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Abstract

Wireless research and development requires effective and efficient simulation

and emulation tools to validate and evaluate wireless designs. Wireless channel mod-

els are used in the tools to simulate signal propagation properties in the real physical

world. However, due to practical issues, these models are often too generalized and

simplified in large scale experiments, and they only provide limited realism.

In this thesis, a novel world model is proposed for simulation and emulation of

wireless networks. The proposed model includes the design and implementation of

a variety of environment models that enhance realism in simulation. These models

capture realistic signal propagation properties across multiple connections, and over

time: first, the impact of realistic physical world features, such as channel dynamics

and cross link correlation are characterized at different time scales; then, both geo-

metrical and statistical simulation models are developed to recreate desired channel

dynamics among wireless network links efficiently.

Three major components of the proposed design are described in this thesis: 1)

a flexible channel simulation model, 2) improvement of parameter accuracy in ge-

ometric channel models, and 3) wireless link correlation models with a case study

in vehicular networks. The flexible channel simulation model supports fast genera-

tion of channel updates for complicated channel models, including small-scale fast

fading, large-scale path loss and multi-path delay and attenuation. To achieve high

realism, a variety of techniques are developed to obtain high parameter accuracy

in geographic channel models. Link correlation models are developed for simulat-

ing wireless channels within a network context, where adjacent wireless links share

the same propagation medium. The wireless link correlation model handles both

temporal and spatial correlations, to reflect properties at different time scales and

location-based similarities.

A case study in vehicular networks illustrates the effectiveness of using the pro-

posed environment model to improve the realism of wireless simulation and emula-

tion platforms. Simulation results from implemented models are compared against



the measurement data from physical world vehicle-to-vehicle channels, and show

good approximation to reality. The evaluation results of correlated channel mod-

els show improved realism in channel properties and corresponding impact on the

performance of a gossip protocol.
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Chapter 1

Introduction

The development of wireless technologies has significantly changed our way of communicating

and sharing information. Easy access to networks is available at any time, and at any location,

as long as we can build wireless connections among devices that are capable of transmitting and

receiving signals in the open air. Wireless devices are usually allowed to move, while wireless

connections can still be set up and maintained. Movement of devices and other objects in the

propagation medium introduces dynamics in the connection quality of a wireless network. The

connectivity may vary over time due to change of device location, moving speed, or time-varying

interference in the area, etc.

The wireless dynamics challenge both wireless protocol design and evaluation. To build and

maintain network connectivity on unreliable and hard-to-control wireless connections, protocols

need to estimate, predict, and adapt to variations. On the other hand, performing controlled and

realistic evaluation is also challenging because the wireless environment changes unpredictably

and uncontrollably over time in the wild test-beds, while physical world properties are usually not

reproduced accurately in simulation and emulation platforms. We will briefly describe challenges

in wireless protocol design, followed by an analysis of physical world features that have impact

on wireless channel properties. Then, we will address challenges in wireless channel simulation

and emulation.
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1.1 Challenges in Wireless Protocol Design

Many wireless protocol designs handle variations of connections by constant estimation and pre-

diction of connection quality, allowing them to adapt to the dynamics over time. These protocols

adapt to their environment to optimize performance, and increasingly the adaptation is ‘cogni-

tive’ in the sense that the protocols collect information about the environment and make explicit

decisions about how to best adapt.

Analysis:  
Assess and Estimate 

Connection Quality 

Sensing: 
Measure and Monitor 

Environment 

Adaptation - Protocol Control: 
Construct Protocol 
Configure Protocol 

Running Wireless Network Protocol 
- Using current Configuration     
- Record Monitored Features 

Collect Monitored Features Update Configuration 

Figure 1.1: Wireless Protocol Control Mechanisms

Mechanism in Wireless Network Protocol Design

Cognitive protocols typically have three key components, similar to autonomic systems:

sensing, analysis, and adaptation. Sensing means that the protocol measures its environment

(e.g. channel properties) and its performance (e.g. throughput in bits/second). The analysis

phase evaluates how well the protocol is doing, given current conditions, and determines how

performance can be further improved, if needed. This analysis is typically based on a model of

how protocol performance depends on both the environment and protocol configuration. Finally,

2



the adaptation phase adapts the protocol implementation. Figure 1.1 shows this three-phase con-

trol flow. We now elaborate on these three phases.

Adaptation: protocol control - Based on the result from the analysis phase, the Adaptation

phase makes decisions and configures parameters to achieve a high level of performance.

For example, opportunistic routing protocols [12, 34] adapt the candidate routing path by

updating the list of forwarding candidates, based on the measurement of the transmission time of

a batch of packets during the sensing phase. Rate adaptation protocols, such as SampleRate [11],

collect information on the packet delivery rate on a one-hop link. They use collected information

to estimate the link quality, and then update the transmit rate accordingly.

Sensing - The Sensing phase measures link qualities, and monitors network performance,

such as network connectivity, or end to end throughput.

Current sensing technologies include both active sensing and passive sensing. Active sensing

is usually performed by active probing. For example, the IEEE 802.11 standards [1] allow a sta-

tion to send probe request frames to request information from another station. A probe response

frame will be sent by APs (access points) that receive the probe message. Passive listening is an-

other sensing method, which is also an effective way to acquire connectivity information, since

received messages from other wireless devices may be used to infer the link quality between the

sender and the receiver. In the IEEE 802.11 standards, a new client may scan all channels to look

for APs, and respond to beacons sent from APs. Passive listening is more common in protocol

design, because it does not require additional message exchanges (less overhead traffic), which

is especially useful when there is adequate traffic to obtain information about wireless stations.

Dynamics in wireless connectivity requires any information to be updated regularly, to main-

tain up-to-date knowledge of the network connectivity status. Some wireless protocols rely on

observed variation/fluctuations in wireless link properties to trigger an analysis event, followed

by a reconfiguration of the protocol. Ideally, the sensing frequency is determined by the rate at

which the environment changes. A higher update frequency helps to more accurately reflect the

status of the wireless network connection, but incurs higher system overhead due to monitoring

and reconfiguration.

When more detailed information is available, such as direct measurements of the link quality,
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the sensing phase can help in calibration as well. For example, when the noise level is higher in a

crowded wireless environment, the transmit power thresholds needs to be adjusted to the current

environment.

Analysis - The Analysis phase utilizes the information gathered during the sensing phase,

and uses models to find the best configuration to optimize performance.

Various models have been developed to analyze the sensing information, and to determine

the optimized configuration of the network. For example, the received SINR (Signal to Inter-

ference and Noise Ratio) model is used to measure the link quality between a pair of wireless

devices, while BER (Bit Error Rate), PER (Packet Error Rate), and ETX (Expected Transmission

Count [27]) characterize similar features at a higher level of abstraction. To model contention

between links, conflict graphs are usually applied to explicitly identify the interference between

links. For all links that are logically related, network topology is used to characterize connectivity

between wireless devices.

Using these models, the analysis phase then estimates the expected performance for each

configuration, and selects the one that optimizes the performance. For example, gossiping pro-

tocols [87] actively monitor signals from neighboring nodes and analyze connections to these

nodes. This helps a gossiping node to identify sets of neighboring nodes with different levels of

connectivities.

1.2 Features of the Physical World

Wireless protocols are challenged in real environments since wireless propagation features vary

across space and time. Measurements have been conducted to understand and characterize fea-

tures that impact wireless connections. For example, the distance between a pair of wireless

transmitter (Tx) and receiver (Rx) plays a critical role in received signal strength. When we con-

sider the simplest case where there is no other object around a pair of stationary Tx and Rx, the

farther the wireless Tx and Rx are apart, the weaker the received signal will be.

In more realistic cases, there exist multiple mobile devices with a set of wireless connections

among these devices. The wireless connectivity between these devices may vary similarly when
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they move or interference sources appear or disappear. The variation in each wireless connection

not only shows a temporal pattern related to movement, but also shows a spatial correlation

among adjacent wireless connections.

In this section, we will review and identify major physical world features that can impact

wireless propagation, as listed in Table 1.1. A bottom-up approach is used here to illustrate

simple cases first and complicated scenarios later.

The Network
Spatial Correlation Temporal Correlation

(network topology) (source of impact)

A Single Wireless Link

Static Features Dynamic Features

Location, Distance Device Mobility (Scattering)

Obstacles Movement of Obstacles

Ambient Noise Varying Traffic (Noise, Interference)

Table 1.1: Physical World Impacts on Wireless Propagation

1.2.1 A Single Wireless Link

The propagation properties of a wireless link connecting two wireless devices (Tx/Rx) are deter-

mined by the relative location of the devices, as well as surrounding objects.

Static Features

Wireless signal strength decreases as the electromagnetic wave travels through the medium. The

location of a pair of Tx and Rx, along with the distance and existence of obstacles blocking LOS

(Line Of Sight) between them, determines the dominant propagation path. Moreover, there may

exist obstacles around that introduce additional signal path from a Tx to an Rx, due to reflection

or diffraction. As a result, the received signal at Rx usually consists of multiple copies of the

transmitted signal, with different attenuation and distortion, along with other interfering signals.

The combination of several copies of attenuated signal results in a distorted received signal.

The signal attenuation is usually modeled by a path-loss model, such as the log-distance based
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model and the two-ray ground reflection model [57, 70, 71], and shadowing models. The quality

of a received signal is also affected by the ambient noise level. Higher noise usually comes from

heavy background wireless traffic that shares the same space and frequency. In addition, strong

signals from adjacent transceivers add interference to the received signal.

Dynamic Features

The movement of wireless devices and other objects introduces dynamics in the wireless prop-

erty and complicates the distortion of wireless signals. Mobility of wireless devices introduces

variation to the relative speed and location of Tx and Rx, resulting in changes in the path loss.

In addition, movement creates time-varying scattering effects, which are denoted as small-scale

fading effects.

Temporal Correlation

Since the dynamics in wireless signals are caused by physical world mobility, the actual varia-

tion of a wireless link is correlated over time due to the continuity in physical world changes.

Although complicated time-varying properties can be approximated using statistical models with

randomness, the variation by nature is not completely random and does have temporal correlation

properties underneath.

1.2.2 The Network

Wireless links connect adjacent wireless devices within communication range, creating a wireless

network that provides connectivity among participating nodes. The desired network topology,

such as a star or mesh topology regulates how wireless connections interact with each other.

Although network conflict graphs are developed to model relations in on/off among wireless

links status, the propagation features of each link is often individually modeled. In reality, the

wireless properties of these links are usually not independent, because nearby objects, along with

their activities, may have correlated impact on adjacent links.
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1.2.3 Spatial Correlation

Adjacent wireless links in a network show correlated temporal changes, when these links ex-

perience similar changes in the environment. This is because the cause of the change usually

comes from the same source, such as obstacles blocking the direct wireless path, or increasing

noise/interference due to a crowded wireless spectrum.

Often, the same change in environment may affect a set of wireless links in the same vicinity,

at roughly the same time. As a result, wireless links that are located near each other would expe-

rience similar improvement or degeneration at the same time. On the other hand, any localized

impact would only affect a subset of the links, which leads to diversity in the network. We will

refer to these correlations among nearby links as spatial correlations. Spatial correlation among

wireless links are prevailing in various environments.

1.2.4 Impact on Wireless Protocols

Both static and dynamic features of the physical world affect wireless link properties and chal-

lenge wireless protocols’ ability to understand, predict and adapt to such features, on multiple

time scales. In addition, protocols are challenged by environment-specific patterns in wireless

properties introduced by temporal correlation of channel properties as well as cross-link correla-

tion among multiple connections. Moreover, the channel variation can require adaptation by the

protocols at all layers of the protocol stack.

Impact at Multiple Time Scales

Mobility in the environment introduces dynamics of channel properties at different time scales,

such as changes in fading, path loss and multiple path features. Small-scale fading is the result

of a combination of multi-path and movement and can happen on time scales ranging from µs to

tens of µs, depending on the speed of movement. Path loss depends on the distance between

the transmitter and receiver as well as line-of-sight properties, and loss changes on the order of

seconds and higher. On an even longer time scale, devices may move between very different

environments (e.g., urban canyon to flat rural area into mountains) that have different types of
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reflectors and multi-path.

Impact of Correlated Wireless Properties

Correlation of wireless properties over time and space introduces dependency in channel proper-

ties. This challenges wireless protocols to estimate and predict correlated channel properties. For

example, protocols utilizing spatial diversity need to predict channel independency accurately to

achieve desired diversity among multiple links.

Protocol Adaptation at Different Layers

Wireless protocols adapt to channel dynamics at multiple layers in the protocol stack. Examples

include changes in coding and modulation at the physical layer; different routing, coding, and

retransmission strategies at the MAC and network layer; different congestion control solutions

at the transport layer; and application level strategies to adapt to available bandwidth.

1.3 Wireless Channel Simulation and Emulation Challenges

Simulation and emulation platforms are widely used for evaluation of wireless designs. The

ability to control the wireless propagation environment and reproduce the same environment

through configuration makes simulation and emulation systems [41, 57, 59] popular in wireless

research. We identify several challenges associated with flexibility, realism and efficiency in the

control of network simulation and emulation.

1.3.1 Flexible Control of Complex Channel Models

Wireless channels in the physical world show complicated time-varying properties caused by

all kinds of dynamics in the environment. For example, fast movement of surrounding objects

introduces time-varying reflected signals, which are usually modeled as small (time) scale fading

effects. A lot of other environment dynamics contribute to the channel’s time-varying features at

different time scales: signals received by a mobile attenuate dramatically when the mobile moves
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away from the transmitter; background noise level evolves as the overall wireless traffic pattern

varies at different times of the day, etc.

Different wireless channel models have been developed to represent variation of channel

properties at different time scales. When simulating wireless channels, multiple channel models

need to be combined to represent realistic temporal variation of a wireless link over different

time scales.

Dynamics in wireless channel properties requires simulated channels to be updated frequently

with up-to-date knowledge of channel properties. When using channel models with correspond-

ing parameters to represent channel quality, not only model parameters need to be updated, the

exact model suitable for the simulated scenario may also need to be updated. This demands high

flexibility in channel update implementation in simulation regarding model updates as well as

parameter updates.

Complex models are often required in realistic channel simulation to represent a large set

of physical world channel properties. This requires specific combination of multiple compli-

cated channel models with each containing multiple configurable parameters. Flexible control

of complex channel models at run time is desired to approximate specific dynamics in simulated

wireless environment.

1.3.2 High Dynamics

High dynamics in channel properties are observed in environments with high-speed mobiles.

To simulate such high dynamics, channel models and parameters need to be updated frequently

to reflect the dynamics. As a result, calculation of channel updates could be computationally

expensive, especially for complex channel models which represents complex environments. High

efficiency model implementations are desired to simulate such environments with high accuracy.

1.3.3 Network-Scale Simulation

While obtaining accurate and realistic parameter values for one wireless channel configuration

may be challenging, configuration of multiple wireless channel for complex environment is even
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more challenging, especially for environments with high dynamics.

Network-scale wireless simulation requires high efficiency simulation process to support a

large-scale networks. The simulation complexity increases dramatically with regard to the size

of the simulated network N as well as the size of the simulated area: objects in the area must

be modeled accurately, or sophisticated models need to be applied to represent realistic spatial

correlation among multiple simulated links. It is even more critical for wireless emulation where

all calculation must meet real-time requirement.

In addition, correlation among multiple links should be carefully represented in network-

scale simulation to represent the spatial correlation among those links.

1.4 Proposed Solution

A novel wireless simulation architecture design, the ‘World Model’, is proposed for emulating

a broader class of channel conditions, including indoor channels and mobile-to-mobile channels

at vehicular speeds at a network scale, in real time.

The proposed design includes three major components: 1) a flexible channel simulation

model, 2) wireless models with realistic temporal correlation, and 3) cross-link correlated models

among multiple wireless links.

1.4.1 A Flexible Channel Simulation Model

The flexible channel simulation model is a framework for signal-level real-time simulation and

emulation of propagation effects over generalized fading channels, at the scale of entire networks.

As in previous work, the channel response is modeled in the time domain using a tapped delay

line model. The proposed design generalizes the tap weight generation process to accommodate

a broad class of channel conditions, including indoor channels and mobile-to-mobile channels at

vehicular speeds. High efficiency at run-time is achieved by optimization of the tap weight gen-

eration process giving model parameters with high dynamics. This flexible model can be utilized

to implement a wide range of channel models for a variety of realistic wireless environments.

In this thesis, the discussion will focus on vehicle-to-vehicle wireless channels, which have high

10



dynamics, and are among the most challenging cases.

1.4.2 Temporal Correlation Models

Temporal correlation models are designed to specifically handle challenges in modeling realistic

link dynamics in wireless networks, considering temporal features. There exist two major types

of models capturing temporal correlation: 1) direct modeling of dimensions and mobility in

physical world, and 2) stochastic models approximating temporal dynamics. While approach 1)

is effective to reflect correlated time-varying features of a channel with high realism, it is often

impractical to gather the information required for simulation.

A novel systematic approach is proposed for directly modeling environment-specific chan-

nels. The discussion in this thesis focuses on small-scale fading effects in vehicular channels

modeling. The proposed design utilizes realistic (and complicated) geometric models along with

land cover information derived from aerial maps. In order to approximate parameter values at

high resolution, additional geometric information is required as well as a complete analysis of the

simulated area before executing the experiments. Automated pre-processing along with fast run-

time calculation makes this solution suitable for simulation or emulation. The proposed solution

is efficient enough for real-time channel emulation, at the scale of entire networks.

1.4.3 Cross-Link Correlation Models

Wireless channels are sensitive to mobility of objects in the surrounding environment. The im-

pact from these movements may affect multiple adjacent channels at the same time or location,

which introduces correlated channel properties over time and space. Current simulation plat-

forms often do not explicitly modeling these correlated time-varying channel features in wireless

networks.

