
CMU-CS-84-122

Error Detection with Memory Tags

Richard H. Gumpertz

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania

December, 1981

DEPARTMENT
of

COMPUTER SCIENCE

Carneg=e-iellon Un=vers=ty

CMU-CS-84-122

Error Detection with Memory Tags

Richard H. Gumpertz

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania

December, 1981

Submitted to Carnegie-Mellon University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Copyright © 1981 Richard H. Gumpertz

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory tinder Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the United States Government, or Carnegie-Mellon University.

Richard H. Gumpertz i Error I)ctection with Memory Tags

Abstract

The ability to achieve and maintain system reliability is an important problem that has become

more critical as the use of computers has become more common. Fundamental to improved

reliability is the ability to detect errors promptly, before their effects can be propagated.

This dissertation proposes methods for using storage tags to detect a broad class of hardware and

software errors that might otherwise go undetected. Moreover, the suggested schemes require

minimal extensions to the hardware of typical computers. In fact, it is shown that in many situations

tags can be added to words of storage without using any extra bits at all.

Although tagging is central to the discussion, the methods used differ radically from those used

in traditional tagged architectures. Most notably, no attempt is made to use the tags to control what

computations are performed. Instead, the tags are used only to check the consistency of those

operations that would be performed anyway in the absence of tagging. By so doing, redundancy

already present in typical programs can be harnessed for detecting errors. Furthermore, it becomes

possible to check an arbitrary number of assertions using only a small tag of fixed size.

The dissertation examines various strategies for exploiting the proposed tagging mechanisms;

both the positive and negative aspects of each application are considered. Finally, an example is

described, showing how tagging might be implemented in a real machine.

Richard tt. Gumpertz ii Error I)etection with Memory 'Fags

Acknowledgments

Acknowledging those who have contributed to ally major piece of research is always awkward.

One does not want to omit anyone, but on the other hand one does not want to dilute the expression

of gratitude by listing everyone who was even peripherally involved. Although my advisor, William

Wulf, was my primary technical sparring partner, I also thank Joseph Newcomer, the rest of my

committee, and the many other members of the CM U Computer Science community who helped me

resolve vague notions into concrete proposals. I know of no other environment that would have been

as cooperative and helpful.

To my family and friends who saw me through, I am deeply indebted. Most important of all,

however, was the support of my wife l.inda who, once again, endured.

Disclosure of any techniques or principles in this report does not constitute the granting by the
author or any other parties of a license under any patents, present or future, related 'to such
techniques or principles.

Richard H. Gumpertz iii Error 1)etection with Memory Tags

Table of Contents

Chapter 1: Introduction 1

1-1. Overview 5

1-2. Coding 5
1-2.1. Some terminology 5
1-2.2. Unpatterned errors 8
1-2.3. External redundancy 9
1-2.4. Error correction 10

1-3. Encryption 12

Chapter 2: Mechanisms 17

2-1. Traditional coding and the addition of tags (C-tagging) 18

2-1.1. The parity code 18
2-1.2. Adding a tag to the parity code 19
2-1.3. The Hamming code 20
2-1.4. The extended 1-lamming code 22
2-1.5. Adding a tag to the extended Hamming code 23
2-1.6. Hsiao's modified Hamming code 25
2-1.7. Codes with greater minimum distance 26
2-1.8. Previous work 27

2-2. Tagging using encryption (E-tagging) 28
2-2.]. Previous work 28

2-2.2. Exaggeration of undetected errors 29
2-3. Combining explicit tagging with encryption 30

2-4. Hashing of tags 31
2-4.1. Incremental hashing 33

Chapter 3: Applications 35

3-1. Addressing checking 35
3-1.1. Choice of addresses for tags 36

3-1.1.1. Physical address tagging 37
3-1.1.2. Virtual address tagging 37

3-1.1.3. Object-name tagging 38
3-1.2. Instance tagging 39
3-1.3. Multiplexer checking 41

3-2. Type tagging 42
3-2.1. Run-time type checking 42
3-2.2. User-defined types 43
3-2.3. Implementation of type-tagging 46

3-2.3.1. Type-tagging at subroutine entry and exit 46
3-2.3.2. In-line type-tagging 47
3-2.3.3. Other models of type unsealing 48
3-2.3.4. An example 50

Richard It. Gumpertz iv Error Detection with Memory Tags

3-2.4. Type comparison without type inquiry 52
3-3. Ownership tagging 52
3-4. Other applications 54

3-4.1. Bounds checking 54

3-4.2. Random jump detection 55
3-4.3. Uninitialized variables 55
3-4.4. Variant records 56

3-4.5. Extended tagging 56
3-5. Summary of the applications 57

Chapter 4: Implementation details 59

4-1. Tag checking when storing 59
4-2. Allocated but uninitialized vs. initialized storage 61

4-3. Tagging of variant records 62
4-4. Slicing 63
4-5. Packed data structures 64
4-6. Multi-cell values 65

4-7. Debugging tools 65
4-8. I/O and other "blind" accesses 66

4-9. Garbage collection 67
4-10. Stacks 68
4-11. Resonance 70

Chapter 5: An example 73

5-1. A summary of Nebula 74

5-2. Tags used 77
5-3. Tagged-cell size 78
5-4. Tag size 79
5-5. Hashing 79
5-6. Registers 80
5-7. In-line literals 81
5-8. Stack allocation 82

5-9. Operand specifier changes 83
5-10. Instruction changes 84
5-11. Summary of tile changes 85
5-12. Omissions 86

Chapter 6: Conclusion 87

6-1. Summary 88
6-1.1. Hashed tags 88

6-1.2. Implementation 89
6-1.3. Applications 89

6-2. Evaluation 91
6-3. Future research 93

6-4. Parting words 94

Appendix A: An observation concerning DES 95
Appendix B: A fast parity encoder 97
Glossary 99
References 103

Richard H. Gumpertz 1 Error Detection with Memory 'Fags

Chapter 1
Introduction

When you are reciting poetry, which is a thing we never do, you find
sometimes, just as you are beginning, that Uncle John is still telling Aunt
Rose that if he can't find his spectacles he won't be able to hear properly,
and does she know where they are; and by the time everybody has stopped
looking for them, you are at the last verse, and in another minute they will
be saying, "rIlaank-you, thank-you," without really knowing what it was all
about. So, next time, you are more careful: and, just before you begin you
say, "Er-h'r)n!" very loudly, which means, "Now then, here we are":; and
everybody stops talking and looks at you: which is what you want. So then
you get in the way of saying it whenever you are asked to recite.., and
sometimes it is just as well, and sometimes it isn't And by and by you
find yourself saying it without thinking. Well, this bit which I am writing
now, called Introduction, is really the er-h Y'm of the book, and I have put it

in, partly so as not to take you by surprise, and partly because l can't do
without it now. There me some very clever writers who say that it is quite

easy not to have an er-h'r)n, but I don't agree with them. I think its is much
easier not to have all the rest of the book.

A. A. Milne [58 (pp. ix-x)]

The ability to achieve and maintain system reliability is an important problem that has become

more critical as the use of computers has become more common. Fundamental to improved

reliability is the ability to detect errors promptly, before their effects can be propagated. This

dissertation proposes methods for using storage tags to detect a broad class of hardware and software

errors that might otherwise go undetected. Moreover, the suggested schemes require minimal

extensions to the hardware of typical computers. In fact, it is shown that in many situations tags can

be used without adding any extra bits to words of storage.

Even when the hardware of a computing system performs properly, the software might not.

Standard hardware approaches to reliability, such as coding, replication, etc. provide no help in such

situations. Nevertheless, there is quite a bit of redundancy in the typical program that might be used

to detect software errors. This takes the form of simple semantic content, such as the fact that an

integer-add operation would normally reference integers. The proposed technique allows one to

Richard H. Gumpertz 2 Error l)etection with Memory Tags.

harncss at least some of this semantic contcnt that would otherwise be ignored. In particular, it

allows the hardware to verify certain kinds of simple assertions, many of which arc specific to the

program being executed. While this in no way guar,mtees program correctness, it nonetheless does

detect certain classcs of software (and hardware) failurcs that currently might go undetected.

Of course, it would be impractical to add arbitrary amounts of information to each item in

storage. To do so would consume excessive storage and execution time. Therefore, the proposed

mechanism uses a fixed-size tag. By appropriate specification of the size of the tag, a system designer

can choose any desired level of confidence in the thoroughness of the comparison. As the tag-size is

increased, the error-detection capability is also increased.

In the early years of computing, the devices used to implement machines were individually so

unreliable that redundant elements were often necessary to provide reasonable performance.

Completely duplicated hardware, self-checking circuits, and error detecting codes were common.

With the advent of more reliable devices, primarily the transistor, much of the concern with

component failure disappeared from commercial designs. Fault detection was included in only a few

applications: telephony, weaponry, space exploration, etc. In most other equipment one often found

no more than parity-checks of primary (core) storage and more complex checks of secondary

(magnetic) storage. The central processor of a computing system was considered "reliable enough"

without any extra circuitry. No special provisions were made for detecting errors. In many cases,

those failures that did occur were discovered only through inability to get programs to run

"properly;" subtle failures could go undetected for long periods.

As usage of computers increased, higher demands were made for both speed and correctness.

Unfortunately, these two properties tend to oppose each other; often the one can be improved only at

the expense of the other. Meanwhile, the cost of error dctcction circuitry dropped drastically relative

to overall system cost. Advances such as integrated circuit memories both necessitated and allowed

redundancy. Furthermore, the relative cost of labor-intensive maintenance and debugging increased.

At lcast one manufacturer is now reported to devote about 30% of the hardware in a "typical"

processor to error detection/correction/diagnosis circuitry. Nevertheless, more error control is

needed. This is especially true at higher abstraction levels which until now have not received much

attention.

Dynamic ("run-time") checking of software has not been as common as dynamic checking of

hardware. This is largely duc to the common assumption that software cannot "break;" if it works

today then it should also work tomorrow. Those defects that are present when a program is first

Richard H. Gumpertz 3 Error l-)ctcction with Memory "Fags

written ought to be detected during the debugging and testing process. Although this premise may

be valid for very simple software, experience has shown that it is often incorrect for even moderately

large programs. The following are all examples of problems that might not appear until well after

initial debugging:

• defects that affect only a few instances of possible input data (e.g., the bug in evaluating

Jn 2.02on the original HP-35 scientific calculator [26]);

• defects that affect behavior only under peculiar ordering or timing of requests;

• defects that show up only under usage patterns not previously anticipated or tested;

• defects that were previously masked by the compensating behavior of other software or
hardware.

All of the above examples are cases in which software can at least seem to break. Since no

reprogramming of the faulty program occurs in any of them, one could not in general assume that

defective module will be specifically tested. Rather, only those checks made during normal execution

would be a_ailable to detect the failure. Thus, to control the effects of software "breaking," one must

provide checks that execute during normal "production" runs.

Many programmers have learned, often through bitter experience, to employ dynanfic checking.

Almost e_ery standard of programming style exhorts one to check explicitly that a program's

parameters meet any assumptions made by that program. A few may even suggest checking of values

generated within a module. Some programming languages can help by automatically inserting well

known tests, such as for subscript-range errors. Unfortunately such checks are often omitted to speed

execution. Furthermore, the implementation of some checks, such as for detecting dangling

references or improper flow of control, are by no means straightforward. Their implementation can

slow down not only execution of the program but also the programmer himself (by distracting him

from the principal problem). Were these checks implemented in hardware, they might be used more

often. As pointed out by Hoare [27],

•.. it is absurd to make elaborate [error] checks on debugging runs, when no trust is put
in the results, and then to remove them in production runs, when an erroneous result

could be expensive or disastrous.

Myers [62] cites several instances of such fiascos.

The error-detection mechanisms proposed in this dissertation are designed to help detect a

number of hardware and software failures that would otherwise go undetected. Thes'e include:

• Failures in addressing mechanisms: Far more attention has been paid in the past to the
failure of data storage elements than to failure of the mechanisms used to address those
elements.

Richard 1t. Gumpertz 4 Error Detection with Memory Tags

• Incorrect demultiplexing: Various other forms of selecting the wrong data, such as

improperly timed "strobing" of a time-multiplexed bus, are not often detected by current
hardware.

• Use of illegal pointer values: Software too can cause hnproper accesses. Typical cases are
the use of uninitialized pointer variables or obsolete (dangling) pointer values.

• Type and modularity violations: It has been observed that a wide range of errors can be
detected by limiting a program's ability to access storage. Visibility restrictions based on
modules and O'pes are already common in modern programming languages. Just as the
military reinforces security by granting access to information on a "need-to-know" basis,
so can a programming system detect improper code by enforcing the boundaries defined

by module and type abstractions.

Note that all of the above can be considered instances of accessing the wrong value, accessing it in the

wrong manner, or accessing it at the wrong time. In each case the fetched data are likely to be

internally consistent. That is, a parity or Hamming code would not signal an error. Despite the

appearance of validity, the value read isjust not the one really wanted.

Traditionally, not as much attention has been paid to detecting the errors listed above as has been

given to detecting other errors, such as memory failures. Nevertheless, the effects of one of these

errors occurs, when it occurs, can be at least as catastrophic as those that would result from those

errors for which checking is currently performed. Furthennore, experience seems to indicate that the

higher-level errors occur fairly frequently. Therefore, if it can be done at reasonable cost, adding

checks for these errors seems well worthwhile.

Normally, adding error checks requires adding extra hardware. If nothing else, there must be

bits that can be checked for consistency with each other. In this case, however, much of the

redundancy necessary for appropriate error checks is already present in today's computers. The

instruction stream, for instance, contains information about the data it accesses. From the program

counter one can often derive infonnation as to which module is executing and hence the data that it

might legally reference. Furthermore, addressing arithmetic is often quite limited--one almost never

uses a pointer to an object to compute the address of another object that is not strongly related to the

first. In all of these cases, comparison of the implicit knowledge so derived with that stored in tags

can be used for verification of assertions.

Although the checks could be implemented in software, it will be shown that it is possible to

provide them in hardware at minimal added cost. By exploiting existing redundancy and adding

small amounts of new information, a large gain in error detection is achieved. Because the checks are

inexpensive, they can be performed with great frequency and so it is likely that detection will occur

Richard H. Gumpertz 5 Error Detection with Memory Tags

soon after the error condition manifests itsclf. Prompt detection, even without details, is the most

important factor in achieving reliable computation. Errors must not be allowed to spread far from

the original failure. Otherwise, not only can determination of the source of the error become difficult

but also location and correction of the damage becomes much harder.

1-1. Overview

The body of this dissertation consists of three principal parts: mechanisms for tagging words in

storage, potential applications in which such tags might prove useful for detecting errors, and an

example to make the ideas more concrete. There is little direct precedent for the tagging mechanism

proposed and so a traditional discussion of previous work would be strained. Of course this does not

mean that I do not draw on existing knowledge. In particular, two areas are critical to the

background of this dissertation: coding and encryption. Because many in the intended audience

may not be well versed in these subjects, brief introductions to each are included below. Other

references to previous work are integrated with the descriptions of the relevant mechanisms.

1-2. Coding

Rather than give a detailed survey of error-detecting and error-correcting codes, 1 refer the

reader to the survey article by Tang and Chien [85]. A good introductory textbook was recently

published by Hamming [25]; for more detail there are two outstanding references works, one by

Peterson and Weldon [70] and the other by MacWilliams and Sloane [54]. The latter book includes a

bibliography which must be seen to be appreciated. The reader need not be familiar with the

detailed operation of any particular codes. The two codes that are used in this dissertation, parity and

Hamming, are explained as needed in Section 2-1.

1-2.1. Some terminology

Before going on, it is important to define some terminology. In addition, a glossary at the end of

the dissertation contains definitions of a few terms that may be unfamiliar to particular readers.

It is assumed that Boolean algebra needs no explanation. Because symbology sometimes varies,

however, it should be noted that the symbol "^" is used to denote the intersection (and) operator and

the symbol "_" the sum/difference (exclusive-or) operator.

All error detection schemes depend on redundancy--without some distinction between legal and

illegal conditions there would be no way to realize that an error has occurred. Checking for an error

l_,ichard H. Gumpertz 6 Error l)etection with Memory Tags

involves examining a set of signals, to see whether the value it denotes is valid or invalid, if invalid,

an error is detected; if valid either no error has occurred or one has gone undetected. The

redundancy provides the information necessary to distinguish valid values from invalid ones.

Without it, all values would be valid.

The term codeblock 1 is used in this dissertation to denote the set of signals examined by such an

error check. In memory systems, the codeblock is usually obvious--the bits fetched from memory.

In other systems the codeblock may be less obvious--an example might be the combination of an

array descriptor and a subscript. Those codeblock values that are designated as valid are usually

referred to as codewonts; there is no standard name for file remaining (inwdid) values. The selection

ofa codeblock and which of its values are codewords are known collectively as a code. The individual

signals in the codeblock are often referred to as characters. Because I will normally restrict my

discussion to binary codes, however, the term bit will often be used instead.

In the case that a codeblock's value is changed by an error, MacWilliams and Sloane [54] and

Wakerly [92] use the term error vector to denote the Boolean difference between the intended

codeword and file codeblock value actually received. I use the term symptom 2 to express a similar but

more general (and less formal) concept. Even when one cannot be as mathematically specific about

an error as the term error vector would require, one can still use symptom for an intuitive connotation.

It can be considered to denote those things which are visibly changed because of an error.

There is a convention often used for describing codes. The notation (n,k) is used to describe

codes that have n bits in each codeword, k of which are data bits. That is, the codeblock can take on

2n values of which 2k are codewords. The remaining 2n- 2k codeblock values are invalid (and so can

be encountered only as the result of an error).

Occasionally, this (n,k) notation is extended to O_,k,d), in which case d denotes the minimum

distance between codewords. For binary codes the metric most often used is Hamming distance

which is the weight of(Le., the count of ones in) the Boolean difference of the words being measured.

The minimum distance of a code is thus the minimum number of bits that must be altered to distort

lln traditionalcodingtheory,the term messageis sometimesusedto denotea similarconcept. For the purposeof this
discussion,however,the implicationofa communicationsystemwouldbe misleading.Hence,usinganalternatetermseems
appropriate.

ZIlaetermsymptomshouldnotbe confusedwithanothertermoftenusedwhendiscussingerror-correctingcodes: syndrome.
Thelatteris the matrix-productof a linearcode'sparitycheckmatrixand(the transposeof) a codcblock.If non-zero,the
syndromeindicatesthatanerrorhasoccurred.Fora binarycode,it isthesumofthebit-numberswhereerrorshaveoccurred.

Richard H. Gumpertz 7 Error l)etection with Memory Tags

at least one codeword into another. To simplify later discussions, a fourth letter, r, is used for the

difference n-k. This quantity can be considered a measure ofa code's rcdundancy. All four letters,

n, k, d, and r are used in this dissertation for no other purpose than that defined above.

]'he designer of error-detection circuitry must specify the extra signals to be included in the

codeblock, because the choice can have a significant impact on system cost, one generally will try to

design the redundancy so as to maximize the probability of detecting the errors that are most likely to

occur. The ability to do this is clearly dependent upon the pattern of errors to be encountered. If all

error symptoms, including the "null" (Le., no error) one, were equally likely, then the probability of

detecting an error would be directly proportional to the number of non-codewords and inversely

proportional to the overall number of codeblock values. The probability of detecting an error would

be

(# of invalid codeblock values)

(# ofcodeblock values)

OF course all symptoms are not equally probable. If they were, then the codeblock would be

useless--it would be equivalent to a random number generator! That is, there would be no statistical

correlation between the original codeword and any codeblock value examined later.

A more reasonable assumption might be that the null symptom is very probable while the other

symptoms are less probable. In this case, one would be interested in the conditional probability of

detecting an error when one occurs. Assuming that all errors will either be reflected in the codeblock

as a non-null symptom (or may be safely ignored), this probability is

(# of invalid codeblock values)

(# ofcodeblock values) - 1

In general, one is interested in the complementary probability, that of an error going undetected.

I call this probability q,; it is the value

(# ofcodewords) - 1

(# ofcodeblock values) - 1

If one can isolate "check" bits from "data" bits (Le., the coding is systematic or separable), then this

quantity can be expressed for an (n,k) code as

2k-- 1

2n - 1

For large values of k, one can simplify this expression with the approximation

q, _-2

(remembering that r is defined as n- k).

Richard tt. Gumpertz 8 Error l)ctcction with Memory 'lhgs

Traditional codes have attempted to reduce the probability of not detecting an error m less than

+. While this is impossible for the uniformly distributed, unpatterned, error described above, it can

be done if there are useful patterns to the errors that arc most likely to occur. For example, in the

case where r = 1, one can do a variety of things with the redundant bit. Two straightforward

possibilities are to set it to zero or to set it to the "parity" of the data bits. For the totally unpatterned

error (see Section 1-2.2), either method will miss errors with probability 4' (in this case 0.5). On the

other hand, for independent bit failures (where a single-bit error is far more probable than a multi-bit

error) the parity code will do substantially better than q, while the constant-zero code will do worse.

The former code would miss only double-bit, quadruple-bit, etc. failures, which would be relatively

rare. The latter code, however, would miss any error which did not affect the check-bit itself.

Most codes capable of detecting multiple-errors achieve similar improvements over q, through

similar concentration on the most likely errors, l.eung-Yan-Cheong and Hellman [47] and later

l_eung-Yan-Cheong, Barnes, and Friedman [48] discuss the attainability of _ for various codes and

error rates. They show that, under some circumstances, a few well-known codes will not keep the

probability of an undetected error below Lk.

1-2.2. Unpatterned errors

The above discussion of qJand uniformly distributed symptoms may at first seem naive. After

all, most of the work in coding theory has sought to utilize patterns in the symptoms. By tailoring

codes to detect the most likely errors, people have been able to reduce the probability of an

undetected error substantially below _b. Perhaps this emphasis has resulted not only from the

existence of such patterns but also from the lack of interesting mathematics when such patterns do

not exist. Any code of a given size, even one chosen at random, that has a unique codeword for each

value to be transmitted will perform equally well in the face of the unpatterned error, missing

detection with probability _k. Little benefit can be provided by coding theory in such cases--hence

the interest in codes for patterned errors.

The concept of an unpatterned error is specific to a given codeblock size. If one steps back to

look at a bigger codeblock, treating the original codeblocks as characters in the larger codeblock, then

the larger error pattern might resemble what is known as the random error distribution. The

incidence of errors in any particular character under a random error distribution is statistically

independent of that for the other characters. In this case one-character failures would be more

common than two-character failures and so on. If the probability for any particular character being

received erroneously is p, then the probability of an m-character failure is prn. Thus, methods that

Richard H. Gumpertz 9 Error l)etcction with Memory Tags

distinguish short-distance errors from longer ones, such as Hamming codes, can become useful. Even

if the error symptoms in individual small codeblocks may seem uniformly distributed, the

assumption that the null symptom (i.e., lack of an error) is more probable than any other symptom

implies that there is a pattern in the symptoms affecting the large codeblocks.

One assumption of this dissertation is that the unpatterned error is a reasonable model for many

of the errors that actually arise in computer systems. While the causes of these errors may be

patterned, the visible symptoms are not. Were a component common to all the bits ofa codeblock to

fail, for instance, one might induce errors in all the bits of the codeword at once. An example that

comes to mind is a power supply "flicker." Several other failures might yield seemingly unpatterned

results:

• fetching the wrong word from a storage module due to faulty address-decoding
hardware;

• fetching an uninitialized variable;

• fetching data through a "dangling pointer;"

• strobing a bus-receiver register at the wrong time.

These are all examples of using the wrong word. In each case (except, perhaps, the last) the value

fetched will roughly reflect the distribution of values in the system in general. If one assumes that all

values are equally likely to be found in storage 3 and that an erroneous storage reference will access

any one of these words, then clearly the value fetched will also appear random, thus behaving like an

unpattemed error distribution.

1-2.3. External redundancy

Most study of coding has employed what I call internal redundancy. That is, all of the bits of the

codeblock are transmitted or stored together. While this is reasonable for certain situations, there are

also cases in which one can accomplish almost nothing using such a code. Consider trying to detect

addressing failures in storage. No matter what code is used to store the data, fetches of the wrong

word will go undetectcd unless one utilizes external redundancy. That is, without some redundant

information that is not subject to the same addressing failure, there would be no way to spot an error

that just selected a different (but properly encoded) word. This is because, in the absence of other

errors, the bit-pattern found in an incorrect cell would be an acceptable codeword. The obvious

3Admittedly this is not actually the case: certain values such as zero seem to predominate. As will be seen in Section 2-2.2,
however, techniques such as encryption can be used to make this distribution much more uniform.

Richard It. Gumpertz 10 Frror Detection with Memory 'Fags

solution to this problem would be to keep part of the codcbiock elsewhere, so that an addressing

fililure would not affect all data, In this particular case, one could use bits that are present anyway:

those indicating file address of thc word. For instance, suppose that all locations whose address has

odd parity were coded with odd parity and all locations whose address has even parity were coded

with even parity. Then an addressing failure that errs by an odd number of bits would be detectable

because the value fctchcd would have the wrong parity (assuming the storage system had worked

reliably).

Another way to implement external redundancy might be to split the codcblock across two

different storage modules that are not likely to fail simultaneously in a similar manner. Even if some

of the wrong bits are fetched, the fact that not all of them come fi'om the same wrong location allows

traditional error-detecting codes (especially burst-error detecting codes) to function. The failure of

one module would then look just like a multiple-bit storage failure.

Given that various forms of external redundancy have been sporadically used in various

computer systems, it is surprising that this idea has often been overlooked in storage and

communication systems. The oversight is probably due to an assumption that most errors will result

from failures that affect the bits independently rather than from failures that affect all bits of a

codeblock in common. While the assumption may be appropriate for the first attempt to control

errors, one must consider common failures when trying to control second-order problems.

Interestingly enough, a single code can be considered as both internally and externally

redundant, depending on the context. For instance, a residue-three code (in which the check bits of

codewords equal the modulo-three residue of the data bits) might well act externally redundant with

respect to checking for proper functioning of an adder yet act internally redundant with respect to

checking that the correct operand was selected for addition. In the former case, the check bits pass

through separate circuitry from the main adder and so can be used to check the operation of that

adder. In the latter case, however, selection of the wrong opcrand would probably also imply

selection of the wrong check bits and so no error could be detected.

1-2.4, Error correction

The next step after error detection is error correction. In communications systems a distinction is

generally made between forward and reverse error-correction. Forward error-correction refers to

situations in which sufficient redundancy is included in the original codeblock to permit recovery of

the intended data. Each correctable invalid codeblock value is associated with the codeword most

Richard H. Gumpertz !1 Error Detection with Memory Tags

likely to have been transmitted when that invalid value is received. In most cases the codeword

assigned is the one "closest" to the erroneous value. If there is no such clear choice, receipt of that

value indicates than an uncorrcctable error has occurred. A typical example would be the extended

Hamming code: those codeblock values that differ by exactly one bit from a codeword are corrected

to that codeword; all others are just detected. The original choice of codewords is such that each no

invalid value is "close" to more than one codeword.

