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Abstract

Using the Poisson-Nernst-Planck (PNP) equations and modifications

thereof, we consider two distinct systems under different conditions: an elec-

trochemical and thermo-electric cell, and a colloidal particle in a concentrated

electrolyte solution. For an electrochemical cell, we examine the response to

a moderately nonlinear AC voltage and quantify the nonlinear impedance of

the system, thus generalizing the concept of Electrochemical Impedance Spec-

troscopy beyond the low-voltage regime. With the same system, we study the

response to a weak temperature gradient and quantify the charging dynamics

of a model thermo-electric generator, yielding insights to the timescales over

which such devices develop a thermo-voltage. We also study the electrophore-

sis (motion under an applied electric field) and diffusiophoresis (motion under

a solute concentration gradient) of a model colloidal particle in concentrated

electrolytes. In the former case, we consider the effect that direct ion-ion

electrostatic interactions has on particle mobility and achieve good agreement

with experiments, including prediction of a reversal in the direction of particle

migration. In the latter case, we examine the effect of steric repulsion be-

tween ions and predict a significant effect on the particle mobility. Our results

suggest diffusiophoresis could be a useful method for mobilizing particles in

concentrated electrolytes.
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Chapter 1

Introduction

We apply continuum physico-chemical models, analyzed via perturbation meth-

ods, to quantify the dynamics of ions and colloidal particles in non-ideal con-

ditions. We investigate non-idealities within two distinct systems: an electro-

chemical cell to study the effects of applying moderate amplitude AC voltages

or a temperature gradient, and a colloidal particle in a concentrated electrolyte

solution of either uniform or non-uniform concentration. Our motivation to

study moderate amplitude AC voltages arises from modern microfluidic de-

vices, such as AC electro-osmotic pumps [1, 2, 3, 4, 5], and electrochemical

super capacitors [6, 7], which utilize time-dependent potentials on the order

of a few volts. We were prompted to study the transient dynamics of elec-

trolytes subjected to a temperature gradient from recent interest in thermo-

electric devices with ionic charge carriers such as ionic liquids [8, 9, 10] and

mixed ionic-electronic conducting polymers [11, 12, 13, 14, 15]. Finally, con-

centrated electrolyte solutions with salt concentrations on the order of one

molar, and gradients thereof, can be encountered in enhanced oil recovery

methods [16, 17], mineral replacement reactions [18], and many naturally oc-

curring systems [18].

When an external stimulus is applied to an electrochemical system, the

1



2 CHAPTER 1. INTRODUCTION

charge carriers are induced to migrate from their initial distribution. This

migration is referred to as electromigration when in response to an electric

field [19] and thermo-migration when in response to an applied temperature

gradient [20, 21]. Whatever the source of the migration, it is always balanced,

at least in part, by the Brownian diffusion of the charge carriers. Thus, when

ions accumulate near a surface they form a diffuse layer of charge referred to

as a Debye layer, or simply diffuse layer, as depicted in figure 1.1 [19]. The

characteristic length scale of the diffuse layer in dilute solution theory is the

Debye length,

1

κ
=

√
εkBT

2e2z2co
, (1.1)

where ε is the permittivity of the solution, kB is Boltzmann’s constant, T is

absolute temperature, e is the fundamental charge, and co is the concentration

of charge carriers at some reference point - usually an electroneutral region of

the solution or initial concentration. We have assumed in (1.1) a binary,

symmetric electrolyte with charge number z. As an example, an aqueous

1 mM solution of such ions at room temperature will have a Debye length

κ−1 ≈ 10 nm.

For our purposes, an ideal solution is one which can be described by the

classical Poisson-Nernst-Planck (PNP) equations, a set of nonlinear, partial

differential equations. These consist of Poisson’s equation relating electro-

static potential to charge carrier concentration and a conservation equation

governing the flux of charge carriers in the solution[19]. Ideal solutions are

subject to two primary assumptions: that the charge carriers are merely point

charges with no size and that they do not interact with one another. This sec-

ond assumption requires that ions respond only to the mean electrostatic field

generated throughout the solution, rather than local interactions between in-

dividual charges over short length scales [22, 23, 24]. Both of these conditions
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(a)

(b)

V0 V0

R

(c)

Cold Hot

Figure 1.1: Electrochemical (a) and thermo-electric cell (b) depicting the re-
sponse of charge carriers to an applied voltage and temperature gradient, re-
spectively. A charged colloidal particle (c) in an electrolyte solution. In all
three cases, a diffuse layer of charge develops near the electrodes or particle
surfaces with a characteristic length scale of the Debye length, 1/κ.

break down in highly concentrated solutions or regions of high concentration

such as near a surface with a large potential [25, 26]. Mathematical modeling

of non-ideal solutions therefore requires modifications to the PNP equations

to account for these additional interactions [22, 27, 28]. In this thesis, we also

consider ideal solutions subject to non-ideal conditions: moderately non-linear

voltages and temperature gradients. In both of these latter scenarios, the ideal

solution PNP equations can be used, but require perturbation methods to ob-

tain detailed insights of the charge dynamics.

In chapters 2 and 3 we focus on a prototypical electrochemical cell, as

depicted in figure 1.1(a) and (b), consisting of an electrolyte solution between

two parallel, blocking electrodes. In chapter 2, we consider the application of

a moderate amplitude AC voltage and model the charge dynamics via per-

turbations to the linear response in terms of the applied voltage amplitude.

We show that the electrolyte response is essentially linear in voltage for fre-

quencies greater than the RC frequency, Dκ/L, where D is the charge carrier

diffusivity and L is the length scale of the distance between the electrodes. At

lower frequencies, the response becomes increasingly nonlinear and neutral salt



4 CHAPTER 1. INTRODUCTION

from the bulk solution is adsorbed into the diffuse layers at even orders of the

voltage magnitude. We characterize the electrolyte response by extending lin-

ear Electrochemical Impedance Spectroscopy [29, 30] to moderately nonlinear

voltages and find that the diffuse layer capacitance increases with increasing

voltage amplitude. In contrast, the resistance of the bulk solution to current

flow increases with increasing voltage due to the above mentioned adsorption

of neutral salt. Perhaps the major contribution of this work is to demonstrate

that a meaningful notion of electrical impedance can be constructed outside

the linear-response regime of small-amplitude voltages.

Thermo-electrics are increasingly being studied as promising electrical

generators in the ongoing search for alternative energy sources [14, 15, 31];

however, the majority of mathematical modeling up to this point has been

focused on their steady state behavior[20, 21, 32, 33], leaving the charging

dynamics largely speculative. In chapter 3, we model a prototypical ionic

thermo-electric device by applying a temperature gradient to the cell depicted

in figure 1.1(b). This problem is challenging in that all the physical parameters

of the solution are temperature dependent. As a first approximation, we model

the electrolyte response as a perturbation to the initial conditions in terms

of a weak temperature gradient. Our results indicate that the steady-state

thermo-voltage is achieved on the order of the Debye time, 1/Dκ, whereas the

bulk of ion migration occurs on the order of the diffusion time, L2/D. The

Debye time is typically very short, O(10−6 µs) [34], which contrasts with the

O(100 − 1000 s) charging times reported in experiments [13, 14, 15]. This

suggests that the observed charging times may not be a result of ion charging

dynamics, but rather be limited by the heating rate of the electrode itself.

In chapter 4, we focus on a colloidal particle in an electrolyte solution,

as depicted in figure 1.1(c). In chapter 4, we account for the electrostatic

interactions between the ions as well as their finite size using modified PNP
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equations. We model the electrophoresis of the particle, i.e., its motion due to

an applied electric field, using asymptotic analysis to consider the experimen-

tally relevant limit where the Debye length is small compared to the size of

the particle. This work was motivated by anomalous results in concentrated

solutions wherein a particle is observed to migrate in a direction opposite to

that predicted by ideal solution theories [35, 36, 37, 38]. Explanations offered

by previous modeling are that adsorption of ions to the particle surface as well

as short range ion-ion correlations is responsible [39]. Our results, which do

not account for ion adsorption, are not only capable of predicting these rever-

sals in particle migration but agree well with experiments, indicating that ion

adsorption may not be a necessary component to the observed reversals.

In chapter 5, we again consider a colloidal particle in an electrolyte solu-

tion, but rather than an electric field to drive the particle’s motion, a gradient

in electrolyte concentration is applied. This is referred to as diffusiophoresis

and is a naturally occurring phenomenon that has earned a growing appre-

ciation for its role in many diverse systems [18]. Diffusiophoresis is not only

driven by a concentration gradient, but an electric field induced by unequal

diffusion of ions down the concentration gradient [40, 41]. In our analysis, we

employ three different models which account for the steric repulsion between

finite sized ions, but neglect the electrostatic correlations that were the focus

of chapter 4. We once again consider the limit of small Debye lengths rela-

tive to particle size and predict a large increase in the induced electric field

as concentration increases, which we attribute to the non-ideality of a gradi-

ent in steric repulsion between ions. This in turn leads to an increase in the

magnitude of the diffusiophoretic migration of a particle, with a fixed surface

charge density, as the concentration of an asymmetric electrolyte increases.

Our results, therefore, go against the common notion that phoretic motion

vanishes at large electrolyte concentration. Moreover, our results suggest that
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diffusiophoresis could be a useful transport mechanism for colloidal particles

in concentrated electrolytes.

Most of the work within this thesis has been published in journals: chapter

2 in Physical Review E [42], chapter 4 in Journal of Fluid Mechanics [43], and

chapter 5 in Physical Review Fluids [44]. Chapters 2-5 are self-contained works

and can be read in isolation from the rest of the thesis. In chapter 6, we offer

a concluding summary of the primary outcomes of this thesis research and

suggest future extensions of this work.



Chapter 2

Moderately Nonlinear Diffuse-Charge

Dynamics under an AC Voltage

2.1 Introduction

The dynamics of electrolyte solutions exposed to an applied or induced time-

dependent electric potential is exploited in desalination and deionization[45,

46, 47, 48], microfluidics[49, 50, 51, 52], and the manipulation of colloidal

particles[53, 54, 55, 56] and biological cells[57, 58], among other applications.

The abundant historical work indicates diffuse charge dynamics of electrolytes

is well understood for applied potentials below the thermal voltage, kBT/e,

where kB is the Boltzmann constant, T is temperature, and e is the fundamen-

tal charge (see [59] and references therein). For reference, kBT/e ≈ 25 mV at

T = 298 K. For instance, the majority of work in electrokinetics over the last

century has considered fluid flow or particle motion driven by weak applied

potentials, V < kBT/e[60], for which the equilibrium diffuse screening layer, or

‘Debye layer,’ around a charged surface or particle is only slightly perturbed.

In contrast, modern applications such as AC, induced-charge, or second-kind,

electro-osmotic pumps [1, 2, 3, 4, 5], and electrochemical supercapacitors[6, 7]

7
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CHAPTER 2. MODERATELY NONLINEAR DIFFUSE-CHARGE

DYNAMICS UNDER AN AC VOLTAGE

V(t)

Figure 2.1: Ions are initially uniformly dispersed in a dielectric liquid between
two perfectly blocking electrodes. A voltage V (t) = Vo cos(ωt) is applied across
the cell and charge transport occurs normal to the electrode surface.

use time-dependent potentials on the order of a few volts, well above the ther-

mal voltage. The relative scarcity of theoretical treatment for such larger

voltages creates a need to study diffuse charge dynamics in this regime, where

the Debye layer can be driven strongly out of equilibrium.

Perhaps the simplest model system for which nonlinear diffuse charge

dynamics can be analyzed is a dielectric solvent containing a symmetric, bi-

nary, monovalent electrolyte between two perfectly blocking (non-reactive)

electrodes a distance 2L apart (figure 2.1). A voltage is applied across this

electrochemical cell and the ions form Debye layers near the electrodes to

screen the resulting surface charge. For the purposes of the present chapter,

we take this voltage to be V (t) = Vo cos(ωt), where Vo is the voltage amplitude,

ω is the frequency, and t is time. For dilute solutions, the characteristic size

of the Debye layer is given by the Debye length, λD =
√
εkBT/2e2n0, where ε

is the dielectric permittivity of the solvent and n0 is the initial (uniform) ion

number density.

The Poisson-Nernst-Planck (PNP) equations for point-sized, non-

interacting ions are conventionally used to model the charge transport in this

system. These equations are nonlinear and cannot be solved analytically, in

general. For small voltages, V (t) < kBT/e, the equations can be linearized

and analytical solutions can be derived[59]. Solutions to the linearized PNP
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equations are useful in electrochemical impedance spectroscopy (EIS), which

is a technique used to measure electrical properties of a charge carrying system

such as capacitance and conductivity[29].

EIS is primarily based on the assumption that an oscillating voltage

V (t) = Vo cos(ωt) will generate a current, I(t), through an external cir-

cuit that is linear in the voltage amplitude, Vo. An impedance is then de-

fined as Z = V (t)/I(t) and will be a function of frequency only. The lin-

earized PNP equations can be used to derive an analytical formula for the

impedance[29, 30, 61]. Expressed as a complex number, the real (in-phase)

part of the impedance corresponds to the resistive nature of the electrolyte via

its conductivity; the complex (out-of-phase) part corresponds to the capaci-

tive nature of the Debye layers and the dielectric solvent. At large voltages,

Vo > kBT/e, the diffuse charge dynamics are no longer linear; hence the current

contains harmonic overtones and its amplitude is not linearly proportional to

Vo[30, 61, 62, 63]. Thus, larges voltages are typically avoided when measuring

impedance.

A handful of works have focused on the nonlinear response of electrolytes

to AC voltages. Freire et al. [61] numerically solved the PNP equations and

showed that the electrolyte response becomes increasingly linear as ω increases,

regardless of Vo. That is, as ω is increases for a fixed Vo, the external current

eventually loses harmonic overtones and simply oscillates with the frequency of

the driving voltage. Olesen et al.[63] examined the long-time periodic response

to a voltage oscillating near the RC frequency, ω ≈ D/λDL, where D is the

diffusivity of the ions. They solved the PNP equations numerically and also

performed asymptotic analysis in the thin-Debye-layer limit λD/L→ 0. They

define a “weakly-nonlinear” regime where the electroneutral bulk electrolyte

(outside the Debye layers) retains a uniform “neutral salt” concentration (total

ion concentration), and the nonlinear response is driven solely by the nonlinear
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capacitance of the Debye layers. Schnitzer and Yariv[62] derived an asymptotic

current-voltage relationship for this regime as Vo →∞. Olesen et al.[63] also

analyzed “strongly-nonlinear” response at very large voltages. Here, there is

significant ion depletion adjacent to the Debye layers, which leads to “AC

capacitive desalination” as a net flux of salt is transferred from the bulk to the

Debye layer during an oscillation period. Furthermore, at such large voltages

the Debye layers can attain a non-equilibrium structure, characterized by the

periodic growth and shrinkage of transient space-charge layers.

In this work, we consider electrolyte dynamics under an AC field with am-

plitude Vo ∼ 1−10kBT/e, at arbitrary Debye layer thickness λD/L and across

a wide range of frequencies ω. We refer to this as the “moderately nonlinear”

regime of diffuse charge dynamics, to distinguish our work from the articles

mentioned above. Notably, the thin-Debye-layer limit λD/L� 1 is commonly

assumed in mathematical analysis of electrolyte dynamics. However, this can

be violated in nano-scale electrochemical systems, where the electrode separa-

tion L approaches the Debye length λD: e.g., in nanometer wide thin-layer cells

used to probe fast electron-transfer kinetics [64]. We use a complex Fourier

series to decompose the electrolyte dynamics into its component harmonics

and a perturbation expansion in voltage for the Fourier coefficients. A simi-

lar approach was recently utilized by Bandopadhyay et al.[65]; however, their

expansion stopped at O(V 2
o ). We proceed to O(V 3

o ), which is necessary to

predict a nonlinear current response for a symmetric, binary electrolyte. We

also derive a first approximation to a voltage dependent impedance that is

O(V 2
o ).

The chapter is organized as follows: in section 2.2 we present the math-

ematical model to calculate the moderately nonlinear dynamics. In section

2.3, we present the results for the ion dynamics and external current. In sec-

tion 2.4, we calculate a voltage-dependent “impedance” as the current first
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becomes nonlinear in Vo. Conclusions are offered in section 2.5.

2.2 Mathematical Model

We consider the prototypical situation (figure 1) of two parallel, perfectly

blocking electrodes separated by a dielectric solvent containing an ideal solu-

tion of monovalent, point-like charge carriers. We assume that the electrodes

are spaced sufficiently close such that the charge transport persists perpendic-

ular to the electrode surface. The one dimensional PNP equations are

ε
∂2φ

∂x2
= −ρ = −e(n+ − n−), (2.1a)

∂nr
∂t

= −∂jr
∂x

= D

[
∂2nr
∂x2

+ r
e

kBT

∂

∂x

(
nr
∂φ

∂x

)]
. (2.1b)

Equation (2.1a) is Poisson’s equation describing the electrostatic poten-

tial, φ, in response to the ionic charge density, ρ, which undergoes changes in

time and space according to the ion flux balance (2.1b), where nr is the ion

number density of cations (r = +) and anions (r = −), t is time, x is the

position across the cell, and jr is the ion flux.

We supplement the governing equations with the following boundary con-

ditions:

φ(x = ±L, t) = ±Vo cos(ωt), (2.2a)

jr(x = ±L, t) = −D
[
∂nr
∂x

+ r
e

kBT
nr
∂φ

∂x

]
±L

= 0, (2.2b)

specifying that the electrode surface potential is equal to the applied potential

(2.2a) and no ion flux through the electrodes (2.2b). By using these boundary

conditions, we seek to find the steady periodic response as opposed to suddenly

applying an AC voltage to a previously unaffected system. Note that from

(2.2a), the total applied potential across the cell is 2Vo.
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We non-dimensionalize as follows: position (x) with half the cell width

(L), electrostatic potential (φ) with thermal voltage (kBT/e), ion density (nr)

with the uniform ion density (of a single species) prior to the application of a

voltage (n0), time (t) with the RC time for Debye layer charging (λDL/D)[59],

and frequency (ω) with the RC frequency. The non-dimensional governing

equations are then

∂2φ

∂x2
= −n+ − n−

2ε2
, (2.3a)

∂nr
∂t

= ε

[
∂2nr
∂x2

+ r
∂

∂x

(
nr
∂φ

∂x

)]
, (2.3b)

where ε = λD/L and all quantities in (2.3) and onward, unless stated otherwise,

are dimensionless. The corresponding non-dimensional boundary conditions

are

φ(x = ±1, t) = ±Vo cos(ωt), (2.4a)[
∂nr
∂x

+ rnr
∂φ

∂x

]
±1

= 0, (2.4b)

where Vo = Vo/(kBT/e) is the dimensionless applied voltage amplitude.

For small amplitude voltages, Vo < 1, it is typical to express φ and nr as

complex valued functions of ω that depend linearly on Vo:

φ(x, t) = φ
(0)
0 + Voφ(1)

1 (x)eiωt, (2.5a)

nr(x, t) = n
(0)
0 + Von(1)

r,1(x)eiωt, (2.5b)

where Voφ(1)
1 and Von(1)

r,1 are complex valued O(Vo) perturbations. Here, we

assume that the electrodes do not carry a “native” surface charge; hence, the

equilibrium potential is φ
(0)
0 = 0, and the equilibrium ion density is uniform,

n
(0)
0 = 1. In (2.5), the notation is that the numerical subscripts and paren-

thetic superscripts indicate to which harmonic and which order of voltage the

quantity corresponds, respectively. The harmonics in (2.5) are 0 - steady and
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1 - first, or fundamental. While this is evident in (2.5) we explicitly state it

here to be consistent with later notation.

This approach works because at O(Vo) the nonlinear term in (2.3b) degen-

erates to a coupling of Voφ(1)
1 with n

(0)
0 and oscillates at eiωt. More specifically,

as long as O(V2
o ) terms can be neglected, there is no multiplication of complex

functions and only terms oscillating at eiωt will be present. Here, the real part

is the physically meaningful portion since the applied voltage is Vo cos(ωt).

When O(V2
o ) terms cannot be neglected, the coupling of complex functions

(e.g., φ
(1)
1 eiωt and n

(1)
r,1eiωt) manifests as additional harmonic modes in the elec-

trolyte response.

At O(Vo), the fundamental mode (first harmonic) dominates the overall

response but as Vo increases, the higher order harmonics need to be taken into

account. The solution for this oscillating system can therefore be written as a

Fourier series, which for g(x, t) = φ(x, t) or nr(x, t) is

g(x, t) = a0(x) +
∞∑
k=1

ak(x) cos(kωt) + bk(x) sin(kωt), (2.6)

where ak and bk are real functions of ω. Here, a0 is just the stationary (k = 0)

contribution. Equation (2.6) can be rewritten using complex functions via

Euler’s formula, eiz = cos(z) + i sin(z). The result is a complex Fourier series,

g(x, t) = a0(x) +
∞∑
k=1

Ak(x)ekiωt +Bk(x)e−kiωt, (2.7)

where Ak = (ak − ibk)/2 and Bk = (ak + ibk)/2 are complex conjugates. Note

that the sum in (2.7) is of complex conjugates and is therefore real valued.

Thus, we can express the solutions to (2.3) as

φ(x, t) = φ0(x) +
∞∑
k=1

φk(x)ekiωt + φ−k(x)e−kiωt, (2.8a)

nr(x, t) = nr,0(x) +
∞∑
k=1

nr,k(x)ekiωt + nr,−k(x)e−kiωt, (2.8b)
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where the “coefficients”, φk and nr,k, are complex valued functions of ω while

φ0 and nr,0 are real valued. A negative subscript (−k) denotes the complex

conjugate of the corresponding positive subscript (k), and the dependence on

Vo is implicit in the coefficients.

Substitution of (2.8) into (2.3) yields an infinite set of coupled nonlinear

ordinary differential equations. Without giving the full expression, we can

address the primary difficulty of the resulting set of equations. The nonlinear

term in (2.3b) (nr∂φ/∂x) results in doubly infinite sums through the coupling

of terms containing ekiωt with e−qiωt where k and q are any positive integers.

The result is terms which look like

∞∑
k=1

∞∑
q=1

nr,k+qφ−qe
kiωt +

∞∑
q=1

nr,qφ−q, (2.9)

for example. This arises due to the fact that there are an infinite number

of positive integers k and q such that (k + q) − q = k and q + (−q) = 0.

Hence, the kth harmonic is dependent upon all other harmonic modes q, even

those for which q > k. The series must therefore be truncated at a suitable

harmonic. We can alleviate ourselves of the doubly infinite sums by expressing

the Fourier coefficients φk and nr,k as power series in Vo. We give the form of

the power series later but it is instructive to first demonstrate how it arises

from the nonlinearity of (2.3b).