Our spatial correlation study proposes practical solutions to identify and compensate for the

missing correlated properties in statistical models. The proposed solution introduces cross-link

correlation among multiple adjacent links which have independent statistical properties (models

or parameters).
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1.5 Related Work

We provide an overview of most relevant works regarding simulation and emulation of wireless

channels here.

1.5.1 Wireless Channel Models

The wireless propagation between two moving objects is generally modeled as a mobile-to-

mobile communication channel, including large-scale path loss models, and small-scale fading

models.

Large-scale path loss (and shadowing) models have been developed to represent path loss

caused by loss of direct Line-Of-Sight (LOS) and slow variation of such effects over time. Sam-

ple geometric models includes Log-Distance path loss model, two-ray path loss model, and these

models require exact information of transceivers and reflectors. Stochastic models, such as two-

state Markov shadowing model [74], have been developed and stochastic processes are utilized

to create dynamics in channel properties. These models approximate overall statistic properties

of each single channel, but the exact dynamics over time could be off of reality, especially for

multiple correlated channels.

Small-scale fading models are usually derived from stochastic models with specific assump-

tions on scatterer distribution pattern, such as ring models [5, 66], an elliptical scattering model,

or a circular scattering model [28] that are suitable for stationary-to-mobile channels, but not

mobile-to-mobile scenarios where scatterers do not follow the ring pattern around transmitters

or receivers. Geometrical scatterring models for mobile-to-mobile channels [6, 22] have also

been developed. To model the impact of surrounding objects accurately, these model often re-

quires detailed information about objects in the environment, which is challenging to obtain for

large-scale simulation in diverse environment.

We studied popular channel models in existing research work, especially the stochastic shad-

owing models and geometric scattering models for mobile-to-mobile scenarios. We add new

elements to the models to achieve high realism in dynamics for network-scale simulation.
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1.5.2 Simulation and Emulation Platforms

Science and engineering rely heavily on the ability to perform controlled, repeatable experiments.

Channel simulation and emulation tools are meant to bring some of this ability to wireless re-

search. Traditionally, wireless communication researchers have used high-fidelity small-scale

models, while wireless networking researchers have considered larger-scale systems, but with

much less detailed channel models. Network emulation bridges that gap by providing real-time

emulated channels between a reasonable number of interacting nodes.

Simulation and emulation platforms for wireless environments have been developed to eval-

uate wireless designs, and to examine how wireless protocols handle wireless environments and

react to dynamics.

Current state-of-the-art channel emulators [7, 18] can simulate advanced point-to-point chan-

nel models with high simulation realism and accuracy. In addition, these emulators usually

support complex models for MIMO channels with tight spatial correlations comparable to the

carrier wavelength. However, these point-to-point channel emulators often target at one spe-

cific environment without large-scale temporal variation due to mobility which is common in

network-scale simulation scenarios. In addition, these channel emulators rarely scale to support

multiple wireless channels in wireless networks.

On the other hand, wireless network simulators [33, 47, 57, 58, 59, 70, 79, 80] are widely

available for large-scale experiments. In these simulators, several distance-based path loss mod-

els [57, 71] and small-scale fading models [56, 69, 71] have been developed to simulate a limited

range of time-varying channel properties directly and indirectly. In addition, simulation plat-

forms implementing these models often do not help in picking parameters, which becomes an

extra challenge left to users.

Network-level emulators have been developed for large-scale emulation with high realism,

such as the CMU Wireless Network Emulator [41], ATEMU [68] and commercial platform

RFnest [92]. The CMU Emulator provides flexible control of channel models, implemented

as Java software on a general-purpose computer. We utilize the Emulator platform to prototype

flexible channel control module, and high efficiency realistic simulation models.

In current simulation and emulation platforms, channels are modeled independently, and
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the spatial correlations among adjacent wireless links are not explicitly addressed. When using

stochastic models, configurations are independently for each channel, thus spatial correlation

is often neglected in simulation. This results in under-estimation of spatial correlation among

channels that are close by. To improve the consistency over time and space represented in

simulation, we propose simulation models addressing correlation and implemented on simulation

platform ns3 [57] as a proof of concept improvement.

1.5.3 Vehicular Networks

Vehicular networks are a group of challenging mobile-to-mobile wireless networks. Measure-

ment studies of vehicular channels have been performed in various locations across the world [19,

21, 61, 82], which provide a set of traces for model evaluation and validation. In addition to the

fading effects, the role of the LOS component in DSRC (Dedicated Short Range Communica-

tions) is also examined [14, 53]. These measurement studies requires tremedous effort to be

executed, and provide valuable physical wireless environment facts at a specific time for a spe-

cific area.

Simulation of wireless vehicular networks consists of modeling vehicles moving at wide

speed range on a road network based on traffic constrains, as well as simulating propagation

channels among vehicles. SUMO [8] is a widely recognized simulation platform for large-scale

simulation of vehicular networks in urban area. While SUMO supports large-scale simulation of

vehicular mobility and achieves high realism in vehicle traffic simulation, the platform does not

address wireless communication among vehicles. Researchers have attempted to use SUMO’s

realistic mobility trace as mobility input for wireless network simulation.

Similarly, we utilize SUMO to generate realistic vehicle movements based on the realistic

traffic models, and implement realistic shadowing and fading models separately to represent

channel dynamics.
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1.5.4 Mobility Models

Vehicle mobility has special patterns due to traffic regulations. Research in network-wide sim-

ulation has contributed several traffic simulators, which generate realistic vehicular traffic, such

as SUMO [8] and GrooveNet [52]. In addition, mobility models have been developed to reflect

vehicle behavior and traffic status in the real world [46, 55, 88]. Simulated traces generated from

these traffic simulators are more realistic, compared to other general mobility models [9, 39]. We

utilize SUMO [8] with its mobility model extensions [46] to generate realistic vehicle traces for

a given road topology, which are later used in ns-3 as input of node movements.

1.5.5 Network Correlations

The correlation cross multiple wireless links has been studied at different time-scales.

The spatial correlation of shadowing property among adjacent links have been frequently

observed in wireless networks. Some measurement study specifically quantified the level of

correlation versus distance in urban and suburban area [60], while others studies the correlated

shadowing effects in multi-hop networks [4] and vehicular network [16]. These measurement

studies provide physical world evidence of cross-link correlation.

Studies have shown the correlation in shadowing effects has significant impact on wireless

protocol performance [81], specifically in vehicular networks [14]. Moreover, such correlation

can even be utilized in discovery [49] and geographic mapping [67].

Therefore, when evaluating protocols using simulation, it is critical to reflect realistic corre-

lation properties.

The spatial correlation can be presented by either detailed geometric channel models with ac-

curate parameters or stochastic correlated models. While obtaining detailed geometric informa-

tion of all objects is often impractical, correlation models are needed to represent such properties.

Unfortunately, current simulation platforms do not provide options of using correlated channel

models. We proposed a stochastic correlation model for NLOS shadowing effects as an example

that helps to represent spatial correlation among multiple adjacent links. We utilize correlation

measurement results mentioned above to parameterize models parameters.
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1.5.6 Protocol Evaluation in Simulation

Wireless protocols are designed to provide network connectivity on unreliable and dynamic wire-

less connections. Protocols, such as rate adaptation protocols [11], handle variations in link

quality explicitly. Protocols may even perform better in the presence of spatial and temporal

diversity [45, 72]. For example, opportunistic routing protocols [12, 34, 50] leverages spatial

diversity explicitly to find alternative paths for improved performance.

However, current simulation platforms usually lack models for simulating realistic high dy-

namics and correlation properties in real time. As a result, evaluating the performance of wireless

protocol designs on such platforms may not reflect the performance that is representative for the

physical world where rich variations and correlations exist. Using the realistic environment sim-

ulation models presented later in this thesis, we were able to compare protocol performances in

such environment with high dynamics and different levels of correlation.

1.6 Thesis Statement

Simulating realistic wireless environments at network-scale requires accurate modeling and parametriza-

tion and efficient run-time implementation. The proposed ‘World Model’ simulation architecture

is an effective and practical design for high-realism network-scale wireless simulation. The

proposed temporal and cross-link correlation models significantly improve modeling realism as

well as parameter accuracy. These simulation models are highly automated and can be applied

to existing simulation platforms to enhance channel model realism. This solution significantly

improves simulation and emulation realism for large-scale wireless networks.

1.7 Contributions

The major contributions of this thesis are:

A complete system design for realistic network-scale wireless simulation and emulation

platform: Major design components and configuration considerations are discussed for this

design. By identifying channel dynamics across different time scales, corresponding channel
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simulation models are suggested and combined together to represent a realistic, complex, and

practical simulation model for a broad range of environment of a wireless network.

A single fast channel update solution for a wide range of wireless channel models: Flex-

ible channel control model combines channel updates efficiently for complicated channel mod-

els, and supports high frequency of channel updates while remains flexible for model updates.

Channel updates can be generated efficiently for a wide variety of indoor and outdoor wireless

propagation models using a tapped delay line with multiple fading tables.

A systematic approach to estimate location-specific object distribution: Using aerial pho-

tography and land cover image processing techniques, a fully automated pre-processing method

is developed to estimate roadside scatterer density over an area of interest. High accuracy and

low run-time computation makes this solution effective and practical.

A distance-based cross-link correlation model for shadowing properties: Cross-link cor-

relation among multiple links are represented using stochastic models with additional compo-

nents, the correlation models, designed to approximate spatially correlated channel properties

among nearby links. An example of LOS/NLOS shadowing properties is illustrated in the de-

sign. Generalization of the distance-based correlation model is discussed for typical wireless

environments.

A flexible, practical and reliable platform for vehicular wireless network research: A

vehicular network simulation example is implemented in ns-3. The example supports spatial

correlation channel models for shadowing properties. We study the impact of the correlation

model on the performance of a basic gossip protocol. Complexity analysis of different modeling

options provides guidelines for selecting the most appropriate model.

1.8 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents system design of the ‘World Model’ simulation architecture, where high-

level description of major components and configuration details are discussed.

Chapter 3-5 present design, implementation, and evaluation of three major components in
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the ‘World Model’: Chapter 3 focuses on the flexible channel simulation model for fast run-time

implementation of signal-level changes. Chapter 4 focuses on improving simulation realism

for temporal correlated models. Chapter 5 focuses on compensating lost cross-link correlation

properties in statistical models.

Finally, Chapter 6 summarizes the thesis, including the conclusions drawn from the research,

and a discussion on future work.
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Chapter 2

System Design

Simulation and emulation platforms are widely used for evaluation of wireless designs. The

ability to control the wireless propagation environment and reproduce the same environment

through configuration makes simulation and/or emulation popular in wireless research.

Here we first present our proposed system design of a wireless simulation platform, followed

by a detailed discussion of the necessary models needed to achieve realism.

2.1 System Design Overview

As described in Chapter 1, the physical world has a significant impact on wireless signal prop-

agation. To reflect this impact in wireless simulation/emulation platforms, we apply multiple

modules in the system to model and represent these features. There exist a number of chan-

nel models that represent specific point-to-point link properties. However, proper selection and

configuration of these models requires information about the physical environment in which the

network is deployed. Our proposed system design provides a flexible configuration of realis-

tic wireless environment, and is capable of modeling the physical world impacts described in

Chapter 1.2 from the experiment configuration.

The system design consists of four major components: 1) a World Model that contains

models of objects and events that reflects physical world objects and activities; 2) a Wireless

Feature Analysis module that extracts relevant wireless link related features from the world
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Figure 2.1: Proposed System Design

model events, and performs spatial and temporal analysis to select propagation models; 3) a

Channel Model module that configures path models and updates parameters to reflect channel

dynamics as desired; and 4) a Configuration module that users can use to define the type of

environment they want to use in their experiments. It includes an input interface to enforce

user-specified feature in the simulation.

2.2 World Model

The World Model component represents objects and associated activities and events during the

simulation. For a given wireless environment, a set of objects and associated activity (events) are

modeled depends on the specific physical environment. The object models can be created with

desired properties, such as location and object mobility (speed, routes etc.)
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While some object mobility events can be created explicitly from user input, other events

should be derived using mobility models and other behavior-based collective models. For exam-

ple, given the average speed and variation of moving vehicles in the environment, the movement

of a group of vehicle objects can be implemented to reflect the desired statistical properties.

Objects in the world model all have an initial state, and changes in the state during the simu-

lation will be regarded as update events. The initial states of objects and update events will thus

represent a concrete instance of object behavior.

At each simulated step, events occurring at that moment introduce changes in object location

and speed, which is updated accordingly. The changes are then passed on to the feature analysis

component for further analysis.

2.3 Wireless Feature Analysis and Channel Control

The wireless channel characteristics are determined by objects in the environment as well as

associated behaviors, such as location and mobility which are represented as world model states

and update events. A wireless feature analysis model is designed to analyze the impact of these

world model behaviors on wireless propagation.

Most simulation platforms use single-link channel models. For each link, there is a large set

of possible configurations. When emulating the wireless propagation of a link, a most suitable

channel model is selected, unless it is specified by the user explicitly. In addition, parameters in

the selected channel model must be configured to represent specific link properties.

While wireless networks comprised of adjacent wireless links are modeled by a simple com-

bination of isolated single link models, we find that behavior of these links is not necessarily

independent in the physical world. More specifically, there exists both spatial and temporal cor-

relations among adjacent links.

The wireless feature analysis component will interpret network state and updates from the

World Model component, so that network-wide (cross-link) correlation property will be discov-

ered. Chapter 4 and Chapter 5 will focus on design elements and consideration for the Temporal

Correlation Analysis module and Spatial Correlation Analysis module, respectively.
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After analysis of all network state updates, only updates affecting wireless properties are

then passed on to the Channel Model Control module. Initially, a most suitable channel simu-

lation model, selected by user or determined from current channel features, is applied to each

wireless channel. The Channel Model Control is responsible for generating channel updates

at desired frequency to approximate dynamics in channel properties. In addition, channel mod-

els should also be updated when significant channel feature changes are observed and a better

channel model selection is available. Channel model updates and channel updates are constantly

passed on to the Flexible Channel Simulation module where real-time updates are applied to

each propagation paths.

2.4 Flexible Channel Simulation

Many point-to-point channel models have been developed [76, 83, 93] to characterize physi-

cal layer impacts that introduce attenuation and distortion of the propagated wireless signals.

However, only a small set of these channel models has been implemented in network simula-

tion/emulation platforms [33, 47, 57, 70, 80]. These platforms support several basic and simple

channel models, while others [18] developed a limited number of complicated ones and require

advanced understanding of the model to pre-configure the model and parameters properly. In

Chapter 3, we will discuss our preliminary result on a flexible channel simulation model imple-

mentation that can produce a wide range of channel dynamics at a network scale, .

2.5 Configuration

Wireless experiments are designed and configured by users. In practice, most users adopt default

parameter values for channel models in network experiments. There are two major reasons:

1. Users do not always know how to configure every single parameter in the models;

2. There are too many independent parameters in large-scale experiments.

3. It is difficult to update many parameters over time in a way that properly reflect both

channel dynamics on multiple time scales and spatial correlation between nearby channels.
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The Configuration component in the system is designed to help normal users to configure their

experiment efficiently.

Wireless protocols are often designed for specific types of wireless deployments, and the

simulation environment should be adapted to reflect the wireless properties of that desired phys-

ical world. The first step in configuration is to classify the wireless environment at a high level,

such as indoor/office, outdoor/urban, etc.. With proper characterization of the type of wireless

environment, a more suitable set of parameters can be obtained. This configuration module is

also flexible in combining and switching between model inputs and user inputs, e.g., allow over-

writing of default configurations or providing a detailed and specific configuration of an object,

a series of events, a particular channel model, or a parameter in the model.

The design and implementation of a wireless simulation/emulation platform as described in

this section requires several critical design challenges to be addressed. We will organize the pre-

sentation of our solutions for addressing these challenges in the following chapters in a bottom-

up order: starting with our preliminary result on the flexible channel update implementation in

Chapter 3, and discuss spatial and temporal correlation models in Chapter 4 and Chapter 5. Ex-

ample platform setup for wireless vehicular network are also discussed in each chapter for the

corresponding component.
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Chapter 3

Flexible Channel Simulation

Wireless network emulation enables controlled repeatable experimentation with reasonable-sized

wireless networks. The combination of real radio hardware and signal-level emulation provides

a level of realism significantly greater than that of network simulators, while the scale allows

network-wide issues such as routing, forwarding, and resource management to be studied. Dy-

namics of wireless channel properties are simulated using channel models to approximate realis-

tic variations.

Different channel models represent a large variety of link propagation features in the real

physical world. Wireless channel dynamics means that any propagation feature of a link may

change over time. Therefore, fast (and real time) configuration of such time varying features is

necessary during wireless simulation and emulation.

In this chapter, we present a software and hardware architecture for emulating a broad class

of channel conditions, including indoor channels and mobile-to-mobile channels at vehicular

speeds, in real time.

3.1 Background

Prior work simulates Rayleigh and Rician fading at stationary-to-pedestrian speeds, but cannot

support more general wireless channels [17, 42]. Recent work on FPGA-based emulation of

vehicular channels [31] was able to provide configurable and flexible emulation. However, the
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proposed solution only support emulation between one pair of transceivers.

The CMU Wireless Network Emulator introduced the ability to do signal-level emulation for

up to 15 nodes for general wireless channels. In that approach, for n nodes, all n(n−1) channels

between them are modeled using a tapped delay line approach.

