
repper 

SCHOOL OF BUSINESS 

DISSERTATION 

Submitted in partial fulfillment ofthe requirements 
for the degree of 

DOCTOR OF PHILOSOPHY 
INDUSTRIAL ADMINISTRATION 

(OPERATIONS RESEARCH) 

Titled 
"ELEMENTARY ALGORITHMS FOR SOLVING 

CONVEX OPTIMIZATION PROBLEMS" 

Presented by 
Negar Soheili Azad 

Accepted by 

Ch~efa Date 

Approved by The Dean 

!2~/J.. f)~-
Dean Robert M. Dammon Date 

."- . 



Elementary Algorithms for Solving
Convex Optimization Problems

by

Negar Soheili Azad

A thesis
presented to the Carnegie Mellon University

in partial fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Operations Research

Pittsburgh, PA, USA, 2014

c© Negar Soheili Azad 2014



Abstract

The rapid growth in data availability has led to modern large scale convex optimization
problems that pose new practical and theoretical challenges. Examples include classifica-
tion problems such as customer segmentation in retail and credit scoring in insurance.
Classical optimization and machine learning techniques are typically inadequate to solve
these large optimization problems because of high memory requirements and slow conver-
gence guarantees.

This thesis develops two research threads to address these issues. The first involves
improving the effectiveness of a class of algorithms with simple computational steps for
solving convex optimization problems arising in machine learning, data mining, and deci-
sion making. The second involves the refinement of conditioning and geometry of convex
optimization problems via preconditioning. I elaborate on these two threads below.

1. The main theme of this thesis focuses on the class of elementary algorithms for solv-
ing convex optimization problems. These algorithms only involve simple operations
such as matrix-vector multiplications, vector updates, and separation oracles. This
simplicity makes the computational cost per iteration and memory requirement of
these algorithms low. Thus, elementary algorithms are promising for solving emerg-
ing big data applications in areas such as classification, pattern recognition, and
online learning. A major hurdle that needs to be overcome is the slow convergence
of these algorithms. We develop new elementary algorithms that are enhanced via
smoothing and dilation techniques. These enhancements yield algorithms that retain
the attractive simplicity of the elementary algorithms while achieving substantially
improved convergence rates. Thus, these enhanced algorithms are better suited for
solving modern large scale convex optimization problems.

2. A significant difficulty when solving large convex optimization problems is poor con-
ditioning caused by the existence of flat and nearly flat geometries. This thesis shows
that a combination of two simple preprocessing steps generally improve the geomet-
ric structure of problem instances. We improve instances’ geometric structure by
reconciling the properties of three different but related notions of conditioning. More
precisely, when one of these measures is large, in which case the problem instance is
certainly poorly conditioned, our procedure reduces it without making the remaining
measures worse. Our preconditioning procedures can be potentially useful for the
convergence properties of a large class of iterative methods without changing their
ultimate solution.
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Chapter 1

Introduction

1.1 Motivation

The abundance of new technologies has given rise to unprecedentedly large amounts of
information. A deluge of data creates new challenges across all sectors of industries such
as retail, healthcare, and energy. Classification and signal processing problems are at the
heart of applications that have appeared in recent years. These data rich problems can be
formulated as large convex programs. More generally, convex optimization is a fundamental
tool for solving emerging large applications arising at the intersection of machine learning,
operations research and many other areas.

However, classical optimization algorithms are not designed to scale to instances of large
size. For example, popular algorithms such as interior point methods and quasi-Newton
methods become impractical when solving large scale convex optimization problems since
their memory requirement and computational effort per iteration grows nonlinearly with
growth of the problem’s dimension. This phenomenon imposes limitations on the sizes of
problems which can be processed by these algorithms. This suggests that new approaches
for solving large scale optimization problems are needed.

The primary motivation for this thesis is to design algorithms that are suitable for
solving large scale optimization problems. Therefore, we have focused on a class of elemen-
tary algorithms which have always played an important role in optimization and machine
learning literature. These algorithms are closely related to first-order algorithms that are
currently the most popular class of methods to deal with large-scale problems [13, 27, 41].
Elementary algorithms have low computational cost per iteration, low memory require-
ments, and can deal with large problems in an online fashion. These attractive features
make elementary algorithms a promising class of methods for problems emerging in big
data applications. However, a major hurdle that has to be overcome is that these algo-
rithms suffer from slow convergence rates. This thesis aims to discuss several approaches for
accelerating elementary algorithms for solving large optimization problems via smoothing
techniques, space dilation and adaptive problem preconditioning.
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1.2 Contributions and results

A substantial part of this thesis focuses on developing algorithms with low memory re-
quirement and simple computational steps for solving convex feasibility problems. Con-
vex feasibility problems are fundamental in optimization because any convex optimization
problem can be written in this form via suitable optimality conditions. Alongside with
the design of new algorithmic techniques, this thesis elucidate some geometric properties
of convex optimization problems via refinement of concept of conditioning. We summarize
the contributions of this thesis in the following points.

• Accelerating elementary algorithms via smoothing
The perceptron algorithm [59] is a greedy elementary algorithm for finding a solution
to a finite set of linear inequalities, ATy > 0 where A is a matrix in Rm×n. This algo-
rithm was introduced in the late fifties in the machine learning community for solving
classification problems. It is known [15, 50] that the perceptron algorithm requires
O(1/ρ(A)2) iterations to find a feasible solution, where the parameter ρ(A) measures
the thickness of the cone of feasible solutions

{
y : ATy > 0

}
[18, 21, 57]. We develop

a modified perceptron algorithm that can find a solution with only O(
√

log(n)/ρ(A))
iterations [64]. This improvement is based on viewing the perceptron algorithm as a
first-order algorithm for solving an optimization problem that is a reformulation of the
feasibility problem ATy > 0. This key interpretation and a subsequent refinement
via a smoothing technique [47, 49], proposed by Nesterov, enable the convergence
rate improvement by making only minor modifications to the original algorithm,
thus retaining most of the perceptron algorithm’s original simplicity. Our numerical
experiments demonstrate that both the number of iterations and total CPU time re-
quired by the smooth perceptron algorithm are indeed lower than those required by
the classical perceptron algorithm. Moreover, the observed relationship between any
one of these metrics for the smoothed and classical perceptron algorithms are related
in a strikingly consistent manner with their theoretically predicted relationship. The
paper based on this chapter was published in the SIAM Journal on Optimization in
2011.

• A primal-dual elementary algorithm
The von-Neumann algorithm [29], which can be seen as a dual of the perceptron
algorithm, is another well-known elementary algorithm that solves the alternative
system to ATy > 0, that is, Ax = 0, x ≥ 0, x 6= 0. The von-Neumann algorithm
finds an ε-solution to this system in at most O(1/ρ(A)2 · log(1/ε)) iterations [31]
where ρ(A) here is the distance of zero from the convex-hull of normalized columns
of A. We improve this complexity bound by proposing a primal-dual algorithm that
can solve both primal and dual feasibility problems [65]. Our new algorithm is a
combination of perceptron and von-Neumann algorithms. It finds an ε-solution to
Ax = 0, x ≥ 0, x 6= 0, in at most O(

√
n/ρ(A)·log(1/ε)) elementary iterations or finds

a solution to the alternative system ATy > 0 in at most O(
√
n/ρ(A) · log(1/ρ(A)))

elementary iterations. we show that this algorithm can be extended for solving
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general conic systems with similar complexity results. The paper based on this
chapter was published in the 2013 Fields Institute Communication monograph.

• Near classification for unclassifiable data sets
As previously mentioned, the perceptron algorithm is a popular algorithm to solve
classification problems in machine learning. This algorithm and our modifications of
it find a linear separator under the assumption that the data is linearly separable.
However, in many real-world applications data may not be linearly separable. Sup-
port Vector Machine (SVM) introduced by Vapnik et al. [26, 69, 70] is a very popular
classification model that finds the “optimal” hyperplane to separate a dataset. The
optimal hyperplane is chosen so that the distance to the nearest data point of each
classes is maximized and misclassifications are penalized by the penalty parameter
1/λ. Due to the popularity of the SVM, various algorithms are developed to solve
this problem. For example, Newton method or Quasi-Newton method efficiently find
an ε-solution to the SVM in O (

√
n log(1/ε)) [71]. However, when the number of

samples is large, these methods are impractical since the space and the time costs
of Hessian matrix computation rapidly increases with the dimensions of the problem
instances. Pegasos algorithm [62] is a well-known first-order algorithm that solves
large scale SVM problem in O (‖A‖/λε) iterations. We show that a slightly modified
version of our smooth perceptron algorithm improves Pegasos algorithm’s complexity

bound and finds an ε-solution to the SVM problem in O
(√

n‖A‖/
√
λε
)

iterations.

• Achieving exponential improvements in complexity via deterministic rescal-
ing
A main contribution of this thesis is a variant of the perceptron algorithm to solve the
feasibility problem y ∈ F where F is a general convex cone. The new algorithm uses a
novel periodic rescaling idea to find a solution in at most O(m5 log(1/τF )) perceptron
updates where τF measures the thickness of the cone F . When F :=

{
y : ATy > 0

}
,

τF is equivalent to ρ(A) already defined and this algorithm is polynomial in the
bit-length representation of A ∈ Zm×n. Our algorithm has the best deterministic
complexity result among elementary algorithms in the literature. Aside from its the-
oretical merits, this algorithm provides a solid foundation for potential speed ups in
the convergence of the widely popular first-order methods for large-scale convex opti-
mization, since the perceptron algorithm and first-order methods are closely related.
The paper based on this chapter is under first round of revision and will likely be
accepted for publication in Mathematical Programming.

• Elementary online learning algorithms
Learning algorithms are procedures for making predictions based on data. Estab-
lished learning algorithms focus on constructing a predictive model efficiently given
the full data set. However, in many real-life scenarios, data arrives serially over time
and learning has to adapt to the availability of new data. Online learning algorithms
construct predictive models and specialize in updating these models as data is re-
ceived in an online fashion. For example, when the predictive model is a classifier, an
online learning algorithm will be scheme for efficiently updating the current classifier
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to a new one that accounts for new data point that is received. The objective of
online learning algorithms is to minimize prediction errors.

The classical perceptron algorithm and our enhancement of this algorithm, namely
the rescaled perceptron algorithm are examples of online learning algorithms. As
mentioned above, the perceptron and the rescaled perceptron algorithms find a so-
lution to ATy > 0 after making no more than O (1/ρ(A)2) and O (m5 log(1/ρ(A)))
mistakes, respectively. An interesting question is whether the complexity bound of
the rescaled perceptron algorithm is tight. As a first step to answer this question,
we study the lower bound complexity of online algorithms. We find that any on-
line algorithms has a lower bound of O (m log(1/ρ(A)) on the number of mistakes,
which is substantially smaller than the complexity bound of our rescaled perceptron
algorithm. This result motivates future research into closing this gap by either de-
signing elementary online learning algorithms with better worst case complexity or
tightening the lower bound complexity.

• Preconditioning systems of linear inequalities
An important challenge when using an iterative method to solve a linear system of
equations is to precondition a given problem instance [37, 67]. Preconditioning is a
data processing operation that transforms a given instance into an equivalent but
better conditioned one that is easier to solve. We show that a combination of two
simple preprocessing steps would generally improve the conditioning of a homoge-
neous system of linear inequalities. Our approach is based on a comparison among
three different but related notions of conditioning for linear inequalities, namely:
Renegar’s [57], Goffin-Cucker-Cheung’s [21, 36], and the Grassmann condition num-
ber [5, 11]. More precisely, we show that when one of these measures is large, in which
case the problem instance is certainly poorly conditioned, our procedure reduces it
without making the remaining measures worse. The paper based on this chapter is
published in Optimization Letters in 2014.

1.3 Outline of the thesis

We present the above results in the subsequent chapters of this thesis. In Chapter 2, we
present some basic background required for the following chapters. In particular, we de-
scribe the perceptron and von Neumann algorithms and review some classical results on
the performance of these algorithms. In Chapters 3 and 4, we present our modifications of
the perceptron and the von Neumann algorithms for solving convex feasibility problems.
Our modifications are based on smoothing techniques proposed in [47, 49]. Chapter 5 ex-
tends our modified algorithm for solving support vector machine. We describe our rescaled
version of the perceptron algorithm in Chapter 6 and show this algorithm belongs to the
class of online learning algorithms. We also provide a lower bound complexity for online
learning algorithms. Chapter 7 addresses some preconditioning procedures to refine the ge-
ometry of a system of linear inequalities. Finally, we provide a discussion of future research
directions in Chapter 8.
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Chapter 2

Background

Throughout this thesis, we study the following generic convex feasibility problem

Find y ∈ F. (2.1)

Here F ⊆ Rm is a convex set with an available separation oracle, that is given a test point
y ∈ Rm, the separating oracle either certifies that y ∈ F or else it finds a hyperplane
separating y from F , that is, u ∈ Rm, b ∈ R such that 〈u, y〉 ≤ b and 〈u, v〉 > b for all
v ∈ F .

A separation oracle for F is readily available for the following common specifications
of (2.1):

• Linear programming:

F :=
{
y ∈ Rm : ATy ≥ b

}
, whereA ∈ Rm×n, b ∈ Rn.

• Conic programming:

F :=

{
y ∈ Rm :

n∑
j=1

Ajyj −B � 0

}
, whereA1, . . . , An, B ∈ Rn×n are symmetric.

Convex feasibility problem (2.1) is fundamental, since any convex optimization problems
can be recast in this form via suitable optimality conditions.

Elementary algorithms are iterative algorithms that solve the problem (2.1) by only
making calls to a separation oracle for F and applying simple operations. They thus have
low computational cost per iteration and low memory requirements. Therefore, elementary
algorithms are a promising class of methods for problems emerging in big data applications.
However, these algorithms have slow convergence rates.

The relaxation method, introduced in the classical articles of Agmon [1], and Motzkin
and Schoenberg [45], is an elementary algorithm for solving convex feasibility problems (2.1).
The relaxation method starts with an arbitrary initial trial solution. At each iteration, the
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algorithm queries the separation oracle for F at the current trial solution y. If y ∈ F then
the algorithm terminates. Otherwise, the algorithm generates a new trial point y+ = y+ηu
for some step length η > 0 where u ∈ Rm, b ∈ R determine a hyperplane separating y from
F .

There are numerous papers in the optimization literature related to various versions of
the relaxation method [3, 4, 8, 9, 24]. However, the algorithms proposed in this thesis are
based on two popular relaxation methods, namely the perceptron and the von Neumann
algorithms. The perceptron algorithm is a simple greedy algorithm that was introduced by
Rosenblatt [59] in 1958 for solving the polyhedral feasibility problem ATy > 0. As it was
noted by Belloni, Freund, and Vempala [12], this algorithm readily extends to the more
general feasibility problem (2.1) provided a special separation oracle for F is available.

The perceptron algorithm has played major roles in machine learning and in optimiza-
tion. The perceptron algorithm has attractive properties concerning noise tolerance [17].
It is also closely related to large-margin classification [34] and to the highly popular and
computationally effective Pegasos algorithm [62] for training support-vector machines.

The von Neumann algorithm, which can be seen as a dual of the perceptron algo-
rithm [44], was privately communicated by von Neumann to Dantzig in the late 1940s, and
later studied by Dantzig [29]. It is also a simple greedy algorithm that finds an approximate
solution to Ax = 0, x ≥ 0, x 6= 0. This algorithm is closely related to the Frank-Wolfe
algorithm [38]. We describe the perceptron and von Neumann algorithms in more details
in Section 2.1.

The convergence rate of both the perceptron and von Neumann algorithms is deter-
mined by the parameter ρ(A), where ρ(A) is a certain radius of well-posedness of the
matrix A [21] (see Section 2.1 for more details), and is a natural parameter for studying
the feasibility problems in the real number model of computation [18].

Block [15] and Novikoff [50] showed that the perceptron algorithm finds a solution
to ATy > 0 in at most O(1/ρ(A)2) perceptron updates. Belloni et al. [12, Lemma 3.1]
extended this result to solve the general conic feasibility problem.

Given ε > 0, we say that x is an ε-solution to Ax = 0, x ≥ 0, x 6= 0 if x ≥ 0,
‖x‖1 = 1 and ‖Ax‖ ≤ ε. Under the assumption that the columns of A have Euclidean
norm one, Dantzig [29] showed that von Neumann algorithm finds an ε-solution to Ax = 0,
x ≥ 0, x 6= 0 in at most 1

ε2
iterations when it is feasible. Epelman and Freund [31] showed

that von Neumann algorithm either computes an ε-solution to Ax = 0, x ≥ 0, x 6= 0 in
O( 1

ρ(A)2
log(1

ε
)) iterations when this problem is feasible, or finds a solution to the alternative

system ATy > 0 in O( 1
ρ(A)2

) iterations. They also extend these results for more general
conic feasibility problems.

The perceptron and von Neumann algorithms are not polynomial in the bit model
of computation because the quantity ρ(A) can be exponentially small in the bit length
description of an input matrix A with rational entries. Although the perceptron and
von Neumann algorithms have slow rate of convergence, the simplicity of their iterations
makes them attractive. A main focus of this thesis is to improve the convergence rate of
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these algorithms while maintaining their simplicity that sometimes result in exponential
improvements in theoretical convergence guarantees.

2.1 The perceptron and von Neumann algorithms

We next recall the classical perceptron and von Neumann algorithms to solve the polyhedral
feasibility problems

Ax = 0, x ≥ 0, x 6= 0, (2.2)

and its alternative

ATy > 0, (2.3)

where A is a matrix in Rm×n. We refer to the systems (2.2) and (2.3) as primal and
dual feasibility problems, respectively. The linear systems (2.2) and (2.3) are essentially
alternative systems: either the system has a strict solution if and only if the other does
not have a non-zero solution.

To solve (2.3), the perceptron algorithm starts with a trial point (usually zero). At
each iteration, it updates the current trial point using the direction normal to one of the
violated constraints (if any). This procedure is repeated until a solution to (2.3) is found.

