
End-to-End Speech Recognition Models

Submitted in partial fullfillment of the requirements for
the degree of

Doctor of Philosophy
in

Department of Electrical and Computer Engineering

William Chan

BASc Computer Engineering, University of Waterloo
MS Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

October 2016



ii



Acknowledgements

I would like to thank my advisor Professor Ian Lane for the excellent mentorship and the

research freedom given throughout my PhD career. I also give my thanks to all my committee

members. Professor Bhiksha Ramakrishnan for giving me valuable advice and questions.

Professor Chris Dyer thanks for all our Skype chats and insightful discussions. Quoc Le for

inviting me to work with you at Google Brain and the excellent mentorship. Thank you

guys! Without you all, this thesis would definitely have not been possible!

My family, mama Ann Chan, papa Sam Chan and miumiu Joanna Chan thanks for all the

love and support! Cousin Alice Chan thanks for just being awesome. Cousin Cassandra for

all our funny conversations and visiting me.

To all my CMU classmates, labmates and friends, thank you as well! Aniruddha Basak

thanks for all the Pittsburgh fun and homework help! Irina Brinkster thanks for all the

fun chats! Akshay Chandrashekaran thanks for all the Kaldi support and beers shared!

Guan-Lin Chao thanks for all the fun chats and spiritual mentorship! Eric Chen thanks for

all the general chats and advice! David Cohen thanks for all the debates on politics and

Costco pizza/smoothies shared! Benjamin Elizalde thanks for all the fun chats and wine

shared! Samantha Goldstein for enduring all my academic questions and processing all my

visa documents! Chih Hu thanks for all the fun chats and Uber discounts! Jungsuk Kim

thanks for all the Kaldi support and BABEL pain shared! Suyoun Kim thanks for driving me

to In-N-Out and wine shared! Wonkyum Lee thanks for all the Kaldi support and BABEL

iii



pain shared! Bing Liu thanks for all the research discussions and driving me to badminton!

Jason Lohn thanks for taking me on as my initial advisor and giving me research freedom!

Shijia Pan thanks for all the fun chats and driving me to badminton/Costco! Erik Reed

thanks for all the technical chats and being an awesome course project partner! Nathan

Snizaski thanks for answering all my annoying academic questions! Chihro Suga thanks for

being an awesome roommate and friend! Chun Hao Tang thanks for all the fun chats! Ryan

Yuan Tian thanks for being an awesome roommate and driving me to badminton! Yuan

Tian thanks for all the fun chats and driving me to badminton! Guanyu Wang thanks for

all the homework help and helping me move! Joy Ying Zhang thanks for teaching me the

basics of machine learning and treating me to Facebook noodles! Yingrui Zhang thanks for

all the fun chats and spiritual mentorship!

To all my Google coworkers, mentors and friends, thank you as well! Dzmitry Bahdanau

thanks for all the fun insightful research discussions! Eugene Brevdo thanks for helping me

fight long short term memory! Andrew Dai thanks for trading DistBelief tips and tricks!

Jeff Dean thanks for reviewing my change list 2 hours before the end of my last internship!

Navdeep Jaitly thanks for being an awesome mentor and solving speech together! Jenny

Liu thanks for being an awesome mentor and all the atom/jia/thread lunches shared! Ra-

jat Monga thanks for helping me fight DistBelief! Mohammad Norouzi thanks for all the

research chats! Tara Sainath thanks for all the speech help! Ilya Sutskever thanks for all

the enthusiastic research chats! Luke Vilnis thanks for all the research chats! Oriol Vinyals

thanks for being an awesome mentor and all the research chats! Xuerui Wang thanks for

being an awesome mentor and teaching me the basics of machine learning at Google! Yu

Zhang thanks for being an awesome collaborator!

To my other friends, thank you as well! Rosanne Borja thanks for driving me to the hospital

and spiritual mentorship! Sarah Chan thanks for all the life chats and bringing me to Lord’s

Grace Christian Church! Sharon Choy thanks for all the life and spiritual mentorship! Terry

iv



Jiang thanks for all the life encouragement and support! Rosemary Ke thanks for being an

awesome collaborator and all the general chats! Christine Lee thanks for all the years of

friendship from Waterloo to silicon valley! Gilbert Leung thanks for all the Python code

reviews at Google and driving me to badminton! Xiaohui Zhang thanks for all the spiritual

chats!

I also thank the various organizations and funding agencies which made my research pos-

sible including the Electrical and Computer Engineering Department at Carnegie Mellon

University, the Intelligence Advanced Research Projects Activity funding agency, Samsung

and Google!

Finally, and most importantly, I thank God. 1 Chronicles 16:34: “Oh give thanks to the

Lord, for He is good; for His steadfast love endures forever!”.

v



vi



Abstract

For the past few decades, the bane of Automatic Speech Recognition (ASR) systems have

been phonemes and Hidden Markov Models (HMMs). HMMs assume conditional indepen-

dence between observations, and the reliance on explicit phonetic representations requires

expensive handcrafted pronunciation dictionaries. Learning is often via detached proxy prob-

lems, and there especially exists a disconnect between acoustic model performance and actual

speech recognition performance. Connectionist Temporal Classification (CTC) character

models were recently proposed attempts to solve some of these issues, namely jointly learn-

ing the pronunciation model and acoustic model. However, HMM and CTC models still

suffer from conditional independence assumptions and must rely heavily on language models

during decoding.

In this thesis, we question the traditional paradigm of ASR and highlight the limitations of

HMM and CTC models. We propose a novel approach to ASR with neural attention models

and we directly optimize speech transcriptions. Our proposed method is not only an end-to-

end trained system but also an end-to-end model. The end-to-end model jointly learns all the

traditional components of a speech recognition system: the pronunciation model, acoustic

model and language model. Our model can directly emit English/Chinese characters or even

word pieces given the audio signal. There is no need for explicit phonetic representations,

intermediate heuristic loss functions or conditional independence assumptions. We demon-

strate our end-to-end speech recognition model on various ASR tasks. We show competitive

vii



results compared to a state-of-the-art HMM based system on the Google voice search task.

We demonstrate an online end-to-end Chinese Mandarin model and show how to jointly

optimize the Pinyin transcriptions during training. Finally, we also show state-of-the-art

results on the Wall Street Journal ASR task compared to other end-to-end models.
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Chapter 1

Introduction

State-of-the-art Automatic Speech Recognition (ASR) systems are complicated and com-

posed of many individual components: pronunciation models, acoustic models, language

models and text normalization [1, 2, 3]. Many components are handcrafted (i.e., pronunci-

ation dictionary) and combined in an ad-hoc manner (i.e., language model weights during

decoding). For example, state-of-the-art ASR systems typically weigh the language model

much more heavily than the acoustic model [1, 2, 3].

Each component makes various assumptions about the underlying probability distribution

they model. Additionally, each component is typically constructed as an independent proxy

problem within the speech system [2, 3]. For example, Hidden Markov Models (HMMs) make

strong Markovian and independence assumptions between symbols [4]. Deep Neural Network

(DNN) acoustic models are optimized towards frame level cross entropy [5, 6] which have no

direct connection to Word Error Rate (WER), while pronunciation models are handcrafted

[7] and typically never updated.

Various attempts have been made to overcome some of these assumptions and connect the

detached proxy problems. Recurrent Neural Network (RNN) language models which do not

have Markovian assumptions are used to rescore n-best lists [8]. Sequence training methods
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have been developed to bridge the gap between acoustic models and WERs with sequence

level objectives [9, 10]. End-to-end Connectionist Temporal Classification (CTC) methods

were shown to learn the pronunciation and acoustic model jointly, while directly optimizing

[11].

However, all these systems still depend on components that are optimized separately with

its own probability distribution assumptions. HMM and CTC systems require a n-gram

language model which makes Markovian assumptions and are updated independently or not

at all [12, 13, 2, 3]. Additionally, HMM and CTC models still hold the conditional indepen-

dence assumption between output symbols, which is simply not true in speech. Consequently,

HMM and CTC based systems must carry around a (large) n-gram language model to decode

[2, 3, 11]. This makes it impractical to deploy on any computational platform with limited

memory.

In this thesis, we overcome the aforementioned issues with a new end-to-end speech recogni-

tion model. Our model will learn to transcribe an audio sequence signal directly to a word

sequence, one character (or word piece) at a time. We will jointly learn all the components

of a typical ASR system in one model. We will also not make any conditional independence

or Markovian assumptions of the output sequence given the acoustics. Our contribution is

not only an end-to-end trained system, but also an end-to-end model.

1.1 Research Contributions

The main contributions of our thesis is as follows:

1. An offline end-to-end speech ASR model for English (Chapter 3): We present

an end-to-end ASR model that will jointly learn all the components (pronunciation,

acoustic, language and text normalization) all within one model. We show competitive

results to a state-of-the-art HMM based system on a real world Google voice search

ASR task.
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2. An online end-to-end ASR model for Chinese Mandarin (Chapter 4): We

extend on our offline English model and make it online. We also show how to jointly

optimize between Mandarin Characters and Mandarin Pinyin. We show the joint

Pinyin optimization can improve performance without any increase in inference cost.

3. An end-to-end ASR model with word pieces (Chapter 5): We present an end-

to-end ASR model which learns to decompose text and emit word pieces. We show

state-of-the-art results compared to other end-to-end ASR models on the Wall Street

Journal ASR task.

1.1.1 Applications

We believe our end-to-end ASR models are extremely applicable to many real word tasks.

Unlike HMM and CTC based systems, our model can learn language directly and not rely

on a n-gram language model for decoding. This is especially useful for applications which

have limited memory, for example smart phones, smart watches and smart glasses.

We also show our models are competitive to state-of-the-art HMM based systems [14]. Our

models also exhibit a very different posterior distribution compared to CTC or HMM based

systems (i.e., Markovian and conditional independence assumptions). Our model can be

used as a rescoring system to traditional HMM based systems [11, 14].

1.2 Thesis Outline

Chapter 2 will review state-of-the-art HMM based ASR systems. We will review the as-

sumptions and proxy problems a standard HMM based system will make. This will give

motivation for our thesis. Chapter 2 will also review Sequence-to-Sequence [15, 16] and At-

tention [17] methods. We describe their recent success in Machine Translation and give the

foundation to our models and applications to ASR.
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In Chapter 3, we present an end-to-end ASR model that can jointly learn all the components

(acoustics, pronunciation, language and text normalization) all within one model. We show

our model to be competitive to a state-of-the-art HMM based system on a real world Google

English voice search task. Chapter 4 will extend on Chapter 3 to make the model online and

search-free. We will also explore Chinese Mandarin as our target language and show multi-

task learning with joint Mandarin characters and Pinyin. Chapter 5 will explore emitting

word pieces or sub-word units. We also show state-of-the-art results compared to other end-

to-end ASR models under the language model free setting. We will finally close up with a

conclusion and future work in Chapter 6.
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Chapter 2

Background

This chapter will review state-of-the-art ASR methods [2, 3] and Connectionist Temporal

Classification (CTC) end-to-end speech recognition systems [11]. We will discuss their limi-

tations, and give motivation for our thesis on end-to-end speech recognition models. We will

also review and give an introduction to the Sequence-to-Sequence (seq2seq) framework [15,

16], which has much higher expressive power compared to HMM and CTC models. We give

motivation and intuition to using seq2seq for ASR.

2.1 Hidden Markov Model Systems

This section will give a modern overview of a typical state-of-the-art DNN-HMM speech

recognition system [2, 3]. Figure 2.1 gives a visualization.

