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Abstract 

Mobility and transport underpin a society’s economic and physical life. Travel, 

however, has significant external costs, not solely borne by those performing or requesting 

the service. In addition to the direct cost of building and maintaining the necessary 

infrastructure, an individual’s decision to travel or transport goods affects the time others 

must travel, via congestion; injuries and fatalities; environmental health; and national 

energy security. When fueled by oil, for example, these costs add up to approximately $4.00 

a gallon, depending on the specific vehicle. Two sets of technologies have the potential to 

drastically reduce the externalities associated with passenger travel: vehicle electrification 

and automation. 

Ensuring a socially optimal outcome from changes in vehicle technology requires 

four components. The first is determining whether adopting a set of new technologies would 

provide a net social benefit. The second is knowing how to effectively encourage adoption of 

a technology that has been determined to provide a net social benefit. The third is knowing 

how to optimally construct necessary infrastructure for the technology, while considering 

how future changes in the technology or other technologies may affect this process. The 

fourth component is being able to effectively regulate a technology. This dissertation 

addresses each of these issues by focusing on specific novel applications and case studies. It 

then discusses the joint implications and questions raised by these chapters. 

Chapter I introduces the environmental and safety externalities associated with 

passenger vehicle mobility. Chapter II focuses on the issue of determining the social value 

of implementing a new technology. A municipality evaluating a potential transition to an 

electrified vehicle fleet has its own set of decision criteria, which may be different than 
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other actors. Of the passenger vehicle models that the City of Pittsburgh is considering, 

battery electric vehicles (BEVs), but not plug-in hybrid electric vehicles, were found to have 

lower life-cycle GHG emissions than conventional vehicles in Pittsburgh. However, vehicle 

electrification was found likely to have higher total social emissions costs than conventional 

options. Chapter III focuses on technology adoption by investigating the statistical 

significance of demographics and incentives on electric vehicle sales in Norway. Chapter III 

shows that access to BEV charging infrastructure, being adjacent to major cities, and 

regional incomes have the greatest predictive power for the growth of BEV sales. While 

Chapter III does not test for causation, vehicle chargers are necessary for BEV adoption 

and the results show that charging infrastructure is significantly correlated with BEV 

adoption in Norway. This suggests the need to plan for charging infrastructure 

concurrently with BEV adoption. 

Chapter IV focuses on how to optimally construct necessary infrastructure for 

electric vehicles when accounting for vehicle automation. For our simulation of about 2,000 

trips in the greater Seattle, Washington area, moving from levels 0-3 to level 4 reduced 

peak electric load by about one-third and level 5 automation about two-thirds. Moving from 

no automation to level 4 automation nearly halved operator costs, while not having any 

significant effect on commuter costs. Moving to level 5 automation decreased operator costs 

by about 75% due to reduced number of charging stations, but shifted a portion of this 

reduction onto commuters. Chapter V focuses on how to effectively regulate technologies so 

that their future development increases social value, focusing on the specific problem of 

measuring the fuel economy of autonomous vehicles. The results showed that autonomous 

vehicles following algorithms designed without considering efficiency could degrade fuel 

economy by up to 3%, while efficiency-focused control strategies may equal or slightly 
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exceed the existing EPA fuel economy test results by up to 5%, when compared to the base 

EPA cycles that they were simulated as following.  
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Introduction 

Research Motivation 

Mobility and transport underpin a society’s economic and physical life. The economy 

depends upon people being able to move goods and transport themselves from place to 

place. When people and firms decide to travel or move goods they mostly consider the cost 

to themselves: time, fuel, capital costs, tolls, vehicle maintenance, and transit fares, among 

others. These however are not the only costs that society bears from supporting travel. In 

addition to the direct costs of building and maintaining the necessary infrastructure, an 

individual’s decision to travel or transport goods affects the time others must travel, via 

congestion; injuries and fatalities from crashes; environmental health; and national energy 

security. 

Some of the costs of travel are associated with the use of petroleum or other fuel 

specifically, while others are associated with vehicle travel in general. Petroleum products 

are the dominant fuels of transportation, and result in environmental externalities, such as 

climate change and human health degradation. Vehicle use can also cause congestion, time 

delays, noise pollution, and safety concerns. The total external costs of a single gallon of 

gasoline for travel use by a single passenger vehicle is approximately $4.00 and is 

summarized in Figure 0-1. These numbers are based on a 3% discount rate; the fleet 

average of 35 mpg expected in 2020 (NHTSA and EPA 2012); the air-pollutant valuations; 

the costs of noise, accidents, congestion and oil security given in the CAFE impact 

assessment (NHTSA and EPA 2012); the E10 gasoline well-to-wheel pollution rates given in 

the GREET 2016 model (A. Elgowainy et al. 2016); and the cost of CO2 equivalent emissions 
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taken from the EPA based on 3% discounting 2020 average values (EPA 2016). Values were 

converted to 2016$ on the basis of the consumer price index (BLS n.d.).  

 

Figure 0-1: An Estimate of the External Costs of Gasoline, 4.09 2016$ per Gallon 

Some of these externalities either have been decreasing over time or are expected to 

drop in the near future. As can be seen in Figure 0-2, passenger safety per mile travel has 

been steadily increasing since 1990 (US DOT 2017b). Accidents per mile, however, started 

increasing in 2011, even as personal damage decreased (US DOT 2017b). In addition, 2015 

marked the first year in decades that total highway deaths increased (US DOT 2017b). 

While passenger safety has historically been increasing on U.S. roads, it appears to have 

recently plateaued.  
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Figure 0-2: Highway Safety Trends (US DOT 2017b) 

Oil consumption and its environmental externalities are also expected to continue to 

decline in the near future. Figure 0-3 and Figure 0-4  shows historical U.S. oil consumption 

and VMT trends, while Figure 0-5 shows the oil consumption per VMT trends. Starting in 

2007, total U.S. oil consumption dropped, plateauing in 2009, even as VMT increased and 

then steadied (EIA n.d.; USDOT FHA 2017). This can be seen partly as an effect of the 

Corporate Average Fuel Economy rules (CAFE), which are designed to increase average 

passenger vehicle fuel economy by 60% between 2010 and 2021 (NHTSA 2012, 2017). In its 

2017 Annual Energy Outlook, the EIA does not expect oil consumption to reach the 2005 

peak in any scenario and in most scenarios sees oil consumption dropping through the 

2030s (US EIA 2017). Other externalities such as congestion and time delays have 

increased over time. Between 2010 and 2014, hours of commuter delay in urban areas per 

year increased from 37 hours to 42 hours per person (Schrank et al. 2015). 
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Figure 0-3: Oil Consumption Trends (EIA n.d.; USDOT FHA 2017) 
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Figure 0-4: Highway VMT Trends (EIA n.d.; USDOT FHA 2017) 
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Figure 0-5: Oil Consumption per VMT Trends (EIA n.d.; USDOT FHA 2017). NOTE: 

Y-axis truncated to highlight changes 

Two sets of technologies have the potential to drastically reduce the externalities 

associated with passenger travel: vehicle electrification and automation. For example, 

safety can be greatly increased with just current partially-autonomous technologies. Driver 

error and impairment are estimated to be factors in about 90% of all US roadway crashes  

(Dingus et al. 2016). Full deployment of just three automated technologies currently 

available on the market — blind-spot monitoring, lane-departure warning and forward-

collision warning/crash-avoidance systems — could eliminate or mitigate up to 1.3 million 

motor vehicle crashes in the U.S. alone (Harper et al. 2016b). This is over one-third of all 

U.S. highway crashes (US DOT 2017b).  

Environmental and energy security externalities are a function of fuel type, vehicle 

efficiency, performance, and total vehicle travel. These externalities and factors can be 

affected by both electrification and automation. Electrification would not only change the 

fuel type from petroleum to the electric grid mix, but would also increase the vehicle’s 
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individual efficiency. Electric vehicles (EVs) use about 60% of their stored energy compared 

to about 20% for conventional vehicles (Chae et al. 2011; Gautam et al. 2011; Miller et al. 

2011; US DOE n.d.), though this doesn’t include production and transmission losses which 

are present for both electricity and petroleum products. Electrification may also increase 

total vehicle travel, as the marginal cost of travel drops with price, though researchers 

disagree about this effect’s magnitude and significance (Gillingham et al. 2016; Greene 

1992; Greening et al. 2000; Small and Dender 2007; West et al. 2017). As electric vehicles 

are already available on the market, the magnitude of any of these changes is dependent 

primarily on adoption. Among the available levers of influence on consumer behavior, tax 

and monetary incentives, charging infrastructure, and parking and reserved lane benefits 

for EV owners are among the most common incentives tried, with direct monetary 

incentives having the greatest effects and charging infrastructure having a strong tracking 

and potentially causal effect (Bjerkan et al. 2016a; Diamond 2009; Håvard Vaggen Malvik 

et al. 2013; Hidrue, M. K. et al. 2011; Jenn et al. 2013; Martin et al. 2012; Mau et al. 2008; 

Mersky et al. 2016; Sánchez-Braza et al. 2014; Sierzchula et al. 2014; Skerlos and 

Winebrake 2010). 

Automation has the potential to affect environmental externalities via changes in 

vehicle fuel type, vehicle efficiency, total vehicle travel, and performance. Autonomous 

vehicles (AVs) may make alternative fuels more attractive by decoupling the user from the 

need to actively seek out spatially limited refueling opportunities, or by decreasing the cost 

of building this infrastructure. Automation may also increase vehicle efficiency by 

accounting for future information on traffic conditions and routes, or by smoothing out 

acceleration patterns compared to humans (Asadi and Vahidi 2011; James M. Anderson et 

al. 2014; Mersky and Samaras 2016; Park et al. 2011; Rakha et al. 2011a). It is also 
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possible that vehicle fuel economy will decrease if the control algorithms aren’t specifically 

designed for efficiency (Mersky and Samaras 2016). Autonomous technology may also 

increase total vehicle travel if it decreases the actual marginal cost of travel or if it 

decreases the perceived loss of time traveling (Childress et al. 2015; Fagnant and 

Kockelman 2015; Harper et al. 2016a; James M. Anderson et al. 2014). Counteracting this, 

autonomous technology may help to enable ride sharing and dynamic carpooling, which 

would allow for increases in passenger travel, even as vehicle travel drops (Fagnant and 

Kockelman 2015; James M. Anderson et al. 2014; Martin et al. 2010). Finally, automation, 

when combined with vehicle-to-vehicle communication, can enable more effective usage of 

existing or upgraded right of way, increasing lane capacity, decreasing congestion, and 

increasing fuel economy (Bu et al. 2010; Fagnant and Kockelman 2015; Feng et al. 2015; 

Kesting et al. 2008; Rajamani and Shladover 2001; Shladover et al. 2012a). 

Technological advances have the potential to decrease the cost of travel and greatly 

decrease the negative externalities associated with travel. However, this is not guaranteed. 

Without informed policy, vehicle automation and electrification could increase these 

externalities. Ensuring that these technologies provide a net social benefit requires 

technical analysis and an understanding of how these technologies change the costs, 

externalities and usage of vehicular travel and transport. 

Research Topics 

Ensuring a socially optimal outcome from potential changes in vehicle technology 

requires four components. The first component is determining whether adopting a set of 

new technologies would provide a net social benefit in a given locality and for a specific 

purpose. The second is knowing how to predict the adoption of a new technology by 
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different groups and areas. The third is knowing how to optimally construct necessary 

infrastructure for the new technology, while considering how future changes in the 

technology or other new technologies may affect this process. The fourth component is 

regulating a technology effectively technology so that its future development is incentivized 

to provide a net social benefit. 

This dissertation addresses each of these issues by focusing on specific novel 

applications and case studies. First, in Chapter II, the issue of determining the social value 

of implementing a new technology is investigated using a case study of the social value of 

electrifying part of the City of Pittsburgh’s municipal fleet. Valuing private and social costs 

and benefits of fleet electrification is a well-investigated field, with several papers jointly 

investigating private and external costs along part or all of the vehicle/fleet life cycle 

(Emery et al. 2017; Tamayao et al. 2015; Weis et al. 2015, 2016; Yuksel et al. 2016; Yuksel 

and Michalek 2015). Of the 36  papers reviewed for this chapter, however, only Holland et 

al’s (Holland et al. 2015) looks into the specific spatial dispersion effects of air pollutants. 

This is important when investigating local actor and government motivations. Also 

important is how government agencies account for their emissions. Chapter II adds to the 

literature by combining the social and private costs with an investigation into the 

motivations and scopes of concerns and accounting methods of municipal governments. 

Chapter III investigates the predictive power of Norway’s national EV incentives on 

adoption, as well as regional demographics. The question of the effectiveness and predictive 

power of incentives on driving EV adoption is mature, with many studies on EV preference 

and incentives based on stated preferences (Axsen, J. et al. 2009; Bolduc et al. 2008; 

Brownstone et al. 2000), models of the vehicle market demand (Eppstein et al. 2011; Mau et 

al. 2008; Mueller and de Haan 2009), and international comparisons of consumer 
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preferences as they relate to EVs, (Helveston et al. 2015; Peter Mock and Zifei Yang 2014; 

Sierzchula et al. 2014; Sprei and Bauner 2011). Norway has had one of the largest, earliest, 

and most comprehensive EV incentive programs in Europe (Eppstein et al. 2011; Erik 

Figenbaum and Marika Kolbenstvedt 2013; Peter Mock and Zifei Yang 2014; Sprei and 

Bauner 2011). This chapter contributes to the literature by providing one of the first 

statistical analyses of the full vehicles sales data of Norway as it pertains to EV incentives 

and regional demographics. 

Chapter IV investigates optimal investments in electric vehicle infrastructure given 

differing scenarios of vehicle automation. As discussed in Chapter IV, Section 2.2, literature 

review, the question of optimal placement and quantity of electric vehicle infrastructure for 

charging, both along a route (Bae and Kwasinski 2012; Ghamami et al. 2016; Huang et al. 

2015; Knapen et al. 2012; Nie and Ghamami 2013; Sathaye and Kelley 2013) and while 

parked (Chen et al. 2013; Frade et al. 2011; He et al. 2013; Xi et al. 2013; Zhu et al. 2016), 

is well investigated. The literature is also split among those investigating optimization from 

the infrastructure, operator, driver, or electric grid perspective, as well as those that 

investigate some combination of these. I was unable, however, to find any literature 

investigating how electric vehicle charging infrastructure might be optimized for parked 

commuters when considering differing scenarios of vehicle automation. This chapter adds to 

the literature by investigation how a municipality can optimize its electric vehicle charging 

infrastructure, given different scenarios of automation, from the joint perspective of the 

operator and drivers. The chapter also investigates how taking advantage of autonomous 

technology may change the electrical demand on the grid from EVs. 

Chapter V investigates how to design regulations for developing technologies to help 

ensure socially optimum outcomes. As discussed in Chapter V, Section 1.1, while much 
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research has been done on the problems of and potential solutions to fuel-economy testing 

for conventionally driven vehicles (Bhavsar et al. 2014; Gonder and Simpson 2006) and how 

autonomous features may change fuel consumption (Bhavsar et al. 2014; Grumert et al. 

2015; Rajamani and Shladover 2001; Wu et al. 2014; Zlocki and Themann 2014), little has 

been done to answer the question of how to evaluate autonomous fuel economy, and no 

papers found suggested a program to integrate current autonomous technology into current 

fuel-economy tests. Currently the only basis to account for this are the “off-cycle technology 

credits” available for CAFE compliance (EPA and NHTSA 2010). However, these are non-

standardized and only available for “new and innovative technologies” (EPA and NHTSA 

2010), decreasing their predictability and limiting the temporal scope of their use. Chapter 

V contributes to the literature by developing and testing a framework for evaluating the 

fuel economy of vehicles with autonomous features, using a simulated car following 

framework. 

Chapter VI will first summarize the joint conclusions that can be made from the 

interior four chapters. Chapter VI will then explore the policy implications of these 

conclusions. Chapter VI will then summarize the novel unique contributions to the field’s 

literature that this dissertation provides. Finally, Chapter VI will investigate and discuss 

the questions that this dissertation develops and its implications for future research. 
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Chapter I Environmental and Economic Tradeoffs of Municipal 

Fleet Electrification and Photovoltaic Installation in PJM 

The previous chapter discussed this dissertations motivation and structure. This 

chapter investigates how a municipality can evaluate the net social value of electrifying a 

portion of their vehicle fleet. 

A municipality evaluating a potential transition to an electrified vehicle fleet has its 

own set of decision criteria, which differ from other actors. National governments are 

accountable to the whole of their citizens, municipal government only their constituents, 

and a corporation only to its shareholders. In addition, several cities are exploring ways to 

simultaneously increase both distributed solar photovoltaic (PV) generation and electric 

vehicle (EV) charging infrastructure. While most PV installations would not directly charge 

an electric vehicle, PV would start to change the emissions from electricity purchased by 

municipalities. This chapter conducts a life cycle assessment and cost-benefit analysis for 

municipal fleet electrification decisions, using Pittsburgh, PA in the PJM Regional 

Transmission Organization as a case study. The analysis includes Pittsburgh’s municipal 

parking, licensing, and inspection vehicle fleet over several electricity grid scenarios, and 

assesses the use of PV installations at city-owned parking facilities. Costs were included 

while comparing vehicle options, as were the emissions and externality costs of GHGs, SO2, 

and NOx from both direct and upstream effects. For the municipal vehicles under 

consideration for Pittsburgh’s fleet, BEVs, but not PHEVs, were found to have lower life 

cycle GHG emissions than HEVs. However, vehicle electrification was found likely to have 

higher total social emissions costs than conventional options. As the electricity grid 

transitions to lower-polluting sources, EVs have clear advantages over conventional 
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vehicles. A peak capacity of about 6,000 kW of PV is possible on Pittsburgh parking 

facilities. While the nuances of emissions allocation between PV and EVs are important, 

this capacity would produce an amount of electricity equivalent to greater than 30 times the 

yearly travel of the municipal vehicle fleet. The necessary structures to preserve parking 

spaces while providing PV, potentially make this system cost prohibitive. By providing a 

life cycle assessment and analysis this study provides a method for municipalities, counties, 

states, and other stakeholders to evaluate the potential benefits and costs of vehicle 

electrification. 

2.1. Introduction 

In the absence of larger Federal efforts, cities and states are increasingly 

undertaking initiatives to reduce greenhouse gas emissions and air pollutants from their 

operations. Many cities have responded to the US withdrawal from the Paris climate 

change agreement by joining it individually (Hidalgo and Peduto 2017; Medium 2017). As 

part of these efforts, many cities are evaluating strategies to electrify their municipal 

vehicle fleets, as well as increase penetration of low-polluting electricity sources such as 

photovoltaic (PV) solar power (City of Pittsburgh 2017; Lambert 2017; Lawrence 2017; 

Nootbaar 2017). A municipality evaluating a potential transition to an electrified vehicle 

fleet has a different set of decision criteria than other actors, which include the social costs 

of air emissions, and municipal climate change mitigation goals. The federal government 

operates a passenger vehicle fleet of more than 92,000 vehicles (US DOT 2017a) and states, 

counties and municipalities operate more than 1.3 million fleet automobiles, providing a 

large opportunity to reduce emissions. Realizing this opportunity however, requires careful 

consideration by fleet operators about location and usage conditions. Previous research has 
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indicated that the current fuel composition of some power grids may degrade air quality via 

vehicle electrification (Tamayao et al. 2015), which is why simultaneous consideration of 

transitioning to electric vehicles (EVs) and improving the environmental attributes of the 

power system is warranted. 

Recent work on life cycle assessment (LCA) of regional vehicle electrification include 

Weis et al. (Weis et al. 2016), who looked at the air emission externalities associated with 

charging in the PJM region and Yuksel et al. (Yuksel et al. 2016) who looked at how 

regional differences in grids, climate and driving patterns affected GHG emissions from 

vehicle electrification. Both of these primarily assessed impacts using the emissions from 

estimated marginal electricity generating units. Choi et al. (Choi et al. 2013) and Freire 

and Marques (Freire and Marques 2012) both estimated impacts with either marginal or 

average grid greenhouse gas (GHG) emissions combined with private costs. Marginal 

considerations are important because EV charging represents new demand, has temporal 

characteristics, and average grid emissions could underestimate emissions because of the 

likelihood of fossil generation as load following units. Holland et al. (Holland et al. 2015) 

performed a similar analysis to Yuksel et al. (Yuksel et al. 2016), without an upstream 

analysis, and assessed spatial patterns of emissions damages coupled with a consumer 

utility model and an ideal tax or subsidy to internalize either the total or regional 

externalities of an EV.  

With some exceptions (Anair and Mahmassani 2012; Choi et al. 2013; Emery et al. 

2017; Freire and Marques 2012; Holland et al. 2015; Michalek et al. 2011b), most of the 

reviewed literature focuses on either the environmental effects or private costs, rather than 

combining both. While some studies examine fleets (Emery et al. 2017; Jenn et al. 2016a; 

Sengupta and Cohan 2017; Traut et al. 2012; Weis et al. 2015; Yoon and Cherry 2015) the 
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reviewed literature also generally focuses on private actors rather than the motivations of 

municipal fleet operators and how they may attempt to comingle fleet electrification with 

other emissions reductions energy efforts. Holland et al. (Holland et al. 2015) attempts to 

address the operator motivation gap, by measuring the spatial differences in impacts from 

different pollution sources. Holland et al. (Holland et al. 2015) then uses this to create a 

framework to influence consumer behavior on the basis of perceived utility. This would be 

of use to actors more interested in local effects, such as municipal governments, however, 

municipalities generally account for pollution by emissions scope, not pollution fate and 

transport (ICLEI 2017). This is in accordance with the ICLEI international, and national 

variant, standards (ICLEI 2017). Additionally, fleet operators would more likely be 

interested in annual monetary flows and performance metrics. A more comprehensive 

literature review consisting of 36 studies beginning in 2007 is included in Table I-1 and  

Table I-2. 

In this chapter, I conduct an environmental life cycle assessment and cost benefit 

analysis of the electrification of the City of Pittsburgh’s municipal light-duty vehicle fleet 

and also the installation of PV systems on the City’s parking facilities. I consider GHGs, 

criteria air pollutants such as NOx and SO2, private costs, and upstream environmental 

impacts. I also compare the scope and potential locational effects of emissions and how this 

might be relevant to the decision-making of different actors. Many cities account for their 

GHG emissions in their climate action plan by using emission scopes, which were defined 

by the World Resource Institute in the GHG protocol for Cities (Fong et al. 2014) and 

products (Bhatia et al. 2011). Scopes are classified in 3 groups: Scope 1 contains all 

emissions directly released by the actor or process of interest; Scope 2 contains all 

emissions released in the production of energy procured by the actor or process of interest; 
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and Scope 3 contains the embodied emissions in all the materials and processes used by the 

actor or process of interest that are not contained in the other scopes. In the case of a 

vehicle fleet, Scope 1 would reflect all tailpipe emissions, Scope 2 include the emissions for 

generating electricity for EVs and Scope 3 include the emissions associated with the 

production and transport of the vehicles themselves and the production of fuels for 

transportation and electricity. A local government body has various levels of control 

regarding the total emissions and emissions intensity across each emissions scope, and may 

use different weights for making decisions about reducing emissions in each scope. They 

may be concerned only with the effects of emissions primarily felt by their constituents, or 

only with those emissions that they are held responsible for from an accounting perspective 

(ICLEI 2017). In both of these cases emissions from these 3 scopes may be weighted 

differently from each other. 

The importance of emission scopes and boundaries is illustrated by Mathews et al. 

(Matthews et al. 2008) and this method is common in the life cycle assessment literature. 

Matthews et al. showed that when using an Economic Input-Output LCA, the average 

economic sector reports only 14% of GHG as coming from direct production (Matthews et al. 

2008). This figure rises to only 26% when accounting for direct energy production emissions 

(Matthews et al. 2008).  Reporting only the emissions that an entity directly emits or 

contracts out will often leave out the majority of emissions. It is important to acknowledge 

the difference among these emissions as actors have more control over the emissions they 

directly emit or contract and these emissions often have a different spatial profile than 

emissions higher upstream. Regulations also may also prescribe different actions to 

mitigate pollution based upon which scope they origination from, necessitating this 

calculation. 
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Table I-1 summarizes several studies on the cost/benefits and environmental effects 

of vehicle electrification. The Grid Assumption column details whether the emissions from 

electricity generation used average grid emissions or estimated the marginal emissions 

needed to produce electricity in response to new demand. 
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Table I-1  Summary of Assorted Studies Investigating the Cost Benefits, 

Environmental Effects and/or Life Cycle of Vehicle Electrification 

Study Vehicle 

Types 

Regions Scope Grid 

Assumption 

Costs and 

Pollutants 

Investigated 

Duvall et al, 

2007 (Duvall 

et al. 2007) 

PHEV US: NERC 

Sub-regions 

Use Phase Marginal GHGs 

Lund and 

Kempton, 

2008 (Lund 

and Kempton 

2008) 

BEV, CV Denmark Use Phase: 

Scopes 1 

and 2 

Marginal CO2 

Samaras and 

Meisterling, 

2009 

(Samaras 

and 

Meisterling 

2008a) 

PHEV, 

HEV, CV 

US Full Life 

Cycle 

Both GHGs 

Hadley and 

Tsvetkova, 

2009 (Hadley 

and 

Tsvetkova 

2009) 

PHEV, CV US: NERC 

Sub-regions 

Use: Scopes 

1 and 2 

Marginal CO2, SO2,  

NOX 

McCarthy 

and 

Yang, 2010 

(McCarthy 

and Yang 

2010) 

BEV, 

PHEV, 

HFCV 

(Hydrogen 

Fuel Cell 

Vehicles), 

CV 

US: 

California 

Use Phase: 

Scopes 1, 2 

and Partial 

3 

Marginal CO2 

Michalek et 

al, 2011 

(Michalek et 

al. 2011b) 

BEV, 

PHEV, 

HEV, CV 

US Full Life 

Cycle 

Average CO, NOx, PM, 

SO2, VOCs, 

GHGs, Oil 

Dependence and 

Market Effects 

Peterson et 

al: 2011 

(Peterson et 

al. 2011) 

PHEV US: PJM 

and 

NYISO 

Use Phase: 

Scopes 1 

and 2 

Marginal CO2 

Anair and 

Mahmassani, 

2012 (Anair 

and 

BEV, 

PHEV, 

HV, CV 

US: eGRID 

sub-regions 

Use Phase Average Direct Private 

Cost, GHGs 
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Study Vehicle 

Types 

Regions Scope Grid 

Assumption 

Costs and 

Pollutants 

Investigated 

Mahmassani 

2012) 

Freire and 

Marques, 

2012 (Freire 

and Marques 

2012) 

BEV, CV Portugal Full Life 

Cycle 

Average Direct Private 

Cost, GHGs 

MacPherson 

et al, 2012 

(MacPherson 

et al. 2012) 

PHEV US: NERC 

Regions, 

sub-regions 

and States 

Full Life 

Cycle 

Average GHGs 

Thomas, 

2012 

((Sandy) 

Thomas 

2012) 

BEV, 

PHEV, HV 

US: NERC 

Sub-regions 

Use Phase: 

Scopes 1 

and 2 

Marginal GHGs 

Choi et al, 

2013 (Choi et 

al. 2013) 

BEV, CV US: Eastern 

Interconnect 

Full Life 

Cycle for 

pollutants, 

Use for 

Costs 

Marginal Direct Private 

Capital and Use 

Costs, CO2 

Graff Zivin et 

al, 2014 

(Zivin et al. 

2014) 

BEV, 

PHEV, 

HV, CV 

US: eGRID 

sub-regions 

Use Phase: 

Scopes 1 

and 2 

Marginal CO2 

Archsmith et 

al, 2015 

(Archsmith 

et al. 2015) 

BEV, CV US: NERC 

Regions 

Full Life 

Cycle 

Marginal GHGs 

Holland et al, 

2015 

(Holland et 

al. 2015) 

BEV, CV US: NERC, 

States and 

Political 

Counties 

Use Phase: 

Spatial 

Damage 

Scoping 

Marginal Direct Private 

Costs, CO2, SO2, 

PM2.5, NOX 

Nealer et al, 

2015 (Nealer 

et al. 2015) 

BEV US: eGRID 

sub-regions 

Full Life 

Cycle 

Average GHGs 

Onat et al, 

2015 (Onat 

et al. 2015) 

BEV, 

PHEV, 

HV, CV 

US; NERC 

Region 

Full Life 

Cycle 

Both GHGs 

Tamayao et 

al, 2015 

(Tamayao et 

al. 2015) 

BEV, 

PHEV, 

HV, CV 

US NERC 

Region 

Full Life 

Cycle 

Both CO2 
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Study Vehicle 

Types 

Regions Scope Grid 

Assumption 

Costs and 

Pollutants 

Investigated 

Yuksel and 

Michalek. 

2015 (Yuksel 

and Michalek 

2015) 

BEV US: NERC 

Region 

Use Phase: 

Scopes 1 

and 2 

Marginal CO2 

Crossin and 

Doherty, 

2016 

(Crossin and 

Doherty 

2016) 

BEV, CV Australia: 

NEM 

Full Life 

Cycle, 

Including 

Disposal 

Both Comprehensive 

Externality Life 

Cycle Inventory 

and Assessment 

Weis et al. 

2016 (Weis et 

al. 2016) 

BEV, 

PHEV, 

HV, CV 

US: PJM Full Life 

Cycle 

Marginal External Cost of 

Air Emissions, 

CO2, SO2, PM2.5, 

NH3, 

NOX, VOCs 

Yuksel et al, 

2016 (Yuksel 

et al. 2016) 

BEV, 

PHEC, 

HV, CV 

US: NERC 

and Political 

Counties 

Full Life 

Cycle 

Marginal GHGs 

Emery et al. 

2017 (Emery 

et al. 2017) 

BEV, CV 

(B0, 

Diesel), 

CV (B20, 

Diesel), 

CV (E10 

Gasoline), 

CV (E85 

Gasoline) 

US: 

Western 

Ohio 

Military 

Instillation 

Private 

Purchase 

Costs, Use 

Phase, 

Private 

Costs, 

Scopes 1, 2 

& 3 

Average Private Costs, 

GHGs, VOC, CO, 

NOx, PM10, PM-

2.5, SOx 

Sengupta 

and Cohan 

2017 

(Sengupta 

and Cohan 

2017) 

BEV, 

PHEV, 

HEV, CNG 

(Natural 

Gas), CV 

Houston, 

Texas 

Full Life 

Cycle 

Average Private Costs, 

GHGs, NOx 

This Study BEV, 

PHEV, 

HV, CV 

US: PJM 

and RFC-W 

Full Life 

Cycle 

Both Life Cycle 

Private and 

External Costs, 

GHGs, SO2, NOX 

 

Table I-2 summarizes several recent studies on the cost/benefits, sizing and 

environmental effects of PV systems. The third column details the source of project’s sizing, 
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which could be from a theoretical or real system case study, extrapolated from aerial 

imagery or other map data, or in terms of units of power. 

Table I-2  Summary of Assorted Studies Investigating the Cost Benefits, Sizing, 

Environmental Effects and/or Life Cycle of PV Systems 

Study Regions Source of 

Project Size 

Scope Grid 

Assumption 

Variables 

Investigated 

Fthenakis 

et al, 2008 

(Fthenakis 

et al. 

2008) 

Europe, 

US 

Per Unit 

Power 

Life Cycle Average GHGs, NOx, SOx, 

Heavy Metals 

Izquierdo 

et al, 2008 

(Izquierdo 

et al. 

2008) 

Spain Aerial 

Photography, 

GIS Maps, 

Population 

Density 

Use: Power 

Generation 

Potential 

N/A Available Area, 

Power 

Generation 

Potential 

Denholm 

et al, 2009 

(Denholm 

et al. 

2009) 

Western 

US 

Per unit 

power, 

Current Grid 

Mix, 

Assumed 

Future Mix 

Use phase 

Scopes 1 

and 2 

Marginal CO2, SO2, NO2, 

Natural Gas and 

Coal 

Replacement 

Ayompe et 

al, 2010 

(Ayompe 

et al. 

2010) 

Ireland Per unit of 

power 

Project 

Private 

NPV, Use 

phase 

Scopes 1 

and 2 

Average Private NPV, 

Social NPV 

(GHGs) 

Sherwani 

et al, 2010 

World Per unit of 

power 

Life Cycle Average GHGs 

Wiginton 

et al, 2010 

(Wiginton 

et al. 

2010) 

Canada: 

South 

Eastern 

Ontario 

Aerial 

Photography 

Use: Power 

Generation 

Potential 

N/A Power 

Generation 

Potential 

Vardimon, 

2011 

(Vardimon 

2011) 

Israel Aerial 

Photography 

Use: Power 

Generation 

Potential 

N/A Power 

Generation 

Potential 

Kim et al, 

2012 (Kim 

et al. 

2012) 

World Per unit 

power 

Life Cycle Average GHGs 
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Study Regions Source of 

Project Size 

Scope Grid 

Assumption 

Variables 

Investigated 

Hsu et al, 

2012 (Hsu 

et al. 

2012) 

World Per unit 

power 

Life Cycle Average GHGs 

Hunter et 

al, 2013 

(Hunter et 

al. 2013) 

US: 

Boston, 

MA 

State 

Provided GIS 

Map and 

Aerial 

Photography 

Project 

Private 

NPV and 

Use Phase: 

Scopes 1 

and 2 

Average Private NPV, 

Social NPV, CO2, 

SO2, NO 

Kim et al, 

2014 (Kim 

et al. 

2014) 

Malaysia Per unit 

power 

Life Cycle, 

no disposal 

Average GHGs; Coal, 

Natural Gas and 

Petroleum Usage 

Chung et 

al, 2015 

(Donald 

Chung et 

al. 2015) 

US Per Unit of 

Power, Case 

Studies 

System 

Cost 

N/A Private System 

Cost 

Fu et al 

2015 (Fu 

et al. 

