometric configurations: cylinders and spheres. However, the process of lipid
number equilibration needs a high flip-flop rate of the lipids between the two layers,
which is difficult to achieve in simulation for many lipid models. The second method
relies on a buckled membrane. This solves the equilibration problem, but requires
more sophisticated lipid counting. The generic Cooke three bead model is amenable
for both methods, and so it can serve as an excellent test case for the more compli-
cated buckling approach. Agreement between the two methods hence shows that the
latter one is indeed reliable. Following this proof of principle, two membrane models
of higher resolution, MARTINI DMPC and Berger DMPC are investigated, and the
positions of their pivotal planes are determined. The value obtained for MARTINI,
z0 = 0.850(11)nm lies about 0.4 nm below the glycerol backbone, which is unexpect-
edly small. In contrast, the united atom Berger model’s value, z0 = 1.3225(44)nm,



is much closer to the glycerol backbone, where most people believe the pivotal plane
is. We attribute this discrepancy to a limitation of the coarse graining description,
which makes the tail part of MARTINI DMPC less responsive to curvature changes.

The last chapter illustrates that an extension of the analysis process for the buckle,
with which the pivotal plane was determined, can be used to measure the tilt modulus,
which describes the energetic cost for tilting a lipid’s orientation away from the local
normal vector. The same three lipid models are investigated. For the Cooke model,
a bilayer tilt modulus of 29 ± 9 pN/nm is found, while for MARTINI DMPC, 115 ±
6 pN/nm and for Berger DMPC, 39 ± 2 pN/nm are measured. The value found for
the Berger model agrees extremely well with both previous simulation results and the
most recent experimental measurement.
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Chapter 1

Introduction

This chapter provides an introduction to the basics of biological membranes. We
mostly focus on mechanical properties. Section 1.1 discusses the structure and func-
tionality of membranes, while Section 1.2 revisits membrane elasticity from a bio-
physics perspective.

1.1 Biological Membranes

1.1.1 Membranes, Most Important Hallmarks of Life

Living creatures are the most complicated yet beautiful things in the world. Bio-
logical cells are acting as their “building blocks”. A typical human body comprises
as many as 30 trillion cells [7]! Cell membranes play an essential role to make this
happen.

First of all, the membrane provides a flexible mechanical structure for the cell.
It maintains the physical integrity of the cell, and protects it from the outside en-
vironment. What is more, many cell organelles, such as the nucleus, or the Golgi
apparatus, are essentially built from membranes. This compartmentalization is cru-
cial. Since in order to carry multiple metabolic activities at the same time, cells need
to maintain different biochemical environments, which differ for instance in their pH
or protein composition [76, 94].

Besides that, cells have similar metabolic needs as higher organisms: they must
take in nutrients and dispose of wastes, while other functional transport events are
needed as well. A number of transport mechanisms are employed, and membranes
play important roles in all of them, including passive osmosis and diffusion specifi-
cally for small molecules or ions [110], and active transmembrane protein channels
and transporters, allowing bigger molecules, like sugars or amino acids, to enter the
cells [119]. There are also totally different ways, such as endocytosis: absorbing
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molecules by engulfing, and the opposite process, exocytosis [85].

Last but not least, membranes are the key to cell-to-cell communication and iden-
tifying cellular identity. Cells send and receive signals, from either other cells or the
environment. These signals sometimes could go through the membranes directly, and
sometimes they will be detected and processed by receptor sites within the mem-
brane [133]. Hormones, neurotransmitters and immune proteins are all working in
this way [77].

1.1.2 Membranes and Shape

The primary functions of membranes at the early stage of cellular life were nothing
more than separating inside from outside and documenting an identity from outside.
As life evolved, cells began to both compete and cooperate with one another and fur-
ther specialize, which later reflected in membrane functionality as well [147]. Among
all the specializations, size, shape and motion would provide a selective advantage,
thus both static shape and dynamic deformation of membranes hold significant bio-
logical meanings for life.

Looking at the shapes of present day cells, from the simple spherical bacteria to
complicated ramified neurons in a mammal’s central nervous system (as shown in
Figure 1.1), we find a startling variety of diversity and complexity. And not only
the overall cell aquired specialization; in the domain of Eukarya a variety of intracel-
lular organelles also appeared, which further diversified cellular metabolism. Golgi
apparatus, mitochondria, and other organelles consisting of membranes show no less
complexity than the cells, in terms of number of shape types, and some of them even
show even more complicated layer structures (Figure 1.2).

All of this uniqueness in shapes has evolved to fulfill some specific function of cells
or organelles. Take one simple, common cell as an illustrative example: the erythro-
cyte, or red blood cell, or simply RBC. It is one of the most common cells in our
body (RBCs account for about 70% of all human cells [7, 127]) and responsible for
transporting oxygen and carbon dioxide in the blood. Its biconcave shape increases
surface area-to-volume ratio for the diffusion of oxygen and carbon dioxide into and
out of the cell [25].

Not only static shape matters, but also dynamic deformations. Continuing with
our RBC example, the flexible membrane of RBCs allows them to squeeze their 7µm
width [129] to a smaller value to fit through the capillaries (characteristic radius of
capillary for mammals is about 5µm [118]) they encounter during microcirculation
(Figure 1.3) [25]. Aside from this example, we also have other critical cell processes
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Figure 1.1: Structural variation in the complexity of shapes of cells and organelles.
(Left) Staphylococcus aureus is a nearly spherical bacterium, one of the simplest
imaginable cell shapes. (Right) A Purkinje cell in a mammalian cerebellum forms an
elaborate branched tree-like structure as revealed here by injecting the cell body with
a fluorescent molecule. (Images taken from Ref. [111])

involving deformation. Endocytosis, as mentioned above, requires that cells change
shape to engulf cargo. And for cell growth, cell division, including binary fission,
meiosis and mitosis, is the most essential step: cleavage starts to show and two new
cells are formed [31]. There are many other biological process requiring shape changes,
and all of them demonstrate the significance of the membrane deformation in biolog-
ical activities.

Only being aware of these phenomena clearly is not enough. The shape of cells,
unlike human made objects, is not the result of a higher level intelligence, but is a
combined result of internal properties of the membrane, structure and processes in
the cell, and the outside environment. The combined effect of all these factors leads
to the various shapes as well as similar shape transformations under similar environ-
mental conditions. And fully understanding these phenomena becomes a challenging
yet essential task.

1.2 Biophysical Study of Membranes

To learn how cells form a specific shape, or how the shape changes in response to
certain environmental triggers, such as temperature increase, requires knowing the
energy of the system, specifically how the energy depends on shape changes. Many
of these questions are in the field of physics, where biophysicists come to play.
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Figure 1.2: The illustration of organelles within a cell. A lot of them, including Golgi
apparatus, smooth endoplasmic reticulum, nucleus and so on, have a unique shape
and complicated layer structures. (Picture taken from a web textbook of University
of Tokyo [2].)

1.2.1 The elasticity of membranes

A systematic analysis of this problem, as with any other physics problem, starts from
a simpler yet illustrative theoretical model, breaking down the complex real-world
problem into easier cases. And any theories from the simple scenarios could be tested
by calculating their consequences and comparing them with experiments or simula-
tions. For the membrane shape case, we need to study the membrane’s elasticity
properties.

Elasticity of thin plates has a long history. As early as 1892, Poisson wrote down
the energy for a solid membrane [112]: H =

∫
dA(1/2)κK2, where κ is the bending

modulus, and K is the curvature, and dA is the area element. We will cover all these
terms, together with the equations mentioned in the rest of this chapter, in more
detail in Chapter 2.
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Figure 1.3: This is a colored SEM figure showing erythrocytes, or red blood cells,
inside a capillary cross-section. We can see the deformation of these cells that make
it possible for them to squeezed into these tiny blood vessels [61]. To get a sense of
scale, recall that a RBC has a diameter of 7µm.

In the second half of the last century, physicists started to turn their interests to
cell membranes. As electron microscopy developed, people gained more knowledge
about the membrane architecture, and finally found that the basic structure of a
biomembrane is the lipid bilayer [134], which is made up of two layers of lipids: an
amphiphilic molecule with a hydrophilic head group and a hydrophobic tail group.
With both layers’ head pointing outwards along the local normal direction, protecting
the tail part from water contact, the membrane can maintain a stable structure inside
aqueous solution [137].

Many theories and models come with this finding [30], and the most famous one
is the Fluid Mosaic Model proposed in 1972 [130]. In this model, proteins are in-
serted into the lipid bilayer, while the lipids can move freely in the membrane sur-
face. In 1973, Helfrich presented a model describing the bending energy for fluid
membranes [48], and since then people have been studying the membrane’s shape
intensively [74, 124, 149].

1.2.2 Two important parameters in elasticity study

A membrane’s shape, interesting in its own right, has attracted many researchers’ at-
tention. Hence, parameters describing the elastic response of a membrane to macro-
scopic deformations have generally been studied with great intensity, such as the
bending or stretching moduli, or the spontaneous curvature. In contrast, there are
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two more microscopic parameters, equally important from a basic elastic stand point,
which have received considerably less attention.

The first parameter is the position of the pivotal plane. The pivotal plane, some-
times confused with the “neutral surface”, is the location inside the membrane where
the area remains invariant after the membrane is bent. In Helfrich’s theory (see next
section), as well as many others, people treat the membrane as a “thin” plate, in other
words, the thickness of the membrane is ignored. But the location of each layer, or
the so-called “reference surface”, is still needed, and its choice influences the value of
other material parameters [62, 63, 12]. The pivotal plane is one of the most common
reference choice for a single membrane leaflet.

In particular, a monolayer’s reference surface (such as the pivotal plane) will lie
somewhere in the middle of the lipid leaflet. However, when it comes to the case of bi-
layers, people invariably use the midplane as the reference for the membrane position
and its curvature. This change in reference requires a transformation of area elements
and curvatures and will hence leave a trace in the transition from a monolayer to a
bilayer Hamiltonian.

The classical experimental measurement of this parameter has been done in the
1990s by Leikin et al. [70] by studying the inverse hexagonal phase, or HII phase. We
will talk more about what this phase is and how it has been used in later chapters.
For now, the important point is that the HII phase is not actually a lamellar phase
consisting of lipid bilayers; instead, it consists of highly curved monolayer leaflets.

The other parameter is the tilt modulus. Again, many models or theories are
designed for large scales, and neglect membrane thickness. This is proper in the mi-
crometer range, but when we look down to small scales, some other factors start to
play a role, including the tilt of lipids, which is the deviation of a lipid’s orientation
away from the local bilayer normal.

A suitable modification of the classical curvature-only theory has been proposed by
Hamm and Kozlov [44, 45] and improved by others later [86, 87, 144, 140, 72, 145, 143].
A tilt term is added to Helfrich’s original Hamiltonian, based on quadratic elastic the-
ory, that describes thin in-plane fluid sheets subject to internal lateral prestresses.
The experimental work is mostly done in a passive method: deducing the tilt modulus
from the fluctuation spectra, just like the bending rigidity, which we will see in more
detail in the next chapter.

Both of these parameters are important, but the current means of determining
them in a simulation have their shortcomings. Hence, in this thesis we propose a
simple yet precise alternative method to get these two values. This method is based
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on a purely geometric analysis on an actively-bent buckle simulation. It is not only
based on a more natural lamellar phase for membranes, but also avoids some of the
disadvantages associated with thermal fluctuation methods. More details will be cov-
ered in later chapters.

1.2.3 Thesis Overview

This thesis comprises four chapters. The present first chapter has provided a very
brief introduction to biological membrane importance and a short history of mem-
brane elasticity studies. The second chapter presents theoretical preliminaries, and is
mainly designed for people not familiar with this field. It contains basic knowledge of
lipids, self-assembly mechanics, classic continuum elasticity, differential geometry and
theories for membrane curvature-energy. The third chapter deals with the first pa-
rameter, the pivotal plane position and its identification, and the last chapter focusses
on the second parameter, the tilt modulus.
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Chapter 2

Theoretical Preliminaries

Compared to biologists, biophysicist are more focused on the physical properties of
biological subjects. One thing unique about physics is that it always strives for a
quantitative mathematical description of nature, and aims to explain complex situa-
tions based on the insights learned from simpler cases.
This is also the case for membrane biophysics. But in order to do that, we first need
to familiarize ourselves a little bit with how physicists describe and approach this
problem. In this chapter, we will review the most basic physics and mathematics
knowledge in membrane elasticity, as well as a brief overview of molecular dynamics
simulation, to prepare our reader for the subsequent chapters.

2.1 Lipids and Self-assembly

2.1.1 Lipid Structure

As mentioned in Chapter 1, a membrane needs to meet numerous design require-
ments. For example, isolating what is inside a cell from its outside environment, or
compartmentalization. One promising candidate material for achieving these pur-
poses would be “surfactants”, a name that derives from the contraction of “surface
active agents”. And one particular class of surfactants, lipids, turn out to be nature’s
building blocks for all cell membranes.

More than 1000 types of lipids have been identified in living cells [114]. We don’t
want to study the consequences of this variety, but instead we will use one much stud-
ied lipid, DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine, or (14:0)-PC), to
illustrate the molecular architecture shared by a large class of cell membrane lipids,
namely, all phospholipids. DMPC, like every other lipid, is amphiphilic. That is to
say, it has both a hydrophilic and a hydrophobic part. As shown in Figure 2.1, the
hydrophilic head part is a positively charged choline group, linked to the phosphate
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Figure 2.1: Chemical structure of DMPC [1]

Figure 2.2: Schematic representation of lipids shape and its influence on large-scale
arrangement of lipids [111].

group carrying one negative charge, making the whole lipid neutral. This terminal
headgroup is hydrophilic and solvates well in water. The phosphate group connects
via an ester linkage to the glycerol “backbone” of the lipid, whose remaining two
hydroxyl groups are esterified to two fatty acids. Their chain length and degree of
saturation determine many properties of the lipid membrane, for instance bilayer
thickness and fluidity.

2.1.2 Aggregation of Lipids

Lipids in aqueous solution tend to aggregate to avoid exposing their hydrophobic
tails to water, thus lowering the total free energy. As we mentioned in Chapter 1, the
structure of a lipid bilayer is one possible configuration to achieve this goal, but not
the only large-scale arrangement one can imagine. We can address this problem by a
molecular packing argument. A more detailed discussion can be found in Ref. [58].

Figure 2.2 shows three possible arrangements for lipids; actually, there is also
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another common case not shown, a cylindrical aggregate. Suppose the lipid has a
headgroup area a0, hydrocarbon chain length lhc and hydrocarbon chain volume vhc.
If we want to form a spherical micelle from N such lipids, then we have the total
surface area and volume as below, Na0 = 4πR2

Nvhc =
4

3
πR3

(2.1)

Here R is the radius of the micelle. Notice that we only look at the gray part in
Figure 2.2. Requiring that the center of the micelle does not have a “hole” leads to

R ≤ lhc . (2.2)

Let us define a parameter called the shape factor S as

S :=
vhc
a0lhc

. (2.3)

This parameter is a dimensionless quantity, and it gives us information about single
lipid shape. Smaller S means bigger head (middle case in Figure 2.2) while larger S
indicates the angle between two tails is large (right case in Figure 2.2).

From Equation (2.1) and Equation (2.2), we find S ≤ 1/3. That is to say, if the
shape of surfactants meets S ≤ 1/3, they will self-assembly into a spherical micelle.
Following a similar strategy, we find the condition for cylindrical aggregates to be

1

3
≤ S <

1

2
. (2.4)

If we keep increasing S beyond 1/2, no objects with a curvature of 1/lhc can be
assembled, and lipids tend to form a large-scale two dimensional bilayer structure.
For the extreme case, a flat membrane, lipids will have the same head and tail area
along the lipid, or in a more quantitive way, S = 1. Thus, for

1

2
< S ≤ 1 , (2.5)

the bilayer structure is most favorable for lipids.
For S > 1, the angle between two tails gets larger, and lipids are expected to form
the “inside-out” version of a micelle. In the case of hexagonally inverse packed mi-
celles, this is called the “inverse hexagonal phase”, or HII phase (rightmost case in
Figure 2.2.).
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One thing worth mentioning is that the discussion in this chapter is based on one
assumption, namely, all lipids are of the same type. But in nature, as we mentioned
before, the situation is much more complex, because membranes consist of different
lipids with different tail length, existence of double C-C bonds, head group types
and so on. Not to mention the fact that a lot of proteins will be inserted into a
membrane as well. All these factors will contribute to the final physical properties of
the membrane and in turn affect its biological functionality.

2.1.3 Vesicles and Beyond

We discussed how lipids self-assemble into different aggregates. But what happens
at even larger scales? If lipids have formed a bilayer structure, how do these bi-
layer membranes interact with each other and their environment? This question is
equivalent to the problems we mentioned in Chapter 1: How do we study the mem-
brane shape, both static configurations and dynamic changes. One way for doing this
efficiently is to apply elastic theory to membranes, and this will be covered in the
following three sections

2.2 Theory of Membranes: Elasticity

Elasticity theory mainly studies one question: what is the energy change of a system
if we change its shape? For a physicist, the most common approach is to break this
complicated problem down into a combination of several simple yet fundamental cases.
Thus, in this section, we will choose four fundamental deformations of a simplified
lipid bilayer model and analyze them using proper mathematical language.

2.2.1 Membrane Deformations

As mentioned before, looking at the most relevant (from a physical perspective) basic
deformation will not only provide us with better theoretical intuition, but also protect
us from those minor irregular deformation’s distractions.
Ref. [111] discusses four basic classes of membrane deformations (Figure 2.3): chang-
ing membrane thickness, stretching, shearing and bending.

2.2.2 Change of Membrane Thickness

Membranes in nature usually have proteins inserted into them. In most of the cases,
the component lipids and proteins are not naturally matched inside the membrane,
they must strain (expend energy) to match each other’s hydrophobic thickness (Fig-
ure 2.4). The energy cost for this is similar to Hooke’s Law, Ewidth ∝ (∆w)2, where
∆w is the change of width from the membranes equilibrium state.
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Figure 2.3: Illustration of four basic classes of membrane deformation[111]

Figure 2.4: An illustration showing that a membrane may have to change its thickness
to match the hydrophobic width of a protein’s transmembrane region [92].

2.2.3 Stretching Energy and Shearing

Similar to a thickness change, but not in the same direction, we can consider the
stretching energy in analogy to Hooke’s Law as

Estretch =
1

2
Kstretch

(A− A0)
2

A0

, (2.6)

where Kstretch is the area-stretch modulus with units of energy per unit area, and A0

and A are the membrane area before and after stretching (compressing) a relaxed
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equilibrium state. Here we assume this area change is homogeneous across the whole
membrane.
From this we can also get the expression for the tension Σstretch,

Σstretch =
∂Estretch

∂A
= Kstretch

A− A0

A0

. (2.7)

This equation can be used to measure Kstretch in micropipette experiments [32, 117].

As for the lateral shear, a membrane won’t resist such a deformation, unless
the relative positions of lipids are fixed in some lattice structure. In other words, for
membranes in the fluid phase, there is no proper definition for a shearing deformation,
and hence no corresponding energy.

2.2.4 Bending Energy

Bending is the most interesting and dominant deformation for membranes, because
it turns out to be the softest mode. Other deformations are very small compared
with bending: shearing has just been discussed to be irrelevant. It is pretty natural
to expect lipids to strongly resist a change of volume in the fluid phase, and this is
confirmed in experiment [32]. Bending, on the other hand, changes the local volume
very little. Ref. [26] also provides a very simple yet vivid analogy between paper and
membrane bending, showing that stretching is much harder than bending, if a sheet
is sufficiently thin.
A more formal mathematical derivation of bending energy will be covered shortly in
Section 2.4. Here we only put the result for a homogeneous, thin bilayer plate without
considering its Poisson ratio. The energy per area is [26]

ebend =
1

96
Kstretch

(
h

R

)2

, (2.8)

where h is the thickness of the plate (each layer is h/2), 1/R is the curvature of
bending, Kstretch := Y h, and Y is the material’s Young modulus. If we define the
bending rigidity κ as

κ :=
1

48
Kstretchh

2 , (2.9)

then we have a quadratic relation similar to the previous section:

ebend =
1

2
κ

(
1

R

)2

. (2.10)

This could be used as a very rough way to calculate κ from Kstretch, but it is not
very accurate because it is not immediately obvious what value we should take for
h. The definition of “thickness” in a real membrane is ambiguous since more than
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Figure 2.5: Poisson’s effect for a cube.

one choice seems plausible. Do we take the width of the hydrophobic core? The
separation between the phosphate groups? The distance between the Luzzati planes?
This ambiguity is something we will revisit in later chapters.

2.2.5 Poisson’s Ratio

All analyses in previous sections share one common assumption: ignore Poisson’s ef-
fect; but this is not always negligible.
Poisson’s effect is the phenomenon that a material tends to contact in the direction
perpendicular to the direction of its extension. And Poisson’s ratio ν is the parameter
which describes the extent of this effect:

ν = −dϵtrans
dϵaxial

(2.11)

Take a cube as an example, as shown in Figure 2.5, the cube is pulled in x direction,
and we have

ν = −dϵtrans
dϵaxial

= −dϵy
dϵx

= −dϵz
dϵx

. (2.12)
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If we put dϵx on the left hand side and integrate on both sides, we find(
1 +

∆L

L

)−ν

= 1 +
∆L′

L
(2.13)

Here both ∆L and ∆L′ are real numbers that could also be negative. The first order
approximation generates

ν = −∆L

∆L′ . (2.14)

Thermodynamic stability confines the range for Poisson’s Ratio ν to [−1, 0.5], but
in practice negative values (“auxetic materials”) are very rare. For most common
materials Poisson’s ratio is within the range [0.3, 0.5], see e.g. Refs [3, 29]. And
ν = 0.5 corresponds to incompressible materials. One quick way to test this is from
the definition of an incompressible material,

(x+∆x)(y +∆y)(z +∆z) = xyz . (2.15)

Suppose again we pull in x direction, and the transverse direction is isotropic; in other
words, ∆y = ∆z and y = z. Combine all these equations, and to first order we get
2xz∆z + z2∆x = 0. Putting this back into the definition of ν, we get

ν = −∆x/x

∆z/z
=

1

2
. (2.16)

Poisson’s effect exists in most elastic material, and hence also in lipid membranes.
Sometimes Poisson’s effect only contributes a higher order term and is thus negligible;
however, ignoring ν without a careful check might lead to noticeable inaccuracies.
For example, for the bending energy, Ref. [69] carefully evaluates Poisson’s effect,
and provides a modified version of the bending energy, amending it by a prefactor
of 1/(1 − ν2). If we take ν = 0.5, this will bring a 33% increase! The influence of
this effect is not restricted to bending and will appear again later when we set out to
calculate the position of the pivotal plane, namely in Chapter 3.

2.3 Theory of Membrane Surface Curvature

We have shown that for a fluid phase bilayer membrane, the most significant defor-
mation is bending. Hence, a key observable to describe this deformation is curvature;
how much a surface is bent. The definition of curvature is rather straightforward for
1-D curves, but not quite so for 2-D surfaces. Thus, a careful and clear mathematical
description, leading to a definition for surface curvature, is necessary.
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Figure 2.6: The osculating circle for illustrating a curve’s curvature (taken from
Ref. [111]).

2.3.1 Directional Curvature and Principal Curvature

The curvature describes how much a curve/surface is “bent”, or how much it devi-
ates from a straight line/flat plane. For the point on a one-dimensional smooth curve,
firstly find an osculating circle, or “kissing circle”, which passes through this point,
and a pair of additional points on the curve infinitesimally close to this point. The
circle’s center lies on the inner normal line. And both this point and the circle share
the same curvature: the inverse of this circle’s radius (as shown in Figure 2.6).
What about a two dimensional curved surface? Because most surfaces are not

isotropic, there is no guarantee we could find an “oscillating sphere” similar to the
circle in the one-dimensional case. Or in other words, the curvature on a surface is
direction dependent. The way to deal with this is introduce a concept called direc-
tional curvature.

For any point on the surface, there is a unit normal vector going through this
point which is perpendicular to the surface. Thus we have an infinite number of
normal planes containing both the normal vector and a unique direction tangent to
the surface, cutting the surface in a plane curve. Thus, we end up with a curvature
(namely, that of the plane curve) for any given point and direction. This is called the
directional curvature (see Figure 2.7).

Among all directional curvatures, the maximum and minimum value, k1 and k2,
are named principal curvatures, and their corresponding directions turn out to be
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Figure 2.7: Directional curvature for a two dimensional surface (taken from
Ref. [111]).

perpendicular to each other.