An acoustic signal is first processed by a signal processing frontend, wherein we extract audio

features from the raw audio waveform. We decompose the waveform into a sequence of frames

of features. Example of feature representations include: log-mel Filterbanks (Fbanks), Mel-

Frequency Cepstral Coefficients (MFCCs) [18] and Perceptual Linear Prediction (PLP) [19].

Recent research has questioned whether this frontend stage is even needed [20] wherein the

ASR system can directly model the waveform directly without any feature engineering.
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Frontend Acoustic Model

Pronunciation Model

Decoder

Language Model

Word SequenceAudio Sequence

Figure 2.1: A typical speech recognition system consisting of a signal processing frontend,
acoustic model, pronunciation model, language model and a decoder.

The audio features are then fed to an acoustic model which classifies a sequence of features

into a sequence of phonemes. This is typically done via a DNN [5, 21, 22, 6, 23, 24, 25,

26], Convolutional Neural Network (CNN) [27, 28, 29, 30, 31, 32, 33] or RNN acoustic

model [34, 35, 36, 37]. The acoustic model assumes conditional independence and Markovian

assumptions, given the acoustic signal (or representation of the acoustic signal), the phoneme

predictions are independent in neighbouring frames.

The pronunciation model (also known as the pronunciation dictionary) maps a word (or

sequence of words) into a sequence of phones. The pronunciation dictionary is typically

handcrafted [7], however it can be also be a learnt statistical model [38]. The pronunciation

dictionary is typically fixed and rarely updated (if at all) in the speech pipeline, and the

ASR system is only capable of modeling words that exist in the pronunciation dictionary.

The language model is a statistical model giving probability of word sequences independent

of the acoustic. N-gram language models are typically used during decoding which hold

Markovian assumptions [1]. RNN language models which do not hold Markovian assumptions

and are typically more powerful can be used to rescore lattices or n-best hypotheses after

decoding [8].

The decoder combines the information from the acoustic model, pronunciation model and

language model together to search for the best word sequences given the acoustic signal.

Modern decoders are usually implemented as a Weighted Finite State Transducer (WFST)
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for efficient searching. The graph requires finite states, and in practice requires Marko-

vian assumptions in its representation. The graph combines the pronunciation dictionary

rules, with the acoustic model’s HMM transition probabilities and n-gram language model’s

probabilities all of which hold Markovian assumptions.

2.1.1 DNN-HMM System

We now describe a typical state-of-the-art DNN-HMM speech recognition system in more

formal mathematical notation. Given an acoustic signal x we want to model the word

sequence w. We can decompose this probability into two terms using Bayes’ rule, an acoustic

model pAM(x|w) and a language model pLM(w):

p(w|x) = p(x|w)p(w)
p(x)

∝ p(x|w)p(w) = pAM(x|w)pLM(w) (2.1)

2.1.2 Acoustic Model

The acoustic model pAM(x|w) is composed of a DNN-HMM model. First the DNN models

an acoustic frame xt into a phoneme state posterior qt at time t [6]:

p(qt|xt) = DNNAM(xt) (2.2)

or we can also use a RNN acoustic model [35]:

p(q|x) = RNNAM(x) (2.3)

For each time t, we can get the likelihood probability of the phoneme state by simply dividing
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the posterior against the prior p(qt):

p(xt|qt) = p(qt|xt)p(xt)
p(qt)

(2.4)

and since p(xt) is independent of the word sequence during the search process, it is typically

dropped during inference [21].

The phoneme state observations can be (deterministically) mapped to a HMM triphone

state. HMM transition probabilities model the most likely triphone sequence:

p(qt+1 = u|qt = v) = β(u, v) (2.5)

where u and v are the HMM states and β is the transition matrix of the HMM.

Typically the phoneme alignment qt is generated by a Gaussian Mixture Model (GMM) [6].

A GMM-HMM acoustic model is first trained with Expectation Maximization [39]. The

training dataset is then aligned using the GMM and the alignments will be used to train the

DNN. There is no theoretical justification for such an approach, but it works well in practice

[21, 22, 23, 40]. The DNN acoustic model is at the mercy of the GMM model’s ability to

generate good alignments (i.e., if the GMM generates garbage alignments, the DNN will

learn garbage). Typically to achieve state-of-the-art performance, handcrafted recipes of

realignment is necessary [40]. These methods are typically not published since they often

relate to proprietary engineering recipes rather than principed methods. In our thesis, we

will try and remove some of these ad-hoc training methods.

The rest of this section will discuss the limitations and assumptions of the DNN-HMM

system. We will also talk about how the DNN-HMM system is combined together during

decoding and why the system must depend on a strong language model.
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Markovian Assumption

The transition probabilities of the HMM have a Markovian assumption [4]. The transition

probabilities between each triphone state is conditioned only on the previous triphone state:

p(qt|q<t) = p(qt|qt−1) (2.6)

The Markovian assumption means the model is incapable of modeling longterm dependencies

– the transition of phonemes is only local (which is simply not true). For example, any word

that are several syllables long would break this assumption.

Conditional Independence Assumption

The emission probabilities of the HMM have a conditional independence assumption [4]. The

emission probabilities between each frame is conditionally independent given the state qt:

p(xt|x<t, q≤t) = p(xt|qt) (2.7)

In a DNN acoustic model, the phoneme posteriors are conditionally independent given the

frame xt:

p(qt|x, q<t) = p(qt|xt) (2.8)

In a RNN acoustic model, the phoneme posteriors are conditionally independent given x:

p(qt|x, q<t) = p(qt|x) (2.9)

The conditional independence assumptions mean the model is incapable of learning the

language of the phonemes – i.e., the model assumes there are no dependencies between
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phonemes in speech (which is simply not true). For example, phones often come in pairs

(i.e., diphones) and have statistical correlations.

Cross Entropy Error and Sequence Training

The DNN or RNN acoustic model is typically optimized with a proxy criteria, namely the

cross entropy error or phoneme classification per frame. Researchers have found there is a

disconnect relationship between frame accuracy and WER – namely, improving an acoustic

model frame accuracy did not necessarily yield better WERs [31]. Sequence training [10]

have been introduced to ameliorate this issue, however sequence training can only improve

the acoustic model while the pronunciation model and language model are left untouched.

Pronunciation Dictionary

The acoustic model we described thus far generates a phone sequence q conditioned on the

acoustics x, however we desire a word sequence w. The pronunciation dictionary constrains

the model to generate only valid phone sequences, additionally the dictionary maps the

phone sequences into word sequences:

w = PronunciationDictionary(q) (2.10)

The existence and explicit representation of phonemes itself is a very strong assumption. In

English, the pronunciation dictionary typically consists of 39 phonemes [7]. The pronuncia-

tion dictionary assumes all English words across all different accents and speaking styles can

be broken down into these 39 phonemes.

2.1.3 Language Model

The language model pLM(w) models the most likely sequence of words independent of the

acoustics. This is typically accomplished with a n-gram language model [1]. A n-gram lan-
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guage model has a Markovian assumption, typically conditioning only on 2-4 word history

(i.e., trigram language model) and therefore loses long range context dependency. RNN lan-

guage models do not have this Markovian assumption and are capable of modeling longterm

dependencies. However, RNN language models are too expensive to use during the decoding

(and can not fit inside a WFST), and typically only used to rescore lattices n-best lists after

decoding [8]. This means during the beam search, we may lose the correct beam before we

even get to the language model rescoring stage.

Language models (LMs) are trained independent of the acoustics. Additionally, LMs are

typically optimized for perplexity, which have no direct connection to WER [1]. The LMs

are almost never optimized end-to-end with the result of the ASR system [2, 3].

2.1.4 Decoding

During decoding, we want to find the best utterance w given the acoustics:

ŵ = arg max
w

pAM(x|w)pLM(w) (2.11)

However, in practice Equation 2.11 does not work. Typically the pAM is a very weak model

due to the independence assumptions mentioned above [1]. Instead, we put a language model

weight β on the LM where β = O(10) to give the LM pLM more weight over the acoustic

model pAM.

ŵ = arg max
w

pAM(x|w)pLM(w)β (2.12)

While this is no longer mathematically sound, this is implemented in virtually all state-of-

the-art ASR systems [2, 3]. In practice this means we must carry around a strong language

model and rely on it heavily [2, 3]. This is contrary to intuition, state-of-the-art speech

recognizers rely more heavily on the language model than the acoustic model.
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2.2 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [41] is a technique to transform a variable se-

quence x to another variable sequence y where the sequence length of the predicted sequence

|y| is less than the original sequence length |x|. We define a special blank token “−” to help

us construct alignments a. In a more formal mathematical definition:

p(a|x) = RNN(x) (2.13)

where the two sequences x and a have the same lengths, |x| = |a| and RNN is simply

some RNN function (e.g., LSTM [42]). We can marginalize the probability and sum over all

possible alignments:

p(y|x) =
∑

a∈B−1(y)
p(a|x) (2.14)

where the operator B removes blanks and repeats from a sequence, for example B(a−ab−) =

B(−aa − −abb) = aab; and each a is an alignment of y. The model can be optimized to

maximize the likelihood of p(y|x) by marginalizing over all possible alignments using dynamic

programming [41]. CTC can be used to directly model acoustics x into English characters

y [11]. As opposed to DNN-HMM models, CTC models have been shown to learn the

pronunciation model directly, and not rely on an explicit pronunciation dictionary.

CTC models and its variants have been applied successfully to many ASR tasks [11, 43,

44, 45, 46, 47, 48, 49]. However, they tend to rely heavily on an explicit LM since the

CTC model assumes conditional independence and can not learn complicated multi-modal

language distributions.
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Independence Assumption

CTC assumes a conditional independence assumption between each output symbol at con-

ditioned on the input sequence x:

p(at|a<t,x) = p(at|x) (2.15)

Even if there is a deep RNN between x and a, the model still has strong Markovian as-

sumptions. Each prediction at the frame level is conditionally independent to neighbouring

frames given the previous layer’s output. Consequently, CTC can use dynamic programming

to compute its log likelihood and gradient. However, the CTC model can not learn the lan-

guage of the output symbol (whether phonemes or English characters). CTC models must

rely on a separate model to model the conditional dependency between the output symbols.

CTC can jointly learn a pronunciation model and acoustic model, however it is incapable of

learning a language model due to its conditional independence assumption. Similar to HMM

based systems, CTC models must carry around a strong n-gram language model to decode

[11, 44, 46, 48].

2.3 Sequence-to-Sequence

Sequence-to-Sequence (seq2seq) [15, 16] is a general framework that encodes an input se-

quence x of any variable length to some latent representation h, and uses h to decode an

output sequence of any variable length y. In the original implementation [15, 16], h is simply

a fixed context vector. An encoder RNN encodes the input sequence x into a fixed context

vector h and a decoder RNN takes h and emits the output sequence y one token at a time

conditioned on all previous emitted tokens. Here, h is simply the last state of encoder RNN

and initial state of the decoder RNN. More formally, let input sequence x be a sequence of

length T , output sequence y be a sequence of length S, h be the RNN state of the encoder
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and g be the RNN state of the decoder:

ht = EncodeRNN(xt, ht−1) (2.16)

g0 = hT (2.17)

gs = DecodeRNN(ys−1, gs−1) (2.18)

p(ys|x,y<s) = TokenDistribution(gs) (2.19)

where EncodeRNN and DecodeRNN are RNN transfer functions (e.g., LSTM [42]) and

TokenDistribution is a Multilayer Perceptron (MLP) network with softmax outputs mod-

elling the output distribution.

The seq2seq framework was originally applied to machine translation [15, 16, 50, 51]. The

source sentence (i.e., English words) x would be encoded into a fixed context vector h. A

decoder would take h and decode it into the target sentence y (i.e., French words). It can

even be applied to image captioning where x is an image and y is the image caption [52].