2015) 

China Per unit of 

Power 

Life Cycle-

Production 

to Use 

Average GHGs; 

Acidification, 

Eutrophication, 

and Ozone 

depletion and 

Human Toxicity 

Potential 

This 

Study 

US: PJM 

and RFC-

W 

Aerial 

Photography 

Full Life 

Cycle 

Both Life Cycle 

Private and 

External Costs, 

GHGs, SO2, NOX 

Additionally, I compare the results from a marginal and average grid perspective, 

while looking at the possible effects of current renewable energy credit (REC) purchases, or 

potential integrated solar PV projects. Assessing the marginal grid and average component 

directly can help to show if this simplification is significant enough to alter 

recommendations. By providing a comprehensive life cycle assessment and analysis this 

study provides a method for municipalities, counties, states, and other stakeholders to 

evaluate the potential benefits and costs of fleet vehicle electrification. 
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2.2. Methods 

2.2.1. Municipal Light Duty Fleet Overview 

This analysis focuses on Pittsburgh’s municipal permitting, licensing, and inspection 

vehicle fleet. Currently the city has a civilian passenger vehicle fleet of 118 vehicles 

travelling 1,160,000 km a year (Lowell 2015). This leads to an average (5-day workweek) 

travel of 37.7 km per workday per vehicle for the fleet. 

The life cycle cost components of operating a vehicle fleet are the purchase price, the 

cost of fuel needed for daily operations, and the cost of regular maintenance. Therefore, the 

prices of gasoline, electricity and maintenance are relevant to understand the costs of 

managing a municipal vehicle fleet containing electric vehicles. Table I-3 shows the 

Manufacturers Suggested Retail Price (MSRP) and fuel economy characteristics of typical 

conventional (ICV), hybrid (HEV), plug-in hybrid electric (PHEV), and battery electric 

(BEV) vehicles. I use these vehicles in our analysis, as they currently under consideration 

for use by the city of Pittsburgh, except for the conventional Ford Fusion. This was done for 

model consistency with the HEV and PHEV. The 2016 Ford Fusion did not include a BEV 

so the Focus was used instead. This is a cheaper model line, leading to a slight 

underestimate in cost for BEVs to compare equivalent vehicles. Maintenance prices come 

from an the Electric Power Research Institute (Alexander and Davis 2013). Battery 

capacities are from Ford’s website for each specific model and year (Ford Motors 2015a; b; 

c). Gasoline prices are from 2015 US wholesale prices, since municipal fuel is untaxed (EIA 

2015). Electric price assumptions of $0.06/kWh came from discussions with City officials, 

and are consistent with regional institutional electricity prices. On-site levelized costs of 

electricity were estimated for solar PV costs and were derived from the integrated 
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renewable garage analysis in Section 2.2.4 and 2.2.5. The calculations are presented in 

Section 2.2.3. 

  



26 

 

Table I-3  Vehicle Characteristics 

Vehicle 

Model 

MSRP 

($) 

(EPA 

n.d.)  

All Gasoline 

City Fuel 

Economy  

All Electric City 

Fuel Economy* 

All 

Electric 

Range 

Maintenance 

Cost ($/km) 

(Alexander 

and Davis 

2013) 

Battery 

Capacity 

(kWh) 

(Ford 

Motors 

2015a; b; c) 

2016 Ford 

Focus 

Electric 

$29,170  n/a 19.04 kWh/100 

km (EPA n.d.) 

122 km 

(EPA 

n.d.) 

$0.0054 23 

2016 Ford 

Fusion 

Energi 

Plug-in 

Hybrid 

$33,900  6.12 l/100 km 

(EPA n.d.) 

(combined)** 

22.99 kWh/100 

km (EPA n.d.) 

(combined)** 

32 km 

(EPA 

n.d.) 

$0.0127 7.6 

2016 Ford 

Fusion 

Hybrid 

FWD 

$25,675  5.47 l/100 km 

(EPA n.d.) 

n/a n/a $0.0115 1.4 

2016 Ford 

Fusion 

FWD  

$22,750 9.05 l/100 km 

(EPA n.d.) 

n/a n/a $0.0243 n/a 

*Effective electric fuel consumption is about 11% greater due to ≈ 90% charging 

efficiency (Cooney et al. 2013) 

**Source does not separate PHEV’s electric fuel economy into City and Freeway 

measures 

 

The City of Pittsburgh currently has a contract to buy wind power Renewable 

Energy Certificates (RECs) for 30% of its municipal electricity needs and is planning to 

increase its renewable purchases to 100% by 2030. I discuss the challenges of actual 

emissions changes from using RECs below, and assess electricity emissions here both with 

and without RECs. To bound the REC case, I assume the purchased wind power is from 

local sources and therefore displacing other fuels in PJM (the regional transmission 

organization), and ignore additional emissions resulting from intermittency when 
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calculating time-dependent marginal costs. The effects of RECs are very likely to be less 

than a 100% reduction per kWh, and research suggests it could approach 0 (Gillenwater 

2013; Gillenwater et al. 2014). However Pittsburgh currently follows an accounting protocol 

allowing for full replacement in accounting (City of Pittsburgh 2017; ICLEI 2017). In the 

Pittsburgh residential market wind power has about a $0.015 premium per kWh over 

conventional electricity (PA PUC 2015). I assumed this premium to be the same that the 

city pays for all RECs. 

 

 

 

 

 

 

 

In addition to capital cost of the vehicle and its fuel, electric vehicles require 

charging infrastructure. This analysis assumed that each vehicle would require one Level 2 

charger. After a review of current literature and EV manufacturer guidance, I used a range 

of costs for equipment and installation of Level 2 charging units in commercial garages, 

listed in Table I-5 (“Electric Vehicle Charging Infrastructure Deployment Guidelines for the 

Greater San Diego Area.” 2010; Taxi & Limousine Commission 2013; Tesla 2015). 

PHEVs are able to travel on electricity, gasoline, or a combined gasoline and electric 

mode, depending on specific model. PHEVs for the Pittsburgh municipal fleet were assumed 

to travel on a mix of 81.2% electricity and 18.9% gasoline, accounting for the 30.6 km EV 

range and 37.7 km average daily travel (Lowell 2015) (D.O.E. n.d.). While there is some 
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research suggesting that using this method overestimates the electric share (Neubauer et 

al. 2013), the fleet usage scenario used here suggests much less variability with daily 

driving range and charging patterns than general use, justifying this assumption here. I 

test this assumption in the sensitivity analysis. 

For the net present cost (NPC) analysis, Pittsburgh Municipal bond and U.S. 

Treasury rates were used to estimate a discount rate. Current 20 and 30-year US treasuries 

carry coupon rates of 2.62% and 2.93% (US Treasury 2015), while I used the 30-year 

Pittsburgh Municipal bond rate of 5% (MunicipalBonds.com 2013). Social discount rates are 

considered separately and are based on those used on the impact assessment of EPA’s clean 

power plant regulation (EPA 2014b, 2015b). The NPC analysis considered 8 scenarios over 

a 15-year vehicle life time. In all scenarios, each vehicle was assumed to travel the fleet 

average yearly amount of travel. The scenario names, assumptions and energy sources are 

summarized in Table I-4. RFC-Tran stars, on year 1, with 30% RECs and increases by 5% 

each year till year 15, the final year of analysis, when it reaches 100%. The PV scenario 

looks to investigate what the final effects are if vehicle charging were to be entirely covered 

by on site solar powered electricity. The potential marginal component of solar power and 

EV demand is ignored in this scenario. The separate effects of PV power generation are 

explored in the Integrated Renewable Garages section. Note that if EVs or PHEVs increase 

pollution under other scenarios charging the EVs by PVs would still increase pollution 

compared to building the PV systems and sending it to grid while using conventional 

vehicles. Each scenario had a base case value and a different possible range of variable 

values, summarized in Table I-5. The emissions rates from the different fuel sources are 

summarized in Table I-6. 
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Table I-4: Scenario Nomenclature 

Scenario RECs % Grid Energy Source 

Average 0% PJM Average 

Marginal 08-17 0% PJM Marginal 8AM-5PM 

Marginal 18-07 0% PJM Marginal 6PM-7AM 

REC Average 30% PJM Average 

REC Marginal 08-17 30% PJM Marginal 8AM-5PM 

REC Marginal 18-07 30% PJM Marginal 6PM-7AM 

PV N/A On Site Solar PV 

Transitional Average 

30-100%, increases linearly 

5% each year, over 15 years 

PJM Average 

Transitional Marginal 

30-100%, increases linearly 

5% each year, over 15 years 

PJM Marginal 6PM-7AM 

Table I-5: Parameter Value ranges 

Variable Maximum Value Base Case Value Minimum Value 

Private Discount Rate 7% 5% 3% 

Non GHG Social 

Discount Rate 

7% 3% 3% 

Electric Price $/kWh    

On-Site Solar PV Price $1.08 $0.88 $0.75 

Premium for REC 

$/kWh 

$.015 $.015 $.015 

Gasoline Price $/liter 

(EIA 2015) 

$1.06 $0.53 $0.39 

EV Charger Price $ $8,000 $4,000 $0 

Social Cost of CO2 $/kg 

(EPA 2015a) 

$0.105 $0.073 $0.042 

Social Cost of NOx $/g 

(EPA 2014b, 2015b) 

$0.039  $0.026  $0.012  

Social Cost of SOx $/g 

(EPA 2014b, 2015b) 

$0.115 $0.047 $0.042 
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Table I-6: Emissions Rates 

Source or Scenario g SO2 / kWh (g/l) 

(g/kg) 

g NOx / kWh (g/l) 

(g/kg) 

kg CO2 / kWh (kg/l) 

(kg/kg) 

Gasoline Direct (EPA 

2008) 

0.00 4.41 2.35 

PJM Average Direct 

(EIS n.d.) 

0.73 0.35 0.46 

PJM Marginal 08-17 

direct (Monitoring 

Analytics 2016) (A. 

Elgowainy et al. 

2016) 

1.03 0.656 0.703 

PJM Marginal 18-07 

Direct (Monitoring 

Analytics 2016)  (A. 

Elgowainy et al. 

2016) 

0.944 0.586 0.671 

PJM Marginal 07-19 

Direct (Monitoring 

Analytics 2016)  (A. 

Elgowainy et al. 

2016) 

1.03 0.655 0.702 

Gasoline Upstream 

(A. Elgowainy et al. 

2016) 

1.110 1.294 0.573 

PJM Average 

Upstream (EIS n.d.) 

(A. Elgowainy et al. 

2016) 

0.0453 0.055 0.115 

PJM Marginal 08-17 

Upstream 

(Monitoring Analytics 

2016)  

0.0341 0.0814 0.173 

PJM Marginal 18-07 

Upstream 

(Monitoring Analytics 

2016)   

0.0329 0.078 0.170 

PJM Marginal 07-19 

Upstream 

(Monitoring Analytics 

2016)   

0.0341 0.0814 0.173 

Solar PV Upstream 

(Hsu et al. 2012)  

  0.070 

Wind Upstream 

(Dolan and Heath 

2012) 

  0.011 
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Source or Scenario g SO2 / kWh (g/l) 

(g/kg) 

g NOx / kWh (g/l) 

(g/kg) 

kg CO2 / kWh (kg/l) 

(kg/kg) 

Battery Assembly 

Emissions (A. 

Elgowainy et al. 

2016) (g or kg) 

96.0 62.7 54.9 

HEV Battery Pre-

Assembly Emissions 

(A. Elgowainy et al. 

2016) (g or kg / kg) 

48.6 10.0 6.98 

PHEV Battery Pre-

Assembly Emissions 

(A. Elgowainy et al. 

2016) (g or kg / kg) 

51.4 7.75 4.94 

HEV Battery Pre-

Assembly Emissions 

(A. Elgowainy et al. 

2016) (g or kg / kg) 

43.8 7.98 4.75 

 

In addition to private costs, the monetized values of emissions from electricity and 

gasoline combustion on air pollutant and greenhouse gas (GHG) emissions are important to 

municipal decision makers. Sulfur dioxide (SO2) emissions are not measurably emitted from 

conventional gasoline vehicles, but will be indirectly emitted by electric vehicles, due to the 

current regional grid containing some coal-fired generation. Most of the electric vehicle 

analysis literature reviewed reports either the average or the marginal emissions 

characteristics of the grid, and this study uses both the average and the marginal emissions 

values. In the near-term, additional electric demand is supplied by power plants in an 

economic dispatch curve, and will be fulfilled by the units available with the lowest 

marginal costs for a given level of demand during the hour demanded, subject to a variety 

of constraints. These marginal units change based upon load, time of day, season, relative 

fuel prices, and the evolving units available in the regional grid. This study used average 

and time of day-based marginal emission factors from the PJM Regional Transmission 

Organization (Monitoring Analytics 2016), which covers Pittsburgh (PJM 2017). Marginal 
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factors are the PJM reported 2015 marginal emission factors, and listed in Table I-6. 

Significant additional demand could increase or decrease the marginal emissions as 

different fuels and units are brought online. Nighttime and daytime marginal emission 

factors were taken as the average of each hourly marginal emission factor from the time 

period covered. Daytime charging consisted of the hours 8AM through 5 PM while 

nighttime charging consisted of the hours 6PM through 7AM. 

In addition to the direct emissions from combustion from gasoline and electricity 

generation, there are also upstream emissions from the production and transport of fuels, 

listed in Table I-6. Upstream gasoline emissions come from the 2015 GREET model (A. 

Elgowainy et al. 2016). Upstream electricity emissions are based upon the 2015 GREET 

model (A. Elgowainy et al. 2016) for fossil fuels and nuclear power, while PV and wind 

emissions come from Hsu et al (Hsu et al. 2012) and Dolan and Heath, respectively (Dolan 

and Heath 2012). PV emissions were adjusted for Pittsburgh’s solar irradiance (National 

Renewable Energy Laboratory 2015). The composition of grid electricity represented the 

conditions in PJM for 2015, for both average (EIS n.d.) and marginal (Monitoring Analytics 

2016).  Solar PV and wind upstream emissions are all reported in terms of kg CO2-

equivalent for a 100-year Global Warming Potential (GWP) using IPCC AR5 values 

(Pachauri et al. 2015). Vehicle manufacturing emissions were taken from the GREET 

model. The differences between vehicle manufacturing emissions were assumed to be 

entirely due to the extra batteries required, as listed in Table I-3. This assumption ignores 

the extra components necessary in HEVs and PHEVs, which need to run on both gasoline 

and electricity, when compared to ICVs and BEVs. BEVs and ICVs also have components 

not in common with each other. These emissions are expected to be much smaller than 

battery manufacturing, which themselves were found to be much less significant than use 
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phase emissions. Calculations for vehicle manufacturing emissions are based upon the 

GREET model (A. Elgowainy et al. 2016) and described in section 2.2.3. 

All emissions were divided into the 3 scopes common for life cycle assessment 

(Bhatia et al. 2011; Fong et al. 2014; Matthews et al. 2008). Scopes 1 and 2 comprise direct 

emissions; with Scope 1 covering direct vehicle gasoline combustion and Scope 2 covering 

combustion from power generation. Scope 3 covers all upstream emissions for fuel, power 

and vehicle production and transport. This is summarized, for each vehicle type, in Table 

I-7. 

Table I-7: Costs/Emissions Scopes for Each Vehicle Type 

Vehicle Private Costs Scope 1 Scope 2 Scope 3 

BEV Vehicle 

Purchase, 

Vehicle 

Maintenance, 

Charger 

Purchase and 

Installation, 

Electricity Costs 

n/a Electricity 

Generation 

Combustion 

Battery Manufacturing, 

Electricity Upstream 

PHEV Vehicle 

Purchase, 

Vehicle 

Maintenance, 

Charger 

Purchase and 

Installation, 

Electricity Costs, 

Gasoline Costs 

Gasoline 

Combustion 

Electricity 

Generation 

Combustion 

Battery Manufacturing, 

Electricity Upstream, 

Gasoline Upstream 

HEV Vehicle 

Purchase, 

Vehicle 

Maintenance, 

Gasoline Costs 

Gasoline 

Combustion 

n/a Battery Manufacturing, 

Gasoline Upstream 

ICV Vehicle 

Purchase, 

Vehicle 

Maintenance, 

Gasoline Costs 

Gasoline 

Combustion 

n/a Gasoline Upstream 
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Potential differences in emissions for these scopes is of particular importance when 

considering the decision-making rationale of municipalities when compared to a national or 

regional analysis. Since the impacts of GHGs are global, municipalities would view GHG 

reduction efforts from an accounting perspective, depending on which life cycle scopes they 

are including. When considering non-GHG air pollutants, however, this might not be the 

case. Nations joining the Paris agreement are not obligated to consider the externalities of 

non-GHG pollutants. This shows that many policy makers have decided to separate 

responsibilities for GHG and non-GHG air pollution externalities and, in this case, only 

accept addition responsibility for GHG effects. Therefore, cities that have pledged to reduce 

GHG emissions can be expected to weigh the effects of non-GHG emissions on their 

constituents more highly than those that can be exported. Scope 1 emissions are the only 

emissions guaranteed to occur entirely where the vehicles are driven, likely inside of the 

borders of the municipality themselves. Electricity consumed in the municipality may be 

produced at a great distance from the people living there, and air pollutant transport and 

damages to residents of the municipalities depend on factors such as distance, power plant 

pollution control equipment, and wind patterns. Holland et al. (Holland et al. 2015) 

suggests that, on average 43% of gasoline emissions effects stay within the census county 

that they occur in. For electricity they suggest that on average, only 1% of the effects of 

emissions from electricity demand are borne by the county in which they were demanded 

(Holland et al. 2015).  Scope 3 emissions from fuels and battery manufacturing are 

primarily a function of geography and trade and are not guaranteed to entirely occur even 

in the same country where they were demanded.  
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High and low estimates for the social costs of SO2 and NOx, are from an EPA 

regulatory impact analysis on pollution standards for existing power plants (EPA 2014b, 

2015b), while base case assumed the average of the two values. Social costs for SO2 and 

NOx were based on premature mortality alone, in the eastern region of exposure for 2020. 

High and low SO2 values were taken from 3% and 7% discount rates, respectively. NOx 

values were taken from the sum of effects of NOx as PM2.5 and Ozone; with high and low 

ozone values being from the 4% and 7% ranges, respectively. CO2 costs are from the 

interagency report on the social costs of carbon (EPA 2015a): 2020 values were used with 

the 3% discount rate estimate used for the base case and the 5th and  95th percentile values 

being used for high and low costs, respectively. Costs due to emissions were not discounted 

for the NPC analysis. All values were converted to $2015 using the Bureau of Labor 

Statistics CPI calculator (BLS n.d.). All emission rates are listed in Table I-5. 

2.2.2. Grid Emissions Assumptions 

The following assumptions were used when calculating the emissions for grid 

electricity, 

• Marginal grid emissions (Monitoring Analytics 2016) for any given fuel were 

assumed to be the same as those of averaged fuel emissions (EIS n.d.) for PJM 

where the sources gave the same fuels 

o This leads to a likely underestimated as less efficient plants are likely to be 

used on the margin than as average 

o Marginal coal emissions were weighted by the PJM average mix of 

"Bituminous and Anthracite" and "Sub-Bituminous" coal 

o Marginal “Diesel” and “Light Oil” were both assumed to have the same 

emissions as average “Oil - Distillate Fuel Oil” 
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o Marginal “Heavy Oil” was assumed to have the same emissions as average 

“Oil - Distillate Fuel Oil” 

o Marginal “Miscellaneous” was assumed to have the same emissions as 

average “Other” 

o Marginal “Missing Data” was assumed to have no emissions 

▪ This counted for <1% of the marginal mix for every averaged hour 

• All Upstream emissions, except solar and wind, were taken from GREET (A. 

Elgowainy et al. 2016) 

o Solar and wind are only calculated in terms of CO2-eq. 

• Estimated transmission efficiency was assumed to be the estimated losses / the total 

supply of electricity for PA in 2015, according to the EIA (EIA 2017) 

• Upstream GREET Assumptions 

o Coal was assumed to come from a US Non-Distributed: Coal Fired Steam 

Plant 

o Diesel was assumed to come from US Low Sulfur Diesel from crude, with the 

equivalent efficiency of a US Non-Distributed: Residual oil Steam Fired plant 

o Heavy oil was assumed to come from a US Non-Distributed: Residual oil 

Steam Fired plant 

o Kerosene was assumed to have an equivalent upstream as diesel 

o Landfill gas and municipal solid waste, being trash, were assumed to have 0 

upstream 

▪ This ignores the infrastructural investment, which GREET also 

ignores  

o Light oil was assumed to have an equivalent upstream as diesel 
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o Miscellaneous and Missing data were both assumed to have 0 emissions 

▪ Both were less than 1% of the mix, each, for every averaged hour 

o Natural gas was assumed to come from a Us Non-Distributed: natural gas 

combined cycle plant 

o Waste Coal was assumed to have an equivalent upstream as coal 

2.2.3. Municipal Light-Duty Fleet Calculations 

This section describes the equations used to estimate emissions factors for gasoline 

and electricity and the NPC of the different vehicles. Variable definitions and units are 

shown in Table I-8. 
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Table I-8: Municipal light duty fleet variables 

Variable Name Definition Units 

𝛼𝑔𝑎𝑠 Annual gasoline consumption per vehicle l 

𝛼𝑒𝑙𝑐 Annual electricity consumption per vehicle kWh 

𝐹𝑒𝐺𝑎𝑠 Vehicle Gasoline Fuel Economy l / 100 km 

𝐹𝑒𝐸𝑙𝑐 Vehicle electric Fuel Economy kWh / 100 km 

𝑉𝐾𝑚𝑇 Vehicle km Traveled per year km 

%𝑔𝑎𝑠 % of travel in gasoline mode % / 100 

%𝐸𝑙𝑐 % of travel in electric mode % / 100 

𝐷𝑅 

 
Daily vehicle range km 

𝐸𝑅 PHEV EPA rated all electric range km 

𝛾𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐺𝑎𝑠 Vehicle annual Gasoline emissions g or kg of pollutant 

(for CO2) 

𝛾𝑔𝑎𝑠 Gasoline emissions g or kg of pollutant 

(for CO2) / l 

𝛾𝑒𝑙𝑐𝑢𝑝
 Electric upstream emissions g or kg of pollutant 

(for CO2) / kWh 

𝛾𝑓𝑢𝑒𝑙𝑢𝑝
 Electric upstream emissions for a specific fuel g or kg of pollutant 

(for CO2) / kWh 

%𝑔𝑟𝑖𝑑𝑓𝑢𝑒𝑙
 The % of the electric grid supplied by specified fuel % / 100 

𝐸𝑡𝑟𝑎𝑛𝑠 Grid transmission efficiency ≈ 96.6%  for PA in 

2015 

% / 100 

𝛾𝑓𝑢𝑒𝑙𝑝𝑟𝑜𝑓
 Emissions to get 1 kWh of heating potential of fuel 

to power plant 

g or kg of pollutant 

(for CO2) / kWh 

𝐸𝑡𝑒𝑐ℎ Efficiency of plant type used to produce electricity % / 100 

%𝑡𝑒𝑐ℎ The % of the grid supplied by the specified plant 

type for its fuel 

% / 100 

𝛾𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐸𝑙𝑐 Vehicle annual electric emissions g or kg of pollutant 

(for CO2) 

γgridij
 Electric emissions for grid i in year j g or kg of pollutant 

(for CO2) / kWh 

%𝑔𝑟𝑖𝑑𝑖𝑓𝑢𝑒𝑙
 The % of the electric grid supplied by specified fuel 

for hour i of an average day 

% / 100 

%𝑔𝑟𝑖𝑑𝑖𝑑𝑎𝑦𝑓𝑢𝑒𝑙
 The % of the electric grid supplied by specified fuel 

for hour I of day k 

% / 100 

𝑑𝑎𝑦𝑠𝑦𝑒𝑎𝑟 Days in the year of data, 2015, = 365 days 

𝛾𝑚𝑎𝑟𝑔𝑖𝑗
 Marginal emission factor from time period i till j, 

using 24:00 time 

g or kg of pollutant 

(for CO2) / kWh 

𝛾𝑚𝑎𝑟𝑖
 marginal emission factor for hour i, using 24:00 

time 

g or kg of pollutant 

(for CO2) / kWh 

𝐶𝑅𝐸𝐶𝑥% Total cost of electricity with x% REC purchase $ / kWh 

𝐶𝑒𝑙𝑐 Cost of grid electricity $ / kWh 

𝐶𝑅𝐸𝐶 Cost premium for REC $ / kWh 

%𝑅𝐸𝐶 % of electricity covered by REC % / 100 
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Variable Name Definition Units 

𝛾𝑅𝐸𝐶𝑥% Electric emissions with x% RECs g or kg of pollutant 

(for CO2) / kWh 

𝛾𝑤𝑖𝑛𝑑 Emissions from wind g or kg of pollutant 

(for CO2) / kWh 

𝐶𝑚2𝐿 Low PV Canopy Cost $ / m2 

𝑃𝐶
𝑚2  Frick project PV Panel costs = $178.93 (Sharrard 

2016) 

$ / m2 

𝛿𝑃𝐶 Estimated decrease in PV prices between 2015 and 

2020 = 7.44% (Donald Chung et al. 2015) 

% / 100 

𝑆𝐶
𝑚2  Frick project structural costs = $379.34  (Sharrard 

2016) 

$ / m2 

𝐶𝑘𝑊ℎ PV LCE vost $ / kWh 

𝐶𝑚2 PV system Cost $ / m2 

𝑆𝑖𝑟𝑟 Solar irradiance = 1392 (National Renewable 

Energy Laboratory 2015) 

kWh / m2 

𝑁𝑃𝑉 System life = 25 years 

𝑖 Discount rate = 3%, 5%, 7% % / 100 

𝑀 Annual maintenance rate, as % of total system 

costs = 0.35% (Donald Chung et al. 2015) 

% / 100 

𝑃𝑡 Power generation in year t kWh 

𝛾𝑣𝑒ℎ𝑒𝑙𝑐𝑢𝑝𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡
 Vehicle upstream emissions g, or kg (for CO2) 

𝛾𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝑢𝑝𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡
 Emissions from the battery assembly process g, or kg (for CO2) 

𝑊𝑏𝑎𝑡𝑡𝑒𝑟𝑦 Battery weight kg 

𝛾𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑝𝑎𝑟𝑡𝑠 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡
 Pre-assembly battery emissions g or kg of pollutant 

(for CO2) / kg of 

battery 

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 Battery Capacity kWh 

𝐷𝑏𝑎𝑡𝑡𝑒𝑟𝑦 Battery density = 80 (Samaras and Meisterling 

2008a) 

Wh / kg 

𝑁𝑃𝐶𝑃 Vehicle private NPC $ 

𝐶𝑣𝑒ℎ Vehicle capital costs $ 

𝐶𝑐ℎ𝑎𝑟𝑔𝑒𝑟 Capital costs of charger,0 for CVs and HEVs $ 

𝐶𝑚𝑎𝑖𝑛 Vehicle maintenance costs $ / km 

𝐶𝑔𝑎𝑠 Gasoline costs  $ / l 

(𝑃|𝐴, 𝑖, 𝑁𝑉) Present value factor of an annuity of NV years at a 

discount rate of i 

unitless 

𝑁𝑉 Vehicle lifetime = 15 years 

𝑁𝑃𝐶1 Vehicle scope 1 NPC $ 

𝛾𝑣𝑒ℎ𝑔𝑎𝑠𝐷𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡
 Annual direct vehicle pollutant emissions from 

gasoline 

g or kg of pollutant 

(for CO2) 

𝐶𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 Social cost of pollutant $ / g 

𝑁𝑃𝐶2 Vehicle scope 2 NPC $ 

𝛾𝑣𝑒ℎ𝐸𝑙𝑐𝐷𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡
 Annual direct vehicle pollutant emissions from 

electricity 

g or kg of pollutant 

(for CO2) 
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Variable Name Definition Units 

𝑁𝑃𝐶3 Vehicle scope 3 NPC $ 

𝛾𝑉𝑒ℎ𝑚𝑎𝑛𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡
 Vehicle manufacture emissions,pollutant g or kg of pollutant 

(for CO2) 

𝛾𝑣𝑒ℎ𝑓𝑢𝑒𝑙𝑢𝑝𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡
 Annual vehicle upstream emissions from fuel for 

pollutant 

g or kg of pollutant 

(for CO2) 

𝑁𝑃𝐶𝑦𝑒𝑙𝑐
 NPC of scope y from electricity $ 

𝛾𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑗𝑦
 Emissions of pollutant in year j for scope y g or kg of pollutant 

(for CO2) 

(𝑃|𝐹, 𝑖, 𝑗) Present value factor for a future value in j years at 

an i discount rate 

unitless 

 

Annual Gasoline and Electricity Consumption 

Equation I-1 and Equation I-2 were used to calculate gasoline and electricity 

consumption. This assumes constant fuel economy, Fe, for each vehicle; constant fuel 

percentage usage, %fuel, for PHEVs; and constant travel, Vkmt, for all vehicles. Gasoline or 

electric consumptions is then just the product of these three values. 

Equation I-1 

𝛼𝑔𝑎𝑠 =
𝐹𝑒𝐺𝑎𝑠

100
∗ 𝑉𝐾𝑚𝑇 ∗ %𝑔𝑎𝑠 

Equation I-2 

𝛼𝑒𝑙𝑐 =
𝐹𝑒𝐸𝑙𝑐

100
∗ 𝑉𝐾𝑚𝑇 ∗ %𝐸𝑙𝑐 

 

PHEV Gasoline and Electricity Use 

Equation I-3 and Equation I-4 were used to calculate the percentage of energy that a 

PHEV derives from electricity and gasoline.  This is done by estimating the electric 

percentage, %elc, as the fraction of the daily driving amount that the rated electric range 
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covers. This assumes that travel amount is constant every day and that the electric range 

rating is accurate for the type of travel that the vehicle is performing. 

Equation I-3 

%𝑒𝑙𝑐 =
𝐷𝑅 − 𝐸𝑅

𝐷𝑅
 

Equation I-4 

%𝑔𝑎𝑠 = 1 − %𝑒𝑙𝑐 

Annual gasoline emissions 

Equation I-5 was used to calculate annual gasoline emissions of a single vehicle. 

This was simply the product of the vehicle’s gasoline consumption and gasoline’s emission 

rate. 

Equation I-5 

𝛾𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐺𝑎𝑠 = 𝛼𝑔𝑎𝑠 ∗ γgas 

Upstream Electricity Emission Factors 

Equation I-5 and Equation I-6 were used to calculate the upstream electricity 

emission factors, per kWh. Equation I-6 sums the product of the emissions of each fuel, 

their share of the electricity grid and the transmission efficiency. Equation I-7 calculates 

the emissions of each fuel, with the sum product of the emissions of each potential 

technology that uses that fuel, their efficiencies and shares of power production, for that 

fuel. 

Equation I-6 

𝛾𝑒𝑙𝑐𝑢𝑝
= ∑ 𝛾𝑓𝑢𝑒𝑙𝑢𝑝

∗ %𝑔𝑟𝑖𝑑𝑓𝑢𝑒𝑙
∗ 𝐸𝑡𝑟𝑎𝑛𝑠 
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Equation I-7 

𝛾𝑓𝑢𝑒𝑙𝑢𝑝
= ∑ 𝛾𝑓𝑢𝑒𝑙𝑝𝑟𝑜𝑑

∗ 𝐸𝑡𝑒𝑐ℎ ∗ %𝑡𝑒𝑐ℎ 

Annual electricity emissions 

Equation I-8 calculates the annual electric emissions. This is the sum of electric 

consumption and emissions, for the year in question. 

Equation I-8 

𝛾𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐸𝑙𝑐 = 𝛼𝑒𝑙𝑐 ∗ γgridij
 

Marginal fuel mix 

Our source (Monitoring Analytics 2016) gave marginal fuel usage factors in terms of 

percent of marginal fuel mix for each hour of the year. The percentage of each fuel for each 

average hour was taken as its average usage for that hour over the entire years, as shown 

below, in Equation I-9. 

 

Equation I-9 

%𝑔𝑟𝑖𝑑𝑖𝑓𝑢𝑒𝑙
=

∑ %𝑔𝑟𝑖𝑑𝑖𝑘𝑓𝑢𝑒𝑙

𝑑𝑎𝑦𝑠𝑦𝑒𝑎𝑟
 

Marginal emission factors 

Marginal emission factors were used by averaging the hourly marginal emission 

factors for each hour of the daily time-period of interest, as shown below, in Equation I-10 

 

Equation I-10 

𝛾𝑚𝑎𝑟𝑔𝑖𝑗
=

∑(𝛾𝑚𝑎𝑟𝑔𝑖
)

𝑗 − 𝑖
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Electricity REC Price 

Equation I-11 was used to calculate the price of electricity, when RECs were 

purchased for a specified percentage of electricity consumed. This is done by applying the 

REC premium, CREC; on the electric price, Celc; weighted by the percentage of RECs 

purchased, %REC. 

Equation I-11 

𝐶𝑅𝐸𝐶𝑥% = 𝐶𝑒𝑙𝑐 ∗ (1 − %𝑅𝐸𝐶) + (𝐶𝑅𝐸𝐶 + 𝐶𝑒𝑙𝑐) ∗ %𝑅𝐸𝐶 

REC Emission Factors 

Equation I-12 was used to adjust electric emission factors to account for REC 

purchases. REC purchases from the city were for wind power so wind emission factors were 

used in place of grid ones for the portion of RECs purchased. Wind only had upstream, 

scope 3 emissions, scope 1 and 2 emissions are simply reduced by the REC percentage 

amount. Scope 3 emissions then have the wind upstream emissions added to the reduced 

emissions, weighted by the REC amount. 

Equation I-12 

𝛾𝑅𝐸𝐶𝑥% = (1 − %𝑅𝐸𝐶) ∗ 𝛾𝑔𝑟𝑖𝑑𝑖𝑗 + %𝑅𝐸𝐶 ∗ 𝛾𝑤𝑖𝑛𝑑 

PV Price 

Equation I-13 was used to calculate the price of electricity for the PV scenario. First 

costs per square meter were calculated. These were then used to calculate a simplified 

LCOE over the system’s lifetime production. High cost per square meter taken from a 

recent solar carport facility at the Frick Park in Pittsburgh (Sharrard 2016). Low cost per 

square meter were derived by holding the structural costs constant, while decreasing PV 
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cell prices by an estimated price decrease over the 5 years 7.44%  (Donald Chung et al. 