Based on this, we can define two new quantities, the total curvature K and the
Gaussian curvature KG, as

K := k1 + k2 ,

KG := k1k2 .
(2.17)

The choice of these two quantities has a deeper mathematical reason, and we
will explain this in next section. There is also another quantity, the mean curvature
H = K/2. Since it is only a factor of 2 different from the total curvature, we will
only talk about K in this thesis.

2.3.2 Mathematical Description of a Curved Surface

In the last section we gave a first definition of the curvature for surfaces. Even though
this definition is physically intuitive, a precise mathematical description of both the
surface and the curvature is useful and will help us in our further analysis.

A membrane, as a two dimensional object located in three dimension space, can
be described by two independent coordinates. Thus, the idea is to find a local co-
ordinates system [u1, u2] on the surface and map it to the three-dimensional space
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vector r(u1, u2) that sweeps out all points on the surface. Then the tangent vectors are

ea :=
∂r

∂ua
= ∂ar a ∈ {1, 2} . (2.18)

Pay attention to the position of the index, since it indicates whether it is co-
variant (lower index) or contra-variant (upper index). The basic difference is how
the value changes under coordinate transformations, as discussed in more detail in
Ref. [27]. The unit surface normal vector is

n :=
e1 × e2

|e1 × e2|
. (2.19)

Now we have everything needed to define the two important surface tensors on which
the differential geometric description relies, the first and the second fundamental form.
The first fundamental form, or the metric tensor, or simply the metric, is defined as

gab := ea · eb a, b ∈ {1, 2} . (2.20)

The inspiration behind the name “metric” comes from the arc length expression

(ds)2 =
2∑

a,b=1

(eadu
a) · (ebdu

b) =
2∑

a,b=1

gab du
adub , (2.21)

and if we take a look at the determinant of metric and write it as g, we have

g = g11g22 − g12g21 = |e1|2|e2|2 − (e1 · e2)
2

= |e1|2|e2|2(1− cos2 ϕ) = |e1|2|e2|2 sin2 ϕ

= |e1 × e2|2 .
(2.22)

That is to say, we could use g to represent the area element

dA = |e1du
1 × e2du

2| = √
g du1du2 . (2.23)

As for the second fundamental form, it is defined as

Kab := ea · ∂bn = ∂b(ea · n)− n · ∂bea

= 0− n · ∂b∂ar = −n · ∂abr .
(2.24)

This tensor is also called extrinsic curvature tensor. The word “extrinsic” reminds
us that a normal vector is required in this definition, and a normal vector means a
higher dimensional space (an “embedding”) outside the surface is involved.
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The word “curvature”, as shown in Ref. [27], comes from the form of the directional
curvature. We have already discussed how to get directional curvature: consider a
point P on the surface and a tangent vector t = taea at point P . The directional
curvature in the direction t turns out to be Kabt

atb, where Kab depends on the surface
alone and contraction with the dyad tatb projects onto the t-direction.

The principal curvatures we mentioned earlier in Section 2.3.1 are simply the
eigenvalues of Kab. This shows that total curvature K and Gaussian curvature KG,
as defined in Equation (2.17), are simply the trace and the determinant of the second
fundamental form.1 As such, they are geometric invariants [27]. Later we will see
why the invariance property of K and KG is important and how we can construct a
Hamiltonian from them.

2.3.3 Monge Parametrization

So far, we have a pretty elegant mathematical description of general surfaces. But
what about doing a calculation with an actual one? It is not easy to find a general
and equally elegant specific parametrization strategy. In many cases, additional as-
pects, such as a surface’s special symmetry, need to be considered to make this clean.
Introducing all these is not this section’s main goal, but one strategy, the Monge
Parametrization, or the Monge gauge, has been used a lot in the literature, and it is
helpful to cover it. The basic idea is to describe the membrane as a height function
h(x, y), thus

r = (x, y, h(x, y)) , (2.25)

and from Section 2.3.2, we have

ex = (1, 0, hx) ex = (0, 1, hy) . (2.26)

Here hx = ∂h/∂x. Thus, the metric tensor becomes

gab =

(
1 + h2x hxhy
hxhy 1 + h2y

)
. (2.27)

The determinant is g = 1 + h2x + h2y = 1 + (∇h)2, where ∇ = (∂x, ∂y) is the gradient
operator in the base plane, and the area element becomes

dA =
√
1 + (∇h)2 dxdy . (2.28)

One important simplification arises when the membrane is only weakly bent, because
then |∇h| ≪ 1, and we have

dA ≈
[
1 +

1

2
(∇h)2

]
dxdy . (2.29)

1We now also understand why the two principal directions are orthogonal: they are the two eigen
vectors of a symmetric matrix
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For the extrinsic curvature tensor, we need to know the normal vector first,

n =
ex × ey

|ex × ey|
=

1√
1 + (∇h)2

 −hx
−hy
1

 . (2.30)

And in turn we have second fundamental form

Kab = − 1√
1 + (∇h)2

(
hxx hxy
hyx hyy

)
. (2.31)

From this we can calculate the two invariants, total and Gaussian curvature. If we
again restrict to the weak deformation limit, the simplified version is

K = −Tr[∂2h] = −∇2h (2.32)

KG = − det[∂2h] (2.33)

These results, including area element, total and Gaussian curvature, will be used
in the next section as an illustrating example.

2.4 Theory of Membranes: Helfrich Hamiltonian

In Section 2.2, we have considered a membrane’s basic deformation modes and their
corresponding energy, including the most relevant bending energy. This, combined
with a mathematically better description and deeper understanding of surface curva-
ture, which we covered in Section 2.3, finally allows us to reach an improved version of
the energy expression (a Hamiltonian) for the whole system. In this section, we will
first derive the famous Helfrich Hamiltonian, together with other more refined forms
based on it. Then we will take a look at two applications of the Helfrich Hamiltonian.

2.4.1 Physical Guidelines for the Hamiltonian

A Hamiltonian is used to describe the energy of a system as a function of its degrees
of freedom, and understanding either the features or assumptions of the system is
very important. Here are several essential aspects [27, 123]:

• Length-scale separation: Lipid length is in the nanometer range, but the
size of a membrane usually is in micrometer range. This indicates the energy
expression valid at large-scale should be expressible solely in terms of large-scale
quantities.

• Fluidity: As mentioned in Section 2.2, a fluid phase membrane does not resist
shear forces within the membrane.
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order L−n full set of independent surface scalars
n = 0 1
n = 1 K
n = 2 K2, KG

· · · · · ·

Table 2.1: The independent geometric surface scalars list [14]

• Insolubility: No lipids would escape from the membrane, even though in actual
experiment or simulation this is not strictly true.

• Stretching: If external forces are applied, any change in total area would cost
a significant energy. In contrast to that, bending requires a much smaller energy
and hence constitutes the “soft mode”. We may therefore ignore area changes
to leading order [69].

• Tilting: The direction of lipids might not align with the local normal vector,
and this usually is a high order term [93, 113, 126, 139]. But at scales compa-
rable to the membrane thickness, it is not necessarily negligible anymore, and
we will prove this in later chapters.

• Bilayer architecture: It is hard for lipids to change between two monolayers
in most cases. And if there does exist a difference of lipid number, or total area,
between two layers, then the Hamiltonian will couple to this area difference [67,
91, 135], giving rise to what is called the area-difference-elasticity (ADE) model.

All these considerations have guided biophysicists in modeling the system energy, and
they will be the guidance for this section as well.

But before we get into all kinds of curvature models, there is one interesting
perspective emphasized in Ref. [14]. The basic idea is that from the guidelines we
mentioned above, the large scale energy of a bilayer membrane, ignoring the in-plane
deformation, should only depend on large-scale geometric scalars. And the problem
becomes how many independent surface scalars are there. According to Ref. [14], we
have Table 2.1.
The energy could then be written as an area integration of an energy density using
the following scalars as “basis functions”:

H =

∫
dA{C0 + C1K + C2K

2 + C ′
2KG +O(L−3)} . (2.34)

If we stop at quadratic order and relabel these constant, we end up with the famous
Helfrich Hamiltonian

H =

∫
dA

{
σ +

1

2
κ(K −K0)

2 + κ̄KG

}
. (2.35)
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2.4.2 Curvature Models and Helfrich Hamiltonian

Minimal Model

The first description of a fluid membrane as a curvature elastic surface was given by
Canham in 1970 [13]. This model is called the Minimal Model. It only contains local
curvature energy and close to the one we talked about in Section 2.2. Within this
model, the bending energy density is

ebend,Canham =
1

2
κ(k21 + k22) =

1

2
κ(K2 − 2KG) , (2.36)

where k1, k2 are the principal curvatures, and κ is the elastic modulus. Observe that
the model only has one elastic constant, even though there are two quadratic invari-
ants. Also, there is no linear term.

Spontaneous Curvature Model

In 1973, Helfrich modified these two aspects of the minimal model [48]. He added
a spontaneous curvature K0, and he distinguished the elastic modulus between the
total curvature term and the Gaussian curvature term. Now we have two moduli,
“bending modulus” κ and “Gaussian curvature modulus” κ̄:

ebend,Helfrich =
1

2
κ(K −K0)

2 + κ̄KG . (2.37)

The motivation for introducing a spontaneous curvature K0 is mainly for membranes
with different lipids in each layer, or different chemical environments on both sides.
But for the simple cases, say both layers have the same lipid type, the spontaneous
curvature would be 0 then. Because of this, this model is also called the Spontaneous
Curvature Model.

Distinguishing the two moduli means that the Hamiltonian has to make fewer
assumptions. But often this modification might not make a difference. Here is why:
there is a theorem called the Gauss-Bonnet Theorem [17, 29]. It states that for a
closed surface, we always have∫

dA KG = 4π(1−G) , (2.38)

where G is the “genus” of the surface, a topological invariant that represents how
many “handles” the surface has. For example, a sphere has no handles, so its genus
is 0; a ring or “torus” has one hole in the middle and thus one handle, so G = 1.
In other words, if the topology of the shape remains the same, the value of G won’t
change either.
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Obviously, the total Hamiltonian always requires an area integration sweeping over
the whole surface. If we assume κ̄ is a material related constant that has the same
value all over the surface, then integrating the second term in Equation (2.37) becomes∫

dA κ̄KG = κ̄ · 4π(1−G) , (2.39)

a value that does not change when we deform of the membrane! (Suppose no new
holes would appear.) In turn, the Gaussian curvature does not affect the total energy
change unless some cutting on the surface happens.

If the patch of membrane we care about is in contact with a membrane reservoir
that sets the surface tension σ, such that an increase of the area of the patch by ∆A
costs the energy σ∆A, then we can account for this change of ensemble by writing
the Hamiltonian as

H =

∫
dA

{
σ +

1

2
κ(K −K0)

2 + κ̄KG

}
. (2.40)

Recall from Monge gauge and the weak deformation approximation discussed in
Section 2.3 that we have dA ≈ (1 + 1

2
(∇h)2)dxdy, and K ≈ −∆h. The energy can

then approximately be written as

H =
1

2

∫
dxdy

{
σ(∇h)2 + κ(∆h)2

}
, (2.41)

where we ignored the spontaneous curvature and the Gaussian term.

Area Difference Elasticity (ADE) Model

In the last section, we mentioned that some aspects of the bilayer architecture are
essential when we construct the Hamiltonian. To be more specific, suppose there is a
flat membrane, which we now suddenly bend. The outer layer will be stretched while
the inner layer will be compressed. The elastic energy stored in such a deformation
can be relaxed if the two layers could glide past each other and adjust the overall lipid
number difference by exchanging lipids between leaflets. But for a closed topology,
especially the latter is usually hard to achieve, at least on short time scales.

This effect of area-difference-elasticity (ADE) has been appreciated early on [33,
34, 47], and defined later by three independent groups [8, 125, 146]. Thus, if the
lipid number in both layers is not commensurate with the area difference dictated by
the shape, we would end up with an additional global elastic term in the energy, the
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so-called ADE Model [123]:

H =
1

2

∫
dAκK2 +

κ′π

8A0h2
(∆A−∆A0)

2 . (2.42)

The first term is the regular local bending energy we have seen before, while the
second term is the ADE term, related to the deviation of the area difference between
two layers ∆A from the equilibrium value ∆A0; 2h is the thickness of the membrane
and κ′ is something called the “non local bending rigidity”. It can be expressed as

κ′ := 2k(m)h2/π (2.43)

where k(m) is the monolayer compression modulus.

So far, we have introduced several popular curvature models and their energy
roughly in historical chronological order. There are also several other related models
we have not covered. For example, the Hamiltonian coupled to a lipid tilt field has
not been touched yet, but this will be talked about in more details in the tilt modulus
chapter.

2.4.3 Applications of the Helfrich Hamiltonian

Knowing the Hamiltonian allows us to quantitatively reason about membranes. The
most widespread applications are the analysis of the shape equations and in turn
thermal fluctuations of the shape.

Shape Equations

We have derived Equation (2.9), a simple and approximate expression for calculating
the bending modulus. And by applying proper values for Kstretch (from micropipette
experiments) and h (from structural studies such as X-ray scattering), we could get
κ ≈ 6kBT , and usually tens of kBT would be a good evaluation for κ [57]. This tells
us the membrane will keep a relatively stable shape under thermal fluctuation, which
agrees with the phenomena discussed in Chapter 1. Thus, the most natural way to
estimate the static shape is finding a shape minimizing the total energy.

To get the shape equation, variational calculus is needed. For Monge gauge,
the energy expression is Equation (2.41). If we make a small variation of the height
function h(x, y), skipping the middle steps, the variation on the total energy would be

33



δH =
1

2

∫
dxdy{κ(∆h+∆δh)2 + σ(∇h+∇δh)2} − 1

2

∫
dxdy{κ(∆h)2 + σ(∇h)2}

=

∫
dxdy[κ∆∆h− σ∆h]δh+

∮
ds l · [(κ∆h)∇δh+ (σ∇h− κ∇∆h)δh] .

(2.44)

The static shape requires the lowest energy, which in particular requires δH = 0.
And we need to have all terms in Equation (2.44) be equal to 0. Demanding the first
term in Equation (2.44) to be 0 from any choice of δh gives us the shape equation

κ∆∆h− σ∆h = 0 . (2.45)

If we define the characteristic length λ :=
√
κ/σ, the equation above becomes

∆(∆− λ−2)h = 0 . (2.46)

Solving Equation (2.46) with the appropriate boundary conditions, which come from
the requirement that the second term in Equation (2.44) must vanish as well [26],
will give us the static shape of the membrane. In particular, the general solution is
a linear combination of eigenfunctions of the laplacian to the eigenvalues 0 and λ−2,
because the two operators ∆ and ∆ − λ−2 commute. This allows us to solve two
second order differential equations instead of one fourth order one.

Flicker Spectroscopy Experiment

Even though we stated that the membrane will generally keep a stable shape, not
surprisingly, there will be thermal fluctuation of that shape as well.
Suppose we have a flat membrane spanning an L × L frame. Assuming periodic
boundary conditions and applying Monge gauge, we can Fourier expand the height
function:

h(r) =
∑
q

hqe
iq·r , q =

2π

L

(
nx

ny

)
, (2.47)

where nx, ny ∈ Z. Putting this expression into the results from Section 2.3.3, as well
as Equation(2.41), we see that the energy in Fourier space can be written as

H = L2
∑
q

|hq|2
{
1

2
κq4 +

1

2
σq2

}
. (2.48)

Since these modes are independent and harmonic, we immediately get from the
equipartition theorem

L2⟨|hq|2⟩
{
1

2
κq4 +

1

2
σq2

}
=

1

2
kBT . (2.49)
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Thus, the mean squared thermal amplitude for each mode is

⟨|hq|2⟩ =
kBT

L2[κq4 + σq2]
. (2.50)

By integrating over all modes, we have the full mean squared membrane amplitude
(in the σ → 0 limit)

⟨h2⟩ =
∑
q

⟨|hq|2⟩ ≈
kBT

16π3κ
L2 . (2.51)

Equation (2.50) has frequently been used to obtain the bending modulus κ in ex-
periment, in a technique called flicker spectroscopy [10, 36, 122]. Indeed, the idea of
measuring a physical quantity via quantifying its thermal fluctuations is quite com-
mon. This passive measuring method, together with several complementary active
bending methods, are two major ways for quantifying the elastic parameters of lipid
membranes.

2.5 Molecular Dynamics (MD) Simulation

2.5.1 MD Simulation and Coarse-grained Model

To understand the physical basis of the structure and function of biological macro-
molecules, including the membrane lipids, there is a useful and important tool: the
molecular dynamic simulation, or the MD simulation. It provides the ultimate detail
concerning individual particle motions as a function of time, as well as complementary
information to experimental results, e. g. the macro observables of a system in equi-
librium. What is more, since all potentials and molecules in a simulation are under
control of the user, one can alter certain parameters and determine its contribution
to some specific property [60].

To build such a particle-based system, one must first define all degrees of freedom
within the system. For the atomically detailed model, it is obvious that each simu-
lation particle simply corresponds to one atom. Such a system, while most closely
reproducing the real biological system, demands a lot of computing resources.

Since a large system will need much longer time to equilibrate, a coarse-grained
(CG) model seems a reasonable alternative: the particles, or so-called “sites”, in the
CG representation typically correspond to groups of several atoms. If carefully done,
this will capture the key features related to system properties of interest while elim-
inating the less important atomic details. The computational efficiency will increase
due to a decrease in the number of degrees of freedom.
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This transformation from an atomic model to a CG model actually involves two
aspects: the “system mapping” and the “coordinate mapping” [100]. The former ful-
fills the task of mapping each individual site to a realistic atom group and associating
it with an appropriate chemical character as well as “CG bonds” representing the
chemical bonds to other atom groups. The latter mainly determines the configura-
tion of the new CG model on the basis of the underlying atomistic model.

The actual process of a CG model construction, however, requires many more con-
siderations. Different philosophies are behind various coarse-graining processes [100]:
the “top-down” models focusing on the experimental observations, the “bottom-up”
models stressing the fundamental description of the real material and so on. Readers
who are interested can refer to Ref. [100, 60] for a more detailed review.

One thing worth mentioning is that not all atomistic models are following the
one-to-one rule of mapping. There is also another class of atomistic models, the
united-atom models, in which every CH, CH2 and CH3 are combined into a pseudo-
atom. Conventionally, these are still considered as atomistic models, since all heavy
atoms are represented individually [54].

2.5.2 Coarse-grained Model Examples

Here two CG models used in this thesis will be introduced: the 3-bead Cooke model
and the MARTINI model for DMPC.

The Cooke Model

The generic top-down Cooke model, or the 3-bead model, is a solvent-free coarse
grained model developed by Cooke and Deserno to study mesoscopic membrane
physics [19, 21]. As the name indicates, the lipid consists of three beads/sites (we
will use the name “beads” in our discussion): a hydrophilic “head” bead and two
hydrophobic “tail” beads (as shown in Figure 2.8), whose sizes are fixed by a Weeks-
Chandler-Anderson (WCA) potential:

Vrep(r; b) =

{
4ϵ[(b/r)12 − (b/r)6 + 1

4
], r ≤ rc

0, r > rc
. (2.52)

Here, rc = 21/6b and ϵ is the unit of energy. The WCA potential is a shifted and
truncated Lennard-Jones potential. The physical meaning of b is the size of the bead,
and common choice of b is: bhead,head = bhead,tail = 0.95σ and btail,tail = σ, where σ is
the unit length.
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Within a lipid, all three beads are linked by two Finite Extensible Nonlinear
Elastic (FENE) bonds:

Vbond = −1

2
kbondr

2
∞ log[1− (r/r∞)2] . (2.53)

where the stiffness kbond = 30ϵ/σ2 and the divergence length r∞ = 1.5σ are chosen.

Besides the two potentials just mentioned, a third potential between head bead
and the second tail bead is applied to straighten the lipid:

Vbend =
1

2
kbend(r − rrest)

2 (2.54)

where kbend = 10ϵ/σ2. It is a harmonic spring with rest length rrest = 4σ. For exam-
ple, if the two bonds connecting three beads have a angle θ, the harmonic bending
potential will approximately be 1

2
kbendσ

2θ2.

One thing special about the Cooke model is that it is solvent-free: it counts for the
embedding solvent only implicitly. This feature is one of the reasons why this model
is so computational efficient. To compensate the loss of explicit solvent molecules, an
attractive interaction among all tail beads is needed:

Vattr(r) =


−ϵ, r < rc

−ϵ cos2 π(r−rc)
2wc

, rc ≤ r ≤ rc + wc

0, r > rc + wc

(2.55)

This is an attractive potential with a depth ϵ and a width wc, and it smoothly increase
to zero from r = rc to r = rc + wc. The width wc is a tunable parameter, and one
can easily adjust the bending rigidity and area per lipid by altering the value of wc [19].

Since we do not need to calculate the solvent molecules’ motion, and there are only
three beads within one lipid, the computational efficiency of the Cooke model is very
high. Another advantage of this model is that we can easily change its spontaneous
curvature: simply changing the ratio of the head bead to tail beads, which we will
apply later in Section 3.6.4.

The MARTINI Model

Another CG model example is the MARTINI model, which is also a top-down model:
instead of focusing on an accurate reproduction of structural details, the MARTINI
model stresses an extensive calibration of the non-bonded interactions among all
sites/beads against experiment data. Considering the balance between computa-
tional efficiency and chemical representability, the basic rule of “system mapping” is
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Figure 2.8: Illustration of the Cooke model for a generic lipid (left) and the MARTINI
model for DMPC (middle) and Berger model for DMPC (right).

a four-to-one mapping, i. e. , mapping four heavy atoms to one site of all four main
types, which are categorized based on the polarity and charging situation of the atom
groups. For example, the DMPC lipid we mentioned in Section 2.1.1 is mapped onto
10 beads, three beads per tail (as shown in Figure 2.8). The same rule goes with the
solvent molecules, and four water molecules are mapped into one CG site [79, 80, 82].

Compared with the Cooke model, the MARTINI model has a higher resolution.
Since the MARTINI model aims to represent actual physical systems, its parameters
are given in real SI units (nanometer, Joule), not generic CG units (σ, ϵ). But both
models are top-down models. In other words, none of the models are built from the
atomic structure, and we can see later this might cause errors in elasticity studies
related to the coarse grained nature of lipid configurations.

2.5.3 United Atom Model

Even though CG models have many advantages, some amount of loss of information
during the coarse-graining step is unavoidable. Hence, simulations on atomistic mod-
els are always good complementary information. We choose a united atom model as
our atomistic model, involving the minimum simplification compared to a “full” all
atom model, while maintaining the most of the structural information.

Among united atom models, the Berger model [6] is a good example. The non-
polar hydrogen atoms are grouped together with carbons into one pseudo atom. The
non-bonded interactions are Lennard-Jones interactions combined with the Coulomb
interactions, with a fine tuning of the parameters inside these interactions on the basis
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of experimental data. An illustration figure of a DMPC lipid is shown in Figure 2.8.
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Chapter 3

Determination of the Pivotal Plane
Position of Fluid Lipid Membranes
in Simulation

The major work discussed in this chapter has been published in Ref. [141].

3.1 Introduction

3.1.1 The Bridge Between the Monolayer and the Bilayer

The structure of a lipid bilayer, as introduced before, is made up of two oppositely
oriented lipid leaflets that can slide past each other and hence do not transmit lateral
stress across the bilayer’s midplane. As a consequence, the microscopic origin of mem-
brane elasticity is to be found at the monolayer level: important bilayer observables,
such as the elastic moduli or the spontaneous curvature, are determined by their
monolayer counterparts, as well as by parameters that are defined for the monolayer
but have no equivalent on the bilayer level. Efforts to predict bilayer elastic proper-
ties from the underlying lipid architecture must hence start with the monolayer. This
course of action rests on two prerequisites: first, we must understand how monolayer
properties give rise to bilayer observables; and second, we need to be able to measure
both the monolayer and the bilayer parameters in order to test this connection.

The first problem is fairly well under control: simple differential geometric identi-
ties for parallel surfaces suffice to lift monolayer observables onto the bilayer level. The
second problem is partially solved: decent protocols exist for measuring most bilayer
properties—both in experiment and in simulation. What remains a real challenge are
the monolayer properties, because the “coarse-graining step” from the monolayer to
the bilayer typically eliminates information, such that (some) monolayer observables
can no longer be uniquely inferred from knowledge of large-scale bilayer properties.
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In this chapter we show how to overcome this difficulty in one particular case: we
propose a highly accurate simulation strategy for determining the pivotal plane of a
bilayer’s leaflet, the position inside the monolayer where the area per lipid coincides
with the flat bilayer value and hence the area strain vanishes.