Reverse error-correction, on the other hand, does not require such guessing as to the intended

codeword. Instead, correction is performed by requesting retransmission. The sender is, therefore,

obligated to retain a copy of each message until it is properly received. The name reverse is derived

from the fact such correction requires a reverse communication channel fiom the recipient to the

sender on which success or failure of the primary transmission can be indicated.

For computer storage applications, forward error correction has usually been considered the only

kind possible. Reverse correction is normally impossible because, by the time a reader determines

that a value in storage is questionable, the writer of that location has long since discarded the proper

value--no other copies are normally retained when writing storage. It turns out, however, that

situations exist in which this is not quite the case--duplicate copies (or sufficient data to reconstruct

them) may be available. For example, there might be a copy of a storage page on backing storage.

For another example, pointer-values in doubly-linked lists can be recovered by following the pointer

chain for the opposite direction. While all of these copies (including the original) could be

considered to collectively form a forward correction code, the actual reference pattern more closely

resembles reverse correction. That is, the normal codeblock consists of just one copy which is

checked for errors without any attempt at correction. Only upon detection of an error is

"retransmission" of the other copies requested. The distinction is that the coding of the primary

codeblock is used for detection pu_oses only.

Using (forward) error-correction can be hazardous. Many errors that exceed the correction

ability of the code will slip by although they would have been caught if just error-detection were

used. No code can detect all possible errors. If a particular failure changes the codeblock from one

codeword to another, there will be no indication that the error has occurred. If forward correction is

being attempted, things become even worse. Undetected failures will arise from two sources:

symptoms that reach other codewords and symptoms that reach correctable codeblock values

associated with those other codewords. That is, in addition to errors that result in codewords,

correction causes one to miss errors that come close enough to other codewords to be corrected. One

can imagine an n-dimensional sphere around each codeword. This sphere, whose radius is the

Richard 11.Gumpertz 12 Error Detection with Memory Tags

correction distance of the code, contains those codeblock values that correct to the codcword at the

center. As the radius of this sphere of corrcctability increases, its n-dimensional volume increases

very fast! Thus, the probability of any "large" error being detected is markedly diminished. For an

untruncated Hamming code, it actually goes to zero---any error affecting more than one bit is missed.

For the more common extended Hamming code, all errors that affect an odd number of bits and

even a few that affect an even number of bits will go undetected. That is, once the error distance

exceeds the guaranteed capability of the code, a Hamming code becomes completely impotent while

an extended Hamming code becomes slightly worse than a simple parity code. Only if one can show

that the probability of such errors is very low can one justify so increasing the exposure to

miscorrcction. MacWilliams [53 (p. 12)] mentions a test of data transmission over the telephone

network in which:

The bit error rate went up when the [error-correcting] code was used. The code detected

the errors all right, but it corrected them all wrong,

1-3. Enc ryption

Most previous applications of encryption have been for communicating information via media

that would otherwise be insecure. Because of its ability to seem to randomize data, however,

encryption can also be useful for tagging. While secrecy is not important to my usage ofencryption,

the techniques used to implement it are essentially the same as those used for communication.

An extensive historical discussion of cryptography may be found in The Codebreakers: The Story

of Secret Writing by Kahn [39]. For a more technical discussion, especially oriented toward modern

techniques (which have changed dramatically with electronic computation), see the survey articles by

Diffie and Hellman [13] and Lempel [46].

Two basic encryption methods are substitution and transposition. In the former, characters (or

blocks of characters) of the plaintexl or cleartext are replaced by characters of the ciphertext. For

instance, the word lagging might be replaced by ubhhjoh.4 The list of substitutions to be made is

known as the key; it is the part of the encryption/decryption process that must be kept secret. Due to

the redundancy typically present in data being encrypted, 5 single character substitution ciphers can

usually be broken. An attacker can employ frequency analysis of the characters in a message, as well

as similar analysis of adjacent pairs and so on. In English, for instance, e is by far the most common

4Solution of this trivial cipher is left to the reader.

5This is quite noticeable in natural language communications, where information-theoretic redundancy normally exceeds a
factor of three. Military communications, which employ highly stereotypical words and phrases, are often much worse!

Richard H. Gumpertz 13 F.rror l)etcction with Memory 'Fags

character and th is the most common digraph. A character or digraph with corresponding frequency

in the ciphertext very probably can be so translated. Transposition ciphers rearrange the characters

of a message according to some secret pattern. For example, encryption might become nercpyitno.

Again the redundancy normally present in the textof messages often allows transposition ciphers to

be broken. Thus, for a message written in English one might try those permutations that tend to

bring the characters t and h together to form the digraph th.

Despite their individual weaknesses, combinations of substitution and transposition ciphers can

be significantly stronger than the individual elements from which they are formed. DES, which is

discussed below, is an example of such a product cipher.

Mathematically, the most secure cncryption algorithm for use with digital data is known as a

one-time-pad. In such a system, a different substitution cipher is used for each digit to be transmitted.

Furthermore, there is no correlation between these ciphers--they are chosen in a statistically

independent manner. The important property of a one-time-pad is that even a brute-force attack,

examining all possible keys, will give the attacker no information whatsoever. If an n-bit binary

message is intercepted, then trying all 2n possible keys will just yield all 2n possible cleartext

messages. This obviously impedes the cryptanalyst, who, to make any progress, must find ways to

eliminate some of the potential interpretations. In fact, if the key itself is not compromised then a

one-time-pad provides absolute security. That is, no matter how much ciphertext or other

information becomes available, nothing (other than an upper bound on the message length) can be

learned from an encrypted message without knowing the corresponding key.

For transmitting binary messages, the choice of ciphers may be be represented as a bit-string

where each bit denotes the cipher to be used for encrypting one bit of the message. The actual

encryption process consists of nothing more than computing the exclusive-or of the key and the

plaintext. Thus the hardware required can be both simple and fast. The main problem with one-

time-pad systems is that they require as many bits of key as there are data to be encrypted.

Furthermore, this key cannot be reused for any other messages--any reuse can significantly reduce

security of the cipher. Clearly one cannot use such a scheme to store large amounts of data in a

computer unless one can solve the equally difficult problem of storing the key! While acceptable for

use in communications systems where one is only trying to improve real-time response (by shipping

the key in advance by slow, secure means and the data by a faster medium), the large key of one-

time-pads makes them impractical for most applications.

Any encryption algorithm that uses fewer bits of key than data to be transmitted is theoretically

Richard It. Gumpertz 14 Error l)etection with Mcmory Tags

vulnerable to attack. A thorough evaluation of this vulnerability from the point of view of

information thcory may be found in a classic article by Shannon [80]. On the other hand, large keys

tend to increase the probability that the key itself will be compromised--big things can be harder to

protect than small. To get around this problem, people have attempted to find encryption algorithms

that, despite being theoretically breakable, are in fact reasonably secure. This is done by making the

work necessary for an attacker computationally impractical.

None of the methods used before this century are resistant m attack by computer when enough

text is available for cryptanalysis. Two systems that were used during World War 1I offered some

rcsistancc to machinery of the day, but eventually each proved vulnerable. One, the Hagelin device,

rcsembles the one-time-pad described above (in this case using radix 26) except that a pseudo-

random key generator was substituted for the truly random key essential to one-time-pads. It turns

out that bias in file selection of individual digits of the key along with recognizable periodicities in the

generated sequences allow one to recover the parameters controlling the key generator. The other

World War 1I encryption method, referred to as rotor machines, provided higher levels of security

but they too have been broken [95, 71, 76].

Two algorithms designed specifically for use with computers are Lucifer [83, 16] and its

derivative, the federal Data Encryption Standard (DES) [65]. These are based on an early proposal

by Shannon [80] for a product cipher composed of several layers of alternating substitution and

transposition. While the net effect is equivalent to a substitution cipher, the size of the tables

necessary to perform direct substitution make such an implementation impractical. Unlike a simple

alphabetic substitution cipher which requires 26 5-bit entries, implementation of DES by table-

lookup would require a table of 26464-bit entries for each key that might be used--more storage than

will ever be available. The compound implementation, however, can be produced quite efficiently in

digital circuitry. While some controversy tias surrounded the security of DES [12], the criticism has

centered not on weakness of the general design but rather on the choice of one important

parameter--the size of the key. Trivial changes to the definition could circumvent all the criticism to

date.

Although not critical to this dissertation, some mention should be made of a more recent

development, the concept of public-key algorithms [11, 77, 55], which has changed the way people

think about encryption. Unlike previous schemes, in which a single key was used, separate keys are

used for the encryption and decryption processes; it is assumed that knowledge of one does not make

practical computation of the other. Using such systems, security no longer depends on the security of

two parties and their mechanism for transmitting keys. Instead, one only need guarantee security

Richard H. Gumpertz 15 Error Detection with Memory Tags

within one party and reliability of key communication. In fact, the cncryption key can even be

published openly without compromising the security of communications that use it! At this point in

time, the througlaput of these algorithms is not competitive with that of single-key systems such as

DES. Even Rivcst's special purpose chip [78] provides throughput more than four orders of

magnitude less than that of a comparable DES implementation. For high bandwidth applications a

hybrid seems most appropriate in which a public-key method is used only to exchange a session-key.

A traditional single-key method employing this key would then be used for the main transmission.

This effectively combines the speed of traditional algorithm with the advantages of the public-key

algorithm.

For use with tagging, the most hnportant property of encryption is its sensitivity to changes. Ifa

value is encrypted with one key and then decryptcd with another, then the resulting value will usually

be quite different from the original. Some encryption functions are all sensitive to changes in the

cleartext or ciphertext--a small change in one can be expected to show up as a large change in the

other.

Richard H. Gumper_ 16 Error l)etection with Memory Tags

I_.ichardH. Gumpertz 17 Error l)etcction with Memory 'Fags

Chapter 2
Mechanisms

"Oh, no, Eeyore," said Pooh. "Balloons arc much too big to go into Pots.

What you do with a balloon is, you hold the balloon- "
"'Not mine," said Ecyore proudly.

A. A. Milne [57 (p. 86)]

The research reported here consists of two parts: the development of tagging methods and the

examination of areas in which such tagging might be utilized. This chapter describes two different

methods for including tags in memory cells. The first method merges the tag with error-checking bits

already present in many computer words; the second utilizes encryption. For lack of better names, I

call the two methods C-tagging and E-tagging, respectively. Both allow one to efficiently store tags

with data that can later be compared against tags presented when fetching those data from storage.

Unlike previous uses of tagging, the proposed methods allow only for setting tag values when

storing into memory and comparison when fetching. There is no way to inquire what tag is

associated with a particular cell of storage. At best, one can compare it with a known value and

determine either that it is different or that it might be the same. While equal values are always

reported to be equal, so may a few unequal values.

In return for giving up the ability to read tags, one gains some advantage. Perhaps of most

importance is the "cheap" storage of the tags. In fact, when merged with other codes, some bits of

the tag require no extra bits of storage. In other cases, fewer bits would have to be stored than are

checked in any particular comparison. Although information-theoretic arguments show that this

must allow some incorrect values to be erroneously accepted, such occurrences should be rare

because they are a second-order phenomenon.

A related benefit is the ability to handle arbitrary amounts of information in a single tag.

Conventional tagging systems have difficulty adding extra bits as needed. If, after initial

implementation, one wants to add new information to the tags, then major modifications to the

Richard H. Gumpertz 18 Error Detection with Memory Tags

hardware may be necessary. Because of tag compaction, however, this is no problem for my compact

tagging. New fields can be added at will. More detail appears in Section 2-4.1.

2-1. Traditional coding and the addition of tags (C-tagging)

qhe following discussion will show how a tag can be merged with error coding by a method that

does not require the addition of extra bits. That is, the bits already present for memory-error coding

will also be used to store the tag. Furthermore, the error-handling ability of the code will be

minimally affected. As mentioned above, the tag is not of the sort that can be fetched. Instead, it is

checkable by comparison with a tag value presented on each access to a particular memory cell. qhe

term tag-mismalch will denote an error in which the tag presented during an access to memory does

not match the one previously stored with the word.

Tags usable for such checking can be implemented nearly fi_r "free" in computers that already

include codes for detecting storage failures. The mechanism for so doing is best explained in stages.

Since some readers may not be familiar with coding techniques, I will also briefly explain two

traditional codes: parity and Hamming.

To make the discussion follow a reasonable progression, let us start with a non-redundant

memory word which contains just data bits. Because all possible codeblock values are codewords, no

errors are detectable. An eight-bit memory word will be represented as

D 1 D2 D 3 D4 D5 D6 D7 D8

where Di denotes the i th data bit. Although the examples in this section will provide for eight data

bits, all of the techniques to be discussed can be extended to an arbitrary number of bits. Eight bits

make the methodology apparent without overly cluttering the examples. The rest of this section

alternates between explaining codes without tags and describing how tags can be added to those

codes.

2-1.1. The parity code

The simplest useful redundant code is that formed by the addition of a parity bit, P, to the

memory word. In this case the word would look like

P D 1 D 2 D3 D4 D5 I) 6 D7 D8.

The parity bit is generated when storing information into memory and checked when fetching it from

Richard tl. Gumpertz 19 Error l)etection with Memory 'Fags

memory using the equation 6

S = P • I) l @ D2 • I) 3 • 1)4 • 1)5 @ D6 @ D7 _ D8.

When storing, the cquation is solved for P using the appropriate values for the data bits and zero for

S. When fetching, the equation is instead solved for S, using the values fetched from storage for the

other variables. If the resulting S, which is called the syndrome, is non-zero, then an error has been

detected. If, oil the other hand, S is zero then it is assumed that no error occurred. There is no way

to distinguish a situation in which sufficient errors have occurred to produce a zero syndrome from

one in which no errors have occurred (but the original data bits had different values). Using this

code, a change in the value of any single bit in storage will bc detected: a change of several bits will

only sometimes be dctcctcd. In particular, any change of an odd number of bits will be detected

while a change of an even number of bits will not. If one imagines the bit-failures as happening

sequentially, then each failure will toggle the syndrome between zero and non-zero; an odd number

of failures will leave it non-zero, thereby allowing detection.

The probability of bits in memory failing is generally considered to be fairly low. Furthermore,

failures are assumed to occur independently of each other. A multiple-bit failure is, therefore,

assumed to be much less probable than a single-bit failure. Hence, under these assumptions, a parity

code will detect the majority of errors that occur in such a memory. It will not be particularly

cffective, however, against the various unpatterncd errors discussed in Section 1-2.2--half of them

can be expected to result in a zero syndrome.

2-1.2. Adding a tag to the parity code

Let us now add a one-bit tag to each memory word. The value of this tag might be something

determinable from the program-context on every memory access. For example, it could specify

whether the word contains instructions or data.

The obvious way to add such a tag is to add an extra bit, T, to the storage word and extend the

syndrome equation appropriately:

S = p @ D 1 _ D2 _ D 3 @ D4 _ D5 _9 D 6 @ D7 • D8 • T.

Such a scheme allows the detection of two different sorts of errors: single-bit memory failures and

tag-mismatches. The former is detected as before by computing the syndrome S (an internal

6Coding theorists typically avoid Boolean constants in such equations. Any of the equations in this section could have "_ 1"

(or equivalent) appended to either side without significant effect on its meaning. Such a suffix will turn an "even" parity code
into an "odd" one and vice versa. For abstract studies of systems with symmetric bit-failure probabilities this distinction is

pointless.

Richard H. Gumpertz 20 Error l)etection with Memory Tags

redundancy check); the latter is detected by comparing T with a corresponding bit presented when

fetching (an external redundancy check).

Suppose one chose not to store the tag bit explicitly with the data (but still include it in the parity

generating/checking equation). To detect memory errors when the word is fetched, one clearly will

need to know file value of T in order to solve the syndrome equation for S. This creates no problem

because a copy of T is presented at fetch-time (for tag checking). Assuming that the tag value

presented is the same as the original value of 7', it does not matter that T was not stored along with

the rest of word--memory errors can still be detected. On the other hand, should the wrong tag T be

presented (Le., a tag-mismatch occurs), the situation would be just as if a stored bit had changed. In

the absence of other errors, the syndrome would become non-zero. Admittedly, one cannot

distinguish a storage error from a tag-mismatch but it is unlikely that this would be a critical problem.

Higher-level recovery procedures, cognizant of the context, might be able to diagnose the most

probable cause. Even if this is not possible in a particular situation (and so the two possible

explanations for a given failure cannot be distinguished), the higher-level procedures will at least

know that "something is wrong" and can back up or abort the computation appropriately.

Preventing the spread of the effects of an error is critical.

If both a single-bit memory-failure and a tag-mismatch appear simultaneously, then the

syndrome computed will be zero and so the errors will not be detected. Note, however, that this is

really a double error and so is beyond the the error detection ability of a parity code. More is said

about this below in Section 2-1.5 in the discussion of the corresponding situation for Hamming codes.

2-1.3. The Hamming code

Sometimes detection of failures is not sufficient--one would like also to "correct" the error. To

do dais requires a slightly more complicated code. The one most commonly used is the Hamming

code, first published in 1950 [24]. With this code (but without tagging), a storage word might look

like

H1 H 2 D 3 H4 D5 D6 D 7 H8 D9 DlO Dll D12

where each Hi denotes a check bit. Although there are still eight data bits, they have been slightly

renumbered; this allows a single numbering system to be used for both data and check bits. The

equations used to generate and check the word are as follows:

S1 = H 1 • D3 • D5 • D7 • D9 • Dll

S2 = H2 • D3 • D6 • D7 • Dlo • Dll

S4 = H4 * D5 • D6 • D7 • D12

Richard H. Gumpertz 21 Error l)etection with Memory Tags

S8 = H8 @ I) 9 • I)10 • Dll • D12.

Again, the four syndrome bits, S 1 through S8, are set to zero so that one can solve for H 1 through H s

for storagc in memory. During a fetch from memory, the syndromc bits are determined from the bits

fetched using the same equations. If any of the resulting syndrome values are non-zero, then a

detectable error has occurred. Now, however, there is enough information to determine which bit is

wrong, assuming that only one bit has changed. In particular, if one treats the syndrome as a fimr-bit

binary number SsS4S2S l then that number will be the bit number of the erroneous bit. This

happens bccause each of the equations was carefully chosen so that it included only those bits whose

position included a particular power of two in their representations. That is, each of the position

numbers in the first equation is odd and so has a one in the "units" bit of its binary representation.

Similarly, the "twos" bit is set in each of the position numbers of the second equation, the "fours" bit

in the third equation, and the "eights" bit in the final equation. Any change in one memory bit will

affect exactly those equations that are used to determine syndrome bits corresponding to its position

number. For example, if bit 1)12 were to change then S4 and S8 would become non-zero. This

would yield a syndrome value

$8S4S2S1 = 11002 = 1210

thereby indicating that bit twelve is incorrect and should be complemented.

Similar to parity codes, Hamming codes leave multiple-bit failures undetected. Worse, however,

most multiple-bit errors are improperly "corrected" by a Hamming code. If more than one bit

changes, then the syndrome indicates the (exclusive-or) sum of all the corresponding bit-numbers.

The syndrome might indicate that one particular bit is wrong when in fact several others are. For

example, a failure of Ds and D6 would produce a syndrome indicating that D3 had changed. In this

case the correction mechanism would increase the number of erroneous bits, not decrease it. Since

this can happen only when a multiple-bit failure has occurred, the assumption that bit failures occur

independently implies that it should not be a frequent phenomenon. The ability to correct the more

common single-bit error often justifies this sacrifice. Besides, for practical purposes, a word with

m+ 1 errors is rarely any worse than one containing only m errors. [-'or most programming uses, a

word is either correct or incorrect; there are usually no useful gradations of incorrectness in digital

systems. Even if there are some gradations, it is unlikely that Hamming distance would be an

appropriate way to measure them.

The problem with error-correction is that high level processes are not notified whether the data

really are valid. No bit failures, other than the single-bit ones, will be handled properly. It is a

property of codes that one must sacrifice a significant portion of their error-detection ability in order

to gain any error-correction ability. If the same code were used for detection rather than correction, it

Richard H. Gumpertz 22 Error 1)ctcction with Memory Tags

would detect all single, all doublc, and most 7 other failures!

It should be noted that the cxample above shows a trum'ated l-lamming code. It is derived from

the full code which has eleven data bits and four redundant bits by ignoring three of the data bits.

For every positive integer r thcrc is a full Hamming code with 2 r- 1 bits. Of these, 2r- r- 1 are data

bits and r are check bits. Since the number of data bits in a full Hamming code rarely coincides with

the word-length of modern computcrs, most practical systems use truncated Hamming codes. This

truncation actually has one slight benefit: somc double-bit errors will not cause miscorrcction. This

is because they produce syndromes that indicate bit positions that are not being used. Note, however,

that only some double-bit errors fall into this category; most will cause improper "correction."

2-1.4. The extended Hamming code

It is possible to achieve a compromise between correction and detection by making the Hamming

code one bit longer. Any odd-distance linear code (such as the Hamming codes) can be extended to

the next higher even-distance code by adding an overall parity bit. For the example, the

computations can be kept convenient by first adding 16 to each bit number:

Pl6 [t17 H18 D19 [t20 D21 D22 D23 H24 I325 D26 D27 D28"

One then gets the storage word

P16 Ht7 I-t18 D19 H20 D21 D22 D23 H24 D25 D26 D27 D28

and the new syndrome equation

S16 = P16 _ H17 _ H18 _ I319 _ H20 @ D21 _ D22 @ D23 @ H24 @ D25
D26 • D27 • D28

where P16 is the overall parity bit. 8

As before, if any of the bits of S are computed to be non-zero when fetching, then a memory

failure has occurred. If $16 is zero then the error must be in an even number of bits (because all

memory bits contribute to the computation of $16). Thereforc, all double-bit errors will produce

syndromes between 000012 and 011112. Because the valid bit-positions are numbered 16 through 31,

these values do not indicate any of the bits in the word stored in memory and so the code can detect

7Veryroughly,1-q,

8By replacing this equation with the sum of it and the four preceding equations, one could obtain the slightly shorter
equivalentequation

$16 = S1 _ $2 _ $4 _ $8 _ P16tB D19_ D21@ D22(9 D25_ D26_ D28.

qlaisoptimizationis particularlyuseful when writinga word in storagebecause one then sets all the bits of S to zero, thereby
reducingthe number of terms further:

P16 = D19 _ D21(9 D22_ D25_ D26_ D28.

Richard H. Gumpertz 23 Error Detection with Memory Tags

double-bit errors. Single-bit errors will produce syndromes ranging fl'om 100002 through 111112 and

so will be correctable as before.

Since such an extended Hamming code is capable of correcting all single-bit failures and

detecting all double-bit failures, it is often described as "Single Error Correcting, Double Error

Detecting" (SEC-DH)). While most higher order odd multiple failures are miscorrected, most

higher order even multiple failures are detected. Because an extended Hamming codes requires only

one more bit to implement than the non-extended Hamming code but is "fooled" far less often, one

almost never sees the latter actually used.

2-1.5. Adding a tag to the extended Hamming code

Just as one can add a tag to a parity code (see Section 2-1.2), so can one add a tag to an extended

Hamming code. This addition is best described in two steps: first I will add a sixteen-bit tag which

itself is encoded using a one-of-sixteen code; later 1will show that the corresponding four-bit binary

tag can be used directly. This two-step explanation has generally made the extension easier to

comprehend.

Let us change the first five syndrome equations to include a sixteen-bit tag, represented by 1"/6

through I"31:

S1 = H17 _ T17 t19 D19 _ T19 _ D21 ID T21 • D23 • '1"23• D25 • T25
D27 • T27 • T29 • T31

S2 = H18 • T18 • D19 • T19 • D22 • T22 • D23 • T23 • D26 • T26
119I)27 _ T27 _ T30 _ T31

S4 = H20 • T20 • D21 • T21 • D22 • '1"22_ D23 • T23 • D28 • T28
T29 • T30 • T31

S8 = H24_ T24 _ D25"_ T25 _9 D26_ T26 _ D27 _ T27 _ D28 • T28
T29 • T30 • T31

S16 = P16 _ T16 _ H17 8) T17 _ H18 • T18 • D19 • T19 • H20 • T20
D21 R) T21 _ D22 _9 T22 • D23 • T23 • H24 • T24 • D25
"I"25_ D26 _ T26 _ D27 _ T26 _ T28 _ T28 119T29 _ T30
T31.

As before, one will not explicitly store the tag bits; they will be presented on each access.

Since the tag is defined to be a one-of-sixteen code, the parity of the whole tag will always be odd

unless an error occurs in the tag. If one further assumes that such errors occur only while words are

stored in memory, then not storing the tag will obviously prevent such errors. Therefore the sum of

all the T terms in the equation defining St6 may be replaced by the constant 1. Since this is a

Richard H. Gumpertz 24 Error Detection with Memory "Fags

constant, it may be dropped from the computation without effect. Thus the last equation can be

simplified to its original form:

$16 = P16 _ H17 _ H18 _ I)t9 _ H20 _ D21 @ D22 _ D23 _ H24 @ D25
D26 • D27 • D28.

How do the modifications above of the extended Hamming code behave in practice? If the same

tag value is presented when fetching a word from storage as was presented when storing that word,

then clearly the changes will have no effect--only changes between the bit values used when

encoding and those used when decoding can affect the syndrome. Should a memory failure occur,

the same detection/correction would be provided as when no tagging is used: single errors would be

correctable: double errors would be detectable; and higher order errors would be beyond the

capacity of the code. On the other hand, if an incorrect tag were presented it would masquerade as a

memory failure. In particular, each tag bit in error would yield symptoms equivalent to those of the

correspondingly numbered bit in the base code. In isolation, there would be no way to tell the

difference between an incorrect value being presented for tag bit 1"23and an incorrect value being

fetched from memory for data bit D23. Since the code is defined to be a one-of sixteen code,

however, it is guaranteed that any change in the tag will concern exactly two bits (one cleared and the

other set). Therefore, in the absence of true memory failures, a tag-mismatch will be detected as if a

double-bit memory failure had changed those two bits.

This resemblance of tag-mismatches to double-bit memory failures carries through to the case in

which a tag-mismatch and a memory failure occur together. A single-bit memory failure combined

with a tag error will behave like a triple-bit memory failure. Since these are beyond the scope of

extended Hamming codes, the error will not be detected and improper correction may be done.

Similarly, a double-bit memory failure together with a tag-mismatch will act like a quadruple-bit

memory fhilure which will probably (but not always) be detected. Such combinations of a tag-

mismatch and a memory failure should be rare; perhaps it is not worth worrying about detecting .that

situation. Remember that any error-detection scheme has its limitations. Adding detection of tag-

mismatches, a first-order phenomenon, surely compensates for sacrificing detectability of certain

second-order phenomena. Assuming that the memory failure rate is not unusually high, this trade-

off will yield a net gain. If the memory failure rate is high, one probably should have been using a

code better than SEC-DED in the first place.

As stated at the beginning of this section, one need not encode the tag as a one-of-sixteen code.