2015). Base case cost per square meter was the average of the high and low costs. 

Equation I-13 

𝐶𝑚2𝐿 = 𝑃𝐶
𝑚2 ∗ (1 − 𝛿𝑃𝐶) + 𝑆𝐶

𝑚2  

PV Cost per kWh 

LCOE were derived from the estimated lifetime production of a square meter, and a 

square meter’s share of total costs over the project lifetime. This was annualized as shown 

in Equation I-14. 

Equation I-14 

𝐶𝑘𝑊ℎ = (𝐶𝑚2 + 𝐶𝑚2 ∗ 𝑀 [
𝑖

1 − (1 + 𝑖)−𝑁𝑃𝑉
]) ∗

1

∑ 𝑃𝑡 ∗ (1 + 𝑖)−𝑡
 

Vehicle Manufacturing Emissions 

Vehicle manufacturing emissions were taken as relative among the vehicles, not 

absolute. The differences were assumed to be entirely due to the extra batteries required in 

EVs. This assumption ignores the extra equipment necessary in HEVs and PHEVs, which 

need to run on both gasoline and electricity, when compared to ICVs and BEVs. ICV and 

BEV relative upstream emissions are therefore shown to be slightly higher than reality. 

These emissions are expected to be much smaller than battery manufacturing, which 

themselves are found to be much less significant than use phase emissions. Calculations to 

find the emissions rate are shown in Equation I-15 and Equation I-16. 

Equation I-15 

𝛾𝑣𝑒ℎ𝑒𝑙𝑐𝑢𝑝𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡
= 𝛾𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝑢𝑝𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡

+𝑊𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∗ 𝛾𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑝𝑎𝑟𝑡𝑠 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡
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Equation I-16 

𝑊𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝐷𝑏𝑎𝑡𝑡𝑒𝑟𝑦
 

Battery assembly and pre-assembly emissions were taken from the GREET model 

(A. Elgowainy et al. 2016). Battery capacities and technology where taken from Ford’s 

website for each specific model and year. Specific Lithium Ion technology was assumed to 

be LFP and in series. Battery density was taken from a range of values given by Samaras 

and Meisterling (Samaras and Meisterling 2008a). The chosen value was used as it put the 

Ford Focus’s battery weight within its known range of 600-700 lbs. (Ramsey 2012). The 

impacts from the manufacturing of the standard SLI battery were omitted across all 

vehicles, as it is common to include it in EVs for cross model component voltage 

compatibility (ALABC 2013). 

Private Costs 

Private costs included the purchase price of the vehicle, the purchase price of any 

necessary vehicle charger, the cost of vehicle maintenance and the cost of fuel for the 

vehicle. Equation I-17 was used to calculate private NPC. 

Equation I-17 

𝑁𝑃𝐶𝑃 = 𝐶𝑣𝑒ℎ + 𝐶𝑐ℎ𝑎𝑟𝑔𝑒𝑟 + (𝛼𝑔𝑎𝑠 ∗ 𝐶𝑔𝑎𝑠 + 𝛼𝑒𝑙𝑐 ∗ 𝐶𝑘𝑊ℎ + 𝐶𝑚𝑎𝑖𝑛 ∗ 𝑉𝐾𝑚𝑇) ∗ (𝑃|𝐴, 𝑖, 𝑁𝑉) 

Scope 1 Costs 

Scope 1 costs, in this analysis, include the external effects of pollution from tailpipe 

emissions. Equation I-18 was used to calculate Scope 1 NPC. The cost of emissions were not 

independently discounted, Emission costs are already discounted and given in specific 

years, stated in Section 2.1 of the main text (EPA 2015a; b). The social discount bounding 
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values are those used in the EPA’s clean Power plan assessment (EPA 2014b, 2015b) and 

are reported in Table I-6: Emissions Rates. 

Equation I-18 

𝑁𝑃𝐶1 = (𝛾𝑣𝑒ℎ𝐺𝑎𝑠𝐷𝐶𝑂2

∗ 𝐶𝐶𝑂2 ∗ 𝑁𝑉) + [(𝛾𝑣𝑒ℎ𝐺𝑎𝑠𝐷𝑆𝑂2

∗ 𝐶𝑆𝑂2) + (𝛾𝑣𝑒ℎ𝐺𝑎𝑠𝐷𝑁𝑂𝑥

∗ 𝐶𝑁𝑂𝑥
)] 

Scope 2 Costs 

Scope 2 costs include the external effects of energy purchased for use, but not 

directly generated. In his project that is electricity purchased for EVs. Scope 2 costs were 

calculated using Equation I-19. 

Equation I-19 

𝑁𝑃𝐶2 = (𝛾𝑣𝑒ℎ𝐸𝑙𝑐𝐷𝐶𝑂2

∗ 𝐶𝐶𝑂2 ∗ 𝑁𝑉) + [(𝛾𝑣𝑒ℎ𝐸𝑙𝑐𝐷𝑆𝑂2

∗ 𝐶𝑆𝑂2) + (𝛾𝑣𝑒ℎ𝐸𝑙𝑐)𝐷 𝑁𝑂𝑥
∗ 𝐶𝑁𝑂𝑥

)] 

Scope 3 Costs 

Scope 3 costs include all the upstream effects that the project decisions made 

require, but don’t produce in Scope 1 or 2. For this project I included vehicle manufacturing 

emissions; gasoline extraction, production and transport emissions; and electricity fuel 

extraction, production and transport emissions. Manufacturing emissions were all assumed 

to occur on the start of the first year. Scope 3 NPC was calculated using Equation I-20. 

Equation I-20 

𝑁𝑃𝐶3 = [(𝑉𝐾𝑚𝑇 ∗ 𝛾𝑉𝑒ℎ𝑀𝑎𝑛𝐶𝑂2
+ 𝛾𝑣𝑒ℎ𝑔𝑎𝑠𝑢𝑝𝐶𝑂2

) ∗ 𝐶𝐶𝑂2
]

+ [(𝛾𝑣𝑒ℎ𝑔𝑎𝑠𝑢𝑝𝑆𝑂2

+ 𝛾𝑣𝑒ℎ𝑒𝑙𝑐𝑢𝑝𝑆𝑂2

) ∗ 𝐶𝑆𝑂2
+ (𝛾𝑣𝑒ℎ𝑔𝑎𝑠𝑢𝑝𝑁𝑂𝑥

+ 𝛾𝑣𝑒ℎ𝑒𝑙𝑐𝑢𝑝𝑁𝑂𝑥

) ∗ 𝐶𝑁𝑂𝑥
]

+ ∑ (𝛾𝑣𝑒ℎ𝑒𝑙𝑐𝑢𝑝𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡
∗ 𝐶𝑃𝑜𝑙𝑢𝑡𝑎𝑛𝑡)

𝐶𝑂2,𝑆𝑂2,𝑁𝑂𝑥

𝑃𝑜𝑙𝑢𝑡𝑎𝑛𝑡
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Social NPC 

Social NPC is the sum of private and all external scope NPCs, calculated above, and 

calculated using Equation I-21. 

Equation I-21 

𝑁𝑃𝐶𝑆 = 𝑁𝑃𝐶𝑃 + 𝑁𝑃𝐶1 + 𝑁𝑃𝐶2 + 𝑁𝑃𝐶3 

Modifications to NPC Calculations for Transitional Scenario 

As emissions for electricity in transitional scenarios vary year to year neither simple 

annuities nor constant annual emissions can be used. As this only affects electricity 

emissions, this only applies to scopes 2 and 3. For scopes 2 and 3 all 𝛾𝑒𝑙𝑐′𝑠 and anything 

directly multiplied them should be removed from the NPC equation. Equation I-22 was 

added to the 𝑁𝑃𝐶2 and 𝑁𝑃𝐶3 equations above instead, to account for the yearly changes in 

electricity emissions. Doing this in a non-transitional grid will not change any results, as 

the annual emissions would be constant. 

Equation I-22 

𝑁𝑃𝐶𝑦𝑒𝑙𝑐
= ∑ (𝛾𝐶𝑂2 𝑗𝑦

∗ 𝐶𝐶𝑂2
) + ∑ [(𝛾𝑆𝑂2𝑗𝑦

∗ 𝐶𝑆𝑂2
+ 𝛾𝑁𝑂𝑥𝑗𝑦

∗ 𝐶𝑁𝑂𝑥
)] 

2.2.4. On-Site PV Generation Overview 

While electrification may decrease GHG and NOx, emissions, it will increase SO2 

emissions as long as regional SO2 caps are not yet exceed. This is because gasoline vehicles 

produce negligible direct SO2 emissions, while coal-fired power plants without pollution 

control technologies have considerable SO2 emissions. While many plants are installing 

advanced SO2 control devices, another way to reduce air pollutant emissions is to increase 

the portion of electricity that is generated from renewable and low-emissions sources. The 

actual amount of emissions reduction achieved depends on the region, the relative amounts 
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of generation, prices, policies, and other factors that would affect an economic dispatch 

curve. Photovoltaic generation is one possible renewable source to consider for distributed 

generation in an urban region. Unless the PV panels are directly connected to EV chargers, 

there is no guarantee that electricity generated from the PV system will be specifically used 

to charge EVs. However, generation from PV systems at the margin would shift the fossil 

units in an economic dispatch, which may result in more or less emissions depending on the 

fuels and units in the system. In addition, cities are interested in PV systems because they 

can include total generation from these systems in municipal GHG accounting. One 

potential location for PV arrays under the control of municipalities would be on city-owned 

parking facilities. Structural canopies can be constructed over city-owned surface lots or 

garages. 

Currently the Pittsburgh Parking Authority owns and operates ten parking garages 

with parking on the roofs in the downtown business district, and one large unshaded 

surface lot (PPA n.d.). These properties are shown on a map in Figure I-1, except for the 

Shadyside facility, outside of the downtown area. The total surface area of these garage 

roofs and the lot was estimated to be 52,000 square meters, using Google Earth satellite 

images. If 80% of this area were to be used for photovoltaic cells and using 0.145 𝑘𝑊𝑝/𝑚2 

power intensity for commercial rooftops (Alan Goodrich et al. 2012), this would result in a 

peak power capacity of 6,000 kWp. According to NREL’s System Advisor Tool solar 

irradiance in Pittsburgh is approximately 3.81 
𝑘𝑊 ℎ𝑟

𝑚2 𝑑𝑎𝑦
 (National Renewable Energy 

Laboratory 2015). This estimate is averaged from 1991 to 2010 and from the TMY3 data set 

for Pittsburgh International Airport (National Renewable Energy Laboratory 2015). Using 

the 14.5% PV efficiency provided in NREL’s PV cost summary (Alan Goodrich et al. 2012) I 
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estimate electricity production of about 8.4 million 
𝑘𝑊ℎ𝐷𝐶

𝑦𝑒𝑎𝑟
, ignoring shade and system 

degradation. Systems of this type can be expected to degrade in efficiency by about 0.5% per 

year (Jordan and Kurtz 2013), leading to an end of life generation rate of 7.4 million 
𝑘𝑊ℎ𝐷𝐶

𝑦𝑒𝑎𝑟
, 

a decrease of about 12%.  

 

 

Figure I-1: Pittsburgh Parking Authority Locations in Downtown Pittsburgh, PA 

The sunniest day in Pittsburgh, from 1991 to 2010, had a solar irradiance of about 

342 W/m2. The least sunny day had 29 W/m2 (National Renewable Energy Laboratory 

2015), a difference of more than 1000%. This leads a large amount of variability in the EV 

range one can generate from PV for each parking spot covered with a solar PV canopy. City 

of Pittsburgh ordinances set a standard sized parking space at 90° to be 9 by 18.5 feet, or 15 

m2 (City of Pittsburgh 2016). By aerial observation PPA garages were found to average 

about 33.1 m2 of roof space for each parking space provided, while the surface lot averaged 

Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong
Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community
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about 23.7 m2. Using the efficiency of the BEV in this analysis and the variability in local 

irradiance, a histogram of the EV range provided for each space over an average year is 

shown in Figure I-2. 

 

Figure I-2: Histogram of Solar Irradiance in Pittsburgh, BEV km / parking spot day 

The economics of such a system is dependent upon the price of PV modules and 

systems, which have rapidly declined in recent years. In 2015 commercial rooftop prices per 

𝑊𝑝 averaged $2.15 and NREL estimates that they will drop to $1.99 by 2020 (Alan Goodrich 

et al. 2012; Donald Chung et al. 2015). These assumptions result in a system price between 

$12,000,000 and $13,000,000. This excludes the cost of the structures required for a canopy, 

which are required in order to continue to allow for parking access. A recent local solar 
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canopy project of 162 kWp  cost $624,000, of which $200,000 was for the PV modules 

(Sharrard 2016). This is a cost of roughly $560 per square meter. This suggests a project 

price of providing PV on city-owned parking facilities between $28 and $29 million, if I 

assume that panel costs could be the same 7% lower assumed above, while structural costs 

remain constant. Additionally the average maintenance cost of commercial rooftop PV 

projects in the US is about 0.35% of the PV system cost each year, specifically for the tilt-

axis sun tracing models (Department of Energy 2011). I assumed that the saving in 

maintenance for a stationary system are equivalent to the increase in structural 

maintenance for canopies. Discount rates varied between 3% and 7% while electricity prices 

varied between $0.04 and $0.10 per kWh. Externalities were calculated for both grid 

average and grid marginal assumptions, with the marginal hours assumed to be 7AM to 

7PM (Monitoring Analytics 2016). 

2.2.5. On-Site PV Generation Overview Calculations 

This section describes the equations used to estimate the PV system NPV. Variable 

definitions and units are shown in Table I-9. 

Table I-9: On-Site PV generation variables 

Variable Name Definition Units 

𝑃𝑡 System power produced in year t, first year = 0 kWh 

𝑃 𝑘𝑊ℎ
𝑚2𝑑𝑎𝑦

 PV power production 𝑘𝑊ℎ

𝑚2𝑑𝑎𝑦
 

𝐴 Total available system area ≈ 52,000 m2 

𝑈 Space utilization rate = 80% % / 100 

𝑆𝑖𝑟𝑟 Pittsburgh Solar irradiance = 3.81 (National 

Renewable Energy Laboratory 2015) 

kWh

m2day
 

𝐸 System efficiency = 14.5% (Donald Chung et al. 

2015) 

% / 100 

𝐷 "System degradation rate = 0.05% (Jordan and 

Kurtz 2013) 

% / 100 

𝐶𝑃𝑉 PV system cost $ 
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Variable Name Definition Units 

𝐶𝑃𝑉
𝑚2

 PV system cost per area $ / m2 

𝑅𝑃𝑉
𝑦𝑟

 Revenue from PV system $ / year 

𝐶𝑒𝑙𝑐 Electricity price $ / kWh 

𝛾𝑆𝑃𝑉𝑜𝑓𝑓𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡

 Scope S emissions offset g, or kg (for CO2), of 

pollutant / year 

𝛾𝑆𝑔𝑟𝑖𝑑
 Scope S emissions from specified grid g, or kg (for CO2), of 

pollutant / kWh 

𝛾𝑃𝑉𝑢𝑝
 Yearly scope 3 emissions kg CO2 / year 

𝛾𝑃𝑉𝑢𝑝

𝑘𝑊ℎ
 
 Scope 3 emissions kg CO2 / kWh 

𝛾𝐴𝑉𝐺𝑃𝑉𝑢𝑝

𝑘𝑊ℎ

 Average PV scope 3 emissions = 57 (Hsu et al. 

2012) 

kg CO2 / kWh 

𝑆𝑖𝑟𝑟𝑎𝑣𝑔
 Average solar irradiance = 1700 (Hsu et al. 2012) 𝑘𝑊ℎ

𝑚2𝑦𝑒𝑎𝑟
 

SIrrPitt
 Pittsburgh Solar irradiance =1392 (National 

Renewable Energy Laboratory 2015) 

𝑘𝑊ℎ

𝑚2𝑦𝑒𝑎𝑟
 

𝑁𝑃𝑉𝑃 Private NPV $ 

𝑁𝑃𝑉2 Scope 2 NPV $ 

𝑁𝑃𝑉3 Scope 3 NPV $ 

𝑁𝑃𝑉𝑆 Social NPV $ 

 

Annual Power Production 

Equation I-23 and Equation I-24 describe how the annual power production of the 

PV system was estimated. This is based on this size of the system, A and U; the areas 

irradiance Sirr; the systems efficiency, E; and a yearly linear degradation rate, D. 

Equation I-23 

𝑃𝑘𝑊ℎ
𝑚2

= (𝑆𝑖𝑟𝑟 ∗ 𝐸) 

Equation I-24 

𝑃𝑡 = 𝑃 𝑘𝑊ℎ
𝑚2𝑑𝑎𝑦

∗ 𝐴 ∗ 𝑈 ∗
365.25 𝑑𝑎𝑦𝑠

𝑦𝑟
∗ 𝑡 ∗ (1 − 𝐷)𝑡 
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PV System Price 

Equation I-25 describes how the total system capital costs were estimated. This 

includes the simple rooftop PV and canopy carport PV systems. It is assumed the costs scale 

linearly with system size and that there are no economies of scale to be had. This 

assumption may be appropriate for projects using a significant percentage of the available 

space, as they are already utility scale, but not be appropriate for smaller projects.  

Equation I-25 

𝐶𝑃𝑉 = 𝐴 ∗ 𝐶𝑃𝑉
𝑚2

∗ 𝑈 

PV System Revenue 

Equation I-26 describes how potential revenue from the PV system was estimated. 

This assumes no time variability in electric pricing. 

Equation I-26 

𝑅𝑃𝑉
𝑦𝑟

= 𝑃𝑘𝑊ℎ
𝑦𝑟

∗ 𝐶𝑒𝑙𝑐 

Offset Emissions 

Equation I-27 describes how the emissions from power generation that could be 

avoided by building the PV system were estimated. This is simply the product of the grid 

emission rate and PV power generated. 

Equation I-27 

𝛾𝑆𝑃𝑉𝑜𝑓𝑓𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡

= 𝑃𝑘𝑊ℎ
𝑦𝑟

∗ 𝛾𝑆𝑔𝑟𝑖𝑑
 

PV Scope 3 Emissions 

Equation I-28 describes how the upstream emissions from the PV system were 

estimated. These emissions only include CO2. The source (Hsu et al. 2012) was a meta 



54 

 

study that provided an average emission rate and solar irradiance. This was adjusted for 

Pittsburgh’s solar irradiance, in Equation I-29. 

Equation I-28 

𝛾𝑃𝑉𝑢𝑝
= 𝛾𝑃𝑉𝑢𝑝

𝑘𝑊ℎ
 
∗ 𝑃𝑘𝑊ℎ

𝑦𝑟
 

Equation I-29 

𝛾𝑃𝑉𝑢𝑝

𝑘𝑊ℎ
 

= 𝛾𝐴𝑉𝐺𝑃𝑉𝑢𝑝

𝑘𝑊ℎ

∗
𝑆𝑖𝑟𝑟𝑎𝑣𝑔

𝑆𝐼𝑟𝑟𝑃𝑖𝑡𝑡

 

Private Solar NPV 

Equation I-30 describes how private NPV was estimated for the PV system. This is 

sum of the present value of the annual cash flow and the capital cost. The annual cash flow 

is the difference between the revenue and maintenance costs. 

Equation I-30 

𝑁𝑃𝑉𝑃 = [𝑅𝑃𝑉
𝑦𝑟

− (𝐶𝑃𝑉 ∗ 𝑀)] ∗ (𝑃|𝐴, 𝑖, 𝑁𝑃𝑉) − 𝐶𝑃𝑉 

Scope 1 NPV 

As the city in this analysis is not involved in direct fossil fuel power production, 

there are no scope 1 emissions or costs. 

Scope 2 NPV 

Equation I-31 describes how scope 2 NPV was estimated. As a social value, this was 

not discounted and therefore is just the sum product of the emissions and pollutant costs. 

Equation I-31 

𝑁𝑃𝑉2 = 𝛾2𝑃𝑉𝑜𝑓𝑓𝐶𝑂2

∗ 𝐶𝐶𝑂2
+ 𝛾2𝑃𝑉𝑜𝑓𝑓𝑆𝑂2

∗ 𝐶𝑆𝑂2
+ 𝛾2𝑃𝑉𝑜𝑓𝑓𝑁𝑂𝑥

∗ 𝐶𝑁𝑂𝑥
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Scope 3 NPV 

Equation I-32 describes how scope 3 NPV was estimated. As a social value, this was 

not discounted and therefore is just the sum product of the emissions and pollutant costs. 

This first term is to decrease the GHG reduction benefits by the upstream emissions 

associated with PV. 

Equation I-32 

𝑁𝑃𝑉3 = (𝛾3𝑃𝑉𝑜𝑓𝑓𝐶𝑂2

− 𝛾𝑃𝑉𝑢𝑝
) ∗ 𝐶𝐶𝑂2

+ (𝛾3𝑃𝑉𝑜𝑓𝑓𝑆𝑂2

∗ 𝐶𝑆𝑂2
+ 𝛾3𝑃𝑉𝑜𝑓𝑓𝑁𝑂𝑥

∗ 𝐶𝑁𝑂𝑥
) 

Social NPV 

Social NPV is the sum of private and all external scopes NPVs, as shown in 

Equation I-33. 

Equation I-33 

𝑁𝑃𝑉𝑆 = 𝑁𝑃𝑉𝑃 + 𝑁𝑃𝑉2 + 𝑁𝑃𝑉3 

2.3. Results and Discussion 

2.3.1 Fleet Electrification Analysis 

Under a private cash flow analysis, costs for the EVs considered would have to fall 

or gasoline costs would have to rise in order for the private net present value of the EV 

option to be higher than the considered conventional efficient gasoline vehicle. This is in 

part due to the capital costs of the vehicles and EV chargers and the fact that Pittsburgh 

light-duty civilian municipal vehicles travel on average about 9,800 km per year. This is 

fewer km than most light-duty vehicles used by the general population, which travel 

between 16,000-24,000 km per year (US DOT 2017b). 
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Marginal emissions per 100 km for SO2, NOx and CO2 equivalent are shown in 

Figure I-3 through Figure I-5. Average grid emissions are show in Figure I-6 through 

Figure I-8. Since Pittsburgh plans to increase REC purchases up to 100% over 15 years, a 

transitional scenario emissions reports in the average yearly emissions over the 15-year 

assumed vehicle lifetime. These values are also listed in Table I-10. These scenarios are 

defined in Table I-4 through Table I-6. Under all scenarios the BEVs, in the model line that 

the city was considering, have lower GHG emissions than the CVs. BEVs have lower GHG 

emissions than HEVs in all scenarios, except for the marginal daytime without RECs 

scenario. In the marginal daytime without RECs scenario BEVs have negligibly higher 

GHG emissions than HEVs. PHEV GHG emissions are higher than HEV emissions under 

current grid marginal conditions, when I ignore the possible effects of RECs. PHEV GHG 

emissions remain lower than HEVs under grid average assumptions. This reversal shows 

that grid average assumptions are a simplification that can change recommended actions. 

This agrees with prior work, such as Tamayao et al (Tamayao et al. 2015). SO2 emissions 

are higher for EVs than HEVs for all current grid scenarios, but lower for the average year 

in a rapidly transitioning scenario and also for the immediate solar scenario. This is due 

primarily to the absence of significant SO2 emissions from gasoline combustion compared to 

the prevalence of high sulfur yielding coal generation in the power grid. The potential for 

improvement, in all pollutants, is made clear when observing cleaner grid assumptions as 

the GHG emissions from traditional cars remain constant as the grid transfers to cleaner 

fuels. BEV and PHEVs maintain a clear and constant advantage for NOx emissions in all 

assumed scenarios. The yearly rate of grid emissions decreases over 15 years necessary for 

the average rate of emissions of BEVs to equal HEVs is approximately 10% for SO2, under 

grid marginal nighttime conditions when ignoring RECs. Between 2010 and 2015 average 
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PJM SO2, Scope 2, emissions dropped by 69% (EIS n.d.). Between 2010 and 2015 Nighttime 

Marginal SO2 Scope 2 emissions dropped 72% (EIS n.d.; Monitoring Analytics 2016).  

 

 

Figure I-3: Light-Duty Vehicle GHG Emissions (kg per 100 km) Across Various 

Marginal Emissions Scenarios 
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Figure I-4: Light-Duty Vehicle SO2 Emissions (g per 100 km) Across Various 

Marginal Emissions Scenarios 
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Figure I-5: Light-Duty Vehicle NOx Emissions (g per 100 km) Across Various 

Marginal Emissions Scenarios 
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Figure I-6: Light-Duty Vehicle GHG Emissions (kg per 100 km)  Across Various 

Average Emissions Scenarios 
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Figure I-7: Light-Duty Vehicle SO2 Emissions (g per 100 km) Across Various 

Average Emissions Scenarios 

 

Figure I-8: Light-Duty Vehicle NOx Emissions per (g 100 km)  Across Various 

Average Emissions Scenarios 
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Table I-10: Results of Life Cycle Emissions Values Across Vehicles 

Vehicle Conventional Hybrid PHEV BEV 

Scope 1 (Same for all grids)     

kg CO2 / 100 km 22.1 12.8 2.7 0 

g SO2 / 100 km 0 0 0 0 

g NOx / 100 km 41.5 24.1 5.08 0 

Grid Average     

Scope 2     

kg CO2 / 100 km 0 0 9.54 9.73 

g SO2 / 100 km 0 0 15.2 15.5 

g NOx / 100 km 0 0 7.3 7.44 

Scope 3     

kg CO2 / 100 km 5.39 3.21 1.82 1.56 

g SO2 / 100 km 10.4 6.47 4.52 6.52 

g NOx / 100 km 12.2 7.18 4.21 3.42 

Marginal Daytime     

Scope 2     

kg CO2 / 100 km 0 0 14.6 14.9 

g SO2 / 100 km 0 0 21.2 21.6 

g NOx / 100 km 0 0 13.6 13.9 

Scope 3     

kg CO2 / 100 km 5.39 3.21 1.59 1.32 

g SO2 / 100 km 10.4 6.47 5.07 7.08 

g NOx / 100 km 12.2 7.18 5.42 4.66 

Marginal Night     

Scope 2     

kg CO2 / 100 km 0 0 13.9 14.2 

g SO2 / 100 km 0 0 19.4 19.8 

g NOx / 100 km 0 0 12.2 12.4 

Scope 3     

kg CO2 / 100 km 5.39 3.21 1.56 1.30 

g SO2 / 100 km 10.4 6.47 5.00 7.01 

g NOx / 100 km 12.2 7.18 5.35 4.59 

PV     

Scope 2     

kg CO2 / 100 km 0 0 0 0 

g SO2 / 100 km 0 0 0 0 

g NOx / 100 km 0 0 0 0 

Scope 3     

kg CO2 / 100 km 5.39 3.21 2.33 2.07 

g SO2 / 100 km 10.4 6.47 3.38 5.36 

g NOx / 100 km 12.2 7.18 1.83 1.00 

Transitional Marginal Night     

Scope 2     

kg CO2 / 100 km 0 0 4.87 4.97 
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Vehicle Conventional Hybrid PHEV BEV 

g SO2 / 100 km 0 0 6.8 6.94 

g NOx / 100 km 0 0 4.25 4.34 

Scope 3     

kg CO2 / 100 km 5.39 3.21 1.27 1.00 

g SO2 / 100 km 10.4 6.47 3.95 7.81 

g NOx / 100 km 12.2 7.18 3.06 2.25 

 

SO2 emissions are generally the dominating factor in valuing the social costs of 

vehicle electrification, due to the potential high human health damages associated with 

SO2. This finding is in line with prior research, such as Weis et al. (Weis et al. 2016) and 

Michalek et al. (Michalek et al. 2011b). The external cost difference between BEVs and 

HEVs is negative under PV, grid average, grid marginal nighttime with RECs, and 

transitional grid scenarios. Under current grid marginal assumptions BEVs have higher 

externalities than HEVs. For grid average and transitional assumptions BEVs were found 

to have lower externalities than the hybrids, further reinforcing the importance of grid 

marginal versus average assumptions. Due to the sensitivity of the model to RECs it is 

important to note that their effects on reducing marginal emissions is likely to be a fraction 

of their purchased amount, as described in the Section 2.3.6. Private costs dominate the 

total social costs scenarios, with HEVs being the least socially cost intensive option in all 

scenarios, being about $300 less costly than conventional. The total social NPCs of 

electrification for 15-year lifetimes, base case scenarios, are shown by scope in Figure I-9 

and Figure I-10, for marginal and average grid assumptions, respectively. Possible 

variation in values due to defined parameter ranges are shown with error bars. Base case 

scenarios results are listed in Table I-11. As private costs dominate all scenarios all actors 

should make the same decisions. If Scope 1 costs were to instead dominate, municipal 

actors may prefer EVs, even if total social costs remained the same. This is due to the fact 
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that much more of the effect of Scope 2 emissions will be exported out of the municipality 

than scope 1 emissions (Holland et al. 2015). National actors should make the same 

decisions, regardless of which scope dominates, as long as total social costs remain the same 

and occur within national boundaries. 

 

  

Figure I-9: 15-Year, Social NPC of Vehicle Options for the Municipal Light-Duty Fleet in 

Pittsburgh, PA, Across Various Marginal Emissions Scenarios 
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Figure I-10: 15-Year, Social NPC of Vehicle Options for the Municipal Light-Duty Fleet in 

Pittsburgh, PA, Across Various Average Emissions Scenarios 
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Table I-11: Base Case Social NPC, per vehicle, by Scope 

Scenario Conventional Hybrid PHEV BEV 

Private Cost     

PJM 

Average 

$28,000 $30,000 $41,000 $37,000 

PJM 

Marginal 08-

17  

$28,000 $30,000 $41,000 $37,000 

PJM 

Marginal 18-

07 

$28,000 $30,000 $41,000 $37,000 

REC PJM 

Average 

$28,000 $30,000 $41,000 $37,000 

REC PJM 

Marginal 08-

17  

$28,000 $30,000 $41,000 $37,000 

REC PJM 

Marginal 18-

07 

Emissions 

$28,000 $30,000 $41,000 $37,000 

PV $28,000 $30,000 $44,000 $40,000 

Transitional 

PJM 

Average 

$28,000 $30,000 $41,000 $37,000 

Transitional 

PJM 

Marginal 18-

07  

$28,000 $30,000 $41,000 $37,000 

     

Scope 1 Conventional Hybrid PHEV BEV 

PJM 

Average 

$2,800 $1,600 $340 $0.00 

PJM 

Marginal 08-

17  

$2,800 $1,600 $340 $0.00 

PJM 

Marginal 18-

07 

Emissions 

$2,800 $1,600 $340 $0.00 

REC PJM 

Average 

$2,800 $1,600 $340 $0.00 

REC PJM 

Marginal 08-

17  

$2,800 $1,600 $340 $0.00 
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Scenario Conventional Hybrid PHEV BEV 

REC PJM 

Marginal 18-

07  

$2,800 $1,600 $340 $0.00 

PV $2,800 $1,600 $340 $0.00 

Transitional 

PJM 

Average 

$2,800 $1,600 $340 $0.00 

Transitional 

PJM 

Marginal 18-

07  

$2,800 $1,600 $340 $0.00 

     

Scope 2 Conventional Hybrid PHEV BEV 

PJM 

Average 

$0.00 $0.00 $2,000  $2,000 

PJM 

Marginal 08-

17  

$0.00 $0.00 $3,000 $3,000 

PJM 

Marginal 18-

07  

$0.00 $0.00 $2,700 $2,800 

REC PJM 

Average 

$0.00 $0.00 $1,400 $1,400 

REC PJM 

Marginal 08-

17  

$0.00 $0.00 $2,100 $2,100 

REC PJM 

Marginal 18-

07  

$0.00 $0.00 $1,900 $2,000 

PV $0.00 $0.00 $0.00 $0.00 

Transitional 

PJM 

Average 

$0.00 $0.00 $890 $770 

Transitional 

PJM 

Marginal 18-

07  

$0.00 $0.00 $1,000 $1,100 

     

Scope 3 Conventional Hybrid PHEV BEV 

PJM 

Average 
$1,600 $1,100 $1,100 $1,800 

PJM 

Marginal 08-

17  

$1,600 $1,100 $1,100 $1,900 
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Scenario Conventional Hybrid PHEV BEV 

PJM 

Marginal 18-

07  

$1,600 $1,100 $1,100 $1,900 

REC PJM 

Average 
$1,600 $1,100 $1,000 $1,800 

REC PJM 

Marginal 08-

17  

$1,600 $1,100 $1,000 $1,800 

REC PJM 

Marginal 18-

07  

$1,600 $1,100 $1,000 $1,800 

PV $1,600 $1,100 $920 $1,700 

Transitional 

PJM 

Average 

$1,600 $1,100 $830 $1,600 

Transitional 

PJM 

Marginal 18-

07  

$1,600 $1,100 $860 $1,800 

     

Social NPC Conventional Hybrid PHEV BEV 

PJM 

Average 
$33,000 $33,000 $44,000 $41,000 

PJM 

Marginal 08-

17  

$33,000 $33,000 $45,000 $42,000 

PJM 

Marginal 18-

07 

$33,000 $33,000 $45,000 $42,000 

REC PJM 

Average 
$33,000 $33,000 $44,000 $40,000 

REC PJM 

Marginal 08-

17  

$33,000 $33,000 $44,000 $41,000 

REC PJM 

Marginal 18-

07  

$33,000 $33,000 $44,000 $41,000 

PV $33,000 $33,000 $45,000 $42,000 

Transitional 

PJM 

Average 

$33,000 $33,000 $43,000 $40,000 

Transitional 

PJM 

Marginal 18-

07  

$33,000 $33,000 $43,000 $40,000 
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As the city increases its REC purchases over the next 15 years, BEVs would likely 

have clear GHG accounting advantages over conventional gasoline vehicles in Pittsburgh, 

depending on the marginal units dispatched. The City of Pittsburgh has indicated that it 

will transition to purchasing RECs for 100% of municipal electricity use by 2030. As 

discussed, there are challenges with attributing local air pollutant reductions directly to 

RECs on a one-to-one basis and these uncertainties are greater for marginal emissions than 

averaged, however the combination of existing and proposed EPA power plant regulations 

and REC purchases highly increase the likelihood of a cleaner grid profile going forward. 