Let us put this in more quantitative terms. We have written down the classical
continuum-level description of fluid lipid membranes, a quadratic curvature-elastic
functional, in Equation (2.40). This reasoning holds just as well for each leaflet, for
which we can therefore write the monolayer equivalent of the Helfrich Hamiltonian [48]

Hm =

∫
dA′

{
σm +

1

2
κm(K

′ −Km0)
2 + κmK

′
G

}
. (3.1)

Here, d A′ is the area element on the monolayer, the total curvature K ′ = c′1 + c′2 is
the sum of the two principal curvatures, and the Gaussian curvature K ′

G = c′1c
′
2 is

their product; the primes indicate that this geometry refers to the monolayer. Besides
this, we have the monolayer tension σm, the monolayer spontaneous curvature Km0,
the monolayer bending modulus κm and the monolayer Gaussian curvature modulus
κm.

The most fundamental coarse-graining step in writing down Equation (3.1), as
we mentioned in Section (2.4), is to describe a thin but still three-dimensional ma-
terial in terms of a mathematical two-dimensional surface. Besides an appropriate
energy functional this also requires a choice for the reference surface itself, the so-
called Gibbs dividing surface. Its position will affect the values of most material
parameters [12, 62, 63]. While this dividing surface might be chosen to lie anywhere,
including outside of the monolayer, physical considerations suggest some particularly
useful choices, which end up placing the dividing surface somewhere in the middle
of the monolayer (see Section 3.2.1 below). In contrast, when describing a bilayer
with a curvature-elastic energy functional, one would naturally pick its midplane as
the dividing surface. This shift of reference creates a subtle difference between the
monolayer Hamiltonian (3.1) and its bilayer counterpart, and it requires us to identify
certain monolayer properties—in particular the distance between a monolayer’s di-
viding surface and the bilayer’s midplane—in order to bootstrap from the monolayer
to the bilayer level. Let us give four examples:

• The monolayer spontaneous curvature contributes to the bilayer tension.

• The transition from monolayer to bilayer Gaussian modulus involves the di-
viding surface, as well as both monolayer spontaneous curvature and bending
modulus.

• Continuum theory shows that the monolayer spontaneous curvature and the
monolayer Gaussian modulus are related to moments of the lateral stress pro-
file, centered at the dividing surface of the monolayer.
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• The trans-leaflet area difference over some bilayer patch is proportional to the
integrated curvature and the position of the dividing surface.

A more detailed discussion of these four examples, as well as further references, can
be found in Sec. 3.4 of Ref. [27].

3.1.2 Previous work on pivotal plane identification

How does one measure monolayer properties, given that they tend to leave incomplete
information in bilayer observables? One way out is to investigate curved lipid phases
that essentially only consist of monolayers—most prominently the inverse hexagonal
HII phase. Measuring how its lattice constant changes with water or alkane content
permits access to important monolayer properties, including the pivotal plane [16, 15,
39, 70, 115]. As we will see in Section 3.6.1, the HII phases experiment usually requires
additions of lipids with large negative curvature, in contrast to the low curvature
in fluid lipid membrane’s natural state, the lamellar phase. As Leikin et al. [70]
rightfully emphasize, it is remarkable how well these results can be analyzed within
the framework of quadratic curvature elasticity, given how highly curved HII phases
are.

Unfortunately, re-creating the HII setup in simulations is quite challenging, for
reasons of equilibration as well as accurate pressure measurements, and has only re-
cently been tackled by Sodt and Pastor [131]. They show that bilayer properties can
be inferred from the HII phase, even though with relatively large uncertainty; they
also estimate that the position of the pivotal plane lies near the glycerol backbone.

Given how challenging these direct simulation approaches are, a more common
indirect strategy is to infer monolayer properties from the lateral stress profile Σ0(ξ).
For instance, continuum arguments show [41, 49, 50, 83, 84, 136] that the first moment
of Σ0(ξ) across a monolayer is proportional to Km0, a link that has been frequently
exploited [41, 49, 50, 81, 83, 84, 104, 105, 107, 108, 121, 136]. No such relation exists
for the pivotal plane; instead, several heuristic suggestions connect its position to
certain features in Σ0(ξ), such as its maximum [106, 107], or its first minimum after
the interfacial peak [108, 121, 138], or somewhere in-between [103].

In this chapter, we propose two simple and very direct methods for obtaining
the position of the pivotal plane in simulations of lamellar phases, which are curved
considerably less than an HII phase. We will start with two different resolution coarse-
grained models as a proof of principle: Cooke [21, 19] and MARTINI [81]; their main
features have been briefly described in Section 2.5.2. Of these two methods, the
conceptually simpler one only works for solvent-free models with a high lipid flip
flop rate (such as Cooke), but its main purpose is to validate the more sophisticated
second method. After this, we will apply our method to a model with full atomistic
resolution.
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3.2 Theoretical Preliminaries for the Pivotal Plane

In Chapter 2, we have covered the fundamentals of basic membrane elasticity, the
differential geometry and the Hamiltonian to describe a biological membrane system.
However, to better serve the specific purpose of the pivotal plane identification, there
are three topics that need a more detailed discussion. These three essential points
are not only the continuation of previous chapters, but also preliminaries for the
subsequent sections. Section 3.2.1 will give a strict definition of the pivotal plane
and clarify the difference between the pivotal plane and another already mentioned
concept serving a similar purpose, the neutral surface; Section 3.2.2 illustrates the
parallel surface concept and states three important differential geometric identities
that hold for them; and Section 3.2.3 will show that the position of the pivotal plane
does not remain unchanged upon bending, but actually depends on the local curva-
ture. Again, readers familiar with these topics should feel free to skip this section
and directly jump into the next section, where we introduce methods to determine
the position of the pivotal plane.

3.2.1 The choice of the Gibbs dividing surface

Describing a thin but still three-dimensional material with a Hamiltonian of the form
(3.1) requires a two-dimensional reference surface. This is not unique, so how should
one pick? While no choice is “wrong”, some are more convenient than others. Here
we will briefly contrast two important ones: the neutral surface and the pivotal plane.

Writing down a quadratic theory for the elastic deformation of a thin sheet in-
volves two modes of deformation: stretching and bending. The first is defined by the
area strain, the second by the curvature(s). This will involve three types of mod-
uli: a stretching modulus, two bending moduli (for mean and Gaussian curvature,
respectively), and a cross-modulus that multiplies a term that is linear in stretching
and linear in bending [62]. The values of all these moduli depend on the choice of
the reference surface. Interestingly, it is possible to choose the position of the Gibbs
dividing surface in such a way that the cross-modulus vanishes, so that with this
particular choice stretching and bending deformations decouple energetically. This
special surface is called the neutral surface [63]. Its distance from any other refer-
ence surface can be calculated from the knowledge of all moduli and the spontaneous
monolayer curvature, measured with respect to the latter [63]. Another elegant char-
acterization of the neutral surface is the following: if we know the depth-dependent
lateral stretching modulus of the monolayer, λ(ξ), then the neutral surface is the
position with respect to which the first moment of λ(ξ) vanishes [12]. Campelo et al.
have recently shown that this relation can in fact be used to find the neutral surface
in simulations [12].

43



z

dA′,K ′,K ′

G

dA,K,KG

Figure 3.1: Illustration of a parallel surface, reduced by one dimension. The bold
parent surface is translated at each point by a fixed distance z along its local normal
vector, leading to a parallel surface with new (primed) values for area element and
curvatures, which satisfy the parallel surface equations (3.3).

Alternatively, imagine bending a thin sheet. The material on its inside will be
compressed, while the material on its outside will be stretched. Hence, somewhere
in the material there is a position where neither compression nor stretching happens;
in other words, where the area strain vanishes. This position is called the pivotal
plane [115].

Unfortunately, most of the time neutral surface and pivotal plane do not coincide.
But there are also exceptions; Leikin et al. [70] show that bending deformation of
symmetrical bilayers in the absence of bilayer stretching and when the monolayers
can freely slide along each other, the pivotal plane coincides with the neutral sur-
face, which is exactly the case we are going to cover in later sections. And they also
claim that the value of the spontaneous monolayer curvature changes relatively little
upon switching between these two reference surfaces, but the (percental) difference in
bending rigidity is four times bigger and can be significant [70]. What is more, as we
will see shortly, the position of the pivotal plane changes with membrane deformation
while the neutral surface remains invariant [70]. As far as monolayer observables are
concerned, one hence ought to be specific with respect to which dividing surfaces they
are to be understood.
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3.2.2 The parallel surface equations

The difference between the dividing surface of a monolayer and the midplane of a
bilayer is a centerpiece in the connection between monolayer and bilayer observables.
It impacts all subsequent results because both area element and the two curvatures
differ on these two surfaces. As a simple illustration, imagine a spherical surface of
radius R that is displaced outwards by a distance z. The new area is 4π(R + z)2,
thus the ratio of these two elements would be (R + z)2/R2, and the resulting local
area element change has the form of

dA −→ dA′ = dA

[
1 +

2

R
z +

1

R2
z2
]
, (3.2)

Similar changes hold for the curvatures too. The generalization of this situation to
arbitrary shapes gives rise to the notion of parallel surfaces.

Let us more formally define a parallel surface belonging to some parent surface as
that surface which arises by translating each point on the parent surface by a constant
distance z along the local normal vector (see Figure 3.1) [28, 132, 148]. Notice that
we might have to restrict to sufficiently small z in order to avoid singularities [38].
A beautiful result in differential geometry of surfaces links the area element dA and
curvatures {K,KG} of the parent surface to their counterparts on the parallel surface
(the latter denoted by primes) [28, 132, 148]:

dA′ = dA
[
1 +Kz +KGz

2
]
, (3.3a)

dA′K ′ = dAK
[
1 + (2KG/K)z

]
, (3.3b)

dA′K ′
G = dAKG . (3.3c)

In our later analysis, the pivotal planes in each leaflet are parallel to the midplane
of the bilayer membrane. Hence these equations provide the required transformation
to a change between a monolayer and a bilayer description.

3.2.3 Curvature dependence of the pivotal plane

The position of the pivotal plane can itself change when a thin sheet is bent. To lowest
order the change is proportional to the curvature, and its physical origin is a Pois-
son ratio effect: lateral area strains generally induce a concomitant strain along the
sheet’s normal, unless the Poisson ratio vanishes. This phenomenon occurs not only
for solid plates but also for fluid membranes, which are not just simple isotropic fluids.
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Figure 3.2: Illustration of how the pivotal plane changes with curvature. The dashed
line is the midplane, the dotted line is the pivotal plane, the solid line is the interface
between lipid and solvent, sometimes called the Luzzati plane. The top picture illus-
trates a planar leaflet and highlights some volume element dA dξ in it, a distance ξ
away from the pivotal plane; the bottom picture shows the bent leaflet and indicates
that the volume element changes its dimensions as well as its position within the
leaflet.

Consider Figure 3.2: a single leaflet of a flat lipid membrane has its pivotal plane
position some distance z0 away from the location of the tail ends, which in a full
bilayer is the location of the midplane. Upon bending the leaflet, this distance will
generally move within the bilayer, z0 → z(K). Any volume element dA dξ at posi-
tion ξ therefore changes both its dimensions as well as its location. One thing worth
mentioning is that the distance ξ from the area element to the pivotal plane could be
negative, for instance the midplane is at ξ = −z0 for a flat membrane.
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Poisson’s effect & Derivation

While the membrane, or the solid thin plate, is bent, the lateral area strains cannot
be independent of the deformation along the normal direction. This is Poisson’s ef-
fect discussed in Section 2.2.5. To be more specific in this example, the change of
thickness dξ is linked to the change of area dA.

To look at it more quantitively, we set up a local tangential coordinate system
for any point in a membrane and choose an orientation in which the x- and y-axes
coincide with the local principal directions and the z-axis with the normal vector. Let
σij and uij be linear stress and strain tensor, respectively. In this coordinate system
both stress and strain tensor are diagonal. If we define Young modulus Y and Poisson
ratio ν, the stress-strain relation within linear elasticity is [69]

Y uij = (1 + ν)σij − νσkkδij . (3.4)

where i, j, k stand for x, y, z. Notice there is a sum implied over the index k in the
second term. Considering this specific case, assume further that σxx and σyy are
nonzero (and potentially different), while σzz = 0, since in the normal direction the
membrane is free. Thus Equation (3.4) becomes

Y uxx = σxx − νσyy (3.5a)

Y uyy = σyy − νσxx (3.5b)

Y uzz = −νσxx − νσyy (3.5c)

Canceling out σxx and σyy, we find a connection between the normal and the tangen-
tial strains, namely

uzz = − ν

1− ν
(uxx + uyy) . (3.6)

Next, if dℓi is the local line element along the principal direction i, then a distance
ξ′ along the normal vector the line element gets changed to dℓ′i = dℓi(1+ ξ′/Rp) (Re-
call the pivotal plane has the same line element before and after bending.). But for
conveniency, we will write it down as dℓ′i = dℓi(1+ξ

′/Ri), where the Ri are the princi-
pal radii of curvature. Later we will see the difference of these two forms is negligible
to the second order in membrane thickness. This is the one-dimensional special case
of the parallel surface equation (3.3a), and since dA′ = dℓ′1dℓ

′
2 and dA = dℓ1dℓ2, we

can in fact recover Equation (3.3a) from its one-dimensional specializations.

Let us now look at one of the leaflets of a flat lipid bilayer, for which the pivotal
plane lies a distance z0 away from the midplane (see Figure 3.2, top). Continuing the
discussion from above, consider a small volume element with area dA and thickness
dξ, having a distance ξ away from the pivotal plane. If we bend the leaflet, we create
a local curvature K at the midplane and Kp at the pivotal plane (which are 1/R and
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1/Rp in the two-dimensional sketch of Figure 3.2, bottom). The dimensions of the
little volume element become dA′ and dξ′, respectively. In particular, we obtain the
strains along the principal directions as

uxx =
dℓ′x − dℓx

dℓx
=

ξ′

Rx

, (3.7a)

uyy =
dℓ′y − dℓy

dℓy
=

ξ′

Ry

. (3.7b)

Together with Equation (3.6) we hence find a differential equation that describes how
volume elements in our thin surface move normally upon bending:

uzz =
dξ′ − dξ

dξ
=

dξ′

dξ
− 1 (3.8a)

uzz = − ν

1− ν
(uxx + uyy) = − ν

1− ν
K ξ′ , (3.8b)

where K = 1/Rx + 1/Ry. Again as mentioned earlier, strictly speaking, this
curvature would have to be taken at the pivotal plane, but Equations (3.3a,3.3b)
show that Kp/K = 1 +O(z). Since we aim for a final result correct up to quadratic
order in membrane thickness, it suffices to get the right hand side of this differential
equation correct up to linear order in thickness variables, and hence we need not
distinguish between Kp and K.

Finally, we reach an expression linking ξ′ and ξ from Equation (3.8)

dξ′

dξ
= 1− xKξ′ , (3.9)

where we introduced the abbreviation x = ν/(1 − ν). Separating variables and ex-
panding to linear order in ξ′, we get:

dξ =
dξ′

1− xKξ′
≈ dξ′

[
1 + xKξ′ +O(ξ′2)

]
, (3.10)

and this is easily integrated to

ξ′ = ξ − 1
2
xKξ2 +O(ξ3) . (3.11)

This derivation seems to rely on solid mechanics, but it can in fact be generalized to
the case of surfaces that are laterally fluid but exhibit a transverse shear resistance—
like fluid membranes. (See Appendix C of Ref. [141].)

48



Pivotal Plane’s dependence on curvature

For the special case of a volume element at the midplane we obviously have ξ = −z0
and ξ′ = −z, from which we obtain the curvature dependence of the pivotal plane:

z = z(K) = z0
[
1 + 1

2
xKz0 +O(z20)

]
. (3.12)

Equation (3.12) shows that the pivotal plane position depends on curvature and
hence the membrane deformation, which agrees with Ref. [70]. Plus, we can quickly
check that this equation makes physical sense: for the deformation illustrated in the
bottom part of Figure 3.2 all material below the pivotal plane is laterally compressed.
If the Poisson ratio is positive, we therefore expect the distance between the curved
midplane and the new pivotal plane to increase—which is indeed what Equation (3.12)
states: a positive Poisson ratio leads to a positive x, and in turn z > z0. Notice that
in the incompressible limit the Poisson ratio takes its largest value ν = 1

2
(and thus

we have x = 1), leading to the simpler relation z ≈ z0 +
1
2
Kz20 . Up to linear order in

curvature this agrees with the exact result derived by Sodt and Pastor for the special
case of a cylindrical deformation, for which K = 1/R [131].

To get a sense for the size of this correction term, we could estimate it by evaluating
both the value for Poisson ratio and local curvature. As mentioned in Section 2.2.5,
the largest possible value for ν is 0.5. And for many biological materials, the value
tends to be close to this incompressible limit 0.5 [42], so a good guess for x would
be a little bit less than 1, since x is an increasing function of ν. For our simulation,
in Section 3.6, we will see for MARTINI DMPC, z0 ≈ 0.85nm, and the upper bound
of the local curvature satisfies K ≤ Kmax ≈ 0.19nm−1. Hence, the correction term
1
2
xKz0 ≈ 0.08. This 8% correction looks small, but might not be negligible at all,

not to mention when it comes to the much more highly curved HII phase, as we will
see later.

To summarize, the pivotal plane position will shift when a membrane is bent,
and this local curvature dependence reminds us to be more clear about the state of
membrane deformation, especially the local curvature when the pivotal plane position
is mentioned. In order to reduce ambiguity, a good definition for the pivotal plane
could be its location in a flat membrane:

z0 = lim
K→0

z(K) . (3.13)

If one is interested in the value for z at some particular point, Equation (3.12) would
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provide it (with curvature induced shift) immediately.

3.3 Two Simulation Strategies

Since the pivotal plane is characterized by a purely geometric property (i. e., it refers
to neither energies nor forces), it can be measured with much higher accuracy in ex-
periment than the neutral surface [70]. This geometric advantage also translates to
simulations. According to parallel surface theory, if we assume both pivotal planes are
parallel to the midplane, the general connection is shown in Equation (3.3. Hence if
the area and local curvature is known, we can derive where the pivotal plane is. What
is more, the pivotal plane holds a convenient good property due to its own definition:
the area per lipid remains unchanged after bending. So measuring areas reduces to
counting lipids. Even though difficult in experiment, this is easy in simulations, and
both our proposed protocols rely on it.

The general strategy is as follows: create a curved membrane configuration, and
count the number of lipids in opposing leaflets. Given the membrane’s curvature, their
number difference can be used to access the pivotal plane position. The complexities
of the membrane’s shape will directly determine how hard each specific question is.
Thus the simplest strategy is to use closed vesicles, such as spheres and (periodically
connected) cylinders, and we will discuss this in Section 3.3.1. In this case it is
crucial that the number of lipids in both leaflets—the observable to be measured—
can actually equilibrate. If it can not, then one needs more sophisticated geometries
which avoid this difficulty; we propose that a lipid membrane buckle will work, and
discuss the details in Section 3.3.2.

3.3.1 Simple Configurations Strategy

Two simple configurations will be covered in this sub-section: cylinder and sphere.
Even though the geometry is straightforward, the Poisson effect term in Equation (3.12)
renders the solution not quite as trivial as the simple configuration would otherwise
suggest.

Cylinder Case

Starting with the cylinder case, consider a cylindrical bilayer membrane, periodically
connected across the simulation box with its axis coinciding with the z-axis. (Notice
that here the label “z” for the z axis has nothing to do with the pivotal plane position
z(K).) There are two leaflets, we call them “inner” and “outer” layer respectively,
and use subscript “−” representing the inner layer while “+” representing the outer
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layer. Suppose the radius for the bilayer midplane is R, and the curvature isK = 1/R.
And obviously the radii Rp± for each leaflet’s pivotal plane are

Rp± = R± z(±K) . (3.14)

Since both pivotal planes have the same area per lipid, a0, we have the lipid number
ratio ρ=N+/N− as

ρ ≡ N+

N−
=
R + z(+K)

R− z(−K)
≈
R + z0 +

1
2
xz20/R

R− z0 +
1
2
xz20/R

. (3.15)

The last ≈ is a direct result from Equation (3.12).

If we näıvely ignored the the Poisson correction and set x = 0, or in other words,
we ignore the fact that pivotal plane shifts with curvature changes, the solution to
Equation (3.15) becomes:

z̊0 := z0(x = 0) =
ρ− 1

ρ+ 1
R . (3.16)

If we put Equation (3.15) together with Equation (3.16), we have

1 + z̊0/R

1− z̊0/R
=
R + z(+K)

R− z(−K)
≈
R + z0 +

1
2
xz20/R

R− z0 +
1
2
xz20/R

, (3.17)

We can solve this equation for z0 and write the result down as a series expansion in
the näıve solution z̊0:

z0 = z̊0

[
1 +

1

2
xK2z̊20 +O(̊z40)

]
. (3.18)

This result is quite interesting: the position of the pivotal plane itself, Equa-
tion (3.12), shifts by a term linear in the curvature. But the value for the pivotal
plane, which is deduced from the lipid counting in the form of a näıve calculation that
ignores Poisson ratio effects, has a correction term quadratic in curvature. Hence, at
the accuracy we will strive for, this can be ignored, and so it suffices to use Equa-
tion (3.16) for determining the pivotal plane position. This is really helpful since we
no longer need to know the Poisson ratio.

The deeper reason for this cancellation of the linear order is bilayer symmetry:
Recall that the definition of z0 is the value for the flat membrane, and the bilayer
symmetry indicates the same z0 for both the upper and the lower layer of a flat mem-
brane. If this is not the case, and there is a difference ∆ in the pivotal plane position,
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we need to rewrite Equation (3.17) as:

1 + z̊0/R

1− z̊0/R
≈
R + (z0 +∆) + 1

2
x(z0 +∆)2/R

R− z0 +
1
2
xz20/R

. (3.19)

The ∆ is added to z0 in the numerator, and repeating the calculation that lead to
Equation (3.18), the solution has for z0:

z0 = −∆

2
+ z̊0

[
1 +

1

2
K∆z̊0 +

1

2
xK3∆z̊20 +O(̊z40)

]
. (3.20)

All higher order ∆ terms have been neglected. Again, any terms containing the
curvature K at higher than linear order are not important. But compared to Equa-
tion (3.18), there is one extra correction term introducing the bilayer imbalance in the
flat membrane, which is proportional to the curvature. And another minor shift since
we did not consider such asymmetry property when we calculate the näıve solution z̊0.

Sphere Case

We can apply a similar strategy to spherical vesicles. This time, an equation similar
to Equation (3.15) can be written down as

ρ =

(
R + z(+K)

R− z(−K)

)2

≈
(
R + z0 + xz20/R

R− z0 + xz20/R

)2

, (3.21)

the biggest difference is the curvature K = 2/R, where R is the radius for the mid-
plane of the bilayer spherical vesicle. And the näıve solution for x = 0 is

z̊0 :=

√
ρ− 1

√
ρ+ 1

R . (3.22)

In the previous cylinder case, due to the bilayer symmetry and ignoring high or-
der term, we could directly take the näıve solution as the value for z0, or the flat
membrane pivotal plane position. Fortunately, the same conclusion exists for the
sphere case. Specifically, the full solution for the combination of Equation (3.21) and
Equation (3.22) is

z0 = z̊0
[
1 + 1

4
x(Kz̊0)

2 +O(̊z40)
]
, (3.23)

and again, we do not need to worry about the quadratic term of K, neither do we
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need to consider the bilayer asymmetry based on our assumption.

To summarize, for the simple configuration, a näıve analysis suffices to serve our
purpose of finding the position of pivotal plane z0, while this should not be taken for
granted.

Shortcomings of the Simple Configuration

These two examples have the advantage of being conceptually extremely simple, but
they suffer from the problem that they can usually not be applied in a real simulation.
The catch is that the key observable ρ = N+/N− tends to equilibrate poorly. If we set
up a simulation, any initial choice for N+ and N− can only relax to the actual equi-
librium value if lipids can switch between leaflets. This happens naturally through
lipid flip-flop, but for most lipid models the rate for this is much too slow (compared
to typical simulation times). So unless explicit measures are taken to equilibrate this
observable, counting lipids on the outside and inside of cylindrical or spherical vesicles
is not a promising strategy.

It should also be mentioned that if the model contains explicit solvent, since the
space is divided into an “inside” and an “outside” compartment by the membrane
vesicle, the chemical potential of the solvent must also be equilibrated between these
two parts. And any pressure difference between these two region in the presence of
explicit solvent must be relaxed. All these are processes which take too long to hap-
pen spontaneously in simulations.