Chain Rule

Unlike HMM and CTC models, seq2seq models do not assume conditional independence nor

Markovian assumptions. It relies on the chain rule for a left-to-right factorization:

p(y|x) =
∏
s

p(ys|x,y<s) (2.20)

where each p(ys|x,y<s) is modelled by the TokenDistribution function.

This means seq2seq models can learn non-Markovian distributions and complicated multi-

modal distributions, where as HMM and CTC based models can not learn multi-modal non-

Markovian distributions even with a deep RNN preceding the output layer. This is especially

important in speech, since speech is neither Markovian nor unimodal. For example, is

“mister” spelled as “mister”, “mr” or “mr.”? Each prediction made by a HMM or CTC based
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model is not conditioned on the previously emitted tokens (i.e., Markovian assumption),

consequently it is unlikely for such a system to generate such varied parses.

The conditional dependency of the seq2seq framework also means it is very easy to overfit

the training distribution. We introduce several techniques later in this thesis to overcome

this issue.

2.3.1 Attention

Attention [53] is a mechanism to locate and extract information from a memory source. One

implementation of attention is content-based attention [17], where there is a content-based

query and memory source. We extract information from the memory using the information

derived from the query. More formally, let h be our memory source and q be our content-

based query, the content-based attention mechanism 1] computes energies between h and q,

2] uses the energies to create an alignment distribution, and 3] uses the alignment distribution

to create a context vector encapsulating the information of interest:

e = DistanceMetric(h, q) (2.21)

α = Normalize(e) (2.22)

c =
∑

t

αtht (2.23)

In the original implementation of seq2seq with attention [17], the DistanceMetric func-

tion is a learnable MLP network and Normalize is simply the softmax function. However,

DistanceMetric can just as easily be the cosine distance [54] or dot product [55, 14].

In the context of seq2seq learning, the attention mechanism creates an explicit alignment

between the input sequence x and the output sequence y. The content-based attention

query is simply the decoder RNN’s state q = gs. At each decoder timestep s, we create

an α distribution over the encoder sequence h to extract a single context vector c to make
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the ys prediction. The attention mechanism creates a short circuit between the encoder

and the decoder. This allows for much more efficient information flow during the forward

propagation and gradient flow during the backward propagation.

The seq2seq framework with attention has been applied successfully to many applications

including machine translation [56, 57], conversation modelling [58], parsing [59], image cap-

tioning [60], grapheme-to-phoneme [61] and phoneme recognition [62, 63].

In this thesis, we will explore seq2seq with attention for end-to-end speech recognition. The

seq2seq framework allows us to model speech directly from acoustics to the output token

units without using any handcrafted phonetic representations. We do not make conditional

independence assumptions nor Markovian assumptions and allow our model to directly learn

and model language (unlike HMM and CTC based models). Chapter 3 will begin with a

description of our end-to-end speech recognition model.
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Chapter 3

Listen, Attend and Spell

In this chapter, we present Listen, Attend and Spell (LAS): A Neural Network for Large

Vocabulary Conversational Speech Recognition [55, 14]. We will present LAS as an end-to-

end speech recognition model and show competitive results to a state-of-the-art HMM based

system on the Google voice search task. This chapter is based off publications in [55, 14]

and portions of the text and figures are (C) 2016 IEEE and reprinted with permission.

3.1 End-to-End Speech Recognition Model

LAS is an end-to-end speech recognition model. LAS learns to transcribe an audio sequence

signal to a word sequence, one character at a time, without using explicit language models,

pronunciation models, HMMs, etc. LAS does not make any independence assumptions about

the nature of the probability distribution of the output character sequence, given the input

acoustic sequence. This method is based on the sequence-to-sequence learning framework

with attention [15, 16, 17, 62, 63].

It consists of an encoder Recurrent Neural Network (RNN), which is named the listener, and

a decoder RNN, which is named the speller. The listener is a pyramidal RNN that converts

speech signals into high level features. The speller is a RNN that transduces these higher
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level features into output utterances by specifying a probability distribution over the next

character, given all of the acoustics and the previous characters. At each step the RNN uses

its internal state to guide an attention mechanism [17, 62, 63] to compute a “context” vector

from the high level features of the listener. It uses this context vector, and its internal state

to both update its internal state and to predict the next character in the sequence. The

entire model is trained jointly, from scratch, by optimizing the probability of the output

sequence using a chain rule decomposition. We call this an end-to-end model because all

the components of a traditional speech recognizer are integrated into its parameters, and

optimized together during training, unlike end-to-end training of conventional models that

attempt to adjust acoustic models to work well with the other fixed components of a speech

recognizer [2, 3].

Our model was inspired by [62, 63] that showed how end-to-end recognition could be per-

formed on the TIMIT phone recognition task. We note a recent paper from the same group

that describes an application of these ideas to WSJ [64]. Our research was conducted in-

dependently, and we explore the challenges associated with the application of these ideas

to large scale conversational speech recognition on a Google voice search task. We defer a

discussion of the relationship between these and other methods to section 3.4.

3.2 Model

In this section, we formally describe LAS. Let x = (x1, . . . , xT ) be the input sequence of filter

bank spectra features and y = (⟨sos⟩, y1, . . . , yS, ⟨eos⟩) and each yi ∈ {a, · · · , z, 0, · · · , 9, ⟨space⟩,

⟨comma⟩, ⟨period⟩, ⟨apostrophe⟩, ⟨unk⟩} be the output sequence of characters. Here ⟨sos⟩

and ⟨eos⟩ are the special start-of-sentence token, and end-of-sentence tokens, respectively,

and ⟨unk⟩ are unknown tokens such as accented characters.

LAS models each character output yi as a conditional distribution over the previous charac-
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ters y<i and the input signal x using the chain rule for probabilities:

p(y|x) =
∏

i

p(yi|x, y<i) (3.1)

This objective makes the model a discriminative, end-to-end model, because it directly pre-

dicts the conditional probability of character sequences, given the acoustic signal.

LAS consists of two sub-modules: the listener and the speller. The listener is an acoustic

model encoder that performs an operation called Listen. The Listen operation transforms the

original signal x into a high level representation h = (h1, . . . , hU) with U ≤ T . The speller

is an attention-based character decoder that performs an operation we call AttendAndSpell.

The AttendAndSpell operation consumes h and produces a probability distribution over

character sequences:

h = Listen(x) (3.2)

p(yi|x, y<i) = AttendAndSpell(y<i,h) (3.3)

Figure 3.1 depicts these two components. We provide more details of these components in

the following sections.

3.2.1 Listen

The Listen operation uses a Bidirectional Long Short Term Memory RNN (BLSTM) [42,

65, 11] with a pyramidal structure. This modification is required to reduce the length U of

h, from T , the length of the input x, because the input speech signals can be hundreds to

thousands of frames long. A direct application of BLSTM for the operation Listen converged

slowly and produced results inferior to those reported here, even after a month of training

time. This is presumably because the operation AttendAndSpell has a hard time extracting

the relevant information from a large number of input timesteps.
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h = (h1, . . . , hU)
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yS−1

c1 c2

Speller

Listener

s1 s2

h h h

Figure 3.1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM
encoding our input sequence x into high level features h, the speller is an attention-based
decoder generating the y characters from h.

We circumvent this problem by using a pyramidal BLSTM (pBLSTM). In each successive

stacked pBLSTM layer, we reduce the time resolution by a factor of 2. In a typical deep

BLSTM architecture, the output at the i-th timestep, from the j-th layer is computed as

follows:

hj
i = BLSTM(hj

i−1, h
j−1
i ) (3.4)
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In the pBLSTM model, we concatenate the outputs at consecutive steps of each layer before

feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i−1,
[
hj−1

2i , hj−1
2i+1

]
) (3.5)

In our model, we stack 3 pBLSTMs on top of the bottom BLSTM layer to reduce the time

resolution 23 = 8 times. This allows the attention model (described in the next section)

to extract the relevant information from a smaller number of timesteps. In addition to

reducing the resolution, the deep architecture allows the model to learn nonlinear feature

representations of the data. See Figure 3.1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational complexity. The attention mecha-

nism in the speller has a computational complexity of O(US). Thus, reducing U speeds up

learning and inference significantly. Other neural network architectures have been described

in literature with similar motivations, including the hierarchical RNN [66], clockwork RNN

[67] and CNN [68].

3.2.2 Attend and Spell

The AttendAndSpell function is computed using an attention-based LSTM transducer [17,

63]. At every output step, the transducer produces a probability distribution over the next

character conditioned on all the characters seen previously. The distribution for yi is a

function of the decoder state si and context ci. The decoder state si is a function of the

previous state si−1, the previously emitted character yi−1 and context ci−1. The context
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vector ci is produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (3.6)

si = RNN(si−1, yi−1, ci−1) (3.7)

p(yi|x, y<i) = CharacterDistribution(si, ci) (3.8)

where CharacterDistribution is an MLP with softmax outputs over characters, and where

RNN is a 2 layer LSTM.

At each timestep, i, the attention mechanism, AttentionContext generates a context vector,

ci encapsulating the information in the acoustic signal needed to generate the next character.

The attention model is content based - the contents of the decoder state si are matched to

the contents of hu representing timestep u of h, to generate an attention vector αi. The

vectors hu are linearly blended using αi to create ci.

Specifically, at each decoder timestep i, the AttentionContext function computes the scalar

energy ei,u for each timestep u, using vector hu ∈ h and si. The scalar energy ei,u is converted

into a probability distribution over timesteps (or attention) αi using a softmax function. The

softmax probabilities are used as mixing weights for blending the listener features hu to the

context vector ci for output timestep i:

ei,u = ⟨ϕ(si), ψ(hu)⟩ (3.9)

αi,u = exp(ei,u)∑
u′ exp(ei,u′)

(3.10)

ci =
∑

u

αi,uhu (3.11)

where ϕ and ψ are MLP networks. After training, the αi distribution is typically very sharp

and focuses on only a few frames of h; ci can be seen as a continuous bag of weighted features

of h. Figure 3.1 shows the LAS architecture.
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3.2.3 Optimization

We train the parameters of our model to maximize the log probability of the correct se-

quences:

θ = max
θ

∑
i

log p(yi|x, y<i; θ) (3.12)

however, there is a mismatch between training and inference conditions. During inference

(i.e., beam search) we do not have access to the ground truth of the previously emitted

characters y<i. Consequently, the model is not robust to conditioning on errors that may

happen during beam search.

Additionally, the seq2seq framework (with the conditional dependency) makes it very easy

to overfit the training distribution. For example, in our initial experiments, we found it

is possible to train a seq2seq model (without attention) to achieve zero training error but

without any generalization. During inference, the model would just recall an utterance

verbatim from the training distribution.

We can ameliorate this issue by using a technique similar to scheduled sampling [69]. During

training, we sample and condition from predictions produced by our own model’s posterior.

This makes our model much more robust to our own model’s error produced during inference.

This technique will allow the model to be more robust to substitution errors but not insertion

or deletion errors.

θ̃ = max
θ

∑
i

log p(yi|x, ỹ<i; θ) (3.13)

where ỹi−1 is the ground truth previous character or a character randomly sampled (with

10% probability) from the model, i.e. CharacterDistribution(si−1, ci−1).

23



3.2.4 Decoding and Rescoring

During inference we want to find the most likely character sequence given the input acoustics:

ŷ = arg max
y

log p(y|x) (3.14)

We use a simple left-to-right beam search similar to [15].

We can also apply language models trained on large external text corpora alone, similar to

conventional speech systems [3]. We simply rescore our beams with the language model. We

find that our model has a small bias for shorter utterances so we normalize our probabilities

by the number of characters |y|c in the hypothesis and combine it with a language model

probability pLM(y):

s(y|x) = log p(y|x)
|y|c

+ λ log pLM(y) (3.15)

where λ is our language model weight and can be determined by a held-out validation set.