As in previous work, channel response is modeled in the time domain using a tapped delay

line model, illustrated in Figure 3.1. Each tap effectively represents a resolvable propagation

path, and the evolution of tap weights provides a statistical approximation of Doppler spreading

and non-resolvable multipath effects. Time-varying tap weights must be generated to reflect

desired large scale attenuation and small scale fading characteristics. The delay between taps

and their relative magnitude determine the frequency selectivity of the channel and the degree of

inter-symbol interference experienced. The rate at which tap weights change and the patterns of

those changes determine coherence time, the (simulated) Doppler spreading, and higher-order

statistics such as the average fade duration. In this chapter, the design and implementation of

a flexible fading simulator is presented. The proposed solution is capable of producing a wide

variety of weight sequences at each tap in real time.

Figure 3.1: Tapped delay line model of an emulated signal path.

Two example channel definitions from GSM 3GPP [29] are shown in Figure 3.2. The rural

area channel (RAx) is defined by four taps with a maximum excess delay of 0.5 µs; the first has

a Jakes Doppler spectrum with a line-of-sight (LOS) component and the remaining are classical

(Jakes). The hilly terrain (HTx) channel is defined by twelve taps with a maximum excess delay
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of 20 µs; all taps have a classical Doppler spectrum. Reference channels for wideband mobile-

to-mobile communication are not similarly standardized, however theoretical models and recent

measurements suggest an Akki spectrum like those shown in Figure 3.7, and terrain-dependent

delay spreads ranging from 0.3 to 5 µs [5, 62, 63, 82, 94].
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Figure 3.2: Tapped delay line models for reference channels from 3GPP TS 05.05. 4-tap RAx in

solid blue, 12-tap HTx in dotted black.

A prototype of a channel simulation model is developed on the CMU Wireless Emulator

platform [41] that is capable of switching in real time among multiple mobile-to-mobile and

mobile-to-stationary fading channels. Several fading channel models have been implemented,

representing different Doppler power spectra and a LOS component. For wireless experiments,

channel updates are calculated frequently to reflect dynamics. The channel update rate is lim-

ited by system-wide hardware/software resources. Although techniques have been developed to

utilize precomputed components for fast run-time adaptation, complex channel models usually

require more computational resources to model and update at run time. The simulated network

size is therefore limited by the number of channels that can be simulated at real time. Our design

and implementation of a flexible simulation model is based on this Emulator platform and its

tapped delay line implementation.

3.2 Tap Fading Spectra Simulation

Viewed in the frequency domain, the important properties of a tap weight sequence are captured

by the Doppler power spectral density (Doppler spectrum) it produces. We therefore describe tap

weight generation process in terms of the fading spectrum at each tap. The architecture described
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below can produce the dramatically varying tap fading spectra associated with a wide range of

wireless channels.

3.2.1 Principle of Operation

For each tap, weights with the desired characteristics are computed as illustrated in Figure 3.3.

The desired spectrum is defined as a weighted sum of simpler spectra, and is produced at run

time by combining samples drawn from its components. An attractive feature of this design

is that a modest number of component spectra suffices to generate a broad range of channels

(including most of the models discussed here, except for the geometric scatterering model), and

the computational work of generating samples for those spectra can be done off-line. This leaves

only light-weight sampling and summing operations to be done in real time when there are no

siginificant parameter changes. This process is described in more detail below:

Figure 3.3: Tap weight generation process.

For each component Doppler spectrum, a frequency-domain channel response is generated

as sequence of zero-mean i.i.d. Gaussian random numbers. Each sequence is filtered with the
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appropriate Doppler spectrum [77]. Each spectrum represents one type of Doppler shifting or

spreading of the propagated signal, for example the classic mobile-to-stationary (MtS) channel

corresponds to the U-shaped Jakes Doppler spectrum.

After filtering, each sequence is then converted to a time domain sequence, normalized, and

stored in a lookup table which we refer to as a fading table. Each fading table represents not just

a single Doppler spectrum but a family of spectra, because different levels of Doppler shifting

can be produced by iterating through the same table in larger or smaller steps. Additionally,

many uncorrelated sequences can be drawn from the same table using different starting indices1.

Therefore, a single fading table can represent all Jakes spectra, while the Akki spectra require

a separate table for each value of a, but not for each fm1 in Eq. (3.3). The Doppler spectrum

for geometric scattering models are time-variant. However, if we consider the contribution of

each frequency component as one Doppler spectra contributor, the variation is essentially the

change of power contribution of each frequency component. In this case, the overall spectra is

a collection of these contributors. Since each contributor is associated with one frequency shift,

as well as its corresponding weight (the contribution). Therefore, one fading table needs to be

generated for each spectra contributor. At run time, the power contribution determines the weight

pj,k for each spectra contributor k.

For any given tap i, at each time t, the tap weight bi(t) is produced by taking the “next”

value from every fading table, and combining these values using the (possibly 0) weights pj(t).

Therefore, each tap’s fading spectrum can be any of the component spectra, or a combined spec-

trum representing multiple fading effects. For example a Rayleigh-distributed classical Doppler

spectrum combined with a line-of-sight factor produces a Rician distribution. For time-varying

Doppler spectra, the combination of all related fading tables is required. Several of the important

component Doppler spectra are described in the following sections.

3.2.2 The Mobile-to-X Channel Models

The mobile-to-stationary (MtS) scattering channel, as modeled by [24], assumes a ring of scat-

ters around the receiver producing a uniformly distributed angle of arrival. The Doppler power

1Multiple tables may optionally be used if the possibility of a spaced-time correlation must be avoided.
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spectrum S(f) of MtS fading channels can be described as Eq. (3.1):

S(f) =


1

4πfm
1√

1− (f−fc)2

f2m

, |f − fc| ≤ fm

0, otherwise

(3.1)

where fc is the center frequency, and fm is the maximum Doppler shift, defined as:

fm =
V

c
fc (3.2)

In Eq. (3.2), V is the speed of the mobile and c is the speed of light. A filter sequence

generated for fmax can be used for any fm ∈ (0, fmax] by stepping through the sequence at

a lower speed. fm and fmax correspond directly to V and some Vmax, which is the greatest

(physical) speed for which the sequence can be used.

The mobile-to-mobile (MtM) scattering channel, as modeled by [5], considers independent

double-ring scattering (that is, at both transmitter and receiver). Let the speed of the first mobile

be V1, and the speed of the second be V2 (without loss of generality V1 ≥ V2). The corresponding

maximum Doppler shifts are fm1 and fm2 respectively. The Doppler power spectrum S(f) of

MtM fading channel is described by Eq. (3.3):

S(f) =


1

π2fm1

√
a
Re(K[ (1+a)

2
√
a

√
1− ( f−fc

(1+a)fm1
)2]),

when |f − fc| ≤ (1 + a)fm1

0, otherwise

(3.3)

where K( · ) is the complete elliptic integral of the first kind, and a is the speed ratio, defined as:

a = V2/V1, (0 < a ≤ 1).

For any given a, a single fading table can be generated to produce tap sequences for any V1

up to a predefined maximum, as with the MtS channel. At any time t, V1(t) determines the rate

at which new values are read from the table.

Setting a = 0 causes the mobile-to-mobile channel to approximately reduce to the classi-

cal mobile-to-stationary channel: The MtM model still considers a ring of scatters around each

mobile, but the effect of scatterers around the stationary device is negligible. Although the fad-

ing sequences generated using Eq. (3.1) (Rayleigh distribution) are not exactly the same as the
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sequences generated using Eq. (3.3) (double-Rayleigh distribution) when a = 0, the results are

very close in most cases, and can be used as a reasonable approximation.

The mobile-to-mobile scattering channel for vehicular networks, as proposed by [22], at-

tempts to capture the small-scale fading effects from reflections off roadside objects.

Figure 3.4: Geometrical Model for V2V Channel [22]

This fading model is a geometric model that uses location and density of roadside objects

(buildings and trees) to estimate the reflections and their impact on fading, as shown in Figure 3.4.

The assumption of scatterer location (arranged along both sides of the road) in this model is a

close approximation of the reality in vehicular networks, thus we adopt this model as an example

of geometry-based fading models for stationary scatterers.

In this model, the roadside objects are divided into small cones by the angle of arrival of

the reflected path. The fading Doppler spectrum is then computed by aggregating frequency

response from scatterers within each small cone.

S(f)df = G(θ)p(θ)f(θ)dθ. (3.4)

Where

p(θ) is the probability distribution of θ;

f(θ) is the response from scatterers observed at angle θ;

G(θ) is antenna gain in the direction θ;

and S(f) is received power density at frequency f .
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Figure 3.5: Doppler spectrum generated by Geometrical Model

A sample Doppler spectrum generated using this model is shown in Figure 3.5 and Fig-

ure 4.1(a) shows it combined with the LOS component. More details can be found in the pa-

per [22].

Finer Granularity Fading (Spectrum De-smoothing)

When we compare the modeled Doppler spectrum in Figure 4.1(a), the measured spectrum in

Figure 4.1(d) is jagged. This is a direct result of our methodology.

The geometry-based model described above calculates the Doppler spectrum for fading caused

by reflections off large objects. A key parameter is the estimated density of scatterers. As we

discuss in more detail later, our methodology for estimating this density based on aerial photog-

raphy results in a fairly coarse estimate for the density. Specifically, we present result for density

estimate on a 10 meter grid. While it is sufficient to capture building and large trees or groups of

trees, it is not sufficient to capture the impact of individual scattering features on these objects,

or to capture the impact of small scatterers. As a result, we should view the Doppler spectrum

envelop as an average fading Doppler spectrum envelope for the large objects in the environment,

which explains why it is smooth.

The many small “peaks” in the measured Doppler spectrum in Figure 4.1(d) are a result of
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the small scatterers in the environment, including small features on large objects. Since we lack

ground truth for the small scatterers, we do not try to develop a detailed model for them, as we

do for large objects. Instead, we model their impact by filtering the spectrum used in simulation

with a random variable, as suggested in [66], to approach actual randomness in scatterer density

at a finer granularity.

In addition, the Doppler effect on a line of sight signal between two (possibly) mobile stations

is a simple frequency shift: If θTx (θRx) is the angle between the transmitter’s (receiver’s) velocity

vector ~vTx (~vRx) and the direction of wave propagation, the Doppler shift fd is given by:

fd
f0

=
|~vTx|
c

cos(θTx) +
|~vRx|
c

cos(θRx)

The Doppler spectrum for this signal is an impulse at fd.

3.2.3 The Indoor Channel

Another Doppler spectrum of interest is an indoor scattering spectrum. Indoor channels are

generally distinguished by relatively low velocities and a rich three-dimensional scattering envi-

ronment. Both measurement studies and theoretical models suggest that this combination leads

to a “flat” Doppler spectrum [25, 86, 95]. The flat spectrum is not a special case of the mobile-

to-mobile channel described above, but can still be simulated using the general procedure from

§ 3.2.1.

3.2.4 General Wireless Channel Model

As described in § 3.2.1, multiple fading models can be combined to represent an aggregate fading

spectrum. This allows for combinations beyond the specific models discussed in this section, for

example, [84] improves the MtM scattering model by combining multiple Doppler spectra with

an LOS component. Near-arbitrary user-defined component spectra can be included, as long as

they are known in advance.
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3.3 Fading Tap Implementation and Validation

This section discusses the implementation and validation of the tap fading spectrum generation

process described in the preceding section. Our prototype is implemented on the CMU Wireless

Network Emulator [17] for the 2.4 GHz ISM band. The architecture is shown in Figure 3.6: A

control computer generates tap configuration values in real time using the process described here,

and the weight and delay values are sent to the signal processing FPGA. Both the mobile-to-x

and indoor fading models are implemented on this platform. Discussion will be focused on the

mobile-to-x case.

Figure 3.6: System Architecture

3.3.1 Generating Fading Tables

Tap weights are generated using the process in Figure 3.3. A long sequence of frequency

sampling points is created to represent one Doppler spectrum. We choose a maximum speed

Vmax = 70 m/s (≈ 156 mile/h). Relative to a center frequency fc of 2.437 GHz, the maximum

Doppler shift is fmax = Vmax

c
fc ≈ 600 Hz. This requires a sampling frequency fs ≥ 1.2 kHz

to smoothly simulate spectra for Doppler shifts up to fmax. We select fs to be 1.2 kHz. As a

result, the time between data points in the time-domain fading tables is 1
fs
≈ 0.42 µs. The more
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sampling points used for a given frequency range, the longer the resulting time-domain fading

table can be. We choose a sequence length of 65536, which implies a time-domain fading table

covering ≈ 30 seconds at Vmax. This means that the small-scale fading process is periodic, but

we consider the period to be acceptably long.

The prototype generates sequences for the following component Doppler spectra:

• A normalized Jakes’ spectrum (Eq. (3.1)) to represent the MtS Doppler power spectrum.

• A set of Akki spectra (Eq. (3.3)) for the MtM Doppler power spectra for different (binned)

speed ratios. The K( · ) values in Eq. (3.3) are static, and thus generated off-line.

• A normalized “flat” indoor Doppler power spectrum.

• Two LOS spectra with a spike at fLOS = ±V
c
fc.

Figure 3.7 shows two examples of the Akki spectrum filter generated for the MtM Doppler

power spectrum, with speed ratios a = 0.5 and 1, with no LOS component. Figure 3.8 shows a

corresponding sequence of time domain fading samples generated for a = 1.

Figure 3.7: Akki (MtM) filter spectra for speed ratios a = 0.5 and a = 1.
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Figure 3.8: MtM channel time domain samples.

3.3.2 Run Time Simulation

At run time, the control software selects fading tables and assigns power factors to each fading

table. For example, when both nodes are moving, an MtM fading table is selected: the current

speed ratio a = V2
V1

determines which MtM Doppler power spectrum is applied. The power factors

can be either configured by the user, or set to default values for typical channels. For example,

when there is a direct LOS between sender and receiver, the LOS components will be included

with higher power factors. The run-time software infers channel requirements from higher-layer

environment models, switching fading tables and changing power factors when necessary.

3.3.3 Verification

This section presents a qualitative statistical evaluation of the samples produced by our prototype

implementation. Figure 3.9 shows an averaged frequency domain view of a large number of (time

domain) fading sequences for the MtM channel with a = 0.5. The result shows random variation

around the filter spectrum shape.
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Figure 3.9: Generated MtM channel spectrum: a = 0.5, no LOS.

We also evaluate the distribution of the filtered samples. Theoretically, linear transformation

of Gaussian random vectors result in Gaussian random vectors. Because the filtering process and

IDFT in Figure 3.3 are both linear, the resulting fading are expected to be Gaussian variables.

Figure 3.10 shows a Q-Q plot of normalized fading table values against a zero-mean Gaussian

distribution with standard deviation of 1.0. The straight-line fit suggests that the Gaussian distri-

bution is maintained.

3.4 Simulation Resource Analysis

3.4.1 System Model

The architecture considered here is based on the current CMU Wireless Network Emulator [17],

and is shown in Figure 3.6. Signal processing, which must be fast and synchronous, is performed

in a central FPGA. Channel (and higher-level environmental) modeling, which is more compli-

cated and less timing-sensitive, is performed on a general-purpose computer. The two systems

are linked by a serial channel. In this architecture, FPGA resources limit operations on the sig-

nal path, host CPU resources limit channel modeling, and the bandwidth of the host–FPGA link
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Figure 3.10: Q-Q plot: MtM channel tap weights vs. Gaussian

limits updates to the signal path. Timing precision on the host is a cross-cutting issue. The tech-

niques discussed in this section are applicable to other architectures, but we will use this as a

reference point in considering the resource costs of various simulation options.

Variables having a significant impact on resource use are shown in Table 3.1. Any given

resource limit will allow trade-offs over these variables; specifics are discussed below.

3.4.2 Resource Limits and Feasible Ranges

For the sake of simplicity, we consider only homogeneous designs in which every node, chan-

nel, and path gets the same level of resources as every other. A well-chosen inhomogeneous

configuration might be more useful, however the homogeneous case serves to illustrate general

limits.

Some preliminary definitions are shown in Table 3.2:
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Variable Design Points

Bandwidth 5 MHz (min. IMT-Advanced channel)

22 MHz (one 802.11 channel)

83.5 MHz (2.4 GHz ISM band)

84 MHz (upper UHF TV bands)

Channels 2 (single bi-directional link)

18 (3x3 MIMO, bi-directional)

760 (20 node SISO network)

3420 (20 node 3x3 MIMO)

Taps per channel 1 (minimum)

2 (TS 05.05 indoor model)

6 (TS 05.05 rural and reduced models)

12 (All TS 05.05 models)

Maximum excess delay ≈ 0.4 µs (802.11 card equalizer)

0.4-0.6 µs (rural, indoor models)

5.0 µs (urban model)

20.0 µs (hilly terrain model)

Minimum coherence time 23 µs (v2v worst-case 300 km/h, 5.9 GHz)

50 µs (v2v, worst-case 300 km/h, 2.4 GHz)

260 µs (v2v worst measured, 5.9 GHz)

Table 3.1: Wireless network emulator design space variables
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Variable Definition

n number of nodes

A number of antennas per node

p number of taps per channel

τ maximum excess delay

N = A2n(n− 1) p total number of taps (paths)

fm = v
λ

maximum Doppler spread

TC ≈ .25
fm

minimum coherence time

B bandwidth

fsamp ≥ 2B sampling rate

d dynamic range (dB)

s ≥ d
6.02

sample size (bits)

Table 3.2: Variable Definition

FPGA Multipliers Blocks

The main limiting operation in the tapped delay line channel model is the signal multiplication

for each tap. These are implemented using dedicated multiplier components in the FPGA fabric.