Of the two coarse grained lipid models and the one atomistic model we use, only
the Cooke model contains no explicit solvent and has a sufficiently high flip-flop
rate of about 10−4 τ−1 [19], hence the cylinder and sphere methods are applicable.
However, its main use will be to serve as a clean point of comparison with our second
method, which even though much more widely applicable, is technically a bit more
subtle—both in its theoretical basis as well as in its implementation. For this reason
it behooves us to compare its results with a method where essentially nothing can go
wrong.

3.3.2 Buckle Strategy

Simulating cylindrical vesicles has previously been proposed as a method for deter-
mining a membrane’s bending modulus [46]. This method directly measures the stress
with which a membranes responds to the imposed curvature deformation (cylinder),
and successfully circumvents the issue of large length scales for measuring the bending
modulus. But it suffers from the same technical limitations as mentioned at the end

53



of the last section.

Recently another active bending approach has been proposed by Noguchi on a
different configuration, eliminating these limitations [99]. The new configuration is
a membrane buckle, and this method has proved remarkably successful for studying
elastic properties [40, 57, 75, 95, 99]. We will now show that it can also help in the
search for the pivotal plane. The buckle configuration contains the same number of
lipids in both leaflets in equilibrium and hence we do not need to worry about the
slow lipid flip-flop rate, but rather set the lipids’ number to the same at the beginning
of a simulation.

Buckle Configuration Introduction

Before we jump into the actual strategy for using a buckle configuration to determine
z0, let us explore Noguchi’s technique in a little bit more detail. Instead of following
the original approach in his paper, a highly accurate and easy-to-handle series ex-
pansion proposed in Ref. [57] will be used here. This brief introduction will provide
not only a better understanding of a buckle’s mathematical description but also some
useful formulas and conclusions for later analysis.

Consider a buckled membrane in a rectangular box with side lengths (Lx, Ly, Lz)
, where the undulation moves along the x direction while the “ridges” of the buckle
are parallel with the y direction. Figure 3.3 shows am x−z plane cut of such a buckle.

We parametrize this membrane shape by one function: the angle ψ(s) measuring
the local slope of the membrane’s midplane with respect to the horizontal, as a func-
tion of the arc length s measured along the buckle. We can then write down the total
energy as:

E [ψ] = Ly

∫ L

0

ds

{
1

2
κψ̇2 + fx

[
cosψ − Lx

L

]}
, (3.24)

where L is the length of the membrane contour along the buckling direction, which
is larger than the box length Lx, κ is the bending modulus, and fx is a Lagrange
multiplier to fix the x-direction box length at a given total membrane area. Phys-
ically, fx is the lateral compressive stress in x direction, which will be determined
from boundary conditions.

Recall that in Section 2.4.3 we introduced how to get the shape equation from the
energy expression. Given the boundary condition ψ(0) = ψ(L), the Euler-Lagrange
differential equation, or the shape equation is:
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ψ̈ + λ−2 sinψ = 0 , (3.25)

where the characteristic length λ is defined as:

λ2 =
κ

fx
. (3.26)

Notice that we will restrict our solution to the lowest mode, one undulation inside the
box, for the rest of our discussion. By multiplying ψ̇ on both sides in Equation (3.25),
we have

d(ψ̇ − λ−2 cosψ)

ds
= 0 . (3.27)

If we use the subscript i for the inflection point, where the buckle has the largest slope,
we have ψi = ψ(si) with ψ̇(si) = 0. From Equation (3.27), we know ψ̇ − λ−2 cosψ is
a constant. The value of this constant can chosen as the one at the inflection point,
and then the first integral of Equation (3.25) is

ψ̇ = λ−1
√
2(cosψ − cosψi) (3.28)

Inserting Equation (3.28) back to Equation (3.24, we have

E = Lyfx(Lx − L cosψi) = fxLLy[2m− γ] , (3.29)

where we define the dimensionless buckling strain γ as

γ =
L− Lx

L
, (3.30)

and another variable m = sin2(ψi/2).

Equation (3.27) can be separated and leads to an elliptic integral of the first kind.
Thus we arrives at the expression for the shape:

ψ(s) = 2 arcsin{
√
m sn[s/λ,m]} , (3.31a)

x(s) = 2λ E[am[s/λ,m],m]− s , (3.31b)

z(s) = 2λ
√
m(1− cn[s/λ,m]) . (3.31c)

But even with these expressions written down, there are still two unknown variables:
ψi and fx, which must be determined from the (periodic) boundary condition.

Specifically, the actual boundary condition used are ψ(L/4) = ψi and x(L/4) =
Lx/4, and both ψi and fx are found as series expansions in γ. Here we write down
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Figure 3.3: Snapshot of a MARTINI buckle simulation viewed in the xz–plane. The
solid curve follows the bilayer’s midplane. Along its arc length s we pick two points—
one at s and one at s—that cut out a segment for which we count the number of
lipids N± on the upper and lower leaflet. The boundary angles ψ(s) and ψ(s) are also
indicated.

the expression for m instead of ψi for convenience in future discussions [57]:

m(γ) = γ − 1

8
γ2 − 1

32
γ3 − 11

1024
γ4 − · · · , (3.32a)

fx(γ) = κ

(
2π

L

)2 [
γ +

1

2
γ2 +

9

32
γ3 +

21

128
γ3 + · · ·

]
. (3.32b)

To summarize, besides the advantages from the simulation point of view, the
buckling method also offers a precise analytical description of the shape and the
stress-strain relation. In other words, once we know the basic environmental parame-
ters, we can calculate anything geometrical as well as the forces existing in the buckle
system. Even though the shape in the simulation will fluctuate around the “stan-
dard” Euler buckle, it is still a good check during our analysis to look at a single
snapshot or a time-averaged shape.
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Buckle Strategy for Finding the Pivotal Plane

We now have a sense for the shape of the buckle, and now we can better appreciate
the advantages of the buckling method. However, the implementation for finding
z0 turns out to be slightly more involved, though, because one of the key reasons
that solves the equilibration problem will in turn render the counting problem more
elaborate: for cylinders and spheres the key observable was the number difference
of lipids between outside and inside leaflet, which might be hard to equilibrate. For
a buckle (held conveniently under periodic boundary conditions) that difference is
automatically zero in equilibrium, since the integral of the mean curvature across
one period always vanishes, and so does the area difference. Therefore, since the
equilibrium state contains the same number of lipids in both leaflets, we can simply
set the initial configuration in this way and no longer need flip flop in later simulation.

But since the lipid number difference is now zero by construction, it does not give
us any insights into the pivotal plane position. What should we do? The answer is
that we need to revert to a local analysis, rather than consider the whole membrane
all at once. Namely, we need to “cut” the buckle and only count within the cut-out
part. This local counting is not as simple as the counting process for cylinders or
spheres. In brief, it requires:

• Evaluating the Shape: We need to know information such as the arc length of
the segment and the slope at the cut point. Since any arbitrary segment can
be chosen, we need to determine the value ψ at any point.

• Cutting the Buckle: The cut should be in the direction along the local normal
vector.

• Counting Lipids within the Segment: This is not trivial, since most of the time,
the lipids near the cutting point are partially cut; only part of the lipid is inside
the segment while the other part is outside. A choice is needed and we will
discuss its implication in a later section.

• Calculating the Number Difference as a Function of z0: A theoretical prediction
of z0 based on the number difference is needed. And we will show how this is
done.

To illustrate and parametrize our theory, the same buckle and the corresponding
notations are used as in the previous section. Again, let us look at the buckle in
Figure 3.3, a membrane of width Ly and (contour) length L, confined in a box of
length Lx < L, quantified by a dimensionless buckling strain γ = (L − Lx)/L. The
meaning for ψ(s) and s are unchanged. Suppose some section is cut out as shown
in Figure 3.3: The start- and end-point has arc length s and s, respectively, and
both end points can be chosen arbitrarily. To distinguish the two leaflets, we use the
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subscript + for the upper layer and − for the lower layer. The number of lipids is
linked to the pivotal plane z0 via the membrane area. Since the buckle is simply a
curved plane, the midplane area element is Ly times the arc length element ds, thus
the total midplane area is A =

∫
Lyds = Ly

∫
ds = Ly L. From Equation (3.3a), the

area of each pivotal plane A′
± can then be derived from a parametrization living on

the midplane:

A′
± =

∫
dA′

± =

∫
dA

[
1 +K±z +KG±z

2
]
= Ly

∫ s

s

ds
[
1± ψ̇(s)z(±ψ̇(s))

]
. (3.33)

The two principal curvatures at the pivotal plane are ±ψ̇ and 0, respectively, thus
we have K± = ±ψ̇ and KG± = 0. Notice that the z is the actual (i. e., curvature
dependant) pivotal plane position, but we want to find the value of z0 pertaining to
the flat state. So we put Equation (3.12) back into Equation (3.33) and write it down
in terms of z0:

a±N±

Ly

=
A′

±

Ly

=

∫ s

s

ds
[
1± ψ̇(s) z

(
± ψ̇(s)

)]
(3.34a)

≈
∫ s

s

ds
[
1± ψ̇(s)z0 +

1
2
xz20ψ̇

2(s)
]

(3.34b)

= ∆s± z0 ∆ψ + 1
2
xz20∆s⟨ψ̇2⟩ss , (3.34c)

where we have defined the difference in arc length and angle:

∆s = s− s and ∆ψ = ψ(s)− ψ(s) , (3.35)

and where ⟨ψ̇2⟩ss is the mean square average of the curvature over the cut-out segment.
This first equal sign represents the relation between surface area A± and number of
lipids N±: A

′
± = a±N±, where a± is the area per lipid.

Let us introduce two more variables q± and M± as:

q± =
1

a+
± 1

a−
and M± = N+ ±N− . (3.36)

The motivation behind introducing these two variables will be discussed later in
the subsection “Discussion of the Buckle Strategy”. Right now, we first add/substract
Equation (3.34c) and arrive at an expression for M±:

M±

Ly

=
N+ ±N−

Ly

= z0∆ψ q∓ +
[
1 + 1

2
xz20⟨ψ̇2⟩ss

]
∆s q± . (3.37)

Again we see the Poisson ratio term containing x making the whole expression very
complicated. But fortunately this term is small enough to neglect: 1

2
xz20⟨ψ̇2⟩ss ≪ 1.
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We will prove this at the end of this section to avoid distracting the reader in the
middle of the argument. Since the Poisson effect can be ignored, the new form of M±
looks like:

M±

Ly

= z0∆ψ q∓ +∆s q± . (3.38)

In this equation, M±, Ly, ∆ψ and ∆s are either easy-to-get observables or pre-set
variables from the simulation. The only two unknown variables, except for z0, are
q±, and it is hard to determine them with high enough accuracy directly from their
definition, hence we need to determine them differently.

Remember that Equation (3.38) is valid for any part of the buckle, including for
the whole period. And for a whole period, obviously we have two very simple results:

∆s(p) = L and ∆ψ(p) = 0 , (3.39)

where the superscript “p” stands for the whole period case. Inserting Equation (3.39)
back into Equation (3.38), we can get expressions for q± as

q± =
M

(p)
±

LyL
. (3.40)

Focussing on M− in Equation (3.38) and replacing q± using Equation (3.40), we
finally arrive at

yp = xp · z0 , (3.41)

where xp and yp are defined as

xp = ∆ψM
(p)
+ and yp = LM− −∆sM

(p)
− . (3.42)

Equations (3.41) and Equation (3.42) are the final formula helping us find the

pivotal plane position z0. First of all, we can get the values of L, M
(p)
± from the whole

buckle. And next, for any cut-out segment, we can measure the angle difference ∆ψ
between two end points as well as the arc length ∆s. Thus we have a pair of xp and yp
values for this specific cut. If we keep cutting the membrane in various ways, say fix
s at some arbitrary position and then scan s such that ∆s evenly covers the interval
[0, L], many sets of {xp, yp} can be collected. Each pair represents a data point in the
xp − yp plane. Since Equation (3.41) tells us xp and yp satisfy a linear relationship,
by fitting these data points with a straight line going through the origin, we can get
the z0 value, which is the slope of this fitting line.
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Discussion of the Buckle Strategy

For this strategy, there are still several things that need to be clarified. To begin
with, one might wonder why we choose M− and in turn get Equation (3.41), instead
of usingM+. As a matter of fact, we can derive a similar expression usingM+, namely

(
LM+ −∆sM

(p)
+

)
=

(
∆ψM

(p)
−

)
· z0. (3.43)

But this is not a good choice. We know that the ideal buckle has M
(p)
− = 0, and

in simulations using models like MARTINI, a lot of the time M
(p)
− = 0, making it

impossible to derive the z0 value. Even for those with an non-zero M
(p)
− , it is a small

number, and the value of yp/xp will have a large error, because the left hand side
of (3.43) is also very small. The pivotal plane would then follow as the ratio of two
small numbers, both fluctuating around zero, and this results in huge error bars.

The next thing we want to mention here is the importance of distinguishing the
area per lipid for each leaflet. If both leaflets contain the same number of lipids, a+
should be equal to a−, and we don’t need to bother using two variables and the whole
derivation would be much easier. In fact, it is most likely true for many models,
including the MARTINI model and the Berger model we use in this thesis, that the
number of lipids in both layers is the same. But some other models, such as the
Cooke model, however, do not enjoy this property. The Cooke model’s easy-to-flip-
flop property, as mentioned earlier, which benefits us for the simple configuration
simulation, now plays against us since a small fraction of lipids (typically about 1%),
might escape from the membrane during the simulation. These missing lipids cause
imbalance in the lipid numbers for both layers, and in turn affect the area per lipid.
And in our later analysis, we have to count the total number for each single snapshot
to allow for this effect.

Last but not least, for the buckle strategy, why do we use the number difference
M− = N+ −N−, instead of the ratio N+/N−, as we did for the simple configuration?
The short answer is to reduce the error. Specifically, for either the cylinder or the
sphere case, we apply a global counting strategy. That is to say, both N+ and N− are
relatively large numbers, and the error for each value is small. For the buckle case,
however, a local counting method is taken, and many segments with various length
will be used. When it comes to the case that the arc length ∆s is small, both the N+

and the N− are small, thus the ratio is a ratio of two small numbers, which might
give substantial error. But the difference can easily circumvent such small number
difficulties and provide a relatively stable error across different segment sizes.
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Proof that We Can Neglect the Poisson Term

We mentioned earlier that in Equation (3.37), the term 1
2
xz20⟨ψ̇2⟩ss can be ignored.

Let us see why this is true.

Recall that in the first subsection of this chapter we have briefly introduced the
mathematical description of the buckle configuration, and combing this with the re-
sults in Ref. [57], it is easy to show that the average squared curvature of a buckle
along one complete period can be written as

⟨K2⟩ = ⟨ψ̇2⟩L0 =
1

L

∫ L

0

ds ψ̇2 =

(
8K(m)

L

)2 (
m− γ

2

)
, (3.44)

where the definition ofm and γ is as before, and K(m) is the complete elliptic integral
of the first kind with parameter m. As shown in Equation (3.32a), m can be written
as a series in γ, and inserting the series expansion back into the exact solution for
⟨ψ̇2⟩, we get

⟨ψ̇2⟩L0 = 2

(
2π

L

)2(
γ +

1

4
γ2 +

3

32
γ3 + · · ·

)
. (3.45)

For the term 1
2
xz20⟨ψ̇2⟩L0 , let us consider the worst case scenario, in other words the

largest possible value, for the Cooke model: the largest possible x is x = 1 for the
incompressible case, and the largest strain in our simulation is γ = 0.5. A good
approximation for the total arc length is L = 67σ and z0 ≈ 1.5σ. All these result
for γ, L and z0 will be shown in the next section. Hence the Poisson term has the
approximation value

1

2
xz20⟨ψ̇2⟩L0 ≈ 0.011 ≪ 1 . (3.46)

This is the estimation for the whole period buckle. The average squared curvature
over a segment can be larger, but is still bounded by the maximum squared curvature,
which the buckle assumes at its two turning points. Its value is given by a formula
curiously similar to Equation (3.44) [57]:

K2
max =

(
8K(m)

L

)2

m

= 4

(
2π

L

)2 (
γ +

3

8
γ2 +

3

16
γ3 + · · ·

)
, (3.47)

showing that for all relevant strains K2
max ≈ 2⟨K2⟩. Using the same Cooke parame-

ters as above, we now get

1

2
xz20K

2
max ≈ 0.025 . (3.48)
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Both estimates of the whole buckle and the largest possible value show that this term
will only add a few percent on top of the leading order term “1”. However, our re-
sults will show that we can determine z0 with better than percent accuracy, so why
do these few percent not matter?

The answer is because they hardly affect the slope in the {xp, yp} plot. In Equa-

tion (3.42), we have yp = LM− −∆sM
(p)
− and the correction term contributes a few

percent to the term ∆sM
(p)
− . If we compare ∆sM

(p)
− with another term LM− in yp,

we have

∆sM
(p)
−

LM−
=

∆sM
(p)
−

∆ψM
(p)
+ z0 +∆sM

(p)
−

(3.49a)

<
∆sM

(p)
−

∆ψM
(p)
+ z0

(3.49b)

∼ M
(p)
−

KM
(p)
+ z0

=
M

(p)
−

M
(p)
+

1

Kz0
. (3.49c)

Here Equation (3.49a) is simply inserting Equation (3.41). In Equation (3.49c), we
use an estimation that K is some “average” curvature for the small segment. And
if we put in numbers for the Cooke model, we get 1/Kz0 ∼ 5, but M

(p)
− /M

(p)
+ is

on the percent level. That is to say, ∆sM
(p)
− is a few percent of LM−. Since they

add together, even though the term ∆sM
(p)
− matters, its own few-percent correction,

which is the Poisson effect correction, can be neglect.

The same reasoning applies to the MARTINI and Berger simulations.

3.4 Analysis & Results for Simple Configuration

Now we are going to apply these two strategies to various configurations and models.
In particular, for the solvent free three-bead Cooke model, we will test both the sim-
ple configurations (cylinder and sphere) and the buckle, and for the more complicated
MARTINI model, which is also a coarse-grained model, only buckles are simulated
and analyzed due to the equilibration limitations of the model itself. Then we push
our analysis even further to the full resolution atomistic Berger model.

The structure for the following two sections is as follows. This section focuses on
the analysis of cylinders and spheres, which are only tested using the Cooke model.
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The next section mainly talks about the buckle configuration. Since three separate
models are investigated, the universal analysis process will be introduced first. Then
we move on to the buckle’s result. For the Cooke model, because it has the advantage
of being suitable for both strategies, we will compare the results of z0 across three
configurations. There are two possible choices for x axis: the isotropic tension Σ
and the average squared curvature K2, both of which have definitions among three
configurations. After checking the consistency between them, we will explore the
MARTINI model and the Berger model.

3.4.1 Simulation Model Specifications

Before we enter the actual analysis part for both the simple and the buckle con-
figurations. Let us specify all three models used in this study: the Cooke model,
the MARTINI model and the Berger model, together with the detailed simulation
parameter settings.

The Cooke Model

As we have mentioned in Section 2.5.2, the generic top-down Cooke model represents
each lipid by three beads—one for the head, and two for the tail, see Figure 2.8. In
the absence of solvent, aggregation is driven by an attraction between the tail beads of
tunable range wc. As a generic model, the units are (tail) bead size σ (which roughly
maps as σ ≈ 1 nm), Lennard-Jones energy parameter ε, and bead mass m. This
gives the generic simulation time unit τ = σ

√
m/ε. The main tuning parameters for

the model are temperature T and the width of the tail attraction wc, and we choose
kBT = 1.1 ε and wc = 1.6σ. At this state point the area per lipid is aℓ ≈ 1.19σ2,
and the bending rigidity is κ = 12.8 kBT [56]. The head bead size is regularly chosen
as 95% the size of the two tail beads, but this value can be tuned to change the
spontaneous curvature of the lipid. The simulations were run using ESPResSo [73],
temperature was fixed with a Langevin thermostat [43], and the time step was set to
δt = 0.002 τ . Details for how to create buckles under these conditions are described in
Ref. [57]. The stress profile was calculated from 1600 snapshots of a system containing
128 lipids, using a square membrane patch with Lx = Ly = 8.39σ and Lz = 10 σ,
which assured a membrane tension close to zero.

The MARTINI Model

The MARTINI model is a medium resolution explicit solvent CG model where on
average four heavy atoms are mapped to one CG bead, as we introduced in Sec-
tion 2.5.2 [80]. It can model many different lipids by choosing different tail lengths
and interaction potentials. Our specific choice is DMPC (1,2-dimyristoyl-sn-glycero-
3-phosphatidylcholine, or (14:0)-PC) which we describe by 10 beads (3 beads per tail),
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see Figure 2.8. The explicit CG solvent combines four atomistic water molecules into
one effective bead. We ran the simulations with GROMACS 4.5 [51], employing
a Berendsen thermostat [5] and a time constant τT = 1ps at a reference temper-
ature T = 300K. At this state point, the area per lipid is aℓ ≈ 0.59 nm2, and
the bending rigidity (using a buckling protocol) has recently been determined to
be κ = (29 ± 1) kBT [56], which is a about 20% smaller than the previously de-
termined value κ ≈ 36 kBT (based on measuring undulations) [9]. The time step is
δt = 40 fs (not rescaled), and we employed a 1.2 nm-cutoff neighbor list (updated every
10 steps), a relative dielectric constant ϵr = 15, and 1.2 nm cutoffs for Lennard-Jones
and Coulomb interactions. Details for how to create buckles under these conditions
are again described in Ref. [57]. The stress profile was calculated from a simulation
of a system with 256 lipids and 2926 CG water molecules, using a square membrane
patch with a barostat of 1 bar isotropically coupled to the xy-plane and independently
along the z-direction, leading to a fluctuating box size of Lx = Ly = (8.725±0.025) nm
and Lz = (8.389± 0.048) nm, which assured a membrane tension close to zero.

The Berger Model

As introduced in Section 2.5.3. The Berger force field is a united atom atomistic force
field for lipids in which nonpolar hydrogen atoms are grouped together with carbons
into CH, CH2, CH3 beads [6]. SPC is used for water model [57]. The isothermal-
isobaric ensemble was achieved by combining a Nose-Hoover thermostat [101, 53]
(τT = 1.0 ps at T = 300K) and a Parrinello-Rahman barostat [109, 102] (τP = 50.0 ps,
κT,x = κT,y = 0, κT,z = 5 × 10−5 Pa, at 1 bar). The initial buckled configurations
were backmapped from MARTINI-DMPC simulations using a special version of GRO-
MACS [120].

3.4.2 The Analysis Process for Cylinders and Spheres

1. Exclude the Stray Lipid

The analysis for cylinders and spheres is relatively straightforward. Take the cylinder
as an example: the first step is to exclude the lipids not bound within a membrane,
since they would otherwise affect all subsequent calculation, e. g. the center position
of the cylinder. The criterion to decide if a lipid is an escaped lipid is simple: for each
lipid, all lipids within a certain distance threshold are named “neighbors”. Those
lipids whose neighbor number is too small are regarded as an isolated lipid and will
be excluded.

But it is a little bit more involved to actually apply this criterion. The first issue
is that the definition of a lipid’s location is a little bit ambiguous, since every lipid has
three beads and each of them is assigned with a different set of coordinates. There
are multiple possible solutions to this problem: take the center of mass, declare a
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certain bead as a proxy of the lipid, etc. Here, we use the head bead as the reference
bead for calculation speed purpose.

In particular, the position of the head bead is treated as the lipid location, and
calculating the Euclidean distance between any two lipids, accounting for the periodic
boundary condition for lipids near the edge of the box. Any two lipids with a distance
smaller than rneighbor = 1σ are considered as a pair of neighbors, and each lipid can
have multiple neighbors. If a lipid has less than 3 neighbors, it is an isolated lipid, or
a stray lipid, and can be erased from the configuration.

2. Find the Center

Then we find the center of the cylinder by averaging all remaining lipids. We only
care about the x and y coordinate for cylinder axis aligned with the z-axis. Since we
need to deal with the position of the lipid again, the choice of location determination
is needed. Here we choose the center of mass as where the lipid is. Specifically, we
will average positions of all beads, which is equivalent to averaging the center of mass
of all lipids.

One thing worth mentioning is that for the purpose of cylinder center identifi-
cation, both the center of mass and the reference bead strategy will give the same
answer. After testing on various snapshots of cylinder systems with different radius,
the discrepancy of the cylinder center between two methods is usually less than 5%
of the radius.