For ease of notation we make the following assumption on the input matrix A through-
out this section. Let ‖ · ‖ denote the Euclidean norm in Rm.

Assumption 1 A =
[
a1 · · · an

]
∈ Rm×n where ‖aj‖ = 1 for j = 1, . . . , n.

Notice that the above assumption can be made without loss of generality since the
matrix A can always be pre-processed accordingly.

Classical Perceptron Algorithm
begin
y0 := 0;
for k = 0, 1, 2, . . .

if ATyk > 0 then Halt; yk is a solution to (2.3) fi
j := argmin

i=1,...,n
aT
i yk;

yk+1 := yk + aj;
end

end

We next introduce some convenient notation. Let ∆n := {x ≥ 0 : ‖x‖1 = 1}, and for
y ∈ Rm, let x(y) ∈ ∆n denote an arbitrary point in the set argmin

x∈∆n

〈
ATy, x

〉
. Observe that
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for a given y ∈ Rm, we have aT
j y = min

i
aT
i y if and only if aj = Ax(y). It follows that at

iteration k the classical perceptron algorithm generates an iterate yk with yk = Axk for
some xk ≥ 0 with ‖xk‖1 = k. This observation leads to the following normalized version
of the perceptron algorithm.

Normalized Perceptron Algorithm
begin
y0 := 0;
for k = 0, 1, 2, . . .

if ATyk > 0 then Halt; yk is a solution to (2.3) fi
j := argmin

i=1,...,n
aT
i yk;

θk := 1
k+1

;

yk+1 := (1− θk)yk + θkaj;
end

end

It is easy to see that the k-th iterate generated by the normalized perceptron algorithm is
exactly the same as the k-th iterate generated by the classical perceptron algorithm divided
by k. In particular, the k-th iterate yk generated by the normalized perceptron algorithm
satisfies yk = Axk for some xk ∈ ∆n. Indeed, the main loop in the normalized perceptron
algorithm can also be written in the following fashion to maintain both yk and xk:

for k = 0, 1, 2, . . .
if ATyk > 0 then Halt; yk is a solution to (2.3) fi
θk := 1

k+1
;

yk+1 := (1− θk)yk + θkAx(yk);
xk+1 := (1− θk)xk + θkx(yk);

end

In contrast to the perceptron algorithm, von Neumann algorithm finds an approxi-
mate solution to the alternative system (2.2) and can be seen as a dual of the perceptron
algorithm [44]. Von Neumann algorithm starts with an initial point x0 ≥ 0 such that
‖x0‖1 = 1, and iteratively generates a sequence x1, x2, . . . such that xk ≥ 0, ‖xk‖1 = 1
and ‖Axk‖ → 0, provided (2.2) is feasible. The point xk+1 is constructed as follows. First,
identify the column aj of A that forms the largest angle with Axk. Next, define xk+1 so
that Axk+1 is the point with smallest Euclidean norm along the segment joining Axk and
aj.

Let e ∈ Rn denote the n-dimensional vector of all ones and ei ∈ Rn denote the unitary
vector whose i-th entry is equal to one and all others are equal to zero.

Assume ε > 0 is a given input.

Von Neumann Algorithm(ε)
begin
x0 := e

n
; y0 := Ax0;
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for k = 0, 1, 2, . . .
if ATyk > 0 then Halt // yk is a solution to (2.3) fi
if ‖Axk‖ < ε then Halt // xk is an ε-solution to (2.2) fi
j := argmin

i=1,...,n
aT
i yk;

θk := argmin
θ∈[0,1]

{‖(1− θ)yk + θaj‖};

xk+1 := (1− θk)xk + θkej;
yk+1 := Axk+1 = (1− θk)yk + θkaj;

end
end

The iterations in the above perceptron and von Neumann algorithms are similar. Each of
these algorithms can be seen as a special case of the Perceptron–von Neumann Template
below.

Assume ε > 0 is a given input.

Perceptron–von Neumann Template(ε)
begin

x0 =
e

n
; y0 := Ax0;

for k = 0, 1, 2, . . .
if ATyk > 0 then Halt // yk is a solution to (2.3) fi
if ‖Axk‖ < ε then Halt //xk is an ε-solution to (2.2) fi;
xk+1 := (1− θk)xk + θkx(yk);
yk+1 := (1− θk)yk + θkAx(yk);

end
end

Observe that the above perceptron–von Neumann template recovers the normalized per-
ceptron algorithm for θk := 1

k+1
, and von Neumann algorithm for θk := argminθ∈[0,1] ‖(1−

θ)yk + θAx(yk)‖ provided x(y) is always chosen as one of the extreme points of the set
argminx∈∆n

〈
ATy, x

〉
.

The convergence rate of both the perceptron and von Neumann algorithms is deter-
mined by the following parameter ρ(A).

ρ(A) :=

∣∣∣∣∣max
‖y‖=1

min
j=1,...,n

aT
j y

‖aj‖

∣∣∣∣∣ . (2.4)

When (2.3) is feasible, ρ(A) is precisely the width of the feasibility cone {y : ATy ≥ 0}, as
defined by Freund and Vera [33]. Furthermore, when (2.2) is feasible, ρ(A) is the Euclidean
distance from the origin to the boundary of the convex hull of {a1, . . . , an}. This geometric
interpretation is illustrated in Figure 2.1 where the arrows depict the column vectors of A.

The parameter ρ(A) is also a certain radius of well-posedness of the matrix A as stated
in Proposition 1.
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!

!

(a) system (2.3) is feasible

!

!

(b) system (2.2) is feasible

Figure 2.1: Geometric interpretation of ρ(A).

Proposition 1 (Cheung and Cucker [21]) Let Σ be the set of ill-posed instances, that
is the set of matrices A ∈ Rm×n such that arbitrary small perturbations makes both (2.2)
and (2.3) have non-trivial solutions. Then

ρ(A) = min

{
max
1≤j≤n

‖aj − ãj‖
‖aj‖

: Ã ∈ Σ

}
.

Cheung and Cucker [21] define 1/ρ(A) as a condition number of the matrix A in relation
to the problems (2.2)–(2.3). The quantity 1/ρ(A) can also be seen as a special case of
Renegar’s condition number [57] for the systems (2.2)–(2.3). (See [19, 21, 57, 58] for
further details.) The parameter ρ(A) can be generalized [22] for the conic systems Ax = 0,
x ∈ K and ATy ∈ K∗, where K is a convex cone and K∗ is the its dual cone.

Theorem 1 (Block [15] and Novikoff [50]) If the problem (2.3) is feasible, the percep-
tron algorithm finds a solution to ATy > 0 in at most

O
(

1

ρ(A)2

)
iterations.

Epelman and Freund showed a similar result for the von Neumann algorithm.

Theorem 2 (Epelman and Freund [31]) The von Neumann algorithm either finds an
ε-solution to (2.2) in at most

O
(

1

ρ(A)2
log

(
1

ε

))
iterations when (2.2) is feasible, or determines infeasibility by finding a solution to the
alternative system (2.3) in at most

O
(

1

ρ(A)2

)
iterations.
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Chapter 3

Smooth Perceptron Algorithm

(Joint work with Javier Peña)

3.1 Introduction

In this chapter, we introduce a modified version of the perceptron algorithm, namely, a
smooth perceptron algorithm, that solves the polyhedral feasibility problem ATy > 0. Our
modification retains the perceptron’s original simplicity but terminates inO(

√
log(n)/ρ(A))

iterations as compared to O(1/ρ(A)2) for the classical perceptron algorithm. A key insight
for our work is the observation that the perceptron algorithm can be seen as a first-order
algorithm for a certain canonical optimization problem associated to the feasibility problem
ATy > 0. Our approach is based on this interpretation and a subsequent refinement via a
smoothing technique proposed by Nesterov [47, 49]. We note that similar improvements on
convergence rate could be achieved via other accelerated first-order techniques such as the
mirror-prox method of Nemirovski [46] or other accelerated first-order methods for saddle-
point problems such as those described in [43, 68]. The approach that we have followed
enables us to achieve the improvement on convergence rate with only minor modifications
on the original algorithm. In particular, our modified algorithm retains most of the al-
gorithm’s original simplicity. Furthermore, although our approach is based on Nesterov’s
smoothing technique [49], we provide a succinct and self-contained proof of the algorithm’s
convergence rate. We run some numerical experiments to illustrate the behavior of the
classical perceptron and the smooth perceptron algorithms. The experiments demonstrate
that both the number of iterations and total CPU time required by the smooth perceptron
algorithm are indeed lower than those required by the classical perceptron algorithm in a
way that is commensurate with our main theoretical result.

This chapter is based on [64] published in SIAM Journal of Optimization.
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3.2 Smooth perceptron algorithm

We next describe a new smooth version of the perceptron algorithm by tweaking the steps in
the main loop of the normalized version. The smooth version has the improved convergence
rate stated in Theorem 3 below.

Throughout this chapter, we assume the matrix A satisfies Assumption 1. We start by
considering the following smooth version of the map y 7→ x(y) defined in Chapter 2. Given
µ > 0 let xµ : Rm → ∆n be defined as

xµ(y) :=
e
−ATy
µ

‖e
−ATy
µ ‖1

. (3.1)

In this expression we are using vectorized notation. In other words, e
−ATy
µ denotes the

n-dimensional vector

e
−ATy
µ :=

e
−aT1 y
µ

...

e
−aTny
µ

 .
Our smooth perceptron algorithm is as follows:

Smooth Perceptron Algorithm:
begin
y0 := Ae

n
; µ0 := 1; x0 := xµ0(y0);

for k = 0, 1, 2, . . .
if ATyk > 0 then Halt; yk is a solution to (2.3) fi
θk := 2

k+3
;

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk(yk);

µk+1 := (1− θk)µk;
xk+1 := (1− θk)xk + θkxµk+1

(yk+1);
end

end

We can now present our main result for the smooth perceptron algorithm.

Theorem 3 Assume A ∈ Rm×n satisfies Assumption 1 and the problem (2.3) is feasible.
Then the smooth perceptron algorithm terminates in at most

2
√

log(n)

ρ(A)
− 1

iterations.

We present the proof of Theorem 3 in Section 3.4 below.
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3.3 Perceptron algorithm as a first-order algorithm

A key observation that leads to our smooth perceptron algorithm is that the normalized
perceptron algorithm can be seen as first-order algorithm for the canonical maximization
problem (3.3) below associated to (2.3). The smooth perceptron algorithm in turn is a
smooth first-order algorithm for (3.3). For ease of exposition, throughout this section we
assume that the problem (2.3) is feasible. In this case the parameter ρ(A) defined in (2.4)
satisfies

ρ(A) = max
‖y‖=1

min
i≤n

aT
i y

= max
‖y‖≤1

min
i≤n

aT
i y

= max
‖y‖≤1

ψ(y),

(3.2)

where ψ(y) := min
x∈∆n

〈
ATy, x

〉
.

Observe that a point y ∈ Rm with ‖y‖ ≤ 1 is a solution to (2.3) if and only if ψ(y) > 0,
which in turn holds if and only if ψ(y) is within ρ(A) of its maximum on {y : ‖y‖ ≤ 1}.

Consider now the function ϕ : Rm → R defined as

ϕ(y) := −1

2
‖y‖2 + ψ(y) = −1

2
‖y‖2 + min

x∈∆n

〈
ATy, x

〉
.

It readily follows that
1

2
ρ(A)2 = max

y∈Rm
ϕ(y). (3.3)

Since

max
y∈Rm

−1

2
‖y‖2 + ψ(y) = max

y∈Rm
−1

2
‖y‖2 + ‖y‖ψ(

y

‖y‖
)

= max
α>0
−1

2
α2 + αρ(A)

=
1

2
ρ(A)2.

Furthermore, a point y ∈ Rm solves (2.3) if ϕ(y) > 0, that is, if ϕ(y) is within 1
2
ρ(A)2

of its maximum.

Recall the main step in the normalized perceptron algorithm:

y+ := (1− θ)y + θAx(y) = y + θ(−y + Ax(y)).

Observe that −y + Ax(y) ∈ ∂ϕ(y). Hence the normalized perceptron can be seen as a
subgradient algorithm applied to the maximization problem (3.3).

13



3.4 Proof of the Theorem 3

The specific steps in the smooth perceptron algorithm as well as the proof of Theorem 3
are based on applying Nesterov’s excessive gap technique [49] to (3.3) as we next explain.
Consider the dual function

f(x) = max
y

{
−1

2
‖y‖2 +

〈
ATy, x

〉}
=

1

2
‖Ax‖2.

Next, for µ > 0 define the smooth approximation ϕµ of ϕ as:

ϕµ(y) := −1

2
‖y‖2 + min

x∈∆n

{
〈
ATy, x

〉
+ µd(x)},

where d(x) is the entropy prox-function on ∆n, that is,

d(x) :=
n∑
j=1

xj log xj + log n.

It is easy to see that the minimizer in the expression for ϕµ is precisely the point xµ(y)
defined in (3.1). Hence

ϕµ(y) = −1

2
‖y‖2 +

〈
ATy, xµ(y)

〉
+ µd(xµ(y)).

Theorem 3 is a consequence of the following two lemmas.

Lemma 1 For any given x ∈ ∆n and y ∈ Rm, we have

ϕ(y) ≤ 1

2
ρ(A)2 ≤ f(x), (3.4)

and
0 ≤ ϕµ(y)− ϕ(y) ≤ µ log(n). (3.5)

Proof: The inequalities in (3.4) readily follow from the definitions of ϕ(y) and f(x). On
the other hand, the inequalities in (3.5) follow from the constructions of ϕ, ϕµ, and the
facts that min

x∈∆n

d(x) = 0, and max
x∈∆n

d(x) = log(n). �

Lemma 2 The iterates xk ∈ ∆n, yk ∈ Rm, k = 0, 1, . . . generated by the smooth perceptron
algorithm satisfy the excessive gap condition

f(xk) ≤ ϕµk(yk). (3.6)

Before we prove Lemma 2, recall that for z, x ∈ ∆n the Bregman distance h(z, x) is
defined as h(z, x) = d(z)− d(x)− 〈∇d(x), z − x〉 and satisfies

h(z, x) ≥ 1

2
‖z − x‖2

1. (3.7)
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Observe also that by Assumption 1 we have

‖A‖1,2 = max{‖Ax‖2 : ‖x‖1 = 1} = max{‖a1‖2, . . . , ‖an‖2} = 1.

Proof of Lemma 2: We proceed by induction. For k = 0 we have:

f(x0) =
1

2
‖Ax0‖2

≤ 1

2
‖A1

n
‖2 +

〈
A

1

n
,A

(
x0 −

1

n

)〉
+

1

2
‖x0 −

1

n
‖2

1

≤ −1

2
‖A1

n
‖2 +

〈
ATA

1

n
, x0

〉
+ d(x0)

= −1

2
‖y0‖2 +

〈
ATy0, xµ0(y0)

〉
+ d(xµ0(y0))

= ϕµ0(y0).

The first inequality above follows from the the fact that ‖A‖2,1 = 1. The second inequality
follows from (3.7) and the fact that d(1

n
) = 0.

Now we will show that if (3.6) holds for k then it also holds for k + 1. To ease
notation, drop the index k and write y+, x+, µ+ for yk+1, xk+1, µk+1 respectively. Let
x̂ = (1− θ)x+ θxµ(y). Therefore,

ϕµ+(y+) = −‖y+‖
2

2
+
〈
ATy+, xµ+(y+)

〉
+ µ+d(xµ+(y+))

= −‖(1−θ)y+θAx̂‖2
2

+ (1− θ)
[ 〈
ATy, xµ+(y+)

〉
+ µd(xµ+(y+))

]
+ θ
〈
ATAx̂, xµ+(y+)

〉
≥ (1− θ)

[
−‖y‖

2

2
+
〈
ATy, xµ+(y+)

〉
+ µd(xµ+(y+))

]
1

+ θ
[
−‖Ax̂‖

2

2
+
〈
ATAx̂, xµ+(y+)

〉]
2
.

(3.8)

The last inequality follows from the concavity of the function y 7→ −‖y‖
2

2
. We can now

estimate the expression in the first bracket in (3.8) as follows:

[
.
]

1
= −‖y‖

2

2
+
〈
ATy, xµ(y)

〉
+ µd(xµ(y)) +

〈
ATy, xµ+(y+)− xµ(y)

〉
+µ(d(xµ+y+)− d(xµ(y)))

= ϕµ(y) + µ
(
d(xµ+(y+))− d(xµ(y))−

〈
∇d(xµ(y)), xµ+(y+)− xµ(y)

〉 )
= ϕµ(y) + µh(xµ+(y+), xµ(y))
≥ f(x) + µh(xµ+(y+), xµ(y))
≥ f(x̂) + 〈∇f(x̂), x− x̂〉+ µh(xµ+(y+), xµ(y)).

(3.9)

The last three steps follow respectively from the definition of Bregman distance h, the
induction hypothesis (3.6), and the convexity of f .
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For the expression in the second bracket in (3.8) we have

[
.
]

2
=
‖Ax̂‖2

2
−
〈
ATAx̂, x̂

〉
+
〈
ATx̂, xµ+(y+)

〉
= f(x̂) +

〈
ATx̂, xµ+(y+)− x̂

〉
.

(3.10)

Moreover,
x+ − x̂ = (1− θ)x+ θxµ+(y+)− (1− θ)x− θxµ(y)

= θ(xµ+(y+)− xµ(y)).
(3.11)

Plugging (3.9) and (3.10) into (3.8), we finish the proof as follows:

ϕµ+(y+) = (1− θ)
[
f(x̂) + 〈∇f(x̂), x− x̂〉+ µh(xµ+(y+), xµ(y))

]
+ θ
[
f(x̂) +

〈
∇f(x̂), xµ+(y+)− x̂

〉 ]
= f(x̂) + θ

〈
∇f(x̂), xµ+(y+)− xµ(y)

〉
+ (1− θ)µh(xµ+(y+), xµ(y))

≥ f(x̂) + θ
〈
∇f(x̂), xµ+(y+)− xµ(y)

〉
+

1

2
θ2‖xµ+(y+)− xµ(y)‖2

1

= f(x̂) +
〈
ATx̂, x+ − x̂

〉
+

1

2
‖x+ − x̂‖2

1

≥ ‖Ax̂‖
2

2
+
〈
ATx̂, x+ − x̂

〉
+

1

2
‖A(x+ − x̂)‖2

= f(x+).