3.3 Experiments

We used a dataset with three million Google voice search utterances (representing 2000 hours

of data) for our experiments. Approximately 10 hours of utterances were randomly selected

as a held-out validation set. Data augmentation was performed using a room simulator,

adding different types of noise and reverberations; the noise sources were obtained from

YouTube and environmental recordings of daily events [37]. This increased the amount of

audio data by 20 times. 40-dimensional log-mel filter bank features were computed every

10ms and used as the acoustic inputs to the listener. A separate set of 22K utterances

representing approximately 16 hours of data were used as the test data. A noisy test data

set was also created using the same corruption strategy that was applied to the training data.
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All training sets are anonymized and hand-transcribed, and are representative of Googles

speech traffic.

The text was normalized by converting all characters to lower case English alphanumerics

(including digits). The punctuations: space, comma, period and apostrophe were kept,

while all other tokens were converted to the unknown ⟨unk⟩ token. As mentioned earlier, all

utterances were padded with the start-of-sentence ⟨sos⟩ and the end-of-sentence ⟨eos⟩ tokens.

The state-of-the-art model on this dataset is a CLDNN-HMM system that was described in

[37]. The CLDNN system achieves a WER of 8.0% on the clean test set and 8.9% on the

noisy test set. However, we note that the CLDNN uses unidirectional CLDNNs and would

certainly benefit from the use of a bidirectional CLDNN architecture.

For the Listen function we used 3 layers of 512 pBLSTM nodes (i.e., 256 nodes per direction)

on top of a BLSTM that operates on the input. This reduced the time resolution by 8 = 23

times. The Spell function used a two layer LSTM with 512 nodes each. The weights were

initialized with a uniform distribution U(−0.1, 0.1).

Asynchronous Stochastic Gradient Descent (ASGD) was used for training our model [70]. A

learning rate of 0.2 was used with a geometric decay of 0.98 per 3M utterances (i.e., 1/20-th

of an epoch). We used the DistBelief framework [70] with 32 replicas, each with a minibatch

of 32 utterances. In order to further speed up training, the sequences were grouped into

buckets based on their frame length [15].

The model was trained using groundtruth previous characters until results on the validation

set stopped improving. This took approximately two weeks. The model was decoded using

beam search with n-best list hypothesis kept where n = 32 and achieved 16.2% WER on

the clean test set and 19.0% WER on the noisy test set without any dictionary or language

model. We found that constraining the beam search with a dictionary had no impact on the

WER. Rescoring the top 32 beams with the same n-gram language model that was used by

the CLDNN system using a language model weight of λ = 0.008 improved the results for the
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Table 3.1: WER comparison on the clean and noisy Google voice search task. The CLDNN-
HMM system is the state-of-the-art system, the Listen, Attend and Spell (LAS) models are
decoded with a beam search and n = 32. Language Model (LM) rescoring was applied to our
beams, and a sampling trick was applied to bridge the gap between training and inference.

Model Clean WER Noisy WER
CLDNN-HMM [37] 8.0 8.9

LAS 16.2 19.0
LAS + LM Rescoring 12.6 14.7
LAS + Sampling 14.1 16.5
LAS + Sampling + LM Rescoring 10.3 12.0

clean and noisy test sets to 12.6% and 14.7% respectively. Note that for convenience, we did

not decode with a language model, but rather only rescored the top 32 beams. It is possible

that further gains could have been achieved by using the language model during decoding.

As mentioned in Section 3.2.3, there is a mismatch between training and testing. During

training the model is conditioned on the correct previous characters but during testing

mistakes made by the model corrupt future predictions. We trained another model by

sampling from our previous character distribution with a probability of 10% (we did not use

a schedule as described in [69]). This improved our results on the clean and noisy test sets

to 14.1% and 16.5% WER respectively when no language model rescoring was used. With

language model rescoring, we achieved 10.3% and 12.0% WER on the clean and noisy test

sets, respectively. Table 3.1 summarizes these results.

On the clean test set, this model is within 2.5% absolute WER of the state-of-the-art

CLDNN-HMM system, while on the noisy set it is less than 3.0% absolute WER worse.

We suspect that convolutional filters could lead to improved results, as they have been re-

ported to improve performance by 5% relative WER on clean speech and 7% relative on

noisy speech compared to non-convolutional architectures [37].
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Figure 3.2: Alignments between character outputs and audio signal produced by the Listen,
Attend and Spell (LAS) model for the utterance “how much would a woodchuck chuck”.
The content based attention mechanism was able to identify the start position in the audio
sequence for the first character correctly. The alignment produced is generally monotonic
without a need for any location based priors.

3.3.1 Attention Visualization

The content-based attention mechanism creates an explicit alignment between the characters

and audio signal. We can visualize the attention mechanism by recording the attention dis-

tribution on the acoustic sequence at every character output timestep. Figure 3.2 visualizes

the attention alignment between the characters and the filterbanks for the utterance “how

much would a woodchuck chuck”. For this particular utterance, the model learnt a monotonic

distribution without any location priors. The words “woodchuck” and “chuck” have acoustic

similarities, the attention mechanism was slightly confused when emitting “woodchuck” with

a dilution in the distribution. The attention model was also able to identify the start and
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end of the utterance properly.

In the following sections, we report results of control experiments that were conducted to

understand the effects of n in the beam search, utterance lengths and word frequency on the

WER of our model.

3.3.2 Effects of Beam Width

We investigate the correlation between the performance of the model and the n-best list

hypothesis size of the beam search, with and without the language model rescoring. Fig-

ure 3.3 shows the effect of the decode beam search n, β, on the WER for the clean test set.

We see consistent WER improvements by increasing the n up to 16, after which we observe

no significant benefits. At a n of 32, the WER is 14.1% and 10.3% after language model

rescoring. Rescoring the top 32 beams with an oracle produces a WER of 4.3% on the clean

test set and 5.5% on the noisy test set.
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Figure 3.3: The effect of the decode n-best hypothesis on WER for the clean Google voice
search task. The reported WERs are without a dictionary or language model, with language
model rescoring and the oracle WER for different beam search n. The figure shows that
good results can be obtained even with a relatively small beam size.
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3.3.3 Effects of Utterance Length

We measure the performance of our model as a function of the number of words in the

utterance. We expect the model to do poorly on longer utterances due to limited number of

long training utterances in our distribution. Hence it is not surprising that longer utterances

have a larger error rate. The deletions dominate the error for long utterances, suggesting we

may be missing out on words. It is surprising that short utterances (e.g., 2 words or less)

perform quite poorly. Here, the substitutions and insertions are the main sources of errors,

suggesting the model may split words apart.

Figure 3.4 also suggests that our model struggles to generalize to long utterances when

trained on a distribution of shorter utterances. It is possible location-based priors may help

in these situations as reported by [63].

3.3.4 Word Frequency

We study the performance of our model on rare words. We use the recall metric to indicate

whether a word appears in the utterance regardless of position (higher is better). Figure 3.5

reports the recall of each word in the test distribution as a function of the word frequency

in the training distribution. Rare words have higher variance and lower recall while more

frequent words typically have higher recall. The word “and” occurs 85k times in the training

set, however it has a recall of only 80% even after language model rescoring. The word “and”

is frequently mis-transcribed as “in” (which has 95% recall). This suggests improvements

are needed in the language model. By contrast, the word “walkerville” occurs just once in

the training set but it has a recall of 100%. This suggests that the recall for a word depends

both on its frequency in the training set and its acoustic uniqueness.
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Figure 3.4: The correlation between error rates (insertion, deletion, substitution and WER)
and the number of words in an utterance. The WER is reported without a dictionary or
language model, with language model rescoring and the oracle WER for the clean Google
voice search task. The data distribution with respect to the number of words in an utterance
is overlaid in the figure. LAS performs poorly with short utterances despite an abundance
of data. LAS also fails to generalize well on longer utterances when trained on a distribution
of shorter utterances. Insertions and substitutions are the main sources of errors for short
utterances, while deletions dominate the error for long utterances.

3.3.5 Qualitative Analysis

In this section, we show the outputs of the model on several utterances to demonstrate and

understand the capabilities of LAS. All the results in this section are decoded without a

dictionary or a language model.

During our experiments, we observed that LAS can learn multiple spelling variants given

the same acoustics. Table 3.2 shows top hypotheses for the utterance that includes “triple

a”. As can be seen, the model produces both “triple a” and “aaa” within the top four
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Figure 3.5: The correlation between word frequency in the training distribution and recall in
the test distribution. In general, rare words report worse recall compared to more frequent
words.

hypotheses. The decoder is able to generate such varied parses, because the next step

prediction model makes no assumptions on the probability distribution by using the chain

rule decomposition. It would be difficult to produce such differing transcripts using CTC

due to the conditional independence assumptions, where p(yi|x) is conditionally independent

of p(yi+1|x). Conventional DNN-HMM systems would require both spellings to be in the

pronunciation dictionary to generate both spelling permutations.

It can also be seen that the model produced “xxx” even though acoustically “x” is very

different from “a” - this is presumably because the language model overpowers the acoustic

signal in this case. In the training corpus “xxx” is a very common phrase and we suspect the

language model implicit in the speller learns to associate “triple” with “xxx”. We note that

“triple a” occurs 4 times in the training distribution and “aaa” (when pronounced “triple a”
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Table 3.2: Example 1: “triple a” vs. “aaa” spelling variants.

Beam Text Log Probability WER %
Truth call aaa roadside assistance - -

1 call aaa roadside assistance -0.5740 0.00
2 call triple a roadside assistance -1.5399 50.00
3 call trip way roadside assistance -3.5012 50.00
4 call xxx roadside assistance -4.4375 25.00
5 call chip away roadside assistance -4.4898 50.00
6 call aaa woodside assistance -5.1151 25.00
7 call trip way rhode side assistance -5.1471 100.00
8 call aaa rhode side assistance -5.3313 50.00
9 call trip away roadside assistance -5.6718 50.00
10 call aaa road side assistance -5.8003 50.00
11 call chip way roadside assistance -5.8925 50.00
12 call triple a rhode side assistance -5.9156 100.00
13 call tripoli roadside assistance -6.3010 25.00
14 call xxx woodside assistance -6.3451 50.00
15 call triple a road side assistance -6.6978 100.00
16 call aaa roadside -7.5878 25.00

rather than “a”-“a”-“a”) occurs only once in the training distribution.

We are also surprised that the model is capable of handling utterances with repeated words

despite the fact that it uses content-based attention. Table 3.3 shows an example of an

utterance with a repeated word. Since LAS implements content-based attention, it is ex-

pected to “lose its attention” during the decoding steps and produce a word more or less

times than the number of times the word was spoken. As can be seen from this example,

even though “seven” is repeated three times, the model successfully outputs “seven” three

times. This hints that location-based priors (e.g., location based attention or location based

regularization) may not be needed for repeated contents.

Table 3.4 gives the top hypothesis for the utterance “st mary’s animal clinic”. Note the

different parses for “saint” vs “st” and “mary’s” vs “marys”. Once again, this is due to the

conditional dependency of our model and the ability of the seq2seq framework to produce

multimodal distributions. Since the reference transcript expected “st” instead of “saint”
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Table 3.3: Example 2: Repeated “seven”s.

