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ABSTRACT 

 

The societal benefit of electric vehicles depends heavily on how they interact with the electric 

power system. In this thesis, I investigate the impact of electric vehicles based on this interaction in 

order to determine the possible benefits of controlling electric vehicle charging and how they 

compare to other vehicle options based on optimization models of electricity systems. I estimate the 

cost reductions from controlled charging of electric vehicles in the New York power system both 

with and without a high wind penetration and with and without the need for capacity expansion. In 

this power system, controlled charging can reduce the generation costs associated with charging the 

vehicles in half, with slightly higher cost reductions in high wind scenarios. I also estimate the cost 

reductions along with the changes in carbon and criteria air pollutant emissions due to controlled 

charging in the PJM power system. I examine both current and future grid scenarios, several plug-in 

vehicles types, and a high wind penetration scenario. Again I find that controlled charging can 

significantly reduce the costs of charging the vehicles, on the order of 30% of the generation costs 

to meet the charging demand. However, the environmental and health damages from the emissions 

cause total social costs to be higher with controlled charging in most cases.  Finally, using the 

charging emissions from PJM, I evaluate the lifecycle emissions of plug-in, hybrid, and conventional 

vehicles in this region to determine which has lower environmental and health damages. I find that 

given the representative vehicles studied, plug-in electric vehicles have higher lifecycle damages than 

hybrids in PJM in 2010 but have lower lifecycle damages in a forecasted 2018 PJM power system.   

  



 

 vi 

TABLE OF CONTENTS 

 

CHAPTER 1: INTRODUCTION ..................................................................................................................... 1 

1.1 REFERENCES ....................................................................................................................................................... 1 

CHAPTER 2: OPERATIONAL AND CAPACITY COST IMPACTS OF CONTROLLED ELECTRIC 

VEHICLE CHARGING IN POWER SYSTEMS WITH HIGH WIND PENETRATIONS ............................... 3 

2.1 INTRODUCTION ................................................................................................................................................... 4 

2.2 METHODS ............................................................................................................................................................ 8 

2.2.1 Model Overview............................................................................................................................................. 8 

2.2.2 Power Plant Fleets ....................................................................................................................................... 9 

2.2.3 Plug-in Hybrid Electric Vehicle Fleet ............................................................................................... 11 

2.2.4 Wind Power Data ...................................................................................................................................... 15 

2.2.5 Load Data ..................................................................................................................................................... 16 

2.2.6 Optimization ............................................................................................................................................... 16 

2.3 RESULTS AND DISCUSSION ............................................................................................................................. 22 

2.3.1 Cost Reductions .......................................................................................................................................... 23 

2.3.2 Capacity and Generation Mix .............................................................................................................. 32 

2.4 CONCLUSIONS ................................................................................................................................................... 35 

2.5 REFERENCES ..................................................................................................................................................... 37 

CHAPTER 3: EMISSIONS AND COST IMPLICATIONS OF CONTROLLED ELECTRIC VEHICLE 

CHARGING IN THE US PJM INTERCONNECTION ....................................................................................... 40 

3.1 INTRODUCTION ................................................................................................................................................. 41 

3.2 METHODS .......................................................................................................................................................... 42 



 

 vii 

3.2.1 Scenarios ....................................................................................................................................................... 42 

3.2.2 Optimization of the Power System .................................................................................................... 43 

3.2.3 Data ................................................................................................................................................................. 47 

3.2.4 Valuation of Health and Environmental Damages ................................................................... 49 

3.3 RESULTS AND DISCUSSION ............................................................................................................................. 50 

3.4 REFERENCES ..................................................................................................................................................... 61 

CHAPTER 4: LIFECYCLE EMISSIONS AND IMPACTS OF PLUG-IN ELECTRIC VEHICLES IN 

PJM 64 

4.1 INTRODUCTION ................................................................................................................................................. 65 

4.2 METHODS .......................................................................................................................................................... 66 

4.2.1 Lifecycle Boundary ................................................................................................................................... 66 

4.2.2 Vehicle and Power Grid Scenarios..................................................................................................... 67 

4.2.3 Lifecycle Inventory ................................................................................................................................... 68 

4.2.4 Lifecycle Damages .................................................................................................................................... 72 

4.3 RESULTS ............................................................................................................................................................ 74 

4.3.1 Lifecycle Emissions ................................................................................................................................... 74 

4.3.2 Lifecycle Damages .................................................................................................................................... 76 

4.4 DISCUSSION AND CONCLUSIONS .................................................................................................................... 80 

4.5 REFERENCES ..................................................................................................................................................... 88 

APPENDIX 4.A ................................................................................................................................................................ 91 

CHAPTER 5: CONCLUSION ....................................................................................................................... 94 

 

  



 

 viii 

LIST OF TABLES 

 

TABLE 1.1 COMPARISON OF TOP-DOWN REGRESSION MODEL VS. BOTTOM-UP OPTIMIZATION APPROACHES ..................................... 3 

TABLE 1.2: SUMMARY OF EACH CHAPTER ........................................................................................................................................................ 1 

TABLE 2.1: COMPARISON BETWEEN THE ACTUAL NYISO FLEET AND THE SIMULATED FLEEET ......................................................... 11 

TABLE 2.2: RANGES OF VALUES USED TO REFLECT THE UNCERTAINTY IN THE CHARACTERISTICS OF THE FUTURE PLUG-IN 

VEHICLE FLEET ........................................................................................................................................................................................ 15 

TABLE 2.3: COMPARISON OF COST SAVINGS FROM CONTROLLED PHEV CHARGING IN THE FIXED CAPACITY SCENARIO ................ 25 

TABLE 2.4: COSTS FOR 10% VEHICLE PENETRATION WITH DIFFERENT LEVELS OF PAYMENT TO PHEV OWNERS ......................... 26 

TABLE 2.5: MODEL ASSUMPTIONS .................................................................................................................................................................. 28 

TABLE 3.1: PREVIOUS LITERATURE ................................................................................................................................................................ 42 

TABLE 3.2: REDUCTION IN ANNUAL GENERATION COSTS VIA CONTROLLED CHARGING VS. UNCONTROLLED CHARGING ................. 50 

TABLE 4.1: COMPARISON OF LITERATURE ADDRESSING THE LIFECYCLE EMISSIONS OF PLUG-IN ELECTRIC VEHICLES..................... 66 

TABLE 4.2: SCENARIOS FOR LIFECYCLE EMISSIONS AND DAMAGES COMPARISON ................................................................................... 68 

TABLE 4.3: DATA FOR THE LIFECYCLE EMISSIONS FOR EACH STAGE ......................................................................................................... 69 

TABLE 4.4: TAILPIPE EMISSIONS IN GRAMS PER MILE FROM GREET 1 ................................................................................................... 71 

TABLE 4.5: UNCERTAINTY UNACCOUNTED FOR IN THE ANALYSIS ............................................................................................................. 74 

TABLE 4.6: ROBUSTNESS OF RESULTS FOR THE DAMAGE DIFFERENCE BETWEEN HYBRID VEHICLES AND EACH OTHER VEHICLE 

TYPE. ......................................................................................................................................................................................................... 78 

TABLE 4.7: CURRENT GRID UPSTREAM EMISSION RATES .......................................................................................................................... 91 

TABLE 4.8: FUTURE GRID UPSTREAM EMISSION RATES............................................................................................................................. 93 

  

 

  



 

 ix 

LIST OF FIGURES 

 

FIGURE 2.1 SYSTEM OVERVIEW......................................................................................................................................................................... 9 

FIGURE 2.2: POWER PLANT FLEETS DERIVED FROM NYISO'S ACTUAL CAPACITY. ................................................................................. 10 

FIGURE 2.3: AGGREGATE CHARACTERISTICS FOR ALL PASSENGER VEHICLES IN THE NHTS DATASET ............................................... 13 

FIGURE 2.4: SEASONAL DISPATCH IN THE FIXED CAPACITY SCENARIO .................................................................................................... 23 

FIGURE 2.5: ANNUAL COST SAVINGS DUE TO CONTROLLED CHARGING ..................................................................................................... 30 

FIGURE 2.6: SENSITIVITY OF THE MAXIMUM ANNUAL SYSTEM COST SAVINGS FOR A RANGE OF VEHICLE PENETRATIONS FROM 0% 

TO 15% OF A 9 MILLION PASSENGER VEHICLE FLEET. ..................................................................................................................... 31 

FIGURE 2.7: SENSITIVITY OF THE MAXIMUM ANNUAL SYSTEM COST SAVINGS POSSIBLE FOR LEVEL 1 (1.2 KW), LEVEL 2 (7.4 

KW), AND LEVEL 3 (30 KW) CHARGING ............................................................................................................................................ 32 

FIGURE 2.8: COMPARISON OF CAPACITY AND GENERATION WITH AND WITHOUT CONTROLLED ELECTRIC VEHICLE CHARGING .... 33 

FIGURE 2.9: COMPARISON OF RESULTING GENERATION MIXES BETWEEN THE HOURLY AND FIFTEEN MINUTE MODEL. .................. 35 

FIGURE 3.1: PJM POWER SYSTEM ................................................................................................................................................................... 47 

FIGURE 3.2: CHANGE IN SYSTEM GENERATION DUE TO ELECTRIC VEHICLE CHARGING FOR CONTROLLED AND UNCONTROLLED 

CHARGING FOR A 10% ELECTRIC VEHICLE PENETRATION ............................................................................................................... 52 

FIGURE 3.3: AVERAGE CHANGE IN EMISSIONS DUE TO CONTROLLED VS. UNCONTROLLED CHARGIN ................................................... 53 

FIGURE 3.4: TOTAL CHARGING EMISSIONS IN PJM IN THE HIGH WIND SCENARIO .................................................................................. 54 

FIGURE 3.5: CHANGE IN ANNUAL SOCIAL BENEFITS DUE TO CONTROLLED CHARGING ........................................................................... 55 

FIGURE 3.6: CHANGE IN ANNUAL SOCIAL BENEFITS FOR EACH AP2 YEAR ............................................................................................... 57 

FIGURE 4.1: LIFECYCLE INVENTORY FOR PLUG-IN HYBRID, HYBRID, AND CONVENTIONAL VEHICLES. ................................................ 67 

FIGURE 4.2: CUMULATIVE PROBABILITY DISTRIBUTION OF DAMAGES FOR UPSTREAM PRODUCTION EMISSIONS BY POLLUTANT 

TYPE. ......................................................................................................................................................................................................... 73 

FIGURE 4.3: LIFECYCLE EMISSIONS BY POLLUTANT AND LIFECYCLE STAGE FOR EACH VEHICLE TYPE IN THE CURRENT (A) AND 

FUTURE (B) PJM GRID............................................................................................................................................................................ 75 

FIGURE 4.4: EXPECTED VALUE OF LIFECYCLE DAMAGES FOR EACH VEHICLE TYPE IN THE CURRENT PJM GRID ................................ 76 



 

 x 

FIGURE 4.5: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE FUTURE PJM GRID ............................................................................... 77 

FIGURE 4.6: CDF OF DAMAGES OF EACH VEHICLE TYPE RELATIVE TO HYBRID VEHICLES IN THE CURRENT (2010) PJM GRID ..... 78 

FIGURE 4.7: CDF OF DAMAGES OF EACH VEHICLE TYPE RELATIVE TO HYBRID VEHICLES IN THE FUTURE (2018) PJM GRID. ...... 79 

FIGURE 4.8: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE CURRENT PJM GRID WITH ALL VEHICLES ADOPTED 

PROPORTIONAL TO POPULATION IN METRO AREAS OF 1 MILLION RESIDENTS OR MORE ............................................................ 80 

FIGURE 4.9: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE CURRENT PJM GRID GIVEN 2011 AP2 DAMAGE VALUES ............ 82 

FIGURE 4.10: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE FUTURE PJM GRID GIVEN AP2 2011 DAMAGES VALUES .......... 83 

FIGURE 4.11: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE CURRENT PJM GRID BROKEN DOWN BY POLLUTANT .................. 83 

FIGURE 4.12: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE FUTURE PJM GRID BROKEN DOWN BY POLLUTANT .................... 86 

FIGURE 4.13: EXPECTED VALUE OF LIFECYCLE DAMAGES IN THE FUTURE PJM GRID FROM THE INDIVIDUAL VEHICLE LIFECYCLE 

PLUS THE EXTRA CO2 EMISSIONS RESULTING FROM THE INCENTIVES FOR PLUG-IN VEHICLES IN THE CAFE STANDARD. ... 87 

  



 

 1 

Chapter 1: INTRODUCTION 

Electric vehicles are seen as a promising technology for reducing the environmental and health 

impacts of transportation systems. Passenger vehicles are responsible for 17% of US greenhouse gas 

emissions [1] as well as other pollutants harmful to human health and the environment. For 

example, particulate matter emissions, especially in urban areas, contribute to respiratory illnesses 

like asthma, pneumonia, and bronchitis [2]. Electric vehicles have been promoted through both 

federal and state policies such as the Zero Emissions Vehicle (ZEV) mandate, Corporate Average 

Fuel Economy (CAFE) standard and tax incentives, but may not reduce emissions in all 

circumstances.   

Electric vehicles have also been proposed as a means of incorporating more renewable energy 

into the electricity system, which accounts for a further 40% of US greenhouse gas emissions, 71% 

of SO2 emissions, and 14% of NOx emissions [3][4]. Electric vehicles could help reduce these 

emissions by providing additional flexibility to deal with the inherent variability of many renewable 

resources like wind and solar generation. Renewable energy is also being encouraged by federal 

policies, such as the production tax credit, and state renewable portfolio standards. These polices 

have supported the rapid deployment of wind power, which is now the fastest growing source of 

energy in the country [5]. As this resource grows, it will be important to understand both how 

electric vehicles can help mitigate wind power’s inherent variability and how adding increasing 

amounts of wind to the grid will change the costs and emissions of charging electric vehicles.  

The total impact of electric vehicles depends on their interaction with the power grid, as shown 

by Michalek et. al [6]. Some studies, such as Michalek et al. and Tessum et al. [7], rely on average 

emission rates from the regions studied to estimate the emissions attributable to vehicle charging. 

Average emission rates can be very useful to bound the possible impacts of electric vehicle charging 

but cannot be used to calculate how costs and emissions will be different with and without the 
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additional load from electric vehicle charging. These marginal costs and emissions are important for 

evaluating whether or not electric vehicles and controlled charging should be incentivized by policy. 

Marginal costs and emissions can be captured by top-down regression analysis of historical data to 

measure the effect of marginal load on emissions at different times of day in different seasons, such 

as those created by Siler-Evans et al. [8] and Graff Zivin et al.[9] and used by Graff Zivin and 

Tamayoa et al. [10]. Alternatively, bottom-up models can determine how power plant operations will 

change when adding charging load from electric vehicles, such as those used by Sioshansi et al. [11], 

Peterson et al. [12], Choi et al. [13] and many others. The top-down models have the advantage of 

being able to capture the effects of trading energy between regions, transmission constraints, and 

other details of the power system that can be hard to capture in a bottom-up model. However, 

because top-down models are based on historical data, they can only be used to analyze scenarios 

that are similar to what has occurred in the past. The existing top-down studies also do not capture 

the costs associated with generating the electricity. A general comparison of top-down vs. bottom-

up approaches for analyzing the interaction of electric vehicle charging with the electricity system is 

included in Table 1.1 below.  The work in this thesis is based on a bottom-up optimization model of 

the power system in order to both optimize electric vehicle charging with power generation while 

minimizing operational costs and to examine future scenarios, such as high wind penetration, for 

which no historical data is available. Using this modeling framework, I investigate how electric 

vehicles can reduce the costs and emissions impacts of their own charging, their interaction with 

high wind penetrations, and how their lifecycle emissions compare to other vehicle options.  A 

detailed comparison of my work to other relevant bottom-up studies is included with each chapter.  
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Table 1.1 Comparison of top-down regression model vs. bottom-up optimization approaches for assessing cost and 
emissions implications of marginal vehicle load 

 Top-down Bottom-up 

Inputs  Aggregate historical hourly load and 

emissions for each region of interest 

Marginal costs and operational 

constraints for every power plant and 

hourly load for a given region 

 

Outputs Charging emissions for entire country Charging emissions and costs for one 

region 

 

System constraints 

included 

Trading between regions and 

transmission constraints 

Trading cannot be fully captured 

Transmission constraints can be 

included given sufficient data but 

increase computation time 

 

Possible scenarios Load levels present in historical data 

with identical power systems 

Charging based on time of day 

Any power system for which plant 

data is available with any load level 

Charging based on time of day or 

optimized with power plant operation 

 

Chapter two focuses on the impact of when electric vehicles are charged on the cost of 

generating the electricity to meet this extra demand in a power system based on the New York 

power system, with and without the addition of 20% wind power. I compare an uncontrolled, 

convenience charging scenario (vehicle owners plug in their vehicles as soon as they get home at the 

end of the day) with a controlled charging scenario (the charging of the vehicles between the last trip 

of the day and the first trip of the next day is optimized along with the operation of the power 

plants). The optimization is done using a capacity expansion, unit commitment and economic 

dispatch model. This model determines the operation of every power plant in each hour to satisfy 

load while minimizing total costs, ensuring power plants are operating within their physical 

constraints, and certain system-wide constraints, such as maintaining sufficient reserves, are met. 

The model also determines which plants to build if there is insufficient capacity to meet load or 

reserve requirements. I consider a scenario in which capacity expansion is necessary with and 
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without high wind penetration, as well as the base case scenario with sufficient starting capacity. I 

find that controlling electric vehicle charging can cut the cost of generating the power for charging 

by around 50%. These savings increase slightly in the high wind scenario and more substantially 

when controlling charging also changes capacity expansion decisions. 