The second step above follows because x̂ = (1− θ)x+ θxµ(y). The third step follows from

(3.7) and the fact that
θ2

2(1− θ)
≤ µ. The fourth step follows from (3.11). The fifth step

follows because ‖A‖1,2 = 1. �

Proof of Theorem 3: By putting Lemma 1 and Lemma 2 together, we have

1
2
ρ(A)2 ≤ f(xk) ≤ ϕµk(yk) ≤ ϕ(yk) + µk log(n).

In our algorithm µ0 = 1 and µk+1 = k+1
k+3

µk. So

µk =
2

(k + 1)(k + 2)
<

2

(k + 1)2
.

Therefore ϕ(yk) > 0, and consequently ATyk > 0, as soon as

k ≥
2
√

log(n)

ρ(A)
− 1.

�
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3.5 Numerical experiments

We next report results of some numerical experiments comparing the performance of the
smooth perceptron algorithm and the classical perceptron algorithm. The theoretical con-
vergence rates of the smooth and the classical perceptron algorithms suggest the relation-
ship Y = 2

√
log(n)X

1
2 between the number of iterations Y taken by the smooth perceptron

algorithm, and the number of iterations X taken by the classical perceptron algorithm to
find a feasible solution to (2.3). We test this relationship by estimating the parameter β
in the model Y = cXβ for a collection of empirically generated values of the pair (X, Y ).
To estimate the exponent β via linear regression, we apply a logarithmic transformation
and estimate the slope β in the linearized model log(Y ) = log(c) + β log(X).
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Figure 3.1: Scatter plot of the number of iterations taken by smooth and classical versions
of the perceptron algorithm.

We implemented the classical and the smooth perceptron algorithms in MATLAB and
ran them in collections of randomly generated matrices of sizes 10 × 50, 100 × 500, and
200× 1000 with a wide spectrum of thickness parameter ρ(A). To generate the matrix A
such that ATy > 0 is feasible, we generate a random vector ȳ ∈ Rm and a random matrix
B ∈ Rm×n. Then we set A = B+ ȳ ·(εe− ȳTB), where ε > 0 is an arbitrary number. In this
case, we assure that ȳ is a feasible solution for ATy > 0 and ε is the width of the feasibility
cone {y | ATy ≥ 0}. We recorded the number of iterations and CPU time required by each
of these algorithms to find a solution to (2.3). Figure 3.1 displays log-log scatter plots of
the number of iterations taken by the smooth perceptron algorithm versus those taken by
the classical perceptron algorithm. Each plot also shows the fitted regression line in red. In
addition, we plot the theoretical linear relationship log(Y ) = log(2

√
log(n)) + 1

2
log(X) in

green. Table 3.1 displays the regression estimates of β. For example, the linear regression
yields the point estimate β̂ = 0.5009 with 95% confidence interval = [0.4880, 0.5137] for
the instances with size 200× 1000. As Table 3.1 shows, the slope of the regression line is
close to 0.5 in all cases. Consequently, the green and red lines are approximately parallel.

The experimental results confirm that the number of iterations required by the smooth
perceptron algorithm is indeed lower than those required by the classical perceptron al-
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Table 3.1: Regression results for number of iterations

size 10× 50 size 100× 500 size 200× 1000

β̂ 95% CI β̂ 95% CI β̂ 95% CI
0.5597 [0.5462, 0.5732] 0.5156 [0.5104, 0.5207] 0.5009 [0.4880, 0.5137]

Table 3.2: Regression results for CPU times

size 10× 50 size 100× 500 size 200× 1000

β̂ 95% CI β̂ 95% CI β̂ 95% CI
0.4498 [0.4272, 0.4724] 0.4631 [0.4511, 0.4752] 0.5216 [0.5029, 0.5402]

gorithm. However, each iteration of the smooth perceptron algorithm involves more com-
putational work. This naturally raises a question about the type of relationship between
the computational times taken by the two algorithms. Figure 3.2 and Table 3.2 respec-
tively display log-log scattered plots with regression lines and summaries of the regression
estimates for the CPU times taken by the smooth perceptron algorithm and by the clas-
sical perceptron algorithm. The scatter plots show that the total CPU time taken by the
smooth perceptron algorithm is also substantially lower than that taken by the classical
perceptron algorithm. Furthermore, Table 3.2 shows that the slopes of the regression lines
in these figures are also close to 0.5.
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Figure 3.2: Scatter plot of CPU time taken by smooth and classical versions of the per-
ceptron algorithm.
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Chapter 4

A Primal-Dual Elementary
Algorithm

(Joint work with Javier Peña)

4.1 Introduction

The main contribution of this chapeter is an Iterated Smooth Perceptron–von Neumann Al-
gorithm (Algorithm ISPVN) that solves the pair of feasibility problems (2.2) and (2.3). Al-
gorithm ISPVN relies on Nesterov’s smoothing techniques [47, 49], and extends our smooth
perceptron algorithm proposed in Chapter 3.

For a given A ∈ Rm×n with ρ(A) > 0, Algorithm ISPVN either finds an ε-solution

to (2.2) in O
( √

n
ρ(A)

log
(

1
ε

))
elementary iterations, or finds a solution to the alternative

system (2.3) in at most O
( √

n
ρ(A)

log
(

1
ρ(A)

))
elementary iterations. Like the perceptron and

von Neumann algorithms, the iterations in Algorithm ISPVN are elementary in the sense
that they only involve simple computational steps. The iteration complexity of Algorithm

ISPVN substantially improves the dependence on ρ(A) of the iteration complexityO
(

1
ρ(A)2

)
of the perceptron algorithm [15, 50], and the iteration complexity O

(
1

ρ(A)2
log
(

1
ε

))
of von

Neumann algorithm [31]. However, the new iteration bound incurs an extra factor of
√
n

whereas the former bounds depend solely on ρ(A). In contrast to our smooth perceptron
algorithm that only applies to (2.3), our algorithm simultaneously handles both (2.3) and
its alternative system (2.2). This comes at the expense of a weaker complexity bound in
the case when (2.3) is feasible.

An extended version of Algorithm ISPVN applies to more general conic systems. More
precisely, assume K ⊆ Rn is a convex regular cone and A ∈ Rm×n. Then Algorithm

This chapter is based on [65] published in Fields Institute Communication monograph.
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ISPVN and its convergence properties extend in a natural fashion to the conic system
ATy ∈ int (K∗), and its alternative Ax = 0, x ∈ K, x 6= 0 provided that a suitable smooth
separation oracle for the cone K is available. An oracle of this kind is readily available for
the main cones of interest in convex optimization, namely the non-negative orthant, the
semidefinite cone, the second-order cone, and direct products of these types cones.

4.2 Iterated smooth perceptron–von Neumann al-

gorithm

This section presents our main contribution, namely an iterated smooth perceptron–von
Neuman algorithm (ISPVN) for solving both (2.2) and (2.3). Algorithm ISPVN relies on
Nesterov’s smoothing techniques [47, 49]. Throughout this section, we assume the matrix
A satisfies Assumption 1.

Here we consider the following smooth version of the map y 7→ x(y) which is slightly
different with (3.1). Given x̄ ∈ ∆n and µ > 0 let xµ : Rm → ∆n be defined as

xµ(y) := argmin
x∈∆n

{〈
ATy, x

〉
+
µ

2
‖x− x̄‖2

}
.

The minimizer xµ(y) can be easily found by sorting the entries of x̄− 1
µ
ATy.

The following algorithm SPVN (Smooth Perceptron–von Neumann) is a smooth version
of the Perceptron–von Neumann template. Assume x̄ ∈ ∆n and δ > 0 are given inputs.

Algorithm SPVN(x̄, δ)
begin
y0 := Ax̄; µ0 := 2n; x0 := xµ0(y0);
for k = 0, 1, 2, . . .

if ATyk > 0 then Halt // yk is a solution to (2.3) fi
if ‖Axk‖ ≤ δ then Return xk fi;
θk := 2

k+3
;

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk(yk);

µk+1 := (1− θk)µk;
xk+1 := (1− θk)xk + θkxµk+1

(yk+1);
end

end

Algorithm SPVN is a slight modification of our smooth perceptron algorithm. The
main difference is that algorithm SPVN uses the Euclidean prox-function to smooth the
map x(y) instead of the entropy prox-function used in (3.1). As Proposition 2 in Section 4.4

shows, Algorithm SPVN finds a solution to (2.3) in at most 2
√

2n
ρ(A)
− 1 iterations provided

(2.3) is feasible and δ < ρ(A). On the other hand, when (2.2) is feasible, it can be shown

that Algorithm SPVN halts after at most O
(

1√
δ

)
iterations with a δ-solution to (2.2).
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The following iterated version ISPVN of algorithm SPVN achieves a substantially better
complexity when (2.2) is feasible.

Assume γ > 1 is a fixed constant and ε > 0 is a given input.

Algorithm ISPVN(γ, ε)
begin

x̃0 =
e

n
;

for i = 0, 1, 2, . . .

δi := ‖Ax̃i‖
γ

;

x̃i+1 := SPVN(x̃i, δi);
if δi < ε then Halt fi

end
end

We are now ready to state our main result.

Theorem 4 Assume A ∈ Rm×n is such that ρ(A) > 0.

(i) If the system (2.2) is feasible then each call to SPVN in Algorithm ISPVN halts in at
most

2
√

2nγ

ρ(A)
− 1

iterations.

For any given ε > 0 Algorithm ISPVN finds an ε-solution to (2.2) in at most

log(1/ε)

log(γ)

outer iterations, that is, in at most
(

2
√

2nγ
ρ(A)

− 1
)
·
(

log(1/ε)
log(γ)

)
= O

( √
n

ρ(A)
log
(

1
ε

))
ele-

mentary iterations.

(ii) If (2.3) is feasible, then each call to SPVN in Algorithm ISPVN halts in at most

2
√

2n

ρ(A)
− 1

iterations.

Algorithm ISPVN finds either an ε-solution to (2.2) or a solution to (2.3) in at most

log(1/ρ(A))

log(γ)

outer iterations, that is, in at most
(

2
√

2n
ρ(A)
− 1
)
·
(

log(1/ρ(A))
log(γ)

)
= O

( √
n

ρ(A)
log
(

1
ρ(A)

))
elementary iterations.

Theorem 4 is a special case of the more general Theorem 5 presented in the next section.
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4.3 Smooth perceptron–von Neuman algorithm for

conic systems

Assume K ⊆ Rn is a fixed regular convex cone, that is, K is closed, pointed and has non-
empty interior. We next generalize Algorithms SPVN and ISPVN to the homogeneous conic
system

ATy ∈ int (K∗), (4.1)

and its alternative
Ax = 0, x ∈ K, x 6= 0, (4.2)

for a given matrix A ∈ Rm×n. We note that in contrast to Sections 4.2, we do not assume
that the columns of A are normalized.

We proceed by defining general versions of ∆n, xµ, and ρ(A). Let 1 ∈ int (K∗) be fixed.
Define the set ∆(K) as

∆(K) := {x ∈ Rn : x ∈ K, 〈1, x〉 = 1} .

Given ε > 0, we say that x ∈ ∆(K) is an ε-solution to (4.2) if ‖Ax‖ ≤ ε.

Observe that for K = Rn
+ and 1 = e =

[
1 · · · 1

]T
, the set ∆(K) is precisely

the standard simplex ∆n. For the cone K = Sn+ of symmetric positive semidefinite
matrices in the space Sn of n × n symmetric matrices and 1 = In, the set ∆(K) is
{X ∈ Sn+ : trace(X) = 1} which is sometimes called the spectraplex. For the second-

order cone  Ln =

{[
x0

x̄

]
∈ Rn : ‖x̄‖ ≤ x0

}
and 1 =

[
1
0

]
, the set ∆(K) is the lifted ball{[

1
x̄

]
∈ Rn : ‖x̄‖ ≤ 1

}
.

Our extension of Algorithms SPVN and ISPVN to the conic systems (4.1) and (4.2)
relies on the following key assumption.

Assumption 2 There is an available oracle that computes

argmin
x∈∆(K)

{
1

2
‖x‖2 − 〈g, x〉

}
(4.3)

for any given g ∈ Rn.

Assumption 2 readily holds when K = Rn
+ and 1 = e =

[
1 · · · 1

]T
. In this case ∆(K) =

∆n and the solution to (4.3) is x = (g−θe)+ where θ ∈ R is such that ‖(g−θe)+‖1 = 1. This
θ can be obtained by sorting the values of g. Likewise, Assumption 2 holds when K = Sn+
and 1 = In. In this case the solution to (4.3) for g ∈ Sn is x = UDiag((λ(g) − θe)+)UT

where g = UDiag(λ(g))UT is the spectral decomposition of g and θ ∈ R is such that
‖(λ(g) − θe)+‖1 = 1. This time the value of θ can be obtained by sorting the values of
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the vector of eigenvalues λ(g). Similarly, Assumption 2 also holds when K =  Ln and

1 =

[
1
0

]
. In this case the solution to (4.3) for g =

[
g0

ḡ

]
∈ Rn is x = (λ1(g)− θ)+

[
1
ḡ
‖ḡ‖

]
+

(λ2(g)−θ)+

[
1
− ḡ
‖ḡ‖

]
where g = 1

2
λ1(g)

[
1
ḡ
‖ḡ‖

]
+ 1

2
λ2(g)

[
1
− ḡ
‖ḡ‖

]
is the Jordan algebra spectral

decomposition of g (see [2]), that is, λ1(g) = g0 + ‖ḡ‖, λ2(g) = g0 − ‖ḡ‖, and θ ∈ R
is such that (λ1(g) − θ)+ + (λ2(g) − θ)+ = 1. This value of θ is readily computable:

θ =

{
λ1(g)− 1 if λ1(g) ≥ λ2(g) + 1
λ1(g)+λ2(g)−1

2
otherwise.

Proceeding in a similar fashion to the three cases above, it is easy to see that Assump-
tion 2 also holds when K is a direct product of non-negative orthants, semidefinite cones,
and second-order cones.

Given x̄ ∈ ∆(K) and µ > 0 let xµ : Rm → ∆(K) be defined as

xµ(y) := argmin
x∈∆(K)

{〈
ATy, x

〉
+
µ

2
‖x− x̄‖2

}
.

Observe that the mapping xµ(·) is computable by Assumption 2.

Assume M is a known upper bound on ‖A‖. We are now ready to give the general
versions of Algorithms SPVN and ISPVN .

Assume x̄ ∈ ∆(K) and δ > 0 are given inputs.

Algorithm SPVNC(x̄, δ)
begin
y0 := Ax̄; µ0 := 2M2; x0 := xµ0(y0);
for k = 0, 1, 2, . . .

if ATyk > 0 then Halt // yk is a solution to (4.1) fi
if ‖Axk‖ ≤ δ then Return xk fi;
θk := 2

k+3
;

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk(yk);

µk+1 := (1− θk)µk;
xk+1 := (1− θk)xk + θkxµk+1

(yk+1);
end

end

Assume γ > 1 is a fixed constant and ε > 0 is a given input.

Algorithm ISPVNC(γ, ε)
begin

pick x̃0 ∈ ∆(K);
for i = 0, 1, 2, . . .

δi :=
‖Ax̃i‖
γ

;

23



x̃i+1 := SPVN (x̃i, δi);
if δi < ε then Halt fi

end
end

Let D denote the diameter of the set ∆(K), that is

D := max
u,v∈∆(K)

‖u− v‖. (4.4)

Notice that D is well-defined and finite since the set ∆(K) is compact.

For a given A ∈ Rm×n let

ρ(A) :=

∣∣∣∣max
‖y‖=1

min
x∈∆(K)

〈
ATy, x

〉∣∣∣∣ . (4.5)

We have the following general version of Theorem 4.

Theorem 5 Assume A ∈ Rm×n is such that ρ(A) > 0.

(i) If the system (4.2) is feasible then each call to SPVNC in Algorithm ISPVNC halts in
at most

2MDγ

ρ(A)
− 1 (4.6)

iterations.

For any given ε > 0 Algorithm ISPVNC finds an ε-solution to (4.2) in at most

log(‖Ax̃0‖/ε)
log(γ)

(4.7)

outer iterations, that is, in at most
(

2MDγ
ρ(A)

− 1
)
·
(

log(‖Ax̃0‖/ε)
log(γ)

)
= O

(
MD
ρ(A)

log
(
‖Ax̃0‖
ε

))
elementary iterations.

(ii) If (4.1) is feasible, then each call to SPVNC in Algorithm ISPVNC halts in at most

2MD

ρ(A)
− 1 (4.8)

iterations.

Algorithm ISPVNC finds either an ε-solution to (4.2) or a solution to (4.1) in at most

log(‖Ax̃0‖/ρ(A))

log(γ)
(4.9)

outer iterations, that is, in at most
(

2MD
ρ(A)
− 1
)
·
(

log(‖Ax̃0‖/ρ(A))
log(γ)

)
= O

(
MD
ρ(A)

log
(
‖Ax̃0‖
ρ(A)

))
elementary iterations.
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We conclude this section by showing that Theorem 4 follows from Theorem 5.