First, φk and nr,k contain a linear dependence on Vo from (2.5) which we

denote as φ
(1)
1 and n

(1)
r,1 . Recall that a parenthetic superscript indicates the

order of Vo the quantity applies to. The coupling of Von(1)
r,1eiωt with Voφ(1)

1 eiωt

produces terms which are O(V2
o ) and oscillate at the second harmonic, e2iωt.

We also obtain the corresponding complex conjugates. Furthermore, the cou-

pling of Von(1)
r,1eiωt with Voφ(1)

−1e
−iωt also results in O(V2

o ) terms but they are

non-oscillatory, or stationary. The O(V2
o ) terms for φ (and similarly for nr)

are thus V2
oφ

(2)
2 e2iωt, V2

oφ
(2)
−2e
−2iωt, and V2

oφ
(2)
0 . These terms are coupled to other
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O(V2
o ) terms but also to O(Vo) and O(1) terms. Coupling with O(Vo) yields

terms which are O(V3
o ) and oscillate at e3iωt and eiωt (through coupling with

a term oscillating at e−iωt). As we show later, O(V3
o ) is the first nonlinear

contribution to the current. Thus, we truncate our series here and write the

expansions as

φ(x, t) = Vo
(
φ
(1)
1 eiωt + φ

(1)
−1e
−iωt
)

+ V2
o

(
φ
(2)
2 e2iωt + φ

(2)
0 + φ

(2)
−2e
−2iωt

)
(2.10a)

+ V3
o

(
φ
(3)
3 e3iωt + φ

(3)
1 eiωt + φ

(3)
−1e
−iωt + φ

(3)
−3e
−3iωt

)
+O

(
V4
o

)
,

and

nr(x, t) = n
(0)
r,0 + Vo

(
n
(1)
r,1eiωt + n

(1)
r,−1e

−iωt
)

+ V2
o

(
n
(2)
r,2e2iωt + n

(2)
r,0 + n

(2)
r,−2e

−2iωt
)

(2.10b)

+ V3
o

(
n
(3)
r,3e3iωt + n

(3)
r,1eiωt + n

(3)
r,−1e

−iωt + n
(3)
r,−3e

−3iωt
)

+O
(
V4
o

)
,

which can be rearranged to show how the Fourier coefficients in (2.8) depend

on voltage. For example, for the potential from (2.10a),

φ0(x) = V0
oφ

(0)
0 + V2

oφ
(2)
0 + V4

oφ
(4)
0 + · · · , (2.11a)

φ1(x) = Voφ(1)
1 + V3

oφ
(3)
1 + V5

oφ
(5)
1 + · · · , (2.11b)

φ2(x) = V2
oφ

(2)
2 + V4

oφ
(4)
2 + V6

oφ
(6)
2 + · · · , (2.11c)

etc, where φ
(0)
0 = 0. The power series can more generally be written as

φk(x) =
∞∑
v=0

φ
(2v+k)
k (x)V2v+k

o , (2.12a)

φ−k(x) =
∞∑
v=0

φ
(2v+k)
−k (x)V2v+k

o , (2.12b)

and an analogous series for the ion densities, nr,±k. The moderately nonlinear

expansions (2.10) can be written concisely as

φ(x, t) = φ
(0)
0 +

∞∑
v=1

Vvo

(
v∑
l=0

φ
(v)
v−2le

(v−2l)iωt

)
, (2.13a)

nr(x, t) = n
(0)
r,0 +

∞∑
v=1

Vvo

(
v∑
l=0

n
(v)
r,v−2le

(v−2l)iωt

)
. (2.13b)
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From the pattern in (2.10), or equivalently the series in (2.13), it is ap-

parent that the odd orders of voltage contain only odd harmonics while the

even orders of voltage contain only even harmonics. Note that the sums in

(2.10) are all real valued since a complex quantity is always present with its

complex conjugate. Also, note that the stationary terms are always real valued

quantities.

Substitution of (2.13) into (2.3) yields a set of linear differential equations.

We present here the explicit statements of the governing equations up to O(V3
o )

for ekiωt, where k ≥ 0. The equations for k < 0 are obtained by taking the

complex conjugate. The resulting O(Vo) equations for eiωt are

d2φ1
1

dx2
= −

n
(1)
+,1 − n

(1)
−,1

2ε2
, (2.14a)

d2n
(1)
r,1

dx2
=

iω

ε
n
(1)
r,1 − r

[
n
(0)
0

d2φ
(1)
1

dx2

]
, (2.14b)

dn
(1)
r,1

dx
+ r

[
n
(0)
0

dφ
(1)
1

dx

]
= 0, at x = ±1 (2.14c)

φ
(1)
1 = ±1

2
, at x = ±1. (2.14d)

The O(V2
o ) equations have e2iωt and stationary contributions. The e2iωt equa-

tions are

d2φ
(2)
2

dx2
= −

n
(2)
+,2 − n

(2)
−,2

2ε2
, (2.15a)

d2n
(2)
r,2

dx2
=

2iω

ε
n
(2)
r,2 − r

d

dx

[
n
(0)
0

dφ
(2)
2

dx
+ F

(2)
r,2

]
, (2.15b)

dn
(2)
r,2

dx
+ r

[
n
(0)
0

dφ
(2)
2

dx
+ F

(2)
r,2

]
= 0, at x = ±1, (2.15c)

φ
(2)
2 = 0, at x = ±1, (2.15d)

which are forced by,

F
(2)
r,2 = n

(1)
r,1

dφ
(1)
1

dx
. (2.15e)
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The stationary equations are

d2φ
(2)
0

dx2
= −

n
(2)
+,0 − n

(2)
−,0

2ε2
, (2.16a)

d2n
(2)
r,0

dx2
= −r d

dx

[
n
(0)
0

dφ
(2)
0

dx
+ F

(2)
r,0

]
, (2.16b)

dn
(2)
r,0

dx
+ r

[
n
(0)
0

dφ
(2)
0

dx
+ F

(2)
r,0

]
= 0, at x = ±1, (2.16c)

φ
(2)
0 = 0, at x = ±1, (2.16d)

which are forced by,

F
(2)
r,0 = n

(1)
r,1

dφ
(1)
−1

dx
+ n

(1)
r,−1

dφ
(1)
1

dx
. (2.16e)

The O(V3
o ) equations contain both e3iωt and eiωt contributions. The e3iωt

equations are

d2φ
(3)
3

dx2
= −

n
(3)
+,3 − n

(3)
−,3

2ε2
, (2.17a)

d2n
(3)
r,3

dx2
=

3iω

ε
n
(3)
r,3 − r

d

dx

[
n
(0)
0

dφ
(3)
3

dx
+ F

(3)
r,3

]
, (2.17b)

dn
(3)
r,3

dx
+ r

[
n
(0)
0

dφ
(3)
3

dx
+ F

(3)
r,3

]
= 0, at x = ±1, (2.17c)

φ
(3)
3 = 0, at x = ±1, (2.17d)

which are forced by,

F
(3)
r,3 = n

(1)
r,1

dφ
(2)
2

dx
+ n

(2)
r,2

dφ
(1)
1

dx
, (2.17e)

and the eiωt equations are

d2φ
(3)
1

dx2
= −

n3
+,1 − n3

−,1

2ε2
, (2.18a)

d2n3
r,1

dx2
=

iω

ε
n
(3)
r,1 − r

d

dx

[
n
(0)
0

dφ
(3)
1

dx
+ F

(3)
r,1

]
, (2.18b)

dn
(3)
r,1

dx
+ r

[
n
(0)
0

dφ
(3)
1

dx
+ F

(3)
r,3

]
= 0, at x = ±1, (2.18c)

φ
(3)
1 = 0, at x = ±1, (2.18d)
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which are forced by,

F
(3)
r,1 = n

(1)
r,1

dφ
(2)
0

dx
+ n

(1)
r,−1

dφ
(2)
2

dx
+ n

(2)
r,2

dφ
(1)
−1

dx
+ n

(2)
r,0

dφ
(1)
1

dx
. (2.18e)

The stationary O(V2
o ) equations (2.16) pose an issue in that the governing

equations (2.16b) are the derivatives of the boundary conditions (2.16c). Thus

one of the boundary conditions (2.16c) are redundant. We can resolve this issue

by recognizing that since there is no flux of ions at the boundaries, the total

number of ions in the cell must be constant. This means that the integral of

each perturbation to the ion density must be zero:
∫ 1

−1 n
(v)
r,kdx = 0, for v > 0.

Using this condition, it is possible to derive a new set of governing equations

for the stationary O(V2
o ) terms:

ε2
d2φ

(2)
0

dx2
=φ

(2)
0 +

1

2
(I+ + I−)− 1

2

∫ 1

−1
φ
(2)
0 dx− 1

4

∫ 1

−1
(I+ + I−) dx, (2.19a)

n
(2)
r,0 =− rφ(2)

0 − rIr + r
1

2

∫ 1

−1
φ
(2)
0 dx+ r

1

2

∫ 1

−1
Irdx, (2.19b)

where,

Ir =

∫ x

−1
F

(2)
r,0 dx̄, (2.19c)

This set of equations has thus been reduced to a single integro-differential

equation (2.19a) for φ
(2)
0 . Once (2.19a) is solved, n

(2)
r,0 is easily computed from

φ
(2)
0 .

Thus far we have claimed that the electrolyte dynamics are linear so long

as Vo < 1, while for Vo > 1 the response is voltage dependent. This is not

precisely the case, though Vo < 1 does ensure linearity. We can obtain a

useful frequency-dependent criteria for linearity by considering the linear ion

density perturbation Von(1)
r,1 from (2.5). When Vo|n(1)

r,1 | � n
(0)
0 , the nonlinear

term in (2.3b) can be linearized since nr ≈ n
(0)
0 . Physically, this means that

the extent of the ion motion is sufficiently small that the perturbation to the
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Figure 2.2: Plot of voltage amplitude in excess of thermal voltage, Vo − 1,
versus the driving frequency, ω. The solid line is the critical voltage Vc for
linearity predicted by (2.20) and the dotted line indicates the RC frequency.
As the driving frequency increases, a larger voltage amplitude is required to
yield a nonlinear response.

equilibrium distribution is negligible. From the analytic solutions obtained by

substitution of (2.5) into (2.3), it can be shown that the above inequality is

satisfied when[61]

Vo � Vc =

∣∣∣∣ 1

β2
+

iω

β
coth

(
β

ε

)∣∣∣∣ , (2.20)

where β =
√

1 + iωε. This gives a frequency-voltage relationship for linearity

where, for a given ω, the ion perturbation is small if Vo is less than the critical

voltage, Vc.

Figure 2.2 is a plot of the dimensionless applied voltage in excess of the

thermal voltage, Vo − 1, against ω with the linear and nonlinear regions sep-

arated by the solid line created by Vc. The vertical dotted line separates the

plot into frequencies above or below the RC frequency. It is clear that Vo ≤ 1

always results in a linear response, and as frequency increases, the voltage

needed to observe nonlinear effects increases.

The physical effect of increasing frequency can be understood in terms of

ion motion. At low frequencies, the ions have time to move in response to the

applied voltage and begin to form Debye layers at the electrode surfaces. The
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developing Debye layers are what ultimately give rise to the nonlinearities in

the charge dynamics. As the frequency increases, the ions are only able to

move a short distance before the voltage has reversed and they must move in

the opposite direction, precluding the formation of Debye layers. Therefore,

although there is a greater driving force at large Vo, there exists a frequency

beyond which the dynamics will be linear in Vo.

Equations (2.14), (2.15), and (2.17)-(2.19) were solved using the MAT-

LAB bvp4c solver. It is a finite difference scheme utilizing the three stage

Lobatto 3a collocation method.

2.3 Results

2.3.1 Harmonic Profiles

We begin with general observations regarding the electrostatic potential and

ion densities that will aid subsequent analysis. First, at O(Vo) and O(V3
o ),

the ion densities are equal and opposite (e.g. n
(1)
+,1 = −n(1)

−,1) (figure 2.3a and

2.3e). This is not surprising since the electrolyte is symmetric with equal ionic

diffusivities. A consequence of this behavior is that the ion densities for odd

orders of voltage are anti-symmetric about x = 0.

The second, more interesting, observation is that the ion densities and

electrostatic potential for O(V2
o ) are not only symmetric, but also φ

(2)
2 = φ

(2)
0 =

0, n
(2)
+,2 = n

(2)
−,2, and n

(2)
+,0 = n

(2)
−,0 (figure 2.3b and 2.3c). At this order, the

voltage on the electrode is “squared” which leads to an identical charge on

each and no electric field in the electrolyte. However, the ions still migrate due

to the electromigrative forcing originating from the O(Vo) dynamics, F
(2)
r,2 =

n
(1)
r,1dφ

(1)
1 /dx. This symmetric motion corresponds to the adsorption of neutral

salt (total ion concentration) leading to a depletion of neutral salt in the bulk
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Figure 2.3: Total individual harmonic modes of electrostatic potential (solid
line), positive ion density (dashed line), and negative ion density (dotted line)
for ω = 0.01, ε = 0.025, and t = 0 throughout the cell. Symbols in (a)-
(c) are used to show data that is hidden behind other lines; they indicate
electrostatic potential (a), positive ion density (b) and (c). The odd harmonics
(a), (d), and (e) are anti-symmetric about x = 0 and the ion densities are
equal and opposite. In (a), the dimensionless negative ion density is equal
to the electrostatic potential. The even harmonics (b) and (c) are symmetric
and the ion densities are equal due to the symmetry of the electrolyte. An
interesting result of this symmetry is that the even harmonics of the potential
are uniformly zero.



22
CHAPTER 2. MODERATELY NONLINEAR DIFFUSE-CHARGE

DYNAMICS UNDER AN AC VOLTAGE

electrolyte as can be seen in figures 2.3b and 2.3c.

Olesen et al. [63] predicted this adsorption of salt in the context of a

“strongly nonlinear” regime in which oscillating diffusion layers could almost

completely deplete the salt concentration outside the Debye layers. They re-

ferred to this effect as “AC capacitive desalination.” Remarkably, they showed

that despite the oscillatory nature of the driving voltage, there is a time-

averaged salt adsorption into the Debye layers. We demonstrate that this

“steady” desalination of the bulk electrolyte also occurs at moderately large

voltages. Our analysis indicates neutral salt adsorption occurs first at O(V2
o )

and, in general, at all even orders of voltage.

2.3.2 Nonlinear Current

We now calculate the overall current through the system, I(t) = dQ/dt, where

Q is the total charge on the electrode surface normalized by AεkBT/eL, where

A is the surface area of the electrode in contact with electrolyte. Using Gauss’s

law, I(t) can be related to φ, and the dimensionless current (normalized by

AεDkBT/eλDL
2) is I(t) = −∂2φ/∂x∂t|x=−1[19]. The current can be expanded

in the same form as (2.10) where it is clear from the above explanation that

the O(V2
o ) contribution is zero since φ

(2)
k = 0. In fact, the stationary term φ

(2)
0

cannot contribute to the current regardless of electrolyte symmetry since it

lacks a time dependent co-factor (see (2.10)). More generally, for a symmetric

electrolyte, all even orders of voltage will have zero electrostatic potential and

be non-contributing to the overall current.

The relationship between current and voltage can be visualized from a

Lissajous plot, which is a parametric mapping of current versus voltage, each

normalized by their respective maximums. The more closely the resulting

curve resembles a line, the more in-phase the current and voltage are. Like-
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wise, a perfectly out-of-phase (but linear in Vo) current results in a circular

curve. Physically, the out-of-phase circular curves are achieved through the ca-

pacitance of either the Debye layers (ω � 1) or the dielectric solvent (ω � 1)

and the most in-phase curves represent a relative balance between conduction

of ions and capacitive charging (ω ∼ 1).

Using the idea of Pipkin diagrams from rheology[66], we make a colored

diagram of Lissajous plots for a range of voltages and frequencies (figure 2.4

for ε = 0.025 and figure 2.5 for ε = 0.25). The axes on each individual Lis-

sajous plot range from −1 to 1 while the axes values for the total diagram

are explicitly labeled. The solid and dashed lines are results from our moder-

ately nonlinear expansion (2.10) and, for comparison, a full numerical solution

to the PNP equations, respectively. (Numerical solution obtained using a fi-

nite difference method via the MATLAB pdepe solver.) The color is a visual

measure of the linearity of the response:

f =

[ ∫ T/2
0

(
I(1)
)2

dt∫ T/2
0

(I(1) + V2
o I

(3))
2

dt

]1/2
, (2.21)

where T = 2π/ω is the period of oscillation. For values of f between 1 and

0.9, the color linearly changes from green (f = 1) to yellow (f = 0.9). For f

between 0.9 and 0.53 (the lowest value calculated), the color linearly changes

from yellow to red. This is also shown in the color bar legend. In figure 2.4,

the minimum value is f = 0.53. Including higher order terms in voltage and

frequency would likely reduce this value further so it is a conservative measure

of linearity.

Most apparent from figure 2.4 is that the responses which are most non-

linear are those at high voltages and low frequencies. This is not surprising

given the relationship between ω and Vo in (2.20) for linear response (see also

figure 2.2). What is notable about figure 2.4 is it suggests the current response

is essentially linear for ω > 1. This could allow use of linearizing approxima-
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Figure 2.4: Pipkin diagram for ε = 0.025. On each plot, the horizontal axis is
voltage and the vertical axis is current, both scaled to be in the range [-1, 1].
The solid lines are the result from our moderately nonlinear expansion and the
dashed lines are numerical solutions to the PNP equations. The frequency, ω,
increases to the right and the total applied voltage difference increases down.
The color is based upon the linearity fraction, f , defined in equation (2.21)
with two distinct regions: f=[1, 0.9] the color changes from green to yellow;
f=[0.9, 0.53] the color changes from yellow to red and a linear theory captures
relatively little of the dynamics. Also labeled on the color bar is f = 0.77,
which is the value corresponding to 2Vo = 6 and ω = 0.01.
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tions and traditional models of EIS even for large driving voltages. Using

large voltages would be advantageous for eliminating noise in measurements

of current.

Regarding the validity of our moderately nonlinear expansions (2.10), we

see excellent agreement with the full numerical solution for all ω up to 2Vo = 6

and for all ω > 1 for 2Vo > 6, where f = 0.77 in the former and the dynamics

are predominately linear in the latter. For 2Vo > 6 and ω < 1, we still capture

the qualitative features of the current. This highlights the usefulness of (2.10)

in describing a moderately nonlinear response.

For comparison with the above thin Debye layer (ε = 0.025) diagram,

figure 2.5 is a Pipkin diagram for ε = 0.25. The coloring scheme and scale

is identical to the one used in figure 2.4. Once again, the most nonlinear

response is seen for low frequencies at high voltages and becomes more linear

as frequency increases. One significant difference is the linearity factor (2.21)

suggests the response is more linear for all values of Vo plotted since f > 0.82.

Comparing the full numerical solutions for ω = 0.01, we conclude that the same

voltage of 2Vo = 6 is the largest voltage amplitude for which our expansion has

good agreement. Here, it corresponds to f = 0.93, compared with f = 0.77 for

ε = 0.025. The Lissajous plots are also hexagon-like in shape at large voltages

which contrasts to the “bow-tie”-like shape for ε = 0.025. The apparent lack

of this feature in our perturbation analysis suggests more terms in the voltage

expansion are needed as ε increases. Another difference is that for ε = 0.25,

the plots are generally more circular than the corresponding plot for ε = 0.025.

This is a direct consequence of there being fewer ions in the electrolyte and

hence less in-phase conduction. Alternatively, the thicker Debye cloud at larger

ε results in a diminished frequency gap between the capacitive response due

to the dielectric solvent and the Debye layer.

To better understand how higher order harmonics (specifically the third
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Figure 2.5: Pipkin diagram for ε = 0.25. The solid and dashed lines represent
the moderately nonlinear calculations and the numerical solutions, respec-
tively. The color legend is the same as in figure 2.4. Also labeled on the color
bar is f = 0.93, which is the value corresponding to 2Vo = 6 and ω = 0.01.

harmonic) effect the current, figure 2.6 shows how the current response changes

with frequency for a linear (Vo = 0.1, solid) and moderately nonlinear (Vo = 3,

dashed) voltage amplitude. The presence of the third harmonic, e3iωt, is readily

apparent in figure 2.6 for ω = 0.01 and results in a “double-peak” in the current

versus time plot and a “bow-tie” in the Lissajous plot. Also apparent is the

lack of a second harmonic which if non-zero would reduce the size of the second

peak.

As the frequency increases, the current shifts to be more in-phase with

the applied voltage and the second peak starts to diminish. The phase shift is

due to a reduction in Debye layer capacitance resulting in a relative increase
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Figure 2.6: Dependence of current on frequency. Solid lines are linear dynamics
(Vo = 0.1), dashed lines are moderately nonlinear (Vo = 3), and dotted lines
are the applied voltage. The “double-peak” visible in (a) and the “bow-tie”
in (b) are due to the third harmonic of current. This harmonic gradually loses
amplitude relative to the linear contribution as frequency increases.
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in in-phase conduction (see explanation for (2.20)). The second peak results

from the third harmonic and as ω approaches 1 from low values, higher order

harmonics (φ
(3)
1 , φ

(3)
3 , etc.) become less prominent. That is, they decrease

in amplitude relative to φ
(1)
1 . Since the second peak is due entirely to the

third harmonic, this necessarily leads to it vanishing. As it diminishes, the

nonlinear current more closely resembles that of the linear response. The

second peak could also be reduced by the existence of a second harmonic in

the case of asymmetric electrolytes, but φ
(2)
2 = 0 is guaranteed for symmetric,

point-like electrolytes. Even if φ
(2)
2 6= 0, it would also diminish in amplitude

as ω increases.

Therefore, linear dynamics can result at high voltages because the higher

order harmonic modes decrease in amplitude as frequency increases. This

results in a reduction in the extent of ion motion and less capacitive storing

in Debye layers. Since the nonlinear response is a direct consequence of the

capacitive storing, the result is increased linearity in the current response.

Interestingly, the ion densities predicted in figure 2.3 could lead to unphys-

ical values at sufficiently large Vo even though each term in (2.10) is correct,

as we show in figure 2.7. It is a plot of total cation density for a small voltage

(Vo = 0.1) and two larger voltages (Vo = 1 and 2) at ω = 0.01 and t = 0.

For Vo = 0.1, the ion perturbation is primarily due to O(Vo) effects and is

thus antisymmetric. For Vo = 1, the total perturbation is unequal due to the

symmetric O(V2
o ) contribution, giving rise to an increased density of cations

on the negative electrode (x = −1) compared to the smaller decrease in den-

sity on the positive electrode (x = 1). For Vo = 2, the asymmetric O(V3
o )

perturbation is now prevalent enough to significantly affect the ion densities.