Yet SO2 emissions from the power sector remain significant in a social net present cost 

analysis. SO2 is the highest cost pollutant for vehicle externalities and is not emitted in 

large amounts from gasoline combustion (EPA 2008). 

 

2.3.2. Sensitivity to the Percentage of Electric Travel by PHEVs  

The percentage of vehicle km traveled by electricity or gas, for PHEVs, is not certain 

to be the same as the ratio of electric range to daily mileage. This can be due to the specific 

driving patterns, distribution of daily travel ranges and distribution of annual travel among 

the vehicles (Lin et al. 2012; Lin and Greene 2011). The possible ranges of actual % EV 

travel, however, cannot every make a PHEV the most cost effective option. This is because 

PHEVs are costlier than either a BEV or HEV and less efficient than either in EV and 

gasoline driven mode. A PHEV is only ever the best option when it is more cost effective 

than either both a ICV and HEV and performance requirements disallow a pure BEV. This 

is most likely to happen for high range applications, which were not observed in this case 

study. The total $ amount of sensitivity, in social NPC, due to %EV is listed for all scenarios 

below, in Table I-12. Sensitivity is in general about 5% of social NPV, except for the solar 

scenario, where it’s about 25%, due to much higher electricity prices. 

Table I-12: Social NPC, PHEV % EV Sensitivity for 0-100% EV Drive Mode 

Scenario Total possible effect of % of travel EV ($) 

Average $1,700 

Marginal 8AM-5PM $400 

Marginal 6PM-7AM $700 
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Average with RECs $2,400 

Marginal 8AM-5PM with RECs $1,500 

Marginal 6PM-7AM with RECs $1,700 

PV $600 

Transitional Average $400 

Transitional Marginal 8AM-5PM $700 

2.2.3. CAFE Effects of EV Sales 

CAFE has special allowances for alternative fuel vehicles, including EVs. Prior work 

by Jenn et al. (Jenn et al. 2016b) has shown that these allowances will increase US fleet-

wide emissions if used. They found this effect to be up to 60 tons of CO2 or 7,000 gal (26,000 

l) of gasoline. This is effect comes from CAFE treating EVs as zero emitting vehicles, which 

they are not, and counting each EV sale as 2 vehicles. In other words, the accounting fleet 

fuel economy drops as if two zero emitting vehicles were sold, allowing more high emitting 

vehicles to be sold to reach the limit, even though only one, still emitting vehicle, was sold. 

This report is focused on the Municipal scale of concern, as opposed to Federal scale, and 

therefore ignores this effect. 

2.2.4. Location Effects of Pollution  

Electrifying vehicles will not only change the amount and composition of airborne 

emissions, but also their location and the pattern of human exposure. Vehicle electrification 

will move emission concentrations away from the roadside and into a more diluted ambient 

air pollution, or, depending on the location of the power plants, less populated areas. 

Exposure to traffic has been linked to greater human health impacts than compound 

ambient air pollution’s effects (Hoffmann et al. 2007; Peters et al. 2004).  Additionally, 

Holland et al have found that, in general, 91% of electricity emissions’ damages occur in a 

state other than the one where the electricity was consumed and 99% in another 

Metropolitan Statistical Area (Holland et al. 2015). The corresponding rate for gasoline 
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emissions was found to be 18% for states and 57% for Metropolitan Statistical Areas 

(Holland et al. 2015). This report does not attempt to capture any locational specific effects 

on the value of emissions. Accounting for this might increase conventional vehicle emissions 

costs for the usage phase. 

In this fleet situation, all Scope 1 emissions are from direct gasoline combustion and 

all Scope 2 emissions are from direct electricity purchases for fleet charging. Figure I-11 

through Figure I-14 show the share of emissions’ damages in each area of concern, 

assuming these averaged rates of migration hold. CO2 emissions were excluded, as that 

damage is global in nature. 
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Figure I-11: Light-Duty Vehicle SO2 Emissions per 100 km, by Area of Damage, 

Across Various Marginal Emissions Scenarios 
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Figure I-12: Light-Duty Vehicle NOx Emissions per 100 km, by Area of Damage, 

Across Various Marginal Emissions Scenarios 
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Figure I-13: Light-Duty Vehicle SO2 Emissions per 100 km, by Area of Damage, 

Across Various Average Emissions Scenarios 

 

Figure I-14: Light-Duty Vehicle NOx Emissions per 100 km, by Area of Damage, 

Across Various Average Emissions Scenarios 

2.3.5. Integrating Distributed Generation Garages 

Installing PV on the city-owned parking facilities in downtown Pittsburgh could 

potentially power the equivalent of 40 million km of electric vehicle travel per year; more 30 

times the yearly travel of the city’s civilian passenger vehicle fleet (Lowell 2015).  

The private NPV of the PV system is calculated in as described in section 2.2.4 and 

summarized in Table I-13. In a private cost analysis, such a system only has a positive 

private NPV under the best-case conditions, without the cost of the necessary canopy 
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supports. This highlights the financial benefits of constructing PV systems on other areas 

inside of municipalities besides parking canopies. 

Table I-13: Private NPV of the PV System, $ Millions 

Private NPV 
PV System Only 
(Millions 2015$) 

With Canopy 

(Millions 2015$)  

Worst Case -$8 -$24 

Base Case -$6 -$22 

Best Case $2 -$15 

 

Accounting for the social cost of direct and upstream pollution greatly improves the 

value of the simple rooftop PV system, as calculated in section 2.2.4 and summarized in 

Table 4. A traditional PV system is likely to have a positive net present value when social 

costs are included. When accounting for the costs of the canopy structural supports the 

system holds a negative NPV, except in the best-case scenarios and the base case marginal 

scenario. Marginal grid assumptions lead to much higher system NPVs than average grid 

assumptions. While the exact timing of solar cannot be perfectly predicted, their generation 

shifts the marginal economic dispatch curve and would reduce emissions as long as fuel 

switching to coal did not occur.  
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Table I-14  Social NPV of the PV System, $ Millions 

Social NPV 
PV System Only 
(Millions 2015$) 

With Canopy 

(Millions 2015$) 

Worst Case, PJM Average $1.2 -$15 

Base Case, PJM Average $13  -$4  

Best Case, PJM Average $32 $16  

Worst Case, RFC- W 

Daytime 

$5 -$11 

Base Case, RFC- W Daytime $21 $5 

Best Case, RFC- W Daytime $51 $35 

 

The structural costs of PV canopy supports are likely to remain a challenge for 

justifying similar PV projects in the future. These structural costs are likely to remain 

relatively constant in real terms, and currently represent about two-thirds of the system 

cost. That the region’s electric grid is expected to get cleaner in the near future, as coal 

plants are phased out (EPA 2014b, 2015b), compounds this challenge. Monetized 

environmental benefits of PV will likely decrease over time, while the costs of this specific 

PV application will remain bounded by the structural component. 

2.3.6. Attributing Emissions Reductions to RECs 

Attributing pollution from electric demand is a complex task (Weber et al. 2010), 

therefore, it is important to note the significance of the local sourcing of renewable power 

assumption and of ignoring the intermittency effects from renewables. Our price 

assumptions were based on the general market, which includes wind power sourced in 

Texas. Texas has its own grid, with very limited trading with the eastern interconnect, and 

does not have the ability to export the amount of excess wind it currently generates in west 

Texas (Krauss and Cardwell 2015). Instead excess wind capacity has reduced power prices 

in Texas to close to or below zero at night, when demand is low (Krauss and Cardwell 

2015). This means that additional purchases of Texas wind RECs will not have a one-to-one 
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reduction effect on electricity emissions in the Pittsburgh region. An additional 

consideration is that even renewables on the eastern interconnect, which includes 

Pittsburgh, may not have a one-to-one effect on reducing emissions in Pittsburgh, 

depending on locations, prices, and timing. 

While climate change is affected no matter where the location where GHG emissions 

are emitted, the location and utilization of coal and natural gas plants directly affects air 

pollutants and air quality in the region downwind of these plants. This means that fossil 

fuel plants near Pittsburgh could be partially or completely operationally unaffected by 

REC purchases in the near-term. Additionally, the intermittency of these sources may also 

result in additional emissions from natural gas/coal-fired generation for balancing. 

However, due to low natural gas prices, EPA pollution control and GHG regulations and 

retiring of existing coal plants, the local electricity grid will likely get cleaner over the study 

period. Besides increased amounts of natural gas and renewables, the eastern interconnect 

is likely to continue to reduce the amount of coal generation, as well as install modern 

pollution controls on any existing coal plants without these technologies. 

Without clean electric sources BEVs can increase air pollution, compared to 

conventional vehicles. It is possible that the city’s renewable energy purchases will allow 

electric vehicles to decrease air pollution in the city. However, if these purchases are not 

structured to ensure reduction in Pittsburgh then BEVs could increase local air pollution.  

Under generalized assumptions and strict economic accounting, paying a premium 

for renewables to fuel BEVs that have an existing (but declining) cost premium, is less 

effective at reducing emissions than just paying for renewables in general. This renewables 

contract is, not for the entire grid, but instead for one consumer in it. The BEVs pollute and 

cost more when using normal grid power. One could reduce pollution even more by not 
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electrifying the fleet and spending the saved costs and the cost budgeted for the BEVs 

electricity on renewable power for another use. This would lead to a higher social benefit 

that buying the renewables for the BEVs and the BEVs. However, I recognize that policies 

have multiple objectives and that municipalities require mobility services in addition to a 

goal of pollution reduction, and hence a reallocation to the most efficient pollution reduction 

strategies should be examined wholly within a service category (mobility, electricity, 

heating, etc.). 

2.3. Conclusions 

Not only are there challenges in properly attributing any specific source of supply 

from additional electric demand, but the effects of this generation on any specific area is 

difficult to aggregate. Removing a multitude of point source pollutions in the city itself may 

have a positive effect for the municipality even when the new source of energy has higher 

associated emissions. This is because their costs may be more diffuse or borne by 

stakeholders outside of the municipality. Electrification in the area can be expected to 

increase total air emissions at present and in the immediate future, and the costs of directly 

offsetting this appear to outweigh the benefits. Despite this, a municipality may still see 

benefit in electrifying their fleet, either due to the current spatial effects, the GHG benefits 

alone, and/or expected future changes in grid composition. 

This chapter has contributed to the literature by providing a life cycle LCA of vehicle 

electrification and solar PV canopies from a municipal perspective. This was done for the 

Pittsburgh area, separated by the standard accounting emission scopes used by the city and 

included separate and joint analyses for vehicle electrification and the PV system. This 

report looked at the specific vehicle model line that they City of Pittsburgh was considering 
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for procurement. Different classes of EVs can be expected to have different fiscal and social 

performance when compared to different classes and makes of CVs and HEVs. This chapter 

also investigated the difference results that grid average and marginal assumptions 

provided. Combining these aspects are important as they reflect a municipal decision-

making process. The spatial characteristics of emissions do not perfectly line up with the 

GHG protocol scopes, but policy is a political process where using standard accounting 

methods is important. These two projects might be entirely disconnected and best 

considered separately, but the same politics that pushes one forward may join the other. It 

is the responsibility of analysts to provide objective assessments of these decisions, and 

make recommendations that can reduce emissions and improve social outcomes. GHGs 

alone cause only a minority of the external costs, which themselves are a small part of the 

total costs. The choice of marginal or average electricity emissions assumptions is also 

capable of changing whether a technology is seen as useful, while marginal assumptions 

themselves are dependent upon the times and assumptions chosen. Reporting on the sum of 

these allows for a more comprehensive analysis to help inform local policy makers.  
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Chapter II Effectiveness of Incentives on Electric Vehicle 

Adoption in Norway 

The results from this chapter were published as (Mersky et al. 2016). 

 

The previous chapter discussed how to evaluate the net social benefit of adopting a 

new technology, from a municipality’s perspective. It used the example of electrifying the 

city’s permitting and vehicle fleet. This chapter discusses aspects of predicting the adoption 

rate of a new technology.  

Battery Electric vehicles (BEVs) shift pollution off the road and to potentially less 

damaging and more varied sources than petroleum. Depending on the source of electricity, 

a transition to electrified personal transportation can dramatically reduce greenhouse gas 

(GHG) emissions and air pollutants. However, current EVs tend to be more expensive and 

have shorter range, which can hinder public adoption. Government incentives can be used 

to alleviate these factors and encourage adoption. Norway has a long history incentivizing 

BEV adoption including measures such as exemption from roadway tolls, access to charging 

infrastructure, point of sale tax incentives, and usage of public bus use limited lanes. This 

chapter analyzes the sales of electric vehicles on a regional and municipal basis in Norway 

and then analyzes these against the corresponding local demographic data and incentive 

measures to attempt to ascertain which factors had the highest and most significant 

predictive power for BEV adoption. While causation was not tested for, it was concluded 

that access to BEV charging infrastructure, being adjacent to major cities, and regional 

incomes were the most significant predictors for the growth of BEV sales. Each of these 

factors is either a physical requirement, chargers, or decreases the effective cost of EV 
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driving. This provides a theoretical basis of linkage and, along with the correlation, 

suggests the usefulness of using these variables as predictors for planning purposes. It was 

also concluded that short-range vehicles showed somewhat more income and 

unemployment sensitivity than long-range vehicles. Toll exemptions and the right to use 

bus designated lanes do not seem to have statistically significant predictive power for BEV 

sales in our linear municipal-level models, but this could be due to neighboring major cities 

containing those incentive features, acting as a correlating variable. 

3.1: Introduction 

EVs, specifically BEVs, which do not require petroleum fuel, can provide many 

benefits over internal combustion engine-based vehicles. They produce no on-road GHG 

emissions or criteria air pollutants and the upstream pollution they do produce can be 

considerably less severe, depending on the electricity source used for battery charging and 

the energy intensity of manufacturing (Holdway et al. 2010; Michalek et al. 2011a; Samaras 

and Meisterling 2008b). In addition, since electricity can be produced from a variety of 

conventional and renewable technologies, BEVs allow for diversification of transportation 

energy sources. BEVs however, have limitations compared to their internal combustion 

competitors. They are currently more expensive, have more limited ranges, longer refueling 

times and fewer public infrastructure refueling opportunities than petroleum-fueled 

vehicles (“Alternative Fueling Station Counts by State” 2014; Traut et al. 2013). 

Additionally, charging technology is significantly slower than refueling with liquid 

hydrocarbons. As with other technologies that provide environmental benefits, governments 

have used various policy mechanisms to encourage BEV adoption (Michalek et al. 2012; 

Skerlos and Winebrake 2010). Using an analysis of Norway’s experience in encouraging 
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BEVs, this chapter contributes to the literature by examining the sales of electric vehicles 

in Norway on a regional and municipal basis and cross analyzing those with corresponding 

local demographic data and incentive measures to examine which factors most significantly 

associated with higher BEV adoption at a local level. The maturity of the Norwegian BEV 

market enables this study to inform BEV policy more broadly, as other countries prepare 

their own incentives and support regimes for BEVs. 

Norway has a long history of research and government incentives for battery 

powered electric vehicles (BEVs, EV used equivalently). Its EV market has been described 

as going through “five distinct phases” (Erik Figenbaum and Marika Kolbenstvedt 2013). 

The concept development phase took place from 1970-1990; consisting of the government 

funding private companies, to produce Norway’s first modern EV prototypes. This was 

followed by the first test phase, from 1990-1999, in which the first government incentives 

were offered, to encourage commercialization. These included vehicle-related tax 

exemptions, toll exemptions and free parking in spaces owned by certain municipalities. 

This phase ended with the bankruptcy of Think Motors and Kewet, the two providers of 

EVs in the market.  Next was the third phase, from 1999-2009, characterized by sporadic 

EV supply. Ford bought Think and introduced a new model to market, but then divested 

and Think went through several owners and bankruptcies. During this phase, small 

imports of French EVs compensated for the stoppage of local production and the 

government allowed EVs free usage of bus only lanes and discounts on car ferries. 2009-

2013 was characterized as the market introduction phase. In this period two new local 

companies, a reestablished Think and Pure mobility, entered the EV market and were 

joined by major manufactures such as Mitsubishi, Peugeot and Nissan. Price competition 

made EVs more affordable, but also led to the re-bankruptcy of the Norwegian EV 
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manufacturers. In addition, the Norwegian government started building public charging 

stations in 2009 (with fast charging stations being built in early 2011) and Plug-in Hybrid 

Electric Vehicles (PHEVs) also entered the market, with reduced incentives. The current 

phase of the Norwegian EV market, starting in 2013, is characterized by a more rapid 

market expansion. EVs sales passed 10,000 units, and municipalities increased the EV 

share of their fleets (Erik Figenbaum and Marika Kolbenstvedt 2013). 

Concurrent with the incentives offered in these phases has been a large growth in 

EV sales, with the EV share of new car sales growing to 5% by September 2012 (Håvard 

Vaggen Malvik et al. 2013). Absolute sales in Norway have reached numbers comparable to 

much larger countries such as France and Germany, thus making Norway an outstanding 

example of EV sales success (Håvard Vaggen Malvik et al. 2013). Figure 0-1 shows the 

growth of EV sales from 2000 to 2013. As can be seen, sales have increased rapidly since 

the latter half of 2010, when the government started its EV charging program. Therefore, 

the period of 2011-2013 was chosen as this chapter’s study period, to reflect all incentives 

being available to Norway consumers. 
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Figure II-1: EV sales in Norway 2000-2013 (Håvard Vaggen Malvik et al. 2013) 

Table II-1 summarizes the incentives described above and their dates of 

introduction. In total, the incentives can be summed up to be somewhere in between 12 000 

to 20 000 Euro depending on how they are calculated (Sprei and Bauner, 2011; Mock and 
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Yang, 2014)1. These can be compared to the US, where the federal and some state 

governments offer a tax credit to buyers and several states offer free access to High 

Occupancy Vehicle lanes (“Electric Vehicle Incentives around the world” 2014). In addition, 

some cities and municipalities offer other benefits, including reduced electric rates and 

parking benefits (“Electric Vehicle Incentives around the world” 2014). Other EU countries 

also have EV incentives. For example, the UK, France and Sweden offer purchase 

incentives, however none of these amount to the same reduction of costs as the tax 

exemptions in Norway. The only other country with similar high incentives is Denmark. 

For PHEVs, the Netherlands also has a high level of incentives. While many other 

countries offer benefits similar to Norway on a combined national-regional basis, Norway is 

unique in that it has a nationally uniform policy that includes every major incentive 

category: parking access, infrastructure usage pricing benefits, point of sale pricing 

benefits, infrastructure access benefits, and charging access benefits. The only benefit 

category not covered nationally in Norway that is covered elsewhere, is fuel pricing 

benefits. This is a benefit only offered regionally, in the form of reduced EV electricity rates, 

in some of the other named countries. Norway also has the longest continuous support for 

                                                

 

 

 

 

1 For example the exclusion of registration tax will depend on which vehicle is used as a 

comparison and the exemption from VAT will of course depend on the purchase price of the 

vehicle. 
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EVs, which has allowed the market time to mature and increased visibility of EVs an 

important factor in the diffusion of a new technology (Eppstein et al 2011). 

Table II-1: Norwegian EV Policy Time Period of Introduction 

EV Policy Incentive Time Period of 

Introduction 

Exemption from Registration Tax (Figenbaum and Kolbenstvedt, 

2013)  

1990s 

Free public Parking (Erik Figenbaum and Marika Kolbenstvedt 

2013) 

1990s 

Toll Exemptions (Erik Figenbaum and Marika Kolbenstvedt 

2013) 

1990s 

Value Added Tax Exemption (Erik Figenbaum and Marika 

Kolbenstvedt 2013) 

2001 

Bus Lane Access (Erik Figenbaum and Marika Kolbenstvedt 

2013) 

2003 (Oslo) and 2005 

(Nationwide) 

Reduced Ferry Rates (Håvard Vaggen Malvik et al. 2013) 2009 

Public EV Charging Station Construction (Erik Figenbaum and 

Marika Kolbenstvedt 2013) 

2009 

 

Most empirical studies that estimate sales of vehicles and the role of incentives are 

based on hybrid electric vehicles or PHEVs. Beresteanu & Li (Berensteanu, A. and Li, S 

2011) develop a market equilibrium model with both demand and supply side based on 

hybrid sales statistics from multiple municipalities. They conclude that about 25% of hybrid 

sales result from incentives. Chandra et al (Chandra, A. et al. 2010) perform regression 

analysis on sale shares of hybrids in Canada and find that tax rebates generate about 25% 

of the hybrid sales. De Haan et al (De Haan, P. et al. 2007) instead rely on surveys of 

consumers who recently purchased a Toyota Prius and as control other equivalent non- 

hybrid Toyota models. Their main purpose is to assess if there is a rebound effect of 

purchasing a hybrid but they also conclude that tax rebates increase sales of hybrids. Jenn 

et al. (Jenn et al. 2013) found that U.S. sales of hybrid vehicles increased by 0.0046% per 

dollar of incentive, but only when the incentive provided was greater than $1000 (Jenn et 

al. 2013). 
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Gallagher and Muehlegger investigated the effect of state incentives on hybrid 

vehicle sales in the United States (Gallagher and Muehlegger 2011). They focused on tax 

benefits, single driver use of carpool lanes and gas prices. They concluded that state tax 

benefits had a significant effect on increasing hybrid vehicle sales. In addition, they found a 

modest increase in sales correlated with rising gasoline prices and little to no significant 

correlation of sales with access to carpool lanes. Diamond (Diamond 2009) similarly looked 

into US state level incentives on hybrid vehicle adoption, focusing on the growth of market 

share. Diamond concluded that rising gas prices were a much more significant incentive to 

increase hybrid market share than direct vehicle price tax incentives and that while tax 

incentives do have an effect, they are too costly to be viable. In addition, he concluded that 

commuter lane allowances were significant, but observed that much of that conclusion is 

based on one state, Virginia, which is consistent with Gallagher and Muehlegger’s 

conclusions (Gallagher and Muehlegger 2011). 

Since total EV sales are still a small percentage of overall vehicle sales, previous 

studies have primarily relied on stated preferences (Axsen, J. et al. 2009; Bolduc et al. 2008; 

Brownstone et al. 2000) or a model of the vehicle market demand (Eppstein et al. 2011; 

Mau et al. 2008; Mueller and de Haan 2009). One recent stated preference study was 

conducted by Axsen and Kurani in San Diego (Axsen and Kurani 2013). They compared 

stated preference for Hybrids, PHEVs and BEVs and found that a majority of respondents 

showed preference for PHEV, with the main reasons being the high costs and limited range 

and refueling opportunities of BEV while still wanting to support the environment and 

nation, by reducing gasoline consumption (Axsen and Kurani 2013). Based on the National 

Research Council study, Transitions to Alternative Vehicles and Fuels (National Research 

Council 2013), Greene, Par and Liu, develop scenarios predicting the growth of EV vehicles,  
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and find a great deal of uncertainty around the areas of both technological change, and 

government policy, suggesting the importance of actions affecting those areas (Greene et al. 

2014). 

There are a few international comparisons that try to assess the role of incentives in 

the sales of EVs. Sprei and Bauner (Sprei and Bauner 2011) looked at the role of consumer 

incentives in 14 countries during the years 2009 to 2011. They found that incentives have a 

statistically significant effect but that effect is small and thus very high incentives are 

needed to significantly increase sales. Mock and Yang (Peter Mock and Zifei Yang 2014) 

compared fiscal incentives for BEVs and PHEVs in different countries. They concluded that 

fiscal incentives matter but that a direct relationship between incentives and EV sales is 

unclear, noting that the UK has seen a limited market growth despite financial incentives 

in place. The IEA summarized sales and market conditions for EVs at a global level (Global 

EV Outlook 2013). Sierzchula et al (Sierzchula et al. 2014) performed regression analysis on 

sales of EVs in 30 different countries and found financial incentives, charging stations and 

the presence of a local EV manufacturer as the most important factors contributing to sales. 

They found charging infrastructure availability to be the best predictor. Sánchez-Braza et 

al (Sánchez-Braza et al. 2014), rather than specifically looking at sales of EVs, compared 

municipalities in Spain and their choice of introducing EV-incentives and found that the 

size as well as distribution of population and environmental commitment were important 

factors.  

EV incentives have advanced EV sales in Norway, which is reported in the 

literature. Malvik, Hannisdahl and Wensaas (Håvard Vaggen Malvik et al. 2013) 

investigated electric vehicle incentives and adoption across several European Union states, 

as well as their main focus state of Norway. They noted Norway’s high EV sales per capita 
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and tried to ascertain their causes. The report’s methodology relied on noting which 

incentives in Norway were greater than, or exclusive from, the other studied countries, as 

well as a local analysis. The local analysis tended to focus on timings of EV sales spikes and 

the introduction of localized incentives. They concluded that, while the combination of 

incentives was important, import and sales/VAT tax exemptions were likely the greatest 

factors. Figenbaum and Kolbenstvedt (Erik Figenbaum and Marika Kolbenstvedt 2013) 

present a comprehensive report on the development of EVs sales in Norway providing both 

a historical perspective as well as looking at incentives, policies and charging 

infrastructure. Bjerkan et al (Bjerkan et al. 2016b) used surveys to look at stated 

importance of different incentives and found pricing, toll and bus lane access to be the most 

important. 

This chapter contributes to the literature by analyzing individual EV sales in 

Norway and providing a more detailed assessment of the role of local incentives, as well as 

the distinction between private and business consumers within a country with a more 

mature EV market. This chapter performs a statistical analysis on the basis of AIC to find 

the models that best balance the total predictive power and model complexity and uses 

these models to inform on which factors are the most important predictors. Establishing 

causation would require additional analysis, to be performed in a future work. 

The remainder of this chapter is organized as follows: Section 3.2 discusses the 

sources and content of the data used in the chapter, Section 3.3 describes the methodology 

used, Section 3.4 reports the results, Section 3.5 discusses the results and draws 

conclusions and Section 3.6 summarizes the chapter and notes its limitations and potential 

future work. 
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3.2: Data 

The Norwegian government has made detailed BEV sales data available for this 

study, making a refined analysis from either the macro or single vehicle sale level possible. 

These data are described below. 

3.2.1: Municipalities and Regions in Norway 

Norway is divided into 430 municipalities. For official government statistical data, 

including the sales data used for this analysis, this is the lowest level of locality precision 

given. These municipalities are grouped into 20 different Counties, hereafter referred to as 

regions. Oslo is the sole municipality to constitute its own region, in entirety. Some 

municipalities have gone through consolidation and mergers. Between 2011 and 2013 two 

municipalities were merged out; Mosvik was incorporated into Inderoy and Bjarkoy was 

incorporated into Harstad (“Population” 2014). For the purposes of this study 

municipalities and their sales and demographic data reflect the municipal borders at the 

end of 2013. Data from the previous years were merged together, from the constituent 

municipalities, into the borders of the more recent one.  

I found that 163 municipalities do not have EV sales from 2000 to 2013. This is 

because the division into municipalities and counties is an administrative division, thus a 

large share of these municipalities are not cities in the traditional meaning but rather rural 

areas, many with a very low number of inhabitants and thus no EV sales. In addition, 

many municipalities (especially those rural ones) do not have EV dealerships. For data 

consistency, the municipalities with no sales of EVs have been excluded from the analysis. 
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3.2.2: Incentive Data 

The Norwegian government has provided several incentives for the private adoption 

of electric vehicles. These include free parking, access to public bus lanes, road toll waivers, 

a free network of EV charging stations and tax benefits (Erik Figenbaum and Marika 

Kolbenstvedt 2013)(Håvard Vaggen Malvik et al. 2013). Free parking and tax benefits were 

excluded from this analysis. Parking benefits were excluded as data at the municipal level 

were not available. Tax benefits, both point of sale and whole life, were excluded as they 

were constant across Norway. The incentives studied here have been considered in previous 

studies, such as both Malvik and Figenbaum’s earlier research on EV developments in 

Norway (Erik Figenbaum and Marika Kolbenstvedt 2013; Håvard Vaggen Malvik et al. 

2013) and Gallagher and Diamond’s investigations into EV sales among the States in USA 

(Diamond 2009; Gallagher and Muehlegger 2011). The newer comprehensive Norwegian 

data should help to further the understanding of these incentives’ effects. 

Access to public bus lanes and road tolls were modeled as true/false binaries, 

measuring if they were present in the municipality. A municipality or region containing at 

least one restricted access bus lane and no toll roads would have values of 1 and 0 for the 

bus lane and toll road variables, respectively. Information about tolls was obtained from 

AutoPass the official website about road tolls in Norway (“Find a toll station” 2013). Data 

on bus lanes were collected from individual websites of the major cities in Norway. Vehicle 

charging points were taken as the absolute number of electric vehicle charging points open 

to the public, both privately owned and for fee and public and free, in the municipality in as 

reported in the charge point database of NOBIL. 2012 

(http://www.elbil.no/nobil/index.php/english) was selected as the midpoint among the years 

studied, as this study looks only at location sensitivities, omitting time sensitivities. 
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Each of the previously listed measures was observed to be significantly correlated 

with high municipal populations. To model their effects on commuters, who may be 

traveling from nearby, less populated regions, another binary measure, testing if a city of 

population 150,000 or greater was adjacent, was used. Additionally, this measure was set to 

true for cities that fulfilled this condition themselves. Table II-2 shows the cities fulfilling 

the population requirement, their region, and the neighboring municipalities, by the 

distance definition given above.  
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Table II-2: Major Cities and Neighbors by Region 

Major city Region Neighboring region Neighboring municipalities 

Oslo Oslo 

Akershus 

Bærum 

Asker 

Nesodden 

Oppegård 

Ski 

Enebakk 

Lørenskog 

Skedsmo 

Nittedal 

Oppland 
Jevnaker 

Lunner 

Buskerud 

Ringerike 

Hole 

Lier 

Røyke 

Hurum 

Bergen Hordaland Hordaland 

Arna 

Haus 

Åsane 

Askøy 

Laksevåg 

Birkeland 

Trondheim Sør-Trøndelag Sør-Trøndelag 

Malvik 

Kæbu 

Melhus 

Stavanger Rogaland Rogaland 

Randaberg 

Sola 

Sandnes 

Rennesøy 

 

 

3.2.3: Sales Data 

Sales data were obtained from Norwegian Road (“Opplysningsrådet for Veitrafikken” 

n.d.), an organization of parties involved in road transport in Norway. Early data were 

supplied by Green Car, a project funded by a Norwegian organization aimed at diminishing 

the CO2 emissions from the Norwegian transportation sector (“Grønn Bil” 2014).  
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These data include every electric vehicle sale in Norway, as well as the municipality 

of the sale, the manufacturer and model of the vehicle and the gender of the buyer, or if the 

buyer was a corporation. The data range from 2000 to 2013. This is the first such 

examination of this complete dataset. 

3.2.4: Demographic Data 

Demographic data, the municipalities’ median household income, after taxes, in 

NOK, and unemployment rate, were obtained from Statistics Norway (“Registered 

unemployed” 2014) (“Households’ income, geographic distribution” 2014). The 

unemployment rate came from 2012 data, while the income came from 2011. The average 

vehicle kilometers traveled, by personal vehicles, was obtained from Statistics Norway 

(“Vehicle Kilometers Travelled” 2014), for the 2012. Median household income, after taxes, 

was chosen to reflect the spending power of the decision making unit, which this chapter 

considers better represented by the household than individual. This is because it is not 

uncommon for earners to purchase vehicles for non-earners in the household. Data were left 

in the local currency to avoid any distortion from currency fluctuations. The unemployment 

rate used was the registered unemployment rate. This was chosen over other employment 

measures because it is the most general employment measurement provided by Statistics 

Norway on a municipal level. All information was collected at the municipal level. 

Population in 2012 for each of the municipalities was also collected, from Statistics Norway 

(“Population” 2014), but not directly used as an independent variable in the model. Table 

II-3 summarizes the characteristics of the collected data for all Municipalities used. 

Table II-3: Data Characteristics of the 265 Municipalities Used 

Data Mean Standard 

Deviation 

Min Max 
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Municipal 

Population 

(people) 

17,000 42,000 210 580,000 

Municipal Income 

(kroner) 

450,000 45,000 370,000 580,000 

Municipal 

Average Vehicle 

Kilometers 

Traveled 

13,000 1,000 9,400 16,000 

Charging Points 

in 2012 

22 140 0 2,000 

Total EV sales 

(2011-13) 

(vehicles) 

67 200 0 1800 

Male EV sales 

(2011-13) 

(vehicles) 

31 83 0 810 

Female EV sales 

(2011-13) 

(vehicles) 

18 63 0 680 

Corporate EV 

sales (2011-13) 

(vehicles) 

18 70 0 680 

 

3.3: Methods 

3.3.1: Sale and vehicle classification and division 

This study investigated only freeway legal passenger battery operated electric 

vehicles. Plug in hybrids were not included as their major introduction to the market 

started in late 2012, during the period of study. Additionally, PHEV sales are still quite 

small and they are given a different set of incentives than those studied here. Golf carts, 

trucks and motorcycles were excluded to focus on the passenger vehicles that have the most 

mileage. The vehicles investigated were further separated into two groups, short-range 

vehicles and long-range vehicles. Short-range vehicles are those with a range of 100 km or 

less, while long-range exceed 100 km. The 100 km threshold was used as both a price proxy 
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and as a commuter-only and long-range division. As the average commute in Norway is 32 

minutes (“Working time in the European Union: Norway” 2009) with freeway speed limits 

being 80 km/h the average daily commute is approximately 85 km. This makes a 100 km 

range sufficient for most commutes, but not for a longer vacation trip. Price itself was not 

used as a factor. Cars in each group were assumed identical; a separate chapter will 

investigate the differences between EV models, within the groups, and sales. 