Beam Text Log Probability WER %
Truth eight nine four minus seven seven seven - -

1 eight nine four minus seven seven seven -0.2145 0.00
2 eight nine four nine seven seven seven -1.9071 14.29
3 eight nine four minus seven seventy seven -4.7316 14.29
4 eight nine four nine s seven seven seven -5.1252 28.57
5 eight nine four ninety seven seven seven -6.0537 14.29
6 eight nine four nine zero seven seven seven -6.5026 28.57
7 eight nine four seven seven seven -6.9038 14.29
8 eight nine four nine a seven seven seven -7.0844 28.57
9 eight nine four hundred seven seven seven -7.1271 14.29
10 eight nine four hundred minus seven seven seven -7.4677 14.29
11 eight nine five minus seven seven seven -7.4842 14.29
12 eight nine four minos seven seven seven -7.6443 14.29
13 eight nine four ninez seven seven seven -7.7647 14.29
14 eight nine four minus seven seven -7.8402 14.29
15 eight nine four nine seven seventy seven -7.8692 28.57
16 eight nine four five seven seven seven -7.8732 14.29

(which in our opinion is equally valid), our model scored 1 substitution error or 25% WER

for the utterance. The model learns the text normalization distribution as presented in the

training distribution. We note that DNN-HMM systems will typically rely on a handcrafted

text normalization rules based model to fix these problems.

3.4 Related Work

CTC has been shown to be an end-to-end speech recognition models going directly from

acoustics to text [11]. However, CTC models are limited by the conditional independence and

Markovian assumptions in their output tokens (see Chapter 2). Consequently, CTC models

must rely on a strong language model during decoding [71, 44, 72, 46, 47, 48, 49]. Even with

a deep RNN preceeding layer, CTC models can not learn multimodal distributions that our

LAS model can learn (i.e., see Section 3.3.5 above). Each CTC frame output prediction is

independent of neighbour prediction.
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Table 3.4: Example 2: “saint” vs. “st”, and apostrophe spelling variations.

Beam Decoded Text Log Probability WER %
Truth st mary’s animal clinic - -

1 saint mary’s animal clinic -0.4844 25.00
2 st mary’s animal clinic -1.0439 0.00
3 st marys animal clinic -4.0087 25.00
4 saint marys animal clinic -4.7760 50.00
5 st maries animal clinic -8.1787 25.00
6 say mary’s animal clinic -8.3186 25.00
7 saint mery animal clinic -8.5515 50.00
8 saint berry’s animal clinic -9.1439 50.00
9 saint mary animal clinic -9.1710 50.00
10 st mary’s -9.2880 50.00
11 st mary’s animal -9.3984 25.00
12 st marries animal clinic -9.4590 25.00
13 saint mary’s animal -9.5272 50.00
14 st mary animal clinic -9.6920 25.00
15 st marry animal clinic -9.7798 25.00
16 saint mary is animal clinic -10.0433 75.00

In practice, CTC models suffer the same problems as HMM based models, we must carry

around a n-gram language model. The LAS model we presented in this chapter does not

suffer the same assumptions. While we do benefit from the usage of a language model for

rescoring our hypothesis, our model still produces competitive results without any language

model which is not at all possible with CTC and HMM based models. This is due to the

intrinsic language model in the transducer, each output token is conditioned on previously

emitted tokens.

The model proposed here was inspired by previous work of [62, 63]. However, this work was

only done on TIMIT (which predicts phonemes) rather than characters as expected from

an end-to-end speech recognition model. Our model is a true end-to-end speech recognition

model as we go directly from acoustics to character outputs without needing to rely on

another model to convert the phonemes to words.

We also point the reader to [73, 64]. Both of these models use seq2seq with attention-based
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transducer as an end-to-end speech recognition model. Our work and [73, 64] were performed

concurrently and independently. Compared to [73], our work involved using a pyramidal

RNN in our encoder, which we showed was critical to achieving good model performance. [64]

used a hierarchical RNN with skip connections which is similar in principle to our pyramidal

RNN. We also used a sampling technique during training to improve generalization which

[64] did not use. However, compared to both [73, 64], we were able to show competitive

results to a state-of-the-art HMM based model while [73, 64] are still an order of magnitude

behind. We attribute this to the much large dataset we used (with 3 million utterances),

and consequently our model is able to learn a much stronger intrinsic language model.

Finally, multiple extensions of our LAS model have been recently published following our

work. This included online variants [74, 75], hard alignments using REINFORCE [76] and

joint CTC-LAS models [49].

3.5 Summary

We have presented Listen, Attend and Spell (LAS), a neural speech recognizer that can

transcribe acoustic signals to characters directly without using any of the traditional com-

ponents of a speech recognition system, such as HMMs, language models and pronunciation

dictionaries. We submit that it is not only an end-to-end trained system, but an end-to-end

model. LAS accomplishes this goal by making no conditional independence assumptions

about the output sequence using the sequence-to-sequence framework. This distinguishes it

from models like CTC, DNN-HMM and other models that can be trained end-to-end but

make various conditional independence assumptions to accomplish this. We showed how this

model learns an implicit language model that can generate multiple spelling variants given

the same acoustics. We also showed how an external language model, trained on additional

text, can be used to re-rank the top hypotheses. We demonstrated that such an end-to-end

model can be trained and be competitive with state-of-the-art CLDNN-HMM systems. We
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achieve 14.1% WER without the usage of any language model and 10.3% WER using only

language model rescoring, which compares to a well tuned CLDNN-HMM system of 8.0%

WER.
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Chapter 4

Chinese Mandarin

In the previous chapter, we presented an end-to-end ASR model for offline English Google

voice search. The model is offline due to the usage of bidirectional RNNs and the attention

mechanism needing to see the entire input sequence first. In this chapter, we focus on making

the model online and working with Chinese Mandarin. This chapter is based off the work

done in [75].

4.1 Model

We will describe our online attention model in this section. Our model closely relates to

end-to-end neural speech recognizer proposed in the previous chapter [14, 77]. The model

consists of two components, an encoder and an attention-based decoder, we will first describe

the encoder. Let x = (x0, . . . , xT ) be our input audio sequence (e.g., sequence of filter bank

spectra). We process the input signal x into higher level features h with an unidirectional

encoder RNN:

h = RNNEncoder(x) (4.1)
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where RNNEncoder is an unidirectional RNN network. We use a deep GRU [16] network

with hierarchical subsampling [66, 14, 77] for the RNNEncoder function. The hierarchical

subsampling allows the attention model (described below) to attend to fewer timesteps and

help prevent the attention alignment from being diluted. It also helps speed up the training

and inference computation since a single frame of h can span over many frames of x. See

Figure 4.1 for visualization. The main difference between the encoder of this chapter and

the previous chapter is the usage of unidirectional RNNs (rather than bidirectional), and the

usage of skip connections rather than pyramidal structure to create the hierarchical RNN

(for a more detailed empirical study on the different hierarchical subsampling mechanisms,

we defer the reader to [78]). We also used GRUs instead of LSTMs in this chapter (we also

defer the reader to [79] for a comparison of different RNN cells).

The decoder network generates a character sequence y = (y0, . . . , yU) with an attention-based

RNN:

sj = RNNDecoder(yj−1, sj−1, cj−1) (4.2)

where sj is the state of the decoder RNN and RNNDecoder is a GRU network in our ex-

periments. The context cj is generated by an AttentionContext mechanism from the RNN

decoder state sj and some encoder features wj:

cj = AttentionContext(sj,wj) (4.3)

For the AttentionContext function, we use a MLP attention mechanism [17]. First, we

compute the energies ei,j, then the normalized alignments αi,j between the decoder state sj

and encoder features wj. The context cj is the weighted bag of features over wj using the
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alignments α as the weights:

ej,i = ⟨v, tanh(ϕ(wi) + ψ(sj) + b)⟩ (4.4)

αj,i = exp(ej,i)∑
i exp(ej,i)

(4.5)

cj =
∑

i

αj,iwi (4.6)

where ϕ and ψ are MLP networks and v, b are weight vectors. The main difference between

this attention mechanism and the previous chapter is that we use a MLP network to generate

the attention energies as opposed to using the dot product (for a more detailed empirical

study on the different attention energy mechanisms, we defer the reader to [74]).

If wj = h [17, 14], then we have our standard attention-based seq2seq model as described

in the previous chapter, and the model is not decodable online as we need to wait for the

entire input acoustic signal to be seen before we can begin decoding. We follow an approach

similar to [77] and use a sliding window, we use the median of the previous alignment αj−1

to create a sliding window wj:

mj = median(αj−1) (4.7)

wj = {hmj−p, . . . , hmj+q} (4.8)

where mj is the median of the previous alignment, and p, q are the hyperparameters to our

window size. In our experiments we set p = 100 and q = 10. This means, we can start

decoding (and continue decoding) as long as the we have up till mj + q frames of h signal

available (since the RNNEncoder function is unidirectional).

The model produces a conditional distribution as a function over all previously emitted
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h1 h2

Figure 4.1: Hierarchical recurrent neural network: we subsample the inputs x to reduce the
time dimension into higher level features h.

characters and the sliding window of acoustic features wj:

p(yj|wj, y<j) = TokenDistribution(φ(sj, cj)) (4.9)

where φ is a MLP. We note that our model will likely have difficulties predicting the next

token if there is a large gap or silence between characters, for example if there was silence

for more than q frames. We however found this to not be a problem with the datasets we

experiment with. We also note the model in Equation 4.9 is non-Markovian, meaning we can

learn the language directly (which is much harder for CTC systems due to its conditional

independence assumption). However (as noted by [14]), the implicit language model learnt

is limited by the number of transcribed transcripts unlike n-gram or RNN LMs which can

leverage on any text data. See Figure 4.2 for visualization of our sliding window model.
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h = EncoderRNN(x) = {h1, . . . }

w = {hp, . . . , hq}

AttentionContext

x

cj

sliding window

Figure 4.2: Online Attention: The acoustic signal x is processed online by an unidirec-
tional RNN into features h. A sliding window wj as a function of the previous alignment
moves across h to be processed by the attention AttentionContext mechanism for the next
alignment.

4.2 Optimization

We follow the procedure described in the previous chapter. We optimize the parameters of

our model to maximize the log probability of the correct sequences:

θ = max
θ

∑
j

log p(yj|wj, ỹ<j; θ) (4.10)

where ỹi−1 is the ground truth previous character or a character randomly sampled (with

10% probability) from the model using the sampling procedure as described in the previous

chapter. We found the sampling technique important to help reduce overfitting.

4.3 Decoding

Unlike CTC systems, neural attention models can learn the language of our output tokens

due to the conditional dependency of previously emitted symbols y<j in Equation 4.9. As
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observed in the previous chapter and in [77], while LMs and beam search can improve results,

the improvement is small relative to CTC and HMM based systems. Thus, in this chapter

we focus on experiments that do not use any LMs or searching. We simply take the greedy

path of our conditional model in Equation 4.9:

ŷj = arg max
yj

p(yj|wj, y<j) (4.11)

We believe many applications will benefit from models that do not use searching, for example

on embedded platforms without GPUs and limited computation and memory capacity.

4.4 Joint Mandarin Character-Pinyin Model

We found the attention model difficult to converge with Mandarin data. The attention

mechanism has a difficult time learning the alignment and/or the decoder overfits to the

transcripts before the acoustic model encoder converges. We suspect this is due to Mandarin

using a logographic orthography and the Chinese characters give limited information on

the sounds of the spoken language. Additionally, the large vocabulary and the conditional

dependency of our model (unlike CTC which is conditionally independent [45, 80]) makes

learning a generalized model more difficult.

Mandarin characters can be readily transcribed to Pinyin, which is the romanization and a

(rough) phonetic representation with English characters using a Mandarin Pinyin dictionary.