As a consequence, the positive electrode has a negative density of cations at

its surface. It is clearly not physically possible to have negative ion concen-

trations; however, this does not mean our approach is incorrect. Again, we



2.4. WEAKLY NONLINEAR IMPEDANCE 29

-0.5

0

6.0

3.0

-1 1-0.85+

Figure 2.7: Total cation density for ω = 0.01 and t = 0 at three voltages:
Vo = 0.1 (solid), Vo = 1 (dashed), and Vo = 2 (dotted). As the voltage
increases, the ion density becomes less antisymmetric and for Vo = 2 attains
a negative value at x = 1.

emphasize that the individual contributions in figure 2.3 are correct. We use

a regular perturbation expansion in Vo which is asymptotic as Vo → 0 so it

is expected to break down at some Vo greater than unity. In this view, it is

remarkable that the predicted current responses in figure 2.4 agree well with

numerics at Vo = 2 and ω = 0.01 and beyond (and even at larger voltages, as

explained above).

2.4 Weakly Nonlinear Impedance

Electrochemical impedance spectroscopy (EIS) uses an experimental system

such as figure 2.1 where the electrodes are sufficiently close such that the charge

transport occurs primarily normal to the electrode surface. A time varying

voltage, V (t) = Vo cos(ωt), is imposed resulting in the charging/discharging

of the Debye layers and a current response, I(t). Provided that λD � L, the

system is analogous to an equivalent circuit in which the two Debye layers

are described as capacitors in series with the electrolyte’s resistance and in

parallel is the geometric capacitance of the cell itself via the dielectric solvent.

It is convenient to express the voltage and current as complex quantities:
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V (t) = Voeiωt and I(t) = I
(1)
1 eiωt. Then the impedance for a symmetric binary

electrolyte, defined as Z = V (t)/I(t), is given by[61]

Z =
−2ε

β2ω2

[
i

β
tanh

(
β

ε

)
− ω

]
, (2.22)

where β =
√

1 + iωε. Equation (2.22) can be used to determine physical

properties of the electrolyte such as conductivity and dielectric permittivity

by determining the limiting behavior of the real and imaginary components

at small and large frequencies[29, 30].

Equation (2.22) is formally valid when Vo � Vc, i.e. linear response.

When this condition is violated, higher order harmonic modes must be in-

cluded in the expression for I(t). The result is a time dependent “impedance,”

if defined by simply dividing the voltage by the current. Alternatively, follow-

ing Olesen et al. [63], we define a generalized impedance,

Z =

∫ T
0
V (t)e−iωtdt∫ T

0
I(t)e−iωtdt

, (2.23)

to capture only those contributions to the current oscillating at the applied

frequency. Hence, Z is time independent.

Given that the current is I(t) = VoI(1)(t) + V3
o I

(3)(t), it is natural to

assume a similar expression for Z is

Z = Z(0) + V2
oZ(2) +O(V4

o ). (2.24)

This expression provides an approximation to the voltage dependence observed

in impedance measurements at large voltages[30, 61, 63]. We can express Z

in terms of the components of the electrostatic potential,

Z =
1

iω

[
1

dφ
(1)
1 /dx

− V2
o

dφ
(3)
1 /dx

(dφ
(1)
1 /dx)2

]
. (2.25)

Figure 2.8 are plots of Im(Z) and Re(Z) versus ω for ε = 0.025 and

0.25 and Vo = 0.1 and 3. At high frequency, the imaginary impedances are
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Figure 2.8: Imaginary (a) and real (b) parts of the generalized impedance
defined in (2.23) versus frequency of applied voltage for ε = 0.025 and 0.25.
The voltages plotted are Vo = 0.1 (solid) and Vo = 3 (dashed).

equal due to the aforementioned capacitance of the dielectric dominating the

response. For small frequencies, however, the impedances are unequal.

The low frequency impedance increases with increasing Debye layer thick-

ness. The imaginary part increases due to a reduction in capacitance and the

real part due to an increased resistance - both due to less ions in the elec-

trolyte. The decrease in Im(Z) with increasing voltage for both values of ε is

due to the behavior of the Debye layer as a nonlinear capacitor. As voltage

increases, the capacitance also increases. Since Im(Z) is inversely proportional

to capacitance, it decreases[63]. For ε = 0.25, this decrease is less pronounced

than for ε = 0.025 because of the lower ion concentration in the thick Debye

layer case.

From figure 2.8b, Re(Z) is shown to increase with increasing voltage, for

both values of ε, which corresponds to an increase in resistance. This can be

attributed directly to the neutral salt adsorption from the bulk solution into

the Debye layers at O(V2
o ). This causes a reduction in conductivity and hence

an increase in Re(Z). Since there are fewer ions in solution in the ε = 0.25

case, any ions adsorbed into the Debye layers represent a greater proportion
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of the total ion concentration. Hence, the increase in resistance is greater for

ε = 0.25.

2.5 Conclusions

We have quantified diffuse charge dynamics of a symmetric binary electrolyte

at moderately nonlinear AC voltages. We used a Fourier series expansion in

driving frequency for which the coefficients are expressed as a perturbation

series in voltage amplitude. This approach allows the evaluation of nonlin-

earities in terms of both voltage order and harmonic mode. We find that the

odd voltage orders have antisymmetric ion densities and electrostatic potential

profiles. For symmetric electrolytes, the even voltage orders have ion densities

that are symmetric and equal while the electrostatic potential is zero.

The symmetry in the O(V2
o ) ion densities represents “AC capacitive

desalination”[63] in which neutral salt from the bulk solution adsorbs into

the diffuse charge layers near the electrodes. The result is a reduced total

salt concentration in the bulk and an increased resistance. Moreover, the net,

or time averaged, separation of neutral salt is captured by the steady O(V2
o )

contribution.

We use our expansion to express a voltage dependent impedance. For

low frequencies, we observe the increased bulk resistance manifesting as an in-

crease in the real part of the impedance. The imaginary part of the impedance

decreases with voltage due to the increase in Debye layer capacitance as pre-

dicted by Gouy-Chapman theory.

In this work, we considered a binary symmetric electrolyte, for simplicity.

Asymmetry could be introduced through unequal ion valences or diffusivities,

which would require only minor modification to our moderately nonlinear ex-

pansions. Such asymmetry would result in a non-zero O(V2
o ) potential, and



2.5. CONCLUSIONS 33

hence unequal neutral salt adsorption and an O(V2
o ) contribution to the cur-

rent. In addition, it would be interesting to consider modified PNP equa-

tions that account for ion-size effects [26] and ion-ion electrostatic correlations

[67]. In the former case, various modified PNP equations including finite-

ion-size effects predict a Debye layer capacitance that only weakly increases

with voltage, in contrast to the exponential increase of the capacitance from

Gouy-Chapman theory. Clearly, ion steric effects would thus dramatically

impact the low-frequency impedance at large voltages. Finally, future work

could also incorporate asymmetrically applied voltages and non-zero native

zeta potentials to model asymmetric electrochemical supercapacitors, where

the electrodes are made of differing materials.





Chapter 3

Diffuse-Charge Dynamics in Ionic

Thermo-Electrochemical Systems

3.1 Introduction

The thermoelectric effect is the generation of a voltage across an electrically

conducting material in response to an applied temperature gradient. When

subjected to a temperature gradient, charge carriers will tend to migrate to-

ward colder regions of the material [68], but have differing thermal diffusion

coefficients, thereby generating a “thermo-voltage,” VT . This is analogous to

the “diffusion potential” generated under an applied concentration gradient of

charge carriers [40]. The thermo-voltage is related to the temperature differ-

ence across the material, ∆T , by the Seebeck coefficient, Se, or thermo-power,

VT = −Se∆T, (3.1)

where the negative sign is by definition such that the lower temperature cor-

responds to a higher potential. The ability of a thermoelectric material to

convert thermal energy into electrical energy is characterized by the figure

of merit, ZT = Se2σT/λ, where σ is the electrical conductivity and λ is the

thermal conductivity [69]. Traditional thermo-electric devices utilize inorganic

35
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semiconducting materials, which contain electronic charge carriers, resulting

in ZT ≈ 0.1 − 1, while nano-structured devices have been fabricated with

ZT ≈ 2 − 3.5 [31, 70, 71], achieved by having large electrical conductivities,

O(103 S/cm) at room temperature, and Seebeck coefficients of O(100 µV/K)

[71, 72]. However, this still places their efficiency below that of other heat

engines [31]. Moreover, these inorganic thermo-electrics are usually composed

of rare, expensive, and sometimes toxic materials [73].

Due to these drawbacks, there has been recent interest in “soft” thermo-

electric materials containing ionic charge carriers such as ionic liquids [8, 9, 10],

non-aqueous organic electrolytes [74], and mixed ionic-electronic conducting

polymers[11, 12, 13, 14, 15]. Although these come with a reduction in electri-

cal conductivity compared to semiconductor based thermo-electrics, they can

be competitive due to having much larger Seebeck coefficients, on the order of

mV/K [13, 14, 15, 74]. This enables such materials to store more charge [15]

and provides a pathway for designing devices which have figures of merit com-

parable to semiconductor based devices. In addition, the materials used tend

to be much cheaper to process and less toxic, making them good candidates

for wearable devices, and mass production [73].

For example, Zhao et al. [15] utilized polyethylene oxide with anionic end

groups and sodium ions as the counterions to obtain a Seebeck coefficient of

11.1 mV/K. Chang et al. [13] used polymeric ethylenedioxythiophene (PE-

DOT) and polystyrenesulphonate (PSS) doped with silver ions and achieved

Se = 0.1 mV/K with ZT = 0.13, stable over O(103 s) compared to the un-

doped material which exhibited a decay in Se over O(100 s). Kim et al. [14] use

a PSS-based thermo-electric generator to achieve an ionic Seebeck coefficient

of 8 mV/K and ZT = 0.4. A non-aqueous solution of tetrabutylammonium

nitrate in dodecanol was reported to have Se = 7 mV/K by Bonetti et al. [74].

A commonality among these soft material based thermo-electric devices
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is charging times, i.e., the time to reach a steady state thermo-voltage, on

the order of hundreds to thousand of seconds[13, 14, 15]. Clearly, such long

times warrant an investigation of the dynamics of diffuse ionic charge carriers

in thermo-electrics materials. However, mathematical modeling for even the

simplest case of a binary electrolyte has not included an analysis of the charg-

ing dynamics, and instead considers only the steady state thermo-voltage and

ion distributions across a device [20, 32, 33]. At steady-state, in an electroneu-

tral solution, the Seebeck coefficient is SeE = kB(α+−α−)/e [33], where kB is

Boltzmann’s constant, e is the elementary charge, and the subscript E denotes

the steady-state electroneutral solution value. The quantities α+ and α− are

the reduced Soret coefficients, which are related to the ratios of the thermal

diffusion coefficients to the Brownian diffusion coefficients of the cation (+)

and anion (-), respectively. For the similar problem of a suddenly applied

voltage at a constant, uniform temperature, the relevant time scale for the

charging of the Debye, or diffuse, screening layers of ionic charge adjacent to

the electrodes is the RC time, L/Dκ, where L is the distance between elec-

trodes, 1/κ is the Debye length, and D is the Brownian diffusion coefficient

of the ions [59]. However, it is not clear what the time scale would be for a

suddenly applied temperature gradient, since the ions undergo both Brownian

and thermal diffusion. A central goal of the present chapter is to address this

point.

Therefore, we systematically investigate the charge dynamics of a pro-

totypical ionic thermo-electrochemical cell subjected to a suddenly applied

temperature gradient between two parallel, perfectly blocking electrodes. We

find that, for “weak” applied temperature gradients (where “weak” will be

defined precisely in what follows), the Debye time, 1/Dκ2, is the relevant time

scale for development of the thermo-voltage and charging of the diffuse layers,

whereas the diffusion time, L2/D, is the time scale of bulk diffusion of neu-
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tral salt. In section 3.2, we formulate the mathematical problem and obtain

the time scales for charge, salt, and thermo-voltage evolution. In section 3.3,

we examine the time evolution of the profiles for these quantities across the

cell. In section 3.4, we offer some concluding remarks, including a qualitative

comparison to the above mentioned experiments.

3.2 Problem Formulation

Consider two parallel electrodes a distance 2L apart which are not connected

via an external circuit as depicted in figure 3.1. The space between the elec-

trodes is occupied by a fully dissociated binary electrolyte solution with posi-

tive ion number density n+ and negative ion number density n−. The cations

(+) and anions (-) have equal charge number, z, and equal Brownian diffusion

coefficients, D, but differing thermal diffusion coefficients, DT,i, such that their

reduced Soret coefficients are α+ and α−, respectively, and α+ 6= α−. Initially,

at time t < 0, the system is in thermal equilibrium at a constant, uniform

temperature T0, with uniform ion number densities n+,0 and n−,0. At time

t ≥ 0, the electrode at x = +L (henceforth referred to as the hot electrode)

is heated to a temperature TH > T0 while the electrode at x = −L (the cold

electrode) is maintained at the initial temperature T0.

As the heat propagates through the cell, the ions migrate via the Soret

effect toward the cold electrode [68], which is balanced by Brownian diffu-

sion and electro-migration via the induced electric field within the cell. The

ions migrate at different rates according to their reduced Soret coefficients,

αi = TDT,i/2D. For example, in the simple salt KCl, the Brownian diffusion

coefficients are approximately equal [34] but the reduced Soret coefficients are

α+ = 0.5 and α− = 0.1 [32]. This tendency to migrate at different rates results

in a local electric field and hence a macroscopic voltage across the cell, termed
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a) Initial State

b) Temperature Gradient

Figure 3.1: Sketch of the model problem. The initial, isothermal state is
depicted in figure (a); the charges are uniformly distributed. Upon heating
the an electrode to a temperature TH > T0, the charges migrate towards the
colder regions of the cell, shown in figure (b). Two effects are depicted in (b):
the concentration gradient and the regions of net charge near the electrodes.

the thermo-voltage, which acts to ensure no net current.

Assuming the distance between the electrodes is much smaller than the

other dimensions, which is reasonable considering devices often have separa-

tions on the order of millimeters [13, 14, 15], the dynamics of this system are

governed by the one dimensional ion conservation equation,

∂n±
∂t

= −∂j±
∂x

, (3.2)

where t is time, and j± is the flux of the cations (+) or anions (-), given by

[32]

j± = −Dn±
(
∂ lnn±
∂x

± ze

kBT

∂φ

∂x
+ 2α±

∂ lnT

∂x

)
, (3.3)

where e is the elementary charge, kB is Boltzmann’s constant, T is tempera-

ture, and φ is electrostatic potential. Equation (3.3) therefore represents the

sum of the Brownian-diffusive, electromigrative and thermo-diffusive fluxes of

ions, respectively.

The electrostatic potential is governed by Poisson’s equation,

− ∂

∂x

(
ε
∂φ

∂x

)
= ρ = ez(n+ − n−), (3.4)
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where ε is the permittivity of the solution and ρ is the ionic charge density.

Finally, the temperature evolves according to the heat equation,

∂

∂t
(ηCpT ) =

∂

∂x

(
λ
∂T

∂x

)
, (3.5)

where η is the density, Cp is the heat capacity per mass, and λ is the thermal

conductivity of the solution.

These equations are supplemented with the following initial conditions

specifying temperature, and the uniform ion densities,

T (x, t < 0) = T0, (3.6a)

n±(x, t < 0) = n±,0. (3.6b)

The boundary conditions specify no flux of ions and no electric field at the

electrode surfaces, and the temperature applied to the electrodes:

j±(x = +L, t ≥ 0) = 0, (3.7a)

j±(x = −L, t ≥ 0) = 0, (3.7b)

∂φ

∂x
(x = ±L, t ≥ 0) = 0, (3.7c)

T (x = +L, t ≥ 0) = TH , (3.7d)

T (x = −L, t ≥ 0) = T0. (3.7e)

Equation (3.7c) arises from Gauss’s law and the fact that there is no exter-

nal circuit connected to either electrode through which they could develop a

charge. Note that (3.7d) assumes the electrode is instantly heated from T0 to

TH . The ultimate quantity of interest, the thermo-voltage generated, is calcu-

lated from an integral of the resultant electrostatic potential gradient across

the entire cell,

VT =

∫ +L

−L

∂φ

∂x
dx = φ(L, t)− φ(−L, t). (3.8)
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3.2.1 Linear Dynamics under Weak Temperature

Gradients

This mathematical problem (3.2)-(3.8) is impossible to solve exactly. Not

only are there nonlinearities in the ion flux equations (3.3), but the physical

properties (permittivity, diffusion coefficients, etc.) of the solution vary with

temperature and hence with time and position. In general, mathematical

expressions, or experimentally determined correlations, to approximate the

temperature dependence of these properties would be necessary. To make

progress, we assume that, after all transients have died out, the resulting

temperature gradient Gf = (TH − T0)/2L is small, such that Gf � T0/2L.

This condition can be expressed solely in terms of the temperatures involved

as ∆T � T0, where ∆T = TH − T0. Assuming a thermo-electric device is

intended to operate at least at room temperature, T0 ≈ 300 K, then O(1 K)

temperature differences would readily suffice to meet this condition. Several

devices operate in this regime [13, 14, 15, 74]. Thus, defining a small parameter

δ = Gf2L/T0 = ∆T/T0 � 1, we can express all unknowns as perturbations

to their initial state by a small temperature gradient. Hence for a general

quantity, f = f0 + δf1, where f0 is the initial state and f1 is the perturbed

contribution due to the temperature gradient. The resulting O(1) problem is

merely the initial state of the system prior to applying a temperature gradient,

and the O(δ) problem becomes

∂n±,1
∂t

= −∂j±,1
∂x

, (3.9a)

j±,1 = −D0

(
∂n±,1
∂x

± zen±,0
kBT0

∂φ1

∂x
+

2α±,0n±,0
T0

∂T1
∂x

)
, (3.9b)

∂2φ1

∂x2
= −ρ1

ε0
= −ez

ε0
(n+,1 − n−,1), (3.9c)

∂T1
∂t

=
λ0

η0Cp,0

∂2T1
∂x2

, (3.9d)
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where to obtain (3.9d) it is assumed that the heat capacity and density do not

change appreciably with temperature such that the ratios Cp,1/Cp,0 and η1/η0

are negligible. This is a reasonable assumption for dilute aqueous electrolytes

[34]. The initial and boundary conditions for the O(δ) problem are

n±,1(x, t < 0) = 0, (3.10a)

T1(x, t < 0) = 0, (3.10b)

j±,1(x = +L, t ≥ 0) = 0, (3.10c)

j±,1(x = −L, t ≥ 0) = 0, (3.10d)

∂φ1

∂x
(x = ±L, t ≥ 0) = 0, (3.10e)

T1(x = +L, t ≥ 0) = T0, (3.10f)

T1(x = −L, t ≥ 0) = 0, (3.10g)

and the thermo-voltage is obtained from (3.8) as

VT = δ

∫ +L

−L

∂φ1

∂x
dx = δ [φ1(L, t)− φ1(−L, t)] . (3.11)

Next, we eliminate temperature as an unknown quantity by assuming that

the heat diffusivity is much greater than both ion diffusion coefficients, i.e.,

k0/η0Cp,0 � D0 and k0/η0Cp,0 � T0DT,0. That is, we assume the temperature

within the electrolyte responds instantaneously to variations in the electrode

temperature, compared to the response of the ions. This assumption is valid for

aqueous solutions of electrolytes, where the ratio k/ηCpD ≈ 100 [34] and αi ≈

1 [32]. For thermo-electric devices which use large, non-aqueous or organic

charge carriers, this ratio will be much greater than unity due to a smaller

Brownian diffusion coefficient [75]. Therefore, compared to the relatively slow

diffusion of ions, the heat diffuses rapidly through the cell and the temperature

has the quasi-steady linear profile

T (x, t) = T0 +G(t)(x+ L), (3.12)



3.2. PROBLEM FORMULATION 43

where G(t) = (TH(t) − T0)/2L is the time dependent temperature gradient,

reflecting the heating of the hot electrode. We now assume that the hot

electrode achieves its final temperature instantaneously, and replace G(t) with

Gf . To eliminate T1 from (3.9b), we express the left hand side of (3.12) as a

perturbation expansion and obtain ∂T1/∂x = Gf/δ = T0/2L. The linearized

ion flux is thus

j±,1 = −D0

(
∂n±,1
∂x

± zen±,0
kBT0

∂φ1

∂x
+
α±,0n±,0

L

)
, (3.13)

and the thermo-diffusive contribution has been reduced to a constant at this

order, −D0α±,0n±,0/L.

Next, we define

c =
n+ + n−

2z
, (3.14a)

ρc =
n+ − n−

2z
, (3.14b)

such that c represents the neutral salt concentration and eρc represents a

corresponding charge density. Substituting these definitions into (3.9) and

(3.13) yields,

∂c1
∂t

= D
∂2c1
∂x2

, (3.15a)

∂ρc,1
∂t

= D
∂2ρc,1
∂x2

−Dκ2ρc,1, (3.15b)

∂2φ1

∂x2
= −2ez2

ε0
ρc,1, (3.15c)

where 1/κ =
√
ε0kBT0/2e2z3c0 is the Debye length in terms of the initial

state, prior to applying a temperature gradient. The initital and boundary

conditions (3.10a)-(3.10d) become

c1(x, t < 0) = 0, (3.16a)

ρc,1(x, t < 0) = 0, (3.16b)

∂c1
∂x

(±L, t) = −c0αm
L

, (3.16c)

∂ρc,1
∂x

(±L, t) = −c0αd
L

, (3.16d)
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where αm = (α+,0+α−,0)/2 and αd = (α+,0−α−,0)/2 and we have used (3.10e)

to eliminate the electrostatic potential gradient. Note that, at least to first

order in the applied gradient, all thermal dependence is found in the boundary

conditions (3.16c) and (3.16d) through the reduced Soret coefficients. Phys-

ically, this means, as we will see, that changing the Soret coefficients alters

only the magnitude of the charge density, concentration, and thermo-voltage

at any point in time; the charging dynamics are unaffected. That is, surpris-

ingly, we expect the time it takes to reach a steady state to be independent of

the thermal diffusion of the ions.