The groupings of the vehicles are as follows. As the dataset used here was only EVs, 

only the vehicle make and year are listed. Only Volkswagen had more than one EV model 

per year.   Short-range vehicles included Buddy Electric, Piaggio, Renault, Citroen and 

Volkswagen Citystromers. Long-range vehicles included Toyota, Chevy, Fiat, Ford, Mia, 

Mitsubishi, Nissan, Peugeot, Smart, Think, Tesla, Volkswagen up!s, Tazzari, Baoya 

Variant 1A, BMW i3 and Mercedes-Benz SLS. This list is only for the years 2011 through 

2013 (“Grønn Bil” 2014); EV manufacturers listed for only long range vehicles did sell short 

range vehicles in earlier years. 

3.3.2: Regional Aggregation 

All regional level sales and demographic data, with the exception of the 

unemployment rate, vehicle kilometers traveled and median household income, were 

summed directly from the municipalities with EV sales into their regional units. Only 

municipalities with non-zero EV sales were considered and the other municipalities in the 

regions were omitted. The other measures were taken as the average, weighted by 

municipal population, as shown in Equation II-1.  

Equation II-1 

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 =  
∑ 𝑀𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑀𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

∑𝑀𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
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The binary measures, showing the presence of tolls, bus lanes and major cities were 

kept as binary measures in the region. The binary measures in the region are taken as 

positive when at least one municipality in this region has toll, bus lanes or major cities 

present. Initial analyses were run with both pure binary and various scaled measures, for 

aggregations of the binary variables. These however, never offered significant 

improvements and were often worse and therefore dropped from the investigation. 

3.3.3: Regression Methods 

Sales for each municipality, region and vehicle category were divided by the area’s 

population to find EV sales per capita. This was used as the dependent variable for all 

linear regressions. Sales per capita was chosen, as the dependent measure, over absolute 

sales, in order to estimate the independent variables’ effect on the likelihood of one 

potential purchaser choosing to buy an EV. Using absolute sales would have hidden that 

with the effect of population. In addition, sales to people and sales to corporations were 

separated as their own groups, in order to test how the incentives worked differently on the 

two different buyers. The independent variables in the linear regressions were: 

• The area’s 2012 unemployment rate 

• 2011 Median household income 

• Average vehicle kilometers traveled (2011-2012) 

• Number of EV charging stations (2012) 

• The presence of tolls (as a binary) (by 2013) 

• The presence of bus lanes (as a binary) (by 2013) 

• If the area bordered a major city, as defined previously in Data, Demographic Data 

(as a Binary) 
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These variables were used in standard linear regression form, as shown in Equation 

II-2. EV sales were taken as the aggregate of 2011 through 2013 sales. 

Equation II-2 

𝐸𝑉 𝑆𝑎𝑙𝑒𝑠 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑋1𝑈𝑛𝑒𝑚𝑝𝑙𝑦𝑚𝑒𝑛𝑡 + ⋯ 𝑋7𝑀𝑎𝑗𝑜𝑟𝐶𝑖𝑡𝑦 

Gasoline prices were not included since, over the year the variation among 

municipalities in Norway is low. One of the main reasons is that a large share of the price is 

determined both by taxes, roughly 60%, and by oil market prices, at least 30% (see e.g. 

www.statoil.no). The incentive variables for each region are listed in Table II-4. Number of 

charging station present has been rounded for presentation. Per capita sales were cross-

analyzed against the independent variables for each municipality and region. Binary 

variables are represented with 1 = yes and 0 = no. The number of charging stations changes 

regularly and its value at the end of 2012 was used, while the major city binary is static. 

The toll and bus lane binaries have a distinct point in time in which they change and their 

value at the start of 2013 was used. 
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Table II-4: Regional Incentives 

Region Charging 

Stations in 

2012 

Toll Lanes 

Present by 

2013 (Yes/No) 

Bus Use Limited 

Lanes Present by 

2013 (Yes/No) 

Major City 

Present or 

Bordering 

(Yes/No) 

Østfold 150 0 1 0 

Akershus 700 0 1 0 

Oslo 900 1 1 1 

Hedmark 60 0 0 0 

Oppland 50 0 0 1 

Buskerud 240 0 1 1 

Vestfold 60 1 0 0 

Telemark 100 0 0 0 

Aust-Agder 90 0 0 0 

Vest-Agder 55 1 0 0 

Rogaland 220 1 1 1 

Hordaland 550 1 1 1 

Sogn og 

Fjordane 

70 0 0 0 

Møre og 

Romsdal 

70 0 0 0 

Sør-

Trøndelag 

280 0 1 1 

Nord-

Trøndelag 

50 1 0 0 

Nordland 50 0 0 0 

Troms Romsa 30 0 0 0 

Finnmark 

Finnmárku 

10 0 0 0 

 

The independent variables are selected using a stepwise, forward selection 

procedure optimizing for Akaike information criterion (AIC). In addition the R-squared 

values for a linear regression model of sales per capita versus each of the independent 

variables were calculated and recorded, along with the direction of the correlation. The 

process was used first to find a standard linear model. Next, to see if the linear model was 

appropriate, common log regression analyses were also run, with the log of per capita sales 

and income being used instead of their absolutes. Log for sales per capita and for income is 

sometimes recommended in the econometric literature when the data are not normally 
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distributed (Peter Kennedy 2008). However, log transformation may not be appropriate for 

this chapter since this study adopted median income, for each municipality, instead of 

categorical income levels. This study ran both the regular model and log-transformed 

model, to select the one with more statistical significance. 

3.4: Results 

3.4.1: Regressions 

Table II-5 and Table II-6 present results of the final linear regression models that 

were produced. An “-” is used for variables that were not included in the final model. 

Scientific notation was used for the independent variable coefficients to allow for proper 

precision, while reflecting the difference in scales of the variables. The log-linear results 

appear less reliable than the linear ones, generally having low R-squared values, not being 

better than a constant in others and occasionally switching correlation directions. For these 

reasons, the linear results were taken as the superior and final results for deriving 

conclusions. Figure II-2 through Figure II-5 show actual and predicted EV sales per capita. 
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Table II-5: Linear Municipal Regression Results 

coefficient 

(p-value) 

Short range, 

consumers 

Long range, 

consumers 

Short range, 

business 

Long range, 

business 

Constant 

0.00 

(0.124) 

-0.01 

(0.047) ** 

0.00 

(0.510) * 

0.00 

(0.000) *** 

Unemploymen

t rate (2012) 

- 

- 

- 

- 

5.17E-06 

(0.086) * 

- 

- 

Income after 

taxes, median 

(NOK) 

1.68E-10 

(0.043) ** 

2.33E-08 

(0.000) *** 

- 

- 

- 

- 

VKT 2012 

- 

- 

-3.07E-07 

(0.029) ** 

- 

- 

- 

- 

2012 chargers 

- 

- 

- 

- 

1.57E-07 

(0.000) *** 

1.75E-06 

(0.035) ** 

Toll yes/no 

- 

- 

- 

- 

- 

- 

- 

- 

Bus lane 

yes/no 

2.73E-05 

(0.129) 

- 

- 

- 

- 

0.001 

(0.027) ** 

Major City 

(yes/no) 

2.42E-05 

(0.127) 

0.002 

(0.001) *** 

1.76E-05 

(0.039) ** 

0.001 

(0.002) *** 

R-squared 0.063 0.218 0.105 0.158 

Significance scale: *, **, *** shows P-Value < 0.1, 0.5, 0.01 

 

Table II-6: Linear Regional Regression Results 

coefficient/  

p-value 

Short range, 

consumers 

Long range, 

consumers 

Short range, 

business 

Long range, 

business 

Constant 

6.47E-06 

(0.094)* 

0 

(0)*** 

1.99E-4 

(0.009) *** 

0.00 

(0.000) *** 

Unemploymen

t rate (2012) 

- 

- 

- 

- 

- 

- 

- 

- 

income 

- 

- 

- 

- 

-4.434E-10 

(0.011) ** 

- 

- 

VKT 2012 

- 

- 

- 

- 

- 

- 

- 

- 

Sum Of 2012 

chargers 

9.64E-08 

(0.000) *** 

2.09E-06 

(0.000) *** 

1.08E-07 

(0.000) *** 

2.09E-06 

(0.000) *** 

Toll yes/no 

- 

- 

- 

- 

- 

- 

- 

- 

Bus lane 

yes/No 

- 

- 

- 

- 

- 

- 

- 

- 

Major city 

- 

- 

- 

- 

- 

- 

- 

- 

R-squared 0.803 0.877 0.728 0.877 

Significance scale: *, **, *** shows P-Value < 0.1, 0.5, 0.01 
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Figure II-2: Regional Short Range Personal Predicted Vs. Real Values 
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Figure II-3: Regional Long Range Personal Predicted Vs. Real Values 

 

Figure II-4: Regional Short Range Business Predicted Vs. Real Values 
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Figure II-5: Regional Long Range Business Predicted Vs. Real Values 

3.5: Discussion and conclusions  

3.5.1: Regional 

Among all the predictors, the number of EV charging stations was found to have the 

highest predictive power and the most significance for regional per capita sales. On the 

linear regional models, no other measure was found to add significantly to its predictive 

abilities, with the exception of income for short-range corporate EVs. It should also be noted 

that for short-range corporate EVs the P-value for regional income was relatively low, at 

0.011. This shows relatively high certainty about the accuracy of its effect in the model. 

Interestingly, while the coefficient on the number of charging stations is positive, the 

coefficient on income is negative. So while increases in the number of available charging 

stations increase the expected per capita sales of EVs, increase in median household income 

decrease expected sales per capita in one case. However, the model where that applies is for 

short-range corporate vehicles. While the result might not be expected, a possible cause is 

that people in higher income areas would demand better corporate vehicles and the 

companies respond by buying fewer short-range vehicles and more long-range ones. The 

presence of tolls and/or bus lanes was found to not be significant enough to be included, 

possibly due to the fact that on the regional level they are highly correlated with chagrining 

stations themselves. 

As this chapter does not test for causation, it cannot be determined from this 

chapter if correlation of per capita sales with charging stations is purely due to the 

consumer incentive effect of the charging stations, or if the charging stations are being built 

in response to local EV demand. In addition, it could be expected for the government to 
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focus its resources for EV chargers on the localities with the most need - those with or 

expected to have the most EVs. Charging infrastructure, however, is a physical 

requirement for BEV adoption and public access is necessary when residential access is 

unavailable. Accounting for this and the correlation suggest the importance of charging 

infrastructure in BEV adoption planning. The importance of charging stations for sales of 

EVs is also highlighted in literature, such as in Sierzchula et al (2014), which find it to be 

the best predictive factor. State preference and survey studies also find refueling 

possibilities an important factor for the adoption of a range of alternative fueled vehicles 

including EVs (Achtnicht et al, 2012, Egbue and Long, 2012, Tran et al, 2012).  

3.5.2: Municipal 

The municipal models are more complex than the regional models, as the variables 

differ with each municipal group studied. For both groups of private consumers, the income 

variable is positive and significant, which is expected since EVs have a relative high 

purchasing price and an increase in discretionary spending ability enables the purchase of 

additional household vehicles. Most households that have bought an EV have at least one 

other vehicle (Erik Figenbaum and Marika Kolbenstvedt 2013). Stated preference studies 

have found income to be an important factor (Hidrue, M. K. et al. 2011) while studies that 

have looked at cross country data on EV sales find it less conclusive (Sierzchula et al. 2014; 

Sprei and Bauner 2011), likely due to the low sales numbers rather than a real effect.   

Another factor in common for both private consumer models is the closeness to a 

major city for which the long-range case is more significant. The lower effect on short-range 

vehicles might be due to the fact that these are less often used for commuting longer 

distances such as to a neighboring municipality. Another explanation is that bus lanes are 

correlated with this variable and since in the short-range model this variable appears as 
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well, part of the effect might be included there. Earlier EV market research, in Norway, 

supports access to bus-lanes as an important reason for purchasing EVs (Bjerkan et al. 

2016b; Prosam 2009). The major city variable might also explain why road tolls are not 

significant since it might capture their effect despite EVs often being used as commuter 

vehicles (Hjorthol, Randi 2013).  

Vehicle Kilometers Traveled was negatively correlated with long-range personal 

sales. This could be representative of EV ranges not being viable for long distance 

commuters or just generally that people that travel long distances might have a driving 

pattern that is less suitable for EVs (Plötz, Patrick et al. 2014). Municipalities with greater 

percentages of commuters should have higher VKTs and most commutes should be within a 

100km round trip range.  

For the business purchasers, increases in unemployment were correlated with 

increased short-range corporate vehicle sales. This can be seen as the corollary of the 

income effect seen in the regional models; decreased employee bargaining power or wages 

appears to lead to an increase in short range vehicle sales. Its absence in long-range 

corporate sales seems to suggest that corporate demand for long-range vehicles is less 

elastic than for short range ones, an inference supported by the regional models. The reason 

for this is unclear, but it could be due to the nature of the corporate purchases. For 

instance, this would be expected if the short-range vehicles are used for shuttling 

employees or as perks, while long-range vehicles are being used in fleets, such as delivery 

vans and taxis. The short-range vehicles would then be elastic with respect to employee 

bargaining power while the long-range vehicles would instead be elastic with respect to 

direct usability considerations. Determining the reasons would require a survey into why 

corporations purchase their EVs. Also, since VAT is generally not paid for corporate 
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vehicles the level of subsidies for corporate vehicles is much lower compared to private 

consumers and thus the sales numbers are also lower.  

The number of charging stations was found to be significant for business sales on 

the municipal level. This might reflect the needs of fleet vehicles, rather than corporate cars 

for employee usage. A taxi is expected to mainly operate in one municipality, where it was 

given license, and only leave if a customer requests it. For this reason, those purchases 

would be particularly sensitive to the intra-municipality charging potential. Other users 

who regularly cross such boundaries might be more interested in the number of charging 

points in the vicinity. This may be seen in the major city binary, which is significant and 

positive for all groups. As city population is also correlated with higher numbers of charging 

points, as well as higher tolls and more exclusive bus lanes, this suggest that people who 

cross municipal boundaries are particularly interested in these features. That is people may 

be more likely to buy an EV if they are near a major city and are commuting into the city 

because they can take advantage of its EV infrastructure (Hjorthol, Randi 2013). Once 

again, however, whether the charging stations are causing higher EV sales, vice versa or if 

another factor is affecting both could not be determined from the study in this chapter. 

In the long-range business model bus lanes also were significant, this may also be 

related to commuting. A portion of the business vehicles are vehicles provided by the 

employer as part of the wages. The employee can then use the vehicle to commute to work.   

3.5.3: Municipal vs. Regional 

The Municipal linear regressions had significantly decreased goodness of fit relative 

to the regional ones; with municipal R squared values varying between .06 and .22 while all 

regional values were above .73 and having decreased complexity. The municipal regression 

models were all more varied in terms of which predictors were represented in the final 
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model. This is possibly due to the low absolute sales numbers for many of the 

municipalities, allowing for the random element of sales to overtake the effect of the 

incentives. In addition, all municipal models had the major city binary in their final model. 

Major cities were also all correlated with more bus exclusive lanes, tolls, limited/expensive 

parking, and charging stations. It can be assumed that this means that municipal buyers 

are sensitive to some combination of these measures in their greater vicinity and not only 

their municipality. It may also reflect that the buyers commute to a larger municipality but 

that they stay in the same region. For the regional models, the number of charging points 

was the most useful variable, being the sole important predictor for all but one model and 

used in every model. This also supports the previous inference as it shows buyers reacting 

to the number of charging stations that they would have access to, beyond their municipal 

borders. 

3.5.4: Long Range vs. Short Range 

Short range vehicles showed somewhat more income and unemployment sensitivity 

than long range vehicles, with one of the measures being included in three out of the four 

linear short range models and only one of the long range models. For corporate sales, this 

could be a reaction to employee bargaining power. Unemployment rate was significant in 

determining the per capita sales of short range business cars on the municipal level. 

Specifically, short-range corporate EV sales increased with unemployment, by itself counter 

intuitive. In the regional model, short-range corporate EV sales decreased with increases in 

household income, a similarly counter intuitive result. It is also worth noting here that the 

models were allowed to contain both unemployment and household income as they were 

found to be very weakly correlated, with an R squared of .09 on the municipal level. 
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3.5.5: Business vs. Consumers 

On the municipal level, corporate vehicles were much more sensitive than personal 

vehicles to the number of charging stations. This could be due to the effect of taxi fleets and 

other operators, whose service is limited by those same political boundaries. It could also be 

fleet operators building chargers for their vehicles. While this chapter did not test for 

causation, the correlation and physical dependency of BEVs on charging infrastructure 

suggests the importance of planning for both jointly. It is worth mentioning that all 

municipal models had the major city binary in their final model. As major cities are also 

correlated with larger numbers of charging points and personal vehicles do not have the 

same municipal boundary restrictions as some fleets, this would seem to support the above 

conclusion. Private consumers may also be less dependent on public charging since they can 

fill up their battery at home and cover most of the days driving on that charge.  Also as 

stated above, short range corporate sales seem to be correlated with factors relating to 

employee bargaining power, increasing with unemployment, on the municipal level, where 

labor is in greater supply; and decreasing with higher incomes on the regional level, 

possible reflecting higher skills. Personal municipal sales on the other hand, were more 

sensitive to household incomes. This would seem to reflect household budget constraints. 

This may be supported with rising VKTs indicating decreases in long range personal 

vehicle sales. Commuters may believe that the short range EVs are sufficient for their 

needs. Additionally, corporate sales are much lower than personal sales on a per capita 

basis.  Mainly due to the fact that the VAT exemption does not affect them since 

corporations can deduct VAT from purchases and thus the price difference between EV and 

conventional vehicles increases. It is also important to note that the data does not allow an 

analysis that distinguishes between corporate fleet vehicles and those made available to 
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employees for personal and commuting usage. Both of these could be expected to be affected 

differently by the investigated factors. 

3.5.6: Policy Implications 

The results of this study lead to some policy recommendations for localities that 

wish to increase EV sales. These recommendations can be separated into two sets: one for 

small localities, similar in size and population to the municipalities studied, and another for 

large, region sized, localities/legal units, corresponding in size and/or population to the 

regions included in this study. For the smaller localities, two recommendations could be 

made. The first is to create or increase pricing incentives for EVs. While this study did not 

directly investigate pricing incentives, as they were uniform throughout Norway, the 

correlations with income for personal sales suggest an element of price sensitivity. 

Combined with the previously noted findings (Berensteanu, A. and Li, S 2011; Bjerkan et 

al. 2016b; Chandra, A. et al. 2010; Gallagher and Muehlegger 2011; Håvard Vaggen Malvik 

et al. 2013; Jenn et al. 2013; Martin et al. 2012; Sierzchula et al. 2014), this 

recommendation is supported internationally. For business BEV sales, increasing the 

availability of charging stations may incentivize purchases of EVs. However, this study 

cannot determine if EV sales were increased by the presence of charging stations or vice 

versa. A similar recommendation can be applied for regional sized localities, with 

increasing access to charging stations appearing to be the best policy option, again with the 

caveat that it cannot be determined from this study alone if EVs incentivize the 

construction of charging stations or the opposite. Toll exemptions and the right to use bus 

designated lanes do not seem to have statistically significant predictive power for BEV 

sales in our linear municipal-level models, but this could be due to neighboring major cities 

containing those incentive features. 
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3.6: Summary 

While electric vehicles could provide significant benefits relating to energy diversity, 

environment and public health, they currently require a purchase premium and lack a 

robust refueling infrastructure. Norway has the longest and most extensive national 

campaign to encourage EV adoption. This study investigated the effects of many of the 

incentives on per capita EV sales among the municipalities and regions (counties) of 

Norway, on a cross sectional basis. Basic economic data and EV infrastructure data were 

collected for these municipalities along with EV sales data, grouped by vehicle range and 

owner. Optimal linear regressions were run to see which variables were most useful for 

predicting per capita EV sales. On the regional level it was concluded that the number of 

charging stations had the highest indicative effect, though not necessarily causal. On the 

municipal level personal vehicles were found to be sensitive to median household income 

while corporate vehicles were sensitive the number of charging stations; though once again 

this relationship may not be causal. Additionally, all municipal EV sales were found to be 

sensitive to the presence of major cities; possibly providing a proxy for tolls, exclusive access 

bus lanes, charging stations, or just customers leaving the neighboring major city, to 

purchase their EVs, in other areas. There were also differences observed between short and 

long-range vehicles, with short-range vehicles being much more sensitive to economic 

measures, specifically income and unemployment. Combined, these suggest that pricing 

incentives and increased access to charging stations may be the best policies to increase EV 

sales. 
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3.6.1: Limitations 

Certain Norwegian government incentives could not be analyzed in this study. 

Access to free parking could not be analyzed due to lack of data on the number of spots open 

on a municipal basis. In addition, all incentives that the consumer would see in the point of 

sale price are also ignored. This is due to the fact that all the pricing incentives are given 

nationally, allowing for no difference to be seen on a single nation study. Finally, this 

chapter did not test for causality and was performed in Norway which limits the 

transferability to the U.S. context. However, the association found with charging 

infrastructure is an important finding to understand the current dynamics behind EV 

adoption in Norway. 

3.6.2: Future work 

Future work could focus on answering the questions made evident in the study. In 

particular this study, by focusing on broad EV groups and looking at municipal and 

regional demographic and incentive data, did not consider much of the effect of price-

demand elasticity. The prices and vehicle characteristics of BEVs are important features for 

BEV sales, and should be investigated. In addition, a time-series study, investigating how 

consumers respond to short- and long-term trends in gas pricing and other incentives would 

have benefit and may allow for some more information on causality to be gleaned. Certain 

incentives, such as bus lane access and tolling have a discrete start date that may aid in 

this effort. Investigation of vehicle purchase pricing sensitivity, which previous studies 

have suggested to be one of the primary drivers (Global EV Outlook 2013; Peter Mock and 

Zifei Yang 2014; Sierzchula et al. 2014; Sprei and Bauner 2011), however, would require 

expanding the investigation to other countries. This is due to the fact that the purchase 

pricing incentives for EVs are nationally based in Norway. Another study, based on post 
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vehicle purchase questionnaires and similar to or used Bjerkan et al.’s results (Bjerkan et 

al. 2016b), may help tease out the effects of some of the incentives more easily. Proximity to 

cities was seen as important, but its cross correlation with incentives, such as bus lane 

access and free parking, made it difficult to see their joint effect. In addition, this may allow 

us to see which vehicles EVs were being compared against and see how important features, 

like range, are as incomes and number of owned vehicles changes.  
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Chapter III Synergies of Autonomous and Electric Vehicles 

The previous chapter investigated the effects of different incentives on EV adoption, 

given different regional demographics. This chapter investigates the synergies between 

autonomous and electric vehicle technologies when building electric vehicle support 

infrastructure. This chapter is in preparation for publication in Transportation Research: 

Part C. 

Electric vehicles are increasing market growth, while automated technologies will 

become increasingly part of new car offerings. This chapter presents a method to optimize 

stationary electric vehicle charger placement and distribution when accounting for the 

possible effects of privately owned autonomous vehicles. This chapter presents an 

optimization based on minimizing operator and commuter costs of commuters using the 

2014 Household Travel Survey data simulated as electric vehicles (EVs). In the simulation, 

moving from levels 0-3 to level 4 and level 5 automation reduces the peak electrical load for 

EV charging by approximately 31% and 68%, respectively. Moving from no automation to 

level 4 automation decreased the optimal number of chargers by 65%, lowered total costs, 

including operator and commuter costs, by 46% and lowered operator costs by 47%. Moving 

from levels 0-3 automation to level 5 automation decreased the optimal number of chargers 

by 84%, total costs by 69% and operator costs by 75%. Without any automation, the cost 

borne by commuters, walking from their parking spots, is insignificant. This cost increases 

in importance in the level 4 automation scenario, but it is still only 0.5% of the total 

operator cost. The cost borne by commuters, their vehicles’ operating cost for drop off and 

pick up, is much more significant with level 5 automation, where the cost borne by 

commuters is 24% of the operator’s cost.  
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4.1: Introduction 

A major cost impediment to widespread deployment of electric vehicles is the public 

infrastructure necessary to recharge them. Public charging stations are expensive, and 

generally have low charging utilization rates when cars remain in the spaces long after 

charging is complete. Analyses on optimizing alternative fuel and electric vehicle 

infrastructure are common for many different sets of criteria. A review of many recent 

papers on this subject is presented in Section 1.1. What has not been done, however, is to 

assess how higher levels of automation can change these results. Automation enables the 

ability to increase utilization and reduce spatial limitations of where vehicles charge. 

Additionally, it may give more control over timing of charging demand than traditionally-

driven vehicles would allow. This chapter investigates these potential effects by analyzing 

the following research question: What are potential electric vehicle charging infrastructure 

siting efficiencies and associated energy and environmental impacts from level 4 and level 5 

automation?  

Level 4 automation, where a vehicle can direct itself absent human oversight in 

limited, controlled circumstances, and level 5 automation, where vehicles can control 

themselves absent human oversight in all conceivable normal-operation circumstances 

(SAE International 2014), both have the potential to increase charger utilization and 

improve the siting of charging stations. Under level 4 automation, a parking facility could 

be designed to allow for complete autonomous control within the facility, allowing for 

autonomous electric vehicles to navigate themselves once in the facility. Electric vehicles 

charging unattended currently take up the use of a charger for the whole time that the 

vehicle is parked, regardless of whether electricity is being delivered. Level 4 automation 
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may allow for facilities to be set up where vehicles navigate themselves to an open charger 

and then, when completely charged, leave the charging space and go to a conventional 

parking spot. This would increase charger utilization, which would allow for fewer 

individual charging stations to be needed and therefore decrease charging infrastructure 

costs. This would allow for higher numbers of chargers to be installed in more areas, 

creating a larger and more comprehensive network. This could also enable demand 

smoothing with vehicles not being charged when first plugged in, but instead charging near 

continuously or with consideration to the price and stability signals of the power grid. 

A larger and more comprehensive charging infrastructure network is necessary to 

extend the range of vehicles that are charged solely at home, as well as because charging 

vehicles is generally time-consuming. This requires current charging infrastructure to be 

located in traditional parking areas--generally within comfortable walking distance to trip 

origins and destinations. Level 5 automation, where vehicles could drop off and pick up 

passengers and travel in driverless mode to charging facilities, could relax or remove this 

restriction. Doing so would allow for chargers to be concentrated at fewer locations, 

reducing supporting infrastructure costs, or located away from areas with high real estate 

prices. Chargers can also only be installed in integer units giving any specific facility’s 

charging capacity a piecewise function. The ability to move vehicles greater distances can 

improve upon the gains from level 4 automation by ensuring that vehicles whose demand 

would require an additional charger can be pooled together, even if their destinations are 

distant from each other. This would reduce the total number of chargers needed, compared 

to when you would have had to build an additional charger for each of those vehicles. 

Vehicle automation and autonomous refueling infrastructure can be used to help 

smooth electric demand patterns. Commuters tend to travel in similar patterns and at 
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similar times. Electric vehicle charging will add to current electricity grid demand. If these 

vehicles all plug in at similar times due to similar travel schedules, day time demand 

patterns for grid electricity may change significantly. Using smart charging or pricing 

systems on infrastructure is one way to potentially address this challenge, but automation 

may enable even greater smoothing opportunities with lower total infrastructure costs. A 

vehicle charging and queuing system may allow for demand to be moved to off-peak times, 

as well as move to other locations if there are local grid infrastructure constraints. This 

chapter contributes to the literature by developing an optimization to understand how 

commuter EV charger placement is affected by different levels of automation. This model 

minimizes operator and commuter costs. This chapter uses the Puget Sound 2014 

Household Travel Survey (Neil Kilgren et al. 2015) unweighted trips and assumes 100% EV 

adoption for those trips in the dataset, which enable a simulation with existing commuter 

parking demand and distanced traveled in the survey sample. Operator costs are defined as 

real estate costs for a parking space, charging equipment capital cost, and charging 

equipment maintenance costs. Commuter costs are defined as either the costs of walking 

when using Levels 0-4 automated vehicles, or the costs of additional driving when using 

fully autonomous Level 5 vehicles. The chapter is organized as follows: Section 1 continues 

with a literature review and then lists the data sources used. Section 2 details the methods 

used to process the data into usable input for the optimization models and then defines the 

optimization models. Section 3 presents and discusses the results obtained from the 

optimization models. Section 4 summarizes the previous sections. Section 5 ends the 

chapter by listing the primary limitations of the results and models presented in this 

chapter and how future work can build and improve on the contributions made by this 

chapter. 
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 4.1.1: Literature Review 

Table III-1 summarizes several recent studies on the optimization or grid effects of 

electric vehicle charging. It notes: the region of study, whether the authors modeled electric 

vehicle adoption separate from vehicle ownership/travel, the source of travel data, the 

methodology of optimization or electric demand modeling, whether the vehicle was assumed 

to charge along route or while parked, whether the paper was focused on stations, vehicles, 

or the grid, and whether the study considered time of demand separate from the total. Only 

Huang et al. considered non-electric alternative fuels. Among all the papers reviewed, none 

investigated the effects that higher levels of automation will have on their optimization. 

This chapter adds to the literature by investigating the potential effects and synergies 

between autonomous technology and electric vehicle charging infrastructure optimization. 

This chapter also investigates the different effect that electric vehicles will have on electric 

demand under different automation scenarios.  
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 Table III-1: Summary of Assorted Studies Investigating the Optimization or Grid Effects of 

Electric Vehicle Charging 

Study Region Electric 

Vehicle 

Adoption 

Variable 

Travel Data 

Source 

Method While 

Parked 

or 

Along 

Route 

Operator, 

Driver or 

Grid 

Focused 

Time 

Dependent 

(Sweda and 

Klabjan 

2011) 

Chicagoland 

(Chicago) 

No US Census Agent Based Both Operator No 

(Worley et 

al. 2012) 

Chicagoland 

(Chicago) 

No None Mixed Integer 

Optimization 

Both Operator No 

(Bae and 

Kwasinski 

2012) 

None No None Fluid 

Dynamic 

Traffic Model 

& M/M/s 

Queueing 

Along 

Route 

Grid Yes 

(Knapen et 

al. 2012) 

Flanders, 

Belgium 

No Multiple Activity 

Based 

Model 

Along 

Route 

Grid Yes 

(Chen et al. 

2013) 

Puget Sound 

(Seattle) 

No Regional 

Household 

Travel 

Survey 

Mixed Integer 

Optimization 

While 

Parked 

Operator No 

(Hilshey et 

al. 2013) 

New England No National 

Household 

Travel 

Survey 

Monte Carlo While 

Parked 

Grid Yes 

2013 (Nie 

and 

Ghamami 

2013) 

Chicago, IL 

to Madison, 

WI 

No None Karush – 

Kuhn –  

Tucker 

Approach 

(KKT) 

Along 

Route 

Operator 

and 

Driver 

No 

(He et al. 

2013) 

None No None Active-Set  

Algorithm & 

KKT 

While 

Parked 

Operator 

and Grid 

No 

(Sathaye 

and Kelley 

2013) 

Texas 

Triangle 

Yes US Census, 

TEXDot 

Root Finding 

Method 

Along 

Route 

Operator No 

(Xi et al. 

2013) 

Central-Ohio Yes Mid-Ohio 

Regional 

Planning 

Commission 

Linear 

Integer 

Programming 

While 

Parked 

Operator No 

(Frade et 

al. 2011) 

Lisbon, 

Portugal 

Yes Multiple Mixed-Integer 

Optimization 

While 

Parked 

Operator 

and Grid 

Yes 
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Study Region Electric 

Vehicle 

Adoption 

Variable 

Travel Data 

Source 

Method While 

Parked 

or 

Along 

Route 

Operator, 

Driver or 

Grid 

Focused 

Time 

Dependent 

(Huang et 

al. 2015) 

Sioux Falls 

(South 

Dakota) 

No None Multipath 

Refueling 

Location 

Model 

(Fuel 

Capturing 

Location 

Model) 

Along 

Route 

Operator No 

(Ghamami 

et al. 2016) 

Chicago–

Madison–

Minneapolis 

Corridor 

Yes Hybridcars.c

om 

Mixed-Integer 

Non-Linear, 

Simulated 

Annealing 

Along 

Route 

Driver 

and 

Operator 

No 

(Mehta et 

al. 2017) 

Singapore Yes Land 

Transport 

Authority 

Singapore 

Genetic 

Algorithm 

While 

Parked 

Grid Yes 

(Zhu et al. 

2016) 

Beijing No None Genetic 

Algorithm  

Based 

Method 

While 

Parked 

Operator No 

This 

Chapter 

Puget Sound 

(Seattle, WA) 

No Regional 

Household 

Travel 

Survey 

Linear Mixed 

Integer 

Optimization 

While 

Parked 

All No 

 

4.1.2: Data Sources 

The primary data source for this chapter is the Puget Sound 2014 Regional Travel 

Survey (Kilgren 2015). This survey includes a list of respondent trips with origin and 

parking location by Travel Analysis Zone (TAZ), census tracts, census block, and, for 

parking location, location name. The locations of census tracts and TAZs were taken from 

the Puget Sound Regional Councils GIS database (Norton n.d.). Travel zones, census blocks, 

and census tracts include water in files to show shores and islands. For locational purposes, 

all water area was clipped from zonal, tract, and block shapefiles. Real estate assessment 
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data was taken from King County GIS (“KCGIS Data Download” 2014). These data were 

from 2006. According to Zillow, King County real estate prices recovered from the recession 

and reached 2007 levels between 2015 and 2016 (Zillow Inc 2017); therefore, these data 

were used as given. EV fuel economy was estimated using a range of EPA fuel economy 

ratings (EPA n.d. X) and taken as 35 kWh per 100 mi. King County per capita income of 

$42,000 in 2015 is from the Census Bureau (U.S. Census Bureau 2017). Electric prices were 

taken from a Bureau of Labor Statistics report on the metropolitan area and used 2015 

retail prices of about $0.10 per kWh (US DOL 2017). All monetary values are in 2015$. 