Instead one can use a normal four-bit binary code. For the extended Hamming code this substitution

of T_T_T_T_ is straightforward:

Richard H. Gumpertz 25 Error Detection with Memory Tags

S1 = HI7 _ D19 _ D21_ 1)23 _ 1)25 _ D27 _9 'F_

S2 = H18_ l)t9_ D22_ 1)23_ 1)26_ I)27 _ T_

S4 = H20 _ D21 _ D22 _ D23_ I)28 _ T_

S8 = H24 _ I)25 _ D26 _ D27 _ D28 _ T_

S16 = P16 _ H17 _ H18 _ I)19 _ H20 _ D21 _ D22 • I)23 • H24 • I)25
1-)26_ D27 _ [)28.

For example, replacing the one-of-sixteen tag that had only T5 non-zero with the corresponding four-

bit binary tag T_T_T_T[= 01012 would not affect the functionality of the mechanism at all but

would somewhat simplify the cquations used.

2-1.6. Hsiao's modified Hamming code

There are actually two distinct methods for deriving the extended Hamming code (without

tagging). The traditional method is that shown above: adding an overall parity bit to a distance three

Hamming code. An alternative derivation starts with the next longer Hamming code and truncates it

to yield a code with a minimum distance of four. For instance, let us start with a Hamming code

whose bits are numbered 1 through 31 (twenty-six data bits and five check bits). If one eliminates

bits 1 through 15, one will be left with the bits of the extended Hamming code with eleven data bits.

Any double-bit error will be detectable because the Boolean (exclusive-or) sum of two bit position

numbers must have a zero in the "sixteens" bit. The extended Hamming code described in Section

2-1.4 is exactly equivalent to this except for the further truncation to store only eight data bits.

Hsiao [32] noticed that one could do the first truncation in a slightly different manner which has

a few advantages (which are not relevant to this discussion). Since many implementations of SEC-

DED in actual hardware have used his techniques, it is important that I demonstrate compatibility

with tagging.

Instead of discarding positions 1 through 15, Hsiao discards positions 3, 5, 6, 9, 10, 12, 15, 17, 18,

20, 23, 24, 27, 29, and 30. He retains only those bits whose position numbers (represented in binary)

have odd parity. For eleven data bits, his code would use the equations

S1 = H1 • D7 • Dll • D13 • D19 • D21 • D25 • D31

S2 = H2 • D7 • Dll • D14 • D19_ D22 • D26 • D31

S4 = H4 • D7 • D13 • Dt4O D21_ D22 • D280 D31

S8 = H8 _ DllO D13 _ D14_ D25_ D26 _ D280 D31

$16 = H16O D19O D21_9 D220 D25 • D26 • D280 D31.

Richard H. Gumpertz 26 Error l)etection with Memory 'Fags

This still allows detection of double-bit errors, but in a slightly more subtle manner, if the binary

numbers X and F have weights W(X) and W(Y) respectively, then the weight of their Boolean sum

will be

W(X_Y) = W(X) + W(Y) - 2W(X^Y).

If X and Y each have odd parity then W(X_Y) must be even (because odd q-odd- even is even).

Therefore any double error cannot produce a syndrome that will be confused with that of a single-bit

error. This makes tile code usable for correcting single-bit errors and detecting double-bit errors.

Tagging can be added to Hsiao's modified code without much difficulty. In particular, by using

a five-bit tag with even parity in place of a four-bit tag, one can still detect tag-mismatches as if they

were double-bit memory failures. Alternatively, one could accomplish the equivalent by continuing

to use four-bit tags but changing some of the syndrome equations to include two tag bits each. Thus,

for storing eight data bits, one might use the equations

S1 = Ht _ Dll_ D13 _ D19 _ I321_ D25 _ T_

S2 = H2 _ Dll _ Dr4 _ D19 _ D22 _ D26 _ T_ _ T_

S4 = H4 _ DI3 _ D14 _ D21 _ D22 _ T_ • T_

S8 = H8 _ Dll_ D13 _ I)14 _ I325 _ D26 _ T_ _ T_

S]6 = H16 _ D19 _ D21 _ D22 _ D25 _ D26 _B T_.

The underlying mathematics are briefly discussed in Appendix B.

2-1.7. Codes with greater minimum distance

It should be obvious that similar methods might be applicable to codes with minimum distance

greater than the Hamming codes. An (n,k,d) code would normally be able to detect up to d-1

independent bit failures. If used for correction of up to c errors (where 2c < d), this detection limit

drops to d-c-1. To add a tag to such a code, something is needed that, if changed, causes one to

exceed the correction limit c but not exceed the detection limit d- e- 1. Therefore the tag itself must

be precoded so that all possible changes in it have distance between these limits. For detecting

memory bit failures in combination with tag mismatches these bounds are even tighter. While there

are no simple rules for generating such subcodes with minimal and maximal distances, appropriate

codes for specific applications should be findable. It is beyond the scope of this dissertation to

construct these.

Richard H. Gumpertz 27 Error I)ctection with Memory l'ags

2-1.8. Previous work

In retrospect, one can see that some ad hoc effort toward combining tags with other error-

detecting codes was included in an early Univac machine [79] and some Belt Telcphone Electronic

Switching System (ESS)computcrs [89]. The Univac Ill stored the parity of a word's address along

with the data bits (and residue-three check bits) for that word. Thus, if a single bit failed in an

address, the hardware would bc able to detcct the error. In the Number 1 ESS, the "program store"

(read-only memory) used an ovcrall parity check that covcred both the address and the data bits. A

Hamming code check was included for the data bits. For the "call store" (read-write memory) two

parity bits were employed; one covered the bits of the address and the other both the address and

data together. All of these uses are instances of physical address tagging, as proposed below in

Section 3-1.

In the Number 2 ESS, many of the checks used in the earlier machine were dropped because it

had been found that comparison of dual processors running identical programs and diagnostics

provided sufficient detection of failures for the application. For dais reason, error checking in the

"program store" is reduced to a simple parity check. The machine apparcntly does not do any

explicit checking of addressing logic as had been done in the Univac III and the Number 1 ESS. One

unusual coding feature, however, is that the words in this store are divided into two classes:

instructions and translation data. The former are stored with odd parity and the latter with even.

That way, attempts to access a word in the wrong class for a given context are detected and trapped.

Note that this can be viewed as an instance of C-tagging. In this particular case, each tag indicates

whether the corresponding word is used as an instruction or as translation data. Accessing a word in

the wrong class produces a tag-mismatch. This is a degenerate form of the type-tagging proposed

later in Section 3-2.

Finally, it should be noted that the original implementation of WATFOR [81] took advantage of

an unusual feature of the IBM 7040/44: the ability to set the parity bit of a word intentionally to the

wrong value for the data in the rest of the word. Using this capability, the load-and-go system could

"tag" each word of data storage with one bit. At the start of execution, all of these tags were set to

indicate uninitialized (improper parity). Because subsequent memory fetches and stores asserted that

the tag should indicate initialized (proper parity), a tag-mismatch would result upon an attempt to

read a variable that had not been set by the program. As for the C-tagging proposed here, higher-

level analysis (in this case by the user, presumably) was required to distinguish such mismatches from

genuine memory failures.

Richard H. Gumpertz 28 Error l)etection with Memory Tags

2-2. Tagging using encryption (E-tagging)

Thus far in this chapter, I have described a mechanism that allows the storage of a tag with

memory words. It is important to note that there might be several functions other than C-tagging

that can accomplish the goal of merging tags with data in an efficient manner. The requirements for

such a function include:

• Given tag and data values, one can compute a "combined value" to store in memory.

• Given a tag and a "combined value," one can recover the original data value.

• It can (probably) be detected if the wrong tag is presented when attempting to recover the
original data value.

Another tagging method that can meet these requirements uses encryption.

If one chooses a reasonably secure encryption function, one can assume that decryption with the

wrong key will produce a value quite different from the original plaintext. Therefore, if one uses the

tag as an encryption key and the data to be stored (plus some redundancy) as the plaintext, then after

decryption with the wrong key a check of this redundancy should reveal the error. Note that this

redundancy can be very simple if an encryption function is used that sufficiently intermingles the

data bits. For example, padding the data with some "must-be-zero" bits will suffice. For other

ciphers, especially those that process bits independently of each other (such as Simple one-time-pads),

one must add data-dependent values (such as a checksum) that will allow detection of minor changes

to the ciphertext. Unlike C-tags, E-tags are implicit and are not stored with the data. Therefore they

can be substantially longer without mandating extra storage. As for explicit tags, however, the

probability of not detecting a tag mismatch is qJ. That is, the error-detection ability still depends

primarily on the number of redundant bits added to the word, not the number of tag bits being

checked.

2-2.1. Previous work

The idea of using encryption for error detection is not new. Cryptographers have long

recognized that many codes and ciphers can be used not only to keep information secret but also to

authenticate it. Forged and corrupted messages ought to decrypt to "garbage" unless the code has

been broken. Gilbert, MacWilliams, and Sloane [21] looked at codes specifically designed to detect

forgery. Later, Gligor and Lindsay [22], Chaum and Fabry [9], and Needham [67] pointed out that

Richard H. Gumpertz 29 Error Detection with Memory Tags

cryptography could be used in implementing capability 9 systems.

2-2.2. Exaggeration of undetected errors

Using encryption for error detection has an additional benefit which might be helpful in many

situations. Even if a tag mismatch is not detected, which can be expected to happen with probability

_b, the data decrypted using an incorrect key will be quite different from those originally stored.

Many cncryption methods, such as DES, are also quite sensitive to changes in the the text being

processed. That is, even a small change in the cleartext or ciphertext can causc a large change in the

resulting ciphcrtext or cleartext, respectively. In other words, the value of each output bit is strongly

dependent upon the value &all the input bits--ideally any change in an input bit would complement

each of the output bits with probability 0.5. These two sensitivities--to changes in the key and to

changes in the data--can be used to obtain yet another level of error detection.

The net effect of these sensitivities is that errors will often be exaggerated by E-tagging. Even

when the primary check on the tag fails to discover an error, it is possible that higher-level

redundancies, already present in many programs, will allow detection. In particular, data structures

are oftcn coded less than optimally. For instance, a variable is often stored using a full word, even if

the number of values that that variable can take on is more limited than the word size allows. In a

one-bit Boolean value, all but one of the bits of the word are redundant. It would be fairly easy to

check them for consistency. Similarly, the high-order bits of an integer with restricted range would

always match its sign. Whenever a case or subscript operation is performed, these bits can be checked

by verifying that the value is within the intended range. Range checks by explicit code, compiler-

inserted checks, or even tagging (see Section 3-4.1) can often catch errors that sneak past the primary

tag check.

Pointers provide an extra level of tag-checking: if a pointer-value is scrambled for some reason,

the tag-checking performed when fetching the word indicated by the pointer (as opposed to fetching

the pointer itself) will probably catch the error. In fact, if the program uses only a small portion of

the address space then randomization of a pointer value will often yield an illegal address which

cannot be fetched at all.

9Capabilities, which were first mentioned in the literature by Dennis and Van Ilorn [10], are generalized pointers. The
principal distinguishing characteristic is that a capability includes access-control information. These extra data can be used to
restrict the operations that may be perfon'ned using a given capability. Furthermore, to ensure that these restrictions are
obeyed, capabilities must be implemented in an unforgeable (and tamperproq0 manner.

Richard [t. Gumpertz 30 Error 1)ctcction with Memory Tags

Taylor, Morgan, and Black [86, 87] discuss some other instances of software redundancy. In fact,

they propose various data structures which are specifically designed to allow detection and correction

of errors. It appears that a combination of their robust data structures with my tagging might be

quite effective.

2-3. Combining explicit tagging with encryption

The two different methods of tagging described above, C-tagging and E-tagging, are not

incompatible. There is no reason that a word cannot have an explicit tag added and then be

encrypted with an implicit tag. The explicit tag could even take the place of the "must-be-zero" bits

mentioned above in Section 2-2. Alternatively, one could encrypt a word and then add the explicit

tag.

Both of these methods--adding the tag either before or after encryption--have limitations. In

the former case. use of an extended Hamming code for correcting single-bit errors would no longer

be practical. This is because any memory failures that occurred in the encrypted word would

probably be exaggerated by the decryption function to multiple-bit failures in the cleartext. While

still useful for detecting errors (subject to the _blimitation), correction would only be possible for

errors occurring before encryption or after decryption (t_e.,in the cleartext, not the ciphertext).

In the latter case, in which one encrypts first and then adds the tag, there would be no possibility

of tag-mismatch detection attributable to the encryption. This is because one must add extra bits

before encryption to gain this capability. Without some redundancy, error detection is impossible.

On the other hand, the tag-mismatch detection capability of the explicit tag and the error

exaggeration property of encryption would still be present. When an error is not properly detected or

corrected by the explicit tag, one would expect that the word presented for decryption would differ

slightly from the correct ciphertext. Therefore the decrypted word would probably differ greatly

from the correct plaintext, which is the desired effect.

If one employs an encryption algorithm that allows a Hamming tag to be carried alongside the

data during the encryption process (such as is described in Appendix A for DES), then a reasonable

combination ofencryption with explicit tagging might first add the tag and then encrypt. In the case,

however, only the original data and not the tag would be encrypted. Tag mismatch checking could be

done for either the original or the encrypted word. Furthermore, if incremental changes to _e tag (as

will be described in Section 3-1.1.1) are necessary, they too can be done on either side of the

encryption fence. While this flexibility may at first seem unnecessary, it can be important for

Richard H. G umpertz 31 Error Detection with Memory Tags

maintaining reasonable performance--at times it may bc desirable to store unencrypted words rather

than the corresponding ciphertexL

2-4. Hashing of tags

Traditional tagged architectures have used a tag that is big enough to contain all file information

to be checked. For example, there might be a unique tag for each hardware type. One of the

principal contentions of this dissertation is that one can store fewer bits of information with a tagged

cell than are being checked. By so doing, one can check many different assertions at minimal cost.

An important concept that one must accept before continuing is that no design has to work all of

the time. In fact, no error-detecting scheme that uses a finite number of redundant bits can cover all

errors. At best, it can detect failures that produce a certain class of symptoms. If an error occurs that

transforms one codeword inu) another, then that error cannot be detected. (Any system that might

claim to do so must be using other information and so has a bigger codeblock than stated.) There will

always be a non-zero probability that some failure will produce an undetectable symptom. Of course,

one tries to orient error coverage toward the most common errors, missing only the less common

ones.

With this in mind. it should should be clear that neither extreme, using too little or to much

redundancy, is desirable. In the former case, one will miss errors that could have been caught; in the

latter case, the extra error detection provided by excess check bits will be marginal. Choice of a

reasonable middle-ground is an engineering decision that must be tailored to particular

circumstances. One can, however, look at some typical costs involved and thereby get an intuitive

feeling for the situation. The following chart shows the incremental cost (in bits of storage) required

for various combinations of word-sizes and detection probabilities:
Added overhead for various word-sizes

r _b (k=8) (k=16) {k=32) (k=64)
1 O. 5 13% 6% 3% 2%
2 O. 25 25% 13% 6% 3%
4 0. 063 50% 25% 13% 6%
6 0.016 75% 38% 19% 9%
8 0.0039 100% 50% 25% 13%
12 O. 00024 150% 7570 38% 19%
16 O.000015 200% 100% 50% 25%

If one assumes that a SEC-DED code, such as the extended Hamming code, is already used with each

storage word, then the incremental overheads can be decreased significantly. Part of this is due to

there being more bits per word initially (and so the denominator of the fraction is larger). More

significant, however, is the ability to merge some of the tag bits with the Hamming check-bits, as

Richard tt. Gumpertz 32 Error I)etcction with Memory "Fags

explained in Section 2-1.5. The resulting chart looks quite different from the preceding one:
Added overhead for various word-sizes

r 4` (k=8) (k=ld) (k=32) (k=64)
1 0.5
2 0.25
4 0.063
6 0. 016 15% 5% - -
8 O.0039 31% 14% 5% 1%
12 O.00024 62% 32% 15% 7%
16 O.000015 92% 50% 26% 13%

Those entries indicated by "-" are especially attractive because no new bits at all need be added for

tagging. The architecture described in Chapter 5, for example, uses a 6-bit tag with no extra storage

requirements even though 4' is less than 0.02.

The error-detecting methods proposed in this dissertation will detect "most" occurrences of the

targeted errors. Although a few (as indicated by the fraction q_)errors will slip by, this need not be of

major concern--no method will detect all errors anyway. More significant is that a large fraction of

the errors can be detected at reasonable cost.

In many instances a particular failure might be detected by any of several different checks. One

instance of such compound checking is the use of an addressing value (e.g., a pointer or subscript)

that itself has been tagged. Not only will a check be made on this value but also on the item

referenced using the value. In general this will decrease the probability of missing an error by a

factor of 4' for each level of indirection. Multiple executions of the same program can also be a form

of compound checking. As long as the tags can be made to differ quasi-randomly on successive runs,

the probability of missing an error will decrease geometrically. Even small tags can be effective when

this probability is reduced to a power of 4'. See also the discussion of"resonance" in Section 4-11.

One will often want to include a lot of-information, perhaps several different tag components, in

the tags to be checked. In order to store only a small tag with the data, some form of reduction is

necessary. This compaction should use information from all of the components so that any change in

a component will usually cause a corresponding change in the derived tag. Programmers already

have a method for doing this: hashit,g. A hash function is one that maps from a large domain onto a

relatively small range. A "good" hash function "spreads" the results uniformly throughout its range

when presented with a "typical" set of inputs.

In the case of tagging, one would like to detect a difference in the hashed result even if only one

of the input tag components is changed. Therefore, for this application, it is desirable that the result

depend strongly on each of the tag components. This is in contrast to some situations, such as

l_,ichard II. Gumpertz 33 Error Detection with Memory 'Fags

symbol-table management, in which the hash function can often depend only upon a subset of the

bits in its input without greatly reducing performance.

2-4.1. Incremental hashing

Various applications for tagging are examined in Chapter 3. To use more than one of these, one

must combine several tag components into a single compound tag. In fact, some of the individual tag

components may require more bits than the chosen value for r. Therefore, hashing is mandatory.

One might even have an arbitrary number of tags rather than some fixed number. For example,

there is no fixed upper bound on the number of abstract types that can be associated with an object.

Associated _ith each of these types would be a distinct tag value. Therefore, one must design the

hash function so that it can be applied to an arbitrary number of inputs.

Dynamically varying the number of inputs to the hash function might be difficult if they must all

be presented at once. In addition, each potential accessor of an object would have to accumulate a

list of all the typc codes to be used when accessing an object. Such lists could consume far more

storage space than would be saved by the compact final tags. This problem can avoided, however, by

making special choice of the hash function. In particular, let the function be one that can be

computed incrementally with short intermediate results. For instance, if the hash function is the sum

(with some modulus or moduli to limit the size of the results) of all the type codes of an object then

one can merge one tag at a time into the hashed tag. At each level of abstraction one need add only

one part of the tag, the type code for the corresponding type. The number of levels need not be given

a fixed bound; such an accumulation can be iterated an arbitrary number of times. This cumulative

computation has the additional advantage that at no point does one have to maintain large amounts

of information. At worst, one would require registers for the current tag and the old and new sums.

A typical incremental hash could be implemented as an expression like

f(T 0 * T 1 ,_ T2 * ... * Tn)

where * is a binary operator that is evaluated from left to right and f is a function that maps the

accumulated result just before use.

In addition to the normal requirements for a hash function, such as uniform distribution of the

results, there are two properties that the ,_ operator should have to ease use with tagging.

One such useful property is the ability to combine several tag components in advance of adding

them to the incremental hash value (see Section 3-2.3.2). To do so, the definition of the * operator

Richard H. Gumpertz 34 Error I)etcction with Memory Tags

must allow combination of tag components in other than strict left-to-right order without changing

the value produced. Although this might seem to imply that * must be associative, it turns out that a

weaker propcrty, which I call quasi-associativity, is sufficient. Whereas the definition of associativity

is

(Va,b,c) (a * b) * c = a * (b * c),

the definition of quasi-associativity 10.11is the existence of another operator, l, such that

(Va,b,c) (a * b) * c = a * (blc).

Clearly any associative operator is also quasi-associative because the * operator itself would suffice

for II. Two examples of commonly used operators that are not associative but are quasi-associative

are traditional arithmetic subtraction and exponcntiation. In the former case 1 would be addition

and in the latter it would be multiplication. Note that an operator can be quasi-associative even if it

would be meaningless to just shuffle the parentheses. For example, multiplication of a vector by a

scalar is quasi-associative (using scalar multiplication for l) even though the regrouping necessary for

associativity,

v,,(s1* s9,
would be meaningless.

The other useful property for * is invertibility. In fact, several different forms of invertibility

are relevant, but it is not worth describing them in detail. The primary uses are in type-sealing and

-unsealing (see Section 3-2.3) and ret_gging during storage relocation (see Section 3-1.1.1).

Despite the wide range of potential functions, for the applications proposed here a complex ,_

operator is not needed. A simple and probably sufficient hash function for use with binary hardware

is the Boolean sum of the inputs. Any inputs wider than the sum being accumulated can be split into

two smaller parts, each of which is added separately. While more complicated functions are certainly

possible, this one will suffice for most purposes. This is particularly true if the various tag-component

inputs to the hash function are statistically independent of one another. Note also that this choice

also allows easy partial accumulation (it is fully associative) and easy cancellation (it is commutative

and is its own inverse).

10Actually, right quasi-associativity might be a more appropriate name given that there is a corresponding property, left

quasi-associativity, which is the existence ofa I such that

(Va,b,c) (a I b) -k c = a _ (b _ e).

Nevertheless, the latter properly is not relevant to the current discussion and so the distinction can be ignored.

llKogge and Stone [40, 41, 42] would say that "A"is semi-associative with respect to its companion operator, |, but the prefix
semi does not seem appropriate in this context.

Richard tt. Gumperlz 35 Error I)etection with Memory Tags

Chapter 3
Applications

I went into a house, and it wasn't a house,

It has big steps and a great big hall;
But it hasn't got a garden

A garden,
A garden,

It isn't like a house at all.

A. A. Milne [56 (p. 63)1

This chapter considers several applications for the mechanisms described in the preceding

chapter. It also describes the tags required for such applications. To avoid distractions, the

examination of low-level details is delayed until Chapter 4.

For the remainder of this discussion it is often easier to act as if q, were zero. Given that _bcan be

made arbitrarily close to zero by using additional tag bits, it is reasonable to take this liberty. In fact,

not taking it would make tile description of tile problems far more awkward and would often obscure

the point being made--the text would be peppered with caveats such as "with probability 1- _b"and

"except for q, of the time." _lqaerefore,I make the distinction only when important to the discussion;

in all other cases it should be fairly straightforward for the reader to see how things differ when ,/, is

non-zero but small.

3-1. Addressing checking

With a few exceptions, such as the Univac and ESS machines mentioned in Section 2-1.8,

computers have not included checking of addressing and multiplexing mechanisms. In most

machines there is no direct way in which one would detect an incorrect word being accessed in

memory (due to a hardware failure). Even if the transmission of addresses from the processor to the

memory controller is checked, addressing faults within the storage module are missed. Traditional

memory coding does nothing to help--the improper word will generally have been encoded in the

same manner as the proper word and so will appear valid.

Richard It. Gumpertz 36 Error l)etection with Memory 'Fags

Suppose each word in memory were coded using a different error-detecting code from the

others. Further suppose each code were chosen to have codewords that are completely disjoint from

those of each of the other codes. Finally, assume that the correct code is used for each memory

access. Under such a scheme all addressing failures during memory fetches would be detected (in the

absence of a memory data failure) because a fetch from the wrong location would yield a value

guaranteed to not be a codeword. Addressing failures during store operations would not be

immediately detected, but this is a much more difficult problem. To detect that a word other than

the intended one is written would require checking every such word in storage.

This use of different, non-overlapping codes for each memory element would be expensive---it

would add to each memory word at least as many bits as are needed to uniquely indicate the address

of that word. It is not really necessary, however, to detect all possible addressing failures. Detecting

most of them will generally suffice. Thus, by not insisting that the codes be completely disjoint and

by letting a few addressing errors go undetected, one can significantly reduce the number of bits used

for each memory word. Instead of storing the equivalent of the full address with each word, one can

store just a few bits which indicate the result of a many-to-one function of that address. That is, one

can include the address as one of the components used in generating the tag for a word. If addressing

failures are completely random, one will still be able to detect all but q, of the errors; if they have

particular biases one may be able to tailor the function so as to do even better.

3-1.1. Choice of addresses for tags

There are different levels at which one can talk about the address of an object. Distinctions are

often made between the physical address space (which is defined by the hardware), the virtual address

space (which is defined by the memory management system), and the name space (which is defined

by the programming language). In addition, some of these can be broken up into several parts. For

instance, the name space of most programming languages allows for the name of an object plus a

selector (such as a subscript) for a sub-object. Similarly, the virtual address space of several machines

has both a segment number and a word number. In designing a system that will do address checking,

one must decide which of these various sorts of address to include. Each seems to have both

advantages and disadvantages that deserve individual examination, as follows in the next three

subsections.

Richard H. Gumpertz 37 Error l)etection with Memory Tags

3-1.1.1. Physical address tagging

The primary advantage of using the physical address in file tag is that it is already available on all

memory accesses--no special new mechanism is needed to provide the information. Furthermore,

there is no problem of aliasing at this level--a given memory location has exactly one physical

address.12

On the other hand, in many systems the physical address of an object can change rather often,

most notably for paging. Each time an object is moved from one place in storage to another (or to

another level in the storage hierarchy) its physical address also changes, thereby forcing one to retag

each word as it is moved. Depending on the exact manner in which words are tagged, this may be

difficult to do unless all other tags associated with each word are known to file mover. Because

facilities such as paging are usually implemented at a level well below that for other anticipated tag

components, they are unlikely to have such knowledge.

In a few cases one might be able to do this retagging automatically when moving the data without

knowing the other tag components. In particular, assume that the tag bits are explicit and accessible

(which might not be the case if encryption is being used) and that an appropriate incremental hashing

algorithm is used. In this case, for each word moved one could "remove" the tag corresponding to

the old physical address and "add" that corresponding to the new. Remember, however, that these

are very special circumstances which depend upon the implementation of the tagging mechanism.

3-1.1.2. Virtual address tagging

The virtual address of an object tends to be a little more stable. Within a given virtual address

space the address of objects do not normally change. Therefore one may not have the same problems

with retagging objects that arise for physical address tagging. Aliasing, however, may now be a

problem: two page-table entries (or other memory-mapping registers) might indicate the same block

of storage. A single object might, therefore, have different addresses in different address spaces. In

fact, in some systems an object might even be assigned two different locations in a single space.

Although aliasing within a given virtual address space could reasonably be prohibited, 13it would be a

12While one might conceive of a machine that intentionally ties two physical addresses to the same location, such a feature
would probably offer litlle to recommend it. Note also that features such as relocation of workspace-registers in the TI 990 [88]
and prefixing in the IBM 370 [38], which at first mighl seem to allow two different addresses for a given word, are actually
memory mapping mechanisms: the physical addresses are their outputs rather than their inputs.

13Even though enforcement of this prohibition might be difficult, it is not strictly necessary. Just as has been clone for
undesirable aliasing in programming languages, one could specify only that the penalty for violations would be undefined
results. In other words, ignore the enforcement problem.