We now introduce Laplace transforms, defined by

f̂(x, s) =

∫ ∞
0

e−stf(x, t)dt, (3.17)

where s is the Laplace frequency. The governing equations are thus trans-

formed to

d2ĉ1
dx2

= r2ĉ1, (3.18a)

d2ρ̂c,1

dx2
= k2ρ̂c,1, (3.18b)

d2φ̂1

dx2
= −2ez2

ε0
ρ̂c,1, (3.18c)

where

k2 =
s

D
+ κ2 and r2 =

s

D
,

with boundary conditions,

∂ĉ1
∂x

(±L, s) = −c0αm
Ls

, (3.19a)

∂ρ̂c,1
∂x

(±L, s) = −c0αd
Ls

. (3.19b)
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These equations are readily solved, yielding

ĉ1(x, s) = −c0αm
rLs

(
sinh(rx)

cosh(rL)

)
, (3.20a)

ρ̂c,1(x, s) = −coαd
kLs

(
sinh(kx)

cosh(kL)

)
, (3.20b)

φ̂1(x, s) = −kT0αdκ
2

ezk2s

(
x

L
− sinh(kx)

kL cosh (kL)

)
. (3.20c)

The Laplace transform of (3.11) yields V̂ (s) = 2δφ̂1(L, s); therefore the Laplace

transform of the thermo-voltage is given by

V̂ (s) = −2k∆Tαdκ
2

ezk2s

(
1− tanh(kL)

kL

)
. (3.21)

The first term in both (3.20c) and (3.21) is due to the linear electrostatic

potential drop across the bulk, electroneutral solution. In this region, the

electric field which results from the unequal thermo-migration of the ion species

is uniform. However, near the electrodes, diffuse layers with non-zero net

charge develop and screen this electric field on the length scale 1/κ, described

by the second term in (3.20c) and (3.21).

3.2.2 Determining Time scales for Thermo-electric

Charging

To determine the time scales for neutral salt diffusion, charge separation, and

thermo-voltage evolution, we evaluate (3.20) at the cold electrode (x = −L).

However, it is difficult to obtain physical insights into the dynamics from direct

analytic inversion of the resulting equations. Therefore, we consider the limit

of long times, t → ∞, by taking the limit s → 0. By expressing (3.20) and

(3.21) as Taylor series about s = 0, we can obtain expressions of the form

(1/s)/(1 + τs) which has an inverse Laplace transform of (1− e−t/τ ), where τ
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is the time scale which we seek. Doing so we find

c1(−L, t) ∼ c0αm(1− e−t/τc), (3.22a)

ρc,1(−L, t) ∼
c0αd tanh (κL)

κL
(1− e−t/τρ), (3.22b)

VT (t) ∼ −2kB∆Tαd
ez

(
1− tanh (κL)

κL

)
(1− e−t/τφ), (3.22c)

where

τc =
L2

3D
, (3.23a)

τρ =
1

2Dκ2

(
1− 2κL

sinh (2κL)

)
, (3.23b)

τφ =
1

2Dκ2
3 tanh (κL) + κL

(
tanh2 (κL)− 3

)
tanh (κL)− κL

, (3.23c)

are the time scales associated with diffusion of neutral salt, diffuse layer charg-

ing, and thermo-voltage evolution, respectively.

We see in (3.23) that the time scales for charge density and thermo-voltage

are both functions of κL but are proportional to the Debye time, 1/Dκ2. In

fact, for very thin diffuse layers, κL → ∞, τρ ∼ 1/2Dκ2 and τφ ∼ 1/Dκ2.

This contrasts with the salt diffusion time scale, which is proportional to the

bulk diffusion time, L2/D, and is therefore independent of concentration and

much longer than the Debye time for thin diffuse layers.

In figure 3.2 we compare the time scales (normalized by 1/Dκ2) as a func-

tion of κL. For κL� 1, or thick diffuse layers, all time scales are proportional

to (κL)2 and hence diffuse charge, salt concentration and voltage all evolve

on essentially the same time scale, the diffusion time. For κL � 1, or thin

diffuse layers, the charge and voltage time scales achieve the limiting values

mentioned above while the salt diffusion time scale continues to increase as

(κL)2. This suggests that the salt concentration profile evolves much more

slowly than the charging of the diffuse layers and the thermo-voltage evolu-

tion for thin diffuse layers, which is the regime in which many devices operate

[13, 14, 15, 74].
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Figure 3.2: Dimensionless time scales for charge density, τρ (solid), salt concen-
tration, τc, (dashed) at the cold electrode (the hot electrode exhibits identical
timescales) as well as voltage, τφ, (dot-dashed) versus κL. For κL � 1, all
time scales increase with a slope of 2. However, for κL� 1, the charge density
and voltage times scales reach a constant value of 1/2 and 1, respectively, but
the concentration time scale continues to increase at the same rate.

Moreover, we see in equation (3.22c) that for thin diffuse layers, we re-

cover the known steady state Seebeck coefficient for an electroneutral solution,

−VT (t → ∞)/∆T = 2kBαd/ez = SeE [33]. For finite κL, the Seebeck coeffi-

cient is reduced by SeE tanh (κL)/κL due to screening of the induced electric

field by the non-zero net charge and incomplete charge separation due to over-

lapping diffuse layers. As the diffuse layer shrinks, and hence the regions

of non-zero net charge shrink, the thermo-voltage increases to the maximum

value predicted for an electroneutral solution.

In figure 3.3, we plot the salt concentration and charge density at the

cold electrode, calculated from the long-time solutions (3.22) and numerical

inversion [76] of (3.20) versus time for several values of κL. Note that the

concentration in figure 3.3(a) is the perturbed concentration relative to the

uniform initial concentration. The positive perturbed concentration is the

expected result of the Soret effect: that both ion species will be thermally

induced to migrate toward the cold electrode. Further, as κL increases, it
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Figure 3.3: Salt concentration (a) and charge density (b) at the cold electrode
(x = −L) along with the Seebeck coefficient (c), Se(t) = −V (t)/∆T , versus
time at κL = 0.1, 1, 10 and 100. Numerical Laplace transform inversion of
(3.20) are shown as solid lines; dashed lines are the long time solutions (3.22).
For (a), at early times, salt concentration exponentially increases until the
steady-state level is reached. The time to achieve steady-state increases as
κL increases since the appropriate time scale for concentration evolution is
L2/D. For (b), at early times, charge density increases but achieves progres-
sively lower charge densities at equilibrium. For (c), the Seebeck coefficient
increases at approximately the same rate at early times but achieves progres-
sively greater values, indicating larger thermo-voltages, as κL increases. The
vertical dashed line in (b) and (c) indicate the thin diffuse layer limit of the
respective time scales.

takes longer to reach the steady state value, as predicted by the time scales

(3.23) and figure 3.2.

For positive values of αd, which corresponds to α+ > α−, the cations

undergo faster thermal migration than the anions. This results in the positive

diffuse charge at the cold electrode predicted in figure 3.3(b). Recall that we
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have assumed both ion species have equal Brownian diffusion coefficients. As

κL increases, the amount of charge stored in the diffuse layer decreases and the

equilibrium state is essentially achieved progressively closer to t = 1/(2Dκ2),

as indicated by the dashed vertical line in figure 3.3(b).

In figure 3.3(c), we plot the time dependent Seebeck coefficient, Se(t) =

−VT (t)/∆T versus time. Surprisingly, the long-time solution (3.22c) agrees

well with the numerical inversion even at short times. The steady state Seebeck

coefficient increases with increasing κL, due to the shrinking diffuse layers as

discussed previously. This indicates that in designing thermo-electric devices,

it is advantageous to have the electrode separation much larger than the Debye

length to achieve large Seebeck coefficients.

Other quantities, such as the total diffuse charge in the half of the cell

near the cold electrode,

QT (t) =

∫ 0

−L
ρc(x, t)dx, (3.24)

and the total salt concentration in this same half,

CT (t) =

∫ 0

−L
c(x, t)dx, (3.25)

also evolve with a long-time exponentially decaying transient to their steady

state, but with different time scales. Using Laplace transforms on these defi-

nitions and substituting (3.20), we obtain,

Q̂T (s) =
c0αd
k2Ls

[1− sech(kL)] (3.26)

ĈT (s) =
c0αm
r2Ls

[1− sech(rL)] . (3.27)

As before, direct inversion masks physical insights. Thus, in the long-time

limit, we obtain

QT (t) ∼ c0αd
κ2L

[1− sech(κL)]
(
1− e−t/τQ

)
, (3.28a)

CT (t) ∼ c0αmL

2

(
1− e−t/τC

)
, (3.28b)
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where

τQ =
1

Dκ2

(
1− 2κL cosh2 (κL/2)

sinh (2κL)

)
, (3.29a)

τC =
5L2

12D
, (3.29b)

are the time scales for total diffuse charge and total salt concentration. Clearly,

the timescales have different κL dependency than those of the charge density,

τρ, and salt concentration, τc, at the cold electrode. However, for κL� 1, the

total diffuse charge timescale once again becomes the Debye time, τQ ∼ 1/Dκ2

and for κL� 1, τQ ∼ L2/D, which is identical to the timescales for the charge

density at the electrodes, τρ. Note also that the total diffuse charge decreases

as κL increases. This reduction in non-zero net charge is what enables the

Seebeck coefficient to increase with κL.

3.3 Evolution of Charge, Salt, and

Electrostatic Potential

We plot salt concentration, charge density, and electrostatic potential across

the cell obtained via numerical inversion of (3.20). The quantities are plot-

ted for κL = 5 at times tDκ2 = 0.01, 0.1, 1, and 1000, with the final time

intended to capture the steady-state profile. In figure 3.4(a), we see the salt

slowly diffuses away from the hot electrode toward the cold electrode (for

αm > 0). This diffusion begins near the electrodes, and, as the diffuse layers

attain equilibrium, extends to the bulk solution until the final linear profile is

achieved.

As mentioned in the previous section, for αd > 0, the cations undergo

stronger thermal migration than the anions and hence the diffuse layer near the

cold electrode obtains a net positive charge, while the diffuse layer near the hot
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Figure 3.4: Salt concentration (a), charge density (b), and electrostatic po-
tential (c), across the cell at tDκ2 = 0.01, 0.1, 1, and 1000 at κL = 5. The
heated electrode is located at x/L = 1 and the cold electrode at x/L = −1.
At steady state (tDκ2 ≈ 1000), the neutral salt has a linear profile and the
electrostatic potential is linear only in the bulk solution, away from the net
charge of the diffuse layers.

electrode obtains a net negative charge, as shown in figure 3.4(b). Compared

to the neutral salt, the diffuse layers are much nearer to their equilibrium state

by tDκ2 ≈ 1. This suggests, surprisingly, that the majority of ion transport

occurs after diffuse layer charging has occurred. This is similar to what has

been predicted under a suddenly applied voltage [59], where there exists an

initial salt depletion zone near the electrodes as the diffuse layers form for

applied voltages greater than the thermal voltage, kBT/e. These depletion

zones are then filled on the diffusion time scale L2/D. The difference here is

that for an applied temperature difference, diffuse layers charge on the time



52
CHAPTER 3. DIFFUSE-CHARGE DYNAMICS IN IONIC

THERMO-ELECTROCHEMICAL SYSTEMS

scale 1/Dκ2, whereas for an applied potential difference, the charging time

scale is L/Dκ.

Finally, figure 3.4(c) shows that the electrostatic potential is linear in the

bulk solution, indicating a uniform induced electric field exists there. Near the

electrodes, the electric field is screened by the non-zero net charge within the

diffuse layers, leading to a nonlinear profile.

Note that both charge density and electrostatic potential share the same

sign across the cell. This is distinctly different from the situation observed

for an applied voltage, in which the electrostatic potential and charge den-

sity have opposite signs, and is a consequence of the dynamics being driven

by a temperature gradient. For instance, consider an electrolyte for which

αd > 0: then, the net negative charge density at the hot electrode is driven

toward the cold electrode by the electromigrative force (negative potentials in

figure 3.4(c)) together with the thermal migration. This is balanced by the

diffusive flux, which acts to equalize the salt concentration across the entire

cell. Similarly, at the cold electrode (net charge is positive), the diffusive flux

and electromigration (toward the hot electrode) are balanced by the thermal

migration (toward the cold electrode).

3.4 Conclusions

We have provided a detailed derivation of the charging dynamics of an ionic

thermo-electric system, starting from the fundamental ion transport equations

for dilute electrolytes. We assumed a weak temperature gradient and defined

a parameter to reflect this, δ = Gf2L/T0 � 1, which sets a condition on

the temperature difference: ∆T � T0. This condition can allow for rather

large temperature differences provided the initial temperature of the device is

appropriately chosen.
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We predict the thermo-voltage and diffuse layers develop on the order of

the Debye time, 1/Dκ2, for thin diffuse layers, κL � 1. In this regime, the

Debye time is much shorter than both the diffusion time, L2/D, over which the

linear salt concentration profile develops, and the RC time, L/Dκ, which is

relevant for the related problem of a suddenly applied voltage in an isothermal

system. As an example, consider that a 1 mM aqueous electrolyte solution

has a Debye length of 1/κ ≈ 10 nm; then, assuming D = 10−5 cm2/s and

L = 1 mm yields κL ≈ 105, and L2/D = 103 s, while 1/Dκ2 ≈ 10−7 s. This

implies that the thermo-voltage (and diffuse layers) develop extremely quickly

as the device charges under a temperature gradient. However, salt diffusion

due to the temperature gradient is much slower.

This conclusion appears at odds with experimental results which show

charging times on the order of hundreds to thousands of seconds [13, 14, 15].

Although these experiments involve non-aqueous charge carriers, the Debye

length is still O(nm) and L ∼ O(mm). From our calculations, charging times

that are O(100 s) would require unreasonably small diffusivities for the charge

carriers. We therefore conclude that the thermo-charging of the devices in

those experiments is limited by how quickly the electrodes can be heated.

That is, if we accounted for the time dependent heating of the electrode, the

rate determining timescale would be the heating timescale or a combination

of charging and heating time scales.

Another factor which could affect the charging timescales is relaxing our

assumption of equal Brownian diffusion coefficients for the two ion species. In

experiments [13, 14, 15], one species is a large polymer molecule and diffuses

much more slowly relative to the other, hence unequal Brownian diffusion co-

efficients would be a more accurate representation of the physical systems.

Furthermore, the time scales for salt diffusion, diffuse charge, and thermo-

voltage, would necessarily have different limiting values for thin diffuse layers,
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but the magnitude of the thermo-voltage might not be affected for weak tem-

perature gradients, as only the Soret coefficients determine its magnitude.

In addition, we have considered only the first order effects of a weak

temperature gradient. To this order, all thermal dependency exists only in

the boundary conditions and hence the Soret coefficients do not appear in the

charging time scales. Perhaps beyond this weak gradient regime, the Soret

coefficients play a greater role in the dynamics of the system, as opposed to

merely determining the magnitude of the steady state thermo-voltage. One

expected outcome is that the Seebeck coefficient will depend on the magnitude

of the temperature gradient, i.e. a “nonlinear” Seebeck coefficient. We will

examine this issue in future work.



Chapter 4

A Continuum Approach to Predicting

Electrophoretic Mobility Reversals

4.1 Introduction

Electrophoresis refers to the motion of a charged colloidal-scale particle in an

electrolytic solution under an applied electric field. Electrophoretic transport

is used extensively in analytical chemistry [77], microfluidics [49], and DNA

sequencing [78]. A central quantity of interest is the electrophoretic mobility,

which relates the migrative velocity of a charged particle, U, to the uniform

applied field, E∞. The electrophoretic mobility for a uniformly charged spher-

ical colloid is a scalar quantity (Me), such that U = MeE∞ [19].

Charged surfaces and particles in electrolytic solutions attract a diffuse

region of net charge around them - a ‘Debye layer.’ In dilute solutions, the

thickness of this layer is characterized by the Debye length, κ−1: for a binary

electrolyte κ−1 =
√
εkBT/e2n∞+ z+(z+ − z−), where ε is the dielectric permit-

tivity, kB is the Boltzmann constant, T is temperature, e is the fundamental

charge, n∞+ is the bulk number density of counter-ions, and z+ and z− are the

charge numbers of the counter- and co-ions, respectively, assuming a nega-

55
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tively charged surface. For a 1 mM monovalent salt at T = 298K, κ−1 ≈ 10

nm. Thus, for a colloidal particle of radius R ∼ O(µm), κR � 1 and the

Debye layer is said to be ‘thin.’

In this thin-Debye-layer limit, Me = εζ/η (where η is solution viscosity)

as shown by Smoluchowski [79] for a uniformly charged, dielectric, spheri-

cal particle with a surface ‘zeta’ potential (ζ) that is small compared to the

thermal voltage, kBT/e ' 25 mV. Hückel [80] predicted Me = 2εζ/3η for

thick-Debye-layers (κR � 1). These limits were bridged by Henry [81], who

calculated a monotonic increase in the magnitude of Me with increasing κR.

Importantly, Me remains the same sign with varying κR for a fixed sign of ζ.

For example, a negatively charged particle (ζ < 0) has Me < 0 for any κR and

thus moves against E∞ (to higher potentials).

O’Brien and White [82] numerically solved the Poisson-Nernst-Planck

(PNP) equations for point-like non-interacting ions to compute Me over a

wide range of ζ and κR. For κR � 1 and ζ > 0, Me initially increases

linearly with ζ according to Smoluchowski’s result, then attains a maximum

value for ζ ≈ (5 − 10)kBT/e and subsequently decreases to a finite value as

ζ → ∞ (see also [83, 84]). More precisely, Smoluchowski’s result holds until

ζ ∼ O[(kBT/e) ln(κR)] [85]. The departure from Smoluchowski’s prediction

arises from surface conduction of ions in the Debye layer as a consequence of

the exponentially large counter-ion concentration predicted by the PNP model

at moderately large ζ. Khair and Squires [28] showed that surface conduction

can be reduced, and hence the mobility maximum delayed to unphysically

large ζ, by inclusion of steric hindrance between finite sized ions using Biker-

man’s model [26, 27, 86]. Nonetheless, Me retains the same sign with varying

κR for a fixed sign of ζ.

However, ‘mobility reversals’ have been observed in experiments involv-

ing multivalent electrolytes with increasing salt concentration [35, 36, 37, 38,
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87, 88]. For example, at low ionic strength (small κR) a negatively-charged

particle (ζ < 0) has Me < 0 and migrates against E∞ (to higher potentials).

As ionic strength increases, Me crosses zero and becomes positive - the par-

ticle migrates with E∞ (to lower potentials). The above mentioned theories

lack a key physical trait for capturing mobility reversals. Here, we present a

continuum framework capable of predicting electrophoretic mobility reversals.

Concentrated electrolytes are known to exhibit ‘overscreening,’ where

the charge on a surface is overcompensated by a first layer of counter-ions,

that first layer is overcompensated by a second layer consisting of co-ions

and so on; the ionic charge density oscillates in sign away from the surface

[25]. A purported cause of overscreening is ion-ion electrostatic (Coulomb)

correlations, beyond mean-field Debye screening [89, 90]. Molecular Dynam-

ics (MD) and Monte Carlo (MC) simulations [91, 92], integral equation ap-

proaches [87, 93, 94, 95, 96], and density functional and statistical field the-

ories [24, 97, 98] have predicted overscreening in equilibrium Debye layers.

These techniques often adopt the primitive model of electrolytes as charged

hard spheres in a dielectric continuum. Although they offer an accurate pic-

ture of the equilibrium Debye layer around simple geometries such as a flat

plate or sphere, calculation of electrophoretic mobility is challenging since the

Debye layer is driven away from equilibrium by the imposed electric field.

Mart́ın-Molina et. al. [99] calculated the mobility of a spherical colloid using

Smoluchowski’s formula with ζ determined from an MC simulation for a flat

plate that included Coulombic potentials for ion-ion and ion-wall interactions.

Lozada-Cassou et al. [100] used the weak-field linearization of O’Brien and

White [82] along with an integral equation description of the equilibrium Debye

layer around a spherical particle. Raafatnia et. al. [39] also utilized the weak-

field linearization combined with MD simulation of the equilibrium Debye layer

over a flat plate. While these approaches can predict electrophoretic mobility
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reversals, the first [99] does not account for surface conduction, and all three

can become computationally intensive in complex geometries. Our approach

below utilizes an entirely continuum framework, which could be applied to a

wide range of particle geometries and is not restricted to the thin-Debye-layer

limit.

Bazant et. al. [67] recently derived a modified Poisson equation (MPE)

to capture ion-ion electrostatic correlations in equilibrium Debye layers (see

also [23, 24]). The MPE introduces a correlation length, `c, which is expected

to be bounded from below by the ion diameter, a, and from above by z2+`B,

where `B = e2/4πεkBT is the Bjerrum length that signifies the distance at

which electrostatic energy between a pair of monovalent ions equals thermal

energy; in water, `B ≈ 0.7nm. Ions separated by a distance greater than

`c predominantly experience mean-field (screened) electrostatics; ions closer

than `c experience (Coulombic) electrostatic correlations. The MPE reads

ε(`2c∇4ϕ−∇2ϕ) = ρ, where ϕ is the electrostatic potential and ρ = e(z+n+ +

z−n−) is the ionic charge density with n+ and n− as the number density

of cations and anions, respectively. As suggested by [67], the MPE can be

interpreted in terms of a permittivity operator ε̂ = ε(1− `2c∇2) resulting from

non-local dielectric responses of correlated ion pairs. The MPE can predict

overscreening and an electro-osmotic flow reversal over a flat plate [22].

In section 4.2, we utilize the MPE to compute the mobility of a weakly

charged (small ζ) particle. In section 4.3, we compute the mobility at larger

ζ, using the MPE to describe electrostatic correlations and Bikerman’s model

to capture steric hindrance between ions. Conclusions are offered in section

4.4.
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4.2 Electrophoretic Mobility: Small Zeta

Potentials

Consider a uniformly charged spherical colloid of radius R in a binary elec-

trolyte. The charge density ρ ≈ −e2n∞+ z+(z+ − z−)ϕ/kBT for |ζ| . kBT/e.

Normalizing ρ by z+en
∞
+ and ϕ and ζ by kBT/e, we obtain ρ̃ = −(z+ − z−)ϕ̃,

where we use a tilde to denote the dimensionless counterpart of a dimensional

quantity. Radial distance, r, from the center of the colloid is scaled by R

and the dimensionless correlation length is δc = `cκ. The MPE thus reduces

to a modified Debye-Hückel equation (for δc = 0, the standard Debye-Hückel

equation is recovered),

(κR)2∇̃2ϕ̃− δ2c ∇̃4ϕ̃ = (κR)4ϕ̃. (4.1)

As in [67] and [22], ϕ̃ and its derivatives vanish as r̃ → ∞; ϕ̃ = ζ̃ and

n̂ · ∇̃(∇̃2ϕ̃) = 0 at r̃ = 1, where n̂ is the unit vector normal to the surface.

This last boundary condition assumes that correlations at the particle surface

are negligible and yields predictions in agreement with molecular simulations

[22, 67, 101].

Since the equilibrium potential is spherically symmetric, let ϕ̃ = ζ̃f(r̃)/r̃.