In chapter 3, I again look at the impact of controlled charging, this time in the PJM power 

system instead of in New York. In addition to calculating how controlled charging will change 

power generation costs, I also examine the resulting change in emissions from vehicle charging and 

the health and environmental impacts of these emissions. Once again, the operation of the power 

system under each charging scenario is determined using a unit commitment and economic dispatch 

model, this time the PJM Hourly Open-source Reduced-Form Unit Commitment Model 

(PHORUM) developed at CMU by Roger Lueken [14]. By using a model predictive control 

approach in this study, larger time periods can be studied, but the model cannot assess capacity 

expansion scenarios. Instead, I look at both the current PJM system and a future scenario based on 

predictions made by the EPA for what power plants will be part of the system in 2018, along with 

their emission rates and marginal costs. I also include a scenario with 20% wind penetration. In this 

system, I find that controlled charging reduces generation costs by around 30%, again slightly higher 

with high wind penetration. However, most of the reductions in cost come from shifting to coal and 

the increase in CO2, and especially SO2, emissions leads to higher social damages than those cost 

reductions in most cases. 

Chapter 4 builds on the charging emissions results from chapter 3 to calculate the total lifecycle 

emissions of different plug-in electric vehicles and the damages resulting from those emissions and 

to compare them to the lifecycle emissions and damages of conventional and hybrid vehicles in the 

PJM power system. The emissions from the rest of the lifecycle, including tailpipe emissions, vehicle 

and battery manufacturing, coal production, gas production, and oil production and refining, come 
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from Argonne National Lab’s GREET model [15][16]. I evaluate the health and environmental 

impacts of the lifecycle emissions of each vehicle type in order to determine which has the lowest 

impact on society in both the current and future PJM system, as in chapter 3. I find that of the 

representative vehicle types tested in the current PJM system, plug-in electric vehicles have higher 

social damages from lifecycle emissions than hybrid vehicles and only the smallest battery size can 

have lower damages than conventional vehicles. In the future PJM power system, plug-in electric 

vehicles have lifecycle damages that are lower than hybrid vehicles by about the same amount that 

hybrid vehicles’ lifecycle damages are lower than conventional vehicles. Table 1.2 below summarizes 

the study in each chapter. 

This thesis contributes an analysis of the social impact of controlled charging and electric 

vehicles compared to other vehicle options considering the health and environmental damages from 

criteria air pollutants in addition to carbon emissions, based on a detailed grid model. The results of 

this thesis can be used to help policy makers judge the circumstances in which controlled charging 

should be encouraged and what the near term benefits of electric vehicles will be in the PJM power 

system. 
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Table 1.2: Summary of each chapter. PHEV = plug-in hybrid electric vehicle, PEV = plug-in electric vehicle, HEV = 
hybrid electric vehicle, CV = conventional vehicle 

 Chapter 2 Chapter 3 Chapter 4 

Research Questions • Can controlled charging reduce 

the cost of charging PHEV’s? 

• How do these costs change 

when capacity expansion is 

necessary? 

• How do these costs change 

with high wind penetration? 

• Can controlled charging reduce 

the impact of charging PEV’s in 

terms of operational costs and 

emissions? 

• How are costs and emissions 

affected by an evolving power 

plant fleet and high wind 

penetration?  

 

• How do the lifecycle emissions 

and damages from emissions of 

PEV’s compare to those of 

HEV’s and CV’s? 

• How does this comparison 

change as the grid evolves and 

with high wind penetration? 

 

Vehicles Included 

 

PHEV-5, PHEV-35, PHEV-60 PHEV-10, PHEV-35, PHEV-265 

 

PHEV-10, PHEV-35, PHEV-

265, HEV, CV 

 

    

Region of Study New York 

 

PJM Interconnection PJM Interconnection 

Year 

 

2010 2010 and 2018 

 

2010 and 2018 

Time Period Modeled 

 

20 days representing year  1 year 1 year 

Capacity Expansion 

 

Yes No No 

Pollutants Included 

 

None CO2, SO2, PM2.5, NOX, VOCs CO2, SO2, PM2.5, NOX, VOCs 

Key Findings Controlled charging cuts the cost 

of charging electric vehicles in 

half 

Controlled charging reduces the 

cost of charging electric vehicles 

by 30% but increases total social 

costs due increases in power 

plant emissions  

PEV’s studied have higher 

lifecycle damages in 2010 PJM 

but lower lifecycle damages in 

2018 PJM 
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Chapter 2: OPERATIONAL AND CAPACITY COST 

IMPACTS OF CONTROLLED 

ELECTRIC VEHICLE CHARGING IN 

POWER SYSTEMS WITH HIGH WIND 

PENETRATIONS 

 

 

This chapter is based on research published in A. Weis, J. Michalek, and P. Jaramillo. 

“Estimating the Potential of Controlled Plug-in Hybrid Electric Vehicle Charging to Reduce 

Operational and Capacity Expansion Costs for Electric Power Systems with High Wind 

Penetration” Applied Energy. 115 (2014). 190-204  
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2.1 Introduction 

One method for potentially reducing the impact of plug-in electric vehicles, as well as aiding in 

the integration of wind power, is to control electric vehicle charging. This chapter focuses on how 

controlled charging impacts operational and capacity costs in a power system based on New York, 

with and without high wind scenarios. Controlled charging can affect what power plants are used to 

meet the additional demand created by electric vehicles in addition to which power plants are most 

economical to build when the power system lacks sufficient capacity. Charging that can respond to 

provide additional flexibility to manage fluctuations in wind power generation. This flexibility 

becomes increasingly important as federal and state policies encourage the build out of the wind 

power in order to reduce the emissions from electric power sector. Twenty-nine states have adopted 

renewable energy portfolio standards (RPS) requiring between 10% and 40% of generated power to 

come from renewable sources [1]. As one of the fastest growing electricity sources in the United 

States [2], wind can be expected to meet a large proportion of the renewable portfolio standards. To 

compensate for the increased amounts of these inherently–variable sources of electricity, the power 

grid requires additional flexibility to manage fluctuations in generation. For systems incorporating 

high levels of wind power, ramping natural gas combustion turbine plants in response to changes in 

output from variable resources has typically provided this flexibility. Recent research has shown that 

ramping gas turbines to manage the variability of wind power can increase NOx emissions and 

reduce the greenhouse gas benefits associated with wind power production [3].  

Much of the previous research on using electricity vehicles as a means for increasing grid 

flexibility in order to integrate renewables has studied the possibility of using the vehicles for grid 

storage via a bidirectional electrical connection between the vehicle and the electricity grid, referred 

to as vehicle-to-grid (V2G). For example, Lund and Kempton calculate the cost-savings and 

emissions-savings from adding V2G capabilities to the power system, given simplified ramping 
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constraints for the power generation fleet [6]. However, it has been shown that the market for V2G 

in the energy market [7] and ancillary services market [8] is small, arbitrage potential is limited, and 

participation can significantly reduce battery life by increasing the total energy processed by the 

battery [9]. V2G systems also require a substantial investment in power electronics, control software, 

and additional grid infrastructure. As an alternative, electricity demand can be partially managed by 

modulating the charging rate of PEVs – for example, following variations in wind supply. Such an 

approach does not increase the energy processed by the battery, and it is possible that such an 

approach could actually extend battery life by lowering average charge rates and thus heat generation 

[9]. Controlled charging can also take advantage of the high levels of wind generation that 

commonly occur at night in the U.S. At these times, other load is likely to be low, and coal plants 

would likely need to be cycled, adding costs and emissions that could be saved with smart charging 

of PEVs. Alternatively, ramping of thermal plants could be reduced by building excess wind 

capacity, curtailing wind energy when it is not needed, and taking it when most cost effective for the 

system.  

Previous work has shown the benefit of controlled charging in power systems with wind power. 

Dallinger et. al show that excess renewable energy in periods of low load can be significantly reduced 

through optimized charging in California and Germany [10], and Foley et. al find that off-peak 

charging can save vehicle owners nearly 30% of the charging costs [11]. Wang et. al. evaluate 

different charging strategies of plug-in hybrid vehicles in the Illinois power system and find 

significant cost reductions with controlled charging. They assume the rest of the power system is 

static and use a simple scaling of existing wind data to model new wind construction [12], 

exaggerating variability by ignoring the complex effects of plant size and geographic diversity on 

mitigating wind generation correlation [13]. Sioshanshi and Denholm analyze a system based on the 

Electric Reliability Corporation of Texas (ERCOT) in its current form, with 10% wind generation, 
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to calculate the additional benefit of V2G over controlled charging, again allowing only operation of 

existing power plants to vary [14]. They find that V2G could decrease system costs by around 0.5%. 

Instead of holding existing capacity fixed as in these studies, we consider a case in which new 

capacity needs to be built to meet required system reserve margins.  As discussed by De Jonge et. al., 

it is important to consider the capacity expansion in the context of all the operational constraints of 

the power plants [15].        

Other work has focused on how controlled charging can be used as balancing power in systems 

with high wind penetration by modeling forecasting error for wind and load instead of evaluating 

detailed operating constraints. A study by the Pacific Northwest National Laboratory estimates the 

number of vehicles necessary to provide a complete response to the balancing signal [16], capturing 

the high frequency behavior of the wind and vehicle charging but ignoring other types of flexibility 

already present in the grid. Druitt and Früh also focus on how controlled electric vehicle charging 

can provide balancing power at high wind penetrations [17]. They use a simplified scheduling of 

conventional generation, which ignores many operating constraints, and develop a model based on 

historic prices to estimate economic effects. Still other work has evaluated how including controlled 

electric vehicle charging as part of the electricity system can increase the amount of renewables that 

can be integrated, as summarized by Wei et al. [18] 

We seek to evaluate the potential cost reductions from controlled charging in scenarios with vs. 

without additional wind power in order to understand whether PEVs can provide cost reductions in 

systems with increased levels of wind power, or whether controlled charging only limits the impact 

of the vehicles themselves on the system. We focus on PHEVs, which do not require changes in 

current driving patterns, since PHEVs can operate using gasoline for long trips. The interaction of 

PHEV charging with the grid is complex, and a complete understanding requires evaluating the 

power system in a range of circumstances and at a variety of time scales. We examine the benefit of 
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controlled charging of PHEVs relative to convenience charging (vehicle charges at maximum rate 

upon arrival), delayed charging (vehicle begins charging at maximum rate just in time for its next 

use), and no charging (no PHEVs) under alternative scenarios of high vs. low wind penetration in 

the power generation fleet, high vs. low PHEV penetration in the vehicle fleet, and high vs. low 

initial power generating capacity. For this analysis, we develop a capacity expansion and unit 

commitment with economic dispatch optimization model with detailed plant constraints. We use 

hourly data for wind and load and assume perfect information (no forecast error) to focus on 

capacity expansion and unit commitment decisions. We then compare results using a 15-minute 

resolution to test the importance of sub-hourly trends. We study a period of 20 days selected to be 

representative of the year. We do not evaluate the entire range of power plant fleets that exist in the 

U.S. but instead focus on comparing the difference between a system with sufficient capacity and 

one requiring investment in new capacity.  

In the remaining sections we present our detailed methods, results, and conclusions. We find 

that controlled charging does help to reduce system costs by about 2% in the scenarios examined 

with 10% PHEV penetration. However, the additional benefit of controlled charging in high wind-

penetration scenarios is much smaller. Thus the benefits of controlled charging are general to power 

systems and not specific to wind integration under the scenarios examined. We also examine the 

tradeoff between adding new capacity to the system versus controlled charging in order to 

accommodate high wind penetration scenarios, finding that controlled charging reduces the number 

of combined cycle gas plants that would otherwise be built. 
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2.2 Methods 

2.2.1 Model Overview 

We pose a mixed integer linear programming (MILP) capacity expansion model with hourly unit 

commitment and dispatch, plus hourly vehicle availability and charging rates, to find the optimal 

combination of new power plants and controlled vehicle charging to meet demand at lowest costs 

subject to operation constraints. Capacity expansion optimizes which power plants should be added 

to the system, if any. Unit commitment and dispatch determine which plants will be on in each time 

period and the level of output for each. As part of the cost minimization, the model also determines 

the charge rate in each hour for each set of available vehicles, where the set of vehicle driving 

profiles are selected to be representative of the U.S. vehicle population. The model treats the 

penetration of plug-in vehicles that must be charged as exogenous, and the grid operator can choose 

a percentage of the vehicles to participate in a controlled charging program for a given annual 

payment. We vary the number of vehicles present in the system and the amount of the annual 

payment to vehicle owners in a sensitivity analysis. The model constrains electricity generation to 

match the load in each time step, while keeping all plants within their operating constraints and 

satisfying a wind penetration goal that defines a minimum percentage of overall power generation 

that must be supplied by wind12. Error! Reference source not found. shows a graphical 

representation of the framework used. 

                                                 
1 As the cheapest renewable energy source by levelized cost, wind is likely to make up the bulk of power installed to meet RPS. Some RPS policies 

include specific set-asides for solar power, but these are very small: 0.2%-2.5% [1]. For this paper, we model a system in which wind is the only 

renewable available. 
2 The model took between 5-10 hours to run on an Intel i& processor running CPLEX using 20 day period with hourly data. Running the 15-minute 

sensitivity cases over 20 days had a wide range of solve times, going up to 80 hours for each charging scenario. Because solve time for MILP problems 

is nonlinear with the number of variables, it was not feasible to use smaller time steps or more days for all of the sensitivity cases analyzed 
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Figure 2.1 System Overview - Energy is provided by conventional power plants and wind plants and must meet the demand 
from plug-in vehicles and non-vehicle load in each time step. 

2.2.2 Power Plant Fleets 

We construct two different power plant fleet scenarios using power plant fleet characteristics 

from the New York Independent System Operator (NYISO) area: the first scenario with sufficient 

existing capacity to meet vehicle and non-vehicle load (Fixed Capacity Scenario); and the second where 

capacity expansion is required regardless of PHEV penetration (Capacity Expansion Scenario). Because 

NYISO has significant amounts of hydroelectric power for which operational data is unavailable, we 

construct the Capacity Expansion Scenario by eliminating the hydro capacity from NYISO and 

using only existing nuclear, coal, oil, and natural gas capacity as the initial state of the fleet. For the 

Fixed Capacity Scenario we replace the hydro capacity with fossil fuel plants roughly proportional to 

the existing fossil fuel mix. Individual plant data were not available for all fossil fuel plants in 

NYISO, so the fleet was chosen from a sample of similar plants in NYISO, ERCOT and PJM with 

available data.  The plants were selected using an optimization that minimizes the difference 

between actual fleet characteristics and the selected fleet characteristics.  
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where total capacity of plants of each plant type  is   for the actual fleet and  for the 

selected fleet. The number of plants in each capacity bin  C for fuel type  is for the actual 

fleet and  for the selected fleet, and similarly the capacity of plants in each heat rate bin H  

for fuel type  is  for the actual fleet and for the selected fleet. The distributions of plant 

capacities and heat rates were defined using four evenly spaced bins for each plant type. The 

optimization variables are how many of each of the sample plants are included in the selected plant 

fleet and , , and  are calculated from this selected fleet. We found that relative 

weights of w1 = 300, and w2 = 100, respectively for these three factors in the objective function gave 

a good fleet representation for these fuel types. The fuel types that could be modeled in this way for 

NYISO were bituminous coal, natural gas combined cycle, natural gas combustion turbine, and 

oil/gas steam, whereas nuclear was modeled as a single capacity and heat rate. The resulting fleets 

are shown by plant type in Figure 2.2.   

 

Figure 2.2: Power plant fleets derived from NYISO's actual capacity. 
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Because of the missing data, the fleets used in this analysis are not meant to exactly replicate the 

New York system, but rather serve as a test system with realistic plant distributions matched to a 

realistic load. Average ramp rates and minimum generation levels by generation type, along with the 

individual plant heat rates and total capacity for the sample of plants used, were taken from Ventyx 

[19], and the distribution of power plant capacities and heat rates for NYISO were taken from the 

National Electric Energy Data System (NEEDS) [20]. A comparison of the resulting characteristics 

for the Fixed Capacity Scenario and actual NYISO fleet is shown in Table 2.1. We are able to obtain 

a similar fleet according to measurable characteristics. The only large difference is the average age of 

the natural gas combustion turbine plants due to the available data to choose from. The simulated 

fleet is newer, but because the average heat rate remains very close to that of the actual fleet, there 

should not be a large impact on total operational cost. The newer gas plants may be somewhat more 

flexible, but on the hourly time scale, combustion turbine plants have excess ramping capability.  

Table 2.1: Comparison between the coal, natural gas, and oil/gas steam plants in the actual NYISO fleet and the simulated 
fleet in terms of capacity installed, number of units, average heat rate, and online year.  

Type Actual 

MW 

Sim. 