Proof of Theorem 4: Since the columns of A are normalized we have ‖A‖ ≤
√
n. Hence

Algorithms SPVN and ISPVN are recovered as special cases of Algorithms SPVNC and
ISPVNC respectively for K = Rn

+ and ∆(K) = ∆n. Next, observe that the diameter of ∆n

is
√

2. Furthermore, for the initial point x̃0 = e
n

we have ‖Ax̃0‖ ≤ 1 because ‖x̃0‖1 = 1
and the columns of A are normalized. Therefore for K = Rn

+, ∆(K) = ∆n, x̃0 = e
n
, and

A with normalized columns, we have D =
√

2,M =
√
n, and ‖Ax̃0‖ ≤ 1. Consequently, in

this case Theorem 5 reduces to Theorem 4. �

4.4 Proof of Theorem 5

Proposition 2 and Proposition 4 below are the crux of the proof of Theorem 5. These

propositions show that each call to SPVNC in Algorithm ISPVNC halts in O
(
MD
ρ(A)

)
itera-

tions. The proofs of these propositions use ideas introduced in Chapter 3. Let ϕ : Rm → R
be defined as

ϕ(y) := −1

2
‖y‖2 + min

x∈∆(K)

〈
ATy, x

〉
.

Observe that if y ∈ Rm is such that ϕ(y) > 0, then ATy ∈ int (K∗).

Given x̄ ∈ ∆(K) and µ > 0, consider the smooth approximation ϕµ of ϕ defined as
follows:

ϕµ(y) = −1
2
‖y‖2 + min

x∈∆(K)

{〈
ATy, x

〉
+
µ

2
‖x− x̄‖2

}
= −1

2
‖y‖2 +

〈
ATy, xµ(y)

〉
+ µ

2
‖xµ(y)− x̄‖2.

(4.10)

We will rely on the following properties of the functions ϕ, ϕµ. Recall that D stands for
the diameter of ∆(K) as defined in (4.4).

Lemma 3 Assume A ∈ Rm×n is given.

(i) For all µ > 0

0 ≤ ϕµ(y)− ϕ(y) ≤ 1

2
µD2.

(ii) The iterates xk ∈ ∆(K), yk ∈ Rm, µk ∈ R, k = 0, 1, . . . generated by Algorithm SPVNC
satisfy

1

2
‖Axk‖2 ≤ ϕµk(yk). (4.11)

(iii) If ρ(A) > 0 and the system (4.1) is feasible then for all y ∈ Rm and x ∈ ∆(K),

ϕ(y) ≤ 1

2
ρ(A)2 ≤ 1

2
‖Ax‖2.
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Lemma 3 is a straightforward extension of the ideas and proof techniques in Chapter 3.
However, due to minor differences, we present a proof for this lemma at the end of this
chapter.

Proposition 2 Assume A ∈ Rm×n is given and ρ(A) > 0. If the system (4.1) is feasible,
Algorithm SPVNC halts in at most

2MD

ρ(A)
− 1

iterations.

Proof: It suffices to bound the number of iterations when δ < ρ(A) since otherwise the
algorithm can only halt sooner. If indeed δ < ρ(A), Lemma 5(iii) implies that Algorithm
SPVNC can only halt when a solution to (4.1) is found. In the algorithm µ0 = 2M2 and
µk+1 = k+1

k+3
µk, so

µk =
4M2

(k + 1)(k + 2)
<

4M2

(k + 1)2
.

By Lemma 5(iii,ii,i) it follows that

1

2
ρ(A)2 ≤ 1

2
‖Axk‖2 ≤ ϕµk(yk) ≤ ϕ(yk) +

1

2
µkD

2 < ϕ(yk) +
2M2D2

(k + 1)2
.

Thus ϕ(yk) > 0, and consequently yk is a solution to (4.1), if k ≥ 2MD
ρ(A)
− 1. �

We will rely on the characterization (4.12) below of ρ(A) when (4.2) is feasible. Fig-
ure 2.1(b) illustrates this characterization in the special case when K is the non-negative
orthant. We note that this property is closely related to a characterization of Renegar’s dis-
tance to ill-posedness, see [58, Theorem 3.5]. Related properties of ρ(A) are also discussed
in [21] and [19, Chapter 6].

Proposition 3 Assume ρ(A) > 0 and the problem (4.2) is feasible. Then

ρ(A) = sup{δ : y ∈ Rm, ‖y‖ ≤ δ ⇒ y ∈ A(∆(K))}. (4.12)

Proof: We first show the inequality “≥” in (4.12). To that end, suppose δ > 0 is such that
ỹ ∈ A(∆(K)) for any ỹ ∈ Rm with ‖ỹ‖ ≤ δ. Given an arbitrary y ∈ Rm with ‖y‖ = 1, put
ỹ := −δy. By our assumption on δ, there exists x̃ ∈ ∆(K) such that Ax̃ = ỹ. In addition,
〈Ax̃, y〉 = 〈ỹ, y〉 = −δ. So min

x∈∆(K)
〈Ax, y〉 ≤ −δ. Since this holds for any arbitrary y ∈ Rm

with ‖y‖ = 1, we have max
‖y‖=1

min
x∈∆(K)

〈Ax, y〉 ≤ −δ. Therefore, ρ(A) ≥ δ.

Next we show the inequality “≤” in (4.12). To do so, it suffices to show that if y /∈
A(∆(K)) then ρ(A) < ‖y‖. Observe that A(∆(K)) is closed and convex because ∆(K)
is compact and convex. Therefore, if y /∈ A(∆(K)) then there exists a hyperplane that
separates y and A(∆(K)). More precisely, there exists z ∈ Rm with ‖z‖ = 1 such that

〈z, y〉 < min
x∈∆(K)

〈z, Ax〉 ≤ max
‖y‖=1

min
x∈∆(K)

〈y, Ax〉 = −ρ(A).
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Hence by Schwarz inequality,

ρ(A) < |〈z, y〉| ≤ ‖z‖‖y‖ = ‖y‖.

�

Throughout the rest of this section let S := {x ∈ ∆(K) : Ax = 0}, and for v ∈ Rn let
dist(v, S) := min{‖v − x‖ : x ∈ S}.

Lemma 4 Assume (4.2) is feasible and ρ(A) > 0. Then for all v ∈ ∆(K)

dist(v, S) ≤ ‖Av‖D
ρ(A)

. (4.13)

Proof: Given an arbitrary v ∈ ∆(K), the inequality (4.13) is clearly true if v ∈ S. Assume
v ∈ ∆(K) \ S. Consider y := − Av

‖Av‖ρ(A). By Proposition 3 there exists u ∈ ∆(K) such

that Au = y = − Av
‖Av‖ρ(A). Let x = λu+ (1− λ)v for λ = ‖Av‖

‖Av‖+ρ(A)
. Then x ∈ S and

‖v − x‖ = λ‖u− v‖ ≤ λD =
‖Av‖D

‖Av‖+ ρ(A)
≤ ‖Av‖D

ρ(A)
.

�

Proposition 4 Assume (4.2) is feasible and ρ(A) > 0. If x̄ ∈ ∆(K) and δ = ‖Ax̄‖
γ

for

some γ > 1, then Algorithm SPVNC with input (x̄, δ) terminates in at most

2MDγ

ρ(A)
− 1 (4.14)

iterations.

Proof: By Lemma 5(ii), at iteration k of Algorithm SPVN we have

1
2
‖Axk‖2 ≤ ϕµk(yk)

≤ −‖yk‖
2

2
+ min

x∈S

{〈
ATyk, x

〉
+
µk
2
‖x− x̄‖2

}
≤ µk

2
min
x∈S
‖x− x̄‖2

=
µk
2

dist(x̄, S)2.

(4.15)

Thus by Lemma 4

‖Axk‖ ≤
√
µk · dist(x̄, S) ≤ √µk ·

D‖Ax̄‖
ρ(A)

≤ 2MD‖Ax̄‖
(k + 1)ρ(A)

.

So when k ≥ 2MD‖Ax̄‖
ρ(A)δ

− 1 = 2MDγ
ρ(A)

− 1 we have ‖Axk‖ ≤ δ and Algorithm SPVNC halts.
�

27



Proof of Theorem 5:

(i) The bound (4.6) readily follows from Proposition 4. For (4.7), observe that after N
outer iterations algorithm ISPVNC yields x̃N ∈ ∆(K) with

‖Ax̃N‖ ≤ δN−1 ≤
‖Ax̃0‖
γN

.

Thus, ‖Ax̃N‖ ≤ δN−1 < ε, and so algorithm ISPVNC halts, in at most N = log(‖Ax̃0‖/ε)
log(γ)

outer iterations.

(ii) Proposition 2 readily yields the bound (4.8). Furthermore, the proof of Proposition 2
shows that algorithm ISPVNC halts with a solution to (4.1) when δN−1 < ρ(A). By

part (i) we know that δN−1 ≤ ‖Ax̃0‖
γN

. Thus δN−1 < ρ(A), and so algorithm ISPVNC

halts with a solution to (4.1), in at most N = log(‖Ax̃0‖/ρ(A))
log(γ)

outer iterations. Note

that Algorithm ISPVNC may halt with an ε-solution to (4.2) in fewer outer iterations
if ε > ρ(A).

�

It is natural to ask whether our main results hold if a different prox-function is used
to smooth the mapping x(·). In particular, the entropy function

∑n
i=1 xi log xi + log n

can be used in Algorithm SPVN in place of the Euclidean distance function 1
2
‖x − x̄‖2.

In this case, a non-iterated version of Algorithm SPVN solves (2.3) in O(
√

log n/ρ(A))
iterations provided it is feasible, as shown in Chapter 3. We conjecture that the main factor
O(
√
n/ρ(A)) in Theorem 4 can be improved to O(

√
log n/ρ(A)) if the entropy function is

suitably used. It is tempting to look for a proof of this conjecture by modifying Algorithm
ISPVN and the proof of Theorem 4 in obvious ways. However, this attempt runs into a
roadblock because it needs a bound as that in Lemma 4 but with the entropy-induced
Bregman distance in place of the Euclidean distance. Such an analog of Lemma 4 does not
hold.

4.5 Proof of Lemma 3

(i) From the construction of ϕ and ϕµ it follows that

ϕµ(y) = −1
2
‖y‖2 +

〈
ATy, xµ(y)

〉
+ µ

2
‖xµ(y)− x̄‖2

≥ −1
2
‖y‖2 +

〈
ATy, xµ(y)

〉
≥ −1

2
‖y‖2 + min

x∈∆(K)

〈
ATy, x

〉
= ϕ(y).

28



In addition,

ϕµ(y) = −1
2
‖y‖2 + min

x∈∆(K)

{〈
ATy, x

〉
+ µ

2
‖x− x̄‖2

}
≤ −1

2
‖y‖2 +

〈
ATy, x(y)

〉
+ µ

2
‖x(y)− x̄‖2

≤ ϕ(y) + 1
2
µD2.

(ii) We proceed by induction. For k = 0 we have:

1
2
‖Ax0‖2 = 1

2
‖Ax̄‖2 + 〈Ax̄,A (x0 − x̄)〉+ 1

2
‖A(x0 − x̄)‖2

≤ −1
2
‖Ax̄‖2 +

〈
ATAx̄, x0

〉
+ 1

2
‖A‖2‖x0 − x̄‖2

≤ −1
2
‖y0‖2 +

〈
ATy0, xµ0(y0)

〉
+ 1

2
µ0‖xµ0(y0)− x̄‖2

= ϕµ0(y0).

Now we will show that if (4.11) holds for k then it also holds for k + 1. To ease
notation, drop the index k and write y+, x+, µ+ for yk+1, xk+1, µk+1 respectively.
Also, let x̂ = (1− θ)x+ θxµ(y) so that y+ = (1− θ)y + θAx̂. We have

ϕµ+(y+) = −‖y+‖
2

2
+
〈
ATy+, xµ+(y+)

〉
+ µ+

2
‖xµ+(y+)− x̄‖2

= −‖(1−θ)y+θAx̂‖2
2

+ (1− θ)
[ 〈
ATy, xµ+(y+)

〉
+ µ

2
‖xµ+(y+)− x̄‖2

]
+ θ
〈
ATAx̂, xµ+(y+)

〉
≥ (1− θ)

[
−‖y‖

2

2
+
〈
ATy, xµ+(y+)

〉
+ µ

2
‖xµ+(y+)− x̄‖2

]
1

+ θ
[
−‖Ax̂‖

2

2
+
〈
ATAx̂, xµ+(y+)

〉]
2
.

(4.16)

The last inequality follows from the concavity of the function y 7→ −‖y‖
2

2
. Using

(4.10), we can estimate the expression in the first bracket in (4.16) as follows:[
.
]

1
= ϕµ(y) +

〈
ATy, xµ+(y+)− xµ(y)

〉
+µ

2

(
‖xµ+(y+)− x̄‖2 − ‖xµ(y)− x̄‖2

)
= ϕµ(y) +

〈
ATy + µ(xµ(y)− x̄), xµ+(y+)− xµ(y)

〉
+µ

2
‖xµ+(y+)− xµ(y)‖2

≥ ϕµ(y) + µ
2
‖xµ+(y+)− xµ(y)‖2

≥ 1
2
‖Ax‖2 + µ

2
‖xµ+(y+)− xµ(y)‖2

≥ 1
2
‖Ax̂‖2 +

〈
ATAx̂, x− x̂

〉
+ µ

2
‖xµ+(y+)− xµ(y)‖2.

(4.17)

The third step above follows from the optimality conditions for (4.10) at xµ(y). The
fourth step follows from the induction hypothesis (4.11).

The expression in the second bracket in (4.16) can be written as[
.
]

2
=

1

2
‖Ax̂‖2 +

〈
ATAx̂, xµ+(y+)− x̂

〉
. (4.18)
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Observe also that

x+ − x̂ = (1− θ)x+ θxµ+(y+)− (1− θ)x− θxµ(y)
= θ(xµ+(y+)− xµ(y)).

(4.19)

Plugging (4.17) and (4.18) into (4.16) we get

ϕµ+(y+) ≥ (1− θ)
[

1
2
‖Ax̂‖2 +

〈
ATAx̂, x− x̂

〉
+ µ

2
‖xµ+(y+)− xµ(y)‖2

]
+ θ
[

1
2
‖Ax̂‖2 +

〈
ATAx̂, xµ+(y+)− x̂

〉]
= 1

2
‖Ax̂‖2 + θ

〈
ATAx̂, xµ+(y+)− xµ(y)

〉
+ (1−θ)µ

2
‖xµ+(y+)− xµ(y)‖2

≥ 1
2
‖Ax̂‖2 + θ

〈
ATAx̂, xµ+(y+)− xµ(y)

〉
+ 1

2
θ2‖A‖2‖xµ+(y+)− xµ(y)‖2

≥ 1
2
‖Ax̂‖2 +

〈
ATAx̂, x+ − x̂

〉
+ 1

2
‖A(x+ − x̂)‖2

= 1
2
‖Ax+‖2.

The second step above follows because x̂ = (1− θ)x+ θxµ(y). The third step follows

because at iteration k we have θ2‖A‖2
1−θ = 4‖A‖2

(k+1)(k+3)
≤ 4M2

(k+1)(k+2)
= µ. The fourth step

follows from (4.19).

(iii) Since the mapping v 7→ min
x∈∆(K)

〈
ATv, x

〉
is positively homogeneous and (4.1) is feasible,

it follows that

ϕ(y) ≤ max
v∈Rm\{0}

ϕ(v)

= max
v∈Rm\{0}

{
−1

2
‖v‖2 + ‖v‖ min

x∈∆(K)

〈
AT v
‖v‖ , x

〉}
= max

t>0

{
−1

2
t2 + tρ(A)

}
= 1

2
ρ(A)2.

In addition, ρ(A) = min
u∈∆(K)

max
‖y‖=1

〈
ATy, u

〉
≤ max
‖y‖=1

〈
ATy, x

〉
= ‖Ax‖ for any x ∈ ∆(K).

�

30



Chapter 5

Near Classification for Unclassifiable
Data Sets

(Joint work with Javier Peña)

5.1 Introduction

Classification, which is the task of assigning objects to one of several predefined classes, is
probably the most widely used machine learning technique. Classification is a pervasive
problem in machine learning that encompasses many diverse applications. Examples in-
clude text categorization (e.g. detecting spam email messages based on upon the message
header and content), fraud detection, market segmentation (e.g. predict if customer will
respond to promotion) and etc.

The simplest type of classification problem is binary classification. In binary classifi-
cation, we seek to separate two sets of data points in Rm using a linear hyperplane. In
particular, we are given a collection of data points zi ∈ Rm, which comes with a label
wi ∈ {−1, 1} that determines which class it belongs to. The linear hyperplane aTz = b
is said to correctly classify these two sets if all data points with wi = +1 fall on one side
(hence aTz > b) and all the others on the other side (hence aTz < b). Hence, the affine
inequalities wi(a

Tzi−b) > 0, for all i = 1, . . . , n guarantee correct classification. Therefore,
binary classification problems can be recast as a system of linear inequalities ATy > 0 via
homogenization.

The classical perceptron algorithm [59] is a popular algorithm to solve the binary clas-
sification problems. The perceptron algorithm and our modifications of it find a classifier if
the data is linearly separable (i.e. ATy > 0 is feasible). However, data in many real-world
applications may not be linearly separable. In this case, it is desirable to choose a hyper-
plane that allows for some mistakes in the training set and minimizes misclassification.

The support vector machine (SVM) introduced by Vapnik [69] in 1963 is a state-of-the
art classification model . The popularity of SVM is due to its high accuracy and the ability
to deal with high-dimensional data [26, 60, 70].
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When data is separable, the goal of SVM is to find an “optimal” linear hyperplane
that separates data in such a way that the minimum distance of this hyperplane from each
point of the classes is maximized. This distance is called the margin of the hyperplane.
Typically there are many possible hyperplanes with their associated margins that separate
two classes. The logic behind SVM is that if we choose the hyperplane with maximum
margin, we are less likely to misclassify new instances.