The cost to transform the Mandarin characters to Pinyin is minimal and only consists of

a lookup. While we could build our ASR system to directly output Pinyin, such a system

is non-ideal as we would require another system to convert the Pinyin (with possible mis-

spellings) back into the Mandarin characters. We want our model to leverage the phonetic

Pinyin information readily available while still emitting Mandarin characters as our output.

We adapt our network architecture to jointly learn the Character and Pinyin transcriptions,
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and discard the Pinyin paths during inference (to be explicit, our model still only conditions

on the Mandarin characters and never conditions on the Pinyin). We extract the Pinyin

transcriptions using a dictionary [81] (without the tones). Each Mandarin character has

a phonetic Pinyin with a maximum Pinyin character length of 7. We pad each Pinyin

representation to be exactly length 7. Thus, for each Mandarin character yj, we can lookup

its Pinyin transcription zj = PinyinDictionary(yj) with each vector zj = (z1, . . . , z7). For

Out-of-Vocabulary (OOV) words in the Pinyin dictionary, we use the original character

zj,1 = yj. The Pinyin dictionary [81] models bigram of Mandarin characters, we thus greedily

use these transcriptions if available. Additionally, the dictionary may give multiple Pinyin

transcriptions for a Mandarin character, in this case we simply use the first transcription in

the dictionary.

We model the Pinyin characters with additional MLP networks as a function of the RNNDecoder

and attention states:

log p(zj|wj, y<j) =
∑

k

log TokenDistribution(φk(sj, cj)) (4.12)

where yj are the Mandarin characters and φk are MLPs modelling the Pinyin characters.

We jointly optimized the model to learn the Mandarin character and the Pinyin representa-

tion. We do not condition on the Pinyin characters, thus we only use the Pinyin information

during training. During inference we discard the Pinyin outputs and only read off the Man-

darin softmax outputs. The joint Mandarin Character-Pinyin model optimization objective

is the joint probability of the Mandarin characters yj and Pinyin zj:

max
θ

∑
i

log p(yj|wj, ỹ<i; θ) + log p(zj|w, ỹ<i; θ) (4.13)

The motivation of providing the Pinyin information is not to give the model perfect pro-

nunciation information, but rather to give it some (possibly noisy) information on how each
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yj−1 yj yj + 1

w

yj+1 zj,1 zj,7

AttentionContext

Figure 4.3: Joint Mandarin Character-Pinyin decoder: we model the Mandarin character
yj and Pinyin zj = (zj,1, . . . , zj,7) together in the decoder RNN. The sliding window w of
encoder features is from Figure 4.2. The AttentionContext function consumes the window
w to produce a context to emit the character or Pinyin outputs and update the RNN state.

Mandarin character is pronounced. We hypothesize that this additional pronunciation infor-

mation can be backpropagated to the encoder and learn a more generalized model. Without

the additional Pinyin information, we hypothesize the decoder would very easily overfit to

the training transcripts without using the acoustics. We leverage on the explicit alignment

(as opposed to implicit alignment of CTC) to inject this additional pronunciation informa-

tion into the model. We also hypothesize that if we had sufficient data, we would not need

this technique [43, 14].

4.5 Experiments

We experimented with English Wall Street Journal (WSJ) and GALE Mandarin datasets.

We tried to use similar hyperparameters and models between the two datasets, however there

are some minor differences as described below.
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First, we used AdaDelta [82], we found it converges much more quickly than Stochastic

Gradient Descent (SGD) even with acceleration [83]. We used AdaDelta with ρ = 0.95 and

ϵ = 1e−8 to optimize our model, however we may lower the value of ϵ as training progresses

and described in the later subsections below. Despite AdaDelta’s decay, we found resetting

(i.e., zero out) the AdaDelta accumulators E[g2] and E[∆xt] after each epoch to help with

the optimization. We clipped the gradients to have a maximum norm of 1.

We initialized all the weighted connection matrices of our model with uniform distribution

U(−0.1, 0.1), and for our embedding matrix we used a uniform distribution U(−
√

3,
√

3).

We initialized the GRU update and reset gate bias to one and all other biases to zero. We

imposed a max column norm of 1 for all our weight matrices after each update [84].

If our EncoderRNN is a hierarchical RNN, then our model may overfit towards the subsam-

pling permutations of our architecture. We follow an approach typically found in computer

vision [85], we randomly add up to f frames of input delay to our acoustic signal, where f

is the subsampling factor of the EncoderRNN (e.g., f = 4 for English WSJ).

4.5.1 Wall Street Journal

We first ran experiments on Wall Street Journal (WSJ) (available as LDC93S6A and LDC94S13A).

We used the si284 as the training set, dev93 as the validation set and eval92 as the test set.

We observe the WER of the validation set after epoch and stop training when the validation

WER no longer improves. We used 40 dimensional filterbanks with energies, delta and delta-

delta coefficients (total 123 dimensional features). We follow [11] in text normalization, our

token output space consists of the English alphabets, space and punctuations.

We used 384 GRU cells for the encoder, with 3 layers, and the last two layers being hierar-

chical subsampling layers with a factor of two (i.e., in total the encoder reduces the frame

rate by 4 = 22). The decoder is a 2 layer attention-based RNN with 256 GRU cells. We

trained the model for around 30 epochs, after 10 epochs we manually lowered the AdaDelta
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Table 4.1: Wall Street Journal WERs: We train end-to-end WSJ models without LMs or
searching. Compared to online CTC, our attention model has a 14% relative reduction in
WER.

Model WER %

Hybrid-HMM Models
DNN-HMM [3] 3.8
RNN-HMM [14] 3.5

Offline Character Models
CTC (Graves et al., 2014) [11] 30.1
CTC (Hannun et al., 2014) [86] 35.8
seq2seq + Attention + Conv (Bahdanau et al., 2016) [77, 87] 21.3
seq2seq + Attention + TLE (Bahdanau et al., 2015) [87] 18.8
seq2seq + Attention + Noise (Chan et al., 2016) [88] 14.8

Online Character Models
CTC (Hwang et al., 2016) [72] 38.4
Online Attention (this work) 33.0

ϵ several times to a final value of ϵ = 1e− 15.

Table 4.1 gives the WER of our online attention model as well as a comparison to several

other models. First, our online attention model achieves a 33.0% WER without LMs or

searching. This compares to 21.3% WER without LMs or searching trained on cross entropy

or 18.8% WER trained with Task Loss Estimation (TLE), both of which are offline models

[87]. It is clear the offline networks perform much better for this task, we also note that

[77, 87] has a convolutional location-based attention mechanism which our model does not

have. The offline seq2seq model with attention achieves 14.8% WER is with variational noise

which we did not have in this set of experiments [88]. Our online attention model however

does outperform online CTC models [72] which achieved 38.4% WER or a 5.4% absolute

improvement.

However, compared to the state-of-the-art HMM models [14] (with trigram LMs), the online

end-to-end ASR models are still significantly behind. We believe more data would ameliorate

this issue, as the attention-based end-to-end models are much more powerful and overfit much

46



more easily [14].

4.5.2 GALE Mandarin

We also experimented with the GALE Phase 2 Chinese Broadcast News Speech (LDC2013S08

and LDC2013T20). We used the exact same train (about 104 hrs) and test (about 6 hrs)

split as in the Kaldi s5 recipe [3]. We used 40 dimensional filterbanks with energies as our

input features. For the encoder, we used 384 GRU cells with 2 layers. We used hierarchical

subsampling with a factor of 2 for the second layer only. We also used “super-frames” [89]

stacking 16 frames with a stride of 4. The combination of the subsampling and superframes

greatly decreased our encoder feature dimensions and consequently our training time as well.

The decoder is a 1 layer attention-based RNN with 256 GRU cells. We trained the model

for approximately 20 epochs until convergence.

Table 4.2 gives an overview of our experimental results in CER. We achieved a 72% CER

in our online end-to-end Mandarin model, which compares to 18.5% CER for a Kaldi DNN-

HMM system. We spent considerable effort in hyperparameter tuning including optimization

and regularization hyperparmeters, however we were unable to improve the results of the

Mandarin only model. We suspect the large vocabulary (around 4000 Chinese characters)

with relatively limited training data [14] made the mode difficult to learn and generalize

well.

We trained a joint Character-Pinyin model and the benefits of adding the Pinyin information

into the training process was obvious. We achieved a CER of 59.3% for our joint Mandarin

Character-Pinyin or 12.7% absolute improvement over the character only model. Mandarin

characters generally have limited phonetic information (i.e., the strokes), especially since our

input is Chinese characters (as opposed to the strokes or pixels of the characters) whereas the

Pinyin transcription more closely matches the phonetic representation of Mandarin speech.

The neural network model is able to leverage this additional phonetic information. While
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Table 4.2: GALE Mandarin CERs: We train end-to-end Mandarin models without LMs
or searching. The Pinyin model uses the Pinyin phonetic information during training, but
discards it during inference.

Model CER %

DNN-HMM [90] 18.5

Online Attention Character 72.0
Online Attention Character + Pinyin 59.3

we do use the additional Pinyin information during training, our model does not condition

on the Pinyin and thus has the exact same model architecture (and inference cost) as the

Mandarin Character only model.

Finally, without any attempt on minimizing the model size (e.g., SVD, projection layers or

quantization [91, 92]) we note that both English and Mandarin models are less than 64 MiB

in size. We believe future research in this area can lead to extremely compact ASR models

applicable for embedded devices.

4.6 Related Work

Recently there has been much interest in end-to-end ASR models for Chinese Mandarin

[45, 46]. However, other work has focused on CTC based methods. CTC may actually be

more ideal for Chinese Mandarin compared to English. The mapping between acoustics to

Chinese characters is many-to-one, while the mapping from acoustics to English characters is

many-to-many. This property yields less advantage of the reordering abilities of the seq2seq

model (as shown in the previous chapter). Additionally, Chinese may not benefit as much

from a language model, as the language has much less long term dependencies compared to

English characters [80]. Future work should involve a detailed study of the two models on

the same dataset, as most publications have used different Chinese speech datasets [45, 80,

46].

48



It should be noted our joint Character-Pinyin training methodology can not be applied

to CTC directly. While it is possible to optimize for both sequences using separate CTC

layers, it is intractable to learn the Pinyin per Chinese character. This is due to the implicit

alignment generated by the CTC model is latent, an approximate inference algorithm would

be needed. This could be seen as a benefit to an explicit alignment model such as seq2seq.

4.7 Summary

In this chapter, we presented an online end-to-end speech recognition model based on

attention-based neural networks. Our models do not rely on any pronunciation dictionaries,

language models or searching during inference. On English, our model achieves a WER of

33.0% on WSJ, or an 5.4% absolute improvement over an online end-to-end CTC system

[72]. On Chinese Mandarin models, we show how to build a joint Character-Pinyin model,

combining the available Pinyin transcriptions to our end-to-end character model. The joint

model does not condition on the extra Pinyin information and is only used during training.

For the GALE Phase 2 Chinese Broadcast News Speech evaluation, we achieved a CER of

72.0% for our character only model. With our joint Character-Pinyin model, we achieve a

CER of 59.3% or a 12.7% CER improvement over the character model only.

49



50



Chapter 5

Latent Sequence Decompositions

In the previous chapters, we assumed a fixed deterministic decomposition for each output

sequence. For example, in Chapter 3 our output sequence was a sequence of English charac-

ters, and in Chapter 4 our output sequence was a sequence of Chinese Mandarin characters.

In this chapter, we emit word pieces rather (as opposed to English characters), and we learn

multiple decompositions for the same sequence. We will show state-of-the-art results on the

Wall Street Journal task. This chapter is based off of publications in [88, 93].