Richard 11.Gumpertz 38 Error 1)etection with Memory "Fags

much more serious imposition on current designs to disallow aliasing across different spaces. As very

large virtual address spaces with associative or hashed (as opposed to directly indexed) memory

management become more common, however, even this restriction may become less important--a

given object could have a single virtual address in all spaces.

3-1.1.3. Object-name tagging

Although it is rarely represented explicitly at run-time, another space exists in which one can

denote objects. The name of each object would correspond to the name used by the programmer at

the time that the object is created. Except for heap-allocated objects, which might be considered

anonymous, this would nonnally be file name which appears in file declaration that allocates the

object. For compound objects, there might also be selectors, such as .B and [3], to distinguish the

various parts of the object. To guarantee uniqueness, further qualification of these names may be

necessary, using the names of any containing procedures and modules (and other scopes).

Furthermore, if any of these qualifying names can have several incarnations (such as for objects local

to a recursive procedure or a generic package), then the path-name must also distinguish between the

various incarnations.

There are some objects that do not follow scope rules, such as those allocated from an Algol 68

heap. These objects are normally created explicitly (by invoking a storage-allocator from the

program) rather than implicitly (by entry to the containing scope 14)and have no names that can be

directly associated with them. Therefore, special provision would have to be made to provide unique

names for such objects.

By definition, the name of a particular object will never change. This means that, once again,

one need not worry about retagging previously written values due to relocation. Aliasing, on the

other hand, might become a serious problem, especially if one considers Fortran's EQUIVALENCEand

COMMONdeclarations and similar facilities in other languages for overlaying variables. Certain

features of some programming languages, such as the parameter passing mechanism, might also hide

the "official" name of an object from a program segment that accesses it--only the name of the

formal parameter might be known. In general, most current machines maintain insufficient

information at run-time to reasonably support name-tagging. It is not clear how this will be affected

in the future with the development of higher-level architectures.

14Actually,theterm extentwouldbe moreappropriateherethanscope,becausethe lifetimeof theobjectiswhatmatters,not
howlongit canbenamed.InAlgol,forexample,theextentofan ownvariableoftenexc.eedsitsscope.

Richard H. Gumpertz 39 I'.rror l)etection with Memory 'Fags

3-1.2. Instance tagging

In most systems, portions of the various address spaces are repeatedly reused, each time to

reprcsent a different object. For example, most dynamic storage allocation packages reuse those

words that have been previously "freed" in preference to "new" locations. If this allows dangling

pointer values, which point to areas of storage no longer used for the object originally designated, to

bc generated, then errors can result that are difficult to locate. What is needed is a way to ensure

detection of any attempt to reference through an obsolete pointer value. Tagging that utilizes the

programming language name space might accomplish this, but, as seen above, such factors as aliasing

can still cause difficulties.

Various restrictions that prevent generation of dangling pointers have been tried in programming

languages but none has provcd totally satisfactory. A typical shortcoming is that otherwise valid code

is prohibited because compilers would be unable to determine whether a dangling pointer can result

from that code. Except in a few capability-based systems, run-time checking of pointer validity has

been ignored. In principle, one could solve this problem by never reusing any address and

invalidating obsolete ones. In fact, _uch a system could be implemented as part of the memory

mapping mechanism of a computer. The expense, however, in logic complexity and pointer size

might be excessive.

Tagging can provide a slight variation on this technique fairly cheaply. Instead of generating

truly unique addresses, let us occasionally reuse a particular address. Furthermore, let each pointer

value be split into two parts. One part is used in the traditional manner to address storage, while the

other, called the instance tag, is the part that changes between successive allocations of the designated

storage. By checking that this instance tag is still current upon each access through a pointer,

attempts to use an obsolete pointer can be detected.

Some storage is reused at high rates. A stack location, for instance, might be reused as quickly as

procedure or lexical-block entries and exits occur. Providing a unique instance tag value for each

reallocation of stack storage would therefore imply the use of a large instance tag. It might be more

practical to use only r bits. By so doing, one decreases the probability of detecting usage of a

dangling pointer from certainty to 1- _k(assuming random allocation of instance tag values), but this

sacrifice should not be significant.

The introduction of instance tags has some interesting implications with respect to

implementation. Most notably, current architectures do not make provision for determining an

Richard H. Gumpertz 40 t'rror l)etcction with Memory Tags

appropriate instance tag for each reference to storage. When full (unabbreviated) addresses are used,

as would normally be the case for pointer variables, the tag would just be stored along with the

address.

It should be noted that tagged pointer values that appear in storage will actually have two

different tags associated with them--one is the implicit tag that labels the pointer value itself while

the other is the explicit tag that describes the object pointed to. The former is used to access the

pointer value: the latter is used when referencing through the pointer. Perhaps this distinction is best

expressed by analogy to a key contained in a locked box. The keying of the key in the box is quite

independent of the keying of the key to the box. Similarly, the instance tag in the pointer value is

distinct from the instance tag for the word containing the pointer value.

In a typical machine, not all references to memory include full pointers in the fo_xnation of the

address. To make programs more compact, one or more methods are usually provided for expanding

a "short address" in the instruction stream into a full address. Requiring a tag in each of these would

substantially increase the size of the code.

Luckily, many such references involve a base register and an offset. In such cases, the tag portion

of the value in the base register can act as a tag to be used when referencing the addressed storage.

Therefore, this situation is fundamentally similar to any other indirection through a pointer. One

problem with dais assumption about based addressing is that typically only one pointer value is used

to address all storage of a given type. For instance, a single such register might be used to reach all

own storage belonging to a particular module while another might be used to reference all variables

in the invocation record (i.e., stack frame). In either case, all of the variables of a given class would be

allocated together as a block and would receive the same instance tag. References intended to touch

one but actually touching another would not be detectable unless some other tag components

differed. Note, however, that the primary purpose of instance tags is to detect temporal errors such as

dangling references. In this case, it does not matter that two different locations share a single tag

value. Furthermore, if the variables have differing types (either "abstract" or "representation"), then

that component of the final tag will suffice to detect the error. Finally, if it is deemed essential that a

particular sub-block of storage be tagged uniquely, one can always allocate an extra base register for

this purpose (or use an operand modifier, as proposed in section 3-2.3.2).

Another common form of short address selects a register. In this case, there is no obvious way to

obtain an instance tag except by including it in the instruction stream. This, however, would

probably cancel the principal point of register addressing, very compact addresses. A solution would

Richard H. Gumpertz 41 Error Detection with Memory Tags

be to not tag registers at all. This could cause problems in architectures in which registers can also be

addressed as memory locations because some references to the word would include tags while others

would not. If, as in the PI)P-10, references to storage locations that are also addressable as registers

can be distinguished by the hardware, then the tag could just be ignored for those locations. In other

cases, some other solution wilt have to be found. Note, however, that other problems, such as

performance degradation, are rapidly causing the demise of such aliasing in new architectures

anyway.

3-1.3. Multiplexer checking

Memory addressing actually involves two more fundamental processes, multiplexing and

demultipIexing. These concepts are fundamental to almost all parts of modern computers. Other

than memory elements, most of the active circuitry is devoted to selecting and routing data--only a

small fraction of the hardware performs any computation other than copying bits. The term

multiplexer will be used here to denote a device that selects a signal from a set of inputs. It

propagates the selected value as the output value of the device. The choice of which input to

propagate is determined by another, independent, set of inputs called the address. To be useful, this

address obviously must be able to change with time, thereby selecting different input signals.

DemuItiplexing involves the opposite function. A single input is routed to any of several possible

outputs. The value of the addressed output signal is determined by the input datum; the other

(unselected) outputs take on values that do not depend on that input signal. Tagging can be used to

check such multiplexing and demultiplexing.

As in the special case of fetching from random access storage, failures of multiplexers can be

detected if the input values are each coded uniquely. With appropriate choice of codes (such as

Hamming-like codes), partial failores, where only some of the bits are mis-selected, can also be

detected. Demultiplexing, on the other hand, is usually hard to check. To do so would require that

verification not only that the appropriate signals are propagated to the addressed output but also that

they are not propagated along unselected routes. Such checking would be impractical for

demultiplexers with many outputs. Nevertheless, many errors can be detected (but not necessarily

isolated) by employing a read-after-write scheme that remultiplexes the outputs of the demultiplexer

so that one can verify at least that the addressed output was correctly set. Furthermore, when the

addressing mechanism is shared between a multiplexer and a demultiplexer it may be useful to

perform a read-before-write operation to check that mechanism. An example of this is the Alto file

system [45], which reads the header of a disk block just before writing that block. By so doing, it is

able to verify that the proper block is located under the head and that the block is a part of the file

Richard H. Gumpertz 42 Error l)etection with Memory Tags

being written. If there is a failure in the hardware addressing mechanism (in this case the disk and

head positions), it can be detected before the wrong block is overwritten.

There is no reason that tags could not be used along the internal data paths of a machine in a

manner similar to that proposed for storage. For the typical execution unit one might consider

tagging each value with a number indicating from which register it is received or to which it is

destined. One might also tag it with the route it is supposed to follow through the data paths. Of

course, any decision whether to include such low-level tagging would be highly dependent upon

performance considerations. Even the few gate-delays needed to check a tag might be excessive for

some high-speed implementations.

3-2. Type tagging

The preceding sections examine various forms of address tagging. This sections examine another

form of tagging: type-tagging. Most recent programming languages have included some notion of

typing. That is, each object that can be manipulated by a program has a type which determines the

attributes of that object and the operations that may be performed on it. One obvious thing to

include in a tag is the type of the value stored in each word. If an attempt is made to access such a

word wifllout properly naming its type, then that access can be prohibited. Any legitimate accessor

should know its type. 15 A correctly written program should never violate the constraints implied by

type-checking. If it does, then an alarm should be raised.

3-2.1. Run-time type checking

Some systems, most notably programming languages such as PAL [15], have provided flexibility

by specifying that types are associated only with values; the type of a variable can change each time it

is assigned a new value. Any type-checking that is performed must be done at run-time.

Nevertheless, the general tendency has been toward strong typing under which the type of a variable

is fixed at compile-time. 16 Only objects of a specific type may be assigned to a given variable. In

such a system, one can usually verify the type-correctness of a given assignment at compile-time.

Why, then, is further type-checking useful? Many previous works [17, 18, 19, 34, 35, 62, 63, 64, 69]

15This might not be strictly true for some optimized implementations of generic procedures. The problem is, that these
implementations depend upon not performing type-checking at run-time. Remember, however, that the compilation of
generic procedures is still an active research area.

16The term strong typing has been used to denote many related, but different, concepts. Compile-time typing, however, seems
to be included in most people's definitions.

Richard H. Gumpertz 43 Error I)etection with Memory 'Fags

have cited arguments for run-dme checking; several are relevant to this discussion:

• Faults in the hardware. _un-timc system or cvcn the compiler itself may allow errors to be
introduced _er compile-time checking. By delaying the checks as long as possible one

increases the probabilit_ of detecting errors. 17

• Some checks are diffioult or impossible to implement at compile-time. Consider, for

example, assignment to constrained variables in Ada [33]. Whether a particular
assignment is valid,can depend upon the value being assigned. These same checks may
bc trivial if delayed utail execution time.

• Forcing some of the n_re difficult cases to be checked at compile-time may necessitate
adding restrictions to the language (such as the ALGOL 68 [94, 5, 49] rules for avoiding

dangling references). Such restrictions may be stronger than really necessary, thereby
prohibiting certain programs that would otherwise be safe.

• In other cases, difficulties are often resolved in the other direction--being too permissive.

Allowing potentially erroneous programs to get past the checks is sometimes considered
preferable to prohibiting otherwise correct programs. For instance, in Aria [30] the type
of a variant record does not have to be re-checked on each access even though it might be
changed by another parallel process. The burden of avoiding such a situation is left to the
programmer.

It should also be noted that in some systems objects may be long-lived. In fact, an object or variable

might even outlive the program that created it. In such cases, type-checking cannot be done

completely at compile time; some of it must be left for run-time. In general, the longer one delays

checking, the closet one can come to catching all errors without adding arbitrary restrictions.

In addition to the points made above, which argue for using run-time type-checking in addition

to compile-time checking, one must consider that run-time checking may sometimes be the only form

of checking available. For example, much as we might like to get rid of Fortran, its use will probably

continue for some time to come. Should the users of an old language be denied access to type-

checking just because it is not included in the language? If anything, they probably need it more than

users of newer languages, not less!

3-2.2. User-defined types

A given object may in fact have several different types. What is seen by the low-level hardware

as bits in storage may be seen by the instruction set as a bit-string, by the compiler as a set, by the

programmer as a hand of playing cards, and by the programmer's boss as a waste of time. At another

17Ofcourseonecanemploybothcompile-timeand run-timechecking,therebygainingtheadvantagesof each. Thepoint
beingmadeis thatthe former,byitself,is insufficient.

Richard tt. Gumpertz 44 Error l)etection with Memory Tags

moment the same bits in storage may be seen by thc processor as an integer, by the low-level

programmer as an index into an array, and by the next higher level programmcr as a channel

identifier. Recent programming languages have allowed the programmcr to define new types in

terms of base types "built in" to the language. Such user-defined, extended, or abstract types usually

are not reflected at any level lower than the language system. The target machine sees only the

represenlation types, which it is able to process. Compiled code manipulates all values as integers,

floating-point numbers, Boolean values, or maybe character strings. Nothing, other than symbol

tables, reflects the fact that the user used abstract types rather than these machine-defined types in his

program.

"llae Burroughs B5700 and B6700 (previously called B5500 and B6500) family [69] provided only

three data types: pointers and single-precision or double-precision floating point numbers. 18

BLM [34, 35] and the Rice Research Computer R-2 [17] provided several more primitive types.

Myers' SWARI) machine [63, 64] provided not only the basic data types commonly included in

programming languages but also several special prefix tags for constructing arrays, records, etc.

While these were very useful, they still only allowed one to describe the representation type of an

object, not its abstract type.

Gehringer [19] provided for objects with user-defined types. He did this using a scheme similar

to that of Myers but with the addition of another special prefix for specifying an extended type.

Under his scheme, an object of type TI which is represented as type T2 which in turn is represented

as an integer would appear in storage as a series of tags preceding the actual storage word. As more

abstract types are used, more storage would be need for the object:

I I Iuser type I T1 user type I T2 integer <value>I I
I I I

Hydra [68, 96, 97] provided (in operating system software) extended types in a slightly different

manner. It imposed a fixed structure on all objects: a type-name, an array of binary data words, and

an array of pointers (capabilities). Redell [75], Lunicwski [52], and Intel [36, 91] employ a simpler

model for user-defined objects. In their designs, an object of extended type is simply a type-name

combined with a capability pointing to the another object which is the representation. In these cases,

the above mentioned object would appear as a linked list where each link is a capability:

18The various "special control words" were part of the implementation and generally not available for manipulation by
user-level programs. Even character strings were represented as arrays of floating-point.numbers

Richard H. Gumpertz 45 Error I)etection with Memory Tags

user type I T1 II
I

user type I T2 II I
I I

integer II <value>
I

It is not clear whether any of these schemes for extended types would be practical if carried out

to the lowest level. Hydra was successful, despite being object-oriented, largely because it only

imposed its notion of typing, objects, and capabilities at a high level, corresponding to that used for

files in more traditional operating systems. Due to the relative infrequency and large granularity of

operations at this level, the added cost was not significant. Had Hydra's objects been used at the

same level as objects in typical programming languages, this overhead probably would have been

much more significant. In fact, even if these mechanisms were implemented completely in hardware,

one might eventually find that just the overhead of all the extra memory cells for storing type-names

would be intolerable.

Extended types in programming languages, on the other hand, have typically not involved extra

storage at nm-time. An object requires no more storage than that needed for its representation.

Since the type-name need not be maintained for dynamic checking, one can also dispense with tile

extra level of indirection implied by the pointer. If a good optimizing compiler is employed, hiding

information with an extra level of type abstraction will not involve any penalty for storing or

referencing the object.

This optimization would seem to prevent one from doing run-time type checking, even as a

precaution. To do so would require storing an arbitrary number of tags19together with each object,

each being checkable by the corresponding type-managing module. Accesses performed without

checking all of these tags should be trapped as errors. It is in just this situation that the compact tags

proposed in this dissertation can be very useful. Because of hashing to a single fixed-size tag, only a

small amount of storage is required to store an arbitrary number of abstract types for an object.

Adding an extra level of abstract type just increases the number of inputs to the hash function. No

19or seals, such as those defined by Morris [61]and Redell [75]

Richard It. Gumpertz 46 Error Detection with Memory "Fags

matter how many abstract types are used, the size of a tagged object remains constant:

I ' Ihash(T1,T2,integer) . <value>
I

3-2.3. Implementation of type-tagging

The implementation of type-tagging would be quite straightforward if it were not for one

complication: a given object can have more than one (user defined) type. lfone had to support only

the representation type, things would be quite simple. The type-tag for each access would be

determined from the machine-level instructions. For instance, the opcrands of an integer-add

instruction would be labelled with the type-tag corresponding to the type O_/eger. Similarly, the

operand of a branch instruction would be tagged with the type-tag for the type instruction.

Implementation of abstract types, however, is a completely different problem. The type of a variable

is dependent upon the context in which it is named. To the end-user, a variable might be of type TL

To the module that defines that type, however, the variable would be represented and manipulated as

type T2. This renaming might be arbitrarily nested, t_ecause such types are not defined as part of the

architecture, the corresponding tag(s) cannot be derived automatically by the hardware. There must

be a way to determine an appropriate tag value to use when setting and checking tags in storage. The

required tag must be explicitly provided by the software. The remainder of this section examines one

possible implementation of a facility for systematically so doing.

3-2.3.1. Type-tagging at subroutine entry and exit

Assume for the moment that the operations that manipulate a given abstract type are

implemented as subroutines in a module defining that type. In such a case an object of that type

would be accessed only from within one of those subroutines. Outside of the module the storage

associated with an object would never actually be touched; at most a pointer to it could be

manipulated. "Iherefore, a reasonable implementation might provide the required abstract type

information on entry to code in the defining module. That is, for the example above, the knowledge

that a particular word is a of type T1 could be provided on entry to procedures in the module that

manages that type. Such a scheme would resemble the model provided by CLU [50, 51] when its cvt

feature is used: each parameter to which cvt applies is converted from its abstract type to its

representation type on entry (and, perhaps, back on exit). I refer to the process of converting how

one looks at a variable from its abstract type to its next lower representation type as unsealing and the

reverse as sealhTg. The two terms correspond to the terms down and up that are used in CLU.

Richard H. Gumpertz 47 Frror l)etection with Memory Tags

If parametc_ are passed by value, then at some point in the calling sequence the parameter

actuals are probably copied to the locations associated with the parameter formals. If these formals

are t_lggedonly with the representation type (and not the abstract type) then the abstract type tag will

be needed only during the fetch half of that one transfer. Similarly, if parameters are passed by

value/result, then a corresponding transfer at subroutine exit can restore the value to a cell tagged

with the abstract type's tag. Nested abstract types are handled without difficulty because at most one

level of abstraction is removed at each level of subroutine nesting.

If parameters are passed by reference, then the mechanism must be a little different. Inside the

type-specific subroutines there may be many references to the parameter, each of which will have to

utilize appropriate type-tag information. Recall fi'om Section 3-1.2, however, that one can put

information into a pointer describing the tag of the object referenced by that pointer. While this

feature was previously used to store the instance tag of the denoted object, it could also be used to

store the type of that same object. If the various tag components arc combined using an incremental

hashing function (see Section 2-4.1), then upon entry to a type-specific subroutine the appropriate tag

for the abstract type can be merged into the tag field of the pointer that denotes the parameter.

Outside of the type-defining module one would indicate the address of an an object of that type with

pointers containing just the instance-tag of the variable. Inside that module, however, one would

address the same variable with a pointer containing both the instance-tag and the type-tag. The types

of the pointer variables themselves would be ref (abstract type) and ref (representation type)

respectively. In summary, instead of copying the value back and forth between variables of the

abstract and representation types one just changes the way of looking at a single variable.

3-2,.3.2,.In-line type-tagging

Neither of the above mechanisms for implementing abstract type tagging need be restricted to

use during subroutine invocation; they could also be supported by unseal and seal machine

operations. This would allow subroutines to easily gain access to objects other than as explicit

parameters. For example, objects in "global" storage or linked lists could be unsealed as needed.

Although one could force the module to invoke itself to gain access to the object, such convoluted

code would be awkward, unnecessary, and inefficient.

There are two ways in which one could implement these in-line operations. The most obvious

manner would utilize unseal and seal instructions. Such instructions would have two input operands:

a pointer (consisting of an address and a tag) and another tag. They would yield a pointer value

indicating the same address as the original pointer but a tag that combines the two tag values. If tag

Richard ti. Gumpertz 48 Error Detection with Memory 'Fags

accumulation provides for inverses, such as would be the case for a Boolean sum, then the same

instruction could be used for both purposes.

If the sealing operations are used often enough, it might bc desirable to follow the analogy of

replacing add instructions with indexing. Instead of using an instruction to achieve the desired effect,

one could use the addressing mcchanism available to each instruction to do unsealing. That is, for

each data operand, an operand modifier could be made an optional part of the address specification.

When used, it would indicate a tag componcnt that would be merged into the tag that results from

the normal addressing mcchanism. Note that if a quasi-associative (see Section 2-4.1) hashing

function is used for tag accumulation, then only onc such modifier would bc needed per operand. If

more than one unsealing or sealing operation is needed for the same opcrand, then all the necessary

tag components could be pre-merged into one operand modifier at compile-time.

Operand modifiers also allow the in-line expansion of code sequences that are too short to

reasonably implement as out-of-line procedures. For instance, the assignment operator for a simple

abstract type would probably be best compiled as an in-line move instruction rather than as a call

upon a trivial type-specific subroutine. Otherwise, the procedure-call overhead would dominate any

"real" work being done.

Few (or, perhaps, no) complete systems (Le., including the operating system, memory

management and input/output facilities) have been implemented without bypassing type-checking at

some point. Recent languages have often provided a standard "escape hatch" for this purpose:

PL/I[3] has unspec; Euclid[44] has ((----; Mesa[60] has loophole; and Aria[30] has

unchecked_conversion. Normally such functions do not result in the generation of any extra

instructions--the distinction between various types is discarded in the run-time representation.

When the proposed tagging mechanism is implemented at a low level, such escapes must also be

implemented at this same level. Operand modifiers provide a simple mechanism for doing this

remapping between types.

3-2.3.3. Other models of type unsealing

Although the model presentcd above for type-unsealing upon subroutine entry and exit is

plausible, it does not seem to match that provided by many programming languages that support

typing. The more common scheme seems to be to unseal objects only when operations dealing with

the representation are invoked. That is, unsealing happens not on entry to the module managing the

abstract type but rather on calls out from that module. It can be shown, however, that the distinction

is not critical.

Richard H. Gumpertz 49 Error Detection with Memory Tags

Consider a simple scaled arithmetic package, written in CI,U [50, 51]:

scaled = cluster [scale_factor: int] is create,
negate, add, subtract, multiply, divide

rep = int

The multiply routine could be implemented either using unsealing on entry and sealing on exit

multiply = proc (a: cvt, b: cut) returns (cvt)
c: int
c := (a * b) / scale_factor
return(c)
end multiply

or by using unsealing at each reference to the representation type

multiply = proc (a: scaled, b: scaled) returns (scaled)
c: scaled

c := up((down(a) * down(b)) / scale_factor)
return(c)
end multiply

Note that assignment in CLU is implicitly defined for all types, including user-defined ones. If this

were not the case, then the latter example would have to be rewritten to unseal c rather than seal the

value assigned to it. Although the following is not quite a legal program, it better reflects the actual

implementation:

multiply = proc (a: scaled, b: scaled) returns (scaled)
c: scaled

down(c) := (down(a) * down(b)) / scale_factor
return(c)
end multiply

]'his last example corresponds to the the type-unsealing model provided by many other languages,

such as Ada [30]. Nevertheless, because the examples are equivalent, a compiler for a language like

Ada could legally generate code that resembles the first example.

Some routines, even though part of the type-definition, might not ever reference the

representation of a parameter. For example, the subtract operation might be implemented in terms

of the add and negate operations:

subtract = proc (a: scaled, b: scaled) returns (scaled)
c: scaled
c := scaled$add(a, scaled$negate(b))
return(c)
end multiply

In this case, a compiler would not unseal the parameter at all.

A few routines might reference a parameter both as the abstract type and as the representation

type. A number of options exist for the compiler in this ease:

• The procedure could explicitly unseal its parameters when needed.

• If the majority of references within the procedure are to the representation, then one
could still unseal at entry but explicitly reseal when needed.

Richard H. Gumpertz 50 Error Detection with Memory Tags

• The parameter-passing mechanism could provide both the sealed (abstract) and unsealed

(representation) versions of the appropriate references.

Note that a compiler could choose to use any of these approaches for each parameter of each

procedure; it would not be constrained to choosing a single method for all code that it generates.

3-2.3.4. An example

By now the reader may be thoroughly confused about the values of various tag fields. Consider,

therefore, a simple example based upon the following declarations written in Pidgin 81 [7]:
type CHANNEL = integer;
type FUBAR = record(FO0: integer, BAR: CHANNEL);
variable X: FUBAR;

If just type-tagging and instance-tagging are used, then one might picture the storage allocated

for Xas follows:

I" instance-X

I type-FUBAR
<value of X.FOO>

I type-record

i type-integerinstance-X

I type-FUBAR
type-record <value of X.BAR>

I type-CHANNEL

L. type-integer

The portions bounded by solid lines represent the values in the storage allocated for X and the

portions bounded by broken lines represent the tags attached to those words. The tag components

shown would be combined by the hashing algorithm into a single composite tag.

A pointer, P1, that refers to Xmight be represented in a similar manner:

[instance-P1

I
type-ref-FUBAR instanee-X address-X

I
type-pointer

L
The new field, which is part of the value of the pointer, provides the instance tag information that was

generated upon allocation of storage for X. Note that the tag of P! itself is based upon the variable's

abstract type being ref FUBAR and its representation type being pointer. This is not strictly

necessary; P! could also be declared to be a primitive pointer. This would eliminate the need to

unseal it when used but would also eliminate some of the double tag-checking referred to in Section

2-4.

Richard H. Gumpertz 51 F,rror l)etcction with Memory Tags

If one passed X to the module that manipulates objects of type FUBAR, it might unseal the

reference to the parameter, yielding another pointer value in 1'2:

[instance-P2

I instance-X
type-ref-record address-X

I type-FUBAR
type-pointer

L.

The unsealingoperationjustaddsthetype-tagcorrespondingtoFUBAR tothepointervalue.

Selecting each of the components of this parameter and putting their addresses into pointers P3

and P4 would in turn unseal the record type:

I instance-P3 instance-X I

I type-ref-integer type-FUBAR address-X.FOO II
L. type-pointer type-record

r
instance-P4 instance-X

I
type-ref-CHANNEL type-FUBAR address-X.BAR

I
type-pointer type-record

L

Including record as an explicitly tagged, run-time, type is arbitrary (on my part), based on the notion

that it is a special sort &generic type. It could be omitted without problem, in which case P2 would

be a primitive pointer instead of a typed pointer. Alternatively, the unsealing of X and the selection

of its components could be combined into a single operation, thus yielding P3 and P4 without the

intermediate value shown in P2.