The margin of the canonical separating hyperplane defined by y ∈ Rm is 1/‖y‖ (canon-
ical separating hyperplane is the one that separates the data from the hyperplane by a
distance of at least one). Therefore, the problem of finding a separating hyperplane with
maximum margin can be formulated as

min
1

2
‖y‖2

ATy ≥ e,

where e ∈ Rn be the n-dimensional vector of all ones. If the data is linearly separable, the
maximum margin matches the parameter ρ(A) after homogenization and normalization of
the data set.

If data is not linearly classifiable, the SVM finds a soft margin classifier by allowing
the maximum margin classifier to mis-classify some points and each misclassification is
penalized. Let (e − ATy)+ := max{0, e − ATy}. The SVM problem can be written as a
unconstrained quadratic optimization problem

min
y∈Rm

λ

2
‖y‖2 + ‖

(
e− ATy

)+ ‖p, (5.1)

where λ is the regularization parameter that controls the amount of misclassification, and
‖ · ‖p denote p-norm in Rn. The term ‖

(
e− ATy

)+ ‖p is called hinge loss when p = 1, and
quadratic loss when p = 2. Notice that when data is linearly separable the loss function is
zero.

Due to the centrality of the SVM, quite a few methods were devised and analyzed to
solve this problem. In particular, the Newton or Quasi-Newton methods can efficiently
find an ε-solution to (5.1) in

√
n log (1/ε) [71]. However, when the number of training

samples is large, these methods are impractical. This is because the space and the time
costs of Hessian matrix computation rapidly increase with the dimensions of the problem
instances. Decomposition algorithms [20, 39, 55] were developed to reduce the memory
requirement of these interior-point methods by operating on a small working set of variables
in every iteration. However, they cannot handle large-scale problem because their time
complexities are super linear in n. Recently, Joachims [40] proposed SVM-Perf, which
uses a cutting planes method to find a solution with ε-accuracy in time O(n/(λε2)). This
bound was later improved by Smola et al. [63] to O(n/(λε)). In addition, Shwartz. et
al. [62] introduced a stochastic sub-gradient descent algorithm referred to as the Pegasos
Algorithm that finds an ε-accurate solution in O (‖A‖/λε) iterations. The complexity
guarantee for Pegasos avoids the dependence on the data set size n. In this chapter, we
present and analyze a modification of our smooth perceptron algorithm that solves (5.1)
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in at most O(
√
n‖A‖/

√
λε) iterations.

5.2 Smooth perceptron algorithm for solving SVM

In this section, we show that a small modification of our smooth perceptron algorithm can
solve (5.1). Let ‖ · ‖p∗ denote the dual norm of ‖ · ‖p and S :=

{
x ∈ Rn

+ : ‖x‖p∗ ≤ 1
}

. The
problem (5.1) can be written as

min
y∈Rm

f(y) :=
λ

2
‖y‖2 + max

x∈S

〈
x, e− ATy

〉
. (5.2)

Let x(y) denote an arbitrary point in the set argmax
x∈S

〈
x, e− ATy

〉
. Therefore f(y) =

λ

2
‖y‖2 +

〈
x(y), e− ATy

〉
. Notice that when λ = 1 and p = ∞, we recover a solution

to (3.3) from (5.2).

Our extension of smooth perceptron algorithm to the problem (5.2) relies on the fol-
lowing assumption.

Assumption 3 There is an available oracle that computes

argmax
x∈S

〈x, g〉 − 1

2
‖x‖2 (5.3)

for any given g ∈ Rn.

Assumption 3 holds when p = 1, p = 2. In each of these cases, the solution to (5.3) is x =

median {0, g, e} where “median” is a component-wise operato, and x =

{
g+ if ‖g+‖ ≤ 1
g+

‖g+‖ otherwise
,

respectively.

Given x̄ ∈ S and µ > 0 let xµ : Rm → S be defined as

xµ(y) := argmax
x∈S

{〈
x, e− ATy

〉
− µ

2
‖x− x̄‖2

}
. (5.4)

Observe that the mapping xµ(·) is computable by Assumption 3. xµ(y) is a smooth version
of the map y 7→ x(y).

Given λ > 0 and x̄ ∈ S, our smooth perceptron algorithm can be modified as follows:

Modified Smooth Perceptron Algorithm for Unclassifiable Data:
begin

y0 :=
Ax̄

λ
; µ0 := 2‖A‖2/λ; x0 := xµ0(y0);

for k = 0, 1, 2, . . .
θk := 2

k+3
;
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yk+1 := (1− θk)(yk +
θk
λ
Axk) +

θ2
k

λ
Axµk(yk);

µk+1 := (1− θk)µk;
xk+1 := (1− θk)xk + θkxµk+1

(yk+1);
end

end

Theorem 6 Given λ, ε > 0, the modified smooth perceptron algorithm finds an ε-accurate
solution (5.2) in at most √

2D‖A‖√
λε

− 1

iterations, where D = n or D = 1 if we choose hinge loss or quadratic loss respectively.

The specific steps in our new algorithm as well as the proof of Theorem 6 are almost
identical to that of our smooth perceptron algorithm in Chapter 3. However, due to the
small differences and to make our exposition self-contained, we next present the proof of
Theorem 6.

For µ > 0 define the smooth approximation fµ of f as:

fµ(y) :=
λ

2
‖y‖2 + max

x∈S

{〈
e− ATy, x

〉
− µ

2
‖x− x̄‖2

}
, (5.5)

It is easy to see that the maximizer in the expression for fµ is precisely the point xµ(y)
defined (5.4). Hence

fµ(y) =
λ

2
‖y‖2 +

〈
e− ATy, xµ(y)

〉
− µ

2
‖xµ(y)− x̄‖2.

Theorem 6 is a consequence of the following lemma.

Lemma 5 Assume A ∈ Rm×n is given.

(i) For all µ > 0

0 ≤ f(y)− fµ(y) ≤ µD

2
,

where D := max
u,v∈S

‖u− v‖.

(ii) For all y ∈ Rm and x ∈ S,

xTe− 1

λ
‖Ax‖2 ≤ f(y).

(iii) The iterates xk ∈ S, yk ∈ Rm, µk ∈ R, k = 0, 1, . . . generated by the modified smooth
perceptron algorithm satisfy

fµk(yk) ≤ xT
k e−

1

2λ
‖Axk‖2. (5.6)
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Proof:

(i) From the construction of f and fµ it follows that

fµ(y) =
λ

2
‖y‖2 +

〈
e− ATy, xµ(y)

〉
− µ

2
‖xµ(y)− x̄‖2

≤ λ

2
‖y‖2 +

〈
e− ATy, xµ(y)

〉
≤ λ

2
‖y‖2 + max

x∈S

〈
e− ATy, x

〉
= f(y).

In addition,

f(y) =
λ

2
‖y‖2 + max

x∈S

〈
e− ATy, x

〉
≤ λ

2
‖y‖2 + max

x∈S

{〈
e− ATy, x

〉
− µ

2
‖x− x̄‖2

}
+
µ

2
‖x(y)− x̄‖2

= fµ(y) +
µ

2
‖x(y)− x̄‖2

≤ fµ(y) +
1

2
µD.

Its easy to see D = n when p = 1 and D = 1 when p = 2.

(ii) For any y ∈ Rm and x ∈ S, we have

xTe− 1

2λ
‖Ax‖2 = min

y∈Rm
λ

2
‖y‖2 +

〈
x, e− ATy

〉
≤ λ

2
‖y‖2 +

〈
x, e− ATy

〉
≤ λ

2
‖y‖2 + max

x∈S

〈
x, e− ATy

〉
= f(y).

(iii) We proceed by induction. For k = 0 we have:

xT
0 e−

1

2λ
‖Ax0‖2 = xT

0 e−
1

2λ
‖Ax̄‖2 − 1

λ
〈Ax̄,A (x0 − x̄)〉 − 1

2λ
‖A(x0 − x̄)‖2

≥ xT
0 e+

1

2λ
‖Ax̄‖2 − 1

λ

〈
ATAx̄, x0

〉
− 1

2λ
‖A‖2‖x0 − x̄‖2

=
λ

2
‖Ax̄
λ
‖2 +

〈
e− ATAx̄

λ
, x0

〉
− 1

2λ
‖A‖2‖x0 − x̄‖2

=
λ

2
‖y0‖2 +

〈
e− ATy0, xµ0(y0)

〉
− 1

2
µ0‖xµ0(y0)− x̄‖2

= fµ0(y0).

Now we will show that if (5.6) holds for k then it also holds for k + 1. To ease
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notation, drop the index k and write y+, x+, µ+ for yk+1, xk+1, µk+1 respectively.

Also, let x̂ = (1− θ)x+ θxµ(y) so that y+ = (1− θ)y +
θ

λ
Ax̂. We have

fµ+(y+) = λ
2
‖y+‖2 +

〈
e− ATy+, xµ+(y+)

〉
− µ+

2
‖xµ+(y+)− x̄‖2

= λ
2
‖(1− θ)y + θ

λ
Ax̂‖2 + (1− θ)

[ 〈
e− ATy, xµ+(y+)

〉
− µ

2
‖xµ+(y+)− x̄‖2

]
+ θ
〈
e− 1

λ
ATAx̂, xµ+(y+)

〉
≤ (1− θ)

[
λ
2
‖y‖2 +

〈
e− ATy, xµ+(y+)

〉
− µ

2
‖xµ+(y+)− x̄‖2

]
1

+ θ
[

1
2
‖Ax̂
λ
‖2 +

〈
e− 1

λ
ATAx̂, xµ+(y+)

〉]
2
.

(5.7)

The last inequality follows from the convexity of the function y 7→ ‖y‖2
2

. We can
estimate the expression in the first bracket in (5.7) as follows:[

.
]

1
= fµ(y) +

〈
e− ATy, xµ+(y+)− xµ(y)

〉
−µ

2

(
‖xµ+(y+)− x̄‖2 − ‖xµ(y)− x̄‖2

)
= fµ(y) +

〈
e− ATy − µ(xµ(y)− x̄), xµ+(y+)− xµ(y)

〉
−µ

2
‖xµ+(y+)− xµ(y)‖2

≤ fµ(y)− µ
2
‖xµ+(y+)− xµ(y)‖2

≤ xTe− 1
2λ
‖Ax‖2 − µ

2
‖xµ+(y+)− xµ(y)‖2

≤ x̂Te− 1
2λ
‖Ax̂‖2 +

〈
e− ATAx̂

λ
, x− x̂

〉
− µ

2
‖xµ+(y+)− xµ(y)‖2.

(5.8)

The third step above follows from the optimality conditions for (5.5) at xµ(y). The
fourth step follows from the induction hypothesis (5.6).

The expression in the second bracket in (5.7) can be written as

[
.
]

2
= − 1

2λ
‖Ax̂‖2 +

〈
e− ATAx̂

λ
, xµ+(y+)− x̂

〉
+ x̂Te. (5.9)

Observe also that

x+ − x̂ = (1− θ)x+ θxµ+(y+)− (1− θ)x− θxµ(y)
= θ(xµ+(y+)− xµ(y)).

(5.10)
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Plugging (5.8) and (5.9) into (5.7) we get

fµ+(y+) = (1− θ)
[
x̂Te− 1

2λ
‖Ax̂‖2 +

〈
e− ATAx̂

λ
, x− x̂

〉
+
µ

2
‖xµ+(y+)− xµ(y)‖2

]
+ θ

[
− 1

2λ
‖Ax̂‖2 + x̂Te+

〈
e− ATAx̂

λ
, xµ+(y+)− x̂

〉]
= x̂Te− 1

2λ
‖Ax̂‖2 + θ

〈
e− ATAx̂

λ
, xµ+(y+)− xµ(y)

〉
− (1−θ)µ

2
‖xµ+(y+)− xµ(y)‖2

≤ x̂Te− 1

2λ
‖Ax̂‖2 + θ

〈
e− ATAx̂

λ
, xµ+(y+)− xµ(y)

〉
− 1

2λ
θ2‖A‖2‖xµ+(y+)− xµ(y)‖2

= x̂Te− 1

2λ
‖Ax̂‖2 +

〈
e− ATAx̂

λ
, x+ − x̂

〉
− 1

2λ
‖A(x+ − x̂)‖2

= xT
+e−

1

2λ
‖Ax+‖2.

The second step above follows because x̂ = (1− θ)x+ θxµ(y). The third step follows

because at iteration k we have θ2‖A‖2
λ(1−θ) = 4‖A‖2

λ(k+1)(k+3)
≤ 4‖A‖2

λ(k+1)(k+2)
= µ. The fourth

step follows from (5.10).

�

Proof of Theorem 6: Using Lemma 5(i,ii,iii), we have

f(yk)−
µkD

2
≤ fµk(yk) ≤ xT

k e−
1

2λ
‖Axk‖2 ≤ min

y
f(y).

In our algorithm µ0 =
2‖A‖2

λ
and µk+1 =

k + 1

k + 3
µk. So

µk =
4‖A‖2

λ(k + 1)(k + 2)
<

4‖A‖2

λ(k + 1)2
.

Therefore f(yk)−min
y
f(y) ≤ ε as soon as

k ≥
√

2D‖A‖√
λε

− 1.

�
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Chapter 6

A Deterministic Re-scaled
Perceptron Algorithm

(Joint work with Javier Peña)

6.1 Introduction

This chapter proposes a version of the perceptron algorithm that includes a periodic rescal-
ing of the space Rm in the same spirit as in previous work by Dunagan and Vempala [30],
and by Belloni et al. [12]. Our algorithm performs at most O (m5 log(1/ρ(A))) perceptron
iterations to find a solution to (2.1) in homogeneous form. Although, our new algorithm’s
dependence on 1/ρ(A) is exponentially better than that of the classical perceptron, the
algorithm retains the main advantages of the classical perceptron algorithm. In contrast
to the rescaling procedure in [12, 30], which is randomized and relies on a deep separation
oracle, our rescaling procedure is deterministic and relies only on a separation oracle.

When F = {y ∈ Rm : ATy > 0} for A ∈ Rm×n, a simplified version of our rescaled
perceptron algorithm has iteration bound O(m2n2 log(1/ρ(A))). A smooth version of this
algorithm in turn has the improved iteration bound O(mn

√
m log(n) log(1/ρ(A))).

When F =
{
y ∈ Rm : ATy > 0

}
, our re-scaled perceptron algorithm is polynomial in

the bit-length representation of A ∈ Zm×n and is the best deterministic complexity re-
sult for elementary algorithms in the literature so far. Aside from its theoretical merits,
given the close connection between the perceptron algorithm and first-order methods, our
algorithm provides a solid foundation for potential speed ups in the convergence of the
widely popular first-order methods for large-scale convex optimization. Some results of
similar nature have been recently obtained by Gilpin et al. [35] and by O’Donoghue and
Candès [51].

This chapter is based on [54] that is under the first round of revision in Mathematical Programming.
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Our re-scaled perceptron algorithm consists of an outer loop with two main phases. The
first one is a perceptron phase and the second one is a rescaling phase. The perceptron
phase applies a restricted number of perceptron updates. If the perceptron phase does not
find a feasible solution to F , then with essentially no additional costs, it finds a unitary
column d ∈ Rm of A such that

F ⊆
{
y ∈ Rm : 0 ≤ 〈d, y〉 ≤ 1√

6m
‖y‖
}
.

This inclusion means that the feasible cone F is nearly perpendicular to d. The rescaling
phase, stretches Rm along d and is guaranteed to enlarge the volume of the spherical cap
{y ∈ F :, ‖y‖ = 1} by a constant factor. This key observation ensures that the combination
of the perceptron phase and the rescaling phase is guaranteed to find a feasible solution in
at most O(m log(1/ρ(A))) outer iterations.

In Sections 6.2 and 6.3, we first propose our rescaled perceptron algorithm for solving
the polyhedral feasibility problem (2.3). Section 6.4 extends this algorithm for the more
general feasibility problem (2.1). In Section 6.5, we show that our rescaled algorithm is
an online learning algorithm for solving classification problems. We also provide a lower
bound complexity for the number of mistakes taken by online algorithms.

6.2 Polyhedral case

For ease of exposition, we first consider the case F = {y ∈ Rm : ATy > 0} for A ∈ Rm×n.
We assume A satisfies Assumption 1.

Re-scaled Perceptron Algorithm

1. let B := I; Ã := A; N := 6mn2

2. (Perceptron Phase)
x0 := 0 ∈ Rn; y0 := 0 ∈ Rm;
for k = 0, 1, . . . , N − 1

if ÃTyk > 0 then Halt output Byk
else

let j ∈ {1, . . . , n} be such that ãT
j yk ≤ 0

xk+1 := xk + ej
yk+1 := yk + ãj

end if
end for

3. (Rescaling Phase)
j = argmax

i=1,...,n
〈ei, xN〉

B := B(I − 1
2
ãj ã

T
j ); Ã := (I − 1

2
ãj ã

T
j )Ã

normalize the columns of Ã
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4. Go back to Step 2.

The re-scaled perceptron algorithm changes the initial constraint matrix A to a new
matrix Ã = BTA. Thus when ÃTy > 0, the non-zero vector By returned by the algorithm
solves ATy > 0.

Now we can state a special version of our main theorem.

Theorem 7 Assume A ∈ Rm×n satisfies Assumption 1 and the problem (2.3) is feasible.
Then the re-scaled perceptron algorithm terminates with a solution to ATy > 0 after at
most

1

log(1.5)
·

(
(m− 1) log

(
1

ρ(A)
√

1− ρ(A)2

)
+ log(m) +

1

2
log(π)

)
= O

(
m log

(
1

ρ(A)

))
rescaling steps. Since the algorithm performs O(mn2) perceptron updates between rescaling
steps, the algorithm terminates after at most

O
(
m2n2 log

(
1

ρ(A)

))
perceptron updates.

The key ingredients in the proof of Theorem 7 are the three lemmas below. The first
of these lemmas states that if the perceptron phase does not solve ÃTy > 0, then the
rescaling phase identifies a column ãj of Ã that is nearly perpendicular to the feasible cone
{y : ÃTy > 0}. The second lemma in turn implies that the rescaling phase increases the
volume of this cone by a constant factor. The third lemma states that the volume of the
initial feasible cone {y : ATy > 0} is bounded below by a factor of ρ(A)m−1.