5.1 Motivation

Previous seq2seq work has assumed a fixed deterministic decomposition for each output

sequence. The output representation could be a fixed sequence of words [15, 16], phonemes

[63], characters [14, 64] or even a mixture of characters and words [57]. However, in all these

cases, the models are trained towards one fixed decomposition for each output sequence.

We argue against using fixed deterministic decompositions of a sequence defined a priori.

Word segmented models [50, 51] often have to deal with large softmax sizes, rare words and

Out-of-Vocabulary (OOV) words. Character models [14, 64] overcome the OOV problem by

modelling the smallest output unit, however this typically results in long decoder lengths and
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expensive inference runtimes. And even with mixed (but fixed) character-word models [57],

it is unclear whether such a predefined segmentation is optimal. In all these examples, the

output decomposition is only a function of the output sequence, but shouldn’t the output

decomposition be a function of the input sequence as well?

We want our model to have the capacity and flexibility to learn a distribution of sequence

decompositions. Additionally, the decomposition should be a sequence of variable lengthed

chunks as deemed most probable. For example, language may be more naturally represented

as word pieces [94, 95] rather than individual characters. In many speech and language

tasks, it is probably more efficient to model “qu” as one output unit rather than “q” + “u”

as separate output units (since in English, “q” is almost always followed by “u”). Word

piece models also naturally solve rare word and OOV problems similar to character models.

Evidence has been shown in [95] that word piece decompositions may be better than character

or word decompositions in Machine Translation (MT).

The output sequence decomposition should be a function of both the input sequence and the

output sequence (rather than output sequence alone). For example, in speech, the choice

of emitting “ing” as one word piece or as separate tokens of “i” + “n” + “g” should be a

function of the current output word as well as the audio signal (i.e., speaking style).

We present the Latent Sequence Decompositions (LSD) framework. LSD does not assume a

fixed decomposition for an output sequence, but rather we learn to decompose sequences as

function of both the input and output sequence. Each output sequence can be decomposed

to a set of latent sequence decompositions using variable lengthed units. The LSD framework

produces a distribution over the latent sequence decomposition space and marginalizes over

them during training. During test inference, we can do approximate inference and a beam

search decoding algorithm is presented.
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5.2 Learning the Decompositions

In this section, we will describe and formalize the LSD framework. Let x be our input

sequence, y be our output sequence and z be some latent sequence decomposition of y. The

latent sequence decomposition z consists of a sequence of zi ∈ Z where Z is the constructed

token space. Each token zi need not be the same length, but rather in our framework, we

expect the tokens to have different lengths; for example, Z ⊆ Cn where C is the set of smallest

output unit and n is the cartesian power. In ASR , C would typically be the set of English

characters, while Z would be word pieces (i.e., n-grams of characters). Consequently, a latent

sequence decomposition length |za| need not to be the same length as |y|, nor with another

latent sequence decomposition |zb|. We also define a collapsing function y = collapse(z)

when some decomposition z collapses to y. For any non-trivial y and Z, the set of valid

decompositions {z : collapse(z) = y} has an exponential number of permutations.

If we knew the best possible segmentation z∗ for a given (x,y∗) pair, we could just train

towards the fixed deterministic decomposition z∗ and be done. However, in most problems,

we don’t know the best possible z∗ decomposition. For example, in end-to-end ASR we

typically use characters as the output unit of choice [14, 64]. However, word pieces might be

better units as they more closely align to the acoustics, yet we usually don’t know the best

z∗ decomposition of word pieces for a given (x,y∗) pair. Given a particular y∗, the best z∗

could even change depending on the input sequence x (i.e., speaking style).

We want to learn a probabilistic segmentation mapping from x → z → y. The LSD frame-

work produces a distribution of decompositions z given an input sequence x, and the objective

is to maximize the log-likelihood of the ground truth sequence y∗. We can accomplish this

by factorizing and marginalizing over all possible z latent sequence decompositions under
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our model p(z|x; θ) with parameters θ:

log p(y∗|x; θ) = log
∑

z
p(y∗, z|x; θ) (5.1)

= log
∑

z
p(y∗|z,x)p(z|x; θ) (5.2)

= log
∑

z
p(y∗|z)p(z|x; θ) (5.3)

where p(y∗|z) = 1(collapse(z) = y∗) captures path decompositions z that collapses to y∗.

Due to the exponential number of decompositions of y, exact inference and search is in-

tractable for any non-trivial Z output spaces and |z| sequence lengths. We describe a beam

search algorithm to do approximate inference decoding in Section 3.2.4.

Similarly, computing the exact gradient is intractable. However, we can derive a gradient

estimator by differentiating w.r.t. to θ and taking its expectation:

∂

∂θ
log p(y∗|x; θ) = 1

p(y∗|x; θ)
∂

∂θ

∑
z

p(y∗|z)p(z|x; θ) (5.4)

= 1
p(y∗|x; θ)

∑
z

p(y∗|z)∇θp(z|x; θ) (5.5)

= 1
p(y∗|x; θ)

∑
z

p(y∗|z)p(z|x; θ)∇θ log p(z|x; θ) (5.6)

= 1
p(y∗|x; θ)

Ez∼p(z|x;θ) [p(y∗|z)∇θ log p(z|x; θ)] (5.7)

Equation 5.6 uses the identity ∇θfθ(x) = fθ(x)∇θ log fθ(x) assuming fθ(x) ̸= 0 ∀ x. Also,

noting that p(y∗|z) = 1(collapse(z) = y∗), consequently we can change our expectation in

Equation 5.7 to sample only valid z decompositions and scale the gradient accordingly by

the ratio of correct decompositions p(y∗|x; θ):

= 1
p(y∗|x; θ)

p(y∗|x; θ)Ez∼p(z|x;θ)|z∈{z′:p(y∗|z′)=1} [∇θ log p(z|x; θ)] (5.8)

= Ez∼p(z|x;θ)|z∈{z′:collapse(z′)=y∗} [∇θ log p(z|x; θ)] (5.9)
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Equation 5.9 gives us an unbiased estimator of our gradient. It tells us to sample some

latent sequence decomposition z ∼ p(z|x; θ) under our model’s posterior such that z ∈ {z′ :

collapse(z′) = y∗} where z is a valid sequence that collapses to y∗ and backprop its derivative

∇θ log p(z|x; θ). In our implementation, the model p(z|x) can be decomposed with the chain

rule (i.e., seq2seq models). We use ancestral sampling in a left-to-right fashion costing O(n)

runtime at each output step, where n is the length of the longest token in Z. This left-to-right

sampling procedure is computationally efficient but biased towards longer decompositions.

In practice, we find that the biased gradient without any entropy regularization or exploration

techniques, the model will quickly collapse and never escape from a local minima. In our

ASR experiments, we found the model to collapse to the character distribution and almost

never emit any (n > 2) sized word pieces (where n is the n-gram of characters). However, one

notable exception is the word piece “qu” (“u” is almost always followed by “q” in English).

The model does learn to consistently emit “qu” as one token and never produce “q” + “u”

as separate tokens. We ameliorate this issue by adding an ϵ-greedy exploration strategy

commonly found in reinforcement learning literature [96].

5.3 Model

In this work, we model the latent sequence decompositions p(z|x) with an attention-based

seq2seq model [17]. Each output token zi is modelled as a conditional distribution over all

previously emitted tokens z<i and the input sequence x using the chain rule:

p(z|x; θ) =
∏

i

p(zi|x, z<i) (5.10)

The input sequence x is processed through an EncodeRNN network. The EncodeRNN func-

tion transforms the features x into some higher level representation h. In our experimental

implementation EncodeRNN is a stacked Bidirectional LSTM (BLSTM) [97, 65] with hier-
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archical subsampling [66, 67]:

h = EncodeRNN(x) (5.11)

The output sequence z is generated with an attention-based transducer [17] one zi token at

a time:

si = DecodeRNN([zi−1, ci−1], si−1) (5.12)

ci = AttentionContext(si,h) (5.13)

p(zi|x, z<i) = TokenDistribution(si, ci) (5.14)

The DecodeRNN produces a transducer state si as a function of the previously emitted token

zi−1, previous attention context ci−1 and previous transducer state si−1. In our implementa-

tion, DecodeRNN is a LSTM [42] function without peephole connections.

The AttentionContext function generates ci with a content-based MLP attention network

[17]. Energies ei are computed as a function of the encoder features h and current transducer

state si. The energies are normalized into an attention distribution αi. The attention context

ci is created as a αi weighted linear sum over h:

ei,j = ⟨v, tanh(ϕ(si, hj))⟩ (5.15)

αi,j = exp(ei,j)∑
j′ exp(ei,j′)

(5.16)

ci =
∑

j

αi,jhj (5.17)

where ϕ is linear transform function. TokenDistribution is a MLP function with softmax

outputs modelling the distribution p(zi|x, z<i).
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5.4 Decoding

During inference we want to find the most likely word sequence given the input acoustics:

ŷ = arg max
y

∑
z

log p(y|z)p(z|x) (5.18)

however this is obviously intractable for any non-trivial token space and sequence lengths. We

simply approximate this by decoding for the best word piece sequence ẑ and then collapsing

it to its corresponding word sequence ŷ:

ẑ = arg max
z

log p(z|x) (5.19)

ŷ = collapse(ẑ) (5.20)

We approximate for the best ẑ sequence by doing a left-to-right beam search similar to

Chapter 3 and Chapter 4. We found this crude approximation to work. However, we believe

future work should improve on this search process.

5.5 Experiments

We experimented with the Wall Street Journal (WSJ) ASR task. We used the standard

configuration of train si284 dataset for training, dev93 for validation and eval92 for test

evaluation. Our input features were 80 dimensional filterbanks computed every 10ms with

delta and delta-delta acceleration normalized with per speaker mean and variance as gen-

erated by Kaldi [3]. The EncodeRNN function is a 3 layer BLSTM with 256 LSTM units

per-direction (or 512 total) and 4 = 22 time factor reduction. The DecodeRNN is a 1 layer

LSTM with 256 LSTM units. All the weight matrices were initialized with a uniform dis-

tribution U(−0.075, 0.075) and bias vectors to 0. Gradient norm clipping of 1 was used,

Gaussian weight noise N (0, 0.075) and L2 weight decay 1e−5 [98]. We used ADAM with the
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Table 5.1: Wall Street Journal test eval92 Word Error Rate (WER) varying the n sized word
piece vocabulary without any dictionary or language model. We compare Latent Sequence
Decompositions (LSD) versus the Maximum Extension (MaxExt) decomposition. The LSD
models all learn better decompositions compared to the baseline character model, while the
MaxExt decomposition appears to be sub-optimal.

n LSD WER % MaxExt WER %
Baseline 14.76

2 13.15 15.56
3 13.08 15.61
4 12.88 14.96
5 13.52 15.03

default hyperparameters described in [99], however we decayed the learning rate from 1e−3

to 1e−4. We used 8 GPU workers for asynchronous SGD under the TensorFlow framework

[100]. We monitor the dev93 Word Error Rate (WER) until convergence and report the

corresponding eval92 WER. The models took O(5) days to converge.

We created our token vocabulary Z by looking at the n-gram character counts of the training

dataset. We explored n ∈ {2, 3, 4, 5} and took the top {256, 512, 1024} tokens based on their

count frequencies (since taking the full n-cartesian exponent of the unigrams would result in

an intractable number of tokens for n > 2). We found very minor differences in WER based

on the vocabulary size, for our n = {2, 3} word piece experiments we used a vocabulary

size of 256 while our n = {4, 5} word piece experiments used a vocabulary size of 512.

Additionally, we restrict ⟨space⟩ to be a unigram token and not included in any other word

pieces, this forces the decompositions to break on word boundaries. We decoded with the

left-to-right beam search described in Section 5.4. We kept n = 16 best hypothesis in the

search process.