MW 

Ref. # 

Units 

Sim. # 

Units 

Actual Ave HR 

(BTU/kWh)  

Sim. Ave HR 

(BTU/kWh) 

Actual Ave 

Online Year 

Sim. Ave 

Online 

Year 

Coal 2,767 2,767 32 31 10,507 10,738 1970 1962 

NGCC 8,124 8,124 103 103 8,555 8,584 1996 1995 

NGCT 4,885 4,885 215 215 14,971 14,945 1976 1992 

Oil/Gas Steam 11,723 11,723 32 32 11,341 11,763 1964 1963 

  

2.2.3 Plug-in Hybrid Electric Vehicle Fleet 

We model a fleet of plug-in hybrid electric vehicles using the National Household Travel Survey 

(NHTS) dataset [21], which contains data for one day of driving for approximately 900,000 different 

passenger cars across the United States. We use time of arrival and departure from home and 

distance traveled from all vehicles in the dataset, weighted by vehicle to be nationally representative, 

to compute uncontrolled electricity demand in the convenience charging (charge upon arrival at 
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home) and delayed charging (charge just before departure) cases. In order to create a tractable 

controlled charging model while maintaining a representative dynamic vehicle load for the power 

system, a sample of 20 profiles were selected and optimally weighted to best match the aggregate 

characteristics of the entire 900,000 profiles available in the NHTS of passenger cars. These 

aggregate characteristics were evaluated for each hour and included the average number of miles 

driven in that hour, the average cumulative number of miles driven until that hour, the percent of 

vehicles at home, and the percent of vehicles parked. 20 vehicle profiles were randomly selected 

from the NHTS data set; the characteristics of the resulting fleet were compared to those of the full 

NHTS data set using the distance metric below; and this process was repeated one million times, 

retaining only the set of 20 that minimizes the distance metric. 

distance metric = ∑ (∆ℎ𝑡
2 + ∆𝑝𝑡

2 + ∆𝑜𝑡
2 + ∆𝑑𝑡

2 + (
∆𝑎𝑡

max𝑡 (𝑎𝑡)
)

2

+ (
∆𝑐𝑡

max𝑡 (𝑐𝑡)
)

2

) 

𝑡

 

where ∆ℎt and ∆𝑝 t are the difference in the percent of drivers in the sample vs. the full data set 

at home and parked at time step t, respectively, and ∆𝑎t and ∆𝑐t are the difference in average miles 

and cumulative miles, respectively, at time step t. The distance terms are normalized so that all six 

terms will be of comparable scale. Each of the 20 vehicles was weighted by a variable wi, 

i{1,2,…,20}, wi[0,1], iwi=1; wi was optimized to minimize the distance metric above. This 

process was repeated 1 million times and the best match optimally weighted profile of 20 vehicles 

was retained. The weighted sample can be thought of as a case where some selected vehicle profiles 

are representative of a larger portion of the full NHTS dataset than others. 

As shown in Figure 2.3, the final sample of 20 weighted profiles does not perfectly match the 

aggregate characteristics of all passenger vehicles. However, it much more closely matches the 

aggregate data than 20 randomly chosen profiles and according to the distance metric shown below, 

it is just as close as 200 randomly chosen profiles and allows for a feasible computation time. While 
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we track day-to-day differences in wind and load, we assume that vehicle travel patterns are the same 

every day (due to lack of data on daily variability). 

 

Figure 2.3: Aggregate characteristics for all passenger vehicles in the NHTS dataset and best match 20 optimally weighted 
vehicle profiles drawn from the NHTS dataset over 1 million random draws. The percent of vehicles at home dips during 
the day, and only a small percentage of the fleet is driving at any time. 

The PHEVs we study operate in charge-depleting mode until the battery reaches its minimum 

state of charge or all the miles are driven (sometimes called extended-range electric vehicles 

(EREVs), like the Chevy Volt).  Any remaining miles are driven in charge-sustaining (extended-

range) mode, powered by the gasoline engine3. This allows all drivers to retain their existing driving 

patterns, regardless of the electric range of the vehicle. The base-case vehicle is modeled after the 

                                                 
3 We do not consider blended-operation PHEVs, like the PHEV Prius, which use a blend of gasoline and electricity in charge depleting mode. In our 

model, which focuses on electricity consumption, a blended-operation PHEV would function equivalently to a higher-efficiency EREV PHEV, since 

the partial use of gasoline offsets some electricity use in charge depleting mode. 
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Chevy Volt with a 16 kWh hour lithium ion battery of which 10.4 kWh are useable. We assume the 

vehicles only charge after their last trip of the day and must be fully charged by their first trip of the 

next day if controlled by the system operator in the controlled charging program. The charging 

program alters the rate of charge for each vehicle but does not withdraw power from the battery. 

Charging for a portion of a time step is equivalent to charging for the entire time step at a lower rate. 

We model different levels of controlled charging program costs, ranging from $0-$400/vehicle/year.  

These assumed costs would have to cover both payments to the vehicle owners as well as any 

infrastructure costs, with the system operator determining how many vehicles will be paid for 

participation (the zero cost case assumes the system operator captures all of the cost reductions). We 

perform a sensitivity analysis to examine supply solutions at different participation fee levels and 

leave as future work an estimate of the vehicle owner demand curve. We also perform sensitivity 

analysis to examine a range of vehicle characteristics, shown below in Table 2.2, as well as different 

vehicle penetration levels and payment to vehicle owners. The growth rate of PHEV penetration is 

very uncertain, but the governor of New York was quoted as saying “the number of plug-in electric 

vehicles on the road in New York State could increase from less than 3,000 today to 30,000-40,000 

in 2018 and one million in 2025,” [22] which would be around 10% of the approximately 9 million 

passenger vehicles in New York in 2008 [23]. Additionally, EIA estimates that PHEV’s could 

account for 2% to 18% of all vehicles in the U.S. in 2025 depending on what policies are adopted 

[24].  
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Table 2.2: Ranges of values used to reflect the uncertainty in the characteristics of the future plug-in vehicle fleet. The base 
case for the battery size comes from the Chevy Volt, allowing for roughly 35 miles of driving on electric power, with 
minimum and maximum battery sizes allowing for 5 miles and 60 miles of electric driving, respectively. Vehicles with 
larger and smaller batteries are assumed to have the same ratio of useable kWh to total kWh as the base case (65%). The 
range of charge rates comes from the three standard levels of electric vehicle charging. Level 1 charging can be achieved 
from a normal household 120 V plug and is used as the minimum. Level 2 charging requires a 240 V outlet, such as those 
used by larger household appliances, but is more convenient for vehicle owners and is used as the base case. Level 3 
charging requires higher voltage and current levels than typically available on the household level but is possible at future 
service stations and is the upper bound on vehicle charge rates. Total fleet size in New York is 9 million passenger 
vehicles, and the range of 1% - 15% plug-in vehicle penetration represents 90,000 to 1,350,000 plug-in electric vehicles. 

Vehicle Fleet Characteristics Minimum Base case Maximum 

Battery Size  5 kWh 16 kWh 24 kWh 

Maximum Charging Rate 1.2 kW 7.4 kW 30 kW 

Plug-in Vehicle Penetration 1% 10% 15% 

 

2.2.4 Wind Power Data 

We use modeled wind production data for all potential land-based wind sites in New York 

reported in the Eastern Wind Integration and Transmission Study (EWITS) dataset [26]. EWITS 

lists all the sites in the Eastern Interconnect that would be needed in order to reach a 30% RPS and 

contains ten-minute modeled wind plant output for these sites for 3 years from 2006 to 2008. We 

convert the ten-minute power data to hourly resolution for model tractability by averaging the six 

data points given for each hour. We then add wind sites from the EWITS data set to our model in 

order of highest capacity factor. We investigate wind penetration rates that range from 0% to 20% 

to allow for additional wind plants to be built in all scenarios without making use of offshore wind, 

as it is uncertain that offshore wind sites will be widely utilized by 2025.  

We use modeled wind data instead of measured output data from existing wind sites so that 

wind capacity can be expanded beyond existing levels. Because wind production is dependent on 

local weather patterns and geography, existing empirical wind data cannot be easily scaled up to 

include new sites. The EWITS dataset is the only existing public sources for a time series simulation 

of wind production for potential wind sites in this area of the country.  
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2.2.5 Load Data 

We use five-minute power demand data for the New York ISO in 2006, again converted to 

hourly resolution by averaging the twelve data points given for each hour. As load is predicted to 

remain within 1% of its current level by 2025 [27], this 2006 data is used as non-vehicle load without 

any scaling. It is important to use load and wind data from the same time and place to account for 

temporal and geographical correlations. While this chapter paper focuses on a model based on the 

characteristics of the New York System, the method developed could later be applied to other 

systems around the country. This additional analysis, however, is beyond the scope of this paper. 

To ensure a reasonable computation time, we chose four different periods of five days each to 

capture the different shape of the load curve in different seasons and include the year’s peak load, 

while keeping the average load over the four periods equal to the average load of the year, 19 GW. 

Six of the 20 days are weekend days. Given the wind plants needed to meet the 20% penetration 

over the course of the entire year (when run as must-take), the wind output from the modeled wind 

plants in these four periods is both sufficient to meet the wind penetration goal (scaled within the 

twenty days) without building additional wind plants, and has an average power within 10% of the 

average wind power for the entire year. Within each of the four periods, plant-operating constraints 

apply. The model’s capacity expansion variables apply simultaneously across all four periods, along 

with the percent of PHEVs with controlled charging.  

2.2.6 Optimization 

The optimization model minimizes capital and operating costs: 
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where N is the set of new conventional power plants; E is the set of existing conventional 

power plants; C = N  E is the combined set of existing and new conventional power plants; W  is 

the set of (new) wind plants; T  is the set of time steps in the sample period; is the annualized 

cost for construction of plant i;  is the binary variable determining whether or not plant i is 

constructed;  is the annual payment to each vehicle owner participating in the controlled 

charging program; is the total number of PHEVs; is the percentage of PHEVs are that are 

controlled; and are the start-up and shut-down costs, respectively, of plant i in time step t, 

 is the fuel cost of plant i, is the heat rate of plant i, and is the power output of the plant i in 

time step t. We vary the value of the annual payment to each participating vehicle owner with a 

sensitivity analysis to understand the willingness to pay of the system operator. The willingness to 

accept controlled charging by vehicle owners is unknown and is outside the scope of this paper. 

The constraints are typical for economic unit commitment and dispatch models with plug-in 

vehicles, but they are adapted to allow for additional binary variables to represent new power plant 

construction and a variable for the percentage of plug-in vehicles participating in the controlled 

charging program. The overall system must meet the existing non-vehicle load plus the vehicle load 

of both the controlled and uncontrolled vehicles in every time step:  

 

where is the amount of wind energy used in time step t,
 

 is the total amount of energy 

consumed to charge all vehicles of profile j in time step t, V    is the set of all PHEV profiles, and 

is the fixed amount of uncontrolled charging that occurs for vehicle profile j in time step t. 

The wind penetration goal must be met over the 20 days: 
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Where is the percent wind energy required by the penetration goal. In addition to meeting 

the load, the system must also provide sufficient spinning and non-spinning reserves: 

 

 

Where  and  are the spinning reserves and non-spinning reserves provided by plant i in 

time step t, and  and are the spinning and total reserve requirements as a percentage of the 

generation. The system must also meet the 15% reserve margin above peak load recommended by 

NERC for power systems with predominantly thermal generators [26]: 

 

Where is the reserve margin,  is the peak load for the year, and ki is the capacity of 

plant i. Every power plant has its own set of operating constraints. All the conventional plants have 

a maximum output capacity: 

 

 Where  is the binary variable indicating whether or not plant i is on in time-step t. and 

 are continuous start-up and shut-down variables for each plant that are restricted to be between 

0 and 1 and forced to be only 0 or 1 by their relationship to and the start-up and shut-down 

costs: 
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Where and is the cost for one start-up and shut-down for plant i respectively and is 

the first time step for each five day sequence. Each plant has a minimum generation level (when on)

: 

 

They are also subject to ramp rate limitations: 

 

 

Where and are the maximum amount the plant can ramp up or down in a time step 

respectively and  is the length of a time step. Plants have to stay on for a minimum number of time 

steps once turned on, and off a minimum number of time steps once turned off: 

 

 

is the last time step in the associated five day contiguous sequence. The wind power plants 

have a generation potential at each time step based on the wind behavior modeled in the EWITS 

database: 
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Where 
 
is maximum amount of wind that could be generated by a wind plant i in time step t. 

Wind curtailment is not explicitly penalized in the objective function, and anywhere from zero to the 

full potential wind generation may be used in each time step, as long as the penetration goal is 

satisfied. Because the initial capacity of wind is the minimum number of wind plants that can 

generate enough wind energy over the 20 day time period to meet the penetration goal, if the system 

operator chooses to curtail, additional wind capacity must be installed to make up for the lost 

energy, incurring additional capital costs.  

Vehicle charging levels must not exceed the power limit of the circuitry: 

 

Where  is the maximum charge rate for the vehicle j ,  is the percent of the time step t that 

the vehicle is parked at home at the end of the day and thus available to charge, and is percent of 

total electric vehicles that are of profile j. The charging must keep the battery between its minimum 

and maximum states of charge: 

 

Where is the minimum SOC and is the maximum SOC, both expressed as percentages, 

is the total size of the battery, and is the total amount of energy added to all the vehicles of 

profile j during time step t.  Vehicles are driven in charge depleting mode (using electricity as the sole 

propulsions source) until the battery has reached its minimum state of charge or all the miles for the 

day have been driven, which is calculated ahead of time. The energy stored in the batteries of each 

vehicle profile depends on how much energy they had in the last period, the charging, and the 

discharging due to driving: 
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Where  is the length of the time step and the distance in miles driven in electric mode. 

Every car is required to have the battery filled by the first trip of the next day: 

 

Where is the set of time steps each day when vehicle profile j leaves for the first trip of 

the day.  

The optimization variables for this problem include , , , , , , , ,

, , , , . 

The formulation was altered slightly to allow for the examination of the effect of a 15-minute 

time period.  Most of the constraints remain the same, but everything regarding capacity expansion 

is removed from the objective function and constraints. Additionally, instead of executing the full 

twenty day period at once, we optimize over a 48 hour window, save the first 24 hours of data as the 

optimal operation for that day, move the window forward 24 hours and run another 48 hour 

optimization.  This is repeated until optimal operation has been found for all 20 days. This shorter 

optimization window allows for a greater time resolution in the data while retaining similar run 

times. The new objective function used for each 48-hour period is shown below. By removing the 

payment to vehicle owners from the objective function, we assume a $0/vehicle/year payment in all 

cases and separately dictate as 1 or 0. For the sensitivity analysis, we are only interested in the 

extremes of all vehicles being controlled or none to understand the largest possible cost reductions. 
 

Minimize the cost operating costs in each time step: 

E E EV ELECEV EV

( 1) CTRL    ,jt j t jt jt jx x x d w n x j t      V T

s jtd

E EV EV AM

CTRL    ,jt j j jx b w n x j t   V T

AM

jT

E

jtx
EV

CTRLx EV

jtx
G

itx SD

itx SDC

itx NSR

itx SR

itx

SU

itx SUC

itx W

tx BLD

iy ON

ity

EV

CTRLx



 

 22 

   

No additional plants are provided to be built, so the constraint requiring plants to be built in 

order to be turned on is dropped. The wind penetration target requirement is also dropped because 

it can only be used across all time periods at once. Instead, we assume that the wind penetration 

functions simply as a requirement to build sufficient wind capacity so that 20% of the energy could 

be generated by wind. The model uses the same set of wind farms as used in the hourly model with 

20% wind penetration. Because of the low marginal cost of wind, most of this wind energy will be 

used without a hard constraint. Constraints are added to hold the unit commitment variables 

constant through a single hour so that plants can only be turned off or turned on each hour, while 

generation levels are free to change every fifteen minutes.  

2.3 Results and Discussion 

We find that controlled charging of PHEVs reduces peak load and can reduce wind curtailment. 

A sample dispatch for the 20% wind penetration case is shown in  

Figure 2.4, both with and without controlled charging in the Fixed Capacity Scenario (where the 

initial power plant fleet capacity is sufficient to meet all load). The figure shows that controlled 

charging significantly lowers the peak demand in the first three periods and reduces wind 

curtailment and coal plant ramping. 
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Figure 2.4: Seasonal dispatch in the Fixed Capacity Scenario given 10% vehicle penetration and a 20% wind penetration for 
uncontrolled charging in the hourly model, controlled charging in the hourly model, and controlled charging in the fifteen 
minute model. 

2.3.1 Cost Reductions 

Our main results, summarized in Table 2.32.3, suggest that controlled charging can reduce 

system costs. Given a 10% penetration of PHEVs (totaling 90,000 PHEVs), controlled charging 
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reduces power generation costs by $65-$110 million dollars a year compared to the uncontrolled 

charging scenario, representing 1.5%-2.3% of total system costs and 54%-73% of the cost of 

integrating PHEVs. Controlled vehicle charging allows for shifting generation to cheaper plants and 

to off-peak hours. As shown in Table 2.3, controlled charging is most valuable in the Capacity 

Expansion Scenario, as the controlled charging program offers the opportunity to change which 

types and how many new power plants are built, in addition to influencing plant operation. In the 

Fixed Capacity Scenario, the additional vehicle load can be accommodated without building any new 

capacity, as the system is already operating with more capacity than required by the 15% reserve 

margin. In all cases, delayed charging is able to capture some, but not all, of the cost reductions 

offered by controlled charging. It is interesting to note that, regardless of the capacity scenario, when 

there is a 20% wind penetration, controlled charging offers 6%-13% greater cost reduction 

compared to the same system without wind. Thus, most of the cost reductions can be captured even 

when there is no wind in the system, and savings are somewhat higher but not dramatically higher in 

a system with significant wind generation. A detailed breakdown of the costs for each payment level 

in each scenario can be found in Table 2.4. 
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Table 2.3: Comparison of cost savings from controlled PHEV charging in the Fixed Capacity Scenario and Capacity 
Expansion Scenario for a 0% and 20% wind penetration, given different charging scenarios: Uncontrolled Charging, which 
uses the entire set of vehicles from the NHTS and begins as soon as the vehicle arrives home for the day; Delayed 
Charging, which also uses the entire set of vehicles from the NHTS and begins charging as late as possible before the 
vehicle leaves for the next day’s trip while still achieving maximal charge; and Controlled Charging, which uses the 
weighted set of 20 representative vehicles and optimally charges each vehicle as part of the dispatch optimization, given a 
$0 payment to vehicle owners for participation. The maximum savings are calculated as the difference between the 
Uncontrolled and Controlled Charging system costs. The system costs for each system without plug-in hybrid electric 
vehicles are given as a reference, and reduction in vehicle integration costs is found by dividing the difference in costs 
between uncontrolled charging vs. controlled charging with difference in costs between uncontrolled charging vs. no 
vehicles. 