Thus, (4.1) reduces to (κR)2f ′′−δ2cf ′′′′ = (κR)4f , where primes denote deriva-

tives in r̃. An analytical solution is readily obtained whose features are similar

to the solution over a charged plate [22]. Two distinct solutions exist based

on the value of δc. For δc < 1/2 (“weak correlations”) we arrive at

f(r̃) = Ae−n1(r̃−1) + (1− A)e−n2(r̃−1), (4.2a)
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where

n1 =
κR

δc

√
1 +

√
1− 4δ2c
2

, n2 =
κR

δc

√
1−

√
1− 4δ2c
2

, (4.2b)

A =
n2
2(n2 + 1)

n2
2(n2 + 1)− n2

1(n1 + 1)
,

and for δc > 1/2 (“strong correlations”) we arrive at

f(r̃) = e−k1(r̃−1) [cos(k2(r̃ − 1)) +B sin(k2(r̃ − 1))] , (4.3a)

where

k1 = κR

√
2δc + 1

2δc
, k2 = κR

√
2δc − 1

2δc
, B =

k21(k1 + 1)− k22(3k1 + 1)

k1k2(3k1 + 2)− k32
. (4.3b)

For weak correlations (4.2), f(r̃) is the sum of exponentially decaying

terms, resulting in a potential whose decay is monotonic with increasing r̃

yet predicts a greater potential near the surface than the case of δc = 0. For

strong correlations (4.3), the potential has decaying oscillations, signifying

charge inversion and stronger overscreening. From the definition of k1 and k2

in (4.3b) it is seen that
√
`c/κ is a more appropriate length scale to characterize

charge density variation in a Debye layer with strong electrostatic correlations.

Figure 4.1 shows the dimensionless charge density ρ̃ versus r̃ for four

combinations of κR and δc. For δc = 0 and κR = 10, ρ̃ decays monotonically

to zero with increasing r̃. For δc = 5 and κR = 10, ρ̃ is larger (compared

to δc = 0) near the surface, indicating overscreening. To balance this excess

counter-ion charge, co-ions are brought into the Debye layer and result in

charge inversion - net negative charge density (ρ̃ < 0) - seen at r̃ ∼ 1.5. At

κR = 50, a smaller Debye length, the same trend is observed although the

charge density decays more rapidly with r̃.
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Figure 4.1: Dimensionless charge density, ρ̃, calculated from (4.1) for a mono-
valent electrolyte around a negatively-charged sphere with |ζ̃| . 1. Ion-ion
electrostatic correlations (δc = 5) lead to overscreening and charge oscilla-
tions.

4.2.1 Electrophoretic Mobility

An applied electric field, E∞, sets the colloid into motion with an electrophoretic

velocity U. For small zeta potentials, |ζ̃| . 1, polarization of the Debye layer

can be neglected to a first approximation [19]. Hence, the imposed field exerts

an electrical force FE = QE∞ on the colloid, where Q = 4πRεζ [f(1)− f ′(1)]

is the colloid surface charge. This expression for Q follows from the mod-

ified electrostatic boundary condition n̂ · D = q, where D = −ε̂∇φ is the

displacement field and q is the surface charge density, and the assumption

n̂·∇(∇2φ) = 0 at the particle surface [67]. The fluid within the Debye layer un-

dergoes an electro-osmotic flow, imparting a hydrodynamic force on the colloid,

FO =
∫
ρP · EdV , where E = [(1 + R3/2r3)I− (3R3/2r3)r̂r̂] · E∞ is the field

around the insulating particle, P = (3R/4r+R3/4r3)I+(3R/4r−3R3/4r3)r̂r̂

(I is the identity tensor and r̂ is a radial unit vector), and the integral is

over the electrolyte volume. Note, the expression for FO is derived using the

Lorentz reciprocal theorem in which the primary flow of interest is that due

to a body force density ρE, resulting in the hydrodynamic force FO on the

colloid. The secondary flow in the reciprocal theorem is that due to an un-

charged sphere translating at unit velocity, for which the tensor P relates the
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fluid velocity field to the velocity of the particle (see, e.g., [102]). The migra-

tion of the colloid results in a drag force, FD = −6πηRU. Since the colloid

is freely suspended, FE, FO, and FD sum to zero; hence U = MeE∞ and the

dimensionless mobility, M̃e = 3ηMe/2εζ, is given by

M̃e = − d

dr̃

(
f

r̃

) ∣∣∣∣
r̃=1

− (κR)2
∫ ∞
1

f(r̃)

(
1− 1

4r̃3
+

1

4r̃5

)
dr̃, (4.4)

where the first term in (4.4) is a measure of the electrical force, FE, and the

second term represents the electro-osmotic force, FO. After substituting the

expressions for f given by (4.2)-(4.3) into (4.4), we obtain, for δc < 1/2,

M̃e = (1 + A(n1 − n2) + n2)− (κR)2(AG1 + (1− A)G2), (4.5a)

where

Gx =
1

nx
+

enx

4
(E5(nx)− E3(nx)) , (4.5b)

and for δc > 1/2

M̃e = (1 + k1 −Bk2)−
(κR)2

2

[
(1−Bi)H1 + (1 +Bi)H2

]
, (4.6a)

where

Hx =
1

mx

+
emx

4
(E5(mx)− E3(mx)). (4.6b)

Here, Ea(z) =
∫∞
1

e−zr̃/r̃adr̃ is the exponential integral, m1 = k1 − ik2, m2 =

k1 + ik2, and i =
√
−1. Note that Ea(z) = za−1Γu(1− a, z), where Γu(v, z) =∫∞

z
e−r̃r̃v−1dr̃ is the upper incomplete Gamma function. In (4.5b) and (4.6b)

the subscript x stands for either index 1 or 2. Despite the appearance of the

imaginary unit in (4.6), the computed mobility is of course still real.

Because M̃e is normalized by ζ, reversals in mobility are signified by

M̃e < 0. The mobility is shown in figure 4.2 versus κR for various δc. For
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δc = 0, M̃e increases monotonically from 1 to 1.5 with increasing κR [81]. For

a negatively charged colloid (inset to figure 4.2), FE is directed against the

field and FO is with the field (due to positive charge density in the Debye

layer). There is an imbalance, |FE| > |FO|, so FD must be with the field

to balance the forces; thus, the particle migrates against the field: M̃e > 0.

As δc is increased at fixed κR (say κR = 10 in figure 4.2), Q decreases and

consequently the total charge in the diffuse layer,
∫
ρ̃dṼ , decreases despite

the overscreening causing more ions to be present. The lower Q and reduced

diffuse charge result in lower |FE| and |FO|, respectively. More precisely, |FO|

decreases due to a reduction in local charge density within the Debye layer by

excess co-ions (figure 4.1), and hence a locally reduced electro-osmotic flow.

(The no-slip condition prevents the excess counter-ions near the surface from

driving a comparably enhanced electro-osmotic flow). The rate of decrease of

|FO| and |FE| are unequal, and |FE| < |FO| for sufficiently large δc, in which

case FD points against the applied field. This switch in FD is an electrophoretic

mobility reversal, M̃e < 0: a negatively charged colloid moves with the applied

field. For thick Debye layers (κR → 0), M̃e is independent of δc since the

charge density becomes vanishingly small. Note that M̃e > 0 for δc = 1.5;

thus, overscreening and charge oscillation do not necessarily lead to mobility

reversals. Importantly, Q is not zero when M̃e = 0; the mobility reversal does

not coincide with the point of zero particle charge. Another example where

the point of zero charge does not coincide with zero mobility is the non-zero

induced-charge electrophoretic mobility of an uncharged metal particle under

a uniform electric field in an asymmetric electrolyte [2].

Figure 4.3 compares the mobility from (4.5)-(4.6) with experimental re-

sults of [35], who utilized optical tweezers to measure the electrophoretic ve-

locity of a single polystyrene sulphonate latex colloid with a diameter of 2.23

µm. The colloid surface charge density was found by acid-base titration to
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Figure 4.2: Electrophoretic mobility, M̃e = 3ηMe/2εζ, versus κR for various
δc at small ζ̃. Insets illustrate direction and relative magnitudes of electrical
(FE), electro-osmotic (FO), and drag (FD) forces on a spherical colloid for
M̃e > 0 and M̃e < 0 (reversals). At point (∗) along the δc = 2.5 curve,
κR = 2.92, and the mobility is close to zero, M̃e = 0.00020, while the charge
is of order unity Q/4πRεζ = 2.72. Thus, the points of zero charge and zero
mobility do not coincide.

be -0.31µC/cm2 and is taken as constant at all concentrations. Experiments

were performed in binary monovalent (KCl), divalent (CaCl2), and trivalent

(LaCl3) salts; only the trivalent salt showed a mobility reversal. We chose the

correlation length, `c, to best match the mobility in the high concentration

region for the mono and divalent electrolytes, and to best match the concen-

tration at which the mobility is zero in the trivalent electrolyte. For KCl and

CaCl2, `c = 0. For LaCl3, `c = 3.07 nm, leading to δc = 0.03 at the lowest ionic

strength (0.01 mM, κR ∼ 10) and δc = 10.10 at the highest (1 M, κR ∼ 3500).

This estimate of `c falls within the expected bounds of hydrated counter-ion

diameter (0.49 nm) [103] and z2+`B (6.4 nm) for LaCl3. It is remarkable that

our simple analytical theory can capture the mobility reversal with a physi-

cally realistic value of `c. However, the theory overestimates |Me| at low ionic

strengths. For LaCl3 we predict ζ̃ ≈ −0.42 at the reversal (Me = 0), which is

a suitably small zeta potential. At ionic strengths lower than O(1 mM), |ζ̃| is

sufficiently larger than unity to invalidate the small zeta potential theory.
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Figure 4.3: Theoretical predictions compared with experimental data taken
from figure 5a of [35] (squares).

4.3 Mobility at Larger Zeta Potentials

At larger ζ̃, the applied field results in polarization of the Debye layer through

ionic surface conduction. At the larger concentrations used in the experi-

ments, surface conduction is expected to be mitigated by steric hindrance

between ions [28]. Hence, we employ Bikerman’s model [86], such that the

electrochemical potential µ±, scaled by kBT , of each ion species is µ̃± =

z±ϕ̃ + lnn± − ln [1− a3(n+ + n−)], where the first two terms are for an ideal

solution, and the third term represents steric hindrance. The role of sterics is

controlled by the bulk volume fraction of ions ν = a3(n∞+ +n∞− ), using a single

ion size a (specified later). At equilibrium, ∇̃µ̃± = 0, which gives an explicit

relationship between ϕ̃ and ñ± (the latter scaled by n∞+ ) [26] that is combined

with the MPE to yield a “Poisson-Fermi” equation (PFE) [67] governing the

equilibrium electrostatic potential,

δ2c ∇̃4ϕ̃− (κR)2∇̃2ϕ̃ = (κR)4β(ϕ̃)
e−z+ϕ̃ − e−z−ϕ̃

z+ − z−
, (4.7a)

where

β(ϕ̃) =

(
1− ν +

ν(z+e−z−ϕ̃ − z−e−z+ϕ̃)

z+ − z−

)−1
. (4.7b)

Figure 4.4 shows the dimensionless charge density, ρ̃ = β(e−z+ϕ̃ − e−z−ϕ̃),

computed from (4.7) for a monovalent electrolyte at κR = 10 and ν = 0.1, for
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Figure 4.4: Dimensionless charge density ρ̃ of a monovalent electrolyte around
a negatively-charged sphere with κR = 10 and bulk volume fraction ν = 0.1.
The counter-ions form an overscreening condensed layer, followed by a region
of charge inversion due to co-ions. The extents of both grow with |ζ̃|.

ζ̃ = −10 and −100. At such large ζ̃, the counter-ions form a condensed layer at

the surface due to steric hindrance. With correlations (δc 6= 0), the condensed

layer overscreens the surface charge and extends further from the surface,

despite the Debye length remaining unchanged. The degree of overscreening

by counter-ions and charge inversion due to co-ions increases with ζ̃.

4.3.1 Electrophoretic Mobility: Thin-Debye-Layer

Analysis

The electrolyte dynamics in response to a weak applied field are described

by coupled linear equations governing the perturbations to the equilibrium

electrochemical potentials, µ̃1
±, and fluid velocity, ṽ1. The superscripts 0 and

1 indicate quantities that are zeroth or first order in the applied field (they

are not meant to represent algebraic powers). These equations are well known

and read [28, 82, 84]

∇̃2µ̃1
± + ∇̃ ln ñ0

± · ∇̃µ̃1
± =

1

2
mṽ1 · ∇̃ ln ñ0

± (4.8a)

∇̃2(∇̃ × ṽ1) =
(κR)2

Z

(
∇̃ñ0

+ × ∇̃µ̃1
+ + ∇̃ñ0

− × ∇̃µ̃1
−

)
, (4.8b)
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Figure 4.5: Dimensionless electrophoretic mobility, M̃e = ηMe/ε(kBT/e), ver-
sus ζ̃ for various δc with κR = 100 and ν = 0.1. Symbols are from solution
of the large ζ̃ model (4.7) - (4.8), and the lines are from the small ζ̃ formulae
(4.5)-(4.6) with δc = 0 (top) and 2.5 (bottom).

where Z = z+(z+ − z−), and ñ0
+ = βe−z+ϕ̃ and ñ0

− = − z+
z−
βe−z−ϕ̃ are the

equilibrium cation and anion density, respectively, calculated from (4.7). The

velocity field ṽ1 is normalized by ε(kBT/e)
2/ηR, and m = 2ε(kBT/e)

2/ηD,

with D a single ionic diffusion coefficient (specified later). Equation (4.8a)

embodies ion conservation and equation (4.8b) governs the inertialess fluid

flow with an electrochemical body force. Recall, the experiments [35] have

κR � 1. Therefore, a thin-Debye-layer asymptotic analysis is utilized to

solve (4.8) and subsequently compute the mobility. The analysis is essentially

identical to [28]; details are not repeated here.

Figure 4.5 shows the dimensionless mobility, now defined as M̃e =

ηMe/ε(kBT/e), versus ζ̃ for a positively-charged particle in a monovalent elec-

trolyte at various δc, for κR = 100 and ν = 0.1; our results agree with [28]

for δc = 0. The mobility computed from solution of (4.8) is in agreement with

(4.5)-(4.6) at small ζ̃. For δc = 0, 0.5, and 1 the mobility does not reverse

(M̃e > 0), and surface conduction reduces the mobility relative to (4.5)-(4.6).

A more complicated dependance of M̃e on ζ̃ is observed when δc is sufficiently

large for a mobility reversal to occur (e.g. δc = 1.5).

Comparison of the large ζ theory with experiments [35] is shown in figure
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4.3. The ion size a was taken to be the average of the hydrated ion diameters

[103], and D is calculated from the conductivity at infinite dilution [104].

Again, `c = 0 in KCl and CaCl2, whereas now `c = 2.63 nm for LaCl3, which

is slightly lower than the estimate of 3.07 nm from the low ζ̃ model. The two

models share the same agreement with the experiments at high concentrations,

which is not surprising as |ζ̃| . 1 there. The large ζ̃ model predicts ζ̃ = −0.36

at the mobility reversal in LaCl3, compared to ζ̃ = −0.42 predicted from

the low ζ̃ model. Notably, the large ζ̃ model shows better agreement to the

experiments at lower concentration. Thus Debye layer polarization must be

accounted for to predict the mobility over a wide range of concentrations.

While we have included ion sterics through Bikerman’s model, we note

that it has little effect on the predicted mobility in figure 4.3 since when |ζ̃|

is large enough to anticipate a reduction in surface conduction, the volume

fraction, ν, is small due to the low ionic strength. Conversely, at higher ionic

strengths when ν ∼ O(0.1), |ζ̃| . 1 and a condensed counter-ion layer does not

form. Hence, we conclude that accounting for surface conduction is sufficient

to improve agreement for large |ζ̃|, at least for this range of concentrations

and for these ions. Nevertheless, by accounting for correlations through the

MPE, the prediction of electrophoretic mobility reversals is possible in both

models.

4.4 Conclusions

A continuum framework to predict electrophoretic mobility reversals in con-

centrated multivalent electrolytes has been presented which incorporates ion-

ion electrostatic correlations and steric hindrance between ions. Of course,

additional effects are expected in concentrated systems, including local varia-

tions in viscosity and permittivity in the Debye layer [2], and variation in bulk
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permittivity due to ion-specific polarizability [105]. Recognize, however, that

electrostatic correlations are the essential driver of mobility reversals. Raafat-

nia [39] utilized an attraction energy of 4kBT between counter-ion and colloid

surface to predict the observed mobility reversals in LaCl3 [35]. In contrast, our

work demonstrates that mobility reversals can be predicted solely from consid-

eration of electrostatic ion-ion correlations in the diffuse Debye layer. Finally,

the present approach can be adapted to predict a host of other electrokinetic

phenomena in concentrated solutions, including dynamic (AC) electrophoresis,

induced-charge electrophoresis, diffusiophoresis, and dielectrophoresis.





Chapter 5

Influence of Ion Sterics on

Diffusiophoresis and Electrophoresis in

Concentrated Electrolytes

5.1 Introduction

Electrophoresis is the motion of a charged colloidal particle under the influence

of an electric field in an electrolyte solution [19]. Diffusiophoresis is the mo-

tion of a colloidal particle brought about by a concentration gradient of solute

molecules that interact with the particle’s surface via a long-ranged interaction

potential [40, 106]. For charged solute molecules (e.g. ions), the difference in

diffusivities of the ions induces an electric field, which for a charged colloid

produces electrophoretic motion. The excess of ions adjacent to the charged

surface due to electrostatic attraction, together with the concentration gra-

dient, result in so-called chemiphoresis [40, 107, 108]. These two effects can

support or counteract each other, depending on electrolyte species and particle

zeta potential [40]. The sum of these effects is called diffusiophoresis. For non-

electrolyte solute molecules, diffusiophoresis is similar in nature [40, 106, 108],

although generally weaker due to the absence of an induced electric field, mak-

71
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ing it difficult to observe in experiments [109]. In this case, the interaction

between particle and solute is via Van der Waals or other interaction potentials

[106, 110, 111]. In this chapter, we focus on diffusiophoresis in an electrolyte

solution. Due to the similarities between diffusiophoresis and electrophoresis,

we will keep the mathematical treatment general so it can be applied to both

phenomena.

Diffusiophoresis was first described by Derjaguin et al. in 1947 [107],

while electrophoresis has been known since (at least) the pioneering work of

Smoluchowski in 1903 [79]. Electrophoresis is used extensively in microfluidics

[49] and particle separation techniques [77, 78]. Diffusiophoresis, on the other

hand, has been slow to gain recognition of its impact on systems outside of

laboratory settings. Nevertheless, recognition is increasing in applications of

porous membrane filtration [112, 113], flows in dead-end pores [114], focusing

and spreading of particles [114, 115], and detection and repair of cracks [116,

117]. See [18] for a comprehensive review of the origins of diffusiophoresis.

New microfluidic methods offer the ability to directly measure and observe

diffusiophoresis [108], which has previously been difficult.

When subjected to an external electric field, E∞, a particle will migrate

with an electrophoretic velocity U = ME∞ [19]. When instead exposed to a

concentration gradient, the migration velocity is U = M∇ lnN∞, where N∞

is the number density of ions in the electroneutral bulk solution [40]. Note

that in the previous two equations, the particle’s phoretic mobility, M , is

not the same, however we retain a single symbol (M) for brevity. To predict

the diffusiophoretic mobility, theoretical studies have almost exclusively been

based on the Poisson-Boltzmann (PB) equation. Therein, the equilibrium

relationship between the number density of ion species i, Ni, and electrostatic
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potential, φ, is a Boltzmann distribution,

Ni = N∞i e−ziφe/kBT , (5.1)

where N∞i is the number density of ion species i in the electroneutral bulk

solution, zi is the ion charge number, and kB, T , and e are the Boltzmann

constant, temperature, and fundamental charge, respectively. This relation-

ship establishes the structure of the “diffuse layer” of charge which screens

the particle’s surface charge. The diffuse layer has a characteristic width,

λD =
√
εkBT/e2I, called the Debye length, where ε is the solution permittiv-

ity, and I = 1
2

∑
i z

2
iN
∞
i is the ionic strength. Prieve et al. [40] used the PB

equation to predict the diffusiophoretic mobility of a spherical particle across

a wide range of diffuse layer thicknesses (relative to the particle size), zeta

potentials, and ionic species; for example, NaCl, NH4F, and KBrO3. They

found that for some salts, the direction of particle migration could be reversed

not only by changing the sign of the zeta potential but also by changing its

magnitude.

The PB model assumes that the ions are point charges and have no in-

teractions with each other, such as steric repulsion or electrostatic attrac-

tion/repulsion. However, this assumption can lead to unphysically large con-

centrations near highly charged surfaces or in concentrated electrolytes. For

instance, consider a monovalent cation with hydrated volume v+; the maxi-

mum density to which it can be packed is then Nmax
+ = 1/v+. Substituting

this value into (5.1) and solving for the the electrostatic potential, we obtain

ζc = (kBT/e) ln(v+N
∞
+ ) as the critical zeta potential to achieve maximum

packing [26]. Using Cs+ as an example, the hydrated radius is 0.30 nm [103]

and v+ = 0.216 nm3. At a concentration of 1 M, |ζc| ∼ 2(kBT/e), about 50

mV, which is a realistic potential for colloids in physical systems. For this rea-

son, the PB model is sometimes referred to as a dilute solution theory [2], since
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it is most valid in relatively dilute solutions, where ion interactions brought

about by steric repulsion can be neglected.

However, there are systems of importance that contain concentrated elec-

trolyte solutions, such as in enhanced oil recovery where brine solutionsO(1 M)

are encountered [16, 17]; mineral replacement reactions [18]; and energy gen-

eration from salinity gradients of sea water at river estuaries [118]. In order to

describe the diffusiophoretic motion of colloidal particles in these systems, it

is necessary to incorporate ion-ion interactions into a description of the elec-

trolyte. This is the central goal of the present chapter. As a first step, we

allow ions to interact sterically by accounting for their size in the governing

equations for the structure of the diffuse layer and bulk solution.

One method of accounting for ion size is to establish a Stern layer adjacent

to the particle surface [2]. The Stern layer is typically taken to be on the

order of one ion radius in extent and acts as a capacitor in series with the

diffuse layer. Although effective in eliminating the unphysical concentrations

predicted by the PB equation, the Stern model only accounts for ion size at the

solid surface and not throughout the diffuse layer or the electroneutral bulk

solution. To do the latter, we instead modify the electrochemical potential,

µi, of each ion species i to include an “excess” term,

µi = µid
i + µex

i , (5.2)

where µid
i = zieφ+ kBT lnNi is the ideal contribution; and µex

i is the “excess”

electrochemical potential [2, 28, 119, 120], which accounts for the entropic

effect of ion size [120], allowing ions to interact with one another via steric

repulsion.