Our reference FPGA, the Virtex-6 XC6VS475T, contains ≈ 2,000 multipliers with a maximum

operational rate of 600 MHz [91]. This gives a limit of fmult / 1.2 ∗ 1012 multiplications per

second. Each tap requires one multiplication for every sample processed. The number of distinct

paths is therefore bounded by Eq. (3.5):

N ≤ fmult
fsamp

≤ fmult
2B

(3.5)

If B = 100 MHz (≈ the 2.4 GHz ISM band or upper (ch. 38 – 51) UHF TV band), this gives

N ≤ 6000. This allows, for example, a 22-node SISO network with 12 taps per channel, or a

15-node 3x3 MIMO network with 3 taps. Referring to Table 3.2, the multiplier cost is O(n) in

bandwidth and taps per channel, but O(n2) in nodes or antennas per node.
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Block RAM

Delay on the simulated signal paths is implemented using on-chip block RAM. The memory

required depends on the sample size (which depends on the required dynamic range), the sample

rate, and the duration for which a sample must remain in RAM, which is the channel delay

spread. Define the duration of data that can be stored as:

Smax ≤
RAM
sfsamp

(3.6)

Our reference FPGA has a 3.6 ∗ 107 bits of block RAM. Considering B = 100 MHz, and

an 18-bit sample size (d = 108 dB), Smax ≤ 1 S. The delay spread is bound by Eq. (3.7). The

number of taps is not a factor, as each sample needs to be held until the final tap, regardless of

the total number.

τ ≤ Smax
A2n(n− 1)

(3.7)

For any of the channels discussed in Table 3.1, multipliers will be the limiting factor on our

FPGA: Considering the limiting 15-node 3x3 MIMO network from above, τ ≤ 530 µs.

Host-FPGA Communication

If tap weights are computed on the host, and evolve according to a random process, they must

be sent to the FPGA at an interval of k times the tap’s coherence time. The k will depend on

the sophistication of on-FPGA interpolation, but by definition the value cannot be accurately

forecast beyond the duration for which there is significant correlation. Let st be the size of a tap

weight, in bits. The (worst case) data rate r will be bound by Eq. (3.8):

stN

kTc
≤ r ≤ host-fpga bandwidth (3.8)

Consider as a design point k = 1, st = 24 bits, and 1 Gb/s of bandwidth. This gives the

following relation: N / 4∗107Tc. This is in fact limiting for vehicular coherence time estimates:

For our worst-case coherence time of Tc = 23 µs, this allows about 960 taps, enough for a 9-

node (SISO) network with 12-tap channels, or a 15 nodes with 4-tap channels. On the other

hand, the worst observed value Tc = 260 µs allows 30 nodes with 12-tap channels. The number

of possible taps is O(n) in the minimum coherence time, and in the available bandwidth. The

number of taps required scales as described in § 3.4.2.
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3.5 Summary

Network emulation enables research into network-scale systems – which would otherwise be

limited to low-fidelity network simulators and one-off field experiments – to use real radio hard-

ware and realistic channel models.

In this chapter, we present a framework for signal-level emulation of propagation effects

over generalized fading channels, at the scale of entire networks. In §3.2 we described our

architecture for generating appropriate tap weights. Our hardware and software architecture goes

beyond previous work in that it supports real-time emulation of a very general and parametric

class of channels, which includes vehicular (broadband mobile-to-mobile) and indoor channels,

in addition to classical stationary-to-mobile and stationary-to-stationary channels.

In §3.3, we presented our implementation of the tap weight generation process and verifi-

cation. Lastly, we discussed the resources required to effectively implement various channel

models in § 3.4.

Given the ability to implement a wide range of channel models, the next challenge is deter-

mining which models to use for each channel – and for inter-channel interactions – given arbitrary

and dynamic user-specified environments, which is presented in Chapter 4 and Chapter 5.
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Chapter 4

Temporal Correlation Models and

Parameters

In this Chapter, we presents a general framework for modeling and reproducing environment-

specific channel properties with high accuracy.

Complex geometric channel models have been developed to represent wireless properties

and dynamics at high level of details. However, the problem of what parameters to use for a

specific environment is less well studied, although parameter configuration in these models has a

big impact on modeling accuracy. We studied a geometric model for channel scattering features,

and a systematic approach is presented in this chapter to estimate location-specific scattering

properties using aerial photography. We first describe the proposed framework in detail and then

validate it for fading and line-of-sight effects in vehicle-to-vehicle channels. We show that it

is practical to estimate localized environment information, and that adding such information to

state-of-the art channel models significantly increases their accuracy.

4.1 Background

Areas with high speed mobiles are considered to be the most challenging environments when

simulating dynamics. This is because of the swift changes occurs in a relative short period of

time due to the high mobility. A typical representative of wireless network exhibiting such high
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dynamics are vehicular networks. Therefore, we will focus our discussion on vehicular networks

in this chapter.

The properties of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless chan-

nels are highly variable and difficult to estimate . Vehicles can travel through very different en-

vironments, producing distinctly different channels, e.g., in urban environments, on rural roads,

and on multi-lane highways. Even within a given area, the location and density of surrounding

objects varies dramatically, leading to varying impact on reflected signals.

Realistic vehicular channel models provide a basis for analysis and evaluation of wireless

vehicular networks by allowing flexible, controllable, repeatable experimentation. While general

mobile-to-mobile channel models are currently supported in some wireless network simulation

and emulation systems [57, 70, 89], those models do not capture the unique, environment-specific

and highly dynamic properties of vehicular channels.

The differences between V2V-specific channels and the ‘general mobile-to-mobile model’

are largely the result of differences in technological assumptions: In contracts to cellular, tech-

nologies like DSRC and Wi-Fi have relatively short communication ranges (tens to hundreds

of meters) which makes local conditions and geometry very important, and reduces the useful-

ness of wide-area averages. This limitation crops up in two significant ways: First “averaged

geometries,” such as an infinite uniformly-distributed field of scatterers, are less valid. Second

“averaged parameters,” such as a uniform density of road-side objects, are less predictive. One

especially pernicious local effect is “line of sight” (LOS) obstruction by moving vehicles. Recent

studies show a 10dB to 30dB LOS effect on received signal strength [54]. While this is concep-

tually just a special case of shadowing, it is caused by small fast obstacles with highly-patterned

movement, while typical shadowing effects are caused by the terminals’ positions relative to

large stationary terrain features. These processes produce substantially different dynamics.

Fading effects caused by scatterers in the environment, are location-specific in the vehicular

network. Classical fading models assume a uniform “ring” distribution [5] [66] of scatterers

around the transmitter and/or receiver, however V2V channel measurements [20, 61] suggest

that the geometry of scatterers in vehicular networks is irregular and environment specific.

Several recent models have attempted to capture the “local geometry” of vehicular environ-
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ments [22, 44, 96]. These consider factors such as the width of roads, cars’ positions within a

road, the presence of intersections, and the type and density of scattering objects along roads.

Models parameterized by such information achieve greater accuracy, but introduce the new chal-

lenge of discovering or estimating these parameters: Accurate, point-by-point values are imprac-

tical to obtain for any reasonably large area, and when “ground truth” parameter values are not

available, the accuracy of the channel model will be limited by how well those parameters can

be estimated.

We present a realistic vehicular channel simulation model that captures the unique channel

features in V2V communication. The models are implemented in a real-time emulation platform,

and evaluation results shows significant improvement in modeling accuracy, and achievements

of high resource efficiency.

4.2 A Realistic V2V Simulation Model

In this section, we describe a realistic model for environment-sensitive channel simulation. We

utilize the general architecture for wireless channel simulation and emulation described in Sec-

tion 2.1 and Figure 2.1. We will describe the functionality of each component, with special focus

on models for V2V channels.

4.2.1 Channel Model Control in Vehicular Channels

We now discuss the vehicular channel model that we will use throughout this section. The model

is suitable for vehicle-to-vehicle communication in an urban/suburban environment, although the

methodology we present in the next section is more general, i.e. it can be used for other vehicular

models and outdoor environments as well.

The specific environment we focus on is an urban/suburban environment with buildings, trees

and mobile vehicles on the road. We chose this particular environment because there is grow-

ing interest in vehicular networking and it is also a challenging channel model because of the

complexity of the environment, and rapid variation in channel conditions.
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(a) LOS and Fading Envelope

(b) Filtered with Gaussian variates

(c) Filtered with Realistic Fading Scatterer

(d) Doppler Spectrum Measurement from Trace # 100

Figure 4.1: Generate Channel Doppler Spectrum

We will distinguish between two types of reflectors. We observed that in a typical ur-

ban/suburban vehicular network, the two primary paths are line of sight (LOS) and reflections

off buildings and possibly other objects (e.g.trees) lining the street. We will refer to these objects

are large scatterers. While there may be many other potential large scatterers in the area, their

contributions will be minimal since they are effectively hidden behind the buildings lining the
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street. Besides large reflectors, urban and suburban environments also have many smaller objects

visible from the road that can reflect and scatter RF signals, thus contributing to fading. These

include smaller structural elements associated with buildings and trees (e.g., balconies, branches,

etc.), moving and parked cars, and traffic signs. We will call these objects small scatterers.

Since the differences in lengths between the LOS and various reflected paths are relatively

small, we only need to model a single resolvable path. This path uses two Doppler spectra:

one representing the contribution from LOS, and the other fading from reflections. The Doppler

spectrum representing fading needs to model the effects of both large and small scatterers. We

will use (a) a geometry-based fading model for large scatterers; and (b) a stochastic fine grained

fading model for small scatterers.

To represent the path loss, LOS and fading effects mentioned above, our V2V channel model

includes three major components, as shown in the Channel Model Control box in Figure 2.1:

(a) a large-scale path loss model; (b) a V2V LOS model; and (c) a small-scale fading model

that represents time-varying reflection and scattering effects of both large and small scatterers.

The output of the LOS model determines the relative contribution (“power factor”) of the LOS

Doppler spectrum in Figure 3.3, and the combined tap weight is scaled by the path loss value.

We now elaborate on how we model the different components of the channel. We use a

standard log-distance model for part (a), large-scale path loss. This model obtains distance infor-

mation from the World Model in Figure 2.1. In this section, we focus on the accurate modeling

of dynamics in the environment and the development of appropriate models for (b) and (c). To

illustrate the contribution of the different components to the Doppler spectrum we will use Fig-

ure 4.1, which was generated using our implementation (see Section 4.6 for more details). The

Doppler spectrum in Figure 4.1(d) is derived from a trace collected in an urban environment,

which we use as ground truth [20]. The Doppler spectra in Figures 4.1(a)-(c) were generated

using our model, with incrementally more features enabled.

V2V Line-of-Sight

Line-of-sight is more than a specialized case of shadowing: When present, it is manifested as an

impulse in the Doppler power spectrum. In a V2V environment, the LOS component exists as a
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dominant received signal when there are no other objects between communicating vehicles. The

V2V LOS model decides whether there exists a LOS component between transmitting vehicle

and receiving vehicle. If it exists, a corresponding Doppler spectrum component is included in

the simulated channel. The Doppler spectrum for the LOS component is then determined by the

relative velocity of the transmitting and receiving vehicles. We can clearly see a LOS component

in Figure 4.1(a).

Geometry-Based Fading Models for Stationary Scatterers

We extends the model proposed in [22], which attempts to capture the small-scale fading effects

from reflections off roadside objects. We believe this theoretical model is a suitable fading model

for realistic V2V simulation.

4.2.2 A Realistic V2V World Model

In the simulation architecture, the World Model is a coarse representation of the physical world

properties, and a set of rules for translating this information into channel model parameters.

Then, time-varying vehicular channels can be created in simulation with parameters inputs that

represent desired channel properties.

Vehicular channel models (e.g.[22, 44, 96]) require significant information about the environ-

ment, much of it specific to the exact locations of the communicating devices. In examining V2V

channel measurements, we find that not only do the observed channel conditions vary signifi-

cantly within the same general environment, but a model using area-averaged parameter values

performs significantly worse than the same model with best-estimated location specific values

It therefore does not suffice to have a good vehicular channel model: One must also have good

knowledge of the environment, or sophisticated approach to generating synthetic environments,

to derive realistic channel conditions. This requires accurate estimation of geometry-based model

parameters that are location-specific and hard to obtain, especially for large area covered by a

vehicular network. We discuss parameter estimation next.
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4.3 Parameter Analysis

In this section, we focus on how to achieve high accuracy in estimating parameter values for the

vehicular channel models described in the previous section.

4.3.1 Types of Parameters

Physical World Signal

Propagation

Abstraction

Specific Topography

Structures

Location of

mobiles

Velocity of

mobiles

Path loss

exponent

Clear line of

sight (LOS)

Statistical Vegetation

density

Traffic on roads

Building density

Terrain type

Rician k-factor

Scatterer

distribution

Table 4.1: Examples of environment attributes / model parameters

The precision with which a channel model models a particular environment depends not only

on the sophistication of the model but also on the information of the parameters it uses and the

accuracy of the parameters used during the experiment. Generally, channel model parameters can

be divided into two major categories: physical world parameters that directly represent physical

world features, and signal propagation abstraction parameters that capture some effect of the
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physical world without representing the details that give rise to it. For physical world parameters

are used, it is up to the model to determine how they impact RF signal propagation, while signal

propagation parameters can be applied directly.

Either type can in principle be treated either as specific values or statistical distributions.

Specific values will either be based on observations and measurements of a target environment or

will be an average value. A statistical distribution will try to represent the values typically found

in a type of environment. Several example parameters are listed in Table 4.1. Which parameters

are “best” depends on the goals. One would expect specific parameters to allow more precise

control over the channel model than statistical distributions, but collecting the parameters can be

expensive. Similarly, physical world parameters seem to provide a more direct way to build a

channel model that reflects a specific environment, but many parameters are needed. The results

presented later in this section are consistent with this trends.

Next, we describe the traces that we used and we then discuss the parameter set of each

specific V2V channel model component, with focus on components highlighted in Figure 4.2.

4.3.2 Traces Used in Our Study

A recent measurement of signal-level vehicle-to-vehicle channel provides realistic signal level

facts in a suburban area [20]. The measurement took snapshot of the propagation channels at

high frequency and generated Doppler spectrum at high frequency. We studied the collected

traces and derived parameter values for that environment. During evaluation, we also use the

trace as “ground truth” to show how close we can approach the reality while applying improved

parameter values in models.

4.3.3 Example Parameters in Vehicular Channel Models

There are three major sub-models to the vehicular channel model, as described in § 4.2.1: The

line of sight model (§ 4.2.1), the geometry-based fading Model (§ 4.2.1), and the “de-smoothing”

of the Doppler spectrum (§ 3.2.2). Each of these sub-models has controllable parameters that can

be tuned to reflect the time- and location-specific effects within an environment. We will now
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examine each sub-model in details and discuss the parameter set of each model. Additionally,

the magnitude of each model’s contribution is an environment-specific property which must be

modeled as well(§ 4.3.3).

Figure 4.2: Determining parameter values for channel models

Line of Sight Doppler Shift

Assuming the vehicles’ positions and velocities are being explicitly modeled, the necessary pa-

rameters in Equation 3.2.2can be computed geometrically.

Parameter Notation

Receiver position PRx

Transmitter position PTx

Receiver velocity ~vRx

Transmitter velocity ~vRx

Table 4.2: Parameters of Line of Sight Doppler Model
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Geometry-based Fading Doppler Spread

The geometry-based fading Doppler spectrum describes the aggregate signal received by indirect

paths reflected by objects in the environment. Here we consider the model described in [22]

as an example. Fading effects from road-side scatterers are captured in this model, for two

vehicles driving on a straight street, where scatters are road-side trees and buildings. The model’s

parameters are given in Table 4.3. Other sophisticated V2V channel models such as [44] have

very similar parameter sets.

Parameter Notation

Transmitter (Tx) and receiver (Rx) velocity ~vTx,~vRx

Distance between Tx and Rx dtr

Density of road-side scatterers ρ

(Mean) distance from road side to scatterers ds2e

Width of road lanes dlane

Number of lanes “above” (left of) Tx and Rx Na

Number of lanes “below” (right of) Tx and Rx Nb

Table 4.3: Parameters of Geometrical V2V Model

Of these parameters, “ground truth” data is the least available for the scatterer density ρ. For

a given drive (real or simulated), the other parameters can largely be derived from mobility data

and street databases. In their evaluation, the authors of [22] were concerned with reproducing

the shape of the measured Doppler spectrum, and used a scaling factor (which subsumes ρ) to

match the model’s amplitude with the measured data. Their process to determine a location-

specific scaling factor relies on manual editing (counting), which is not practical for areas with

considerable size or variation. We estimate ρ – along with ds2e – on a point-by-point basis by the

automated processing of aerial photographs. This process, which will be described in detail in

§4.4, is scalable for large area with variable ρ .

52



Model for Small Scatterers

In § 3.2.2 we observed that the measured Doppler spectrum is ragged while the Doppler spectrum

generated by the geo-based fading model is smooth. Analysis of the non-smoothness showed

that it is caused by many small “peaks” in the measured Doppler spectrum. The peaks rep-

resent strong reflections from small statics and mobile scatterers, i.e., objects with dimensions

smaller than those modeled by the geo-based fading model. The spacing between peak loca-

tions indicates the spatial distribution pattern of scatterers along the road while their position and

movement in the Doppler spectrum is determined by the speed of objects in the environment.

The best way to model the impact of these small scatterers is to develop an appropriate

geo-based model that would use information about the their positions to determine the number,

location, and weight of the peaks at each time step. To do this correctly would require that the

location, shape, and composition of scattering objects be known with extraordinary precision and

accuracy. This is impractical for several reasons: First, many scatterers can and do move, mean-

ing that site measurements become out of date almost immediately. Second, even for permanent

stationary objects, the best publicly available maps and photographs have resolution and accu-

racy on the order of 5m, which is several orders of magnitude larger than the minimum relevant

feature size.

The resolution of input data fundamentally limits that of the model output, which is there-

fore in effect a low-pass filtered average of what would be produced by the real environment.

Example output is shown in Figure 4.1a. The measured values for the same location (shown

in sub-figure 4.1d) show “spiky” variation corresponding to reflections from smaller features.