  

Fixed Capacity Scenario 

(Starting Capacity: 34,700 MW) 

Capacity Expansion Scenario 

(Starting Capacity: 27,500 MW) 

0% Wind 

Penetration 

20% Wind 

Penetration 

0% Wind 

Penetration 

20% Wind 

Penetration 

A. System Costs with No PHEVs 

(Reference) 

3.56 

$billion/year 

4.42 

$billion/year 

4.05 

$billion/year 

4.89 

$billion/year 

B. System Costs with Uncontrolled 

Charging 

3.69 

$billion/year 

4.53 

$billion/year 

4.20 

$billion/year 

5.04 

$billion/year 

C. System Costs with Delayed Charging 
3.65 

$billion/year 

4.49 

$billion/year 

4.18 

$billion/year 

4.98 

$billion/year 

D. System Costs with 100% Controlled 

Charging and $0 Payment to Vehicle 

Owners 

3.62 

$billion/year 

4.46 

$billion/year 

4.10 

$billion/year 

4.93 

$billion/year 

Maximum Cost Savings with Controlled 

Charging [B-D] 
65 $million/year 69 $million/year 97 $million/year 

110 

$million/year 

Operational Cost Savings %, Capital Cost 

Savings % 
100%, 0% 100%, 0% -27%, 127% 30%, 70% 

Reduction in Vehicle Integration Costs 

with Controlled Charging  

[(B-D)/(B-A)] 

54% 63% 66% 73% 
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Table 2.4: Costs for 10% vehicle penetration with different levels of payment to PHEV owners for controlled charging in 
each wind penetration and capacity expansion scenario. Overnight new capital costs include the cost of building wind 
capacity in order to meet the wind penetration goal as well as any additional plants. Annualized new capital costs represent 
the cost each year given the lifetime of each plant (50 years for coal, 30 years for gas, and 20 years for wind) and a 5% 
discount rate4. Annualized new system costs are the sum of the annualized new capital costs, annual vehicle program 
costs, and annual operating costs. 

 

Wind 

Penetration 

Capacity 

Expansion 

Vehicle 

Payment 

($/vehicle/year) 

Percent 

Controlled 

(%) 

Overnight 

New 

Capital 

Cost 

(billion $) 

Annualized 

New 

Capital 

Costs 

(billion $) 

Annual 

Vehicle 

Program 

Costs 

(million $) 

Annual 

Operating 

Costs 

(billion $) 

Annualized 

New 

System 

Costs 

(billion $) 

0% No 0 100% 4.5 0.29 0 3.3 3.6 

 
 100 48% 4.5 0.29 43 3.4 3.7 

 
 200 0% 4.5 0.29 0 3.4 3.7 

20% No 0 100% 25 2.0 0 2.5 4.5 

  100 0% 25 2.0 0 2.5 4.5 

0% Yes 0 100% 10 0.65 0 3.5 4.1 

  100 37% 11 0.74 0.03 3.4 4.2 

  200 7.2% 12 0.77 0.01 3.4 4.2 

  300 0% 12 0.8 0 3.4 4.2 

20% Yes 0 100% 30 2.3 0 2.6 4.9 

  100 94% 30 2.3 0.085 2.6 5.0 

  200 0% 31 2.4 0 2.6 5.0 

 

There are limitations to these results. On one hand, they may overestimate the value of 

controlled charging by assuming perfect knowledge of vehicle trips and wind generation. Ensuring 

full charge of vehicles each day when vehicle trips and wind generation are uncertain may require 

safety margins that limit the flexibility of controlled charging, and implementable controllers with 

limited information about future states will have lower savings than optimal solutions under perfect 

information. On the other hand, controlled charging may provide additional value to the grid when 

accounting for the forecasting error of wind generation, as vehicle charging can be changed on time 

scales much faster than the ramping constraints of conventional power plants. Additionally, while 

                                                 
4 The discount rate is highly uncertain because it depends on what else could have been invested in instead of the power plants. The IEA uses provides 

annualized costs of power plants using both a 5% and 10% discount rate [29] while the Office of Management and Budget suggests using a 7% 

discount rate [30] and experts consulted suggested rates between 3% and 10%. A higher discount rate would mean that investments in new power 

plants would be more expensive and therefore increase the value of controlled charging. Future work can examine a range of discount factors to 

understand the sensitivity to this parameter.  



 

 27 

we allow charging only at home, availability of workplace or public charging might increase the 

flexibility and value of controlled charging (although current load patterns create the highest 

availability of low cost plants at night when vehicle owners are likely to be home). Except for the 

wind power, we assume that power plants are not limited by availability because with a limited 

number of sample days it is difficult to predict which plants might be offline. This assumption could 

overestimate the flexibility in the system and therefore underestimate the benefits of controlled 

charging.  However, with the exception of nuclear plants, none of the plant types run 100% of the 

time, so we do not expect cost estimates to be substantially affected by plant downtime. This 

assumption also does not change the value in the Capacity Expansion Scenario, as reserve margins 

do not take availability into account but only reference peak load and total capacity.  We also do not 

consider the costs maintaining wind farms or replacing them if they fail. While these costs could 

significantly increase the total costs of wind farms, it should not significantly impact the interaction 

of vehicle charging and wind. Electric vehicles would not change any of these costs and if less wind 

is on the system it could only decrease the modest difference between the value of controlled 

charging with high vs. low wind penetrations.  Additionally, we ignore transmission constraints, 

which may over- or under-estimate this value depending on the distribution of PHEVs and other 

flexible resources in congested areas of the grid. It is possible that controlled charging of PHEVs 

could provide additional value by mitigating transmission congestion, but they may be unable to 

absorb wind energy if separated from wind resources by congested areas of the grid. The results 

from this model do give a good estimate of the operational cost savings possible considering time 

scales greater than an hour. And because the cost reductions result largely from shifting peak load, 

they should remain relatively unchanged with more detailed models. A summary of the model 

assumptions and the estimated direction they might affect the results is show below in Table 2.5. 
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Table 2.5: Model Assumptions. (-) represents assumptions that we believe result in our model underestimating the benefits 
of controlled charging. (+) represents assumptions that can result in our model overestimating the benefits. 

Assumption Justification Expected Direction of Bias of the 

Value of Controlled Charging 

No transmission constraints No data available (-) In our model, uncontrolled 

charging does not increase congestion 

and controlled is given no chance to 

relieve this and other congestion in the 

system.  

Perfect information for 

demand and wind 

Limited forecasting data available for the future wind 

sites, and this would require assumptions about the 

structure of future reserve markets to value the service.  

(-) Controlled charging may be able to 

help forecasting error. 

Hourly time steps Increasing the time step to 15 minutes does not 

qualitatively change the results, and use of hourly time 

steps allows many more scenarios to be examined. The 

variability of wind decreases with frequency [31] so 

substantial differences at smaller time steps are unlikely.  

(-) Some of the fast balancing that can 

be performed by controlled charging is 

missed, but we expect it to be small. 

Battery can be charged 

anywhere between 0 and its 

maximum charge rate  

While instantaneous changes in charge rate may be 

limited, at an hourly time scale, the desired average 

charge rate can be achieved without technical challenges.  

We do not expect this assumption to 

be unrealistic at the time scales 

examined. 

We focus on extended range 

plug-in hybrid electric vehicles 

instead of vehicles with 

blended operation  

Although not the case for every PHEV, the Chevy Volt 

depletes the battery before extending the range with the 

gasoline motor as opposed to operating in a blended 

mode. Like previous studies [12][14], we assume our 

PHEV’s operate as an extended range vehicle like the 

Chevy Volt.  

(+) blended operation PHEVs result 

in somewhat smaller electricity 

demand for the same battery size, 

reducing the impact of uncontrolled 

charging and the potential for 

controlled charging to reduce this 

impact. We expect this to be a small 

effect, as a blended mode is more 

common in vehicles with smaller 

batteries where daily driving patterns 

are likely to use the entire battery even 

in blended mode. Modeling blended-

operation PHEVs requires 

assumptions about vehicle control 

strategies, but there is no reason to 

believe these small differences in 

electricity consumption would 

qualitatively change results. 

Controlled charging does not 

significantly reduce battery life 

Degradation is complex, so we cannot be certain, but we 

expect that controlled charging will not decrease battery 

life and may increase it. Barre et.al. review the literature 

on lithium-ion battery aging mechanisms and find that 

cycle number is the most important factor, but voltage, 

temperature, and change in SOC can also play a factor 

[10]. Controlled charging does not change the number of 

cycles, and because it lowers the average C-rate, may 

decrease average charging voltage and temperature and 

therefore potentially extend battery life. Controlled 

charging also changes how long batteries remain at low 

SOC vs. high SOC while plugged in. Some chemistries 

have been shown to degrade faster at high SOC, so again 

controlled charging may extend battery life by leaving 

batteries at low SOC longer before charging rather than 

charging immediately upon arrival.  

(-) the benefits of controlled charging 

may be larger if the reduced average 

C-rate of controlled charging results in 

extended battery life. However, it is 

not known whether variation in C-rate 

or SOC profile may have other 

positive or negative effects on battery 

life. 
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20 days are used to represent 

the calendar year 

Necessary due to computational constraints in order to 

examine a wide variety of sensitivity cases.  

This could shift the results in either 

direction, but we expect the 

differences to be small since the 

average load and wind match the 

annual averages and the peak and 

minimum load conditions are 

captured. 

 

We examined the sensitivity of the cost reductions to several different important input 

assumptions, the first of which is the hourly time scale. We optimized grid operations over the same 

twenty-day period with a fifteen-minute time scale using a modified version of the optimization 

model designed to handle larger problems, without capacity expansion, by optimizing each day’s 

dispatch sequentially.  This allowed for manageable runtimes even with four times as many variables 

per day, while obtaining solutions close to the optimal solution of the original model. Total system 

costs for a 10% vehicle penetration with uncontrolled charging were ~2% higher in the fifteen 

minute model given a 0% wind penetration, and ~7% higher given a 20% wind penetration 

compared to the hourly model. Higher system costs are expected especially in the high wind case 

because there is more total ramping to accommodate the shorter time scale examined. The cost 

reductions associated with controlled charging are slightly lower in the fifteen-minute model, as 

shown in Figure 2.5. The higher time resolution of the data leads to a lower peak demand in the 

uncontrolled charging case. This effect overwhelms any additional cost reductions that might occur 

at fifteen-minute time resolution due to additional flexibility, and indicates that the cost reduction 

estimates at hourly resolution are optimistic. Both time resolutions produce similar trends between 

0% and 20% wind penetration given the same initial generation capacity. These results suggest that 

the hourly time scale used in the base case is likely sufficient resolution -- it does not miss a major 

source of benefits from controlled charging at higher resolution. Although it is possible that even 

shorter time scales may allow for controlled charging to provide more benefit through participation 

in the regulation market, this requires more extensive communication infrastructure, and this market 
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is expected to saturate with a relatively small number of vehicles [9]. In addition, the fifteen minute 

load control framework is similar to many existing demand response programs that use one-way 

radio controlled switches and cycle loads roughly every 15 minutes [28]. 

 

Figure 2.5: Annual cost savings due to controlled charging for different models given 0% and 20% wind penetration.  

We also investigated the sensitivity of the results to changes in the parameters of the PHEV 

fleet. The potential cost savings from controlled charging is approximately linear with the 

penetration of PHEVs, as shown in Figure 2.6. Regardless of the vehicle penetration, controlled 

charging is worth more in scenarios with high wind penetration and capacity expansion. In the 

Capacity Expansion Scenario with 20% wind penetration, the cost reduction is slightly higher than 

the linear trend at the 15% vehicle penetration because controlled charging prevents construction of 

an additional gas plant.  The Fixed Capacity Scenario with 20% wind penetration has a slightly 

higher cost reduction at 10% vehicle penetration than the linear trend because it has the most 

switching away from gas turbine generation. 
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Figure 2.6: Sensitivity of the maximum annual system cost savings possible through 100% controlled electric vehicle 
charging compared to uncontrolled charging for a range of vehicle penetrations from 0% to 15% of a 9 million passenger 
vehicle fleet.  

Increasing the maximum charge rates has diminishing returns, as shown in Figure 2.7. Level 1 

charging restricts the peak power that occurs with uncontrolled charging, so controlling the charging 

is much less valuable. In the uncontrolled charging scenarios, increasing to Level 3 charging from 

Level 2 charging only minimally increases the peak load because the total amount all vehicles can be 

charged is limited by battery size and total driving distance. As battery size increases, the vehicles are 

able to drive more miles per day in charge depleting mode. This increases the value of controlled 

charging to the system somewhat, as the uncontrolled peak load becomes more and more expensive. 

However, this benefit is limited because the more miles traveled in charge depleting mode, the less 

flexibility there is to move charging to a later time, since much of the time spent parked is needed 

for charging. Examining a range of 5 kWh batteries to 24 kWh batteries, we see cost reductions 
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differ from the base case by $1 to $35 million dollars per year depending on the scenario due to the 

competing effects discussed above.   

 

Figure 2.7: Sensitivity of the maximum annual system cost savings possible through 100% controlled electric vehicle 
charging compared to uncontrolled charging for Level 1 (1.2 kW), Level 2 (7.4 kW), and Level 3 (30 kW) charging. Only 
Level 1 and 2 are likely to be used in residential settings in the foreseeable future. 

2.3.2 Capacity and Generation Mix 

Figure 2.8 summarizes plant capacity and generation results for four cases. In the Fixed Capacity 

Scenario with no wind, controlled charging reduces generation from gas-combined cycle and oil/gas 

steam plants and increases generation from coal plants slightly, bringing coal plants to very high 

utilization levels. The lack of both the cheap energy from wind and its variability means that any coal 

capacity is used nearly continuously with very few startups and shutdowns.  Not surprisingly, in the 

Fixed Capacity Scenario under a 20% wind penetration, controlled charging results in reduced 

generation from all fossil fuel plants types, replacing it with wind generation.  
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          Fixed Capacity Scenario Capacity Expansion Scenario 

0% 

Wind  

  

20% 

Wind 

  
  

 

 

 
Figure 2.8: Comparison of capacity and generation data with and without controlled electric vehicle charging by generator 
type for each scenario. The following abbreviations are used for the generation types: W- Wind, CT – Gas Combustion 
Turbine, CC – Gas Combined Cycle, O/G – Oil/Gas Steam, C – Coal, N – Nuclear. Generation axis is scaled so that 
average capacity factor can be seen as percent of installed capacity bar filled with generation. Peak power production is 
calculated based on hourly data.  

In the Capacity Expansion Scenario, controlled charging results in reduced plant construction: 

when there is no wind, fewer gas combined cycle and coal plants are built; and for a 20% wind 

penetration, no additional coal plants are built because of the abundance of low cost and high 

variability wind.  Instead, most additional capacity is combined cycle gas.  Given controlled charging, 

far fewer combustion plants are built compared to the uncontrolled charging scenario, and in 

exchange a small number of gas turbine plants are built to meet reserve margin and ramping 

requirements.  These plants have higher operating costs than coal and combined cycle plants but 

have the lowest capital costs.  
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Controlled charging in the Capacity Expansion Scenario also shifts generation to allow for 

cheaper capacity expansion options. With no wind, controlled charging slightly shifts the generation 

from coal to natural gas and oil. Under a 20% wind penetration, controlled charging reduces gas 

combined cycle generation and slightly increases oil/gas steam generation to allow for reduced 

construction of combined cycle plants.  

In both the Fixed Capacity Scenario and the Capacity Expansion Scenario, wind curtailment is 

reduced with controlled charging, but the curtailment that occurs even without controlled charging 

is a very small percentage of total wind generation, as seen by the slight difference in wind 

generation between the controlled and uncontrolled scenarios (Figure 2.8). Because plants have 

specified capacities and are added discretely until the wind generation potential is greater than the 

20% of all load required by the penetration goal over the course of a year, a small amount of wind 

generation from the last plant added is extra and may be curtailed by the system operator while still 

meeting the penetration goal. Any larger amount of curtailment requires building additional wind 

plants. Curtailing the extreme peaks of wind production could help in reducing system costs by 

reducing the ramping and shut downs of conventional power plants. These cost reductions would 

have to exceed the capital costs of the new wind plants to make up for the energy lost in the 

curtailed peaks in order to meet the wind penetration goal. We find that regardless of the cost of 

controlled charging, it is never cost effective in the cases examined here to build extra wind plants in 

order to add flexibility to the system through the option of wind curtailment.   

The generation mix remains fairly similar between the hourly and fifteen-minute model, as 

shown in Figure 2.9. The most noticeable differences are the increased use of oil/gas steam turbines 

and combustion turbines with the fifteen-minute model, and a corresponding decrease in the use of 

combined cycle plants. Wind energy is also used less with the fifteen minute model because we 

dropped the hard wind energy constraint in order to perform each day’s optimization separately to 
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save computation time with larger number of time steps. Using the same wind capacity as in the 

Fixed Capacity Scenario hourly model, the fifteen-minute model had only 19% wind by energy.  

 

Figure 2.9: Comparison of resulting generation mixes between the hourly and fifteen minute model. 