The structure of the equilibrium diffuse layer is greatly affected by which

model of µex
i is used. For example, the simple Bikerman model [26, 86] predicts

that a maximum counterion concentration is achieved for large zeta potentials
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(> ζc), while the Carnahan-Starling model [2, 121] predicts lower concentra-

tions at the surface with no maximum, but a more gradual decrease to the

bulk concentration away from the surface. These models use the Local Density

Approximation (LDA), which defines the density of ions at a point based on

only the information at that point [2, 122]. This contrasts with methods used

in density functional theory or molecular simulations (such as Monte Carlo

or Molecular Dynamics) which use information throughout a specified volume

to calculate an average density at each point [2, 122, 123]. While these non-

local or weighted density approximations are capable of producing accurate

descriptions of the diffuse layer at equilibrium, they are often computation-

ally prohibitive to implement in the calculation of dynamic problems such as

phoretic transport. This is because of the scale disparity between the size of

the diffuse layer and of the particle: the former often being orders of mag-

nitude smaller than the latter. Additionally, models based on the LDA have

been shown to accurately capture integrated quantities such as capacitance of

the diffuse layer [122, 123], even though the detailed ion profiles differ from

density functional theory and molecular simulations.

For electrophoresis, the assumption of point-like ions leads to the pre-

diction of a maximum in the mobility of a spherical particle with increasing

zeta potential at |ζ| ∼ O(kBT/e) ln(R/λD) [83, 84, 124], in the experimentally

relevant thin diffuse layer limit (λD/R → 0), where R is the particle radius.

The maximum occurs because of surface conduction of the counterions in the

diffuse layer, as described in section 5.4.1 and [125]. Khair and Squires [28],

employing Bikerman’s model for excess electrochemical potential, showed that

the maximum in electrophoretic mobility could be delayed to much larger zeta

potentials - beyond the physical limits of most practical systems. Hence, ion

sterics effectively eliminates the mobility maximum in electrophoresis. They

argue that the surface conduction of counterions is reduced due to the con-
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straint of a maximum packing density imposed by Bikerman’s model. That is,

there are simply fewer counterions near the surface relative to the PB model

at the same zeta potential.

In this chapter, we utilize three models of ion size in the calculation

of the diffusiophoretic mobility of a uniformly charged spherical colloid in

a weak electrolyte gradient for thin diffuse layers, λD/R → 0. The three

models are: Bikerman [2, 86, 119, 120], Carnahan-Starling [2, 119, 120], and

Boublik-Mansoori-Carnahan-Starling-Leland [2, 119, 121, 126]. Due to the

mathematical similarity between diffusiophoresis and electrophoresis, we take

a general approach that is applicable to both phoretic motions.

In section 5.2, we present the mathematics underlying the inclusion of ion

size effects (steric repulsion). In section 5.3, we derive the general phoretic

mobility equation. In section 5.4, we present the results of mobility calcula-

tions based on a colloid with a varying zeta potential at a specified solution

concentration (i.e. a single value of λD/R) which is a classic depiction of mo-

bility variations in theoretical works [124]. In section 5.5, we present results

for a colloid with a specified surface charge density with varying solution con-

centration, which is more relevant to how experiments are performed. Finally,

in section 5.6, we offer concluding remarks.

5.2 Equilibrium Diffuse Layer and Modified

Electrochemical Potentials

Consider a spherical particle of radius R and uniform zeta potential ζ im-

mersed in a binary electrolyte. Since we do not consider a Stern layer here,

the zeta potential, which is formally the potential drop across the diffuse layer,

can be equated with the potential at the particle’s surface. The dimension-
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less number densities of cations and anions are n+ and n−, respectively, along

with their respective charge numbers, z+ and z−. The charged surface at-

tracts counterions and repels coions. This is balanced by Brownian diffusion,

resulting in a diffuse layer of counter charge; a local counterion rich region

near the surface. The structure of this equilibrium diffuse layer is described

by Poisson’s equation,

ε2∇2φ = −
∑
i

zini, (5.3a)

together with the condition of constant electrochemical potential at equilib-

rium,

∇µi = 0, (5.3b)

where φ is the electrostatic potential and ε = λD/R, where λD =
√
εkBT/e2I

is the Debye length, and the electrochemical potential is given by

µi = ziφ+ lnNi + µex
i . (5.4)

In (5.3), and from here on, all quantities are dimensionless unless specified

otherwise. The normalizations thus far are φ and ζ ∼ kBT/e, Ni ∼ I, µi ∼

kBT , and ∇ ∼ 1/R, where kB is Boltzmann’s constant, T is temperature, e

is the fundamental charge, ε is the solution permittivity, and I = 1
2

∑
i z

2
iN
∞
i

is the ionic strength. The quantity Ni = niI is the dimensional ion number

density of species i. A superscript ∞ denotes reference to the electroneutral

bulk solution.

Neglecting ion size by setting µex
i = 0, equation (5.3b) results in a Boltz-

mann relationship between electrostatic potential and ion density (5.1). Sub-

stitution into (5.3a) then results in the Poisson-Boltzmann (PB) equation [19].

Bikerman’s model for ion size (which we abbreviate as “Bik”) is one of the
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simplest modifications to the electrochemical potential that addresses the un-

physical predictions of the PB equation. In the Bik model [2, 86],

µex
i,Bik = − ln (1− Φ) , (5.5)

where Φ =
∑

iNivi is the local volume fraction of ions and vi is the dimensional

hydrated volume of ion species i. The volume fraction varies from 0 ≤ Φ ≤ 1,

where Φ = 1 indicates that all of the solution at that point is occupied by

ions. Importantly, Bik assumes that ions occupy sites on a regular lattice, so

vi = a3i , where ai is the dimensional hydrated diameter of ion species i.

The attractiveness of using Bik is that one can derive a modified Poisson-

Boltzmann equation (sometimes referred to as a Poisson-Bikerman equation

[28]) by substituting (5.5) into (5.3) [2, 28]. However, Bik can also underesti-

mate excluded volume effects in the dilute limit, Φ → 0 [2, 119]. To correct

this, we could use µex
i = − ln(1 − 8Φ) which accounts for the region of ex-

cluded volume around a sphere [119, 120]. However, this now overestimates

steric repulsion at larger Φ.

The second model we consider is Carnahan-Starling (abbreviated as “CS”)

which is derived from liquid state theory for monodisperse hard spheres [2, 119,

120, 121]. As such, vi = πa3i /6. In the CS model, the excess electrochemical

potential is [2, 119, 120, 121]

µex
i,CS =

Φ (8− 9Φ + 3Φ2)

(1− Φ)3
. (5.6)

As equations (5.5) and (5.6) indicate, µex
i is equal for both species of ions

for the Bik and CS models. This is because of the underlying assumption in

Bik and CS that the ions are the same size and hence impose the same steric

effects on one another. In this case, we assign each ion the average size of

the pair, i.e. a = (a+ + a−)/2 is the ion size used in both the Bik and CS

models for both cations and anions. This contrasts with the third model we
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consider, the Boublik-Mansoori-Carnahan-Starling-Leland model (abbreviated

as “BMCSL”), which is a generalization of CS for a mixture of hard spheres

of differing size. As such, it explicitly accounts for different sized ions via an

excess electrochemical potential [2, 119, 126, 127],

µex
i,BMCSL = −

[
1 + 2

(
ξ2ai
Φ

)3

− 3

(
ξ2ai
Φ

)2
]

ln (1− Φ) +
3ξ2ai + 3ξ1a

2
i + ξ0a

3
i

1− Φ

+
3ξ2a

2
i

(1− Φ)2

(
ξ2
Φ

+ ξ1ai

)
− ξ32a3i

Φ2 − 5Φ + 2

Φ2 (1− Φ)3
,

(5.7)

where ξk =
∑

j Njvja
k−3
j . By setting a+ = a− and hence v+ = v−, the CS

model (5.6) is recovered.

BMCSL is capable of producing qualitatively different results compared

to Bik and CS. The primary difference being that for a multicomponent elec-

trolyte, smaller counterions are predicted to be the dominant species near a

highly charged surface, in preference to larger counterions [2, 119]. This effect

becomes greater as the surface charge is increased. However, since we consider

only a binary electrolyte (and thus have only one counterion species) we do

not observe this effect. Note, however, that for surfaces with charges that are

equal in magnitude but opposite in sign, when the species which act as the

counterion differ in size, the BMCSL model will predict different equilibrium

profiles. In this case, the Bik, CS, and PB models will all predict the same

profiles.

The assumption of Bik and CS that ions are of equal size contradicts them

possibly having different diffusivities. Recall that the differences in diffusivities

leads to an induced electric field that affects the diffusiophoretic mobility.

Nevertheless, we ignore this contradiction and allow them to have unequal

diffusivities. This is also why we consider the BMCSL model in order to more

accurately portray differing ion size and as a check on the assumption of equal
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Figure 5.1: Equilibrium ion density within the diffuse layer on a positively
charged flat plate (ζ = 10) for a 1 M solution of KCl. Shown are the
ion densities from the Poisson-Boltzmann (PB), Bikerman (Bik), Carnahan-
Starling (CS), and Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL)
models. The counterions increase in concentration near the surface while
the coions are excluded. The Bik model achieves a saturation of counterions
whereas the PB model predicts an unbounded concentration near the surface.
The CS and BMCSL models predict lower concentrations of counterions but
a more gradual decrease to the electroneutral bulk solution. (b) Equilibrium
electrostatic potential within the diffuse layer. As the ion densities extend
further away from the surface, so too do the electrostatic potentials.

size.

In figure 5.1 we plot the equilibrium structure of the diffuse layer for a

c∞ = 1 M solution of KCl on a flat plate with ζ = 10 and using a+ = 0.56

nm and a− = 0.62 nm [103] (a = 0.59 nm for Bik and CS). Whereas the PB

model predicts an unbounded counterion density, the Bik model achieves a

saturation of counterions (cnt), nmax
cnt = 2/N∞cntzcnt(zcnt − zco)vcnt, where zco is

the charge number of the co-ions.

From figure 5.1(a), both Bik and CS predict counterion densities that do

not exponentially increase as one approaches the charged surface. The excess

of counterions (relative to the bulk) also extends further away from the surface

than for PB. The reason for this is the steric barrier to adding additional ions at

any point is greater than with PB because of µex
i . For instance, µex

i increases
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more rapidly with Φ for CS than for Bik: for Bik, it is a slowly increasing

logarithm, whereas for CS, it increases as 1/(1−Φ)3, therefore the CS model

favors lower ion densities than Bik. Further, in the dilute limit where Φ→ 0,

Bik is given by µex
i,Bik ≈ Φ to first order whereas CS is given by µex

i,CS ≈ 8Φ,

and we see the factor of 8 due to excluded volume that is not captured with

Bik. The differences between the CS and BMCSL models demonstrates the

effect of using different sized counterions (0.59 nm in CS versus the true 0.62

nm in BMCSL).

The equilibrium electrostatic potential, figure 5.1(b), shows that despite

the high concentration and large zeta potential, the classic Debye-Hückel result

is attained far from the surface. This is because beyond a few Debye lengths,

the electrostatic potential is below both the critical voltage, ζc, and the thermal

voltage. Here, electrostatic potential scales as φ ∼ exp(−x/λD) for all four

models.

5.3 Calculating Phoretic Mobility

5.3.1 Far field boundary conditions

Though conceptually different, electrophoresis (EP) and diffusiophoresis (DP)

are mathematically similar. The essential difference is the boundary conditions

in the electroneutral solution,

−∇φ→ E∞, (5.8a)

ni → n∞i , (5.8b)

where E∞ is the imposed uniform electric field in EP and a (possible) induced

electric field in DP. In addition, the bulk concentration is constant in EP but

varies according to the concentration gradient in DP. In the latter case, we use

the bulk concentration and E∞ that would exist at the center of the colloid
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if the particle were not present. As long as the concentration gradient is not

strong (as we assume in the next section), the time dependence of the particle’s

position can be neglected, i.e. the diffusiophoretic problem is quasi-steady.

To determine the induced electric field in a concentration gradient, con-

sider that the ions will attempt to diffuse down the concentration gradient at

different rates due to having unequal diffusivities. Countering this, and enforc-

ing electroneutrality is an electric field (5.8a) that exactly balances the unequal

diffusive fluxes and prevents a current from existing in the bulk solution. The

net current is

J =
∑
i

ziji, (5.9a)

where

ji = ni(mv −Di∇µi), (5.9b)

is the flux of ion species i. In (5.9b), Di is the diffusivity, v is the velocity of

the fluid, and m = ε(kBT/e)
2/Dη, where η is the viscosity, and

D =
(z+ − z−)D+D−
z+D+ − z−D−

(5.10)

is the effective salt diffusivity [41]. In the preceding, ji ∼ ID/R, |v| ∼

ε(kBT/e)
2/Rη, and Di ∼ D. Note that equation (5.9b) is an approximation

to the flux that is only strictly valid in dilute solutions, where the diffusivity of

ion, or solute, species can be taken as relative to the solvent only. A more de-

tailed treatment of the ion flux would require using Stefan-Maxwell like fluxes

[128], which account for solute diffusion relative to other solute species as well

as relative to the solvent. In addition, the motion of solute in the solution con-

tributes to the average velocity of the solution, whereas (5.9b) assumes this is

equal to the velocity of the solvent only. Nevertheless, equation (5.9b) along

with excess electrochemical potentials serve as a reasonable starting point to

consider concentrated solutions of ions.
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Evaluating (5.9) in the bulk, where ni = n∞i , setting J = 0, substituting

(5.4), and rearranging yields the induced electric field,

E∞ = βid∇ lnN∞+ +
D+∇µex,∞

+ −D−∇µex,∞
−

z+D+ − z−D−
, (5.11)

where βid = (D+ −D−)/(z+D+ − z−D−), and we have used the fact that E∞

acts to enforce electroneutrality. The first term in (5.11) is equivalent to that

derived by Chiang and Velegol [129] and Prieve et al. [40], the latter of whom

considered the case of z+ = −z− = 1. The novelty in (5.11) is the second term,

which includes gradients of the excess electrochemical potential. These gradi-

ents can be understood as follows: within a concentration gradient of point-like

ions, there is a driving force for ion motion due to the ideal electrochemical

potential. This generates a gradient in the electrostatic potential which drives

ions based on their charge, and a gradient in the ion density which drives ions

towards regions of lower concentration. However, in a gradient of ions with

finite size, there is an additional (“excess”) driving force due to the steric re-

pulsion between the ions. This additional contribution manifests as a gradient

in the excess electrochemical potential and drives ions to move towards regions

of lower steric repulsion. It will be shown that this additional contribution to

E∞ is significant for diffusiophoresis in concentrated electrolytes.

To make progress with the gradients in the second term of (5.11), we

observe that the only variable all three models for µex
i (5.5)-(5.7) depend on

is the volume fraction, Φ, hence ∇µex,∞
i = (dµex,∞

i /dΦ∞)∇Φ∞. Further, we

define

H∞i =
dµex,∞

i

dΦ∞
Φ∞, (5.12)

such that ∇µex,∞
i = H∞i ∇ lnN∞+ , where we have made use of the fact that for

a binary electrolyte, ∇ ln Φ∞ = ∇ lnN∞+ = ∇ lnN∞− . Substituting the above
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into (5.11) gives

E∞ =
(
βid + βex

)
∇ lnN∞+ , (5.13a)

where

βex =
D+H

∞
+ −D−H∞−

z+D+ − z−D−
, (5.13b)

acts as an “excess” contribution to the induced electric field that, like βid, is

a constant parameter of a given electrolyte pair but depends on the volume

fraction through (5.12). This additional term serves to enhance the induced

electric field. To see this, recall that Bik and CS assign each species the same

excess potential, hence H∞+ = H∞− = H∞. In this case, (5.13) reduces to

E∞ = βid(1 +H∞)∇ lnN∞+ . (5.14)

Further, since 0 ≤ Φ∞ ≤ 1, it can be shown that (dµex,∞
i /dΦ∞) > 0, which

means that an increase in ion volume fraction - whether by additional ions or

increased ion size - makes further increases less favorable and leads to H∞ > 0.

Therefore (5.14) represents an increase to the induced electric field over that

predicted for an ideal solution, H∞i = 0.

Substituting (5.13) (or (5.14)) into (5.8), we can write a general form for

the far field boundary conditions:

−∇φ→ θV, (5.15a)

ni → n∞i , (5.15b)

where

θ =


1 , for EP

βid +
D+H

∞
+ −D−H∞−

z+D+ − z−D−
, for DP

(5.15c)
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is a generalized scale for the induced or applied electric field, and

V =

 E∞ , for EP

∇ lnN∞+ , for DP,
(5.16)

such that E∞ = θV. Note that ∇ lnN∞+ in (5.16) could be replaced by any

equivalent measure of concentration in the bulk (e.g., I, N∞− , N∞+ ) since for a

binary electrolyte ∇ lnN∞+ = ∇ lnN∞− = ∇ ln I = ∇ ln c∞ = ∇ ln Φ∞.

Boundary conditions (5.15) can be combined with (5.4) to form a far-field

boundary condition on the electrochemical potential,

∇µi → GiV, (5.17a)

where

Gi =

 − ziθ , for EP

−ziθ + 1 +H∞i , for DP,
(5.17b)

which allows us to collect all of the mathematical differences between EP and

DP into a single quantity, Gi. Now the derivation for phoretic mobility can

be performed generally by using (5.15) and (5.17), as we do in the next sub-

section.

5.3.2 Phoretic mobility: Thin Diffuse Layer Analysis

To drive the spherical colloid into motion, a uniform gradient of either elec-

trostatic potential or electrolyte concentration is imposed. We denote the

resulting “driving” vector generally as V and give its two forms in (5.16).

Importantly, we assume that |V| � 1; more specifically,

|E∞| � 1, for EP, (5.18a)

|∇ lnN∞+ | � 1, for DP, (5.18b)
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where (5.18a) arises from the dimensional comparison |E∞| � kBT/eR, and

(5.18b) from the dimensional comparison |∇N∞+ | � N∞+ /R, which state that

the applied electrostatic potential and electrolyte concentration, respectively,

do not vary appreciably on the scale of the particle. This condition is readily

met for concentration gradients when the concentration is large. For example,

for a 1 M concentration and a particle with radius 200 nm, according to the

dimensional comparison above, the concentration gradient would need to be

less than 50,000 M/cm.

These imposed gradients cause the spherical particle to move at a ve-

locity U = MV, where M is the phoretic mobility of the particle, |U| ∼

ε(kBT/e)
2/Rη, and M ∼ ε(kBT/e)/η for EP and M ∼ ε(kBT/e)

2/η for DP.

Despite the seeming simplicity of this equation, considerable effort has been

made to calculate the value of M under a variety of conditions for both EP

and DP [28, 40, 79, 84, 106, 124, 130]. Often, the Poisson equation (5.3a) is

used together with

∂ni
∂t

= −ε∇·ji, (5.19)

to describe the electrolyte dynamics. Equation (5.19) is the Nernst-Planck

equation where t is time scaled by the RC time, λDR/D. Together, (5.3a)

and (5.19) are the Poisson-Nernst-Planck (PNP) equations. We can simplify

(5.19) by making the assumption that the problem is independent of time

since (5.18b) implies that as the particle moves, the concentration evolves

quasi-steadily [40]. Thus,

∇·ji = 0. (5.20)

To solve for the fluid velocity, the Stokes equations are used,

∇2v −∇P =
∑
i

ni∇µi/ε2, (5.21a)

∇·v = 0. (5.21b)
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Equation (5.21a) is conservation of momentum with an electrochemical body

force term to account for the ions. Equation (5.21b) is conservation of mass.

In a reference frame fixed at the particle center (such that v → −U far

from the colloid), these equations are supplemented with boundary conditions

at the particle surface,

φ = ζ, (5.22a)

v = 0, (5.22b)

n̂·∇µi = 0, (5.22c)

where n̂ is the unit normal to the surface. Equations (5.22b) and (5.22c)

specify no-slip and no flux of ions through the surface, respectively. Of course,

we also utilize a boundary condition far from the surface, (5.15) and (5.17),

developed in the previous sub-section. In section 5.5, we replace (5.22a) with

a constant surface charge density boundary condition.

Our derivation of the mobility equation follows closely that of O’Brien and

White [124] and Khair and Squires [28]. To proceed, we express the unknowns

in terms of a perturbation about their equilibrium values,

φ = φ0 + φ1|V|, (5.23a)

ni = n0
i + n1

i |V|, (5.23b)

µi = µ0
i + µ1

i |V|, (5.23c)

v = v0 + v1|V|, (5.23d)

where a superscript 0 denotes the equilibrium value and a superscript 1 de-

notes the perturbation. Substituting (5.23) into the governing equations (5.3),

(5.20), and (5.21); the boundary conditions (5.15), (5.17), and (5.22); and ne-

glecting all terms O(|V|2) and higher, we obtain a set of linear differential

equations governing the equilibrium and O(|V|) problems. Since the equilib-

rium problem has no imposed field, v0 = 0 and we are left with only Poisson’s
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equation (5.3a) and constancy of electrochemical potential (5.3b) describing

the equilibrium problem. The perturbed, O(|V|), equations are

ε2∇2φ1 = −
∑
i

zin
1
i , (5.24a)

m∇n0
i · v1 = Di∇ · (n0

i∇µ1
i ), (5.24b)

ε2∇2(∇× v1) =
∑
i

(∇n0
i ×∇µ1

i ), (5.24c)

where (5.24c) results from taking the curl of the perturbed (5.21a) to eliminate

pressure.

By considering the limit of thin diffuse layers, ε → 0, we can consider-

ably simplify these equations. In this limit, the majority of the electrolyte is

electroneutral except for a locally planar region near the surface of the col-

loid. For a more formal asymptotic analysis of this limit see [84, 131]. A key

outcome is that, to leading order in ε, the perturbed electrochemical potential

is constant across the diffuse layer, ∂µ1
i /∂y = 0, where y = (r − 1)/ε is a

local coordinate perpendicular to the particle surface. Upon rescaling (5.24)

with y, we find that the perpendicular fluid flow is negligible compared to the

tangential component in the diffuse layer; the latter is given by [28]

v1 = −
∑
i

∇sµ
1
i

∫ y

0

∫ ∞
y′

(n0
i − n∞i )dy′′dy′, (5.25)

where ∇s = (I − n̂n̂) · ∇ is the surface gradient operator and the sum is

over both ion species, i = + and i = −. The quantity (n0
i − n∞i ) represents

the concentration of ions within the diffuse layer relative to the electroneutral

solution. To calculate the mobility we require the “slip” velocity which is

obtained from the limit y →∞ of (5.25), that is, the velocity just outside the

diffuse layer. The slip velocity is thus [28]

v1
s = −

∑
i

∇sµ
1
i

∫ ∞
0

y(n0
i − n∞i )dy. (5.26)
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To determine the perturbed electrochemical potentials, we require that at

the “interface” between the diffuse layer and bulk solution (y →∞ or r → 1,

with ε fixed), all quantities (ni, µi, etc.), are continuous. This means that

since n0
i is constant in the bulk, we have from equation (5.24b) that ∇2µ1

i = 0

throughout the bulk. Solving this subject to boundary condition (5.17) we

obtain

µ1
i = (Gi + Cir

−3)V · r, (5.27)

where r is the position from the center of the sphere, and Ci are integration

constants to be determined below.