3. Distinguish the Inner & Outer Layer

The next step is to identify which layer each lipid belongs to. Two methods are used
here. The first one is to compare each lipid’s orientation with the local outward-
pointing membrane normal vector n̂, since lipids in the outer/inner layers should
align/anti-align with n̂.

To do this, one needs to know both the local normal vector, and the lipid orienta-
tion. Given the center, the local normal is straightforward, simply pointing from the
center to the lipid. The direction of this vector is not unique due to multiple choices
of the lipids position. The effect of this choice, unlike the previous cylinder center
calculation case, might be non-negligible for each individual lipid. For example, for
a cylinder with radius R ≈ 10σ, if two beads at the end of a lipid are chosen as
the reference bead respectively, the difference in the corresponding normal vector can
be as large as 10◦, although the standard deviation of all lipids is around 3◦. The
deviation is about the same for other choices.

65



This difference results from the orientation fluctuation of the lipid. If the lipid’s
orientation is near perpendicular to the local normal, it is clear that choosing the
head bead will differ from choosing the tail bead. A quick test for this can be in the
last example, the distance between two bead is around 2σ, the worst case in which
the lipid has tangential orientation, the angle would be arctan(2σ/R) ≈ 11◦, closed
to the actual 10◦.

Not only the normal vector is dependent on details of the definition, but also the
lipid orientation. We will talk more about this in the tilt modulus chapter. Fortu-
nately, for our purpose, this will not influence our analysis too much, since we only
want an essentially binary discrimination between the normal vector and the lipid
direction, checking if they are in the same or the opposite direction. And virtually
any choice of definition will serve this purpose well.

But there are still a few lipids that cannot be classified by the first method, be-
cause sometimes the angle between the lipid direction and normal vector can be close
to 90◦ (as the lipid in the green circle shown in Figure 3.4). Thus we introduce a
second method and combine these two methods together in our analysis.

The basic idea for the second approach is to only take a look at the head bead
for each lipid. These beads are well separated, hence based on the distance between
lipids and center, the lipids can be clustered into two categories. One typical result
from both methods is shown in Figure 3.4.

One might ask what about those few lipids located in the middle of two layers and
nearly perpendicular to the normal vector? Recall that one property of the Cooke
model is its high flip-flop rate. For those lipids in the process of flip-flopping, it has no
physical meaning to classify them into any layer in the first place, or in other words,
counting them as either layer is “correct”.

4. The Radius R for the Midplane

Once we have labeled both layers, a radius can be calculated for each layer by averag-
ing all radii of the lipids within this layer. The radius of the midplane is determined
by averaging these two mean radii taken by the outer and inner lipids central bead.
One thing worth mentioning is that one can not simply average the radius over all
lipids, since the number of lipids is different for each leaflet.
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Figure 3.4: Illustration of how to determine the inner and outer layer for a cylinder
configuration. Both figures show the same cylinder of 1257 lipids in the x− y plane.
In the upper figure, the blue dots are the head beads and the red arrow is the lipid
orientation, calculating from the head and furthest tail bead. The green circle shows
a bead with direction almost perpendicular to the normal vector. The lower figure
shows the result of this classification, and the ambiguous lipid is labeled as the inner
layer.

5. Determine the Pivotal Plane z0

So far, for any snapshot, we have the number of lipids N± in each layer, and the mid-
plane’s radius R. From Equation (3.15), we can get the value of z0 for this snapshot.
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This is done for many simulation snapshots along a trajectory, giving a mean value
and an error determined via blocking [37].

The blocking error mentioned here is not the standard deviation, since the snap-
shots are not statistically independent from each other. Instead, we are following the
blocking method proposed in Ref. [37], to estimate the error of the mean for corre-
lated data.

The spherical case’s process is similar to the cylindrical one, except that the center
and normal vectors require all three coordinates.

3.4.3 Simple Configuration Results for Cooke Model

The Average Squared Curvature ⟨K2⟩ and the Isotropic Tension Σ

Recall that the Cooke model works not only for the simple configuration, but also the
buckles. In order to compare our simulation results across three different geometries,
we will use two variables that can be defined in all three cases. The first one is the
average squared curvature ⟨K2⟩ of the membrane, the second is the isotropic surface
tension Σ.

The average squared curvature for cylinders and spheres is pretty obvious. Since
the curvature is 1/R and 2/R, respectively, the average squared curvature is simply
averaging over all lipids

⟨K2⟩ = ⟨ 1

R2
⟩ = 1

R2
(cylinder)

⟨K2⟩ = ⟨ 4

R2
⟩ = 4

R2
(sphere) .

(3.50)

For a buckle, the calculation is a little bit involved, but we have derived it in Sec-
tion 3.3.2, and we will refer to it again in the next section.

Next, let us calculate the values of the isotropic tension Σ under which the lipids
in spherical and cylindrical membranes are. The derivation for the buckle case will
be covered in the next section. It is worthwhile to mention that this tension is not
the total mechanical stress but rather the isotropic tangential stress that couples to
the area per lipid [27].

The Helfrich shape equation [124] has the curious property that for spherical sym-
metry the bending contribution completely cancels from the stresses. The equation
hence reduces to the Young-Laplace law ∆P = 2Σ/R, where ∆P is the excess interior
pressure and R the vesicle radius. But the Cooke model is an implicit solvent model,

68



and so the pressure difference between inside and outside is zero. It follows that the
tension Σ is zero, too.

Cylindrical membranes have a nonzero tension, though, since they are only in
equilibrium if being pulled. It is well known [11, 52] that the force to hold a cylindrical
membrane tether of radius R is given by F = 2πκ/R, where κ is the lipid bilayer’s
bending modulus, and that if the radius can equilibrate, it will be given by R =√
κ/2Σ. In consequence, the tension of a cylindrical vesicle can be expressed as

Σ =
κ

2R2
=

F

4πR
=

F 2

8π2κ
, (3.51)

showing that one needs two variables out of the set {κ,R, F}. The first one is a ma-
terial parameter, which for the Cooke model at the state point we simulated has the
value κ = 12.8(4) kBT = 14.1(4) ε [57]. Each of the other two can be extracted easily
from the simulation. Since the radius follows from a simple geometrical measurement,
it can usually be obtained with higher accuracy. Besides, from Equation (3.51), we
can see that Σ for cylinders is clearly positive, compared with 0 for sphere, and as we
can see later, negative for the buckle we investigate.

Results for the Cooke Model

R [σ] Nlipids Σ×102 [ϵ/σ2] z0 [σ]

8.198 837 10.48 1.4782(52)
9.185 942 8.34 1.4894(57)
10.163 1047 6.82 1.4698(162)
11.142 1152 5.67 1.4871(98)
12.137 1257 4.78 1.4864(107)

1.4862(46)

Table 3.1: Summary of Cooke model simulations in cylindrical geometry; R is the
midplane radius of the cylinder, Nlipids the total number of lipids in the simulation
box, Σ is the isotropic tension as calculated from Equation (3.51), and z0 is the
position of the pivotal plane, calculated via Equation (3.16); the bold value in the
last row gives the average over all configurations. Common parameters are L = 10σ
for the cylinder length, a simulation time of 4 × 104 τ , and 1990 configurations used
for analysis.
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R [σ] Nlipids time [τ ] z0 [σ]

12.045 3000 4× 104 1.4749(36)
13.879 4000 4× 104 1.4850(28)
15.506 5000 2× 104 1.4759(76)
16.981 6000 2× 104 1.4854(60)

1.4809(22)

Table 3.2: Summary of Cooke model simulations in spherical geometry; R is the
midplane radius of the spherical vesicle, and 1990 configurations were used for analysis
of each system.

For the Cooke model, the results for the cylinder configuration are listed in Table 3.1,
and those for the sphere one are listed in Table 3.2. The results are also displayed in
Figure 3.5, where cylinder results are solid circles and sphere results are open circles.
The z0 value result shows no dependence on either mean squared curvature or the
isotropic tension. What is more, we add a shaded confidence band to the figure,
and both the cylinder’s z0 = 1.4862(46)σ and the sphere’s z0 = 1.4809(22)σ lie in
the other one’s 63% confidence band. These values are close to (but a bit further
out than) the position of the central bead, which is at 1.326σ. A further discussion
about the physical meaning behind these specific numbers, e. g. comparing them with
features of the stress profile, can be found in Section 3.6.
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Figure 3.5: Pivotal plane position z0 plotted against mean squared curvature ⟨K2⟩
(top) and isotropic tension Σ (bottom) for simple configurations: cylinders (filled cir-
cles) and spheres (open circles). The shaded regions are the 67% and 95% confidence
bands.

3.5 Analysis & Results for Buckles

Even though one needs to be careful about certain details, the overall analysis for
simple configurations is straightforward. But the buckle analysis requires more effort
for two reasons: first, the shape is more complicated and we have no accurate ana-
lytical expression for every individual snapshot. Hence a shape analysis is necessary.
Second, instead of counting all lipids, we need to cut the buckle in the local normal
direction. For the lipids at the cutting point, it is possible that they get cut “in half”,
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and how these lipids are counted is therefore not straightforward. We will solve both
difficulties in our analysis process introduced as follows.

3.5.1 Shape Analysis for Buckles

1. Label Both Layers

In order to get the shape of the buckle, we need to label the lipids according to which
layer they belong to, since it is not possible to fit both layers into one curve. We
do not have a convenient easy-to-get parameter such as radius and normal vector
as in the simple configuration case, hence we will apply a statistical method called
agglomerative hierarchical clustering [23].
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Figure 3.6: The dendrogram of one typical buckle snapshot analysis. It consists of
many U-shaped lines connecting objects (lipids or small lipid clusters) in a hierarchical
tree. The height of each U represents the distance between the two objects being
connected. And since there are 1250 lipids, only the top part of this plot is shown.

The basic idea behind this method is clustering based on the distances or simi-
larities among all data points. The word “agglomerative” indicates it is a bottom-up
approach. In particular, one finds the two points with the shortest distance and clus-
ter them up and treat this new cluster as a new data point. Then find the new nearest
data pair again and form a new cluster. (There are multiple ways to determine the
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distance between an actual data point and a cluster.) Keep repeating this process
and ultimately we will have one cluster and a tree structure, or so called “dendro-
gram” representing the finer structure of the data points according to the distance
among them. Figure 3.6 shows such a tree, and we can see that at the top part of the
hierarchical tree, there are clearly two branches, corresponding to the two clusters:
upper layer and lower layer. And in Figure 3.7 we show the label results of the same
buckle used for Figure 3.6.

Another thing worth mentioning is that this method also has the advantage of
automatically excluding any lipids which have escaped the bilayer, which happens
for about 1% of the Cooke lipids. This is because the hierarchical tree will provide
the information about the distance between small clusters. For the cluster containing
only very little lipids (usually 1 or 2) and being too far from all other lipids, it is safe
to label them as escaped lipids.

2a. Fit Each Layer (Numerical Method)

Once the monolayer is picked out from the bilayer, we can look for an analytical de-
scription of each leaflet. We choose some bead type, e. g. the head bead for the Cooke
model, and look for a smooth surface that interpolates the positions of all beads of
that type.

For this purpose, we tested three possible solutions: two analytical and one numer-
ical method. Neither of the analytical methods work for buckles developing overhangs,
because the definition of a function prevents one x value mapping to two or more y
values. In contrast, the numerical approach handles the overhang problems well, but
fails to provide a normal vector as accurate as the analytical approaches.

Starting with the numerical method, the general idea is to move a dot along the
monolayer. If each step is small enough, the trace of the dot is a good approximation
of the monolayer shapethe red dots shown in the lower plot of Figure 3.8). What
is more, this method will not be limited by buckle overhangs. To be more specific,
first we choose some lipid position as the starting position of the dot. And before
each movement, we calibrate the dot’s position by moving it to the center of the
neighbor lipids in the region (the distance threshold determining neighbor should be
larger than half of the thickness). Thus we are confident it locates the center of the
monolayer membrane thickness after repeating 3 or 4 such calibrations. Then we
move the dot a small fixed step, in the direction perpendicular to the average of the
neighbor lipids’ orientation, since this average is roughly the same direction as the
local normal vector (as shown in the upper plot of Figure 3.8). Iterating this process
will give us the trace of the dots and hence the surface shape.
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Figure 3.7: The result of upper layer label using a hierarchical clustering method.
The system is a buckle membrane containing 1250 Cooke model lipids. The upper
figure shows the head bead (blue dot), middle bead (green bead) and tail bead (red
bead). The lower figure only plot the head bead for a clearer illustration.

Figure 3.8 shows the fitting result and we can see it deals with the overhang per-
fectly. But there are two disadvantages: first, it is not as easy to get the slope at
any point as it is for the analytical approaches, which provides an expression for the
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Figure 3.8: The illustration of numerical method. The upper figure shows that the
tracing dot (red dot) is moving in the direction (red arrow) determined by the neighbor
lipids’ (green dots) orientation. And the lower figure shows that this method handles
the overhang of the membrane very well.

shape. Second, we use the lipid orientation to represent the normal vector, which
is physically not exactly true due to the lipid tilt. Moreover, the lipid orientation
fluctuates, and this can create a difference that can be as large as 10◦ for the cylin-
der, as discussed in Section 3.4.2. Thus we ultimately chose not to use this method
and instead exclude the buckles with overhangs in our analysis. Fortunately, these
buckles take only a very small part of the whole data, about 5% of all snapshots for
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the largest γ = 0.43 in our simulation. But it still provides a new perspective on
describing a shape for which it is hard to apply the analytical method.

2b. Fit Each Layer(Analytical Method)

Then let us look at the two analytical approximations: the Fourier expansion and the
smoothing spline functions. Given the periodicity of the buckle, a Fourier expansion
of its shape at first sight appears to be the more obvious choice, but it does have a
disadvantage: even if no overhang occurs, large-strain buckles have large slopes near
their inflection points, and capturing them requires high Fourier modes, which have
a tendency to otherwise create too many small “wiggles” that are unphysical. Hence,
we opted for smoothing splines, which result in overall more plausible smooth curves.

Briefly, a smoothing spline is defined as follows: given a set of N data points
{xi, yi} on some domain of interest [a, b], a spline S(x) is called a smoothing spline if
it minimizes the expression [24]

χ2
P := P

N∑
i=1

[
yi − S(xi)

]2
+ (1− P )

∫ b

a

ds
[
S ′′(x)

]2
. (3.52)

The first term in Equation (3.52) penalizes the distance between the spline and the
data, the second term penalizes the integrated curvature of the spline, thus making
it smooth. The parameter P balances the relative weight of both conditions: in the
limit P → 1 the curvature penalty vanishes and we arrive at an interpolating spline;
in the limit P → 0 the spline becomes a straight line, namely, the linear least square
approximation to the data. We choose P such that we get a sufficiently smooth
function that has neither too many wiggles nor any remaining systematics in the
residuals, by striking the following compromise: we aim to lower the χ2

p describing
the least square fitting error for each layer, but at the same time keep P as small as
possible, to avoid overfitting; this for instance means that if χ2

p first strongly decreases
with P but then enters a plateau phase were it only weakly decreases, we pick the P
value at the transition into the plateau phase (as shown in Figure 3.9). For each strain
γ we list our choice of P in Tables 3.3 and 3.4. To calculate the smooth splines, we
use numerical routines implemented in Matlab R⃝, taking care to extend the buckle
in both directions by a quarter-period (in order to avoid discontinuities in position or
slope at the end points).

3. Finding the Middle Plane

We now have an analytical description of two well-defined planes in the leaflets, but
we need a description of the bilayer’s midplane. To do this, we now translate each
bead position used to define the upper/lower spline S±(x) a distance δ along the local
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Figure 3.9: The χ2 error changes with P value, showing an example for the Cooke
model with γ = 0.18. We can see from P = 0.1, the error decreases only weakly,
hence we choose P = 0.1 for this system.

normal (defined from S±) towards the midplane (i. e., we translate the beads in the
upper leaflet down and the ones in the lower leaflet up). We then fit the union of
upper and lower shifted bead positions with one single spline Sm(x) that captures
the midplane, and the χ2 of that fit is a measure for how well the two surfaces have
been shifted on top of each other. The minimum χ2 identifies the optimum shift δ
(as shown in Figure 3.10), and we use the corresponding fit as our best analytical
expression for the bilayer’s midplane.

4. Cut the Buckle

The smooth curve describing the midplane permits us to calculate both arc length s
and angle ψ(s), so that we can perform cuts perpendicular to the membrane within
which we subsequently count lipids. In particular, we choose two points on the fitting
curve as the position for s and s, and by integrating or differentiating the midplane
spline Sm(x), we obtain the arc length distance ∆s and the angle difference ∆ψ. The
cutting planes themselves are identified by the local position and the cutting angle
ψ + π/2. Lipids in either of the two leaflets are counted within the cut if a reference
bead of that lipid falls within the sector between these two cutting planes. Interest-
ingly, the choice of reference bead will cause a systematic trend in the results of z0.
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Figure 3.10: The χ2 error changes with step size δ during midplane finding process,
this is an example for Cooke model with γ = 0.18. Notice there is a minimum error
corresponding to δ = 2.20σ, and the lowest error is 18.84.

We will discuss which bead to choose, how it affects the result, and how to deal with
it in the next subsection.

5. Lipid Counting and Self-consistent z0 Calculation

When counting lipids, we need a criterion to decide if a lipid is inside the buckle
segment we cut, because for some lipids near the starting or ending point it might
happen that only part of the lipid is inside the segment. One solution can be to
designate a reference bead, and from the result of z0 in the simple configuration
method, indicating that the pivotal plane lies at somewhere near the middle bead,
choosing the middle bead for the Cooke model seems to be a reasonable choice. Then
for each single snapshot, we can fix the starting point and scan the value of ∆s from
0 to L. For each segment, we can count the lipid and get the value for M−, M

(p)
± .

Combining with the values for ∆ψ and s from the midplane fit, a pair of {xp, yp} can
be calculated from Equation (3.42). According to Equation (3.41), these {xp, yp} data
points should lie on a line going through the origin, which they indeed do (as shown
in Figure 3.11). The slope of this line is the value for z0. An error can be estimated
for z0 from all snapshots in the same simulation after equilibration. Again, we will
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Figure 3.11: Typical example of a plot of the pairs {xp, yp} from Equation (3.42),
which according to Equation (3.41) are expected to lie on a line through the origin.
This particular result is taken for one of the snapshots of a Cooke buckle at γ = 0.43,
the largest strain we used.

use the blocking method to get an error of the mean for correlated data instead of
using the standard deviation.

What about other choices of reference bead? Will they give the same result?
Curiously, for a given strain γ, the value of z0 is not independent from, but slightly
related to the choice of reference bead. Figure 3.12 shows the Cooke model case of
γ = 0.25, and we can see that the central bead leads to a z0 only slightly larger than
that coming from the inner tail bead. In contrast, the z0-value derived from the head
bead is significantly smaller, and more so for large strains. Since the most natural
reference point to choose would be a bead that lies exactly at the pivotal plane (which
is almost but not quite true for the middle bead), we linearly extrapolate the z0 po-
sition from the two tail beads

z0(ξ) = z0,0 + z0,1 ξ , (3.53)

where ξ is the position of a bead from the bilayer’s midplane. A corrected value for
z0 can now be determined by intersecting this extrapolation with the line z0 = ξ,
leading to the self-consistent result

z0 =
z0,0

1− z0,1
. (3.54)

Resampling the z0 values for the two tail beads—and hence the extrapolation line—
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also gives the error. The procedure is illustrated in Figure 3.12 and the results are
summarized in Table 3.3.

One thing worth mentioning is that we get the value for ξ from a stress free flat
membrane in the equilibrium state. The zero stress is reached by adjusting the box
length and after fitting the middle plane to a smooth curve, the averaged bead dis-
tance to the middle plane is used as ⟨ξ⟩.
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Figure 3.12: Pivotal plane position z0 derived (via buckling at γ = 0.25) from each of
the three beads of a Cooke lipid as the reference, plotted against these beads’ average
distance ξ from the bilayer’s midplane. The shaded regions are the 67% and 95%
confidence bands of the linear extrapolation.

To summarize, we have use the hierarchical clustering method to label each in-
dividual layer. And for each layer, we describe its shape using a smoothing spline
fit. Then according to the normal vector based on this fitting curve, we translate the
lipids towards the midplane and in turn reach a spline fitting function to describe the
midplane, or the whole buckle. This provides geometrical information, such as arc
length s and angle ψ, for a segment cut from the buckle, together with a reference
bead counting strategy, allows us to retrieve many values of {xp, yp} pairs, as well as
the z0 values from Equation (3.42). But since the pivotal plane position depends on
the reference bead choice, we need to apply a self-consistent method to get the final
z0 value for the system with a certain strain value.
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3.5.2 Buckle Results for Cooke Model

The Average Squared Curvature ⟨K2⟩ and the Isotropic Tension Σ

From the last section, we have a value for z0 with an error bar for every strain γ. But
before we analyze the results and compare them with the simple configurations, we
need to get the value for average squared curvature ⟨K2⟩ and isotropic tension Σ.

The expression of average squared curvature has been derived in Section 3.3.2,
when we proved that the Poisson effect in Equation (3.37) can be ignored. And the
expression for ⟨K2⟩ is Equation (3.45).

The isotropic tension Σ for the buckle is negative since it is under compression,
compared to the cylinder case, where the membrane is pulled in the z-direction. The
surface tension Σ and the buckling stress fx are related by Σ = −fx cosψi, where ψi

is the angle which the buckle makes at its inflection point [57]. This relation can best
be understood as a balance of horizontal stresses [27].

We have derived fx and m as a series expansion in γ, as shown in Equation (3.32).
And from the definition: m = sin2(ψi/2), we can write down cosψi = 1 − 2m as a
function of γ as well. Thus, Σ can be written as:

Σ = −κ
(
2π

L

)2 (
1− 3

2
γ − 15

32
γ2 − 27

128
γ3 − · · ·

)
. (3.55)

The results of ⟨K2⟩ and Σ for every system are listed in Table 3.3.

Buckle Results and Comparison with Simple Configuration

For the Cooke model buckled membranes, the full results, including the system strain
γ, the average squared curvature ⟨K2⟩, the isotropic tension Σ, the fitting parameter
P and finally the pivotal plane position z0, are listed in Table 3.3. These results are
also plotted in Figures 3.13 and 3.14.

The final result is averaged at z0 = 1.4685(32)σ, and does not show any depen-
dence on any parameters, except for a systematic decline in z0 at large strain. We
contribute this trend to the steep region of membranes introduced by large curvature.
Even though we exclude the buckles with overhangs before our analysis, as mentioned
in last section, these buckles, which are overhang free yet containing steep portions,
will cause difficulties for the shape analysis, which may in turn reflect in a depression
of the inferred value of z0.
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γ ⟨K2⟩×103 [σ−2] Σ×102 [ϵ/σ2] P z0 [σ]

0.04 0.716 −11.72 0.03 1.477(17)
0.06 1.080 −11.33 0.03 1.472(29)
0.07 1.263 −11.14 0.03 1.470(13)
0.09 1.632 −10.74 0.03 1.467(15)
0.10 1.818 −10.54 0.03 1.489(15)
0.12 2.193 −10.14 0.10 1.440(13)
0.14 2.573 −9.73 0.10 1.467(16)
0.18 3.344 −8.90 0.10 1.492(11)
0.25 4.736 −7.38 0.30 1.4768(80)
0.31 5.977 −6.02 0.30 1.4722(81)
0.37 7.264 −4.59 0.50 1.4642(61)
0.43 8.603 −3.08 0.50 1.4606(79)

1.4685(32)

Table 3.3: Summary of Cooke model simulations in buckling geometry; γ is the buck-
ing strain, ⟨K2⟩ the mean squared curvature (from Equation (3.45)), Σ the isotropic
tension (from Equation (3.55)), P the smooth spline weighting in Equation (3.52),
and z0 the self-consistent position of the pivotal plane from Equation (3.54). Com-
mon parameters are Nlipids = 1344, L = 66.75σ, and Ly = 12σ. The buckles were
simulated for a total time of 5 × 104 τ , resulting in 2490 configurations that were
analyzed. We used the trajectories created in Ref. [57].

3.5.3 Compare across all configuration

Now we have the results for all three geometries, together with two proper axes for
comparison: ⟨K2⟩ and Σ. All data are plotted with 67% and 95% confidence bands
in Figure 3.13 and Figure 3.14. From the figures, the cylinder and sphere results
agree with each other very well, while there remains a small difference between the
buckle and the simple configurations. Even though this difference is statistically sig-
nificant, it is only about 0.8%. One may be tempted to blame the buckle systems
with large strains and high curvature as being responsible for this gap. However,
tentatively eliminating the highest four strains will move the pivotal plane only up
to z0 = 1.4724(56) σ, still within error bar of the old value. Hence we still plot them
together with the whole data set, since this elimination will not explain the difference.
At this moment, the origin of this small discrepancy is still unclear, but we stress that
we only notice it because our protocols are so very precise.