 4.2: Methods 

4.2.1: Data Sorting and Calculations 

Trips were aggregated from the trip data set of the Puget Sound 2015 Regional 

Travel (Kilgren 2015). This data set included about 48,000 trips total. Trips were included 

for our model if: 

• The trip’s purpose was travel to the person’s workplace 

• They were by a car or carpool 

• The person recording the trip was the driver 

• The vehicle was parked in either a parking lot or on the street near the 

destination, not in a Park N Go lot, for intermodality 

• The trip started between 6 a.m. and 6 p.m. 

Various additional filters were used to remove error values or incomplete responses 

that affected the data of interest. After filtering the data approximately 3,500 trips were 

used for our model. 

From each trip, the following information was extracted: 
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• Destination census block group 

• Trip distance 

• Hour of arrival, rounded down 

• Hour of exit, defined as the sum of the duration of time spent at destination and 

the hour of arrival, rounded down 

• The person’s ID associated with the trip 

The maximum potential utilization rate of autonomous enabled charging was 

estimated using a 10,000 iteration Monte Carlo simulation. A random trip was sampled 

from all positive trips of the travel survey. This trip's distance was used, along with a 20 

miles of range per hour charge rate for a 6.6 kW charger (Smith and Castellano 2015), to 

determine how long it would take for a full charge. After a full charge was achieved, 1 

additional minute was assumed to be spent switching to the next vehicle. This continued 

until at least 8 hours had passed, when the vehicle left the charger. The utilization rate was 

the time that a vehicle was charging divided by the total time elapsed. Maximum 

utilization was found to have a mean of 31% and a standard deviation of 6.8%. The 

histogram of the maximum utilization iterations is shown in Figure III-1. 
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Figure III-1: Maximum Utilization Rate Histogram 

Parking demand was aggregated based on destination census block. For each block, I 

calculated the peak number of spots demanded, the total number of trips ending in the 

block, the total number of miles traveled to the block, the average number of miles per trip 

for the zone, and the average number of trips demanded per peak spot demanded. The 

temporal number of spots demanded is calculated in Equation III-4. These were calculated 

from the Puget Sound 2015 Regional Travel Survey (Neil Kilgren et al. 2015), starting at 

values of 0 at 6 a.m. and ending at 6 p.m. First, for each hour and block group, jointly, the 

number of trips arriving, miles arriving, and trips leaving was calculated. 

For each hour and zone jointly, the parking spot demand was calculated as shown in 

Equation III-1, starting at 6 a.m., with demand and departures of 5 a.m. defined as 0. Peak 

demand, for a zone, was defined as the maximum demand of all hours between 6 a.m. and 7 

p.m. This calculates the maximum number of spots of parking in any zone that would be 

demanded for one specific hour, as cars both leave and arrive throughout the day. 
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 Equation III-1: Hourly Parking Spot Demand 

𝐷𝑒𝑚𝑎𝑛𝑑𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1 + 𝐴𝑟𝑟𝑖𝑣𝑖𝑎𝑙𝑠𝑡 − 𝐷𝑒𝑝𝑎𝑡𝑢𝑟𝑒𝑠𝑡−1 

 

The arrival rate, shown in Figure III-2, is highest in the early morning, peaking at 8 

a.m. It then drops rapidly. Departures, shown in Figure III-3, are more evenly distributed 

and more focused in the early afternoon, peaking at 5 p.m. When taken together, these 

result in the peak commuter parking demand occurring at 9 a.m. Commute distances in 

Seattle, shown in Figure III-4, are highly concentrated around short distances. The peak is 

up to 2 miles and generally follows a normal distribution. Figure III-4 shows the histogram 

of the parking duration for the trips. Parking duration appears to follow a bimodal 

distribution with a small peak at 4 hours and a steep peak, nearly twice as high, at 9 hours 

long. 
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Figure III-2: Histogram of Commuter Arrival Times 

 

Figure III-3: Histogram of Commuter Departure Times 

 

Figure III-4: Histogram of Commute Distances 
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Figure III-5: Histogram of Parking Durations 

King County, Washington has approximately 1,500 census block groups and 

commuting demand was found for about 900 of these. Distances between the census blocks 

were calculated from the Puget Sound Regional Councils GIS database (Norton n.d.). 

Manhattan distance was used — that is, the sum of the absolute value of the differences 

between the x and y centroids. This was used to derive the cost of walking and cost of 

driving. In both cases, two trips were expected every day of a 260-day work year. The cost of 

walking from a parking space to a destination was based upon King County’s $41,700 per 

capita income, 2015$ (U.S. Census Bureau 2017), a 52-week year, a 40-hour work week, a 

3-mph average walking speed (National Academies of Sciences, Engineering, and Medicine 

2013), and a 50% assumed value of time discount for personal vehicle traveled, factored by 

a 220% increase for time value of walking when compared to personal vehicle travel 

(National Academies of Sciences, Engineering, and Medicine 2013). The walking speed, 3 

mph, was taken from the Transit Capacity Manual (National Academies of Sciences, 

Engineering, and Medicine 2013). This leads to a yearly cost of ~ $5,400 a year per mile-

spot, when diverting parking from desired zones, as shown in Equation III-2. 

 Equation III-2: Cost of Walking 

7.34
$

𝑚𝑖
≈ 41,700

$

yr
∗

1

52

𝑦𝑟

𝑤𝑒𝑒𝑘
∗

1

40

𝑤𝑘

ℎ𝑟
∗

1

3

ℎ𝑟

𝑚𝑖
∗ 0.5 ∗ 2.2 

 

The costs of additional driving for a Level 5 EV to travel to another parking area 

was taken using a $0.10 per kWh electricity cost (US DOL 2017), a 35 kWh per 100 mi fuel 

economy (EPA n.d. X), 0.005 2015$ / mi maintenance cost (Alexander and Davis 2013), and 

a 0.246 2015$ / mi depreciation cost (AAA 2015), the last cost not being specific to electric 
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vehicles. This leads to a ~ $0.33 per mile cost a when diverting parking from desired zones, 

as shown in Equation III-3. This is much less than the costs of walking. In a drop-off and 

pick-up scenario, chargers can be expected to be further from demand. This allows 

significant infrastructure cost savings by traveling further than the maximum allowable 

walking distance. I note that the costs of automation equipment have not been included in 

this estimate, which represents an optimistic assumption. 

Equation III-3: Cost of Driving 

0.331
$

𝑚𝑖
≈ (0.35

𝑘𝑊ℎ

𝑚𝑖
∗ 0.1

$

𝑘𝑊ℎ
+  0.05 

$ − 𝑚𝑎𝑖𝑛𝑡.

𝑚𝑖
+  0.246 

$ − 𝑑𝑒𝑝𝑟.

𝑚𝑖
) 

 

Real estate costs for parking spaces were estimated using data from King County 

GIS (“KCGIS Data Download” 2014). Parcel data was spatially joined and aggregated into 

each census block. The specific data point used was the average assessed unimproved land 

value per square foot of all parcels in a block. The average was taken only from parcels that 

had positive real estate values. Unimproved values were used in the absence of gross-

square-foot values for a parcel, which would allow the value of built structure space to be 

used, as opposed to the value of a parking lot. Some blocks had no parcels with given 

positive assessed real estate values. Of these, only one was a full block. The others were 

pieces of census blocks, cut by the borders of the county and with small dimensions for 

distance calculations. The full block and two of the cut-off blocks also had travel demand. 

For the full census block, ID 530330211004, the average cost of the seven surrounding 

zones, 18.8 $/sq-ft, was used. For block 530610507005, the average of the full two zones 

below it, 19.5 $/sq-ft, was used. For block 530610509003, the average of the full two zones 

below it, 22.1 $/sq-ft, was used. The few remaining blocks with no real estate and demand 
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data were removing them from consideration for charger placement. The size of a parking 

space was taken as 15m2, as defined by the Seattle city code for a standard space for “large 

vehicle” (City of Seattle 2017). This ignores the additional space required for navigation, 

which would change based upon scale. 

4.2.3: Charger Selection and Infrastructure Costs 

Based on a DOE report on the costs of electric vehicle infrastructure equipment 

(Smith and Castellano 2015), I estimated the capital costs of charging equipment to be 

10,000 2015$ per charger. This is based on $4,000-6,000 single-port level 2 charger and 

$6,000-13,000, a mean $3,000, for installation (Smith and Castellano 2015). Level 2 

chargers can charge at a rate of 6.6 kW, providing a typical vehicle about 20 miles of range 

per hour of charging (Smith and Castellano 2015). Given the trip distance distribution seen 

in Figure III-4, this will cover more than 95% of all trips considered in under 2 hours. For 

levels 4 and 5 automation, where one charger can fulfill multiple vehicles, DC charging 

would cost more per mile per hour than level 2 charging (Smith and Castellano 2015), a gap 

that increases as one accounts for the time to switch out vehicles. Level 1 charging requires 

only an outlet and a plug, provided by electric vehicles themselves. This would require little 

to no on the operator’s side and was therefore rejected as a meaningful decision. This 

$10,000 capital cost was annualized over 15 years, using the City of Seattle’s current 

4.122% 30-year bond rate (City of Seattle n.d.) to about 900 $2015 per year. Maintenance is 

likely to be insignificant except in cases of vandalism or a failure not covered by warranty 

(Smith and Castellano 2015). Wireless communication is likely to be necessary to allow for 

autonomous parking, and the DOE lists current wireless infrastructure for charging costs 

as between $100-$900 a year (Smith and Castellano 2015). I assumed this was unnecessary 
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in non-autonomous scenarios, but necessary, additional cost, in autonomous scenarios with 

a cost of $500 per year per charger.  

 

4. 2.4: Optimization 

4.2.4.1: Previous Charging Infrastructure Optimization Model 

This chapter expands on Chen et al.’s (Chen et al. 2013) investigation into 

optimizing electric vehicle charging infrastructure for the Puget Sound area. Chen et al. 

(2013) used household travel-survey trip data and TAZ demographics to forecast where 

people would be parking for long-enough times to charge. They then used Mixed Integer 

Optimization to attempt to minimize the commuter cost — that is, the distance commuters 

would have to walk after parking — of providing public electric vehicle charging 

infrastructure, given a limited number of charging stations. They did not look at time-of-

day effects or electric demand changes. Chen et al.’s Mixed Integer Optimization model is 

defined in Equation III-4 through Equation III-13. 

 Objective: 

Equation III-4 

𝒎𝒊𝒏 [∑ (∑ 𝒄𝒊𝒋𝒚𝒊𝒋

𝒋

)

𝒊

] 

Constraints: 

Equation III-5 

∑(𝑦𝑖𝑗)

𝑗

= 𝑑𝑖 , ∀ j ∈  J (parking demand constraint) 
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Equation III-6 

∑(𝑦𝑖𝑗)

𝑖

≤ 𝑀𝑥𝑗, ∀ i ∈  I (charging supply constraint)  

Equation III-7 

∑(𝑥𝑗) ≤ 𝐿, ∀ j ∈  J (charging-station availability constraint) 

Equation III-8 

∑(𝛿𝑖𝑗𝑥𝑗)

𝑖

≤ 1 ∀ i ∈  I (charging station spacing constraint) 

Equation III-9 

𝑦𝑖𝑗 ≥ 0 ∀ i ∈  I, j ∈  J (non-negativity constraint on parking demand) 

Equation III-10 

𝑥𝑗 ∈ {0,1} ∀ j ∈  J (binary variable constraint for charging station selection) 

Equation III-11 

𝛿𝑖𝑗 = {
1 𝑖𝑓 𝐶𝑖𝑗 < 𝑟

0 𝑒𝑙𝑠𝑒
 (minimum inter-station spacing) 

Equation III-12 

𝐶𝑖𝑗 <= 𝑊(maximum access cost) 

Equation III-13 

𝛿𝑖𝑗 = 0 𝑖𝑓𝑐𝑖𝑗 < 𝑟,  𝑒𝑙𝑠𝑒 = 0 

 

Where… 
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𝑖, 𝑗 =  𝑇𝐴𝑍 

• 𝑐 =  cost or distance 

• 𝑊 =  maximum cost or distance 

• 𝑀 = arbitrarily large number (unlimited charger access assumption) 

• 𝐿 =  maximum number of charging stations 

• 𝑦𝑖𝑗  = parking demand of zone i met in j 

• 𝑑𝑖 =  parking demand in zone i 

4.2.4.2: Models Summary 

This chapter makes three main additions to Chen et al.’s methods. These changes 

are used to attempt to model separately the effects of level 4 and level 5 automation on 

optimized costs and on electricity demand under an unscheduled charging scenario. First, it 

uses the unweighted data as a direct input rather than a travel-demand regression. Second, 

these models calculate operator cost in terms of a real estate component, based on assessed 

unimproved real estate values and the average cost to install one charging station. In our 

model, each charging space has a limited capacity and multiple spaces can be placed in each 

location. In Chen et al.’s model, operator cost was based on the number of locations, which 

each had unlimited capacity. I use the operator cost as a component of the objective 

function to find the socially optimum amount and distribution of spending. Operator cost 

could also be used as a constraint, either in addition to or instead of in the objective 

function, to find the optimum way of allocating a given operator cost, which may be possibly 

less than the socially optimum one. Chen et al. used operator cost solely as a constraint. In 

addition to these changes, I will use trip distance, time, and assigned parking data to 

calculate the temporal changes in electricity demand caused by vehicle charging. 
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In addition to a base case model, showing optimization for no or sub-level 4 

automation, there are also models for level 4 and level 5 automation, individually. For level 

4 and level 5 automation, demand is served in terms of miles, rather than trips, to account 

for the ability of vehicles to queue themselves for charging without human intervention. For 

level 5 automation, the maximum access cost constraint is removed and C is redefined as a 

function relating distance from parking to destination to the costs of energy consumption 

and vehicle deterioration needed to travel that distance. As with Chen et al., this chapter 

simplifies the solution by ignoring the increase in charging demand, but not cost, from 

changes in trip distance caused by parking diversions. 

 2.4.3: Levels 0-3 Automation Model 

In Levels 0-3 automation, all chargers must be used for the full time that a vehicle is 

present. Demand is there taken as the peak amount of parking demanded in any census 

block. This model minimizes the sum of the operator cost spent building the infrastructure 

and the cost of commuters walking between their parking spaces and workplaces, as shown 

in Equation III-14. The latter is limited by a maximum 0.25-mile walking distance, 

Equation III-20. For the cost of distance, each peak trip is multiplied by the total number of 

trips per peak trip for each zone, Kij . This model is defined in Equation III-14 through 

Equation III-23. 

 

Objective: 

Equation III-14 

min [∑ (∑ {𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗 ∗ 𝐾𝑖}
𝐽

𝑗
)

𝐼

𝑖
+ 𝐿] 

Decisions: 
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• 𝑦𝑖𝑗 = peak parking demand of zone i served in location j, (stations to build in j), integer 

 

What we Want: 

Equation III-15 

𝑥𝑗 = # of chargers in j = ∑ 𝑦𝑖𝑗

𝐼

𝑖
 

Constraints: 

Equation III-16 

∑(𝑦𝑖𝑗)

𝐽

𝑗

= 𝐷𝑖, ∀ I, (all parking demand served) 

Equation III-17 

∑(𝑦𝑖𝑗)

𝐼

𝑖

≤ 𝑥𝑗, ∀ j,   (charging supply constraint) 

Equation III-18 

𝑦𝑖𝑗 ≥ 0 ∀ i ∀ j  (non-negativity constraint on parking demand) 

Equation III-19 

𝑥𝑗 ≥ 0 ∀ j (non negative station assignment) 

Equation III-20 

𝑑𝑖𝑗 ∗ 𝑤𝑖𝑗 <= 𝑊 ∀ 𝑖 ∀ 𝑗 (maximum walking distance) 

Given: 
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Equation III-21 

𝐿 = ∑ (𝑥𝑗 ∗ (𝐴𝑗 + 𝐵) ∗ (𝐴|𝑃, 𝑖))

𝐽

𝑗

, (operator cost) 

Equation III-22 

𝑐𝑖𝑗 = 𝑑𝑖𝑗 ∗ 𝐸 ∗ 2 ∗ 260, (walking costs) 

Equation III-23 

𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖𝑗 > 0

0, 𝑒𝑙𝑠𝑒
} , (binary check if anyone walked between i and j) 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑠 {𝑤𝑖𝑗 ∗ 900,000 ≥ 𝑦𝑖𝑗} 

 

Input Parameters: 

• 𝐷𝑖 = parking demand at zone i, peak vehicles, count 

• 𝐴𝑗 =  real estate cost per parking space and charger at location j, $ 

• 𝐵 =  costs per charging station, equipment and installation, $ 

• 𝑑𝑖𝑗 =  walking distance between zone i and location j, miles 

• 𝐸 =  cost of walking, $ / mile 

• 𝑊 =  maximum walking distance, miles 

• 𝐾𝑖 = average number of trips per peak trip in zone i, can be fractional, count 

• (𝐴|𝑃, 𝑖) = annuity value of current lump sum, $ 

2.4.4: Level 4 Automation Model 

With level 4 automation, vehicles can queue up to a single charger, allowing it to 

serve more than one vehicle at a time. To account for this, demand is redefined as the 

aggregate miles that commuters must drive to reach their destination in each zone. Each 
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charger can then charge up to its 20-mph capacity times the expected utilization rate of 

U=31%, based upon the county’s trip-length distribution. Each trip between blocks is 

assumed to have the average number of miles of the trips from the origin block, DAvg-i. The 

model for level 4 automation is described in Equation III-24 through Equation III-35. 

Equation III-35 is a simplification, used to convert between aggregate miles, Ymi-ij, and 

individual trips, Yij, in order to calculate commuter costs. 

Objective: 

Equation III-24 

min [∑ (∑ {𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗}
𝐽

𝑗
)

𝐼

𝑖
+ 𝐿] 

Decisions: 

• 𝑦𝑖𝑗 = total trips ending in zone i served in location j, count 

What we Want: 

Equation III-25 

𝑥𝑗 = # of chargers in j = 
(∑ 𝑦𝑖𝑗

𝐼
𝑖 )

𝑈 ∗ 𝑞
, integer 

Constraints: 

Equation III-26 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐽

𝑗

≥ 𝐷𝑖, ∀ I, (all parking demand served) 

Equation III-27 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐼

𝑖

≤ 𝑄𝑗, ∀ j, (charging supply constraint) 
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Equation III-28 

𝑦𝑖𝑗 ≥ 0 ∀ i ∀ j (non-negativity constraint on parking demand) 

Equation III-29 

𝑥𝑗 ≥ 0 ∀ j (non-negative station assignment) 

Equation III-30 

𝑑𝑖𝑗 ∗ 𝑤𝑖𝑗 <= 𝑊 ∀ 𝑖 ∀ 𝑗 (maximum walking distance) 

Given: 

Equation III-31 

𝐿 = ∑ (𝑥𝑗 ∗ ((𝐴𝑗 + 𝐵) ∗ (𝐴|𝑃, 𝑖) + 𝐶𝑤))

𝐽

𝑗

, (operator cost) 

Equation III-32 

𝑐𝑖𝑗 = 𝑑𝑖𝑗 ∗ 𝐸 ∗ 2 ∗ 260, (walking costs) 

Equation III-33 

𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖𝑗 > 0

0, 𝑒𝑙𝑠𝑒
} , (binary check if anyone walked between i and j) 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑠 {𝑤𝑖𝑗 ∗ 900,000 ≥ 𝑦𝑖𝑗} 

Equation III-34 

𝑄𝑗 = 𝑥𝑗 ∗ 𝑈 ∗ 𝑞, zone charge capacity, miles 

Equation III-35 

𝑦𝑚𝑖𝑖𝑗
= 𝑦𝑖𝑗 ∗ 𝐷𝑎𝑣𝑔𝑖

 

Input Parameters: 

• 𝐷𝑖 = parking demand at zone i, peak commuter miles 
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• 𝐷𝑎𝑣𝑔𝑖
= mean trip distance for trips ending in zone i, miles 

• 𝐴𝑗 =  real estate cost per parking space and charger at location j, $ 

• 𝐵 =  costs per charging station, equipment and installation, $ 

• 𝑑𝑖𝑗 =  walking distance between zone i and location j, miles 

• 𝐸 =  cost of walking, $ / mile 

• 𝑊 =  maximum walking distance, miles 

• 𝑈 = charger utilization rate, % 

• 𝑞 = charger capacity, miles per shift 

• (𝐴|𝑃, 𝑖) = annuity value of current lump sum, $ 

• 𝐶𝑤 = cost of wireless AV communication equipment maintenance, $ / year 

 

4.2.4.5: Level 5 Automation Model 

For level 5 automation, the maximum walking distance is removed to account for the 

ability of vehicles to drop off and pick up their passengers. The cost of walking is therefore 

replaced with energy and vehicle deterioration costs for this extra distance of vehicle travel, 

as calculated in Equation III-43. Otherwise, the model is identical to that of level 4 

automation and is defined in Equation III-36 through Equation III-46. 

 

Objective: 

Equation III-36 

min [∑ (∑ {𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗}
𝐽

𝑗
)

𝐼

𝑖
+ 𝐿] 

Decisions: 
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• 𝑦𝑖𝑗 = total trips ending in zone i served in location j, count 

What we Want: 

Equation III-37 

𝑥𝑗 = # of chargers in j = 
(∑ 𝑦𝑖𝑗

𝐼
𝑖 )

𝑈 ∗ 𝑞
 

Constraints: 

Equation III-38 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐽

𝑗

≥ 𝐷𝑖, ∀ I, (all parking demand served) 

Equation III-39 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐼

𝑖

≤ 𝑄𝑗, ∀ j, (charging supply constraint) 

Equation III-40 

𝑦𝑖𝑗 ≥ 0 ∀ i ∀ j (non-negativity constraint on parking demand) 

Equation III-41 

𝑥𝑗 ≥ 0 ∀ j (non-negative station assignment) 

Given: 

Equation III-42 

𝐿 = ∑ (𝑥𝑗 ∗ ((𝐴𝑗 + 𝐵) ∗ (𝐴|𝑃, 𝑖) + 𝐶𝑤))

𝐽

𝑗

, (operator cost) 

Equation III-43 

𝑐𝑖𝑗 = 𝑑𝑖𝑗 ∗ 𝐹𝑒 ∗ 𝑃𝑒𝑙𝑐 ∗ 2 ∗ 260, (drop-off/pick-up energy cost, $) 
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Equation III-44 

𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖𝑗 > 0

0, 𝑒𝑙𝑠𝑒
} , (binary check if anyone walked between i and j) 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑠 {𝑤𝑖𝑗 ∗ 900,000 ≥ 𝑦𝑖𝑗} 

Equation III-45 

𝑄𝑗 = 𝑥𝑗 ∗ 𝑈 ∗ 𝑞, zone charge capacity, miles 

Equation III-46 

𝑦𝑚𝑖𝑖𝑗
= 𝑦𝑖𝑗 ∗ 𝐷𝑎𝑣𝑔𝑖

 

Input Parameters: 

• 𝐷𝑖 = parking demand at zone i, peak commuter miles 

• 𝐷𝑎𝑣𝑔𝑖
= mean trip distance for trips ending in zone i, mile 

• 𝐴𝑗 =  real estate cost per parking space and charger at location j, $ 

• 𝐵 =  costs per charging station, equipment and installation, $ 

• 𝑑𝑖𝑗 =  walking distance between zone i and location j, miles 

• 𝑈 = charger utilization rate, % 

• 𝑞 = charger capacity, miles per shift 

• 𝐹𝑒 = fuel economy, kWh / mi 

• 𝑃𝑒𝑙𝑐 = price of electricity, $ / kWh 

• (𝐴|𝑃, 𝑖) = annuity value of current lump sum, $ 

• 𝐶𝑤 = cost of wireless AV communication equipment maintenance, $ / year 
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4.3: Results and Discussion 

The optimal number of chargers given by our models for levels 0-3, level 4, and level 

5 automation are of 1,900, 680, and 331 chargers, respectively. These cover a total of 2,300 

trips and 1,900 peak trips. This leads to each charger covering an average of 1.2, 3.5, and 

7.4 trips, with 4.4%, 13%, and 27% of the 13 hours through 6 a.m. and 6 p.m. spent 

charging vehicles. The maximum utilization rate that the model would assign is the 31% 

expected utilization rate calculated in Section 3.1. The annualized equipment and parking 

costs, to build upon these scenarios, for levels 0-3, level 4, and level 5 automation are $1.75 

million, $932,000, and $436,000, respectively, while the total commuter and operator costs, 

are $1.75 million, $937,000, and $540,000, respectively. 

 The histograms of the distribution of chargers for levels 0-3, level 4, and level 5 

automation are shown in Figure III-6 through Figure III-8. These histograms don’t include 

the zones with zero chargers and truncate the largest groupings. Figure III-9 through 

Figure III-11 show the percentage decrease in number of charging stations, by census block, 

when increasing the level of automation. The legend groups these by equal percentile size 

groups. When moving from no automation to level 4 automation, roughly a quarter of the 

blocks keep the same number of, or no, chargers, another quarter decrease the number of 

chargers by as much as a third, another quarter decrease by up to two-thirds, and the final 

quarter decrease by up to 100%. When moving from no automation to level 5 automation, 

one-third of the blocks register no change, one-third decrease by up to one-half, and the 

remaining third decrease by up to 100%. When moving between level 4 and level 5 

automation, one-third of the blocks register no change in chargers, one-third decrease by up 

to 93%, and the remaining third decrease by up to 100%. 
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The hourly electric demand from the chargers is shown in Figure III-12. Under 

levels 0-3 automation, peak with the arrival times, between 7 a.m. and 9 a.m., with demand 

at just over 2,000 kWh at 8 a.m. After this point electric demand rapidly decreases until 11 

a.m., after which it continues to slowly decrease. The pattern under level 4 automation is 

similar, except that the 7 a.m. to 9 a.m. peak is level at just under 1,500 kWh, shaving off a 

fourth of the peak demand. Under level 5 automation, electric demand stays steady at just 

under 700 kWh until 4 p.m., when it starts decreasing as people leave their workplaces. 

This is a 31% decrease of the peak electrical draw under level 4 automation and a decrease 

of 68% under level 5 automation, when compared to no automation. This shows that simply 

taking advantage of the automated queueing allowed by automation can significantly 

smooth the demand peaks without specific consideration to grid management. 
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Figure III-6: Histogram of Charger Distribution for Levels 0-3 Automation, 995 

Blocks with 0, 1,900 Total Chargers 

 

 

Figure III-7: Histogram of Charger Distribution for Level 4 Automation, 960 Blocks 

with 0, 680 Total Chargers 
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Figure III-8: Histogram of Charger Distribution for Level 5 Automation, 1.275 

Blocks with 0, 331 Total Chargers 
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Figure III-9: Percent Decrease in Chargers from Level 0 to Level 4 Automation: 

Percentile Groups 
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Figure III-10: Percent Decrease in Chargers from Level 4 to Level 5 Automation: 

Percentile Groups 

 

Figure III-11: Percent Decrease in Chargers from Level 0 to Level 5 Automation: 

Percentile Groups 
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Figure III-12: Hourly Electric Demand Under Each Level of Automation 

4.4: Conclusion 

This chapter presented a method to optimize stationary electric vehicle charger 

placement and distribution when accounting for the possible effects of privately owned 

autonomous vehicles. This chapter optimized based on operator and commuter costs. This 

chapter assumed that without any automation, each vehicle would prevent the usage of a 

charger for the entire duration that it is parked. For level 4 automation it assumed that 

vehicles could vacate themselves from a charger and allow another vehicle usage of the 

charger, when they are fully charged, with a 1- minute delay. For no automation and level 4 

automation, the commuter costs were limited by a maximum 0.25-mile walking distance. 

For full, level 5 automation, commuter cost was unbounded. 

The electrical demand of the optimal solution for these scenarios was also calculated. 

Moving from levels 0-3 to level 4 and level 5 automation reduces the peak electrical draw by 

31% and 68%, respectively. This is from a peak load of about 2,000 kWh or 1 kWh per peak 
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vehicle. If the number of peak EV trips were to be 1 per worker for the whole population, 

over 2 million in King county (U.S. Census Bureau 2017), then this peak would be over 

1,000 MWh. Moving from no automation to level 4 automation lowered operator costs by 

47% and total social costs, including both operator and commuter costs, by 46%. Moving 

from levels 0-3 automation to level 5 automation decreased operator costs by 75% and total 

social costs by 69%. Without any automation, the cost borne by commuters is insignificant 

as each vehicle can only serve one commuter at a time and commuters' distances between 

their workplace and their parking spots are limited. This cost increases in significance in 

the level 4 automation scenario, where a commuter can be made to walk longer to share a 

charger with other commuters. The total cost borne by commuters, however, is only 0.5% of 

the total operator cost. The cost borne by commuters is much more significant with level 5 

automation, where a vehicle can balance the cost of driving over much greater distances 

than are possible via walking with the equipment cost savings. Here the cost borne by 

commuters is 24% of the total equipment and real estate costs. Due to this, increasing the 

relative cost born by commuters will only significantly change the level 5 automation 

scenario, by decreasing the movement of charging stations. 

Electric vehicles are current achieving market growth and significance while 

autonomous technologies are being introduced to the market. This chapter has shown that 

these two technologies have potential synergies and a novel method to take advantage of 

these synergies while optimizing electric vehicle infrastructure deployment. It has also 

shown that taking advantage of the potential synergies between these technologies would 

allow for significant decreases in support infrastructure cost. This would also allow for a 

natural smoothing of the electric demand caused by electric vehicles. 
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 4.5: Limitations and Future Work 

The model was found to be easily computationally feasible for levels 0-3 and level 4 

automation. A proven optimal solution to the level 5 automation scenario could not be 

found, due to computational limits. The solution reported is no more than 1.7% from the 

optimal solution. This reflects a possible gap of $9,000, which is under the assigned cost of a 

single charging station. Given more resources, the true optimal solution could likely be 

found, though the decrease in social cost would not be large enough to change any of the 

chapter’s conclusions. 

None of our scenarios directly accounted for the temporal aspect of parking demand 

in the optimization model itself. For no automation, the maximum hourly demand of each 

individual zone was used. This has the potential to overestimate the optimal number of 

stations, as neighboring zones may have different peak demand times. For the automated-

vehicle scenarios, the total number of miles traveled was used. Many of these miles might 

be spaced close together and need to be charged in less than the full timeframe, a possibility 

suggested by the distribution of parking durations shown in 

Figure III-5. This leads to a potential underestimation of the optimal number of 

stations necessary to fulfill demand. Accounting for this temporal dimension would have 

greatly increased computational complexity. Given the limits reached when modeling level 

5 automation, this complexity was beyond the resources available to the authors for this 

chapter. Creating and running a time-sensitive set of models would provide more precise 

solutions. 

This chapter used the Puget Sound Household Travel Survey's (Kilgren 2015) trips 

as a direct and unweighted demand input. Using the data directly provides more 
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concentration of travel demand than reality and using the data unweighted introduces 

probable bias; however, the main goal of this chapter is to present the novel methodology 

for optimizing charging infrastructure for automation and testing the potential social gains 

from this technology and joint approach. These potential gains come from the ability to 

queue vehicles for a charger and eliminate the maximum-walking-distance constraint. The 

first ability is affected by magnitude and direction of social gain is affected by the trip-

length distribution, which is strongly low weighted, even when accounting for data bias. 

The second ability is affected by the concentration of demand and by the distribution of real 

estate costs relative to demand. The concentration of demand is likely to be higher when 

directly using the survey data. The results should, therefore, still be informative on this 

method’s potential benefit. Without a demand model, areas of no visible demand are 

effectively removed from the model and see no chargers in any scenario, decreasing the 

ability to draw spatial distribution conclusions. Adding a demand distribution model would 

allow for specific spatial distribution conclusions to be drawn. Additionally, by using the 

data directly and in its entirety, for commuters, we ignore the question of who will adopt 

electric vehicles and which adopters will need workplace charging. Not everyone may get 

EVs and some who do will have sufficient range and charging at home. 

 The most specific spatial data provided by Puget Sound Household Travel Survey 

(Kilgren 2015) was census blocks. Distance was determined using the centroids of these 

zones. Travel within a zone was always considered free, while travel from the border of one 

zone to another was counted as being equivalent to between their centroids. This is a 

fundamental limit of the data source. The increase of vehicle costs for level 4 and level 5 

automation was not included in the model. The model only optimized for fleets that are 

fully level 0-3, level 4, or level 5 autonomous vehicles. Optimization models accounting for 
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mixed fleets and/or deciding which level of automation is optimal given vehicle pricing 

would allow further insights. 

The cost of a single parking space was taken as the space's individual physical 

footprint times the census block’s average assessed unimproved real estate value. Parking 

spaces need navigational area as well, which changes as the number of spaces in a lot or 

garage increases. Market real estate value and usage is also affected by zoning and current 

built infrastructure, both of which this chapter ignores. A more accurate real estate model 

accounting for the value of current parking infrastructure would allow for a more accurate 

balance of commuter and operator costs. 
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Chapter IV Fuel Economy Testing of Autonomous Vehicles 

This results from this chapter have been published as (Mersky and Samaras 2016). 

 

The previous chapter discussed how to jointly optimize the placement of electric 

vehicle chargers for commuters and the infrastructure operators. The chapter explores how 

to optimize under different scenarios of automation and how this decreased the net social 

cost of the investment. This chapter discusses a novel method to measure and regulate the 

fuel economy of vehicles using autonomous technologies.  

Environmental pollution and energy use in the light-duty transportation sector are 

currently regulated through fuel economy and emissions standards, which typically assess 

quantity of pollutants emitted and volume of fuel used per distance driven. In the United 

States, fuel economy testing consists of a vehicle on a treadmill, while a trained driver 

follows a fixed drive cycle. By design, the current standardized fuel economy testing system 

neglects differences in how individuals drive their vehicles on the road. As autonomous 

vehicle (AV) technology is introduced, more aspects of driving are shifted into functions of 

decisions made by the vehicle, rather than the human driver. Yet the current fuel economy 

testing procedure does not have a mechanism to evaluate the impacts of AV technology on 

fuel economy ratings, and subsequent regulations such as Corporate Average Fuel Economy 

targets. This chapter develops a method to incorporate the impacts of AV technology, for 

restrained car following situations, within the bounds of current fuel economy test, and 

simulates a range of automated following drive cycles to estimate changes in fuel economy. 