2.4 Conclusions 

In our test systems, controlled charging of PHEVs reduces the costs of generating electricity to 

charge PHEVs by 54-73% depending on the scenario. Cost reductions that result from employing 

controlled vehicle charging are estimated at $65-$110 million/year, given a 10% PHEV penetration, 

perfect information, no transmission constraints, and a 1-hour resolution. Cost reductions 50%-60% 
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larger can be found in our cases requiring capacity expansion than in those without because 

controlled charging reduces the need for new plant construction and provides flexibility in deciding 

which plants to build. Capacity expansion may be needed in systems where coal plants are forced to 

retire due to emissions regulations or when significant load growth is expected. Cost reductions 6%-

13% larger can be found in our cases with a 20% wind penetration than in those with a 0% wind 

penetration because of the additional value of controlled charging in managing wind variability. This 

suggests that controlled charging may offer some additional support for wind integration; however, 

system operators should not rely on controlled vehicle charging to dramatically cut wind integration 

costs. This result holds when examining sub-hourly time resolution.  However, the potential of 

controlled charging in high wind penetration scenarios could vary when considering load and wind 

forecasting error and transmission constraints. Such considerations were not modeled here due to 

data availability and model tractability issues. Controlled charging could provide additional benefits 

by providing very fast ramping capability to balance solar PV systems, and could also not be needed 

as much given the flexibility of some new renewable sources like geothermal and small scale hydro, 

but these effects should be small due to the small amount of capacity being installed. 

In most of our scenarios, at 10% PHEV penetration or higher, controlled charging provides 

enough system benefits to save $100/vehicle/year for many vehicles. These savings may be 

sufficient to provide a large enough payment for some vehicles owners to be willing to participate in 

a controlled charging program with an average savings of up to 0.2 cents/kWh of charging, as long 

as the necessary equipment can be obtained by the vehicle owner or system operator at low cost. 

Both the installation and maintenance costs of the controlled charging system would have to come 

out of the $100/vehicle/year. The cost benefits of controlled charging scale fairly linearly with the 

number of PHEVs, so if the equipment costs per vehicle are low enough and the overhead costs of 

program are kept low, a controlled charging program could pay for itself even at low PHEV 
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penetrations. We do not, however, model the vehicle owner’s willingness to participate in the 

program, as this is a behavioral question beyond the scope of our analysis. 

Building additional wind plants beyond the penetration goal in order to allow curtailment and 

mitigate extreme generation fluctuation is not cost effective in our model. Although the energy lost 

by curtailing peaks is minimal and therefore requires little additional capacity to make up for it, the 

high capital cost of wind farms outweighs any benefit of flexibility to the grid. 
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ELECTRIC VEHICLE CHARGING IN 

THE US PJM INTERCONNECTION 
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3.1 Introduction 

While controlled charging can significantly reduce the operational costs of charging electric 

vehicles, as shown in the previous chapter, these cost savings largely come from shifting some gas 

generation to coal generation. This creates significant emissions consequences, especially in the 

emissions of SO2. In this chapter, we again examine the operational cost savings from controlled 

electric vehicle charging, but also quantify how emissions and the environmental and health damages 

from emissions are changed. Several previous studies have evaluated the emission benefits of 

controlled vs. uncontrolled electric vehicle charging. Table 3.1 provides a summary of this literature. 

One of these studies, Choi et. al [1], examined lifecycle emissions, while Lund and Kempton [2], 

Hadley and Tsvetkova [3], McCarthy and Yang [4], and Peterson et. al. [5] focus only on emissions 

attributed to charging. None of these studies have included both a detailed model of the power grid 

with power plant operating constraints and a consideration of social costs of criteria air pollutants 

and greenhouse gas emissions. Additionally, Hadley and Tsvetkova and McCarthy and Yang do not 

explicitly evaluate the effects of controlled charging, only the effect of shifting charging to different 

times of day. We build on previous work and provide new insights about the costs and benefits of 

vehicle electrification under controlled vs. uncontrolled charging schemes. We include operating 

constraints of the electric grid and estimate system operating costs and the economic value of 

emissions damages from generating the electricity used for charging plug-in electric vehicles. We 

base our model on the PJM power grid in the eastern United States (ignoring interregional trade) 

and include three power grid scenarios for this system. The first grid scenario is based on the current 

characteristics of the PJM system; in our second grid scenario we develop a hypothetical power plant 

fleet for 2018 that accounts for the retirement of coal power plants; and our third scenario extends 

the 2018 system to include 20% wind penetration.  
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Table 3.1: Previous literature comparing the effect of controlled and uncontrolled plug-in electric vehicle charging on 
emissions. 

Author 
Yea

r 

Power 

System 
Scope 

Power System 

Model 

High Wind 

Scenario? 

Emissions 

Considered 

Calculation of 

damages? 

Lund and 

Kempton [2] 

200

8 
Denmark 

Charging 

emissions 

Supply curve with 

min gen 
Yes CO2 No 

Hadley and 

Tsvetkova* [3] 

200

8 
US 

Charging 

emissions 
Supply curve No 

CO2, SO2, 

NOX 
No 

McCarthy and 

Yang* [4] 

201

0 
California 

Charging 

emissions 
Supply curve No CO2 No 

Peterson 

et al. [5] 

201

1 

PJM and 

NYISO 

Charging 

emissions 
Supply curve No 

CO2, SO2, 

NOX 
No 

Choi et. al [1] 
201

3 

Eastern 

Inter-connect 

Lifecycle 

emissions 

Unit commitment 

and capacity 

expansion 

Yes CO2 No 

This chapter PJM 
Charging 

emissions 
Unit commitment Yes 

CO2, SO2, 

PM2.5, NH3, 

NOX, VOCs 

Yes 

*These studies do not explicitly compare controlled and uncontrolled charging, but it does examine the difference in emissions for 

charging at different times of day. 

3.2 Methods 

3.2.1 Scenarios 

We use five different scenarios to investigate how different factors will affect emissions and the 

costs of charging: 

1. Base Case: In this scenario we assume an electric vehicle fleet based on the PHEV35 model 

in GREET [6] (similar to the Chevy Volt) and a fleet of power plants representing the PJM 

system in 2010  

2. Small Battery: For this scenario we modify the base case so that the vehicle fleet is based on 

the Toyota Plug-in Prius. 

3. Large Battery: For this scenario we modify the base case so that the vehicle fleet is based on 

the Tesla Model S.  

4. Future: For this scenario we modify the base case to model a power plant fleet in 2018 by 

accounting for planned new power plant construction, plant retirement, and updated 

emissions rates and marginal costs. 
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5. High Wind Future: In this scenario we modify the future case to add wind plants sufficient 

to produce 20% of generation. 

Finally, for each scenario we evaluate uncontrolled electric vehicle charging, in which drivers 

plug in their vehicles immediately after the last trip of the day; and controlled charging, in which 

charging is optimized for minimum cost and can occur any time between the last trip of the day and 

the first trip of the next day as long as the battery is fully charged for the next trip.  

3.2.2 Optimization of the Power System 

In order to determine the effects of electric vehicles on the operations of the power system, we 

use the PJM Hourly Open-source Reduced-form Unit-commitment Model (PHORUM), an open-

source unit commitment and economic dispatch model developed at Carnegie Mellon University 

[7][8]. This model uses mixed integer linear programing to minimize the costs of operating the 

power plants while satisfying load, operating constraints of the power plants, and transmission and 

reserve constraints of the system. We modify PHORUM to incorporate plug-in electric vehicle 

charging, both controlled and uncontrolled, adding equations for battery constraints and charging 

requirements. Each day is optimized using a 48-hour window, and then the model steps forward 24 

hours, optimizes the following 48 hour window, and repeats.  

The objective function minimizes the operating costs of all generators in the system: 

 

Where is the set of all time steps in the 48 hour periods, is the set of all generators, 

is the start-up cost for the generator i in time step t, is the power generated by generator i in  

time period t, is the cost fuel, is the head rate, and is the variable operation and 

maintenance cost for generator i. 
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The optimization is subject to similar constraints as those in chapter 2. The generation must 

meet the load in each region in each time period:  

 

Where is the set of generators in region r, is the set of transmission lines connecting to 

region r, is the set of all vehicle profiles, and is the set of all regions in PJM. is the wind 

power taken from wind generators in region r,  is the power flowing into region r across power 

line l, and is the charging power to vehicle profile j from region r in time period t. is the non-

vehicle load in region r and time period t and is level of reserves required in region r. is a 

binary parameter which is 1 if charging is controlled in the scenario and 0 if uncontrolled. is the 

number of electric vehicles in region r and is the uncontrolled charging load of one vehicle.  

Wind generation used by the system cannot exceed the total wind potential: 

 

Where is the wind potential in region r in time period t. 

The system is also subject to the physical constraints of the power plants. Each plant’s 

maximum capacity cannot be exceeded: 

 

Where is a binary variable describing if the plant is on or off and is the capacity of plant 

i. Similarly, the plant must be operated above its minimum generation level if on: 

 

Where is the minimum generation level of plant i. 

The plants incur start-up costs when turned on: 
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Where  is the cost of starting up for plant i. 

Changes in generation levels have to comply with plant ramp rates: 

 

 

Where is the ramp rate of plant i, is the ramp rate down, and  is the length of the 

time step. 

Plants also have to stay on for a specified period of time  once turned on and stay off for a 

specified period of time when turned off: 

 

 

Controlled vehicle charging has to be kept below the maximum charge rate: 

 

Where is the maximum charge rate for a single vehicle, is what percent of time step t the 

vehicle profile j is parked at home, and is the percent of electric vehicles with profile j. 

The amount of energy left in the batteries  of vehicle in each regions and profile and time 

step must be tracked from time period to time period based on the amount of charging and the 

number of miles driven : 
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The amount of energy also must be constrained to be less than the total usable capacity of the 

batteries : 

 

Finally, the batteries must be fully charged by morning: 

 

Where  is the set of time steps during each 48 hour period when that particular vehicle 

profile makes its first trip of the day. 

The reduced-form portion of the model title refers to the simplified reserve constraints: most 

unit commitment models require that spinning reserves be within the ramping capability of active 

power plants but never call on those reserves. In PHORUM, instead of co-optimizing an energy and 

reserve market as is actually done in PJM, the reserve requirement is added to the load, treating the 

system as though reserves are always used. This simplification decreases the run time by a factor of 

10, allowing for the examination of a wide range of scenarios using data for the entire year. The 

additional generation due to reserves is constant between scenarios, since n-1 security for the power 

plants (where the system maintains sufficient reserves to meet load if the largest power plant in each 

region were to go offline) determines this amount for each transmission-constrained region. We 

expect the emissions from this extra generation to also be similar across scenarios and so would 

largely cancel out in the comparison. Additionally, the potential error introduced is small: adding the 

reserves as load increases locational marginal prices (LMPs) by less than 5%, and the error compared 

to historical 2010 LMP’s is lower than simply omitting the reserves [7]. However, this simplification 

does suggest that total generation and emissions for any given scenario represent an upper bound.  
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3.2.3 Data 

3.2.3.1 Power Plant Fleet 

The power system used in this study is based on PJM in 2010. The data for the power plants 

comes largely from the NEEDS dataset (v.4.10) [9] but also includes data on power plant operating 

parameters from other sources like Energy Information Administration (EIA) and PJM reports [7]. 

In order to include transmission constraints, we rely on PHORUM, which uses publically available 

PJM data. This model has been validated to simulate PJM prices reasonably well [7]. It divides the 

PJM system into 5 transmission-constrained regions connected by six transmission interfaces, as 

shown in Error! Not a valid bookmark self-reference.. Each transmission interface consists of 

several actual transmission lines PJM identified as causing about half of the congestion costs [10]. 

Transmission constraints can affect the value of controlled charging and the resulting emissions. For 

instance, reducing the vehicle charge rate in population centers on the east coast may ease 

congestion at peak load times, allowing the use of cheaper power plants, with different emission 

profiles, for charging the vehicles.  

For scenarios 1-3 we use power plant emission rates from the 2010 eGRID dataset for CO2, 

SOX, and NO2 emissions [11] and the 2005 NEI dataset for VOCs and PM 2.5 emissions [12] 

Figure 3.1: PJM power system divided into five transmission-constrained regions with simplified, power-limited transmission 
constraints between regions, represented by the black bars. 
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divided by the generation from eGRID 2005 (although more recent years are available, 2005 is the 

most recent year for which NEI data could be matched to our other power plant data). For plants 

that were not present in the 2005 datasets we assumed emissions rates were equal to the capacity-

weighted average for each plant type. The majority of missing plants were natural gas plants. For the 

future grid scenarios, we update the dataset with power plant additions, retirements, emission rates, 

and marginal costs from the EPA Parsed Results for 2018 [13]. These results come from the EPA’s 

Integrated Planning Model base case, which accounts for current regulatory constraints, including 

the Clean Air Interstate Rule (CAIR) and the Mercury Air Toxics Standards (MATS). The 

transmission constraints remain unchanged in PHORUM as we do not have any further data on 

how they will evolve over time.  We do not include any changes from the proposed existing source 

CO2 rule, as it is still unclear what the final implementation will look like and what its exact effects 

will be.  

In order to model wind power in PHORUM, we need hourly wind output data, which the EPA 

data do not include. In the future base case (scenario 4), we add wind generation using hourly wind 

profiles from NREL’s Eastern Wind Integrations and Transmission Study (EWITS) dataset [14]. 

The EWITS data set contains 5-minute modeled wind data for sites across the Eastern Interconnect 

that we aggregate to hourly data. We add sites in each PHORUM transmission region in order of 

capacity factor to produce the same aggregate annual amount of wind energy within that region that 

is forecasted in the EPA Parsed Results. In the high future wind scenario (scenario 5), we instead 

add sufficient wind sites to meet 20% of load, taking the EWITS sites from within the PJM 

boundaries with the highest capacity factors.   

3.2.3.2 Non-Vehicle Load 

In order to model the effect of vehicle load on the dispatch of power plant, we need to account 

for the baseline non-vehicle load. For the 2010 scenarios (scenarios 1, 2, and 3) we used hourly load 



 

 49 

data for PJM for 2010 [15]. For the future grid scenarios (scenarios 4 and 5), we scaled the 2010 load 

data by a constant factor, which we calculate by dividing the forecasted total US electricity load in 

2018 by the total US electricity load in 2010 [16]. 

3.2.3.3 Plug-in Vehicle Fleet 

Vehicle driving profiles are the basis for estimating the demand for electricity for vehicle 

charging. We modeled the driving profiles using data from the National Household Travel Survey 

[17]. This dataset contains all the trips travelled in one day for each vehicle in 100,000 households 

across the United States, giving the start and finish time, location, and distance travelled for each 

trip. We assume that uncontrolled charging happens at home starting immediately after the last trip 

of the day and is executed at the maximum charge rate. Controlled charging can happen any time 

between the last trip of the day and the first trip of the next day, but the battery must be fully 

charged in that time period. Because of the binary variables needed to represent each driving profile 

in the case of controlled charging, we select a subset of twenty vehicle profiles from the entire 

dataset for tractability. We selected and weighted these subset vehicle profiles to optimally represent 

the aggregated data set, following the method described in chapter 2. Further, for this analysis we 

considered a 10% electric vehicle penetration of the passenger vehicle fleet (chapter 2 suggest that 

generation cost implications are nearly linear with electric vehicle penetration in NYISO). We 

allocated electric vehicles to each transmission region proportional to population, so vehicles 

contribute most to load in the population centers on the east side of PJM and the Chicago area.  

3.2.4 Valuation of Health and Environmental Damages 

The output of PHORUM includes hourly generation from all the power plants in the PJM 

system. Using the emissions factors previously described, we then estimate total emissions for each 

power plant, and we estimate damages from these emissions using the AP2 model, the newest 
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version of the Air Pollution Emission Experiments and Policy analysis (APEEP) model [18]. This 

model estimates the location-specific marginal monetary damages caused by 5 air pollutants (SO2, 

NOX, NH3, PM2.5, and VOCs) given a change in emissions from a reference case. This reference case 

is based on the total emissions from the National Emissions Inventory from the year being modeled. 

The model quantifies health damages based on air quality, exposure, and dose response models. The 

model outputs include damage values (in $/ton) for each pollutant based on the county from which 

it is emitted. Further, the damages vary depending on the height of the source of the emissions 

(ground level vs. stack height). The damages stem largely from health effects, calculated using a $6 

million value of statistical life, but also include reductions in recreational use, agricultural yields, and 

other damages. AP2 damage values are available for 2002, 2005, 2008, and 2011. However, only the 

2005 model explicitly incorporates uncertainty as a distribution of potential outcomes, so we use the 

2005 damage values as our base case and show robustness of our findings for other years as well. 

3.3 Results and Discussion 

We find that controlling the charging of plug-in electric vehicles can significantly reduce the cost 

of generating electricity for vehicle charging, with savings ranging between 23% and 34% depending 

on the scenario, as shown in  

Table 3.2. The cost reductions come from lowering fuel, operating, maintenance, and start-up 

costs through changes in plant dispatch. The cost reductions are smaller than the 50% cost 

reductions found in chapter 2 because the modeled PJM system included existing flexible storage 

plants while the modeled New York system only include fossil, nuclear, and wind plants. 

Table 3.2: Reduction in annual generation costs via controlled charging vs. uncontrolled charging for the 10% electric 
vehicle fleet. 

Scenario 

Reduction in Annual Generation Costs with Controlled Charging 

Total Reduction Per Vehicle Reduction 
% of Total Charging 

Generation Costs 

Base Case (Volt) $130 million $54 32% 

Smaller Battery (Plug-in Prius) $54 million $22 30% 
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Figure 3.2 shows the power generation attributable to vehicle charging with controlled and 

uncontrolled charging, given a 10% electric vehicle penetration. The reductions in generation costs 

associated with controlled charging for scenarios 1-4 stem primarily from shifting generation away 

from higher-marginal-cost natural gas plants to lower-marginal-cost coal plants. Controlled charging 

allows for this shift in generation by delaying charging from peak demand hours, when drivers arrive 

home, to later at night, when the cheaper coal power plants are available. In the high wind case, 

controlled charging also allows for the system to use approximately 1 TWh of wind energy that 

otherwise would have been lost through curtailment, further reducing operating costs. The pumped 

hydro storage systems in PJM provide flexibility in the uncontrolled charging scenarios, which 

causes the slightly higher generation observed in each uncontrolled charging case compared to 

controlled charging due to efficiency losses from storing and retrieving energy.  