The mobility is then calculated by averaging v1
s over the surface of the

sphere [132],

MV = − 1

4π

∫
S

v1
sdS. (5.28)

The mobility is thereby

M =
2

3

∑
i

[
(Gi + Ci)

∫ ∞
0

y(n0
i − n∞i )dy

]
. (5.29)

From (5.29), we see that it is the deviation of ion density relative to its value

in the bulk, n0
i − n∞i , that arises in the mobility equation, as opposed to the

actual value of ion density, n0
i , at a location y.

The remaining constants, Ci, are computed by establishing effective bound-

ary conditions for µ1
i between the diffuse layer and the bulk. This is done by

balancing the normal flux of ions between the diffuse layer and the bulk with

the variation in the tangential flux. Following [28], these boundary conditions

are

∂µ1
i

∂r
=
(
fi∇2

sµ
1
i + gi∇2

sµ
1
j

)
, at r = 1, (5.30)

where i 6= j and

fi = −εDi

∫ ∞
0

(n0
i − n∞i )dy − εm

∫ ∞
0

(n0
i − n∞i )Iidy, (5.31a)

gi = −εm
∫ ∞
0

(n0
i − n∞i )Ijdy, (5.31b)
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where Ii =
∫ y
0

∫∞
y′

(n0
i − n∞i )dy′′dy′. The Ci are then,

Ci =
Gi(2gigj − (2fi + 1)(fj − 1)) + 3Gjgi

2(fi − 1)(fj − 1)− 2gigj
. (5.32)

Substituting (5.32) into (5.29) yields an equation which explicitly shows

the dependence of the mobility on Gi, that is, on whether EP or DP is con-

sidered,

M =
∑
i

[(
Gi(1− fj) + giGj

(fi − 1)(fj − 1)− gigj

)∫ ∞
0

y(n0
i − n∞i )dy

]
, (5.33)

where again i 6= j.

Equations (5.29) and (5.33) are general expressions of both electrophoretic

and diffusiophoretic mobility for a spherical colloid in a binary electrolyte,

where z+ and z− are not necessarily equal. Ion steric effects (steric repul-

sion) are contained within the equilibrium ion densities, n0
i , and the phoresis

dependent far-field electrochemical potential gradient, Gi (5.17b).

5.4 Phoretic Mobility: For Varying Zeta

Potential at Fixed Concentration

In our calculations that follow, all hydrated ion size data is taken from Ohtaki

and Radai [103]. The reported size of hydrated ions varies depending on the

experimental methods and theories used to determine it. For more information

on this, as well as extensive tables of ion size data, see [103]. All diffusivity

data is taken from Flury and Gimmi [133] (table 6.2-1), which is calculated

from conductance in the limit of low concentration. Their table 6.2-2 shows

that the concentration dependence of salt diffusivity is weak up to a concentra-

tion of 1 M. Beyond that, the diffusivity is expected to decrease approximately

as Di = Di,o(1 − Φi), where Di,o is the diffusivity in a dilute solution [134].

Incorporating a concentration dependent diffusivity would require including
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Di in the integral of equations (5.31). However, since ε � 1 at large concen-

trations, this change has little impact on the mobility. The induced electric

field would be affected via the dependence of βid and βex on ion diffusivity for

the BMCSL model only, since the other models assume each ion species has

the same size (and hence the same volume fraction). Although βid could be

significantly reduced, e.g. for NaCl from a value of -0.2074 in a dilute solution

to -0.0719 at 5 M, βex will continue to increase rapidly with concentration.

This is because, as we give in the appendix, H∞i diverges more rapidly than

the diffusivity vanishes as Φ∞ → 1. Hence the qualitative results presented

in this chapter are not affected by the use of a dilute solution value of the

diffusivity.

To characterize the effect of the surface conduction of ions within the

diffuse layer on the mobility, we utilize the dimensionless Dukhin number,

Du = σs/σb, which is a measure of the surface conductivity, σs, relative to

the conductivity in the bulk, σb. The bulk conductivity is just the electrical

conductivity, σb =
∑

i z
2
iDin

∞
i , in the electroneutral bulk solution [125]. Note

that although there is no current in the bulk solution for DP, there is still

a conductivity given by σb. Defining the surface conductivity by the surface

current, Js = σsV, and the driving vector V, we can derive a generalized

Dukhin number that is valid for both EP and DP.

Substituting (5.9b) into (5.9a), the total current is given by J = ρmv −∑
i ziDini∇µi, where ρ =

∑
i zini is the charge density. Applying this to

the bulk solution, where ni = n∞i and ρ = 0, and substituting (5.4) for µi,

we obtain Jb =
∑

i z
2
iDin

∞
i E∞ −

∑
i ziDin

∞
i Gi,DPV for the current in the

bulk solution, where Gi,DP = 1 + H∞i is the contribution to ∇µ∞i due to a

concentration gradient. The surface current is then the current in excess of

Jb, integrated over the diffuse layer, Js = ε
∫∞
0

(J−Jb)dy. Substituting (5.25),
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(5.17), and using the fact that ∂µ1
i /∂y = 0 within the diffuse layer, we obtain

Js = ε

∫ ∞
0

[∑
i

z2iDi(n
0
i−n∞i )θ−ρ0m

∑
i

GiIi−
∑
i

ziDi(n
0
i−n∞i )Gi,DP

]
dyV,

(5.34)

where we have also made use of the fact that E∞ = θV. The first term in

(5.34) is due to the electromigration of ions with the electric field (induced or

applied). The second term is due to convection of ions with the electro- and

chemiosmotic fluid flow. The third term represents the contribution from ions

diffusing down the concentration gradient.

The generalized Dukhin number is therefore given by

Du =
ε∑

i(z
2
iDin∞i )

∫ ∞
0

[∑
i

z2iDi(n
0
i − n∞i )θ − ρ0m

∑
i

GiIi

−
∑
i

ziDi(n
0
i − n∞i )Gi,DP

]
dy,

(5.35)

Note that for EP, Gi,DP = 0 since there is no applied concentration gradient; in

this case, the usual definition of the Dukhin number is recovered [28, 60, 125].

5.4.1 Electrophoresis

Figure 5.2a shows the electrophoretic mobility for a 1 M KCl solution with

ε = 0.01 for PB, Bik, CS, and BMCSL over the range ζ = −10 to 10. First note

that the negative zeta potentials have negative mobilities whereas the positive

potentials give positive mobilities, i.e. negatively (positively) charged particles

move against (with) the applied field. The PB model predicts a maximum in

the mobility at ζ ∼ ±6.5, whereas Bik, CS, and BMCSL predict a continuously

increasing mobility over the range of zeta shown. The maximum in PB is due to

the increasing importance of surface conduction with exponentially increasing

counterion concentration in the diffuse layer [84]. This is reflected in figure

2c, which is a plot of Du versus ζ. As ζ increases (in magnitude), the surface

conduction increases rapidly until it offsets further increases in mobility.
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Figure 5.2: Phoretic mobility for a 1 M solution of KCl with ε = 0.01 for
all four models of ion size: Electrophoretic mobility (a) and corresponding
Dukhin number (c) versus zeta potential; diffusiophoretic mobility (b) and
corresponding Dukhin number (d) versus zeta potential. Diffusiophoretic plots
(b and d) assume equal diffusivities for the cation and anion, D+ = D−, leading
to βid = 0.

To see how surface conduction affects the mobility (in the case of PB) it is

instructive to consider the (academic) limit ζ →∞ with ε fixed (i.e. Du→∞).

Here, the constants Ci in (5.27) adopt values for a conductor of counterions,

Ccnt = −Gcnt, and an insulator of co-ions, Cco = Gco/2. This ensures that a

maximal flux of counter charge can be exchanged between the bulk solution

and diffuse layer. Then using these values for Ci together with (5.4) we can

derive equations for the perturbed electric potential and ion density in the

bulk. The derivation is given in the appendix along with the full expressions
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for both EP and DP; here, we give simplified forms relevant to a symmetric,

monovalent electrolyte. For electrophoresis these equations are,

φ1 = −
(

1− 1

4r3

)
E∞ · r, (5.36a)

c1 = n1
+ + n1

− = −3sgn(ζ)

2r3
E∞ · r, (5.36b)

where sgn(ζ) is the sign of ζ.

These equations are identical to those given by Khair and Squires [125].

Figure 5.3 are streamlines of the electric field, −∇φ1, and concentration gra-

dient, −∇c1 showing the direction of neutral salt motion, for a positively

charged particle. These figures again are identical to those produced by Khair

and Squires [125] but are reproduced here to contrast with the forthcoming

predictions for DP.

Figure 5.3 (a) shows that the applied electric field is uniform far from

the sphere but varies across the surface, where the “surface” is the interface

between the thin diffuse layer and the bulk solution. In particular, the tan-

gential component, which is zero at the poles and maximum at the equator,

drives a tangentially varying surface flux of counterions (surface conduction).

This necessitates that the negative counter ions be exchanged between the

diffuse layer and bulk solution. This exchange occurs along the electric field

lines and counterions exit the diffuse layer in the upstream and enter in the

downstream, relative to the applied electric field, E∞. Of course, the posi-

tive co-ions also move along these bulk field lines but are excluded from the

diffuse layer. The result is a concentration polarization in the bulk with a

greater concentration in the upstream region and a chemiosmotic flow due to

gradients in neutral salt (figure 3(b)), from upstream to downstream, which

counteracts the electro-osmotic flow and reduces the mobility.

Accounting for steric repulsion between ions eliminates the exponential

increase of counterions in the diffuse layer, which means a reduced surface
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(a) Electric field (b) Concentration

Figure 5.3: Streamlines of the electric field (a) and concentration flux (b)
for electrophoresis using the PB model for ζ → +∞ and ε fixed, such that
Du→ +∞.

conduction of counterions; consequently, the mobility continues to increase. In

fact, for ε = 0 with ζ fixed and finite, surface conduction becomes negligible,

and all four models approach limiting lines. The slopes of these lines are

dependent on the model since the equilibrium diffuse layers have differing

structures. In the case of the PB model, the classic Helmholtz-Smoluchowski

mobility, M = ζ, is recovered. In general, for ε ≡ 0 with ζ fixed, Ci = Gi/2

and

M =
∑
i

[
Gi

∫ ∞
0

y(n0
i − n∞i )dy

]
, (5.37)

which is valid for both EP and DP but resists analytic treatment for µex
i 6= 0.

Finally, all four models agree in a range of ζ between about -3 and 3,

suggesting that for potentials below about ±75 mV, steric repulsion between

ion does not significantly affect electrophoretic mobility - even in rather con-

centrated solutions.

5.4.2 Diffusiophoresis

Symmetric electrolytes (D+ = D−)

Although similar mathematically to electrophoresis, the induced electric field

(5.13) brought about by diffusivity differences and steric repulsion between
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ions adds a unique feature to diffusiophoresis. As such, we will first consider

an idealized example of KCl in which we assume the diffusivities are equal

and hence βid = 0. Note that the actual value for KCl is βid = −0.0188. A

consequence of this assumption is that the induced electric field is non-existent

for PB, Bik, and CS and the situation resembles that of DP in non-electrolytes.

For BMCSL, since H∞+ 6= H∞− , then βex 6= 0 and an induced electric field exists

due solely to steric repulsion between ions as a result of ion size differences.

Figure 5.2c shows the diffusiophoretic mobility for a 1 M KCl solution

with ε = 0.01 for PB, Bik, CS, and BMCSL over the range ζ = −10 to 10.

Unlike in EP, the PB, Bik, and CS models all predict a symmetric mobility

about ζ = 0. This is expected since, in the absence of an induced electric field,

the particle will prefer to move towards regions of higher ion concentration,

i.e. in the direction of the concentration gradient. Therefore, the mobility

is symmetric due to neglecting diffusivity differences and assuming both ion

species are the same size (or zero size in PB).

This behavior contrasts with what the BMCSL model predicts, which al-

lows for different sized ions. The asymmetry in BMCSL is due primarily to

the induced electric field arising from ion size (βex) as explained above. An-

other factor is that when ζ < 0, the smaller ion, K+, is the counterion which

is able to more tightly pack in the diffuse layer than Cl− when ζ > 0 and it

is the counterion. This results in differing equilibrium diffuse layer structures

on either side of ζ = 0 and hence an asymmetric mobility. This second fac-

tor is much less significant than the induced electric field. In fact, although

we do not show this result, by setting βex = 0 (neglecting the induced elec-

tric field completely, i.e. θ = 0) the BMCSL model gives mobilities which

are much closer to the CS model results. This is despite predicting quanti-

tatively different diffuse layer structures (see figure 5.1), which demonstrates

how integrated quantities such as mobility and diffuse layer capacitance do
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not have a strong dependence on the structure of the equilibrium diffuse layer,

for differing models that account for ion size.

Figure 5.2(d) shows the Dukhin number for diffusiophoresis. As with EP,

the PB model predicts a large increase in surface conduction along with a

corresponding maximum in mobility. Although Du is always positive for elec-

trophoresis, our generalized Du can take on negative values for DP. However,

it is the magnitude of Du which is important. The PB model gives a much

lager |Du| than Bik, CS, or BMCSL, indicating significantly greater surface

conduction in DP; just as in EP.

The negative values of Du occur because the convective,

−ε
∫∞
0
ρ0m

∑
iGiIidyV, and concentration gradient, −ε

∫∞
0

∑
i ziDi(n

0
i −

n∞i )Gi,DPdyV, contributions to the surface current can be either positive or

negative. Since the convective flux is in the opposite direction as particle

migration, if positively and negatively charged particles migrate in the same

direction (as they do in DP for reasonable zeta potentials), then the convective

current will be in opposite directions due to having oppositely charged diffuse

layers. Similarly, the flux due to the concentration gradient is always in the

same direction and oppositely charged diffuse layers will result in positive

or negative current. Therefore, a positively (negatively) charged particle has

positive (negative) convective and concentration gradient surface currents.

Because the bulk conductivity is always positive, this leads to Du < 0 when

ζ < 0 and Du > 0 when ζ > 0 for the case of D+ = D− with KCl.

By assuming the diffusivities are equal, we are effectively neglecting

the electromigrative contribution to the surface current, ε
∫∞
0

∑
i z

2
iDi(n

0
i −

n∞i )θdyV, since θ = 0. If we allowed the electric field to be non-zero, however,

the electromigrative surface current would be positive (negative) for a positive

(negative) value of θ, regardless of the sign of the zeta potential. In summary,

a negative value for Du is possible when θ < 0, or when θ ≥ 0 if ζ < 0.
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As with EP, we can turn to streamlines of the perturbed electrostatic

potential and neutral salt concentration fields to help explain the effect of

surface conduction on mobility. At large |Du|,

φ1 =
3sgn(ζ)

4r3
(
∇ lnN∞+

)
· r, (5.38a)

c1 = n1
+ + n1

− = 2

(
1− 1

4r3

)(
∇ lnN∞+

)
· r, (5.38b)

which in comparing with (5.36) we see the roles of φ1 and c1 are reversed

from EP. This similarity is readily understood: in EP, −∇φ1|r→∞ = E∞ is the

applied, uniform field and the bulk concentration gradient, −∇c1, is a result

of surface conduction. Conversely, in DP, ∇c1|r→∞ is the applied and uniform

field and−∇φ1 is the result of surface conduction. As such, the explanation for

the mobility maximum is similar to that for EP. Specifically, from figure 5.4(b)

we see that the concentration flux is uniform far from the sphere and varies

across the surface (the interface between the thin diffuse layer and the bulk).

This drives a tangentially varying surface flux of counterions (negative ions).

This simultaneously directs bulk concentration field lines into (out of) the

diffuse layer over the downstream (upstream) regions - relative to the applied

concentration gradient. To prevent coions from entering the diffuse layer, a

bulk electric field (figure 5.4(e)) is established that induces an electro-osmotic

flow which counteracts the chemiosmotic flow, resulting in a reduced mobility.

Therefore, the mobility maximum is not observed when steric repulsion is

taken into account because of the reduced surface conduction arising from

reduced counterion densities within the diffuse layer.

Asymmetric electrolytes (D+ 6= D−)

For real salts, the diffusivities are unequal and βid 6= 0. Figure 5.5 is a plot of

zeta potential versus mobility for 1 M solutions of several different electrolytes

using all four models. We see the expected behavior of a mobility maximum
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Streamlines of concentration flux (a-c) and electric field (d-f) for
diffusiophoresis using the PB model for three representative values of βid as
ζ → +∞ and ε fixed such that |Du| → ∞. The varying tangential component
of the concentration flux gives rise to a surface conduction induced local electric
field for all three values of βid, which provides field lines along which charge
can be exchanged between the diffuse layer and the electroneutral bulk. Far
from the particle, away from the local electric field, the induced electric field
E∞ is recovered for βid 6= 0.

in PB and no maximum for all models of ion size due to the effect of reducing

surface conduction.

For PB, Bik, and CS, as |βid| increases, the asymmetry in the mobility

will increase and the larger mobility will be that for which βidζ > 0. When

this condition is met, the electrophoretic contribution to the mobility will

be towards higher concentrations and support the chemiphoretic contribution

which always acts towards higher concentrations. This generalization is pos-

sible because the ions are assumed to be the same size in these three models

and θ = βid(1 + H). As for the above case of symmetric electrolytes, the

BMCSL model incorporates the additional asymmetry of different sized ions

and such a generalization is not possible due to the more complex dependence
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Figure 5.5: Diffusiophoretic mobility versus zeta potential for different salts
using (a) PNP, (b) Bik, (c) CS, and (d) BMCSL. The salts have the follow-
ing values for βid: NaOH (-0.5962), NaCl (-0.2074), KCl (-0.0188), KBrO3
(0.2618), and HCl (0.6417). All concentrations are 1 M and ε = 0.01. The
dashed and solid lines are to aid readability.
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of the induced electric field on diffusivity and ion size (see (5.15c)). However

we observe the same general trend in figure 5.5(d) and predict that the larger

mobility will be for that colloid and electrolyte for which θζ > 0.

For non-zero βid, the equations for the perturbed electrostatic potential

and neutral salt density in the bulk for the PB model at large |Du| are

φ1 =

[
− βid

(
1− 1

4r3

)
+

3sgn(ζ)

4r3

](
∇ lnN∞

)
· r, (5.39a)

c1 = 2

[(
1− 1

4r3

)
− 3sgn(ζ)

4r3
βid

](
∇ lnN∞

)
· r. (5.39b)

The terms containing βid are the electrophoretic contribution and setting

βid=0 recovers the results in (5.38).

The effect of βid on the streamlines is shown in figure 5.4 for ζ > 0. For

all possible values of βid (−1 < βid < 1), a “local” electric field is generated

by the same surface conduction mechanism described above for symmetric

electrolytes, i.e. βid = 0. This electric field is directed outward over the

downstream region and inward over the upstream region of the sphere (relative

to the concentration gradient). Because of this, the induced electric field (far

from the sphere) for βid < 0 cannot participate in the exchange of counter

charge between the diffuse layer and the bulk solution. However, for βid > 0,

it can serve as a source of field lines for the exchange of counter charge. As βid

becomes more positive, the concentration flux lines are directed more normal

to the surface. This leads to a decrease in the magnitude of the tangential

flux and hence a reduced mobility (for a positively charged surface, where

ζ → +∞). Note that this is not shown in figure 5.5(a) as the large zeta

behavior does not become apparent for the electrolytes given until |ζ| ≈ 15,

which is not experimentally feasible.

To directly compare EP to DP in the limit of large zeta for PB, we can

simplify equation (5.29) for the limit of large zeta with ε fixed (i.e. |Du| → ∞)
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and for z+ = −z− = z. In this limit, the mobility equation simplifies to

M =


sgn(ζ)

z
ln 4, for EP,

(
sgn(ζ)zβid − 1

) 1

z2
ln 4, for DP.

(5.40)

The result in (5.40) for EP is known [84, 125, 135], but we believe the result for

DP is novel. In both cases, the mobility becomes independent of |ζ|, depending

only the sign of the zeta potential. From (5.40), we see that the EP mobility

has the same sign as the zeta potential, indicating that positively (negatively)

charged particles move with (against) the electric field. However, for DP,

it is straightforward to show that the mobility is negative (i.e. toward lower

concentrations) for any electrolyte and particle zeta potential since |βid| < 1/z.

This indicates that large surface conduction effects, such as the local electric

field, dominate the diffusiophoretic motion of the particle in the limit of large

zeta. Again, these limiting values are approached when |ζ| & 15 and thus not

observed in figure 5.5.

5.5 Phoretic Mobility: For Varying

Concentration at Fixed Surface Charge

Density

Here, we consider a colloid with a constant, uniform surface charge density

and vary the concentration of the electrolyte solution (i.e. ε). This is a more

relevant point of view to how experiments involving electrophoresis and dif-

fusiophoresis are typically carried out. That is, it is difficult to vary the zeta

potential while keeping the Debye layer thickness fixed (as both are functions

of concentration), as was the focus of the previous section. If the electrolyte

consists of potential determining ions, changing the electrolyte concentration
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can ionize/deionize chemically active sites on the particle surface such that

both the zeta potential and surface charge density change with concentration

[136]. Here, we assume a constant surface charge density and thus do not

account for this effect.

We denote the dimensional surface charge density as Γ∗ and use Gauss’s

Law to relate it to the electrostatic potential at the surface, −εn̂ · ∇φ = Γ∗

[19]. In terms of the local planar co-ordinate, y, we replace boundary condition

(5.22a) with

dφ

dy

∣∣∣∣
y=0

= −εΓ, (5.41)

where Γ = Γ∗/(εkBT/eR) is the dimensionless surface charge density. For the

purposes of calculating ε, we assumed a colloid radius of R = 210 nm. For PB,

it is straightforward to derive Graham’s equation, Γ = 2
√

2ε sinh(zζ/2), for

z+ = −z− = z, which relates the surface charge density, bulk concentration,

and zeta potential [19]. It is generally not possible to derive analogous closed-

form equations for ion steric models except for Bik [2].