This algorithm simulates car following rather than unconstrained driving, however the 

method is consistent with and easily adaptable to the current EPA testing methods. The 

results show that AV car following algorithms designed without considering efficiency can 
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degrade fuel economy by up to 3%, while efficiency-focused control strategies may equal or 

slightly exceed the existing EPA fuel economy test results, by up to 5%, when compared to 

base EPA cycle performance.  This suggests the need for a new near-term approach in fuel 

economy testing to account for connected and autonomous vehicles. As AV technology 

improves and adoption increases in the future, a further reimagining of drive cycles and 

testing is required. 

5.1: Introduction 

Management of environmental pollution and energy use in the light-duty 

transportation sector is currently regulated through fuel economy and emissions standards. 

In the United States (U.S.), Japan, and the European Union these standards are in the 

form of quantity of pollutants emitted and volume of fuel used per distance driven (Atabani 

et al. 2011). Compliance with these standards is evaluated via a standardized fuel economy 

and emissions test. The U.S. test consists of a vehicle on a treadmill, while a trained driver 

follows a fixed velocity schedule, or drive cycle (EPA n.d. A). During the test all effluent 

from the tailpipe is tested for pollutant levels, and carbon dioxide levels are used to 

estimate fuel usage (Kiley n.d.). This is done for five different types of drive cycles, to 

simulate different conditions (EPA n.d.  B). The results from each test are then aggregated 

to ascertain if the vehicle is complying with emissions standards. In addition, the tests are 

weighted four separate ways to determine fuel efficiency with respect to required standards 

and reporting to the consumer in the form of highway, city, and combined fuel efficiency 

(Kiley n.d.). This system allows for a standardized method to compare all passenger 

vehicles in the U.S. market, streamlining the regulatory process. 
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By design, the current standardized fuel economy testing system neglects differences 

in how individuals actually drive their vehicles on the road. As autonomous vehicle (AV) 

technology is introduced, more aspects of driving are shifted into functions of decisions 

made by the vehicle, rather than the human driver. Yet the current fuel economy testing 

procedure does not have a direct mechanism to evaluate the impacts of AV technology on 

fuel economy ratings. Autonomous and partially autonomous vehicle technology has 

advanced greatly over the past several years, with adaptive cruise control (ACC) with lane 

assist systems already reaching the market, and more advanced technologies have been 

announced for the coming years. While these systems may allow vehicle manufacturers to 

optimize their partially-autonomous vehicle control systems for fuel efficiency, these 

systems will not affect vehicle fuel economy ratings unless they are included in fuel 

economy testing. Hence, manufacturer incentives will not be aligned with improving fuel 

economy. Without inclusion into fuel economy ratings, autonomous technology will not help 

manufacturers meet their required Corporate Average Fuel Economy (CAFE) targets and 

manufacturers cannot advertise the increased vehicle fuel efficiency. Under such 

incentives, manufacturers are likely to make vehicle control decisions that increase vehicle 

desirability at the cost of fuel efficiency. Currently, the National Transportation Safety 

Board is considering if certain partially-autonomous technologies should be included as 

standard vehicle features for safety reasons (Mlot 2015). Requiring autonomous 

technologies on new vehicles for safety reasons would enhance the importance of 

understanding their impacts on vehicle fuel economy. 

The EPA has addressed similar issues of emerging technologies through “off-cycle 

technology credits” for CAFE standards, and is likely to continue this practice for 

autonomous technology (EPA and NHTSA 2010). A manufacturer may petition for an 
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increase in a vehicle’s CAFE fuel economy rating if it can demonstrate the current two-cycle 

test does not capture some fuel efficiency gains that “new and innovative technologies” 

provide (EPA and NHTSA 2010). There are three potential challenges if this approach is 

used for autonomous vehicle technology. First, off-cycle technology credits only apply to new 

and non-standard technologies. Once other manufacturers begin to adopt them, as has 

already happened for many early autonomous features, they are no longer eligible. Second, 

the process is non-standardized. A manufacturer must submit a testing and validation 

method, which has to be granted preliminary approval, and go through a public review 

process. In addition, the EPA will not certify the method or results (EPA and NHTSA 2010), 

meaning that these technologies may not be tested equivalently across manufacturers. The 

final challenge is that this will only apply for CAFE standards and not fuel economy ratings 

that inform the consumer (EPA and NHTSA 2010). Hence a manufacturer still cannot 

reflect the impacts of this technology in its fuel economy stickers and may face restrictions 

when trying to advertise any fuel economy benefits to consumers. 

As autonomous vehicle technologies become more prevalent, the current drive cycle 

system should be expanded to include drive cycles for autonomous and partially 

autonomous vehicles. This chapter makes a contribution to the literature by demonstrating 

a method to incorporate autonomous following drive cycles into the existing EPA testing 

regimen. This method was developed primarily for near-term conditions, where the 

majority of traffic is comprised of conventionally driven vehicles. This method would allow 

the current dynamometer testing to continue, while accounting for the introduction of AV 

technologies. This approach was tested on a range of possible drive behaviors, modeling 

different priorities that a vehicle manufacturer may wish to pursue to obtain new testing 

drive cycles. The fuel consumption resulting from these drive cycles were then simulated on 
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a variety of vehicles using the Virginia Tech Comprehensive Fuel Consumption Model 

(Edwardes and Rakha 2014; Park et al. 2013; Rakha et al. 2011b; Saerens et al. 2013), and 

then compared. While the ultimate procedure adopted by EPA will have to comply with 

regulatory requirements, the methods outlined here demonstrate the need for a new 

approach and provide a starting point for discussion in the near-term. As AV technology 

improves and adoption increases in the future, a further reimagining of drive cycles and 

testing is required. This chapter is organized as follows. First, the current drive cycles used 

for fuel economy testing are discussed. This is followed by a review of current literature and 

a description of the proposed addition to the current test. Next the ACC behavior used for 

testing is described and the fuel consumption model discussed. Finally, the results are 

discussed and their sensitivity to assumptions is tested. 

5.1.2: Current Drive Cycles 

Currently the EPA requires five separate drive cycles for passenger vehicle fuel 

economy testing. These are the Urban, Highway, High Speed, Air Conditioning, and Cold 

Temperature tests. While the first three are permitted to be tested in any temperature 

between 68°F and 86°F, the latter two must be done at 95°F with the air conditioning on 

and 20°F, respectively (EPA n.d.  B). The results of these cycles are then weighted in four 

different ways to find the emissions rate, urban and freeway fuel economies and combined 

fuel economy. This research uses the urban (FTP) and highway (HWFET) drive cycles, as 

the basis for the new autonomous drive cycles. 

The urban drive cycle (FTP) simulates typical travel through a city with stops and 

acceleration changes, while the freeway drive cycle (HWFET) simulates smoother freeway 

travel and makes no complete stops until the end of the test. Figure IV-1 and Figure IV-2 

show the velocity schedules for the FTP and HWFET drive cycles respectively, while Table 
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IV-1 summarizes some of the test details. Also worth noting is that the FTP calls for a cold 

engine start. This is important as the engine typically operates at its highest efficiency 

after warming up (EPA n.d.  B). 

 

 

Figure IV-1: Velocity Schedule of the EPA FTP Drive Cycle (EPA, n.d.  B) 
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Figure IV-2: Velocity Schedule of the EPA HWFET Drive Cycle (EPA, n.d.  B) 
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Table IV-1: U.S. EPA Drive Cycles Details (EPA, n.d.  B) 

Driving Schedule Attributes FTP HWFET 

Top Speed (km/h) 90.1 96.6 

Average Speed (km/h) 34.1 77.7 

Maximum Acceleration 

(km/h/s) 

5.3 5.1 

Distance Covered (km) 17.7 16.6 

Time Elapsed (min) 31.2 12.75 

Individual Full Stops 23 0 

Percentage of Time Stopped 18 0 

 

5.1.3: Previous Research 

Rakha et al. developed the Virginia Tech Comprehensive Power-Based Fuel 

Consumption Model (Rakha et al. 2011b). This model was produced in response to two 

problems found with other available fuel consumption models. The first is that many 

models tend to produce unrealistic optimization decisions, such as always maximizing 

acceleration until the target speed is reached (Rakha et al. 2011b). The second is that many 

require non-public or inaccessible information on vehicle and engine characteristics. Their 

model was designed to only require EPA or European Fuel Economy ratings and 

manufacturer-provided physical vehicle characteristics. Further investigations and field 

tests were led by Park et al. to determine the accuracy of the model for real world driving 

(Park et al. 2013). While errors were found, they were found to generally be relatively small 

and manageable. Edwardes and Rakha then expanded this model to include light duty and 

hybrid buses and found average errors of 4.7% and 22% for laboratory and on-road fuel 

consumption testing, respectively (Edwardes and Rakha 2014). 

Gonder and Simpson (Gonder and Simpson 2006) investigated the Society of 

Automotive Engineers (SAE) J1711 testing recommendation standards for plug-in hybrid 

vehicles. They discussed potential improvements to the standard, some of which have since 
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been adopted in an adapted form by the EPA. These include separately reporting petroleum 

product consumption and electricity consumption, per unit of distance. Additionally they 

recommended the assumed charging frequency be increased and a method for determining 

the weights for the Full, Partial, and No charge test results.  

Bhavsar et al. (Bhavsar et al. 2014) investigated energy reduction strategies for 

connected plug-in hybrid vehicles. They tested four strategies: a base case strategy with 

conventional driver behavior; an optimization strategy using knowledge of the current 

traffic signal status of approaching intersections; a strategy using information of the 

headway of all leading vehicles; and a strategy using both information on the headways of 

all leading vehicles and any approaching light’s status. Traffic behavior for these driver 

scenarios was simulated and used to estimate fuel consumption. They simulated results for 

both full and partial technology adoption. For full adoption they found fuel consumption 

savings of 75% for the combined strategy, 71% for the intersection only strategy and 69% 

for the headway only strategy (Bhavsar et al. 2014). 

Wu et al. (Wu et al. 2014) investigated the performance gains that could be expected 

from partial vehicle automation when using information of the current traffic signal status 

and schedule for the approaching intersection, when compared to human drivers given the 

same information. In the manual drive case the dashboard would indicate target velocities 

when approaching an intersection and the driver would attempt to obey the advice. This 

was tested on a track with real drivers and their speed profiles recorded. A speed profile 

was then developed to show what would have happened had the advice been followed 

perfectly in the assumed partial automation case. Fuel consumption was simulated using 

the EPA’s Motor Vehicle Emission Simulator. Partial automation was found to improve fuel 
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consumption by approximately 5-7% compared to a human driver given similar instructions 

(Wu et al. 2014).  

Rajamani and Shladover (Rajamani and Shladover 2001) investigated cooperative 

adaptive cruise control (CACC) systems to ascertain the highest capacity gains and 

decreases in headway possible. They found a decrease of headway to 1 second possible along 

with a near doubling of capacity from 3,000 vehicles/lane/hour for just an ACC system to 

6,400 vehicles/lane/hour for CACC systems. Kesting et al. (Kesting et al. 2008) developed an 

ACC strategy that would adapt its behavior to different traffic patterns. The system is able 

to autonomously determine if traffic conditions are in 1 of 4 states, and then adjust 

behavior to the most capacity and flow efficient response. Through simulations they found 

that equipping just 5% of a vehicle fleet with this technology could significantly decrease 

congestion and decrease travel times. Grumert et al. (Grumert et al. 2015) investigated 

setting variable speed limits for cooperative and autonomous vehicles to moderate traffic 

patterns and decrease emissions. They found significant increases in traffic harmonization 

and decreases in vehicular emissions when variable speed limits were used and as the 

portion of cooperative autonomous vehicles increased. 

Feng et al. (Feng et al. 2015) investigated using connected vehicles to decrease 

delays at intersections. Using connected vehicles as sensors to detect non-connected 

vehicles, they found that delays would decrease as more vehicle-to-infrastructure (V2I) 

enabled vehicles entered the road. With 100% connected vehicle penetration they found up 

to 16% reduction in vehicular delays at intersections. 

Zloki and Themann (Zlocki and Themann 2014) estimated the fuel reduction 

potential of different adaptive cruise control strategies. They defined fuel reduction 

potential as the maximum possible in the most optimal conditions for a particular control 



162 

 

strategy when facing a specific situation. Among the 10 different strategies they tested they 

found potential fuel reductions of up to 85%. On controlled track testing they found 

reductions of up to 70%, for one specific and short (less than 1km) scenario. It is notable 

that they were not including driver comfort, acceptance, or average use conditions. Finally, 

several recent works have bounded the energy implications from automated vehicles 

(Brown et al. 2014; Fagnant and Kockelman 2015; Feng et al. 2015; Folsom 2012; Gonder et 

al. 2012; Greenblatt and Saxena 2015; Iii et al. 2014; James M. Anderson et al. 2014; 

Kockelman and Fagnant 2014; Shladover, S 2012; Wadud Z et al. 2013)], but fuel economy 

modeling and implications remains a critical research need.  

5.1.4: Proposed Addition to Current Testing for Autonomous Vehicles 

In order to account for computer agency in automated vehicles, I propose the 

addition of “Automated Drive Cycles” to the fuel economy testing regimen. These drive 

cycles would be specific to the individual ruleset that a particular AV will follow, and 

appropriate for near-term conditions when AVs are on the road with primarily 

conventionally-driven vehicles. I propose that the AV cycles be generated as simply as 

possible, with the following method and assumptions: 

• First the ruleset that the AV will follow will be abstracted to function in a one-

dimensional simulation, therefore lateral control can be ignored. 

• The road will be assumed to be straight, single lane, and level, with only two 

vehicles and no traffic control systems. 

• The vehicle will be assumed to start 5 meters behind another “lead vehicle”. 

• At time 0 the lead vehicle will start to obey the EPA drive cycle for either FTP or 

HWFET conditions. 
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• The simulated AV will then make decisions about how to best follow the lead vehicle 

until the end of the test. 

• The test will end at the completion of the EPA cycle, when the lead vehicle has 

stopped, regardless of whether or not the AV has stopped. 

•  The velocity profiles for both the Urban and Freeway simulations will then be 

recorded. 

• The results can be audited and validated as necessary by physical experiments on a 

roadway.  

The next step is to use these drive cycles in dynamometer testing to estimate fuel 

consumption. These results can then be either weighted in the fuel consumption and 

emission ratings, or used separately for advertising purposes. This method was designed to 

conform to the existing standards as much as possible. For more advanced automation 

features, such as vehicle-to-vehicle and vehicle-to-infrastructure communication, new 

simulations would need to be developed under future research. Should the EPA add on-road 

testing to emissions and fuel economy testing, on-road AV following could also be added. 

One commonality that all vehicle-to-vehicle and vehicle-to-infrastructure control 

strategies have is enabling the connected vehicle to predict future constraints on its driving 

behavior. While specific simulation scenarios would be needed to capture these effects, the 

possible range of cumulative effects on fuel efficiency can be estimated by giving the 

following vehicle knowledge about the lead vehicle actions into the future for the above 

simulation. This would allow insight into the significance of these effects for expected 

future scenarios of predictive ability.  

This approach relies upon manufacturers to simulate and abstract their own 

rulesets to derive their AV drive cycles. This however, is not significantly different than the 
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status quo, where manufacturers perform their own fuel economy testing and are subject to 

auditing. Simulated drive cycles can be physically audited by having an AV follow a vehicle, 

driven to follow the EPA drive cycles on a test track. 

5.2: Methods: 

5.2.1: Autonomous Drive Cycle Simulation: 

The Autonomous Drive Cycle was derived from the EPA City (FTP) and Highway 

(HWFET) fuel economy testing cycles; and a set of rules describing how an autonomous 

vehicle would react to a leading car. The EPA drive cycles provides the velocity of the 

vehicle on a 10 hertz cycle (EPA n.d.  C). The position and acceleration used the integral 

and derivative of each 1/5 second’s position pairs, respectively. This information was then 

entered into a program that would query the lead vehicle’s position and velocity, in meters 

and m/s every 1/10 second and calculate headway, placing the lead vehicle five meters 

ahead at time 0. At the end of each time step the simulation would query a set of rules to 

obtain the velocity and acceleration for the beginning of the next time step. At the end of 

each time step the autonomous vehicle’s position, velocity and acceleration were recorded. 

5.2.2: Autonomous Driving Behavior 

Car following behavior was divided into different sets of rules. These rules included 

basic ACC and CACC methodologies. The ACC method is meant to simulate basic ACC 

systems, similar to those already on the market. The CACC method is meant to simulate 

posited and in-development technology that would allow vehicles to communicate with each 

other and infrastructure to improve traffic flow. All specific methods used in this chapter 

are basic and generalized to run on all vehicles. They are not necessarily the most optimal 

for fuel efficiency. The primary contribution of this research is the process for testing the 
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fuel economy of autonomous vehicles and deriving the autonomous drive cycles, rather than 

optimizing the control methods that lead to those cycles. 

Two basic ACC methods were developed and tested. The first, termed HeadwayACC, 

follows a simple set of bounding rules and direct calculation of the exact acceleration 

needed to achieve minimum safe following distance or headway and the acceleration needed 

to achieve the desired headway. Both headway and distance measures are needed to correct 

for headway approaching ∞ as the velocity approaches 0. The goal of the strategy is to 

attempt to reach and maintain a target headway behind a lead vehicle. The rules are 

described in Equation IV-1 through Equation IV-5 and the variables are defined in Table 

IV-3. 

Equation IV-1 describes the acceleration necessary to reach the minimum safe 

following distance by the next time step. The first two terms determine the acceleration to 

close the distance to 0 m and the third term is to ensure a safe distance, either in terms of a 

minimum distance or headway. Equation IV-2 is used to determine whether to use 

minimum headway or minimum space as the target in Equation IV-1. Equation IV-3 

determines the acceleration necessary to reach the target headway behind the lead vehicle 

by the next time-step. The equation is derived from the general form equation of motion 

with constant acceleration, the relative velocities of the two vehicles, the current space 

between the two vehicles and the target headway. Equation IV-4 and Equation IV-5 are 

used to compare the two previous determined accelerations to the acceleration bounds and 

choose an acceleration. The second part of the “and” conditional in Equation IV-5 is 

necessary to correct for when accelerating, 𝑎𝑠𝑎𝑓𝑒 will close the gap beyond the target 

headway. Here 𝑎𝑠𝑎𝑓𝑒 is only used for decelerations. 
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Equation IV-1 

𝑎𝑠𝑎𝑓𝑒 ≥
𝑠𝑝𝑎𝑐𝑒

𝑠𝑡𝑒𝑝2
+

𝑣𝑙𝑒𝑎𝑑 − 𝑣𝑠𝑒𝑙𝑓

𝑠𝑡𝑒𝑝
−

𝑏𝑢𝑓𝑓𝑒𝑟

𝑠𝑡𝑒𝑝2
 

 

Equation IV-2 

𝑏𝑢𝑓𝑓𝑒𝑟 = max ( 1 𝑚𝑒𝑡𝑒𝑟,
𝑣𝑠𝑒𝑙𝑓

ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑚𝑖𝑛
) 

 

Equation IV-3 

𝑎𝑡𝑎𝑟𝑔𝑒𝑡 =
−𝑠𝑝𝑎𝑐𝑒 + ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑣𝑠𝑒𝑙𝑓 + 𝑣𝑠𝑒𝑙𝑓 ∗ 𝑠𝑡𝑒𝑝 − 𝑣𝑙𝑒𝑎𝑑 ∗ 𝑠𝑡𝑒𝑝

𝑠𝑡𝑒𝑝2 − ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑠𝑡𝑒𝑝
 

 

Equation IV-4 

𝑏𝑜𝑢𝑛𝑑(𝑥, 𝑦, 𝑧) = max(min(𝑥, 𝑦) , 𝑧) 

 

Equation IV-5 

𝑖𝑓 𝑎𝑠𝑎𝑓𝑒 ≤ 𝑎𝑡𝑎𝑟𝑔𝑒𝑡  𝑎𝑛𝑑 𝑎𝑠𝑎𝑓𝑒 ≤ 0: 

𝑡ℎ𝑒𝑛 𝑎𝑛𝑒𝑤 = 𝑏𝑜𝑢𝑛𝑑(𝑎𝑠𝑎𝑓𝑒, 𝑎𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛) 

𝑒𝑙𝑠𝑒: 𝑎𝑛𝑒𝑤 = 𝑏𝑜𝑢𝑛𝑑(𝑎𝑡𝑎𝑟𝑔𝑒𝑡, 𝑎𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛) 
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Table IV-2: Variable Definitions for Control Functions 

Variable Name Definition 

𝑎𝑠𝑎𝑓𝑒 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑓𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 

𝑎𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 

𝑣𝑠𝑒𝑙𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑎𝑛𝑒𝑤 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑎𝑚𝑎𝑥,𝑚𝑖𝑛 𝑚𝑖𝑛 & 𝑚𝑎𝑥 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛/𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑣𝑙𝑒𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑎𝑑𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑠 = 𝑠𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 

ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 

ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑚𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑓𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 = 3 𝑠 

𝑇𝑑 = ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑡𝑎𝑟𝑔𝑒𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 

𝑏𝑢𝑓𝑓𝑒𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑓𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (m) 
𝑠𝑡𝑒𝑝 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1 𝑠 

𝑣𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

𝑣𝑒 𝑠𝑝𝑒𝑒𝑑 𝑒𝑟𝑟𝑜𝑟, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 

𝑎𝑠𝑐 𝑎𝑐𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑠𝑝𝑒𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
𝑠𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 

𝑠𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 

𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
𝑝𝑙𝑒𝑎𝑑 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑝𝑠𝑒𝑙𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

Additionally, the vehicle will not start moving if currently stopped and the lead 

vehicle is also stopped and less than 10 meters ahead. The vehicle will also adjust its 

acceleration to never exceed 60 mph or go into reverse. This ruleset was tested with 

acceleration bounds of +/-2, 1.5/-2 and +1/-2 m/s2. 

The second ACC method used, VelocityACC, is a modified form of that used in 

Shladover et al.’s (Shladover et al. 2012b) CACC platoon simulation. VelocityACC’s rules 

are similar to those used by Shladover et al., but with additions to account for the more 

dynamic driving conditions of urban streets. The goal of this method is to attempt to reach 

a target speed and maintain that speed, if feasible. This is opposed to the HeadwayACC 

method where the goal is to reach a target headway. According to Shladover et al.’s original 
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rules the vehicle can be in either speed control or gap control. If in speed control the new 

acceleration is described by Equation IV-6 and Equation IV-7. 

Equation IV-6 calculates the difference between the vehicle’s current speed and the 

predefined desired speed. Equation IV-7 then sets the control acceleration at 40% of the 

speed error, or the acceleration bounds. The 40% constant comes from Shladover et al.’s 

(2012) original control scheme and functions to smooth out acceleration changes. 

 

Equation IV-6 

𝑣𝑒 = 𝑣𝑠𝑒𝑙𝑓 − 𝑣𝑑 

Equation IV-7 

𝑎 = 𝑎𝑠𝑐 = 𝑏𝑜𝑢𝑛𝑑(−0.4 ∗ 𝑣𝑒 , 𝑎𝑀𝑎𝑥, 𝑎𝑀𝑖𝑛) 

 

In gap control Equation IV-8 through Equation IV-10 also apply. Equation IV-8 

defines the desired spacing gap as the product of the desired headway time and the current 

speed. Equation IV-9 defines the spacing error as the difference between the current gap 

and the desired spacing gap calculated in Equation IV-8. Finally, Equation IV-10 sets the 

acceleration with regard to the possible acceleration bounds and a desired acceleration of 

the sum of the current gap and a quarter of the spacing error. 

 

Equation IV-8 

𝑠𝑑 = 𝑇𝑑 ∗ 𝑣𝑠𝑒𝑙𝑓 
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Equation IV-9 

𝑠𝑒 = 𝑠 − 𝑠𝑑 

 

Equation IV-10 

𝑎 = 𝑏𝑜𝑢𝑛𝑑(𝑠 + 0.25 ∗ 𝑠𝑒 , 𝑎𝑠𝑐 , 𝑎𝑀𝑖𝑛) 

Further inclusions were that the vehicle will not start if the lead vehicle is close and 

stationary, as in the previous control scheme, and that the vehicle will check to see what is 

the acceleration needed for minimum safe following distance, as in the previous set, and 

follow that if the car chooses to decelerate inadequately, up to -2 m/s2. 

For this study the desired speed was set as 60 mph and the desired headway as 3 

seconds. The vehicle will enter speed control when spacing is greater than a “speed space” 

and gap control when under a “gap space” and, when between, will use the last used control 

set, defaulting to gap control. These spaces are dependent on speed: above 40 mph, freeway 

speeds, the spaces are 120 and 100 meters respectively: between 25 mph and 40 mph, 

urban speeds, the spaces are 80 and 65 meters; and under 25 mph, local speeds, the spaces 

are 50 and 42 meters. The spacing for highway speeds is that used by Shladover et al. 

(Shladover et al. 2012b) and the others are based upon a 3.7 second headway at maximum 

speed cutoff, which is roughly what the freeway speed settings use. As with the previous 

ruleset these rules were tested with acceleration bounds of +/-2, 1.5 and 1 m/s2. 

Another control method tested was based upon connected-autonomous features. 

Greater improvements in acceleration and velocity stability, and therefore fuel economy, 

can be gained if vehicles communicate information about their current positions, velocities, 

and future plans with each other. The amount of information that will be shared is 

currently unknown and the gains from using this information will be influenced by the 
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percentage of vehicles on the road and roadway infrastructure using the technology. A 

bounding case is a vehicle having perfect information on what conditions will be in front of 

it for a defined period of time into the future. This can be used as a proxy to estimate the 

effects the near future of connected vehicle technology may bring to fuel economy of an 

individual vehicle. The following control method, PlannedACC, was developed to simulate a 

control strategy under such conditions. 

The rules for this PlannedACC cruise control strategy are as follows: 

Starting at time 0, the following vehicle will query the lead vehicle’s planned 

position, for the next 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 and run Algorithm 1. 

Algorithm 1: PlannedACC Overview 

𝑎𝑡𝑟𝑦 = 𝑎𝑚𝑎𝑥 

𝑖𝑓 𝑣𝑆𝑒𝑙𝑓 = 0 𝑎𝑛𝑑 𝑣𝐿𝑒𝑎𝑑 = 0 𝑎𝑛𝑑 𝑠𝑝𝑎𝑐𝑒 <  10: 

𝑡ℎ𝑒𝑛: 𝑎𝑛𝑒𝑤 = 0, 𝑏𝑟𝑒𝑎𝑘 ##𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 

𝑓𝑜𝑟 𝑡 ≤ 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛: 

𝑖𝑓 𝑎𝑡𝑟𝑦 < 𝑎𝑚𝑖𝑛: 𝑏𝑟𝑒𝑎𝑘 ##𝑐𝑟𝑎𝑠ℎ 𝑖𝑠 𝑢𝑛𝑎𝑣𝑜𝑖𝑑𝑎𝑏𝑙𝑒 𝑡𝑟𝑖𝑎𝑙 𝑖𝑠 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑣𝑡𝑟𝑦 = 𝑣𝑠𝑒𝑙𝑓 + 𝑎𝑡𝑟𝑦 ∗ 𝑠𝑡𝑒𝑝 

𝑝𝑡𝑟𝑦 = 𝑝𝑠𝑒𝑙𝑓 + 𝑣𝑡𝑟𝑦 ∗ 𝑠𝑡𝑒𝑝 

𝑠𝑝𝑎𝑐𝑒𝑡𝑟𝑦 = 𝑝𝑙𝑒𝑎𝑑(𝑡) − 𝑝𝑡𝑟𝑦 

𝑖𝑓 𝑠𝑝𝑎𝑐𝑒𝑡𝑟𝑦 < 5 𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑟 𝑠𝑝𝑎𝑐𝑒𝑡𝑟𝑦 < ℎ𝑒𝑑𝑤𝑎𝑦𝑚𝑖𝑛: 

𝑡ℎ𝑒𝑛: 𝑡 = 𝑡 + 𝑠𝑡𝑒𝑝, 𝑎𝑡𝑟𝑦 = 𝑎𝑡𝑟𝑦 − 0.1 

𝑒𝑙𝑠𝑒: 𝑎𝑛𝑒𝑤 = 𝑎𝑡𝑟𝑦 

This process is then repeated every 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 seconds. Additionally the vehicle will 

ensure that it does not exceed the speed limit or reverse. The 5-meter absolute space 



171 

 

minimum was found through trial and error to be the point where gains in safety dropped 

off considerably. These rules are explained verbally below. 

• The following vehicle will query the lead vehicle’s position, in relationship to the 

following vehicle’s current position, every 1/10 second for the following X seconds. 

Various values of X are tested. 

• The following vehicle will then determine if it can accelerate at a user defined 

maximum acceleration for the following X seconds.  

o If the vehicle falls within a user specified minimum buffer of absolute 

space or time headway, then the vehicle will then try again at a lower 

acceleration, continuing until it finds a solution or reaches and uses a 

user defined minimum (de)acceleration. 

▪ If the vehicle is ever assumed to exceed the speed limit or reverse, 

the software will replace the velocity for that time-step with either 

the speed limit or a stop, respectively. 

• The vehicle will then travel for the next Y seconds at the decided upon 

acceleration, after which it will start the process again. 

o With Y always being less than X 

▪ 𝑋 − 𝑌 must be greater the minimum headway 

• In addition the vehicle will not start from a stop if the lead vehicle is also stopped 

and within a user defined buffer space. 

This method is designed to stabilize the acceleration curve, minimizing the number 

of times acceleration changes. This would be expected to reduce fuel consumption. This was 

tested 4 times, with acceleration bounds of +/-1 and 2 m/s2 and X-Y pairs of 3-2 and 5-3 

seconds. This allows testing of what the possible gains from connected vehicle features may 
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be as their predictive ability increases. This method is not appropriate to measure any 

specific connected vehicle control function. Rather it models how far into the future a 

vehicle following a similar control strategy would need to be able to confidently predict the 

state of the road, in order to deliver fuel efficiency gains. This then acts as an initial proxy 

for the near- and mid-term feasibility of such a method and technology. Noticeable gains in 

efficiency at a few seconds of predictive power could be meaningful, but if several minutes 

of predictive ability are necessary to see changes, one might conclude that it will not be 

feasible to implement. The parameters for each of the rulesets are summarized in Table 

IV-3, with a common maximum speed of 26.8 m/s (60 mph). 

Table IV-3: Rulesets’ Parameters (“N/A“ indicates an unused parameter) 

Rule Set Normal 

Accelera

tion 

Bounds 

(m/s2) 

Maximum 

Decelerati

on for 

Safety 

(m/s2) 

Plan 

Ahea

d 

Time 

(s) 

Planni

ng 

Interva

l (s) 

Target 

Headw

ay (s) 

Minimu

m 

Headwa

y (s) 

Minimu

m Safe 

Distanc

e (m) 

HeadwayAC

C 1 

+/- 2 -2 N/A N/A 3 N/A 1 

HeadwayAC

C 2 

+1.5 / -2 -2 N/A N/A 3 N/A 1 

HeadwayAC

C 3 

+1 /- 2 -2 N/A N/A 3 N/A 1 

VelocityACC 

1 

+/- 2 - 2 N/A N/A 3 N/A 1 

VelocityACC 

2 

+/- 1.5 - 2 N/A N/A 3 N/A 1 

VelocityACC 

3 

+/- 1 - 2 N/A N/A 3 N/A 1 

PlannedACC 

1 

+/- 2 N/A 3 2 N/A 1 5 

PlannedACC 

2 

+/- 2 N/A 5 3 N/A 1 5 
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5.2.4: Fuel Economy Estimation 

Fuel Economy was estimated using the Virginia Tech Comprehensive Fuel 

Consumption Model (Edwardes and Rakha 2014; Park et al. 2013; Rakha et al. 2011b; 

Saerens et al. 2013). This model relies upon publicly available vehicle and engine 

characteristics, as well as the official EPA fuel economy ratings for commercially available 

vehicles. This model has been validated in two separate papers. In a 2011 paper (Rakha et 

al. 2011b) three passenger vehicles, the Ford Explorer, Saturn SL and Honda Accord were 

put on a dynamometer and run for the Arterial Level of Service (LOS) A cycle, the LA92 

cycle and the New York cycle. The instantaneous fuel consumption physically measured 

was then compared to the model’s estimated consumption. They were all highly correlated, 

with R-squared values exceeding 0.9 and had slopes varying between 1 and 1.3, averaging 

at 1.1, suggesting slight overestimates in fuel consumption and varying good predicting 

power (Rakha et al. 2011b). 

Park et al.’s 2013 follow-up paper (Park et al. 2013) validates the model against on-

road driving, specifically on U.S. Interstate 81 between miles 118 and 132. Notably, unlike 

a dynamometer, this roadway section includes positive and negative grades. Six light duty 

vehicles, four passenger vehicles and two SUVs, were tested; a 2001 SAAB 95, a 2006 

Mercedes R350, a 2008 Chevrolet Tahoe, a 2007 Chevy Malibu, a 2008 Hybrid Chevy 

Malibu, and a 2011 Toyota Camry. A DashDAQ unit was used to record speed and fuel 

consumption and cruise control was both used and not used an equal number of iterations 

for each vehicle. Using the default model calibration settings, the averaged R-squared 

values for each vehicle’s instantaneous fuel consumption, measured and estimated, were 

found to be between 0.90 and 0.98, while the slopes were between 0.97 and 1.02, showing 

consistent goodness of fit, in aggregate (Park et al. 2013). Individual tests were not as good, 
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with R-squared values as low as 0.8 and slopes between 0.72 and 1.62, showing somewhat 

less goodness of fit (Park et al. 2013). For overall fuel economy this led to a difference of up 

to +/- 36% between measured and estimated values (Park et al. 2013). However, what is 

most important is that the Virginia Tech Comprehensive Fuel Consumption Model correctly 

states whether a certain driving pattern is more or less efficient than another one. In terms 

of cruise control versus manual driving and driving northbound or southbound both the 

measured data and the modeled results showed the same trends in either direction (Park et 

al. 2013). 