Larger Battery (Tesla) $137 million $58 24% 

Future (2018 Grid) $87 million $37 23% 

High Wind Future $115 million $49 34% 



 

 52 

 

 

Figure 3.2: Change in system generation due to electric vehicle charging for controlled and uncontrolled charging for a 10% 
electric vehicle penetration. The current grid scenarios are based on the 2010 PJM power system with the 2010 GREET 
PHEV35 as the base case vehicle. The future grid scenarios are based on the 2018 PJM grid as predicted by the EPA with 
the 2015 GREET PHEV35 as the vehicle. CC = Combined Cycle, CT = Combustion Turbine. 

Figure 3.3 shows the resulting changes in emissions when controlled charging takes place. The 

shift towards more coal generation when there is controlled charging causes an increase in emissions 

of CO2, SO2, NOX, and PM2.5 in scenarios 1-4. These results are consistent with those found by 

Peterson et al. [4] who also reported increased CO2, SO2, and NOX emissions with smart charging 

compared to home charging in PJM. In these scenarios, VOC and NH3 decrease with controlled 

charging. In scenario 5, CO2, PM2.5, VOC, and NH3 emissions decrease with controlled charging as a 

result of decreases in total fossil fuel use that take place when there is a 20% wind penetration. 

Controlled charging in this high wind scenario continues to drive an increase in SO2 and NOX 

emission compared to uncontrolled charging as a result of slightly increased coal generation during 

off-peak charging hours. The total increase in coal generation is smaller, however, so while CO2 and 
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PM2.5 from coal plants increase with controlled charging, greater use of wind power cuts enough 

CO2 and PM2.5 emissions from gas plants to result in a net reduction of these emissions. Figure 3.4 

provides a breakdown of the total emissions by fuel type for the high wind scenario. 

 

Figure 3.3: Average change in emissions due to controlled vs. uncontrolled charging per vehicle per year in PJM. Increases 
in emissions due to controlled charging are shown in red; decreases in emissions due to controlled charging are shown in 
blue. 
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Figure 3.4: Total charging emissions in PJM for uncontrolled and controlled charging by plant type in the high wind 
scenario for a 10% electric vehicle penetration.  
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Figure 3.5 summarizes total social benefits from changes in generation cost and emissions due to 

controlled charging. Error bars display a 95% confidence interval for net benefits. In scenarios 1-3 

the entire confidence interval is negative, indicating high confidence that increased social costs from 

controlled charging emissions outweigh reductions in generation costs. These emissions costs stem 

largely from increased morbidity from SO2 emissions, primarily due to secondary particulate matter 

formed in the atmosphere. In scenario 4, controlled charging leads to an increase in damages 

roughly equivalent to the reductions in generation costs, resulting in near-zero net benefits. In 

scenario 5, with high wind penetration, reductions in generation cost are larger than increased 

emissions costs.   

As previously mentioned, the results in Figure 3.5 are based on AP2 damages for 2005, which is 

the only year for which AP2 includes uncertainty. In order to test the robustness of these results, we 

also evaluated the changes in emission damages using AP2 point estimate values from 2002, 2008, 

CO2 Social Cost Reductions 

Generation Cost Reductions 

VOC Social Cost Reductions 

NH
3
 Social Cost Reductions 

Reductions  SO
2
 Social Cost Reductions  

Net Benefits 

NO
X
 Social Cost Reductions  

PM
2.5

 Social Cost Reductions  

Figure 3.5: Change in annual social benefits due to controlled charging compared to uncontrolled charging ($2010). Stacked bars show the 
change in generation cost combined with the median damages by pollutant assuming the 2010 social cost of carbon given by the OMB ($31 
in $2010). Black dots show the reductions in net social benefit due to controlled charging with error bars representing a 95% confidence 
interval, reflecting uncertainty in emissions damages.  
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and 2011, shown in Figure 3.6. Our conclusions are robust for scenarios 1 through 4 regardless of 

which year’s AP2 data we use. For the high wind scenario (Scenario 5), the results are consistent 

when using AP2 damages for 2002 and 2008. However, using AP2 damages for 2011 results in 

increased emission damages from controlled charging that exceed the reductions in generation costs. 

The period between 2008 and 2011 saw a significant reduction in SO2 emissions from the power 

sector, which affected the background concentrations. This period also underwent shifts in 

population densities and thus exposure trends. The combination of these two trends results in 

higher marginal damages for 2011. Nonlinear properties of the dose-response functions as well as 

nonlinearities in atmospheric chemistry not currently included in the AP2 model, combined with 

further changes to emission concentrations and populations may make future marginal damages 

change in either direction.  
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Figure 3.6: Change in annual social benefits due to controlled charging compared to uncontrolled charging ($2010) for each 
AP2 year. Stacked bars show the change in generation cost combined the median damages by pollutant assuming the 2010 
social cost of carbon given by the OMB ($31 in $2010).  

Our representation of the future PJM grid is not intended to be a perfect prediction of the grid 

in 2018. It is difficult to know exactly which plants will choose to upgrade their emission control 

technology or retire, and the predictions for 2018 do not include the effect of the proposed carbon 

policy for existing sources, since its exact effects are difficult to predict. Instead, the future grid 
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scenarios provide a plausible grid with a lower emissions footprint. We see that even with 

substantially more wind power than is predicted by 2018, along with plausible improved emissions 

rates and coal retirements, the net benefits from controlling the charge rate of electric vehicles may 

be very small, and we cannot be certain they will be positive, as the marginal damages from 

emissions change over time. It is also important to note that controlled charging does allow 

increased use of wind resources, which would thus support efforts to meet the penetration targets 

set in state Renewable Portfolio Standards (RPS). However, if the policy goal of the RPS is to reduce 

emissions, then despite the increased use of wind resources, controlled charging does not necessarily 

support this policy goal. 

There are several important limitations to our model. We look at the average impact of a vehicle 

in PJM based on 10% electric vehicle penetration, but because there are transmission constraints in 

the system, the emissions and health effects caused by additional charging load would in practice 

vary somewhat across the region. The simplified transmission constraints used in PHORUM only 

capture roughly 50% of the congestion in the PJM system and do not take into account how the 

transmission constraints might change in the future. Additional congestion could prevent controlled 

charging from using all of the wind energy we estimate, or the use of cheaper plants in general, but 

controlled charging could also help relieve congestion and allow for greater reductions in generation 

costs. The imperfect transmission constraints could also imply error in the predicted location of 

emissions. This could imply a greater uncertainty in the damages values than is represented in Error! 

Reference source not found., which only includes the uncertainties from within the AP2 model. 

This additional uncertainty is difficult to quantify. Higher levels of congestion would also increase 

the variance in emissions associated with vehicle charging across PJM.  

We assume perfect knowledge of load and wind generation over each 48-hour period. Because 

vehicle charge rates could be changed on a faster time scale than the operational limits of power 
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plants, controlled charging could provide additional value in correcting for forecasting error. On the 

other hand, since we assume that we know the exact schedule of all electric vehicles, the results may 

overestimate of the operational value of controlled charging. However, as electric vehicles become 

more widely adopted in each region, their behavior should become easier to predict.  

Our model also does not take into account other environmental constraints that might impact 

power plant operation, such as the National Ambient Air Quality Standards (NAAQS). In 2010, 

some regions within PJM were in nonattainment of the NAAQS. To check if vehicle charging would 

affect nonattainment, the resulting power plant emissions from uncontrolled and controlled vehicle 

charging added to the existing electricity demand were run through the AP2 air quality model to find 

the resulting concentrations. We found slightly increased concentrations in some counties that were 

already in nonattainment compared to the concentrations without vehicle charging. States with 

regions in nonattainment have State Implementation Plans to address the problem, which may affect 

the way plants can be dispatched in the future. We also do not include emission caps in our 

modeling. These caps link operational decisions between all time periods within the year modeled, 

and even between years because power plants can bank unused allowances. In 2010, the Acid Rain 

Program (ARP) and Clean Air Interstate Rule (CAIR) limited power plant SO2 emissions in PJM. 

Emissions were well below the budget set by the ARP, but power plants subject to CAIR exceeded 

the 3.6 million ton annual budget by 0.8 million tons, indicating that they used banked allowances 

from the APR [19]. Power plants only used 1 million out of a total of 16 million available banked 

allowances, so operational decisions were likely not significantly influenced by the opportunity cost 

of using these allowances. NOX is also regulated by CAIR, but the cap has not been binding for any 

of the years that it has been in place [20]. It is uncertain if any caps will be binding in 2018. Starting 

in 2015, the Cross-state Air Pollution Rule (CSAPR) replaced CAIR in setting the SO2 emission 

limits, tightening the cap 1.8 million tons below the CAIR level by 2017. It is possible that because 
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power plants must reduce their emissions to comply with the MATS, emissions will already be 

below the cap. In this case, power plant operations would remain unaffected. On the other hand, if 

emissions were high enough to make the cap binding, then any additional generation for vehicle 

charging would have to come from low-emission sources and increase the SO2 prices by increasing 

the pressure on the cap. In this case, charging generation could not switch from gas to coal unless 

the coal plants were retrofitted with emission controls that eliminated SO2 emissions. Controlled 

charging could reduce health damages in addition to generation costs by switching from the less 

efficient gas plants available in peak hours with more efficient gas plants that would have capacity 

available night. Damages could still increase with controlled charging by changing the location of 

SO2 emissions to areas with larger populations even as the total magnitude stayed constant. 

There are also limitations to using the marginal damages of pollutants from one year to estimate 

what the damages will be in the future. Changes in background air pollutant concentrations and non-

linear effects of atmospheric chemistry that may occur as a result of cleaner power plants, as well as 

shifts in population, may also result in significant changes in the values of the marginal damages 

associated with one ton of pollutant. It is thus important to improve social costs models that can 

include these effects. These limitations notwithstanding, several key conclusions emerge from this 

analysis.  

Controlled electric vehicle charging may reduce the generation cost of electric vehicle charging 

significantly but may nevertheless produce net social costs in the PJM grid due to increased use of 

inexpensive, high emission coal plants. Even in a future 2018 system, coal remains a significant 

resource in PJM, which would continue to drive increased pollution damages from controlled 

charging at night. These health and environmental damages, especially those associated with SO2, 

outweigh the reductions in generation cost associated with controlled charging except in the high 

wind case. The addition of large amounts of wind to the PJM system may make controlled charging 



 

 61 

more desirable from an operation cost perspective, but we still expect higher environmental and 

health damages than with uncontrolled charging. In general, controlled charging has potential for 

reducing generation costs, but its societal impact depends on the characteristics of the power plant 

fleet. In other regions with tighter environmental regulations, more renewable generation, less coal 

power, and/or inexpensive natural gas plants, controlled charging could lead to lower environmental 

and health damages. Our results also suggest that the externality costs missing from the current 

power system optimization are substantial and should be considered when making policy decisions 

to avoid large increases in human health and environmental costs.  
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Chapter 4: LIFECYCLE EMISSIONS AND 
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4.1 Introduction 

The benefits and costs of controlled charging can be determined solely through the interaction 

of vehicle charging with the electricity grid, as done in chapters 2 and 3. However, in order to 

evaluate the impacts of plug-in electric vehicles relative to other passenger vehicle options, such as 

hybrids and conventional internal combustion engine vehicles, we need to consider the entire 

lifecycle of the vehicles. This allows us to account for the differing upstream fuel and manufacturing 

emissions.  However, the charging emissions remain critical to determining which vehicle will have 

the lowest total impact [1]. This chapter contributes an analysis of lifecycle emissions, including 

vehicle and battery manufacturing, using a bottom-up unit commitment and economic dispatch 

model of the grid to evaluate criteria air pollutant and emissions and their societal damages.  

Only the recent study by Choi et al. [2] has also used a detailed optimization model of the power 

system that includes the physical constraints of power plants to evaluate the lifecycle emissions of 

electric vehicles. All other studies that attempt to evaluate the impact of future changes to the 

electricity mix do so by assuming scenarios with a single generation type such “all renewables” and 

“all gas,” as is done by Michalek et al. [1] and Tessum et al [3]. Choi et al. include the evolution of 

the grid through capacity expansion, but they only evaluate carbon emissions. Including the physical 

power plant constraints becomes increasingly important to determine what plants will be on the 

margin at different times of day as the grid evolves to incorporate more renewables. For example, 

with no ramping constraints, wind will never be on the margin since it has the lowest marginal cost. 

The Tessum et al.study has a “2020 average mix scenario,” but the generation mix is from 2007. 

This study does use a state-of-the-science air quality model to evaluate the resulting concentrations 

and damages across the country. Our study uses a simpler air quality mode which allows us to 

evaluate the impact of emissions in each county separately. As discussed in the thesis introduction, 

studies using past average emissions rates or technology specific emissions rates give us bounding 
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cases but cannot tell us how electric vehicles will interact with specific future grid scenarios, or how 

different charging patterns will affect emission and damages. Studies by Graff Zivin et al. [4] and 

Tamayao et al. [5] can capture the complexities of the current electricity grid by using top-down 

regression models. However, because the regressions used are based on historical data, these models 

also cannot be used to predict what might happen to emissions when significant changes occur to 

the system. Table 4.1 below compares this chapter with other relevant, peer-reviewed LCA studies 

on total vehicle lifecycle emissions in the United States.  

Table 4.1: Comparison of literature addressing the lifecycle emissions of plug-in electric vehicles in the United States that 
include vehicle manufacturing emissions. This chapter combines a consideration of a wide range of emissions and their 
damages with a detailed model of the electricity grid, unlike previous work.  

Author Year Power 

System 

Power System 

Model 

High Wind 

Scenarios? 

Emissions 

Considered 

Calculation 

of damages? 

Charging 

patterns? 

Samaras and 

Meisterling 

[6] 

2008 United States Average emissions 

with sensitivity 

No CO2 Eq No No 

Michalek et. 

al. [1] 

2011 United States Average emissions 

with sensitivity 

No CO2, CO, SO2, PM2.5, 

NH3, NOX, VOCs 

Yes No 

MacPherson 

et. al. [7] 

2012 United States 

and by region 

Average emissions No CO2 Eq No No 

Ma et. al. [8] 2012 California Marginal emission 

factors 

No CO2 No No 

Choi et. al [2] 2013 Eastern 

Interconnect 

Unit commitment and 

capacity expansion 

Yes CO2 No Yes 

Tamayao et. 

al. [5] 

2014 United States 

by region 

Marginal emissions 

factors 

No CO2 No Yes 

Tessum et. al 

[3]  

2014 United States Average emissions Yes CO2 Eq, O3, PM2.5 Yes No 

This Study PJM Unit commitment  Yes CO2 Eq, CO, SO2, 

PM2.5, NOX, VOCs 

Yes Yes 

 

4.2 Methods 

4.2.1 Lifecycle Boundary 

This chapter estimates the lifecycle emissions of CO2, CO, SO2, PM2.5, NOX, and VOCs for each 

vehicle type, including the emissions from vehicle and battery manufacturing, in addition to the well-

to-wheel emissions of the vehicle fuel. For conventional and hybrid vehicles, the well-to-wheel 
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emissions include the upstream fuel emissions from petroleum drilling and refining, as well as the 

tailpipe emissions. For plug-in hybrid electric vehicles, it also includes the emissions created by 

burning fuel in power plants to charge the vehicle, and the upstream emissions from coal and natural 

gas production. The scope of the lifecycle inventory is shown below in Figure 4.1. We do not 

consider end of life emissions in this study. We assume a total vehicle life of 160,000 miles, as done 

in [1].   

 

Figure 4.1: Lifecycle Inventory for plug-in hybrid, hybrid, and conventional vehicles. 

 

4.2.2 Vehicle and Power Grid Scenarios 

We use two sets of scenarios, one based on the current power system in PJM and one based on 

a possible future PJM power system, to compare lifecycle emissions and damages of plug-in hybrid 

electric vehicles with conventional and hybrid gasoline vehicles: 

Gasoline 
Refining 

Oil 
Production 

Coal 
Production 

and 

Natural Gas 
Production 

and 

Power Plant 
Operation 

Plug-in 
Hybrid   

Vehicle Use 

Hybrid 
Vehicle Use 

Conventional 
Vehicle Use 

Vehicle 
Manufacturing 

Battery 
Manufacturing 
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Table 4.2: Scenarios for lifecycle emissions and damages comparison 

Scenario Power System Data Conventional Vehicle Hybrid Vehicle Plug-in Electric Vehicles 

1. Current  
(2010) 

2010 PJM 2010 GREET ICEV 2010 GREET HEV 2010 GREET PHEV-10  

(Plug-in Prius-sized) 

2010 GREET PHEV-35  

(Volt-sized) 

2012 BEV-265  

(Tesla-sized) 

2. Future 
(~2018) 

EPA forecasted 2018 PJM  

With and without high wind 

2015 GREET ICEV 2015 GREET HEV 2015 GREET PHEV-35  

(Volt-sized) 

 

For each scenario, data was used to represent 2010 and 2018 respectively as accurately as 

possible, given data availability. Data for most vehicles come from the Argonne National 

Laboratory’s 2013 GREET 1 and 2 models [9][10]. The electric range and efficiency for the Tesla-

sized large electric range PHEV’s is for the 2012 Tesla Model S on fueleconomy.gov [11]. For the 

future grid scenarios, we use 2015 GREET plug-in hybrid, hybrid, and conventional gasoline 

vehicles, as this was the latest model year available in GREET. Electricity grid data for 2010 is taken 

from the NEEDS data set and other sources, and updated for the future grid scenarios with new 

and retired power plants, as done in chapter 3. The additional wind generation for the future grid 

comes from NREL’s Eastern Wind Integration and Transmission Study dataset [12]. We add wind 

sites in order of capacity factor to reach the 3% wind penetration forecasted by the EPA for 2018 

for PJM for the base case future scenario. We increase the number of sites to reach a 20% wind 

penetration for the high wind scenario.  