Lemma 6 If the perceptron phase in the rescaled perceptron algorithm does not find a
solution to ÃTy > 0 then the vector ãj in the first step of the rescaling phase satisfies

{y : ÃTy ≥ 0} ⊆
{
y : 0 ≤ ãT

j y ≤
1√
6m
‖y‖
}
. (6.1)

Proof: Observe that at each iteration of the perceptron phase we have

‖yk+1‖2 = ‖yk‖2 + 2ãT
j yk + 1 ≤ ‖yk‖2 + 1.

Hence ‖yk‖2 ≤ k. Also, throughout the perceptron phase xk ≥ 0, yk = Ãxk and ‖xk+1‖1 =
‖xk‖1 + 1. Thus if the perceptron phase does not find a solution to ÃTy > 0 then the
last iterates yN and xN satisfy xN ≥ 0, ‖xN‖1 = N = 6mn2 and ‖yN‖ = ‖ÃxN‖ ≤√
N = n

√
6m. In particular, the index j in the first step of the rescaling phase satisfies

〈ej, xN〉 ≥ ‖xN‖1/n = 6mn. Next observe that if ÃTy ≥ 0 then

0 ≤ 6mn ãT
j y ≤ 〈ej, xN〉 ãT

j y ≤ xT
N Ã

Ty ≤ ‖ÃxN‖ ‖y‖ ≤ n
√

6m‖y‖.
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So (6.1) follows. �

The following two lemmas rely on geometric arguments concerning the unit sphere
Sm−1 := {u ∈ Rm : ‖u‖ = 1}. Given a measurable set C ⊆ Sm−1, let Vm−1(C) denote its
volume in Sm−1.

We rely on the following construction proposed by Betke [14]. Given a ∈ Sm−1 and
α > 1, let Ψa,α : Sm−1 → Sm−1 denote the transformation

u 7→ (I + (α− 1)aaT)u

‖(I + (α− 1)aaT)u‖
=

u+ (α− 1)(aTu)a√
1 + (α2 − 1)(aTu)2

.

This transformation stretches the sphere in the direction a. The magnitude of the stretch
is determined by α.

Lemma 7 Assume a ∈ Sm−1, 0 < δ < 1, and α > 1. If C ⊆ {y ∈ Sm−1 : 0 ≤ aTy ≤ δ} is
a measurable set, then

Vm−1 (Ψa,α(C)) ≥ α

(1 + δ2 (α2 − 1))m/2
Vm−1(C). (6.2)

In particular, if δ = 1√
6m

and α = 2 then

Vm−1 (Ψa,α(C)) ≥ 1.5Vm−1(C). (6.3)

Proof: Without loss of generality assume a = em. Also for ease of notation, we shall write
Ψ as shorthand for Ψa,α. Under these assumptions, for y = (ȳ, ym) ∈ Sm−1 we have

Ψ(ȳ, ym) =
(ȳ, αym)√

α2 + (1− α2)‖ȳ‖2
.

To calculate the volume of C and of Ψ(C), consider the differentiable map Φ : Bm−1 → Rm,

defined by Φ (v) =
(
v,
√

1− ‖v‖2
)

that maps the unit ball Bm−1 := {v ∈ Rm−1 : ‖v‖ ≤ 1}
to the surface of the hemisphere {(ȳ, ym) ∈ Sm : ym ≥ 0} containing the set C. The volume
of C is

Vm−1(C) =

∫
Φ−1(C)

|||Φ′|||dv.

where |||Φ′||| denotes the volume of the (m− 1)-dimensional parallelepiped spanned by the
vectors ∂Φ/∂v1, . . . , ∂Φ/∂vm−1. Likewise, the volume of Ψ(C) is

Vm−1(Ψ(C)) =

∫
Φ−1(C)

|||(Ψ ◦ Φ)′|||dv.

Hence to prove (6.2) it suffices to show that

|||(Ψ ◦ Φ)′(v)|||
|||Φ′(v)|||

≥ α

(1 + δ2 (α2 − 1))m/2
for all v ∈ Φ−1(C). (6.4)
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Some straightforward calculations show that for all v ∈ int(Bm−1)

|||(Ψ ◦ Φ)′(v)||| = α√
1− ‖v‖2 (α2 + (1− α2)‖v‖2)m/2

and |||Φ′(v)||| = 1√
1− ‖v‖2

.

Hence for all v ∈ int(Bm−1)

|||(Ψ ◦ Φ)′(v)|||
|||Φ′(v)|||

=
α

(α2 + (1− α2)‖v‖2)m/2
.

To obtain (6.4), observe that if v ∈ Φ−1(C) then 0 ≤ 1− ‖v‖2 ≤ δ2 and thus

α2 + (1− α2)‖v‖2 ≤ 1 + δ2
(
α2 − 1

)
.

If δ = 1√
6m

and α = 2 then

α

(1 + δ2 (α2 − 1))m/2
=

2(
1 + 1

2m

)2m/4
≥ 2

exp(0.25)
≥ 1.5.

Thus (6.3) follows from (6.2). �

Lemma 8 Assume F := {y : ATy > 0} is a convex cone. Then

Vm−1(F ∩ Sm−1) ≥
(
ρ(A)

√
1− ρ(A)2

)m−1 1

m
√
π
Vm−1(Sm−1). (6.5)

Proof: From the definition of the cone width τF it follows that B(z, ρ(A)) ⊆ F for
some z ∈ F with ‖z‖ = 1. Therefore (1 − ρ(A)2)z + v ∈ F for all v ∈ Rm such that
‖v‖ ≤ ρ(A)

√
1− ρ(A)2 and 〈z, v〉 = 0. This implies that F ∩ Sm−1 contains a spherical

cap of Sm−1 with base radius ρ(A)
√

1− ρ(A)2. Hence

Vm−1(F ∩ Sm−1) ≥
(
ρ(A)

√
1− ρ(A)2

)m−1

Vol(Bm−1),

where Vol(Bm−1) denote the volume of Bm−1. The bound (6.5) now follows from the facts

Vol(Bm−1) = π
m−1

2

Γ(m−1
2

+1)
, Vm−1(Sm−1) = 2π

m
2

Γ(m
2

)
= mπ

m
2

Γ(m
2

+1)
, and Γ(m

2
+ 1) ≥ Γ(m−1

2
+ 1). �

Proof of Theorem 7: Let F̃ := {y ∈ Rm : ÃTy > 0}. Observe that the rescaling
phase rescales F̃ to (I + ãj ã

T
j )F̃ . Therefore, Lemma 6 and Lemma 7 imply that after each

rescaling phase the quantity Vm−1(F̃ ∩ Sm−1) increases by a factor of 1.5 or more. Since
the set F̃ ∩ Sm−1 is always contained in a hemisphere, we conclude that the number of
rescaling steps before the algorithm halts cannot be larger than

1

log(1.5)
· log

(
Vm−1(Sm−1)/2

Vm−1(F̃ ∩ Sm−1)

)
To finish, apply Lemma 8. �
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6.3 Smooth version for the re-scaled perceptron al-

gorithm

We next show that the perceptron phase in our re-scaled perceptron algorithm can be
substituted by a smooth perceptron phase in Section 3. This leads to an algorithm with an
improved convergence rate but whose work per main iteration is roughly comparable to
that in the re-scaled perceptron algorithm.

Let xµ be defined as in (3.1). Consider the following smooth version of the re-scaled
perceptron algorithm.

Smooth Re-scaled Perceptron Algorithm

1. let B := I; Ã := A; N := b7n
√
m log(n)c

2. (Smooth Perceptron Phase)

y0 := Ãe
n

; µ0 := 2; x0 := xµ0(y0);
for k = 0, 1, 2, . . . , N − 1

if ÃTyk > 0 then Halt and output Byk
else

θk := 2
k+3

;

yk+1 := (1− θk)(yk + θkÃxk) + θ2
kÃxµk(yk);

µk+1 := (1− θk)µk;
xk+1 := (1− θk)xk + θkxµk+1

(yk+1);
end if

end for

3. (Rescaling Phase)
j = argmax

i=1,...,n
〈ei, xN〉

B := B(I − 1
2
ãj ã

T
j ); Ã := (I − 1

2
ãj ã

T
j )Ã

normalize the columns of Ã

4. Go back to Step 2.

Theorem 8 Assume A ∈ Rm×n satisfies Assumption 1 and the problem (2.3) is feasible.
Then the smooth re-scaled perceptron algorithm terminates with a solution to ATy > 0 after
at most

1

log(1.5)
·

(
(m− 1) log

(
1

ρ(A)
√

1− ρ(A)2

)
+ log(m) +

1

2
log(π)

)
= O

(
m log

(
1

ρ(A)

))
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rescaling steps. Since the algorithm performs O(n
√
m log(n)) perceptron updates between

rescaling steps, the algorithm terminates after at most

O
(
mn
√
m log(n) log

(
1

ρ(A)

))
perceptron updates.

Proof: This proof is a modification of the proof of Theorem 7. It suffices to show that if
the smooth perceptron phase in the rescaled perceptron algorithm does not find a solution
to ÃTy > 0 then the vector ãj in the first step of the rescaling phase satisfies

{y : ÃTy ≥ 0} ⊆
{
y : 0 ≤ ãT

j y ≤
1√
6m
‖y‖
}
. (6.6)

Indeed, from Lemma 5 it follows that if the perceptron phase does not find a solution to
ÃTy > 0, then ‖ÃxN‖2 ≤ 8 log(n)

(N+1)2
≤ 8

49mn2 ≤ 1
6mn2 . Since xN ≥ 0 and ‖xN‖1 = 1, the index

j in the rescaling phase satisfies 〈ej, xN〉 ≥ 1
n
. Therefore, if ÃTy ≥ 0 then

0 ≤ 1

n
ãT
j y ≤ 〈ej, xN〉 ãT

j y ≤ xT
N Ã

Ty ≤ ‖ÃxN‖ ‖y‖ ≤
1√

6mn
‖y‖.

So (6.6) follows. �

6.4 General case

We next extend our re-scaled perceptron algorithm for finding a feasible solution in a more
general convex cone F . The gist of the algorithm for the general case is the same as that
of the polyhedral case presented above. We just need a bit of extra work to identify a
suitable direction for the rescaling phase. To do so, we maintain a collection of 2m index
sets Sj, j = ±1,±2, . . . ,±m. This collection of sets helps us determine a subset of update
steps that align with each other. The sum of these steps in turn defines the appropriate
direction for rescaling.

Assumption 4 There is an available separating oracle for the cone F : Given y ∈ Rm

the oracle either determines that y ∈ F or else it finds a non-zero vector u ∈ F ∗ := {u :
〈u, v〉 > 0 for all v ∈ F} such that 〈u, y〉 ≤ 0.

Observe that for a non-singular matrix B ∈ Rm×m, we have (B−1F )∗ = BTF ∗. Thus a
separation oracle for F̃ := B−1F is readily available provided one for F is: Given y ∈ Rm,
apply the separation oracle for F to the point By. If By ∈ F then y ∈ B−1F = F̃ . If
By 6∈ F , then let u ∈ F ∗ be a non-zero vector such that 〈u,By〉 ≤ 0. Thus

〈
BTu, y

〉
=

〈u,By〉 ≤ 0 with BTu ∈ (B−1F )∗ = F̃ ∗. Consequently, throughout the algorithm below
we assume that a separation oracle for the re-scaled cone F̃ is available.
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General Re-scaled Perceptron Algorithm

1. let B := I; F̃ := F ; N := 24m4

2. for j = ±1,±2, . . . ,±m
Sj := ∅

end for

3. (Perceptron Phase)
u0 := 0 ∈ Rm; y0 := 0 ∈ Rm;
for k = 0, 1, . . . , N − 1

if yk ∈ F̃ then Halt and output Byk
else

let uk ∈ F̃ ∗ be such that 〈uk, yk〉 ≤ 0 and ‖uk‖ = 1
yk+1 = yk + uk
j := argmax

i=1,...,m
| 〈ei, uk〉 |

if 〈ej, uk〉 > 0 then Sj := Sj ∪ {k}
else S−j := S−j ∪ {k}
end if

end if
end for

4. (Rescaling Phase)
i = argmax

j=±1,...,±m
|Sj|

d :=
∑
k∈Si

uk

‖
∑
k∈Si

uk‖

B := B(I − 1
2
ddT); F̃ := (I + ddT)F̃

5. Go back to Step 2.

The general re-scaled perceptron algorithm changes the initial cone F to F̃ = B−1F .
Thus when y ∈ F̃ , we have By ∈ F. Notice that although the above algorithm implicitly
performs this transformation, its steps do not involve inverting any matrices or solving any
system of equations.

We analyze the performance of the general re-scaled perceptron in terms of the width
of the cone F :

τF := sup
‖y‖=1

{r ∈ R+ : B(y, r) ⊆ F}. (6.7)

Notice that when F = {y ∈ Rm : ATy > 0} the parameter ρ(A) defined in (2.4) is the same
as τF . For a general convex cone of the form {y ∈ Rm : ATy ∈ K∗}, we have ρ(A) ≤ τF ,
where ρ(A) is defined in (4.5).

Now we can state the general version of our main theorem.
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Theorem 9 Assume F ⊆ Rm is such that Assumption 4 holds. Then the general re-scaled
perceptron algorithm terminates with a solution to y ∈ F after at most

1

log(1.5)
·

(
(m− 1) log

(
1

τF
√

1− τ 2
F

)
+ log(m) +

1

2
log(π)

)
= O

(
m log

(
1

τF

))
rescaling steps. Since the algorithm performs O(m4) perceptron updates between rescaling
steps, the algorithm terminates after at most

O
(
m5 log

(
1

τF

))
perceptron updates.

The proof of Theorem 9 is almost identical to the proof of Theorem 7. All we need is the
following analog of Lemma 6. Lemma 7 and Lemma 8 in Section 6.2 also hold here after
replacing ρ(A) with τF .

Lemma 9 If the perceptron phase in the general rescaled perceptron algorithm does not
find a solution to y ∈ F̃ then the vector d in the rescaling phase satisfies

F̃ ⊆
{
y : 0 ≤ 〈d, y〉 ≤ 1√

6m
‖y‖
}
. (6.8)

Proof: Proceeding as in the proof of Lemma 6, it is easy to see that if the perceptron phase
does not find a solution to y ∈ F̃ then the last iterate yN =

∑N−1
k=0 uk satisfies ‖yN‖2 ≤ N =

24m4. Since {e1, . . . , em} is an orthonormal basis and each uk satisfies ‖uk‖ = 1, we have
|〈ej, uk〉| ≥ 1/

√
m for j = argmax

i=1,...,m
|〈ei, uk〉|. Furthermore, since |

⋃
j=±1,...,±m Sj| = N =

24m4 it follows that the set Si in the rescaling phase must have at least 12m3 elements.
Thus ∥∥∥∥∥∑

k∈Si

uk

∥∥∥∥∥ ≥
∣∣∣∣∣
〈
e|i|,

∑
k∈Si

uk

〉∣∣∣∣∣ =
∑
k∈Si

∣∣〈e|i|, uk〉∣∣ ≥ |Si|√
m
≥ 12m5/2. (6.9)

On the other hand, for all y ∈ F̃ we have

0 ≤
∑
k∈Si

〈uk, y〉 ≤
N−1∑
k=0

〈uk, y〉 = 〈yN , y〉 ≤ ‖yN‖‖y‖ ≤
√

24m2‖y‖. (6.10)

Putting (6.9) and (6.10) together, it follows that for all y ∈ F̃

0 ≤ 〈d, y〉 ≤
√

24m2‖y‖
12m5/2

=
1√
6m
‖y‖.

Hence (6.8) holds. �
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6.5 Rescaled perceptron as an online learning algo-

rithm

An online learning algorithm [56, 61] observes a stream of data points from the instance
domain Z and makes a prediction pk for each element zk ∈ Z on the stream at time k. The
algorithm receives immediate feedback wk from a target domainW about the correctness of
each prediction and uses this feedback to improve the current and the future predictions.
The algorithm suffers a loss `(pk, wk) every time it predicts an instance incorrectly, i.e.
pk 6= wk. The ultimate goal of an online learning algorithm is to minimize the cumulative
loss suffered along its run.

Online Learning
For k = 1, 2, . . .
Receive the instance zk ∈ Z
Predict pk
Receive the true label wk ∈ W
Suffer loss `(pk)

Online learning algorithms do not make stochastic assumptions about the data they
observe. The data source is allowed to be deterministic, stochastic, or even adversarially
adaptive to the algorithm’s behavior, that is, the input may be selected in the worst possible
way for the learning algorithm. However, if the data were chosen randomly, no online
learning algorithm could be correct more than half the time. In addition, an adversary
can make the cumulative loss of the online algorithm arbitrarily large by providing an
instance, waiting for the algorithm’s prediction, and then stating the opposite label as the
correct prediction. Thus, non-trivial statements require some restrictions. One common
restriction is to assume that the correct label associated to each instance is determined by
some function h : Z → W [16, 61]. The mapping h is taken from a hypothesis class H
which is known to the algorithm. The goal of an online learning algorithm is to make as
few mistakes as possible, assuming that both the choice of h and the choice of instances
are under the control of an adversary. It is desirable to design online algorithms for which
the maximum number of mistakes made by the algorithm is minimal relative to H.

The online learning algorithm M has the hypothesis hk ∈ H at the beginning of time
k. The algorithm observes zk and predicts hk(zk). At the end of this round, wk is revealed
andM makes a mistake if hk(zk) 6= wk. The algorithm then updates its hypothesis to hk+1.
Suppose that the labels were actually produced by some function f in a given hypothesis
class H. The number of mistakes that the algorithm commits can be bounded based on
the loss function as

mistake(M,H) = max
f∈H

∑
k

1[hk(zk) 6=f(zk)],

where 1 is an indicator function. We can now define what it means for an algorithm to
learn a class in the mistake bound model.
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Definition 1 An online algorithm M learns a class H with mistake bound M if

mistake(M,H) ≤M.