The Virginia Tech Comprehensive Fuel Consumption Model, was therefore seen as 

appropriate for this research. I only used vehicles that at least one of the two validating 

papers had used. I used the 2010 Honda accord used in (Rakha et al. 2011b) and the 2011 

Toyota Camry, the 2007 Chevy Malibu and 2008 Chevy Malibu Hybrid, used in (Park et al. 

2013). The vehicle parameters I used are identical to the ones used in these validating 

papers. This gives a comparison of three different manufacturers and a separate test for 

hybrid vs. conventional vehicles. 

The model requires certain vehicle characteristics as inputs and a 1 hertz velocity 

schedule. As the vehicle following simulation used 10 hertz, every 10th point of velocity was 

used. While the greater precision was necessary for the control function, it was determined 

that it would not considerably increase accuracy for fuel economy estimation. The vehicle 

characteristics used are listed in Table IV-4. The program outputs a file containing the 

instantaneous consumption of fuel, in liters per second. This was summed to find the total 

fuel consumption for each control strategy and cycle combination. The total distance that 

the automated vehicle traveled was then computed and divided over the fuel consumption 

to find the fuel economy, which was then converted to miles per gallon (mpg). 
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Table IV-4: Vehicle characteristics for Virginia Tech Comprehensive Fuel Consumption 

Model (VTCFCM) (Edwardes and Rakha 2014; Park et al. 2013; Rakha et al. 2011b; 

Saerens et al. 2013) 

Description Accord Camry Malibu Malibu Hybrid 

Model Year 2010 2011 2007 2008 

Wheel Radius 

(m) 

0.3322 0.3322 0.32375 0.3322 

Redline RPM 6800 6300 6000 6000 

Drag 

Coefficient 

0.30 0.28 0.34 0.34 

Frontal Area 

(m2) 

2.32 2.424 2.318 2.313 

Wheel Slippage 0.035 0.035 0.035 0.035 

Cylinders 4 4 4 4 

Engine Liters 2.354 2.5 2.2 2.4 

Gears 5 6 4 4 

1st Gear Ratio 2.652 3.54 2.96 2.96 

2nd Gear Ratio 1.517 2.05 1.62 1.62 

3rd Gear Ratio 1.037 1.38 1 1 

4th Gear Ratio 0.738 0.98 6.8 6.8 

5th Gear Ratio 0.566 0.74 0 0 

6th Gear Ratio 0 0.66 0 0 

Final Drive 

Ratio 

4.44 3.82 3.63 3.63 

Mass (kg) 1453 1500 1440 1604 

Urban Rating 

(mpg) 

22 22 24 24 

Freeway Rating 

(mpg) 

31 33 34 32 

Rolling 

Coefficient 

1.75 1.75 1.75 1.75 

C1 0.0328 0.0328 0.0328 0.0328 

C2 4.575 4.575 4.575 4.575 

Driveline 

Efficiency 

0.92 0.92 0.92 0.92 

Idling Speed 

(rpm) 

700 660 680 660 
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5.3: Results 

5.3.1: Drive Cycles 

The purpose of developing the automated driving rules and cycles was to enable 

comparison of the plausible differences in fuel efficiencies for autonomous and human 

driving. One of the methods that an autonomous vehicle can use to improve fuel economy is 

to lower the magnitudes of its acceleration and deceleration and how quickly it changes 

acceleration and deceleration. It can be expected in most cases that a drive cycle where 

these are moderated would be more efficient than another, all else being equal. This study 

used the FTP and HWFET drive cycles as the basis for a representative human driver and 

assumes that an automated vehicle would be following a human-driven car. Therefore 

improvements will come from the vehicle deciding to lower the amplitudes of accelerations 

and decelerations, which is directly set by the rules, and the smoothness of changes in 

accelerations and decelerations.  

The HeadwayACC method performs similarly to the PlannedACC method. Both 

have similar acceleration bounds and similar rates of change in acceleration as compared to 

the EPA’s cycles, even when allowed more. The PlannedACC does keep acceleration 

constant for longer periods than the HeadwayACC method. The VelocityACC method has 

larger acceleration bounds, when allowed, and switches accelerations much quicker than 

the other methods and the EPA’s cycles. On the basis of acceleration bounds and changes 

alaone, it is expected that the VelocityACC method would have a lower fuel economy, the 

HeadwayACC method a slightly higher fuel economy and the PlannedACC ruleset an even 

higher fuel economy than the car following the EPA’s drive cycles. 
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5.3.2: Fuel Economy 

Table IV-5 though Table IV-8 shows the fuel economies of the drive cycles for the 

simulated vehicles* and the percentage change from the modeled fuel economy for the 

EPA’s drive cycles. Rated fuel economies are notably lower than simulated EPA cycles, due 

to usage of the extra 3 cycles for the rated fuel economies. The HeadwayACC control 

method was better than the EPA’s cycle, for urban driving, with improvements varying 

from 3 to 4%. For freeway conditions the HeadwayACC cycles had fuel economies gaiuns of 

roughly half those in urban settings, normally about 2%. The VelocityACC control strategy 

performed consistently delivered decreases in fuel economy. These were 2-3% for urban 

cycles and under 1% for freeway driving. The PlannedACC method always showed 

improvement in fuel economy, for both the urban and freeway cycles. For the city cycles fuel 

economy gains were greater than HeadwayACC, and varied between 2% and 4%. 

PlannedACC for freeway cycles improved fuel economy between 1% and 2%. PlannedACC, 

surprisingly, performed worse than HeadwayACC. This seems to suggest that focusing on 

constant acceleration alone is not an optimal control strategy. Note that VelocityACC and 

was not stable when acceleration bounds were decreased and crashed for ruleset 3, in urban 

conditions. This result was not reported.  
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Table IV-5: Simulated Fuel Economy Results for 2010 Honda Accord 

2010 Honda Accord Fuel Economy 

(mpg) 

Percent Change 

from EPA 

EPA Urban (FTP) 25.9 
 

EPA Freeway (HWFET) 43.2 
 

   

HeadwayACC Urban 1 26.8 3.7% 

HeadwayACC Freeway 1 44.1 2.0% 

HeadwayACC Urban 2 26.8 3.7% 

HeadwayACC Freeway 2 44.1 2.0% 

HeadwayACC Urban 3 26.6 3.0% 

HeadwayACC Freeway 3 44.1 2.0%    

VelocityACC Urban 1 25.7 -0.7% 

VelocityACC Freeway 1 43.0 -0.6% 

VelocityACC Urban 2 25.3 -2.3% 

VelocityACC Freeway 2 43.0 -0.6% 

VelocityACC Freeway 3 42.4 -2.0% 

   

PlannedACC Urban 1 26.4 2.0% 

PlannedACC Freeway 1 43.6 0.9% 

PlannedACC Urban 2 26.6 2.7% 

PlannedACC Freeway 2 43.9 1.4% 
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Table IV-6: Simulated Fuel Economy Results for 2011 Toyota Camry 

2011 Toyota Camry Fuel Economy 

(mpg) 

Percent Change 

from EPA 

EPA Urban (FTP) 26.8 
 

EPA Freeway (HWFET) 46.2 
 

   

HeadwayACC Urban 1 27.8 3.6% 

HeadwayACC Freeway 1 47.1 2.0% 

HeadwayACC Urban 2 27.8 3.6% 

HeadwayACC Freeway 2 47.1 2.0% 

HeadwayACC Urban 3 27.6 2.9% 

HeadwayACC Freeway 3 47.1 2.0%    

VelocityACC Urban 1 26.6 -0.7% 

VelocityACC Freeway 1 45.9 -0.6% 

VelocityACC Urban 2 26.2 -2.3% 

VelocityACC Freeway 2 45.9 -0.5% 

VelocityACC Freeway 3 45.2 -2.1%    

PlannedACC Urban 1 27.3 2.0% 

PlannedACC Freeway 1 46.6 0.9% 

PlannedACC Urban 2 27.5 2.7% 

PlannedACC Freeway 2 46.9 1.5% 
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Table IV-7: Simulated Fuel Economy Results 2007 Chevy Malibu Conventional 

2007 Chevy Malibu Conventional Fuel Economy 

(mpg) 

Percent Change 

from EPA 

EPA Urban (FTP) 23.0 
 

EPA Freeway (HWFET) 33.7 
 

   

HeadwayACC Urban 1 24.0 4.5% 

HeadwayACC Freeway 1 34.3 2.0% 

HeadwayACC Urban 2 24.0 4.5% 

HeadwayACC Freeway 2 34.3 2.0% 

HeadwayACC Urban 3 23.9 3.8% 

HeadwayACC Freeway 3 34.3 2.0%    

VelocityACC Urban 1 22.8 -0.9% 

VelocityACC Freeway 1 33.5 -0.6% 

VelocityACC Urban 2 22.4 -2.6% 

VelocityACC Freeway 2 33.5 -0.5% 

VelocityACC Freeway 3 33.0 -2.1%    

PlannedACC Urban 1 23.6 2.4% 

PlannedACC Freeway 1 34.0 0.9% 

PlannedACC Urban 2 23.8 3.4% 

PlannedACC Freeway 2 34.2 1.5% 
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Table IV-8: Simulated Fuel Economy Results 2008 Chevy Malibu Hybrid 

2008 Chevy Malibu Hybrid Fuel Economy 

(mpg) 

Percent Change 

from EPA 

EPA Urban (FTP) 26.9  

EPA Freeway (HWFET) 44.7   
  

HeadwayACC Urban 1 27.9 4.0% 

HeadwayACC Freeway 1 45.7 2.2% 

HeadwayACC Urban 2 27.9 4.0% 

HeadwayACC Freeway 2 45.7 2.2% 

HeadwayACC Urban 3 27.7 3.2% 

HeadwayACC Freeway 3 45.7 2.2%  
  

VelocityACC Urban 1 26.6 -0.8% 

VelocityACC Freeway 1 44.4 -0.6% 

VelocityACC Urban 2 26.2 -2.6% 

VelocityACC Freeway 2 44.4 -0.6% 

VelocityACC Freeway 3 43.7 -2.2%  
  

PlannedACC Urban 1 27.4 2.2% 

PlannedACC Freeway 1 45.1 0.9% 

PlannedACC Urban 2 27.7 3.0% 

PlannedACC Freeway 2 45.4 1.5% 

 

All percentage changes were calculated from simulated fuel economies for both the 

EPA and Automated cycles, to ensure trends in simulated uncertainty are constant. 

Calibration research on the Virginia Tech Comprehensive fuel consumption model showed 

that directions and relative magnitudes in fuel consumption changes were accurate, even if 

absolute values were not perfect (Park et al. 2013) (Rakha et al. 2011b) (Park et al. 2013), 

ensuring the relative integrity of the results. The losses in fuel economy in VelocityACC 

appear to be due to temporary stability losses caused by an inability of these methods to 

predict the future and plan ahead. 

If the 2010 Accord were equipped with the necessary technology for the above 

automated control strategies, one could then use the results above to envision what the 
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proposed process would look like. First the process can be simplified to only include the 

derived autonomous tests and original Urban and Freeway cycles, each weighted evenly 

with their counterpart, for the urban and freeway rating, respectively. The combined fuel 

economy rating would follow the current 55% urban 45% freeway split (EPA 2014a). Honda 

would abstract their vehicle control rules to run on a level straight road and work with 

complete knowledge of the location of the vehicle in front of it. Honda would then record the 

velocity schedules and run dynamometer testing, using 4 test cycles, the original 2 FTP and 

HWFET cycles and their 2 derived ones. The results of both freeway and both urban tests 

would then be averaged to find the new fuel economy sticker ratings, so for the VelocityACC 

control method urban fuel economy would decrease 0.2, freeway 0.3 mpg, while with 

HeadwayACC they would both rise 0.9 mpg. Possible blended fuel economies for other 

weighting methods are shown in Table IV-9. This shows a definite benefit for autonomous 

features, as a ~1-mpg gain may well improve sales, help with compliance, and reduce 

emissions. The fully autonomous features could still help or hurt CAFE requirements for 

different manufacturers. This is especially important as automation is becoming much 

more common. A 1-3% gain or loss across a full fleet would be considerable. Additionally 

any fleet gains and losses in fuel economy directly limit or enable increased sales of larger, 

less fuel efficient, and more profitable vehicles. 
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Table IV-9: Blended Fuel Economies for 2010 Honda Accord 

ACC Ruleset Traditional 

Cycle Weight 

(%) 

Autonomous 

Cycle Weight 

(%) 

Simulated 

Weighted Fuel 

Economy 

(MPG) 

Weighted % 

change from 

EPA 

FTP Urban Cycle 

(22)* 

100 0 25.9 

N/A 

HWFET Freeway 

Cycle (31)* 

100 0 43.2 

N/A 

EPA Combined (25)* 100 (55% City / 

45% Highway) 

0 33.7 

N/A 

HeadwayACC City 1 80 20 26.1 0.7% 

HeadwayACC 

Freeway 1 

80 20 43.4 0.4% 

Headway ACC 

Combined 1 

80 20 33.9 0.5% 

HeadwayACC City 1 60 40 26.2 1.5% 

HeadwayACC 

Freeway 1 

60 40 43.6 0.8% 

Headway ACC 

Combined 1 

60 40 34.0 1.1% 

HeadwayACC City 1 40 60 26.4 2.2% 

HeadwayACC 

Freeway 1 

40 60 43.8 1.2% 

Headway ACC 

Combined 1 

40 60 34.2 1.6% 

HeadwayACC City 1 20 80 26.6 2.9% 

HeadwayACC 

Freeway 1 

20 80 43.9 1.6% 

Headway ACC 

Combined 1 

20 80 34.4 2.1% 

VelocityACC City 1 80 20 25.8 -0.1% 

VelocityACC 

Freeway 1 

80 20 43.2 -0.1% 

VelocityACC 

Combined 1 

80 20 33.6 -0.1% 

VelocityACC City 1 60 40 25.8 -0.3% 

VelocityACC 

Freeway 1 

60 40 43.1 -0.2% 

VelocityACC 

Combined 1 

60 40 33.6 -0.3% 

VelocityACC City 1 40 60 25.7 -0.4% 

VelocityACC 

Freeway 1 

40 60 43.1 -0.3% 
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ACC Ruleset Traditional 

Cycle Weight 

(%) 

Autonomous 

Cycle Weight 

(%) 

Simulated 

Weighted Fuel 

Economy 

(MPG) 

Weighted % 

change from 

EPA 

VelocityACC 

Combined 1 

40 60 33.6 -0.4% 

VelocityACC City 1 20 80 25.7 -0.6% 

VelocityACC 

Freeway 1 

20 80 43.0 -0.5% 

VelocityACC 

Combined 1 

20 80 33.5 -0.5% 

PlannedACC City 2 80 20 26.0 0.5% 

PlannedACC 

Freeway 2 

80 20 43.4 0.3% 

PlannedACC 

Combined 1 

80 20 33.8 0.4% 

PlannedACC City 2 60 40 26.1 1.1% 

PlannedACC 

Freeway 2 

60 40 43.5 0.6% 

PlannedACC 

Combined 1 

60 40 33.9 0.8% 

PlannedACC City 2 40 60 26.3 1.6% 

PlannedACC 

Freeway 2 

40 60 43.6 0.8% 

PlannedACC 

Combined 1 

40 60 34.1 1.2% 

PlannedACC City 2 20 80 26.4 2.2% 

PlannedACC 

Freeway 2 

20 80 43.7 1.1% 

PlannedACC 

Combined 2 

20 80 34.2 1.6% 

*Rated fuel economies are notably lower than simulated, due to usage of the extra 3 

cycles for the rated fuel economies 

5.3.3: Parameter Sensitivity 

Both HeadwayACC and VelocityACC are sensitive to desired headway. 

HeadwayACC increases fuel economy by 0.8-1.1% and 0.4-0.5% for each second of headway, 

from 2 to 6 seconds for freeway and urban conditions, respectively. VelocityACC increases 

fuel economy by 0.4-0.9% and 0.3-0.6% for each second of headway, from 2 to 6 seconds for 

freeway and urban conditions, respectively. The increases in headway serve to guard from 
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instability, limiting the need to brake using the safety override, Equation IV-1. However, 

increasing headway excessively would decrease effective lane capacity, in aggregate. This 

leads to questions on how to balance fleet fuel economy and individual fuel economy. This 

paper only investigates the latter, as does current testing methods. In addition, in real 

world conditions, it would allow and encourage vehicle to merge in front of the vehicle, 

which may require unplanned breaking. This could lead to decreases in real world 

performance, when increasing headway. The proposed methodology would not capture this 

effect. 

For the PlannedACC control strategy desired headway was not a parameter. 

Instead, the plan ahead and re-planning intervals were modified to vary between 1 and 6 

seconds for each.  As expected, the longer the vehicle plans into the future, the greater the 

fuel economy benefits. The interval between changes in acceleration however, must be 

smaller than the time the vehicle plans for. Equal plan ahead and re-plan intervals almost 

always lead to decreased fuel efficiency and are always less efficient than if they were 

different, for a given planning interval. The buffer between these two intervals ensures the 

smoother acceleration pattern, which allows for the efficiency gains. Overall fuel economy 

gains were shown at all times where the time between restarting the planning algorithm 

was shorter than the time it could look ahead, suggesting fuel economy gains are possible 

with any level of predicative ability from connected features. 

Decreasing the difference between the planning times, in addition to being less 

efficient, is also not always safe. For both 2 seconds and 6 seconds of planning time vehicles 

crash when the re-planning time is equal. This is due to the limited headway emphasis and 

simplifications that ignored rules that would be necessary for safety outside normal 

operation. Crashes can occur in this method when the speed at which the vehicle is 
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traveling at the end of each re-planning interval is high enough to cover the distance 

between the vehicles in the time between the re-plan and planning intervals. As the 

minimum headway is 1 second, any difference less than that can lead to a crash. For 

example, if over the next 6 seconds it is found safe to accelerate to 60 mph and the vehicle 

accelerates for the full 6 seconds while the lead vehicle is stopped, there will be at least 27 

meters between the two vehicles before the next decision is made. The maximum 2 m/s2 will 

not allow the following vehicle to safely stop within this distance. In reality, all control 

methodologies would have contingency rules that would allow uncomfortably fast 

decelerations. This was ignored here, both for simplicity and because the test cycles are not 

meant to examine extreme situations. Additionally one of the main predicted advantages of 

connected-autonomous vehicles is the ability to safely reduce headway. Therefore, 

modifying the control rules to increase headway, rather than maintain a difference between 

the two planning intervals would not represent ultimate likely conditions. 

5.4: Summary and Conclusions 

Autonomous vehicle driving behavior can have a considerable effect on fuel economy. 

Here I proposed a standardized method for testing the fuel economy effects of autonomous 

vehicle behavior when following another vehicle. The method consists of two steps, and is 

applicable in the near-term, when AVs will travel in traffic with primarily conventional 

vehicles. First the driverless vehicle’s control strategy is abstracted for simulation to a 

simple one lane and one dimensional road, with only one leading vehicle and perfect 

visibility; it is then run following a vehicle obeying the EPA’s FTP and HWFET drive cycles. 

These derived drive cycles are then to be tested with a dynamometer, similar to current 

testing. A series of simplified rulesets was then developed for ACC behavior and their car 
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following behavior was simulated for the EPA’s drive cycles. Fuel economy was estimated 

using the Virginia Tech Comprehensive Fuel Consumption model. Results showed 

considerable variation in fuel economy, with the simplest ruleset showing decreases in 

performance, and a slightly more complicated and less-aggressive ruleset showing both 

minor improvements and decreases in fuel economy. Another control algorithm, relying 

upon an assumption of predictive ability provided by connected autonomous vehicles was 

shown to consistently provide improvements in fuel economy. 

The results of this study have shown that following control algorithms designed 

without considering fuel economy performance can perform significantly worse, while more 

intelligently designed control schemes may equal or exceed the base driver performance 

assumed by the EPA fuel economy tests. At present, with no incentive to design more fuel 

efficient autonomous rulesets, manufacturers may not design for increased fuel economy. 

They may design a system to maximize speed and/or acceleration, by default or as an 

option. This would be similar to the poor performing VelocityACC ruleset we tested, which 

often had worse fuel economy than the EPA fuel cycle. In addition, this study found more 

advanced connected features can improve performance consistently and significantly, by 

improving the amount of time a vehicle can predict actions in the future. While the basic 

testing method outlined here would have to be expanded to meet U.S. regulatory 

requirements in order to test automated vehicles, it does show the need for a new testing 

procedure. This chapter also only tested an AV’s performance when following another 

vehicle following specific rules, not unconstrained or able to pass. Therefore, this chapter 

only compares fuel economy changes when compared against the EPA cycles, which may be 

different than how a human driver would perform under similar restrictions. The fuel 

consumption model used precluded any testing of grade-based optimization. This study 
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demonstrated that simulations of a car with autonomous features following another vehicle 

obeying the EPA drive cycle can be used as a standardized method to create a drive cycle to 

test fuel economy. 

The results suggest that this method can be used to demonstrate how AV behavior 

may affect fuel economy in vehicles following similar traffic patterns to those currently 

assumed by the EPA. These results are limited by: the simplification of control strategies; 

the accuracy of the fuel consumption model used; and the usage of the EPA Urban and 

Freeway drive cycles, which likely do not reflect the real conditions in which the initial AVs 

may be operating. With these factors noted, I found a range of possible automation 

outcomes from fuel economy losses of up to 3% to gains of up to 5%. 

This study used the current EPA Urban and Freeway fuel economy drive cycles as 

the base for the automated following cycles. This may not be appropriate for the expected 

future of NHSTA Levels 2 and 3 AVs (NHTSA 2013). These vehicles are not expected to be 

able to drive themselves in all conditions. Instead they are to have a limited subset of 

conditions in which they may enter an autonomous mode. Therefore, the leader drive cycle 

should be designed to account for these situations.  In addition, the approach used here is 

for the near-term evaluation of AV technologies. As technology and adoption increases and 

the system becomes more efficient, the driving behavior of the lead vehicle as well as the 

entire system will change. Hence, car following algorithms will have less predictive power. 

What is clear is that rapid progress is being made in the development of and market for 

autonomous and connected vehicles and that AV technology affects individual vehicle fuel 

economy. Given this, stakeholders can use the methods outlined here as a starting point in 

the discussions for the best path forward. 
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Chapter V Conclusions, Contributions, Policy Implications, 

and Future Work 

6.1 Summary 

New technologies such as vehicle electrification and automation offer the potential 

to greatly reduce the externalities associated with mobility and transport. Chapter I 

discussed some of the many externalities currently associated with transport and travel 

and how vehicle electrification and automation might affect them. Under the 

predominantly petroleum-fueled status quo, these externalities include oil security, air 

pollution, climate change, congestion, traffic accidents, and noise. The estimated per gallon 

of gasoline values of these externalities are shown in Chapter I, Figure 0-1. Some of these 

externalities have been decreasing; crashes, for example, have been decreasing since 1990. 

Total crashes only increased for the first time in 2015 (US DOT 2017b). Oil consumption 

has been decreasing per mile traveled for the past decade and is projected to decrease over 

the coming decades (EIA n.d.; USDOT FHA 2017). 

Autonomous and electric vehicle technologies have the potential to drastically 

reduce the externalities associated with passenger travel. Driver error and impairment are 

estimated to be contributing factors in about 90% of all U.S. roadway crashes (Dingus et al. 

2016) and current autonomous technology could mitigate one-third of U.S. crashes (Harper 

et al. 2016b; US DOT 2017b), but could potentially raise VMT (Harper et al. 2016a; James 

M. Anderson et al. 2014). Electrification removes the oil security costs by changing the fuel 

type, while also increasing an individual vehicle's efficiency (Chae et al. 2011; Gautam et al. 

2011; Miller et al. 2011; US DOE n.d.). Automation may increase, or decrease, vehicle 
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efficiency and network performance (Asadi and Vahidi 2011; James M. Anderson et al. 

2014; Mersky and Samaras 2016; Park et al. 2011; Rakha et al. 2011a). Automation also 

has the potential to either increase, or decrease, VMT (Childress et al. 2015; Fagnant and 

Kockelman 2015; Harper et al. 2016a; James M. Anderson et al. 2014; Martin et al. 2010). 

This dissertation contributes to the literature by addressing four components 

necessary to ensure that these new technologies contribute to a socially optimal outcome. 

These four components are: being able to determine if adopting new technologies, for a 

specific locality and purpose, would provide a social benefit; knowing how to encourage 

adoption of a technology; knowing how to optimally construct necessary infrastructure for 

the new technologies; and being able to effectively regulate technologies so that their future 

development increases social value. This dissertation addressed each issue in a chapter 

focusing on specific novel applications and case studies. 

6.2 Contributions 

Chapter II focused on the issue of determining the social value of implementing a 

new technology with a case study of the City of Pittsburgh’s municipal vehicle fleet, and 

also potentially adding solar power or renewable-energy credits. A municipality evaluating 

a potential transition to an electrified vehicle fleet has its own set of decision criteria. 

Several cities have been exploring ways to simultaneously increase both distributed solar 

photovoltaic (PV) generation and electric vehicle (EV) charging infrastructure. While most 

PV installations would not directly charge an electric vehicle, PV installations would start 

to change the emissions from electricity purchased by municipalities, which would influence 

their decisions and performance metrics. Chapter II contributed to the literature by 

conducting a life-cycle assessment and cost-benefit analysis for municipal fleet 
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electrification decisions, using Pittsburgh, Pennsylvania, as a case study. The analysis 

included Pittsburgh’s municipal permitting vehicle fleet over several electricity grid 

scenarios, and it assessed the use of PV installations at city-owned parking facilities. Costs 

were included while comparing vehicle options, as were the emissions and externality costs 

of GHGs, SO2, and NOx from both direct and upstream effects. For Pittsburgh’s municipal 

fleet BEVs, but not PHEVs, were found to have lower life cycle GHG emissions than HEVs. 

However, vehicle electrification was found likely to have higher total social emissions costs 

than conventional options. As the electricity grid transitions to lower-polluting sources, EVs 

likely have clear advantages over conventional vehicles. PV systems built over city parking 

facilities could power the equivalent of more than 30 times the yearly travel of the 

municipal vehicle fleet. The necessary structures to preserve parking spaces, while 

providing PV, make this system cost-prohibitive. By providing a comprehensive life-cycle 

assessment and analysis, this chapter provided a method for municipalities, counties, 

states, and other stakeholders to evaluate the potential benefits and costs of vehicle 

electrification. 

Chapter III focused on how predict the adoption of a technology by investigating the 

predictive power of demographics and incentives on EV sales in Norway. Current EVs tend 

to be more expensive and have shorter range, which can hinder public adoption. Norway 

has a long history of incentivizing BEV adoption, including measures such as exemption 

from roadway tolls, access to charging infrastructure, point of sale tax incentives, and usage 

of public bus use limited lanes. Chapter III contributed to the literature by analyzing the 

sales of electric vehicles on a regional and municipal basis in Norway and then cross-

analyzed these with the corresponding local demographic data and incentive measures to 

attempt to ascertain which factors lead to higher BEV adoption. Chapter III showed that 
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access to BEV charging infrastructure, being adjacent to major cities, and regional incomes 

had the greatest and most significant predictive power for the growth of BEV sales. It 

showed that short-range vehicles showed somewhat more income and unemployment 

sensitivity than long-range vehicles. Toll exemptions and the right to use bus-designated 

lanes did not appear to have statistically significant predictive power for BEV sales in the 

linear municipal-level models, but this could be due to neighboring major cities, another 

variable, containing those incentive features. As this chapter does not test for causation, it 

cannot be determined from this chapter if correlation of per capita sales with charging 

stations is purely due to the consumer incentive effect of the charging stations, or if the 

charging stations are being built in response to local EV demand. This correlation, however, 

was shown to be non-random. Regardless of the direction of causation, or the presence of 

any confounding variables, charging stations act as an effective predictor for electric vehicle 

adoption, given the conditions in Norway. This infrastructure is also a physical requirement 

for EV adoption, when residential charging is unavailable. It is therefore prudent to plan 

for increased charger construction when planning for increased AV adoption as the factors 

that lead to this correlation are likely to be present in US as well. 

Chapter IV focused on how to optimally construct necessary infrastructure for new 

technologies using the joint application of electric vehicle chargers and vehicle automation 

in King County, Washington, as a case study. Chapter IV contributed to the literature by 

optimizing EV charging station placement based on operator cost, commuter cost, and level 

of automation. Moving from levels 0-3 to level 4 and level 5 automation reduced the peak 

electrical load from EV charging by approximately 31% and 68%, respectively. Moving from 

no automation to level 4 automation lowered the optimal number of chargers by 65% and 

the total costs by 46%. Moving from levels 0-3 automation to level 5 automation decreased 



194 

 

the optimal number of chargers by 84% and total costs by 69%. The cost borne by 

commuters was only significant with level 5 automation, where the cost borne by 

commuters was 24% of the operator’s cost.  

Chapter V focused on how to effectively regulate technologies so that their future 

development increases social value, focusing on the specific problem of measuring 

autonomous vehicle fuel economy. Environmental pollution and energy use in the light-duty 

transportation sector are currently regulated through fuel economy and emissions 

standards. These standards assess quantity of pollutants emitted and volume of fuel used 

per distance driven. The U.S. fuel economy tests, by design, neglect the differences in how 

individuals drive their vehicles on the road. As autonomous vehicle (AV) technology is 

introduced, more aspects of driving shift into functions of decisions made by the vehicle, 

rather than by the human driver. Yet the current fuel economy testing procedure does not 

have a mechanism to evaluate the impacts of AV technology on fuel economy ratings and on 

regulations such as Corporate Average Fuel Economy targets. Chapter V contributed to the 

literature by developing a method to incorporate the impacts of AV technology within the 

bounds of current fuel economy tests, and it simulated a range of automated vehicle drive 

cycles to estimate changes in fuel economy. The results showed that AVs following 

algorithms designed without considering efficiency could degrade fuel economy by up to 3%, 

while efficiency-focused control strategies may equal or slightly exceed the existing EPA 

fuel economy test results by up to 5%. This suggested the need for a new near-term 

approach in fuel economy testing to account for connected and autonomous vehicles. 
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6.3 Policy Implications 

The chapters' contributions, individually and as a group, lead to distinct policy 

implications. Chapter II showcased the importance of understanding actor motivations, 

emissions accounting frameworks and spatial effects when considering the net social value 

of adopting a new technology, specifically electric vehicles. Chapter III suggested that major 

metropolitan areas are the most likely to quickly adopt electric vehicles and that charging 

infrastructure needs to be built or likely will be built for electric vehicles. Chapter IV 

complemented this by showing that planning jointly for autonomous vehicles and electric 

vehicles allows for significant savings in operator and net social costs and reduced amounts 

of EV charging infrastructure. It also enables the smoothing of the peak electric demand 

from electric vehicles. Chapter V showed that it is necessary to measure the effect of 

automation on driving patterns to ensure that the technology does not decrease fuel 

economy. 

This last conclusion is important when discussing or assessing policies for 

transportation for the future. Electric vehicles and autonomous vehicle technology are 

undergoing development and commercialization concurrently. These technologies have 

potential interactions, some positive and some negative. Assessing whether and how to 

adopt and regulate either technology is a matter not only of assessing the technology in 

isolation along each of the four listed components, but also of investigating how the 

technologies could and should interact. Building for EVs may be more expensive than 

necessary, unless one considers automation. Rules for optimally controlling conventional 

AVs will be different than rules for electric ones. Ensuring that these technologies work to 
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achieve the optimal social benefit possible requires considering them in unison through 

regulation, adoption, and support. 

6.4 Future Work 

Each of the chapters suggest questions to be investigated in follow-up work. Chapter 

II addressed the question of adoption of EVs for one specific municipality. The spatial 

differences in answering this question across municipalities is significant. Exploring these 

differences while still accounting for the combined social value and municipal motivations 

is a natural next step. Chapter III showed a causal uncertainty in the correlation between 

charging infrastructure and electric vehicle adoption. Investigating the exact cause of this 

correlation is necessary to design effective incentive policy. Chapter IV showed significant 

and large synergies when optimizing EV charging infrastructure with autonomous 

technology. However, the results are noisy, due to the lack of an underlying demand model 

and the lack of a time component in the optimization model. Chapter V suggested a 

methodology for accounting for autonomous technology in fuel economy rating. It does not, 

however, come up with a comprehensive methodology for accounting for the individual or 

system-wide gains possible with connected autonomous vehicle technology.  

The results of this dissertation suggest future lines of investigation. Chapter IV 

showed that the effective costs of electric vehicles can decrease with the addition of 

autonomous technology as the costs of the required infrastructure decrease. Combining this 

result with Chapter II’s investigation would show improvements in the performance of EVs. 

Chapter V showed a potential weakness when accounting for the fuel consumption of AVs. 

This introduces errors into the results of Chapter IV’s infrastructure optimization model. 

Accounting for this would improve the veracity of the results. Chapter III suggested the 
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potential acceptance of shorter-range EVs. Accounting for the potential savings this would 

introduce and how charging infrastructure would enable it would allow for Chapter IV’s 

model to include another cost component of social value, currently ignored. 

Ensuring social value from a new technology’s adoption requires considering four 

components: determining whether adopting new technologies, for a specific locality and 

purpose, would provide a social benefit; knowing how to effectively encourage adoption of a 

technology; knowing how to optimally construct necessary infrastructure for the new 

technologies; and being able to effectively regulate technologies so that its future 

development increases social value. No technology, however, is born in a vacuum. This 

dissertation has contributed to the literature by showing that these four components must 

account for the possible interactions of the new technology when paired with other, 

plausible market entrants. This is clear when looking at electric and autonomous vehicle 

technologies, which are simultaneously and concurrently undergoing development and 

market introduction.  
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