The final unsealing operation, performed in the module that manipulates channels, would yield

1)5".

r" instance-X
instance-P5

I type-FUBAR

I type-ref-integer type-record address-X.BAR
type-pointer type-CHANNEL

I

Below this level the hardware would implicitly unseal the type integer when performing instructions

that operate on integers.

Richard il. Gumpertz 52 Error l)etection with Memory Tags

3-2.4. Type comparison without type inquiry

'lhe most significant difference between the architecture proposed in this dissertation and

previous tagged designs is that inquiries about the type of a word are prohibited. Such information

must be provided as an input to each memory access rather than be produced as a result. This is

because the tagging mechanism is designed only to allow comparison of tags, not the fetching thereof.

Furthermore, because it sometimes (with probability _) gives the "incorrect" answer, it is possible

that two logically different tags may be reportcd as matching. When an incorrect answer is given,

however, it will always be a "safe" one--no correct program will encounter spurious error traps. The

constraint used is that no properly matching tag will be rejected as erroneous (in the absence of

memory failures) but that most non-matching ones ,_ill be discovered. This allowance of occasional

improper acceptance is critical to the compact storage of tags, as explained in Section 2-4.

Some tagged designs reduce the number of bits in the instruction stream by making many of the

machine-code level operations generic. For instance, an add operation might be capable of doing

integer, fixed-point, or floating-point addition, with the appropriate selection made on the basis of

the type of each of the operands. Such a system is often referred to as having overloaded its operators.

Since my proposed scheme does not allow one to inquire about the type of a word, it clearly cannot

directly support such run-time overloading of the machine instructions. Just as for untagged

machines, addition of such generic operations would require addition of explicit tags to the data.

Thus one does not get one of the benefits of a typical tagged architecture. In fact, because every

memory operation must present the tag of the word being accessed, one may even require extra bits

in the instruction stream! While some traditional machines might use the same clear instruction for

single-word integers, floating-point numbers or even bit-strings, those cases must somehow be

distinguished in the proposed architecture. Of course any extra bits required for this purpose are not

wasted: errors may be caught that otherwise would have been missed. Indeed, this example supports

one of the main contentions of this dissertation, that the redundancy present in most instruction

streams can be used to detect errors.

3-3. Ownership tagging

Both instance tagging and the abstract-type tagging proposed above depend upon the inclusion

of a tag part in pointer values. Because in some situations the attendant expense might be excessive,

it is worthwhile to at least consider other schemes which would avoid this requirement. One such

tagging system does provide some of the benefits of instance and abstract-type tagging, although the

scope of detection is narrower.

Richard H. Gumpertz 53 Error l)etection with Memory "Fags

Two tag components could be provided to the executing process without major overhead: one

component corresponds to the primitive type of the object being referenced and another corresponds

to the module from which the access t_kes place (the owner). For objects that have an abstract type,

the owner would be the module that implements the lowest level programmed abstraction; for

objects implemented directly as a primitive type, it would be the module in which the object is

declared.

This definition prohibits any sharing of data between modules. Therefore, for those cases where

sharing is needed, one would have to define an intermediate module and declare the shared objects to

belong to it. Each time one of the modules wished to access a shared object, it would call a procedure

in the intermediate module. Furthemlore, parameter passing during procedure invocation would be

specially implemented to sit on the fence between the two modules, able to read from the actuals

using the caller's tag and then write to the formals using the the callee's tag. Upon procedure return,

the inverse would take place for any returned values. They would bc read using the callee's tag and

written using the caller's tag. In both of these cases, a mechanism for optionally specifying a tag for

each operand of an instruction should prove useful. The operand modifiers proposed in Section

3-2.3.2 will work for this purpose. Again, it would allow in-line expansion of procedures that are

logically part of another module and thereby avoid subroutine-invocation overhead for trivial

operations.

The primary disadvantage of ownership tagging is that only the tags associated with the primitive

rcpresentation type and the owner are stored with each word. No checking of higher-level

abstractions can be included. Furthermore, there is no way to distinguish an object of an abstract

type from any other object of that same type. Many more errors, such as those resulting from

dangling pointers, might slip by undetected.

The only ways to regain a little control seem to require extra storage. For instance, abstract types

might be implemented as pointers to the representation (as opposed to renamings of the

representation). Note, however, that the extra memory access required to "walk the path" to an

object might cause significant performance degradation. Any attempt to reduce these storage

requirements or memory accesses will have the negative side-effect of also reducing the probability of

detecting an erroneous situation.

Richard It. Gumpertz 54 Error I)ctection with Memory "Fags

3-4. Other applications

The tagging proposed so far in this chapter (()tile=',perhaps, than ownership tagging) can also

provide some benefits other than those already described. The net effect of the mechanisms is to

allow separation of storage words into equivalence classes. Any error-check which depends upon

dynamically verifying assertions as to class-mcmbcrship can be implemented using tags. Most of the

errors so detected can bc described as accessing the wrong word, accessing the right word but in the

wrong manner, or accessing it at the wrong time. There are a number of commonly encountered

error-checks that could be included in this group; the rest of this chapter examines several of them.

3-4.1. Bounds checking

If each variable is uniquely tagged then attempts to access an array element using an index that

exceeds the bounds of the array will be automatically detected. This is because the tag of words

outside the array will differ from that of words inside the array. Unlike traditional subscript range

checking this does not require time-consuming comparisons with each of the limits. Instead it is

included in the one tag comparison.

Of course there is a limitation: tagging will only check against exceeding the extent of the entire

array rather than testing each dimension individually. For instance, a 2x2 array called A, stored

contiguously in row-major order, might be accessed using A[1,3]which would actually refer to A[2,1].

Because this is still part of the array A, it would be tagged with the same instance tag and so the error

would go undetected. There are two ways around this problem:

• If, as mentioned in Section 3-1.1.3, subscripts were included in the tag computation for
each element of the array then such checks become possible. This, however, requires that

subscripts be handled as a special case--simple arithmetic operations for combining
subscripts would no longer suffice.

• Alternatively, one could represent multi-dimensional arrays using Iliffe vectors, which are
vectors of pointers to vectors. By distributing the the tags so that one dimension is
checked at each level of indirection and one at the final fetch, one can avoid special

handling of subscripts. On the other hand, one still may have troubles with certain forms
of array slicing, as described in Section 4-4.

Although subscript-checking using tagging is not well suited to checking individual subscripts of

a multidimensional array, it is quite appropriate for use with oddly shaped arrays. Consider, for

instance, a vector that is indexed by a subrange not of the integers but rather of the prime numbers.

Such sparseness would normally make verification of subscripts rather expensive--limit checks are

not sufficient. On the other hand, tagging of the data cells works wonderfully. No matter how widely

Richard tl. Gumpertz 55 Error Detection with Memory Tags

the elements of the vector might be scattered in storage, only they will be tagged appropriately to

allow access. Even if other variables are allocated to the "gaps" between them, one can still detect

bad subscript values because those gaps would be tagged differently fi'om legitimate cells.

3-4.2. Random jump detection

If instance tags are used for all segments of storage, including the instruction stream, then even

errors in the flow of control will be detectable. A particularly nasty error to isolate is the "random

jump" in which a processor apparently inexplicably reaches a particular execution point. Possible

causes include a hardware failure in the program counter, an uninitialized label variable, an out-of-

bounds case index, etc. With instance tagging, almost all of these will be detectable because each

code segment can be tagged differently. The most notable exception is a branch that ends up in the

"right" segment but the wrong location within it. Fortunately, this gap can be minimized by

fragmenting the code into many different segments, perhaps even as small as the basic blocks referred

to in the literature on compilers [23, 2]. Transfers between these segments would, of course, specify

the new instance tag.

Except when the value of the program counter is destroyed by a hardware error, it is also possible

to determine the location of the errant jump. If, as in the Honeywell processors used to support

Multics [29 (pp. 8-9)], the instruction at the destination of the transfer is fetched as an operand before

changing the program counter, then the tag-mismatch can be caught while still at the offending

instruction. 2° Treating a transfer-of-control as a memory-referencing instruction need not neg_,tively

affect performance--the target instn_ction must be fetched anyway prior to its execution.

3-4.3. Uninitialized variables

Section 3-1.2 discusses the use of tags for detecting references to variables whose storage has

been freed and then reallocated. It should be obvious that the same mechanisms will also detect

references to uninitialized storage locations. This depends on the fact that such locations will be

tagged according to their previous usage. Not only might the type of the old value differ from that of

the new usage, but also the ownership would probably vary. Even if both of these happen to match,

20Similareffectcansometimesbe achievedin machinesthat recordin anotherregisterthe previousvalueof the program
counter. In the IBM1401withindexinginstalled[37],for instance,everybranchinginstructioncopiedthe l-registerto the
B-register. Programmersusedthis feature,along withone-characterhaltinstructions,to trackdownthemurceof erroneous
jumps.ThepagingboxusedwithKA-10versionsofITS[28]provideda .specialregister,designedespeciallytoaiddebugging,
thatwassetbyeachuser-modetransferinstruction.Somelatermachineshaveaddedspecialhistoryregisterstokeeptrackof
similarinformation.Nevertheless,checkingbeforechangingtheprogramcounterseemstobe asimpleryeteffectivemethod.

Richard H. Gumpertz 56 Error Detection with Memory Tags

the instance tag ought to differ. Thus, except for the always-present miss-rate _b,one can expect that

fetches of uninitializcd will be detected by tagging.

3-4.4. Variant records

There is a general problem with variant records, union types, etc. that some accesses may be legal

only when an appropriate value is contained in the object. Normally, a discrhninant is included in the

representation to allow one to make the appropriate checks. Many languages will not let a program

access any part of the representation of an object that depends on this discriminant without first

explicitly checking its value (as with a discrimination in Mesa [60]). Although designed to restore

type-safety to a situation where the normal rules of strong typing have been relaxed, such dispatches

do leave loopholes. Most notably, shared variables and aliasing can often invalidate the result of such

tests. For example, the type discriminant might change between the time that it is checked and the

time that the dependent field is accessed. The typical response by a language designer is to specify

that such behavior is illegal and will yield undefined results. Furthermore, automatic detection of an

erroneous situation is not required--caveat magister! 21

When every cell is tagged, appropriate checking is done automatically. This is particularly true if

one uses name-space tagging (or any other scheme that includes the discriminant's value in the tag).

At last one can enforce constrained objects in Ada at reasonable cost.

3-4.5. Extended tagging

There are other applications in which the basic tagging mechanisms proposed in Chapter 2 might

be useful. Furthermore, it is usually good design practice to provide the "hooks" necessary for others

to implement such extensions. In the case of tagging there is little problem because the inclusion of

tags in pointers (see Section 3-1.2) and the operand modification mechanism (see Section 3-2.3.2)

should suffice. In no way are new applications of tagging precluded by those already chosen. While

detailed examples of such extended tagging are inappropriate here, two possibilities are at least worth

mentioning:

• Access to some objects could be restricted to certain phases of program execution.

Temporarily changing the "key" used to "unlock" those objects would make then
unreachable.

• Multi-word objects whose components are supposed to "track" each other could 'be

21The Romans, of course, had no Latin word for programmer Traupman [90] defines magister as a "chief, master, director;
teacher; adviser;.., author: captain; pilot;..." which seems a suitable approximation.

Richard 11.Gumpertz 57 Error l)etcction with Memory Tags

checked for consistency. If each word is tagged with a version number, then obsolete

values would be caught because they would bc tagged with the wrong version number.

The important point to be noticed is that, due to the arbitrary fan-in of an incremental hash function

(see Section 2-4.1), these facilities are not usurped by the built-in applications and so are available for

other uses as well.

3-5. Summary of the applications

In the preceding few sections are listed a number of possible applications for tagging.

Reviewing, one finds the following tag components mentioned:

• physical address tags

• virtual address tags

• object-name tags

• instance tags

• representation type tags

• abstract type tags

• ownership tags

It is unlikely that any one implementation would choose to use all of them. Instead, one would

expect to choose from among the items on this list those that would be most practical for the

circumstances at hand and would tend to catch many errors at low cost. It would be impossible to

make blanket recommendations here as to which would be "best" without knowing more about the

application. Nevertheless, Chapter 5 gives one scenario that was designed to be simple yet effective.

It should be noted in passing that some of the tags mentioned above are "visible" at different

levels than the others. For example, there is no reason that even the assembly-language programmer

would have to know what sort of (or even whether) physical address tags are used. In fact, this might

vary widely between different implementations of the same architecture. Similarly, although

knowledge of representation type tagging would be needed by an assembly-language programmer or

a compiler, it could be hidden from higher levels. Recognizing the level at which a given tag

becomes invisible might allow the designer some flexibility in his decisions. With some care, later

implementations could be changed without requiring major retrofits to previous software.

Rich_ltd 1t, Gumpertz 58 Error 1)ctcction with Memory Tags

Richard H. Gumpertz 59 Error Detection with Memory Tags

Chapte r 4
Implementation details

•.. another failure was when I tried to run my 6 volt electric motor by

connecting it up to the electric light switch. Nothing happened. Even now,
looking back on the event with greater electrical knowledge, I still can't
understand why nothing happened.

Christopher Milne [59 (p. 40)]

As mentioned at the beginning of ChaPter 3, there are a number of implementation details that

could get in the way of implementing my proposals. None of tlaem, however, seems to be

insurmountable. Some of the apparent problems vanish once one fully appreciates the implications

of run-time tagging. In particular, by implementing low-level restrictions that previously were

higher-level, one will clearly affect those parts of a system that intentionally circumvented such

restrictions. For example, debugging-aids would have to be given information (e.g., in a symbol-

table) about the abstract types of the objects that it can examine.

Of course, not all problems disappear just by changing one's thinking. Therefore this chapter

examines some of the problems and proposes possible solutions. It is quite likely that there are other

(and perhaps better) ways to handle many of these issues, but in configuration-specific factors may

well dominate in determining one's choice between them. For the purpose of this dissertation,

however, demonstrating solvability will suffice.

4-1. Tag checking when storing

An important factor in error detection is detecting (and acting upon) errors as soon as possible.

It is best to detect the error before it is propagated, while its effects can still be contained. Error

detection schemes generally do not detect the actual failure; instead they detect inconsistencies that

result from a failure. Therefore, it is important for one to do this consistency checking as often as

possible. Only by constantly looking for such symptoms can one hope to detect errors before their

effects become too widespread.

Richard tt. Gumpertz 60 Error Detection with Memory Tags

One common (and puzzling) circumstance encountered by programmers is finding a "garbage"

value in a variable. Often this is the result of an assignment statement that has stored into a location

other than the one intended. The cause of this improper store operation is usually a program bug but

occasionally is a hardware problem. Unfortunately, debugging such problems with current machines

involves difficult backtracking to determine at what point the bogus value was stored. Neither

traditional error checking nor the tagging methods proposed so far will detect such mistakes until the

erroneously overwritten location is fetched. It would be better to detect the error at the time of the

erroneous store operation, befi_reit is performed.

Suppose, for instance, that all stores to memory arc preceded by fetches using the same address.

Only if the fetch succeeds will the store be allowcd. By itself this gains almost nothing but when

combined with the proposed tagging mechanism it can become quite effective. If an integer is to be

stored in a variable, then one should be able to fetch (and discard) an integer from that variable first.

If this is not possible, then the operation will be aborted before spreading the damage. Such a check

will be able to detect in advance many software and hardware failures that might otherwise result in

randomly overwriting data. The most notable exception would be hardware addressing failures that

did not affect the preceding fetch. For many storage technologies, however, such problems tend to

be rare because the addressing mechanism can be shared between the fetch and the store phases.

One might, for even more reliability, consider combining the above-mentioned read-before-write

sequence with a read-after-write sequence. It is not possible to evaluate the benefit versus cost of

such a read-write-read sequence, however, without considering the specific storage technology being

used. In some cases, the final fetch might even decrease overall reliability! For example, if a

destructive read is involved, then the last read (and its implicit rewrite) might introduce more errors

than it catches.

A note on efficiency: many memory devices can be read and written nearly as quickly as they

can be just written. The cycle time of many MOS chips, for instance, is dominated by the time

needed for address-decoding and line-prccharging. Therefore, with careful implementation, one

might add this tag-checking without much incremental expense. Sec also the example of the Alto file

system in Section 3-1.3 in which a header is read before writing the corresponding sector.

Of course, if one reads before writing then there must be some provision for initializing variables

after they are allocated. Otherwise, the first attempt to store into a word would fail. Initialization

could be done explicitly by a special operation that stores without first fetching, but this creates

another problem. This special initializing-write operation might be used on the wrong memory cell!

Richard H. Gumpertz 61 Error l)ctectitm with Memory Tags

A better choice would be to define the special initialization operation such fllat it only allows writing

into cells that are marked empty. 22 In effect one can shift one's thinking fi'om doing initialization to

doing finalization. Instead of explicitly initializing a cell when one allocates it, one must be sure to

explicitly mark it empty when fi'eeing it. The biggest advantage of this scheme is that it eliminates

the window of vulnerability that would be introduced by an initialization operation. Every operation

that changes storage would be checked by a preceding fetch.

It turns out that this paradigm may have another advantage: improved performance.

Finalization, unlike initialization, does not have to be done on demand. Instead it can be done by an

asynchronous process (such as a garbage collector 23) that returns no-longer-used memory to a free

storage pool. This potential parallelism might be exploited to spced up program execution.

4-2. Allocated but uninitialized vs. initialized storage

One problem with eliminating explicit initialization upon allocation is that it leaves no way to

distinguish storage that has been allocated but not yet initialized from storage that is in the free

storage pool: in both cases the storage will be marked empty. Any attempt to solve this would

require rewriting storage whenever it is allocated, which is equivalent to initialization. While the use

of initialization and finalization in combination does not introduce any conceptual problems,

bringing back the fonner also brings back the performance degradation I was so glad to eliminate

above. Nevertheless, the problem is not at all serious. If, for a particular situation, the cost of

initialization is not excessive then using it will allow the detection of a few more errors--attempts to

write into unallocated storage. On the other hand, if no distinction is made and initiation is not

performed, then one would still not allow data to be accidentally overwritten. That is, no information

will be lost because one would be taking this freedom only with cells marked empty anyway. The

worst consequence might be that v_hen the storage is eventually allocated it will not be accessible due

to being non-empty. 24

22Alternatively,one couldeliminatethe initializationoperationin favorof modifyingthe normalstoreoperationto allow
writeseitherwhenthecellbeingwrittencontainsa propervalueorwhenit is markedempty.

23SeeBaker'sdescription[4]ofa practicalimplementationof parallelgarbagecollection.

24Ifthe errorthatcausedthe errantstoreis transient,thenit mayalsobe impossibleto laterfetchthenewlycomputeddata,
but that isanotherproblem.

Richard tl. Gumpertz 62 Error Detection with Memory Tags

4-3. Taooin9 of variant records

Many languages allow some flexibility in the run-time representation of objects. That is, they

allow the representation of a particular instance of an object to vary in a manner depending on the

value of the object. An example of such would be an object used to store bibliographic information

in a text processing program. The record for an article might consist of an author, title, journal,

volume, pages, and date. A doctoral dissertation, on the other hand, would be represented as an

author, tide, department, school and date. Ill both cases, the representation would also include a

document-type field indicating which variant is being represented. Such objects are usually referred

to as variant records; the common type indication is referred to as the type discrhninant.

Variant records present two problems. The first is that the type discriminant often can take on

one of only a small number of values. Therefore, it might be stored in only a few bits. This means

that it may well take up less than a machine word and so some other part of the structure may share

the same word. If tagging is done on a per-word basis, there may be no way to fetch the discriminant

without knowing the format of the rest of the word. Such knowledge may in turn be available only

by examining the type discriminant. To avoid this circularity, compilers for this machine must be

careful about how they pack data. While this may not be very difficult to do. it is, nevertheless, a new

restriction imposed by the tagging mechanism. More will be said below, in Section 4-5, about

packing more than one item into a tagged cell.

The other problem that arises in connection with variant records is that the tagging mechanism

may introduce new inefficiencies in the manipulation of such records. In the code generated by a

typical compiler, assignments of entire records are performed without examining the type

discriminant; instead the whole record is just copied bit-for-bit. Assuming all possible variants of the

record are represented using a block of storage large enough for the largest thereof, the assignment

need not be varied in a data-dependent manner. On the other hand, if the representation is tagged

differently for each possible format, then the processor will have to employ a different tag for each

format. This may mean that such assignments will have to be split into code that dispatches on the

discriminant, performing similar but slightly different operations for each possible representation. 25

Again this is not an insurmountable problem, but it is a change from traditional designs. Its impact

on performance will have to be measured.

25If a read-before-write paradigm, as described in Section 4-1, is used and the assignment changes the discriminant, then one
might have to dispatch according to both the old and the new diseriminant values.

Richard It. Gumpertz 63 Error I)ctection with Memory Tags

4-4. Slicing

Some languages, such as AI.GOL 68 and (to a certain extent) PlJl and Ada, provide slicing

facilities. These allow the user to treat a part of a data structure as if it were itself a top level sta'ucture.

For instance, the two dimensional array A[_, _]might bc addressed as a vector slice A[3,*], thereby

indicating one row-vector of the containing array. Alternatively, one might reference the rectangular

slice A[3:5,_], thereby indicating a two dimensional sub-array. Incidentally, a very restricted slicing

facility is available in almost all languages: computing the address of a single element of an array,

such as ,4[3,7/.

A more common sort of slicing is structure slicing. A structure X which has components Yand Z

(each of which in turn might have subcomponents)can be sliced by referring to X. Yor X.Z. Finally,

if X[*] is a vector of structured records, one might even be able to refer to X[_'].Z or X.Z[*]as a vector

of just its Z components. The common property of all these forms of slicing is that some of the

parameters normally used when accessing elements of the structured object are bound in advance.

While in most cases slicing will add little complication, there is one case that can get a bit tricky:

the creation of pointer values that denote a particular slice. This usually involves collapsing the

information presented into a more concise form. For instance, a vector might be represented as an

address, delta, and bounds, independent of whence the vector was sliced. References to the vector

might check the actual subscript used against the bounds. If acceptable, then the address

computation would evaluate the expression address+delta*(subscript-lowerbound). This slicing

process discards information; it is assumed that there will be no need to back up and retrieve the

original array of which the vector is a slice. Nor can one determine the selector(s) used to specify the

slice. Once a vector has been isolated from the containing array, this information is just not available

unless retained separately.

Unfortunately, if one has chosen to use object-name tags, as described in Section 3-1.1.3, then the

processor must be able to compute a unique name for each location, independent of how it is

addressed. The obvious way to do so would be to retain with the pointer all the information

presented to the slicing operation, such as the original array name and selectors. 26 Alternatively, if

the sorts of slicing available to the programmer are appropriately restricted, it would be possible to

utilize incremental hashing in a manner analogous to that used to implement type-tagging.

Obviously the details of so doing would be specific to a particular implementation.

26It should be noted that, in simple implementations, some of this information may have to be retained anyway for use by the

garbage collector. Otherwise, the original array might appear unreferenced even though there would still be outstanding
references to slices thereof.

Richard H. Gumpertz 64 Error l)etection with Memory "Fags

Many implementations of API., starting with one proposed by Abrams [1], employ a technique

know as beating. That is, for certain operations, such as matrix-transposition, no data is moved.

Instead, only the items used for addressing the data are changed. For example, a vector could be

reversed by replacing the address of the vector with address+delta*(upperbound-lowerbound)and

negating the value of the delta. Given that the results of cascaded operations can become rather

complex, it is not at all clear that object-name tags would be able to resolve any more detail than the

original array. In other words, it is unlikely that one could gain much more error-detection capability

than is aheady provided by instance tags.

4-5. Packed data st ructu res

There is no easy rule for determining the appropriate size for the minimal tagged cell. Tagging

each bit of storage with several bits of tag would be inefficient. Providing only one tag for large

blocks of storage, on the other hand, would probably be overly restrictive on how one allocates

storage for distinct purposes. A reasonable compromise might be something about the size of a

typical machine word, between 25 and 100 bits. It is likely, however, that some applications would

pack more than one field into such words. This raises a question as to which type-tags should be

associated with a packed word. One could define the packed structure itself to be an abstract type

and tag the word appropriately. While doing so would certainly be appropriate, it still only

designates an abstract type and does not resolve which representation types should be included.

If all of the fields have the same type, as might be the case for character strings, then one could

tag the packed word just as one would tag the corresponding untagged word except for adding an

extra component which would reflect the packing. When one wishes to access just one of the fields in

isolation, the selection operation would have to unseal this top-level structure, leaving a reference to

an object of the base type. Although this d6es not resolve the issue of how to denote which bits of the

word are to be accessed, such indication is orthogonal to the issue of type-tagging and would have to

be considered anyway. Thus, a pointer to a packed character-string might contain just the instance-

tag of the string. A pointer to the first character of that string would indicate the same address but its

tag filed would consist of both the instance-tag and the tag corresponding to the string type. Each

word used to store string (as opposed to the pointers to the string) would be tagged with the instance-

tag, the tag corresponding to string, and the tag corresponding to character.

No similar approach exists for heterogeneous fields packed into a single word. An inelegant

solution would be to include type information for all fields of the word in the tag for that word. The

problem with this, however, is that in order to actually read or write any particular field one must

Richard H. Gumpertz 65 Error Detection with Memory Tags

provide all these tag values. Unfortunately, the normal type-unsealing mechanism provides only the

the type information corresponding to the field being referenced, not the other fields. Furthermore,

just knowing tile abstract types of all the other fields in the word is insufficient; one must also know

all the underlying representation types as well. For a language such as Aria this can be handled--the

language definition forces this information to be available to the compiler. Therefore a compiler

could generate an appropriate operand modifier to offset the extraneous tag information. On the

other hand, in many systems each level of abstraction needs to know only the immediately underlying

representation type. The tagging proposed thus far is quite capable of working with such systems

except for this one sticky problem. Without the rest of the information, it seems that packed words

would have to be prohibited.

Unless storage allocators are allowed to return partial words, thereby artificially creating packed

data structures, instance tags do not have any negative interaction with packing. This is because the

instance tag is the same for all items in a given object.

4-6. Multi-cell values

Complementary to packing many different values into a single tagged cell is spreading a single

value across multiple cells. In the most straightforward implementation, each of the cells would be

tagged identically (other than for address-tagging). When fetching a long integer, for instance, the

processor would assert similar software-derived tag-values for each of the parts of the variable. An

obvious consideration is that to achieve reasonable performance one might have to replicate the tag-

checking circuitry, thereby allowing all the cells to be processed in parallel.

4-7. Debugging tools

Traditional debugging tools, often designed for use with assembly-language programs, will

probably be tripped up by tag checking. Even many of the so-called source language debuggers may

have problems. This is primarily because it will no longer be possible to examine and/or set arbitrary

locations in storage without first obtaining all the relevant tag components for the cells to be accessed.