In the rest of this section, we focus on online learning algorithms for solving binary
classification problems. In the context of classification, the target domain has values -1
and 1 indicating the membership of instances to the two different classes. The instance and
its target in this context are a point and its label, respectively. We represent the point zk
received at time k and its label wk by a column vector ak := wkzk ∈ Rm. Thus at time k, the
available data and the corresponding labels define a matrix Ak :=

[
a1 . . . ak

]
∈ Rm×k.

We denote by A ∈ Rm×n the matrix of all points and labels. Thus the end classification of
interest can be written as ATy > 0 (See Chapter 5).

The classical perceptron algorithm is an example of an online learning algorithm for
solving binary classification problems [16, 61] with the hypothesis class of half-spaces. Each
half-space hypothesis hk ∈ H = {a 7→ sign(aTy) : y ∈ Rm} can be describe using a vector
yk. The perceptron algorithm maintains the hyperplane defined by yk. Every time this
algorithm receives a new instance ak+1, it predicts pk+1 = hk(ak+1) = sign(aT

k+1yk). The
algorithm incurs a loss 1 if pk+1 < 0 and 0 otherwise. In particular, we can write the loss
function as `(pk) = 1[pk<0]. The main idea of the perceptron algorithm is that as long as it
does not make a mistake, i.e. pk > 0, its current hyperplane yk remains unchanged. When
the algorithm does make a mistake, it moves the current hyperplane towards the instance
that is predicted incorrectly.

Assuming the instances are linearly separable, Block [15] and Novikoff [50] have shown
that the mistake bound for the online perceptron algorithm on the instance matrix A is
at most 1/ρ(A)2. In other words, after at most 1/ρ(A)2 mistakes, it is assured that from
this point onwards, the classifier generated by the algorithm will classify all observations
correctly.

We show that when the matrix A is well-conditioned, precisely when 1/ρ(A)2 ≤ m,
the perceptron algorithm’s mistake bound, 1/ρ(A)2, is a lower bound on the number of
mistakes made by any online algorithm. In particular, we show that there is an instance
matrix A with 1/ρ(A)2 ≤ m on which there is no deterministic online learning algorithm
can find a solution to ATy > 0 before making at least b1/ρ(A)2c mistakes. There exists a
similar lower bound in [42].

Example 1 Consider an online algorithm M. Assume the matrix A =
[
a1 . . . am

]
∈

Rm×m is constructed as follows: If y0 ∈ Rm is the first solution returned by M, then let
a1 = ±e1 be such that aT

1 y0 < 0, where e1 is a m-dimensional unit vector that has one in
its first element and zero in the rest. Similarly, if yi is the solution returned by M at time
i ∈ {1, . . . ,m − 1}, then let ai+1 = ±ei+1 be such that aT

i+1yi < 0. Clearly, ρ(A) = 1/
√
m

and the algorithm M incurs a mistake every time a new instance is received which means
that this algorithm makes m mistakes.

Our deterministic rescaled perceptron algorithm is also an elementary online learning
algorithm. This algorithm includes some momentum information in its updates; that is it
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incorporates some influence of the past instances through a rescaling update . This is a key
difference between this accelerated algorithm and the classical perceptron algorithm, since
the perceptron algorithm only uses the current data point to update the current solution.
As shown in Section 6.4, our rescaled perceptron algorithm finds a classifier after making
no more than O (m5 log (1/ρ(A))) mistakes.

An interesting question is whether the rescaled perceptron algorithm’s complexity
bound is tight. In order to answer this question, we study the lower bound complex-
ity on the number mistakes made by online algorithms, which is of course a lower bound
on the number of mistakes made by the best online learning algorithm.

6.5.1 Lower bound complexity on the number of mistakes

To get a lower bound on the number of mistakes made by online algorithms, we show
that for any online learning algorithm there exists an instance matrix A under the control
of an adversary for which the algorithm makes at least O (m log (1/ρ(A))) mistakes to
solve ATy > 0. The crux of our lower complexity bound is similar to the resisting oracle
introduced by Nesterov in [48] and the ideas in [72].

Theorem 10 For any online learning algorithm M, there exists A such that the number
of mistakes made by M to solve ATy > 0 is at least (m− 1) (log (1/ρ(A))− log(m)− 1).

Proof: Assume data is being received in an online fashion. Let Ak =
[
a1 · · · ak

]
∈ Rm×k

is the matrix of all instances that have been observed so far and Fk := {y ∈ Rm : AT
k y > 0}.

Without loss of generality assume all the columns of Ak are normalized. We construct a

sequence of boxes {Bk}∞k=0 defined by Bk = Fk ∩ {y ∈ Rm : y(m) = 1} = {y =

[
ȳ
y(m)

]
∈

Rm : bk ≤ ȳ ≤ dk, y
(m) = 1} for some bk, dk ∈ Rm such that Bk+1 ⊆ Bk. Let ck := 1

2
(bk+dk)

denote the center of the box Bk. We initialize A0 to be the 2(m − 1) vectors of the dual
cone to the cone −F0 such that B0 :=

{
y ∈ Rm : −ē ≤ ȳ ≤ ē, y(m) = 1

}
, where ē ∈ Rm−1

is the (m− 1)-dimensional vector of all ones. Let i denote the active coordinate.

Adversarially adaptive example

1. let i = 1; b0 := −ē; d0 := ē; k = 0

2. given Ak, let ŷ be the test solution generated by algorithm M.

3. if ŷ /∈ Fk then
ak+1 := w where w ∈ Rm with ‖w‖ = 1 is the separator of ŷ from Fk.

4. if ŷ ∈ Fk then
if ŷ(i) ≤ c

(i)
k then

ak+1 := −ēi + c
(i)
k ēm;

bk+1 := bk + (c
(i)
K − b

(i)
k )ēi;
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dk+1 := dk;
end if;
if ŷ(i) > c

(i)
k then

ak+1 := ēi − c(i)
k ēm;

bk+1 := bk;

dk+1 := dk + (c
(i)
k − d

(i)
k )ēi;

end if;
end if;

5. let āk+1 := ak+1/‖ak+1‖ and Ak+1 =
[
Ak āk+1

]
6. i = i+ 1; if i > m− 1, then i = 1; k := k+1.

7. Go to Step 2.

Notice that the box Bk+1 ⊆ Bk is always half of the last box Bk. In particular, the box Bk

is divided into two parts by the hyperplane defined by ak+1 which passes through ck and
corresponds to the active coordinate i. Therefore, Vm−1(Bk+1) = 1

2
Vm−1(Bk). In addition,

by construction, dk − bk =
(

1
2

)k/(m−1)
(d0 − b0) = 2

(
1
2

)k/(m−1)
ē. Hence for all k ≥ 0, we

have the inclusion

Bm−1 (ck, rk) ⊆ Bk with rk :=

(
1

2

)k/(m−1)

. (6.11)

Let zk =

[
ck
1

]
. Consider an arbitrarily point v =

[
v̄
v(m)

]
∈ Rm with ‖v‖ ≤ rk

2‖zk‖2
. It is

easy to see that ‖ ck+‖zk‖v̄
1+‖zk‖v(m) − ck‖ ≤ rk. Therefore by (6.11), we have ck+‖zk‖v̄

1+‖zk‖v(m) ∈ Bk and

hence

[
ck+‖zk‖v̄

1+‖zk‖v(m)

1

]
∈ Fk.

This indicates that
zk
‖zk‖

+ v =
1

‖zk‖

[
ck + ‖zk‖v̄

1 + ‖zk‖v(m)

]
∈ Fk. Since v with ‖v‖ ≤ rk

2‖zk‖2

is chosen arbitrarily, we have B
(

zk
‖zk‖

, rk
2‖zk‖2

)
⊆ Fk for all k. Therefore,

ρ(A) >
1

2‖zk‖2

(
1

2

)k/(m−1)

≥ 1

2m

(
1

2

)k/(m−1)

.

The last inequality in the above expression holds since ‖zk‖ ≤
√
m by construction.

It is clear that the number of generated boxes does not exceed the number of mistakes
made by the online algorithm M. Therefore, the number of mistakes made by M is at
least (m− 1) (log(1/ρ(A))− log(m)− 1). �
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Chapter 7

Preconditioning

(Joint work with Javier Peña and Vera Roshchina)

7.1 Introduction

Condition numbers play an important role in numerical analysis. The condition number
of a problem is a key parameter in the computational complexity of iterative algorithms as
well as in issues of numerical stability. A related challenge of paramount importance is to
precondition a given problem instance, that is, perform some kind of data preprocessing to
transform a given problem instance into an equivalent one that is better conditioned. An
advantage of preconditioning is that it is intrinsic to the problem instances but not to the
solution methods. Therefore, it can be applied to any class of algorithms. Preconditioning
has been extensively studied in numerical linear algebra [37, 67] and is an integral part
of the computational implementation of numerous algorithms for solving linear systems of
equations. In the more general optimization context, the task of designing precondition-
ers has been studied by Epelman and Freund [32] as well as by Belloni and Freund [10].
In a similar spirit, we first show the existence of optimal preconditining procedures for
homogeneous systems of linear inequalities. An optimal preconditioner makes the con-
dition number of the preconditioned system to be bounded above by O(nc) which could
result in obtaining a polynomial time algorithm and would behave robustly over large
problem classes. The existence of such preconditioners is theoretically very attractive.
However, these preconditioners rely on some unkown information and are therefore im-
practical. To address this issue, we propose two simple preconditioning procedures which
lead to improvements in three types of condition numbers for homogeneous systems of
linear inequalities, namely Renegar’s [57], Goffin-Cucker-Cheung’s [21, 36], and the Grass-
mann condition number [5, 11]. Both Renegar’s and Goffin-Cheung-Chucker’s condition
numbers are key parameters in the analyses of algorithmic schemes and other numerical

This chapter is based on [53] published in Optimization Letters.
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properties of constraint systems [31, 33, 52, 57, 58, 64]. The more recently developed
Grassmann condition number is especially well-suited for probabilistic analysis [6].

We recall the definition of the above condition numbers in Section 7.2 below. These
condition numbers quantify certain properties associated to the homogenous systems of
inequalities (2.2) and (2.3) defined by a matrix A ∈ Rm×n, where m ≤ n. Renegar’s
condition number is defined in terms of the distance from A to a set of ill-posed instances
in the space Rm×n. Goffin-Cucker-Cheung’s condition number is defined in terms of the
best conditioned solution to the system defined by A. Alternatively, it can be seen as the
reciprocal of a measure of thickness of the cone of feasible solutions to the system defined
by A. Goffin-Cucker-Cheung’s condition number is intrinsic to certain geometry in the
column space of A. The more recent Grassmann condition number, introduced in a special
case by Belloni and Freund [11] and subsequently generalized by Amelunxen-Burgisser [5]
is based on the projection distance from the linear subspace spanned by the rows of A to
a set of ill-posed subspaces in Rn. The Grassmann condition number is intrinsic to certain
geometry in the row space of A.

The Goffin-Cucker-Cheung’s condition number and the Grassmann condition numbers
are respectively invariant under column scaling and elementary row operations on the ma-
trix A respectively. For suitable choices of norms, each of them is also always smaller than
Renegar’s condition number (see (7.2) and (7.3) below). We observe that these properties
have an interesting parallel and naturally suggest two preconditioning procedures, namely
column normalization and row balancing. Our main results, presented in Section 7.4, dis-
cuss some interesting properties of these two preconditioning procedures. In particular, we
show that a combination of them would improve the values of the three condition numbers.

7.2 Condition numbers and their relations

Let FP and FD denote the sets of matrices A such that (2.2) and (2.3) are respectively
feasible. The sets FP and FD are closed and FP ∪ FD = Rm×n. The set Σ := FP ∩ FD is
the set of ill-posed matrices. For a given A ∈ Σ, arbitrary small perturbations on A can
lead to a change with respect to the feasibility of (2.2) and (2.3).

Renegar’s condition number is defined as

CR(A) :=
‖A‖

min{‖A− A′‖ : A′ ∈ Σ}
.

Here ‖A‖ denotes the operator norm of A induced by a given choice of norms in Rn and
Rm. When the Euclidean norms are used in both Rn and Rm, we shall write C2,2

R (A) for
CR(A). On the other hand, when the one-norm is used in Rn and the Euclidean norm is
used in Rm we shall write C1,2

R (A) for CR(A). These are the two cases we will consider in
the sequel.

Assume A =
[
a1 · · · an

]
∈ Rm×n with ai 6= 0 for i = 1, . . . , n. Goffin-Cheung-
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Cucker’s condition number is defined as

CGCC(A) := min
‖y‖2=1

max
i∈{1,...,n}

‖ai‖2

aT
i y

.

Here ‖ · ‖2 denotes the Euclidean norm in Rm. As mentioned in Section 2.1, the quantity
ρ(A) = 1/CGCC(A) is the Euclidean distance from the origin to the boundary of the convex

hull of the set of normalized vectors
{

ai
‖ai‖2 , i = 1, . . . , n

}
. Furthermore, when A ∈ FD, this

distance coincides with the thickness of the cone of feasible solutions to (2.3).

Let Grn,m denote the set of m-dimensional linear subspaces in Rn, that is, the m-
dimensional Grassmann manifold in Rn. Let

Pm := {W ∈ Grn,m : W⊥ ∩ Rn
+ 6= {0}},

Dm := {W ∈ Grn,m : W ∩ Rn
+ 6= {0}},

and
Σm = Pm ∩Dm =

{
W ∈ Grm,n : W ∩ Rn

+ 6= {0} ,W ∩ int(Rn
+) = ∅

}
.

The sets Pm, Dm, and Σm are analogous to the sets FP , FD, and Σ respectively: If
A ∈ Rm×n is full-rank then A ∈ FP ⇔ span(AT) ∈ Pm and A ∈ FD ⇔ span(AT) ∈ Dm. In
particular, A ∈ Σ⇔ span(AT) ∈ Σm. The Grassmann condition number is defined as [5]:

CGr(A) :=
1

min{d(span(AT),W ) : W ∈ Σm}
.

Here d(W1,W2) = σmax(ΠW1 − ΠW2), where ΠWi
denotes the orthogonal projection onto

Wi for i = 1, 2. In the above expression and in the sequel, σmax(M) and σmin(M) denote
the largest and smallest singular values of the matrix M respectively.

We next recall some key properties of the condition numbers C1,2
R , C2,2

R , CGCC and CGr.
Throughout the remaining part of the chapter assume A =

[
a1 · · · an

]
∈ Rm×n is full-

rank and ai 6= 0 for i = 1, . . . , n. From the relationship between the one-norm and the
Euclidean norm, it readily follows that

C2,2
R (A)√
n
≤ C1,2

R (A) ≤
√
nC2,2

R (A), (7.1)

The following property is a consequence of [21, Theorem 1]:

CGCC(A) ≤ C1,2
R (A) ≤

max
i=1,...,n

‖ai‖2

min
i=1,...,n

‖ai‖2

CGCC(A). (7.2)
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The following property was established in [5, Theorem 1.4]:

CGr(A) ≤ C2,2
R (A) ≤ σmax(A)

σmin(A)
CGr(A). (7.3)

The inequalities (7.2) and (7.3) reveal an interesting parallel between the pairs CGCC(A), C1,2
R (A)

and CGr(A), C2,2
R (A). This parallel becomes especially striking by observing that the frac-

tions in the right hand sides of (7.2) and (7.3) can be written respectively as

max
i=1,...,n

‖ai‖2

min
i=1,...,n

‖ai‖2

=
max{‖Ax‖2 : ‖x‖1 = 1}
min{‖Ax‖2 : ‖x‖1 = 1}

,

and
σmax(A)

σmin(A)
=

max{‖ATy‖2 : ‖y‖2 = 1}
min{‖ATy‖2 : ‖y‖2 = 1}

.

7.3 Optimal preconditioning

The main source of difficulty in solving the canonical feasibility problems (2.2) and (2.3) is
that the conditions number of the problem instance A can be arbitrarily large even though
A is well-posed and its condition number is finite. This happens because A can be poorly
conditioned. Therefore, the ultimate goal of preconditioning is to reduce the condition
number of the problem instance.

A good preconditioner is an approximation for A which can be efficiently inverted, and
chosen in a way that the preconditioned matrix has a better condition number. There are
three general types of preconditioning for the original linear system Ax = b:

• Left preconditioning by a matrix P :

PAx = Pb.

• Right preconditioning by a matrix D:

ADz = b, x = Dz.

The latter involves a substitution z for the original variable x.

• Split (two-sided) preconditioning:

PADz = Pb, x = Dz.

Split preconditioning encompasses both the left and the right methods by setting D = I
or P = I, respectively.
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An optimal preconditioning is a polynomial time procedure that makes the condition
number of preconditioned matrix to be bounded above by O(nc). Such preconditioning is
called optimal because if A is preconditioned in this way, we can automatically obtain an
algorithm that solves the feasibility problems in polynomially many steps.

We next exhibit an optimal preconditioning procedures to solve (2.2) and (2.3) for
which the condition number of the preconditioned matrix is bounded above by O(

√
n).

Theorem 11 Assume A =
[
a1 · · · an

]
∈ Rm×n is full-rank and ai 6= 0 for i = 1, . . . , n.