Except for this less than 1% difference, we have shown that the result from the
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buckle strategy is consistent with the one from the simple configuration strategy, and
both of them are totally independent from each other. This validates the buckling
method, and we can apply it to more complicated models: the MARTINI model and
the Berger model.
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Figure 3.13: Pivotal plane position z0 plotted against mean squared curvature ⟨K2⟩
for three different geometries: cylinders (filled circles), spheres (open circles), and
buckles (crosses). The shaded regions are the 67% and 95% confidence bands.

3.5.4 Results for MARTINI Model

Self-consistent Method Determining z0

For the MARTINI model, as mentioned in Section 3.3, the cylinder and sphere pro-
tocol are not applicable, and only the buckle configuration is investigated. The main
strategy is identical to the one employed for the Cooke model. A list of all MARTINI
model simulations can be found in Table 3.4.
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Figure 3.14: Pivotal plane position z0 plotted against isotropic surface tension Σ for
three different geometries: cylinders (filled circles), spheres (open circles), and buckles
(crosses). The shaded regions are the 67% and 95% confidence bands.

γ ⟨K2⟩×102 [nm−2] Σ [mN/m] P z0 [nm]

0.05 0.183 −2.00 0.03 0.8408(37)
0.10 0.371 −1.83 0.03 0.8520(35)
0.15 0.563 −1.66 0.10 0.8543(17)
0.20 0.762 −1.47 0.10 0.8543(24)
0.25 0.966 −1.28 0.30 0.8543(13)
0.30 1.176 −1.09 0.30 0.8543(24)
0.35 1.392 −0.88 0.50 0.8543(12)
0.40 1.616 −0.67 0.50 0.8543(15)
0.45 1.847 −0.44 0.50 0.8543(18)

Table 3.4: Summary of MARTINI DMPC model simulations in buckling geometry;
variables are the same as in Table 3.3. Common parameters are Nlipids = 1120,
L = 46.75 nm, and Ly = 7.1 nm. The buckles were simulated for a total time of 103 ns
after equilibration, resulting in 391 configurations that were analyzed. We used the
trajectories created in Ref. [57].

The biggest difference in the MARTINI analysis is that there is no obvious good
choice for the reference bead. Even though some people have suggested the interface
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Figure 3.15: Plot of the pivotal plane position z0 using each of the 10 beads of a
MARTINI DMPC molecule as the reference, plotted against these beads’ average
distance ⟨ξi⟩ from the bilayer’s midplane, and extracted from buckles with γ = 0.35.
The z0(ξ) relation is well described by Equation (3.53), as the fit—together with its
67% and 95% confidence bands—indicates. The intersection with the dashed line
z0 = ⟨ξi⟩ gives the self-consistently determined value of the pivotal plane position.

of the hydrophobic/hydrophilic region as an estimation of where the pivotal plane
is [115], the MARTINI DMPC lipid might have a different location because of its
coarse-grained nature. Just as in the Cooke model case, we again deal with this by
a self-consistent strategy. In analogy to Figure 3.12, we again plot the position of z0,
inferred by using each of the 10 beads of a MARTINI DMPC molecule as the refer-
ence, against the average distance ⟨ξi⟩ which bead i has with respect to the bilayer’s
midplane—see Figure 3.15. Recall that for the Cooke model, the z0 generated by the
head bead is significantly lower than that of the other two beads. In the MARTINI
model plot, we find a linear dependence of z0 on the ⟨ξi⟩. Hence we fit it using Equa-
tion (3.53) and again extract the self-consistent z0 value through Equation (3.54).
The error bar of the final z0 result comes from the resampled confidence band and is
smaller than each individual bead’s error. It also seems that the z0 values inferred
from the sn1-chain are systematically lower by about 0.01 nm than those from the
sn2-chain, which could be a result of the different tilt situation of the two chains.
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Figure 3.16: Pivotal plane position z0 for all MARTINI DMPC simulations, plotted
alternatively against the square of the surface tension (left) and the root mean squared
buckle curvature (right). The shaded regions are the 67% and 95% confidence bands.

Zero tension vs. Zero curvature

Without the simple configuration results to compare with, we can still plot the pivotal
plane as a function of both Σ2 and ⟨K2⟩1/2 as shown in Figure 3.16. Remember the
Cooke case plots, in which except for the large strain systems, we can not see any de-
pendence of the pivotal plane results on mean squared curvature or tension. And we
have attributed the decline at large strain to the shape undulations. The MARTINI
case, however, presents a small but very systematic dependence of z0 on the system:
as the curvature increases, or the tension decreases, the position of the pivotal plane
moves outward. The shape undulation is less of a factor since our MARTINI buckle
is about 30% smaller in length and 2.3 times higher in rigidity [57], which makes it a
harder and shorter membrane than the Cooke one.

This systematic decrease is only about 1.5% of the average value between the
largest and the smallest measured value, but whether one can exploit this trend and
get an even more accurate value by extrapolating remains an interesting question.
Obviously two possible and both plausible estimation are available: the zero tension
limit and the zero curvature limit. The latter possesses the same geometry as the
flat reference state, but the former captures the property of being free of isotropic
stresses. From Figure 3.16, the extrapolating results of these two limits are:

zero tension: z0 = 0.8607(10) nm , (3.56a)

zero curvature: z0 = 0.8389(30) nm . (3.56b)
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Unfortunately, no good reasons exist for preferring one value over the other. The
best we can say is that this is more of a personal choice. If one is less worried
about high curvature corrections, the zero-tension limit will appear more attractive,
while the zero-curvature limit appears preferable if one considers the net compression
(about 2mN/m for the weakest buckle) not much of a problem. At this point, it
seems appropriate not to prematurely take sides and instead state, in the absence of
a theoretical explanation for the γ-dependence, that z0 is within this range, and give
the answer as z0 = 0.850(11) nm. This position is closest to the third coarse-grained
tail bead on the sn1-chain, which is about 0.4 nm away from the sn1 glycerol bead.

But the question remains: why do we have this dependence on curvature or com-
pression? We have previously shown that the pivotal plane z(K) is a function of local
curvature K in Equation (3.12), and this plot also shows a curvature related depen-
dence. But all data points in Figure 3.16 quote the z0 values for the flat membrane.
This indicates a curvature dependence of the flat membrane value. Another possib-
lity is related to the Poisson term we dropped in Equation (3.37), which contains the
mean squared curvature, but this is impossible for the following reason: the term,
if not dropped, will still multiply M

(p)
− . For the MARTINI simulation, the value of

M
(p)
− , however, is zero, since the lipids are very hard to either flip-flop or escape from

the bilayer. Nevertheless, the z0 value also depends on the strain, and we might con-
jecture that it is an effect of membrane compression instead of a curvature influence.
And if this is the case, the zero tension limit looks like a more appropriate choice.

3.5.5 Results for Berger Model

Self consistent method determining z0

Having determined the pivotal plane position z0 both for the Cooke model and for
MARTINI-DMPC, let us now a similar analysis for the Berger model. The full results
are listed in the Table 3.5 below.
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γ ⟨K2⟩×102 [nm−2] Σ [mN/m] P z0 [nm]

0.12 0.636 −2.13 0.10 1.3057(67)
0.14 0.746 −2.05 0.10 1.3155(51)
0.16 0.857 −1.97 0.10 1.3372(98)
0.24 1.314 −1.61 0.30 1.3417(67)
0.27 1.491 −1.47 0.30 1.3149(58)
0.30 1.670 −1.32 0.50 1.3218(36)
0.33 1.853 −1.17 0.50 1.3189(39)

1.3225(44)

Table 3.5: Summary of Berger DMPC model simulations in buckling geometry;
variables are the same as in Table 3.3 and Table 3.4. Common parameters are
Nlipids = 934, L = 39.20 nm, and Ly = 7.1 nm. The buckles were simulated for a
total time of 100 ns after equilibration, resulting in 1000 configurations that were
analyzed. We used the trajectories created in Ref. [57].

Again, no obvious choice exists for the reference bead of the Berger case, and
we will plot one more time the value of z0 against the average bead position ⟨ξi⟩ in
Figure 3.17. Since DMPC in the Berger force field contains 46 heavy atoms per lipid,
this gives 46 points in the plot. Compared with the MARTINI plot (Figure 3.15),
instead of falling onto a straight line, the tail region shows a linear relation with fairly
good accuracy, while beyond the glycerol backbone the slope noticeably decreases and
ultimately even changes sign.

Thus, a self-consistent determination of z0 will not use all beads but only the tail
beads, and by intersecting the measured data with the line z0 = ⟨ξi⟩, the pivotal plane
is found at the end of the linear region, close to the glycerol backbone. A more care-
ful analysis, averaging over all buckles and all values of γ, gives z0 = 1.3225(44) nm,
placing the pivotal plane roughly at the carbonyl carbon in the sn1 chain. The results
are plotted against isotropic tension square Σ and averaged square curvature ⟨K2⟩ in
Figure 3.18.

Two comments will be made here. Firstly, there is a noticeably nonlinear shape
of z0(ξ) in the head region, which is different from the case of MARTINI DMPC. The
existence of this non-linear region has further interesting physical implications for the
lipid tilt, which we will discuss in more detail in the next chapter.

Secondly, recall that in the analysis of the MARTINI results we found a linear
dependence of z0 on both Σ and ⟨K2⟩, and I concluded that whether a zero curvature
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Figure 3.17: Position of the pivotal plane z0 for the Berger DMPC model, plotted
against the average position ⟨ξi⟩ of the ith reference atom in the lipid, for the strain
γ = 0.24. The solid line is a linear fit to the 28 carbon atoms in the two myristoyl
tails, flanked by the 1 σ and 2 σ confidence bands. The dashed line is the identity
z0 = ⟨ξi⟩, which intersects the data at the self-consistently determined value of z0.

limit or a zero tension limit is taken is a matter of personal choice in terms of the
appropriate value for z0. But in the Berger atomistic lipid simulation, this trend no
longer exists. But then, the goodness of fit for the Berger case is not very good,
and there is a hint of a slight increase for the low curvature case. The reason for
this increase is currently unknown and since the value reaches a plateau under high
curvature/low tension conditions, we still fit the data points with a constant, and get
the z0 value from this.

3.6 Discussion of the Results

3.6.1 Bare numbers and a comparison with experiment

A first look at the bare numbers

To begin with, it is important to realize how precise the results for z0 are. Either
method can pinpoint the pivotal plane’s position with a percent-level error of the
mean. This in retrospect justifies our consideration of several high order terms, say
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Figure 3.18: Pivotal plane position z0 for all Berger DMPC simulations, plotted
alternatively against the root mean squared buckle curvature (top) and the square of
the surface tension (bottom). The shaded regions are the 67% and 95% confidence
bands.

the Poisson term in Equation (3.12), since it is not obvious what term is negligible
at the theoretical framework building stage. And what is more, a result with higher
precision may offer us more insight into the physical properties of the membrane, as
we will see in the next chapter.

Checking the pivotal plane position given by our analysis and comparing with
existing experimental results is a good starting point. For the generic Cooke model,
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there are of course no direct predictions to compare with. Instead, we introduce a
new parameter: the dimensionless ratio between pivotal plane and lipid length. In
particular, we take the average distance ξh between head bead and midplane as the
lipid length, and here we have ⟨ξh⟩ = 2.19σ. Thus, the ratio is z0/⟨ξh⟩ ≈ 0.678. This
is remarkably close to expectation: for real lipids, the position of the pivotal plane is
estimated to be near the hydrophilic/hydrophobic interface, about two thirds of the
length of a lipid [115].

For the MARTINI membrane, we take the CG phosphate bead, in analogy to the
head bead in the Cooke case, since it is a simple proxy for the Luzzati plane, or the
interface between water and lipid (as mentioned in Section 3.2.2). This position is
⟨ξPh⟩ ≈ 1.739 nm, and the ratio in turn is z0/⟨ξPh⟩ ≈ 0.491, which is substantially
smaller than the 2

3
rule of thumb.

The result for the Berger model is z0,Berger = 1.3225(44)nm, which is is notice-
ably larger than the MARTINI-derived value z0,MARTINI = 0.850(11) nm. This value
agrees with the hydrocarbon core thickness measured in experiment, which in Nagle
et al.’s paper [98], is 1.31 nm. Consider the lipid length difference and compare the
ratio instead: ⟨ξPh⟩ = 1.80 nm for Berger.1 This leads to z0/⟨ξPh⟩ = 0.73 for Berger,
substantially higher up towards the head region than MARTINI’s value 0.49. What
is more, this ratio is also closer to the 2

3
rule of thumb.

We keep mentioning this empirical rule, but considering that this rule is derived
from a highly curved configuration experiment (namely, an inverse hexagonal phase),
a closer examination, accounting for such high curvature effects, seems warranted.

Experimental Results from HII phase

Let us look at the experiment by Chen and Rand [16], who have measured the pivotal
plane position for dioleoylphosphatidylethanolamine (DOPE) in the inverse hexago-
nal HII phase—pure, as well as with the addition of small amounts (16% by weight)
of either decane or tetradecane to fill in the interstitial threefold symmetry defects.
Since both the pivotal plane position, denoted as “δhc” in their paper, and the bilayer
membrane thickness, denoted as “dl”, are measured under highly curved condition,
we need to translate them back to the flat membrane situation in order to compare
with our results.

Firstly, their values for the pivotal plane are 0.87(5) nm for the pure case, and

1Our value of the width of a flat leaflet agrees with experimental results of Nagle et al. [98], who
measured the headgroup peak-peak value DHH, or phosphate to phosphate distance, which is 3.6 nm
for DMPC, resulting of course in the value 1.8 nm for monolayers.
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1.06(5) nm and 1.09(5) nm for the decane and tetradecane case, respectively. All
these numbers are what we called z(K), and to back out the flat reference value z0,
we need to invert Equation (3.12); up to quadratic order this leads to

z0 = z(K)
[
1− 1

2
xKz(K) +O

(
z(K)2

)]
. (3.57)

The curvature K is that of the pivotal plane, for which Chen and Rand’s data give
K = 1/Rp ≈ −1/2.7(1) nm (in the decane case). Notice the negative sign: the mono-
layer curvature of the inverse hexagonal phase is negative, and so Kz(K) ≈ −0.39.

Unfortunately we also need the Poisson ratio to translate the results back to
the flat reference case. If ν = 0, no shift happens, while in the incompressible
limit ν = 1

2
(and thus x = 1) the correction factor in Equation (3.57) becomes

1 − 1
2
× (−0.39) ≈ 1.20, showing that in this case z0 is about 20% bigger than δhc,

or about 1.27 nm and 1.31 nm for the decane and tetradecane measurements, respec-
tively. These are substantial curvature corrections, and they shift the pivotal plane
further up towards the head group region. This direction is expected, for unbending
a highly curved HII monolayer will push the lipid tails closer together and hence will
make them stretch out even more.

Secondly, for the bilayer width, Chen and Rand identify it as the distance between
apposing Luzzati planes (dl = 3.39 nm for the decane case), and so they also get
the distance between the pivotal plane and the Luzzati plane—in their notation:
δpol = 0.64 nm for the decane case. Extending above’s reasoning, we can calculate
the width dl,0 of the uncurved bilayer:

dl,0 = 2δhc
[
1 + 1

2
x|K|δhc

]
+ 2δpol

[
1− 1

2
x|K|δpol

]
, (3.58)

which in the incompressible limit gives dl,0 ≈ 3.67 nm, about 8% wider than in the
HII phase. The fraction which the pivotal plane takes of the monolayer width is hence
z0/(dl,0/2) = 0.69, slightly larger than the 2

3
rule of thumb and 10% larger than the

uncorrected result δhc/(dl/2) = 0.63. Repeating the analysis for the tetradecane case
gives the very similar result z0/(dl,0/2) = 0.68, while the pure case leads to the sub-
stantially smaller value z0/(dl,0/2) = 0.61.

So far, we have found that the ratio for the flat membrane is between 0.61 and
0.69, but our ratio from analyzing our MARTINI DMPC buckling simulations is 0.49.
This is significantly smaller. This discrepancy could be attributed to the difference
of lipids: DOPE used in the experiment has the longer unsaturated oleoyl chains (18
carbons, one cis double bond at position 9) and a smaller PE head group. On the
other hand, the size difference has already been accounted for by taking the ratio
between z0 and lipid length. One might also wonder whether it is because of sponta-
neous curvature, but we can exclude this possibility later in Section 3.6.4. Among all
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the other possible explanations for this small ratio, some inherent deficiency of the
coarse-grained model starts to become very likely.

Being skeptical about the CG models

From the investigation above, we know that both general expectation and experi-
ment suggest that z0 lies somewhere about 2

3
up towards the head group region.2 In

other words, the pivotal plane locates just barely below the glycerol backbone region,
where the lipid tails get joined to the more rigid head group region [115]. The ques-
tion arises for the MARTINI model: why would a coarse-grained but still fairly well
resolved lipid model get that number wrong?

The most straightforward possible reason can be the information lost during the
coarse-graining process, say the lipid tails’ coarse-grained representation. The in
principle curvature-dependent entropy embodied in the tail statistics is replaced by a
curvature independent energy of a CG interaction potential. This reduces the extent
to which tails can respond to curvature changes. This lack of response in turn pulls
the pivotal plane closer to the leaflet’s midplane, since in the extreme case, which
is the elastically homogeneous material, one would expect the pivotal plane to be in
the middle of the lipid leaflet. If this is really what causes the discrepancy between
the MARTINI result and the general prediction, an essentially atomistically resolved
Berger force field should not suffer from this problem and instead place the pivotal
plane closer to the glycerol backbone. And this is indeed what we find.

While it is dangerous to read too much into the outcome of a single investigation,
the underlying CG approximation is well known and uncontested: CG potentials in-
variably inherit aspects of the state point at which they are constructed or for which
they have been developed. Lipid models are generally optimized to reproduce the Lα

phase of membranes, not highly curved lipid leaflets. Notice, however, that MAR-
TINI is not a structurally coarse-grained model, and so it should suffer less from any
all-too-eager attempt to optimize the structural aspects of a flat bilayer. And still,
its very construction (equal bead size all the way down the tail) is at least inspired
by the geometry of a bilayer phase. Had the developers aimed at surfactants that

2Besides the 2/3 rule of thumb, other means of comparison would also be possible. For instance,
one could compare the pivotal plane position not with the width of a monolayer all the way up
to the phosphate bead, but instead only up to the glycerol backbone, in effect comparing it to
the width of the hydrocarbon region (John Nagle, personal communication). This would lead to
an alternative weighting when comparing lipids which differ in their hydrocarbon tail length, but
would ignore the structure of the head group and its impact on overall elastic pliability of the entire
leaflet. Ultimately, whether a universally good point of comparison exists that might even be used
as a proxy for the pivotal plane position for cases that have not yet been measured, remains to be
seen—for instance by determining z0 for a wider set of lipids.
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assemble into spherical micelles, a more “tapered” design might have suggested itself.
The surprising lesson is that such subtle aspects in an otherwise fairly well-resolved
model can show up so noticeably even in relatively benignly deformed bilayers.

We hasten to add that this does of course not invalidate the use of CG models to
study membrane phenomena that involve membrane bending. The curvature modu-
lus could be well reproduced, and this is often all that matters at larger scales. But
we believe that CG studies which explicitly aim to explain the value of the bending
modulus or its dependence on lipid architecture—say, how it depends on tail length
and saturation—ought to be viewed with some skepticism. If the chain conforma-
tions in curved coarse-grained membranes do not—and can not—capture the physics
of free fatty acid tails, and hence end up bending the bilayer around a noticeably
shifted reference surface, the relative contributions of head- and tail-regions to the
overall rigidity are misbalanced, rendering claims about the relation between bending
modulus and specific tail properties somewhat suspect.

3.6.2 Calculating moments of the lateral stress profile

The Lateral Stress Profile for Monolayer and Bilayer

As mentioned in Section 3.1.1, the pivotal plane serves as the bridge between several
monolayer and bilayer observables. Let us look at one typical example, the trans-
bilayer stress profile. If the membrane spans the xy-plane, such that its normal vector
aligns with the z-direction, the pressure tensor Πij is diagonal in the xyz-coordinate
system. We may then define the trans-bilayer stress profile as

Σ0(ξ) =
⟨
Πzz

⟩
− 1

2

⟨
Πxx(ξ) + Πyy(ξ)

⟩
, (3.59)

where ξ measures the position along the normal direction of the membrane, such
that ξ = 0 corresponds to the bilayer midplane. The perpendicular component ⟨Πzz⟩
does not depend on ξ for reasons of mechanical stability and coincides with the bulk
pressure. Figure 3.19 and 3.20 shows this stress profile for the Cooke and MARTINI
model, respectively. For reasons of symmetry, the plots can restrict to positive ξ-
values.

A well-known result from continuum theory relates moments of this stress profile
to various mono- and bilayer observables. If we define the monolayer moments as

M(n)
m :=

∫ w

0

dξ Σ0(ξ) (ξ − z0)
n , (3.60)

where the integral spans over the entire monolayer-support of Σ0(ξ), then [41, 49, 50,
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Figure 3.19: Stress profile Σ0(ξ) from Equation (3.59) for the Cooke model. The bold
solid curve was computed with a system of 128 lipids, the fine dashed curve comes
from Ref. [57] and is based on a system of 1000 lipids. The stress profile for the
bigger membrane is smoothed by thermal shape undulations; it is largely identical to
a convolution of the sharper profile with a Gaussian of width 0.4 σ. The red vertical
line denotes the position of the pivotal plane. For reference purposes, the faded lipid
model in the background has all beads located at their average distance form the
bilayer’s midplane.

81, 83, 84, 103, 106, 104, 105, 107, 108, 121, 136, 138]

M(0)
m = 1

2
Σ , (3.61a)

M(1)
m = −Km0κm , (3.61b)

M(2)
m = κm . (3.61c)

We remind the reader that the monolayer observables κm, Km0 and κm are to be
understood as those for which z0 is the Gibbs dividing surface [63, 12].

If we instead define the integral in Equation (3.60) over the bilayer, and with the
midplane as the reference point,

M(n)
b :=

∫ w

−w

dξ Σ0(ξ) ξ
n , (3.62)
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Figure 3.20: Stress profile Σ0(ξ) from Equation (3.59) for the MARTINI DMPC
model. The red vertical line denotes the position of the pivotal plane. For reference
purposes, the faded lipid model in the background has all beads located at their
average distance form the bilayer’s midplane. (The apparent tilt is an artifact of this
enforced representation; at 300K MARTINI DMPC is in an untilted fluid Lα phase.)
Curiously, the stress profile shows structure into the water phase that reaches almost
a nanometer beyond the position of the outermost lipid bead.

we obtain the corresponding bilayer relations

M(0)
b = Σ , (3.63a)

M(1)
b = 0 , (3.63b)

M(2)
b = κ , (3.63c)

where (3.63b) is a consequence of bilayer up-down symmetry. Combining Equa-
tions (3.61), (3.62), and (3.63c), we get

κ = 2
[
M(2)

m + 2M(1)
m z0 +M(0)

m z20
]

(3.64a)

= 2
[
κm − 2κmKm0z0 +

1
2
Σz20

]
, (3.64b)

showing that the Gaussian curvature modulus of the bilayer can be obtained from the
first three moments of the monolayer’s lateral stress profile. The third term vanishes
at zero tension; and while even for simulations ostensibly at Σ = 0 the residual ten-
sion does sometimes not quite vanish, it is typically so small that the z20-correction
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contributes negligibly to the total expression, and so it is usually ignored. Notice fi-
nally that Equation (3.64b) expresses κ in terms of monolayer observables that could
be defined without reference to an underlying stress profile. Indeed, Equation (3.64b)
can alternatively be derived by relating the monolayer Hamiltonian (3.1) to its bilayer
counterpart with the help of the parallel surface equations (3.3).

Calculating the moments using z0

Having obtained the position of the pivotal plane, we can calculate the monolayer
moments without having to guess z0. Let us take the Cooke model as an example:
Figure 3.19 shows the stress profile Σ0(ξ), computed for a tensionless membrane con-
sisting of 128 lipids.