We investigate two alternative methods for “de-smoothing” the envelope to reintroduce such

small-scale variation. The first is to filter the spectrum with simple Gaussian noise: We define a

random sequence X ∼ N(0.5, 1), bounded to be between 0 and 1. For each frequency point f

in the IDFT output, the original model output yf is multiplied by Xf . Sub-figure 4.1b shows the

effect of this approach.

We also define a new “energy-coalescing” de-smoothing function which attempts to replicate

the underlying physical process: Intuitively, the model’s output over any small frequency range

[flow, fhigh) represents the smoothed average of finer variation which ought to appear within
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that range. We therefore generate a de-smoothed estimate by reallocating energy to peaks at

randomly-chosen frequencies. The expected spacing between peaks δfpeak is a tunable param-

eter, which we estimate from the measured traces. The results of this process are show in sub-

figure c. Relevant parameters are shown in Table 4.4. Note that these approaches model the

observed effect at the signal level; we have not yet developed predictive models for this varia-

tion.

Model Parameter Notation

Gaussian Standard error σ2

Coalescing Peak component spacing δfpeak

Coalescing Peak energy fraction ppeak

Table 4.4: Parameters of Scattering Granularity Models

Component Contributions

The Doppler spreading spectra for both the line of sight and scattered signals contribute to the

received signal. While total received power is determined by large-scale path loss, the relative

weight (power contribution) among each components need to be configured. The channel effects

of each component – tap weight contributions in our realization – must be scaled to represent the

magnitude of the channel gain (loss) for each. The range of relative weight can be obtained from

measurements in specific environment, and then be applied to simulation of similar scenarios.

For the LOS component, we model these magnitudes as (1) an absolute path loss magnitude,

and (2) a relative line-of-sight magnitude. We do not attempt to evaluate path loss models –

we are using the same (measured) path loss value with both the modeled and measured fading

processes in our evaluation. For fading components, we used the results in the trace study in [20]

to determine the relative power ratio for specific vehicular environments. These measured values

were then used in all evaluation scenarios.

In §4.4 and §4.5, we describe our novel geometry-based scatterer estimation and LOS status

estimation, followed by an evaluation of the accuracy of the model in §4.6.
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4.4 Geometry-based Scatterer Estimation

As discussed in §4.3, accuracy in density estimation is a critical set of parameters in the V2V

fading model [22]. In this section, we will show how this estimation accuracy can be improved

systematically.

Rather than use an area or environment-type average as in [22], we estimate point-by-point

value along the route(s) of interest. Here we consider two types of scatterer: trees and man-made

structures. Some propagation studies have attempted to identify and model every specific object

in the region of interest, but this is impractical at the scale of a meaningful vehicular network.

We are therefore interested in approximations that can be applied to large areas, using existing

publicly-available data, in an automated way.

We explored several alternatives, and were able to achieve the best accuracy by extracting

relevant features from aerial photographs. While the availability and quality of imagery varies by

region, 1m x 1m digital aerial orthophotography is available for most of the United States [3].

Using established spectral signature criteria [13], the type of land cover in each pixel can be

estimated.

4.4.1 Estimate Land Cover Type

Ditigal aerial image provides 3-channel(RGB) color reflection of a given area. Both pixel-based

and object-based methodologies have been developed to estimate the type of land based on its

digital aerial image. According to [13], pixel-based methods are applied first to distinguish lands

covered with vegetation. Then, different object-based methods are utilized to identify objects and

other constructions within each group. We’ll briefly describe how we apply the process in our

case.

Vegetation Type

In general, lands covered with vegetation show strong reflection in channel Green. Using the

PCA analysis, a pixel is identified as type of vegetation based on relative value among the 3

channels: (G3 − R3)1/3. For all pixels labeled as vegetation, we further distinguish tree pixels
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from grass pixels. (This is because only trees are regarded as roadside scatterers in our estima-

tion. ) Since there exists higher fluctuation of reflection (in channel G) among adjacent tree

pixels, using variation of channel-G response within a small window will help to differentiate

tree pixels from grass pixels.

Road and Other Constructions

For pixels identified as non-vegetation, we use the object-based method described in [13] to

distinguish roads and buildings. Since we only use the aerial image, elevation data is not consid-

ered in the process. The basic idea is to expand continuous pixels along the road, while building

pixels have borders. We also assign an ‘other’ type for the rest pixels, which usually include land

covered with water.

Figure 4.3 shows an example classification map generated for central Pittsburgh. The location

and density of roadside scatters and road (lane) dimensions can be estimated from the land cover

classification results, combined with explicit road information from U.S. Census data [85]. For

any given road segment, the scatterer distribution model calculates roadside scatterer (building

and trees) density.

4.4.2 Calculate Scatterer Density

Roadside scatterer density is estimated by counting the density of tree pixels and building pixels

along the road.

Identify roadside pixels

For pixels labeled as road, we generate a road buffer of 50m wide on both sides of the road. Only

pixels fall in the road buffer are considered as road-side pixels.

Estimate roadside scatterer density

Among all road-side pixels, we only consider tree pixels and building pixels in scatterers estima-

tion.
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For the area we are studying, the best aerial maps available are from National Agricultural

Imagery Program [3], The most recent photographs in this area are 4-band (RGB plus infrared),

with an absolute position accuracy of ±6m. Therefore, we use a 10m x 10m mask to estimate

scatterer density for each position.

The accuracy of mapping is limited by image quality and classification algorithms. However,

this general approach proves effective in practice, and accuracy can be improved with better

inputs. Although the processing time for a large area is significant, it can be done off-line and

needs to performed only once.

Figure 4.3: Classified Map

Considering the fact that locations of building and trees are stationary in general, the calcu-

lation is performed off-line for any given area of interest. At run time, exact scatterer density

along the route (at given locations) can be obtained quickly by a simple table (map) lookup.
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Figure 4.4: Roadside Scatterer Density

Figure 4.4 shows sample roadside scatterer densities generated for a given route. Using

these estimates, fading models can generate more realistic location-specific Doppler spectrum.

The benefits are shown in the evaluation part (§4.6), when comparing against fixed parameter

values.

4.5 V2V Line-Of-Sight Estimation

In this section, we introduce a trace measurement-driven method of estimating V2V LOS status

for the V2V Line-Of-Sight module (4.2.1).

The Line-Of-Sight path between two vehicles varies (appears or disappears) over time, es-

pecially when vehicles frequently switch lanes and/or merge lanes. In principle, the exact LOS

status could be determined geometrically by modeling the dimensions and behavior of every

object in the area that could block the LOS path. This explicit modeling approach will not

be practical without adequate information of all objects in that area. Instead, we use a trace

measurement-driven approach that can estimate the LOS path status.

We first studied the statistical pattern of LOS status in the channel measurement traces
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from [20]. A trace (1.5s window) is labeled as LOS-evident if: (a) There exists one frequency

component (or a small number of a frequency components) having dramatically greater mag-

nitude than all other frequency components, and (b) there exists a single frequency component

accounting for a large fraction of the total received power. Figure 4.5 shows that these criteria

largely agree with each other.
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Figure 4.5: Detect Dominant Components (LOS)
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Figure 4.5 shows the pattern extracted from traces, with each data point represents one trace.

For each trace, we count the number of dominant frequency components (peak counts) as well

as corresponding power contributed compared to total power (power ratio).

Notice that traces with high peak counts essentially have large numbers of comparable fre-

quency components, which indicates no dominant components among all. The figure shows that:

a) traces with high dominant power ratio have low peak counts (mostly fewer than 10); and b)

traces with low peak counts have higher dominant power contribution (mostly higher than 0.1).

This observation matches with properties of dominant components (LOS). Therefore, we use

both power ratio and peak counts to label traces as LOS-evident as described above.

Following [2], the V2V LOS status can be modeled using a two-state Markov model.The

LOS transition behavior is represented by two configurable parameters: 1) tNLOS: the average

duration of NLOS period; and 2)pblock: the probability of losing LOS per unit time. These are

first estimated to fit the line-of-sight pattern identified in real traces, and then the Markov model

transition probabilities are derived from those parameters.

From measurement traces, consecutive samples of LOS components represent a long LOS

duration, with gaps in between indicating NLOS periods. We determine the typical value and

range of tLOS and tNLOS by averaging the length of continuous LOS segments, and gaps between

these segments. The probability of pblock is estimated by calculating the percentage of samples

that are not labeled as LOS-evident.

Although the parameter values estimated from traces are specific this location and time, the

same approach could be applied to measurements from other V2V or V2I environments. It

possible that representative values exist for generally similar environments, but this has not been

tested.

4.6 Evaluation

We evaluate the accuracy of our fading model at two different levels. First we evaluate how well

the channel model matches the measured channel at the signal level. The signal-level channel

“closeness” is measured by the Doppler spectrum similarity. Second we use 802.11 link-layer
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measurements to compare the modeled and measured channel at the link level. Our metric is

packet delivery ration (PDR). At the channel level, our proposed location-specific model has less

than half the error of an area-average model. At the packet level, the location-specific model has

less than 1
4

the error.

4.6.1 Wireless Network Emulator

Our packet-level experiments are implemented on the next-generation prototype of the CMU

Wireless Network Emulator [89] in the 2.4GHz ISM band. The architecture is shown in Fig-

ure 4.6: Each transmitter’s signal is converted to baseband and digitized in the input side of

the emulator. The digital signals are filtered through a tapped-delay line FIR filter to produce

both attenuation and delay, including fading and resolvable multipath effects (see Figure 3.1).

This real-time per-sample signal processing is performed in the FPGA. The number of taps, their

weights, and the delays between taps are controlled by software running on a general-purpose

computer (see Figure 3.3). In general, every attached radio is both a transmitter and receiver,

and a distinct channel is emulated for every transmitter-receiver pair. For the purposes of these

experiments, the emulator is configured with a single, unidirectional, one tap channel between

the transmitter and the receiver.

Figure 4.6: Overall Emulator Architecture
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4.6.2 Doppler Spectrum Similarity

To evaluate the accuracy of our fading models and the impact of using detailed environment-

specific parameters, we compare the difference between two modeled fading spectra and the real

measured spectrum. We consider 889 measurements collected for [20], where each measurement

includes GPS-derived position and velocity for the mobiles, and the Doppler spectrum for a 1.5s

narrow-band continuous-wave measurement. We label these spectra Mi i:∈(1,889). For each such

point, two modeled Doppler spectra are computed: The first is a baseline estimate Di, which

uses the real (instantaneous, location-specific) values for position and velocity, but a fixed area

average value for ρ. This essentially matches the model as described in [22]. We also compute

a location-specific spectrum Ei, which again uses the real position and velocity information,

but also incorporates the estimated point-specific ρ values. For other configurable parameters

ds2e, dlane, Na, Nb, we apply the same observed values in [20] because the road dimensions does

not vary much within the area where the measurement data were collected.

For each i, the accuracy of Di and Ei is computed as the Kullback-Leibler divergence [48]

relative to Mi
1. Note that K-L divergence was developed as a measure of similarity between

probability density functions. We are applying the technique to the more general problem of

comparing functions which are not probability densities; this approach was introduced by [32].

This use of the K-L divergence metric lacks the precise information-theoretic meaning of the

original, but still provides an intuitively-reasonable measure of difference. For the K-L diver-

gence to be well-defined, the two functions need to “look like” probability distributions. There-

fore, if the frequency sample points are denoted as fj , we normalize each Doppler spectrum e.g.

Ei to E ′i =
Ei

s
for s = (

∑
fj
Ei(fj))

−1. This normalization discards the total received power s,

leaving only the difference in shape. Finally, the K-L divergence of two spectra is then defined

as:

dKL(Ei||Mi) =
∑
j

E ′i(fj) ln
E ′i(fj)

M ′
i(fj)

(4.1)

and dKL(Di||Mi) is defined similarly. The K-L divergence is 0 when two (normalized) spectra

1Notice that D1−889 and E1−889 are basic fading envelopes. Therefore, we applied a smoothing window of 100

Hz on the measured spectrum and use the result as the fading spectrum envelope M1−889.
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are identical, and increases as the point-wise values differ.

The spectrum similarities dKL(Di||Mi) and dKL(Ei||Mi) along a measured route are shown

in Figure 4.7. Figure 4.8 shows empirical CDF (cumulative distribution function) of the spectrum

divergence for the two estimation methods.

Figure 4.7: Spectrum Similarity Comparison on Map
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Figure 4.8: Spectrum Similarity Comparison (CDF)

The location-specific estimates are significantly better than the area-average: The median

error (K-L divergence) of the Ei is 36% that of the Di (0.14 vs. 0.39). The Ei curve is always

better (left of) the Di curve, with a Kolmogorov-Smirnof statistic of 0.37.

4.6.3 Link Layer Comparison

While the Doppler spectrum is interesting in itself, for many purposes the pressing question is

“how does this fading pattern impact communication?” We show that, for real 802.11a radios

using BPSK with half rate over a range of path loss values, the location-specific fading model

produces packet error rates (PER) significantly closer to reality than the area-average model.

This experiment was conducted as follows: Two 802.11a nodes were placed in RF-shielded

test enclosures, with one antenna port on each node’s wireless NIC connected to the channel

emulator described in § 4.6.1. A unidirectional channel was configured from the transmitter to the

receiver. For each measurement point i, a large-scale path loss model generates its corresponding

path loss value based on the Tx-Rx distance2. The same path loss value (for measurement point i)

was combined with each of the small-scale fading Doppler spectra Mi, Di, and Ei, respectively.

2The channel measurements collected do not allow us to reconstruct the path loss at each measurement point.

The path loss values used are therefore not necessarily correct, but they are credible and most importantly do not

vary between Doppler spectra at each point.
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For each spectrum, the resultant tap weights were used to produce a single-tap channel. For each

point i and fading spectrum, the transmitter broadcast 2000 packets over a 20-second window,

which were logged by the receiver. The PER was then calculated for each experiment.

Figure 4.9: Link Level Comparison

The measured packet delivery ratio results is shown in Figure 4.9. The red (+) line in this

figure is the reference data set: the PDR results using measured Doppler spectra Mi. The green

(x) line shows the results using area-average ρ (spectra Di), and the blue (*) line show the results

using location-specific ρ (spectra Ei). We observe that path loss is the dominant factor in de-

termining PDR, and that the location-specific fading channel approximates the measured values

more closely than the area-average model. Over all points i, the location-specific model and

area-average model have mean squared errors of 0.034 and 0.158, respectively. The error of the

improved model is less than 1
4

that of the baseline.
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4.7 Run-time Complexity

In this section, we first explain run-time challenges in simulating vehicular channels with high

dynamics. Then, we introduce several optimizations that improve real-time simulation efficiency.

A prototype of the simulation model from Figure 2.1 has been implemented on the Wireless

Network Emulator [42]. The channel models are implemented as Java software on a general-

purpose computer. The performance evaluation in this section is from this prototype.

4.7.1 Channel Updates Calculation

During simulated experiments, the dynamics of a given channel are implemented by chang-

ing the weights in a tapped delay line to represent its time-varying channel properties. These

weight changes (channel updates) must be produced several times per channel coherence time.

Rather than stepping a time-domain channel model in real time, we produce these update from

pre-generated “fading tables” as described in [89]. There are therefore two computationally im-

portant tasks: Generating a channel update from given fading tables, and generating new fading

tables. The first must happen very frequently (O(1/Tc) for every channel) and must therefore be

quite simple. The second is computationally much more expensive and must occur much less

often; minimizing such computations is the subject of the rest of this section.

Fading tables are generated from frequency domain Doppler spectrum through IDFT com-

putation. The Doppler spectrum of a realistic V2V channel is not static: when parameter value

changes as vehicles move, the fading spectrum (and fading tables) needs to be re-computed to

implement the changes. For example, in the geometry-based fading model [22], any change

of status (parameters in 4.3) leads to a different spectrum. With high dynamics in V2V chan-

nels, constant re-calculation of spectrum and fading tables can exhaust the limited computational

resources for real-time simulation.

To reduce run-time fading table calculation, we utilize the following observations:

1. If the same (or similar enough) sets of parameters occur regularly, fading tables can be

cached for re-use (on-line solution).

2. If parameter values are available ahead of time, spectrum and fading tables can be gener-
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ated beforehand (off-line solution).

Next, we describe our hybrid solution that combines both off-line preparation and run-time

optimization. The following discussion are based on the fading model in §4.2.1.

4.7.2 Real-Time Constraint

The three primary timing constraints for real-time channel simulation and emulation are the

sample time Tsamp, the channel coherence time Tc, and the stationarity time Tstat: Tsamp �

Tc � Tstat. Typical values for these limits are shown in Table 4.5.

Time Typical Value Required Action

Tsamp 5ns Multiply samples by tap weights.

Tc ≈50µs Update tap weights k times.

Tstat ≈20ms Update channel model.

Table 4.5: Time constraints

Tsamp is based on a 100MHz real baseband channel, sampled at the Nyquist rate. In our

architecture, sample-rate processing is done on an FPGA [89]. Here we addresses only the

software processing which is bound by Tc and Tstat. Updating tap weights in discrete steps

means approximating the continuous smooth variation of the channel as a step function or linear

interpolation. Numerical evaluation in [30] shows that a linear interpolation with time steps of

Tc/40 is functionally indistinguishable from the smooth curve; we have used steps as slow as

Tc/4 with no noticeable degradation.

Reasonable estimates of Tc range from a theoretical worst case of 23µs for vehicles at

300km/h and 5.9GHz to a least measured value of 260µs [82]. The term stationarity time and

our estimated value come from [10]; their measured minimum value is 19.6ms, with 5% Tstat

values ranging from 70ms to 924ms.