This is not really a deficiency of tagging but rather a deficiency in the tools. If sufficient information

is available to a compiler for generating code to access certain data, then this same information ought

to allow debugging tools to be able to do likewise. An appropriate communication mechanism for

transmitting this information from the compiler to the run-time environment is all that must be

added. For example, the symbol tables now used to map between names and addresses could be

expanded to include appropriate tagging information, such as type. Note, however, that much of this

Richard H. Gumpertz 66 Error Detection with Memory "Fags

expansion would be necessary anyway if one wished to make the tools truly oriented toward working

at the source level.

4-8. I/0 and other "blind" accesses

There are two distinct sorts of operations that are often classified as #)putoutput. The first group

includes those that are explicitly programmed at a high levcl. Because such transactions do not differ

from normal program execution with respect to tagging, all necessary type information is available.

For example, when appending an integer value to a file it would be known that the value is an

integer.

The other group includes "blind" accesses to storage Prototypical of these is the movement of

pages between different storage media. Another example is a checkpointing mechanism which saves

or restores the entire state of a computation. In either of these situations, words of storage must be

read or written without knowledge of how those words are used. Adding tags to storage might make

implementation difficult bccause the appropriate tag values would not be available for the storage

accesses performed. That is, the processes moving the data would have to do so without knowing

which tags to use. Such "blind" operations seem to conflict with the principle that all storage

references include a tag.

On the other hand, if one does not know the tag of a particular word then it is unlikely that one

would attempt to make any sense of its value. That is, only programs that understand the type of

objects being manipulated having any business trying to interpret them. It does not matter whether

other programs have sufficient tag information available to perform a normal read or write

operation--instead they only need be able to move the data in such a way that they can still be read

by processes that do have that information. Therefore, the simplest solution would appear to be to

just bypass the tagging mechanism. For instance, one might copy entire words as stored, complete

with tag bits, from one location to another. This would work even when encryption is used--

decryption is necessary only for processes that interpret the contents of the words.

There are a few problems with such a scheme. If address tagging is used then migration of words

between locations could cause problems if they are not returned to their original locations before

being accessed in the normal manner. Such a situation might arise, for instance, in a system that

combined virtual memory managemcnt with physical-address tagging. When data are moved from

one physical location to another, they would have to be appropriately retagged. If the incremental

hashing algorithm is appropriately chosen then this would indeed be possible. For instance, a sum

Richard H. Gumpertz 67 Error Dctcction with Memory Tags

can be corrected by adding the difference between the new and old address-tag values. On the other

hand, if the tag is used as a key for encryption, then such incremental compensation might well be

impossible. In such situations it would be better not to employ physical address tags. With sufficient

randomness in the other tags, accessing the wrong word of memory ought to be detectable anyway.

For some storage devices it might appear that some space would be wasted. For instance, in

most present machines the check bits for parity or Hamming codes are discarded when data are

moved from primary to secondary storage. In thcir place check bits and codes more oriented toward

errors in large blocks, particularly burst errors, arc used. If one has combined tag information with

the primary storage's check bits then the tag information must not be discarded. Note, however, that

this is not as expensive as it might at first seem. One would have to make provision for retaining the

tag bits whether they were combined with the check bits or not. Furthermore, by retaining these

check bits one might just detect an error that slips by (or is miscorrected by) the secondary storage's

code.

The last problem I will bring up is perhaps the most serious. If one suppresses tag checking

during storage migration then one also gives up the error detection that the checking was supposed to

provide. In particular, an incorrect word of storage might be read or written. The best solution I

have found seems to be to add a second level of tagging, this time at the block or page level. That is,

each page of storage would have associated with it a tag that would be checked when doing blind

accesses. At this level, the tags for each word would remain uninterpreted, just as if they were part of

the data stored. Verification of this per-page tag would act as a consistency check that the proper

page was indeed being accessed. Although some of the fine grain detection might be lost, it still

ought to detect a large number of the operations that would erroneously access the wrong page.

4-9. Garbage collection

Garbage collection can add a few complications to the tagging methods proposed. Not only

must the garbage collector be able to access active cells during its scanning phase but also it must be

able to release the unreached storage for reuse. The former capability ought not be difficult to

provide--the scanning process ought to know the stxucture and type (and so the tags) of any words it

reads! The latter capability, however, is a bit more difficult; it is even possible that some of the

relevant information was discarded simultaneously with the last active reference to the recyclable

words. If one cannot access them, there would seem to be no simple way to overwrite them with the

empty value mentioned in Section 4-1.

Richard H. Gumpertz 68 Error Detection with Memory Tags

A copying garbage collector, such as those proposed by Bishop [6] and Baker [4], can avoid this

problem. By making a copy of all the active words one can avoid having to touch tile discarded ones.

Instead one discards the containing page en masse, using a migration-like operation as proposed in

Section 4-8. Knowing the tag for the entire page, raffler than the tags for the individual words, is

therefore sufficient.

4-10. Stacks

One commonly used data structure is the stack. Homogeneous stacks, which can hold only

values of a single type, are really no different than any other compound data structure with respect to

tagging. On the other hand, heterogeneous stacks, such as the typical main program stack, are

probably better considered to be a form of storage alk)cation mechanism rather than data structure.

Not only can the type of a given cell in the stack change but also one would probably want to detect

dangling pointers which reference cells that have been deallocated (i.e., popped off the stack) and

then reallocated.

One of the key attributes of traditional stacks is the ability both to allocate and to free storage

efficiently. The overhead normally associated with these operations is no more than incrementing or

decrementing a register. Furthermore, unlike many other storage allocation methods, stacks must

often reuse locations in memory almost immediately after freeing them. This means that even if one

assumes that storage is erased before reuse by a parallel process (see Section 4-1), such erasure will

still be in the critical path of the main computation. In many situations, the extra overhead of

performing erasure for every reallocation of a stack location would not be tolerable.

Obviously one could switch to some other method for storage allocation, one that does not reuse

storage as quickly. Such a move, however, is probably too radical to gain easy acceptance and would

still have perfo=vaance problems. If nothing else, it would require that more storage be available for

allocation, thereby implying less efficient storage utilization. It is important to find a way for tagging

and stacks to coexist without the former hobbling the latter.

As for many of the other implementation details, design of an improved mechanism for stacks is

dependent upon the particular machine configuration, most notably stack representation.

Nevertheless, I will show one implementation which could be adapted to a wide range of situations.

To simplify things, I will limit discussion to the implementation of a traditional program stael_.

One or two registers are used to address this stack: a top-of-stack pointer, SP, and perhaps

Richard I I. Gumpertz 69 Error Detection with Memory Tags

(depending upon the rest of the architecture) a stack-frame pointer, FP. The former indicates the

boundary between allocated and free storage; it can be used for dynamic allocation of local storage.

The latter register indicates the base of the current stack fi'ame. Upon fi'ame allocation, which

normally happens as part of procedure invocation,

• a pseudo-unique instance tag is generated for the new stack frame (the exact method of
generation is unimportant to this discussion);

• the old values of SP and FP are saved;

• a new value for FP is determined from SP;

• the tag portions of SP and FP are set to the new instance tag.

Freeing a frame is much simpler: SP and FP are just restored to contain their old values.

All operations that modify SP, including those not traditionally checked (e.g., direct

assignments), must be verified against the overflow and underflow boundaries of the stack. 27 This

checking guarantees that the stack pointer will always point to cells reserved for use in the stack. It

can thercfore be assumed that any words allocated using SP arc free even if they have not been

explicitly erased to the empty value. This, in turn, implies that one no longer needs to erase cells

when thcy are popped off the stack--old values can be left in storage until the locations are reused.

Stack-pushing operations, unlike most other writing operations, would then not have to perform the

read-before-write proposed in Section 4-1.

Onc slight imposition remains upon the implementation of stacks: it is no longer possible to

allocate words by just adjusting the value in SP to appropriately skip over them. Instead those words

must be initialized (either to legitimate values or the special empty value) so that future write

operations, which do check tags, will succeed. It would seem, however, that there is no way to get rid

of both initialization on allocation and erasure on deallocation. One or the other is necessary to

making the transition between successive instance tags for the words involved. Note, however, that

words are often written anyway when being allocated on a stack whereas they are frequently freed

without being accessed. Therefore, the incremental cost for using initialization seems to be less than

that for using erasure.

One last comment on stacks: it might be possible to achieve further checking by using the page-

tags proposed in Section 4-8. Pages used for implementing stacks would be tagged differently than

those used for other purposes. Detailed examination of this area is left for future research.

27Infact,onemightcompareSP againstFPinsteadof theabsoluteunderflowboundary.

Richard H. Gumpertz 70 Error Detection with Memory Tags

4-1 1. Resonance

Because small tags are used, it is possible, indeed probable, that tag values will be reused. This

can lead to a phenomenon that I call resonance. In particular, there might be an unintentional

coupling between tag allocation and usage that would increase the probability of an undetected error

above q,. The underlying problem is that the assumption of statistical independence of tag values

may not hold in some cases.

Consider, for example, a program which allocates and frees 256 blocks of storage during each

iteration of a loop. If r is 8 and the instance-tag allocator uses a simple 8-bit counter to generate tag

values, then it would be possible for successive iterations to receive precisely the same storage

locations and instance tags for corresponding objects. Therefore, after the first iteration, no attempts

to use uninitialized variables would be detected as such.

Even without explicit repetition of tag values, undesirable coupling might occur between tag

allocation and usage. There might be an interaction between individual tag-component values and

the hashing function. For example, suppose that type TI is represented using type 7"2and that type

1"3is represented using type 7"4. Suppose further that the hashing algorithm used is a Boolean sum.

Should the numbers allocated to the tags for T1 through T4be 2, 4, 1, and 7, then it would follow that

hash(T1,T2) = 0102 • 100z = 110 z

and

hash(T3,T4) = 001z E_ 1112 = 110 z.

In this case, the combined tag values would coincide even though the individual components do not.

The net effect is that objects of type 7"1would be tagged the same as objects of type 7"2(in the

absence of other tag components) and so the program would lose some of the run-time type-checking

that one would otherwise expect it to have.

Resonance is not an easy problem to avoid. What seems to be the most effective way to combat

it is the introduction of randomization of tags wherever it can done safely. Several precautions aimed

in this direction look promising:

• Tag-component values should be assigned using an algorithm that avoids patterns that
might follow the usage patterns found in programs. Autocorrelation of successive tag
values should also be avoided. Otherwise one might encounter the effect seen in the
second example above. In other words, a good random number generator may help avoid
resonance.

• Tag values should be changed whenever practical. Even if resonance happens to hide an
error before the reallocation, there is a good chance that the error will be detected using

the new tag assignments (or vice versa). For example, many of the tags associated with

Richard H. Gumpertz 71 Error l)etection with Memory Tags

types or modules could be reassigned each time a program is linked, much as addresses
are currently reassigned by relocation. In this case, however, it would be desirable for
successive runs of the linker to generate different tag assignments, even when presented
with the same input. It might even be possible to delay the binding of tag values until the

program is "loaded" for execution, thereby allowing difJ_zrent tag settings each time that
the program is run. In general, the longer one can delay binding of tag values, the better.

Other approaches may be suggested by actual experience. In fact, I suspect that empirical data may

provide far more insight into the issue than could possibly be anticipated before a machine is built.

Richard it. Gumpertz 72 Em)r Detection with Me,nory Tags

Richard H. Gumpertz 73 Error 1)etection with Memory 'Fags

Chapter 5
An example

Most of this dissertation is intentionally general, lest unnecessary details seem to eliminate valid

design options. Nevertheless, an example (or at least a rough outline of one) seems appropriate to

help clarify some of the concepts. Remember, however, that an example is no more than that--many

of the specifications found below reflect arbitrary decisions.

There are two distinct paths that could have been adopted for generating an example machine:

modifying an existing architecture or specifying a new one. The latter approach can be extremely

seductive--ahnost every "hacker" has at least some desire to design a text editor, a programming

language, and a computer architecture. A new design, however, is likely to reflect many decisions

that are irrelevant to the purpose of the example. Just as multiple differences between experimental

and control groups complicates experimental science, so introducing more than the bare minimum of

new ideas to an example can obscure the points to be made. Therefore, it seems important to start

with an existing machine and change as little as possible.

Many architectures could be modified without too much difficulty to include tagging. The

multi-level type-tagging proposed in Section 3-2.2, however, can be best implemented if sealing and

unsealing of types are included in the parameter-passing mechanism. It is especially helpful if the

processor knows which routine ig being called before preparing the argument list; in this case a

parameter-descriptor can be associated with each routine. Excluding some LISP-oriented

architectures, only two general-purpose machines seem to provide subroutine-specific preparation of

argument-lists. 28 One, the now defunct Berkeley Computer Corporation's (BCC) Model 500 [93, 43],

is interesting but is a decade-old design which will probably not be revived. The other, the Nebula

architecture [84] being developed for the United States Army and Air Force as MIL-STD-1862A [66],

is more in line with current trends and might even become widely used.

28ThePRIME50Seriesarchitecture[72,82]comesclose,butprocessingoftheargumentlistisspecifiedin thecallingroutine,
notthecalledroutine.

Richard H. Gumpertz 74 Error I)etection with Memory 'Fags

The remainder of this chapter discusses how one might modify the non-privileged portion of the

Nebula architecture to include tagging. Although they changes are small, they are not invisible to the

programmer or compiler. Therefore, no claim is made that the tagged machine could be directly

substituted for an untagged machine with existing software. On the other hand, it should be trivial to

write new programs (or modify existing ones) so that they will be able to work properly in either case.

5-1. A summary of Nebula

Nebula is not yet a well known architecture so a short description seems in order. Although

primarily a 32-bit architecture, it also fully supports 8- and 16-bit operands. A few operations,

including the floating-point instructions, can also manipulate 64-bit quantities. For the most part,

Nebula's instruction set resembles that of Digital Equipment Corporation's VAX [14]. As for the

VAX, instructions are coded as a stream of bytes. The first byte specifies the opcode and subsequent

bytes may be used to specify operands. Nebula differs in a few significant ways:

• The general registers are not global in scope: instead a new set of registers is allocated 29at
each procedure invocation. Only one register, the stack pointer, is automatically
initialized after being allocated.

• A special parameter-passing mechanism is provided: more is said about this below.

• The size of each operand (8, 16, 32, or 64 bits) is specified independently from that of the
others. In the VAX, a different opcode is provided for each acceptable combination of

operand sizes; in Nebula only one opcode is used for all possible combinations. In effect,
the operand size infbrmation has been moved from the opcode field to the operand

specifier fields.

• Operand decoding has no significant side-effects (as opposed to the VAX which has
auto-increment and auto-decrement modes). Thus, operands can be decoded in any order

(or even in parallel) without problem. Furthermore, instruction processing can be
restarted at the beginning without having to restore state information should a trap (such
as a page fault) occur before its completion.

ql_e operand specifiers, like those of the VAX, each consist of one or more bytes. Because they

also specify the operand size, it is not possible to provide quite as many distinct "addressing modes"

as on the VAX and still retain a single eight-bit byte to specify the mode (and register number, if

any). The primary deletions from the addressing modes of the VAX are auto-increment,

auto-decrement, and indirection through storage (deferred). The modes still provided are as follows:

29Theallocationmethodis intentionallyhiddenfrom the programmerso that a particularmodelcan take advantageof
appropriateimplementationtechnology.

Richard tl. Gumper_ 75 Error Detection with Memory Tags

• literal (5-, 8-, 16-, 32-, or 64-bit operand)
• register (32-bit operand)
• parameter
• indirect-register plus 0-, 8-, or 32-bit signed displacement (8-, 16-, 32-, or 64-bit operand)

• indirect-PC plus 8- or 32-bit signed displacement (8-, 16-, 32-, or 64-bit operand)
• absolute 32-bit address (8-, 16-, 32-, or 64-bit operand)

The 5-bit literal format is really an abbreviation for the 8-bit literal format; one byte specifies both

the opcrand type and the value of the literal. It is otherwise treated like the 8-bit format.

"lherc are also three "compound" addressing modes which contain one or two nested operand

specifiers (represented in "Polish" notation):

• general parameter
• unsealed index
• scaled index

Evaluation of such compound specifiers is a two-step process: evaluate the nested operands and then

compute the effective operand from these values.3° The first compound specifier, general parameter,

includes a nested operand specifier (rather than a constant in the instruction stream as occurs with the

normal parameter mode) that determines which parameter is selected. It might be used by a routine

that accepts a varying number of parameters--the nested operand might be a loop-counter, for

example. "lhe latter two compound specifiers each include two nested operand specifiers, one of

which indicates a base memory address and the other an offset value to be added to that base. For

scaled indexing, the offset is first scaled according to the size of the base operand. This allows easy

st_bscripting of arrays containing 16-, 32-, or 64-bit elements. It is also useful for parameter arrays

whose element-size might not be known in advance by the called routine.

The instruction set is fairly typical, but, unlike many machines, multi-operand instructions are

not artificially constrained to using only one or two operands or to using implicit operands. 31 For

efficiency there are also special versions of some of the instructions which use fewer operands.

Examples of such are the two-operand integer subtract instruction in which a single operand indicates

both the minuend and the difference and the one-operand increment instruction in which the

opcrand doubles as an addend and sum while the other addend is an implicit literal. The non-

privileged instructions may be summarized as follows:

30Although arbitrarily deep nesting may be represented, current implementation policy restricts usage to only one level of

recursion.

31The one exception to this rule is that many instructions implicitly access the condition bits which are pan of the processor

status veord. As for many current machine designs, such bits are considered the most practical way to record information su_

as carries, overflows, comparison results, etc.

Richard 1t. Gumpertz 76 Error 1)etcction with Memory Tags

• move, unsigned move, floating-point move
• push, pop
• exchange
• clear, floating-point clear
• move operand's size, move operand's address
• float, fix
• negate, floating-point negate
• absolute-value, floating-point absolute-value
• add. increment, unsigned add, add with carry, floating-point add
• subtract, decrement, unsigned subtract, subtract with carry, floating-point subtract
• multiply, fixed-point multiply, ur_signed multiply, floating-point multiply
• divide, fixed-point divide, unsigned divide, floating-point divide
• remainder, modulus, floating-point remainder
• floating-point square-root
• floating-point round
• shift, rotate, binary .scale
• and. or, cxclusivc-or, complement
• compare, test, unsigned compare, compare with bounds, compare and swap, floating-point compare
• block mo,,e, block fill, block translate, block compare, block scan
• signed field extract, unsigned field extract, unsigned field insert
• bit test. bit test and set, bit test and clear, bit lest and complement
• call, return

• jump, branch, branch conditionally
• loop, increment and branch conditionally, decrement and branch conditionally
• case

• move true or false based on condition-bits
• set condition-bits

• set exception-handler, read exception-handler
• raise exception, return exception, propagate exception, read exception-code
• debugging break-point
• no-op

Although the addressing modes provide for four distinct operand sizes, some instructions support

only a subset of these sizes, For example, few instructions other than those that manipulate floating-

point quantifies support 64-bit operands. When a particular instruction invocation specifies operands

whose sizes are not supported by the hardware, the software is given a chance to produce an

appropriate result (if there is one). Thus, if none of the operands of an add instruction are 64 bits

long, then the instruction is executed in hardware. Otherwise, a software-defined implementation is

invoked with the same parameters; it might use several 32-bit additions to implement the 64-bit

operation.

The call instruction's syntax is like that of any other. It has one major difference, however, from

the other instructions: the number of operands used with it is not fixed. Instead, the number of

remaining operands is determined after evaluating the first one, which is the address of the routine to

be called. The first two bytes of this routine are a procedure descriptor which, among other things,

indicates how many parameters are expected. 32 Once this count has been determined, the remaining

32If the routine itself can accept a varying number of arguments, the descriptor so indicates and the count is instead taken
from the calling instruction stream.

Richard H. Gumpertz 77 Error Detection with Memory Tags

opcrands (which are the actual parameters for tile procedure) can be evaluated. The resulting

references (parameter-passing is by reference rather than value) are then stored in a manner specific

to the implementation of the processor. Although a "context stack" is anticipated as the typical

implementation method, there is quite a bit of flexibility because the only access is through parameter

operand specifiers.

Making the parameter-passing mechanism for routine-calls similar to that used for instructions

has a number of advantages:

• The implementation details of the argument list can be varied in each instantiation of the
Nebula architecture to take advantage of appropriate technology.

• The calling instruction stream might become shorter due to elimination of the move
opcodes normally associated with argument list preparation--only the operand specifiers
themselves are required.

• Operand evaluation can easily be performed in parallel for increased speed of execution.

• It is straightforward to implement some instructions as subroutine calls (with an implicit
first parameter). "lhis is helpful for low-end implementations (in which these instructions
might be most economically implemented in software) and for maintaining compatibility
of old machines with new ones (by implementing newly defined instructions in software).

• Although not currently done in Nebula, some or all parameters could be "processed" as
they are entered in the argument list with little added cost. For example, one might
automatically copy the value of (rather than a reference to) those parameters that are

supposed to be passed by value (as indicated by the procedure descriptor).

5-2. Tags used

For simplicity, the modified architecture does not use all of the applications discussed in Chapter

3. Three sorts of tagging are explicitly included:

• physical address tags
• instance tags
• abstract type tags

Physical address tagging, which is invisible to the program (except, perhaps, when an exception is

raised), is used primarily to detect memory addressing problems. Because this tag is automatically

derived from the physical address on each access to memory, it will do nothing to catch software

errors.

Instance tags, on the other hand, are oriented more toward detecting software addressing

Richard tt. Gumpertz 78 Error l)ctection with Memory Tags

problems such as dangling pointers, array bound exceptions, uninitialized variables, etc. As it turns

out, they can also detect some errors in virtual-memory mapping, either hardware or software

induced. This follows thc general principal that high-level checks can often detect low-level errors.

Abstract type tags carry software checking even further. Representation type tagging (at the

instruction-set level) is omitted from tl_eexample machine because it would require either expansion

of the instruction set (such as to provide a move instruction for each type) or equivalent expansion of

the operand specifiers. 33 The software can, if desired, achicve nearly equivalent checking by encasing

each hardware-providcd type in a corresponding abstract type. The expense of so doing will be the

additional overhead of specifying typc-unsealing, either as subroutine calls or as in-line operand

modifiers.

In addition to the "built-in" tag components, others may be added by the software. As for type

checking, operand modifiers and the tag fields in pointers provide an interface that allows the

hardware to check tags whose interpretation is known only to the software.

5-3. Tagged-cell size

Nebula was designed to be a byte-oriented machine. To fully maintain the flexibility that this

can provide would probably require that tagging also be byte-oriented. Unfortunately, the overhead

of a tag-per-byte seems excessive by current standards. Therefore, I have chosen to tag 32-bit words

instead of individual bytes. This decision could be reversed in a later implementation without major

impact.

The most significant implication of tagging words is that heterogeneous data structures

occasionally become awkward to manipulate if packed more tightly than the word level. Much of the

time-benefit of byte-level addressing, however, is obtained only for homogeneous structures. In

heterogeneous structures, the elements are usually accessed separately from each other. In fact, if

typing is being strictly enforced, this must be the case because the accesses will be from different

modules! Therefore, assuming that the data-paths are a full word wide anyway, little or no time is

gained by accessing bytes rather than words. Of course unpacked records might use more space than

packed records. Only if the record is very large (which is not typical) or it has many instantiations

(the more common problem), however, does this problem become significant. On the other hand, by

331n other words, although there is redundancy between many of the opcodes and the data they manipulate, the example will
not harness this redundancy because in Nebula it is not quite sufficient. In a more drastic modification or a completely new
design, this decision might well be reversed.

Richard H. Gumpertz 79 Error l)etcction with Memory Tags

explicitly unpacking and packing around accesses to individual elements, this problem too can be

avoided. For further discussion, refer back to Section 4-5.

The words used for homogeneous data structures can be treated quite differently--they can be

tagged similarly to single elements of the given type. Furthermore, when accesses are made in a

sequential manner (as is often the case for insU'uction streams or character strings), time can be saved

due to packing because each word-wide access will allow processing of several elements without

further accesses.

5-4. Tag size

In addition to choosing the size of storage cells to be tagged, one must also choose the size of the

tag itself. 34 This choice is more critical for the visible tag components such as instance and type tags

than for physical address tags. In particular, the size of the former two affects the coding of the

instruction stream (for operand modifiers) and of pointer values (for the tag part). To retain the

Nebula specification that pointer v,_lues fit in 32 bits, one must decrease the number of bits available

for addressing by the size of the tag. In the example machine, Bits 1 through 6 will be used for this

purpose. Bit 0 (the s_,n"obit) and Bits 7 through 31 remain as addressing bits. 35 Using a 6-bit tag

reduces q, below 2% yet still leave 32- 6 = 26 bits for addressing. Although somewhat on the low side

according to contemporary standards for newly designed machines, 26 bits of address will certainly

suffice for many applications. In fact, most machines in use today provide a smaller virtual address

space. Remember too that the physical address space need not be similarly restricted. Using the C-

tagging method proposed in Section 2-i.5, the tag can be combined with an extended Hamming code

without requiring any further bits_the 32 data and 7 check bits suffice.

5-5. Hashing

Because it is inappropriate to make a first implementation very complex, especially when one has

little idea of the effectiveness of the new ideas, the incremental hashing algorithm is the Boolean

(exclusive-or) sum of all the tag components.

To be combined with the other tag components, the physical address tag should also be six bits

34Actually,onemustchooseboth thesizesoftheindividualtagcomponentsand thesizeofthe combined(hashed)tag--they
candiffer,qhisisa secondarycomplication,however,andsowillbe ignored.

35Thejustificationfor thissplitis compatibilitywiththe untaggedNebulamachinein whichBit0 distinguishesaddresses
assignedto thesupervisorfromthoseassignedto theuser,

Richard H. Gumpertz 80 Error Detection with Memory 'Fags

long. To minimize the likclihood of an undetected addressing error, all of the bits of tile physical

address should be included in the generation of this tag. Although one could just break the address

into groups of six bits each and add the groups, I believe that there is a slightly better encoding of up

to 32 address bits. Under this scheme, no two words whose addresses differ by fewer than four bits

will be encoded with the same address tag. Thus, many bit-failures which occur while transmitting

the address to the storage module will be caught at no extra cost.

"1"1 = A1 @ A3 _ A5 _ A7 _ A9 _ All _ A13 Et A15 _ A17 _9 A19
A21 • A23 • A25 • A27 • A29 • A31

T2 = A2 _9 A3 • A6 • A7 • A10 @ A11 • A14 • A15 • At8 • A19
A22 _ A23 _ A26 t_ A27 _ A30 _ A31

T3 = A4 • A5 • A6 • A7 • A12 • A13 • AI4 • A15 • A20 • A21
A22 • A23 @ A28 • A29 • A30 • A31

T4 = A8 • A9 • AlO • Atl • A12 @ A13 • A14 • A15 @ A24 • A25
A26 _9 A27 @ A28 _ A29 @ A30 • A31

T5 = A16 @ A17 @ A18 @ A19 • A20 • A21 • A22 • A23 • A24 • A25
A26 @ A27 @ A28 • A29 @ A30 • A31

T6 = A0 • A3 • A5 @ A6 • A9 @ A10 • A12 • A15 @ A17 • A18
@ A20 • A23 @ A24 • A27 @ A29 • A30

These equations, or ones like them, can be implemented in a machine that already has an

extended Hamming code without requiring any extra parity trees (although replication might prevent

speed loss during write operations).