4.2.3 Lifecycle Inventory 

We determine the lifecycle emissions for each stage shown in Figure 4.1 for each vehicle type 

based on a 160,000 mile lifecycle. A summary of the data used for each stage is shown in Table 4.3 

below and explained in more detail in the following sections.  
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Table 4.3: Data for the lifecycle emissions for each stage 

Stage Emission Rate  Source Other Assumptions Source 

Power Plant Operation Ton/year Unit commitment model Driving patterns 

Vehicle efficiency 

NHTS 

GREET 1, fueleconomy.gov 

Tailpipe Grams/mile GREET 1 Driving patterns NHTS 

Vehicle  Ton/lifetime GREET 2   

Battery manufacturing Ton/lifetime GREET 2   

Oil Production Ton/mile GREET 1   

Gasoline Refining Ton/mile GREET 1   

Coal Production Ton/MWh GREET 1 MWh hours produced Unit commitment model 

Natural Gas Production Ton/MWh GREET 1 MWh hours produced Unit commitment model 

 

4.2.3.1 Power Plant Operation Emissions  

Power system emissions are determined by calculating the extra electricity load added to system 

from vehicle charging and modeling the power plant response to the added load. Vehicle charging 

load is determined from vehicle parameters and driving patterns taken from the National Household 

Travel Survey (NHTS) data [13], as done in chapters 2 and 3. These data provide the distance driven 

during each trip throughout the day surveyed as well as the time of each trip. We use the distance 

driven in a day, the vehicle efficiency, and the electric range of the vehicle to calculate both how 

many miles are driven in charge-depleting vs. charge-sustaining mode and the total charging load per 

day. We assume that all plug-in hybrid electric vehicles drive as many miles as possible in charge-

depleting mode before switching to charge-sustaining mode. We also assume that all vehicles are 

charged at home after the last trip of the day and are fully charged by the first trip of the next day. 

For each scenario, we calculate the hourly charging load for both uncontrolled and controlled 

charging. Uncontrolled charging load is calculated assuming that the vehicles begin charging as soon 

as they arrive home after the last trip of the day at the maximum charge until fully charged. 

Controlled charging is optimized with power plant operations using 20 representative vehicle 

profiles as described in chapter 3. The charging can occur any time between the last trip of the day 

and the first trip of the next day and at any charging power at or below the maximum charge rate, as 
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long as vehicles are fully charged by the end of this period. Charging in all scenarios is limited to 

Level 2 (7.2 kW) charging.  

The resulting emissions from vehicle charging are calculated using a unit commitment and 

economic dispatch model of the PJM power system that minimizes the cost of generating electricity 

while meeting all loads.  This model is based on PHORUM (PJM Hourly Open-source Reduced 

form Unit commitment Model), developed at Carnegie Mellon [14]. It is modified to include 

variables and constraints for the additional vehicle charging load, as done in chapter 3. Charging load 

is added to the existing non-vehicle electricity load by assuming electric vehicles make up 10% of the 

vehicle fleet in PJM. The vehicles are distributed throughout the system proportional to population. 

The model is run with and without both types of charging load, and the resulting change in 

generation and emissions at each power plant is attributed to vehicle charging. 

4.2.3.2  Tailpipe Emissions 

Tailpipe emissions are determined by the number of miles driven in gasoline or charge-

sustaining mode and the emission rates per mile. All vehicle types are assumed to drive 160,000 

miles over their lifetime, with plug-in electric vehicle miles divided between charge-sustaining and 

charge-depleting modes of operation as discussed in section 4.2.3.1 above. The emission rates per 

mile are taken from the GREET 2 model [10] and shown in Table 4.4 below. While the two plug-in 

vehicles with smaller batteries are assumed to burn some gasoline in charge-depleting mode as given 

by the GREET model, we assume that the Tesla-sized vehicle operates without any tailpipe 

emissions.  
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Table 4.4: Tailpipe emissions in grams per mile from GREET 1 

Vehicle CO2 Eq VOC CO NOX PM2.5 SO2 

2010 CV 350 0.17 2.9 0.12 0.012 0.0052 

2010 HEV 250 0.12 2.9 0.10 0.012 0.0037 

2010 PHEV-10 CS 
(Plug-in prius) 240 0.12 2.9 0.10 0.012 0.0036 

2010PHEV-10 CD 
(Plug-in prius) 120 0.04 1.0 0.036 0.0025 0.0019 

2010 PHEV-35 CS 
(Volt) 310 0.12 2.9 0.10 0.012 0.0047 

2010PHEV-35 CD 
(Volt) 20 0.01 0.17 0.0058 0.00041 0.00030 

2010 BEV-265 CD 
(Tesla) 

0 0 0 0 0 0 

2015 CV 320 0.17 2.9 0.12 0.012 0.0048 

2015 HEV 230 0.12 2.9 0.10 0.012 0.0034 

2015 PHEV CS 
(Volt) 260 0.12 2.9 0.10 0.012 0.0040 

2015 PHEV CD 
(Volt) 19 0.0073 0.18 0.0062 0.00043 0.00029 

 

4.2.3.3 Upstream Emissions 

Upstream emissions for gasoline are determined using emission rates per mile and the total 

number of miles per lifecycle.  Argonne National Laboratory’s GREET 1 model [9] provides the 

emission rates for oil drilling and refining, and each vehicle is assumed to drive a total of 160,000 

miles per lifecycle. Upstream emissions for vehicle and battery manufacturing are given by the 

GREET 2 model [10].   

Upstream emissions for coal and gas are determined by emission rates per MWh for each fuel 

type and the total additional power generated by each fuel type for each vehicle type and type of 

charging. The upstream emissions per MWh of power generated for each fuel type are taken from 

the GREET 1 model. The power generated for vehicle charging is an output of unit commitment 

model described above in section 4.2.3.1. We only consider coal and natural gas upstream emissions 

from the electric power sector as coal and gas make up the majority of generation attributable to 

vehicle charging as shown in chapter 3. In addition, coal and gas have the largest upstream 

emissions. Wind generation provides the only other significant contribution to vehicle charging and 
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has no upstream fuel emissions.  Upstream emissions for each lifecycle stage from the GREET 

model are given in Appendix A.  

4.2.4 Lifecycle Damages 

Damages from CO2 emissions are calculated using the social cost of carbon for regulatory 

impact used by the EPA [15]. The social cost of carbon is calculated in the aforementioned report 

for three different discount rates: 2.5%, 3%, and 5%. We use the 3% discount rate average value for 

2010 as our base value for all scenarios.  

Damages from SO2, PM2.5, NOX, and VOCs are calculated using the AP2 model [16], which 

estimates the marginal health and environmental damages for emissions of each criteria air pollutant 

in each county in the United States. This model has many uncertain parameters, including the value 

of a statistical life, which is used to translate morbidity and mortality from air pollution into dollar 

damages. Results from a Monte Carlo analysis of the damages in each county are given for the 

baseline year 2005.  As a base case, we assume that these 2005 marginal damages per unit emission 

in each location apply also to the current (2010) and future (2018) scenarios. We use the distribution 

of results from the Monte Carlo analysis to characterize the uncertainty within the AP2 model. 

Damages from vehicle charging are calculated based on the change in power plant operations in 

each location over the year resulting from increased charging load. Tailpipe emissions from all 

vehicles are assigned to counties proportional to population, with the assumption that the vehicles 

are operated within that county. Emissions from vehicle and battery manufacturing are located in 

automobile and parts manufacturing counties, weighted by the number of automotive 

manufacturing workers, as done in [1]. Coal, oil, and natural gas upstream emissions are located in 

the US counties with extraction and refineries, weighted by the production in each county, as done 

in [17]. The resulting cumulative probability distribution of damages from manufacturing, coal, oil 

and gas production, and oil refining are shown below in Figure 4.2: Cumulative probability 
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distribution of damages for upstream production emissions by pollutant type. Identical probability 

distributions are used for vehicle and battery manufacturing. The damage calculations assume that all 

emissions and damages occur in the United States, when in fact some of these processes occur 

outside of US borders. These emissions would incur different damages, depending on the existing 

concentrations and populations in those areas. All damages, except for vehicle and battery 

manufacturing, are divided among the years of operation. The damages are then discounted back to 

the year of manufacturing using a 3% discount rate, to be consistent with the calculation of CO2 

damages.  

 

Figure 4.2: Cumulative probability distribution of damages for upstream production emissions by pollutant type. Identical 
probability distributions are used for vehicle and battery manufacturing. 

In addition to the uncertainty included in the Monte Carlo analysis, there is uncertainty in all of 

the damages due to unquantified errors in the AP2 model, including a simplified air quality model 

and uncertainty in assumed dose-response relationships.  Other uncertainties remain in both the 

magnitude of emissions and damages specific to each lifecycle stage, as summarized in Table 4.5.  
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Table 4.5: Uncertainty unaccounted for in the lifecycle analysis of criteria air pollutant emissions and associated damages 
specific to each lifecycle stage. 

Lifecycle Stage Unaccounted for uncertainty in emissions Unaccounted for uncertainty in damages 

Electric vehicle 

charging 

 

Type of power plant dispatched 

Use of average emission rate 

 

Location of power plant dispatched  

Tail pipe emissions 

 

 

Driving Style 

Climate 

Representative vehicle types 

 

Location of driving 

Distribution of EV adoption 

Vehicle and battery 

manufacturing 

 

 

Changes in electricity system emissions Manufacturing that occurs outside of the US 

Location of battery manufacturing compared to 

vehicle manufacturing 

 

Upstream for coal, oil, 

and gas 

Use of average emission rate  Production that occurs outside of US 

Future production methods 

4.3 Results 

4.3.1 Lifecycle Emissions 

In the current PJM grid, the plug-in electric vehicles studied have higher lifecycle emissions than 

the HEV for most pollutants, including CO2, SO2, NOX, and PM2.5. While battery emissions do play 

a small role, the electricity sector emissions have the largest role in increasing these pollutants. Plug-

in electric vehicles do reduce VOC and CO emissions compared with both hybrid and conventional 

vehicles; both the Prius and Volt-sized plug-in vehicles are able to reduce CO2 emissions compared 

to conventional vehicles.  In the future PJM grid, plug-in vehicles reduce PM2.5 emissions in addition 

to VOC and CO emissions, and Prius and Volt-sized electric vehicles can reduce NOX emissions in 

addition to CO2 emissions relative to conventional vehicles. Figure 4.3 below shows the breakdown 

of estimated emissions by lifecycle stage for each scenario in the two different grid systems.  
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Figure 4.3: Lifecycle emissions by pollutant and lifecycle stage for each vehicle type in the current (a) and future (b) PJM 
grid. UC stands for uncontrolled charging and CC stands for controlled charging for the electric vehicles. 
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4.3.2 Lifecycle Damages 

4.3.2.1 Expected Values 

Plug-in electric vehicles have higher expected lifecycle damages than hybrid vehicles in the 

current PJM scenario in all cases examined, as shown in Figure 4.4. Their expected damages are also 

higher than those of conventional vehicles, except for the case of the PHEV-10 with controlled 

charging. The electricity generation damages come largely from the SO2 emissions of the coal plants 

used to charge the vehicles in off-peak hours. Controlled charging increases lifecycle damages 

relative to uncontrolled charging because of the increases in emissions from higher levels of coal 

generation, as found when examining charging emissions alone in chapter 3. Uncertainty is not 

presented here because common sources of uncertainty create correlated uncertainty across 

scenarios, so error bars would be misleading. Instead, uncertainty and robustness are characterized 

in Section 4.3.2.2. 

 

Figure 4.4: Expected value of lifecycle damages for each vehicle type in the current PJM grid. UC stands for uncontrolled 
charging and CC stands for controlled charging for the electric vehicles. 

    CV       HEV        PHEV-10          PHEV-35        PHEV-265 

UC CC UC CC UC CC 
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In the future scenario, shown in Figure 4.5, plug-in vehicles are able to reduce lifecycle damages 

by a few hundred dollars over their lifetime, when compared with hybrid vehicles. Plug-in vehicles 

perform most favorably when the least amount of coal is used for their charging, as is the case with 

uncontrolled charging without high wind penetrations. In this case, lifecycle damages were reduced 

by around $400 per vehicle compared to hybrid vehicle lifecycle damages.  Continued use of coal 

generation for some of the charging limits the benefits of plug-in electric vehicles relative to hybrid 

vehicles, even with high wind penetrations.  

 

Figure 4.5: Expected value of lifecycle damages in the future PJM grid. The high wind scenario has 20% of demand met by 
wind. UC stands for uncontrolled charging and CC stands for controlled charging for the electric vehicles. 

4.3.2.2 Uncertainty and Robustness 

To characterize uncertainty and robustness of these results, we use the Monte Carlo analysis 

results from the AP2 model and assess the probability that each vehicle technology has higher 

lifecycle air emissions damages than the HEV. Table 4.6 reveals that the conclusions above are 

robust, especially in the current grid. This is because most of the uncertainty in the AP2 model 

comes from the uncertainty in the value of a statistical life, which is held constant across scenarios. 

 CV        HEV          PHEV-35             PHEV-35  
High Wind  
       

UC CC UC CC 
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This uncertainty only changes the magnitude of the difference between hybrids and other vehicles, 

never the sign. The CDF for the probability that each vehicle’s lifecycle damages are higher than 

those of the HEV is shown in Figure 4.6 and Figure 4.7 below.  

Table 4.6: Robustness of results for the damage difference between hybrid vehicles and each other vehicle type. CV = 
conventional vehicle. 

Scenario Charging Probability Damages Are Larger 

than for HEV’s 

Mean Change in Lifecycle 

Damages Compared to HEV’s 

CV – Current Grid  100% $650 

PHEV-10 – Current Grid Uncontrolled 81% $210 

Controlled 98% $1100 

PHEV-35 – Current Grid  

 

Uncontrolled 95% $1200 

Controlled 99% $4200 

BEV-265 – Current Grid  Uncontrolled 99% $4800 

Controlled 99% $8400 

CV –Future Grid  99% $580 

PHEV-35 – Future Grid Uncontrolled 4% -$420 

Controlled 28% -$60 

PHEV-35 – Future Grid with 

High Wind  

Uncontrolled 17% -$150 

Controlled 18% -$150 

 

Figure 4.6: CDF of damages of each vehicle type relative to hybrid vehicles in the current (2010) PJM grid. UC = 
uncontrolled charging; CC = controlled charging, CV = conventional vehicle. 
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Figure 4.7: CDF of damages of each vehicle type relative to hybrid vehicles in the future (2018) PJM grid. The high wind 
scenario has 20% of electricity load met by wind generation. UC stands for uncontrolled charging; CC stands for controlled 
charging. 

We also evaluate how sensitive our results are to the assumption that vehicles are distributed 

proportional to population. It seems possible that electric vehicles will be adopted more heavily in 

urban counties where charging infrastructure will be more concentrated. 88% of the population of 

PJM is already in urban counties so we examine an even stronger case of assuming the electric 

vehicles, as well as the conventional and hybrid vehicles they are compared to, are adopted only in 

counties in metropolitan areas with 1 million residents or more. This affects the distribution of the 

additional charging load to the five different transmission regions in PJM. It also affects the location 

of the tailpipe emissions. However, the total effect on the lifecycle damages is small. Figure 4.8 

below shows the lifecycle damages in the current grid for volt-sized vehicle compared to 

conventional and hybrid vehicles. The conclusions remain the same as when vehicles are distributed 

proportional to population. 
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Figure 4.8: Expected value of lifecycle damages in the current PJM grid with all vehicles adopted proportional to 
population in metro areas of 1 million residents or more. UC stands for uncontrolled charging and CC stands for controlled 
charging for the electric vehicles.  

4.4 Discussion and Conclusions 

We find that electric vehicles are unlikely to reduce air emission damages of passenger car 

transportation significantly in the current scenario (2010), but they are likely to reduce damages in 

the future scenario (2018). However, as we show in Table 3, this analysis misses sources of 

uncertainty outside of the AP2 model, and we discuss these factors qualitatively. The emissions rates 

from every stage of the lifecycle have uncertainty we are unable to quantify. We use a point estimate 

of the emissions for each representative vehicle. These emissions and the electric efficiency of the 

PEV’s would change with different driving styles and climate zones. Different driving styles could 

affect damages either way. PJM’s relatively cold climate is likely to cause EV efficiency to decrease 

on average relative to hybrid and conventional vehicles and damages to increase. Additionally, a 

comparison between specific vehicle models instead of these representative GREET vehicles might 

result in different outcomes. We use annual average emission rate for each power plant, but the real 

emission rates could vary as different load and wind scenarios cause different amounts of ramping. 

 CV         HEV           PHEV-35              

UC CC 
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Higher levels of wind generation and uncontrolled charging are likely to increase ramping. 