Producing tap weight updates from an existing fading table is a relatively light-weight op-

eration. Our current, un-optimized implementation requires ≈3µs per tap on a single processor
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core [89]. We would like to improve that in order to support larger networks with shorter coher-

ence times, however that is orthogonal to the choice of channel model and will therefore not be

considered further here. The geometrical V2V channel model we considered here differs from

the ones considered in 3 in that it can produce a wide range of Doppler spectrum shapes, and

no single fading table or small set of tables can represent all of them. It is therefore possible

that a new fading table must computed at run time. The remainder of this section addresses the

computational cost of doing so.

4.7.3 Channel Model Update Cost

First, we consider the time required to update a single one-path channel. As mentioned in §4.7.1,

the most time-consuming processes during channel updates are (a) generating the fading Doppler

spectrum, and (b) performing an IDFT to obtain a fading table. Next, we analyze the computation

complexity of (a) and (b), using the geometry-based fading model, followed by measurement

results.

Frequency-Domain Spectrum Generation

In (a), the geometry-based fading model divides the whole space into N small cones (sections),

where N is a design variable. For each cone, scatterer density is estimated, and corresponding

Doppler spectrum component is calculated. The per-cone computation requires essentially con-

stant time. Thus, the overall calculation complexity is O(N). Note that the number of cones N

is naturally related to the spatial resolution of the input data as small cones correspond to higher

angular resolution.

IDFT

Frequency domain interpolation regulates the spectrum to include a fixed number of samples,

equally spaced in the maximum Doppler shift range. In (b), a fixed-point IDFT translates the

spectrum to a fading table. In this case, the time cost of IDFT is a fixed cost, and independent of

N.
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Figure 4.11: Time to generate an N -cone fading table.

We measured the time cost of step (a) and (a) + (b). The measurement was performed on a

desktop computer, using one core of an Intel 3.80GHz Xeon processor. The time cost is averaged
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over 1000 trials.

As shown in Figure 4.11, with a small number of cones (N ≤ 29 or 512), the total time cost

for spectrum calculation is relatively stable (≈ 1ms). In addition, the difference between two

curves (with small N) confirms a stable time cost of IDFT operation (about 0.5ms). With large

N, the overall cost trend is linear as dominated by O(N).

For a single one-tap channel, the cost of computing a new fading table exceeds Tc, but is

below the bound of Tstat. However, as network grows to n cars (or n antennas), the number of

channels grows as O(n2). If a new fading table must be computed for every channel every Tstat,

n is severely limited.

4.7.4 Re-usable Fading Table

Some simple Doppler spectra (e.g. Jakes’) have the nice property that all spectra in the family can

be generated from one another by scaling the amplitude and frequency [89]. This is unfortunately

not true of the vehicular channel from §4.2.1. Table 4.6 classifies the fading model parameters

by their effect on the Doppler spectrum and rate of change. Crucially, the parameters VTx and

VRx are rapidly-varying and effect the shape of the Doppler spectrum.

Parameter Variation Scales Spectrum

vTx slow - fast ×

vRx slow - fast ×

ρ static ×

vTx slow - fast
√

vRx

vTx
slow - fast ×

constant ρ no change
√

ds2e, dlane slow ×

Na, Nb slow ×

Table 4.6: Scaling Factors in Parameters
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The situation can be improved somewhat: The shape of the Doppler spectrum depends only

on the ratio VRx and VTx, not on the magnitude of either velocity. Rewriting the Doppler spec-

trum model in terms of the ratio vRx

vTx
and one free magnitude (arbitrarily VTx) therefore eliminates

one “shape-effecting” parameter.

In Table 4.6, parameters in the first group are original listed in [22]. The second group shows

the situation after re-formulation. Parameters in the third group vary slowly over time and can be

regarded as constant during a limited amount of time. As described in [89], a fading table can be

re-used for different values of spectrum-scaling parameters so long as the shape-effecting ones

remain the same.

4.7.5 Off-line Preparation

While re-usable tables help to improve run-time efficiency, calculation of new fading tables is

unavoidable when shape-effecting parameters change. This may happen continuously when ve-

hicles move.

The goal of off-line preparation is to avoid run-time calculation of new fading tables by pre-

generation of various type of fading tables with given parameter values. We start with a fixed

scatterer density of ρ, and handle spatial variation of ρ at the end of the section.

Although the exact value of a set of parameter are not available at any moment, one can

estimate the range of each parameter in Table 4.6. For example, typical driving speed is between

20 mph to 30 mph in a suburban area. In most car-following scenario, speed ratio is often close

to 1. The average distance of de2s is between 6 to 10m. Fading tables generated using these

parameter values will be utilized with higher probability during run-time simulation.

Table 4.7 shows a set of typical values selected for typical suburban vehicular channels. The

transmitter speed vTx and scatterer density ρ are applied at run-time to scale the spectrum (fading

tables). The size of the parameter space is exponential in the number of parameters, but only

O(n4) in the number of discrete values per parameter. It is therefore feasible to quantize these

parameters and pre-compute Doppler spectra for all parameter combinations. For the discrete

values in Table 4.7, there are 2,700 (20 × 5 × 3 × 9) such combinations. The fading table

representation of each Doppler spectrum requires 64kB memory, for a total of 172.8MB. At run-
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time, actual parameter values can be rounded to quantization points. As long as actual parameter

values fall in the estimated range, no run-time fading table generation is required, at the cost of

some quantization error.

Parameter Min Max Values # of Values

vRx

vTx
0.1 10 0, 0.1, ..., 0.9, 1, 2, ...,10 20

ds2e (m) 6 10 6, 7, 8, 9, 10 5

dlane (m) 3 5 3,4,5 3

Na, Nb (m) 0 2 0,1,2 3× 3 = 9

Table 4.7: Typical shape-effecting parameter values

Variable Scatterer Density: When ρ varies over space, similar approaches can be applied.

The set of angular intervals {[θi, θi + dθ)|i ∈ 1, . . . , N} partitions space around the receiving

vehicle into N cones. Crucially, the Doppler spectrum received over the entire set of cones is

simply the sum of independently-computed responses for each cone [23, eqs. (7)–(11)]. We can

therefore scale each cone’s spectrum by its ρi before summing the cones’ spectra. We fixN = 29

for our experiments, giving an angular resolution dθ = 2π
29

. Increasing N improves spectrum

accuracy up to the limit imposed by the spatial resolution of the input data, as described in

§ 4.7.3.

As discussed in [89], table-based off-line preparation is computationally efficient. Such

preparation relies on prediction of vehicle behaviors and model/parameter. In simulation, some

of these parameters are configured explicitly by users, while others are generated during simula-

tion (e.g.from mobility model) and may not be available beforehand.

Therefore, a careful study of the simulated area and mobile behaviors is critical for real-

time V2V channel simulation. During off-line preparation, we utilized aerial photos to examine

scattering properties, and vehicle traces are studied to obtain speed and location information. For

other environment/scenario, the same approach still applies in helping prediction of parameter

ranges for off-line preparation.

72



4.8 Summary

Realistic simulation of high dynamic wireless channels requires not only realistic channel sim-

ulation models but accurate parameter values as well to approximate dynamics in surrounding

environments with high realism.

In this chapter, we first introduced simulation channel model control for vehicular networks

in §4.2. We narrowed down the discussion on the most challenge environments with high dy-

namics: the vehicle-to-vehicle fading channels and LOS components. We discussed parameters

for simulation models in §4.3 and provide an example specifically for vehicular channels. Next,

we described our novel scatterer estimation approach and V2V line-of-sight estimation process

in §4.4 and §4.5. We introduced our practical and efficient way for extracting critical parameters

from realistic environments.

§4.6 presents an evaluation of the accuracy of our channel modeling approach. We show that

for a given channel model the use of area-average parameter values results in a significant loss

of accuracy relative to point-by-point values. In addition, we show that by indirectly estimating

those values from readily-available data, much of that accuracy can be regained.

Lastly, we presented the computational complexity of our models in §4.7.

4.8.1 Generalization of Approach

Our evaluation focuses on parameterizing the V2V fading model from [22], but the approach is

meant to generalize to other channels and models which depend heavily on local features of the

environment.

In any outdoor environment, the fading properties of wireless channels are strongly influ-

enced by the stationary and mobile objects in the environment. When modeling such effects,

accurate estimation of location, dimension, and density of such objects is needed to achieve high

modeling accuracy. Geometric modeling of each object helps to provide an accurate descrip-

tion of each item. However, when modeling an environment with a huge number of objects,

estimating densities is a more practical approach that suffices. Our approach of using imaging

processing and additional road information would dramatically improve the accuracy and effi-
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ciency in such estimation. Arial map and road information data could be used for rural and

densely populated areas, while terrain data that includes elevation information would be needed

for open areas with hills.

For indoor environments, the wireless channel dynamics is also affected by geometric dis-

tributions of objects in the surrounding area. Although arial maps are not applicable to indoor

object identification, using corresponding information, in this case floor plans and room descrip-

tions to infer furniture density and layout , would also help to improve estimation accuracy.

The generalization of our proposed solution is to utilize available information and perform

efficient and systematic processing so that we can obtain higher level abstraction of detailed

object density, location, and mobility information with high accuracy.
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Chapter 5

Cross-Link (Spatial) Correlation Models

Wireless channels are defined by the presence and motion of objects between and around the

communicating stations. As parts of the environment change, so do the channels experienced by

nearby stations. The common models in current use often do not consider the spatial locality of

most channel effects: Except for correlated fading in MIMO models for nearby antennas, it is

typical to model channels or links with mutually-independently random processes.

In this chapter, we evaluate the effects of that assumption of independence in the context

of vehicular multi-hop networks. We first look in depth at how to model spatial correlation for

links for different types of channel properties and models, using vehicular channels as an exam-

ple. Then we compare independent stochastic, locally cross-correlated stochastic, and explicitly

geometric models in terms of the application-level performance they induce. Specifically, we

present our evaluation of how the choice of model impacts the performance of a gossip proto-

col. In addition, we compare the complexity of the different modeling options. We show that

while explicitly modeling correlation for stochastic channel properties can improve realism, the

complexity increases quickly with modeling additional correlated properties.

5.1 Background

The properties of wireless links are highly dynamic because the signal propagation environment

changes as a result of movement in the environment. The performance of many wireless network
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protocols and applications is sensitive to changes in wireless channel (e.g., signal strength) and

consequently link (e.g., packet delivery rates, bandwidth) properties. Examples are transmit

rate adaptation, TCP window size, and video bit rate adaptation. In a mobile environment with

multiple wireless links, the changes of nearby links are not independent for the simple reason

that the links share the same physical environment. Movement by objects, for example, is likely

to impact all nearby links, although the precise nature of the impact will differ. We will refer to

this phenomenon as spatial correlation across wireless links.

Some protocols and applications are not only sensitive to changes in the properties of individ-

ual links, but also to how these changes are correlated across multiple links. Examples include

routing protocols that adapt to quality of the links in multi-hop wireless network [27, 40] or pro-

tocols that rely on opportunistic overhearing of packets [50]. In order to evaluate these protocols,

simulators not only need to accurately model the channel or link dynamics of individual links, but

they also need to properly model the correlation of these properties across nearby links. When

such correlation is not accounted for (as is typically the case), the diversity of adjacent links is

often over-estimated, which can easily lead to incorrect results, i.e., the benefits or drawbacks

of specific techniques observed in simulation may differ significantly from those obtained in the

real world.

Models for the properties of individual channels can be broadly classified in two categories.

A first approach is to model relevant components of the physical space explicitly, and to directly

derive the corresponding link properties. Examples include the ITS Irregular Terrain Model

point-to-point mode for path loss [38] or computational electrodynamics for small-scale fading.

The drawback of this approach is that the model inputs (and possibly the model itself) describe

only a specific environment and that collecting the input for the model can be time consuming.

As a result, people have develop stochastic models that directly generate the desired channel

property, e.g. log-normal shadowing, Rayleigh, Rician and Nakagami fading. [56, 75]. Such

models can often be used to represent many very different environments with a simple parameter

change (e.g. a different K factor or maximum Doppler shift), or multiple instances of a similar

environment with a change of random seed. However, precisely because they don’t require a

comprehensive description of the environment, the similarity (or dissimilarity) between channels
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in the same environment tends not to be captured.

On the other hand, the spatial correlation of wireless properties among adjacent links have

been frequently observed in wireless networks. Some measurement study specifically quantified

the level of correlation versus distance in urban and suburban area [60], while others studies

the correlated shadowing effects in multi-hop networks [4] and vehicular network [16]. Studies

have shown the correlation in shadowing effects has significant impact on wireless protocol per-

formance [81], specifically in vehicular networks [14]. Moreover, such correlation can even be

utilized in discovery [49] and geographic gapping [67].

Although different types of stochastic correlated models [60] [37] have been proposed for

wireless channels, these models are not present in most wireless simulation platforms such

as [57] and [70]. When evaluating adaptive protocols (such as PRO[50]) that are sensitive to

spatial correlation, the spatial diversity, which is essentially the opposite side of correlation,

could be mis-represented.

5.2 Channel Dynamics and Network Adaptation

Channel dynamics on multiple time scales can result in radically different channels that may

require adaptation by the protocols at all layers of the protocol stack. Examples include changes

in coding and modulation at the physical layer; different routing, coding, and retransmission

strategies at the MAC and network layer; different congestion control solutions at the transport

layer; and application level strategies to optimize quality of experience given available bandwidth

at the application layer. These protocols adapt to their environment to optimize performance,

and increasingly the adaptation is ‘cognitive’ in the sense that the protocols collect information

about the environment and make explicit decisions about how to best adapt, as discussed in

Section § 1.1.

In wireless networks, most adaptive behavior targets the optimization of individual links, e.g.,

transmit rate adaptation. To properly evaluate such optimizations, it is sufficient that accurate

channel models are used and that their inputs are set and changed in a way that reflects the

target physical environment. However, for the evaluation of protocols that deal specifically with
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topology (e.g., routing) or that try to leverage spatial diversity or correlation, simulators will have

to accurately model the spatial properties affecting the protocols. We consider specific examples

in the context of vehicular networks.

Figure 5.1: Examples of Spatial Correlation across Links

Challenges in Simulation Realism of Vehicular Networks

Vehicular networks are challenging because of the high degree of mobility and rich channel

dynamics. We now look at some examples of spatial correlation between vehicular channels,

considering fading, path loss, and line-of-sight (LOS) channel properties.

Figure 5.1(a) shows two wireless channels in close proximity on a road segment. Since the

two channels are in the same environment, their properties are affected by similar reflectors

and mobility effects, resulting in similar fading properties. Figures 5.1(b) and (c) are cases

with channels partially overlapping. We again expect fading properties to be similar, but LOS

properties are much more tightly coupled. Figure 5.1(d) shows and example an intersection,

where nearby channels may have similar LOS properties due to blockage by buildings.

It can be difficult to predict how specific types of spatial correlation affect various adaptive

protocols, and it becomes more difficult as the protocol becomes more sophisticated and more

links are involved. As a very simple example, let us consider PRO, a Protocol for Retransmitting
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Opportunistically [50]. In PRO, if a transmission from a transmitter A to a receiver B fails,

a relay node R can retransmit the packet on behalf of A, if it overheard the packet and has a

better channel to B than A. This has been shown to offer the biggest benefit in environments with

significant fading or shadowing, which is not surprising since PRO leverages spatial diversity

between channels A-R and A-B.

Let us now consider how PRO may perform in some of the examples shown in Figure 5.1.

Even if the three channels between A, B, and a potential relay R have LOS, we would expect

PRO to benefits because of the high degree of fading. If relays experience LOS obstruction

independent of (or negatively correlated with) the A-B link, the relative benefit of PRO should

increase. However, if the same buildings (Figure 5.1(d)) or cars (Figure 5.1(b)) block both the

A-B link and A-R links, the relays will be of little use and the benefit of PRO will be less.

5.3 Modeling Channel Dynamics

Channel Models 

                
                       

Time  millisecond  second                minute  long-term 

Small-scale Fading Models Large-scale Fading Models 

Large-scale Path Loss Models 

Fading from reflectors/scatterers 

Channel Properties 

Obstructers/Hills Shadowing 

Propagation Loss/Attenuation  

Figure 5.2: Channel Properties/Models at different time scales

This section presents an overview of the different types of models that can be used to model

various channel properties. We also introduce an example stochastic channel model for LOS

blocking.
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5.3.1 Types of Channel Models

Both the instantaneous channel properties and the dynamics depend are determined by the pres-

ence and movement of the many objects in a typical environment, and it is generally not prac-

tically to exactly compute the instantaneous channel response, let alone its evolution over time.

A common approach is therefore to maintain a simplified view of the objects in an environment,

and then to introduce stochastic models for the effects which cannot be realistically computed

from that view.

Channel model typically consists of multiple components that model different channel prop-

erties, often happening on different time scales. Figure 5.2 shows an example: properties in-

clude large-scale path-loss, shadowing due to objects in the line-of-sight, and small scale fading.

These models can be classified according to a couple of properties.

First, the model can be completely generic, or be designed for a specific environment. Sec-

ond, the inputs can be environment-specific or output-matched . Environment-specific inputs are

based on observations or measurements of a specific (real or artificially generated) environment

(e.g., density, location, and speed of objects). In contrast, output-matched parameters do not nec-

essarily reflect a specific properties of an environment, but they are chosen so the model output

will have the desired properties, i.e., it roughly matches channel measurements.

The third model property relates directly to how dynamics are models and it falls between

two extremes. First, in a purely deterministic model (e.g. typical for path loss) the dynamics of

the output (e.g. loss) follow directly from variation in the input (e.g. distance between transmitter

and receiver), or else they are not captured at all.