5-6. Registers

General registers, which are used to store intermediate results and frequently-accessed variables,

have several special properties. Although they often provide faster access than other storage

locations, caches can often achieve similar performance. More significant is the small number of bits

needed to select them--register-addresses can be short because there are only a few of them. Not

only does this reduce the size of the program but also it reduces the time (and number of instruction-

stream accesses) needed to decode it. Using tagging with registers might therefore be impractical--

there is even a good chance that one would have to use more bits to specify a tag than to select the

register to which it applies!

Because the scope of most variables stored in registers tends to be limited and because one

cannot generate a pointer-value that denotes a register, the incidence of erroneous programs

accessing the wrong register is likely to be low. This is particularly true in the Nebula architecture;

Richard H. Gumpertz 81 Error Dctcction with Memory 'Fags

the only sharing of registers between procedures is as explicitly passed parameters. Therefore,

software-visible tags arc not used for registers in the example. Physical address tags might still be

appropriate, depending on the details of register implementation.

Of course, there is no reasonable way to prevent programs from specifying tags for operands that

end up in registers. If nothing else, a parameter that normally requires unsealing might turn out to be

located in a caller's register. Therefore, although operand modifiers must be acceptable for register

operands, they should be ignored.

One beneficial effect of not tagging the registers is that in-line expansion of procedures defined

in other modules will not rcquire operand modifiers for those parameters that reside in registers.

Therefore, if the compiler is able to kccp active variables in registers, in-line expansion will not cost

much more than it would in an untagged machine (although some checking would be sacrificed).

Another benefit is that one need not worry about spccifying a tag modifier for both the register and

the final operand when using either of the two register-indexed modes; a tag is necessary only for the

latter.

Some implementations of Nebula might store some of the registers, especially those

corresponding to inactive procedure invocations, on the context-stack in main memory. In this case,

it would probably be appropriate to include some tagging information with the stored values. For

instance, one might use the same instance tag as is indicated by the stack pointer and a type-tag of

stored register. This would prevent accesses by other than the register-manipulating mechanisms. To

keep the change in physical location invisible to a legitimate accessor, these tag values would still not

be affected by any operand modifiers supplied by the software.

5-7. In-line literals

For reasons similar to those mentioned for registers, operand modifiers applied to short (5-bit)

literals should be ignored. In fact, because short literals are identifiable as such only after being

fetched, this is mandatory. Note, however, that as for registers there is no way to share in-line literals

between procedures other than as explicitly passed parameters and so software errors detectable by

tagging are less likely to occur in the first place.

In some implementations, the value of a short literal might not be copied into the

implementation-specific parameter-list during operand evaluation for procedure invocations.

Instead, its address might be stored. In this case, any tags applied to the the formal parameter by the

Richard H. Gumpertz 82 Error I)etcction with Memory Tags

called routine must be ignored in favor of those applicable to the actual parametcr, as specified by the

caller. That is, the tag used for fctching the value of a literal should be exactly the one that would

normally be uscd for fetching from the (calling) instruction stream.

One can make a similar argument for the longer (8-, 16-, 32-, and 64-bit) literal modes, even

though the overhead attributable to tagging for such literals is far less significant. Because these

literals need not be fetched until they are actually used, the tag can be dynamically generated as for

other memory references. The principal problem, however, is that the literal values might not occupy

words distinct from those used for other parts of the instruction stream. This break in homogeneity

would make thc tagging of these packed words difficult, as cxplained in Scctions 4-5 and 5-3.

Furthermore, even if each byte wcrc tagged independently of the others, instruction-stream prefetch

mcchanisms would become more complicated if the litcrals had to be skipped. It seems simplest,

therefore, to also tag the longer literals only as part of the instruction stream, independent of operand

modifiers.

5-8. Stack allocation

To hclp detect dangling pointers, uninitialized variables., etc., each stack fi'ame should be given a

(pseudo-) unique instance tag (as dcscribed in Section 4-10). In Nebula, procedure invocations

allocate a new set of registers, including a new stack-pointer. This one register is automatically

initialized by copying the value from the caller's stack-pointer. On return, no special action is taken,

thereby effectively restoring the stack to the same state as it had at the time of the call. To add

instance tags, one need only change this initialization process so that the six tag bits in the new stack

pointer are set from a random-number generator rather than from the old suck-pointer.

One simple random number generator that would suffice for this purpose is a feedback shift-

register, initialized at system-startup from a real-time clock. Note, however, that even a method as

simple as a counter might be acceptable if the scheduling of independent activities occurs sufficiently

frequently and randomly. Most important is that erroneous software not go undetected due to

"resonance" with the insunce-tag generator, as discussed in Section 4-11.

Instance tags should also be used for objects other than those on the suck. Although one might

add a new instruction that would set the tag portion of a pointer to a random number, it might be

easier just to use the normal procedure-call mechanism to access the random-number generator. For

instance, the instance tag of a pointer returned by a storage allocator could be set from the instance-

tag portion of the stack-pointer value used by that allocator.

Richard H. Gumpertz 83 Error Detection with Memory 'Fags

5-9. Operandspecifier changes

Even though the six bits of tag are mixed in with the address portion of pointer values,

computation of the program-visible portion of the tag can be quite simple. In particular, address

evaluation proceeds just as it would ill an untagged machine except that the resulting value is

interpreted as a tag and address rather than just an address. Note that "carries" from the address

portion to the tag portion during indexing should not cause problems for reasonably written

programs: Any carry that would adversely impact the tag field would just as adversely affect the

address in a machine with more than 26 bits per address. A program has no right to make any

assumption that tile address spaces "wraps" at a particular point. Instead, the only knowledge it

ought to need is the total number of bits needed for storing pointer values (so that it can allocate

space for pointer variables). Ordered comparisons of pointer values, as well as subtraction of two

different pointers to determine the size of the block contained between, are operations that would be

affected by the presence of the tag field, but it is not hard to "write around" such problems.

To provide type-unsealing, as well as any other tag modification that the software might need to

include, a new compound operand specifier must be added. This specifier would consist of one

nested operand specifier and a 6-bit constant in the instruction stream (represented as a full byte with

the extra two bits reserved for future expansion). An appropriate assembly language notation might

be

x{y)
which would denote the operand x with tag modification y. Because literals and registers are tagged

only with physical address tags, the appropriate semantics of the new specifier are as follows:

1. Evaluate the nested operand.

2. If the resulting effective operand denotes either a register or a literal, then skip over the
tag constant in the instruction stream.

3. Otherwise, "exclusive-or" the tag constant with bits 1-6 of the effective address, yielding
the new effective address.

4. In either case, the type and size of the resulting operand would match that of the nested
operand.

Richard H. Gumpertz 84 Error 1)etcction with Memory Tags

5-10. Instruction changes

Although I have changed the operand-specification and memory-accessing mechanisms, most

instruction definitions can otherwise remain as they were. The functionality of only two instructions

in Nebula need be modified to support tagging: move operandk address and call.

The changes to the former are perhaps obvious--any accumulated tag value must be included in

the tag portion of the pointer value generated. For example, the instruction

mova (R2)(channe]-tag}, R3

(where the mova instruction moves the address of the first operand to the cell denoted by the second

opcrand) might be used to generate an unsealed pointer to a variable of type channel. The address

portion of the pointer value stored in R3 would match that found in R2 but the tag portion would be

the Boolean sum of that found in R2 and the literal channel-lag.

The changes to the call instruction can be split into t_o groups--those that are mandatory and

those that improve performance. The only mandatory change is that the argument list generated by a

call instruction must include the appropriate tag field for any parameters that appear in memory.

This is so that, after execution of an instruction like

call PrintInteger, C{channel-tag}

by the PrintChanneI routine, the Print[nteger routine would have a parameter that would appear to

be an integer rather than a channel.

In many cases, a routine that manipulates objects of a specific type will deal only with their

representation. To make the code for such cases efficient, one should unseal parameters only once,

such as at at procedure invocation. In fact, because the address of each parameter is already copied to

the argument-list anyway, procedure-invocation is an excellent time to do such unsealing. By

extending the procedure descriptor already found at the entry to each routine, one can provide the

new information that specifies the extra tag-component to be added to the tag portion of certain

parameters. Although there are many encodings possible, I will arbitrarily choose a simple one; some

more thought might yield a cheaper or more flexible layout. Procedure descriptors currently consist

of sixteen bits, one of which is unused. I will designate this bit to be the unseal bit. If set, then the

procedure descriptor will also include one extra byte for each parameter expected. 36 These bytes are

the extra tag-modifiers to be applied to the corresponding parameters (where zero can be used for

parameters that need no unsealing).

36For obvious reasons the unseal bit cannot be used by procedures that accept a varying number of parameters--such routines
will have to unseal their parameters using code inside the routine.

Richard H. Gumpertz 85 Error Detection with Memory Tags

5-1 1. Summary of the changes

Despite the length of the preceding prose, the changes needed in the hardware to support tagging

are minor:

• Six bits produced by operand evaluation are treated as a tag instead of as part of the
virtual address. Along with the physical address tag, they are checked by C-tagging each
32-bit word.

• A new compound operand specifier is provided which can alter tile value produced for
the above bits.

• The procedure entry mechanism is changed to "randomize" the tag field in the stack
pointer when creating a new stack frame.

• Procedure invocation is changed to check an unseal bit in the procedure descriptor. If set,
each operand is interpreted as if it had been nested inside a tag-modifying operand

specifier. The tag constants, in this case, are retrieved from the procedure descriptor.

• The parameter-list mechanism is extended to retain tags along with the other information
describing actual parameters.

The benefits gained, on the other hand, are significant. With little or no loss in execution speed

and little extra hardware, it is now possible to detect:

• references to uninitialized variables

• array boundary violations

• violations of modular boundaries

• accesses to the wrong location in storage

• accesses to words that have been erroneously overwritten

• erroneous transfer of control

Such additions ought to not only increase programmer productivity but also increase the reliability of

the end product.

Richard I I. G umpertz 86 Error Detection with Memory Tags

5-1 2. Omissions

Before building an actual machine, consideration should be given to a number of matters

avoided in this example. Three areas that should be given deeper examination are:

• To detect errant stores as well as fetches, one should use a read-before-write scheme, as
described in Section 4-1. If this is done, however, then there must be a way to erase cells

that are now longer allocated. The current Nebula implementation of the program stack,
however, offers too much flexibility--there is no simple way to properly hnplement the

proposals of Section 4-10 for verifying changes to the stack-pointer. If, like the program-
counter, the stack counter were not a general register, things would be simpler.

• Provision must be made for the transfer of data between primary and secondary storage,
as discussed in Section 4-8. This might include the addition of secondary tags, as
described at the end of that section.

• To keep things simple, E-tagging was not used. Its error-exaggeration properties, as
described in Section 2-2.2, could be useful enough to warrant use in a real design.

Richard H. Gumpertz 87 Error Detection with Memory Tags

Chapter 6
Conclusion

What I want to cxplain in the Introduction is this. We have been nearly
three years writing this book. We began it when we were very
young.., and now we arc six. So, of course, bits of it seem rather baby-ish
to us, almost as if they had slipped out of some other book by mistake. On
page whatever-it-is there is a thing which is simply three-ish, and when we
read it to ourselves just now we said, "Well, well, well," and turned over
rather quickly. So we want you to know that the name of the book doesn't
mean that this is us being six all the time, but that it is about as far as we've
got at present, and we half think of stopping there.

A. A. Milne [58 (p. x)]

A number of premises form the background for this work:

• Overall system reliability is an important goal which has not yet been sufficiently
achieved.

• Fundamental to achieving reliability is the ability to detect errors promptly, before their
effects can be propagated.

• Operations which must be repeated frequently are usually best implemented at a low
level, such as in the hardware, rather than at higher levels, such as compiled code.

• Many of the errors causing problems in current systems exist only at a high level. That is,
error checks cannot be provided completely at low levels because the inconsistencies exist
only in the high-level semantics.

• Many high-level error-checks are widely known but often ignored because of the high
costs associated with using them.

From these, it can be concluded that the error-checks dealing with high-level semantics but

implemented at low levels would be desirable. This dissertation, by describing possible

implementations of such mechanisms, provides an existence-proof that this idea is indeed feasible. In

fact, by taking advantage of redundancy already present in current systems, the error-detection

described can be added at minimal incremental cost.

Richard H. Gumper_ 88 Error l)etection with Memory Tags

6-1. Summary

To provide a demonstration of the practicality of checking for high-level semantic errors using

low-level checking mechanisms, the preceding chapters describe a system that employs hashed

tagging, supplemented by some special implementation techniques, to verify certain assertions about

the values contained in cells of storage. In addition, to show that such checking is useful, candidates

arc proposed for the sorts of assertions that might be checked. I,eft to the reader, however, is final

evaluation of the usefulness of particular applications of the mechanisms.

6-1.1. Hashed tags

A primary proposal of this dissertation is tbr the use of hashed tags. These tags can be used for a

number of different purposcs, all of which involve checking that words of storage and the accessing

context agree upon some property of the data being accessed (such as its type). Unlike some other

tagged architectures, the tags are used for checking purposes only, not dispatching. That is, it is only

possible to check the tag value stored with a word for equivalence with an asserted value; it is not

possible to examine a stored tag and control the computation according to its value.

By storing fewer bits of information than would be necessary for complete comparison, it

becomes possible not only to implement tag-checking at low cost (according to both space and time

measures) but also to check an arbitrary number of independent tag values using a fixed-size storage

field. Of course, hash-collisions may allow some tag-comparisons to improperly report equivalence

of logically different tag values. The result of this situation, however, is that although some incorrect

items may be accepted no correct item will be rejected. That is, the addition of hashed tagging will

not introduce any new errors to a correct program. Rather, a few tag-mismatches might remain

undetected in an incorrect program. Note_ however, these same errors and many more would have

been undetected in the absence of tagging. Furthermore, the probability that a non-matching tag will

be overlooked can be made arbitrarily small by increasing the size of the hashed tag. In fact, this

probability will depend only on the number of bits in the hashed tag--for each bit added to the small

tag, the probability of missing a difference will be roughly halved.

It is important to understand that adding new tag-components to a hashed tag does not

substantially affect the detection-probability for mismatches in old tag-components. For example,

the probability that an address-tag mismatch might slip by remains constant even when type-tags are

added. At worst, the inclusion of the new tag might redefine the equivalence classes determined by

hash-collisions. That is, the membership of the set &incorrect address-tags that would be incorrectly

Richard H. Gumper_ 89 l'rror I)etection with Memory Tags

accepted in a particular context might differ before and after the addition of type-tagging. The size of

this set, however, would remain constant across the change and so the probability of an undetected

mismatch would also remain constant.

6-1.2. Implementation

Two special techniques, C-tagging (see Section 2-1) and E-tagging (see Section 2-2) can make

hashed tagging even more useful. While neither is critical to the concept of hashed tagging, each can

contribute to the practicality thereof.

C-tagging allows the tag bits to be combined with the check bits already used for detecting (and

correcting) storage failures. That is, in the typical computer system, a certain number of tag bits can

be stored for "free." For example, the modified Nebula architecture described in Chapter 5 needs no

extra bits for tags on data. The primary incremental costs of tagging in this case are the storage for

type- and instance-tags in pointer values and the little extra CPU-Iogic necessary tbr performing the

checking.

E-tagging, which uses encryption to append tags to data, provides slightly more subtle

advantages. One is that many encryption functions can also be quite effective as hash functions--

enough bit-shuffling is performed that the input domain (key and plaintext) will be mapped quasi-

randomly yet uniformly onto the output domain. Thus, separate logic for encryption and hashing

may not be required. More significantly, however, even a small perturbation of a value on one side

of an encryption function can result in a fairly large perturbation in the corresponding value on the

other side. _Iqaiscan allow detection of many of the errors that, due to hash-collisions, would slip past

the primary tag comparison. In particular, those incorrect data items that arc not detected by the low-

level tag-checking mechanism might be detected at a higher (software) level because of distortion of

the values fetched.

6-1.3. Applications

The traditional use for storage tags has been to denote the type of the data stored in each cell.

Type-tagging is also a prime candidate for use with hashed tagging. There are a few differences,

however, between the proposed tagging method and previous ones. Most notably, the tags are used

only for checking, not for dispatch. That is, no provision is made for varying the computation

according to the type of the data manipulated. Generic add operations, the behavior of which varies

according to the tags of the operands, are not directly supported. Thus, the program must specify the

Richard H. Gumpertz 90 Error l)etection with Memory "Fags

type of each operand accessed. For hardware-defined types, this specification would normally be

implicitly indicated by the choice of instruction (e.g., hueger-add or floating-add). For software-

defined types, it would normally bc cxplicitly indicated as part of the definition of the type-defining

module. Neither of these schcmes adds significantly to program size or complexity. Unlike previous

tagging schemes, however, hashcd tags are quite efficient at representing multiple types for a single

object. In particular, the addition of another lcvel of abstraction to a particular object does not

increase the size of its representation at all! This is because tag values that correspond to each

abstract type can all be combined by the hashing function into a singlc tag to bc stored with the data.

In previous schemes, abstract types were either eliminated by the compiler (so that all data was

tagged according to its representation type) or required extra tag fields, one for each level of

abstraction.

Another use for storage tags--one that has been rarely used in the pastIis for address-tagging.

When each word is tagged with its address, it becomes possible to detect many addressing failures.

That is, if the wrong word in storage is accessed then tag-comparison should detect the fact that the

data fetched are not those desired. Although error-checking has often becn performed on the

transmission of addresses from the central processor to the storage module, the behavior of the

address-decoding logic inside the storage module has usually gone unchecked (other, perhaps, than in

off-line test programs). Furthermore, little checking has been done that the proper value is received

from a multiplexed channel. For example, timing errors which cause a preceding or following word

to be accepted from a bus instead of the desired one would typically not be detected except due to

improper program behavior. On the other hand, if each word were tagged with its address, then

selection of an incorrect word would be immediately detected. Address-tagging can be performed at

a number of levels. For example, physical addresses could be automatically generated and checked

by the hardware. Virtual address checking might also involve the operating system. At an even

higher level, tagging of a word according to the programmed object in which it appears would allow

detection of software-addressing errors such as exceeding the extent of an array.

A variation on address-tagging is instance-tagging. The primary virtue of an instance tag is that it

changes each time that the corresponding storage cell is reallocated. Because the tag will be different

when a cell is reused, errors such as the use of uninitialized variables or dangling pointers are

detectable.

Richard H. Gumpertz 91 Error l)etcction with Memory Tags

6-2. Evaluation

The purpose of this dissertation has been to introduce a novel foml of tagging and to explore

some of its potential applications.- Because no prototype machine has been built, it is difficult to

quantify file viability of the idea. Even if a machine had been built, the results from a ,,;ingle

experimental model might be subject to question due to variations in implementation technology.

Changes in configuration, such as which tag components are included for checking, might

significantly affect any measured results. Nevertheless, a rough evaluation is possible.

Depending on what the combined tag contains, one might detect any of the errors listed in

Chapter 3. As stated above, even the simple machine described in Chapter 5 can detect many

instances of the following errors:

• references to uninitialized variables

• array boundary violations

• violations of modular boundaries

• accesses to the wrong location in storage

• accesses to words that have been erroneously overwritten

• erroneous transfer of control

Although detection of the first two errors has been implemented in a number of systems, such

checking is usually confined to "debugging" or "checkout". The checks are considered too expensive

for "production" usage. Tagging can make these checks practical even in the latter case. The

remaining errors listed above have typically not been detected directly. Instead, they have been

located only after secondary symptoms were observed and traced.

There is little objective data on the frequency of these errors. Experience has shown, however,

that they are reasonably common. Furthermore, the cost of locating them can be quite high. Only a

potential user can evaluate just how expensive they are. In addition to frequency of occurrence, some

important factors to consider are:

• The time needed to detect the errors: It may take quite a bit of time just to discover that

an error is present.

• The time needed to isolate the errors, once detected: The errors listed above are usually

considered to be among the "nastiest" to locate because the symptoms appear when it is
"too late" to determine their source.

Richard l t. Gumpertz 92 Error Detection with Memory "Fags

• The cost of undetected errors: For man-rated (life-critical) situations, this can be

unmeasurable. [:or financial systems, the expense can be large in an obvious manner.
Even in non-critical applications the cost can be substantial--production down-time, loss

of goodwill, etc.

All of these will vary from one application to another. In fact, it is possible that only actual

experience with tagging will allow a fair evaluation. Nevertheless, the cost of each error is likely to be

large. Whatever reduction can be achieved in this cost through the use of tagging is, by definition,

equal to the benefit to be obtained from tagging.

The cost of adding tagging, on the other hand, is easier to estimate in advance. The example

machine, for instance, has the following expenses over those of a similar untagged machine:

• The operand-cvaluation mechanism has to be extended to generate a tag in addition to an
address.

• Pointer values take up six more bits. (It might better reflect the implementation to say
that six fewer bits are available for addresses.)

• Seven extra bits (or about 20% extra overhead) must be stored with each word of
secondary storage used for implementing virtual memory. Words used for explicitly
referenced files, on the other hand, need not be affected.

• The parity-trees used to generate the error-correcting code bits require a few extra inputs
for the tag. 37

For many systems in use today, such increases in expense would be small relative to total hardware

cost.

In summary, it would be impossible for this dissertation to specify exactly what the costs and

benefits of tagging would be for a particular application. That must be determined by someone

better acquainted with the circumstances. Still, because the cost of the errors involved is likely to be

high and the cost of catching them with tagging is low, it is probable that tagging will prove

worthwhile. The benefit to bc obtained by detecting even a few of them ought to be sufficient to

justify the widespread use of tagging.

371tturnsout that,for32-bitwordsand6-bittags.binarytreeswouldrequirenoextradepth(andhencepropagationdelay).

Richard lt. Gumpertz 93 Error Detection with Memory Tags

6-3. Future research

As is normally the case, this research has raised at least as many questions as it answers. This

section lists some of these outstanding problems and possibilities, along with hints to how they might

be approached:

• This dissertation deals primarily with the detection of errors. Just as important, however,
is recovery from errors after detection. Because they are used only in exceptional cases, it
is usually not critical that error-correction mechanisms be highly optimized.
Furthermore, the semantic information necessary for successful correction may be more

extensive than that necessary for detection. Therefore, this seems to bc an area best left to

higher levels.

Nevertheless, some support by low-level hardware may be appropriate. Randell [73]
defined three features necessary for coping with error situations:

(i) preparations for the possibility of errors;
(ii) error detection facilities;

(iii) error recovery facilities.

Later, he along with others [31, 74] defined a mechanism which implements recovery
from errors. Although their mechanism is quite general, they did not concentrate on
error-detecting mechanisms; rather they dealt mostly with recovery after an error has
been detected. In other words, they looked at (i) and (iii). My work, which concentrates

on (ii), therefore fits nicely together with theirs.

• Robust data structures, as proposed by Taylor, Morgan, and Black [86, 87], also seem well
suited for combination with my proposals.

• It is not at all clear whether resonance will be a significant problem. Although Section

4-11 offers some suggestions for avoiding difficulties, more research in this area may be
necessary.

• There is a possibility that one could increase r and thus decrease _ by tagging the cells of
a multi-cell object quite differently from each other. One way to implement this would
be fbr the incremental hash function to accumulate more bits of tag than are stored with
each cell. For accesses to single cells, only a subset of the bits of the accumulated tag
would be used. For multi-cell accesses, however, a different subset might be used for
each cell. Thus, the effective value of r would depend upon the number of cells being

accessed. It might increase linearly with the number of cells accessed, up to the limit
imposed by thc tag accumulation mechanism. Note, however, that one's choice of this
upper limit might be strongly affected by how many bits one is willing to include in the

tag portion of pointer values (as described in Section 3-1.2).

• As discussed in Section 2-1.7, C-tagging could be used with codes with minimum distance

greater than four (i.e., better than SEC-DED). Although the one-oJZnmodel described in
Section 2-1.5 can be used with greater-distance codes, it is possible that other methods for
encoding the tag would allow more distinct tag values.

• There are several outstanding issues with respect to E-tagging. Most notable is choice of a

Richard H. Gumpertz 94 Error Detection with Memory Tags

practical encryption function. Although security fi'om intentional attack is not required,
the cipher used should be sensitive to changes, exaggerating small changes in the key or
ciphertext to be large changes in the dccrypted cleartext. Although DES can be executed
quickly relative to many other cncryption functions, it still is slow relative to the data-
accessing rate of most current machines. Although pipelined implementations would be
able to keep up with primary storage bandwidths, the startup latency would still be
relatively slow. One promising approach would be to place encryption between primary
storage and the processor's cache, which would contain both the cleartext of each word
and the key used to obtain it.

• An interesting possibility arises if E-tagging is performed using a public-key encryption
algorithm: tagging could enforce selective access to storage (either read or read/write).
To fetch from a location, one would need only the decryption key. To write into a

location, however, one would have to present both the decryption key (to check that the
correct word is being accessed) and the encryption key (to store the new value).

• The example machine described in Chapter 5 uses conventional addressing methods.
There seems to be no reason that my tagging proposals could not also be used with

capability-based addressing. In fact, the tag-checking would provide a good check that
the capability system is working properly.

6-4. Parting words

At this point, it seems that the most appropriate course of action would be to build a machine

that incorporates the ideas presented. The additional hardware and execution time required for

tagging are trivial. Even if only a few errors are detected by tag checking, the added cost will have

been worthwhile. Although none was built as part of the research to date, all indications are that

there will be substantial gains at minimal cost. In the end, however, only actual usage can provide the

data necessary to make a complete evaluation. To quote an old advertisement, "'To' it; you'll like it!'"

Richard H. Gumpertz 95 Error Detection with Memory Tags

Appendix A
An observation concerning DES

One interesting technique employed as part of DES is the one that makes it invertible. The

central part of the encryption process uses several iterations of the same function, each using a

different key. This can be expressed using the iterative formula

Xi+ 1 = f(Xi,Ki).

The most obvious way to allow decryption is to make f invertible so that one can just iterate

backwards using.f-/in the formula

Xi- 1 = f'-l(xi,Ki- 1).

Rather than risk weakening the basic encryption function in order to make it invertible, the

designers of DES added a post-processing step which maps any function into an invertible one. That

is, they defined the above mentioned f applied to X in terms of another function f/applied to the

two halves of X (which are called L and R) alternately. Thus the first formula above was replaced by

the pair of formulae 38

Li+2 = Li _ ft (Ri,Ki)

and

Ri+ 2 = R i @ ff(Li+2,Ki+l).

Decryption can then be performed just by using the inverse iteration formulae

Ri_ 2 = R i • f'(Li, Ki)

and

Li-2 = Li E_ f'(R i_2,Ki_l).

Because f' is always used in the "forward" direction, there is no need for one to ever try to compute

its inverse. In fact, the function chosen for use in DES employs non-invertible substitutions.