Controlled charging could help reduce ramping, and therefore lower emission rates. The vehicle and 

battery manufacturing emissions are dependent on the grid mix, but we only use a point estimate 

calculated using GREET’s US average grid mix. As the power plant fleet evolves and has lower 

emission rates on average, we expect these upstream emissions to decrease as well. Finally, the 

emission rates for the upstream fossil fuel production are point estimates for the US average 

production as an estimate of the marginal emissions of producing one more unit of each type of 

fossil fuel for the power plants or vehicles.  

The unit commitment and dispatch model also contributes uncertainty to our results. We have 

reasonable confidence about the type of generation used to meet load in the unit model because 

power plants within each plant type have similar marginal costs. However, we are less certain of the 

location of the emissions. We may be choosing a plant in a different county than would have actually 

been dispatched since we only account for 50% of congestion. The location of the power plant 

determines the number of people exposed and the existing ambient concentrations around those 

exposed, therefore affecting the damages of those emissions.  The unit commitment model also uses 

fixed hourly exports and imports from neighboring regions from 2010 operations. PJM exported 

4.5% of its generation and imported 3.4% of its load in 2010. Some of this trading was likely on the 

margin and would affect the lifecycle emissions of electric vehicle charging by changing the 

generation and emissions of power plants in the neighboring regions that are not included in the 

model. However, the magnitude of this effect is difficult to quantify as we know neither how often 

the imports and exports are on the margin nor the emission rates of the affected power plants.   

We assume that the damages per unit emitted in each county in 2010 and 2018 are the same as in 

2005 because we lack a full distribution of damage estimates for other years. As a sensitivity analysis, 

however, we calculate the lifecycle damages using the 2011 AP2, as shown in Figure 4.10 and Figure 
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4.9 below. Total damage values using the 2011 AP2 values are higher than with the 2005 values, but 

the conclusions remain the same: electric vehicles increase damages in the current grid compared to 

hybrid electric vehicles, but decrease damages in the 2018 grid.  

 

 

 

Figure 4.9: Expected value of lifecycle damages in the current PJM grid given 2011 AP2 damage values. UC stands for 
uncontrolled charging and CC stands for controlled charging for the electric vehicles. 
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Figure 4.10: Expected value of lifecycle damages in the future PJM grid given AP2 2011 damages values. The high wind 
scenario has 20% of demand met by wind. UC stands for uncontrolled charging and CC stands for controlled charging for 
the electric vehicles. 

 

While we present the lifecycle reductions in CO emissions for reference, we do no evaluate any 

lifecycle damages from that particular pollutant. There is some evidence that long-term CO exposure 

might have a causal relationship with some heart problems [18], CO emissions are not included in 

the AP2 model. The existing evidence is insufficient to understand how the health impacts change 

depending on where the pollutant is emitted. Additionally, CO emissions do not seem to be a 

pressing health concern to EPA. The primary quality standards have remained at the same level 

since 1984, with no areas of the country currently in nonattainment, and the secondary standards 

were revoked “due to lack of evidence of adverse effects on public welfare at or near ambient 

concentrations” [19]. 

As in chapter 3, the results could be affected by policies not included in this analysis. If the 

CSAPR SO2 cap becomes binding by 2018, electric vehicles would not increase the emissions of 

CV       HEV       PHEV-35         PHEV-35 

         High Wind    

UC CC UC CC 
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SO2 from the electricity grid, although the additional load would create additional pressure on the 

cap and increase SO2 prices. Any additional cost to comply with CSAPR because of vehicle charging 

is not include in the lifecycle costs presented in this study. In Figure 4.12 and 4.11 below, we show 

the breakdown of lifecycle damages by pollutant instead of by lifecycle stage, with SO2 broken into 

the emissions associated with charging the vehicle from the electricity grid and those from the rest 

of the lifecycle. The SO2 damages from charging are already much lower in the future grid case 

because of reduced coal generation and stronger emission controls on the remaining coal plants. 

With a binding SO2 cap, it is possible these damages would be completely eliminated as no 

additional SO2 emissions could come from the electricity grid. However, the exact effects of a 

binding SO2 cap are difficult to predict. Under the cap, emissions could still theoretically be shifted 

to areas with higher damages due to electric vehicle charging. A binding SO2 cap could also reduce 

more than just the charging damages as some of the upstream emissions also come from the 

electricity grid, further decreasing the total damages of all vehicles types.  
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Figure 4.11: Expected value of lifecycle damages in the current PJM grid broken down by pollutant. The damages for each 
pollutant are from all lifecycle stages except for those of SO2 which are broken down into the damages from power plant 
emissions for vehicle charging and those from every other lifecycle stage. UC stands for uncontrolled charging and CC 
stands for controlled charging for the electric vehicles. 
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Figure 4.12: Expected value of lifecycle damages in the future PJM grid broken down by pollutant. The damages 
for each pollutant are from all lifecycle stages except for those of SO2 which are broken down into the damages 
from power plant emissions for vehicle charging and those from every other lifecycle stage. The high wind 
scenario has 20% of demand met by wind. UC stands for uncontrolled charging and CC stands for controlled 
charging for the electric vehicles. 

 

 The CAFE fuel economy standard may also influence the lifecycle emissions of electric vehicles. 

This standard includes incentives to encourage the adoption of electric vehicles, but these incentives 

interact with the rest of the policy to change the lifecycle emissions and damages attributable to 

adding electric vehicles to the transportation system. Compliance with the CAFE fuel economy 

standard is based on a sales-weighted fuel economy average from each vehicle manufacturer, and it 

is expected that the standard will be binding for all manufacturers. Starting in 2012, the policy has 

encouraged manufacturers to sell electric vehicles by counting each sale of an electric vehicle as 

multiple sales when calculating compliance, as well as by not including any charging emissions in the 

calculation. For every electric vehicle sold, these extra incentives allow the manufacturer to meet a 

less stringent standard for the rest of the fleet, increasing the total emissions of the vehicle fleet over 

its lifetime. Jenn et al. have analyzed the impact of these incentives for a variety of electric vehicle 
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models and calculated the net increases in CO2 emissions for each additional electric vehicle sold 

[21] [22]. When we include the damages from the additional CO2 emissions for a Chevy Volt sold in 

2018 with the rest of lifecycle damages, as shown in Figure 4.11, the plug-in electric vehicles have 

higher lifecycle damages than hybrid vehicles. In fact, the plug-in vehicle lifecycle damages may even 

exceed those of the 2018 conventional vehicle. The less efficient vehicles that are sold because of 

each electric vehicle sale will also likely have higher emissions of criteria air pollutants, further 

increasing the lifecycle damages.  

 

Figure 4.13: Expected value of lifecycle damages in the future PJM grid from the individual vehicle lifecycle plus 
the extra CO2 emissions resulting from the incentives for plug-in vehicles in the CAFE standard. The high wind 
scenario has 20% of demand met by wind. UC stands for uncontrolled charging and CC stands for controlled 
charging for the electric vehicles. 

 

Our results for the current PJM grid are consistent with those from Tessum et al. using the 2007 

electricity mix [3]. In both studies plug-in electric vehicles increase damages relative to gasoline 

vehicles. Michalek et al. found that plug-in vehicles with larger battery sizes had higher damages than 

hybrids, while plug-in vehicles with smaller batteries had lower damages. [1] None of the plug-in 

vehicles in our study, regardless of battery size, had lower damages than hybrids in the current grid 
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due to the large amounts of coal on the margin in PJM compared to the average mix used in 

Michalek et al. Both Michalek et al. and Tessum et al. find that plug-in electric vehicles can reduce 

damages once all renewables are used for electricity generation. This is a useful bounding case but 

not a scenario likely to occur soon. While no prediction of the future grid will be completely 

accurate, our detailed model is able show that even in one of the power systems in the country with 

the most coal generation currently, electric vehicles could reduce transportation health and 

environmental damages in the near future, long before a zero-carbon electricity mix is achieved. The 

total savings are small compared to the incentives given for purchasing electric vehicles, which 

include the $7,500 federal incentive and additional incentives provided by some states [20]. The 

transformation of the transportation system could also lead to long-term benefits that are not 

quantified in this analysis. We are also able to use our model to understand the lifecycle emissions 

and damage consequences of uncontrolled, convenience charging compared to controlled charging. 

Until higher wind penetrations are reached in the PJM power system, controlled charging will make 

it more difficult for electric vehicles to have lower environmental and health damages than hybrids. 

While policies to encourage the adoption of electric vehicles in PJM may benefit society in the near 

future, encouraging controlled charging or other nighttime charging may be detrimental to human 

health and the environment at the present time.  
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Appendix 4.A 

Table 4.7: Current Grid Upstream Emission Rates 

  

[g/mile] [g/mile] [g/lifetime] [g/lifetime] 

Vehicle Pollutant Feedstock Fuel Manufacturing Battery 

CV CO2 2.909 68.15 6934715 38815 

CV GHGs 13.01 76.26 7380994 44087 

CV VOC 0.01489 0.1154 34103.74 23.609 

CV CO 0.02322 0.09573 23717.98 44.806 

CV NOX 0.1028 0.1062 9579.742 76.507 

CV PM2.5 0.005854 0.06749 2273.367 32.168 

CV SO2 0.03247 0.07537 24164.06 513.684 

HEV  CO2 2.078 48.68 7528739 25114 

HEV GHGs 9.296 54.47 7764506 270435 

HEV VOC 0.01064 0.08239 34300.65 79.979 

HEV CO 0.01658 0.06838 26307.65 342.143 

HEV NOX 0.0734 0.07588 10000.93 384.041 

HEV PM2.5 0.004182 0.04821 2327.763 75.479 

HEV SO2 0.02319 0.05383 30253.39 4841.256 

PHEV-35 CD CO2 0.1679 3.933 6831070 1001589 

PHEV-35 CD GHGs 0.7512 4.402 7261228 1063130 

PHEV-35 CD VOC 0.00086 0.006658 33922.92 346.947 

PHEV-35 CD CO 0.00134 0.005525 24060.44 652.405 

PHEV-35 CD NOX 0.005933 0.006131 9371.553 1538.657 

PHEV-35 CD PM2.5 0.000338 0.003896 2161.458 693.235 

PHEV-35 CD SO2 0.001874 0.00435 27826.22 7109.536 

PHEV-35 CS CO2 2.603 60.97 6831070 1001589 

PHEV-35 CS GHGs 11.64 68.23 7261228 1063130 

PHEV-35 CS VOC 0.01332 0.1032 33922.92 346.947 

PHEV-35 CS CO 0.02077 0.08565 24060.44 652.405 

PHEV-35 CS NOX 0.09197 0.09505 9371.553 1538.657 

PHEV-35 CS PM2.5 0.005238 0.06039 2161.458 693.235 

PHEV-35 CS SO2 0.02905 0.06744 27826.22 7109.536 

PHEV-10 CD CO2 1.0278 24.07329 6831070 308181.2 

PHEV-10 CD GHGs 4.597359 26.93936 7261228 327116.9 

PHEV-10 CD VOC 0.005261 0.040748 33922.92 106.7529 

PHEV-10 CD CO 0.008202 0.033816 24060.44 200.74 

PHEV-10 CD NOX 0.036311 0.037525 9371.553 473.4329 

PHEV-10 CD PM2.5 0.002068 0.023842 2161.458 213.3031 

PHEV-10 CD SO2 0.01147 0.026625 27826.22 2187.55 

PHEV-10 CS CO2 1.97087 46.16334 6831070 308181.2 

PHEV-10 CS GHGs 8.815969 51.65936 7261228 327116.9  
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PHEV-10 CS VOC 0.010088 0.078139 33922.92 106.7529 

PHEV-10 CS CO 0.015728 0.064846 24060.44 200.74 

PHEV-10 CS NOX 0.06963 0.071959 9371.553 473.4329 

PHEV-10 CS PM2.5 0.003966 0.04572 2161.458 213.3031 

PHEV-10 CS SO2 0.021995 0.051056 27826.22 2187.55 

PHEV-265 CO2 0 0 6831070 9698078 

PHEV-265 GHGs 0 0 7261228 10293961 

PHEV-265 VOC 0 0 33922.92 3359.381 

PHEV-265 CO 0 0 24060.44 6317.037 

PHEV-265 NOX 0 0 9371.553 14898.34 

PHEV-265 PM2.5 0 0 2161.458 6712.381 

PHEV-265 SO2 0 0 27826.22 68839.45 
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Table 4.8: Future Grid Upstream Emission Rates 

  

[g/mile] [g/mile] [g/lifetime] [g/lifetime] 

Vehicle Pollutant Feedstock Fuel Manufacturing Battery 

CV CO2 4.532139 61.91715 6603110 36820.06 

CV GHGs 13.47098 69.00923 7042621 42065.6 

CV VOC 0.012887 0.104636 34058.25 23.34857 

CV CO 0.019713 0.086027 23529.38 43.7169 

CV NOX 0.074936 0.085321 7163.69 59.31664 

CV PM2.5 0.004428 0.060759 1837.551 29.39731 

CV SO2 0.022662 0.060058 21406.72 490.349 

HEV  CO2 3.237242 44.22653 6944454 235671.4 

HEV GHGs 9.622128 49.29231 7398739 254670.1 

HEV VOC 0.009205 0.07474 34251.13 77.89123 

HEV CO 0.014081 0.061448 26101.29 333.8068 

HEV NOX 0.053526 0.060943 7431.508 274.8561 

HEV PM2.5 0.003163 0.043399 1864.907 55.14613 

HEV SO2 0.016187 0.042898 27287.33 4712.265 

PHEV-35 CD CO2 0.27701 3.784459 6495775 958329.3 

PHEV-35 CD GHGs 0.823364 4.217937 6918927 1018991 

PHEV-35 CD VOC 0.000788 0.006395 33876.58 337.0062 

PHEV-35 CD CO 0.001205 0.005258 23868.03 598.6426 

PHEV-35 CD NOX 0.00458 0.005215 6965.205 1070.002 

PHEV-35 CD PM2.5 0.000271 0.003714 1727.86 610.9333 

PHEV-35 CD SO2 0.001385 0.003671 25054.97 6604.766 

PHEV-35 CS CO2 3.764227 51.42608 6495775 958329.3 

PHEV-35 CS GHGs 11.1885 57.3165 6918927 1018991 

PHEV-35 CS VOC 0.010703 0.086907 33876.58 337.0062 

PHEV-35 CS CO 0.016373 0.071451 23868.03 598.6426 

PHEV-35 CS NOX 0.062239 0.070864 6965.205 1070.002 

PHEV-35 CS PM2.5 0.003677 0.050464 1727.86 610.9333 

PHEV-35 CS SO2 0.018822 0.049882 25054.97 6604.766 
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Chapter 5: CONCLUSION 

The integration of electric vehicles into the electricity grid offers several possibilities for reducing 

costs and lowering emissions. I use bottom-up optimization models of power systems based on 

New York and PJM to examine the impacts of controlled charging of electric vehicles. I find that 

controlled charging can be used to reduce the generation costs of charging electric vehicles by 30-

50%, and a 20% wind scenario provides modest additional benefits. However, given an electric 

power system that is optimized only for the direct costs incurred by power generators, controlled 

charging may increase emissions by causing generation to shift from gas plants to coal plants. By 

monetizing the health and environmental damages from the change in emissions, I show that 

controlled charging should not be encouraged by public policy in the current PJM grid, as the 

increase in damages from increased coal generation outweighs the reduction in generation cost. 

Even as the grid evolves as predicted by the EPA until 2018, controlled charging still leads to higher 

damages than the electricity generation cost reductions. Controlled charging may be in the public 

interest once the use of wind generation increases to 20% of the load or more, when small 

reductions in damages can be added to the generation cost reductions. These results are specific to 

the power system studied. In a system with all gas plants or all coal plants, marginal costs would be 

driven by efficiency, and controlled charging could reduce both costs and emissions by shifting 

generation from less efficient, more expensive power plants to more efficient, cheaper plants.   

My bottom-up modeling of a specific region also allows me to estimate the lifecycle emissions 

and damages of plug-in electric vehicles in the near future. Previous work has shown that electric 

vehicles likely increase damages in the current grid, but would decrease damages with 100% 

renewables. By explicitly modeling a plausible future grid, I am able to show that electric vehicles 

can reduce damages in PJM before a 100% renewable grid has been achieved. Although the damage 

reduction remains small in the power system predicted by the EPA for PJM in 2018, it does mean 
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that by the near future, investments in electric vehicles and electric vehicle infrastructure for long-

term benefits could possibly be achieved without harming public health in the short-term. Again, 

these results are dependent on the power system studied. Other parts of the country, such as 

California, rely very little on coal generation. These regions will have lower lifecycle damages for 

electric vehicles due to much lower charging emissions. Systems with even higher levels of wind 

generation that would otherwise be curtailed could also have much lower charging emissions, 

especially if using controlled charging.  

My main results suggest that policies encouraging the adoption of plug-in electric vehicles over 

hybrids in PJM may not be as harmful as previously feared. However, the way in which these 

policies are implemented will determine if total social damages really are reduced. The current 

incentives for plug-in electric vehicles built in to the CAFE fuel economy standards starting in 2012 

will likely lead to higher lifecycle damages for plug-in electric vehicles compared to hybrid vehicles. 

On the other hand, other energy policies may have an opposite effect. A binding SO2 cap or more 

extensive coal retirements from an existing source CO2 standard would likely strengthen the relative 

advantage of plug-in electric vehicles compared to hybrids.  

This study is also able to show that while in general further decarbonization of the grid is 

important to reduce the damages from electric vehicles, current Renewable Portfolio Standards of 

around 20% may not significantly affect the lifecycle damages of electric vehicles. At this level of 

wind penetration, most of the wind generation is already being used to meet existing load and very 

little can be used for vehicle charging. It is important for policy makers to keep in mind that not all 

public policies aimed at reducing power system emissions will automatically result in lower lifecycle 

emissions and damages of electric vehicles.  
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