(a) Assume (2.2) is feasible, i.e. there exists x̄ ∈ Rn such that Ax̄ = 0, x̄ ≥ 0, x̄ 6= 0.
Let Â be the matrix obtained after scaling the columns of A by the diagonal matrix
D = Diag(x̄) and then balancing the rows of the resulting matrix – that is applying the
QR-factorization to the rows of AD such that the preconditioned matrix Â satisfies
σmax(Â) = σmin(Â). Then

C2,2
R (Â) ≤

√
n+ 1. (7.4)

(b) Assume (2.3) is feasible, i.e. there exists ȳ ∈ Rm with ‖ȳ‖ = 1 such that ATȳ > 0. Let
Â be the matrix obtained after scaling the columns of A by the diagonal matrix D =

Diag
(
ATȳ

)−1
and then scaling the resulting matrix by (I + λȳȳT) for a sufficiently

large λ > 0. Then
C2,2
R (Â) ≤

√
n+ 1. (7.5)

Proof:

(a) Let e ∈ Rn denote the n-dimensional vector of all ones and Ã = AD. Clearly
Ãe = 0. To prove (7.4), its sufficient to show if v ∈ Rm satisfies ‖v‖ ≤ 1√

n+1
then

there exists x ∈ Rn
+ with ‖x‖ ≤ 1 such that v = Âx. Since if this condition holds, by

Proposition 4.12 we have C2,2
R (Â) ≤

√
n+ 1.

Let v ∈ Rm be an arbitrarily point with ‖v‖ ≤ 1√
n+1

. Since the matrix Â is bal-

anced, there exists u ∈ Rn with ‖u‖ ≤ ‖v‖ that satisfies Âu = v. Let x :=
u + 1√

n+1
e. It can be easily verified that x ≥ 0, ‖x‖ ≤ 1, and Âx = v. Hence

v ∈
{
Âx : x ∈ Rn

+, ‖x‖ ≤ 1
}

and the proof is complete.

(b) Let e ∈ Rn denote the n-dimensional vector of all ones and Ã = AD. Clearly
ÃTȳ = e. As λ → ∞, a simple calculation shows that ρ(Â) tends to one. This can
be easily verified by substituting Â = Ã(I + λȳȳT) into (2.4). Therefore, CGCC(Â) =
ρ(Â)−1 = 1 for sufficiently large λ. The inequality (7.5) now follows from (7.1)
and (7.2). Notice that the inequalities in (7.2) are tight for sufficiently large λ. �

Although the above mentioned preconditioning procedures significantly improve the
condition numbers of the matrix A, they are impractical since these preconditioners require
the knowledge of the solutions x̄ and ȳ to systems (2.2) and (2.3) which we are trying to find
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and are unknown. To overcome this problem, we next show that a suitable combination
of column normalization and row balancing precedures would always bring CR, CGCC , and
CGr to roughly the same value without increasing the value of any of them. Hence if one of
them is much larger than the other, in which case A is certainly poorly conditioned, this
simple combined preconditioner would rectify the poor conditioning.

7.4 Preconditioning via normalization and balanc-

ing

Inequalities (7.2) and (7.3) suggest two preconditioning procedures for improving Rene-
gar’s condition number CR(A). The first one is to normalize, that is, scale the columns
of A so that the preconditioned matrix Ã satisfies max

i=1,...,n
‖ãi‖ = min

i=1,...,n
‖ãi‖. The sec-

ond one is to balance, that is, apply an orthogonalization procedure to the rows of A
such as Gram-Schmidt or QR-factorization so that the preconditioned matrix Ã satisfies
σmax(Ã) = σmin(Ã). Observe that if the initial matrix A is full rank and has non-zero
columns, these properties are preserved by each of the above two preconditioning proce-
dures. The following proposition formally states some properties of these two procedures.

Proposition 5 Assume A =
[
a1 · · · an

]
∈ Rm×n is full-rank and ai 6= 0 for i =

1, . . . , n.

(a) Let Ã be the matrix obtained after normalizing the columns of A, that is, ãi = ai
‖ai‖ , i =

1, . . . , n. Then
C1,2
R (Ã) = CGCC(Ã) = CGCC(A).

This transformation is optimal in the following sense

C1,2
R (Ã) = min{C1,2

R (AD) : D is diagonal positive definite}.

(b) Let Ã be the matrix obtained after balancing the rows of A, that is, Ã = QT, where
QR = AT with Q ∈ Rn×m, R ∈ Rm×m is the QR-decomposition of AT. Then

C2,2
R (Ã) = CGr(Ã) = CGr(A).

This transformation is optimal in the following sense

C2,2
R (Ã) = min{C2,2

R (PA) : P ∈ Rm×m is non-singular}.

Proof: Parts (a) and (b) follow respectively from (7.2) and (7.3). �

Observe that the normalization procedure transforms the solutions to the original prob-
lem (2.2) when this system is feasible. More precisely, observe that Ax = 0, x ≥ 0 if and
only if ÃD−1x = 0, D−1x ≥ 0, where D is the diagonal matrix whose diagonal entries are
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the norms of the columns of A. Thus a solution to the original problem (2.2) can be readily
obtained from a solution to the column-normalized preconditioned problem: premultiply
by D. At the same time, observe that the solution to (2.3) does not change when the
columns of A are normalized.

Similarly, the balancing procedure transforms the solutions to the original problem
(2.3). In this case ATy ≥ 0, y 6= 0 if and only if ÃTR−1y ≥ 0, R−1y 6= 0, where QR = AT

is the QR-decomposition of AT. Hence a solution to the original problem (2.3) can be
readily obtained from a solution to the row-balanced preconditioned problem: premultiply
by R. At the same time, observe that the solution to (2.2) does not change when the rows
of A are balanced.

Theorem 12 Assume A =
[
a1 · · · an

]
∈ Rm×n is full-rank and ai 6= 0 for i = 1, . . . , n.

(a) Let Â be the matrix obtained after normalizing the columns of A and then balancing
the rows of the resulting matrix. Then

1√
n
CGCC(Â) ≤ C2,2

R (Â) = CGr(Â) ≤
√
nCGCC(A). (7.6)

(b) Let Â be the matrix obtained after balancing the rows of A and then normalizing the
columns of the resulting matrix. Then

1√
n
CGr(Â) ≤ C1,2

R (Â) = CGCC(Â) ≤
√
nCGr(A). (7.7)

Proof:

(a) Let Ã be the matrix obtained by normalizing the columns of A. Proposition 5(a)
yields

C1,2
R (Ã) = CGCC(Ã) = CGCC(A). (7.8)

Since Â is obtained by balancing the rows of Ã, Proposition 5(b) yields

C2,2
R (Â) = CGr(Â) = CGr(Ã) ≤ C2,2

R (Ã). (7.9)

Inequality (7.6) now follows by combining (7.1), (7.2), (7.8), and (7.9).

(b) The proof this part is essentially identical to that of part (a) after using the parallel
roles of the pairs CGCC , C1,2

R and CGr, C2,2
R apparent from (7.2), (7.3), and Proposition 5.

�

Observe that both combined preconditioners in Theorem 12 transform A to a Â = PAD
where D is a diagonal matrix and P is a square non-singular matrix. The particular P and
D depend on what procedure is applied first. Hence each of the combined preconditioners
transforms both sets of solutions to the original pair of problems (2.2) and (2.3). In this
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case, solutions to the original problems can be readily obtained from solutions to the
preconditioned problems via premultiplication by D for the solutions to (2.2) and by PT

for the solutions to (2.3).

As discussed in [5, Section 5], there is no general relationship between CGr and CGCC ,
meaning that either one can be much larger than the other in a dimension-independent
fashion. Theorem 12(a) shows that when CGCC(A) � CGr(A) column normalization fol-
lowed by row balancing would reduce both CGr and C1,2

R while not increasing CGCC beyond a
factor of

√
n. Likewise, Theorem 12(b) shows that when CGr(A)� CGCC(A) row balancing

followed by column normalization would reduce both CGCC and C1,2
R while not increasing

CGr beyond a factor of
√
n. In other words, one of the two combinations of column nor-

malization and by row balancing will always improve the values of all three condition
numbers CGCC(A), CGr(A) and CR(A) modulo a factor of

√
n. The following two questions

concerning a potential strengthening of Thorem 12 naturally arise:

(i) Does the order of row balancing and column normalization matter in each part of
Theorem 12?

(ii) Are the leftmost and rightmost expressions in (7.6) and (7.7) within a small power
of n? In other words, do the combined pre-conditioners make all CGCC(A), CGr(A)
and CR(A) the same modulo a small power of n?

The examples below, adapted from [5, Section 5], show that the answers to these
questions are ‘yes’ and ‘no’ respectively. Hence without further assumptions, the statement
of Theorem 12 cannot be strengthened along these lines.

Example 2 Assume ε > 0 and letA =

[
2/ε 1 1
0 −1 1

]
. It is easy to see that CGCC(A) =

√
2.

After balancing the rows of A and normalizing the columns of the resulting matrix we get

Â =
1√

2(1 + ε2)

[√
2(1 + ε2) ε ε

0 −
√

2 + ε2
√

2 + ε2

]
.

It is easy to show that CGCC(Â) =

√
2(1+ε2)

ε
. Thus for ε > 0 sufficiently small, CGCC(Â)

can be arbitrarily larger than CGCC(A). Therefore (7.6) does not hold for A, Â.

Example 3 Assume 0 < ε < 1/2 and let A =

[
−ε −1 1
0 −1 1 + ε

]
. Using [5, Proposition

1.6], it can be shown that CGr(A) =
√

2 + (1 + ε)2 . After normalizing the columns of A

and balancing the rows of the resulting matrix, we obtain

Â =
1√
δ

−θδ −
√

2θε (1 + ε) −θε
√

1 + (1 + ε)2

0 −
√

1 + (1 + ε)2
√

2 (1 + ε)

 .
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where δ = 1 + 3 (1 + ε)2 and θ = 1√
δ+ε2

. Using [5, Proposition 1.6] again, it can be shown

that CGr(Â) =
√

1 + δ
ε2

. Therefore, CGr(Â) can be arbitrarily larger than CGr(A). Hence

(7.7) does not hold for A, Â.

Example 4 Assume ε > 0 and let A =

[
1 + ε 1 + ε −1 + ε
−1 −1 1

]
. In this case CGCC(A) =

√
2+2(1+ε)2

ε
. After normalizing the columns of A and balancing the rows of the resulting

matrix, we get

Â =
1√

2γ2 + 2β2

[
β β

√
2γ

−γ −γ
√

2β

]
,

where β =

√
1+(1+ε)2

2
and γ =

√
1 + (1− ε)2. It is easy to see that CGCC(Â) =

√
2.

Therefore, CGCC(Â) can be arbitrarily smaller than CGCC(A) in (7.6).

Example 5 Assume 0 < ε < 1/2 and let A =

[
2ε 1 1
0 −1 1

]
. In this case CGr(A) =√

1 + 1
2ε2

. After balancing the rows of A and normalizing the columns of the resulting

matrix we get

Â =
1√

2(1 + ε2)

[√
2(1 + ε2) 1 1

0 −
√

1 + 2ε2
√

1 + 2ε2

]
.

Using [5, Proposition 1.6], it can be shown that CGr(Â) =
√

2 + ε2. Thus CGr(Â) can be
arbitrarily smaller than CGr(A) in (7.7).
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Chapter 8

Future Research Directions

In this chapter, we discuss several future research that are related to the research involved
in this thesis.

8.1 Re-scaled von Neumann algorithm

The re-scaled perceptron algorithm developed in Chapter 6 solves the feasibility problems
ATy > 0 when it is feasible. The duality between the problems (2.2) and (2.3) naturally
suggests the extension of this algorithm for the alternative system Ax = 0, x ≥ 0, x 6= 0.

When the problem Ax = 0, x ≥ 0, x 6= 0 is feasible, zero can be written as a convex
combination of the columns of A. Based on the definition of ρ(A) in (2.4), the problem
instance is poorly conditioned, if zero is close to the boundary of the convex-hull of the
normalized columns of A and it is well-conditioned if zero is far away from the boundary. If
the problem is well-conditioned, the standard von Neumann algorithm finds an ε-solution
to Ax = 0, x ≥ 0, ‖x‖ = 1 quickly. However, when this problem is poorly conditioned,
the von Neumann algorithm requires many iterations to find an ε-solution. The poor
conditioning of this problem is caused by: (i) the eigenvalues of the matrix A being very
small, i.e. the columns of A being nearly linearly dependent, or (ii) some columns of A
being almost perpendicular to the boundary of the convex-hull of the normalized columns
of A that are close to zero. It appears that some simple pre-processing (in addition to the
normalization of the columns of A) discussed in Chapter 7, may separate these two types
of ill-conditioning and allow us to mimic the steps in the re-scaling perceptron algorithm.
In particular, we could eliminate the source (i) of ill-conditioning by balancing the matrix
A and the source (ii) of ill-conditioning by applying the re-scaling procedure.

8.2 Elementary algorithms for ill-posed instances

As discussed in Chapter 2, the von Neumann and the perceptron algorithms solve (2.2)
and (2.3) respectively, when these problems are feasible. However, in many cases, the
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matrix A is ill-posed and the feasibility pair (2.2) and (2.3) do not have strict feasible
solutions and the condition measure 1/ρ(A) is infinite. In this case, instead, there exists a
partition Ω(A) = (B,N) of B ∪N = {1, . . . , n} such that both systems

ABxB = 0, xB > 0, xN = 0, (8.1)

and

AT
Ny < 0, AT

By = 0, (8.2)

are feasible. Here AB denotes the sub-matrix of A that only contains the columns of A
whose indices are in B. AN , xB and xN have similar interpretations. The partition Ω(A) is
called the Goldman and Tucker partition and its existence can be proved using the Farkas’
Lemma [28]. When the matrix A /∈

∑
, the partition Ω(A) is trivial, that is, N = ∅ or

B = ∅.
A modification of interior-point algorithm [66] finds the partition Ω(A) and the cor-

responding solutions to (8.1) and (8.2), in at most O (
√
n[log n+ log (1/ρ̄(A))]) iterations

where the parameter ρ̄(A) proposed by Cheung et al. [23] is an extension of ρ(A). Unlike
1/ρ(A), the condition measure 1/ρ̄(A) is finite for ill-posed instances. An interesting re-
search direction is developing an elementary algorithm to solve (8.1) and (8.2). A possible
avenue, is to thus supplement the perceptron-von Neumann template in Chapter 2 with a
periodic “partition identification phase” as used in [66].

8.3 Chubanov’s algorithm

The relaxation method discussed in Chapter 2 solves convex feasibility problems y ∈ F
for a convex set F ⊂ Rm. When F is a Polyhedral, i.e. F =

{
y : ATy ≥ b

}
where

A ∈ Rm×n and b ∈ Rn, the separating oracle in the relaxation method finds an inequality
aT
j y ≥ bj violated by current solution y and the algorithm projects y onto this hyperplane

i.e. y+ = y + λ(bj − aT
j y)aj. Agmon [1], and Motzkin and Schoenberg [45] showed that, in

this case, the relaxation method generates a sequence of points which convergences, in the
limit, to a feasible point in F .

In late 2010, Sergei Chubanov [25] presented a variant of the relaxation algorithm
for solving the polyhedral feasibility problem that was based on a divide-and-conquer
(Chubanov’s D&C) paradigm. This algorithm either finds a solution to F = {y : ATy ≥
b, CTy = d} with A ∈ Zm×n, C ∈ Zm×k, b ∈ Zn, and d ∈ Zk or determines that this
system has no integer solution. The key idea of Chubanov’s algorithm is its use of new
induced inequalities. Unlike Motzkin and Schoenberg’s [45] algorithm that only projects
the current solution onto the original violated hyperplane, Chubanov constructs new valid
inequalities along the way and projects onto them as shown in Figure 8.1.

Chubanov’s D&C procedure is the main ingredient in the Chubanov relaxation algo-
rithm and its aim is to achieve the following. Given a current solution y, a radius r and
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Figure 8.1: Chubanov’s method generates new inequalities on the way.

an error bound ε > 0, the algorithm will either:

(1) Find an ε-solution ȳ ∈ B(y, r) to F , i.e. some ȳ such that ATȳ ≥ b+ε1 and CTȳ = d.

(2) Or find an induced hyperplane that separates B(y, r) from F .

When r is very small, this task can be simply obtained by a stronger modification of
separating oracle. However, for an arbitrary r, this task is achieved using a recursive
algorithm. Since D&C returns ε-solutions, it can be run on the system ATy ≥ b − ε1,
CTy = d; if the algorithm returns an ε-solution, we will have an exact solution for the
original system ATy ≥ b, CTy = d.

Using these results, Chubanov showed that if D&C algorithm cannot find a feasible
solution, either there exists an inequality in ATy ≥ b that is an implied equality, i.e.,
there exists j ∈ {1, . . . , n} such that aT

j y = bj for all feasible solutions, or there exists
j ∈ {1, . . . , n} such that aT

j y = bj for all integer solutions to F .

The advantage of this algorithm is that it leads to a strongly polynomial algorithm for
a certain class of linear feasibility problems. Chubanov showed that when the inequalities
take a form 0 ≤ y ≤ 1, his relaxation method either finds a solution to F = {y : CTy =
d, 0 ≤ y ≤ 1} or determines in strongly polynomial time that this system has no 0,1-
solutions. Basu et al. [7] recently presented new proofs and interpretations of some of
Chubanov’s results. They extended this result and showed that when F = {y : CTy =
d, 0 ≤ y ≤ 1}, if the matrix C is totally uni-modular, then Chubanov’s algorithm is
strongly polynomial. In other words, this algorithm either finds a solution to this set or
determines that this system has no solution in strongly polynomial time when C is totally
uni-modular.

Analysis in both Chubanov’s [25] and Basu et al.’s [7] papers is restricted to integral
data and relies on bit-length complexity bounds. The complexity of Chubanov’s algorithm
is based on the maximum determinant of all sub-matrices of C which can be exponentially
large. It would be interesting to analyze the performance of Chubanov’s algorithm in
terms of a more natural notion of real-number complexity based on condition numbers
of the input data [18]. This would extend the ideas and results of Chubanov’s algorithm
for instances with real-numbers. Furthermore, it might shed new light into Chubanov’s
divide-and-conquer algorithm which is the driving idea behind Chubanov’s results.
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