In this case, obtaining realistic channel dynamics requires varying the input parameters,

which typically implies having detailed environment-specific inputs. At the other end, dynamics

can be entirely internal to the model (e.g. typical fading models): The model is a random process

with prescribed temporal behavior (e.g. autocorrelation). The underlying physical events (the

positions of the objects whose motion is causing the fading) are not represented, so spatial cor-

relation will typically not be captured. Between the two extremes, a stochastic model may have

some environment-specific inputs, and if those change together across “independent” channels,

there may be some covariance.
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These properties define a large design space. Models for properties that are coarse and change

slowly, e.g., path loss, tend to use deterministic models with mostly environment-specific inputs.

We will refer to these models as geometric models. Models for more fine-grain properties that

can change quickly, e.g., fading, or are hard to model, e.g., large numbers of small objects, tend

to use models that are inherently stochastic. Some properties can however modeled either way.

Examples include LOS blocking (shadowing), random packet loss, etc.

As a concrete example, [43] describes a set of models for properties of vehicular channels. It

uses a geometric model for path-loss, and stochastic models for LOS blocking and scattering by

small objects. The model for fading caused by large objects is an environment-specific stochastic

model with environment-specific inputs.

The focus of this section is on modeling link correlation for both geometric and stochastic

channel properties. To make the discussion more specific, we will use models for LOS blocking

as an example.

5.3.2 Modeling Shadowing and Line of Sight

Shadowing is reduction in signal strength caused by obstructions which absorb incident energy

or reflect it away from the shadowed area. Shadowing occurs when obstructing objects – station-

ary or mobile – impinge significantly on the Fresnel zone around the dominant propagation path.

Treating shadowing as a binary condition (Line-Of-Sight vs. Non-Line-Of-Sight) is a substantial

simplification, but it’s probably not unreasonable at higher frequencies [53]. The LOS/NLOS

status of a path can be estimated geometrically [15] or with measurement-driven stochastic mod-

els [2].

Here, we briefly introduce a typical stochastic shadowing model (2-state Markov shadowing

model) based on [2], and shown in Figure 5.3. Two shadowing link states (LOS and NLOS)

are considered in the model. The transition probabilities are p1 and p2. At initialization, each

link randomly selects a starting state. For each state, the probability distribution over pos-

sible subsequent states is realized as a discrete random variable. Because each state in this

model has only two possible next states, the discrete “next state” distributions are implemented

as random variables r with a continuous distribution and a cutoff threshold. For example, if
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current state = LOS, next state is NLOS iff ri <= p1.

Figure 5.3: Two-state Markov Shadowing Model

5.4 Correlated Channel Models

In this section, we look at spatial correlation for channels that are modeled geometrically and

stochastically. We will use the LOS property as a running example.

5.4.1 Geometric Models

For geometric models, the calculated channel properties are completely determined by input

(environment details). Assuming consistent information about the environment is used to model

all links in the simulation, spatial correlation between links will automatically be captured. In the

LOS case, if the same information about the location and size of physical objects (cars, buildings)

is used consistently throughout the simulation, all the different examples of spatial correlation

shown in Figure 5.1 will be captured.

To validate this claim, we looked at the spatial correlation observed in a simulation using the

geometric LOS model described in § 5.5.3. Figure 5.4 shows the observed agreement between

links’ LOS states as a function of the distance between them. These are calculated over 20

second intervals so that the two pairs of cars positions relative to each other do not change too

much within a single data point. Short time spans mean that relatively few transitions occur on

each link per interval, so the observed variance is relatively inaccurate. Consequently we use

simple agreement (what fraction of the time both links have the same LOS status) rather than

correlation as a similarity metric. Linear fits are plotted for three distance ranges: 0 to 50m, 0 to
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100m, and 0 to 500m For the first two, there is a statistically-significant relationship (p < 0.001)

with slopes of −0.004;−0.0001/m respectively.

Figure 5.4: Probability of LOS state agreement as a function of distance, geometric model.

5.4.2 Statistical Models

For statistical models, there is no explicit information on correlated physical world impacts. In

addition, the independent random process associated with each link introduces additional iso-

lation among multiple channels. In order to have realistic inter-channel correlation, it must be

modeled explicitly. This implies (a) determining the expected correlation properties among chan-

nels, and (b) applying this correlation to (time-series) models while maintaining their statistical
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properties. The approach which we explore here is to enforce correlation across the random

variables which are implicit inputs to stochastic models. The most straightforward stochastic

models consist of a random variable which is filtered to produce the desired output distribution

and autocorrelation; many fading model implementations work this way. In that case, the desired

correlation of model outputs can be directly achieved by correlating the input random variables,

possibly with some adjustment for the filtering. In this work, we do something similar, but with

a discrete model that has a more complicated structure.

5.4.3 Example: Correlated Stochastic Shadowing Model

In the Markov two-state LOS/NLOS model described in § 5.3.2, each link is modeled indepen-

dently with individual streams of random variables as input. The correlation among multiple

links is missing in this modeling process. In this model, input random variables r determine the

next transition out of each state. When modeled independently, the streams of random variables

applied for each link are i.i.d.. To compensate for the correlation among physical events (LOS

blockage and clearance) while maintaining the overall statistical property of each individual link,

we introduce correlation among the streams of random variables of links that are close by, to sim-

ulate the correlation of physical events in the real world. To find the necessary input correlation

among the random variables to produce a desired output correlation in the state, we solve for

the stationary distribution of the Markov chain given p1 and p2 and numerically compute the

input-output relation.

Suppose we have a network of n connected links that are simulated independently with ran-

dom variable streams rl l ∈ [1, n), where each l represents one link. The desired correlation

between input random streams of link l1 and link l2 is denoted as ρ(l1, l2). The pair-wise corre-

lation among n links can be presented in an n by n correlation matrix C:

c1,1 = 1 ... c1,i ... c1,n

...

ci,1 ... ci,i = 1 ... ci,n

...

cn,1 ... cn,i ... cn,n = 1
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where

ci,j = ρ(li, lj) = Corr(linki, linkj) (5.1)

is the correlation coefficient between link li and link lj .

Given i.i.d. random variables for all links R = [r(l)], the original correlation among inputs

is RRT = I . The task is to find Rcorr = [rcorr(l)] such that

RcorrR
T
corr = C (5.2)

As elements of matrix C are chosen individually, and there is no guarantee that C is a valid

correlation matrix (C is symmetric, but not always positive-definite). A simple way to deal with

this is to find the nearest correlation matrix Cnear [36, 73] for C. Then, a corresponding Rcorr

can be found by computing an X through spectral decomposition of Cnear such that

XTX = Cnear (5.3)

The correlated input Rcorr can then be derived by:

Rcorr = RX (5.4)

Each stream in Rcorr = [rcorr(l)] is now a linear combination of original n i.i.d. random

inputs, and still preserves original statistics.

5.4.4 Determine Level of Correlation

The correlation coefficient ρ(li, lj) reflects the desired level of correlation in some property be-

tween the two links. In general, finding this is a significant modeling problem in its own right:

It will depend on the property in question and may be very environment-specific. We do not

attempt to solve this problem – neither in general nor for the LOS status model specifically –

rather we are studying the options for implementing such correlation once the desired level is

known. For this work, we use a very simple model, where ρ(li, lj) is a piecewise linear function

of distance (measured from the “center point” of each link), ranging from ρ = 0.9 at 0m to 0.01

at 1500m. Distance-based correlation models (either auto- or cross-) have been successfully de-

veloped for small-scale fading [37], path loss [67], shadowing from stationary objects [60], and

more.
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When modeling wireless networks with high dynamics, the correlation property among adja-

cent links may change over time. For example, mobility of transceiver will change the distance

between links. In this case, the correlation matrix needs to be updated to reflect the dynamics.

5.5 NS-3 Simulation Models

A prototype of the proposed stochastic shadowing model with correlation was implemented in ns-

3. We utilize this simulation model to evaluate how the realism of shadowing simulation model

impacts the performance of network protocols. Our simulation focuses on the performance of a

gossiping protocol executing in a wireless vehicle-to-vehicle network deployed in a urban area.

The simulation design utilizes realistic vehicle mobility and road topologies. The simulation

results show significant differences in the performance of the gossiping protocol when different

types of models are used for shadowing.

5.5.1 Gossiping Protocol

We envision an application similar to DSRC Basic Safety Messages, but in which some high-

priority messages are rebroadcast to achieve wider geographic distribution and/or greater confi-

dence that all nearby nodes will be informed. The protocol is as follows: Each vehicle broadcasts

status packets with a fixed interval of 100ms. When a node wishes to retransmit a message it has

overheard, that data is included in its next periodic packet. We implement a simple gossip-

ing scheme: When a vehicle receives a new message in an incoming packet, it selectively re-

broadcasts the new message with a certain probability (to avoid message flooding). Gradually,

each message will spread throughout the network and, assuming a sufficiently dense vehicular

network, it will eventually reach all vehicles in the area. (Any real protocol along these lines

would need to bound messages’ scopes, but we do not consider this.)

The primary performance metric for the gossip protocol is the delivery time of messages

in the vehicular network, i.e., how long it takes for vehicles to receive a new message. The

delivery time is mostly determined by the topology of a vehicular network as well as the quality

of the wireless links, which is influenced strongly by the surrounding physical environment. Our
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interest is not in the actual performance of this (admittedly very simple) gossiping protocol.

Rather, we are interested in understanding the relative difference in performance of the gossiping

protocol, when different patterns or models of spatial correlation across links are used.

5.5.2 Simulation Setup
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Figure 5.5: Simulation Platform Overview

To best approximate the described scenario above, we combined multiple simulation tools and

platforms to generate realistic vehicle mobility scenarios as well as channel propagation proper-

ties. A road network map was generated for a roughly 1.5 km x 1.5 km semi-residential region of

a major U.S. city. Vehicles move along roads following the true map, however the specific traffic

load and vehicle routes are synthetically generated using MOVE [46] and SUMO [8]. Wireless

channels and networking were simulated in ns-3 [57], which was extended with the shadow-

ing channel models described in § 5.5.3. The channel, PHY and MAC layer were implemented

as a YansWifiChannel model with log-distance large scale path loss (exponent = 3.0) and

Rayleigh1 fading, in addition to our shadowing models.

1Note that ns-3 does not support Rician or more vehicular-specific fading models, unless one wishes to do

symbol-by-symbol simulation with PhySim-WiFi.
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5.5.3 Shadowing Models

We implemented both geometric shadowing models and stochastic shadowing models to be em-

ployed and compared in simulation. The output of a shadowing model is an additional attenuation

that is added to the path loss. The loss is set to be 8dB for an NLOS (shadowed) link and 0dB

for an LOS (un-shadowed) link. We use the following three shadowing models, and a baseline

“No obstructions” case without shadowing.

Geometric

A simple geometric shadowing model is implemented with following features: Vehicles which

are on the same road have an NLOS state if and only if another vehicle is on the same road be-

tween them.2 Vehicles on different road segments but within 50m of each other (that is, roughly,

vehicles within the same intersection for the road sizes in this neighborhood) have an unob-

structed LOS. Vehicles on different road segments between 50m and 175m (that is, on inter-

secting roads) have NLOS. (NLOS propagation conditions near intersections are investigated in

e.g. [65].) Vehicles on different road segments further than 175m apart are unable to communi-

cate at all.

Stochastic (Independent)

In the stochastic model, links are modeled independently, so the shadowing properties of links

are independent. The Markov two-state shadowing model described in § 5.3.2 is implemented,

and each link is associated with one instance of this model. The transition probability parameters

are fitted to match the behavior of the geometric model as closely as possible; this is described

in more detail in § 5.5.4.

Stochastic (Correlated)

The stochastic LOS model is modified to enforce pairwise correlation as described in §5.4.3. The

level of correlation between two links is determined using distance metrics. A basic piecewise
2This model does not consider which lane any given vehicle is in; it may therefore have false positives when the

“intervening” vehicle is not actually physically between the communicating pair.
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function is implemented in simulation:

ρ(d) =



0 d ≥ dmax

ρ1
dmax−d
dmax−d1 d1 ≤ d < dmax

ρ1 + (ρmax − ρ1) d1−dd1−d0 d0 ≤ d < d1

ρmax 0 ≤ d < dmin

The exact parameter values are configured for desired simulated scenarios. An example set

of values for suburban area is: dmin = 10m, d1 = 500m, dmax = 1500m, ρ1 = 0.3 and ρmax = 0.9.

The dmax reflects that links are independent when more than 1500m (≈ 1 mile) apart from each

other. The d1 reflects the length of one road segment, on the theory that links on the same road

have higher similarity than those that are not.

5.5.4 Accuracy of Stochastic LOS Model

The uncorrelated stochastic line-of-sight model introduced in § 5.4.3 has two free parameters: p1

and p2. They determine the expected duration of LOS and NLOS periods respectively:

E[TLOS] =
1− p1
p1

E[TNLOS] =
1− p2
p2

(5.5)

By extension TLOS

TNLOS
is the probability that any given link will be in an LOS state at any given

time, which directly affects the link PDR (packet delivery ratio). The stochastic model param-

eters, p1 and p2, could be determined independently from measured E[TLOS] and E[TNLOS] (as

in [2, 90]). However, we hope to isolate the effect of spatial variation and correlation: That is, to

the extent possible average link performance is held constant across models, leaving the spatial

and temporal differences as determinants of application-layer performance. Therefore, we use

an alternative approach to configure p1 and p2. Since p1
p2

(equivalent to TLOS

TNLOS
) largely determines

link PDR, we select the p1
p2

ratio that produces a PDR which matches the actual link PDR property

observed from geometric model from § 5.5.3.3 Next, the exact p1 is calculated fromE[TLOS] and

p2 value is determined afterwards.
3Note in Table 5.1 that the PDRs are not perfectly matched; a subset of the full experiment was used for fitting.

This difference should bias the results toward the stochastic model producing worse overall performance. The actual

results are the opposite, so we think it safe to conclude that the results are not an artifact of this bias.
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Figure 5.6 shows the distributions of the duration of LOS and NLOS states for links across

all models considered. The mean duration for each state is close across models (see Table 5.1).

Note that this does not automatically follow from tuning the models to produce the same expected

PDR; it is reassuring to see that fixing the models to produce the same output by one measure

does in fact lead to them being similar by other measures. The distributions are not identical.

Note also that the distributions for the independent and correlated variants of the stochastic model

are almost identical: This confirms that the average link behavior is the same, only the inter-link

correlation differs.

Figure 5.6: ECDF of LOS and NLOS durations.

Geometric Stochastic

Packet delivery ratio 0.28 0.23

LOS probability 0.89 0.73

E[LOS duration] (s) 5.87 6.75

E[NLOS duration] (s) 9.09 8.35

Table 5.1: Link-level Comparison of Shadowing Models.
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5.5.5 Simulated Scenario

The simulated vehicular network has 300 vehicles, scattered across a 1 mile x 1 mile suburban

area. The road network in this area consists of 5 east-west roads and 5 south-north roads. There

are on average 5 cars on each road segment (between two intersections). One new emergency

message is generated at time 0.01s at one single vehicle in the center. Each simulation runs for

20 seconds, during which time the new message was always distributed to all vehicles that are

reachable in the network.

We do not have access to measured data sets that can be used as a ground truth for shadowing

in urban areas. We expect that geometric models will generally give the most realistic results

since they use the most detailed representation of the physical world, so our discussion will

compare the results for other models with those for the geometric model. Geometric propagation

models (e.g. the ITM point-to-point mode for natural terrain) in are widely employed in software

tools like [26, 51, 78].

5.6 Simulation Results

The simulation results address two basic questions:

1. Do spatial patterns in link quality matter to application performance?

2. How well does a stochastic model with explicit spatial correlation approximate the effects

of “real” spatial patterns?

The next section (§ 5.7) considers the computational cost of such models.

We define application-layer performance as the time required for each participating node to

receive the gossiped message. This section looks at both overall performance (the distribution of

delivery time over all nodes) and delivery time relative to distance.
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5.6.1 Overall Message Delivery Time

 

20 

Figure 5.7: End-To-End Delay

Figure 5.7 shows the cumulative distribution function of the delivery times over all nodes in

the simulation. In addition to the three shadowing models already discussed, a baseline no ob-

structions case is included for reference. This shows the performance without any shadowing

effects.

We observe a substantial effect from spatial and temporal variation: The median packet de-

livery time is 0.52s for the independent model 0.82s for the geometric case; the Kolmogorov-

Smirnoff (K-S) distance between the two distributions is 0.6. Recall that the probability of

success for an arbitrary link at an arbitrary moment is identical across the geometric and both
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stochastic models. The Markov model has similar (but not identical) time-series behavior to the

geometric case (see § 5.5.4), suggesting spatial patterns as the primary difference.

We additionally note a significant difference between the correlated and independent stochas-

tic model outputs: The K-S distance is 0.37. In this case, the degree of cross-correlation is the

only difference between the models. The cross-correlated model is closer to the geometric model

(in both median and variance) than the independent model is, but there is still a significant dif-

ference (K-S distance of 0.36).

5.6.2 Delivery Time Relative to Distance

Figure 5.8: Message Delivery Time
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Figure 5.8 is a scatter plot of message delivery times (y-axis) as a function of the distance between

the receiver and the vehicle that originated the message.

If we draw a line to approximate linear regression of the delivery time vs. distance, the slope

is proportional to the number of hops for a given distance. Geometric models impose constraints

on connectivity as a result of LOS blocking due to buildings and vehicles, and as a result, more

hops are required on average compared to the empty world model that ignores shadowing. Using

stochastic shadowing model improves the level of realism somewhat relative to the empty world

model, while adding spatial correlation brings the results even closer to those obtained with the

geometric model.