Table 5.1 compares the effect of varying the n sized word piece vocabulary. The Latent Se-

quence Decompositions (LSD) models were trained with the framework described in Section

5.2 and the Maximum Extension (MaxExt) models were trained using a greedy left-to-right

longest word piece decomposition. The MaxExt decomposition is not the shortest |z| pos-
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Figure 5.1: Character coverage of the word piece models. We train Latent Sequence Decom-
positions (LSD) and Maximum Extension (MaxExt) models with n ∈ {2, 3, 4, 5} sized word
piece vocabulary and measure the character coverage of the word pieces. Both the LSD and
MaxExt models prefer to use n ≥ 2 sized word pieces to cover the majority of the characters.
The MaxExt models prefers longer word pieces to cover characters compared to the LSD
models.

sible sequence, however it is a deterministic decomposition that can be easily generated in

linear time on-the-fly. We decoded these models with simple n-best list beam search without

any external dictionary or language model.

The baseline model is simply the unigram or character model and achieves 14.76% WER.

We find the LSD n = 4 word piece vocabulary model to perform the best at 12.88% WER

or yielding a 12.7% relative improvement over the baseline character model. None of our

MaxExt models beat our character model baseline, suggesting the maximum extension de-

composition to be a poor decomposition choice. However, all our LSD models perform better

than the baseline suggesting the LSD framework is able to learn a decomposition better than

the baseline character decomposition.
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We also look at the word character coverage based on the word piece lengths during inference

across different n sized word piece vocabulary used in training. We define word character

coverage as the percentage of characters covered by the set of word pieces with the same

length across the test set, and we exclude ⟨space⟩ in this statistic. Figure 5.1 plots the

distribution of the {1, 2, 3, 4, 5}-ngram word pieces the model decides to use to decompose

the sequences. When the model is trained to use the bigram word piece vocabulary, we

found the model to prefer bigrams (55% of the characters emitted) over characters (45%

of the characters emitted) in the LSD decomposition. This suggest that a character only

vocabulary may not be the best vocabulary to learn from. Our best model, LSD with n = 4

word piece vocabulary, covered the word characters with 42.16%, 39.35%, 14.83% and 3.66%

of the time using 1, 2, 3, 4 sized word pieces respectively. In the n = 5 word piece vocabulary

model, the LSD model uses the n = 5 sized word pieces to cover approximately 2% of the

characters. We suspect if we used a larger dataset, we could extend the vocabulary to cover

even larger n ≥ 5.

The MaxExt models were trained to greedily emit the longest possible word piece, conse-

quently this prior meant the model will prefer to emit long word pieces over characters.

While this decomposition results in the shorter |z| length, the WER is slightly worse than

the character baseline. This suggests the much shorter decompositions generated by the

MaxExt prior may not be best decomposition. This falls onto the principle that the best z∗

decomposition is not only a function of y∗ but as a function of (x,y∗). In the case of ASR,

the segmentation is a function of the acoustics as well as the text.

Table 5.2 compares our WSJ results with other published end-to-end models. The best

CTC model achieved 27.3% WER with REINFORCE optimization on WER [11]. The

previously best reported basic seq2seq model on WSJ WER achieved 18.0% WER [87] with

Task Loss Estimation (TLE). Our baseline, also a seq2seq model, achieved 14.8% WER. Main

differences between our models are that we did not use convolutional locational-based priors
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Table 5.2: Wall Street Journal test eval92 Word Error Rate (WER) results across Con-
nectionist Temporal Classification (CTC) and Sequence-to-sequence (seq2seq) models. The
Latent Sequence Decomposition (LSD) models use a n = 4 word piece vocabulary. The
Convolutional Neural Network (CNN) model is with deep residual connections, batch nor-
malization and convolutions. The best end-to-end model seq2seq + LSD + CNN at 10.6%
WER.

Model WER %
Graves et al., 2014 [11]

CTC 30.1
CTC + WER 27.3

Hannun et al., 2014 [86]
CTC 35.8

Bahdanau et al., 2015a [64]
seq2seq 18.6

Bahdanau et al., 2015b [87]
seq2seq + TLE 18.0

Yu et al., 2016 [93]
seq2seq + CNN 11.8

Our Work
seq2seq 14.76
seq2seq + LSD 12.88
seq2seq + LSD + CNN 10.6

and we used weight noise during training. The deep CNN model with residual connections,

batch normalization and convolutions achieved a WER of 11.8% [93].

Our LSD model using a n = 4 word piece vocabulary achieves a WER of 12.9% or 12.7%

relatively better over the baseline seq2seq model. If we combine our LSD model with the

CNN [93] model, we achieve a combined WER of 10.6% WER or 28.4% relatively better over

the baseline seq2seq model. These numbers are all reported without the use of any language

model.
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Decompositions

Here in Table 5.3, we give the top 8 hypothesis generated by a baseline seq2seq character

model, a Latent Sequence Decompositions (LSD) word piece model and a Maximum Exten-

sion (MaxExt) word piece model. We note that “shamrock’s” is an out-of-vocabulary word

while “shamrock” is in-vocabulary. The ground truth is “shamrock’s pretax profit from the

sale was one hundred twenty five million dollars a spokeswoman said”. Note how the LSD

model generates multiple decompositions for the same word sequence, this does not happen

with the MaxExt model.

5.6 Related Work

Recently, there has been work in MT to use a mixture of words and characters [57], or even

a mixture of words and word pieces [101] to handle Out-of-Vocabulary (OOV) words and

rare words. [95] showed in MT that using word pieces derived from a language model [94]

can yield state-of-the-art results compared to character and word models. However, in all

these work, the models assume a fixed deterministic decomposition of the word sequence –

for example the decomposition are prescribed by a word piece language model [94]. In our

work, we do not assume a fixed deterministic decomposition, but rather we marginalize over

all possible decompositions. The decompositions we generate are also a function of both the

input sequence and output sequence (as opposed to output sequence alone).

[102] used latent codes to generate text, and assume conditional independence and thus

leverage on dynamic programming for exact inference. Such models can not learn the output

language if the language distribution is complex and multimodal. Our model makes no such

Markovian assumptions and can learn multimodal output distributions. [103] used seq2seq

to outputs sets, the output sequence is unordered and used fixed length output units; in our

decompositions we maintain ordering and use variable lengthed output units.

62



5.7 Summary

We presented the Latent Sequence Decompositions (LSD) framework. LSD allows us to

learn decompositions of sequences. LSD learns a distribution of decompositions, the decom-

positions are a function of both the input and output sequence. We presented a training

algorithm based on sampling valid extensions and an approximate decoding algorithm. On

the Wall Street Journal speech recognition task, the sequence-to-sequence character model

achieves 14.8% WER while the LSD model achieves 12.9%. If we combine our LSD model

with a deep convolutional neural network on the encoder, we achieve 10.6% WER.
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Chapter 6

Conclusion

In this thesis we have presented end-to-end speech recognition models. Our models jointly

learn all the traditional components of a speech recognizer (acoustic, pronunciation, lan-

guage, text normalization). We submit our model is not only an end-to-end trained system,

but also an end-to-end model. We accomplish this by making no conditional independence

or Markovian assumptions about the distribution of our output sequence. This distinguishes

from CTC and HMM based models that can be trained end-to-end but is not a true end-to-

end model as they must rely heavily on an external language model.

On the Google voice search task, we show our model can be competitive to state-of-the-art

HMM based systems (Chapter 3). We show our model to be able to learn multimodal output

distributions given the acoustics. For example, our model can generate “triple a” vs “aaa”

in our top 2 hypotheses due to the conditional dependency of our model. This is likely

not possible in a CTC or HMM based system without special handcrafted dictionaries or

a very strong language model. We achieve 14.1% WER without the usage of any language

model and 10.3% WER using only language model rescoring, which compares to a well tuned

CLDNN-HMM system of 8.0% WER.

We also show our model can be made online, search-free and applied to Chinese Mandarin
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(Chapter 4). We show how to jointly optimize the Mandarin Character output sequence

with the Mandarin Pinyin sequence. We show how this can improve the final CER results.

On the GALE Mandarin evaluation, we achieve 72.0% CER with an online end-to-end model

without any searching, and with the joint Pinyin training we achieve 59.3% CER.

Finally, we show how to train our models to emit word pieces and learn multiple decom-

positions of the output sequence as a function of the input sequence and output sequence

(Chapter 5). We show state-of-the-art results on the Wall Street Journal task when com-

pared to other end-to-end models without using an explicit language model. We achieve

12.88% WER with our latent sequence decomposition model, which compares to a sequence-

to-sequence baseline of 14.76% WER and a CTC models achieve 27.3% WER.

We believe the research in our thesis will spur further research into end-to-end speech recog-

nition models. The engineering simplicity in training and inference is very beneficial for

many tasks – especially in embedded platforms where we can not carry around n-gram lan-

guage models. Ultimately, we believe end-to-end speech recognition models will outperform

CTC and HMM based systems. We already show competitive results on the Google voice

search task, and we believe one of the key missing ingredients is simply more data.

6.1 Future Work

Research is never ending process. In this final section of our thesis, we highlight a few

promising areas to advance end-to-end speech recognition models:

1. More Data. In Chapter 3 we showed competitive results on the Google voice search

task (with approximately 2000 hours of training data) compared to state-of-the-art

HMM based models. However, in Chapter 5, despite a more powerful latent sequence

decomposition model, the performance gap between our end-to-end model and HMM

based systems grew on the Wall Street Journal task (with approximately 100 hours

of training data). Our hypothesis is that our model is simply too powerful, and too
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easy to overfit (i.e., unlike CTC and HMM based systems, we do not make conditional

independence assumptions). We believe our model will simply scale better on larger

datasets.

2. Task Loss Optimization. In our work, we mostly only optimized for log probability

which is not the true metric we care about. The log probability objective assumes we

condition on the ground truth prefix and does not optimize for the relative rankings of

the hypothesis. While our error sampling method alleviates some of these assumptions,

they only fix for substitution errors and not insertion or deletion errors. Additionally,

our optimization loss does not account for the beam search that happens in inference.

Future work should optimize directly for WER. Evidence has already been shown

that optimizing directly for the task loss with reinforcement learning may yield better

models [104, 87].

3. Learning the Network Latent Structure. In all our experiments, we used a fixed

computational network graph. Our neural network is a fixed hyperparameter. The

best neural network structure may not be static and may be a function of the input

sequence, similar to our latent sequence decomposition model. Future work should

make the network structure a function of the input sequence and the parameters of the

model. Evidence has been shown for some language tasks that this may be beneficial

to learning a structure [105].

4. Learning from Acoustic Data. We should leverage on the virtually unlimited

amount of acoustic-only data we have. The encoder should be able to improve with

acoustic-only data to learn a better encoder. Possible methods include pre-training

with a generative model such as variational autoencoders [106], generative adversarial

networks [107] or autoregressive networks [108]. Evidence has already been shown we

can build a very good generative acoustic models [109].

5. Learning from Text Data. We should leverage on the virtually unlimited amount
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of text-only data we have. The decoder should be improved with text-only data to

learn a stronger language model which is available in HMM based systems. Evidence

has already been shown in machine translation that this may be a promising avenue

of research [110].

6. Learning the Word Pieces. In Chapter 5, our model emitted word pieces from

a vocabulary created based off of counts. Future work should learn this vocabulary

and be able to dynamically grow and shrink the word piece vocabulary as needed.

With a better word piece vocabulary, the model may learn better decompositions.

Reinforcement learning methods would probably be needed [96].

Proverbs 19:21: “Many are the plans in the mind of a man, but it is the purpose of the Lord

that will stand.”
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