Figure 5.6 plots electrophoretic mobility and diffusiophoretic mobility ver-

sus concentration (up to a maximum concentration of 5 M) for a spherical col-

loid with a uniform surface charge density of 3.0 µC/cm2. This value for sur-

face charge density is used as an intermediate value in the range typically en-

countered [137, 138]. For the concentration range shown, 1 mM ≤ c∞ ≤ 5 M,

the diffuse layer is still quite thin, 0.062 ≤ ε ≤ 8.77 × 10−4, even with the

particle size of R = 210 nm. Figures 5.6(a) and (b) are for the symmetric

treatment of KCl for which we assume the diffusivities are equal (βid = 0);

figures 5.6(c) and (d) are for the asymmetric case of NaCl. We see that the

electrophoretic mobility is essentially the same in both electrolytes for all four

models; indicating that, surprisingly, there is no appreciable difference in the

predictions between the simple PB model and the more complex models for
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Figure 5.6: The phoretic mobility for a colloid with constant surface charge
density Γ∗ = 3 µC/cm2 in a solution of KCl (where D+ = D−) (a, b) and NaCl
(c, d). The electrophoretic mobility (a, c) shows essentially no difference be-
tween the four models while the diffusiophoretic mobility (b, d) has significant
variation at large concentrations due to the rapidly increasing induced electric
field. The BMCSL model deviates in KCl (b) because it retains a non-zero
βex when D+ = D−.

ion size.

We see that in KCl, the diffusiophoretic mobility predicted from PB, Bik,

and CS are essentially the same as well; BMCSL differs only at large concen-

trations. In NaCl, all three models incorporating ion size predict qualitatively

different diffusiophoretic mobilities compared with the PB model.

This large concentration behavior can be understood in terms of the zeta

potential and induced electric field. Figure 5.7(a) is a plot of zeta potential

versus concentration in NaCl. All four models predict that the zeta potential
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decreases with increasing electrolyte concentration, and all three models for

ion size predict values of zeta that are in good agreement with that predicted

by the simple PB model. In addition, since the zeta potential for all models

is below the critical zeta potential, ζc, at which ion sterics are expected to be

important, this has the consequence of rendering ion steric effects negligible

within the diffuse layer. Therefore, when the bulk concentration is large, the

zeta potential is small and the total ion density in the diffuse layer is not much

greater than in the bulk. This is seen in figures 5.7(c) and (d) which show

that the structure of the equilibrium diffuse layer does not vary appreciably

between the four models despite the rather large concentration of 1 M, where

Φ∞ = 0.201, 0.105, and 0.110, for Bik, CS, and BMCSL, respectively. In

addition, the equilibrium ion densities in figure 5.7(c) are on the order of the

bulk concentration and the phoretic mobility (5.29) and (5.33) only depends

on the diffuse layer ion density relative to the bulk. Since EP depends only

on the structure of the equilibrium diffuse layer, steric repulsion (ion size

effects) does not effect electrophoretic mobility in this experimentally relevant

scenario. Further, note that since the zeta potential decreases with increasing

concentration, the EP mobility approaches zero at large concentrations.

However, figure 5.7(b) is a plot of the induced electric field versus con-

centration from DP. While the PB model predicts a constant value, the three

models which account for the size of the ions predict an increasing electric field

with increasing concentration. Physically, this is due to the steric repulsion

between the ions as they diffuse down the concentration gradient, which as we

showed in section 5.3.1, enhances the induced electric field.

Importantly, when ζ = 0, there is no interaction potential between the

colloid and the ions, and there will be no phoretic mobility (see figure 5.5).

However, since ζ ∝ ln (1/
√
c∞), there will always be a finite zeta potential

since an electrolyte concentration has finite physical limits. In addition, while
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Figure 5.7: A colloid of constant surface charge density in a solution of NaCl.
The zeta potential (a) calculated using the four models for surface charge
densities of Γ∗ = 3 and 6 µC/cm2. Also shown is the critical zeta potential,
ζc; above which ion steric effects are expected to be important. Despite slight
deviation from the classic PB model result for 6 µC/cm2, all models predict
zeta potentials below the critical value. The induced electric field (b) increases
with increasing concentration in all models except the PB model which does
not account for ion size. The rate at which the electric field increases is greater
than the rate at which the zeta potential decreases. Figures (c) and (d) are
for Γ∗ = 3µC/cm2 and c∞ = 2 M. All four models predict essentially the same
structure of the diffuse layer in terms of both the equilibrium ion densities (c)
and the electrostatic potential (d) despite the large concentration.
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the zeta potential, and hence the interaction potential, is a slowly decreasing

logarithmic function of concentration, the induced electric field (via H∞i ) is

a rapidly increasing function of concentration. For example, from (5.6) and

(5.12), E∞ ∝ 1/(1− Φ∞)4 for the CS model; recall that Φ∞ ∝ c∞. Since the

induced electric field increases more rapidly than the zeta potential decreases,

the diffusiophoretic mobility is not only non-zero at large concentration but

actually increases (figure 5.6(d)).

For both figures 5.6 and 5.7, the Bik model only goes up to a concentration

of 4.03 M for KCl and 4.96 M for NaCl. This is due to assuming the ions take

up a cubic volume and hence have a larger volume fraction than the CS and

BMCSL models, which use ions with a spherical volume. For example, at c∞

= 5 M for NaCl, the theoretical bulk volume fraction predicted by Bik is 1.007

while CS and BMCSL predict the bulk volume fraction to be 0.527 and 0.552,

respectively.

5.6 Conclusion

We have derived a general equation for the diffusiophoretic and electrophoretic

mobility of a single colloid in a binary electrolyte. To describe the electrolyte,

we have utilized three different models which incorporate steric repulsion be-

tween finite sized ions into the governing equations, in addition to the classic

Poisson-Boltzmann model for point-like, non-interacting ions. We show that

the maximums in the mobility (with increasing zeta potential) for both diffu-

siophoresis and electrophoresis that are predicted by the Poisson-Boltzmann

model are essentially eliminated by accounting for ion size. This is readily un-

derstood: the effect of ion sterics on the equilibrium diffuse layer is to reduce

the counterion density relative to the Poisson-Boltzmann model. Since the

maximum in mobility is due to a rapidly increasing surface conduction, the
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reduced counterion density reduces the surface conduction and an opposing

chemiosmotic (in electrophoresis) or electro-osmotic (in diffusiophoresis) flow

does not develop. The mobility therefore does not undergo a maximum over

realistic values for the zeta potential.

For a colloid with a constant surface charge density, a more relevant sce-

nario for experiments, we show that, surprisingly, ion size effects are much

more important for diffusiophoresis at high concentrations than for elec-

trophoresis. This is because as the zeta potential decreases (and hence coun-

terion density, relative to the bulk, decreases) with increasing concentration,

steric repulsion between ions does not affect the structure of the diffuse layer

for reasonable surface charge densities. However, steric repulsion within the

highly concentrated bulk solution is non-negligible. Therefore, when there is

an applied concentration gradient, as in diffusiophoresis (not electrophoresis),

there exists an additional effect due to the size of the ions: a gradient in the

excess electrochemical potential, which leads to an increase in the induced

electric field with increasing concentration. Electrophoresis has no concentra-

tion gradient in the bulk solution and therefore has no excess electrochemical

potential gradient. Therefore, since steric repulsion minimally affects the dif-

fuse layer structure, the electrophoretic mobility is minimally affected by ion

size effects (for zeta potentials resulting from a reasonable constant surface

charge density).

Our predictions for diffusiophoresis are contrary to the common notion

that the phoretic mobility approaches zero with increasing concentration due

to a decreasing zeta potential [19]. While this notion holds for electrophoresis,

for diffusiophoresis, it is only predicted by the Poisson-Boltzmann model. For

any real electrolyte, for which the diffusivities are not equal, any model that

includes steric repulsion between ions will predict an increase in the diffusio-

phoretic mobility with increasing concentration (see figure 5.6(d)). Hence, far
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from becoming immobile, we predict that the mobility will actually increase

greatly in concentrated electrolytes. Thus it may be that diffusiophoresis is

an attractive transport mechanism in high salinity environments. Despite this

increasing mobility with a decreasing zeta potential, when the zeta potential

is exactly zero, the mobility is also zero (see figure 5.5). This is because there

would no longer be an excess of ions surrounding the particle and therefore no

slip velocity (see equation (5.26)).

Hence, the remarkable conclusion here is that to calculate the diffusio-

phoretic mobility of a spherical colloid, the classic Poisson-Boltzmann treat-

ment of the electrolyte is sufficient to determine the ion profiles within the

diffuse layer for reasonable surface charge densities. Then, including ion ster-

ics within the bulk solution to derive the excess contribution to the induced

electric field is straightforward by using an excess electrochemical potential.

All that is required is a model for the the excess electrochemical potential

and ∂µex
i /∂Φ evaluated at the electroneutral solution concentration. These

derivatives are provided in the appendix for the three models we considered.

In all of our results for diffusiophoresis, there is considerable dependence

on which model is used to predict the mobility. This is simply due to the

differences between how the models describe the ions. The Bikerman model

assumes the ions occupy a regular lattice. The Carnahan-Starling and Boublik-

Mansoori-Carnahan-Starling-Leland models are based on liquid-state theory

for hard spheres, the latter being for a general case of different sized spheres

while the former is for the special case of spheres of the same size. Our work

in this chapter uses equations which are valid under the local density approxi-

mation (LDA). The equilibrium profiles calculated under this assumption are

not always as accurate at high concentrations as methods based on density

functional theory (DFT) or molecular simulations. However, these equilib-

rium profiles are only an intermediate step towards calculating the mobility.
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Such integrated quantities (including capacitance) have been shown to agree

well with DFT and molecular simulations [122, 123]. However, by using a

fourth order Poisson equation which accounts for electrostatic correlations be-

tween ions, it has been shown that the equilibrium profiles can achieve better

agreement with those from simulations, including local oscillations of charge

density due to overscreening [22, 67]. This “modified-Poisson equation” has

also been shown to predict electrophoretic mobility reversals in agreement with

experiments in concentrated, multivalent electrolytes [43]. Incorporation of

ion electrostatic correlation effects into diffusiophoresis is left for future work.

Other effects in concentrated electrolytes include variations in the viscosity

and permittivity [2]. As the electrolyte concentration increases, it is expected

that the viscosity will also increase and the permittivity will decrease. Given

this, it is possible that including these effects could reduce the large increase

in diffusiophoretic mobility that we predict.

It should be noted that although our final equation for mobility (5.29) is

independent of which model for the excess electrochemical potential is chosen

to describe the electrolyte, it needs to be expressible as a function of the local

(or bulk) volume fraction of ions only (i.e., µex
i = µex

i (Φ)). As we show in the

derivation, this is required to express ∇µex
i in terms of the applied gradient,

∇ lnN∞+ . A consequence of this is that even though certain models used in

DFT can be expressed as excess electrochemical potentials [122], they cannot

be used in conjunction with our final equation (5.29). However, substitution

of any excess electrochemical potential model into (5.11) is still possible, but

derivation of a single final equation for the phoretic mobility - as we have done

- would not readily follow.

Although we have considered the separate application of a concentration

gradient and an electric field, the simultaneous action of both is a common

situation in electrochemical cells and termed “electrodiffusiophoresis” [139].
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In such situations, reversals in particle migration direction can be brought

about by altering the applied electrical current in addition to an appropriate

selection of electrolyte and gradient strength. [139]. When both an electric

field and concentration gradient are applied, the electrophoretic and diffusio-

phoretic contributions to particle motion combine nonlinearly and the particle

migration velocity increases in lower concentration regions due to an increase

in the electric field in these regions. An interesting question then is whether

ion sterics will increase the electric field in the high concentration region (as

we predict) relative to the low concentration regions in electrodiffusiophoresis.

5.7 Appendix

5.7.1 Solution method for the equilibrium diffuse layer

and excess electrochemical potential derivatives

To obtain the equilibrium profiles of ion density and electrostatic potential,

we used MATLAB and a finite differencing scheme to solve Poisson’s equation

subject to the algebraic equations generated by the constraint of a constant

electrochemical potential. In general, these equations are

d2φ

dy2
+ (z+n+ + z−n−) = 0, (5.42a)

ziφ+ lnni − lnn∞i + µex
i − µ

ex,∞
i = 0, (5.42b)

in terms of the local planar coordinate, y = (r − 1)/ε and where i = + and

i = − for the cation and anion species, respectively. For the case of a specified

zeta potential, we first use (5.42b) to obtain the ion densities at the surface,

then apply both equations (5.42a) and (5.42b) to the remainder of the problem

domain. Since both φ and ni decay to a constant as y →∞, it is only necessary

to include a finite distance. We used a domain of y = [0, 20], which we tested
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and found y = 20 to be sufficiently far from the surface that increases do not

affect the results presented in the main text.

Once the equilibrium profiles are known, it is straightforward to evaluate

the requisite integrals to obtain the mobility. However it is useful to include

the expressions for the excess electrochemical potential gradients, H∞i , for

the three models we used; especially considering this is essentially all that

is necessary to predict the effects of ion size on diffusiophoresis. Recall that

H∞i = Φ∞∂µex
i /∂Φ∞, where Φ∞ =

∑
iN
∞
i vi is the volume fraction of ions in

the bulk solution and N∞i is the number density of ion species i.

The expressions for the excess electrochemical potential can be found in

the text (5.5)-(5.7). The expressions for H∞i are,

H∞i =



Φ∞

1− Φ∞
, for Bik

2Φ∞(4− Φ∞)

(1− Φ∞)4
, for CS

(Ti,1 + Ti,2 + Ti,3 + Ti,4)
1

(Φ∞)2(1− Φ∞)4
, for BMCSL,

(5.43a)

where

Ti,1 =

[
1 + 2

(
ξ∞2 ai
Φ∞

)3

− 3

(
ξ∞2 ai
Φ∞

)2](
Φ∞
(
1− Φ∞

))3
, (5.44a)

Ti,2 =
(

3ξ∞2 ai + 3ξ∞1 a
2
i + ξ∞0 a

3
i

)(
Φ∞
(
1− Φ∞

))2
, (5.44b)

Ti,3 = 3ξ∞2 a
2
i

(
ξ∞2
(
1 + Φ∞

)
+ 2Φ∞ξ∞1 ai

)
Φ∞
(
1− Φ∞

)
, (5.44c)

Ti,4 = −2(ξ∞2 )3a3i
(
1− 3Φ∞ − (Φ∞)2

)
, (5.44d)

and ξ∞k =
∑

j N
∞
j vja

k−3
j .
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5.7.2 Streamline equations for a general binary

electrolyte

Here, we provide the equations for the perturbed electrostatic potential and

salt concentration for the PB model for a general binary electrolyte. By taking

appropriate linear combinations of the perturbed electrochemical potentials,

we obtain

φ1 =
µ1
+ − µ1

−

z+ − z−
(5.45a)

c1 =
2(z−µ

1
+ − z+µ1

−)

z+z−(z+ − z−)
. (5.45b)

Substituting (5.27) for µ1
i and (5.17b) for the definition of Gi, we obtain

φ1 =



[
− 1 +

∆φC

(z+ − z−)r3

]
V · r , for EP

[
− βid +

∆φC

(z+ − z−)r3

]
V · r , for DP

(5.46a)

c1 =



2∆cC

z+(z+ − z−)r3
V · r , for EP

2

[
− 1

z+z−
+

∆cC

z+(z+ − z−)r3

]
V · r , for DP

(5.46b)

for any ζ, where ∆φC = C+−C− and ∆cC = C+− z+C−/z− and Ci are given

by (5.32). For large ζ with ε fixed (or equivalently, large Du), co-ions (co) are

excluded from the diffuse layer so ∂µco/∂r|r=1 = 0 and the diffuse layer acts as

a conductor of counterions (cnt) with ∇sµcnt|r=1 = 0. This gives Cco = Gco/2
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and Ccnt = −Gcnt from (5.32). Substituting this into the above we obtain

φ1 =


−βid

(
1 +

zco + 2zcnt
2(z+ − z−)r3

sgn(ζ)

)
V · r , for EP

[
− βid

(
1 +

zco + 2zcnt
2(z+ − z−)r3

sgn(ζ)

)
+

3sgn(ζ)

2(z+ − z−)r3

]
V · r , for DP

(5.47a)

c1 =


− 3sgn(ζ)

(z+ − z−)r3
βidV · r , for EP

2

[
− 1

z+z−

(
1− 2zco + zcnt

2(z+ − z−)r3
sgn(ζ)

)
− 3sgn(ζ)

2(z+ − z−)r3
βid

]
V · r , for DP.

(5.47b)

For z+ = 1 and z− = −1, we obtain equations (5.36), (5.38), and (5.39).
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Conclusion

In this thesis, we have examined the dynamics of electrolyte solutions and

colloidal particles immersed within them, in a variety of non-ideal conditions,

from dilute solutions subjected to moderate voltages and temperature gra-

dients, to highly concentrated solutions with ion-ion electrostatic and steric

interactions. In every case, we have utilized continuum based models to de-

scribe the dynamics of the solution or a colloidal particle within it. These

models have been analyzed with perturbation methods, and, where possible,

direct comparisons to experiments have been attempted.

In chapter 2, we analyzed a simple electrochemical cell subjected to an AC

voltage. While the linear response is well known and utilized experimentally

to determine physical properties of the charge carriers via a technique called

(linear) Electrochemical Impedance Spectroscopy (EIS) [29, 30], the response

to voltages just outside the linear regime has not been explored. In order to

extend this theory to moderate voltages, where the voltage magnitude, Vo,

is on the order of the thermal voltage, kBT/e, we expressed the governing

equations as perturbations to the linear theory in terms of the dimensionless

applied voltage magnitude, Vo = Vo/(kBT/e). We discovered that at even

orders of Vo, there is no net charge motion within the cell; instead, neutral
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salt is adsorbed into the diffuse layers. A significant result of this is that

the only contributions to the current are from odd orders of Vo. This salt

adsorption leads to an increase in resistance within the cell which is predicted

by an increase in the real part of the impedance. We considered only a binary,

symmetric electrolyte in this chapter. Future work could consider asymmetric

electrolytes in terms of charge number and diffusivities.

In chapter 3, we considered a similar cell, but instead of applying a volt-

age, we applied a temperature gradient across the device by heating one elec-

trode. In response to the temperature gradient, the charge carriers migrate

toward the cold electrode and induce an electric field or thermo-voltage as a

result of unequal thermal migration. Our model system of a binary electrolyte

represents the simplest possible thermo-electric device. In many respects, this

problem is similar to that of a suddenly applied voltage to a previously undis-

turbed isothermal cell [59]. A primary difference is the timescale over which

the diffuse layers charge. For a suddenly applied voltage, the timescale is the

RC time, L/Dκ, whereas for a thermo-electric cell, the thermo-voltage and dif-

fuse layers charge on the Debye time, 1/Dκ2. Since many experimental devices

[13, 14, 15] are designed to operate in thin-diffuse-layer conditions, κL � 1,

this indicates that the thermo-voltage reaches steady-state relatively quickly

compared to the case of a suddenly applied voltage. For example, a 1 mM aque-

ous solution will have κ−1 ≈ 10 nm, then assuming D = 10−5 cm2/s, a typical

value for aqueous electrolytes [34], the Debye time is then O(10−7 s), which

is in stark contrast to the observed charging time scales of O(100 − 1000 s)

in experiments [13, 14, 15]. Given this large discrepancy in charging times,

we conclude that the heating rate of the electrodes is the limiting factor and

thus suggest that efforts be made to optimize heat transfer to and from the

electrodes. The second major finding in chapter 3 is that the steady-state

concentration gradient across the cell develops on the diffusion time, L2/D,
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a much longer timescale than the Debye time, which characterizes thermo-

voltage evolution. This indicates that the majority of ion transport occurs af-

ter the thermo-voltage and diffuse layers have essentially reached steady state.

Future work could include experiments to measure actual electrode tempera-

ture during heating to verify our predictions and development of models which

include a time-dependent heating rate.

In chapter 4, we began our study of colloid mobility with electrophoresis,

i.e., motion of a colloidal particle due to an applied electric field. Motivated

by experimental observations that colloids in concentrated electrolyte solutions

can move in the direction opposite that predicted by ideal solution theories

[35, 36, 37, 38], we used a modified Poisson equation which accounts for direct

ion-ion electrostatic interactions [22, 23, 24]. These electrostatic interactions

occur within a local area surrounding each ion, over the length scale λc, the

correlation length. We analyzed the model problem of a single colloidal par-

ticle with a low surface potential (< kBT/e) and derived analytic equations

for the mobility for both weak and strong correlations. For a colloid with a

high surface potential (> kBT/e), we accounted for the deformation of the

diffuse charge layer surrounding the particle and used an asymptotic approach

to consider the limit of thin diffuse layers, which is the regime where the re-

versals in mobility have been observed. We find that, in both low and high

surface potential theories, electrostatic correlations are sufficient to predict

electrophoretic mobility reversals. Although there is no predetermined value

for λc and it is therefore essentially a fitting parameter, it must lie between

the size of the ion and the Bjeerum length. Our results fall within this range.

In chapter 5, we studied diffusiophoresis, the motion of a colloidal parti-

cle due to an applied gradient in solute concentration [40, 41], in our case an

electrolyte. We focus on non-ideal, concentrated solutions, where it becomes

necessary to account for the finite size of the ions. We employed three different



118 CHAPTER 6. CONCLUSION

models to incorporate steric repulsion between ions into the equations govern-

ing the electrolyte dynamics and ultimately derived an equation for the colloid

mobility. We found that at high concentrations, the electric field induced by

unequal ion migration increases rapidly with concentration for asymmetric

electrolytes. This is due to the rapidly increasing steric repulsion in the large

concentration region of the solution and a corresponding increase in a gradient

of steric repulsion which acts to enhance the induce electric field. Since this

electric field acts on the particle, the diffusiophoretic mobility increases with

concentration, a rather surprising result. Future work should include measure-

ments of the diffusion potential, the potential difference which results in the

induced electric field. If the electric field does indeed increase with increasing

concentration, then the measured diffusion potential should increase. It is ex-

pected from our results that a dilute solution theory would not be capable of

predicting the observed diffusion potential increase.

There are several ways in which the work presented in this thesis could

be improved by further research. For the thermo-electric analysis presented

in chapter 2, relaxing the assumption of equal Brownian diffusivities could

present a more accurate model of physical devices. In addition, some devices

have a species which is relatively immobile [14], hence modeling a limiting case

of only one mobile species could also offer critical insights into the charging

dynamics of thermo-electric devices. For concentrated electrolyte solutions,

we utilized modified PNP equations to describe the system dynamics, specif-

ically the Nernst-Planck equations which consider the Brownian diffusivity

of each charged species in isolation and use the average solution velocity as

the velocity for each species. This is questionable for concentrated solutions

where it becomes important to designate relative diffusivities, i.e., that species

diffuse relative to one another. This can be described using Stefan-Maxwell

fluxes which also account for the velocities of the individual species, including
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the solvent [128]. These fluxes are considerably more mathematically complex

than the Nernst-Planck equations, but offer a more accurate representation of

the dynamics of non-ideal electrolyte solutions.
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[88] M. Quesada-Pèrez, E. Gonzàlez-Tovar, A. Mart̀ın-Molina, M. Lozada-
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