Using an average value across all our simulations, z0 = 1.475σ, we find the ex-
tremely large positive spontaneous curvatureKm0 = 0.617σ−1, and the positive mono-
layer Gaussian modulus κm = 0.628 kBT . Here we use the latest value of κm = 1

2
κ =

6.4kBT [57]. Since ∂κm/∂z0 = 7.9 kBT/σ in the vicinity of z0, this modulus only
becomes negative for z0 < 1.396σ, significantly smaller than the actual pivotal plane
position. The Gaussian modulus for the bilayer, however, κ = M(2)

b = −22.15 kBT .
It is quite curious that the Gaussian modulus for the bilayer is extremely far on the
negative side, while the monolayer modulus is even positive. One consequence of this
is that from the three terms in Equation (3.64b), the second term contributes by far
the most to κ. Even without comparing to the measured κ value [55] these numbers
appear suspicious—and they cannot simply be blamed on the coarse-grained nature
of the model, since the connection between stress profile and these parameters makes
no assumption about how physically realistic a model is.

Applications related to the moments

These values can give us more insights into a lot of problems. Here we only mention
two examples.

The first example is that Hu et al. have recently pointed out discrepancies in
the link between the stress moments and the elastic parameters, based in part on
a direct way to determine the Gaussian modulus of the bilayer [55, 56]. For in-
stance, while the direct method indicates κ/κ ≈ −0.92 for the Cooke model (at
the state point considered in this paper), the stress profile method instead suggests
κ/κ ≈ −1.7 [55]. For the MARTINI DMPC method they report κ/κ ≈ −1, but using
the more recently determined value for the bending modulus of MARTINI DMPC,
κ ≈ 29 kBT [57], this would change to κ/κ ≈ −0.7; in contrast, the stress profile
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approach gives κ/κ ≈ −0.07 (with the new value for κ) [56].

Now we can push this problem further to the monolayer situation. For the Cooke
model, based on our previous result, it is obvious that κm/κm = 0.10. And if we
apply the same analysis in the MARTINI DMPC case, this leads to κm/κm = −0.23
(using the more recent value for κm = 1

2
κ = 14.5 kBT [57]). Also, the slope of κm(z0)

in the vicinity of the pivotal plane is now negative, ∂κm/∂z0 ≈ −2.8 kBT/σ. This
monolayer elastic ratio in itself is not unreasonable, but the strong difference to the
bilayer ratio implies that Equation (3.61b) and (3.64b) compensate this with a neg-
ative spontaneous monolayer curvature of Km0 = −0.1 nm−1, which goes against the
experimental finding that DMPC should have a quite noticeable positive spontaneous
curvature of Km0 = +0.3(1) nm−1 [84].

The second example is that the position of the pivotal plane helps us to gauge
how strongly these moments are affected by membrane undulations. While fluctua-
tions will always smear out the measured function Σ0(ξ), this does not necessarily
affect the moments. In fact, Hu et al. have shown that for symmetric membranes the
lowest order bilayer moment that is affected is M(4)

b [56]. However, they also show
that the same is not true for the monolayer moments (Equation (3.61)), for which
one additionally needs the root mean square width δ of the fluctuations to be small
compared to z0. Since δ2 ≃ kBTL

2/16π3κ, where L is the side length of a square
membrane patch under periodic boundary conditions, requiring δ/z0 < 10% limits
the membrane to L ≲ 2.23 z0

√
κ/kBT .

Relying on the older value κ ≈ 40 kBT and the guess z0 ≈ 1.25 nm this led Hu
et al. to conclude L ≲ 17.5 nm, and hence Nlipids ≲ 103 (since the area per MARTINI
DMPC lipid at 300K is aℓ ≃ 0.6 nm2) [56]. Using the newer rigidity κ = 29 kBT and
the measured value z0 = 0.85 nm instead gives L ≲ 10.3 nm or Nlipids ≲ 350. Since
the stress profile in Figure 3.20 was calculated with 256 lipids, we are still on the safe
side, but less comfortably so than what Hu et al. originally surmised.

For the Cooke model we find L ≲ 11.8 σ and henceNlipids ≲ 230 (since aℓ ≃ 1.2σ2).
However, the stress profile discussed in Ref. [55] was based on a simulation of a mem-
brane containing 1000 lipids, which would lead to significant broadening (as visible in
Figure 3.19). We hence re-calculated the stress for a membrane consisting of only 128
lipids, leading to a substantially “sharper” profile (the solid line in Figure 3.19). While
the bilayer moments are unaffected, monolayer observables change; for instance, the
reference position z0 where κm = 0 shifts from 1.45σ to 1.40σ, about 3%. This seems
small, but observe that it is much larger than the accuracy with which we can deter-
mine z0. These considerations illustrate that knowing the pivotal plane position may
be important to evaluate the reliability of stress profile moments, or plan simulation
parameters aimed at determining them, even if they might at first sight not even
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depend on the value of z0 (like the first monolayer moment).

3.6.3 Pivotal plane and features in the stress profile

A few suggestions have been made in the past how the position of the pivotal plane
can be gleaned from features observable in Σ0(ξ) [103, 106, 107, 108, 121, 138]. How
do they fare?

For the Cooke model, the measured position z0 ≈ 1.475σ does not correspond to
any particular feature in the stress profile: neither the minimum (at ξ ≈ 2.02σ) nor
the zero (at ξ ≈ 1.38σ) are close enough to be plausible candidates; and the equiva-
lent of the first extremum inwards (at ξ ≈ 0.79σ, only visible in the sharp profile) is
much too far inwards.

Then let us move on to the MARTINI data, for which Σ0(ξ) exhibits more struc-
ture (see Figure 3.20). While the overall tension peak (at ξ ≈ 1.34 nm) does not
appear to be a good choice for z0 [106, 107], the first minimum following this peak
when going towards the bilayer center (at ξ ≈ 0.83 nm) is quite close to our measured
value for z0 [108, 121, 138].

3.6.4 Dependence of the pivotal plane on lipid spontaneous
curvature

With access to the pivotal plane, besides using the value of z0 to get other phys-
ical quantities, another interesting exploration would be checking the pivotal plane
position’s change after tuning certain parameter of the system, such as the lipid spon-
taneous curvature.

The effect of the spontaneous curvature is likely small, but we can also measure
z0 very precisely. Since nothing is known about such a relation, we will restrict to the
case of the Cooke model, where a qualitative tuning of lipid curvature via tuning of
head-bead size is readily accomplished [20], even though a quantification of the value
of the curvature is not easily possible, given that the number extracted from the first
moment of the stress profile might not be reliable.

First of all, it is curious that not even the sign of the effect is obvious. Here
are two different arguments, leading to opposite conclusions. Equation (3.12) shows
that bending an initially flat thin sheet will move the pivotal plane away from the
inner surface (if the Poisson ratio is positive). Now imagine instead a sheet with a
relaxed shape that has some positive spontaneous curvature Km0. Straightening it
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σh [σ] ⟨ξh⟩ [σ] z0 [σ] z0/⟨ξh⟩

0.91 2.1877(51) 1.4036(123) 0.6416(58)
0.93 2.1862(77) 1.4329(64) 0.6554(37)
0.95 2.1911(71) 1.4862(46) 0.6783(30)
0.97 2.1808(68) 1.5184(73) 0.6962(40)

Table 3.6: Additional Cooke model simulations for determining the dependence of z0
on the size of a lipid head bead, σh, and hence lipid curvature. For each value of σh
all systems from Table 3.1 were re-run for 4 × 104 τ , and the results were averaged.
The average head bead distance ⟨ξh⟩ was determined by simulating a flat tensionless
membrane of 320 lipids for 2× 103 τ .

out, in order to make it part of a flat bilayer, will laterally expand the inner region
and hence shift the pivotal plane towards this direction. Hence, we expect

z0 = zrel

[
1− 1

2

ν

1− ν
Km0zrel +O(z20)

]
, (3.65)

where zrel is the position of the pivotal plane in the curved but relaxed state. This
continuum-theory argument implies that the pivotal plane moves closer to the bilayer
midplane as the spontaneous curvature increases, and the reason is a Poisson ratio
effect.

Now consider instead Equations (3.16) or (3.22), which determine the position of
the pivotal plane from the ratio ρ = N+/N− of lipids between outer and inner leaflet
of cylinders or spheres. If we were to increase the spontaneous lipid curvature, we
make it easier for lipids to fit into the outer layer, but harder to fit into the inner one,
which should in turn translocate a few lipids from the inside to the outside as Km0 in-
creases, thus making ρ larger. And since the right hand side of Equations. (3.16) and
(3.22) monotonically increases with ρ, this suggests that z0 should increase with Km0.

To investigate which trend (if any) prevails, we calculate z0 in simulations relying
on the simpler cylindrical protocol, but look at Cooke lipids with different sponta-
neous curvatures, which we tune by the head bead size. We leave all parameters
as before, but pick the head bead sizes from the set σh/σ ∈ {0.91, 0.93, 0.95, 0.97},
where σh = 0.95σ is the case studied so far; parameters and results are summarized
in Table 3.6. Simple geometric arguments show that the change in lipid spontaneous
curvature is proportional to the change in head bead size [55], and so we will monitor
z0 as a function of σh. Since changing the head bead size might also alter a lipid’s
length, and hence the monolayer thickness, we must also remeasure ⟨ξh⟩. Interest-
ingly, we find it to stay the same within error; the change in lipid length is instead
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compensated by lipids moving closer to or farther away from the midplane.

Figure 3.21 plots the ratio z0(σh)/⟨ξh(σh)⟩ as a function of head bead size σh.
We see that the the slope is unambiguously positive, +0.963(11) σ−1, showing that—
ceteris paribus—larger spontaneous curvatures move the pivotal plane outwards.
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Figure 3.21: Position of pivotal plane measured versus lipid length, z0/⟨ξh⟩, as a
function of the head group size σh. The case σh = 0.95σ is the usual parameter
choice; increasing σh will increase the lipid curvature. The confidence bands are 67%
and 95% respectively.

Recall that we claim that the small value z0/⟨ξPh⟩ = 0.491(4) measured for MAR-
TINI DMPC can not be attributed to a lipid curvature effect in Section 3.6.1. Here
is the reason: DMPC is believed to have a sizable positive spontaneous curvature of
Km0 = +0.3(1) nm−1 [84], wheras Chen and Rand measure the spontaneous curva-
ture of DOPE (taken at the pivotal plane) to be Km0 = −0.35(1) nm−1. And yet,
(MARTINI) DMPC has its (relative) pivotal plane position much further inwards
than (real world) DOPE.

3.7 Summary

Previous work has demonstrated that the buckled geometry can be used to determine
membrane elastic moduli [57, 99], and in this chapter we have shown that the same
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geometry can also be used to retrieve information on another elastic property: the
pivotal plane. Its location, due to the effect of the Poisson ratio, depends linearly on
the local curvature of the membrane, to the lowest order. To be precise, we therefore
define the limit at vanishing local curvature as the pivotal plane position, z0. This
correction is actually not negligible for many high curvature cases, such as the inverse
hexagonal phases.

We tested our method for three different resolution lipid models: the Cooke three
bead model, MARTINI DMPC and the Berger model. For the Cooke model, we
start with a conceptually very straightforward analysis of simple geometrical config-
urations, sphere and cylinder, after which we move on to the buckle configuration.
With some conceptual and technical care, all three models’ results turn out to agree
with each other very well. This proves that our more involved method that relies on
analyzing buckled membranes is actually measuring the same observable, the pivotal
plane.

After validating our buckle protocol, we apply the same process to the MARTINI
DMPC and atomistic Berger model. For MARTINI DMPC, we find the pivotal plane
in the middle of the lipid, about 0.4 nm beneath the sn1 glycerol bead, which is not
quite the same as what has been found in experiment [16]: even though it is on DOPE,
after converting back to the flat membrane, the pivotal plane is found at around 2

3
of

the lipid height, not 1
2
.

This discrepancy is likely due to the coarse-grained nature of MARTINI DMPC,
especially the fact that the tails are not as pliable as those of real lipids. This as-
sumption is actually supported by the result of the higher resolution Berger model.
Since the Berger model has a finer tail structure, they can better adjust their con-
formational tail statistics to the local curvature state of the lipid leaflet. The pivotal
plane is indeed found a little beneath the glycerol backbone, which is compatible with
other studies.
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Chapter 4

Determining the lipid tilt modulus

The major work discussed in this chapter has been published in Ref. [142].

4.1 Introduction

4.1.1 Tilt plays an important role in biological processes

We have mentioned the significance of a membrane’s elastic deformation, which is
crucial in numerous biological and biotechnological processes. The study of the cor-
responding elastic properties is essential for understanding lipid membrane behavior.

The traditional study, as we mentioned earlier, starts from Helfrich and Can-
ham [13, 48], who describe the membrane as a smooth, structureless sheet with a
penalty term for bending and stretching in the energy expression. Hence, the most
extensively studied elastic modes of membrane are bending [48] and stretching [35].
The pivotal plane, which has been our focus in the last chapter, is a very important
concept when the membranes are described as mathematical surfaces in Helfrich’s
theory. Besides all these properties, lipid membranes undergo another deformation
in many situations, namely, the tilt of the lipid molecules’ hydrocarbon chains away
from the membrane normal vector.

Tilt effects are found in many biological situations, especially when the monolayer
structure is perturbed by localized defects or membrane insertions. There are many
examples involving the tilt degree of freedom, including the intermediate structure of
membrane fusion stalks [18, 64, 65, 128], the line tension between lipid domains [68],
aqueous pores in lipid bilayers [88], and the deformation caused by protein inser-
tion [22, 66, 88, 89, 90]. What is more, many non-biological phases, even if not as
important for biological study, also have this tilt deformation. A prominent example
is the inverse hexagonal phase [44], which we have already encountered in Chapter 3,
where chain tilt is generated by the molecular packing within the hydrophobic inter-
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stices of neighboring lipid cylinders [116].

Due to its unique significance, lipid tilt has drawn more attention recently. The
original Helfrich theory, however, is insufficient for such studies, since it only con-
siders bending and stretching, and a generalization of Helfrich theory involving tilt
terms is needed. Hamm and Kozlov (HK) [45] have derived an elastic theory includ-
ing the tilt field for non-stretched monolayers. This theory has inspired much work
related to the tilt field; for example, May et al. [87] simulated the undulation of a
flat membrane and provide a new explanation of the transition between bending and
protrusion fluctuations modes in the context of HK theory. In HK theory, in front of
the quadratic tilt term, a new modulus is introduced, the tilt modulus, which reflects
how much the membrane will respond to the tilt deformation, and scientists have
begun to measure it in simulation [71, 140] and experiment [59, 97]. We will discuss
this more in Section 4.4.

In this chapter, we will first introduce a mathematical description of the tilt field,
as well as HK theory in Section 4.2. Based on HK theory, two strategies on the
subject of a buckled membrane are derived, including a direct measurement of the
tilt field, and an indirect method generated from the shape analysis. Then we will
show the results for each method (Section 4.3) and discuss their physical meaning
(Section 4.4).

4.2 Theoretical Framework

4.2.1 Hamiltonian with a lipid tilt field: the theory of Hamm
and Kozlov

We have reviewed the Helfrich Hamiltonian in the last chapter, and displayed the Hel-
frich Hamiltonian for the monolayer in Equation (3.1). This equation, however, does
not account for lipid tilt, which describes the difference between a lipid’s orientation
and the membrane’s local normal. In particular, as shown in Figure 4.1, the directions
of lipids, n, plotted as red and blue lines, need not coincide with the membrane’s lo-
cal normal, N , which should be perpendicular to the black outline. To describe this
difference, an additional tangential vector field T has been introduced [78]

T =
n

n ·N
−N . (4.1)

Since both n and N are unit vectors, the tilt angle θ between these two vectors, as
shown in Figure 4.1, is simply

tan θ = |T | . (4.2)
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Figure 4.1: Illustration of lipid tilt fields in a buckled lipid bilayer. Solid black curves
are the outer surfaces of the bilayer, the dashed curve is the bilayer’s midplane,
and the two dotted curves are the pivotal planes of each leaflet. Local normals are
indicated by solid lines perpendicular to the midplane. Tilted lipids are illustrated
as red and blue lines in the upper and lower leaflet, respectively; the extent of tilt is
strongly exaggerated. The green outline is an example of a cut-out segment. Notice
that for this particular cut the head groups of the lipids in the upper leaflet tilt into
the cut-out segment, while the head groups of the lipids in the lower leaflet tilt out
of the cut. The small inset illustrates the tilt definition from Equation (4.1).

As mentioned in Section 1.2.2, Hamm and Kozlov have developed a theory that
includes this degree of freedom [44, 45]. In their theory, the new elastic description
containing the T field has two major modifications compared to the original Helfrich
Hamiltonian.

Firstly, a new term involving the tilt field itself is added, in a quadratic form to-
gether with a tilt modulus κt,m. Secondly, the curvature tensor K gets replaced by a
“dressed” curvature tensor K̃ = K+∇⊗T (where∇ is the vector differential operator
on the surface). This changes the total curvature into K̃ = Tr(K̃) = Tr(K+∇⊗T ) =
K + ∇ · T (meaning, the tilt divergence adds to the curvature), and the Gaussian
curvature into K̃G = det(K̃). Hence, their joint curvature-tilt Hamiltonian becomes
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H =

∫
dA

{
1

2
κm

(
K +∇ · T −K0,m

)2

+ κ̄mK̃G +
1

2
κt,mT

2

}
.

Here the difference between KG and K̃G is of higher order (it contains terms
quadratic in both tilt and curvature), and so we can ignore the tilde to lowest order.
In fact, since we will subsequently be interested in planar buckles, for which KG = 0,
the Gaussian term will vanish anyways.

We have retrieved the shape equation using functional variation in Section 2.4.3.
Similarly, if we vary Equation (4.3) with respect to T , we obtain the Euler-Lagrange
equation satisfied by the tilt

∇ ∇ · T − ℓ−2T = −∇K with ℓ =
√
κm/κt,m . (4.3)

Two things are worth mentioning about this equation: first, the Green function of the
left hand side has an exponential decay form, and the characteristic length ℓ describes
the range over which a tilt excitation decays. Although the values of the two moduli
κm and κt,m vary, the characteristic length ℓ is on the order of one nanometer (the
typical simulation results of both moduli can be found in Table 4.2, and experimental
results will be discussed in Section 4.4). In other words, the influence of tilt on the
membrane is very local. Second, the right hand side indicates that the gradient of the
local curvature will induce such a tilt field. If a membrane does not have a gradient
in the curvature, such as a flat membrane, a sphere, a cylinder, or a minimal surface,
no tilt field will exist in the membrane.

4.2.2 Hamm and Kozlov model for the buckle

Equation (4.3) can be applied to an undulatory buckle as well. Since such a buckle
is flat along one direction, the whole situation in fact reduces to a one-dimensional
problem. For a given membrane, the tilt field T (not in bold, since it is only a
one-dimensional variable here) can be written as a function of arc length s, and so
Equation (4.3) becomes

T ′′ − ℓ−2T = −K ′ . (4.4)

The explicit form of the Green function is GT (s) = −1
2
ℓ e−|s|/ℓ, showing that,

indeed, tilt decays on the length-scale ℓ, and that the excitation magnitude is pro-
portional to ℓ ∼ κ

−1/2
t,m .

If no tilt is considered, we have the shape equation from Equation (3.25), which
contains the expression for ψ′′. Since K ′ = ψ′′, we can plug Equation (3.25) back into
Equation (4.4), and we get

T ′′ − ℓ−2T = λ−2 sinψ . (4.5)
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This can be used to solve T .

However, the assumption that the presence of tilt does not affect the membrane’s
shape requires further discussion. The imposed curvature will introduce a tilt field
T (s) in the energy expression (Equation (3.24)), hence Equation (3.25) needs to be
rewritten. In other words, instead of a simple clean expression of ψ(s), a precise
solution requires us to solve for ψ(s) and T (s) simultaneously.

Fortunately, the correction due to this tilt effect on the geometrical shape can be
ignored to the lowest order. From a physical perspective, the characteristic length ℓ,
or the range on which the tilt field decays, is on the order of a few nanometer, as we
said earlier. The shape, on the other hand, usually varies on much larger scales.

4.2.3 Fourier expansion of the buckle

The field T (s) can be calculated from Equation (4.5), but the right hand side—in
the case of an Euler buckle—contains a Jacobi elliptical function, and this renders
the resulting equation for the tilt rather unwieldy. However, the buckle configuration
holds an inherent advantage of periodicity, thus applying a Fourier expansion and
comparing the coefficients on both sides appears to be a natural and much easier
approach to solve for T (s).

The expression of ψ(s) is given in Equation (3.31). Using some elementary iden-
tities for Jacobi elliptic functions, we can rewrite the sine of the angle as

sinψ(s) = −2
√
m λ

d

ds
cn[s/λ,m] . (4.6)

Our aim is to expand the right hand side in a Fourier series in s. To do so, let us
recall that elliptic functions are doubly periodic—in both the real and the imaginary
direction. The quarter period in the real direction is given by K = K[m], and the
one in the imaginary direction is K′ = K[1−m], where K[m] is the complete elliptic
integral of the first kind [4]. From these periods we can define the so-called “nome”
q = exp{−πK′/K}. It now turns out that all elliptic functions can be written as
Fourier expansions involving powers of the nome. Specifically, we are interested in
cn[x,m], for which the expansion is [4]

cn[x,m] =
2π

K
√
m

∞∑
n=1
n odd

qn/2

1 + qn
cos

πnx

2K
. (4.7)

Using this in Eqn. (4.6), we get the series expansion
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sinψ(s) =
2π2

K2

∞∑
n=1
n odd

n qn/2

1 + qn
sin

2πns

4Kλ
. (4.8)

Since we furthermore know that this function has period L, it must be true that

L

4λ
= K , (4.9)

and with this we can eliminate the occurrence of K in the argument of the sine, rewrit-
ing the Fourier series expansion in such a way that the period L becomes manifest:

sinψ(s) =
2π2

K2

∞∑
n=1
n odd

n qn/2

1 + qn
sin

2πns

L
. (4.10)

This expansion still contains the elliptic quarter periods K and K′, which in turn
depend on the elliptic parameter m. We have previously shown that the latter can be
written as a rapidly converging series expansion in the buckling strain γ = (L−Lx)/L,
see Equation (3.32). From this we obtain the coefficients of the Fourier expansion as
a Taylor series in γ:

sinψ(s) = λ2
(
2π

L

)2 ∞∑
n=1
n odd

Bn(γ) sin
2πns

L
, (4.11)

where the coefficients Bn are defined by

Bn(γ) = 2
√
γ An(γ)n

( γ
16

)n−1
2

, (4.12)

and the Taylor series An(γ) for n ≤ 9 (i. e., the first 5 modes) are listed in Table 4.1
(the notation is chosen such that An(0) = 1 for all n).

4.2.4 Determining the tilt field

So far, we have a Fourier expansion of the right hand side of Equation (4.5)

λ−2 sinψ(s) =

(
2π

L

)2 ∞∑
n=1
n odd

Bn(γ) sin
2πns

L
. (4.13)

Since the equation is linear, the field T (s) should have the same form

T (s) =
∞∑
n=1
n odd

Cn sin
2πns

L
. (4.14)
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n An(γ)

1 1 + 1
8
γ + 19

512
γ2 + 7

512
γ3 + 2867

524 288
γ4 + · · ·

3 1 + 9
16
γ + 159

512
γ2 + 1411

8182
γ3 + · · ·

5 1 + 15
16
γ + 355

512
γ2 + · · ·

7 1 + 21
16
γ + · · ·

9 1 + · · ·

Table 4.1: Coefficients An(γ) for the series expansions introduced in Equation (4.11)
and (4.12).