Regarding the horizontal distribution of delay for a given distance, the results based on the

geometric shadowing model have the widest range. The reason is that the geometric model

captures spatial diversity in the most detail, e.g., consistently distinguishing between node pairs

on the same road segment, near an intersection, or on parallel road. The diverse for a distance

indicates the spatial variation of link property (at the same distance). Since both the empty

world and stochastically uncorrelated models are spatially independent (or homogeneous in all

directions) by nature, the horizontal diverse range is minimum compared to other models. The

stochastically correlated model falls in between.

Hop Counts

To examine the actual delivery time over the space, we calculate how many hops are required

for new messages to be delivered to each vehicle. The results are visualized in Figure 5.10

and Figure 5.9. Naturally, hop count increases steadily in all directions, as distance increases

from the center of the area. However, when using the Geometric Model, the rate at which hop

count increases depends on the direction across directions. Packets travel faster in the horizontal

and vertical directions, following roads, but they take longer to reach corners. Such effect is

also observed in correlated-stochastic models, but not in the bottom two models (Stochastic and

Empty world). The reason that adding correlation in the stochastic model helps to preserve local

consistency across links, which helps to reflect dependency among adjacent links, but this effect

is missing from the Stochastic and Empty world models.
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(a) No Obstructions

(b) Geometric

(c) Correlated Stochastic

Figure 5.9: Hop Counts v.s. Distance
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Figure 5.10: Hop Counts

Figure 5.11: Actual Packet Routes
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Actual Packet Routes

The local consistency preserved by the correlated-stochastic model is more evident when we

examine the actual route taken by each packet (message) in Figure 5.11. The geometric model

constraints packet routes to be on road segments and around intersections, while the correlated-

stochastic model enforces correlation between nearby links, which results in a similar outcome.

5.7 Discussion on Complexity

In this section, we analyze the modeling complexity of a network-wide simulation of network

of correlated wireless channels. We compare the complexity of the geometric and stochastic

strategies discussed earlier in § 5.4 and § 5.5.

5.7.1 Simulation Model

We assume a simulation of a network of N nodes that move around in a physical environment,

results in N2 potential links. Simulators often only model links for which the end-points have

a realistic chance of being within communication range. Let us assume that on average n (0 ≤

n ≤ N ) nodes are within range of a node, then the number of links to simulate drops to order nN

links. n depends on both the node density as well as the communication range. We also need to

determine, for each node, what nodes are within range which requires order NlogN time, e.g.,

by organizing objects in a tree based on their geographic location in the environment, which is a

common practice in spatial database systems [35].

Movement in the simulated network requires that the simulator will have to regularly update

both the channel state and internal data structures regularly. We can distinguish between three

different update frequencies corresponding to different types of data. First, the simulator will

have to make frequent updates of the channel state, which can then be used to calculate packet

level errors and link state. We will denote the update frequency of the channels as fc and the

interval between updates as tc, i.e., fc = 1/tc. The minimum frequency fc min at which channels

must be updated depends on the speed of both the wireless devices and other objects in the en-

vironment. For example for small-scale fading, movement of objects by a significant fraction of
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a wavelength of the wireless signals affects the way multi-path signals combine, e.g., construc-

tively or destructively. Other channel properties, such as path loss, LOS, and Doppler shift, will

typically change more slowly. The update frequency fc can usually be determined based on the

maximum speed of objects in the environment.

For both geometric and stochastic channel models, the channel state needs to be recomputed

every tc seconds to properly reflect the instantaneous channel state. Geometric channel models

directly model the physical environment, so the impact of wireless device and object mobility

is automatically taken into account. Stochastic models also account for movement in model

parameters. e.g., the fading model may take input parameters representing the speed of the

wireless radios and objects. In both cases, the update frequency fc can be determined based on

the maximum speed of objects in the environment.

Next there are a number of channel parameters that need to be updated at a frequency that is

directly related to the speed at which physical devices move. We will represent this frequency as

fp and the period as tp. fp is typically much lower than fc. Finally, as we describe later, we need

to update the correlation matrix of each link with a frequency fcorr. Generally, fcorr ≤ fp because

link topology (updated at fcorr) changes less frequently than channel parameters (updated at fp).

Given this notation, the partial simulation cost so far is

fcCcNn+ fpCnNlog(N) (5.6)

where Cc is the cost of updating the channel state of a link and Cn is the per unit cost of deter-

mining n.

Next, we consider the complexity of simulating a single link and the correlation between

links for the cases when geometric and stochastic channel models are used.

5.7.2 Geometric Models

Geometric channel models explicitly model objects in the environment that may have an impact

on signal propagation. The impact may include reflections that contributes to multi-path effects,

blocking direct LOS that causes additional attenuation, and scattering that contributes to fast-

fading.
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We denote by M the total number of objects modeled in the simulated environment. The

model for the channel between a transmitter and a receiver must incorporate the impact of the

objects in the area surrounding the link. The average number of objects to be considered when

modeling a link is denoted asm. m represents the density of objects in the surrounding area and it

depends strongly on both the type of environment (e.g., a desert versus a suburban area), and the

level of granularity at which the environment is modeled (e.g., the size of the smallest object that

is represented). The geographic range within which objects must be consider is also environment

dependent. It will be much larger in a rural area than in an urban area, where buildings along

the road block the LOS to objects behind them. In addition, the range also depends on both

the channel model and the channel property being considered. The area could for example be

represented as a Fresnel zone of the link of a certain order.

The per link cost associated with a geometric channel model includes two components. A

first cost consists of identifying the m objects that may impact the link, i.e., that are within a

certain range. A brute solution has cost M , but this can be reduced to log(M), similar to what

we did to computer n, which is incurred with a frequency fp.

The second cost is the per-link simulation complexity, which increases roughly proportionally

with m. For example, m objects may have to be considered as potential reflectors that can add a

path to the channel, or as an object that can block LOS and add to the path loss. Finally, m may

be different for, e.g., LOS blocking and properties such as interference.

The cost to update the channel state for a link can be approximated as Cg0+mCg1, where Cg0

is the constant cost of modeling a link, and Cg1 is the extra cost for considering one more object

in the geometric model. It is incurred with a frequency fc. With geometric models, there is no

extra cost for modeling spatial correlation across channels, it is already reflected in the overhead

associated with modeling the objects.

5.7.3 Stochastic Models

Stochastic channel models simulate the variation in link properties using parameterized stochas-

tic process, where the parameter values are selected to match statistical properties of the vari-

ations in the signal propagation properties measured in the real world. Input parameters can
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capture properties of the mobile wireless devices (e.g., speed, distance) and physical environ-

ment (e.g., density and mobility of objects).

The per-link cost for a stochastic channel model includes three components. The first is that

of updating the channel state of each link, Cstoch, which is incurred with a frequency fc. The

second is determining proper parameter values in the channel model, denoted Ci, per link. This

occurs with a frequency fp. When modeling correlation among multiple links, a third cost is re-

quired to calculate desired correlation properties. For example, the correlated simulation model

described in § 5.4 considers the first-order spatial correlation, where all links in the vicinity of a

given link are modeled collectively. In this case, there are three major steps: (a) calculate cor-

relation coefficients in a correlation matrix, (b) spectral decomposition of the correlation matrix,

and (c) calculate correlated random input, which corresponds to the cost Cstoch. The first two

steps occur with a frequency of fcorr, while the last step occurs with a frequency fc.

The complexity of each of the above step is determined by the size of the correlation matrix.

Assuming nN links, the size of the correlation matrix is nN by nN . Therefore, the overall cost

for all links combined can be determined as follows. n2N2 correlation coefficients for step (a).

For step (b), a reasonable cost for eigenvector decomposition in Equation 5.3 is O(n3N3) [64].

For step (c), the complexity is nN for each link in Equation 5.4, thus O(n2N2) for all links.

In reality, only links in a certain range are correlated since the degree of correlation will

be higher for nearby links, and will become negligible for links that are far away. Moreover,

the correlation range also depends on the type of channel properties modeled in the stochastic

model. For example, when considerting multi-path models, 2-Ray gound reflection model [71]

considers transmitting, receiving antennas and ground to be the only objects in the range; while

vehicle-to-vehicle small-scale fading model [22] considers any objects along the road to be in

range.

Similar to what we did for determining the number of objects that might impact a link for

the geometric link, We can assume that on average ncorr be the average number of nodes in the

correlated vicinity of a given link, i.e., near the endpoints or in the area of between them. The

range of the area to consider will depends on the property being modeled, similar to what we

discussed for m.
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Therefore, the cost for step(a), (b), (c) for each subset of n2
corr links are areO(n4

corr),O(n
6
corr)

and O(n4
corr) respectively.

Notice that calculating correlation using a subset of the network reduce the matrix dimension

dramatically, but the same correlation is calculated multiple times for a pair of links. There-

fore, it is practical to use this process in simulation large-scale sparse networks, where for any

given link the correlation with most of the links can be ignored (smaller ncorr). For small-scale

networks with condense links (larger ncorr), the complexity of calculating correlation increases

dramatically, thus an overall correlation matrix is more desired.

5.7.4 Overall Complexity Discussion

The complexity of modeling a specific environment is different for geometric models and stochas-

tic models. To simulate a desired environment, geometric models require not only modeling ob-

jects individually but also accurate input of both dimension and mobility of these objects. [90]

One the other hand, stochastic models requires statistical properties of each link to configure the

models, and link dynamics are approximated using random input seed. In addition, while corre-

lation among links are present by nature in geometric models, the correlated link properties need

to be addressed explicitly in stochastic models. The modeling complexity for correlated links in

stochastic models depends mainly on the density of links in the network (the ratio between ncorr

and N ). For link-dense network, the cost increases dramatically for stochastic correlate models,

and geometric models become more attractive. On the other hand, geometric models complexity

also depends on the density of affecting objects (value m) in range, and the accuracy is limited

by input parameter accuracy.

5.8 Summary

Representing spatial correlation across multiple channels in simulation depends strongly on how

properties of individual links are modeled: geometric models with extreme details automatically

capture spatial correlation while a separate spatial correlation model is often required for link

properties stochastically modeled.
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In this chapter, we first discuss correlation among channel dynamics, especially in vehicular

networks, in §5.2 which motivates the need for modeling channel cross-correlation. In §5.3 we

provide background on the different types of models for properties of individual links.

The design space for modeling spatial correlation and a novel correlated stochastic model are

presented in §5.4. As an example of the proposed solution, we implemented a new simulation

component in ns-3 which handles correlated channel shadowing properties which is presented in

§5.5. Both channel shadowing properties and actual link connectivity properties are compared

using a basic message distribution (gossiping) protocol. Simulation results in § 5.6 show that cor-

related channel models help to preserve local consistency among adjacent links, thus providing

the most comparable results approaching reality.

Finally, we analyze the complexity of different approaches (statistical vs. geometrical) in

§5.7 to provide a guidance for model selection for large-scale simulations.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Wireless simulation and emulation platforms support controlled experiments to efficiently pro-

totype and evaluate wireless designs. To simulate channel properties and dynamics in physical

environments, various channel models have been developed to represent the impact of differ-

ent physical world effects. In Chapter 1, we discussed that different physical world effects have

different impact on wireless channel properties. The impact can be modeled using different chan-

nel models, in particular at different time scales, using either a geometric model or a stachastic

model. The realism of simulated wireless environment is determined by the exact channel models

along with parameterization methods used in these simulation platforms.

As discussed in Chapter 4, geometric models are powerful in representing accurate dynamics

and spatial correlation by modeling each object explicitly. For large factors, such as large-scale

path loss based on distance and large reflectors, it is practical to use a geometric model when

the exact dimension, location of such objects can be obtained. On the other hand, information of

small factors, such as scatterers, is often impractical to obtain.

In Chapter 4, we proposed a novel stationary scatterer estimation approach to obtain accurate

input on scatterer density, and showed significant improvement on dynamic realism compared to

the common practice of using area averaged parameter values. In addition, when the more ac-

curate models input for geometric models are not available, stochastic models are more practical
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and sufficient to reflect the impact of a large number of small factors.

This thesis proposed an environment model that achieves high simulation realism using both

geometric and stochastic models, with special focus on vehicular networks with high dynamics.

The proposed model includes the design and implementation of a variety of environment models

that enhance the realism in simulation. These models capture realistic signal propagation prop-

erties across multiple connections, and over time: first, the impact of realistic physical world

features, such as channel dynamics and cross link correlation are characterized at different time

scales; then, both geometrical and statistical simulation models are developed to recreate desired

channel dynamics among wireless network links efficiently. A flexible channel simulation model

is also presented to support fast generation of channel updates from complicated channel models.

In this chapter, we first summarize the contributions of this thesis work. Then we discuss

possible future work based on the results of this thesis.

6.1.1 Contribution

System Design for Realistic Simulations

To motivate the challenges of simulating complicate wireless environments with high dynamics,

we discussed the control mechanisms that are used in wireless protocol designs to handle channel

dynamics. Next, we reviewed features of the physical world that impact wireless communica-

tion, followed by discussion on the level of accuracy and realism available on current wireless

simulation and emulation platforms.

We presented a system design of a wireless simulation platform that provides flexible con-

figuration of realistic wireless environment, and is capable of represent related physical world

impact through experiment configurations. The proposed system includes four major compo-

nents: a World Model module that represents objects and events, a Wireless Feature Analysis

module that performs spatial and temporal analysis to select channel models, a Channel Model

Control for channel configuration and a Flexible Channel Control module that generates channel

updates at real-time. Provided with information obtained from the World Model module, the

Wireless Feature Analysis module supports both temporal and spatial correlation analysis for a
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large-scale wireless network, which is a unique feature of this system design.

Flexible Channel Simulation Model

Achieving a high degree of realism in channel models in high speed environments requires fre-

quent channel updates in wireless simulation and emulation. Channel updates in complex chan-

nel models are resource consuming, which limits the number of channels, and essentially the size

of a simulated network, in real-time emulation. We implemented a general channel model that

can support a wide variety of wireless technologies and environments and validated it using high

dynamic vehicle-to-vehicle channels, which is particularly challenging because of the speed of

the wireless devices and objects. The proposed solution utilizes off-line preparation and run-time

adaptation to generate channel updates efficiently.

Temporal Correlation with High Realism

The outputs of a model are only as good as its inputs. Complex channel models often require

environment-specific configuration to achieve high accuracy and realism for desired scenarios.

Accurate parameter values for these scenarios are often hard to obtain but are essential for ob-

taining realistic temporal correlation of wireless properties.

We presented a land-cover based approach for modeling and reproducing environment-specific

channel properties. The proposed modeling approach is systematic and suitable for large-scale

real-time simulation and emulation.

Compared to previous solutions where averaged parameter values were used for any given

area, our results show that supplying location-specific parameter estimates to an existing channel

model halved the error level relative to using fixed area-average parameters. This improvement

requires only coarse-grained estimates based on readily-available data, not a detailed “ground

truth”. 802.11a packet-level experiments performed over emulated channels show that our im-

proved fading realism directly translates into a comparable improvement in packet delivery ratio

(PDR) accuracy to the results using average parameter values.

The discussion focuses on fading and line-of-sight effects in V2V channels, and specifically

on the effect of improving the estimated density of stationary scatterers along roads. We also
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discuss the generalization of our approach to be applied to other environments where geometric

properties plays critical roles in simulation realism.

Cross-Link (Spatial) Correlation Models

We addressed challenges in modeling correlated dynamics for wireless channels.

We presented the design space for modeling spatial correlation across wireless channels, both

for link properties that are modeled geometrically and stochastically. The focus is on network-

level simulation involving many channels. We also showed that such correlation has a significant

impact on network- and application-layer performance, at least for some applications.

A novel correlated stochastic model is proposed for simulating shadowing and NLOS effects.

We presented a technique for creating such correlation on top of channel models that do not

inherently provide it. To validate the design, different spatial correlation channel models were

implemented for the line-of-sight link property in ns-3 and used our implementation to quantify

the impact of the choice of model on the performance of a gossip protocol. Simulation results

shows high approximation of realism compared to other existing stochastic models.

In addition, we analyzed the complexity of the different modeling options and propose guide-

lines for selecting the best model, considering cost, accuracy requirements, and type of experi-

ment.

6.2 Future Work

6.2.1 General Vehicular Networks Environment

Vehicular networks is a collection of diverse environments due to variation of road topology and

roadside constructions. In this thesis, we validate our design on suburban areas where measure-

ment data are available. However, some of the design components may not suit situations in

other vehicular networks, such as higher speed in freeway. In addition, the same design concept

can be applied to other wireless network environments, such as outdoor environment with mobile

objects and indoor environment with diverse channels properties.
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6.2.2 Address Temporal Correlation at Different Time Scales

Temporal correlation properties exist at multiple time scales. For example, MIMO models con-

sider channel coherence time at µs; scatterer distribution estimation considers temporal consis-

tency at a longer-term basis. For other mobile scatterers and obstacles, the temporal correlation

of channel properties introduced by such objects would range between these two extremes. It is

desired to represent the temporal dependency at desired time scale by either improving parame-

ter accuracy as we did for stationary scatterer, or enforcing the correlation in stochastic models

which is not addressed in this thesis. When design correlation models, how sensitive radios are

regarding the subtle variation of signals should be considered to avoid over-correction in repre-

senting channel properties that are computationally expensive with negligible impact on protocol

performance.

6.2.3 Sophisticated Cross-Link Correlation for Different Channel Proper-

ties

Cross-Link correlation properties are observed for channel properties at different time scales in

different area. In this thesis, the discussion focuses on small-scale fading properties and large-

scale shadowing properties in vehicular networks. With regard to correlation models, our dis-

cussion focused on distance-based correlation among channel properties. In general wireless

networks, the cross-link correlation properties at different time scales should be examined, likely

from measurement databases or simulation results using geometric model, to determine different

correlation profiles for each scenario. For example, the multipath properties in indoor environ-

ments would exhibit similarity among rooms with similarity inside rooms similar layout, rather

than distance between rooms.
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