One side effect of this implementation is that one can modify the algorithm to accept 64 data bits

plus check bits as input and yield 64 encrypted bits plus check bits corresponding to the output word

without explicitly regenerating them. As a simple example, consider the case of parity. Assume that

38Thesubscriptsofiterationincrementbytworatherthanoneforconsistencywiththewordingoftheofficialdefinition[65].

l_,ichard tt. Gumpertz 96 Error Detection with Memory Tags

in addition to L and R the encryption function is presented a parity bit P. The cncryption formulae

given above are then augmented with

Pi+2 = Pi _ P(f'(Ri,Ki)) _ P(f'(l'i+2,Ki+l))

where p is a function that computes the parity of its argument. Because f_ is computed by table

lookup, it is trivial to precompute appropriate extra bits in the tables that can be used in the

generation of the parity function listcd above. If there are no errors, then at each step in the iteration,

Pi will be the appropriate parity bit for Li and Ri. Furthermore, the data paths used during the

cncryption itself will be checked; if any single-bit error occurs either before, during, or after

encryption then the resulting output will reflect this with "bad" parity. The only paths that are not

included in this check are those used to carry addressing information during the table lookups for f_.

All other paths and intermediate registers are covered. 39 Dccryption under DES is nearly identical to

encryption so the same assertions can be made for that case as well.

By obvious extension, one can substitute a Hamming (or other linear binary) code for the simple

parity code de_ribcd above. For example, one could accept as input 64 bits of plaintext plus the 8

corresponding extended Hamming check bits and generate as output 64 bits of ciphertext plus 8

corresponding check bits. I)uc to the spreading of information across bits in the DES algorithm,

correction of errors that occurred before or during encryption would not be possible after encryption.

Although one could determine which position had failed, the erroneous value would have already

been propagated to many other positions. Nevertheless, detection of errors would be quite practical.

Furthermore, one v_ouldnot have to delay further processing to allow time for generation of the new

check bits; they would be computed incrementally in parallel with the ciphertext itself. Note also

that, in the absence of errors, any intentional bias (as proposed in Section 2-1.5) in the check bits of

the input will be preserved in those of the output.

39Failureof a particularbit positioninseveraldifferentstagesof the iterationareconsidereda multiple-bitfailurefor this
analysis.

Richard H. Gumpertz 97 Error Detection with Memory Tags

Appendix B
A fast parity encoder

Traditional parity encoders require O(log ,O time and O(,0 gates to generate an (m + 1)-bit word

with even parity from an uncoded m-bit word. One interesting side-result of the research for this

dissertation was the realization that this is not necessary--it is possible to build a parity encoder that

works in constant time. Although the resulting code is not separable, it still can be reasonably

decoded.

The encoding method chosen is similar to that standard used for converting straight binary

numbers to their Gray code equivalents except that the m + 1 bits are produced. That is, the original

word is combined using a bit-wise exclusive-or operation with a copy of the word shifted by one

position. For an input word such as

Bt B2 B3 ... Bm

,the output word would be

Bt (Blab 2) (B2_B 3) ... (Bm_I_B m) Bm.

Decoding of the word can be implemented either serially (using a ripple-carry like scheme) in

O(m) time and O(nO gates or in parallel using O(log m) time and O(m log m) gates. The latter

configuration can be quite naturally implemented in a manner like that proposed by Brent and

Kung [8] for carry propagation in standard addition.

The primary disadvantage of using this scheme is that decoding is slightly more expensive, either

in time or in gate-count, than the traditional scheme. Nevertheless, there are situations in which this

trade-off is appropriate. Principal candidates are those in which generation of coded values is more

of a bottleneck than decoding. One special case comes to mind: to merge tags with Hsiao's modified

extended Hamming code, as discussed in Section 2-1.6, the tag must have even parity. Given that

one only encodes such tags and never decodes them, the extended Gray coding seems quite

appropriate.

Richard I-t.Gumpertz 98 Error Detection with Memory Tags

Richzrd H. Gumpertz 99 Error Detection with Memory 'Fags

Glossary

Because this dissertation draws on several distinct areas of research, it is likely that the reader will

be unfamiliar with some of the terminology used. Therefore, this glossary gives appropriate informal

definitions.

For the sake of brevity, explanations that appear in Section 1-2.1 are not repeated here. See that

section, therefore, for further information on many of the terms listed below.

Special sym bols

^: the Boolean intersection (and) operator.

: the Boolean sunv'difference (exclusive-or) operator.

q,: the (small) probability that an unpatterned error will go undetected.
Approximately equal to 2-r, for non-trivial values of r.

(n,k,d): a notation used for describing error codes, n is the number of characters
(equivalent to bits for binary codes) in each codeword, k of which
correspond to useful data. The minimum distance between any two
codewords is d.

r: an abbreviation for n-k. This can be considered a measure of the

redundancy of the code.

Technical terms

address tag: a tag (component) that is derived from the address at which the tagged
value will be stored.

alias: an alternate name, with a given name-space, for a single object.

capability: a pointer value that includes both the address of an object and an indication
of the operations that may be performed on the object using that capability.

character: the basic element from which a codeblock is formed. For binary codes, this

is equivalent to a bit.

Richard H. Gumpertz 100 t'rror Detection with Memory 'Fags

cipher: an encryption method fl_at employs transposition or substitution at the
character (as opposed to word, phrase, or higher) level.

ciphertext: encrypted text, the restllt ofencrypting plaintext.

cleartext: unencrypted text (a synonym for plaintext).

codebloek: the collection of characters that are checked by an error-detecting or

-correcting code.

codeword: those codeblock values that are designated in a code as "valid" (Le., error-
free).

cryptanalysis: the process of deciphering encrypted text without knowledge of the "secret"
portion (e.g., key) of the cncryption mcthod used.

C-tag: a tag that is merged with the check bits of an error-detecting or -correcting
code.

DF_S: Data Encryption Standard--an encryption algorithm adopted as a federal
standard [65] by the United States National Bureau of Standards.

distance: a metric indicating the difference between two values. Hamming distance,
which is the number of characters that differ between the two values, is

most often used for binary codes. When used in the context of codes, this

term normally refers to the minimum distance between any two codewords.
This is the minimum number of characters that must change for an error to

be totally undetected.

external redundancy: describes a code in which part of the codeblock is kept externally from the
rest.

error vector: the Boolean difference between the intended codeword and the codeblock

value actually received.

E-tag: a tag merged with data using encryption.

hash function: a function that maps from a large domain onto a relatively small range. A

"good" hash function "spreads" the results uniformly throughout its range
when presented with a "typical" set of inputs.

Iliffe vector: a vector of pointers to vectors. Iliffe vectors are normally used to

implcment multi-dimensioned arrays with one level of indirection for each
dimension except the last.

instance tag: a tag (component) that indicates the allocation-instance of a storage cell.
This changes each timc that a cell is freed and reallocated. Its primary
purpose is to detect dangling (obsolete) references to storage.

internal redundancy: describes a code in which the entire codeblock appears together.

Richard H. Gumpertz 101 Error l)ctcction with Memory Tags

key: That portion of an cncryption method that must be kept secret in order to
preserve its security. Typically, changing keys is simpler than switching to a

different encryption algorithm.

linear code: a subspace of the space of all n-tuples of a particular set of characters.
Binary codes are the transitive closure of Boolean addition on a set of
linearly independent generator Boolean vectors,

one-of-n code: an n-character code which has n codewords, each of which has only one

non-zero character. For example, a binary one-of-three code has the
codcwords 001,010, and 100. All other three-bit values (000, 011, 101,110,
and 111) are invalid and indicate an error.

memory failure: a change in a stored value between when it was stored and when it is
fetched.

operandmodifier: a field used as part of operand specification in machine-language
instructions. See Section 3-2.3.2.

overloaded operator: an operator which has multiple definitions, distinguished by the type(s) of
its operands.

plaintext: unencrypted text (a synonym for cleartext).

product cipher: a cipher produced by applying two or more ciphers sequentially.

public-key encrypti0n: encryption using an algorithm which uses different keys for encryption and
decryption. See Section 1-3.

random error: an error that follows a pattern in which each character of the codeblock is
affected independently of the others. That is, there is no correlation
between the failure of one character and the failure of another.

residue code: a code in which the check-bits are the modular residue of the data bits. For

example, a binary residue-three code would have two check bits indicating a
value congruent, modulo three, to the data value. Residue codes are often
used to check arithmetic operations because the check bits can be added

independently of the data and the two sums can be checked against each
other. Note also that a binary odd-residue code can detect single-bit

memory failures.

resonance: an undesired (an unintentional) coupling between tag allocation and tag
reference patterns. See Section 4-11.

sealing: the process of converting an object (or a reference to it) from its
representation type to its abstract type.

SEC-DED: single error correcting, double error detecting. This term is used to describe
codes with minimum distance four that are used for correction.

Richard H. Gumpertz 102 Error Detection with Memory "Fags

selector: an item which selects a part of a structured object, such as a subscript or
record field-name.

separable code: a code in which the data-bits can be distinguished from the check-bits (a
synonym for systematic code). That is, the unencoded data characters
appear as a subset of the encoded codcblock.

slicing: the process of applying a selector to a structured object, yielding a sub-
object.

symptom: those things which are visibly changed because of an error.

systematic code: a code in which the data-bits can be distinguished from the check-bits (a
synonym for separable code). That is, the unencoded data characters appear
as a subset of the encoded codeblock.

tag: a field appended to a data value which describes some attribute of that
value.

truncated code: a code which is derived from some other code by dropping some of the

codewords and. perhaps, some of the characters of the codeblock.

unsealing (of types): the process of converting an object (or a reference to it) from its abstract
type to its rcpresentation type.

unpatterned error: an error which follows no particular pattern. That is, when an error occurs
one can expect half the bits to be affected.

weight: a metric indicating the distance of a value from the zero-vector. Hamming
weight, which is the number of non-zero bits in the value, is most often used
for binary codes.

l_,ichard H. Gumpcrtz 103 Frror I)ctection with Memory Tags

References

[1] Philip S. Abrams.
An APL Machine.

PhD thesis, Stanford University, February, 1970.

[2] Alfred V. Aho and Jeffrey D. Ullman.
Principles of Compiler Design.
Addison-Wcslcy Publishing Company, 1977.

[3] ANSI standard)(3.53-1976: Programming Language PL/I
American National Standards Institute, Inc., New York, 1976.

[4] Henry G. Baker, Jr.
List Processing in Real Time on a Serial Computer.
Communications of the Association for Computing Machinely 21(4):280-294, April, 1978.

[5] H. Beki6.
An Introduction to ALGOl, 68.

Annual Review in Automatic Programming 7(3):143-169, 1973.

[6] Peter B. Bishop.
Computer Systems with a Very Large Address Space and Garbage Collection.
PhD thesis, MIT/LCS/TR-178, Massachusetts Institute of Tcchnology, Laboratory for

Computer Science, May, 1977.

[7] Harry Q. Bovik.
Report on the Programming Language Pidgin 81.
Technical Report, Carnegie-Mellon University, Department of Computer Science,

February 30, 1981.

[8] R.P. Brent and H. T. Kung.
A Regular Layout for Parallel Adders.
Technical Report CMU-CS-79-131, Carnegie-Mellon University, Department of Computer

Science, June, 1979.

[9] D.L. Chaum and Robert S. Fabry.
Implementing Capability-Based Protection Using Encryption.
Memorandum UCB/ERL M78/46, University of California at Berkeley, Electronics Research

Laboratory, July, 1978.

[10] Jack B. Dennis and Earl C. Van Horn.
Programming Semantics for Multiprogrammed Computations.
Communications of the Association for Computing Machinery 9(3): 143-155, March, 1966.

Richard H. Gumpertz 104 Error 1)etection with Memory Tags

[11] Whitficld I)iffic and Martin E. Hellman.
New i)ircctions in Cryptography.
IEEE Transaction_ ol7 In/brmation Theory 1T-22(6):644-654, November, 1976.

[12] Whitfield l)iffie and Martin E. Hellman.
Exhaustive Cryptanalysis of the NBS Data Encryption Standard.
Computer 10(6):74-84, June, 1977.

[13] Whitfield I)iffie and Martin E. Hellman.
Privacy and Authentication: An Introduction to Cryptography.

Proceedings of the IEEI". 67(3):397-427, March, 1979.

[14] VAXI1/780 Architecture Handbook
Digital Equipment Corporation, 1977.

[15] Arthur Evans, Jr.
PAI.--A Language Designed for Teaching Programming I.inguistics.
In Proceedings of the 23rdACM National Conference, pages 395-403. Association for

Computing Machinery, 1968.

[16] Horst Feistel.
Cryptograph_ and Computer Privacy.
Scientific American 228(5): 15-23, May, 1973.

[17] Edward A. Feustel.
The Rice Research Computer--A tagged architecture.
In Proceedings of the 1_)72Spring Joint Computer Cotference, pages 369-377. American

Federation of Information Processing Societies, Montvale, New Jersey, May, 1972.

[18] Edward A. Feustel.
On the Advantages of Tagged Architecture.
IEEE Transactions on Computers C-22(7):644-656, July, 1973.

[19] Edward F. Gehringer.
Functionality and Performance m Capability-Based Operating Systems.
PhD thesis, Purdue University, May, 1979.

[20] E. Gelenbe and Claude Kaiser (editors).
Lecture Notes in Computer Science. Number 16: Operating Systems: Proceedings of an

International Symposium held at Rocquencourt, April 23-25, 1974.
Springer-Verlag, 1974.
Note: this is a reprint of Colloques 1RIA: Aspects ThOoriqueset Pratiques des Systdmes

d'Exploitation.

[21] E.N. Gilbert, Florence Jessie MacWilliams, and Neil James Alexander Sloane.
Codes Which Detect Deception.
Bell System Technical Journal 53(3):405-424, March, 1974.

[22] Virgil D. Gligor and Bruce G. Lindsay.
Object Migration and Authentication.
IEEE Transactions on Software Engineering SE-5(6):607-611, November, 1979.

Richard H. Gumpertz 105 Error Detection with Memory Tags

[23] David Gries.
Compiler Construction for Digital Computers_
John Wiley & Sons, 1971.

[24] Richard W. Hamming.
Error Detecting and Error Correcting Codes.
Bell System Technmll Journal 29(2): 147-160, April, 1950.

[25] Richard W. Hamming.
Coding and Information Theory.
Prentice-Hall, 1980.

[26] Hewlett-Packard Company.
"HP-35 Errata".

I)escriptive card available on request from HP Customer Support, 1000 N.E. Circle
Boulevard, Corvallis, Oregon 97330.

[27] C.A.R. Hoare.
Hints on Programming Language Design.
Technical Report AIM-224 (STAN-CS-73-403), Stanford Artificial Intelligence Laboratory

(Computer Science Department, Stanford University), 1973.

[28] Jack Holloway.
PDP- lO Paging Device.
Hardware Memo 2, Massachusetts Institute of'Iechnology, Artificial Intelligence Laboratory,

February, 1970.

[29] Series O0(Level 68) Multics Processor Manual
Honeywell Information Systems Inc., 1979.
Order number AL39.

[30] Honeywell, Inc. and CII Honeywell Bull.
Reference Manual for the Ada Programming Language.
Proposed Standard Document, United States Department of Defense, July, 1980.

[31] James J. Homing, Hugh C. Lauer, Peter M. Melliar-Smith, and Brian Randell.
A Program Structure for Error Detection and Recovery.
In Colloques IRIA: Aspects. Thkoriques et Pratiques des Systdmes d'Exploitation, pages

177-193. Institut de Recherche d'Informatique et d'Automatique, BP5-Rocquencourt,
78150 Le Chesnay, France, 23-25 avril 1974.

Complete proceedings reprinted by Gelenbe and Kaiser [20]; this article is on pages 171-187.

[32] Mu-Yue Hsiao.
A Class of Optimal Minimum Odd-weight-column SEC-DED Codes.
IBM Journal of Research and Development 14(4): 395-401, July, 1970.

[33] Jean D. Ichbiah et al.
Preliminary AD A Reference Manual
Honeywell, Inc. and CII Honeywell Bull, 1979.
Reprinted in ACM SIGPLAN Notices 14(6), June, 1979.

Richard 1t. Gumpertz 106 Error Detcction with Memory Tags

[34] J.K. lliffe.
Basic Machine Principles.
American Elsevier Publishing Company, 1968.

[35] J.K. Iliffe.
Elcments of BI,M.

Computer Journal 12(3):251-258, August, 1969.

[36] Introduction to the iA PX 432 Architecture

lntcl Corporation, 1981.
Order number 171821-001.

[37] Special Feature Instructions: IBM 1401 Data Processing System & IBM 1460 Data Processing
System
International Business Machines Corporation, 1964.
Form A24-3071-2.

[38] IBM Systenu/370 Principles of Operation
Fifth edition, International Business Machines Corporation, 1976.
Order number GA22-7000-5.

[39] David Kahn.
The Codebreakers: The Story of Secret Writing.
The Macmillan Company, 1967.

[40] Peter M. Kogge and Harold S. Stone.
A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Fxtuations.
IEt_'E Transactions on Computers C-22(8):786-793, August, 1973.

[41] Peter M. Kogge.
Maximal Rate Pipelined Solutions to Recurrence Problems.
In Proceedings of the lrTrstAnnual Symposium on Computer Architecture, pages 71-76.

December, 1973.

Computer Architecture News 2(4), December, 1973.

[42] Peter M. Kogge.
The Architecture of Pipelined Computers.
Hemisphere Publishing Corporation & McGraw-Hill Book Company, 1981.

[43] Butler W. Lampson.
Some Remarks on a Large New Time-Sharing System.

In Computer 70, pages 74-81. United States Dcpartment of Commerce and The Association
for Computing Machinery, October, 1970.

[44] Butler W. Lampson, James J. Horning, Ralph L. London, James G. Mitchell, and Gerald
J. Popek.
Report on the Programming Language Euclid
1976.

Reprinted as ACM SIGPLAN Notices 12(2), February 1977.

Richard H. Gumpertz 107 Error i)etection with Memory Tags

[45] Butler W. 1,ampson and Robert F. Spmull.
An Open Operating System for a Single-User Machine.
In Proceedings _f lhe Seventh Symposium on Operating Systems Principles, pages 98-105.

Association for Computing Machinery, December, 1979.

[46] Abraham Lempel.
Cryptology in Transition.
Computing Surveys 11(4):285-303, December, 1979.

[47] Sik K. Leung-Yan-Cheong and Martin E. Hellman.
Concerning a Bound on Undetected Error Probability.
IEEE Transactions on lnJbnnation Theory 1T-22(2):235-237, March, 1976.

[48] Sik K. Leung-Yan-Cheong, Earl R. Barnes, and Daniel U. Friedman.
On Some Properties of the Undetected Error Probability of IJnear Codes.
IEEE Transactions on Information Theory IT-25(1):110-112, January, 1979.

[49] C, H. Lindsey and S. G. van der Meulen.
lnformal Introduction to ALGOL 68.
North-Holland Publishing Company, 1977.

[50] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert.
Abstraction Mechanisms in CLU.

Communications of the Association for Computing Machinery 20(8):564-576, August, 1977.

[51] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob Scheifler,
and Alan Snyder.
CL U Reference Manual.
Technical Report MIT/LCS/TR-225, Massachusetts Institute of Technology, I_aboratory for

Computer Science, October, 1979.

[52] Allen W. Luniewski.
The Architecture ofan Object Based Personal Computer.
PhD thesis, MIT/I.CS/TR-232, Massachusetts Institute of Technology, Laboratory for

Computer Science, December, 1979.

[53] Florence Jessie MaeWilliams.
Error Correcting Codes--An Historical Survey.
In Henry B. Mann (editor), Error Correcting Codes. John Wiley & Sons, 1968.

[54] Florence Jessie MacWilliams and Neil James Alexander Sloane.
The Theory of Error-Correcting Codes,
North-Holland Publishing Company, 1977.

[55] Ralph C. Merkle.
Secure Communications over Insecure Channels.

Communications of the Association for Computing Machinery 21(4): 294-299, April, 1978.

[56] A.A. Milne.
When We Were Very Young.
E. P. Dutton & Co., 1924.

Richard H. Gumpertz 108 Error Detection with Memory Tags

[571 A.A. Milne.
Winnie-the-Pooh.

Methuen & Co. Ltd., London, 1926.

[58] A.A. Milne.
No w We are Six.

E. P. Dutton & Co., 1927.

[59] Christopher Milne.
The Enchanted Places.

E. P. Dutton & Co., 1974.

[60] James G. Mitchell, William Maybury, and Richard E. Sweet.
Mesa Language Manual
Technical Report CS1.-79-3, Xcrox, Inc. (Palo Alto Research Center, Systems Dcvelopment

Department), Palo Alto, California, April, 1979.

[61] James H. Morris, Jr.
Protection in Programming Languages.
Communications of the Association for Computing Machinery 16(1): 15-21, January, 1973.

[62] Glenford J. Myers.
Software Reliability, Principles and Practices.
John Wiley & Sons, 11976.

[63] Glenford J. Myers.
The Design of Computer Architectures to Enhance ,Software Reliability.
PhD thesis, Computer Science Division, Polytechnic Institute of New York, June, 1977.

[64] Glenford J. Myers.
Advances in Computer Architecture.
John Wiley & Sons, 1978.

[65] Data Encryption Standard
National Bureau of Standards, 1977.

Federal Information Processing Standard (FIPS) Publication Number 26.

[66] Nebula Instruction Set Architecture (MIL-STD-1862A)
Naval Publications Center, Philadelphia, 1981.

[67] Roger M. Needham.
Adding Capability Access to Conventional File Servers.
ACM Operating Systems Review 13(1):3-4, January, 1979.

[68] Joseph M. Newcomer et al.
HYDRA: Basic Kernel Reference Manual

Technical Report, Carnegie-Mellon University, Department of Computer Science, November,
1976.

[69] Elliott I. Organick.
Computer System Organization: The B5700/B6700 Series.
Academic Press, 1973.

Richard H. Gumpertz 109 Error Detection with Memory Tags

[70] William Wesley Peterson and E. J. Weldon, Jr.
Error-Correcting Codes (second edition).
The MIT Press, 1972.

[71] Steven C. Pohlig.
Algebraic and Combinatoric aspects of Cryptography.
Phi) thesis, Stanford University, October, 1977.

[72] System Architecture Reference Guide
PR1ME Computer, Inc., 1981.
Document numbcr PI)R3060.

[73] Brian Randell.
Operating Systems: the Problems of Performance and Reliability.
In Information Processing 71: Proceedings of ll'71' Congress 71, pages 281-290. International

Federation for Information Processing, North-Holland Publishing Company, 1972.

[74] Brian Randell.
System Structure for Software Fault Tolerance.
IEEE Transactions on Software Engineering SE-1(2):220-232, June, 1975.

[75] David D. Redell.
Naming and Ptvtection in Extensib[e Operating Systems.
Technical Report MAC-TR-140, Massachusetts Institute of Technology, I.aboratory for

Computer Science (formerly Project MAC), November, 1974.
Originally a PhD thesis. University of California at Berkeley, September 1974.

[76] Marian Rejewski.
How Polish Mathematicians Broke the Enigma Cipher.
Annals of the History of Computing 3(3):213-234, July, 1981.

[77] Ronald L. Rivest, Adi Shamir, and Leonard Adleman.
A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the Association for Computing Machinery 21(2): 120-126, February, 1978.

[781 Ronald L. Rivest.
A Description ofa Single-Ctiip Implementation oft.he RSA Cipher.
Lambda I(3):14-18, Fourth Quarter, 1980.
Redwood Systems Group, P.O. Box 50503, Palo Alto, California 94303.

[79] Richard M. Sedmak.
Availability, Reliability, and Maintainability.
1979.

Preliminary draft of a chapter of a book in preparation at Sperry Univac.

[80] Claude E. Shannon.
Communication Theory of Secrecy Systems.
Bell System Technical Journal 28(4):656-715, October, 1949.

[811 Peter W. Shantz, R. Angus German, James G. Mitchell, Richard S. K. Shirle);, and C. Robert
Zarnke.

WATFOR--The University &Waterloo FORTRAN IV Compiler.
Communications of the Association for Computing Machinery 10(1):41-44, January, 1967.

Richard H. Gumpertz 110 Error Detection with Memory 'Fags

[82] Rosemary Shields.
The Assembly Language Programmer's Guide
PR 1ME Computer, Inc., Framingham, Massachusetts, 1979.
Document number FDR3059-101A.

[83] J. Lynn Smith.
The design of Lucifer, a cryptographic devicefor data communications.

Technical Report RC 3326, IBM rl'.J. Watson Research Center, Yorktown Heights, New York,
April, 1971.

[84] Leland Szewerenko, William B. Dietz, and Frank E. Ward.
Nebula: A New Architecture and Its Relationship to Computer Hardware.
Computer 14(2):35-41, February, 1981.

[85] Donald T. Tang and Robert T. Chien.
Coding for error control.
IBM Systems Journal 8(1):48-86, 1969.

[86] David J. Taylor, David E. Morgan, and James P. Black.
Redundancy in Data Structures: Improving Software Fault Tolerance.
IEEE Transactions on Software Engineering SE-6(6):585-594, November, 1980.

[87] David J. Taylor, David E. Morgan, and James P. Black.
Redundancy in Data Structures: Some Theoretical Results.
IEEE Transactions on Software Engineering SE-6(6): 595-602, November, 1980.

[88] 990 Computer Family Systems Handbook
Second edition, Texas Instruments Incorporated, 1975.
Manual number 945250-9701.

[89] Wing N. Toy.
Fault-Tolerant Design of I_.ocalESS Processors.
Proceedings of the lE1£1£66(10): 1126-1145, October, 1978.

[90] John C. Traupman.
The New College Latin & English Dictionary.
Grosset & Dunlap, 1966.

[91] Paul Yyner.
ill PX 432 General Data Processor Architecture Reference Manual
Intel Corporation, 1981.
Order number 171860-001.

[92] John F. Wakerly.
Error Detecting Codes, Self-Checking Circuits, and Applications_
Elsevier North-Holland, 1978.

[93] BCC 500 CPU ReJ_rence Manual
University of Hawaii, The Aloha System, 1973.

Richard H. Gumpertz 111 Error l)etcction with Memory Tags

[94] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoff, C. tt. Lindsey,
Ix.G. I.. T. Meertcns, and R. G. Fisker.

Revised Report on the Algorithmic Language ALGOL 68.
Acta h(onnatica 5(1-3): 1-236, 1975.
Rcprinted by Springer-Verlag, 1976 and in ACM SIGPLAN Notices 12(5):1-70, May, 1977.

[95] F.W. Winterbotham.
Tile Ultra Secret.

Harper & Row, Publishers, 1974.

[96] William A. Wulf, Ellis Cohcn, William M. Corwin, Anita K. Jones, Roy Levin, Charles
Pierson, and Frederick Pollack.
HYDRA: The Kernel of a Multiproccssor Operating System.
('ommunications of the Association for Computing Machhlery 17(6): 337-345, June, 1974.

[97] William A. Wulf, Roy Levin, and Samuel P. Harbison.
H YDRA/C.mmp: An Experimental Computer System.
McGraw-Hill Book Company, 1981.