109



Now the left hand side of Equation (4.5) becomes

T ′′ − ℓ−2T =
∞∑
n=1
n odd

Cn

[(
2πn

L

)2

+
1

ℓ2

]
sin

2πns

L
. (4.15)

By comparing coefficients, we have

Cn(γ) =
Bn(γ)

n2 + (L/2πℓ)2
. (4.16)

This is the exact solution of the tilt field, except for the one approximation that we
ignore the tilt effect on the shape. What is more, another approximation can be made
as well: the term n2 in the denominator of Equation (4.16) can be neglected. This
approximation, however, is not straightforward. To begin with, if the tilt modulus is
small, ℓ is large. Hence, for the first two modes n = 1 and n = 2, and maybe even for
the third mode n = 3, the competing term n2 can be neglected. And we may hope
that for even higher modes the coefficients Bn(γ) become so small, mostly because
of the exponentially decreasing term (γ/16)(n−1)/2, that we can ignore the mode (and
all subsequent ones) altogether. For instance, at γ = 1

2
, the first few values of the Bn

are

B1(
1
2
) ≈ 1.52 (4.17a)

B3(
1
2
) ≈ 0.184 (4.17b)

B5(
1
2
) ≈ 0.0119 (4.17c)

B7(
1
2
) ≈ 0.000629 (4.17d)

B9(
1
2
) ≈ 0.0000281 . (4.17e)

This is interesting because if we scratch the term n2 in the denominator, what
remains are—up to some overall factor—the Fourier coefficients of sinψ. This means
that to some decent (but admittedly hard to control) approximation, we have the
following result:

T (s) ≈
(
2K
π

)2(
2πℓ

L

)2

sinψ(s) = ε(γ) sinψ , (4.18)

were we defined

ε(γ) =

(
2πℓ

L

)2 (
1 +

1

2
γ +

9

32
γ2 + · · ·

)
. (4.19)

This expression for ε(γ) results from inserting the series expansion of m(γ) from
Equation (3.32a) into K = K[m(γ)] and expanding again.
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Being the amplitude in front of sinψ(s), ε(γ) is the largest possible value of the
tilt; the largest one that is realized occurs at the inflection points of the buckle,
where ψ(s) = ψi takes its maximum value. From Equation (4.6), combined with
Equation (4.9), we can readily deduce that

sinψi = sinψ(L/4) = 2
√
m(1−m) , (4.20)

and inserting the series expansion for m(γ) from Equation (3.32a), we arrive at

sinψi = 2
√
γ

(
1− 9

16
γ − 25

512
γ2 − · · ·

)
. (4.21)

Together with the series expansion for ε(γ) from Equation (4.19), this gives a maxi-
mum tilt amplitude of

Tmax(γ)

(2πℓ/L)2
= 2

√
γ

(
1− 1

16
γ − 25

512
γ2 − · · ·

)
. (4.22)

Since the right hand side becomes 1 for γ ≈ 0.26, this result shows that (2πℓ/L)2

can be viewed as the maximum tilt which lipids assume in a buckle strained by
about a quarter of its length. From Equation (4.2), the maximum tilt angle is hence
θmax = arctan(Tmax).

Let us take a look at Equation (4.18) again. We know from the EL equation
(Equation (3.25)) that sinψ = −λ2ψ′′ = −λ2K ′, and using the identity (4.9), we see
that this is equivalent to

T (s) = ℓ2K ′(s) . (4.23)

This is just the Euler-Lagrange equation for the tilt (Equation (4.4)), but with the
second derivative term removed.

Now, T ′′ ≪ T/ℓ2 holds if the tilt varies slowly compared to the decay length ℓ,
and this in turn happens when the function sourcing the tilt, K ′, varies sufficiently
slowly. But the latter rate is set by the period of the buckle, and so we return to the
condition ℓ ≪ L—which is precisely what motivated us to drop the term n2 in the
denominator of Equation (4.16).

This also provides a new insight how to get the tilt modulus. For Equation (4.18),
or Equation (4.23), we can measure the tilt T (s), and we can measure K ′(s), or
sin(ψ). Hence, this allows us to measure the value of ℓ. Since we know the bending
modulus κm, which can also be measured directly from the same buckling simulation,
we can extract the value of the tilt modulus κt,m.
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4.2.5 From Pivotal Plane to Tilt modulus

We have just provided a possible way to measure the tilt modulus; but this method
might be difficult to implement, since the direct measurement of tilt is extremely chal-
lenging. We will see that later in the results section. But there is another approach,
even though not so obvious at the beginning, to help us obtain the tilt modulus.

Recall that in Section 3.3.2 we found the following relations

a±N±

Ly

= ∆s± z0∆ψ , (4.24)

where ∆s is the arc length between the two cuts, ∆ψ is the angle by which the buckle
changes along the cut, z0 is the distance of the pivotal plane from the bilayer’s mid-
plane, and Ly is the width of the buckle.

The key insight—as far as tilt is concerned—is that tilt further increases or de-
creases the available area. As Figure 4.1 illustrates, different regions along the height
of a lipid may tilt into or out of any chosen cut, thus changing the count of lipids in
that region. Moreover, the effect does not cancel but amplify across the two leaflets,
thus affecting the overall lipid imbalance in a tilt-dependent way. Considering the
geometry outlined in Figure 4.1, we arrive at the following tilt-correction:

a±N±

Ly

= ∆s± z0∆ψ + (ξ − z0)[T±(s)− T±(s)] , (4.25)

where ξ is the distance away from the bilayer’s midplane, which we use as a reference
for lipid counting. For instance, if we use a particular bead as the reference bead,
then ξ is the (average) distance of that bead from the midplane.

As it stands, this result is not yet very useful. We do not measure the tilt in
our simulation, and as we just said, it is very hard to do so. Hence, we will instead
use Equation (4.23) to link the tilt to the local curvature gradient. However, there
is yet one more complication we need to consider: the curvature we speak of is the
one of the bilayer midplane, but the monolayer tilt fields couple to the curvatures
Kp,± at the two pivotal planes, not the curvature K at the midplane. However, these
curvatures are connected by the parallel surface relation [27]

Kp,± =
K ± 2KGz0

1±Kz0 +KGz20
(4.26a)

KG=0
=

K

1±Kz0
(4.26b)

Kz0≪1
≈ K ∓K2z0 , (4.26c)
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showing that the tilt fields should in fact be written as

T± = ∓ℓ2K ′(1± 2Kz0) . (4.27)

If we want to calculate ∆T±, we need to deal with ∆K ′ and ∆K ′K. K ′, however, is
not an ideal variable to use in numerical analysis, since it requires two derivatives of
ψ. If we put Equation (4.18) and Equation (4.23) together, obviously we have

ℓ2K ′ = ε(γ) sinψ ≈ ε(γ)ψ . (4.28)

Here we use the approximation sinψ ≈ ψ. Now K ′ can be represented by ψ, which
is a direct observable in our simulation. Now we insert Equation (4.27) into Equa-
tion (4.25) and use Equation (4.28) to replace all the K ′. Doing so, we get

a±N±

Ly

= ∆s± z0∆ψ ∓ ε(γ)(ξ − z0)∆ψ − 2ε(γ)(ξ − z0)z0∆(Kψ) . (4.29)

In this equation, all variables stem from pure geometry—except for ε(γ), which is
a function of ℓ (Equation (4.19)), or the tilt correction. This gives us access to tilt
information from an analysis of the buckle geometry alone.

Here, we are going to follow a similar strategy as in Section 3.3.2. Again, we define
two further quantities: first, M± = N+±N−, the sum/difference of the lipid numbers

across the cut-out segment, and the quantity evaluated for the whole buckle: M
(p)
± .

With these definitions, we can rewrite Equation (4.29) as

M
(p)
± ∆s−M±L = −M (p)

∓ ∆ψ[z0(1 + ε)− εξ] + 2M
(p)
± εz0(ξ − z0)∆(Kψ) .

Since Ntotal = M
(p)
+ ≫ M

(p)
− ≈ 0, we will now choose the lower tier signs in order to

preserve the information leading to z0 and ε, as well as avoid dealing with the ∆(Kψ)
term. We can see this in more details later.
Introducing the two variables

xp =M
(p)
+ ∆ψ and yp =M−L−M

(p)
− ∆s , (4.30)

which are the same as in Section 3.3.2, we can turn Equation (4.30) into the form

yp = [z0 (1 + ε)− εξ] xp − 2∆(Kψ)z0(ξ − z0)ε M
(p)
− . (4.31)

The only remaining nuisance is the last term, but thankfully it turns out that we
can ignore it. Notice that it contains M

(p)
− , the difference in lipid number across the

whole buckle. Since we always set up initial buckles such that M
(p)
− = 0, it can only

ever become nonzero due to lipid flip-flop; but for many lipid models—especially the
more highly resolved ones (such as MARTINI and Berger)—the flip-flop rate is so
small that the initial lipid symmetry is preserved throughout the entire simulation,
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and thus the nuisance term vanishes exactly. If the flip flop rate does not vanish (such

as in the Cooke model), then M
(p)
− will not remain zero during the simulation—but

its average will. Hence, we can remove this term from Equation (4.31), and arrive at
the very simple relation

z0 =
yp/xp
1 + ε

+
ε

1 + ε
ξ . (4.32)

This equation tells us three things. Firstly, the pivotal plane position z0 is almost
equal to the slope yp/xp, but that it will very slightly depend on the choice of refer-
ence bead, since that bead’s average position ξ away from the bilayer midplane enters
the value for z0: the farther away the reference bead is, the larger the value of z0 we
will deduce, which agrees with our results in Figure 3.12, Figure 3.15 and Figure 3.17.

A second insight is that we choose a self-consistent way to determine the z0. After
adding the tilt effect, the intersection between yp/xp = z0 and ξ = z0 still satisfies
the updated version, Equation (4.32).

And last but not least, if we draw z0 with respect to ξ, by fitting the slope, we
can extract ε, and in turn get the tilt modulus κt,m. Using Equation (4.19), and
simplifying slightly (because ε≪ 1), we therefore get

κt,m = κm

(
2π

L

)2 1 + 1
2
γ + 9

32
γ2 + · · ·

z′0(ξ)
. (4.33)

Since the bending modulus is known for the system [57] (see also Table 4.2), and
we already have the relation between z0 and ξ from the data in the last chapter,
Equation (4.33) permits us to determine the tilt modulus.

4.3 Results for tilt modulus determination

In the last section, we found three approaches to determine the tilt modulus. The
corresponding formulas are Equation (4.18), Equation (4.23) and Equation (4.33).
The first two equations involves a direct measurement of the buckle’s tilt, while the
last one only requires a shape analysis, which has already been done in the last chap-
ter. In this section, we will implement all three methods and explore the their results.

4.3.1 Direct Measurement Method

For the direct measurement method, we need the value of K ′(s) (or sinψ(s)), and
T (s). Since these observables are all functions of arc length s, we need a set of data
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Figure 4.2: A typical example of the buckle simulation result. This example corre-
sponds to a snapshot from a γ = 0.25 system using MARTINI DMPC, and all blue
lines are the theoretical prediction on an ideal symmetrical Euler buckle, while the
red lines are the actual simulation results. All horizontal axes are arc length s.

points for each individual variable.

Based on the shape analysis in Chapter 3, we know the angle ψ(s), both the
expression for an ideal Euler buckle, and the actual simulation situation. It is in
principle easy to get K ′ = d2ψ/d2s, the second derivative of ψ, and sinψ, the sine
function of ψ. A typical result is shown in Figure 4.2: all blue lines are theoretical
predictions of an Euler buckle, while all red lines are the actual simulation results.
As we can see, both ψ and sinψ agree with the prediction very well. For the slope K
and K ′, due to the inherent deficit of numerical derivation, we suffer more wiggling
structure and discontinuities.

So far, even though K ′ is not a good variable to estimate, sinψ still remains a
promising candidate. After measuring the tilt field T , Equation (4.18) will permit us
to determine the tilt modulus.

The tilt field T (s) in simulation, however, has a lot of noises. Figure 4.3 illustrates
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one such example. In the left figure, the red dots are the local normal vector direction
from fitting the curve shape, and each blue dot represents one lipid’s direction. The
whole system follows the periodic boundary condition in both x and z direction. We
can see that the lipids’ directions fluctuate around the normal vector. (Actually, the
whole point is that they fluctuate around some direction close to the local normal
vector.) In order to better evaluate the tilt field, we divide the arc length into 10
evenly spaced bins, [smin, smin + d], · · · , [smax − d, smax], where d = (smax − smin)/10.
We assume lipids within the same bin have the same tilt field, and by binning, we can
check the rough shape of the function T (s), which is the red line in the right figure.
Besides the red error bar plot, the blue dots are the distribution of T (s) and the
blue curve is the theoretical prediction of T (s). The error bar for each bin is at the
order of 20, and is much larger than the actual value (of order 1), or the theoretical
prediction (around 1).

An obvious choice to reduce the error bar is averaging, and this is also why we do
the binning in the first place. One might suggest averaging over different snap shots
of the same system as it evolves. However, this is equivalent to averaging the shape
of the buckle, which is a tricky and questionable thing to do, considering the buckle
moves freely in the water instead of fluctuating from a fixed shape.

Another factor worth mentioning is the strategy of deciding the lipid direction.
The tilt field itself is directly related to the lipid direction, but as we have mentioned
in Section 3.4, there is no obvious (let alone unique) way to define a lipid’s direction.
Previous publications show no agreement of a standard routine determining the di-
rector n, and most of the time, even the reason behind choosing one method over
another is not illustrated. May et al. apply four different strategies based on the idea
of a two point determination: one point represents the head part, and another point
represents the tail part [87]. Levine et al. [71] also apply three different strategies
when measuring the tilt modulus, and the details of which we will revisit in the dis-
cussion section.

Among all these choices, one simple way to verify if certain choices are reliable is
to compare the final results of various methods. This is precisely what we have done
when we estimated the value of z0. It turns out that with respect to the pivotal plane
location calculation, all methods agreed with each other very well. This showed that
our results are hardly affected by such choices.

For the tilt field situation, however, the problem is not the bias, but the variance
of our estimator of n, or T (s). In other words, unless a certain choice can significantly
reduce the error of the tilt field T (s), no choice is a “good” choice here. In fact, this
large variance emerges from the disorder of the lipid matrix itself, rather than the
analysis techniques, hence it is hard to get around the problem by a clever lipid di-
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Figure 4.3: Left figure: the red lines represent the local normal vector as the angle
from the horizontal direction, while the blue dots represent the angle of each lipid.
Right figure: the blue dots are the tilt angle (angle between lipids and local normal)
for each lipid. The blue line is the theoretical prediction for an ideal Euler buckle,
which the red data points together with the error bars, result from binning the blue
dots into 10 evenly spaced bins along the arc length s.

rection calculation method. It turns out that this is the case: we tried five strategies,
including four strategies from Kopelevich’s group [87] and another one from glycerol
backbone to the center of mass of the whole lipid. All of them give a similarly large
variance.

From the above analysis, we have shown that the direct measurement might not
be a feasible option for calculating the tilt modulus, because the tilt field’s inherent
noise is too large compared to its actual value. The other method, however, only
requires the analysis of the shape, and no investigation of the tilt field is needed.

4.3.2 Geometrical Analysis Method

To calculate the monolayer tilt modulus from Equation (4.33), we need to know (a)
the monolayer bending modulus κm and (b) the slope of the line z0(ξ). For all three
models we have previously calculated the bilayer bending modulus κ via the buckling
protocol [57]. For the monolayer, κm = κ/2. The slope of z0(ξ) can be extracted from
the z0(ξ) against ξ plot, which has been done in the last chapter.
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Model κm [kBT ] ℓ [nm]
(
2πℓ
L

)2
θmax(γ = 1

4
) κt,m [ pN

nm
]

Cooke 6.4(2)∗ 1.32(22) 0.0156(51) 0.85(28)◦ 14.4±4.6
MARTINI 14.5(5)∗ 1.008(34) 0.0184(12) 1.008(66)◦ 57.4±3.0
Berger 12.4(5)∗ 1.609(43) 0.0665(36) 3.64(20)◦ 19.4±1.0

Table 4.2: Results for all simulations analyzed in this work. To ease notation, we
choose the Cooke-model generic parameters to be σ = 1nm and kBT = 1.1 ϵ =
4.1 pNnm. Values with an asterisk have been previously determined in Ref. [57],

Before we discuss the specifics of all three models, the whole results are summa-
rized in Table 4.2.

Cooke model

The Cooke model only has three beads per lipid, and hence the function z0(ξ) only
has three points for any value of γ. (Figure 3.12) Moreover, as we have discussed
in Section 3.5.1, since the z0(ξ) value corresponding to the head bead is significantly
lower than for the other two beads, a linear fit is generally a statistically implausible
description of these three points. However, a line drawn through the two points be-
longing to the two tail beads yields consistent values for the slope. This might sound
trivial, since one can always draw a line through two points, but “consistency” here
means that the slope is consistent for all values of the strain γ, a finding that would
not have to hold, and which in fact does not hold if we were to fit a line through all
three points.

Figure 4.4 shows the value of the tilt modulus κt,m inferred via Equation (4.33),
plotted against all simulated strains γ. The result averaged over all simulations gives
κt,m = (3.5±1.1) kBT/σ

2. With the mapping σ = 1nm and kBT = 1.1 ϵ = 4.1 pNnm,
this gives κt,m = (14.4± 4.6) pN/nm. The error is fairly large, since the two available
points do not constrain the slope of z0(ξ) very precisely. The tilt decay length is
found to be ℓ ≈ 1.3 nm and is hence clearly microscopic. For a strain of 25% the
inferred maximum tilt angle is 0.85◦ and thus very small.

MARTINI model

The MARTINI model for DMPC contains 10 CG beads, and this offers a broader
basis for estimating the slope of z0(ξ). Moreover, unlike in the Cooke model case,
all points lie plausibly on a single line (Figure 3.15). There are still small system-
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Figure 4.4: Value of the tilt modulus κt,m for the Cooke model against strain γ. The
shaded regions are the 1 σ and 2 σ confidence bands when fitting to a constant.

atic effects, this time related to the fact that the inferred z0 values belonging to the
beads of the sn1-chain are slightly smaller (by about 0.01 nm) than those inferred
from the sn2-chain. Figure 4.5 shows the values of the tilt modulus inferred from
the slope in such graphs for all values of γ studied. Averaging the data, we find
κt,m = (57.4 ± 3.0)pN/nm, and a tilt decay length of ℓ ≈ 1.0 nm. The maximum
inferred tilt angle at γ = 25% is found to be 1◦, again very small.

Unlike for the Cooke data, the MARTINI results for κt,m(γ) are precise enough
to see that the γ-dependent correction in Equation (4.33) is crucial in order to get
strain-independent values of the tilt modulus. This nontrivial correction illustrates
that our theory describes the data well, despite several approximations, of which the
two most important ones were the use of a simplified Euler Lagrange equation (4.23)
for connecting tilt and shape and the replacement sinψ → ψ in Equation (4.29) to
ease including tilt in the lipid-imbalance equation.

Berger model

For the Berger model, Figure 3.17 shows that the function z0(⟨ξi⟩) is no longer a simple
line. The slope of this plot is now an ill-defined quantity. In the Discussion section
we will reflect on some further implications of this result. For now, a pragmatic but
plausible way forward is to observe that within the tail-region of the lipid the relation
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Figure 4.5: Value of the tilt modulus κt,m for the MARTINI model against strain
γ. The filled symbols are determined from Equation (4.33); the open symbols are
calculated without the strain correction factor of 1 + 1

2
γ + 9

32
γ2 + · · · , showing that

the latter is needed to arrive at a result that is no longer strain dependent. The shaded
regions are the 1 σ and 2σ confidence bands when fitting the filled data points to a
constant.

between z0 and the distance ⟨ξi⟩ of a reference atom away from the bilayer’s midplane
is still linear, and so we will define the slope of z0(ξ) only with this subset of atoms.
This means that, as far as tilt is concerned, we restrict our analysis to the tails.

Figure 4.6 shows the values of the thus-inferred tilt modulus against all inves-
tigated values of the strain γ. Averaging over all strains, we get κt,m = (19.4 ±
1.0) pN/nm, which is about three times smaller than the value inferred from the
CG MARTINI version of DMPC. In contrast, the tilt decay length is fairly similar,
ℓ ≈ 1.3 nm. Notice that the small value of the modulus also renders the maximum
tilt angle bigger: we find θmax(γ = 1

4
) = 3.67◦, almost 4 times the maximum value for

MARTINI under the same conditions.

4.4 Discussion

4.4.1 Comparison with previous work

The tilt moduli of several different atomistic lipid models have recently been deter-
mined in simulations, relying on a spectral analysis of lipid orientation in a (possibly
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Figure 4.6: Value of the tilt modulus κt,m for the Berger DMPC model against strain
γ. The shaded regions are the 1σ and 2 σ confidence bands when fitting to a constant.

quite small) flat bilayer [71, 140]. Also, a first experimental measurement has been
presented, which analyzed membrane undulations at large wave vectors [59]. We are
going to compare our result with these values.

The only experimentally available tilt modulus before our initial publication was
published by Jablin et al. [59], who found (95±7) pN/nm—albeit for the lipid DOPC.
As far as simulations are concerned, Watson et al. have determined the tilt modu-
lus of Berger-DMPC at 303K by measuring transverse lipid orientation fluctuations,
finding κt = 56 pN/nm [143]. Using the same technique, but the CHARMM 36 force
field for DMPC, Venable et al. have found κt = 40.2 pN/nm [140]. Our own value
of κt = (38.8 ± 2) pN/nm is of quite comparable magnitude. In fact, Venable et al.
studied twelve common lipids and found values in the range 40 . . . 85 pN/nm. The
fact that our value is slightly smaller than Venables might be attributable to the slight
difference in temperature, according to the temperature dependence of the DMPC
tilt modulus as recently published in Ref. [96]. In fact, this publication also explicitly
measured the DMPC tilt modulus and found (44±2) pN/nm, which agrees excellently
with our value determined from the Berger force field.

Previous measurements of the tilt modulus of MARTINI DMPC do not yet appear
to exist, but Watson et al. have measured the tilt modulus of MARTINI DPPC [81],
which differs by having one extra CG bead per chain. They find κt = 110 pN/nm,
about a factor of 2 larger than their Berger DMPC value. Our own value for MAR-
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TINI DMPC, κt = (115± 6) pN/nm is about a factor 3 larger that the united atom
Berger value. Both measurements suggest that MARTINI lipids tilt less easily than
the more highly resolved united atom models.

In their investigation of bending and tilt moduli through lipid orientation fluctu-
ations, Levine et al. point out that the value for the tilt modulus may shift by up
to ±20% depending on how they define the lipid director [71]. In the supplementary
material to their publication they compare three different definitions. While they all
use the midpoint between the terminal methyls of the two tails as one anchor point,
they differ in the choice of the other anchor point: either the phosphate atom, or
the glycerol C2 atom, or the midpoint between those two (the latter is the authors’
preferred choice). They find that the inferred tilt modulus increases as one moves
the upper reference point further out. Our own studies suggest an explanation of
this finding. Recall from Fig. 3.17 that z0(ξ) is not simply a straight line, the shape
which our theory predicts under the assumption that the lipids tilt uniformly. In-
stead, the slope decreases beyond the glycerol backbone and even becomes negative.
This clearly shows that the head of the lipid does not participate in tilting to the
same extent as the tails do. Had we described the lipid by a simple line between two
reference points, then the resulting slope in z0(ξ) would be smaller the higher up the
head-group choice is taken. But from Equation (4.33), smaller slopes result in bigger
moduli, and so we recover the same trend as Levine et al. do.

4.4.2 Physical meaning behind the non-linearity of the Berger
model

The non-uniform tilting of lipids is more than a nuisance for defining the orientation.
It reminds us that the notion of lipid tilt is more subtle than simply a rotation of the
lipid without a change of its shape. Interestingly, our own analysis never requires us
to define an orientation vector, and so we can empirically test whether or not lipids
tilt uniformly—concluding that they do not. Moreover, the data suggest that the
tail region of lipids shows a clean linear trend in z0(ξ), suggesting that the tails do
tilt uniformly, while the head group shows a more complex behavior. One might be
tempted to define a local tilt modulus along the height of the lipid, via the local slope
of z0(ξ), but notice that this would give an infinite modulus at the point where z0(ξ)
has its maximum (roughly at ξ = 1.6 nm, where the C3 atom of the glycerol backbone
sits). We instead prefer to define a tilt modulus for the tail region alone (since it is
well-defined). This also means that our effective lipid orientation is more tilted than
the one which Levine et al. infer from their preferred choice [71], which is one possible
reason for why our tilt modulus is slightly smaller than theirs.
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4.5 Summary

In this chapter, we have shown that the buckling configuration and an analysis pro-
cess similar to Chapter 3, can not only provide the pivotal plane information, but
also give us access to another important elastic property, the tilt modulus. Just as in
the last chapter, we applied our method to three coarse-grained models with different
resolutions. For MARTINI DMPC and Berger DMPC we find values for the moduli
which are compatible (within the scatter still common for simulations of moduli) with
other simulations that use very different techniques relying on a fluctuation analysis.
For the highly coarse-grained Cooke model no numbers for comparison existed, but
the results for maximum tilt angle and tilt decay length are very similar to the other
two models, especially MARTINI.

We find that MARTINI DMPC resists titling more strongly than a more finely
resolved united atom model of DMPC. Moreover, analysis of the latter model suggests
that these lipids do not tilt uniformly, only the tails do. Hence, the definition of tilt
becomes less obvious, as previously noted [71], but our analysis strategy does not
have to commit to a specific definition of the tilt direction, since it instead backs out
the extent of local tilt from the data.
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